ABSORÇÃO POLARIZADA EM CRISTAIS DE FLUORAPATITA

JORGE DO REGO FREITAS FILHO ORIENTADOR: DR.NICOLAO JANNUZZI

> Tese apresentada no Instituto de Física "Gleb Wataghin" da Universidade Estadual de Campinas, para obtenção do título de Mestre em Ciências.

> > 1973

Universidade Estadual de Campinas Instituto de Física "Gleb Wataghin" Departamento de Física do Estado Sólido e Ciência dos Materiais - 1 ---

Tese de Mestrado apresentada por Jorge do Rego Freitas Filho

-1973-

Auxilios provenientes da Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Pesquisas e Ministério do Planejamento, permitiram a realização deste trabalho.

	Pa
OFERECIMENTO	3
AGRADECIMENTOS	4
REFERÊNCIAS BIBLIOGRÁFICAS	69
I - INTRODUÇÃO	
a) Histórico	5
b) Objetivo	5
c) Propriedades das Apatitas	6
d) Resumo de Trabalhos Anteriores	10
II - TÉCNICAS EXPERIMENTAIS	
a) Espectrofotômetro	15
b) Cristais	17
c) Polarização	17
d) Variação da temperatura	19
III - RESULTADOS EXPERIMENTAIS	
A - Absorção à temperatura ambiente	
A.l - Absorção não polarizada	2 2
A.2 - Absorção polarizada	24
- Discussão	- 24
B - Absorção polarizada, com variação d	la temperatura
B.1 - Resultados	4 0
B.2 - Discussão	44
B.3 - Conclusão	67

•

-2-

AGRADECIMENTOS

Ao Prof.Dr.Nicolao Jannuzzi, a quem muito devo por minha formação profissional, pela compreensão nas horas difíceis e pela dedicação durante toda a realização do trabalho.

Ao Prof.Dr.José Galvão de P.Ramos, pelas discussões e sugestões durante o desenvolvimento do trabalho.

Ao Prof.Dr.S.Caticha Ellis, pela determinação das imp<u>u</u> rezas contidas no cristal.

Ao Prof.Dr.Roberto Luzzi, pelas excelentes sugestões e correções.

Aos Profs.Drs.Milton Ferreira de Souza e Rene Robert , que possibilitaram a realização de diversas experiências no In<u>s</u> tituto de Física e Quimica de São Carlos, da Universidade de / São Paulo.

Aos colegas Profs. Marco Antonio Fiori Scarparo e Solon P. da Cruz Filho que sempre colaboraram nas discussões do trab<u>a</u> lho.

Ao Sr. Orlando Gilberto Feriani, pela confecção dos de senhos com tanta capacidade e boa vontade.

A todos

Muito obrigado

1 - INTRODUÇÃO

a) Histórico

As apatitas, de fórmula $Ca_{10}(PO_4)_6 X_2$, onde X=F, CLou OH, constituem um grupo de compostos naturais ou sintéti~ cos de grande interesse.

A presença do halogênio (F⁻, C²) ou do OH⁻ caract<u>e</u> riza o tipo específico da apatita, definindo uma "fluorapatita", "cloroapatita" ou "hidroxiapatita" no caso do cristal apresentar fluor, cloro ou radical hidroxílico, respectivame<u>n</u> te, entre seus constituintes.

As <u>hidroxiapatitas</u> $|Ca_{10}(PO_4)_6(OH)_2|$ constituem cer ca de 95% da parte mineral dos dentes e 2/3 do peso dos ossos sendo, assim, cristais de grande interesse biológico.

As <u>fluorapatitas</u> $|Ca_{10}(PO_4)_6 F_2|$ são as formas / mais encontradas na natureza pois a quantidade de fluor tende a aumentar gradativamente com o tempo⁽¹⁾. São cristais de / grande interesse industrial, principalmente na agricultura, / pois constituem a principal fonte de minério de fósforo,pode<u>n</u> do conter cerca de 30% de ácido fosfórico, muito utilizado c<u>o</u> mo fertilizante.

As <u>cloroapatitas</u> |Ca₁₀(PO₄)₆ CL₂| são formações / mais raras e dificilmente são encontradas na natureza em forma pura.

Além destas, as apatitas mais exploradas, com finalidades econômicas, são as encontradas em formações contendo/ carbonatos ligados a fosfatos de rocha e que apresentam, en tre seus constituintes, urânio e vanádio.

b) Objetivo:

Os cristais de apatita ja foram analisados e estuda

dos anteriormente utilizando-se diferentes técnicas, tais como difração de neutrons, NMR, ENDOR, raios-X, absorção ótica,etc.

Nos trabalhos publicados há poucas referências relacionadas ao comportamento das bandas vibracionais que ocorrem na região do infra-vermelho próximo, devidas à presença de gr<u>u</u> pos OH⁻ nos cristais de apatitas.

Estes grupos hidroxílicos, além de definirem a estr<u>u</u> tura de uma hidroxiapatita, apresentam-se como impurezas em o<u>u</u> tros tipos de apatitas. Desse modo, um cristal de fluorapatita pode apresentar uma certa concentração de íons OH⁻, sendo que a vibração desses dipolos darã origem a bandas vibracionais/ que poderão ser determinadas num espectrofotômetro.

O objetivo deste trabalho é de estudar as vibrações do OH⁻ em cristais de fluorapatita natural.

Estas vibrações são polarizadas e pudemos estudar a absorção ótica em função da temperatura num intervalo de 300 -500⁰K.

Ao lado do estudo da absorção tentamos explicar a r<u>a</u> zão do aparecimento de duas bandas de OH⁻.

Assim, em conjunto com as teorias já existentes, pudemos verificar a possibilidade de ocorrência dos ions OH⁻, as possiveis ligações desses ions com os demais elementos da estrutura, assim como pudemos verificar o comportamento dos dip<u>o</u> los quando submetidos a temperaturas variáveis.

c) Propriedades das apatitas

As apatitas cristalizam-se no sistema hexagonal do grupo espacial P6₃/m e contém 42 átomos por cela unitária⁽²⁾. As análises feitas anteriormente utilizando-se técnicas de raios -X e difração de neutrons⁽³⁾ mostram que os átomos de cálcio <u>o</u>

-6-

cupam duas posições distintas na rede cristalina($Ca_{II}^{++} e Ca_{I}^{++}$) Os átomos de Ca_{I}^{++} localizam-se ao longo do eixo de ordem 3 e/ os de Ca_{II}^{++} formam triângulos dispostos simetricamente ao longo do eixo cristalográfico c nas posições (0 0 1/4) e (0 0 3/4) e são girados de 60° entre si. Portanto, há dois locais defin<u>i</u> dos para o cálcio:(Ca_{I}^{++} : 4 átomos ao longo do eixo de ordem / 3) e Ca_{II}^{++} : 6 átomos dispostos simetricamente ao longo do eixo de ordem 6).

Os atomos de F, CL ou OH, que são responsáveis p<u>e</u> la diferenciação entre os diversos tipos de apatitas, locali zam-se ao longo desse eixo de ordem 6 (eixo c).

A Fig. l mostra a estrutura de um cristal de fluorapatita projetada num plano basal.

Normalmente, devido às próprias condições do ambiente, o cristal natural de fluorapatita contém ions OH que sub<u>s</u> tituem o fluor. Porém, como o ion OH apresenta um raio ionico maior que o do F, o radical OH ficará deslocado (cerca de / 0,3 A) do centro do triângulo de cálcio, que corresponde à posição ocupada pelo fluor.

A Fig.2 mostra a posição do átomo de fluor e as possiveis posições dos grupos OH⁻ com relação aos triângulos de / cálcio nas posições (O O 1/4) e (O O 3/4) do eixo c.

Este deslocamento do OH⁻ em relação à posição ocupada anteriormente pelo átomo de F⁻ acarreta uma expansão do tr<u>i</u> ângulo de cálcio (Ca⁺⁺_{II}) e, consequentemente, um aumento do p<u>a</u> râmetro <u>a</u>. Como o OH⁻ apresenta um deslocamento do centro do / triângulo de cálcio, tanto para cima como para baixo, não há / praticamente variação no parâmetro c.

Jã o ion de CL, por apresentar um raio iônico maior que o OH, sofre um deslocamento maior ao longo do eixo c, com

-7-

- Estrutura da Fluorapatita projetada num plano basal.
- As linhas contínuas indicam as posições situadas em z=1/4.
- As linhas tracejadas indicam as posições situadas em z=3/4.

1.7

Triângulos de cálcio (eixo de ordem 6). Os triângulos (2) e (4) mostram as duas posições possíveis para o OHT.

Fig: 2

-- 9 --

relação à posição central do triângulo de cálcio.

A Fig. 3 mostra os parâmetros (a = b , c) das fluorcloro- e hidroxi-apatitas.

Assim, há uma coluna de ions que passa pelo centro / dos triângulos de cálcio (Ca_{II}^{++}), sendo que a disposição e o / tipo de ions ao longo do eixo de rotação que passa pelos triâ<u>n</u> gulos de cálcio resultam nas diferenças entre as três apatitas mencionadas, pois tanto os ions de F⁻ como de CL⁻ ou OH⁻ difundem-se ao longo desse eixo, que se constitui num percurso de / fácil difusão de ions⁽³⁾.

Desse modo, considerando-se o cristal de fluorapatita, os ions de OH⁻ difundem-se na rede cristalina ao longo do eixo c substituindo os ions de F⁻ (ou vice-versa na hidroxiap<u>a</u> tita), como mostrado por Kay et al - 1964.

d) <u>Resumo de Trabalhos Anteriores</u>

Os cristais de apatitas, como jã mencionado, foram <u>a</u> nalisados por meio de diversas técnicas e seus resultados pu blicados em vários artigos.

