"ESTUDOS POR TEORIA DE GRUPOS DOS MODOS NORMAIS DE VIBRAÇÃO DE CRISTAIS DO TIPO DO K₂ReCl₆".

JOÃO DE DEUS FREIRE

ORIENTADOR: PROF. DR. RAM SHARAN KATIYAR

Tese apresentada ao Instituto de Física "Gleb Wataghin", <u>pa</u> ra obtenção do Título de Mestre em Ciências.

maio 1976

AGRADECIMENTOS

Ao Professor Ram Sharan Katiyar, pela orientação, sem a qual este trabalho não seria realizado.

A FAPESP, pelo apoio financeiro.

À Teresa pelo trabalho de datilografia.

Ao José Claudio e ao Scarparo, pelos incentivos e discussões.

Enfim, a todos que de uma ou outra maneira contri buiram para a realização deste trabalho.

meus pais,

Teresa e

Enrico

INDICE

		pg
Agradecimentos		i
Lista de Tabelas		iv
Lista de Figuras		v
Capítulo I		
Introdução	· · • • • •	l
Construit o II		
Capitulo II		
rormaia de vibreção	uos	2
2- Algebra de Orenadores de Grunos Fore	•••••	כ ד
2- Propriedadas Translacionais de Crist	oie	، ع
A- Utilização de grunos multiplicadores	1015 ••	0
anglise de vibração de rede	110	10
5- Relações de compatibilidade	• • • • • •	17
6- Utilização dos auto-vetores da matri	z dinâ	± 1
mica no estudo da ferroeletricidade		18
Capítulo III		
1- Algumas características importantes	de com	
postos do tipo KoReCle		21
2- Aplicação da representação de multip	licado	•
res, na análise dos modos normais de	vibr <u>a</u>	
ção do K ₂ ReCl ₅		24
3- Discusões		
a) Modos do centro da Zona de Brillo	uin	47
b) Ponto X		53
c) Ponto 🛆		5 <u>8</u>
d) Relação de dispersão de fonons	•••••	59
4- Conclusão	· • • • • • •	60
Apêndice T	,	62
		~ **
Referências		68

· · · · · · · · · · · · · · · · · · ·	pg.
Alguns compostos com a mesma estrutura do K ₂ ReCl ₆	23
Permutação dos átomos do K2ReCl ₆ sob os operadores do gru-	
po O_{h}^{j}	29
$M[(\ll 10)]$, valores de K_{-1} e permutação dos elementos da	
base sob a ação dos operadores do grupo 0_h^2	30
Pontos críticos da zona de Brillouin	33
Espaços S_E e S_R , e caracteres dos sub-espaços de S_c	34
Representações irredutíveis dos sub-espaços de S _c	37
Representações dos modos normais	38
Bases irredutíveis	40
Dados de espalhamento Raman de cristais com a estrutura do	
K ₂ ReCl ₆	52
Relações de compatibilidade	62
Matrizes dos operadores	64

LISTA DE FIGURAS

	pg.
Zona de Brillouin de uma estrutura cúbica simples	19
Zona de Brillouin do K ₂ ReCl ₆	26
Arranjo dos átomos do K ₂ ReCl ₆ na rede cúbica	27
Nodos Γ_4 , Γ_5 e Γ_{10}	50
Modos Γ_1 , Γ_3 , Γ_4 , $\Gamma_9 \in \Gamma_{10}$	54
Modos X ₁ , X ₁₀	57
Curvas de dispersão de fonons	61

CAPITULO I

INTRODUCÃO

Os cristais de compostos hoxa-halogenados com a estru tura da antifluorita tem-se fornado importantes em virtude đa ocorrência de transições de fase estruturais, em muitos desses compostos. Como exemplo podemos citar K_ReCl₆, K₂PtBr₆, K₂PdCl₆, $(NH_4)_2$ PtBr₆, K₂OsCl₆. Vários autores⁽²⁵, 26, 27, 28)_{realizaram}. estudos nestes cristais utilizando a técnica de ressonância nuclear quadrupolar. Estes estudos permitiram que se determinasse a dependência, com a temperatura, da frequência do modo libraci onal do octaedro MX6. Este modo não é ativo nos espalhamentos Raman e infravermelho. Tem sido mencionado na literatura (22,24) que algumas das transições nestes cristais são geradas pelo amor tecimento (softning) de um modo da superfície da zona de Brillouin.

Estudos de teoria de grupos são úteis na análise destes modos, permitindo especular sobre as mudanças de estrutura associadas com alguns destes modos normais. Eles também são úteis na atvibuição de simetria en cálculos teóricos e medidas ex perimentais de fonons, em vários pontos críticos da gona de Brillouin.

Neste trabelho nós analisamos os modos normais de vibração de cristais com a estrutura do K_2ReCl_6 , em sua fase à al tas temperaturas, utilizando o método da representação de multiplicadores. Juntemente com o agrupamento dos modos normais de vibração sob as várias representações irredutíveis de cada ponto crítico, incluímos a direção de movimento dos átomos. As be-

ses descas representações foram obtidas utilizando-se a técnica de operadores de projeção. Utilizando estas bases obtivemos os modos normais de vibração para os pontos Γ , Δ e X. Alguns destes modos normais foram representados graficamente. Pelo fato dos átomos, no octaedro MX₆, estarem fortemente ligados, simpl<u>i</u> ficamos a análise dos modos normais de vibração em termos de vibrações externas e internos. Utilizando relações de compatibilidade e os valores das frequências dos fonons do ponto Γ , encontramos, qualitativamente, as curvas de dispersão de fonons, para a direção $\Gamma - \Delta - X$.

CAPITULO II

II.1 - FORMULAÇÃO DINÂMICA EM CRISTAIS E MODOS NORMAIS DE VI-BRAÇÃO

Consideremos um cristal constituído de um número inf<u>i</u> nito de células unitárias, cada uma das quais contendo r átomos. A posição do K-ésimo átomo situado na l-ésima célula unitária é definida através do vetor

$$\bar{x}(\frac{1}{K}) = \bar{x}(1) + \bar{x}(K)$$
, (1.1)

onde

$$\vec{x}(1) = l_1 \vec{a}_1 + l_2 \vec{a}_2 + l_3 \vec{a}_3$$
; (1.2)

com 1, 12, 13 inteiros.

Os vetores $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ são chamados vetores primitivos da rede cristalina.

Os deslocamentos dos átomos de suas posições de equilíbrio são denotados por vetores $\vec{u}(\frac{1}{K})$.

A energia potencial do cristal, na aproximação harmônica, pode ser escrita como⁽¹⁾

$$\dot{\varphi} = \dot{\varphi}_{0} + \frac{1}{2} \sum_{\substack{i \in \mathcal{K}, \\ 1' \in \mathcal{K}, \\ \beta}} \dot{\varphi}_{\alpha}(\frac{1}{K}, \frac{1'}{K}) u_{\alpha}(\frac{1}{K}) u_{\beta}(\frac{1'}{K}), \qquad (1.3)$$

onde

$$\Phi_{\alpha\beta}(\overset{1}{K}\overset{1'}{K'}) = \frac{\partial^{2}\Phi}{\partial u_{\alpha}(\overset{1}{K})\partial u_{\beta}(\overset{1'}{K'})} |_{0}$$
(1.4)

O símbolo O em (l.4) indica que a derivada deve ser calculada na posição de equilíbrio dos átomos. Os coeficientes $\oint_{\alpha/\beta} \begin{pmatrix} 1 & 1' \\ K & 1' \end{pmatrix}$ dependem de l e l'somente através de sua diferença, 1 - 1'.

A componente \ll da força que age no átomo $(\frac{1}{k})$ é dada

por

$$m_{\mathcal{K}_{\mathcal{A}}}^{\mathbf{u}}(\mathbf{1}_{\mathcal{K}}^{\mathbf{l}}) = -\sum_{\mathbf{l}'\mathcal{K}_{\mathcal{B}}} \oint_{\mathcal{A}_{\mathcal{A}}}^{\mathbf{l}}(\mathbf{1}_{\mathcal{K}}^{\mathbf{l}'}) u_{\mathcal{B}}(\mathbf{1}_{\mathcal{K}}^{\mathbf{l}'}).$$
(1.5)

Suponhamos que as soluções da equação (1.5) tenham a seguinte forma⁽²⁾

$$u_{\alpha}(\overset{1}{\kappa}) = \frac{1}{\sqrt{m_{\kappa}}} A_{j}^{q} e_{\kappa \alpha}^{qj} \exp(i(\overline{q}.\overline{x}(\overset{1}{\kappa}) - \omega_{qj}t)). \quad (1.6)$$

Substituindo a equação (1.6) em (1.5) obtemos

$$\omega_{qj}^{2} e_{k\alpha}^{\bar{q}j} = \sum_{K\beta} c_{\alpha\beta}(KK\bar{q}) e_{K\beta}^{\bar{q}j}, \qquad (1.7)$$

onde

$$C_{\alpha\beta}(\kappa \kappa' \vec{q}) = \frac{1}{\sqrt{m_{\kappa} m_{\kappa}}} \sum_{1'} \frac{1}{\sqrt{m_{\kappa} m_{\kappa}}}} \sum_{1'} \frac{1}{\sqrt{m_{\kappa} m_{\kappa}}} \sum_{1'} \frac{1}{\sqrt{m_{\kappa}}} \sum_{1'} \frac{1}{\sqrt{m_{\kappa}}$$

Os C (KKq) são elementos de uma matriz conhecida por matriz dinâmica do cristal.

Os auto-vetores
$$e_{K\alpha}^{qj}$$
 satisfazem as relações

$$\sum_{K\alpha} e_{K\alpha}^{*qj} e_{K\alpha}^{qj} = \delta_{jj}, , \qquad (1.9)$$

$$\sum_{j} \stackrel{*}{\overset{q}_{j}}_{K,\beta} \stackrel{q}{\overset{q}_{j}}_{K'\alpha} = \delta_{z\beta} \delta_{KK'} \qquad (1.10)$$

A equação (1.7) define um sistema de 3r equações a 3r incógnitas. Para que este sistema tenha solução não trivial, a seguinte condição deve ser satisfeita

$$|C_{\alpha\beta}(KK\bar{q}) - \omega_{\bar{q}j}^{2} \delta_{\alpha\beta} \delta_{KK}| = 0. \qquad (1.11)$$

Os valores permitidos do vetor de onda \bar{q} podem ser d<u>e</u> terminados à partir das condições de contorno cíclicas.^(3,4) P<u>a</u> ra fazer uso destas condições, suponhamos que o cristal infinito seja subdividido em células macroscópicas definidas por vet<u>o</u> res N₁ \bar{a}_1 , N₂ \bar{a}_2 , N₃ \bar{a}_3 .

As condições de contorna cíclicas postulam que os de<u>s</u> locamentos atômicos são periódicos, com a periodicidade das células macroscópicas

$$u_{\alpha}({}^{1} + {}^{N_{\alpha}}) = u_{\alpha}({}^{1}_{K}).$$
 (1.12)

Das equações (1.6) e (1.12) obtemos as relações

$$\exp(i\vec{q}.N_{\chi}\vec{a}_{\chi}) = 1$$
, $\alpha = 1, 2, 3$. (1.13)

Consideremos os vetores básicos da rede recíproca definidos como

$$\vec{b}_{1} = \frac{2\pi}{v_{a}}(\vec{a}_{2} \times \vec{a}_{3}); \quad \vec{b}_{2} = \frac{2\pi}{v_{a}}(\vec{a}_{3} \times \vec{a}_{1}); \quad \vec{b}_{3} = \frac{2\pi}{v_{a}}(\vec{a}_{1} \times \vec{a}_{2}); \quad (1.14)$$

onde $v_a = \overline{a}_1 \cdot (\overline{a}_2 \times \overline{a}_3)$ é o volume da célula unitária da rede direta. Estes vetores satisfazem a relação

$$\vec{a}_{\alpha} \cdot \vec{b}_{\beta} = 2 \, \hat{\eta} \, \delta_{\alpha\beta} \, . \tag{1.15}$$

Um vetor \vec{k} da rede recíproca pode ser escrito como uma combinação linear dos vetores \vec{b}_{x} ,

$$\vec{K}(h) = h_1 \vec{b}_1 + h_2 \vec{b}_2 + h_3 \vec{b}_3$$
, (1.16)

onde h_1 , h_2 , $h_3 = 0$, ± 1 , ± 2 , ...

O produto escalar de um vetor $\mathbf{x}(1)$ da rede direta por um vetor $\mathbf{k}(h)$ da rede recíproca é dado por

$$\vec{x}(1).\vec{K}(h) = 2\hat{N}(l_1h_1 + l_2h_2 + l_3h_3)$$

= 2 \hat{N} (inteiro). (1.17)

Portanto, se fizermos a escolha

$$\vec{q} = (h_1/N_1)\vec{b}_1 + (h_2/N_2)\vec{b}_2 + (h_3/N_3)\vec{b}_3$$
, (1.18)

veremos que as relações (1.13) serão satisfeitas.

A adição de um vetor da rede recíproca à \mathbf{q} não altera a equação (1.6). Portanto, podemos restringir os vetores \mathbf{q} a uma célula unitária da rede recíproca. Neste caso os inteiros h_a assumirão valores entre O e N_a - 1. Entretanto, é mais conv<u>e</u> niente assumir que os vetores \mathbf{q} estão localizados em uma região mais simétrica do espaço recíproco, em torno do ponto $\vec{K} = 0$. Os contornos desta região, que é chamada primeira zona de Brillouin (ou zona de Brillouin), são planos bissetores perpendiculares das linhas que ligam o ponto $\vec{K} = 0$ a seus vizinhos mais próximos. Neste caso, os inteiros h_{\propto} estarão restritos ao inte<u>r</u> valo $-\frac{1}{2}(N_{\propto} + 1) < h \leq \frac{1}{2}(N_{\propto} - 1)$.

Para $\vec{q} \rightarrow 0$ existem tres valores de ω_{0j} que tendem a zero.⁽²⁾ Estes modos são conhecidos como modos acústicos. Os restantes 3r - r valores de ω_{0j} permanecem finitos para $\vec{q} = 0$ e recebem o nome de modos óticos.

Consideremos o hamiltoniano do cristal

$$H = \frac{1}{2} \sum_{l \not k \prec} m_{\not k} u_{\not \infty}^{2} {\binom{l}{k}} + \frac{1}{2} \sum_{l \not k \not \prec} \phi_{\not \alpha \beta} {\binom{l}{k}} {\binom{l}{k}} u_{\alpha} {\binom{l}{k}} u_{\beta} {\binom{l}{k'}}. \quad (1.19)$$

Pode-se demostrar que existe uma transformação linear que diagonaliza simultaneamente a energia cinética e a energia potencial do cristal.⁽⁵⁾ Esta transformação é gerada pela expa<u>n</u> são de u $\binom{1}{k}$ em ondas planas

$$u_{\chi}(\frac{1}{K}) = \frac{1}{\sqrt{Nm}_{\kappa}} \sum_{\bar{q}j} e^{\bar{q}j} Q(\bar{q}j) \exp(i(\bar{q}.\bar{x}(\frac{1}{K}))). \qquad (1.20)$$

As quantidades Q(qj), que recebem o nome de coordenadas de modos normais, satisfazem a relação

$$Q(-\bar{q}j) = Q^{*}(\bar{q}j).$$
 (1.21)

O hamiltoniano do cristal, equação (1.19), pode ser escrito em termos das coordenadas Q(qj), resultando

$$H = \frac{1}{2} \sum_{\vec{q}j} \left\{ P^*(\vec{q}j) P(\vec{q}j) + \omega_{\vec{q}j}^2 2^*(\vec{q}j) 2(\vec{q}j) \right\}, \qquad (1.22)$$

onde P(q̃j) é o momento canônico associado à coordenada Q(q̃j). Utilizando as equações de Hamilton, podemos obter a equação de movimento das coordenadas Q(q̃j)

$$Q(\bar{q}j) + \omega_{\bar{q}j}^2 Q(\bar{q}j) = 0.$$
 (1.23)

Cada coordenada normal Q(qj) descreve um modo indepen dente de vibração do cristal, onde todos os átomos vibram com a mesma frequência. Dizemos que cada coordenada normal descreve um modo normal de vibração que é denotado por qj. Podemos ver, a partir da equação (1.19) que o estado geral de movimento do cristal pode ser escrito como uma superposição de modos normais de vibração.

II.2 - ALGEBRA DE OPERADORES DE GRUPOS ESPACIAIS

Definimos o grupo espacial G de um cristal como sendo o conjunto de operações $(\checkmark | \vec{v}_{\perp} + \vec{x}(n)) = (\measuredangle | \vec{a})$, que aplicadas a um cristal deixam seu arranjo atômico inalterado.^(6,7) $\checkmark \acute{e}$ um operador unitário que representa uma rotação própria ou impró pria do cristal, \vec{v}_{\perp} é um vetor, menor que qualquer vetor primitivo da rede, associado a cada $\prec e \vec{x}(n)$ é uma translação da rede. Grupos espaciais nos quais os \vec{v}_{\perp} são simultaneamente nulos são chamados simórficos. O elemento identidade de G é representado por (ε | O) e um elemento da forma (ε | $\vec{x}(n)$) constitue uma translação pura do cristal. O conjunto de operações (ε | O) recebe o nome de grupo de ponto do cristal. Este grupo é um subgrupo de G somente para grupos espaciais simórficos.

O efeito da aplicação de um elemento de G sobre um v<u>e</u> tor $\bar{x}(\frac{1}{K})$ da rede, é definido através da seguinte equação

$$(\varkappa | \overline{a}) \overline{x} (\frac{1}{\chi}) = \varkappa \overline{x} (\frac{1}{\chi}) + \overline{a}$$
$$= \overline{x} (\frac{1}{\chi})$$
(2.1)

A aplicação de ($\langle \langle \bar{x} \rangle$) sobre uma função f($\bar{x}(\bar{x})$) é defi-

nida como

$$(\boldsymbol{\varkappa}|\boldsymbol{\check{x}})f(\boldsymbol{\check{x}}(\boldsymbol{\check{\chi}})) = f((\boldsymbol{\varkappa}|\boldsymbol{\check{x}})^{-1}\boldsymbol{\check{x}}(\boldsymbol{\check{\chi}})).$$
(2.2)

Dados dois elementos ($\langle \langle \bar{a} \rangle$) e ($\beta \bar{b}$) pertencentes a G, definimos a sua multiplicação como

$$(\langle |\bar{a}\rangle(\beta|\bar{b}) = (\langle \beta | \langle b \rangle + \bar{a}\rangle).$$
(2.3)

A partir da equação (2.3) podemos encontrar o inverso de (∝\ā),

$$(\alpha |\bar{a})^{-1} = (\alpha^{-1} | - \alpha^{-1} \bar{a}).$$
 (2.4)

O grupo espacial G possui um subgrupo importante, conhecido como grupo do vetor de onda $G_{\overline{0}}$.

Este grupo é constituído por elementos da forma (7 | c)onde os 7 satisfazem a relação

$$T\vec{q} = \vec{q} + \vec{K}_{r}, \qquad (2.5)$$

onde os K_{n} são vetores da rede recíproca.

O conjunto de operações $\{r\}$ recebe o nome de grupo de ponto do vetor de onda.

II.3 - PROPRIEDADES TRANSLACIONAIS DE CRISTAIS

Consideremos o conjunto de operações $(\mathcal{E}|\tilde{\mathbf{x}}(n))$, onde $\tilde{\mathbf{x}}(n) = n_1 \tilde{a_1} + n_2 \tilde{a_2} + n_3 \tilde{a_3}$. Este conjunto recebe o nome de grupo de translação T do cristal. Para um cristal infinito, este grupo possuiria um número infinito de elementos, no entanto, se f<u>i</u> zermos uso de condições de contorno cíclicas, ele será finito, cíclico e abeliano.

O grupo T é o produto direto de tres grupos cíclicos, com elementos $(\varepsilon | n_1 \overline{z_1})$, $(\varepsilon | n_2 \overline{z_2})$, $(\varepsilon | n_3 \overline{z_3})$, respectivamente.⁽⁷⁾

Devido ao fato de T ser abeliano, suas representações

irredutíveis são unidimensionais.

