"CARACTERIZAÇÃO DE FIBRA MONOMODO"

Ildefonso Felix de Faria Junior

Orientador:

Prof. Ramakant Srivatava

Tese apresentada ao Instituto de Física "Gleb Wataghin" da Universi dade Estadual de Campinas - UNICAMP, para obtenção de grau de MESTRE em Física.

Dezembro de 1982.

BC 33315 CM 0002965 79 I. FISICA - UNICAMP n.* classif.^{TTI} M n.* autor <u>F-2.260</u> ed. v. ex. n.; tombo. TMI 524

. ,

-

À Carmem L. de Faria

..**.***

.

.

À Mara M. de Faria

Agradecimentos:

Ao Prof. Ramakant Srivastava, pela proposta do presente trabalho, e a excelente orientação que permitiu a realização deste.

Ao Prof. Eric Bochove, pelas discussões e sugestões durante o trabalho.

Aos Professores e Colegas, por seus ensinamentos, discussões e estímulo.

Aos Profs. José Antonio Roversi e Carlos Lenz C<u>e</u> sar, pela elaboração e discussões dos programas de computação.

Aos técnicos do grupo, pelas sugestões, montagens e manutenção dos equipamentos utilizados.

> À Lori e Ana Toma pelo trabalho de datilografia. Ao CNPq e Telebrás pelo suporte financeiro.

٠.

Resumo:

Neste trabalho, duas técnicas para caracterização de fibras monomodo foram estudadas. Na primeira mede-se a in tensidade no campo afastado da fibra e usando a expressão para fibra de Índice degrau, determina-se a dependência de ângulo de meia intensidade $\theta_{1/2}$ e do ângulo θ_0 para qual o campo mostra primeiro mínimo, com o parâmetro v. Medidas de $\theta_{1/2}$ e θ_0 então fornecem valores de v e raio do núcleo da fibra. Na segunda téc nica, mede-se a variação do spot size ω em função do comprimento da onda λ usando a técnica de medição do campo próximo. Como es ta distribuição é quase gaussiana para qualquer tipo de perfil, a medida de ω é feita no ponto onde intensidade é $\frac{1}{2}$ do valor Usando expressões obtidas na teoria do perfil degrau máximo. equivalente (ESI), obtem-se valores de v e a, a partir da curva $\omega(\lambda)$. Esta técnica então fornece parâmetros de uma fibra equivalente de perfil degrau cujo campo próximo é o mesmo que da fibra real. Discutiremos as dificuldades de cada técnica e seus respectivos méritos.

Abstract:

In this work, two techniques for characterization of monomode fibers were investigated. In the first we measure the intensity in the far field of the fiber and, using the expression for step index fibres, we determine the dependence of the half intensity angle $\Theta_{1/2}$ and first minimum angle Θ_{n} where the field falls to zero, on the parameter v. Measuring the $\Theta_{1/2}$ and Θ_{α} we can determine the values of v and a, the radius of the nucleus. In the second techique, we measure the behavior of the spot size with the wavelength using near field technique. Since the distribution in the near field resembles gaussian for any kind of profile, ω is measured at the point where intensity is $\frac{1}{2}$ of the maximum value. Using expressions obtained in the theory of equivalent step index (ESI), we obtain values of v and a using the $\omega(\lambda)$ curve. This technique gives us parameters of an equivalent step index fibers whose near field is the same as that of the real fiber. The dificulties of each technique and its merits were discussed.

-

INDICE

I	-	INTRODUÇÃO			
I.1		Considerações Gerais	01		
1.2	-	Teoria de Guiamento Fraco	03		
II	-	CARACTERIZAÇÃO DE FIBRAS MONOMODO			
II.l	-	Técnica de Campo Afastado - Fibra com Perfil Degrau	11		
11.2	-	Fibras Monomodo com Perfil Degrau Equivalente	15		
II.3	-	Técnicas para Determinação da Fibra ESI	19		
III	-	EXPERIMENTAL	\$		
III.l	-	Campo Afastado	22		
		III.l.l - Descrição da Montagem	22		
		III.l.2 - Meios Utilizados para Medir a Intensida-			
•		de no Campo Afastado	26		
		i - Determinação da Distribuição de I <u>n</u>			
		tensidade no Campo Afastado Utili-			
		zando um XYZ Motorizado	26		
		ii - Medidas Feitas Através do Reticon			
		iii - Mesa Giratória	34		
		III.2 - Campo Próximo	35		
IV	-	CAMPO AFASTADO	40		
IV.2	-	Campo Próximo	49		
v	-	DISCUSSÃO DOS RESULTADOS	56		
V.1	-	Campo Afastado	56		
V.2	-	Campo Próximo	58		
VI	-	CONCLUSÃO	60		
REFERÊNCIAS 61					

CAPÍTULO I

INTRODUÇÃO

I.l - Considerações Gerais

As fibras ópticas têm sido objeto de grande interesse em todo o mundo e tem-se dispendido vultosos investimentos em sua pesquisa e desenvolvimento nos últimos anos. devido ao fato de elas constituírem um excelente meio para transmitir luz a grandes distâncias com um mínimo de atenuação e dispersão, preenchem os requisitos necessários às telecomuni cações tais como a ruídos externos, ausência de "cross talking " e a grande capacidade para transmitir informações dada pela altíssima frequência da portadora que é luz gerada por laser. Além destes pontos, pesa o fator econômico porque são feita de quartzo fundido, material em princípio muito barato e praticamente inesgotável na natureza.

Normalmente nos sistemas de comunicações em uso atualmente são instaladas fibras multimodo pelas facilidades de acoplamento com as fontes de luz, com outra fibra e a facilid<u>a</u> de para a fabricação. Hoje com o desenvolvimento de novas técnicas, a construção de fibras monomodo tornou-se mais simples e estas fibras apresentam vantagens sobre as multimodo para comunicação à longas distâncias. Como nestas fibras a luz só é guiada em um único modo, o problema da dispersão diminue dra<u>s</u> ticamente e podemos até operar em regime de dispersão nula, ⁽¹⁾o que ocorre para um determinado comprimento de onda. Pode-se a<u>s</u> sim transmitir taxas altíssimas a longas distâncias.

No Brasil já existe tecnologia para fabricação de fibras multimodo com perfil de índice de refração gradual. Esta tecnologia foi desenvolvida dentro de um programa envolvendo a Telebrás e a Unicamp e, como resultado um sistema interli gando duas estações telefônicas já está operando no Rio de Janeiro. A próxima geração de fibras ópticas será de fibras monomodo que serão produzidas na Telebrás a partir de 1983. Para estas fibras serão necessárias métodos diferentes de caracte rização. Algumas dificuldades tornam-se logo evidentes pois estas fibras apresentam o diâmetro do núcleo muito reduzido, (de cinco a dez vezes menor que o da multimodo), Isto impede 0 uso de técnicas convencionais de caracterização que são usadas para fibras multimodo. Por exemplo, usando microscopia óptica pa ra caracterização geométrica, os efeitos de difração mascaram o valor real do diâmetro do núcleo. Devemos então adotar méto indiretos como a determinação do diâmetro na pré-forma dos е admitir que as proporções são mantidas quando a fibra é puxada, ou depois do puxamento, podemos usar a informação contida na luz transmitida observando o campo próximo ou afastado na saída da fibra. Muitas técnicas para caracterização de fibras existem e continuamente surgem novos métodos. Poderíamos citar o mé (3) da análise do campo próximo refratado todo e a iluminação (4) lateral da fibra

Hoje ainda não se chegou a um consenso sobre qual método usar ou que parâmetros medir para caracterizar fibra mo nomodo⁽⁵⁾. Neste trabalho procuramos analizar as técnicas que tem sido discutidas ultimamente para caracterização de fibras monomodo, através da determinação da frequência normalizada,

raio de núcleo e o comprimento de onde de corte do modo LP11.

