EVOLUÇÃO TEMPORAL DE EXCITAÇÕES ELEMENTARES

EM SEMICONDUTORES FORTEMENTE FOTOEXCITADOS

Antonio Carlos Sales Algarte

Orientador

Prof.Dr. Roberto Luzzi

Tese apresentada ao Instituto de Física "Gleb Wataghin" da Univer sidade Estadual de Campinas, como parte dos requisitos pero obtenção do Grau de Doutor em Ciências. Ao Prof. Roberto Luzzi, pela orientação e apoio.

A Áurea Rosas Vasconcellos e ao Antonio José da Costa Sampaio, pelas constantes e proveitosas discussões.

RESUMO

É apresentado um método que permite, a partir de primeiros princípios, obter equações de transporte generalizadas com as quais é possível estudar sistemas longe do equ<u>i</u> líbrio térmico.

Usando esse método obtivemos equações de transporte não lincares que descrevem os processos irreversíveis que ocorrem em experimentos do tipo "bombeamento-prova". Con seguimos, dessa forma, analisar a termodinâmica de não equilíbrio e os processos de relaxação em semicondutores polares submetidos a altos níveis de excitação ótica. Calculamos tam bém a função número de ocupação para diferentes modos de fonons longitudinais óticos. A equação cinética para essa função é escrita em termos dos parâmetros termodinâmicos relevantes que descrevem o estado macroscópico de não equilíbrio. Em ambos os casos os resultados obtidos são comparados — com dados experimentais referentes ao GaAs.

ABSTRACT

We present a method that using a first principle theory allow us for the determination of nonlinear transport equations which describe irreversible processes in far from equilibrium systems.

This method is applied to study the nonequilibrium thermodynamics and kinetics of evolution of relaxation processes in polar semiconductors under high levels of optical excitation. We also calculate the time-evolution of the number occupation function of different longitudinal optical phonon modes. The kinetic equation for this function is written in terms of the relevant thermodynamic parameters that describe the nonequilibrium macroscopic state of the system.

Comparison of theory with results obtained in experiments of ultra-fast time resolved optical spectroscopy of GaAs is done, obtaining a good agreement.

INDICE

Capitulo	1 -	Introdução
Capitulo	II -	Um Método de Tratamento para Sistemas Fora
		do Equilíbrio 5
	II.l.	Introdução
	11.2.	O Operador Estatístico para Sistemas Fora
		do Equilíbrio 5
	JT.3.	Equações de Transporte Generalizadas 19
Capitulo	III -	Evolução Temporal do Plasma Fotoexcitado
		em Semicondutores Quentes 29
	III.l.	Introdução
	111.2.	0 Modelo Considerado
	III.3.	Definição do Conjunto {P _m } e Obtenção das
		Equações de Transporte Generalizadas 36
	III.4.	Estudo de Situações Específicas e Compara-
		ção com Resultados Experimentais 49
Capitulo	IV -	Conclusões e Comentários
Apênd ice	• • •	
Referências		

.

.

CAPÍTULO I

INTRODUÇÃO

O desenvolvimento, sempre crescente, dos sistemas eletrônicos vem solicitando da tecnologia de semicondutores, na qual eles se baseiam, um grau cada vez maior de integração, miniaturização e rapidez de operação.⁽¹⁾

Assim, a medida que esses dispositivos tornam-se menores e mais velozes coloca-se o problema de se entender os processos ultra-rápidos nos semicondutores uma vez que é desses processos que dependerá seu desempenho. O desenvolvimento de sistemas de lasers que operam em pico-segundo e de técnicas de medida em ótica não-linear tem permitido o estudo experimen tal, com tempo de resolução de pico-segundo e mesmo sub-pico-segundo, de muitos efeitos tais como: relaxação de elétrons quentes, espalhamento inter-vale, espalhamento elétron-elétron e decai mento de fonons óticos⁽²⁾. Esses métodos de medida são, basicamente, três: 19, observação direta usando detetores de alta velocidade, 29, "gating" ótico não linear e, 39, método de "bombeamento-prova". Os dois primeiros são empregados usualmente para medidas de emissão enquanto que o terceiro é utili zado no estudo de propriedades óticas tais como transmissão, reflexão, etc.⁽²⁾

As situações acima citadas consideram sistemas que estão muito distantes do equilíbrio estatístico e a termodinâmica linear dos processos irreversíveis torna-se inadequ<u>a</u> da para sua análise. Aqui o problema que se coloca é mais geral: "como tratar sistemas fora do equilíbrio?"

Esse é um velho problema, e suas origens podem ser

identificadas nos trabalhos pioneiros de Bernoulli⁽³⁾, Herapath⁽⁴⁾, Joule⁽⁵⁾ e Krönig⁽⁶⁾, trabalhos esses que marcam o início da teoria cinética dos gases. Logo depois, Clausius⁽⁷⁾ introduziu o conceito de caminho livre médio e o famoso "Stosszahlansatz" (hipótese sobre o número de colisões) que tanta repercussão iria ter nos desenvolvimentos posteriores. Finalmente, com Maxwell⁽⁸⁾, (lei de distribuição das velocida des moleculares, "equação de transporte de Maxwell") estava aberto o caminho para a obra de Boltzmann. No trabalho de Boltzmann dois pontos são fundamentais: o "Teorema H" no qual, pela primeira vez, se estabelece uma relação entre o movimento molecular e a tendência, dos sistemas físicos, de se aproximarem, e permanecerem no estado de equilíbrio; e a "equação de transporte de Boltzmann", a primeira equação cinética ... na história da Mecânica Estatística, que descreve o comportamento de um gás diluído.⁽⁹⁾

Por essa época surgiram também as primeiras controvérsias sobre os fundamentos da teoria. São conhecidas as objeções, de Loschmidt, baseada no caráter reversível das leis da mecânica, e de Zermelo, baseada no "teorema da recorrência", de Poincaré, que estabelece que um sistema isolado e de tamanho finito retornará a uma vizinhança, arbitrariamente próxima, de seu estado inicial. Essas controvérsias deram motivo a muitas discussões e o problema da compatibilidade das leis microscópicas reversíveis com a irreversibilidade macro<u>s</u> cópica até os dias de hoje não está satisfatoriamente elucid<u>a</u> do.

A partir daí a teoria dos processos irreversíveis vai apresentar, basicamente, dois tipos de problemas. Um deles, o problema prático, como obter equações que descrevam o comportamento de sistemas específicos. O outro, o problema de princípios, como justificar essas equações, tendo em vista as objeções acima citadas.⁽¹⁰⁾

Nos anos seguintes a Boltzmann o aspecto prático teve um maior desenvolvimento. Chapman e Enskog desenvolveram um método, baseado em aproximações sucessivas, que permite obter soluções particulares da equação de Boltzmann⁽¹¹⁾. Apareceram também várias equações cinéticas tais como: a equação de Landau para gases com interação fraca, a equação de Vlasov para plasmas, a equação de Fokker-Planck para o movimento Browniano, a equação de Pauli para átomos ou moléculas emiti<u>n</u> do e absorvendo radiação, etc...

O ideal, entretanto, seria obter equações de tran<u>s</u> porte generalizadas, ou seja, que não estivessem, desde sua origem, associadas a um caso particular e, que ao mesmo tempo, contribuissem para esclarecer o problema da aproximação ao equ<u>i</u> librio.

A realização desse programa nos leva imediatamente à equação de Liouville, posto que, essa equação contêm a m<u>á</u> xima informação possível concernente à evolução do sistema.

Desenvolvimento;nessa direção devem-se a Yvon, Born e Green, Kirkwood, Bogoliubov⁽¹²⁾ culminando com a, agora famosa, hierarquia BBGKY. A partir dai o número de publicações nesse campo tem se multiplicado a cada ano. Novos métodos e formalismos são frequentemente propostos, entre outros podemos citar os trabalhos de Mori⁽¹³⁾, Zwanzig⁽¹⁴⁾, Prigogine e a "es cola de Bruxelas"^(12,15) e, um método que para nós tem particu lar interesse, trata-se do "Formalismo da Entropia Máxima". Es se formalismo, proposto por Jaynes⁽¹⁶⁾, apresenta ampla possibilidade de aplicação a estudo de fenômenos não lineares em diversas áreas das ciências naturais, humanas e tecnológicas.

Baseados nesse formalismo Robertson⁽¹⁷⁾ e Zubarev⁽¹⁸⁾ desenvolveram métodos de estudo de situações de não equilíbrio, i.e. que permitem escrever equações de transporte não-lineares que descrevem a evolução termodinâmica irreversível de sistemas de muitos corpos. A vantagem do método de Zubarev é que ele permite escrever essas equações de uma maneira simples e direta para um grande número de situações. Sendo assim, o método parece ser particularmente adequado para a análise de processos cinéticos e de relaxação em semicon dutores, ou seja, para tratar os fenômenos ultra-rápidos ant<u>e</u> riormente comentados.

Podemos, agora, definir os objetivos desse trab<u>a</u> lho. Pretendemos aplicar o método de Zubarev na análise de si<u>s</u> temas longe do equilíbrio térmico visando: l9, um melhor conh<u>e</u> cimento dos fenômenos físicos associados aos processos ultrarápidos em semicondutores, 29, verificar a potencialidade do método quando aplicado a problemas práticos a fim de compree<u>n</u> der suas características, buscando, dessa forma, um conhecime<u>n</u> to melhor das técnicas de tratamento de sistemas fora do equ<u>i</u> líbrio.

Com esse fim, no cap. II apresentaremos o método e o utilizaremos, tendo em vista as aplicações que pretendemos fazer, para obter um sistema de equações de transporte gener<u>a</u> lizadas. No cap. TII usaremos esse sistema de equações no estudo do comportamento de um semicondutor altamente excitado por bombeamento óptico. Consideraremos diversas situações experimentais e compararemos esses dados com os resultados que viermos a obter. Finalmente, o cap. IV é dedicado a comentários gerais e conclusões.

CAPITULO II

UM MÉTODO DE TRATAMENTO PARA SISTEMAS FORA DO EQUILÍBRIO

II.l. Introdução

Enquanto que a Mecânica Estatística das situações de equilíbrio é uma disciplina bem estabelecida, o mesmo não ocorre para as situações de não equilíbrio. Aqui, como vimos no capítulo anterior, um grande número de tratamentos tem sido propostos sem que, até o momento, uma formulação geral tenha sido alcançada. Vimos também que existem dois problemas básicos, 19, como conciliar a irreversibilidade com as leis da mecânica, que, como se sabe, são reversíveis e, 29, como obter equações de transporte generalizadas que descrevam o comportamento do sistema considerado.

Vejamos como tratar esses problemas seguindo o método proposto por Zubarev⁽¹⁸⁾. Primeiramente construiremos um operador estatístico que descreve sistemas fora do equilíbrio, em seguida usaremos esse operador para obter as equações de transporte.

11.2. O Operador Estatístico para Sistemas Fora do Equilíbrio

A idéia central é generalizar o "ensemble" estatístico de Gibbs ao caso de não equilíbrio. Consideremos, por tanto, um "ensemble" associado à situação de não equilíbrio, descrito por uma função de distribuição $\rho(p,q,t)$ onde p são as coordenadas generalizadas de momento, q as de posição e t o tempo. Sabemos que essa função é a solução da equação de Liouville, ou seja, corresponde a resolvermos um sistema de 25 equações independentes, onde S é o número de graus de liber dade, dadas as condições iniciais, o que está desde logo, fora de cogitação. Observamos, entretanto, que se esse sistema atin gir a situação de equilíbrio teremos $\rho(p,q,t) + \rho(E,\vec{P},\vec{L})$ onde E, energia, \vec{P} , momento e \vec{L} , momento angular, são as integrais primeiras das equações de movimento. Ocorreu, portanto, uma "contração" no número de variáveis necessárias à descrição do sistema. Coloca-se, assim, a pergunta. É possível uma "descrição contraída" estando o sistema ainda numa situação de não cquilíbrio?

Segundo Bogoliubov⁽¹⁹⁾ isso é possível desde que o sistema, na sua aproximação ao equilíbrio, possua tempos de relaxação de ordem de grandeza diferentes. Uma situação na qual tal condição ocorre é, por exemplo, o caso de um gás contido num recipiente de volume V. Nesse caso teremos os seguintes tempos: a) tempo de interação

$$\tau_1 = \frac{r_0}{\bar{v}}$$

onde r é o alcance da força de interação e \overline{v} a velocidade média.

b) tempo entre colisões

$$\tau_2 = \frac{\lambda}{v}$$

onde λ é o caminho livre médio.

c) tempo de relaxação macroscópica

$$\tau_3 = \frac{L}{\bar{v}}$$

onde L é um comprimento macroscópico característico do sistema.

Se o gás não for muito diluído existirá um tempo t, tal que

 $\tau_{2} < t \ll \tau_{3}$

no qual será atingido o estado de equilibrio local, i.e. o equilíbrio será estabelecido em elementos de volume macroscopicamente pequenos mas, que podem conter um grande número de partículas. A partir daí o sistema tenderá ao equilíbrio no tempo característico τ_3 . E, o estudo dessa evolução temporal poderá ser feito usando-se, ao invés do conjunto de variáveis $\{p,q\}$, o conjunto $\{h(\vec{r}), n(\vec{r})\}$ onde $h(\vec{r}) e n(\vec{r})$ são, respect<u>i</u> vamente, a densidade de energia e de número de partículas associados aos elementos de volume. Houve, portanto, uma "contração" no número de variáveis necessárias à descrição do sistema.⁽²⁰⁾

Obviamente não é necessário que nos restrinjamos a situações nas quais se atinja o estado de equilíbrio local como no exemplo citado. De um modo geral podemos dizer que, se o sistema está muito afastado das condições de equilíbrio а sua descrição exige uma informação muito completa, eventualmen te é necessário o conhecimento do conjunto {p,q}, mas, a medida que o tempo passa a "não homogeneidade" do sistema vai se atenuando, de acordo com a sucessão de tempos característicos, e a informação necessária à sua descrição torna-se cada vez me nor até que o equilíbrio seja alcançado. Ou seja, obtemos uma "descrição contraida" na qual o número de variáveis é muito me nor que o número de graus de liberdade do sistema.