Consideremos o subgrupo de T, constituído pelo conjun to de operações $(\epsilon | n_1 \overline{a}_1)$. O elemento identidade de uma particular representação irredutível desse grupo é escrito como⁽⁸⁾

$$M(\varepsilon|\dot{a}_1) = \lambda_1.$$
(3.1)

Utilizando as condições de contorno cíclicas, podemos escrever

$$(\varepsilon | \overline{z_1})^{N_1} = (\varepsilon | \overline{z_1}). \tag{3.2}$$

Portanto, $M^{N_1}(\epsilon | \overline{a_1}) = M(\epsilon | \overline{a_1})$ ou $\lambda_1^{N_1} = 1.$ (3.3)

Obtemos, então

$$\lambda_{1} = \exp(-2\pi i h_{1}/N_{1}),$$
 (3.4)

onde h_1 é inteiro com valores entre 0 e $N_1 - 1$. Portanto, M $(\epsilon | n_1 \overline{a_1}) = \exp(-2\pi i n_1 h_1 / N_1)$.

Procedendo analogamente para os subgrupos ($\varepsilon | n_2 \vec{a}_2$) e ($\varepsilon | n_3 \vec{a}_3$) veremos que

$$M (\mathcal{E}|\bar{x}(n)) = \exp(-2\pi i(n_1(h_1/N_1) + n_2(h_2/N_2) + n_3(h_3/N_3)))$$
(3.5)

Se utilizarmos os vetores básicos da rede recíproca, definidos em II.1, e definirmos os vetores $\vec{q} = q_1 \vec{b}_1 + q_2 \vec{b}_2 + q_3 \vec{b}_3$, onde $q_1^2 = h_1 / N_1$, poderemos reescrever a equação (3.5) como

$$\mathbf{M}^{\vec{q}}(\boldsymbol{\varepsilon}|\vec{\mathbf{x}}(n)) = \exp(-i\vec{q}\cdot\vec{\mathbf{x}}(n))$$
(3.6)

As representações irredutíveis de T são "rotuladas" (labelled) pelos N = $N_1 \times N_2 \times N_3$ valores permitidos do vetor Tq. Os vetores q'que aparecem em (3.6) sofrem as mesmas restri-

ções que os vetores de onda q que aparecem na solução das equa ções de movimento dos átomos do cristal. Portanto, podemos iden tificar os vetores q' com os vetores q da equação (1.18).

Seja $\Psi_{\vec{q}}(\vec{r})$ uma função que se transforme de acordo com a representação irredutivel q de T,⁽⁹⁾ isto é

$$(\varepsilon | \vec{x}(n)) \psi_{\vec{q}}(\vec{r}) = M^{q} \left\{ (\varepsilon | \vec{x}(n)) \right\} \psi_{\vec{q}}(\vec{r}) \\ = \exp(-i\vec{q} \cdot \vec{x}(n)) \psi_{\vec{q}}(\vec{r}). \quad (3.7)$$

Sabemos que

$$(\varepsilon|\bar{\mathbf{x}}(n)) \Psi_{\overline{q}}(\bar{r}) = \Psi_{\overline{q}}(\bar{r} - \bar{\mathbf{x}}(n)). \qquad (3.8)$$

Podemos então escrever

$$\Psi_{\vec{q}}(\vec{r} - \vec{x}(n)) = \exp(-i\vec{q}\cdot\vec{x}(n))\Psi_{\vec{q}}(\vec{r}).$$
 (3.9)

Para que a equação (3.9) seja satisfeita, escolhemos a função $\Psi_{\vec{d}}(\vec{r})$ com a seguinte forma

$$\Psi_{\vec{q}}(\vec{r}) = \exp(i\vec{q}.\vec{r})u_{\vec{q}}(\vec{r}), \qquad (3:10)$$

onde a função $u_{\vec{d}}(\vec{r})$ tem a periodicidade da rede, isto é

$$u_{\vec{q}}(\vec{r}) = u_{\vec{q}}(\vec{r} - \vec{x}(n)).$$
 (3.11)

As funções $\Psi_{\vec{\alpha}}(\vec{r})$ são conhecidas como funções de Bloch.

II.4 - UTILIZAÇÃO DE GRUPOS MULTIPLICADORES NA ANÁLISE DE VIBRA ÇÕES DE REDE

Suponhamos que um modo normal oj seja representado co mo um vetor (\overline{dj}) , ⁽⁶⁾ em um espaço $S_v^{\overline{q}}$ de dimensão 3r, com as seguintes componentes

$$\langle \vec{q} j \rangle = \left\{ e_{\mathcal{K} \alpha}^{\vec{q} j}; \mathcal{K} = 1, r; \alpha = 1, 2, 3 \right\}.$$
 (4.1)

Podemos olhar, formalmente, o espaço S_v^q como o produto direto de um "espaço de célula" S_c , gerado por uma base $\{ |K\rangle, K = 1, r \}$, por um espaço Euclidiano tridimensional complexo S_E , gerado por uma base $\{ i_{\alpha}, \alpha = 1, 2, 3 \}$.

O vetor $|\vec{q}_j\rangle$ pode ser escrito em termos da base $\{1K\rangle \ \hat{i}_{\beta}\}$ como

$$\vec{q}_{j} = \sum_{K \neq i} |K\rangle \hat{i}_{\chi} e^{\vec{q}_{j}}$$
(4.2)

Os símbolos $|K\rangle$ não tem significado geométrico; eles são índices com a propriedade de vetores abstratos que relacionam um vetor Euclidiano em S_E a um dos átomos da célula primit<u>i</u> va.

O deslocamento $\tilde{u}(\frac{1}{K})$, de um átomo ($\frac{1}{K}$), quando o modo $\tilde{q}j$ é excitado no cristal, é dado por

$$\vec{u}(\frac{1}{K}) = \frac{1}{\sqrt{m_{K}}} \sum_{K \neq K} e^{\vec{d} \cdot j} (i(\vec{q} \cdot \vec{x}(\frac{1}{K}) - \omega_{\vec{q} \cdot j}t)), \qquad (4.3)$$

onde por conveniência, fizemos $A_j^{\vec{q}} = 1$.

A aplicação de um operador $(\mathbf{r} \setminus \mathbf{\bar{v}_r})$ sobre o cristal de<u>s</u> loca um átomo que está na posição $\mathbf{\bar{x}}(\mathbf{k})$ para a posição $\mathbf{\bar{x}}(\mathbf{\tau}\mathbf{k})$ definida por

$$(\mathcal{T}|\vec{v}_{\mathcal{T}})\vec{x}(K) = \mathcal{T}\vec{x}(K) + \vec{v}_{\mathcal{T}}$$
$$= \vec{x}(\mathcal{T}K) + \vec{x}(t). \qquad (4.4)$$

Um átomo situado na posição $\vec{x}(\frac{1}{K})$ é transferido para a posição $\vec{x}(\frac{1}{K})$,

$$(\mathfrak{V}, \vec{v}_{\gamma}) \vec{x}(\frac{1}{k}) = \mathfrak{V} \vec{x}(\frac{1}{k}) + \vec{v}_{\gamma}$$
$$= \mathfrak{V} \vec{x}(k) + \mathfrak{V} \vec{x}(1) + \vec{v}_{\gamma}$$
$$= \vec{x}(\mathfrak{V} k) + \mathfrak{V} \vec{x}(2) + \vec{x}(1)$$
$$= \vec{x}(\mathfrak{V} k) + \vec{x}(1)$$

$$= x(\frac{1}{0}).$$
 (4.5)

0 operador $(\gamma/\overline{v_{\gamma}})$ gira o vetor deslocamento de um áto mo $(\frac{1}{K})$ no mesmo sentido que o cristal e o transfere para a posição $(\frac{1}{\gamma_K})$

$$\begin{split} \vec{u}(\frac{1}{\eta_{K}}) &= \frac{1}{\sqrt{m_{K}}} \sum_{\alpha} (\gamma \hat{i}_{\alpha}) e_{K\alpha}^{\vec{q}j} \exp(i(\vec{q}.\vec{x}(\frac{1}{K}) - \omega_{\vec{q}j}t)) \\ &= \frac{1}{\sqrt{m_{K}}} \sum_{\alpha} (\gamma \hat{i}_{\alpha}) e_{K\alpha}^{\vec{q}j} \exp(i(\vec{q}.\vec{\gamma}(\vec{x}(\frac{1}{\eta_{K}}) - \vec{v}_{p}) - \omega_{\vec{q}j}t)) \\ &= \frac{1}{\sqrt{m_{K}}} \sum_{\alpha} (\gamma \hat{i}_{\alpha}) e_{K\alpha}^{\vec{q}j} \exp(i(\gamma \vec{q}.(\vec{x}(\frac{1}{\eta_{K}}) - \vec{v}_{p}) - \omega_{\vec{q}j}t)) \\ &= \frac{1}{\sqrt{m_{K}}} \sum_{\alpha} (\gamma \hat{i}_{\alpha}) e_{K\alpha}^{\vec{q}j} \exp(i(\vec{k}.\vec{x}(\gamma k) - \vec{v}_{p}) \exp(-i\vec{q}.\vec{v}_{p}))) \\ &\times \exp(i(\vec{q}.\vec{x}(\frac{1}{\eta_{K}}) - \omega_{\vec{q}j}t)) , \quad (4.6) \end{split}$$

onde $\overline{K}_{r} = \widetilde{rq} - \overline{q}$.

O termo entre chaves na equação (4.6) define a transformação dos vetores $e_{k}^{\vec{q}j}$ sob os operadores ($r|v_r$).

0 vetor $|\vec{q}j\rangle$, representativo do modo $\cdot\vec{q}j$ em $S_v^{\vec{q}}$, se transforma sob $(\gamma_v \vec{v}_r)$ como

$$(\mathcal{T}|\vec{v}_{\gamma})|\vec{q}j\rangle = \sum_{kd} \mathcal{T}'_{kd} \left\{ \mathcal{T}_{kd} = \mathcal{T}'_{kd} \exp(i\vec{k}_{\gamma} \cdot (\vec{x}(\mathcal{T})'_{k}) - \vec{v}_{\gamma}) \exp(-i\vec{q} \cdot \vec{v}_{\gamma}) \right\}$$

$$(4.7)$$

Suponhamos que um operador $(\mathcal{E}|\bar{x}(n))$ pertencente a T seja aplicado ao cristal. O vetor deslocamento $\bar{u}(\frac{1}{K})$ de um átomo $(\frac{1}{K})$ é transferido para a posição $(\frac{1}{K}, \frac{n}{K})$,

$$(\varepsilon | \bar{x}(n))\bar{u}(\bar{\chi}) = \exp(-i\bar{q},\bar{x}(n))\bar{u}(\bar{\chi}). \qquad (4.8)$$

Portanto, os vetores $|\bar{q}_j\rangle$ se transformam sob $(\mathcal{E}\setminus\bar{x}(n))$ de acordo com a equação (3.7),

$$(\varepsilon|\bar{\mathbf{x}}(n))|\bar{\mathbf{q}}_{j}\rangle = \exp(-i\bar{\mathbf{q}}_{j}\bar{\mathbf{x}}(n))|\bar{\mathbf{q}}_{j}\rangle. \qquad (4.9)$$

Consideremos a aplicação de um operador (7/c) sobre

o vetor [aj>

$$(\mathcal{V}|\vec{c})|\vec{q}j\rangle = (\mathcal{V}|\vec{v}_{p})(\mathcal{E}|\mathcal{F}^{-1}\vec{x}(n))|\vec{q}j\rangle$$

$$= (\mathcal{V}|\vec{v}_{p})\exp(-i\vec{q}\cdot\vec{n}\vec{x}(n))|\vec{q}j\rangle$$

$$= \exp(-i\vec{p}\cdot\vec{q}\cdot\vec{x}(n))(\mathcal{V}|\vec{v}_{p})|\vec{q}j\rangle$$

$$= \exp(-i\vec{q}\cdot\vec{x}(n))(\mathcal{V}|\vec{v}_{p})|\vec{q}j\rangle, \qquad (4.10)$$

onde usamos o fato de γ ser unitário e $\gamma \vec{q} = \vec{q} + \vec{K}_{\gamma}$. Multiplicando ambos os lados da equação (4.10) por

 $exp(i\overline{q},\overline{c})$, onde $\overline{c} = \overline{v_n} + \overline{x}(n)$, obtemos

$$\exp(i\vec{q}.\vec{c})(\vec{v}|\vec{c})|\vec{q}j\rangle = \exp(i\vec{q}\vec{v}_{r})(\vec{v}|\vec{v}_{r})|\vec{q}j\rangle. \quad (4.11)$$

. Vamos definir um operador $O(r)^{(6)}$ em $s_v^{\vec{q}}$, através da equação

$$O(\mathcal{T}) = \exp(i\bar{q}.\bar{v}_{\mathcal{T}})(\mathcal{T}|\bar{v}_{\mathcal{T}})$$
$$= \exp(i\bar{q}.\bar{c})(\mathcal{T}|\bar{c}). \qquad (4.12)$$

Consideremos o produto de dois operadores,
$$O(\eta)$$
 e
 $O(\zeta)$, onde η e ζ são membros de $\{\gamma\}$
 $O(\eta)O(\zeta) = \exp(i\overline{q}(\overline{v_{\eta}} + \overline{v_{\zeta}})(\eta)\overline{v_{\eta}})(\zeta|\overline{v_{\zeta}})$
 $= \exp(i\overline{q}(\overline{v_{\eta}} + \overline{v_{\zeta}})(\eta)(\eta)\overline{v_{\zeta}} + \overline{v_{\eta}})$
 $= \exp(i\overline{q}(\overline{v_{\eta}} + \overline{v_{\zeta}})(\varepsilon|\overline{x}(t))(\eta)(\eta)\overline{v_{\eta}})$
 $= \exp(i\overline{q}(\overline{v_{\eta}} + \overline{v_{\zeta}}))\exp(-i\overline{q}.\overline{x}(t))\exp(-i\overline{q}.\overline{v_{\eta}})O(\eta)$
 $= \exp(-i\overline{K_{\eta-1}}.\overline{v_{\zeta}})O(\eta)$, (4.13)
 $O(\eta) = \frac{1}{2}$

onde $\vec{x}(t) = \eta \vec{v}_{f} + \vec{v}_{h} - \vec{v}_{h}$, $\vec{k}_{h-1} = \eta^{-1}\vec{q} - \vec{q}$ é um vetor da rede reciproca.

Os operadores $O(\mathfrak{F})$ definidos na equação (4.13) consti tuem um grupo que recebe o nome de Grupo Multiplicador. Esses <u>o</u> peradores podem ser representados por um conjunto de matrizes irredutíveis $\{M^{S}(\mathfrak{F})\}, (10, 11)$ onde s indica uma particular r<u>e</u> presentação irredutível de O(?).

Seja $\{| p\bar{q}s \rangle\rangle, \lambda = 1, n_{\lambda}\}$ uma base para a s-ésima representação irredutível de O(γ), de dimensão n_s. O índice p se<u>r</u> ve apenas para distinguir estes vetores de outros que se transformam similarmente.

> A aplicação de $O(\mathcal{F})$ sobre um vetor $|p\bar{q}s\rangle$ resulta em $O(\mathcal{F})|p\bar{q}s\rangle = \sum_{\mathcal{H}} |pqs\rangle \mathbb{N}_{\mathcal{H}\mathcal{F}}^{S}(\mathcal{F})$ (4.14)

 $(\gamma|\vec{c})|\vec{pqs}\rangle = \exp(-i\vec{q}.\vec{c})\sum_{\mu}|\vec{pqs}\mu|_{\mu\lambda}^{s}(\gamma)$

As representações irredutíveis de $O(\gamma)$ satisfazem o teorema de ortogonalidade

$$\sum_{\substack{(\tau \mid c) \ \lambda^{\mu}}} \mathbb{M}^{s}(\tau) \exp(-i\overline{q}, \overline{c}) \mathbb{M}^{s'}(\tau) \exp(i\overline{q}, \overline{c}) = \frac{Nh}{n_{s}} \mathcal{J}_{\lambda'} \mathcal{J}_{\lambda'}$$

Se o espaço $S_v^{\vec{q}}$ é redutível sob os operadores $O(\mathcal{P})$, podemos determinar o número de ocorrências de cada representação irredutível de $O(\mathcal{P})$ através da equação

$$c_{s} = \frac{1}{h} \sum_{\gamma} \chi^{r}(\gamma) \overline{\chi}^{s}(\gamma), \qquad (4.17)$$

onde $\chi^{r}(\gamma)$ é o caracter da representação redutível de O(γ) em $S_{v}^{\vec{q}}$ e $\chi^{s}(\gamma)$ é o caracter da s-ésima representação irredutível de O(γ).

A equação (4.16) nos permite definir um conjunto de operadores de projeção para o grupo multiplicador da maneira usual, n

$$\int_{\lambda u}^{s} = \frac{\frac{1}{s}}{\frac{1}{p}} \int_{\lambda u}^{0} (\tilde{r}) \frac{1}{M^{s}} (\tilde{r}). \qquad (4.18)$$

Os possíveis valores de \overline{K} que aparecem na equação (4.13) impõe algumas restrições sobre as matrizes $M^{S}(\mathcal{T})$.

Se \vec{q} se encontra no interior da primeira zona de Brillouin, deveremos ter $\vec{K}_{\gamma-1} = 0$. Neste caso os operadores $O(\mathcal{T})$ são isomorfos ao grupo de ponto $\{\mathcal{T}\}$. Portanto, podemos fazer as matrizes $\{\mathbb{M}^{S}(\mathcal{T})\}$ iguais às matrizes $\{\mathbb{U}^{S}(\mathcal{T})\}$ que representam o grupo de ponto $\{\mathcal{T}\}$. Se \overline{q} se encontra na superfície da primeira zona de Brillouin, alguns dos valores de \overline{K}_{q-1} podem ser não nulos, de forma que para grupos espaciais não simórficos $\{O(\mathcal{T})\}$ poderá não ser mais isomorfo à $\{\mathcal{T}\}$. Neste caso as matrizes $\{\mathbb{M}^{S}(\mathcal{T})\}$ podem ser obtidas à partir de tabelas especiais $\{12, 13\}$ Entretanto, se $\{O(\mathcal{T})\}$ possuir ao menos uma representação irredutível unidimensional, poderemos construir operadores $\{O(\mathcal{T})/\mathcal{V}(\mathcal{T})\}$ que são isomorfos à $\{\mathcal{T}\}$, como podemos ver a seguir

$$O(\pi)O(\zeta) = \exp(-i\vec{k}_{\pi-1}, \vec{v}_{\zeta})O(\eta\zeta)$$
 (4.13)

$$\mathcal{V}(\eta)\mathcal{V}(\zeta) = \exp(-i\vec{K} - 1\cdot\vec{v}\zeta)\mathcal{V}(\eta\zeta)$$
(4.19)

$$\frac{O(\pi)}{\nu(\eta)} \frac{O(\zeta)}{\nu(\zeta)} = \frac{O(\pi\zeta)}{\nu(\gamma\zeta)}$$
(4.20)

Neste caso podemos fazer $M^{S}(\mathcal{T}) = \mathcal{V}(\mathcal{T})U^{S}(\mathcal{T}).$

Utilizando a definição dos operadores $Q(\Upsilon)$ podemos reescrever a equação (4.7) da seguinte forma

$$O(\mathcal{T})|\vec{q}j\rangle = \sum_{\vec{k},\vec{a}} |\mathcal{T}_{\vec{k}}\rangle \mathcal{T}_{\vec{a}} e_{\vec{k},\vec{a}}^{\vec{q}j} exp(i\vec{k}_{T}(\vec{x}(\mathcal{T}_{\vec{k}}) - \vec{v}_{T}))$$
(4.21)

Se definirmos um operador $\partial(T)$ no espaço S através da expressão

$$\begin{array}{l}
\dot{O}(\mathcal{T})|\mathcal{K}\rangle = |\mathcal{T}\mathcal{K}\rangle \exp(i\mathcal{K}_{\mathcal{T}}(\vec{x}(\mathcal{T}\mathcal{K}) - \vec{v}_{\mathcal{T}})) \\
= |\mathcal{T}\mathcal{K}\rangle \exp(-i\mathcal{K}_{\mathcal{T}}(\vec{x}(\mathcal{K}))), \\
\end{array}$$
(4.22)

poderemos transformar a equação (4.21) em

$$O(\mathcal{T})[\bar{q}j] = \sum_{k \neq k} O(\mathcal{T})[k] (\mathcal{T}i_{k}) e_{k \neq k}^{\bar{q}j}. \qquad (4.23)$$

Da equação (4.23) obtemos

$$O(T)(|K|) i_{\chi}) = (O(T)|K|)(T i_{\chi}).$$
(4.24)

Se operarmos sucessivamente com operadores 0(~) e

 $O(\langle \rangle)$ sobre $|\eta\rangle_{i_{\alpha}}$ veremos que os operadores $O(\gamma)$ satisfazem a equação (4.13)

$$(\dot{0}(\gamma)\dot{0}(\zeta)) \approx (\exp(-i\vec{K}_{\gamma-1}\vec{v}_{\zeta})\dot{0}(\gamma\zeta)) \approx (4.25)$$

Portanto, os operadores $\dot{O}(\gamma)$ são isomorfos aos ope-0(7) e podem ser mapeados nas mesmas representações radores irredutíveis dos operadores $O(\mathcal{Y})$.