Assim, por exemplo, Kay-Young e Posner⁽⁴⁾, baseados/ em trabalhos anteriores, puderam determinar com precisão a es trutura da hidroxiapatita. Como as três apatitas (F⁻, CL⁻, OH⁻ - apatitas) apresentam estruturas muito semelhantes, como mostrado na Fig.3, R.A.Young e J.C. Elliott⁽⁵⁾ puderam, então, d<u>e</u> terminar as posições ocupadas pelos átomos de F⁻, CL⁻ e OH⁻, além de verificarem que tais íons tendem a deslocar-se ao longo da direção do eixo c em "canais" que são bastante largos, / suportados pelo restante da estrutura e que, por isso, constituem caminhos de fácil difusão de íons.

A essa mesma conclusão chegaram J.Arends et al⁽⁶⁾, /

Parâmetros das Fluor-, Cloro- e Hidroxi-apatitas

	a(Å)	c(Å)
HAP	9.418	6,883
FAP	9,3684	6,8841
CAP	9,629	6.776

Fig: 3

calculando a energia necessária para um ion OH⁻ pessar de um / local para outro. O ion OH⁻ apresenta uma energia de migração/ da ordem de 0,3 e V para passar para uma vacância adjacente ao longo do eixo c, enquanto essa energia deverá ser bem maior <u>pa</u> ra que o OH⁻ passe para uma vacância seguindo um percurso perpendicular a esse eixo. O OH⁻, contido como impureza na fluor<u>a</u> patita, pode deslocar-se de uma posição para outra com uma/ frequência dada por:

$$\omega = \bar{\nu} \exp \left[- E_{m}/k_{B} T \right]$$

onde: \overline{v} = frequência efetiva da rede Em = energia de migração

sendo que a probabilidade de ocorrer um tal deslocamento é dada por:

$$P(\mu_{c}) = (2\pi < \mu(T)^{2})^{1/2} \exp \left[\frac{\mu_{c}^{2}}{2} + (T)^{2} \right]$$

< $\mu(T)^{2}$ = deslocamento quadrático médio do ion à peratura T

onde:

$$\mu < c > = deslocamento crítico: $\mu_c = \frac{d}{2}$$$

Nessas condições pode-se calcular a energia necessária para o deslocamento do íon:

$$E_{m} = k d^{2} (\langle \mu (T) \rangle^{2} \rangle / k_{B} T)^{-1}$$

No caso da fluorapatita:

 $d_1 = 3,44 \stackrel{o}{A}$ - ao lengo do eixo c $d_2 = 9,37 \stackrel{o}{A}$ - perpendicular ao eixo c

O cálculo dessa energia mostra que E_{ml} ≃ 0,3 e V para o deslocamento da impureza ao longo do eixo c

 $E_{m_2} \simeq 2,2 \in V$ para o deslocamento da impureza perpe<u>n</u> dicularmente ao eixo c.

-12-

tem

Portanto, muito provavelmente, o movimento do íon / OH[–] (ou do CL[–], ou do F[–]) é estabelecido ao longo do eixo c, / fato esse que foi verificado também por A.S. Posner et al⁽³⁾ /sendo que, nesse deslocamento, os íons OH[–] poderão substituir/ os íons de F[–].

A presença do OH⁻, mesmo em cristais sintéticos de / fluorapatita, foi verificada por Swank⁽⁷⁾ através de medidas / de absorção ótica, e por W.W. Piper et al⁽⁸⁾ através de medidas de EPR e ENDOR. Estas medidas indicam a presença de vacâncias de fluor e mostram que os defeitos nas apatitas são do t<u>i</u> po de Schottky, ou seja, uma vacância de cálcio (duas cargas / positivas) é compensada por duas vacâncias do íon X⁻ (onde X⁻ = $= F^-$, CL⁻ ou OH⁻) formando um tripleto Schottky.

J.C. Elliott⁽⁹⁾ mostra que a direção da ligação O-H fica ao longo do eixo c. Tal verificação é deduzida a partir / de dados obtidos pelo espectro de absorção polarizada de uma/ secção de um dente. Nessas medidas, o modo de vibração do OH absorvia radiação somente quando a direção do vetor elétrico <u>e</u> ra estabelecida ao longo da direção do eixo c, o que mostra / que a direção de ligação do O-H fica ao longo desse eixo.

Outros artigos mostram os espectros de absorção **e**bt<u>i</u> dos com cristais de apatita. Por exemplo, Fowler⁽¹⁰⁾ usando / técnicas de alta resolução em cristais de hidroxiapatita sint<u>é</u> tica obteve picos localizados na região do infra-vermelho próximo nas frequências de $v_1 = 3571 \text{ cm}^{-1}$ (vibração do OH⁻), $v_2 =$ $= 3545 \text{ cm}^{-1}$, $v_3 = 3535 \text{ cm}^{-1}$ (diferentes ligações do fluor com o OH⁻ da rede) e $v_4 = 3495 \text{ cm}^{-1}$ (ligações do OH⁻ com átomos / de cloro).

Mais recentemente, Cant et al⁽¹¹⁾ verificaram o espe<u>c</u> tro vibracional dos grupos OH⁻ em diferentes apatitas. Assim, para uma hidroxiapatita estequiométrica,o pico devido à vibração do OH⁻ aparece com uma energia correspondente a 3572 cm⁻¹,

-13-

enquanto para uma hidroxiapatita não estequiométrica ocorre um pico em 633 cm⁻¹ interpretado como sendo devido à libração do/ OH⁻. No caso de uma hidroxiapatita contendo fluor como impure za, além do pico em 3572 cm⁻¹ hã um outro pico em 3546 cm⁻¹ que é interpretado como sendo devido à vibração do OH⁻ ligado ao / fluor.

Porém, as informações sobre medidas de absorção pol<u>a</u> rizadas em cristais de fluorapatita, assim como a sua variação devido à alteração da temperatura, não existem e, como vimos, / são de real interesse pois podem representar um grande auxílio/ para outros campos de pesquisa como por exemplo, na biologia,/ principalmente na parte de estrutura de ossos e, em particular/ nos dentes.

-14-

II - Técnicas Experimentais

a) O Espectrofotômetro

As medidas de absorção e de transmissão polarizadas, em cristais de fluorapatita, foram realizadas num Espectrofot<u>ô</u> metro Beckman modelo DK-2A, de feixe duplo: um feixe de "referência" e um de "amostra", constituindo portanto um sistema de feixe duplo dentro do compartimento da amostra sendo que ambos os feixes têm componentes comuns de detecção e de ampliação.

A comparação entre a energia do feixe de amostra e a energia do feixe de referência permite que se analise um cristal colocado no interior do compartimento de amostras numa fa<u>i</u> xa de comprimento de onda compreendida entre 160 e 3500 mµ.

Características:

1) Parte ótica: Monocromador simples .

- Compartimento de amostras de feixe duplo - Fonte-- detetor.

2) Faixa de comprimento de onda:Entre 160 e 3500 mµ.

- 3) Resolução: Superior a 0,2 mµ em 220 mµ. -
- 4) Precisão : a) Ultra-violeta: > 0,4 mµ
 - b) Visivel : > 1,5 mµ
 - c) Infra-vermelho ; > 8 mµ

5) Largura da fenda: 0 - 2 mm (automático)

6) Altura da fenda: 1,5; 4,0; ou 12 mm (manual).

A Fig.4 mostra o esquema da parte ótica do espectrofotômetro onde a radiação proveniente da fonte, passa por dois cristais (A e B), colocados no compartimento de amostras, an tes de atingir o detetor.

> Ha duas fontes e dois detetores no espectrofotômetro Fontes Hidrogênio

-- 15--

(2) Cristal B

Fig: 4

Detetores Tubo fotomultiplicador

A lâmpada de hidrogênio é utilizada na região de com primento de onda abaixo de 375 mµ e a lâmpada de tungstênio é/ uma fonte de radiação usada na região de comprimento de onda/ compreendida entre 320 e 3500 mµ. Com respeito aos detetores,o tubo fotomultiplicador é utilizado no caso de comprimentos de onda abaixo de 700 mµ, e o detetor de sulfeto de chumbo na região compreendida entre 400 e 3500 mµ.

Assim, como as medidas de absorção e de transmissão/ dos cristais de fluorapatita foram feitas na região do infravermelho, foi utilizada a fonte de tungstênio e o detetor de / sulfeto de chumbo.

Algumas medidas foram feitas num Espectrofotômetro / Perkin-Elmer 180 (Grating Infrared Spectrophotometer).Nesse ca so, de modo a se manter uma resolução razoável, foi utilizado/ um condensador do feixe de reflexão "Accy-6x".

b) Cristais

Todos os cristais disponíveis eram de fluorapatita, sendo que alguns foram cortados paralelamente ao eixo c e outros perpendicularmente a esse eixo, como mostra a Fig.5.

A análise dos cristais por meio de técnicas de raios X comprovou a presença de impurezas de manganês e cloro.

c) Polarização:

Como mencionado anteriormente, um dos objetivos do / trabalho é o de verificar a presença de bandas vibracionais / que devem ocorrer na região do infra-vermelho próximo.

Diversos polarizadores foram testados sem exito, todos eles sendo ativos na região em estudo.