Consideremos, portanto, um sistema para o qual exista uma hierarquia de tempos de relaxação

$$\tau_{\mu} < \tau_{1} < \tau_{2} \cdots < \tau_{n} < \tau_{eq}$$
(1)

onde τ_{μ} é o tempo necessário à primeira contração, τ_{n} define o regime a ser estudado e τ_{eq} é o tempo necessário para a relaxa ção ao equilíbrio final.

Seja um regime particular definido pela desiguald<u>a</u> de

$$\tau_{\mu} < t < \tau_{n} \tag{2}$$

Para esse regimeteremos, um conjunto $\{P_m\}$ de variáveis contraídas necessárias à sua descrição.

É importante ressaltar aqui, que a escolha do regime e, consequentemente, do conjunto $\{P_m\}$, é um problema espec<u>í</u> fico a cada sistema físico estudado e está intimamente relaci<u>o</u> nada com a informação experimental disponível.

Passemos agora à construção do operador estatistico associado ao sistema que, de agora em diante será consider<u>a</u> do quântico.

Consideremos o sistema descrito pelo hamiltoniano II(t), onde a dependência explícita no tempo aparece devido a presença, possível, de campos externos.

Seja n(t) o operador estatístico que satisfaz a equação de Liouville:

$$\frac{\partial \rho(\mathbf{t})}{\partial \mathbf{t}} + \mathbf{i} \mathbf{L}(\mathbf{t}) \rho(\mathbf{t}) = 0 , \qquad (3a)$$

onde

$$iL(t)\rho(t) = \frac{1}{i\hbar} [\rho(t), H(t)]$$
 (3b)

A solução formal dessa equação é:

$$\rho(t) = U(t, t_{o}) \rho(t_{o}) U^{\dagger}(t, t_{o}) \qquad (4)$$

Sendo o operador de evolução temporal dado por:

$$i\hbar \frac{\partial U(t,t_{o})}{\partial t} = H(t)U(t,t_{o}) , \qquad (5)$$

$$U(t_1, t_2) = T \exp \{\frac{1}{i\hbar} \int_{t_2}^{t_1} dt H(t)\}$$
 (6)

Té o operador de ordenação cronológica⁽²¹⁾.

O resultado (4) é de muito pouca utilidade a menos que $\rho(t_{c})$, a condição inicial, seja conhecida.

Vejamos como o conceito de hierarquia de tempos de relaxação, anteriormente discutido, nos ajuda na resolução desse problema. Para isso vamos introduzir um operador auxiliar $\bar{\rho}(t)$ que descreve o estado de não equilíbrio no sen tido de que os valores médios do conjunto de variáveis {P_m} com respeito a $\rho(t)$ sejam iguais aos valores médios com respeito a $\bar{\rho}(t)$ e, admitimos que no tempo inicial, t_{o} , os opera dores $\rho(t)$ e $\bar{\rho}(t)$ sejam iguais. Portanto, teremos:

$$\langle P_{m} | t \rangle = \langle P_{m} | t \rangle_{O} , \qquad (7)$$

onde $\langle \dots | t \rangle \in \langle \dots | t \rangle_0$ indicam, respectivamente, os valores

médios calculados com respeito a $\rho(t) = \overline{\rho}(t)$.

E,

$$\rho(t_{o}) = \overline{\rho}(t_{o}) \qquad (8)$$

Tomando t = $-\infty$ a condição inicial para $\rho(t)$ passa a ser escrita como:

$$\rho(-\infty) = \overline{\rho}(-\infty) \qquad (9)$$

Definindo o operador $\Lambda(t_1, t_2)$ tal que,

$$N(t_{1}, t_{2})\rho(t_{1}) \equiv U^{+}(t_{1}, t_{2})\rho(t_{1})U(t_{1}, t_{2}) = \rho(t_{2})$$
(10)

.

٠

Aplicando esse operador a ambos os membros de (9),

$$\Lambda(-\infty, t)\rho(-\infty) = \Lambda(-\infty, t)\overline{\rho}(-\infty) , \qquad (11)$$

ou,

$$\Lambda(t+t_{o},t)\rho(t+t_{o})=\rho(t)=\Lambda(t+t_{o},t)\rho(t+t_{o}) ; t_{o} \rightarrow -\infty$$
(12)

Logo, o valor médio de um operador A qualquer se rá dado por:

$$\langle A | t \rangle = T_r \{A\rho(t)\} = \lim_{t_0 \to -\infty} T_r \{A\Lambda(t+t_0,t)\overline{\rho}(t+t_0)\} = t_0 \to -\infty$$

$$= \lim_{\varepsilon \to +0} \varepsilon \int_{-\infty}^{0} dt_1 e^{\varepsilon t_1} T_r \{AA(t+t_1)\overline{\rho}(t+t_1)\} =$$

$$= \lim_{\varepsilon \to +0} \mathbb{T} \left\{ A\varepsilon \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \Lambda(t+t_{1}) \overline{\rho}(t+t_{1}) \right\}$$
(13)

Uma vez que, para qualquer função arbitrária de x, f(x), definida em x = $-\infty$ e, para qual lim $f(x) \doteq f(-\infty)$ po $x \rightarrow -\infty$ demos escrever a seguinte igualdade:

$$\lim_{x \to -\infty} f(x) = \lim_{\epsilon \to +0} \epsilon \int_{-\infty}^{0} dx' e^{\epsilon x'} f(x') \qquad (14)$$

O que pode ser verificado se integrarmos, por partes, o segundo membro da eq. (14).

Tendo em vista o resultado (13) podemos escrever $\rho(t)$ como:

$$\rho(t) = \varepsilon \int_{-\infty}^{0} dt_1 e^{\varepsilon t_1} \Lambda(t+t_1,t) \overline{\rho}(t+t_1) \qquad (15)$$

E, o valor médio de qualquer operador associado ao sistema será dado pelo traço desse operador com $\rho(t)$ seguido do processo de limite $\epsilon + \frac{1}{2}0$.

Temos agora que obter uma forma explicita para $\bar{p}(t+t_1)$. Vamos construí-lo usando o conjunto de variáveis con traídas $\{P_m\}$ e de tal forma que, se o sistema estiver em equi líbrio, coincida com a distribuição de Gibbs. Ou seja:

$$\overline{\rho}(t+t_1) = \exp\{-\phi - \sum_{m} d\vec{r} F_m(\vec{r}, t+t_1) P_m(\vec{r})\} , \quad (16a)$$

onde ϕ é obtido a partir da condição de normalização

$$T_{r} \bar{\rho}(t+t_{1}) = 1$$
 , (16b)

$$\phi = \ln T_{\mathbf{r}} \exp\{-\sum_{m} \int d\vec{r} F_{m}(\vec{r}, t+t_{1}) P_{m}(\vec{r})\} \qquad (16c)$$

Notamos que os termos F_{m} e P_{m} estão relacionados pela equação:

$$\frac{-\delta \phi}{\delta F_{m}(\vec{r},t)} = -\langle P_{m}(\vec{r}) | t \rangle_{o} , \qquad (17)$$

portanto, ainda por analogia com a situação de equilíbrio,va mos considerá-los como os parâmetros termodinâmicos conjugados às variáveis P_m .

Substituindo (16a) em (15) teremos:

$$\rho(t) = \varepsilon \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \exp\{-\psi - \Sigma \int_{m} d\vec{r} F_{m}(\vec{r}, t+t_{1}) P_{m}(\vec{r}, t_{1})\}$$
(18a)

Dada a condição de normalização,

$$T_r \rho(t) = 1$$
 , (18b)

obtemos:

$$\psi = \ln T_{\mathbf{r}} \varepsilon \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \exp\{-\sum_{m} d\vec{r} F_{m}(\vec{r}, t+t_{1}) P_{m}(\vec{r}, t_{1})\}$$
(18c)

O operador $\rho(t)$ também pode ser escrito como:

$$\rho(t) = \exp\{-\psi - \varepsilon \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \sum_{m} \int d\vec{r} F_{m}(\vec{r}, t+t_{1}) P_{m}(\vec{r}, t_{1}) \} ,$$
(19a)

$$\psi = \ln \operatorname{Tr} \exp\{-\epsilon \int_{-\infty}^{0} dt_{1} e^{\epsilon t} \sum_{m} \int d\vec{r} F_{m}(\vec{r}, t+t_{1}) P_{m}(\vec{r}, t_{1}) \} ,$$
(19b)

que é completamente equivalente a forma anterior ^(22,23).

De agora em diante, tendo como objetivo a facilidade de cálculo, utilizaremos o operador estatístico de não equilíbrio na forma dada pelas equações (19a), (19b).

A fim de obtermos uma notação mais compacta definamos um conjunto de operadores $B_m(\vec{r},t)$ como:

$$B_{m}(\vec{r},t) \equiv F_{m}(\vec{r},t)P_{m}(\vec{r}) \equiv \varepsilon \int_{-\infty}^{0} dt_{i} e^{\varepsilon t_{i}} F_{m}(\vec{r},t+t_{i})P_{m}(\vec{r},t_{i})$$
(20)

A operação assim definida, e indicada pela linha ondulada, é denominada como: "tomar a parte-"quase-invariante" do operador correspondente".

Escrevendo $\rho(t)$ em termos dos $B_m(\vec{r},t)$ teremos:

$$\rho(t) = Q^{-1} \exp\{-\sum_{m} \int d\vec{r} B_{m}(\vec{r},t)\} , \qquad (21a)$$

$$Q = T_{r} \exp \left\{-\sum_{m} \int d\vec{r} B_{m}(\vec{r},t)\right\}, \qquad (21b)$$

Vejamos agora se esse operador satisfaz a equação de Liouville.

A partir de

$$\frac{\partial \rho(\mathbf{t})}{\partial t} = Q^{-1} \left(-\exp\{-\sum_{m} \left| B_{m}(\vec{\mathbf{r}}, t) \, d\vec{\mathbf{r}} \right| \right) \int_{0}^{1} d\mathbf{t} \exp\{\tau \sum_{m} \left| B_{m}(\vec{\mathbf{r}}, t) \, d\vec{\mathbf{r}} \right| \sum_{m} \int_{0}^{1} \frac{B_{m}(\vec{\mathbf{r}}, t)}{\partial t} \, d\vec{\mathbf{r}} x$$

$$x \exp \left\{-\tau \sum_{m} \int B_{m}(\vec{r}, t) d\vec{r}\right\} + \frac{\partial Q^{-1}}{\partial t} \exp \left\{-\sum_{m} B_{m}(\vec{r}, t) d\vec{r}\right\}$$
(22)

e usando que

$$\frac{\partial B_{m}(\vec{r},t)}{\partial t} = \varepsilon \int_{-\infty}^{0} e^{\varepsilon t_{1}} \frac{\partial F_{m}(\vec{r},t+t_{1})}{\partial t} P_{m}(\vec{r},t_{1}) , \qquad (23)$$

$$\frac{\partial Q^{-1}}{\partial t} = Q^{-1} < \sum_{m} \int \frac{\partial B_{m}(\vec{r}, t)}{\partial t} d\vec{r} | t > , \qquad (24)$$

obtemos:

% ∕o

1

$$\frac{\partial \rho(t)}{\partial t} = \left[\varepsilon \sum_{m} \int d\vec{r} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \left[\langle P_{m}(\vec{r},t_{1}) | t \rangle - P_{m}(\vec{r},t_{1}) \right] \frac{\partial F_{m}(\vec{r},t+t_{1})}{\partial t} \rho(t)$$

Por outro lado,

$$\begin{bmatrix} \rho, H \end{bmatrix} = Q^{-1} \int_{0}^{1} d\tau \exp\{-\tau \Sigma \atop m \int B_{m}(\vec{r}, t) d\vec{r}\} \begin{bmatrix} H, \Sigma \\ m \end{bmatrix} B_{m}(\vec{r}, t) d\vec{r} \end{bmatrix} \times$$

$$x \exp \left\{ \tau \Sigma_{m} \int_{m}^{B} (\vec{r}, t) d\vec{r} \right\} \exp \left\{ -\Sigma_{m} \int_{m}^{B} (\vec{r}, t) d\vec{r} \right\}$$
(26)

unde,

$$\begin{bmatrix} E_{m} & \int_{B_{m}} (\vec{r}, t) d\vec{r} \end{bmatrix} = \sum_{m} \int d\vec{r} \ \varepsilon \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} F_{m} (\vec{r}, t+t_{1}) \left[H, P_{m} (\vec{r}, t_{1}) \right] =$$

$$= \sum_{m} \int d\vec{r} \ in \ \varepsilon \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} F_{m} (\vec{r}, t+t_{1}) \frac{dP_{m} (\vec{r}, t_{1})}{dt_{1}} , \qquad (27)$$

pois $P_m(\dot{r},t_1)$ satisfaz a equação de Heisenberg

$$i\hbar \frac{d P_{m}(\vec{r},t_{1})}{dt_{1}} = \left[P_{m}(\vec{r},t_{1}),H\right] + i\hbar \frac{\partial P_{m}(\vec{r},t_{1})}{\partial t_{1}}$$
(28)

e, no nosso caso

4

ver:

$$\frac{\partial P_{m}(\vec{r},t_{1})}{\partial t_{1}} = 0$$
(29)

Usando a equação (26) e (27) teremos:

$$\frac{1}{i\hbar}[\rho,H] = \{\sum_{m} d\vec{r} \int_{0}^{1} d\tau \exp\{-\tau \sum_{m} \int_{m}^{B} (\vec{r},t) d\vec{r}\} \left[\epsilon \int_{-\infty}^{0} dt_{1} e^{\epsilon t} F_{m}(\vec{r},t+t_{1}) \times \right]$$

$$x \frac{dP_{m}(\vec{r}, t_{1})}{dt_{1}} exp \left\{ \tau \Sigma_{m} \int_{m}^{B} (\vec{r}, t) d\vec{r} \right\} \rho(t)$$
(30)