I.2 - Teoria de Guiamento Fraco

Uma fibra óptica é um guia dielétrico, constituído por um núcleo cilindricamente simétrico circundado por uma ca<u>s</u> ca que deve ter diâmetro bem maior que o do núcleo. Sendo o índice de refração do núcleo maior que o da casca haverá gui<u>a</u> mento de luz através do núcleo. Na situação ideal o guia de ¹ onda é reto, a casca, infinitamente espessa, é feita com um material dielétrico (normalmente silica sem perdas e sem dispersão material).

['] Uma fibra assim definida foi estudada teoricamente por Snitzer em 1961⁽⁶⁾. Uma estrutura como vemos na fig.l a<u>d</u> mite un espectro discreto de modos guiados onde as constantes de propagação β satisfazem a desigualdade⁽⁷⁾ abaixo

$$n_1 k > |\beta| > n_2 k \tag{1}$$

onde $k = \frac{2\pi}{\lambda}$, λ é o comprimento de onda da radiação, no vácuo.

Ao analisarmos os modos de propagação é convenien te introduzir parâmetros u, v e w, pelas equações:

$$u = a (n_1^2 k^2 - \beta^2)^{1/2}$$
(2)

$$w = a (\beta^2 - n_2^2 k^2)^{1/2}$$
(3)

$$v = (u^2 + w^2)^{1/2}$$
(4)

.

Fig. 1 - A - Corte Transversal de uma Fibra Óptica.

1 - B - Perfil de Índice de Refração do Tipo Degrau.

.

u, ω são parâmetros que surgem nas soluções da equação de onda para a fibra óptica. v é um importante parâmetro adimensional conhecido como frequência normalizada, que pode ser escrito, usando as equações (2) a(4):

$$\mathbf{v} = \mathrm{ak} \left(n_1^2 - n_2^2 \right)^{1/2}$$
(5)

onde $(n_1^2 - n_2^2)^{1/2}$ é a abertura numérica da fibra, que determina o ângulo de aceitação da fibra⁽⁸⁾.

A solução exata do problema da propagação nesta fi ** bra é conhecida ⁽⁶⁾ e apresenta equações de autovalores e com plicadas formas para seus campos, dificultando a análise dos resultados. Usa-se, portanto, a aproximação de guiamento fraco que oferece grande simplificação.

Guiamento Fraco

As fibras ópticas para telecomunicações têm $\Delta = (n_1^2 - n_2^2)/2 n_1^2$ da ordem de 10^{-2} ou seja $n_1 \approx n_2$. Para es ta situação, Snyder em 1969⁽⁸⁾ e Gloge em 1971⁽⁷⁾ estudaram uma solução simplificada onde os modos são aproximadamente po larizados linearmente e assumem a forma:

$$E_{\mathbf{x}} = \begin{cases} \frac{\mathbf{A} J_{\ell} \left(\frac{\mathbf{u}\mathbf{r}}{\mathbf{a}}\right)}{J_{\ell} \left(\mathbf{u}\right)} & \cos \ell \phi \\ \sin \ell \phi & \exp i\left(\omega t - \beta z\right); \mathbf{r} < \mathbf{a} \\ \sin \ell \phi & \mathbf{sen} \ell \phi \end{cases}$$

$$\mathbf{A} \quad K_{\ell} \left(\frac{\mathbf{w}\mathbf{r}}{\mathbf{a}}\right) / K_{\ell} \left(\mathbf{w}\right) \mid \frac{\cosh \ell \phi}{\operatorname{sen} \ell \phi} \| \exp i \left(\omega - \beta z\right); \\ \operatorname{sen} \ell \phi & \operatorname{sen} \ell \phi \end{cases}$$

$$(6)$$

O parâmetro A pode ser expresso em termos da potencia transportada pelo modo (6 e 10). O Índice ℓ que representa a ordem das funções de Bessel J_{ℓ} e das funções modificadas de Ha<u>n</u> kel K_{ℓ}, corresponde à simetria circular do modo.

Os campos longitudinais $E_z = H_z$ são obtidos atr<u>a</u> vés de uma combinação das soluções l+1 = l-1. Exprimindo as componentes dos campos em coordenadas cilíndricas e aplicando condições de contorno na interface núcleo-casca encontra-se a equação de autovalores aproximada para os modos linearmente polarizados (modo LP).

$$u \quad \frac{J_{\ell} \pm 1}{J_{\ell}(u)} = \pm \qquad w \quad \frac{K_{\ell} \pm 1}{K_{\ell}(w)}$$
(7)

Os modos LP são modos hibridos pois os campos apresentam componentes longitudinais e estes modos são ident<u>i</u> ficados pelos índices l e m (LP_{1m}) onde o índice m é usado para distinguir as diferentes soluções da equação de aut<u>o</u> valores (7) e está relacionado com a distribuição radial da energia. Cada modo é constituído pela superposição de modos $HE_{1+1,m} = EH_{1-1,m}$ ou $TE_{Om} = TM_{Om}$ (quando 1 = 0). As constantes de propagação dos modos $HE_{1+1,m} = EH_{1-1,m}$ são quase iguais na aproximação de Gloge, tornando-se exatamente iguais se $n_1 = n_2$.

Quando não consideramos $n_1 = n_2$, a equação cara<u>c</u> terística (7) torna-se (8), que é uma forma melhor aproxima da.

$$\frac{\mathbf{u}}{\mathbf{n}_{1}} \frac{J_{\ell}(\mathbf{u})}{J_{\ell}(\mathbf{u})} = \frac{+}{\mathbf{n}_{2}} \frac{K_{\ell \pm 1}(\omega)}{K_{\ell}(\omega)}$$
(8)

٠...

. Figura 2 - Constante Normalizada de Propagação b em Função da frequência Normalizada v.

o sinal (+) corresponde aos modos $He_{1+1,m} e$ o sinal (-) aos modos $EH_{1-1,m}$. Esta denominação HE ou EH refere-se a componente longitudinal do campo. Se houver predominância da componente E_z , o campo é chamado EH e se H_z é predominantemente em relação a E_z , teremos um modo HE ⁽⁶⁾.

O corte de um modo ocorre quando a maior parte de sua energia está viajando na casca, em curto espaço a energia é perdida, desaparecendo assim o modo. O ponto onde isto ocorre pode se calculado fazendo w=0 na equação (7), resultando $e^{m} J_{\ell} \pm 1^{(u_c)} = 0$. Neste caso v = v_c = u_c que é a frequência normalizada. de corte.

Resolvendo a equação (7) pode-se encontrar o valor de u como função de v e através da equação (2), obtemos as constantes de propagação β , que são de grande importância para o cálculo da dispersão. Gloge ⁽⁷⁾ definiu ainda a constante normalizada de propagação b que não depende da geometria da fibra.

$$b = 1 - \left(\frac{u}{v}\right)^2 \sim \frac{\beta/k - n_2}{n_1 - n_2}$$
 (9)

Esta constante b está representada na figura 2 como função da frequência normalizada v. Pode-se ver que para v = 2,405 somente o modo LP_{01} (ou HE_{11}) é guiado, isto é, a fibra é monomodo para valores de v menores que 2,405.

Para facilitar a compreensão do processo pelo qual a energia do modo é pedida quando w=0, isto é, no ponto de cor te, é interessante mostrar a fração de potência do modo que viaja pela casca, como função da frequência normalizada, dada pela expressão (10).