Suponhamos que o espaço $S_{v}^{\vec{q}}$ é redutivel sob os operado res $O(\gamma)$. Podemos decompor $S_v^{\vec{q}}$ em sub-espaços irredutíveis decom pondo separadamente S_c e S_E. A decomposição de S_E sob cada um dos 32 grupos puntuais é bastante conhecida e, pode ser encontrada com facilidade em textos elementares de teoria de 👘 gruno(13)

Para decompormos S_c, devêmos encontrar o seu caracter, que pode ser obtido à partir da equação (4.22)

$$\chi^{r}(\gamma) = \sum_{K} \delta_{K, TK} \exp(-i\overline{K}_{\gamma} - 1 \cdot \overline{\overline{X}}) \cdot (4.26)$$

As equações (4.26) e (4.17) determinam o número de ocorrências de cada representação irredutível de $\left\{ \dot{O}(r) \right\}$ em Ş,. Se multiplicarmos cada sub-espaço irredutível de S_c por um subespaço irredutível de S $_{
m E}$, e realizarmos uma nova decomposição , poderemos encontrar os sub-espaços irredutíveis de S_v^q .

Seja { $|p\bar{q}\lambda\lambda\rangle, \lambda = 1, n_{s}; p = 1, c_{s}$ } uma base irredut<u>í</u> vel para $S_{\mathbf{v}}^{\overline{\mathbf{q}}}$, onde s corre por todas as representações irredutíveis.

Vamos expandir 1 k \pm_{∞} em termos da base desconhecida { lpgs >>}

$$|\mathbf{K}\rangle \mathbf{i}_{\mathcal{L}} = \sum_{p > \lambda} |p \mathbf{q} \mathbf{s}_{\lambda} \rangle \mathbf{b}_{p \mathbf{s}_{\lambda}}$$
.
Aplicando o operador $p_{\lambda'\mu}^{\mathbf{s}'}$ sobre $|\mathbf{K}\rangle \mathbf{i}_{\mathcal{L}}$ obtemos

(4.27)

$$\begin{split} \int_{\lambda,k}^{s'} (|\mathbf{K}\rangle \mathbf{i}_{\lambda}) &= \frac{\mathbf{n}_{s'}}{\mathbf{h}} \sum_{\gamma} |\gamma_{\lambda}\rangle \exp(-i\mathbf{K}_{\gamma} - \mathbf{i} \cdot \mathbf{x}_{\lambda}) (\gamma \mathbf{i}_{\lambda}) \mathbf{M}_{\lambda,k}^{s} (\gamma) \\ &= \frac{\mathbf{n}_{s'}}{\mathbf{h}} \sum_{\gamma} (\mathbf{v}) \mathbf{M}_{\lambda,k}^{s'} (\gamma) \sum_{ps\lambda} |p\bar{q}s\lambda\rangle \mathbf{b}_{ps\lambda} \\ &= \frac{\mathbf{n}_{s'}}{\mathbf{h}} \sum_{\gamma} (\mathbf{v}) \mathbf{M}_{\lambda,k}^{s'} (\gamma) \sum_{ps\lambda} \sum_{\mu'} |p\bar{q}s\mu'\rangle_{\mu,\lambda}^{s} \mathbf{b}_{ps\lambda} \\ &= \frac{\mathbf{n}_{s'}}{\mathbf{h}} \sum_{\gamma} (\mathbf{v}) \sum_{\gamma,\lambda'} (p\bar{q}s\mu') \mathbf{M}_{\lambda,\lambda}^{s} (\gamma) \mathbf{h}_{\lambda,\lambda}^{s} (\gamma)) \mathbf{b}_{ps\lambda} \\ &= \frac{\mathbf{n}_{s'}}{\mathbf{h}} \sum_{ps\lambda,\mu'} (p\bar{q}s\mu') (\mathbf{M}_{s'}^{s'} (\gamma) \mathbf{M}_{\lambda,\lambda}^{s'} (\gamma)) \mathbf{b}_{ps\lambda} \\ &= \frac{\mathbf{n}_{s'}}{\mathbf{h}} \sum_{ps\lambda,\mu'} |p\bar{q}s\mu'\rangle_{\mathbf{n}_{s'}}^{h} \delta_{ss'} \delta_{\lambda,\mu'} \delta_{\mu\lambda} \mathbf{b}_{ps\lambda} \\ &= \sum_{p} |p\bar{q}s\lambda'\rangle \mathbf{b}_{ps'\lambda} \end{split}$$
(4.28)

O operador $\rho^{s'}$ projeta $|K\rangle_{i_{\alpha}}$ em um sub-espaço $S_{s'\lambda'}$ de $S_{v}^{\vec{q}}$, que é gerado por uma base { $|p\vec{q}s'\lambda'\rangle$, $p = 1, c_{s}$ }. De acordo com Montgomery⁽⁶⁾, os modos normais podem

ser escolhidos de tal modo que eles se encontram em sub-espaços da forma S $_{\rm S\lambda}$

$$|\vec{q}_{j}\rangle = |\vec{a}\vec{q}_{s}\lambda\rangle$$

= $\sum_{p=1}^{c_{s}} |\vec{p}\vec{q}_{s}\lambda\rangle g_{pa}^{s}$, (4.29)

onde os coeficientes g_{pa}^s são independentes de λ .

 $\langle \bar{q}j \rangle$ significa o λ -ésimo modo normal do a-ésimo conjunto de modos degenerados que se transforma de acordo com a representação irredutível s.⁽¹⁵⁾

11.5 - RELAÇÕES DE COMPATIBILIDADE

Consideremos a primeira zona de Brillouin de uma estrutura cristalina qualquer, por exemplo, a zona de Brillouin de uma estrutura cúbica simples, mostrada na figura (5.1)

O grupo de ponto do vetor de onda \vec{q} ao longo de uma linha de simetria (como \sum) precisa ser um sub-grupo do grupo do vetor de onda \vec{q} nos pontos terminais (\vec{l} e M).

Portanto, as representações irredutíveis de um ponto ao longo de uma linha de simetria precisam estar contidas nas representações irredutíveis dos pontos terminais dessa linha; as representações irredutíveis dessa linha são ditas compatíveis^(16, 17) com as representações irredutíveis dos pontos terminais. Em termos de vetores base, dizemos que uma base irredutível para Σ deve estar contida nas bases irredutíveis para os pontos Γ e M.

Dizemos, que um dado ramo de uma relação de dispersão ao longo de uma linha de simetria é compatível com a relação de dispersão em um ponto de simetria, quando as correspondentes r<u>e</u> presentações irredutíveis, às quais eles pertencem são compatíveis.

As relações de compatibilidade mostram, qualitativa mente, o comportamento de uma curva de dispersão ao longo de uma linha de simetria da zona de Brillouin.

11.6 - UTILIZAÇÃO DOS AUTO-VETORES DA MATRIZ DINÁMICA NO ESTUDO DA FERROFLETRICIDADE

De acordo com a relação de Lydane Sachs-Teller genera lizada, ⁽¹⁸⁾ os modos óticos transversais e longitudinais que tem um momento de dipolo em uma determinada direção, podem ser relacionados às medidas da constante dielétrica em baixas e altas frequências nesta direção como se segue

Zona de Brillouin de uma Estrutura Cúbica Simples

19

Fig. 5.1

$$\frac{\mathcal{E}_{0}}{\mathcal{E}_{\infty}} = \prod_{j=2}^{r} \frac{(\omega_{0j}^{2})_{\text{Lo}}}{(\omega_{0j}^{2})_{\text{To}}}, \qquad (6.1)$$

onde Lo e To indicam modos longitudinais óticos e transversais óticos, respectivamente.

No caso de cristais ferroelétricos, à medida em que nos aproximamos da temperatura de transição de fase, vindo de temperaturas superiores à esta, a constante dielétrica à baixa frequência \mathcal{E}_0 começa a aumentar e consequentemente, um modo $(\omega_{0j})_{To}$ precisa diminuir em frequência. O aumento na constante dielétrica é devido ao deslocamento de cargas no cristal e, tais deslocamentos produzem variações nas forças interatômicas.

E um fato bem conhecido em cálculos de dinâmica de r<u>e</u> des, que o fonon de menor frequência é o mais afetado por vari<u>a</u> ções, mesmo ligeiras, nas forças interatômicas. Este fato, juntamente com o fato de \mathcal{E}_0 seguir a lei de Curie-Weiss⁽¹⁹⁾

$$\mathcal{E}_{0} = \frac{c}{T - T_{c}}, \qquad (6.2)$$

levou Cochran⁽¹⁸⁾ a levantar a hipótese de que o fonon $(\omega_{0j})_{To}$ de menor frequência segue a lei

$$(\omega_{0j}^2)_{To} \propto (T - T_c)$$
(6.3)

O modo que tem esta frequência é conhecido por "soft mode".

Os auto-vetores da matriz dinâmica para este modo, certamente indicam o deslocamento dos átomos, na temperatura de transição. Estes auto-vetores podem ser facilmente visualizados com o auxílio de teoria de grupos, para espécies de simetria que não contenham muitos modos normais.

CAPITULO III

III.1 - ALGUMAS CARACTERISTICAS IMPORTANTES DE COMPOSTOS DO TI PO K₂ReCl₆

O considerável interesse nos complexos hexa-halogenados dos metais Pt, Ir, Os, Re e W resulta do fato de que suas estruturas eletrônicas são bastante similares, com exceção do número de elétrons no orbital antiligante Mr, que decresce de um à medida em que o número atômico dos metais nessa série decresce⁽²⁰⁾ Estes compostos tem a mesma estrutura cúbica a altas temperaturas, com aproximadamente as mesmas constantes de rêde e aproximadamente as mesmas distâncias M-Cl. Isto indica que suas frequências vibracionais poderiam ser aproximadamente idênticas. Este fato foi verificado por Hendra e Park⁽²¹⁾ em seus estudos de Raman e infravermelho destes compostos.

Alguns destes compostos efetuam transições de fase estruturais que causam um comportamento anômalo em suas propriedades. Um destes cristais é o KoReCl6. A altas temperatu ras este cristal tem estrutura do tipo da antifluorita e efetua transições de fase do tipo "displacive" à 111, 103 e 76°K. Um estudo detalhado das propriedades, vibracionais deste cristal foi feito por Q'Leary e Wheeler. (22) Utilizando o modelo do ion rígido, estes autores calcularam o espectro de l'fonons do KoReCle, e concluiram de seus estudos que a transição à 111°K ocorre devido ao amortecimento (softening) do modo libra cional de simetria P5. A partir de outras informações experi mentais, eles sugeriram que as variações na simetria durante as transições neste cristal são as seguintes;

 $o_{h}^{5} \frac{111^{\circ}K}{103^{\circ}K} c_{4h}^{5} \frac{103^{\circ}K}{103^{\circ}K} c_{4h}^{4} \frac{76^{\circ}K}{103^{\circ}K} r_{h}^{2}$

Uma vez que o modo "soft" rotacional não é ativo no espalhamen to Raman e infravermelho, a evidência de sua conexão com a transição de fase foi deduzida, à partir da variação com a tem peratura, da frequência de ressonância nuclear quadrupolar.

Brown⁽²³⁾ introduziu um modelo geométrico empírico para um certo número de compostos pertencentes à familia R_2MX_6 . De acordo com este autor, K_2ReCl_6 poderia efetuar uma transição de fase através de uma pequena rotação do octaedro $ReCl_6$. Van Driel e colaboradores⁽²⁴⁾ mostraram, a partir de seus estudos de dinâmica de redes, que é o enfraquecimento da interação K-Cl que reduz a frequência libracional à zero e não o enfraquecimento dos interações entre os átomos de cloro perten centes aos vários octaedros, como proposto por O'Leary e Wheeler.

Armstrong e colaboradores realizaram estudos em uma série de cristais pertencentes à familia R_2MX_6 , utilizando a técnica de ressonância nuclear quadrupolar, e estabeleceram uma relação entre seus dados e o modo rotacional para o grupo MX_6 .^(25, 26, 27,28)

Van Driel e colaboradores⁽²⁹⁾ descobriram que o cri<u>s</u> tal de K₂PtBr₆efetua transições de fase estruturais à 169, 143, 137, 105, e 78°K. A transição à 169°K é de segunda ordem passando de uma estrutura cúbica para uma estrutura tetragonal. A partir de seus dados de frequência eles deduziram que a média da frequência do modo rotacional da rede sobre toda a zona de Brillouin é amortecida em cerca de 12%, logo acima da temperatura de transição. A análise de seus dados de relaxação spin-

TABELA 1.1

Cristal	Estrutura	a	u	Temperatura de	Estrutura após
				Transição (K)	a transição
K ₂ ReCl ₆	o_{h}^{5}	9.84	0.24	111	C ⁵ 4h
K ₂ PtBr ₆	0 <mark>5</mark> 0 h	10.27		169	c ⁵ _{4h}
K2PdCl6	o_{h}^{5}	9:74		392	c ⁵ _{4h}
(NH ₄) ₂ PtBr ₆	o _h 5	10.37		58	c_{4h}^5
K2 ^{OsCl} 6	o_{h}^{5}	9.72	0.24	45	c_{4h}^5

Ω Ω rede, entretanto, indicam um amortecimento de cerca de 40% na frequência deste modo, Estudos simileres foram realizados no $(NH_4)_2PtBr_6$, por Wiszniewska e Armstrong⁽²⁷⁾ tendo sido encontrada uma temperatura de transição de 58°K e um amortecimento de 58% na frequência média do modo rotacional.

Existem outros compostos nesta série, tais como $K_2PtCl_6, K_2PdCl_6, Rb_2PtCl_6, Cs_2PtCl_6, K_2IrCl_6^{(28, 30)}$, nos quais os estudos de ressonância nuclear quadrupolar não revelaram qualquer transição de fase estrutural. Observou-se que a frequência do modo libracional, nestes cristais é independe<u>n</u> te da temperatura.

Neste trabalho, nós aplicamos nossos conhecimentos de teoria de grupos para estudar o espectro de fonons na fase cúbica do $K_2 \text{ReCl}_6$, pertencente ao grupo espacial 0_h^5 . A análise é igualmente aplicável a outros compostos que tem esta estrut<u>u</u> ra. Como referência, nós apresentamos alguns destes compostos na tabela 1.1. Nesta tabela são dadas informações estruturais destes compostos. Esta informação, presumivelmente, será útil em nosso trabalho posterior, no qual se pretende estudar transições de fase estruturais utilizando-se a técnica de dinâmica de redes.

III.2 - <u>APLICAÇÃO DA REPRESENTAÇÃO DE MULTIPLICADORES, NA ANA-</u> LISE DOS MODOS NORMAIS DE VIBRAÇÃO DO K₂ReCl₆

 $K_2 \text{ReCl}_6$, à temperatura ambiente, é um cristal cúbico, pertencente ao grupo especial simórfico 0_h^5 , com átomos localizados nas seguintes posições: (31)

Re: (0 0 0)

 $K : \pm (1/4 \ 1/4 \ 1/4)$

 $Cl : \pm (u \circ 0, \circ u \circ, \circ \circ u)$

onde u≃0,24 Å. Seus vetores de translação primitivos são dados por

$$\vec{a}_1 = \frac{a}{2}(\hat{x} + \hat{y}), \vec{a}_2 = \frac{a}{2}(\hat{x} + \hat{z}), \vec{a}_3 = \frac{a}{2}(\hat{y} + \hat{z}),$$

onde a = 9.84 Å, e \hat{x} , \hat{y} e \hat{z} indicam versores nas direções x, y e z, respectivamente. Os vetores primitivos da rede recíproca, conjugados a estes vetores são

$$\vec{b}_{1} = (2\pi/a)(\hat{k}_{x} + \hat{k}_{y} - \hat{k}_{z}),$$

$$\vec{b}_{2} = (2\pi/a)(\hat{k}_{x} - \hat{k}_{y} + \hat{k}_{z}),$$

$$\vec{b}_{3} = (2\pi/a)(-\hat{k}_{x} + \hat{k}_{y} + \hat{k}_{z}).$$

A zona de Brillouin, correspondente à este cristal é mostrada na figura 2.1. Segundo O'Leary e Wheeler⁽²²⁾ as transições de fase à lll e 103° K decorreriam do amortecimento de modos rotacionais da rede com simetria Γ_5 e X₂ (Γ^{4+} e X⁴⁺ na notação de O'Leary e Wheeler).

Para analisarmos os modos normais de vibração \sim lido K_2 ReCl₆, vamos designar os átomos da célula primitiva pelos s<u>e</u> guintes números:

Átomo	Coo	ĸ		
Re	(0	0	ο)	l
K	(1/4	l/4	1/4)	. 2
K	-(1/4	1/4	l/4)	3
Cl	<u>(</u> u	0	0)	4
Cl	-(u	0	0)	5
Cl	(0	u	0)	6
Cl	-(0	u	0)	7

Zona de Drillouin de KaReCle

.

Fig: 2.2 _ Arranjo dos átomos na rede cúbica de face centrada . O octaedro ReCI é mostrado apenas no vértice esquerdo superior.

Atomos

Coordenadas

8

9

C1 (0 0 u)C1 -(0 0 u)

O espaço de célula deste cristal tem dimensão 9 é é gerado por uma base $\{IK\}, K = 1, 9\}$. Este espaço pode ser decomposto em tres sub-espaços

 $S_{c} = S_{Re} \oplus S_{K} \oplus S_{Cl}$,

gerado por bases $\{1\}, \{1\}, \{1\}, \{3\}, \{1\}, \{1\}, K = 4, 9\}$, respecti vamente. A aplicação dos operadores do grupo 0_h^5 sobre o cristal faz com que os átomos da célula primitiva do cristal sejam permutados. Esta permutação é apresentada na tabela 2.1. Utili zando-se esta tabela e os valores de K (encontrados na tabe- \propto^{-1} la 2.2) poderemos, através da equação 4.26 (cap. II), encontrar os caracteres do espaço S_c para cada ponto crítico considerado. Os pontos críticos da zona de Brillouin e os caracteres do espaço S, para cada um deles são apresentados nas tabe-2.3 e 2.4, respectivamente. Os caracteres de S_c nos permitem encontrar as representações irredutíveis de seus subespaços. Essas representações são apresentadas na tabela 2.5. As representações dos modos normais de vibração, para cada pon to crítico, são obtidos decompondo-se o produto das representa ções irredutíveis de S_c pelas representações irredutíveis de S_R, mas representações irredutívois do ponto crítico consider<u>a</u> do . As representações dos modos normais de vibração do K₂ReCl₆ são apresentadas na tabela 2.6. As bases irredutíveis dessas representações, obtidas com o auxílio da equação 4.28 (cap. II), são apresentadas na tabela 2.7.