Combinando as equações (25) e (30) podemos escre

$$\frac{\partial \rho(\mathbf{t})}{\partial \mathbf{t}} + \frac{1}{i\hbar} \left[\rho(\mathbf{t}), \mathbf{H} \right] =$$

$$= \varepsilon \left\{ \sum_{m} \int d\vec{\mathbf{r}} \int_{-\infty}^{0} d\mathbf{t}_{1} e^{\varepsilon \mathbf{t}_{1}} \left[\left(\langle \mathbf{P}_{m}(\vec{\mathbf{r}}, \mathbf{t}_{1}) | \mathbf{t} \rangle - \mathbf{P}_{m}(\vec{\mathbf{r}}, \mathbf{t}_{1}) \right) \frac{\partial \mathbf{F}_{m}(\vec{\mathbf{r}}, \mathbf{t} + \mathbf{t}_{1})}{\partial \mathbf{t}} +$$

$$+ \int_{0}^{1} d\tau \exp \left\{ -\tau \sum_{m} \int d\vec{\mathbf{r}} \mathbf{B}_{m}(\vec{\mathbf{r}}, \mathbf{t}) \right\} \mathbf{F}_{m}(\vec{\mathbf{r}}, \mathbf{t} + \mathbf{t}_{1}) \frac{d\mathbf{P}_{m}(\vec{\mathbf{r}}, \mathbf{t}_{1})}{d\mathbf{t}_{1}} \exp \{ \tau \sum_{m} \int d\vec{\mathbf{r}} \mathbf{B}_{m}(\vec{\mathbf{r}}, \mathbf{t}) \} \right\}_{0} (\mathbf{t})$$

$$(31)$$

Vemos, portanto, que o operador estatístico definido pelas equações (21a) e (21b) é solução da equação $(\mathbf{d})^{\perp}$ Liouville no limite $\varepsilon \neq 0$, dai porque B_m foi chomadao parte "quase-invariante". Assim, construir o operador $\rho(t)$ a partir da parte "quase-invariante" dos operadores ${\rm F_mP_m}$ é equivalente a introdução de uma fonte na equação de Liouville, a qual viola a simetria da equação com respeito a inversão temporal e ē responsavel pelo aparecimento da irreversibilidade. A operação de tomar a parte "quase-invariante" seleciona uma classe de so luções da equação de Liouville, as soluções retardadas, que des crevem a evolução do sistema numa direção privilegiada do tempo, a mesma que corresponde às equações fenomenológicas. Se ti véssemos tomado

$$B_{m}(\vec{r},t) = \varepsilon \int_{0}^{+\infty} dt_{1} e^{-\varepsilon t_{1}} F_{m}(\vec{r},t+t_{1}) P_{m}(\vec{r},t_{1}) ,$$
(32)

obteríamos a solução adiantada, que leva a uma evolução temporal inversa a da situação anterior.

Lembramos que essa mesma técnica foi aplicada por Gell-Mann e Goldberger à equação de Schrödinger no desenvolvimento da teoria do espalhamento.⁽²⁴⁾

A fim de melhor verificarmos qual a relação entre ρ e $\overline{\rho}$ definamos, ainda por analogia com a situação de equilibrio, um operador entropia como:

$$\mathbf{\hat{S}}(t,0) = - \ln \vec{p}(t) = \phi + \sum_{m} \int d\vec{r} \mathbf{F}_{m}(\vec{r},t) \mathbf{P}_{m}(\vec{r})$$

(33)

onde a primeira dependência no tempo vem dos parâmetros F_me a segunda dos operadores P_m, e um operador produção de entropia

$$\hat{\sigma}(t,0) = \frac{d\hat{S}(t,0)}{dt} = -\frac{d}{dt} \ln \bar{\rho}(t) \qquad (34)$$

Usando a equação (34) vamos obter o valor médio da produção de entropia:

$$<\frac{d\hat{S}(t,0)}{d\hat{t}}|t>_{0} = -T_{r} \left\{\frac{d\ln\bar{\rho}(t)}{dt}, \bar{\rho}(t)\right\} = 0 \quad (35)$$

Assim, não hã produção de entropia com a distribu<u>i</u> ção auxiliar e, portanto, ela não descreve processos dissipativos.

Tomando a parte "quase-invariante" de \$(t,0) tere-

$$\hat{S}(t,0) = - \ln \vec{p} = \hat{\phi} + \sum_{m} \int d\vec{r} F_{m}(\vec{r},t) P_{m}(\vec{r}) =$$
$$= \psi + \sum_{m} \int d\vec{r} B_{m}(\vec{r},t) \qquad (36)$$

e, também, integrando por partes,

$$\sum_{s(t,0)}^{\infty} = \epsilon \int_{-\infty}^{0} dt_{1} e^{\epsilon t_{1}} S(t+t_{1},t_{1}) = S(t,0) - \int_{-\infty}^{0} dt_{1} e^{\epsilon t_{1}} \frac{dS(t+t_{1},t_{1})}{dt_{1}}$$
(37)

Com as equações (36) e (37) podemos rescrever (19a)

como:

mos

$$\rho(t) = \exp\{-\hat{S}(t,0)\} = \exp\{-\hat{S}(t,0) + \int_{-\infty}^{0} dt_1 e^{\epsilon t_1} \frac{d\hat{S}(t+t_1,t_1)}{dt_1}\}$$

Usando o operador auxiliar $K(\tau)\,,$ tal que:

$$\exp\{(A+B)\tau\} = K(\tau) \exp\{A\tau\}$$
; $K(0) = 1$, (39a)

•
$$K(\tau) = 1 + \int_0^{\tau} d\tau_1 K(\tau_1) \exp\{A\tau_1\}B \exp\{-A\tau_1\}$$
, (39b)

onde A e B são operadores quaisquer (ver ref. 18, § 12.3), obt<u>e</u> mos

$$\rho(t) = \left[1 + \int_{0}^{1} K(\tau_{1}) \exp\{-\hat{S}(t,0)\tau_{1}\} \int_{-\infty}^{0} dt_{1} e^{\epsilon t_{1}} \frac{d\hat{S}(t+t_{1},t_{1})}{dt_{1}} \exp\{\hat{S}(t,0)\tau_{1}\} d\tau_{1}\right] \exp\{-\hat{S}(t,0)\}$$

$$= \vec{\rho}(t) + \left[\int_{0}^{1} K(\tau_{1}) \exp\{-\hat{S}(t,0)\tau_{1}\} \int_{-\infty}^{0} dt_{1} e^{\frac{\varepsilon t_{1}}{dt_{1}}} \frac{d\hat{S}(t+t_{1},t_{1})}{dt_{1}} \exp\{\hat{S}(t,0)\tau_{1}\} d\tau_{1}\right] \vec{\rho}(t) =$$

$$= \overline{\rho}(t) + \rho_{j}(t) \tag{40}$$

Assim, podemos escrever o operador estatístico de não-equilíbrio como a soma de dois termos, um dos quais, $\overline{\rho}$, não descreve processos dissipativos. O outro, $\rho_{1} = \rho - \overline{\rho}$ serã, então, o responsável pelos processos de relaxação, ou seja, pela produção de entropia, e, consequentemente, pela evolução tempo ral.

II.3. Equações de Transporte Generalizadas

Passemos agora a considerar o segundo problema apontado na introdução desse capítulo, ou seja, a obtenção de equações de transporte generalizadas que nos permitam descrever a evolução do sistema. Essas equações que relacionam a variação do comportamento temporal médio de grandezas físicas observáveis com o movimento das partículas que o constituem, são equa ções integro-diferenciais não lineares com ampla gama de aplicações, desde sistemas físico-químicos a biológicos, e sua obtenção permanece um campo de estudo ainda em aberto.

Vejamos como o método que estamos desenvolvendo nos permite escrever equações de transporte generalizadas de uma forma direta e sem recorrer a hipóteses adicionais.

Como as grandezas necessárias à descrição do sistema constituem o conjunto $\{P_m\}$ anteriormente definido obtemos as equações desejadas tomando as médias, com a distribuição de não equilíbrio, das equações de movimento dos operadores que constituem esse conjunto.

$$\frac{d}{dt} < P_{m} | t > o = \frac{d}{dt} < P_{m} | t > = < \dot{P}_{m} | t > = < \frac{1}{i\hbar} [P_{m}, H] | t > ,$$
(41)

ou, usando a eq. (40),

$$\langle \dot{\mathbf{P}}_{m} | t \rangle = T_{\mathbf{r}} \{ \frac{1}{i\hbar} [\mathbf{P}_{m}, \mathbf{H}] (\bar{\rho}(t) + \rho_{1}(t)) \} = \frac{1}{i\hbar} \langle [\mathbf{P}_{m}, \mathbf{H}] | t \rangle_{0} +$$

$$+ \frac{1}{i\hbar} \sum_{n=1}^{\infty} \langle [\mathbf{P}_{m}, \mathbf{H}] \int_{0}^{1} d\tau_{1} \dots \int_{0}^{\tau_{n-1}} d\tau_{n} [e^{-S(t,0)\tau_{n}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}}$$

$$\times \frac{dS(t+t_{1}, t_{1})}{dt_{1}} e^{S(t,0)\tau_{n}} \dots e^{-S(t,0)\tau_{1}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \frac{dS(t+t_{1}, t_{1})}{dt_{1}} e^{S(t,0)\tau_{1}}] t \rangle_{0}$$

$$(42)$$

E temos, portanto, um sistema de equações de tran<u>s</u> porte dadas como uma soma de termos o que nos permite, em pri<u>n</u> cípio, obter resultados em qualquer ordem desejada de aproxim<u>a</u> ção.

٠

Tendo em mente as aplicações que pretendemos fazer escreveremos essas equações numa forma apropriada.

Para isso façamos as seguintes hipóteses:

 Estudaremos somente a evolução temporal sem nos preocuparmos com a distribuição espacial.

2. Consideraremos uma situação na qual o hamilto niano do sistema possa ser escrito como:

 $H = H_0 + H_1 \tag{43}$

onde H $_{O}$ é o hamiltoniano das partículas livres ou quase-partículas e, H $_{1}$ o hamiltoniano das interações.

3. Vamos restringir nossa análise ao caso no qual os operadores P_{μ} satisfazem a condição:

$$\begin{bmatrix} \mathbf{H}_{0}, \mathbf{P}_{k} \end{bmatrix} = \sum_{k} \alpha_{kk} \mathbf{P}_{k}$$
(44)

onde $\alpha_{k\,\ell}$ são coeficientes numéricos.

Procedendo como anteriormente teremos a distribu<u>i</u> ção auxiliar:

$$\overline{\rho}(t) = \exp \left\{-\phi - \sum_{k} F_{k}(t)P_{k}\right\} , \qquad (45a)$$

$$\phi(t) = \ln T_r \exp\{-\sum_k F_k(t)P_k\}, \qquad (45b)$$

a distribuição de não equilibrio,

$$\rho(t) = \exp\{-\psi - \varepsilon \int_{-\infty}^{0} dt_1 e^{\varepsilon t_1} \sum_{k} F_k(t+t_1) P_k(t_1)\}, \qquad (46a)$$

$$\psi(t) = \ln T_{r} \exp\{-\epsilon \int_{-\infty}^{0} dt_{1} e^{\epsilon t_{1}} \sum_{k} (t+t_{1}) P_{k}(t_{1})\}, \qquad (46b)$$

a entropia,

$$S(t) = -\langle \ln \overline{\rho} | t \rangle_{O} = -\langle \ln \overline{\rho} | t \rangle = \frac{\phi + \Sigma F_{k}(t) \langle P_{k} | t \rangle}{k} (t) \langle P_{k} | t \rangle ,$$
(47)

e a taxa de produção de entropia,

$$\sigma(t) = \dot{s}(t) = \sum_{k} F_{k}(t) \frac{d \langle P_{k} | t \rangle}{dt} . \qquad (48)$$

Usando as eqs. (43) e (44), a equação (41) pode ser escrita como:

$$\frac{d \langle P_{k} | t \rangle}{dt} = -\frac{1}{i\hbar} \sum_{\ell k \ell} \langle P_{\ell} | t \rangle + \frac{1}{i\hbar} \langle [P_{k}, H_{1}] | t \rangle$$
(49)

onde o primeiro termo a direira corresponde a evolução livre o, o segundo é o termo de colisão.