Figura 3 - Potência Relativa do Modo que se Propaga na Casca $\frac{P_c}{P_t}$ e no Nú cleo $\frac{P_n}{P_t}$ em Função da Frequên cia Normalizada v.

$$\frac{P_{casca}}{P_{total}} \stackrel{:}{=} \frac{u^2}{v^2} (1 - k_{\ell})$$
(10)

onde
$$k_{\ell} = \frac{K_{\ell}^{2}(w)}{K_{\ell-1}(\omega)K_{\ell+1}(\omega)}$$
 (11)

Na figura 3 apresentamos o comportamento da relação (10) com a frequência normalizada v⁽⁷⁾. Para v $\rightarrow \infty$ toda a energia viaja no núcleo porém quando assumimos valores finitos para v sempre haverá energia do modo guiado na casca. Um valor importante é v = 2,405, quando toda a energia do modo LP_{11} está na casca, indicando que somente o modo fundamental se propaga na fibra.

• :

CAPÍTULO II

CARACTERIZAÇÃO DE FIBRAS MONOMODO

II.1 - Técnica de Campo Afastado - Fibra com Perfil Degrau

Um dos métodos para medir o raio e a frequência nornalizada de uma fibra monomodo com perfil degrau foi apresentado por W. A. Gambling e colaboradores ⁽¹¹⁾. Este método está b<u>a</u> seado na distribuição de intensidade no campo afastado que é d<u>a</u> da pela equação ⁽¹²⁾, para o modo fundamental.

$$|\psi|^{2} = \left[\frac{u^{2}w^{2}}{(u^{2}-\alpha^{2})(w^{2}+\alpha^{2})} \left\{J_{0}(\alpha) - \alpha J_{1}(\alpha) \frac{J_{0}(u)}{uJ_{1}(u)}\right\}\right]^{2} p/u \neq \alpha$$

$$= \left[\frac{u^{2}w^{2}}{2v^{2}} \frac{1}{uJ_{1}(u)} \left\{J_{0}^{2}(\alpha) + J_{1}^{2}(\alpha)\right\}\right]^{2} p/u = \alpha$$
(12)

onde:

$$\alpha = \frac{2\pi a}{\lambda} \operatorname{sen} \theta = \operatorname{ka} \operatorname{sen} \theta \tag{13}$$

 $\theta \in o$ ângulo entre o eixo da fibra e a reta que liga a sua extremidade e o detector (Fig. 4.a).

Na figura 4.b, que pode ser construida a partir da <u>e</u> quação 12, vemos que o modo fundamental no campo afastado apresenta um lóbulo central seguido por lóbulos secundários. A posição dos lóbulos assim como a sua intensidade dependem do raio da fibra e da frequência normalizada. Assim, estes parâmetros <u>po</u> dem ser determinados medindo os ângulos $\theta_{1/2}$ e θ_0 que co<u>r</u> respondem respectivamente aos ângulos onde a intensidade cai

Figura 4 - Distribuição de Intensidade no Campo Afastado para uma Fibra Monomodo com Perfil Degrau.

para metade do seu valor máximo e para o primeiro mínimo.

Através da eq.12 podemos traçar gráficos para $\frac{1000}{\text{sen}\theta}$ e ka sen $\theta_{1/2} = \alpha_{1/2}$ como funções da frequência normalizada v.

Para a construção destes gráficos precisamos usar a relação entre u, w e v. Aqui utilizamos o parâmetro u determ<u>i</u> nado numericamente por E. Bochove⁽¹²⁾ e comparando com o resultado encontrado através de equações aproximadas, apresentadas por dois autores: primeiramente usamos a primeira equação sugerida por Snyder⁽¹³⁾.

$$u = u_{\infty} \exp\left[-\frac{1}{v}\right]$$
(14)

onde u_w representa valores das raizes da função de Bessel, se<u>n</u> do que para o modo fundamental, HE_{11} ,

$$u_{m} = 2,405$$
 (15)

Esta aproximação é boa para v > 3 portanto não é in teressante para o uso em fibras monomodo.

A segunda equação aproximada que utilizamos foi <u>a</u> presentada por $Gloge^{(7)}$, equação (16) que apresenta boa concordância com os valores calculados numericamente, para v > 1,4 sen do portanto boa para a utilização neste método.

$$u = \frac{(1+\sqrt{2})v}{1+(4+v^4)^{1/4}}$$
(16)

Esta técnica de caracterização consiste em calcular $\frac{\operatorname{sen}_0}{\operatorname{sen}_{1/2}}$, que levada aos gráficos da figura 5, fornece um va lor para v, através desta frequência normalizada, encontramos $\alpha_{1/2} = \operatorname{ka sen}_{1/2}$ de onde tiramos o valor do raio da fibra. No

Figura 5 - Relações entre Ângulos Medidos no Campo Afastado em Função da Freqüência Normalizada v.

capítulo IV, usaremos a curva em linha contínua para determinar ve a no capítulo IV.

II.2 - Fibras Monomodo com Perfil Degrau Equivalente

As considerações feitas até agora referem-se a uma fibra que tenha perfil de índice de refração na forma de um de grau, como mostra a figura 1. Na prática este tipo de fibra não é encontrada, devido a difusão de dopantes na casca e a evapora ção na parte central do núcleo quando se faz fechamento da prefor ma que provocam grandes distorções no perfil de índice, devidas à reduzida dimensão do núcleo (de três a dez microns de diâmetro). Além destes defeitos comuns, encontramos outros perfis que tem sido propostos para melhorar as características de propagação e aumentar o diâmetro do núcleo ⁽¹⁴⁾. A forma geral de representar o perfil de índice e dada pela expressão (17) abaixo:

$$n_{2}(\mathbf{r}) = \begin{cases} n_{1} \left[1 - 2\Delta \left(\frac{\mathbf{r}}{a}\right)^{g} \right]^{1/2} \text{ para } \mathbf{r} < a \\ n_{1} \left[1 - 2\Delta \right]^{1/2} \text{ para } \mathbf{r} > a \end{cases}$$
(17)

sendo ∆ definido por

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} \tag{18}$$

quando

$$n_1 \tilde{\sim} n_2 , \Delta \tilde{=} \frac{n_1 - n_2}{n_2}$$
 (19)

onde n₁ é o máximo valor de índice de refração.

Note-se que quando $g = \infty$ a fibra tem perfil degrau e para g = 2 o perfil será parabólico.

Mesmo quando o perfil não é degrau, a não ser para casos extremos, a distribuição de intensidade do modo fundamental assemelha-se a uma forma gaussiana (15-17). Isto levou Ma tsumura et al⁽¹⁴⁾ a propor que esta fibra de perfil arbitrário pudesse ser representada por uma de perfil degrau que apresentas uma distribuição de energia do modo fundamental com quase as se mesmas características que a fibra arbitrária. Esta fibra degrau foi denominada fibra ESI (Equivalent step index). A fibra ESI per mite uma avaliação das características de propagação da fibra ar bitrária pois estas características seriam aproximadamente as mesmas que a da fibra degrau. Usando parâmetro da ESI, pode-se obter perdas devidas as emendas e microcurvaturas. Porém, o mode lo de ESI não preve a dispersão com boa precisão $^{(18)}$.

O cálculo dos parâmetros da fibra de ESI está baseado na definição de Marcuse⁽¹⁶⁾ para o coeficiente de transmissão T que é a fração da energia de um campo gaussiano incidente na superfície da fibra e que se acopla no modo fundamental. T é dado pela expressão 20.

$$T = \frac{1}{P_{O}} \left[\int_{0}^{\infty} \frac{A}{\omega} \exp\left[-\frac{1}{2} \left(\frac{r}{\omega}\right)^{2} \right] E(r) r dr \right]^{2}$$
(20)

onde E(r) é o campo do modo fundamental dado pela equação 6.