Por isso, para se realizar medidas de absorção pola-

-17-

Plano de corte dos cristais de fluorapatita. (a)Cristal (1) cortado perpendicular ao eixo c. (b)Cristal (2) cortado paralelo ao eixo c.

Fig: 5

rizada (ou de transmissão), a radiação proveniente da fonte de tungstênio incidia primeiramente num cristal de fluorapatita / cortado paralelamente ao eixo c (cristal A)e,a seguir,no outro cristal de fluorapatita (cristal B). Ambos os cristais foram / colocados paralelamente um ao outro porém girados de um certo ângulo θ (variável) entre si. Desse modo, o cristal A absorvia parte da componente do campo elétrico paralelo ao eixo c e / transmitia somente a componente perpendicular a este eixo, que incidia, então, no cristal B, como mostra a Fig. 6.

Com a amplitude da onda eletromagnética que emerge/ do cristal B é:

A $\alpha E \cos \theta$

onde θ = ângulo entre as direções de polarização dos dois cri<u>s</u> tais (A e B), então, pela lei de Malus:

 $I = I_m \cos^2 \theta$

I = Valor máximo da intensidade transmitida.

Logo, I_m será máximo para $\theta = 0^{\circ}$ ou $\theta = 180^{\circ}$, ou seja, se os dois cristais forem colocados paralelamente um ao o<u>u</u> tro porém girados de 90[°], a absorção será máxima.

d) Variação da temperatura

Para se verificar as possiveis alterações no espectro de absorção e/ ou de transmissão polarizada dos cristais/ de fluorapatita, provocadas pela variação da temperatura, o / cristal B foi colocado no interior de um dewar de vidro onde / se fazia vácuo.

Variando-se a tensão nos terminais da resistência R, provocamos uma variação na temperatura do cristal, a qual era detetada num voltímetro digital por meio de um termopar de co bre-constantan.

Este arranjo permite a realização de medidas de ab-

Fig: 6 E

Esquema

da polarização

sorção, com radiação polarizada, numa faixa de temperatura com preendida entre $77^{\circ}K \le T \le 700$ K.

De modo a se evitar o aquecimento externo do recipiente de vidro, o que poderia acarretar danos ao espectrofotôm<u>e</u> tro ou diferenças nas curvas obtidas, devido à radiação provocada pelo aquecimento, este recipiente era evacuado, sendo que a radiação passava por janelas de K CL puro, ou outro cristal iônico puro, que não absorvem radiação na faixa de comprimento de onda correspondente à região do infra-vermelho próximo.

-21-

III - Resultados Experimentais - Díscussão.

Parte A: - Absorção à temperatura ambiente

A.l- Absorção não polarizada

A.2- Absorção polarizada.

Parte A : Absorção à temperatura ambiente

Como mencionado anteriormente, um dos objetivos da / pesquisa realizada é de verificar a presença de bandas devidas à vibração dos dipolos OH⁻ contidos como impurezas num cristal de fluorapatita.

Como a molécula de OH⁻ absorve na região do infra- / vermelho, apresentando uma frequência de vibração em torno de 2,8µ (~3570 cm⁻¹), as medidas de absorção foram realizadas / nessa região. De um modo geral, na maior parte dos cristais, o OH⁻ dã origem a bandas cujas frequências de vibração estão co<u>m</u> preendidas entre 3300 cm⁻¹ (~3,0µ) a 3700 cm⁻¹ (~2,7µ).

A.1- Absorção não polarizada

Com a finalidade de verificar a direção de ligação / do OH⁻ no interior do cristal, foram realizadas medidas de absorção, sem polarização, com cristais cortados tanto paralela, como perpendicularmente ao eixo c (como mostrado na Fig.5).

Com cristais cortados perpendicularmente ao eixo c, o espectro de absorção mostra uma curva sem a presença marcante de uma banda, como se pode ver na Fig.7-a.

A Fig.7-b mostra o espectro de absorção obtido com/ um cristal de fluorapatita, cortado paralelamente ao eixo c,da mesma procedência do cristal anterior, numa região compreend<u>i</u> da entre 2700 mµ a 2900 mµ(ou:3623 cm⁻¹ a 3430 cm⁻¹).

Parte B: - Absorção polarizada, com variação da temperatura.

-23-

Como se pode ver, hã ume grande imprecisão para se / determinar a posição correspondente às duas bandas de absorção. Podemos notar, somente, que essas bandas (1 e 2) estão compreendidas na faixa de comprimento de onda:

 $2810 \text{ m}\mu < (1) < 2840 \text{ m}$

2860 mµ < (2) < 2890 mµ

A.2- Absorção Polarizada

As figs. 8 e 9 mostram, respectivamente, os espectros de transmissão e de absorção de um mesmo cristal, cortado par<u>a</u> lelamente ao eixo c,obtidos com radiação polarizada, de acordo com o procedimento ja esquematizado anteriormente e como/ mostrado na Fig. 6. A radiação proveniente da fonte, antes de atingir o cristal colocado no interior do compartimento de amostras do espectrofotômetro, passa por um outro cristal idêntico colocado paralelamente a ele e que pode girar num certo ângulo θ desejado, de modo a podermos variar a intensidade da absorção polarizada.

Por meio dos espectros pode-se notar a variação produzida nas intensidades das bandas de transmissão e de absor-/ ção quando se varia o ângulo θ entre os dois cristais. Agora, pode-se constatar a presença de duas bandas com frequências / bem definidas, ou seja:

 $\begin{cases} \text{pico } 1 : \nu = 3538 \text{ cm}^{-1} \\ \text{pico } 2 : \nu = 3487 \text{ cm}^{-1} \\ \text{com uma separação } \Delta \nu = 5.1 \text{ cm}^{-1}. \end{cases}$

Discussão:

É sabido que os desvios da estequiometria ocorrem com relativa facilidade nas apatitas, ocasionando falta: tanto dos

ions da Cálcio como de ions X (onde X = CL, F ou OH).

Vimos também que muito provavelmente o deslocamento/ dos fons OH⁻ ocorre ao longo do eixo de simetria do cristal,ou seja, numa direção paralela ao eixo c.

Além disso, J.C. Elliott⁽⁹⁾ mostrou que a direção da ligação O-H é estabelecida ao longo do eixo c.

Devido a esse fato, um cristal contendo OH[®] deverá <u>a</u> presentar bandas de absorção proeminentes no caso da componen; te do dipolo OH ser grande numa direção paralela a esse eixo/ c.

Analisando-se os espectros mostrados em 7-a e 7-b v<u>e</u> mos que, no caso da Fig.7-a, não há bandas proeminentes na região estudada, que coincide com a região onde ocorre a absor-/ ção devida a vibração da molécula de OH. No caso da Fig.7-b,p<u>o</u> rém, podemos notar a presença de duas bandas não muito pronunciadas, mas que nos mostram que a ligação O-H realmente ocorre ao longo da direção do eixo c.

Considerando-se, por exemplo, alguns cristais iôni cos dopados com OH⁻, vemos que as frequências correspondentes/ às vibrações do OH⁻ ocorrem em:⁽¹²⁾

	Cı	ristal		Frequência	(cm ⁻¹)
K Br	:	он	\longrightarrow	3619	
ксе	:	он	>	3642	
КI	:	он	>	3605	

No caso em estudo, o OH[®] fica contido numa vizinhança diferente; porém, as possiveis ligações com outros átomos / da rede modificarão muito pouco a frequência correspondente ã sua vibração.

Realmente, no caso da apatita, encontramos duas bandas nessa região que, certamente, serão devidas ao OH⁻ e ambas apresentam a ligação OH na direção do cixo c.

Desse modo, se a direção do vetor elétrico for estabelecida ao longo da direção que corresponde à direção de lig<u>a</u> ção da molécula de OH, esta absorverá energia com uma maior i<u>n</u> tensidade ⁽⁹⁾.

Este fato pode ser visto claramente nas Figs.8 e 9,/ onde os picos de transmissão (Fig.8) e de absorção (Fig.9) a-/ presentam intensidades menores e maiores,respectivamente.

Portanto, polarizando-se a radiação que incide no / cristal de fluorapatita, podemos determinar mais precisamente/ as frequências de vibração da molécula de OH, ao mesmo tempo / em que evidenciamos que o momento de dipolo da molécula de OH/ apresenta um componente maior ao longo do eixo c.

O fato do espectro obtido mostrar a presença de duas bandas leva-nos a pensar que o OH localiza-se em posições dif<u>e</u> rentes dando origem a duas frequências distintas. Ou seja, o / OH poderá estar situado em locais onde seus vizinhos mais pr<u>o</u> ximos sejam diferentes originando forças de ligações ligeira-/ mente diferentes.

Por exemplo, tomando-se como base os cristais iônicos já mencionados, vemos que há uma variação na frequência de vibração do OH⁻ para cada cristal. Quando o OH⁻ está "livre" (o<u>b</u> servação feita a partir da molécula de H_2 O), apresenta uma / frequência de vibração própria, que é de v= 3652,4 cm⁻¹. Quando está contido num cristal, devido ao campo cristalino local, a frequência se modifica, dando origem, no espectro, a vibra-/ ções com energias diferentes.

Inicialmente pensamos que as duas bandas observadas/ fossem devidas aos ramos P e R de uma transição vibração-rotação do OH⁻ modificadas pela presença de um campo elétrico in-/

-28-

tenso. Em princípio, esta idéia era justificada pelos vários es pectros vistos e que apresentavam duas bandas.

Como temos uma molécula diatômica, os atomos poderão vibrar, um em relação ao outro, ao longo do eixo internuclear, e a molécula, como um todo, poderá girar ao redor de um eixo / que passa pelo centro de massa.