TABELA 2.1

	·										 -	····									
		נ	. 2	2	3 4	ļ 5	5 6	5 7	3 7	39		-	1	2	3	4	5	6	7	8	9
	Е	1	. 2	2	3 4	5	5-6	5 7	, 6	39		I	1	3	2	5	4	7	6	9	8
	υ ^z	1	. 2	2 -	3 5	5 4	+ 7	' - E	5 8	39		oz	l	3	2	4	5	6	7	9	8
	υx	1	. 2	2	3 4	- 5	5 7	6	; 9	8		م× x	. 1	3	2	5	4	6	7	8	9
	υ ^y	1 1	. 2	2	3 5	4	6	7	' 9	8	-	ory	1	3	2	4	5	7	6	8	9
•	C_4^z	lı	3	2	2 6	7	5	4	. 8	9	1	s ₄ ^{3z}	lı	2	3	7	6	4	5	9	8
	c ₄	1	3	2	27	6	4	5	8	9		s_4^z	1	2	3	6	7	5	4	9	8
	C_4^x	1	3	2	4	5	8	9	7	6		s_4^{3x}	1	2	3	5	4	9	8	6	7
	ē₄	1	3	2	4	5	9	8	6	7		s ₄ ^x	1	2	3	5	4	8	9	7	6
	C ^y 4	1	3	2	9	8	6	7	4	5		s ₄ ^{3y}	1	2	3	8	9	7	6	5	.4
		Ŀ	3	2	8	9	6	7	5	4		s ₄ y	11	2	3	9	8	7	6	4	5
	υ ^{xy}	11	3	2	6	7	4	5	9	8		rxy	11	2	3	7	6	5	4	8	9
	UXZ	1	3	2	8	9	7	6	4	5		0 ^{XZ}	11	2	3	9	8	6	7.	5	4
	$\mathbf{U}^{\mathbf{y}\mathbf{z}}$	1	3	2	5	4	8	9	6	7		$\mathfrak{C}^{\mathbf{y}\mathbf{z}}$	11	2	3	4	5	9	8	7	6
	υ ^{x̄y}	1	3	2	7	6	5	4	9	8		0 _x a	1	2	3	6	7	4	5	8	9
ĺ	υ ^{xz}	1	3	2	9	8	7	6	5	4		$\sigma^{ar{\mathbf{x}}\mathbf{z}}$	1	2	3	8	9	6	7	4	5
i	U ^{ȳz}	1	3	2	5	4	9	8	7	6		۶ ^{ÿz}	11	2	3	4	5	8	9	6	7
	c_3^{xyz}	1	2	3	6	7	8	9	4	5		s_6^{5xyz}	l	3	2	7	6	9	8	5	4
	č ^{xy₂} 3	1:	2	3	8	9	4	5	6	7		 s ₆ ^{xyz}	lı	3	2	9	8	5	Ą	7	6
	$c_3^{\overline{xy}\overline{z}}$	1	2	3	7	6	9	8	4	5		s ₆ xyz	1	3	2	6	7	8	9	5	4
	ð ^{xyz}	11	2	3	8	9	5	4	7	6		s ₆ ^{5xyz}	lı	3	2	9	8	4	5	6	7
	$c_3^{x\bar{y}\bar{z}}$	1	2	3	7	6	8	9	5	4		$s_6^{\bar{x}yz}$	lı	3	2	6	7	9	8	4	5
	ð ^{xyz}	11	2	3	9	8	5	4	6	7		s ₆ ^{5xyz}	lı	3	2	8	9	4	5	7	6
	$c_3^{\bar{x}\bar{y}z}$	11	2	3	6	7	9	8	5	4		s ₆ ^{xy2}	li	3	2	7	6	8	9	4	5
	c ₃ ^{xyz}	lı	2	3	9	8	4	5	7	6		s ^{5xy2}	lı	3	2	8	9	5	4	6	7
1		•										1	1								

•7

29

.

TABBLA 2.2

(<10)	M[(-10)]		ĸ	ر-1		PONTOS CRÍTICOS	$\left\{ \mathbf{i}_{\alpha} \right\}$
Е	1 0 0	0 1 0	0 0 1	(0	0	0)	Todos os pontos	(x y z)
u ^z	[-1 0	0 -1	0	(0	_ 2	0)	X	(-x -y -z)
-	lo	0	1)	(0	0	0)	F'	
. x	[1	0	၀]	(0	-2	0)	X,W,Z	(x - y - z)
	0	0	-1)	(0	0	0)	. Г	
¥.	[-1 0	0 1	0] 0]	(0	0	0)	x,Γ,Δ	(-x y -z)
	0	0	-1)						
C ²		-1 0	0	(0	0	0)	Г	(y-x z)
4	0	0	ل د						
TCZ.	{	1 0	0	(0	0	0)	۲ ۲	(-y x z)
4	10	0	1)						•
c x	1 0	0	0) -1	(0	0	0)	Г	(x z -y)
4 	0	1	0)						
5*	[1 0	0 0	0] 1]	(0	0	0)	ſ'	(x-z y)
4	[0	-1	و					1	•

.....

(~10)	M [(≪10))]	. K _≪ −1			PONTOS CRÍTICOS	{ i _~ }
c ^y 4	0 0 0 1 -1 0	1 0 0	(0	0	0)	х,Γ,Δ	(-z y x)
ē₄	$ \begin{cases} 0 & 0 - \\ 0 & 1 \\ 1 & 0 \end{cases} $	1 0 0	(0	0	0)	X, r, d	(zy-x)
UXY	$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 & - \end{bmatrix} $	0 0 1	(0	o	0)	к, г, <u>х</u>	(y x -z)
Uxs	$\begin{bmatrix} 0 & 0 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}$	1] 0 0	(0 (0	0 -2	0) 0)	X,U,S	(z-y x)
U ^{yz}	$ \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} $	0] 1 0]	(0 (-1	0 0	0) 0)	۲' w	(-x z y)
υ ^x y		0) 0 -1	(0 (-3/2 (-1	0 -3/2 -1 -	0) 0) 1)	Г . К L	(-y -x -z)
v ^{xz}	0 0 - 0 -1 -1 0	-1 0 0	(0 (0 (-1	0 -2 -1 -	0) 0) 1)	r x L	(-z -y -x)
U ^{ÿ2}		0) -1 0)	(0 (-1	0 -1 -	0) 1)	۲ ₩,L,Q	(-x -z -y)

(ن

ы
TABELA 2.2 (cont.)

`

(∝ 0)	ы[(°	<10)]		ĸ	-1		PONTOS CRÍTICOS	$\{\mathbf{i}_{\boldsymbol{\alpha}}\}$
c ^{xyz} 3		0 0 1	1 0 0]	(0	<u> </u>	0)	Γ,Ŀ,Λ	(y z x)
∂ ^{xyz}		1 0 0	0 1 0]	(0	0	0)	ſ,L,A	(z x y)
c ^{xyź}		0 0 1	1 0 0	(0	0	0)	٢	(-y -z x)
∂ ^{zyź}	0 - 0 1	1 0 0	0 _1 0]	(0	0	0)	ſ	(z-x-y)
c ^{xỹz} ́3	0 -1 0,	0 0 1	-1 0 0	(0	0	0)	Г	(-y z -x)
∂ Z ^{xÿ2} 3	0 - 0 -1	1 0 0	0 1 0	(0	0	0)	Г	(-z -x y)
c ^{žýz} 3	[0 1 0 -	0 · 0		(0	0	0)	Г	(y-z-x)
ēžvz	0 0 -1	1 0 · 0	0 -1 0	(0	0	0)	Г	(-z x -y)

(~10)	. M[(≪!0)]	к «-1	-PONTOS CRÍTICOS	{ 1 _{of} }
I	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$\begin{array}{ccc} (& 0 & 0 & 0) \\ (& 0 & -2 & 0) \\ (& -1 & -1 & -1 \end{array}$	L L	(-x -y -z)
ď	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	(000)	Γ,x,₩,ĸ,z,n,Δ,Σ,Ξ	(x y -z)
œ *	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(000)	Γ,x,Δ	(-x y z)
e ^{.y}	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(0 0'0) (0 -2 0)	[" X,W,U,Z,S,A,B	(x-y z)
s ₄ ^{3z}	$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	(0 0 0)	r	(-y x -z)
sz4	$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	(000)	Г	(y-x-z)
s ₄ ^{3x}	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$	(0 0 0) (-1 -1 -1)	r" W	(-x -z y)
s ^x 4	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$	(0 0 0) (-1 -1 -1)	r" w	(-x z -y)

ં

ø

Ч

<u>TABBLA 2.2</u> (cont.)

11				1				· ······	,
(~10)	M[1	(∝) ()]		ĸ	<u> </u>		PONTOS CRÍTICOS	{i _~ }
s ^{3y}	ro o	0 -1	-1 0	(0	0	0)	Г	(z -y -x)
4	[1	0		(0	-2	0)	x	
s ^y	۲ o	0 1-	1 0	(0	0	0)	Г	(
~4 	[-1	ō	<u>اہ</u>	(0	→2	0)	x	(-2 -y x)
ر ي ې	∫ 0 _1	-1 0	0 0	(0	0	0)	ſ	(-y -x z)
v	[.o	0	1]			<u> </u>			
xz U	[0 0	0 1	-1 0	(0	0	0)	Γ,Χ,Δ	(-x y -z)
- -	[-1	0	0]						
Q Yz	1 0 0	0 0 41	0 -1 0	(0	0	. 0)	Г	(x-z-y)
¢ ^{Ŧy}	0 1 0	1 0 0	0 0 1	(0	0	0)	ſ,ĸ,∟,m,∑,∧,⊛	(y x z)
r ^{xz}	0 0 1	0 1 0	1 0 0	(0	0	0)	₽,x,L,U,S, <u>Δ,Λ</u>	(zyx)
ýz T	1 0 0	0 0 1	0 1 0	(0	0	0)	۲,۲	(x y z)

	(≪10)	M[(≪10)] .	к _{~-1}	PONTOS CRÍTICOS	{ i_< } .
	s ^{5xyz}	$ \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} $	(0 0 0) (-1 -1 -1)	L L	(-y -z -x)
	s ^{xyz}	$ \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix} $	(0 0 0) (-1 -1 -1)	L L	(-z -x -y)
	s ₆ xÿz	$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	(0 0 0)	r	(y z -x)
	s5xyz	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$	(0 0 0)	٣	(-z x y)
	s ^{xyz}	$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	(0 0 0)	۲ ·	(y-z x)
•	\$ ⁵ ₹y2 56	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$	(0 0 0)	Г	(-z x -y)
	s ₆ xyž	$\begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	(0 0 0)	٢	(-y z x)
	s ^{5xy} 2	$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	(0 0 0)	۲	(z -x y)

.

فن

TABELA 2.3

PONTOS CRITICOS DA ZONA DE BRILLOUIN

PONTO		COORDENADAS	
х	0	2 N /a	0
W	T/a	211/a	0
К	3 11 /2a	311/2a	. O
L	N/a	T/a	W/a
υ	n /2a	211/a	γ_{2a}
Z.	k _x	2 ĩ ⁄a	0
Q.	π/a	ky	(21/a)-ky
5	kx	2 17/ a	^k x
. A	k _x	2 11 /a	k _z
В	k _x	2 17 /a	$(\pi/a)-k_x$
M	k _x	^k x	$(3^{\text{M/a}})-2k_x$
N	k _x	(311/a)-k _x	. 0
r r	0	0	0
	0	k _y	0
	k _x	, k _x	0
	k _x	k _x	k _x
1	k _x	ky	0
	kx	k _x .	k _z

TABELA 2.4

PONTO CRITICO	0 _h	E	403	40 ² 3	3U .	3°4	30 <mark>3</mark>	60 _d	I	⁴⁵ 6	43 <mark>5</mark>	30	35 ₄	35 <mark>3</mark>	6 ~ d				
	S _{Re}	1	l	l	l	1	1	1	1	1	l	1	1	1	1				
	S _K	2	2	2	2	0	0	0	0	0	0	0	2	2	2				
Ϋ́	Sci	6	0	0	2	2	2	0	0	0	0	4	0	0	2				
	s _e	3	0	0	-1	1	1	-1	-3	0	ò	1	-1	-1	1	Γ ₁₀			
	SR	3	0	0	-1	1	l	-1	3	0	<u>0</u>	1	1	1	-1	г ₅			
PONTO CRÍTICO	D _{4h}) _E	υ ^z	; u	× ت	^y c ^y 4	ē¥ ₄	U X 2	រ ប	7z	I	° ^z	۴,	۳y	s ₄ ^{3y}	s¥	° °	° ° ^x z	2
•	SRe	1	1	1	1	1	1	1	1		1	1	1	1.	1	1	1	1	
	SK	2	-2	-2	2	0	0	0	. 0		0	0	0	0	-2	-2	2	2	
x	s _{Cl}	6	2	2	2	2	2	0	. 0		0	4	4	4	0	0	2	2	
	SE	3	-1	-1	-1	l	1	-1	-1	•	-3	1	1	1 -	-1	-1	1	1	X ₇ ⊕ X ₁₀
	SR	3	-1	-1	-1	1	1	1	1		3 -	. 1	-1	-1	1	l	~1	-1	x ₂ ⊕ x ₅
PONTO CRÍTICO	D ⁽⁾	cj z l) _E	u ^x y	v ^{xz}	ບ ^{ຽ 2}	c ₃ ^{xy}	z čž	yz	IC	, х <u>у</u>	σ ^{x̄z}	σ ^{ÿz}	s5x3 6	z sé	yz	•	•	
PONTO CRITICO	D ₃₀ S _{Re}	cyz∫ l) E 1	U ^{xy} 1	บ ^{รีซ}	บ ^{รีว} ี า	c ₃ ^{xy}	z ō3	yz 1	1 0 1	.xy 1	σ ^{x̄z} 1	σ ^{ȳz}	s ^{5x} 3 1	^z s _t	yz 1	•	•	
PONTO ORÍTICO	S _K) E 1 2	U ^{xy} 1 0	บ ^{รี:z} 1 0.	ບ ^{y¯∞} 1 0	c ₃ ^{xy} 1 2	z ōx	yz 1 2	I (1 0	.x̄y 1 2	σ ^{x̄z} 1 2	σ ^{ÿz} 1 2	s ^{5x} 3 1	⁷² S [×] ₆	yz 1 0	•		_
PONTO CRÍTICO L	SRE SRE SRE) E 1 2 6	U ^x y 1 0 0	U ^{xz} 1 0. 0	v ^{yz} 1 0	c ^{xy} 1 2 0		yz 1 2 0	I 0 0	.xy 1 2 2	0 ^{xz} 1 2 2	σ ^{ÿz} 1 2 2	s ^{5x} 3 1 0	⁷² s ²	yz 1 0 0	•		-
PONTO CRÍTICO L	S _R e S _K S _C I) E 1 2 6 3	U ^{xy} 1 0 0 1	U ^{xz} 1 0 0	υ ^{ÿz} 1 0 1	c_3^{xy}		yz 1 2 0	I 0 0 -3 -	.xy 1 2 2 -1	0 ^{xz} 1 2 2 -1	σ ^{ȳz} 1 2 −1	s ⁵ x ₀ 1 0 0	⁷² s ²	yz 1 0 0	L ₅ @	• ^L 6	-
PONTO CRITICO L	SRE SK SCI SE SRE) E 1 2 6 3 3	1 0 0 1 -1	U ^{xz} 1 0. 0 1 -1	U ^{ÿ2} 1 0 0 1 -1	c ^{xy} 1 2 0 0	$\frac{z}{c_3}$	yz 1 2 0 0	I 0 0 -3 - 3 -	.xxy 1 2 2 -1 -1	σ ^{xz} 1 2 -1 1	σ ^{ȳz} 1 2 2 −1 −1	s ⁵ x ₆ 1 0 0	⁷² S ²	yz 1 0 0 0	L ₅ @	, L ₆ ≥ R ₃	-
PONTO CRITICO L FONTO CRITICO	$\begin{array}{c} \mathbb{D}_{30}^{(2)} \\ \mathbb{D}_{30}^{(2)} \\ \mathbb{S}_{Re} \\ \mathbb{S}_{R} \\ $		E 1 2 6 3 3 3 3 2 2 2 6 2 2 6 2 2 6 2	vvvv 1 0 0 1 −1 vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	$ \begin{array}{c} \overline{v}^{\overline{x}z} \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ \hline 1 \\ \hline 0 \\ 2 \\ \hline 1 \\ 0 \\ 2 \\ \hline 1 \\ 0 \\ 2 \end{array} $		$\begin{array}{c} c_3^{xyy} \\ 1 \\ 2 \\ c_0 \\ c_0 \\ c_0 \\ c_0 \\ c_0 \\ 1 \\ 0 \\ 4 \\ c_0 \\ 1 \\ c_0 \\$	z c ^x ₃	$\frac{\sqrt{2}}{2}$	I 0 0 -3 - 3 -	xy 1 2 2 -1 -1	cxz 1 2 2 -1 1	€ ^{ÿz} 1 2 2 -1 -1 -1	S5xJ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		yz 1 0 0 0 0 0 0 0 0 0 0 0 0 0	L ₅ e R ₂ e 1 1 2 0 6 4	» L ₆ » R ₃	
PONTO CRITICO L PONTO CRITICO	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	(;; z) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 6 3 3 3 2 2 2 2 5 2 2 5 2 3 -1	U ^x y 1 0 0 1 −1 1 0 2 1 1 0 2	$U^{\tilde{X}^2}$ 1 0 0 1 -1 C_4^{Y} 1 0 2 1 0 2 1 0 2 1 0 2 1 0 0 1 1 0 0 1 1 1	$v^{\overline{y}z}$ 1 0 0 1 -1 v^z 1 0 4 1	c_3^{xyy} 1 2 c_5^{xy} c_7^{x} c_7^{x} 1 c_7^{x}	z cxz cxz cxz 1 2 2 1	yz 1 2 0 0 0 - - - - - - - - - - - - -	I 0 0 -3 - 3 -	xy 1 2 2 -1 -1 -1	2 2 -1 1	vyz 1 2 2 −1 −1	S5x3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		yz 1 0 0 0 0 0 0 0 0 0 0 0 0 0	L ₅ e R ₂ e 1 1 2 0 6 4 3 1	y 2B 2B 2B	1 († B ₂

٩.

PONTO CRÍTICO	$c_{2\mathbf{v}}^{(\mathbf{x}\mathbf{y})}$	Б	u ^{xy}	٢z	۴ _ž λ	
	s _{Re}	1	l	1	1	
	s _k	2	0	0	2	
ĸ	sci	6	0	4	2	
	s _e	3	1	1.	1	^к 1 ек ₃ өк ₄
î	S _R .	3	-1	-1	-1	K ₂ €K ₃ €K ₄

PONTO CRÍTICO	$c_{2v}^{(x)}$	Ξ	υ×	۳y	٢Z	
	s _{Re}	ı	1	1	1	
	sĸ	2	-2	0	0	
Z	S _{Cl}	6	2	4	4	
	s _E	3	1	1	l	² 1 ⊕ ² 3 ⊕ ² 4
	s _R	3	-1	-1	-1	^z ₂ ⊕ ^z ₃ ⊕ ^z ₄

PONTO CRITICO	C(xz) 2 v	£	U ^{xz}	هم ک	¢ xz	
	s _{Re}	1	l	l	l	
	s _K	S	0	0	2	
U	SCI	6	ò	4	2	
	s _e	3	1	1	l	^U 1 ⊕U ₃ ⊕U ₄
	s _R	3	-1 .	-1	-1	^U 2 ⊕U ₃ ⊕U ₄
		·				

CRITICO	$C_{2\mathbf{v}}^{(\mathbf{x}\mathbf{z})}$	Ε	U ^{XZ}	У	٢ ^{xz}	
	S _{Re}	1	1	l	1	
	s _k	2	0	0	2	
S .	s _{cı} .	·6	0	4	2	
•	s _e	3	1	1	1	s ₁ ⊕s ₃ ⊕s ₄
	s _r	3	-1	-1	-1	s₂ ⊕s₃ ⊕s₄

DTMNTO ORITICO	$c_{0\mathbf{v}}^{(\mathbf{x}\mathbf{y})}$	3	u _{x?"}	۶3	o ^{Xy}		PONTO CRÍTICO	$2^{(yz)}_{2}$	∑ U ³	z	
	S _{Re}	1	1	1	1			S _{Re}	1]	L	
	SK	2	0	0	2			s ^K	2 (
ß	s _{cı}	6	0	4	2		Q	s _{Cl}	6 (
	s _z	3	1	l	1	$\Sigma_1 \oplus \Sigma_3 \oplus \Sigma_4$		s _e	3 -1	L	ସ ₁ ⊕ଥସ ₂
	s _R	3	-1	-1	-1	$\Sigma_2 \oplus \Sigma_3 \oplus \Sigma_4$		s_{R}	3 -3	L	ζ <mark>1</mark> ⊕5ζ ⁵

PONTO CRÍTICO	с _S (у)	Ξ	۵ _۸		PONTO CRÍTICO	C _S (2)	Ξ	oz		PONTO CRÍTICO	C _S (xy)	≥ ° ^{xy}	
· · ·	S _{Re}	ļ	1			SRe	1	1			s _{Re}	1 1	
	s _K	2	ò			s _K	2	0		~	s _K	22	
A	s _{cl}	6	4		[]	s _{cı}	6	4	·	E	s _{cı}	62	
	SE	3	l	² ¹ ⁶ ¹ ₂		SB	3	1	2=1 0=2		s _z	31	20, 99
	SR	3	-1	$A_1 \oplus 2A_2$		S _R	3	-1	Ξ <u>1</u> ⊕2Ξ2	- e -	s _R	3 -1	© ₁ ⊕2 © ₂
	I				•	1	1				1	1	! -

TABELA 2.4 (cont.)