A e ω são parâmetros do campo gaussiano incidente. ω mede o "spot size" que é a extensão espacial do campo, medida referente ao ponto onde a intensidade atinge l/e do seu v<u>a</u> lor máximo.

O coeficiente de acoplamento T, entre o modo fundamental e uma gaussiana é uma função do "spot size" e atin-

Figura 6 - Perfis de Índice Típicos com os Respectivos Perfis da ESI (Ref.14)

Para encontrar os parâmetros da fibra degrau equivalente teremos que procurar um valor de ω_s mais próximo de ω da fibra considerada. Assim, se $\omega = \omega_s$:

$$\omega_{s} - \omega = a_{s}G_{s}(v_{s}) - aG(v,g) = 0$$
(27)

Portanto a função

$$J = \frac{1}{a} \int_{v_1}^{v_2} (\omega_s - \omega) dv$$
 (28)

terá um valor mínimo, para um certo par a , v que pode ser , encontrado tomando a derivadas de J e igualando a zero.

$$\frac{\partial J}{\partial a_{e}} = 0 \tag{29}$$

$$\frac{\partial J}{\partial v_{\rm S}} = 0 \tag{30}$$

Desta maneira Matsumura et al $^{(14)}$ determinou a fibra ESI para casos típicos que são fibras com perfil W, gradual e degrau com dip no centro, resultando em distribuições de índice de refração n(r) como nos desenhos da figura 6.

II.3 - Técnicas para determinação de Fibra ESI

Diversos pesquisadores (19-26) têm apresentado dif<u>e</u> rentes métodos para a determinação experimental dos parâmetros da fibra ESI. Todos estes métodos envolvem a medição do spot size do modo fundamental como função do comprimento da onda. Para a fibra monomodo, a distribuição da intensidade é quase gaussiana e o spot size é a medida da largura para $\frac{1}{e}$ do valor máximo da gaussiana que melhor se ajusta à distribuição.

O comportamento de $\omega \mod \lambda$ indica claramente o ponto de corte pois ao aproximarmos do $\lambda_{\rm C}$ de um modo, sua energia passa rapidamente para a casca (veja fig. 3) aumentando assim o volume que ele ocupa na fibra e em consequência observamos uma rápida elevação do valor do spot size medido no campo próximo e a seguir uma queda brusca em ω indicando o corte do modo. Desta prática podemos extrair o valor de $\lambda_{\rm C} \in \omega_{\rm C}$ (compr<u>i</u> mento de onda e spot size no ponto de corte. Com este par de v<u>a</u> lores $\lambda_{\rm C} = \omega_{\rm C}$ calculamos a_s e a frequência normalizada da fibra teste.

Levando em conta que $\lambda_1 v_1 = \lambda_2 v_2$ que vale para regiões onde não ocorre grande variação do índice de refração com o comprimento de onda⁽²⁸⁾ e que podemos escrever a equação 26 como:

$$a_s = \omega_c / (0,65 + 1,619 v_s^{-1,5} + 2,879 v_s^{-6})$$
 (31)

onde v_s é a frequência normalizada da fibra equivalente que pode ser calculada para um comprimento de onda λ pela rel<u>a</u> ção:

$$v_s = 2,405 \frac{\lambda_c}{\lambda}$$
 (32)

Finalmente a abertura numérica é calculada usando a equação 5 onde v_s, a_s e λ são conhecidos

$$(A.N.)_{S} = \frac{v_{S}^{\lambda}}{2\pi a_{S}}$$
(33)

Uma alternativa para calcular os parâmetros ESI é a utilização da informação contida na curva $\omega = \omega(\lambda)$ para a <u>re</u>

gião onde a fibra é monomodo. Os métodos propostos por Millar⁽²¹⁾, Matsumura e colaboradores⁽¹⁴⁾, Alard e colaboradores⁽²⁰⁾ apresen tam o inconveniente de serem muito sensíveis a erros experimentais pois um pequeno desvio na curva $\omega \ge \lambda$ induz a grandes er ros na determinação de $\frac{d\omega}{d\lambda} \Big|_{\lambda} = \lambda_{co}$ assim como nos parâmetros encontrados quando se procura ajustar a equação 26 aos pontos experimentais.

Para fazer este ajuste modificamos a equação 26 para a forma:

$$\omega_{\rm s} = \mathbf{A} + \mathbf{B}\lambda^{3/2} + \mathbf{C}\lambda^6 \tag{34}$$

onde

$$A = 0,65 a_{s}$$

$$B = 1,619 a_{s} / (2\pi a_{s} (A.N.)_{s})^{3/2}$$

$$C = 2,879 a_{s} / (2\pi a_{s} (A.N.)_{s})^{6}$$

Encontrando os parâmetros A, B e C podemos calcular o raio efetivo a e a abertura numérica efetiva (A.N.)_s.

CAPÍTULO III

EXPERIMENTAL

III.1 - Campo Afastado

III.1.1 - Descrição da Montagem

Para a determinação da distribuição de intensidade no campo afastado usamos basicamente o esquema apresentado na figura 7. Como fonte de luz usamos diversos tipos de laser: de He-Ne, de argônio, de corante, de Rodamina-6G e um laser de arseneto de gálio fabricado na UNICAMP que emite em 0,86 microns. Para o laser de GaAs foi necessário colimar a luz através de uma lente de microscópio que era colocada bem próxima ao laser. Isto é indispensável neste caso pois a luz emitida por um diodo laser é bastante divergente, não permitindo um bom acoplamento entre laser e fibra (28). A fibra apresen ta uma abertura númérica da ordem de 0,1 e um ângulo crítico para a reflexão interna total em torno de 7⁰. Já um laser de semicondutor apresenta ângulos de abertura em torno de 10° no plano paralelo à junção e 50⁰ no plano perpendicular.

Se a luz está distribuída dentro de um ângulo menor que o ângulo crítico o acoplamento poderá ser bom. Por i<u>s</u> to colimamos a luz do laser para depois focalizar novamente com outra lente de microscópio com abertura numérica o mais próximo possível da abertura da fibra. Usamos uma lente X8 de abertura numérica igual a 0,2.

Antes de ser lançada na fibra, a luz passava por um chopper que fazia parte do sistema de deteção escolhido para minimizar os efeitos de ruidos. Colocamos filtros que foram utilizados para proteger a fotomultiplicadora permitindo assim

ESQUEMA DA MONTAGEM-CAMPO AFASTADO

23

• ...

um range dinâmico de até 10⁶.

Uma parte da luz era desviada antes do lançamento para ser usada como referência e comprar com a luz na saída da fibra. A normalização era feita para suprimir o problema causado pelas flutuações na intensidade do laser.

A superfície da fibra era preparada através de téc nica convencional de clivagem⁽²⁷⁾. Produzíamos um defeito na casca da fibra com um material mais duro que o vidro por exemplo a safira ou o diamante e aplicávamos uma força de tra ção que provoca a propagação do defeito, produzindo assim 🚬 uma superfície plana. A repetitividade deste processo não é grande e toda a vez que "cortamos" a fibra é necessário obser var a superfície através de um microscópio para constatar se o corte está adequado para o lançamento, ou seja uma superficie plana e perpendicular ao eixo da fibra.