Quando se estuda a rotação de uma molécula linear,os níveis de energia são dados (em cm⁻¹) por:

$$\overline{\varepsilon}_{J} = \frac{h}{8\pi^{2} Ic}$$

onde: $\begin{cases} \overline{\epsilon}_{J} - Energia do nível rotacional \\ h - Constante de Planck \\ J - Número quântico rotacional \\ I - Momento de inércia \\ c - Velocidade da luz$

ou
$$\overline{\varepsilon}_{J} = \overline{B} J (J + 1)$$

onde $\overline{B} = \frac{h}{8\pi^2 Ic}$ = constante rotacional que, para OH, é da / ordem de 19 cm⁻¹

Na vibração, os níveis de energia possiveis são da-/ dos por:

$$\overline{\varepsilon}_{v} = (v + \frac{1}{2}) \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

onde $\begin{cases} v = N \circ quântico vibracional \\ k = Constante de força \\ \mu = Massa reduzida \end{cases}$

Assim para um estado de rotação-vibração, teremos:

$$\tilde{\epsilon}_{v,J} = (v + \frac{1}{2}) \frac{1}{2\pi c} \sqrt{\frac{k}{u}} + \bar{B} J(J + 1)$$

-30--

$$\overline{\varepsilon}_{1} = \omega + \overline{B} J (J + 1)$$

onde

ŵ

ou

$$= (c + \frac{1}{2}) \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

Desse modo, poderíamos calcular as frequências onde/ devem ocorrer os picos de absorção devidos ao OH⁻ presente no cristal. (Ver Fig. 10).

No caso da fluorapatita, o OH⁻ está imerso num campo eletrostático devido às cargas dispostas em sua proximidade, / campo esse que é da ordem de:

 $E = 2 \cdot 10^8 \text{ V/cm}$

Assim, considerando-se a presença de um campo elétr<u>i</u> co teremos um deslocamento dos níveis de energia permanecendo/ ainda níveis degenerados (efeito Stark). Nesse caso, teremos <u>u</u> ma variação de energia:

 $E = \frac{4\pi^2 I \mu_0^2 E^2}{h^2 \cdot 3 \cdot 10^2} \frac{J(J+1) - 3M^2}{J(J+1)(2J-1)(2J+3)}$

onde J = nº quântico relativo ao momento angular total

M = nº quântico relativo à componente do momento angular total, observadas as regras de seleção: $\Delta J = + 1 e \Delta M = 0$

Porém, o exame da influência do campo E na modific<u>a</u> ção dos níveis de energia, e as transições correspondentes,mo<u>s</u> traram ser altamente improvável o modelo imaginado, uma vez / que a variação de energia calculada é muito maior que a obtida experimentalmente.

Finalmente,o trabalho de Cant⁽¹¹⁾nos mostra a prese<u>n</u> ça de bandas únicas de absorção do OH⁻, de modo que deixamos/ definitivamente de lado a hipótese feita.

Outra hipótese feita inicialmente foi a de que uma

J

 $J \stackrel{*}{\longleftarrow} J + 1$, $\Delta J = = 1$, $\Delta M = 0$

Fig:10_Modelo dos níveis de energia de uma molécula diatômica. -31-

V

das bandas seria devida a uma absorção combinada de um movime<u>n</u> to vibracional com um movimento de libração da molécula.

O modo de vibração jã foi estudado detalhadamente p<u>a</u> ra cristais iônicos dopados com impurezas do tipo OH⁻ notandose, pelo espectro obtido, que o modo vibracional é acompanhado por uma banda lateral deslecada para o lado de mais alta energia, banda esta que é interpretada como uma excitação combinada do modo vibracional com um movimento "libracional".⁽¹²⁾

Interpretando-se dessa maneira o espectro obtido com os cristais de fluorapatita deveremos considerar o pico 2, que ocorre em $v_2 = 3487$ cm⁻¹, como sendo devido à vibração da molé cula de OH⁻, e o pico 1, que ocorre em $v_1 = 3538$ cm⁻¹, como / sendo devido a uma excitação combinada (vibração + libração)ocorrendo do lado de mais alta energia.

Portanto, ha uma separação $\Delta v = 51 \text{ cm}^{-1}$ entre as duas bandas.

No caso de cristais iônicos são obtidas as seguintes frequências⁽¹²⁾.

Cristal	Frequ	ências (cm ⁻¹)
	ν ₁	ν2	Δν
K Br : OH	3619	3928	309
ксе: он	3642	3942	300
кі: он.	3605	3883	278

Logo, nesses cristais ocorre uma banda combinada (vibração + libração) com uma separação de aproximadamente 300/ cm⁻¹.

Além disso, deverá ocorrer no infra-vermelho longin-

-32-

quo uma banda devido a esta libração, com uma frequência igual à variação de frequência entre as duas bandas obtidas no infr<u>a</u> -vermelho próximo (D.L. Harrison)⁽¹²⁾.

Assim para:

$$\begin{cases} K & Br : OH_{-} = v_{3} = 313 \text{ cm}^{-1} \\ K & C\ell : OH^{-} = v_{3} = 300 \text{ cm}^{-1} \\ K & I : OH^{-} = v_{3} = 283 \text{ cm}^{-1} \end{cases}$$

resultados que concordam com os obtidos na região do I.V. próximo.

Um estudo realizado sobre cristais de hidroxiapatita não estequiométrica⁽¹¹⁾mostra que a banda devida à libração do OH⁻ aparece numa frequência de ~633 cm⁻¹. Logo, deverá haver <u>u</u> ma variação $\Delta v \approx 633$ cm⁻¹ entre as bandas obtidas na região do infra-vermelho próximo. Como a banda de vibração do OH⁻ na hidroxiapatita ocorre numa frequência v₁ = 3572 cm⁻¹, a banda / combinada (vibração + libração) deverá ocorrer em v₂~4206cm⁻¹.

Estes resultados diferem bastante do encontrado para o caso em questão, onde a separação entre as bandas e de

$$\Delta v \simeq 51 \text{ cm}^{-1}$$
.

Nenhuma outra banda aparece no lado de mais alta energia.

Isso nos leva a crer que o pico 1 ($v_1 = 3538 \text{ cm}^{-1}$) / não é uma banda combinada vibracional e libracional.

Uma medida de espalhamento, por efeito Raman, feita com um cristal natural de fluor_apatita, com a radiação incidi<u>n</u> do paralelamente ao eixo c, não evidenciou o modo libracional/ da molécula de OH⁻ no cristal.

Deste modo, as bandas observadas certamente serão d<u>e</u> vidas a vibrações da molécula de OH⁻ ligadas com outros átomos da rede cristalina em locais diferentes.

-33-

Como já mencionado, a banda devida à vibração do OH em hidroxiapatita ocorre com uma frequência v = 3572 cm⁻¹.

Por outro lado, como se vê nas Figs.8 ou 9, a vibração do OH⁻ na fluorapatita ocorre com uma frequência $v \approx 3538 \text{ cm}^{-1}$, ou seja, o pico devido à vibração do OH na flu<u>o</u> rapatita é deslocado para uma frequência menor com relação á hidroxiapatita.

Analisando-se a rede cristalina da hidroxiapatita / contendo fluor como impureza, como mostrado na Fig.ll, podemos verificar as possiveis posições do OH em relação ao fluor e, / desse modo,verificar a possibilidade de uma ligação entre am-/ bos.

A Fig. 11 mostra uma coluna de OH não contendo fluor (coluna I) e duas colunas com as possiveis localizações do OH em relação ao plano do triângulo de cálcio (coluna II e III). Na coluna II temos uma configuração OH-F e na coluna IÍI uma / configuração OH-F-HO que dá lugar a um nível tripleto⁽¹³⁾.

Considerando-se a coluna III, a distância entre H e F será ~ 2,22 Å, um pouco maior que a correspondente distância na coluna II, devido à atração que os dois H exercem igualmente sobre o fluor. Isto porque um átomo de hidrogênio, ligado a um átomo eletronegativo, pode atrair outro átomo eletronegativo formando com ele uma ligação fraca (da ordem de 5 a 10kcal/ mol).

Em qualquer dos casos, o F⁻ localizado no centro do triângulo de cálcio fica ligado, por meio de uma ligação de H ao OH vizinho sendo que, devido a esta ligação, a mobilidade / do íon OH⁻ será menor ao longo do eixo c.

Tudo se passa como se a molécula de OH⁻ fosse agora/ OHF mas tal que a distância HF é muito maior que a distância / OH.

-34--

Fig: 11 _ Possiveis localizações do OHT em relação ao plano do triângulo de cálcio. Assim, num espectro de absorção de hidroxiapatita / contendo fluor como impureza, deve aparecer uma banda de vibr<u>a</u> ção do OH⁻ ligado ao F⁻ numa frequência menor (menor energia).

Isso realmente ocorre pois Young et al⁽⁵⁾obtiveram, para um cristal desse tipo, uma banda numa frequência de 3540 cm⁻¹, enquanto que aquela devida à vibração do OH⁻ era encon / trada em v = 3571 cm⁻¹.

Assim, certamente o pico 1, de mais alta intensidade de absorção, deve-se ao fato do OH⁻, contido como impureza / na rede, ligar-se ao F⁻ da maneira acima mencionada.

Já a outra banda, deslocada para frequências menores deve ser devida à presença de outras impurezas na rede cristalina. Embora seja pequena a possibilidade de encontrar-se duas impurezas próximas uma da outra, a presença da banda de mais / baixa intensidade de absorção ($v_2 = 3487 \text{ cm}^{-1}$) pode ser devida à vibração do OH⁻ ligado a um átomo de CL⁻ situado ao longo do eixo c.