Podemos obter também equações para os parâmetros associados ${\rm F}_{\rm k}$,

$$\frac{\mathrm{d}F_{\mathbf{k}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial S}{\partial \langle P_{\mathbf{k}} | t \rangle} = \sum_{\boldsymbol{k}} \frac{\partial F_{\mathbf{k}}}{\partial \langle P_{\boldsymbol{k}} | t \rangle} \frac{\mathrm{d}\langle P_{\boldsymbol{k}} | t \rangle}{\mathrm{d}t} , \qquad (50)$$

ou, usando a eq. (49)

$$\frac{dF_{k}}{dt} = -\frac{1}{i\hbar} \sum_{\ell m} \frac{\partial F_{k}}{\partial \langle \mathbf{P}_{\ell} | t \rangle^{\chi}} e^{\mathbf{P}_{m} | t \rangle} + \sum_{\ell} \frac{\partial F_{k}}{\partial \langle \mathbf{P}_{\ell} | t \rangle} \frac{1}{i\hbar} \langle [\mathbf{P}_{\ell}, \mathbf{H}_{1}] | t \rangle \qquad (50)$$

Notando que:

$$\sum_{k \ell} \mathbf{F}_{k} \alpha_{K \ell} \mathbf{P}_{\ell} = \left[\mathbf{H}_{0}, \sum_{k} \mathbf{F}_{k} \mathbf{P}_{k} \right]$$

obtemos

$$\sum_{kl} F_k \alpha_{kl} \langle P_l | t \rangle_{O} = \langle [H_O, \Sigma F_k P_k] | t \rangle_{O} = 0$$
(51)

diferenciando essa equação com respeito a F_m , multiplicando por $\frac{\partial F_i}{\partial \langle P_m | t \rangle}$ e somando em m ficamos com:

$$\sum_{\substack{m,\ell}} \frac{\partial F_{i}}{\partial \langle P_{m} | t \rangle} \alpha_{m\ell} \langle P_{\ell} | t \rangle + \sum_{\substack{mk,\ell}} F_{k} \alpha_{k\ell} \frac{\partial F_{i}}{\partial \langle P_{m} | t \rangle} \frac{\partial \langle P_{\ell} | t \rangle}{\partial F_{m}} = 0$$
(52)

ou, usando as relações

$$\frac{\partial \langle \mathbf{P}_{\boldsymbol{\ell}} | \mathbf{t} \rangle}{\partial \mathbf{F}_{\mathbf{m}}} = - \frac{\partial^{2} \phi}{\partial \mathbf{F}_{\mathbf{m}} \partial \mathbf{F}_{\boldsymbol{\ell}}} = \frac{\partial \langle \mathbf{P}_{\mathbf{m}} | \mathbf{t} \rangle}{\partial \mathbf{F}_{\boldsymbol{\ell}}} , \qquad (53)$$

$$\sum_{i=0}^{\Sigma} \frac{\partial F_{i}}{\partial \langle P_{m} | t \rangle} \frac{\partial \langle P_{m} | t \rangle}{\partial F_{\ell}} = \delta_{i\ell} , \qquad (54)$$

chegamos a que

$$\sum_{\substack{ml \\ n \in P_{m} | t > }} \frac{\partial F_{i}}{\alpha_{ml}} \propto \sum_{\substack{ml \\ k \in P_{k}}} | t > + \sum_{\substack{k \in P_{k} \\ k \in R_{k}}} F_{k} \alpha_{ki} = 0 \quad . \quad (55)$$

Usando esse resultado a eq. (50) pode ser escrita como:

$$\frac{\mathrm{d}F_{k}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar} \frac{\Sigma}{\ell} \alpha_{\ell k} F_{\ell} + \frac{1}{\mathrm{i}\hbar} \frac{\Sigma}{\ell} \frac{\partial F_{k}}{\partial \langle P_{\ell} | t \rangle} \langle [P_{\ell}, H_{l}] | t \rangle$$
(56)

Vejamos como a eq. (56) juntamente com a eq. (28) nos permit_{em} escrever a distribuição de não equilíbrio de outra forma.

Integrando por partes o expoente de ρ , dado na eq. (46a) resulta

$$\varepsilon \int_{-\infty}^{0} dt_1 e^{\varepsilon t_1} \sum_{k} F_k(t+t_1) P_k(t_1) = \sum_{k} F_k(t) P_k - \int_{-\infty}^{0} dt_1 e^{\varepsilon t_1} \sum_{k} [F_k(t+t_1) \frac{dP_k(t)}{dt_1} + \frac{dP_k(t)}{dt_1}]$$

+
$$\frac{dF_{k}(t+t_{1})}{dt_{1}}P_{k}(t_{1})$$
] , (57)

substituindo os valores das derivadas usando as eqs. (28) e
(56) obtemos:

$$\rho(t) = Q^{-1} \exp\{-A+B\}$$
, (58a)

onde:

$$A = \sum_{k} F_{k}(t) P_{k} , \qquad (58b)$$

е

$$B = \int_{-\infty}^{0} dt_{1} e^{\frac{\varepsilon t_{1}}{k}} \left[\sum_{k} \left\{ \frac{1}{i\hbar} F_{k}(t+t_{1}) \left[P_{k}(t_{1}), H_{1}(t_{1}) \right] + \sum_{k} \frac{\partial F_{k}(t+t_{1})}{\partial \langle P_{k}|t \rangle} \langle \left[P_{k}, H_{1} \right] \left\{ t+t_{1} \right\} P_{k}(t_{1}) \right\} \right]$$
(58c)

Usaremos o operador estatistico escrito nessa for ma para calcularmos os valores médios que aparecem na eq. (49).

Aplicando as eqs. (39a) e (39b) para expandir $\rho(t)$ podemos obter o termo de colisão, definido como:

$$J_{k} \equiv \frac{1}{i\hbar} < [P_{k}, H_{1}] | t > , \qquad (59)$$

em série de potências da interação.

Como será mostrado no capítulo seguinte, para as aplicações que pretendemos fazer, basta considerarmos os termos da expansão até segunda ordem. Uma vez que J_k é de prime<u>i</u> ra ordem na interação, se expandirmos $\rho(t)$ até primeira ordem e calcularmos J_k obteremos um resultado que inclue termos até segunda ordem.

Sendo assim faremos a aproximação $K(\tau_1) = 1 e es$ creveremos (58a) como:

$$\rho(t) \simeq \{ l + \int_0^l d_\tau (e^{-A_\tau} B e^{A_\tau} - \langle e^{-A_\tau} B e^{A_\tau} | t \rangle_0) \} \overline{\rho}(t) \qquad .$$
(60)

Empregando essa equação para obter o valor médio em (59) vemos que o termo de colisão pode ser escrito como:

$$J_{k} \simeq J_{k}^{(1)} + J_{k}^{(2)}$$
, (61)

com,

$$J_{k}^{(1)} = \frac{1}{i\hbar} < [P_{k}, H_{1}] | t > 0 , \qquad (62)$$

e

$$J_{k}^{(2)} = J_{k}^{(2)'} + J_{k}^{(2)''}$$
(63)

onde,

$$J_{k}^{(2)} = \frac{-1}{\hbar^{2}} \sum_{\ell} \int_{-\infty}^{0} dt_{l} e^{\epsilon t_{l}} \left(\left[H_{l}, P_{k} \right]; \left[H_{l}(t_{l}), P_{\ell}(t_{l}) \right] | t) F_{\ell}(t+t_{l}) \right)$$

$$(64a)$$

$$J_{k}^{(2)"} = \frac{-1}{\hbar^{2}} \sum_{m\ell} \int_{-\infty}^{0} dt_{l} e^{\varepsilon t_{l}} \left(\left[H_{l}, P_{k} \right]; P_{\ell}(t_{l}) \left[t \right] \frac{\partial F_{\ell}(t+t_{l})}{\partial \langle \dot{P}_{m} \left[t \rangle \rangle} \langle \left[H_{l}(t_{l}), P_{m}(t_{l}) \right] \left[t \right] \rangle_{O} \right]$$

$$(64b)$$

Foi usada a seguinte notação para a função de cor relação:

$$(C;C'|t) = \int_{0}^{1} d_{T} < C(e^{-A_{T}}C'e^{A_{T}} - _{0})|t>_{0}$$
(65)

Dentro das aproximações que estamos considerando os termos (64a) e (64b) podem ser escritos numa forma mais simples. Damos em seguida o resultado deixando para um apêndice os detalhes de cálculo.

$$J_{k}^{(2)} = \frac{-1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \langle [H_{1}(t_{1}), [H_{1}, P_{k}]] t \rangle_{0}$$
(66a)

$$J_{k}^{(2)"} = \frac{-1}{\hbar^{2}} \sum_{m\ell} \int_{-\infty}^{0} dt_{l} e^{\varepsilon t_{l}} \left(\left[H_{l}, P_{k}\right]; P_{\ell}(t) \right) \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}|t \rangle} \left[H_{l}(t_{l}), P_{m}\right] |t\rangle_{O}$$
(66b)

Mas, notando que:

$$\left(\left[H_{1}, P_{k}\right]; P_{k} \mid t\right) = i\hbar \frac{\partial J_{k}^{(1)}}{\partial F_{k}} , \qquad (67)$$

teremos,

$$J_{k}^{(2)"} = \frac{-i}{\hbar} \sum_{m} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \langle [H_{1}(t_{1}), P_{m} \frac{\partial J_{k}^{(1)}}{\partial \langle P_{m}(t) \rangle}] | t \rangle_{0} , \qquad (68)$$

e, portanto,

$$J_{k}^{(2)} = \frac{-1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \langle [H_{1}(t_{1}), [H_{1}, P_{k}] + i\hbar \sum_{m} P_{m} \frac{\partial J_{k}^{(1)}}{\partial \langle P_{m}|t \rangle}] |t\rangle_{c}$$

$$(69)$$

Podemos também obter equações de transporte para os parâmetros termodinâmicos conjugados.

Vejamos como isso pode ser feito. A partir da eq. (17) podemos escrever que:

$$\frac{\delta \langle \mathbf{P}_{\mathbf{i}} | \mathbf{t} \rangle_{\mathbf{0}}}{\delta \mathbf{F}_{\mathbf{j}}} = -\frac{\delta^{2} \phi}{\delta \mathbf{F}_{\mathbf{j}} \delta \mathbf{F}_{\mathbf{i}}} \qquad (70)$$

Mas, essa derivada pode ser obtida numa outra for

$$\frac{\delta \langle \mathbf{P}_{i} | \mathbf{t} \rangle_{o}}{\delta \mathbf{F}_{j}} = \frac{\delta}{\delta \mathbf{F}_{j}} \mathbf{T}_{r} \{ \mathbf{P}_{i} | \mathbf{\bar{\rho}}(\mathbf{t}) \} =$$

$$= \int_{0}^{1} d\tau \langle \mathbf{P}_{i} | \langle \mathbf{P}_{j} | \mathbf{t} \rangle_{o} - e^{-\mathbf{A}\tau} \mathbf{P}_{j} e^{\mathbf{A}\tau} \} | \mathbf{t} \rangle_{o} = - \langle \mathbf{P}_{i}, \mathbf{P}_{j} | \mathbf{t} \} \qquad .$$
(71)

Derivando a eq. (17) com relação ao tempo ficamos

com:

.

$$\frac{d}{dt} \langle P_{i} | t \rangle_{O} = \langle \dot{P}_{i} | t \rangle = - \frac{d}{dt} \frac{\delta \phi}{\delta F_{i}} = \sum_{\ell} \frac{\delta \langle P_{\ell} | t \rangle_{O}}{\delta F_{i}} \dot{F}_{\ell}$$
(72)

Usando as eqs. (70) e (71) obtemos:

$$\langle \dot{\mathbf{P}}_{i} | t \rangle = - \sum_{j} (\mathbf{P}_{j}; \mathbf{P}_{i} | t) \dot{\mathbf{F}}_{j} = - \sum_{j} \frac{\delta^{2} \phi}{\delta \mathbf{F}_{j} \delta \mathbf{F}_{i}} \dot{\mathbf{F}}_{j} .$$
(73)

Definindo a matriz M_{ji} como:

$$M_{ji} = \frac{\delta^2 \phi}{\delta F_j \delta F_i} , \qquad (74)$$

e, lembrando que,

$$\sum_{m} \frac{\delta^{2} \phi}{\delta F_{j}} \frac{\delta^{2} g}{\delta F_{m}} \frac{\delta^{2} g}{\delta \langle P_{m} | t \rangle_{O} \delta \langle P_{i} | t \rangle_{O}} = -\delta_{ji}$$
(75)

podemos reescrever a eq. (73) como,

$$\dot{\mathbf{F}}_{j} = -\sum_{i} M_{ji}^{-1} \langle \dot{\mathbf{P}}_{i} | t \rangle = \sum_{i} \frac{\delta^{2} \mathbf{S}}{\delta \langle \mathbf{P}_{j} | t \rangle_{O} \delta \langle \mathbf{P}_{i} | t \rangle_{O}} \langle \dot{\mathbf{P}}_{i} | t \rangle$$
(76)

Obtivemos, portanto, dois conjuntos de equações

$$\langle \dot{\mathbf{P}}_{\mathbf{k}} | \mathbf{t} \rangle = \frac{1}{\mathbf{i}h} \sum_{\boldsymbol{\ell}} \alpha_{\mathbf{k}\boldsymbol{\ell}} \langle \mathbf{P}_{\boldsymbol{\ell}} | \mathbf{t} \rangle + \mathbf{J}_{\mathbf{k}} , \qquad (77a)$$

$$J_{k} \simeq J_{k}^{(1)} + J_{k}^{(2)}$$
, (77b)

е

•

.

$$\dot{\mathbf{F}}_{\mathbf{k}}(t) = -\sum_{\boldsymbol{\ell}} M_{\mathbf{k}\boldsymbol{\ell}}^{-1}(t) \langle \dot{\mathbf{P}}_{\boldsymbol{\ell}} | t \rangle , \qquad (78)$$

com os quais é possível descrever, dentro das aproximações con sideradas, a evolução temporal de sistemas fora do equilíbrio.

CAPÍTULO III

EVOLUÇÃO TEMPORAL DO PLASMA FOTOEXCITADO EM SEMICONDUTORES OUENTES

III.1. Introdução

Nesse capítulo aplicaremos o método anteriormente descrito ao estudo de semicondutores em estados longe do equilibrio térmico.

Mais especificamente consideraremos um plasma em semicondutor altamente excitado. Esse estado pode ser obtido submetendo-se o sistema, ou seja o semicondutor, a fontes de energia externa intensa tais como, feixes de partículas, campos elétricos, iluminação por laser. Nessas condições atingimos aquelas situações citadas no capítulo I e cuja importância tecnológica tivemos ocasião de ressaltar.

O estudo do plasma em semicondutor altamente excitado é ainda interessante por oferecer à análise uma extensa gama de fenômenos e permitir a escolha de vários parâmetros tais como: energia de Fermi, frequência de ciclotron, de plasma, de fonons, diferentes relações de dispersão, diferentes por tadores com as respectivas massas efetivas, etc. ^(25,26)

Do ponto de vista experimental uma técnica que tem sido largamente empregada nesse estudo é a espectroscopia ótica. Com o desenvolvimento de lasers que operam em tempos de pico-segundo, e mesmo menores, essa técnica vem se revelando de importância fundamental. Considerando uma experiência típica com um semicondutor intrínseco ela consiste em submeter esse semicondutor a um pulso intenso de radiação o qual, via absorção por um ou dois fotons, gera uma densidade alta de pares elétron-buraco. Durante a duração do pulso, ou usualmente após certo intervalo, um segundo pulso, que pode ter ou não a mesma frequência mas, de intensidade muito mais fraca, é usado como pulso de prova, testando a absorção, a transmissão ou o espalhamento. Ou, em outro caso, pode-se medir diretamente a luminescência. Esse tipo de experiência permite seguir a evolução temporal do estado de não equilíbrio numa escala de pico-segun do.