Nas extremidades da fibra precisamos usar meios pa ra eliminar a luz que se propaga pela casca pois sem isto esta remos medindo uma soma da luz no modo fundamental com a luzguiada pela casca e ainda outros modos de ordem superiores pro duzindo um resultado afastado da distribuição de luz do modo Para que haja eficácia na eliminação desta fundamental. luz, construimos um misturador de modos cortando dois pedaços de ma deira de modo que formassem uma ondulação periódica conforme mostra a figura 8. A fibra foi apertada entre os dois pedaços de madeira que para evitar o rompimento da fibra era re vestido com uma fina espuma plástica. As curvaturas а que as fibras provocam a perda de modos guiados eram submetidas pela casca assim como a luz de modos de ordens superiores que de corte são muito sensíveis à curva estando próximos do v

.,

turas. Este dispositivo faz com que a luz deste modos que tem baixo confinamento passe totalmente para a casca e a seguir são eliminados mergulhando a fibra em líquido que tenham índice de refração maior que a casca da fibra. Normalmente usamos glicerina para este fim.

O acoplamento laser-fibra requer um sistema muito rigido porque a luz deve ser focalizada em uma área de dimensões muito reduzidas (na fibra monomodo o raio varia entre 2 e 5 microns). Por isto as lentes deveriam ficar solidamente presas à bancada óptica podendo estar fixadas por exemplo em micro posicionador. A fibra era fixada em microposicionadores que permitam o ajuste de ângulos e posições transversais e longitudinal ao eixo de propagação da luz. Isto era feito com dois posicionadores: um angular que era fixado sobre um outro linear.

III.1.2 - Meios Utilizados para Medir a Intensidade no Campo Afastado.

i - Determinação da Distribuição de Intensidade no Campo Afastado Utilizando um XYZ Motorizado.

Nas primeiras varreduras feitas no campo afastado empregamos um microposicionador provido com motores acoplados nos três eixos e a este posicionador vinculamos um fotodetetor do tipo PIN que continha, colado a sua janela, uma lâmina com um orifício de 50 microns de diâmetro. Este detetor podia então ser deslocado em três direções perpendiculares entre si sendo duas perpendiculares ao feixe de luz. O sinal refletido pelo fotodetetor provinha do m<u>o</u> do fundamental e era medido através de um amplificador lock-in que tinha uma saída ligada diretamente a um registrador do strip-chart. Desta maneira a distribuição de intensidade p<u>o</u> dia ser registradora em gráficos que apresentamos na figura 9.

Este sistema não se mostrou muito satisfatório pois os motores XYZ so permitiam movimentos com um deslocamento má de 10 mm, isto nos obrigava a manter uma velocidade muiximo to baixa para não sofrer efeitos das constantes de tempo dos a parelhos, o que dificultava a execução da experiência porque o sistema de controle de velocidades do motor não era apropriado para manter velocidades baixas e constantes. Além do mais o movimento era linear enquanto havia necessidade de que o detetor descrevesse um círculo em frente da ponta da fibra pois estávamos medindo um campo que se distribuia dentro de um ānqulo em torno de 20⁰ e o efeito da curvatura tornava-se sensível embora não afetasse muito nossas medidas dado que a região onde estava concentrada nosso interesse estava dentro de uma abertura de uns 7⁰ a partir do centro do feixe.

Este método foi deixado de lado quando recebemos um sistema de fotodiodos que era um arranjo linear contendo 1024 fotodetetores e leitura deste fotodiodos era feita por um circuito eletrônico de varredura que podíamos ligar a um o<u>s</u> ciloscópio. Este sistema será descrito no próximo artigo deste capítulo.

no Campo Afastado

ii - Medidas Feitas Através do Reticon

Para a utilização do Reticon foi necessário modifi car a montagem experimental pois introduzimos um osciloscópio onde a distribuição do campo era observada continuamente е de onde tirávamos fotografias. O emprego do osciloscópio é indispensável para um posicionamento correto do Reticon. Observando no video a forma do campo podíamos verificar se o arranjo está colocado fora do centro ou inclinado com ângulo diferente de 90⁰ em relação ao eixo de propagação da luz. Na figura 10 ۴. ver os efeitos de desvios no posicionamento do array. podemos Em 10-A vemos a situação que ocorre quando colocamos o arranjo formando um ângulo diferente de 90° com eixo óptico. Em AA' o posicionamento correto resultando assim em uma figura simétrica enquanto em BB' surge uma assimetria devida ao mau posicionamento. Girando o arranjo podemos ajustar a posição adequada. Se o arranjo não está colocado no centro do feixe a intensidade vista na tela será menor que um certo valor máximo que pode ser encontrado deslocando o array ou a fibra (figura 10-B).

A determinação do ângulo para meia intensidade pode ser feito através das fotografias tiradas no osciloscópio po rém um método mais preciso que encontramos foi construir um gráfico usando um"strip-chart recorder" que permite construir gráficos com dimensões controladas através de diversas escalas de sensibilidade. O sinal recebido pelo registrador vinha de um "signal averager" que efetuava a media de milhares de varredu ras do Reticon e armazenava um resultado contendo menos ruídos.

O Reticon apresentou problemas que nos forçaram a mais uma vez trocar o sistema de medidas. Um dos problemas era

•

Figura 10 - Possíveis Distorções Observadas no Osciloscópio

aquele já mencionado no caso anterior da linearidade da varredura; um outro problema era o efeito causado pela luz coerente utilizada que distorcia completamente o sinal recebido pelo detetor. O arranjo tem uma janela de vidro que protege os diodos e que tem aproximadamente l mm de espessura Quando a luz coe rente atravessa esta janela surge uma figura de interferência dada pelo etalon formado entre as faces da janela. Este padrão de interferência se superpõe a luz do campo que vem da fibra resultando uma estrutura que impede que possamos medir o máximo central assim como a largura do feixe. Este efeito pode ser observado na figura abaixo.

Fig. 11 - Fotografia no osciloscópio de I (0)

Para constatar se este é um efeito da coerência da luz, lançamos na fibra a luminescência de um laser de semicondu tor e a figura na tela do osciloscópio surgiu sem as oscila ções que vemos na figura 11. Quando a corrente do laser era elevada acima do limiar observávamos o mesmo padrão da figura 11. Colocando um papel fino em frente a janela do arranjo também causava o desaparecimento das oscilações sobre a figura do modo. O efeito da colocação de um pedaço de papel na trajetória da luz é a quebra da coerência espacial mas deve-se ter o cuidado de medir a luz logo na superfície do papel porque a distribuição de intensidade fica completamente deformada a uma dis tância muito curta do difusor. A espessura do papel deve ser escolhida cuidadosamente pois se usarmos uma folha muito fina, como o papel vegetal usado para desenho, não conseguiremos eliminar as franjas de interferência e se usarmos uma folha espes sa demais o campo ficará alargado.

Um outro recurso empregado foi colocar uma lâmina de vidro em contato com a janela do arranjo tendo entre elas um l<u>í</u> quido para casamento de índice de refraçao. Com isto alargamos a janela ficando assim com um outro etalon que produzia franjas de interferência bem finas e juntas como vemos na fotografia na figura 12.

Além destes inconvenientes, os métodos descritos aci ma sofrem de uma desvantagem de possuir um baixo range dinâmico.

Portanto, optamos por um sistema giratório que permi tia medir a distribuição angular real do campo usando fotomultiplicadora para deteção sendo ainda este método livre das di<u>s</u> torções citadas.

Figura 12 - Distribuição de Intensiddade Vista no Osciloscópio

٠.

iii - Mesa Giratória

Trata-se de uma mesa circular feita com uma chapa de aluminio de 2 cm de espessura. O tampo da mesa está fixado <u>a</u> través de uma roldana à sua base, como vemos na fotografia da f<u>i</u> gura 13. No centro há um suporte para fibra que fica imóvel e<u>n</u> quanto na extremidade da mesa fixamos uma fotomultiplicadora que podia girar, percorrendo suavemente uma trajetória circular em frente da fibra. Para movimentar a mesa usamos um motor com velocidades ajustáveis.