PONTO CRITICO	$D_{2d}^{(x)}$	Е	Ux	U ^{y z}	U ^{ỹ z}	٣٣	۳ ^{. ۲} .	₹ \$. ^s 4		PONTO CRÍTICO	c _s (x _{y)}	ЕC	, ^x y	
	SRe	1	l	1	1	1	1	l	l			S _{Re}	1	1	
	s _K	2	- 2	0	0	0	0	0	0			s _K	2	2	
W	sci	6	2	0	0	4	4	ō	0		М	s _{c1}	6	2	
~	sg	3	-1	1	1	-1	-1	-1	1	₩3 ⊕ ₩5		s _e	3	l	^{2™} 1 ⊕ [™] 2
2	s _R	3	-1	-1	-1	-1	-1	1	1	₩ ₂ ⊕ ₩ ₅		s _r	3	-1	M ₁ ⊕ 2M ₂ .
										I	i	•	6		

PONTO CRITICO	$\left \vec{c}_{3v}^{(xyz)} \right $	E	c ^{xyz} 3	c ₃ xyz	¢xàà	۴ ^{xz}	۳ ^{ÿz}		PONTO CRITICO	$c_{\rm S}^{(z)}$	E	T.	
	S _{Re}	1	1	1	.1	1	1		-	S _{Re}	1	1	
	SK	2	2	2	2	2	2			s _K	2	õ	
Δ	sci	6	0	0	2	2	2		N	s _{cı}	5	4	•
	s _E	3	0	0	1	1	1	$\Lambda_1 \oplus \Lambda_3$		SE	3	1	² N ₁ ⊕ N ₂
	s _R	3	0	0	÷l	-1	-1	$\Lambda_2 \oplus \Lambda_3$		s _R	3	-1	N ₁ ⊕ 2N ₂

ø

TABBIA 2.5

PONTO	sc	REFRECENTAÇÕES IRREDUTÍVEIS
x	S _R ,	<u>Х</u> 1
	S _K	X 4 🔿 X7
	s _{C1}	$2X_1 \oplus X_3 \oplus X_7 \oplus X_{10}$
W	⁵ R'2	Wl
	SK	[₩] 5
,	Sci	² ^W 1 • ² ^W 4 • ^W 5
K	S _{R'R}	ĸı
	s _K	K _l ⊕ K ₄
	Sci	3K1 ⊕ K4
U	^E R'e	Ul
	SK	ul e u4
	S _{C1}	3 ^U ₁ e 2 ^U ₂ e ^U ₄
Z	SRE	Zl
	SK	^ℤ ₁ ⊕ ^ℤ ₄
	SCI	$4^{\mathbf{Z}_{1}} \oplus {}^{\mathbf{Z}_{2}} \oplus {}^{\mathbf{Z}_{4}}$
S *	SRE	s ₁
•	S ^K	s ₁ ⊕s ₄
	SCI	$3^{S_1} \oplus 2^{S_2} \oplus {}^{S_4}$
E	SRQ	Σι
	SK	$\Sigma_1 \oplus \Sigma_4$
	SC1	$3\Sigma_1 \oplus 2\Sigma_2 \oplus \Sigma_4$
L	S _{R2}	r ¹
	SK	Ŀ _l ⊕Ŀ ₄
	Sci	
Q	S _R g.	2 ₁
	SK	Q ₁ ⊕ Q ₂
	SC1	32 ₁ ⊕ 32 ₂

. . . .

PONTO	s _c	REPRESENTAÇÕES IRREDUTIVEIS
Δ	SRR SK	$\Delta_1 \oplus \Delta_4$
	SCI	$3\Delta_1 \oplus \Delta_3 \oplus \Delta_5$
Λ	S _R .	Δ1
	SK	$2\Lambda_1$
	⁵ C1	<u> </u>
A	SRe	Al
	S S	^A l ⁴ ^A 2
В	^S R-a	
	^У К S	, ^D 1 ^{(20) D} 2
		· · · · · · · · · · · · · · · · · · ·
ш	R9.	
	S _m	4M ₂
N		<u></u>
.,	S.	Na 🔁 Na
	S _{C1}	$5N_1 \oplus N_2$
		I ~ 2
-	Sv	
	S _{C1}	55 0 5
Ð	S _D	
	Sv	201
	s _{c1}	4@ ₁ ⊕ ® ₂
Г	SR	<u>۲</u> 1
	SK	
	Sci	Γ ₁ ⊕ Γ ₃ ⊕ Γ ₁₀

ئن

TABELA 2.6

	
PONTO CRÍTICO	REPRESENTAÇÕES DOS MODOS NORMAIS
Γ	$\Gamma_{1}(cl_{xyz}) + \Gamma_{3}(cl_{xyz}) + 2\Gamma_{4}(\kappa_{xyz};cl_{xyz}) + \Gamma_{5}(cl_{xyz}) +$
	+ $\Gamma_{9}(cl_{xyz})$ + $4\Gamma_{10}(Re_{xyz};K_{xyz};cl_{xyz})$
X	$3x_1(x_y; cl_{xyz}) + x_2(cl_{xz}) + x_3(cl_{xz}) + x_4(cl_{xz}) +$
	+ $3X_5(K_{xz};Cl_{xyz})$ + $3X_7(Re_y;Cl_y)$ + $X_8(K_y)$ + $X_9(Cl_y)$ +
	+ 5X ₁₀ (Re _{xz} ;K _{xz} ;Cl _{xz})
W	$4W_{1}(K_{yz};Cl_{xyz}) + 2W_{2}(K_{yz};Cl_{yz}) + 2W_{3}(K_{yz};Cl_{yz}) +$
	+ $5W_4(\text{Re}_x; K_{yz}; \text{Cl}_{xyz}) + 7W_5(\text{Re}_{yz}; K_x; \text{Cl}_{xyz})$
K	$9K_1(Re_{xy};K_{xyz};Cl_{xyz}) + 7K_2(Re_{xy};K_{xy};Cl_{xy}) + 4K_3(K_{xy};$
	Cl_{xyz}) + 7K ₄ (Re _z ;K _{xyz} ;Cl _{xyz})
U	$9U_1(Re_{xy};K_{xyz};Cl_{xyz}) + 7U_2(Re_{xz};K_{xz};Cl_{xz}) + 4U_3(K_{xz};$
	Cl_{xyz}) + $7U_4(Re_y;K_{xyz};Cl_{xyz})$
Z	$9Z_1(Re_x;K_{yz};Cl_{xyz}) + 7Z_2(Re_z;K_x;Cl_{xz}) + 4Z_3(K_{yz};$
	Cl_{yz}) + $7Z_4(Re_y;K_x;Cl_{xy})$
S	$9S_1(Re_{xz};K_{xyz};Cl_{xyz}) + 7S_2(Re_{xz};K_{xz};Cl_{xz}) + 4S_3(K_{xz};K_{xz};Cl_{xz})$
	Cl_{xyz}) + 7S ₄ (Re _y ;K _{xyz} ;Cl _{xyz})
Σ	$9\Sigma_1(\operatorname{Re}_{xy};\kappa_{xyz};\operatorname{Cl}_{xyz}) + 7\Sigma_2(\operatorname{Re}_{xy};\kappa_{xy};\operatorname{Cl}_{xy}) + 4\Sigma_3(\kappa_{xy};$
	cl_{xyz}) + 7 $[_4(Re_z;K_{xyz};cl_{xyz})]$
Q	$13Q_{1}(\text{Re}_{yz}; K_{xyz}; \text{Cl}_{xyz}) + 14Q_{2}(\text{Re}_{xyz}; K_{xyz}; \text{Cl}_{xyz})$
A	$16\Lambda_1(\operatorname{Re}_{xz}; K_{xyz}; \operatorname{Cl}_{xyz}) + 11\Lambda_2(\operatorname{Re}_y; K_{xyz}; \operatorname{Cl}_{xyz})$
В	$16B_{1}(Re_{xz};K_{xyz};Cl_{xyz}) + 11B_{2}(Re_{y};K_{xyz};Cl_{xyz})$
1	

TABELA 2.6(cont.)

PONTO CRÍTICO	REPRESENTAÇÕES DOS MODOS NORMAIS
M	$16M_{1}(\text{Re}_{xyz}; K_{xyz}; \text{Cl}_{xyz}) + 11M_{2}(\text{Re}_{xy}; K_{xy}; \text{Cl}_{xyz})$
N	$l6N_1(Re_{xy};K_{xyz};Cl_{xyz}) + llN_2(Re_z;K_{xyz};Cl_{xyz})$
in the second se	$16\overline{\Xi}_{1}(\operatorname{Re}_{xy}; K_{xyz}; \operatorname{Cl}_{xyz}) + 11\overline{\Xi}_{2}(\operatorname{Re}_{z}; K_{xyz}; \operatorname{Cl}_{xyz})$
θ	$16\Theta_1(\text{Re}_{xyz}; K_{xyz}; \text{Cl}_{xyz}) + 11\Theta_2(\text{Re}_{xy}; K_{xy}; \text{Cl}_{xyz})$
L	$3L_1(K_{xyz};Cl_{xyz}) + L_2(Cl_{xyz}) + 4L_3(K_{xyz};Cl_{xyz}) +$
	+ $4L_4(Re_{xyz};K_{xyz};Cl_{xyz}) + L_5(Cl_{xyz}) + 5L_6(Re_{xyz};K_{xyz};$
	Cl _{xyz})
Λ	$7\Lambda_1(\operatorname{Re}_{xyz}; \kappa_{xyz}; \operatorname{Cl}_{xyz}) + 2\Lambda_2(\operatorname{Cl}_{xyz}) + 9\Lambda_3(\operatorname{Re}_{xyz}; \kappa_{xyz};$
	Cl _{xyz})
Δ	$6\Delta_1(\operatorname{Re}_y; \kappa_y; \operatorname{Cl}_{xyz}) + \Delta_2(\operatorname{Cl}_{xz}) + 2\Delta_3(\operatorname{Cl}_{xyz}) + 2\Delta_4(\kappa_y;$
	Cl_{xz}) + $8\Delta_5(Re_{xz};K_{xz};Cl_{xyz})$
	1

		TABELA	2.7
•		•	_

PONTO	REPRESENTAÇÃO		BASES IRREDUTIVEIS	
RITICO	IRREDUTIVEL	a ·	b	C
۲.	Γ,	x₄-x₅+y₆-y₇+z₈-z₉		
	57	x 4 ^{-x} 5 ^{+y} 6 ^{-y} 7 ^{-2z} 8 ^{+2z} 9 [.]	x4 ^{-x} 5 ^{-y} 6 ^{+y} 7	
	∇_{4}	x ₂ -x ₃	y ₂ -y ₃	^z 2 ^{-z} 3
;		y 8- y 9+ ^z 6- ^z 7	x8-x9+z4-z5	^y 4 ^{-y} 5 ^{+x} 6 ^{-x} 7
	٢.5	y8-y9+z7-z6	x ₉ -x ₈ +z ₄ -z ₅	y ₅ -y ₄ +x ₆ -x ₇
	Г9	-x ₆ -x ₇ +x ₈ +x ₉	y ₄ +y ₅ -y ₈ -y ₉	$-z_4-z_5+z_6+z_7$
	٢ ₁₀	×ı	yl	, ^z ı .
		x ₂ +x ₃	y ₂ +y ₃	^z 2 ^{+z} 3
		x ₆ +x ₇ +x ₈ +x ₉	y4+y5+y8+y9	^z 4 ^{+z} 5 ^{+z} 6 ^{+z} 7.
		x4+x5	¥6+¥7	^z 8 ^{+z} 9

PONTO	REPRESENTAÇÃO	BASES	IRREDUTIVEIS
CRÍTICO	IRREDUTIVEL	8	b
x .	xı	y ₂ -y ₃ ; x ₄ -x ₅ +z ₈ -z ₉ ; y ₆ -y ₇ e ²	
	x ₂ `	^{2z} 4 ^{-2z} 5 ^{+z} 9 ^{-z} 8 ^{+x} 9 ^{-x} 8	
	x ₃	*4 ^{-x} 5 ^{-z} 8 ^{+z} 9	
-	x ₄	² 4 ⁻² 5 ^{+x} 8 ^{-x} 9	
	х ₅	x ₂ +x ₃	^z 2 ^{+z} 3
		^y 4 ^{-y} 5	^{-y} 8 ^{+y} 9
1		x6 ^{-x} 7 ^E	² 6 ⁻² 7 ^ε
	×٦	y ₁ ; y ₄ +y ₅ +y ₈ +y ₉ ; y ₆ +y ₇ e ²	
	x ₈	y ₂ -y ₃	
	• x ₉	y ₄ +y ₅ -y ₈ -y ₉	

 $\varepsilon = 2\pi i u$, $\varepsilon^2 = 4\pi i u$, $(-\varepsilon^2 = -4\pi i u)$, $(-\varepsilon^2 = -4\pi i u)$

PONTO	REPRESENTAÇÃO	BASES	IRREDUTIVEIS
CRÍTICO	IRREDUTIVEL	ę.	b
x	×10	^z 1 ^x 2 ^{-x} 3 ^z 4 ^{+z} 5 ^z 8 ^{+z} 9 ^z 6 ^{+z} 7 ^{z²}	x_1 $z_2 - z_3$ $x_8 + x_9$ $x_4 + x_5$ $x_6 + x_7 \varepsilon^2$
· W	w _l	$y_2 + y_3 - iz_2 + iz_3; x_4 - x_5 \varepsilon;$ $x_6 + x_7 \varepsilon^2 - x_8 \varepsilon - x_9 \varepsilon; y_6 (-\varepsilon) - y_7 \varepsilon + z_8 - z_9$	· · ·
	W ₂	y ₂ -y ₃ -iz ₂ -iz ₃ ; z ₆ -z ₇ ε ² -y ₈ ε+y ₉	
	₩ ₃	y ₂ -y ₃ +iz ₂ +iz ₃ ; z ₆ -z ₇ e ² +y ₈ e-y ₉ e	
	w ₄	x ₁ ; y ₂ +y ₃ +iz ₂ -iz ₃ ; x ₄ +x ₅ e; x ₆ +x ₇ e ² +x ₈ e+x ₉ e; y ₆ -y ₇ e ² -z ₈ e+z ₉ e	• •
₩	^w 5	$y_{1} \\ x_{2} + x_{3} \\ y_{4} \\ y_{6}(-\epsilon^{2}) + y_{7} \\ x_{6} - x_{7}\epsilon^{2} \\ y_{8} + y_{9} \\ y_{5} \\ y_{5}$	$\begin{bmatrix} z_1 \\ x_2 - x_3 \\ z_5 \varepsilon \\ z_8 (-\varepsilon) + z_9 \\ x_8 \varepsilon - x_9 \varepsilon \\ z_6 (-\varepsilon) + z_7 \varepsilon \\ z_4 (-\varepsilon) \end{bmatrix}$
L	г	$x_{2}+y_{2}+z_{2}+i(x_{3}+y_{3}+z_{3});$ $x_{4}+y_{6}+z_{8}+(-x_{5}-y_{7}-z_{9})\varepsilon;$ $x_{6}+x_{8}+y_{4}+y_{8}+z_{4}+z_{6}+(-x_{7}-x_{9}-y_{5}-z_{7})\varepsilon$ $-y_{9}-z_{5}-z_{7})\varepsilon$	
	L2	$\begin{array}{r} y_{4} - y_{8} + z_{6} - z_{4} + x_{5} - x_{6} + (-y_{5} + y_{9} - x_{9} + \\ + x_{7} - z_{7} + z_{5}) \varepsilon \end{array}$	

TABELA 2.7 (cont.)

TABSLA 2.7 (cont.)

PONTO	REPRESENTAÇÃO	BASES	IRREDUTÍVEIS
CRITICO	IRREDUTIVEL	e.	b
L	L3	$x_2 + y_2 - 2z_2 + i(x_3 + y_3 - 2z_3)$	$y_2 - x_2 + i(y_3 - x_3)$
· .		$x_{4}+y_{6}-2z_{8}+(-x_{5}-y_{7}+2z_{9})\varepsilon$	$\mathbf{y}_6 - \mathbf{x}_4 + (-\mathbf{y}_7 + \mathbf{x}_5)\varepsilon$
	5	$2y_4 - y_8 - z_4 - z_6 + 2x_6 - x_8 + (-2y_5 + y_9 + x_92x_7 + z_5 + z_6)\varepsilon$	$z_6 - z_4 - x_8 + y_8 + (x_9 - z_7 + z_5 - y_9) \epsilon$
		^{2z} 4 ^{+2z} 6 ^{-x} 6 ^{-x} 8 ^{-y} 4 ^{-y} 8 ⁺ (- ^{2z} 5 ^{-2z} 7 ⁺ + ^y 9 ^{+y} 5 ^{+x} 7 ^{+x} 9) <i>E</i>	x ₆ +x ₈ -y ₄ -y ₈ +(y ₅ +y ₉ -x ₇ -x ₉)e
	L ₄	$x_1+y_1+z_1; x_4+y_6+z_8+(x_5+y_7+z_9)\varepsilon;$ $x_2+y_2+z_2-i(x_2+y_3+z_2)$	
		$x_{6} + x_{8} + y_{4} + y_{8} + z_{4} + z_{6} + (x_{7} + x_{9} + y_{5} + y_{9} + z_{5} + z_{7}) \varepsilon$	* .
	L ₅	$y_4 - y_8 + z_6 - z_4 + x_8 - x_6 + (y_5 - y_9 + x_9 - x_7 + z_7 - z_5) \varepsilon$	
	r ^e	x ₁ -y ₁	x1+y1-2z1
L	L ₆	$x_{2}-y_{2}+1(-x_{3}+y_{3})$	$-x_2 - y_2 + 2z_2 + i(x_3 + y_3 - 2z_3)$
		$x_4 - y_6 + (x_5 - y_7) \varepsilon$	x4+y6-228+(-229+y7+x5)E
		$2y_4 + y_8 - z_6 + z_4 - 2x_6 - x_8 + (2y_5 + y_9 - x_9 - 2x_7 - z_7 + z_5)c$	z ₄ +z ₆ -x ₈ -y ₈ +(-x ₉ -y ₉ +z ₅ +z ₇)E
		2z ₄ -2z ₆ x ₆ +x ₈ -y ₈ +y ₄ +(2z ₅ -2z ₇ -y ₉ + +y ₅ -x ₇ +x ₉)E	x ₆ -x ₈ +y ₄ -y ₈ +(x ₇ -x ₉ +y ₅ -y ₉)€
Λ	^ <u>1</u>	$x_1+y_1+z_1; x_2+y_2+z_2; x_3+y_3+z_3;$	
	1	$x_{4}+y_{6}+z_{8}; x_{6}+x_{8}+y_{4}+y_{8}+z_{4}+z_{6};$	
	ļ	x ₅ +y ₇ +z ₉ ; x ₉ +x ₇ +y ₅ +y ₉ +z ₇ +z ₅	· · · · ·
	Λ2	x ₈ -x ₆ +y ₄ -y ₈ +z ₆ -z ₄ ; x ₉ -x ₇ +y ₅ -y ₉ +z ₇ -z ₅	
	Δ3	x ₁ -y ₁	x _l +y _l -2z _l
		x ₂ -y ₂	x ₂ +y ₂ -2z ₂

. 42

::---

FONTO	representação	BASES	IRREDUTIVEIS
CRÍTICO	INREDUTIVEL	â	b
Λ	Δ3	x ₃ -y ₃ .	*3+y3-2z3
	-	x ₄ -y ₆	x4+y6-2z8
		y ₄ +y ₈ +z ₄ -z ₆ -x ₆ -x ₈	z ₄ +z ₆ -x ₈ -y ₈
	5	^{2z} 4 ^{-2z} 6 ^{-x} 6 ^{+x} 8 ^{+y} 4 ^{-y} 8	x6 ^{-x} 8 ^{+y} 4 ^{-y} 8
		*5 ^{-y} 7	x ₅ +y ₇ -2z ₉
		y ₅ +y ₉ +z ₅ -z ₇ -x ₇ -x ₉	² 5 ⁺² 7 ^{-x} 9 ^{-y} 9
		^{2z} 5 ^{-2z} 7 ^{-x} 7 ^{+x} 9 ^{-y} 9 ^{+y} 5	x ₇ -x ₉ +y ₅ -y ₉
Δ	$\cdot \Delta_1$	\$1; \$2+\$3; \$4-\$5+\$8-\$9; \$4+\$5+\$8+\$9;	
		y ₆ ; y ₇	
	Δ2	×9 ^{-x} 8 ⁻² 5 ⁺² 4	
	Δ3	^y 9 ^{-y} 5 ^{+y} 8 ^{-y} 4; ^z 9 ^{-x} 5 ⁻² 8 ^{+x} 4	
ļ	Δ4	y ₂ -y ₃ ; x ₉ -x ₈ +z ₅ -z ₄	•
<u> </u>	Δ ₅	² 1	x ₁ ·
ļ		x ₂ - x ₃	^z 2 ^{-z} 3
		² 2 ⁺² 3	x2+x3
		² 4 ⁺² 5	×8+×9
		² 6	× ₆
		^z 7	x 7
		^y 9 ^{-y} 8	^y 5 ^{-y} 4
		² 8+ ² 9	x 4+x5
К	ĸı	$x_1+y_1; x_2+y_2+x_3+y_3; z_2-z_3; x_4+y_6; x_5+y_7$	x ₆ +y ₄ ; x ₈ +y ₈ +x ₉ +y ₉ ; z ₉ -z ₈ ; x ₇ +y ₅ ;
	K2	x ₁ -y ₁ ; x ₂ +x ₃ -y ₂ -y ₃ ; x ₄ -y ₆ ; y ₄ -x ₆ ;	*8+*9 ^{-y} 8-y9; *5-y7; y5-*7
	ĸ ₃	x ₂ -x ₃ -y ₂ +y ₃ ; z ₇ -z ₅ ; x ₉ -x ₈ -y ₉ +y ₈ ; z	4 ^{-z} 6

÷,

-

TABELA' 2.7 (cont.)