A presença de CL[®] foi constatada através de fluorescência de raios-X, como jã mencionado.

Medimos, através da fórmula de Smakula:

$$f = \frac{A\mu c^2}{Ne^2\pi} \frac{9n}{(n^2+2)^2}$$

a quantidade de OH nos nossos cristais.

Na equação, n = Índice de refração ≈ 1 A = Área das bandas $\approx 191 \text{ cm}^{-2}$ c = Velocidade da luz = 3 x 10¹⁰ cm/s N = Nº de moléculas por cm³. (14)f = força de oscilador = 4,5 x 10⁻³ (T=300°K) e = carga do eletron = 4,8 x 10⁻¹⁰ esu. -36-

 μ = massa reduzida = 1,58 x 10⁻²⁴ g

 \Rightarrow N = 8,3 x 10¹⁹ mol/cm³

Levando-se em conta que a concentração de OH⁻ numa / hidroxiapatita pura é de 0,2 _x 10²² mol/cm³,⁽⁶⁾pode-se dizer / que a concentração de impurezas nos nossos cristais é relativ<u>a</u> mente alta.

Este fato possibilita-nos imaginar que as duas impurezas consideradas (OH e CL) possam encontrar-se próximas uma da outra.

Para verificarmos se a variação de frequência, entre a frequência de vibração do OH⁻ livre e a verificada no espectro, pode ser atribuida à formação da ligação de hidrogênio, / ou então a outras interações mais fracas, tal como a interação eletrostática pura do dipolo de OH⁻ com seus vizinhos, podemos usar o critério de Sutherland⁽¹⁵⁾. Este critério estabelece / que a existência de uma ligação de hidrogênio poderá ser esperada se tivermos deslocamentos de frequência Δv , onde $\Delta v = /$ $= v_{gas}^{-} v_{assoc}$.

$$\frac{\Delta v}{v_{g\bar{a}s}} \ge 3\%$$

Como a frequência correspondente ao modo de vibração do OH⁻ livre é $v_{g\bar{a}s}$ = 3652,4 cm⁻¹ e como a frequência obtida p<u>a</u> ra a associação, em nosso caso, é : v_{assoc} = 3538 cm⁻¹, temos/ que:

$$\frac{\Delta v}{v_{g\bar{a}s}} = 3,4\%$$

O pico 2 (3487 cm⁻¹) também pode ser interpretado co mo uma vibração do OH⁻ ligado, por hidrogênio, a outro átomo e letronegativo que, no caso, é um átomo de cloro. Neste caso, <u>co</u> mo o raio iônico do C^{2} é maior que o do F pode-se pensar que a frequência de vibração do OH seja deslocada para frequências maiores pois a molécula ficará mais "presa" no local. Porém, é interessante lembrar que no caso dos cristais iônicos ocorre / justamente o contrário. O que podemos pensar, no nosso caso, é que a molécula de OH, devido à presença do C^{2} , terá modific<u>a</u> da a sua energía de ligação.

Consideremos ainda, os espectros obtidos com haletos alcalinos contendo OH⁻:

 $\begin{cases} K Cl : OH^{-1} - v = 3642 \text{ cm}^{-1} \\ K Br : OH^{-1} - v = 3619 \text{ cm}^{-1} \\ K I : OH^{-1} - v = 3605 \text{ cm}^{-1} \end{cases}$

O raio iônico do I > Br > CL > F. Ou seja, quanto / maior for o raio iônico do elemento, maior será o deslocamento do pico para frequências inferiores.

Essa hipótese também nos permite interpretar o pico/ 2 como sendo devido à ligação do OH⁻ com CL⁻ pois o raio iônico do CL⁻ é maior que o do F⁻ (r_{CL} = 1,81 e r_F = 1,33).

A Fig. 12 mostra a possivel localização do OH⁻ e do/ CL⁻ na rede da fluorapatita.

- Calcio
- ø Fluor
- o Oxigênio
- Hidrogênio

⊚ Cloro

Fig: 12 _ Posição do OH⁻ e do Cl⁻ que substituem o F⁻ no centro dos triângulos de cálcio. Parte B : Absorção polarizada, com variação da temperatura.

B.1- Já sabemos que a fluorapatita apresenta duas bandas de absorção (pico 1 em 3538 cm⁻¹ e pico 2 em 3487 cm⁻¹) devidas a vibrações do OH⁻contido na rede cristalina.

Sabemos também, que o OH⁻ está imerso num campo el<u>é</u> trico produzido pelas cargas vizinhas (íons de Ca⁺⁺), da ordem de 10⁸ V/cm.

Através da introdução de fonons criamos condições / para que o dipolo OH⁻ se desoriente no campo em que está colocado. Ou seja, fornecemos energia ao dipolo sob forma de calor para que ele se desoriente.

Nosso objetivo, nesta segunda parte, é de verificar a variação que ocorre nas bandas de absorção quando se varia a temperatura do cristal.

A Fig.13 mostra o espectro de absorção obtido a varias temperaturas com um cristal de fluorapatita cortado paralelamente ao eixo c, sobre o qual incide uma radiação polariz<u>a</u> da, obtida de acordo com o processo anteriormente esquematizado.

No processo usado, o cristal foi aquecido lentamente sendo que o espectro de absorção, para cada temperatura, era traçado quando ocorria um equilíbrio térmico suficiente para que a temperatura se mantivesse constante durante o tempo / necessário para a obtenção do espectro.

Medidas feitas anteriormente mostraram que há uma/ pequena variação da absorção polarizada quando a temperatura / do cristal varia entre a temperatura ambiente e a do nitrogê nio líquido.

Dificuldades experimentais, porem, impediam a obten ção do espectro desde a temperatura do nitrogênio até tempera-

turas da ordem de 500[°]K . Por isso, a cemperatura ambiente é / considerada, nesse estudo, como a temperatura inicial.

Deste modo foram obtidas várias curvas com diferentes temperaturas, onde pode-se notar que, inicialmente, há po<u>u</u> ca variação da polarização para depois a partir de uma temper<u>a</u> tura de ~ 423⁰K (150⁰C) a polarização variar de uma maneira / mais brusca.

Portanto, para melhor facilidade de verificação, p<u>o</u> demos dividir os espectros obtidos em duas partes:

a) $293^{\circ}K \le T \le 423^{\circ}K$ $(\Delta T_1 = 130^{\circ}K)$ b) $423^{\circ}K \le T \le 503^{\circ}K$ $(\Delta T_2 = 80^{\circ}K)$

No caso <u>a</u>, ambas as bandas de absorção polarizadas, mostram um ligeiro decréscimo da densidade ótica (D.O.) para <u>u</u> ma variação de temperatura ΔT = 130⁰K.

No caso <u>b</u>, a D.O. diminui bruscamente para uma vari<u>a</u> ção menor de temperatura, $\Delta T = 80^{\circ} K$.

Com T = 510[°]K ocorre uma despolarização quase com-/ pleta dos dipolos. As bandas apresentam, nesse caso, uma D.O./ próxima do mínimo esperado.

A Fig.14 mostra, de uma maneira mais clara, as va-/ riações das densidades óticas das bandas.

Este espectro foi obtido mantendo-se o espectrofot<u>o</u> metro em comprimentos de onda definidos e constantes $(\lambda_1 = 2825 \text{m}\mu)$ e $\lambda_2 = 2867 \text{ m}\mu$ ou, respectivamente, $\nu_1 = 3538 \text{ cm}^{-1}$ e $\nu_2 = 3487 \text{ cm}^{-1}$) enquanto a amostra era aquecida.

Os resultados obtidos por este processo coincidem / com os obtidos anteriormente.

Neste caso, pode-se notar, também, que a despolarização correspondente ao pico 2 ($v_2 = 3487 \text{ cm}^{-1}$) ocorre numa /

-42-

-43-

temperatura ligeiramente maior do que a correspondente ao pico 1.

Na interpretação dos resultados, porém, serão consi derados os dados obtidos pelo primeiro processo de medida pois, no 2º processo, a temperatura pode ser uma função qualquer do tempo. A análise dos dados, pelo 2º processo, envolve portanto mais uma variável.

B.2 : Discussão

A tabela abaixo mostra as densidades oticas obtidas no máximo das bandas para diferentes temperaturas.

т (^о к)	Densidade Õtica	
	Pico l	Pico 2
293	1,000	0,706
353	0,976	0,664
373	0,972	0,659_
383	· 0,962	0,635
393	0,962	0,626
403	0,962	0,626
413	0,957	0,616
423	0,953	0,616
433	0,929	0,638
443	0,877	0,648
453	0,825	0,592
463	0,758	0,564
473	0,687	0,531
483	0,611	0,507
493	0,517	0,445
503	0,436	0,398

Tabela I

Deve-se ressaltar que os dados da Tabela I corres-/ pondem aos valores reais da absorção da amostra, uma vez que /

-44-

foram levados em consideração tanto os desvios devido ao ins-/ trumento ("zero" de absorção) como também a variação produzida no espectro pela elevação da temperatura. Para tanto, foram / traçadas diversas curvas, para cada temperatura, sem cristal / no interior do dewar, mas com o cristal polarizador. Como ha-/ via um certo deslocamento de uma curva para outra, estes valores foram descontados no espectro final apresentado.

A variação da D.O. com a temperatura (pelo 1º pro-/ cesso) pode ser visualizada no gráfico da Fig.15.