Fig. 13 - Fotografia da mesa giratória

O uso da fotomultiplicadora nos ofereceu uma grande vantagem pois colocando esta montagem dentro de um ambiente completamente escuro houve a possibilidade de alcançar um range dinâmico de 60 dB, exigido para medir máximos secundários no cam po afastado do modo fundamental. A posição e a intensidade destes máximos depende das características da fibra⁽³⁰⁾ e para uma das fibras usadas, a relação de intensidades entre o máximo cen tral e o primeiro secundário era de 10⁴, o que era impossível observar com um fotodetetor PIN-10.

Na figura 14 podemos ver a distribuição de luz extraída através deste sistema.

Através de um relé "reed" medimos ângulos pois fizemos uma calibração de forma que dois imãs colocados sobre a mesa aciona o relé fechando os contatos cada vez que a mesa <u>gi</u> rava fazendo com que os imãs passassem perto do relé que estava fixo numa posição perto do centro da mesa.

A passagem de um imã pelo relé produz uma sequência de duas operações. O contato é fechado na aproximação, abre quan do o ímã está diretamente sob o relé e fecha novamente quando o ímã se afasta. Isto pode ser visto na figura 14 onde temos três degraus correspondendo a dois fechamentos de contato, para o primeiro ímã e a primeira operação para o segundo ímã. A di<u>s</u> tância entre os ímãs foi tal que correspondia a um ângulo de 40° , fornecendo então uma escala para medir os ângulos na f<u>i</u> gura 14.

III.2 - Campo Próximo

A distribuição de intensidade no campo próximo foi

Figura 14 - Distribuição de Intensidade no Campo Afastado Evidenciando

o Máximo Secundário

medida através do deslocamento transversal (off set) de duas f<u>i</u> bras idênticas com extremidades cuidadosamente clivadas que são colocadas face-face separadas por uma distância muito pequena, em torno de 5 µm.

Marcuse⁽¹⁶⁾ mostrou que o coeficiente de transmissão <u>a</u> través de uma emenda onde as fibras estão deslocadas, (off set) uma com relação a outra, assume a forma:

$$T = \frac{T}{T_{O}} = \left(\frac{2\omega_{1}\omega_{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\right)^{2} \exp\left[-\frac{2d^{2}}{\omega_{1}^{2}+\omega_{2}^{2}}\right]$$
(35)

onde - T é a potência acoplada quando há um deslocamento late ral d.

- T_o potência acoplada quando as fibras estão com os eixos perfeitamente alinhados.
- $\omega_1 = \omega_2$ o spot size da gaussiana que melhor se ajusta à distribuição do modo fundamental.
- d deslocamento indicado na figura 16.

Quando as fibras são idênticas $\omega_1 = \omega_2$, então a equação (35) fica:

$$T = T_{o} \exp(-d^{2}/\omega^{2})$$
 (36)

Desta forma, medindo a potência na saída da segunda fibra teremos a distribuição de intensidade no campo próximo da pr<u>i</u> meira. Ajustando uma gaussiana à esta distribuição teremos o valor de ω que será o spot size do modo fundamental.

A montagem experimental está esquematizada na figura 15, o microposicionador onde colocamos a extremidade da fibra lançante e da fibra recebedora permitia movimentos nas d<u>i</u> reções X Y e Z assim como em três ângulos α , θ e ψ através de

EMC ELIMINADOR DE MODOS NA CASCA f1 # f2 PEDAÇOS DE UMA MESMA FIBRA ÓPTICA

Figura 15 - Esquema da Montagem Usada para Medir Campo Próximo

um microposicionador angular, possibilitando assim um acoplamento perfeito, sem ângulo ou grandes separações longitudinais. Para verificar isto usamos um microscópio para observar as extremidades das fibras na junção.

O deslocamento d era feito através de um motor aco plado no microposicionador. Este motor permitia o deslocamento em passos de 0,4 µm.

Para evitar reflexões nas faces clivadas das duas f<u>i</u> bras, usamos um líquido com índice de refração maior que que o vidro para preencher o espaço entre as fibras.

Quatro lasers foram usados para permitir a determi nação do comportamento do spot size com o comprimento de onda: Ar, laser de corante (Rodamina 6 G), HeNe e GaAs.

Uma maneira alternativa para determinar o spot size no campo próximo é o cálculo através do spot size no campo afas tado. Para isto usamos a relação (37) que relaciona a largura da gaussiana $(\theta_s) \in \mathbb{R} \xrightarrow{I_0}_e$ no campo afastado com ω_s , a largura no campo próximo:

$$\omega_{\rm s} = \frac{2}{{\rm kn}_1 \theta_{\rm s}} \tag{37}$$

A forma da distribuição de intensidade no campo <u>a</u> fastado para uma fibra monomodo assemelha-se a uma gaussiana quando v = 2,4. A presença de lóbulos secundários não afetam a medida⁽¹⁴⁾.

, CAPÍTULO IV

RESULTADOS OBTIDOS

IV.1 - Campo Afastado

As fibras usadas foram denominadas conforme a segui<u>n</u> te relação:

Fibra	Diâmetro Nom	inal λ_{c}
Α	8 µm	0,9 µm
В	4,8 µm	0,5 µm
с	6,0 μm	0,7 μm
D	10,0 µm	1,20µm
Е	~ 3 µ	-

A fibra E possue um núcleo elíptico e suporta o modo fundamental para $\lambda = 0,6328 \mu m$ preservando sua polarização.

As figuras 16 a 20 apresentam distribuição angular da intensidade transmitida pelas fibras, A, B, C, D e E, respectivamente, para o modo fundamental em $\lambda = 0,6328 \ \mu m$. Os pon tos mostram dados experimentais enquanto que a linha correspon de a um fitting com gaussiana. Juntamente com estes gráficos apresentamos os valores calculados para a, v e Δn usando as <u>e</u> quações (12), (13) e (16) com as quais construimos a figura 5, conforme procedimento citado no capítulo II, baseado no trabalho de Gambling, et al ⁽¹¹⁾.

Como já foi dito no capítulo II, além do lóbulo central mostrado nas figuras 16 a 20, existem lóbulos secundários com intensidades muito inferiores. Na figura 21 vemos a distribuição de intensidade para a fibra A abrangendo a região onde ocorre o primeiro máximo secundário, quase 23 dB abaixo do máximo central. Para as outras fibras os resultados foram similares excepto no caso da fibra D onde não observamos máximos secundários e portanto não pudemos determinar o ângulo θ_0 .

•

Voltando as figuras 16 a 20 podemos notar que 0 fitting com gaussiana dos dados de cada fibra não é da mesma qualidade. As razões são várias: em primeiro lugar o sistema de medição pode influir. Em nosso caso, dois sistemas diferen tes foram usados para medir a intensidade como função do ângu-.. e D (figuras 16 e 19) usamos arranjo lo: para as fibras A de fotodiodos enquanto que para as fibras B, C e E (figuras 17, 18 e 20) usamos o sistema de mesa giratória e fotomultiplicadora. Como podemos ver pelos fittings, o resultado obtido com arranjo não é satisfatório se comparado com os obtidos usando fotomultiplicadora, pois a estrutura que acompanhava a distribuição de intensidade, conforme falamos no capítulo III não permite uma determinação exata dos pontos experimentais, resultando em um fitting pobre. Em contrapartida nos gráficos correspon dentes às fibras B, C e E vemos uma distribuição mais suave dos pontos experimentais, permitindo assim um ajuste melhor com uma gaussiana.