T/BELA 2.7 (cont.)

PONTO CRÍTICO	REPRESENTAÇÃO IRREDUTIVEL	BASES INREDUTIVEIS
к	к ₄	$z_1; z_2+z_3; x_2-x_3+y_2-y_3; z_5+z_7; z_4+z_6; x_8-x_9+y_8-y_9; z_8+z_9$
υ	σ ₁	$ \begin{array}{c} x_{1} + y_{1}; \ x_{2} - x_{3} + z_{2} - z_{3}; \ y_{2} + y_{3}; \ x_{4} + z_{8}; \ x_{5} + z_{9}; \ x_{6} + z_{6} + x_{7} \varepsilon^{2} + z_{7} \varepsilon^{2}; \ y_{6} - y_{7} \varepsilon^{2}; \\ x_{8} + z_{4}; \ x_{9} + z_{5} \end{array} $
	υ ₂	$x_1 - z_1; x_2 - z_2 + z_3 - x_3; x_4 - z_8; x_6 - z_6 + x_7 e^2 - z_7 e^2; x_9 - z_5; z_9 - x_5; z_4 - x_8$
	U ₃	$x_2^{-z_2+x_3-z_3}; y_4^{-y_8}; y_9^{-y_5}; x_6^{-z_6+z_7}e^{2-x_7}e^{2}$
	U4	$y_1; y_2 - y_3; x_2 + x_3 + z_2 + z_3; y_4 + y_8; y_6 - y_7 e^2; x_6 + z_6 - x_7 e^2 - z_7 e^2; y_5 + y_9$
Z	zl	$x_1; y_2+y_3; z_2-z_3; x_4; x_5; x_6+x_7 \varepsilon^2; y_6-y_7 \varepsilon^2; x_8+x_9; z_8-z_9$
	Z2	$z_1; x_2 - x_3; z_4; z_5; z_6 + z_7 z^2; z_8 + z_9; x_9 - x_8$
	z3	$y_2 - y_3; z_2 + z_3; z_6 - z_7 \epsilon^2; y_8 - y_9$
Z	Z4	$y_1; x_2+x_3; y_4; y_5; y_8+y_9; x_6-x_7\epsilon^2; y_6+y_7\epsilon^2$
S	s ₁	$x_1 + z_1; y_2 + y_3; x_2 + z_2 - x_3 - z_3; x_4 + z_8; x_8 + z_4; x_6 + z_6 + x_7 e^2 + z_7 e^2; y_6 - y_7 e^2; x_9 + z_5; z_9 + x_5$
	s ₂	$\mathbf{x}_{1} - \mathbf{z}_{1}; \ \mathbf{x}_{2} - \mathbf{z}_{2} - \mathbf{x}_{3} + \mathbf{z}_{3}; \ \mathbf{x}_{9} - \mathbf{z}_{5}; \ \mathbf{z}_{9} - \mathbf{x}_{5}; \ \mathbf{x}_{4} - \mathbf{z}_{8}; \ \mathbf{z}_{4} - \mathbf{x}_{8}; \ \mathbf{x}_{6} - \mathbf{z}_{6} + \mathbf{x}_{7} \epsilon^{2} - \mathbf{z}_{7} \epsilon^{2} $
1	s ₃	$x_2 - z_2 + x_3 - z_3; y_4 - y_8; y_9 - y_5; x_6 - z_6 + z_7 e^2 - x_7 e^2$
	s ₄	$y_1; x_2+x_3+z_2+z_3; y_2-y_3; x_6+z_6-x_7\epsilon^2-z_7\epsilon^2; y_6+y_7\epsilon^2; y_4+y_8; y_5+y_9$
Σ	Σ1	$x_1+y_1; x_2+x_3+y_2+y_3; z_2-z_3; x_4+y_6; x_6+y_4; x_8+x_9+y_8+y_9; z_9-z_8; x_5+y_7; x_7+y_5$
	Σ2	$ x_1 - y_1; x_2 - y_2 + x_3 - y_3; x_5 - y_7; y_5 - x_7; x_4 - y_6; y_4 - x_6; x_8 + x_9 - y_8 - y_9 $
	\square_3	$x_2 - y_2 - x_3 + y_3; x_9 - y_9 - x_8 + y_8; z_4 - z_6; z_5 - z_7$

•

TABELA 2.7(cont.)

PONTO CRÍTICO	REPRESENTAÇÃO IRREDUTIVEL	BASES IRREDUTIVEIS
Σ	Σ4	$z_1; x_2+y_2-x_3-y_3; z_2+z_3; z_4+z_6; z_5+z_7; x_9+y_9-x_8-y_8; z_8+z_9$
Q	Q ₁	$y_1-z_1; x_2+ix_3; y_2+iy_3; z_2+iz_3; x_4-x_5\varepsilon; y_4-z_5\varepsilon; z_4-y_5\varepsilon; x_6-x_9\varepsilon; y_6-z_9\varepsilon; z_6-y_9\varepsilon; x_8-x_7\varepsilon; y_8-z_7\varepsilon; z_8-y_7\varepsilon$
	, Q ₂	$x_1; y_1+z_1; x_2-ix_3; y_2-iz_3; z_2-iy_3; x_4+x_5\varepsilon; y_4+z_5\varepsilon; z_4+y_5\varepsilon; x_6+x_9\varepsilon; y_6+z_9\varepsilon; z_6+y_9\varepsilon; x_8+x_7\varepsilon; y_8+z_7\varepsilon; z_8+y_7\varepsilon$
A	A ₁	$ \begin{array}{c} x_{1}; \ z_{1}; \ x_{2}-x_{3}; \ y_{2}+y_{3}; \ z_{2}-z_{3}; \ x_{4}; \ z_{4}; \ x_{5}; \ z_{5}; \ x_{6}+x_{7}\epsilon^{2}; \ y_{6}-y_{7}\epsilon^{2}; \\ z_{6}+z_{7}\epsilon^{2}; \ x_{8}; \ z_{8}; \ x_{9}; \ z_{9} \end{array} $
	A 2	$y_1; x_2+x_3; y_2-y_3; z_2+z_3; y_4; y_5; x_6-x_7\epsilon^2; y_6+y_7\epsilon^2; z_6-z_7\epsilon^2; y_8; y_9$
В	В	$x_1; z_1; x_2 - x_3; y_2 + y_3; z_2 - z_3; x_4; z_4; x_5; z_5; x_6 + x_7 e^2; y_6 - y_7 e^2; z_6 + z_7 e^2; x_8; z_8; x_9; z_9$
B	B ₂	$y_1; x_2+x_3; y_2-y_3; z_2+z_3; y_4; y_5; x_6-x_7\epsilon^2; y_6+y_7\epsilon^2; z_6-z_7\epsilon^2; y_8; y_9$
М	Ml	$ \begin{array}{c} x_{1} + y_{1}; \ z_{1}; \ x_{2} + y_{2}; \ x_{3} + y_{3}; \ z_{2}; \ z_{3}; \ x_{4} + y_{6}; \ x_{6} + y_{4}; \ z_{4} + z_{6}; \ x_{5} + y_{7}; \ y_{5} + x_{7}; \\ z_{5} + z_{7}; \ x_{8} + y_{8}; \ z_{8}; \ x_{9} + y_{9}; \ z_{9} \end{array} $
	M ₂	$x_{1}-y_{1}; x_{2}-y_{2}; x_{3}-y_{3}; x_{6}-y_{4}; y_{5}-x_{4}; z_{6}-z_{4}; x_{8}-y_{8}; x_{9}-y_{9}; x_{5}-y_{7}; y_{5}-x_{7}; z_{5}-z_{7}$
N -	р	$x_1; y_1; x_2+x_3; y_2+y_3; z_2-z_3; x_4; y_4; x_5; y_5; x_6; y_6; x_7; y_7; x_8+x_9; y_8+y_9; z_8-z_9$
	N ₂	$z_1; x_2-x_3; y_2-y_3; z_2+z_3; z_4; z_5; z_6; z_7; x_8-x_9; y_8-y_9; z_8+z_9$
1	Ξ ₁	$x_1; y_1; x_2+x_3; y_2+y_3; z_2-z_3; x_4; y_4; x_5; y_5; x_6; y_6; x_7; y_7; x_8+x_9; y_8+y_9; z_8-z_9$
	Ξ2	$z_1; x_2 - x_3; y_2 - y_3; z_2 + z_3; z_4; z_5; z_6; z_7; x_8 - x_9; y_8 - y_9; z_8 + z_9$

TABELA 2.7 (cont.)

PONTO CRÍTICO	REPRESENTAÇÃO IRREDUTÍVEL	BASES IRREDUTÍVEIS
Θ	Θı	$x_1+y_1; z_1; x_2+y_2; z_2; x_3+y_3; z_3; z_4+z_6; x_5+y_7; y_5+x_7; z_5+z_7; x_8+y_8; z_8; x_9+y_9; z_9; x_4+y_6; x_6+y_4$
3	Θ2	$x_1 - y_1; x_2 - y_2; x_3 - y_3; x_6 - y_4; y_6 - x_4; z_6 - z_4; x_8 - y_8; x_9 - y_9; x_5 - y_7; y_5 - x_7; z_5 - z_7$

III.3 - <u>DISCUSSÕES</u>

a) Modos do centro da Zona de Prillouin

Estes modos, conhecidos como modos de comprimento de onda longo, são melhor descritos em termos da notação de Schoenflies (no apêndice I é dada uma correspondência entre as notações de Schoenflies, Wheeler e aquela apresentada neste trabalho). Os modos acústicos se transformam de acordo com a representação Γ_{10} . Estes modos são conhecidos como modos dipolares (modos ativos no infravermelho). Os modos ativos no espa lhamento Raman se transformam de acordo com as representações Γ_1 , Γ_3 , e Γ_4 .

De acordo com Wheeler e O Leary, ⁽²²⁾ existem fortes ligações entre os átomos do grupo molecular ReCl₆. Como resultado, existem duas regiões distintas de frequências de vibração, conhecidas como região externa e região interna, respecti vamente. A região interna contém as frequências de vibração do grupo ReCl₆. Devido à forte ligação entre os átomos deste grupo, as frequências da região interna são muito maiores 📖 que aquelas da região externa. Por conveniência, os grupos moleculares ReCl₆ e os átomos isolados serão denominados unidades. Cada unidade molecular tem tres graus de liberdade de rotação e tres de translação, enquanto os átomos isolados tem apenas tres graus de liberdade de translação. O número total de modos normais, na região externa, pode ser escrito como3p + 3q onde p é o número de unidades na célula primitiva e q é o número de unidades moleculares, na célula primitiva. O número total modos, na região interna de frequências é dado por 3r -3p -3q= = $\sum_{i=1}^{\nu} (3r_i - 6)$, once r é o número total de átomos na célula

primitiva e r_i é o número de átomos em cada unidade molecular.

Vamos agora aplicar as considerações anteriores a cristais com estrutura do tipo K₂ReCl₆. Fxistem dois tipos de unidades em cada célula primitiva deste cristal, portanto, seu espaço de célula pode ser dividido como se segue

$$S_c = S_K \bigoplus S_G$$
,

onde G representa o grupo molecular ReCl_6 . Para estudar os modos translacionais de vibração devemos considerar o espaço Euclidiano S_E, que se transforma de acordo com a representação Γ_{10} . Tais modos podem ser obtidos através do produto direto dos espaços de célula e Euclidiano,

$$S_{T} = S_{c} \otimes S_{E}$$

O número total destes modos normais é dado por

$$n_{\mathrm{T}} = \prod_{4} (\mathrm{K}_{\mathrm{xyz}}) \oplus 2 \prod_{10} (\mathrm{K}_{\mathrm{xyz}}, \mathrm{G}_{\mathrm{xyz}}).$$

Excluindo translações puras, o número de modos tran<u>s</u> lacionais óticos é dado por

$$m_{T} = \Gamma_{4}(K_{xyz}) \oplus \Gamma_{10}(K_{xyz}, G_{xyz}).$$

Para modos de vibração do tipo rotacional, devemos considerar o espaço axial S_R , que se transforma de acordo com a representação $\int_5 e$, no espaço S_c , devemos considerar somente as unidades moleculares. Estes modos normais podem ser obtidos através da seguinte consideração

 $S_{Rot} = S_c \otimes S_{R}$.

O número total de modos rotacionais é dado por

 $n_{Rot} = \Gamma_5(G_{xyz})$

Portanto, o número total de modos, na região externa de frequências é dado por

 $n_{\text{Ext}} = \Gamma_4(\kappa_{\text{xyz}}) \oplus \Gamma_5(G_{\text{xyz}}) \oplus 2\Gamma_{10}(\kappa_{\text{xyz}}, G_{\text{xyz}}).$

As representações gráficas destes modos podem ser en contradas à partir dos vetores básicos de cada modo. Utilizando-se a tabela 2.7, obtemos

$$\prod_{4}^{(a)} : x_2 - x_3$$

$$\prod_{5}^{(a)} : R_x(G) = y_8 - y_9 + z_7 - z_6$$

$$\prod_{10}^{(a)} : x_6, x_2 + x_3,$$

onde $R_x(G)$ representa a rotação do grupo ReCl_6 em torno do eixo x, e o índice superior (a) indica que os modos são degener<u>a</u> dos. Os parceiros degenerados destes modos podem ser obtidos substituindo-se x por y e z, respectivamente. Os vetores básicos das representações Γ_4 e Γ_5 nos fornecem os modos normais de vibração diretamente, enquanto no caso do modo Γ_{10} , devemos fazer uma combinação linear dos vetores básicos. Desde que um dos modos Γ_{10} é translacional puro, é fácil determinar quais são as constantes da combinação linear. Os modos óticos de simetria Γ_{10} podem ser escritos como

$$\frac{\sqrt{2} m_2}{\sqrt{m_1^2 + 2m_2^2}} x_6 - \frac{m_1}{\sqrt{2} \sqrt{m_1^2 + 2m_2^2}} (x_2 + x_3)$$

Estes modos são mostrados graficamente na figura 3.1. No modo Γ_4 , o grupo ReCl_6 permanece em repouso e os dois átomos de potássio movem-se uns contra os outros. Este modo é at<u>i</u> vo no espalhamento Raman mas não produz qualquer variação no momento de dípolo do cristal. No modo Γ_{10} , o grupo ReCl_6 movese contra os átomos de potássio. Se o cristal tem tendência a ser ferroelétrico, este modo poderia ser do tipo "soft". O moFig 3.1

(). CI

0-K(2) 0-K(3) 0-Re

do V_5 é do tipo rotacional, no qual o grupo ReCl₆ executa um movimento de libração em torno dos eixos principais. De acordo com Wheeler e O Leary⁽²²⁾ a frequência deste modo decreace, à medida em que a temperatura é reduzida. O K₂ReCl₆ efetua uma transição de fase estrutural à lll^oK pelo amortecimento deste modo. A símetria do cristal após a transição poderia ser C_{4h}^5 , com uma fórmula de K₂ReCl₆ por célula primitiva. A relação entre as antigas e as novas coordenadas dos átomos de cloro pod<u>e</u> ria ser⁽³²⁾

	o _h 5			c ⁵ 4h	<u></u>	
Simetria loca	l Pos:	ição	Simetria local	Po	osiç	ão
4 mm	u (0 0	, m	u	v	0
4 mm	-u	0 0	m	-u	-v	0
4 mm	0	u 0.	IN	v	u	0
4 mm	0 -	a 0 -	m	-v	-u	0
4 mm	0	0 u	4	*0	0	w
4 mm	0	0 -u	4	0	0	-w

Vamos agora construir os modos normais para a região interna, utilizando os vetores básicos apresentados na tabela 2.7. Estes modos, além de serem ortonormais entre si , são ortonormais aos modos externos mencionados anteriormente. Além disco, sabe-se que o centro de massa permanece em repouso em cada modo normal do centro da zona. Estes dois fatos nos permitem escrever estes modos como

$$\Gamma_{1} : x_{4} - x_{5} + y_{6} - y_{7} + z_{8} - z_{9}$$

$$\Gamma_{3}^{(a)} : x_{4} - x_{5} + y_{6} - y_{7} - 2z_{8} + 2z_{9}$$

$$\Gamma_{4}^{(a)} : y_{8} - y_{9} + z_{6} - z_{7}$$

$$\Gamma_{9}^{(a)} : x_{8} + x_{9} - x_{6} - x_{7}$$

TABELA 3.1

	r 1	Гз	Γ10	Γ10	Γ ₄	Г ₉	Γ10	Γ ₄	Γ ₅
(NH ₄) ₂ PtCl ₆	344	315	337	200	180			127	
K ₂ PtCl ₆	348	318	342	183	171				
Rb ₂ PtCl ₆	344	315	338	191	172		73		<u> </u>
Cs ₂ PtCl ₆	335	311	331	187	170		70		
$(NH_4)_2 PtBr_6$	213	190	243	146	137		110	92	·
K ₂ OsCl ₆	354	2 6 9	325	178	171	<u> </u>	88	· · · ·	
(NH ₄) ₂ IrCl ₆	320	235	326	187	181		132	125	-
$(\mathrm{NH}_4)_2 \mathrm{ReCl}_6$	351	272	317	176	180		123		
K2ReCl	256	283	320	173	177		84		
Rb ₂ ReCl ₆	353	291	318	170	177		70	62	<u></u>
Cs ₂ ReCl ₆	346	288	313	174	183		68	• • • •	
(NH ₄) ₂ PdCl ₆	318	289	346	200	178		142	126	
K2PdC16	324	293	356	174	170		92	71	
Rb2PdCl6	314	287	351	161	17 5		86	<u></u>	
Cs2PdCl6	310	270	345	156	17 3		76		
$(NH_4)_2 SnCl_6$	318	238	314.	178	169		125	115	<u> </u>
K ₂ SnCl ₆	321	242	320	172	170		84	73	·`
Rb2SnCl	318	240	316	174	169		.40	59	
Cs ₂ SnCl ₆	310	231	309	172	1 68		69	53	<u> </u>
$(NH_4)_2 SnBr_6$	192	142	227	129	121		101	95	
Rb ₂ SnBr ₆	192	142	226	118	107	<u> </u>	56	<u></u>	
Cs ₂ SnBr ₆	185	138	222	118	109		61		
$(\mathrm{NH}_4)_2 \mathrm{PbCl}_6$	293	218	281	150	154		108	85	
Rb2PbC16	290	220	285	143	1 51		61		
Cs2PbCl6	283	212	278	143	150		61		<u> </u>
(NH ₄) ₂ SiF ₆	646	466	721	476	403		185	181	
K ₂ SiF ₆	660	475	737	480	410	-	.145		
Rb2SiF6	654	480	733	477	402		113		
Cs ₂ SiF ₆	647	469	722	474	401		104	95	

 $\int_{10}^{(a)} : Ax_1 - B(x_4 + x_5)$ $\mathcal{P}_{10}^{(a)}$: $Cx_1 + D(x_4 + x_5) - E(x_6 + x_7 + x_8 + x_9)$

Como mencionado anteriormente, o índice (a) indica que os modos são degenerados. Estes modos não são certamente , normalizados. Algumas das constantes da combinação linear podem ser eliminadas pelo uso de condições de ortonormalidade. Estes modos são representados na figura 3.2.Existem muitos cristais da família R_2MX_6 com estrutura O_h^5 , que foram estudados através de técnicas Raman e infravermelho.⁽³³⁾Dados referentes a esses cri<u>s</u> tais são apresentados na tabela 3.1.