Um dipolo elétrico, sob a ação de um campo elétrico tende a orientar-se na direção do campo. Um aumento da temper<u>a</u> tura facilita sua desorientação. É sabido que a polarização de uma amostra, num campo elétrico por unidade de volume, é dada/ por:

$$P = N\mu < \cos \theta >$$
(1)

onde $\begin{cases} N = N \tilde{u} \text{mero de moléculas por unidade de volume.} \\ \mu = Momento de dipolo elétrico \\ <\cos\theta > = Valor médio do ângulo que a direção do dipolo faz com a direção do campo elétrico. \end{cases}$

De acordo com a lei de distribuição de Boltzmann, a probabilidade relativa de se encontrar uma molécula num eleme<u>n</u> to de ângulo sólido d Ω é proporcional à exp $\left[- U/k_{B}^{T}\right]$

onde

 $U = -\mu \cdot \vec{E} = -\mu E \cos \theta$ (2)

 \tilde{e} a energia potencial de uma molécula de momento de dipolo μ , num campo \vec{E} , sendo θ o ângulo entre o momento e a direção do campo.

-46--

$$\langle \cos \theta \rangle = \frac{\int e^{-U/k_B T} \cos \theta \, d \Omega}{\int e^{-U/k_B T} \, d\Omega}$$
(3)

-47-

Integrando em todo o ângulo sólido:

$$<\cos\theta>= \int_{0}^{\pi} 2\pi \sin\theta \cos\theta e^{-\beta\mu E} \cos\theta_{d\theta}$$

 $\int_{0}^{\pi} 2\pi \sin\theta e^{-\beta\mu E} \cos\theta_{d\theta}$

onde
$$\beta = 1/k_B^T$$

Seja cos
$$\theta$$
 = s e $\frac{\mu E}{k_B T}$ = x

então:

Então

$$<\cos\theta> = \frac{\int_{-1}^{1} e^{sx} s d s}{\int_{-1}^{1} e^{sx} ds}$$

$$<\cos\theta> = \frac{d}{dx} \log \int_{-1}^{1} e^{sx} ds =$$

$$= \frac{d}{dx} \log (e^{x} - e^{-x}) - \frac{d}{dx} \log x$$

$$<\cos\theta> = \cot g h x - \frac{1}{x} = L(x)$$
(4)

onde L(x) = função de Langevin

Substituindo em (1)

$$P = N\mu L(x)$$
 (5)

A varíação da função de Langevin para diversos val<u>o</u> res de x, onde x = $\mu E/k_B T$, é esquematizada no gráfico da Fig. 16.

No caso presente, o dipolo de OH⁻ está sob a ação / de um campo É molecular e, se a temperatura do cristal tender/ a zero, < cos θ > tenderá a l; nesse caso teremos um alinhamento completo dos dipolos. Outro caso extremo é quando a temperatura é bem elevada e < cos θ > tende a zero; nesse caso, os dip<u>o</u> los estarão orientados ao acaso pois a energia térmica é muito maior do que a energia potencial elétrica. Em muitas aplica- / ções da equação (5) o valor de x é muito menor que l e a função de Langevin se reduz a:

-49-

μE 3kT

ou, em outras palavras, P é linear com 1/T:

 $P = \frac{N\mu^2 E}{3k_B T}$

É importante salientar que a D.O. quase não aprese<u>n</u> ta modificação na sua intensidade quando se varia a temperatura desde 77[°]K (nitrogênio liquido) até ~ 300° K (temperatura a<u>m</u> biente). Mesmo na faixa de 300° K a 420° K (região <u>a</u> no gráfico/ da Fig.15) podemos notar que a intensidade da D.O. quase não / se modifica. Isto indica que até a temperatura de ~ 420° K a e nergia termica (que tende a desorientar os dipolos) é insufi ciente para vencer a energia potencial do OH⁻.

Podemos pensar que o dipolo está num poço de potencial e que seja necessária uma energia mínima para vencer esta barreira. Somente para efeito de cálculo, se considerarmos uma temperatura de 100 ^OC (T = 373^OK) como sendo a temperatura em que a desorientação dos dipolos começa a ser efetiva, vemos / que:

 $k_{\rm p}T = 33 \,{\rm meV}$

Sem dúvida, esta barreira de potencial parece peque

na e muito menor do que as usualmente encontradas em cristais/ iônicos, nos casos de orientação de centros de cor e de dipo-/ los elétricos (da ordem de 0,5-1,5 e V)

A razão disto é que nos cristais iônicos a reorientação dos centros se dã à custa da mudança de posição de áto-/ mos.

No caso da fluorapatita, a molécula de OH⁻ pode girar em torno do eixo c e não tem possibilidade de ficar presa/ numa dada direção de modo a fazer um determinado ângulo com o/ eixo mencionado. A temperatura é a responsável pela mudança / desse ângulo.

Admitindo-se que a altura do poço de potencial da / molécula de OH⁻ seja da ordem de 30 meV podemos calcular a ordem de grandeza do campo elétrico a que ela está submetida, através da relação (2):

$$U = -\mu E \cos\theta$$

Para a molécula alinhada na direção do eixo c, $\theta = 0$ e cos $\theta = 1$

 $U = -\mu E \simeq 30 \text{ meV}$

 $e = E \simeq 10^7 V/cm$

Considerando-se $\mu = 1,5$ D = 1,5 x 10⁻¹⁸ $\mu es^{(17)}$

Isto não quer dizer que o valor real do campo elé-/ trico que atua no centro de massa do dipolo seja de 10^7 V/cm.

Este valor representa somente uma ordem de grandeza do campo E.

Quando se mede a D.O. estamos, na realidade, medindo a absorção de luz no cristal.

Seja I a intensidade da radiação que atinge a amos

-50-

tra e seja I a intensidade de radiação que a consegue atravessar; ou seja:

> I_o − I → energia absorvida pela amostra. A transmissão da radiação na amostra é dada por:

$$T = \frac{I}{I_{o}}$$
(6)

e a Densidade Ótica (DO) é dada por

. .

$$D0 = \log_{10} \frac{1}{T}$$

$$D0 = \log_{10} \frac{I_{o}}{I}$$
(7)

$$D0 = \log_{10} \frac{I_o}{I_o e^{-\alpha x}}$$
$$D0 = \log e^{\alpha x}$$

pois I = I $e^{-\alpha x}$, onde x é a espessura da amostra e α é a constante de absorção da substância.

(8)

Se um dipolo faz um ângulo α com o campo elétrico da radiação, a energia absorvida pelo dipolo serã proporcional a $\mu^2 E^2 \cos^2 \alpha$.

Quando temos um grande número de dipolos que absor vem energia, a energia absorvida serã ~N μ^2 E² <cos² α >

De acordo com (8) podemos notar que:

$$DO \sim < \cos^2 \alpha >$$
 (9)

Variando a temperatura podemos esperar que a densid<u>a</u> de ótica varie pois a temperatura pode afetar o ângulo α . (Devido à geometria da experiência, $\alpha \in \theta$ coincidem, razão pela/ qual passaremos a utilizar somente θ).

No nosso caso, o dipolo está orientado por um campo elétrico molecular que coincide com a direção do campo elétrico da radiação. Enquanto o campo molecular orienta o dipolo, o campo da radiação fornece a energia necessária para que o dip<u>o</u> lo de OH⁻ possa vibrar.

De acordo com a expressão (9) podemos construir vá rios gráficos de <cos² θ > para vários campos elétricos na região de temperatura utilizada e verificar se há concordância/ dos resultados experimentais com a teoria.

De modo a definir a função <cos θ > consideremos a equação (4):

$$L(x) = \langle \cos\theta \rangle = \operatorname{cotghx} - \frac{1}{x} \text{ onde } x = \frac{\mu E}{k_B T}$$

$$De (3) \implies \langle \cos \theta \rangle = \frac{\int_{-1}^{1} e^{sx} s \, ds}{\int_{-1}^{1} e^{sx} \, ds} , \quad para \ s = \cos \theta$$

$$\therefore \quad \frac{d < \cos >}{dx} = \frac{\int_{-1}^{1} e^{sx} s^{2} ds \left[\int_{-1}^{1} e^{sx} ds \right]}{\left[\int_{-1}^{1} e^{sx} ds \right]^{2}}$$

$$\frac{\int_{-1}^{1} e^{sx} s \, ds \left[e^{sx} s \, ds \right]}{\left[\int_{-1}^{1} e^{sx} \, ds \right]^{2}}$$

=

$$= \int e^{sx} s^{2} ds - \int e^{sx} s ds \left[\int e^{sx} s ds \right]$$
$$= \int e^{sx} ds - \int e^{sx} ds \int e^{sx} ds$$
$$= \langle \cos \theta \rangle^{2}$$

$$<\cos^2\theta>=\frac{\int e^{sx}s^2 ds}{\int e^{sx} ds}$$

$$\frac{d < \cos \theta >}{dx} = < \cos^2 \theta > - < \cos \theta >^2$$

ou:

.•.