Um outro fator que pode introduzir erro nos casos das fibras A e D é que o valor de v está em torno de 4, permitindo a propagação de vários modos e para observarmos somente o modo fundamental nestas fibras, foi necessário usar técnicas de lançamento seletivo (32) e um eliminador de modos (mode stripper) descrito no capítulo III, figura 8. O desvio que observamos nos pontos experimentais da figura 16 entre os angulos -3° e

 -2° pode ser devido a uma componente de modo de ordem superior que não foi totalmente eliminado.

Para minimizar o erro causado por possíveis falhas fizemos inúmeras determinações para a distribuição de intensid<u>a</u> de no campo afastado para cada comprimento de onda para todas as fibras. Fizemos uma estatística com os valores encontrados e apresentamos um erro que é o desvio médio quadrático dos val<u>o</u> res experimentais.

42

٠.

Figura 17 - Distribuição Angular da Intensidade no Modo LP $_{01}$ para a Fibra B $\overset{4}{}$

Figura 18 - Distribuição Angular da Intensidade no Modo LP₀₁ para a Fibra C.

Figura 20 - Distribuição Angular da Intensidade no Modo LP para a Fibra E

.Figura 21 - Distribuição Angular da Intensidade no Modo LP₀₁, Apresentando o Máximo Secundário. Fibra A.

<u>م</u>

IV.2 - Campo Próximo

Nesta secção usamos duas formas para a determinação do spot size no campo próximo: primeiramente usando a técnica descrita por Millar⁽²¹⁾ que citamos no capítulo III e, em segundo lugar calculamos o spot size usando os dados obtidos no campo afastado, utilizando a equação (37) que relaciona a largura da gaussiana no campo próximo com a largura no campo afastado. Isto pode ser justificado tendo em vista que a distribuição de intensidade para o modo fundamental é quase gaussiana no núcleo da fibra. Como pudemos observar na figura 22 onde mostramos a distribuição radial da intensidade para a fibra B, no cam pro próximo para $\lambda = 0,6328$ µm.

O spot size foi medido no ponto onde a intensidade cai a l/e do valor máximo tanto no campo próximo quanto no campo afastado. Pois segundo Gambling, et al⁽¹⁵⁾ a diferença percentual entre esta definição e da equção 21 é de 1,5% quando 2,0 < v < 2,4.

Utilizamos somente a fibra B para este estudo por que não possuíamos a facilidade de variar o comprimento de onda continuamente, pois dispunhamos de quatro lasers (Ar, Corante -Rodamina GG, HeNe e GaAs) que nos permitia varrer o espectro en tre $\lambda = 0,4579$ e $\lambda = 0,86$ µm em intervalos discretos de λ , sendo grande o intervalo de λ sem informação entre os diversos lasers. Afortunadamente a fibra B apresenta λ_0 dentro da fai xa de λ do laser de argônio permitindo a determinação precisa de λ_c . As outras fibras apresentam corte em regiões nas quais não podíamos obter informações detalhadas. Na figura 23 construimos um gráfico de ω em função de λ utilizando os pon tos obtidos através da técnica de Millar⁽²¹⁾. A barra de e<u>r</u> ros apresentada no gráfico foi calculada para cada ponto através de média extraida dos varios valores medidas em c<u>a</u> da comprimento de onda.

O comprimento de onda de corte do modo LP_{11} pode ser determinado facilmente neste gráfico de $\omega \propto \lambda$ (figura 23) pois na região monomodal vemos a suave diminuição de ω com a diminuição de λ , ao atingirmos o valor λ_c o spot size passa a crescer rapidamente pois a fibra começa a permitir o guiamento do modo LP_{11} . O spot size atinge um determinado valor máximo e volta a cair suavemente. Para determinação do ponto (ω_c, λ_c) fizemos uma extrapolação do gráfico⁽²¹⁾, prolongando o segmento da curva na região monomodal e da parte ascendente correspondente à admissão do modo LP_{11} . O ponto de encontro destes dois prolongamentos fornece o valor de $\omega_c \in \lambda_c$.

Em posse deste par de valores, encontramos os pa râmetros da fibra de ESI, através das equações (31), (32) e (33). Estes resultados que estão anotados junto ao gráfico na figura (23) serão comparados com os valores extraídos através de técnica alternativa cujos resultados apresentamos nas figu ras 24 e 25, que foram construídas a partir do campo afastado.

Como foi dito anteriormente, para que a fibra não guiasse o modo LP_{11} utilizamos o eliminador de modos o que nos forneceu uma distribuição quase gaussiana para todos os com primentos de onda utlizado.

Os parâmetros da fibra de ESI, neste caso, foi d<u>e</u> terminado fazendo um fitting com a equação (34) de onde tir<u>a</u> mos os valores das constantes A, B e C e daí, $2a_s$, $v_s e \Delta n_s$. Repetimos este procedimento duas vezes: uma considerando t<u>o</u>

dos os pontos experimentais (figura 24) e outra vez sem o ponto correspondente ao arseneto de gálio. Notamos que nestes dois resultados uma discrepância que ocorre ao considerarmos 011 não o valor de (ω, λ) para o laser de GaAs. Pois com a falta de pontos (ω, λ) entre o HeNe e o GaAs, (causando um espaçamento de > 2000 Å) faz com que os parâmetros ajustados fiquem dependentes destes dois últimos pontos que passam a ter individual um peso muito grande. Além disso, cada laser necessita mente uma montagem separada, alterando assim as condições experimentais.

Como não dispomos de fonte versátil para varrer continuamente a região do espectro que nos interessa não foi possível utilizar esta técnica para outras fibras na d<u>e</u> terminação dos parâmetros ESI.

a Fibra B.

CAPÍTULO V

DISCUSSÃO DOS RESULTADOS

V-1 - Campo Afastado

Na Tabela V-1 comparamos os valores encontrado por duas técnicas diferentes, para o raio das fibras usadas. Na pr<u>i</u> meira coluna o raio foi calculado através do campo próximo e na segunda coluna os valores medidos por um microscópio.

Os erros assinalados no método do campo afastado for ram calculados através das diversas medidas efetuadas, das quais tiramos o desvio médio quadrático. Os erros nas medidas por mi croscópio correspondem a $\frac{1}{3}$ da menor divisão da escala. Como po demos observar a precisão do microscópio não é boa para medir diâmetros menores que 10 µm.

Fibra	a _s (µm)	a microsc. (µm)
А	3,8 + 0,2	4,0 + 0,3
В	1,88 ± 0,04	2,4 ± 0,3
С	3,6 [±] 0,1	3,0 ± 0,3
D	5,35 ⁺ 0,15	5,3 ± 0,3
E	$\begin{cases} 1,93 \stackrel{+}{=} 0,04 \\ 1,55 \stackrel{+}{=} 0,08 \end{cases}$	$\begin{cases} 2,3 \stackrel{+}{=} 0,3 \\ 1,5 \stackrel{+}{=} 0,3 \end{cases}$

Tabela V-1 - Raio das fibras: a_s - encontr<u>a</u> do por campo afastado; a_{microsc}. medido no microscópico.

Os valores determinados pelo método do campo afastado, são parâmetros efetivos da fibra pois são extraídos da luz que sai da fibra. Estes valores são compatíveis com os de terminados por microscópio. Porém, a exatidão dos valores encontrados não pode ser perfeitamente analisada sem o conhecimento do real perfil de índice, com o qual poderíamos decidir até a validade do método, pois este é próprio para uso em fibras com perfil degrau, o que não ocorre na prática. A presença de dip. e outras irregularidades no perfil de Índice não estão previstas no modelo teórico e estas irregularidades alteram a distribuição dos máximos secundários, afetando tanto as suas intensidades como a posição. Podemos comparar, por exemplo a fibra A para a qual a relação das intensidades do máximo central e do primeiro máximo secundário era de apenas 24 dB en quanto que para a fibra B era 50 dB.