·b) <u>Ponto X</u>

Este ponto está localizado sobre a superfície da zona de Brillouin, e tem simetria \mathbb{D}_{4h} . Os resultados da análise de modos normais mostram que eles são classificados como $3X_1 \oplus$ $\oplus X_2 \oplus X_3 \oplus X_4 \oplus 3X_5 \oplus 3X_7 \oplus X_8 \oplus X_9 \oplus 5X_{10}$. Seus vetores bási cos, obtidos pela técnica de operadores de projeção são apresen tados na tabela 2.7. Se assumirmos fortes ligações entre os áto mos de Cl e Re, poderemos considerar o movimento deste grupo contra outros grupos semelhantes e também contra os átomos de potássio. Neste caso os modos de vibração de rede do tipo trans lacional e vibracional serão dados por

 $n_{T} = X_{1} \oplus X_{5} \oplus X_{7} \oplus X_{8} \oplus 2X_{10}$ $n_{Rot} = X_{2} \oplus X_{5}$

Os vetores básicos destes modos podem ser separados dos vetores básicos dos modos internos através de uma cuidadosa observação dos vetores listados na tabela 2.7. Considerando que existe uma grande diferença entre magnitudes das forças exter nas e internas do cristal, nós podemos obter os seguintes modos normais, para a região externa de vibração

Fig 3.2

54

0 - CI

•- Re

$$\begin{array}{l} x_{1} &: y_{2} + y_{3} \\ x_{2} &: 2z_{4} - 2z_{5} + z_{9} - z_{8} + x_{9} - x_{8} \\ x_{5}^{(a)} &: x_{2} - x_{3}, \ c_{1}(y_{4} - y_{5}) - c_{2}(x_{6} - \varepsilon^{2}x_{7}) \\ x_{7} &: y_{1} \\ x_{8} &: y_{2} - y_{3} \\ x_{10}^{(a)} &: \ c_{3}z_{1} + c_{4}(x_{2} - x_{3}), \end{array}$$

onde os C_i são constantes da combinação linear, que em geral são funções das forças no cristal. Como mencionado anteriormente, o índice superior (a) indica que o modo normal é degenera do. Os modos normais apresentados acima não são normalizados . Para representarmos os modos normais graficamente, precisamos utilizar a expressão que fornece os deslocamentos dos átomos. (eq. 1.6, cap. II)

$$\mathbf{u}_{\mathcal{A}}(\mathbf{1}_{\mathcal{K}}) = \frac{\mathbf{A}_{\vec{q}j}}{\sqrt{\mathbf{m}_{\mathcal{K}}}} e_{\mathcal{K}\mathcal{A}}^{\vec{q}j} e^{\mathbf{i}(\vec{q}\cdot\vec{\mathbf{x}}(\mathbf{1}_{\mathcal{K}}) - \boldsymbol{\omega}_{\vec{q}j}\cdot\mathbf{t})}$$

Através desta equação podemos estudar os modos nor mais graficamente, em qualquer instante de tempé. O modo rotacional da rede, pertencente à representação X_2 , é de interesse, pois ele poderia ser responsável por uma transição antiferroelé trica (se ela existir) do cristal. Existem dois modos que per tencem a simetria X_5 , um é do tipo translacional puro e outro do tipo rotacional. Negligenciando as amplitudes, as massas, e as constantes C_i , os vetores deslocamento para os átomos, na cé lula primitiva com 1=0, podem ser escritos como se segue:

$$u_{X_{5}}^{(a)} : x_{2} - x_{3} ; y_{4} - y_{5} - \mathcal{E}(x_{6} - x_{7})$$
$$u_{X_{2}} : 2z_{4} - 2z_{5} + z_{9} - z_{8} + x_{9} - x_{8}$$

No primeiro modo, os dois átomos de potássio movemse uns contra os outros. O segundo modo é de caracteristica ro tacional. Entretanto em geral, existe uma diferença de amplitu de e de fase entre os movimentos dos átomos 4, 5 e 6, 7. Para o caso em que U20.25, estes átomos irão se mover com a mesma amplitude, e com uma diferença de fase de $\frac{\pi}{2}$, entre os deslocamentos dos átomos 4, 5 e 6, 7. Em outras palavras, quando os átomos 4 e 5 estão na posição de máxima amplitude os átomos 6 c 7 estão na posição de equilíbrio, e vice-versa. Similarmen te, existe uma diferença de fase de $\pi/2$ entre o movimento dos átomos Re e os átomos de potássio, nos modos normais que per tencem à simetría X_{10} , situados na célula primitiva com l = 0. Em todas as outras vibrações externas, os átomos movem-se em fase. Os deslocamentos dos modos normais de simetria X5 e X10, são mostrados na figura 3.3. As linhas pontilhadas indicam 0 deslocamento dos átomos no instante t = $\pi/2\omega$ e as linhas cheias no instante t = 0. Devemos tomar cuidado, ao desenhar o des locamento de átomos de potássio pertencentes à células primiti vas diferentes. Os modos normais para a região interna podem ser escritos como se segue

 $X_{1} : C_{5}(x_{4}-x_{5}+z_{8}-z_{9}) \pm C_{6}(y_{6}-\varepsilon^{2}y_{7})$ $X_{3} : x_{4}-x_{5}-z_{8}+z_{9}$ $X_{4} : z_{4}-z_{5}+x_{8}-x_{9}$ $X_{5}^{(a)} : C_{7}(y_{4}-y_{5}) + C_{8}(x_{6}-\varepsilon^{2}x_{7})$ $X_{7} : C_{9}(y_{4}+y_{5}+y_{8}+y_{9}) \pm C_{10}(y_{6}+y_{7}\varepsilon^{2})$ $X_{9} : y_{4}+y_{5}-y_{8}-y_{9}$ $X_{10}^{(a)} : C_{11}(z_{4}+z_{5}+z_{8}+z_{9}) \pm C_{12}(z_{6}+\varepsilon^{2}z_{7}); z_{4}+z_{5}-z_{8}-z_{8}$

Fig 3.3

 (x_{10})

0 K (2) () - CI

@ K(3) ●Re

Os modos normais para a representação X_{10} foram es critos similarmente aos modos sob as representações $X_7 \ e \ X_9 \cdot P_0$ deriam, entretento, serem escolhidas outras combinações lineares para estes modos. Como no caso dos modos externos, para r<u>e</u> presentarmos os deslocamentos dos átomos nestes modos deveremos fazer uso da eq. (1.6), cap, II.

c) Ponto Δ

Este ponto está situado sobre a linha que liga o centro da zona de Brillouin ao ponto X. Sua Simetria é C_{4v} . Os modos normais na região externa podem ser classificados como se segue

 $n_{T} = 2\Delta_{1} \oplus \Delta_{4} \oplus 3\Delta_{5}$

 $n_{Rot} = \Delta_2 \oplus \Delta_5$

Procedendo como no caso dos pontos Γ e X, podemos en contrar os modos normais para o ponto Δ , que são dados por

 $\Delta_1 : c_1 y_1 \pm c_2 (y_2 + y_3)$

 Δ_2 : x₉-x₈-z₅+z₄

 Δ_4 : $y_2 - y_3$

 $\Delta_{5}^{(a)}: c_{3^{z_{1}}} \pm c_{4}(z_{2}+z_{3}); x_{2}-x_{3}; c_{5}(y_{8}-y_{9}) + c_{6^{z_{7}}} - c_{7^{z_{6}}}.$

Os dois primeiros modos apresentados sob a representação $\Delta_5^{(a)}$, obtidos através da combinação linear dos oito vetores básicos sob essa representação, foram construídos seme lhantes aos modos de simetria Δ_1 . Similarmente, o modo rotaci<u>o</u> nal foi obtido considerando-se os dois limites de existência do ponto Δ no espaço q. Se nós encontrarmos os vetores desloca mento para os modos normais acima e fizermos a sua representação gráfica, nós teremos uma idéia dos deslocamentos atômicos em função da propagação da onda. As relações de compatibilidade entre os modos normais nos pontos X e Γ podem ser escritas com o auxílio do ponto Δ e são dadas por

r,	Γ2	Γ3	Γ ₄		Γ ₅	Гб	ľ7	٢ ₈	r	9	Γ ₁₀
Δ _l	Δ ₂	∆₁⊛∆	Δ26	•∆_4	∆ ₂ ⊕∆ ₅	Δ ₂	Δ	∆2€	Δ ₃ Δ ₃	⊕∆ ₅	∆ ₁ ⊕∆ ₅
x _l	X	2 2	3	X ₄	х ₅	Xe	5	×7	×8	х ₉	Xlo
Δ	Δ	2 1	<u>`3</u>	Δ_4	Δ ₅	Δ2	>	Δ	Δ ₄	Δ3	Δ ₅

Nós não tentamos representar graficamente os modos de vibração de outros pontos críticos porque, de acordo com O Leary e Wheeler⁽²²⁾, somente modos pertencentes ao centro da zona de Brillouin e ao ponto X são envolvidos em uma ou outra transição em uma variedade destes cristais. Nós, entretanto , derivamos as relações de compatibilidade entre diferentes pontos críticos, e estas são apresentadas no apêndice.

d) Relações de Dispersão de Fonons

Para determinarmos as relações de dispersão de f<u>o</u> nons, nós precisamos conhecer suas frequências e suas simetrias para todos os vetores de onda ao longo de uma direção de interesse. Se as frequências forem obtidas experimentalmente (por exemplo, à partir de medidas de espalhamento inelástico de ne<u>u</u> trons) uma comparação entre valores observados e calculados do fator de estrutura pode ser usada para determinar suas simetrias. Na maioria dos casos, entretanto, não dispomos destes dados. Uma outra possibilidade é utilizar as frequências dos fonons do centro da zona de Brillouin, (observados através de técnicas Raman e infravermelho) no cálculo de parâmetros desc<u>o</u>

nhecidos do modelo dinâmico utilizado, o que possibilita o cál culo das frequências em outros pontos críticos. O Leary e Whe<u>e</u> ler⁽²²⁾ utilizaram em seus cálculos o modelo do fon rígido. A partir dos dados fornecidos por esses autores, e dos vetores básicos e relações de compatibilidade derivados neste trabalho, nós traçamos curvas de dispersão (qualitativamente) ao longo da direção X. Estas curvas são mostradas na figura 3.4.

III.4 - CONCLUSÃO

Utilizando o método da representação de multiplicadores, estudamos os modos normais de vibração de cristais com a estrutura do $K_2 \text{ReCl}_6$. O espectro de vibração destes cristais foi dividido em duas regiões chamadas externa e interna, respectiva mente. O modo libracional que se transforma sob a representação Γ_5 é responsável por uma transição de fase do tipo "displacive", na qual o cristal passa a pertencer ao grupo espacial C_{4h}^5 .

Presumivelmente, a análise de modos normais apresent<u>a</u> da neste trabalho será bastante útil em trabalhos de espalha mento inelástico de neutrons ou em cálculos de dinâmica de redes. Vários auto-vetores obtidos podem ser utilizados para explorar a possibilidade de transições de fase estruturais decorrentes de vibrações da rede cristalina.

Fig. 3.4

APENDICE I

I.a - <u>Relação entre as notações de O Leary e Wheeler⁽²²⁾, Scho-</u> enflies e aquela utilizada neste trabalho

	Γ1	Γ2	Гз	Γ ₄	Γ ₅	Γ ₆	Γ ₇	Г8	Г9	Γ10
OLW	Γ <mark>+</mark>	Γ_2^+	Γ3	Γ ₅ +	Γ_4^+	Γ ₁	Γ ₂	Γ3	Γ ₅	Γ4
Schoen-	Alg	A _{2g}	Eg	T _{2g}	Tlg	Alu	A _{2u}	Eu	^T 2u	Tlu
flies		, } 4		^F 2g	Flg				F _{2u}	Flu

T	X _l	Х <u>2</u>	. ^X 3	: ^X 4	×5	^х б	×7	^x 8	29 X	NIO
OLW	x+ 1	x ⁺ 4	x ₂ +	x_3^+	x ₅ ⁺	xī	x4	x_2	x3	x_5

I.b - Relações de Compatibilidade

Γ_1	Γ_2	Γ3	Γ4	Γ5	r 6	Γ7	٢8	· Г 9	Γιο	Ī	Ll	L 2	· L 3	L ₄	L 5	L 6
A1	Λ2	^3	^ ₁ @^ ₃	^ ₂ ⊕^ ₃	۲2	۸ _l	۸3	^ ₂ ⊕^3	^ltal		^1	^2	^3	^ <u>ı</u>	^ 2	^ 3

 ŗſ	^L 2	¹ 3	^L 4	^L 5	^Ľ 6
M _l	^M 2	^M 1 ^{⊕M} 2	Ml	^M 2	[™] 1 ^{⊕™} 2

Ŀı	r ⁵	^L 3	^L 4	^L 5	^L 6
Ql	σ ⁵	ನ ¹ ⊛ರ ⁵	Q ₂	Ql	_ପ ୀ⊕ପ୍2

ĸı	к2	К _З	K ₄
Nl	N ^S	N 3	N ₄

Kl	^К 2	К3	^K 4
Ml	^M 2	^M 3	^M 4

۳ı	₩2	. [₩] .3	^W 4	[₩] 5
٦ ر	Q ₂	Ql	5 ⁵	ୁ ¹ ⊕ୁୁେ2

"ı	[₩] 2	[₩] 3	₩4	[₩] 5
N¹.	N2	^N 2	Nl	^N 1 ^{⊕N} 2

U.		J ₂	^ΰ 3	U4						W.	ı	^W 2	^w 3	[₩] 4	V	¥5	-	
B.	L I	32	^B 3	^B 4						B	1	^B 2	^B 2	Bl	B	L B ₂	2	
·							·				····•							
W	1 12	2	3 17	W	5		хı	Х ₂	X.		4	^х 5	X6	x ₇	^X 8	2 ^x 9	. x	10
Z.	1 Z2	\mathbf{z}	3 ^Z J	z ₂	Z ₄		z ₁	2 ₂		Z	2 Z	3 ^{⊕Z}	4 ^Z 3	2 ₄	^z 3	Z4	z _l e	∂Z ₂
r,	۲ ₂	٢	3	г ₄		Г	5	۱	6	7	٢	8	۲	, 9		٢	_0	
Σ1	52	Z1	€£2	Σ ₁ ⊕Σ	3 ^{⊕∑} 4	Σ ₂ @	Σ ₃ €	,Σ4	E3	E ₄	Σ3	æΣ ₄	Σ _l ę	0520	$\Sigma_4 \Sigma$	⁷ ı⊕Σ	- 2⊕	E ₄
Ľ1	Σ_2	2 2	S3	Σ_4								_						
К _П	К,		K ₂	KA														

•

1

63

- · · ·

PONTO CRÍTICO	0 _h	ij	ย บ่	z ux	υy	C_4^z	\overline{c}_4^2	$c_4^{\mathbf{x}}$	€4 €	с¥	τoy τ	uxy	u ^{xe}	ប _{្រ ន}	υ ^{xy}	$\mathfrak{v}^{\overline{\mathbf{x}}\mathbf{z}}$	u ^{j z}	c_3^{xyz}	c ^{xyz}	$c_3^{\overline{x}y\overline{z}}$	c ^{xyź}	$c_3^{x\bar{y}\bar{z}}$	$c_3^{\bar{x}\bar{y}z}$	č ^{žyz}	c _z yź	I o z
[٢,		1	1 1	1	1	1	.1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1 1
	Γ2		1 :	i i	1	-1	-1	-1	-1	-1	-1 .	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	l	-1	1 1
]	Π3	11	i	1 1	ĩ	l	1	-a	-a	-a	- a	1	-3	∽a	1	-a	-8	-9	-a	a	- a	-a	- a	-a	-a	1 1
		21	0 0	5 0	0	0	0		-р -р	о Ъ	р Ъ	0	b b	-b -b	0	a ɗ	-b -b	-b b	о -Ъ	-р Ъ	-р	-ს ხ	-р Ъ	-b	ს ზ	0 0
	r.	22	1	<u> 1</u> 1	<u>_1</u>	-1	-1	<u>-</u> 1	_a	<u>a</u> 0	<u>a</u> -	<u>-1</u>	<u>a</u>	<u>n</u>	-1	<u>a</u>	<u>ล</u> า		-a		<u>-n</u>		<u>–n.</u>	-0	-2	<u>·1 1</u>
	14	12	õ	ō õ	ō	ì	- <u>ì</u>	ō	õ	ŏ	ŏ	-ĭ	õ	ō	ĭ	ŏ	õ	õ	ĩ	Õ	-1	ŏ	ŏ	ĭ	-ĭ	0 0
		21	0 0	5 0	0	-1	1	0	0.	0	0.	-1	-1	0	ı	0	õ	1	0	-1	ő	-1	-1	0	0	0 0
	Į	22	1 - 1 = 1	L -1) 0	1	0	0	0 1	0. -1	-1 ·	-1 0	0	1	0 –1	0	1	0	0	0	0	0 1	0	0	0 -1	0	1 -1
		31	õ (j õ	ŏ	ŏ	ŏ	õ	ō	i.	- ľ	õ	-1	ō	ŏ	ĩ	ō	õ	î	ŏ	i	õ	õ	-1	-1	ŏŏ
		33	<u>i :</u>	<u> </u>	<u>-1</u>	-1	<u>-1</u>	<u></u>	0	0	<u>0</u>	1	<u><u> </u></u>	_0	<u>1</u>	<u>c</u>	<u>.</u>	0	<u> </u>		0	0	-1	0	0	<u> </u>
	٢5	11 12	1-1	L 1 D 0	$-1 \\ 0$	0 -1	0	10	1	0	0	0	0	-1 0	0 -1	0	-1 0	0	0	0	-1	0	0	0 1	-1	1 -1
Г]	13	0 (òò	Ő	Ö	õ	Ő	Ő :	.ĭ	-1	õ	i	õ	õ	-ĩ	ò	ì	ō	ĩ	ō	-ľ	- <u>1</u>	õ	õ	ŏŏ
ĺ		22	1 -1	,1	1	0	-1	0	0	1	1	0	-1	0	-1 ·0	-1	0	0	0	-1	ő	0	0	ő	0	1 -1
		23	0 0) ()) ()	0	0	0	-1 0	1	0	0 1	0	0	1	0	′0 –1	-1	0	י ר	. 0	- <u>1</u>	0	0	-1 -1	1 -1	
		32	00	> 0	, Ô	Ō	Ö	i	-1	õ	ō	0	ō	i	Ŏ	õ	-i	i	ō	~1	ō	, ĩ	- <u>ì</u>	õ	õ	òò
	Γ_6		1	. <u>-</u> .L	- <u>1</u>	1	i	1	ĭ	1	1	1	1	1	1	1	- <u>0</u>	1	1	1	- 1	<u> </u>	1	1	1	$\frac{1}{-1}$ $\frac{1}{-1}$
)	$\tilde{\Gamma_7}$		1 1	. 1	1	-1	-1	-1	-1 -	-1 -	-1 -	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	-1 -1
-	۳8	11	1 1	1	1	1	1	-a	-a -	a.	-a.	1	<u>0</u>	-a	1	-9.	-a	-a	-81	-a	-a	-a	-3	-a	- a	-1 -1
		21	0 0) 0	0	0	0	-b	-ი -ა	р Ъ	р Ъ	0	b b	-b -b	0	b b	-0 -0	-р Ъ	о -Ъ	-b a	d d-	-0 b	-о Ъ	а - Ъ	а -b	0 0
		$\frac{22}{11}$	$\frac{1}{1}$	$\frac{1}{1}$	-1	$\frac{-1}{0}$	$\frac{-1}{0}$	<u>a</u> -1	<u>a</u>	<u>а</u> О	<u>a -</u> 0	<u>-1</u> 0	$\frac{a}{0}$	<u>a</u> 0	$\frac{-1}{0}$	<u>- n</u>	a 1	<u>-a</u> 0	<u>-a</u>	<u>-b</u> ·	<u>-1</u>	<u>-a</u>	<u>-a</u>	-::	<u>-a</u> 0	<u>-11</u>
	' y	12	0 0	0	ō	1	-1	0	0	Õ	<u>0</u> -	-1	Ö,	-1	i	Ö	ō	. Ŏ	ì	Ö	-1	õ	Õ	1	-1	ōō
		21	õ č	ŏ	0	-1	ì	õ	0	0	0 -	1	<u> </u>	-1	<u>1</u> .	ō	0	i	0	-1	0	-1 -1	1	0	õ	0 0
		?2	1 -1 0 0	-1	1	0	0	0 1.	0 - -1	- <u>1</u> -	-1 0	0	1 0	0	0	1	0 1	0	0 1	0	-1	0	0	0 _1	0 1	-1 1 0 0
1		31	ò c	· 0	Õ	Ó	õ	0	õ	1 -	-1	0	-1	Õ	ò	ĩ	ō	õ	ĩ	Õ	ī	õ	Ō	-1	-ī	0 0
	_	33	1 1	-1	<u>-1</u>	<u>–1</u>	<u>_1</u>	<u>_0</u>	<u>ō</u>	<u>e</u>	<u>ő</u>	1	<u> </u>	1.	1	<u>0</u>	<u>, </u>	<u>5</u>	<u><u> </u></u>	<u>.</u>	<u> </u>	_ <u>ò</u> _		<u> </u>	<u> </u>	<u>-1 -1 _</u>
	ľ'10	$\frac{11}{12}$	1 -1 0 0	. 1) 0.	$-1 \\ 0$	0 -1	0	1	0	0 0	0	0 1	0 C	-1 0	0 -1	0	1 0	0	0 1	0	0 -1	00	0	0 1	0 -1	
1		13			0	0	-0	0	0	1 -	-1	0	1	0 Û	0	-i	0	1	0	1	0	-1 -1	-1	0	0	0 0
		22	1 -1	-1	ĩ	Ō	ō	Ő.	õ	ì	ĩ	0	-1	• 0	ō	-1	õ	ō	ŏ	0	ŏ	0	õ	ŏ	õ	-1 1
		31	0 C	: 0 : 0	Ū.	0	0	-1	ι Ο -	0 -1		0 0	1	0	0	-1	$-1 \\ 0$	0 0	1 1	0	-1 1	0	0	- <u>'</u>	1 -1	0 0
		32	0 0 1 1	· 0		С І	0 1	1.	ר <u>י</u>	ი ტ	<u>^</u>	-13 -1	0 Û	1 C	0 -1	0	- <u>1</u>	1	0	-1. 0	0	<u>ו</u> 0	- <u>1</u>	0	0	0 0 -1 -1
L	ļ					- /-								<u> </u>		<u> </u>	<u> </u>							· · · · · ·		