Mas:

$$\langle \cos^2 \theta \rangle = \langle \cos \theta \rangle^2 + \frac{d}{dx} \langle \cos \theta \rangle$$

$$\langle \cos^2 \theta \rangle = L^2(x) + \frac{d}{dx} L(x)$$
 (10)

Da expressão (4):

$$L^{2}(x) = (\cot g hx - \frac{1}{x})^{2} e$$
 (11)

$$\frac{d}{dx} L(x) = 1 + \frac{1}{x^2} - \cot g h^2 x \qquad (12)$$

Substituindo em (10) :

$$\langle \cos^2 \theta \rangle = (\cot g hx - \frac{1}{x})^2 + 1 + \frac{1}{x^2} - \cot g h^2 x =$$

$$= \cot g h^{2} x - \frac{2 \cot g hx}{x} + \frac{1}{x^{2}} + 1 + \frac{1}{x^{2}} - \cot g h^{2} x =$$

$$= \frac{2}{x^{2}} + 1 - \frac{2 \cot g hx}{x}$$

$$< \cos^{2} \theta > = \frac{2}{x} \left[\frac{1}{x} - \cot g hx \right] + 1 \qquad (13)$$

-54-

O gráfico da Fig.17 mostra a variação da função $<\cos^2\theta>$ com a variação de x, onde x = $\frac{\mu E}{k_B T}$

No gráfico da Fig.17 pode-se ver que na situação/ de máxima orientação, <cos²θ> → 1. No caso de uma desorient<u>a</u> ção completa do dipolo, o valor de <cos²θ> → 1/3.

> No nosso caso, considerando: $\mu = 1,5 D = 1,5 \times 10^{-18} ues^{(17)}$ $k_B = 1,38 \times 10^{-16} ergs/^{\circ}k$ $E \simeq 10^8 V/cm = 3,3 \times 10^{6} stat V/cm$ $T_1 \simeq 300^{\circ}K$ (temperatura inicial) $T_2 \simeq 500^{\circ}K$ (temperatura final)

obtemos;

 $7,2 \le x \le 12$

Logo, de acordo com o gráfico da Fig.l7, para qual quer valor do campo elétrico, na faixa escolhida, teremos uma/ função linear entre <cos²θ> e o inverso da variação de temper<u>a</u> tura, como mostrado na Fig.18.

Como D.O. ~ $<\cos^2\theta>$ deveríamos ter uma relação tam bém linear entre D.O. e o inverso da temperatura.

Como se pode ver pelo gráfico da Fig.19 isso não a-/ contece.

Pelo contrário, as medidas experimentais obtidas mo<u>s</u> tram que hã duas regiões distintas, para cada pico, que defi -

- 55-

nem aproximadamente duas retas com inclinações diferentes.

Isso nos leva a pensar na possibilidade de uma vari<u>a</u> ção do campo elétrico que atua no centro de massa do dipolo / OH⁻.

Como jã foi comentado, o OH⁻ pode deslocar-se ao lo<u>n</u> go do eixo c e também perpendicularmente a este eixo⁽⁵⁾ e ⁽²⁾. À medida em que a temperatura aumenta, essa movimentação do / OH⁻ torna-se maior. Desse modo, podemos pensar que o campo médio que atua no centro de massa do dipolo passa a ser diferente.

Uma hipótese que podemos fazer é que em cada região/ linear do gráfico da Fig.19 (regiões <u>a</u> e <u>b</u>) o campo médio a / que o dipolo está submetido seja diferente.

Jā vimos que DO ~ $<\cos^2\theta>$ seja:

$$DO = \beta < \cos^2 \theta >$$
 (14)

onde β = constante de proporcionalidade ou, de (13):

$$DO = \beta \left[1 - \frac{2}{x} L(x) \right]$$
(15)

Derivando a expressão (15) em relação à temperatura, obtemos:

$$\frac{dD}{dT} = -2\beta \frac{d}{dT} \left[\frac{1}{x} L(x) \right] =$$

$$= 2\beta \frac{dx}{dT} \left[\frac{1}{x^2} L(x) - \frac{1}{x} \frac{dL}{dx} \right]$$

Mas:

$$\mathbf{x} = \frac{\mu \mathbf{E}}{\mathbf{k}_{\mathrm{B}} \mathbf{T}}$$

$$\frac{dD}{dT} = 2\beta \left[\frac{k_B}{\mu E} L(x) + \frac{1}{T} \frac{dL}{dx} \right]$$
(16)

Se existir uma região onde $\frac{dD}{dT}$ = a = constante, tedT

remos:

. .

$$-\frac{k_{B}}{\mu E}L(x) + \frac{1}{T}\frac{dL}{dx} = \frac{a}{2\beta} = c$$

$$-\frac{k_{B}}{\mu E}L(x) + \frac{1}{T}\frac{dL}{dx} = c$$
(17)

No caso de ocorrer somente variação da temperatura:

$$\frac{k_B}{\mu E} L(T) - \frac{1}{T} \frac{dL}{dT} \frac{k_B T^2}{\mu E} = C$$

$$L(T) + T \frac{dL}{dT} = -c \frac{\mu E}{k_B} = b_1$$
(18)

Da equação (16) —

$$\frac{dD}{dT} = -\beta \left[\frac{2k_B}{\mu E} \left(L + T \frac{dL}{dT} \right) \right] = a_1$$
(19)

....

De (18) vem que:

$$\frac{dD}{dT} = -\beta \frac{2k_B}{\mu E} b_1 = a_1$$
(20)

0 valor $\frac{dD}{dT} = a_1$ pode ser obtido pelo gráfico da /

Fig.16.

0 valor
$$\frac{dL}{dT}$$
 pode ser obtido pelo gráfico da Fig.20.

Assim, poderemos calcular os valores de <u>b</u>₁ para cada campo elétrico considerado e, pela equação (20) determinar os/ valores de β .

A tabela I mostra os resultados encontrados:

E (V/cm)	^b 1	a1	β
10 ⁸	1,005	4×10^{-4}	0,73
7×10^{7}	1,02		0,48
5×10^{7}	1,04	11	0,35
4×10^7	1,02	11	0,29
2×10^{7}	1,0	11	0,16
107	0,7	н	0,11

Tabela I a (Região a)

Tabela I-b (Região b)

E (V/cm)	^b 1	^a 1 ~	_β
10 ⁸	1,009	8×10^{-3}	14,35
7×10^{7}	1,04	n	9,7
5×10^{7}	1,05	"	6,8
4×10^{7}	1,01	17	5,7
2×10^{7}	0,92		3,1
10 ⁷	0,52	-	2,8

Isto nos indica que ao passar da região <u>a</u> para a região <u>b</u>/ o campo elétrico deverá sofrer uma variação de 10 a 100 V/cm se obrigarmos β a permanecer constante.

À primeira vista, podemos pensar em dois campos elétricos/ efetivos (um para cada região) mas o mais natural seria que o / campo molecular variasse de modo contínuo.

Com auxilio da equação (14) obtemos os valores da T<u>a</u> bela II abaixo, considerando-se a presença de um campo elétrico $E = 10^8$ V/cm.

T (^o k)	cos ² θ	β
300	0,85	1,18
372	0,82	1,19
393	0,81	1,18
403	0,80	1,19
413	0,80	1,19
423	0,79	1,20
433	0,79	1,17
443	0,79	1,10
453	. 0,78	1,06
463	0,78	0,97
1		

Tabela II ($E = 10^8$ V/cm)

Como se pode notar, β permanece praticamente constante (~ 1,19) até uma temperatura T = 423^ok.

Pode-se perguntar a razão de considerarmos um campo de 10^8 V/cm.

Se utilizássemos um campo manor não seria possivel o<u>b</u> ter concordância com os primeiros dados experimentais. Utiliza<u>n</u> do-se um campo maior, por exemplo de 2 x 10^8 V/cm, obteriamos <u>u</u> ma concordância com os pontos experimentais so até uma certa / temperatura. Neste caso, deveríamos alterar o valor de β.

O que desejamos, porém, é mostrar que o campo não pode permanecer constante, bem como mostrar a ordem de grandeza de/ sua variação. Para isto, vamos manter o valor de β constante e i-/ gual a 1,19 (Tabela II) e procuremos encontrar o valor do campo E para o qual a equação (14) seja verificada.

Procedendo-se dessa maneira, encontramos os seguintes resultados:

T (⁰ k)	β	E (V/cm)
423	1,19	1×10^8
433	1,19	$9,4 \times 10^7$
_ 443	1,19	$8,0 \times 10^7$
453	1,19	$6,8 \times 10^7$
463	1,19	$5,5 \times 10^7$
473	1,19	$4,3 \times 10^7$
483	1,19	$3,2 \times 10^7$
493	1,19	$2,3 \times 10^7$
503	1,19	$1,4 \times 10^{7}$

Tabela III

Deste modo, num intervalo $\Delta T = 80^{\circ} k$ hã uma variação /. $\Delta E \approx 0,86 \times 10^{8}$ V/cm ou:

$$\Delta E = 1 \times 10^6 \, \text{V/cm}^{\circ} \text{k}$$

Portanto, considerando-se que o campo elétrico efetivo no dipolo de OH⁻ é de 10^8 V/cm teremos nele uma variação de / um fator 10, de modo que na parte <u>b</u> do gráfico da Fig.19 tere-/ mos um campo elétrico efetivo de 10^7 V/cm. Na parte <u>a</u> acreditamos que possa haver uma variação de E, porém, esta variação é / imperceptivel com as medidas efetuadas.

Poderíamos escrever as equações de $\frac{dD}{dT}$ de modo mais/

-63-

geral, de forma a incluir uma dependência do campo elétrico E/com relação à temperatura T. De fato, fizemos tais cálculos porém há novos parâmetros a serem ajustados. O ajuste poderá ser feito de forma tal que a expressão matemática coincidisse perfeitamente com a curva experimental.

Assim, as equações abaixo são dadas apenas como in-/ formação visto que preferimos constatar a variação do campo, / entre as duas regiões estabelecidas $(\underline{a} \ \underline{e} \ \underline{b})$, pelo processo ac<u>i</u> ma mostrado, de acordo com a equação 14.