Com essa possibilidade de análise experimental o plasma em semicondutor altamente excitado revela-se um sistema cujo estudo não só é muito interessante em si mesmo mas, também, como instrumento de teste para métodos teóricos de tratamento de situações longe do equilíbrio.

III.2. O Modelo Considerado

Vejamos agora como obter as equações de transporte generalizadas que descrevem a situação acima citada.

Para isso consideremos o seguinte modelo: um semicondutor polar, intrínseco, de "gap" direto e, como estamos interessados em medidas óticas, usaremos a aproximação de banda parabólica, que é uma média sobre a estrutura de bandas real.⁽²⁷⁾ Esse sistema está em contato com um banho térmico a temperatura T_b , e é excitado por uma fonte intensa de radiação (laser), incor porada ao hamiltoniano na forma de um campo clássico. A energia absorvida é usada na criação de pares elétron-buraco que vão cons tituir um sub-sistema de portadores o qual pode perder o seu excesso de energia por três canais: a) interação com os modos longitudinais óticos (interação de Fröhlich), b) interação com os mo dos acústicos (potencial de deformação), c) emissão de radiação eletromagnética, por recombinação (aproximação dipolar).

Como a fonte de excitação é intensa a densidade de portadores torna-se muito grande e, ainda, sendo o tempo de colisão muito pequeno, as colisões portador-portador são muito mais eficientes nas trocas de energias que os outros processos considerados. Nessas condições os portadores termalizarão entre si e, podemos definir para eles uma temperatura efetiva T diferente da temperatura do banho.

A interação dos portadores com os modos óticos po de gerar populações não equilibradas de fonons. Essas populações serão caracterizadas por uma temperatura efetiva T_{LO} .

Suporemos que a eficiência da interação dos modos acústicos com o banho é tal que a temperatura desses modos per manece constante e igual a T_b .

Entre os modos óticos e acústicos consideramos a existência da interação anarmônica.

Suporemos ainda que a interação do sistema com o banho se dá unicamente por intermédio dos fonons acústicos uma vez que a transferência de calor para o banho é essencialmente um processo de difusão.

Processos de recombinação não radiativa tais como recombinação assistida por plasmons, por fonons, e efeito Auger, não foram considerados posto que são processos de segunda ordem e podem ser desprezados face a recombinação direta. Desprezamos também a auto-absorção e a recombinação estimulada uma vez que só contribuem de forma relevante em situações muito $pr\underline{o}$ ximas do equilíbrio, que não será o nosso caso.

A situação acima descrita está resumida nas figuras l e 2.

Fig. l E_g é a energia do "gap", $\hbar \omega_L$ a energia do foton do cam po de radiação externa (laser).

· · ·

Fig. 2 Diagrama de blocos do modelo considerado

O hamiltoniano desse sistema pode ser escrito como:

$$H = H_0 + H_1 \tag{1}$$

onde H_O refere-se aos sub-sistemas livres e H₁ às interações, i.é.

$$H_{O} = H_{P} + H_{LO} + H_{A} , \qquad (2a)$$

$$H_1 = H_{PL} + H_{PR} + H_{PLO} + H_{PA} + H_{LOA}$$
 (2b)

$$H_{p} = H_{e} + H_{h} = \sum_{\underline{k}} (E_{g} + \epsilon_{\underline{k}}^{e}) C_{\underline{k}}^{+} C_{\underline{k}} + \sum_{\underline{k}} \epsilon_{\underline{k}}^{h} h_{\underline{k}}^{+} h_{\underline{k}} , \qquad (3)$$

$$\epsilon_{\underline{k}}^{e} = \frac{\hbar^{2} k^{2}}{2m_{e}} ; \qquad \epsilon_{\underline{k}}^{h} = \frac{\hbar^{2} k^{2}}{2m_{h}}$$

m e m são as massas efetivas nas bandas de condução e valência respectivamente.

 $H_{t,O}$ é o hamiltoniano dos fonons longitudinais óticos

$$H_{LO} = \sum_{q} \hbar \omega_{LO} g_{q}^{+} g_{q} \qquad (4)$$

 H_{A} é o hamiltoniano dos fonons acústicos

$$H_{\mathbf{A}} = \Sigma \stackrel{h}{T} \Gamma_{\mathbf{j}} \stackrel{b^{\dagger}}{\mathbf{j}} \stackrel{b}{\mathbf{j}} \qquad (5)$$

H_{PL} é o hamiltoniano da interação dos portadores com a fonte de excitação (laser)

$$H_{PL} = \sum_{k}^{\Sigma G_{L}} G_{L} e^{h_{k}} h_{k} c_{k} + h.c.$$
 (6a)

$$G_{L} = \frac{-e}{2m\omega_{L}} \sqrt{\frac{2 \langle E^{2} \rangle}{\varepsilon_{\infty}}} \langle \mathbf{v} \vec{k} | e^{-i\vec{k} \cdot \vec{r}} \vec{u}_{\underline{k}} \cdot \vec{P} | c \vec{k} \rangle , \qquad (6b)$$

onde \vec{E} é o campo elétrico associado à radiação do laser, \vec{k} o vetor de onda e \vec{u}_k o vetor unitário de polarização. v e c indicam as bandas de valência e condução, \vec{p} é o operador momento linear do elétron. ε_{∞} é a constante dielétrica ótica. H_{PR} é o hamiltoniano associado a recombinação dos portadores

$$H_{PR} = \sum_{\alpha \underline{K}' \underline{k}} G_{\underline{R}} C_{\underline{k}}^{\dagger} h_{\underline{k}}^{\dagger} a_{\alpha \underline{K}}, + h.c. , \qquad (7a)$$

$$G_{R} = \frac{-e}{mc} \sqrt{\frac{2\pi\hbar c}{VK'\epsilon_{\infty}}} \ll \vec{k} |e^{i\vec{k}'\cdot\vec{r}} \vec{u}_{\alpha\vec{k}'}\cdot\vec{p}|v\vec{k}\rangle , \quad (7b)$$

onde V é o volume ativo da amostra e α o indice de polarização. Os outros fatores são definidos de forma similar ao caso anterior.

 $H_{PLO} \in o$ hamiltoniano da interação portadores-fonos LO

^HPLO
$$\stackrel{=}{\overset{\Sigma}{\underline{k}}} \underbrace{U}_{\underline{q}} (\underline{g}_{-\underline{q}}^{+} + \underline{g}_{-\underline{q}}) \underbrace{C}_{\underline{k}}^{+} + \underline{q}_{-\underline{k}} \underbrace{C}_{\underline{k}} \underbrace{L}_{\underline{k}} \underbrace{U}_{\underline{q}} (\underline{g}_{-\underline{q}}^{+} + \underline{g}_{-\underline{k}}) \underbrace{h}_{\underline{k}}^{+} + \underline{g}_{-\underline{k}} \underbrace{h}_{\underline{k}} \underbrace{h}_{$$

$$U_{q} = ie \sqrt{\frac{2\pi\hbar}{V}} \omega_{LO}^{1/2} \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{O}}\right)^{1/2} \frac{1}{q\varepsilon(q;t)} \equiv U_{O} \frac{1}{q\varepsilon(q;t)}$$
(8b)

onde, com $\epsilon(q,t) = 1 + \frac{\lambda^2(t)}{q^2}$

$$\lambda^{2}(t) = \frac{4\pi e^{2}}{\varepsilon_{0}} n(t)\beta(t)$$

levamos em conta a blindagem⁽²⁸⁾. n(t) é a densidade de portadores e $\beta(t) = \frac{1}{k_B^T(t)}$, k_B é a constante de Boltzmann. Como λ depende do tempo por intermédio dos termos n(t) e $\beta(t)$ deve ser obtido de forma autoconsistente. Nas aplicações que f<u>a</u> remos a seguir esse fato é incorporado automaticamente no cá<u>l</u> culo numérico.

.

 H_{PA} é o hamiltoniano da interação portadores-fonons acústi ∞ s.

$$H_{PA} = \sum_{\substack{k,j \\ k\neq j}} M_{j}^{e} (b_{j} + b_{-j}^{+}) C_{\underline{k}+j}^{+} C_{\underline{k}} + \sum_{\substack{k,j \\ k\neq j}} M_{j}^{h} (b_{j} + b_{j}^{+}) h_{\underline{k}+j}^{+} h_{\underline{k}}$$
(9a)

$$M_{j}^{e,h} = iD^{e,h} \sqrt{\frac{\hbar j}{2\rho Vs}} \equiv M_{j}^{e,h} j^{1/2} , \qquad (9b)$$

onde $D^{e,h}$ é o parâmetro de acoplamento do potencial de defor mação, ρ a densidade do material e s a velocidade do som no material.

H_{LOA} é o hamiltoniano da interação fonons óticosfonons acústicos.

$$H_{LOA} = \sum_{\substack{qj\\ qj}} V_{\underline{q}j} g_{\underline{q}}^{\dagger} b_{\underline{j}}^{\dagger} - g_{\underline{j}}^{b} + h.c. \qquad (10)$$

Como não conhecemos os elementos de matriz V usaremos, nos gi cálculos posteriores, a aproximação do tempo de relaxação.

III.3. Definição do Conjunto {P_m} e obtenção das equações de transporte generalizadas

Dado o sistema, acima caracterizado, o problema que se coloca é conhecer o seu comportamento, seja durante a aplicação do pulso do laser, seja depois de terminada a exc<u>i</u> tação.

Para aplicarmos o método desenvolvido no cap. II temos que definir o conjunto {P_m} de variáveis contraídas necessárias à descrição do sistema. Como vimos, a escolha desse conjunto depende, na escala de tempo, do regime a ser estudo do. Assim, é preciso conhecer τ_{μ} , o tempo necessário à primet ra contração. Na situação que estamos considerendo doio fato res são importantes: a) fizemos a hipótese de que era possível atribuir ao sub-sistema de portadores uma temperatura efectivo T, ora, para que isso ocorra devemos ter $\tau_{\mu} \geq \tau_{c}$, onde $\tau_{c} \in \phi$ tempo de colisão entre os portadores, a fim de permitir a redistribuição da energia; b) queremos considerar o sub-sistema de portadores como um plasma, para que isso ocorra devemos ter condições de densidade e temperatura tais que não possa have a formação de excitons, o que nos leva a um τ' que dependerá das características do material e da fonte de excitação.

Portanto, teremos a seguinte condição na definição de $\tau_{_{\rm H}}$

$$\tau_{\mu} > \begin{cases} \tau_{c} \\ \tau_{\prime} \end{cases}$$
(11)

Uma vez satisfeita essa condição o sintema pode descrito pelo modelo anteriormente definido e, para tempos t $> c_{\mu}$, escolhemos o conjunto {P_m} como:

$$\{\mathbf{P}_{\mathbf{n}}\} = \{\mathbf{H}_{\mathbf{p}}, \mathbf{H}_{\mathbf{LO}}, \mathbf{N}_{\mathbf{e}}, \mathbf{N}_{\mathbf{h}}\}$$
(12)

onde N_G é o número de elétrons e N_h o de buracos. E, conseguen temente, fica também definido o conjunto dos parâmetros term dinâmicos conjugados

$$\{F_{m}\} = \{\beta(t), \beta_{LO}(t), -\beta(t)\mu_{e}(t), -\beta(t)\mu_{h}(t)\}$$
(13)

que associamos, por analogia com o caso de equilíbrio, às tem peraturas efetivas, $\beta(t) = \frac{1}{k_{\rm B}T(t)}$, $\beta_{\rm LO}(t) = \frac{1}{k_{\rm B}T_{\rm LO}(t)}$ e aos potenciais químicos efetivos de elétrons e buracos, $\mu_{\rm e}(t)$ e $\mu_{\rm h}(t)$.