I.c - Matrizes dos Operadores

ø

2

a = 1/2 , b = 1/2

64

دن:

PONTO CRÍTICO	0 _h	i j	$\sigma_{\cdots}^{\mathbf{X}}$ (гy	s₄3∞	s_4^z	s_4^{3x}	s_4^x	s_4^{3y}	s¥	۴xy	ັ ເ ^{x z}	ر ب ر کر کر ک	σ ^{xy}	່ ຫ ^{ຼື} ັ້ ແ	ζαÿz	s ₆ 5xyz	s_6^{xyz}	s ₆ xyz	s ₆ ^{5xyz}	s ^{īxyz}	s ₆ 5xyz	s ₆ xyz	s ₆ xyz	
	17	1_	1	1	1	1	1	1	i 1	1	1	1	1	1	1	l	1	l	1	l	1	1	1	1	
	F 2	1—	1	1.	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	l	1	1	1	1	1	l	
	13	11	1	1	1	1	-a	-a	-8	-?	1	-0.	-0	1	-a	-a	-a -b	-a b	a b		-a -b	-a b	-a h	—а –ъ	
		21^{12}	0	0	0.	0	-0 -5	-b -b	b	o b	0	b b	-р -р	0	р Ъ	-р -р	о_ б	~b	-b	b	b	b	-b	b	
	10.	$\frac{22}{11}$	1	$\frac{1}{-1}$	<u>1</u>	-1	<u>a</u> -1	-1	<u>a</u> 0	<u>s</u> 0	-1	 0	<u>8</u> 1	<u>-1</u>	<u></u> 0	<u>מ</u> ר	<u>a</u>		<u>-a</u>	<u>-a</u>	- <u>a</u> 0	<u>-a</u> 0	<u>~a</u> 0	<u>–a</u> 0	
	4		e	0	1	-1	0	0	0	0	-1	Ō	0	i	ō	ō	0	1	0	-1 0	0 -1	-1	0 →1	1	
		21	ŏ	ŏ.	- <u>1</u>	ĭ	ŏ	ŏ	0	Õ	-1	ō	ŏ	ĩ	ō	õ	ī	õ	-ī	Ō	-1	Ó	1	0.	
		23	0	0	0	0	0 1	-1	-1	-1	0	0	0 11	0	1	0 1	0	1	Ŏ	-1	Ő	i	ŏ	· -1	
		31	0	0	0	0	0 _1	0	1	-1	0	-1	_0	0	1	0	0 1	1	0 -1	1	0 1	. <u>-1</u> 0	-1	-1	
		32	<u>-1</u>	<u>-</u> į́	<u>-1</u>	<u>-1</u>	<u>ç</u>	<u>_ </u>	ŏ	Ŏ	<u> </u>		ō	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	0	0	0	0	0	<u> </u>	0	
	5	122	Ō.	ō.	-1	1	ō	Ū.	0	ő	1	0	- <u>-</u>	-1	0	-1 0	ŏ	ĩ	ŏ	-ĭ	ŏ	-1	ŏ	ì	
17	{ .	$ \frac{13}{21} $	0	0	.0 1	-1	0	0	1	1 0	0	1	0	0 -1	-1	00	1 1	0	-1	· 0	-1 -1	0	1	0	
		22	-1	1	0	0	0	0	i	i	ō	-1	ō	õ	~i	õ	0	0	0	0 -1	0	0	0	0 -1	^R x, ^R y, ^R z
		31	e	ŏ	õ	0	0	0	<u>-1</u>	1	Ő	ĩ	0	0	-1	0	ŏ	i	ŏ	ī	ŏ	- <u>1</u>	ŏ	-1	
		33	0 -1 -	-1 -1	0 1	0	1 0	-1	0	0	0 -1	0	1	0 -1	0	-1 0	0	0_	<u>-1</u>	<u> </u>		<u>0</u>		<u>0</u>	
	٢6		-1 .	<u> </u>	-1	-1	-1	-1	~1	-1	-1	-1.	-1	-1	-1	-1	-1	-1	-1	-1	-1	<u>-1</u>	-1	-1	
	17		-1 -	-1	1	1	1	1	1	1	1	rt	1	1.	1	1	-1	-1	-1	<u>i</u>	-1 	- <u>1</u>	-1	- <u>-</u> 1	
	٢8	$\frac{1}{12}$	- <u>-</u>	-1 - 0	-1 0	-1	а -b	a -b	a -b	a -b	-1 0	a ≁b	a b	-1	а b	ದ ರಿ	a b	а -Ъ	a -b	a b	b	-b	-b	b	
	1	21		0	0	0	b a	b a	-b -0	-b	0.	b	Ъ _2	0	-b	Ъ ~?	-Ъ а	ь _а	b a	-b а	-b a	b a	b a	-b a	
	Γ9	11	-1	ī	Č.	ō	ĩ	1	0	Ö	ō	<u> </u>	-1	Ō	Q	-1	0	0	0	0	0	0	0	-0 -1	
		$\frac{12}{13}$	0	0 - 0	ō	õ	0	c	l	-1	0	1	0	-1 0	-1	0	- <u>1</u>	Ő	-1	ō	i,	ō	ĩ	Ô	
		21 22	0 1 -	0 -1	10	$-\frac{1}{0}$	0	0	0	0	10	0	0	-1 0	0 1	0	-1 0	0	.0	0	ō	0	-1	0	
		23	00	0	Ó	Ö	-1	i	0	Ō	õ	0	i	Ō	ō	~1	0	-1 -1	0	1 1	0	-1 .1	0	1	
		32	ŏ	õ	ŏ	ŏ	1	-1	0	ō	Ő	ō	1	õ	Ō	-1	-1	õ	i	ō	-1	0	1	0	
	F 10	<u>55</u> 11	1 1	1	1	<u>-</u>	-1	-1	0	<u>- 0</u>	<u>-1</u>	- <u>0</u> -	<u>0</u> 1	<u></u>	0	01.	<u> </u>	<u> </u>	0	<u> </u>	ŏ	<u> </u>	ŏ	<u> </u>	······
1		10	0	0	1	-1	0	0	0	0	-1 0	0	0	1	0	0	0 -1	-1	0 -1	1 [.] 0	0 1	1	0 1	-1	-
		21	0	õ-	-ĭ	ĭ	õ	ŏ	ō	Ō	<u>-ĭ</u>	Ō	ŏ	ĩ.	Ō	ŏ	−ī	Ö	1	0	1	0	-1	0	X. V. Z
		22	0 -	0	0	0	0 1	-1	- <u>+</u>	<u>-</u> -	0	Û.	-1 -1	0 C	1 0	U L	õ	-1	Ő	ĩ	ŏ	- <u>i</u>	ŏ	ĩ	, , , , ,
		32	00	0 0	0	0 0	0 -1	0	1	$-\frac{1}{2}$	e c	-1	-1 -1	0	1	0 1	0 _1	-1 0	0	-1 0	-1	1 0	1	Ŏ	
		33	1	1 -	1	-1	õ	Ċ	ò	Ō	ĩ	ċ	ò	1	õ	ē	0	0	0	0	0	0	0	0	

5

.

ي ا

ኩዕለውዕ	1 (~1			v	v	•	1.1.1	v	7	v 7.	1					TON	ΨŌ	- (v	<u>)</u> †		.vl				
CRITICO	D2a'	1,	E	U.	^S 4	^S 4	ີບໍ່	UJ	້ ເ	۲ ۲				_	<u>_</u>	CRIT	ICO	S	<u> </u>	EQ	۳°				
W	Wl		1	1	l	1	1	1		1 1						Λ,	В	A ₁ ,1	Bl	1	1	x,	z,	Ry	
	₩2		l	1	1	1	-1	-1	_	1 -1	$\mathbb{R}_{\mathbf{x}}$		· • ·	-				A2,1	B ₂	1.	-1	у,	Rx'	$\mathbf{R}_{\mathbf{z}}$	
	₩3	-	1	1	-1	-1	1	1	-	1 -1					•										
	[₩] 4		1	1	-1	-1	-1	1		1 1	x			-	C	PON CRIT	TO ICO	C _s)	E (oz				
	[™] 5	11		-1	-1	0 . 1	0 1	0 -1		$\begin{array}{ccc} 1 & 1 \\ 0 & 0 \end{array}$	y .	z , 1	R, R	_		N,	Ξ	Ν.,	7	1	1	x,	y,	R,	
		21	0	0	1	-1	1	-1		0 0		•	y i	20				N2,	2	1.	- 1	z,	R.,	- ² R _v	
3	I		1-	-1	Ŷ	v	v	0		1 - 1	1							1 ~			- '			5	
PONTO	$ _{-(\mathbf{v})}$	١	_	-v	۰V	ъv	x	z	xz	Σz	1				Ċ	PON CRÍI	ITO LCO	c(x	ע צ	E (• xy	1			
CRITICO	4v	1]	E	^C 4	02	°4	0	٩	ፍ	٥,	<u> </u>				-	М		M.	7	1	1	z,	x-	у	R
	A1	—	1	1	l	l	1	l	1	l	У							M ₂ ,	- 1	1	-1	-X-	у,	R.,,	R.
	A ₂	-	1	1	1	1	-1	-1	-1	-1	Ry							ς.	4			1		2.	xy
Δ	Δ3		1	-1	1	-1	1	1	-1	-1					,	PON מולים	TCO די	C ²	z)	Ξ	u ^{yz}	۶ ۱			
	4	-	2	-1	1	-1	-1	-1	1	1	[_	<u>, (</u>	<u></u>			1	 1	1 _v		-7.	
	Δ5	11	12	_0	-1	0	1	-1	0	0							•	1		1	_1	v-	.7.	R '	'yz . F
		21	ŏ	1.	ŏ	-1	ŏ	ŏ	-1	î	x,	z,	R _x ,	Rz				*2		-	*	۲,	-,	~yz	' "x
	ļ	22	11	0	-1	0	~~ l	-1	0	0	j			-			• '								
													•												

PONTO CRITICO D^(xyz) Jd г¹ г5 ı 1 1 l L 1 l l 1 ı l 1 1. 1 -1 1 ī 1 -1 1 1 -1 -1 -1 -1 1 0 11 12 21 22 <u>-а</u> Ъ 1 0 0 -a →a 1 0 0 1-3 -3 -3 1 0 0 1 -2 -a -a -b -b -b b -р -р ъ --Ъ -b b ъ ъ -b ъ ō b -a 1 $\frac{-a}{1}$ <u>-1</u> 1 -1 -a -1 --a --1 <u>-1</u> -1 _1 a -1 а а ь₄ ь₅ Ţ 1 1 -1 -1 -1 -1 1 ĩ 1 1 T 1 -1 -1 L₆ 1 0 0 -1 -1 0 0 -1 a --b b a 11 1 12 0 21 0 22 1 -a b -b -a -a -b -b -a --2 --b b a b b a b --b 1 0 0 1 -8 -a -b -b b b -a -a a а a

 $\frac{\text{PONTO}}{\text{CRITICO}} \begin{vmatrix} c(xyz) \\ 3y \end{vmatrix} \mathbf{ij} = c_3^{xyz} \ \overline{c}_3^{xyz} \ \mathbf{o}^{\overline{x}y} \ \mathbf{o}^{\overline{y}z} \ \mathbf{o}^{\overline{y}z}$ Λ ۸, lī 1 l 1 1 1 V V

								_
` 2	l	7	1	1	-1	-1	-1	
15	11	1	-2	-a	-1	a	a	-
2	12	0	-b	ъ	0	-b	ъ	
	21	0	ъ	-b	0	-b	ъ	
	22	1	-a	-a	l	$-\mathbf{a}$	-a	

PONTO CRITICO	C(x) 2v	Е	υ ^x	۵Ŋ	۳Z														
Z	² 1	1	1	1	l	x													
•	2 ₂	1	-1	1	-)	z,	Ry												
	. ^Z 3	1	1	-1	-1	.? _x													
	² 4	1	-1	-1	1	У,	² z												
PONTO CRITICO	D(y)	íj	E C	τ ^γ υ ^γ	с <mark>3</mark> у 4	u ^x u	vz	U ^{x z}	v ^{xz}	I	з ^у 4	s ³ y	ፊን	o.X	oz	o ^{xz}	متحت		
------------------	-------------------	-----------------	-----------------	-------------------------------	-------------------------	------------------	-----------------	------------------	-----------------	----	---------------------	------------------	----------------	-------------------	-----------------	------------------	-----------	------------------	---------------------
x	× ₁	—	1 :	L 1	l	1	1	l,	1	1	1	1	1	1	1	l	1		
	X2		1 :	1 1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	Ry	
	×3	-	1 :	l —1	-1	1	1	-1	-1	1	-1	-1	1	1	1	-1	-1		
	^X 4		1 1	_ 1	-1	1	-1	1	1	1	-1	-1	1	-1	-1	1	1		
	х ₅	11 12	1 (0 -1 L 0	0	-1	1	0	-0 -1	1	0	-1	-1	-1 0	1	0 1	-1	8.	R
		21	ō :	ĒŎ	-1	Õ	Õ	ī	-ī	õ	-1	ī	õ	õ	ŏ	ī	 ī	<u>, т</u> х,	**z
う	X ₆		1 :	/ <u>- /</u> []	ĩ	- <u>†</u> -	-1	1	1	-1	-1	-1	<u>-1</u>	-1	<u>-1</u> -1	-1	-1	┝╍╍	
	X7		1	1 1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	l	1	1	7	
	X8		1 -	1 1	-1	1	1	-1	-1	-1	1	, 1 	-1	-1	-1	1	1	<u> </u>	
	х ₉ .		1 -:	1	-1	~ 1	-1	1	1	-1	1	1	-1	1	1	-1	-1		
	X10	$\frac{11}{12}$	$\frac{1}{0}$	2 - 1	0	-1	1	0	0	-1	0	0	1	1	-1	0	Ö	,	
	.	21	ŏ i	Įŏ	-ī	ŏ	ŏ	ī	-1	ŏ	ī	-1	ŏ	ŏ	ŏ	-1	i	^,	4
	I	122	1 () <u>-</u> 1	0	• 1	1	0	0	-1	0	0	1	-1	1	0	0	1	
PONTO GRÍTICO	C(x;)		υ ^{xy}	r ²	ožv					_	PC CRI	NTO TICC		λz) v		υ ^{x̄z}	a.y	σ ^{X Z}	
Κ,Σ	K_1, Σ_1	1	1	1	1	х+у					U	, s	U ₁	נ ^י י.	11	1	1	1	x→z
	κ ₂ ,Σ	<u>, 1</u>	-1	1 ·	-1	x−y,	\mathbb{R}_2	3					Ū2	, s _e	2 1	-1	1 .	-1	x+z, R _y
	^K 3·Σ	<u>1</u>	1	-1 .	-1	R _{xy}							U	,, S	1	1	-1	-1	Rīz
	^K 4∙E∕		- 1	-1		z, F	^l xy						U4	, ^S 4		-1	-1	1	y, R _{xz}

REFERENCIAS

- (1) Maradudin, A. A., Vosko, S. H., Rev. Mod. Phys., vol. 40, nº 1, pg 1 (1969)
- (2) Cochran, W., Cowley, R. A., Handbuch der Physik, vol. 25/2a, pg 59 (1967), Berlin: Springer-Verlag
- (3) Born, M., Huang, K., Dynamical Theory of Crystal Lattices(1964), Oxford University Press
- (4) Maradudin, A. A., Montrol, E. W. Weiss, G. H., Ipatova, J.
 P., Theory of Lattice Dynamics in the Harmonic Aproximation (1971), Academic Press
- (5) Goldstein, H., Classical Mechanics (1969), Addison-Wesley Publishing Company
- (6) Montgomery, H., Proc. Roy. Soc., vol A 309, pg 521 (1969)
- (7) Lax, M., Symmetry Principles in Solid State and Molecular Physics (1974), John Wiley & Sons
- (8) Cornwell, J. F., Group Theory and Eletronic Energy Bands in Solids (1969), North-Holland Publishing Company
- (9) Heine, V., Group Theory in Quantum Mechanics (1969), Pergamon Press
- (10) Rudra, P., J.. Math. Phys., vol 6, pg 1278 (1965)
- (11) Zak, J., Casher, A., Gluck, M., Gur, Y., The Irreducible Representations of Space Groups (1969), W. A. Benjamin, Inc.
- (12) Kovalev, O. V., Irreducible Representations of Space Groups (1969), Gordon and Bread
- (13) Hurley, A. C., Phil. Trans., Vol, A 260, pg 1 (1966)
- (14) Cotton, F. A., Chemicals Applications of Group Theory (1971) John Wiley & Sons
- (15) Warren, J. L., Rev. Mod. Phys., vol 40, pg 38 (1968)
- (16) Tinkhan, M., Group Theory and Quantum Mechanics (1964) Mc

68.

Graw-Hill

- (17) Bouckaert, L. P., Smolochowski, R., Wigner, E., Phys. Rev., vol. 50, pg 58 (1936)
- (18) Cochran, W., Adv. Phys., vol. 9, pg 387 (1960)
- (19) Jona, F., Shiwane, G., Ferroelectric Crystals (1962), Perga mon Press
- (20) Baker, G. L., Armstrong, R. L., Can. J. Phys. vol 48, pg 1649 (1970)
- (21) Hendra, P. J., Park, J. D., Spectrochim. Acta, vol. 23 A, pg 1635 (1967)
- (22) O'Leary, G. P., Wheeler, R. G., Phy3. Rev. B, vol 1, nº 11 (1970)
- (23) Brown, I. D., Can J. Chem., vol 42, pg 2758 (1964)
 - (24) Van Driel, H. M., Armstrong, R. L., Mc Ennan, M. M., Phys. Rev. B, vol 12, nº 1 (1975)
 - (25) Jeffrey, K. K., Armstrong, R. L., Phys. Rev., vol 174, nº 2, pg 359 (1968)
 - (26) Armstrong, R. L., Baker, G. L., Jeffrey, K. R., Phys. Rev. B, vol 1, nº 7 (1970)
 - (27) Wiszniewska, M., Armstrong, R. L., Can. J. Phys., vol 51, pg 781 (1973)
 - (28) Baker, G. L., Armstrong, R. L., Can. J. Phys. vol 48, pg 1649 (1970)
 - (29) Van Driel, H. M., Wiszniewska, M., Moores, B. M., Armstrong, R. L., Phys. Rev. B, vol 6, nº 4 (1972)
 - (30) Cook, D. F., Armstrong, R. L., Can J. Phys. vol 49, pg 238 (1971)
 - (31) Wyckoff, R. W. G., Crystal Structures, vol 3 (1965), John Wiley & Sons

- (32) International Tables for X-Ray Crystallography (1969), The Kynoch Press
- (33) Debeau, M., Poulet, H. Spectrochim.Acta, vol 25 A, pg 1553 (1969)