Embora não tenhamos conehcimento exato do perfil de índice de refração para cada fibra estudada, resultados preliminares usando interferometria transversal mostram que as fibras não possuem perfil degrau. Portanto o método de. campo afastado aqui estudado não é muito útil, uma aplicação mais adequada seria a utilização de uma teoria recentemente desenvolvida⁽³³⁾ que se baseia no fato de que a distribuição de intensidade do modo fundamental não ser exatamente uma qaussiana, especialmente para v < 2. Este método determina os parâmetros de uma fibra gradual equivalente à fibra em estudo e estes parâmetros são calculados a partir de $\Theta_{1/2}$ que determinamos neste trabalho. Atualmente estamos estudando esta teoria para aplicá-la em nossas fibras e determinar fiа

bra gradual equivalente.

V-2 - Campo Próximo

Foi mostrado que, através da análise do comportamen to do spot size com o comprimento de onda, é possível determi nar o comprimento de onda de corte e, utilizando o par de valores (ω_c , λ_c) podemos calcular os parâmetros da fibra ESI.

Dos métodos utilizados podemos ver que o mais apropriado é aquele em que determinamos $\omega_c e \lambda_c$ pois o método de fitting é muito sensível ao número de pontos disponíveis que no nosso caso era limitado para valores maiores que λ_c . A consequência de termos um pequeno número de pontos na região onde a fibra é monorodo pode ser vista comparando os resultados enco<u>n</u> trados para a fibra B quando fizemos fitting. Com a retir<u>a</u> da de um dos pontos houve uma mudança radical nos parâmetros e<u>n</u> contrados. Na Tabela V-2 apresentamos estes resultados:

Fibra E	3 Caso l	Caso 2	Caso 3	Valor Microsc.
2 a _s	4, 12µm	2,12µm	3,84µm	(4,8 ⁺ 0,3),1m
Vs	1,94	1,64	1,42	
$(\lambda = 0, 633 \mu m)$				

Tabela V-2 - Parâmetros Encontrados por Técnica do Campo Próximo

No caso 3 retiramos o ponto correspondente ao laser de GaAs que estava muito afastado do conjunto de pontos dos outros lasers. Vemos que houve uma aproximação entre os val<u>o</u>

res do raio encontrado por este método e o medido no microscópio. Para que os parâmetros encontrados fossem mais confiáveis seria necessário conhecer muitos pontos na região acima de λ_c , para que o fitting ficasse melhor.

Em nosso caso o resultado mais adequado é o obtido através de (ω_c, λ_c) pois o ponto de corte pode ser claramente observado. É importante destacar que para a obtenção da curva da figura 23 a fibra não deve ser muito longa e não pode estar submetida a raios de curvatura muito pequenas pois poderá distorcer o resultado ⁽³⁴⁾. Na referência (34), o autor mostrou que dependendo de condições de propagação é possível que não se observe o corte do modo LP₁₁ tão facilmente quanto foi na figura 23 ou no trabalho da referência (19), dado a sensibilidade a curvaturas pequenas.

Infelizmente, não podemos analisar nossos resultados quantitativamente porque não conhecemos o perfil com precisão. No entanto, um levantamento semiquantitativo dos perfis de cada fibra mostra que os parâmetros da ESI para as fibras A, B, C e D estão dentro de previsão da teoria. Por exemplo a fibra A aproxima-se do caso apresentado na figura 6-A e a fibra B tem um perfil do tipo "depressed cladding" como o caso da figura 6-C.

Devemos mencionar, que como segunda fase deste tr<u>a</u> balho, estamos estudando o spot size em função do comprimento de onda numa montagem onde o comprimento de onda da radiaçao pode ser variada continuamente entre $0,5\mu$ m a $1,5\mu$ m, o que vai possibilitar estudos completos de todas as fibras. Em paralelo, um esforço está sendo feito para medir o perfil de índice com maior precisão.

CAPÍTULO VI

CONCLUSÃO

Neste trabalho mostramos que a medição do campo afastado de uma fibra monomodo é de pouca validade do ponto de vista da caracterização em função do raio do núcleo a, pois geralmente as fibras não tem perfil degrau. A determinação de θ_0 e $\theta_{1/2}$ fornece valores próximos aos nominais porém a exatidão é questionável por não termos fibras com perfil degrau. Por outro lado a técnica de medição no campo próximo do comportamento do spot size com o comprimento de onda é mais con fiável e fornece valores de λ_{c} e os parâmetros da ESI que po dem ser usados para prever as perdas de emendas, microcurvaturas, curvaturas e dispersão. Mostramos que a melhor maneira de determinar estes parāmetros é através de $\lambda_c e \omega_c$ em lugar de usar fitting na curva $\omega(\lambda)$, na região $\lambda > \lambda_{c}$ pois o fitting é muito sensível à pequenos desvios na curva. Os resultados são razoáveis em comparação com os valores nominais e o perfil de Índice de refração que só conhecemos ainda semiquantitativamente. Uma extensão das medidas para a região de 1 - 1,5µm que permitirá testar o modelo de ESI em outras fibras, está sendo executado.

- 15 Gambling, W.A., Matsumura, H., Elect. Lett., vol.13, n9 23
 (1977), pp 691-693.
- 16 Marcuse, D., Bell Syst. Tech. J., 56, (1977), pp 703-718.
- 17 Marcuse, D. Josa, 68, (1978), pp 103-109.
- 18 Bhagavatula, V.A., Elect. Lett, vol. 18, nº 8, 1982 pp.320.
- 19 Millar, C.A., Elect. Lett., 17, 1981, pp 458-460.
- 20 Alard, F. Jeanhomme, L. and Sansonetti, P., Elect. Lett., 17, 1981, pp 958-960.
- 21 Millar, C.A., Proceedings OFC-1982 Phoenix, Arizona, paper*: th EE 3, April-1982.
- 22 Millar, C.A., Elect. Lett. vol. 18, (1982), pp 395-396.
- 23 Cannel, G.L., Struthers, D., Handerek, V.A., Brambley, R.J. Proceedings of 8 ECOC Sptember, Communication AIU-5 pp 102-105.
- 24 Fox, M., Symposium on Optical Fiber Measurements, 1982 pp 93-96.
- 25 Yanauchi, R., Miyamoto, M.and Inada, K. Proceedings of OFC 82, Phoenix, Arizona paper Th EE1 - April 1982.
- 26 Alard, F, Sansonetti, P. and Jeunhomme, L, Proceedings of OFC'82 - Phenix, Arizona, paper Th EE2, April, 1982.
- 27 Chester, R.B., Darbby, F.W., Electronics, August, 1976 pp 90.
- 28 Katsuyama, Y., Tokuda, M. Uchida, N. Nakahara, Elect. Lett., 1976, vol. 12, nº 25, pp. 669-670.
- 29 Midwinter, J.E. "Optical Fibers for Transmissions", John Willey & Sons, 1979.

- 30 Tynes, A.R., Derosier, R.M. and French, W.G., Josa, vol.69 nº 11, November, 1979, pp 1587-1596.
- 31 Yariy, A. "Introduction to Optical Electronics" Holt, Holt, Rinehart and Winston, 1976 pp 34.
- 32 Snitzer, E. and Osterberg, H., Josa vol. 51, nº 5, 1961 pp 499-505.
- 33 Sharma, A., Hosain, S.I., Ghatak, A.K., "Optical and Quantum Eletronics, 14, 1982, pp. 7-15.
- 34 Alard, F., Jeunhomme, L., Monerie, M., Sansonetti, P., Vassalo, C., Elect.Lett, 1982, vol.18, nº 16, pp.693-694.