No caso de ocorrer uma variação tanto do campo elé-/ trico E como da temperatura T, teremos:

$$\frac{dL}{dT} = \frac{\partial L}{\partial T} + \frac{\partial L}{\partial E} - \frac{\partial E}{\partial T}$$
(21)

Da Equação (18) :

Como

$$L(T) + T \left[\frac{\partial L}{\partial T} + \frac{\partial L}{\partial E} - \frac{\partial E}{\partial T}\right] = b'$$
(21)
Lembrando que : L = cotg h x - $\frac{1}{x}$
 $\frac{\partial L}{\partial T} = -\operatorname{cosec} h^2 x - \frac{dx}{dT} + \frac{1}{x^2} - \frac{dx}{dT}$
 $x = \frac{\mu E}{kT} \longrightarrow$
 $\frac{\partial L}{\partial T} = (-\operatorname{cosech}^2 x + \frac{1}{x^2})(-\frac{\mu E}{k_B T^2}) =$
 $= \frac{\mu E}{k_B T^2} (\operatorname{cosech}^2 x - \frac{1}{x^2})$

-64-

$$\frac{\partial L}{\partial E} = (-\cosh^2 x + \frac{1}{x^2}) \frac{dx}{dE}$$

 $= \frac{\mu}{k_B^T} \left(- \operatorname{cosech}^2 x + \frac{1}{x^2} \right)$

Substituindo em (21):

$$L(T)+T\left[\frac{\mu E}{k_B T^2} \left(\operatorname{cosech}^2 x - \frac{1}{x^2}\right) + \frac{\mu}{k_B T} \left(-\operatorname{cosech}^2 x + \frac{1}{x^2}\right) - \frac{\partial E}{\partial T}\right] = b'$$

$$L(T) + \frac{\partial}{k_B} \left[-\frac{E}{T} (-\operatorname{cosech}^2 x + \frac{1}{x^2}) + \frac{\partial E}{\partial T} (-\operatorname{cosech}^2 x + \frac{1}{x^2}) \right] = b'$$

$$= L(T) + \frac{d}{dx} L(x) \left[\frac{\mu}{k_B} \left(- \frac{E}{T} + \frac{\partial E}{\partial T} \right) \right] = b'$$

$$dL = \left[-\cosh^{2}x + \frac{1}{x^{2}}\right] \left[-\frac{\mu E}{k_{B}T^{2}} dT\right]$$

+
$$\left[\operatorname{cosech}^{2} x + \frac{1}{x^{2}}\right] \left[\frac{\mu}{k_{B}T} \, \mathrm{d}T - \frac{\partial E}{\partial T}\right]$$

Seja
$$\frac{\partial E}{\partial T} = A$$

$$\frac{dL}{dT} = \left[-\cosh^2 x + \frac{1}{x^2} \right] \left[-\frac{\mu E}{k_B T^2} \right] + \left[-\cosh^2 x + \frac{1}{x^2} \right] \left[\frac{\mu}{k_B T} A \right]$$

(22)

Com respeito à densidade ótica já vimos que:

$$\frac{dD}{dT} = -\beta \left[\frac{2k_B}{\mu E} L(x) + \frac{2}{T} \frac{dL}{dx} \right]$$
$$\frac{dD}{dT} = -\beta \left[\frac{2k_B}{\mu E} L(x) + \frac{2k_BT}{\mu E} \frac{dL}{dT} \right]$$

$$\frac{dD}{dT} = -\beta \left[\frac{2k_B}{\mu E} L(x) + \frac{2k_BT}{\mu E} \frac{\partial L}{\partial T} + \frac{2k_BT}{\mu E} \frac{\partial L}{\partial E} \frac{\partial E}{\partial T} \right] = a_1^{\prime}$$

Nesta equação, se o valor de β fosse conhecido, pod<u>e</u> riamos calcular $\frac{\partial E}{\partial T}$. Verificamos que é necessário uma pequena variação de β com a temperatura para que $\frac{\partial E}{\partial T}$ seja negat<u>i</u> vo e, assim, os dados teóricos e experimentais poderiam ser s<u>a</u> tisfeitos.

Decidimos não fazer tal ajuste de curvas uma vez que sempre ficaria para <u>ser</u> explicada (e justificada) a razão de/ tais variações (β , E e $\frac{\partial E}{\partial T}$).

-66-

B.3 - CONCLUSÃO:

Concluimos, com os resultados experimentais, que o / campo elétrico E não pode ser único durante o intervalo de tem peratura utilizado. À primeira vista, podemos pensar em dois / campos distintos atuando no dipolo, um na região <u>a</u> (entre 300° K e 400° K) da ordem de 10^{8} V/cm, e outro na região <u>b</u> (entre 400° K e 500° K), da ordem de 10^{7} V/cm.

Este fato é justificável pois a molécula de OH pode deslocar-se ao longo do eixo c e perpendicularmente a este eixo (2,5), passando a sentir a presença de um campo que varia / continuamente com a temperatura. A partir do instante em que a agitação térmica é suficientemente grande para vencer a ener gia do poço de potencial, o OH poderá desorientar-se com mais facilidade.

Esse fato ocorre tanto para o pico (1) como para o / pico (2).

A única diferença é que, no caso do pico (2), há necessidade de uma energia térmica maior para causar a desorientação do dipolo. Isso indica que a molécula de OH⁻, cuja vibr<u>a</u> ção produz a banda com frequência v₂ = 3487cm⁻¹, sente inicia<u>l</u> mente a presença de um campo maior do que aquele que atua no / dipolo cuja vibração produz a banda com frequência v₁=3538cm^{-1.} Consideremos os triângulos de cálcio (1) e (2) na /

Fig.2.

A molécula de OH⁻, disposta entre as posições 1/4 e 3/4 do eixo c,sente um campo produzido tanto pelas cargas de Ca⁺⁺ como pelo íon de F⁻ localizado no centro do triângulo(1)

Admitindo-se esta configuração de cargas, teremos:

 $E_{1} = 1,0 \times 10^{8} \text{V/cm}$ $E_{2} = 1,5 \times 10^{8} \text{V/cm}$ $E_{1} = 2,5 \times 10^{8} \text{V/cm}$

$$E_3 = -3,4 \times 10^8 V/cm$$

onde

- E₁ → componente do campo na direção c devido ao / Ca⁺⁺ em 1/4
- $E_2 \longrightarrow componente do campo na direção c devido ao / <math>F^-$ em 3/4
- $E_3 \longrightarrow$ componente do campo na direção c devido ao / Ca⁺⁺ em 3/4 .

sendo que o sinal (-) indica um sentido oposto.

Logo, a componente do campo resultante que atua no / dipolo tera o sentido de E_2 .

Imaginemos, agora, que um ion de CL⁻ ocupe o lugar / do ion de F⁻ (logicamente, como jã explicado, numa posição de<u>s</u> locada ao longo do eixo c), como mostrado na Fig.12.

Nesta configuração, para que o campo resultante seja maior, o fon de CL⁻ deverá ficar mais distante do OH⁻. Nesse / caso, teremos um campo $E_2^{\prime} < E_2$ e, consequentemente um campo r<u>e</u> sultante $E_3^{\prime} > E_3$.

Dessa maneira, a despolarização do OH⁻ (do pico 2) <u>o</u> corre para uma temperatura ligeiramente maior do que a neces-/ sária para provocar a desorientação do dipolo cuja vibração dã origem ao pico 1.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1) Encyclopaedia Britannica V.2, pp.104-105
- 2) "Crystal Structures"- Wyckoff, V.3- pag.228.
- 3) Posner, A.S.; Perloff, A.; Diorio, A.F. Acta Cryst, 11, pg. 308 (1958)
- 4) Kay, M.I; Young, R.A.; Posner, A.S. Nature (Lond) <u>204</u>, 1050-1052 (1964).
- 5) Young, R.A.; Elliott, J.C. Archs Oral Biol., V.11,pp. 699-707 (1966)
- 6) Arends, J. ; Royca, B.S.H. ; Smoluchwsky, R; Welch, D.O. Princeton University, Princeton, N.J.
- 7) Swank, R.K; Phys.Rev. 135, A 266 (1964).
- 8) Piper, W.W.; Kravitz, L.C.; Swank, R.K. Phys. Rev, <u>138</u>, A 1802 (1965)
- 9) Elliott, J.C.- J. Dental Research, 41, 1251 (1962)
- 10) Fowler, B.O. "International Symposium on Structural Properties of Hydroxyapatite and Related Compounds", NBS Gaithersburg, Maryland (USA)-12-14 Set.1968
- 11) Cant, N.W.; Bett, J.A.S.; Wilson,G.R.; Hall,W.K.-Spectrochim. Acta, <u>27 A</u>, 425-439 (1971)
- 12) Harrison, D.L. : "A Spectroscopic Study of the librational States of the Hydroxyl-ion in Alkali Halides Crystals"-University of Utah- Tese- Junho - 1970.
- 13) Van Der Lugt, W.; Young, R.A.; Knottnerus, D.I.M.- Proceedings Serie B, <u>72</u>, Nº4 - 1969
- 14) Chau, C.K.; Klein, M.V.; Wedding B- Phys.Rev Letters,
 V. 17, Nº 10, p.521 (1966)
- 15) Sutherland, G.B.B.M.: Trans.Faraday Soc., <u>38</u> pp.889 (1940)
- 16) Kuhn, U.; Luty, F.- Solid. State Communications, V. 2, pp. 281-283 (1964)