Vamos agora obter as equações de transporte genera lizadas para as variáveis P_m . Da eq. (77a.II) temos

$$\langle \hat{H}_{p} | t \rangle = \frac{1}{1\tilde{n}} \sum_{m} \alpha_{p_{m}} \langle P_{m} | t \rangle + J_{p}$$
 (14)

mas,

$$\frac{1}{i\hbar}\sum_{m} \alpha_{\mathbf{P}_{m}} \langle \mathbf{P}_{m} | t \rangle = \langle [\mathbf{H}_{\mathbf{O}}, \mathbf{H}_{\mathbf{P}}] | t \rangle = 0 , \qquad (15)$$

e,

$$J_{p} \simeq J_{p}^{(1)} + J_{p}^{(2)}$$

Pela eq. (62.II)

$$J_{p}^{(1)} = \frac{1}{i\hbar} < [H_{p}, H_{1}] | t > 0 \qquad (16)$$

Calculando o comutador,

$$\begin{bmatrix} \mathbf{H}_{\mathbf{p}}, \mathbf{H}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{\mathbf{p}}, \mathbf{H}_{\mathbf{pL}} \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{\mathbf{p}}, \mathbf{H}_{\mathbf{PR}} \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{\mathbf{p}}, \mathbf{H}_{\mathbf{PLO}} \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{\mathbf{p}}, \mathbf{H}_{\mathbf{PA}} \end{bmatrix}$$
(17)

$$\begin{bmatrix} H_{p}, H_{pL} \end{bmatrix} = \sum_{k} G_{L}^{\star} e^{-i\omega_{L}^{t}} (E_{g} + \varepsilon_{k}^{e} + \varepsilon_{k}^{h}) h_{k}^{\dagger} C_{k}^{\dagger} + h.c.$$
(18)

$$\begin{bmatrix} \mathbf{H}_{\mathbf{p}}, \mathbf{H}_{\mathbf{p}\mathbf{R}} \end{bmatrix} = \sum_{\alpha K k} \mathbf{G}_{\mathbf{R}} \left(\mathbf{E}_{\mathbf{g}} + \boldsymbol{\varepsilon}_{\mathbf{k}}^{\mathbf{e}} + \boldsymbol{\varepsilon}_{\mathbf{k}}^{\mathbf{h}} \right) \mathbf{h}_{\mathbf{k}}^{4} \mathbf{C}_{\mathbf{k}}^{+} \mathbf{a}_{\alpha K} + \mathbf{h.c.}$$
(19)

$$\begin{bmatrix} H_{\rm p}, H_{\rm PLO} \end{bmatrix} = \sum_{\substack{kq \ j}} U_{q} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{e} \right) \left(g_{q} + g_{-q}^{+} \right) C_{k+q}^{+} C_{k+q} C_{k+q} C_{j} + \sum_{\substack{kq \ j}} U_{q} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) \left(g_{q}^{+} + \varepsilon_{j}^{+} + \varepsilon_{k+q}^{+} \right) C_{k+q}^{+} C_{j} C_{j} + \sum_{\substack{kq \ j}} U_{q} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j}^{+} + \sum_{\substack{kq \ j}} U_{j} \left(\varepsilon_{k}^{e} - \varepsilon_{k+q}^{h} \right) C_{j$$

$$x h_{k+j}^{\dagger}h_{k}$$
(21)

Vemos que, quando tomamos o traço desses comutadores com $\bar{\rho}$ eles se anulam. Portanto:

$$J_p^{(1)} = 0$$
 . (22)

E, com esse resultado, obtemos:

$$J_{\mathbf{p}} \approx J_{\mathbf{p}}^{(2)} \quad . \tag{27}$$

Assim, na aproximação considerada, a equação e transporte generalizada para H_p fica:

$$\langle \hat{H}_{p} | t \rangle = -\frac{1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \langle [H_{1}(t_{1}), [H_{1}, H_{p}]] | t \rangle_{0}$$
(24)

Os termos correspondentes a recombinação (R), \dots interação com o laser (L), com os fonons LO(LO) e com os Eonons acústicos (A) podem ser escritos separadamente,

$$\langle \dot{H}_{p} | t \rangle = \langle \dot{H}_{p} | t \rangle_{L} + \langle \dot{H}_{p} | t \rangle_{R} + \langle \dot{H}_{p} | t \rangle_{LO} + \langle \dot{H}_{p} | t \rangle_{A}$$
 (25)

Passemos agora a obtenção de cada um desses ter-

mos:

$$\langle \dot{H}_{p} | t \rangle_{L} = \langle \dot{H}_{p} | t \rangle_{L}^{e} + \langle \dot{H}_{p} | t \rangle_{L}^{h}$$
, (26)

onde e e h indicam elétrons e buracos respectivamente.

$$\langle \dot{\mathbf{H}}_{p} | \mathbf{t} \rangle^{e} = -\frac{1}{\hbar^{2}} \int_{-\infty}^{0} d\mathbf{t}_{1} e^{\varepsilon \mathbf{t}_{1}} \langle \sum_{kk} G_{k}^{*} G_{L}^{*} (\mathbf{E}_{g} + \varepsilon_{k}^{e},) [C_{k}^{*} (\mathbf{t}_{1}) \mathbf{h}_{k}^{*} (\mathbf{t}_{1}) , \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1}) , \mathbf{h}_{k}^{*} (\mathbf{t}_{1}) \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1}) \mathbf{h}_{k}^{*} (\mathbf{t}_{1}) \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1}) \mathbf{h}_{k}^{*} (\mathbf{t}_{1})] \mathbf{h}_{k}^{*} (\mathbf{t}_{1})]$$

$$\ll_{\underline{k}}^{+}C_{\underline{k}}|t\rangle_{O} \equiv f_{\underline{k}}^{e}(t) = \{\exp\{\beta(t) [\underline{E}_{g} + \varepsilon_{\underline{k}}^{e} - \mu^{e}(t)]\}+1\}^{-1}$$
(28)

$$<\mathbf{h}_{k}^{+}\mathbf{h}_{k}\left[\mathbf{t}>_{0}\equiv\mathbf{f}_{k}^{h}(\mathbf{t})=\{\exp\{\beta(\mathbf{t})\left[\boldsymbol{\varepsilon}_{k}^{h}-\boldsymbol{\mu}^{h}(\mathbf{t})\right]\}+1\}^{-1}$$
(29)

$$< C_k C_k^+ | t >_0 = 1 - f_k^e(t)$$
 (30)

$$\langle h_{\underline{k}} h_{\underline{k}}^{\dagger} | t \rangle_{0} = 1 - f_{\underline{k}}^{h}(t)$$
 (31)

Definindo
$$\Omega \equiv \hbar^{-1} (E_{g} + \epsilon_{k}^{e} + \epsilon_{k}^{h} - \hbar \omega_{L}) = eq. (27)$$
 fica:

$$\langle \mathring{H}_{p} | t \rangle_{L}^{e} = \lim_{\varepsilon \to 0} \frac{-1}{n^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \sum_{k} |G_{L}|^{2} (E_{g} + \varepsilon_{k}^{e}) (e^{i\Omega t_{1}} + e^{-i\Omega t_{1}}) \{f_{k}^{e} f_{k}^{h} - (1 - f_{k}^{e}) (1 - f_{k}^{h})\} =$$

$$= \sum_{\substack{k \\ k \\ m}} |G_{L}|^{2} (E_{g} + \varepsilon_{k}^{e}) \{1 - f_{k}^{e} - f_{k}^{h}\} \lim_{\epsilon \to 0} \frac{1}{\pi^{2}} \{\frac{1}{\epsilon + i\Omega} + \frac{1}{\epsilon - i\Omega}\} =$$

$$= \frac{2\pi}{\pi^{2}} \sum_{\substack{k \\ k \\ m}} |G_{L}|^{2} (E_{g} + \varepsilon_{k}^{e}) \{1 - f_{k}^{e} - f_{k}^{h}\} \delta(\Omega) , \qquad (32)$$

uma vez que:

$$\delta(\Omega) = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \left\{ \frac{1}{\Omega - i\epsilon} - \frac{1}{\Omega + i\epsilon} \right\}$$

Do mesmo modo teremos:

$$\langle \dot{\mathbf{H}}_{\mathbf{p}} | \mathbf{t} \rangle_{\mathbf{L}}^{\mathbf{h}} = \frac{2\pi}{\hbar^2} \sum_{k} |\mathbf{G}_{\mathbf{L}}|^2 \varepsilon_{k}^{\mathbf{h}} \{1 - \mathbf{f}_{k}^{\mathbf{e}} - \mathbf{f}_{k}^{\mathbf{h}}\} \delta(\Omega) \qquad (33)$$

.

Portanto,

$$\overset{\cdot}{\mathbf{H}}_{\mathbf{p}} \stackrel{\mathbf{t}}{\mathbf{t}} \stackrel{\mathbf{z}}{\mathbf{L}} \stackrel{\mathbf{z}}{\overset{\mathbf{z}}{\mathbf{h}}} \stackrel{\mathbf{z}}{\overset{\mathbf{z}}{\mathbf{k}}} \stackrel{\mathbf{g}}{\mathbf{L}} \stackrel{\mathbf{z}}{(\mathbf{e}_{\mathbf{g}} + \varepsilon \stackrel{\mathbf{e}}{\mathbf{k}} + \varepsilon \stackrel{\mathbf{h}}{\mathbf{k}}) \{ \mathbf{1} - \mathbf{f}_{\mathbf{k}}^{\mathbf{e}} - \mathbf{f}_{\mathbf{k}}^{\mathbf{h}} \} \delta (\mathbf{e}_{\mathbf{g}} + \varepsilon \stackrel{\mathbf{e}}{\overset{\mathbf{k}}{\mathbf{k}}} - \mathbf{f}_{\mathbf{k}}^{\mathbf{h}} - \mathbf{f}_{\mathbf{k}}^{\mathbf{h}}) \}$$
(34)

E, com um procedimento análogo ao que acabamos de realizar, podemos obter os outros termos da eq. (25).

$$\langle \vec{\mathbf{H}}_{p} | \approx_{R} \frac{2\pi}{h} \sum_{\alpha \underline{K} \underline{K}} |\mathbf{G}_{R} |^{2} (\mathbf{E}_{g} + \varepsilon \frac{\mathbf{e}}{\underline{k}} + \varepsilon \frac{\mathbf{h}}{\underline{k}}) \{ \mathbf{f}_{\alpha \underline{K}}^{R} (1 - \mathbf{f}_{\underline{K}}^{e}) (1 - \mathbf{f}_{\underline{K}}^{h}) \}$$

$$- (1 + \mathbf{f}_{\alpha \underline{K}}^{R}) \mathbf{f}_{\underline{k}}^{e} \mathbf{f}_{\underline{K}}^{h} \} \delta (\mathbf{E}_{g} + \varepsilon \frac{\mathbf{e}}{\underline{k}} + \varepsilon \frac{\mathbf{h}}{\underline{k}} - \mathbf{h} \omega_{\underline{K}})$$

Onde $f_{\alpha \underline{K}}^{R}$ é a distribuição dos fotons e $m_{\underline{K}}$ sua energia. Mas, como estamos desprezando a auto-absorção $f_{\alpha \underline{K}}^{R} = 0$, portanto:

$$\langle \mathbf{\dot{H}}_{\mathbf{p}} | \mathbf{t} \rangle_{\mathbf{R}} = \frac{-2\pi}{\hbar} \sum_{\alpha \underline{K} \underline{k}} |\mathbf{G}_{\mathbf{R}}|^{2} (\mathbf{E}_{\mathbf{g}} + \boldsymbol{\varepsilon}_{\underline{k}}^{\mathbf{e}} + \boldsymbol{\varepsilon}_{\underline{k}}^{\mathbf{h}}) \mathbf{f}_{\underline{k}}^{\mathbf{e}} \mathbf{f}_{\underline{k}}^{\mathbf{h}} \,\delta(\mathbf{E}_{\mathbf{g}} + \boldsymbol{\varepsilon}_{\underline{k}}^{\mathbf{e}} + \boldsymbol{\varepsilon}_{\underline{k}}^{\mathbf{h}} - \hbar\boldsymbol{\omega}_{\underline{k}})$$
(35)

O termo associado à interação com os fonons LO fica:

$$\langle \dot{H}_{p} | t \rangle_{IO} = \langle \dot{H}_{p} | t \rangle_{IO}^{e} + \langle \dot{H}_{p} | t \rangle_{IO}^{h}$$
(36)

com,

$$\begin{aligned} \dot{H}_{p}|t \geq_{I,O}^{e} &= \frac{\pi}{\hbar} \sum_{\underline{k}\underline{q}} |U_{q}|^{2} (\varepsilon_{\underline{k}+\underline{q}}^{e} - \varepsilon_{\underline{k}}^{e}) \{f^{f}f_{\underline{k}}^{e}(1 - f_{\underline{k}+\underline{q}}^{e}) \\ &- (1 + f^{f})f_{\underline{k}+\underline{q}}^{e}(1 - f_{\underline{k}}^{e})\} \delta(\hbar\omega_{I,O} - \varepsilon_{\underline{k}+\underline{q}}^{e} - \varepsilon_{\underline{k}}^{e}) + \end{aligned}$$

$$+ \frac{\pi}{\hbar} \sum_{\substack{k:q \\ k:q}} |U_{q}|^{2} (\varepsilon_{k}^{e} - \varepsilon_{k-q}^{e}) \{ f^{f} f_{k-q}^{e} (1 - f_{k}^{e}) - (1 + f^{f}) f_{k}^{e} (1 - f_{k-q}^{e}) \} \delta (\hbar\omega_{IO} - \varepsilon_{k}^{e} - \varepsilon_{k-q}^{e}) =$$

$$= \frac{2\pi}{\hbar} \sum_{\substack{k:q \\ k:q}} |U_{q}|^{2} h\omega_{IO} e^{\beta(t) [E_{q} + \varepsilon_{k}^{e} - \mu^{e}(t)]} \{ 1 - e^{[\beta_{IO}(t) - \beta(t)] \hbar\omega_{IO}} \}$$

$$\times f^{f} f^{e} (\varepsilon_{k}^{e}) f^{e} (\varepsilon_{k}^{e} - h\omega_{IO}) \delta (\hbar\omega_{IO} - \varepsilon_{k}^{e} - \varepsilon_{k-q}^{e}) , \qquad (37)$$

onde

.

$$f^{f} = \{ \exp \{ \beta_{LO}(t) \tilde{n} \omega_{LO} \} - 1 \}^{-1} , \qquad (38)$$

é a distribuição dos fonons LO.

Efetuando a soma em \underline{q} teremos:

$$\sum_{q}^{\Sigma} + \frac{V}{8\pi^{3}} \frac{m_{e}}{\pi^{2}k} \int_{0}^{\infty} q^{2} dq \int_{0}^{\pi} sen \theta d\theta \int_{0}^{2\pi} d\psi \frac{q}{q^{2}+\lambda^{2}} \delta\left(\frac{m_{e}\omega_{LO}}{\pi kq} + \frac{q}{2k} - \cos\theta\right) =$$

$$= \frac{V}{4\pi^2} \frac{\stackrel{\text{m}}{\text{e}}}{\stackrel{\text{h}}{\text{h}} \stackrel{\text{m}}{\text{k}}} \int_0^\infty \frac{\frac{q^3}{(q^2 + \lambda^2)^2} \, dq \int_{-1}^{\perp} dx \, \delta\left(\frac{\stackrel{\text{m}}{\text{h}} \stackrel{\text{m}}{\text{h}} \stackrel{\text{m}}{\text{h}} \frac{q}{2k} - x\right) =$$

$$= \frac{V}{4\pi^2} \frac{m_e}{\hbar^2 k} \int_{q_m}^{q_M} \frac{q^3}{(q^2 + \lambda^2)^2} dq \equiv \psi_{LO}^e(k) , \qquad (39)$$

com os limites da integral dados por

$$q_{M} = k + \sqrt{k^{2} - 2\hbar^{-1} \omega_{LO}^{m} e}$$
; $q_{m} = k - \sqrt{k^{2} - 2\hbar^{-1} \omega_{LO}^{m} e}$ (40)

$$k \geq \sqrt{2\hbar^{-1}} \omega_{LO}^{m} e$$

Substituindo a eq. (39) em (38) obtemos:

Da mesma forma,

$$\langle \hat{\mathbf{H}}_{\mathbf{p}} | \mathbf{t} \rangle_{\mathbf{LO}}^{\mathbf{h}} = 2\pi\omega_{\mathbf{LO}} | \mathbf{U}_{\mathbf{O}} |^{2} \{ \mathbf{1}_{-\mathbf{e}} [\mathbf{LO}^{(\mathbf{t})-\beta(\mathbf{t})}] \mathbf{f} \omega_{\mathbf{LO}} \}_{\mathbf{f}} \mathbf{f} \sum_{\mathbf{e}} \mathbf{e}^{\beta(\mathbf{t})} [\mathbf{e}_{\mathbf{k}}^{\mathbf{h}-\mu\mathbf{h}(\mathbf{t})}]_{\mathbf{x}} \\ \times \mathbf{f}^{\mathbf{h}} (\mathbf{e}_{\mathbf{k}}^{\mathbf{h}}) \mathbf{f}^{\mathbf{h}} (\mathbf{e}_{\mathbf{k}}^{\mathbf{h}-\mu\mathbf{h}(\mathbf{t})}) \psi_{\mathbf{LO}}^{\mathbf{h}} (\mathbf{k})$$

$$(42)$$

O termo associado à interação com os fonons acústicos fica

$$\langle \mathbf{H}_{\mathbf{p}} | \mathbf{t} \rangle_{\mathbf{A}} = \langle \mathbf{H}_{\mathbf{p}} | \mathbf{t} \rangle_{\mathbf{A}}^{\mathbf{e}} + \langle \mathbf{H}_{\mathbf{p}} | \mathbf{t} \rangle_{\mathbf{A}}^{\mathbf{h}} ,$$
 (43)

onde

.

$$\langle \dot{\mathbf{H}}_{p} | \mathbf{t} \rangle_{A}^{e} = \frac{2\pi}{n} \sum_{\substack{k,j \\ k',j'}} |\mathbf{M}_{j}|^{2} (\varepsilon_{k}^{e} - \varepsilon_{k-j}^{e}) (\mathbf{f}_{j}^{b} \mathbf{f}_{k-j}^{e} (1 - \mathbf{f}_{k}^{e}) - (1 + \mathbf{f}_{j}^{b}))$$

$$\times \mathbf{f}_{k}^{e} (1 - \mathbf{f}_{k-j}^{e}) \delta (\mathbf{f}_{j}^{r} - \varepsilon_{k}^{e} - \varepsilon_{k-j}^{e}), \qquad (44)$$

com

$$f_{j}^{b} = \{ \exp(\beta_{0} \hbar \Gamma_{j}) - 1 \}^{-1} \approx \frac{1}{\beta_{0} \hbar \Gamma_{j}}$$

$$\beta_{0} = \frac{1}{k_{B} T_{b}}$$

$$(45)$$

obtemos

$$<\stackrel{\bullet}{H_{p}}|t>^{e}_{A} = \frac{2\pi}{\hbar}|M_{o}|^{2} \{\frac{\beta(t)}{\beta_{o}}-1\} \sum_{k} e^{\beta(t)\left[E_{g}+\epsilon^{e}_{k}+\epsilon^{e}_{k}\right]} f^{e}(\epsilon^{e}_{k})^{x}$$

$$x \Sigma \hbar s j^{2} f^{e} (\varepsilon_{k}^{e} - \hbar \Gamma_{j}) \delta(\hbar \Gamma_{j} - \varepsilon_{k}^{e} - \varepsilon_{k}^{e} - j) .$$
(46)

Somando nos Indices j

$$\sum_{j} \rightarrow \frac{vhs}{4\pi^2} \int_0^{\infty} j^4 dj \int_0^{\pi} sen\theta d\theta f^e(\varepsilon_{\underline{k}}^e - h\Gamma_j) \delta(h\Gamma_j - \varepsilon_{\underline{k}}^e - \varepsilon_{\underline{k}-j}^e) ,$$
(47)

e, com a aproximação
$$f^{e}(\varepsilon_{\underline{k}}^{e}-\hbar\Gamma_{\underline{j}}) \simeq f^{e}(\varepsilon_{\underline{k}}^{e})-\hbar\Gamma_{\underline{j}} = \frac{df(\varepsilon_{\underline{k}}^{e})}{d\varepsilon_{\underline{k}}^{e}}$$

teremos

$$\Sigma \rightarrow \frac{V_{\rm S}}{2} \frac{m}{4\pi} \frac{e}{\hbar k} \psi_{\rm A}^{\rm e}(k) , \qquad (48)$$

onde

$$\psi_{A}^{e}(\underline{k}) \equiv f^{e}(\varepsilon_{\underline{k}}^{e}) \frac{j_{M}^{4}}{4} - \frac{df^{e}(\varepsilon_{\underline{k}}^{e})}{d\varepsilon_{\underline{k}}^{e}} \bar{n}_{s} \frac{j_{M}^{5}}{5} , \qquad (49)$$

$$j_{M} = 2k - \frac{2m_{e}s}{\bar{n}} ; \quad k \ge \frac{m_{e}s}{\bar{n}}$$

Finalmente

$$\langle \dot{H}_{p} | t \rangle_{A}^{e} = \frac{|M_{o}|^{2} Vm_{e} s}{2\pi\hbar^{2}} \{ \frac{\beta(t)}{\beta_{b}} - 1 \} \sum_{k} k^{-1} e^{\beta(t) \left[E_{g} + \varepsilon_{k}^{e} - \mu^{e}(t)\right]} f^{e}(\varepsilon_{k}^{e}) \psi_{A}^{e}(k)$$
(50)

$$< \dot{\mathbf{H}}_{\mathbf{p}} | \mathbf{t} >_{\mathbf{A}}^{\mathbf{h}} = \frac{|\mathbf{M}_{\mathbf{o}}|^{2} \nabla \mathbf{m}_{\mathbf{h}}^{s}}{2\pi \hbar^{2}} \left\{ \frac{\beta(\mathbf{t})}{\beta_{\mathbf{b}}} + 1 \right\} \sum_{k} \mathbf{e}^{\beta(\mathbf{t})} \left[\varepsilon_{k}^{\mathbf{h}} - \mu^{\mathbf{h}}(\mathbf{t}) \right]_{\mathbf{f}}^{\mathbf{h}} \left(\varepsilon_{k}^{\mathbf{h}} \right) \psi_{\mathbf{h}}^{\mathbf{h}} \left(\varepsilon_{k}^{\mathbf{h}} \right) \left(\varepsilon_{k}^{\mathbf$$

A equação de transporte generalizada para a variável ${}^{\rm H}{}_{\rm LO}$ será dada por:

$$\dot{H}_{LO}|t\rangle = -\dot{H}_{P}|t\rangle_{LO} + \dot{H}_{LO}|t\rangle_{A}$$
, (52a)

com

$$\langle \dot{H}_{LO} | t \rangle_{A} = \frac{-V}{v_{c}} \dot{n} \omega_{LO} \frac{f^{f} - f^{f}_{o}}{\tau},$$
 (52b)

onde v_c é o volume da célula unitária,

$$\mathbf{f}_{\mathbf{O}}^{\mathbf{f}} \equiv \{ \exp \left(\beta_{\mathbf{D}} \mathbf{\tilde{h}} \omega_{\mathbf{LO}} \right) - 1 \} \qquad (53)$$

Como foi dito anteriormente, a interação com os fonons acústicos foi tratada na aproximação do tempo de relaxação.

$$\tau^{-1} = \left(\frac{2\pi \mathbf{v}_{\mathbf{c}}}{\hbar^{2} \mathbf{v}}\right) \sum_{\mathbf{g}, \mathbf{j}, \mathbf{j}} \left| \mathbf{v}_{\mathbf{g}\mathbf{j}} \right|^{2} \left(1 + \mathbf{f}_{\mathbf{j}}^{\mathbf{b}} + \mathbf{f}_{\mathbf{j}}^{\mathbf{b}}\right) \delta\left(\omega_{\mathrm{LO}}^{-\Gamma} \mathbf{j}_{\mathbf{j}}^{-\Gamma} \mathbf{j}_{\mathbf{j}}^{-\Gamma}\right)^{\delta} \mathbf{g}_{\mathbf{j}} \mathbf{j} + \mathbf{j}^{*}$$
(54)

Essa quantidade, que está associada a taxa de transferência de energia dos fonons óticos para a rede, será considerada como um parâmetro ajustável.

Por sua vez, a equação de transporte generalizada para a variação do número de portadores será:

$$\langle \dot{N}_{e} | t \rangle = \langle \dot{N}_{e} | t \rangle_{L} + \langle \dot{N}_{e} | t \rangle_{R}$$
, (55a)

onde

$$\langle \hat{\mathbf{N}}_{\mathbf{e}} | \mathbf{t} \rangle_{\mathbf{L}} = \frac{2\pi}{\hbar} \sum_{k} |G_{\mathbf{L}}|^{2} \{ \mathbf{1} - \mathbf{f}_{k}^{\mathbf{e}} - \mathbf{f}_{k}^{\mathbf{h}} \} \delta (\mathbf{E}_{\mathbf{g}} + \boldsymbol{\varepsilon}_{k}^{\mathbf{e}} + \boldsymbol{\varepsilon}_{k}^{\mathbf{h}} - \hbar \boldsymbol{\omega}_{\mathbf{L}})$$
(55b)

e

$$\langle \dot{N}_{e} | t \rangle_{R} = \frac{-2\pi}{\hbar} \sum_{\alpha K k} |G_{R}|^{2} f_{k}^{e} f_{k}^{h} \delta(E_{g} + \varepsilon_{k}^{e} + \varepsilon_{k}^{e} - \hbar\omega_{K})$$
(55c)

devendo ser levado em conta que

$$\langle \dot{N}_{h} | t \rangle = \langle \dot{N}_{e} | t \rangle$$
 (56)

pois estamos considerando um semicondutor intrínseco.

As equações (25), (52a), (55a) e (56) formam o conjunto de equações de transporte generalizadas para as variáveis $\{p_m\}$.

Um outro conjunto de equações independentes pode ser obtido se usarmos o resultado (73.II). Teremos:

$$\langle \dot{H}_{p} | t \rangle = - (H_{p}, H_{p} | t)\dot{\beta}(t) + (H_{p}, N_{e}^{\dagger}t) [\beta(t)\dot{\mu}_{e}(t) + \dot{\beta}(t)\mu_{e}(t)] +$$

$$+ (H_{p}, N_{h}^{\dagger}t) [\beta(t)\dot{\mu}_{h}(t) + \dot{\beta}(t)\mu_{h}(t)] , \qquad (57)$$

onde

$$(H_{p}, H_{p}|t) = \int_{0}^{1} d\tau T_{r} \{H_{p}e^{-\tau s} (H_{p}^{-} < H_{p}^{-}|t >_{g}) e^{(\tau-1)s}\} =$$

$$= < H_{p}H_{p}|t >_{o}^{-} < H_{p}|t >_{o}^{-} < H_{p}|t >_{o}^{-} < H_{p}|t >_{o}^{-} \sum_{k} (E_{g}^{+} e_{k}^{e})^{2} f_{k}^{e} (1 - f_{k}^{e}) + \sum_{k} e_{k}^{h} f_{k}^{h} (1 - f_{k}^{h})$$

$$(H_{p}, N_{e} | t) = \sum_{k} (E_{g} + \varepsilon_{k}^{e}) f_{k}^{e} (1 - f_{k}^{e})$$
(59)

$$(H_{P}, N_{h} | t) = \sum_{k} \varepsilon_{k}^{h} f_{k}^{h} (1 - f_{k}^{h})$$
(60)

Substituindo (58), (59) e (60) em (57) ficamos com:

Com um procedimento semelhante teremos:

$$\langle \dot{H}_{LO} | t \rangle = - \langle H_{LO}, H_{LO} | t \rangle \dot{\beta}_{LO} (t) = -\frac{V}{V_c} \langle \tilde{h} \omega_{LO} \rangle^2 f^{f} (1 + f^{f}) \dot{\beta}_{LO} (t)$$
 (62)

$$\langle \dot{\mathbf{N}}_{e} | t \rangle = \{ \sum_{k} f_{k}^{e} (1 - f_{k}^{e}) \mu_{e}(t) - \sum_{k} (E_{g} + \varepsilon_{k}^{e}) f_{k}^{e} (1 - f_{k}^{e}) \} \dot{\beta}(t) + \\ + \{ \sum_{k} f_{k}^{e} (1 - f_{k}^{e}) \beta(t) \} \dot{\mu}_{e}(t) .$$

$$\langle \dot{\mathbf{N}}_{h} | t \rangle = \{ \sum_{k} f_{k}^{h} (1 - f_{k}^{h}) \mu_{h}(t) - \sum_{k} \varepsilon_{k}^{h} f_{k}^{h} (1 - f_{k}^{h}) \} \dot{\beta}(t) + \\ + \{ \sum_{k} f_{k}^{h} (1 - f_{k}^{h}) \beta(t) \} \dot{\mu}_{h}(t) .$$

$$(63)$$

Combinando as equações (25), (52a), (55a) e (56) com (61), (62), (63) e (64) obtemos um sistema de equações integrodiferenciais não lineares para as variáveis $\beta(t)$, $\beta_{LO}(t)$, $\mu_{e}(t)$ e $\mu_h(t)$ cuja solução, dadas as condições iniciais apropriadas, permite a descrição da evolução temporal do sistema físico.

III.4. Estudo de Situações Específicas e Comparação com Resultados Experimentais

Tendo obtido esse conjunto de equações, vamos agora apl<u>i</u> cá-lo ao estudo de situações para as quais existem resultados e<u>x</u> perimentais.

O sistema físico a ser considerado será o GaAs submetido, em cada caso, a diferentes condições de excitação.

Para resolvermos o sistema de equações temos que determinar as condições iniciais no tempo t_o , ou seja, temos que conhecer $\beta(t_o)$, $\beta_{LO}(t_o)$, $\mu_e(t_o)$ e $\mu_h(t_o)$. Esse conjunto de valores com responde a "preparação" do sistema num dado estado e deve ser fom necido por via experimental. Entretanto, como veremos a seguir, esses valores podem ser obtidos de uma forma menos restritiva se fizermos algumas hipóteses concernentes as trocas de energias nos instantes iniciais do experimento. Convém observar que nos casos a serem considerados não se pode evitar esse tipo de tratamento uma vez que a experiência não fornece valores que permitam incluir, nos cálculos, intervalos de tempo que temos interesse em analisar.

Tomando t_o = τ_{μ} que, como vimos, (eq.11), deve ser maior que $\tau_c \in \tau'$. O valor de τ_c está entre 0,01 e 0,1 ps.^(29,30). Já, o tempo τ' dependerá da situação experimental específica uma vez que, a partir do início da excitação, (t=0), devemos esperar que a concentração de portadores atinja valores da ordem de $n(t_o) \sim 10^{16}$ cm⁻³ a fim de estarmos do lado metálico da transição de Mott de tal forma que eles possam ser tratados como um líquido de Fermi, e, o tempo necessário para que a concentração acima seja atingida dependerá da intensidade da excitação e do coeficiente de absorção. Assim, t_o assume valores que d<u>e</u> pendem de cada caso estudado.

Se a energia do foton absorvido na criação do par elétron-buraco for ħw_L podemos escrever, usando o teorema da equipartição da energia, que:

$$\beta(0) = \frac{3}{\hbar\omega_{\rm L} - E_{\rm g}}$$
(62)

Sendo ν o número de fonons LO, com energia fiw_{LO}, produzidos, por portador, pelo decaimento dos portadores para o fundo da banda no tempo t_o, usando o teorema da conservação da energia e fazendo a hipótese de que toda energia c<u>e</u> dida pelos portadores foi transferida para os fonons LO, (o que é razoável pois o semicondutor considerado é polar), ter<u>e</u> mos:

$$\beta(t_{0}) = \frac{\beta(0)}{1 - \frac{\nu \hbar \omega_{LO}}{3} \beta(0)} , \qquad (63)$$

$$\beta_{\text{LO}}(t_{o}) = \frac{1}{\hbar\omega_{\text{LO}}} \ln \left(1 + \frac{1}{\nu v_{c} n(t_{o}) + f_{o}^{f}}\right)$$
(64)

Uma vez conhecidos $\beta(t_0)$ e n(t_0), usando as equa

$$n_{e}(t_{o}) = \frac{1}{\left[\beta(t_{o})\right]^{3/2}} \frac{\sqrt{2m_{e}^{3}}}{\pi^{2}h^{3}} \int_{0}^{\infty} \frac{\sqrt{x}}{x - \eta_{e}(t_{o})} dx , \quad (65)$$

е

ções:

$$n_{h}(t_{o}) = \frac{1}{\left[\beta(t_{o})\right]^{3/2}} \frac{\sqrt{2m_{h}^{3}}}{\pi^{2}h^{3}} \int_{0}^{\infty} \frac{\sqrt{x}}{e^{x-\eta_{h}(t_{o})} + 1} dx$$

$$\mu_{e}(t_{o}) = \frac{\eta_{e}(t_{o})}{\beta(t_{o})} + E_{g}$$
(67)

$$\mu_{h}(t_{o}) = \frac{\eta_{n}(t_{o})}{\beta(t_{o})}$$
(68)

Assim, a determinação das condições iniciais fica dependendo de um parâmetro, V, cujo valor, em cada caso, é escolhido em função da comparação dos resultados teóricos com os experimentais, nas regiões para as quais esses dados existem.

Finalmente, como última hipótese, consideramos como retangular a forma do pulso de excitação.

Outros parâmetros, característicos do GaAs, nece<u>s</u> sários à solução do sistema são dados na tabela abaixo.

$\hbar \omega_{\rm LO} = 37 {\rm meV}^{(a)}$	α_2^{o} =.02 cm/MW ^(c)
$\epsilon_{o}^{=12}$ (a)	$D^{e} = 7. eV^{(d)}$
ε _{∞=11} (a)	$p^{h} = 3.5 \text{ eV}^{(d)}$
$m_e = .068 m_o^{(b)}$	$v_{c} = 1.8 \text{ g/cm}^{3}$ (e)
$m_{h} = .5 m_{o}$ (b)	$\rho = 5.31 \text{ g/cm}^{3}$ (e)
$E_{g}(0) = 1.52 \text{ eV*}^{(b)}$	$s = 5.22 \times 10^5 \text{ cm/s}^{(e)}$

- (a) J.D. Dou and D. Redfield, Phys. Rev. B2, 594 (1972)
- (b) S.M. Sze, "Physics of Semiconductor Devices" (Wiley-Interscience, 1969)
- (c) Coeficiente de absorção a dois fotons, J.M. Ralston e
 R.K. Chang, Appl. Phys. Lett. 15, 164 (1969).
- (d) C. Jacoboni and L. Reggiani, Adv. in Phys. 28, 493 (1979)
- (e) B.R. Nag, "Theory of Electrical Transport in Semiconductors" (Pergamon Press, 1972)
- * Dependência do "gap" com a temperatura:

$$E_{g}(T) = E_{g}(0) - \frac{5.8 \times 10^{-4} T^{2}}{T+300}$$

Passemos agora ao estudo de situações experimentais específicas. Apresentaremos, a seguir, os resultados dos cálculos numéricos, deixando sua discussão e comentário para o próximo capítulo. Consideraremos, primeiramente, três casos, que correspondem a três condições experimentais diferentes.

Primeiro caso (A)

Condições do experimento: (31)

Características da fonte de exc	itação
I (intensidade da radiação)	$4,1x10^{27} \text{ eV/cm}^2 \text{s}$
$\hbar \omega_{\rm L}$ (energia do foton)	4 eV
t _p (tempo de duração do pulso)	l ps

T_b (temperatura da rede)

300 K

Para obter as condições iniciais tomamos:

t_o (tempo de microrrelaxação) 0,1 ps n(t_o) (concentração de portadores) 1,0x10¹⁸ cm⁻³ v (nº de fonons LO produzidos por portador) 20

Condições iniciais:

β(t _o)	1,63 eV ⁻¹	μ ^e (t _o)	-0,94 eV
$\beta_{LO}(t_o)$	38,5 eV ⁻¹	$\mu^{h}(t_{o})$	-3,36 eV

τ (tempo de relaxação anarmônico) 30 ps

Com esses dados podemos resolver, usando métodra numéricos, o sistema de equações integro-diferenciais anteriormente obtido. Os resultados encontrados são mostrados nas figuras seguintes.

Fig. 3. Evolução da temperatura efetiva dos portadores (linha contínua) e fonons LO (linha tracejada). A seta induca o fim do pulso.

Fig. 4. Evolução dos potenciais químicos efetivos dos elétrons
(e) e buracos (h). O zero da energia corresponde ao to
po da banda de valência. A seta indica o fim do pulso.

Fig. 5. Taxas de transferência de energia. Dos portadores para os fonons LO(1) e para os fonons acústicos (2). Dos fo nons LO aos fonons acústicos (3). Pela recombinação elétron-buraco (4). A seta indica o fim do pulso.

Fig. 6. Taxas de transferência de energia por par de portadores. Para os fonons LO (1). Para os fonons acústicos (2). Por recombinação (3). A seta indica o fim do pu<u>l</u> so.

Segundo caso. (B) Condições do experimento:⁽³²⁾ Características da fonte de excitação I (intensidade da radiação) 1,25x10²⁶ eV/cm²s

> hω_L (energia do foton) 1,64 eV t_p (tempo de duração do pulso) 0,5 ps

Para obter as condições iniciais tomamos:

t
o(tempo de microrrelaxação)0,1 ps $n(t_o)$ (concentração de portadores) $4,2x10^{16}$ cm⁻³v (nº de fonons LO produzidos por portador)1

Condições iniciais:

β(t_)	36,15 eV ⁻¹	$\mu^{e}(t_{o})$	1,45 eV
β _{LO} (t _o)	318,9 eV ⁻¹	$\mu^{h}(t_{o})$	-0,151 eV

Tempo de relaxação anarmônico:

τ 6**0 ps**

Os resultados obtidos são mostrados nas figuras seguintes.

Fig. 7. Evolução da temperatura efetiva dos portadores (linha contínua) e fonons LO (linha tracejada). Os pontos co<u>r</u> respondem a valores experimentais. A seta indica o fim do pulso.

•

.

Fig. 8. Evolução dos potenciais químicos efetivos dos elétrons (e) e burados (h). O zero da energia corresponde ao topo da banda de valência. A seta indica o fim do pulso.

Fig. 9. Taxas de transferência de energia. Dos portadores para os fonons LO (1) e para os fonons acústicos (2). Dos fonons LO aos fonons acústicos (3). Pela recombinação elétron-buraco (4). A seta indica o fim do pulso.

• :

Fig. 10. Taxas de transferência de energia por par de portado res. Para os fonons LO (1). Para os fonons acústicos (2). Por recombinação (3). A seta indica o fim do pul so.

Terceiro caso. (C) Condições do experimento:⁽³³⁾

Características da fonte de excitação*

I (intensidade da radiação)	$2,37 \times 10^{27} \text{ eV/cm}^2 \text{s}$
$\hbar\omega_{ m L}$ (energia do foton)	1,17 eV
t (tempo de duração do pulso)	25 ps

$^{\mathrm{T}}$ b	(temperatura	da	red e)	7,2 K
~h	(combas a sor a	~~~	1040/	,,

Para obter as condições iniciais tomamos:

t _o (tempo de microrrelaxação)	l ps
n(t _o) (concentração de portadores)	$8,0x10^{15}$ cm ⁻³
v(nº de fonons LO produzidos por portador)	6

Condições iniciais:

β(t_)	5,093 eV ⁻¹	$\mu^{e}(t_{0})$	0,133 eV	
β _{LO} (t _o)	315,3 eV ⁻¹	$\mu^{h}(t_{o})$	-1,90 eV	

Tempo de relaxação anarmônico

τ 60 **ps**

* Nesse experimento a absorção era a dois fotons, assim a eq.
(33) foi escrita como:

$$\langle i_{p} | t \rangle_{L} = VI^{2} \alpha_{2}^{0} \{1 - f_{k}^{e} - f_{k}^{h}\}$$

Para α_2^0 , coeficiente de absorção a dois fotons, usamos o v<u>a</u> lor experimental, dado na tabela 1. Os resultados obtidos são mostrados nas figuras seguintes.

Fig. 12. Evolução dos potenciais químicos efetivos dos elétrons (e) e buracos (h). O zero d energia corresponde ao topo da banda de valência. A seta indica o fim do pulso.

Fig. 13. Taxas de transferência de energia. Dos portadores para os fonons LO (1) e para os fonons acústicos (2). Dos fonons LO para os fonons acústicos (3). Pela recom binação elétron-buraco (4). A seta indica o fim do pul so.

. . !

Fig. 14. Taxas de transferência de energia por par de portadores. Para os fonons LO (1). Para os fonons acústicos (2). Por recombinação (3). A seta indica o fim do pul so.

Evolução temporal dos modos de fonons LO

A temperatura T_{LO} , anteriormente obtida, está relacionada com a energia do sub-sistema de fonons LO. Essa ener gia, entretanto, não se distribui uniformemente entre todos os modos uma vez que os operadores de colisão dependem, explicit<u>a</u> mente, do vetor de onda \vec{q} .

Nessa secção vamos obter uma equação de transporte generalizada que descreve a evolução temporal do número de ocupação dos diferentes modos. Esse resultado completará a an<u>á</u> lise do estado termodinâmico do sistema altamente excitado que estamos estudando. Medidas recentes, usando técnicas de espectroscopia Raman com resolução temporal⁽³⁴⁾, permitirão a comp<u>a</u> ração dos nossos resultados com valores experimentais.

A equação de transporte generalizada para o número de fonons LO num modo \vec{q} pode ser escrita, usando-se (77aII), como:

$$\dot{\mathbf{f}}_{\underline{q}} = \frac{d}{dt} \langle \mathbf{g}_{\underline{q}}^{+} \mathbf{g}_{\underline{q}} | t \rangle = \frac{-1}{n^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \langle [\mathbf{H}_{1}(t_{1}), [\mathbf{H}_{1}, \mathbf{g}_{\underline{q}}^{+} \mathbf{g}_{\underline{q}}]] | t \rangle_{0}$$
(67)

Os parâmetros termodinâmicos do sistema podem ser obtidos como nos casos anteriormente considerados e, então, utilizados para resolver essa equação.

Procedendo como nos casos anteriores obteremos:

$$\dot{f}_{q} = \dot{f}_{q}^{(e)} + \dot{f}_{q}^{(h)} - \frac{f_{q} - f_{o}^{f}}{\tau_{q}}$$
(68)

onde

$$\mathbf{\dot{f}}_{q}^{(e)} = \frac{2\pi m_{e}}{\pi^{3}} |\boldsymbol{U}_{o}|^{2} \frac{1}{q^{3}} \sum_{k} \frac{1}{k} \{(1+f_{q})e^{\beta(t)} \left[\boldsymbol{E}_{g} + \boldsymbol{\varepsilon}_{k}^{e} - \boldsymbol{\mu}^{e}(t)\right]\right]$$
$$- f_{q}^{\beta(t)} \left[E_{q}^{+} \varepsilon_{k}^{e} - \mu^{e}(t) + \hbar \omega_{LO}^{-} \right] f_{k}^{e} f_{k}^{e} \int \left(\frac{q}{2k} - \frac{m_{e}^{\omega} LO}{\hbar kq} + \cos \theta \right)$$

$$(69)$$

é o termo associado à interação com os elétrons.

$$\mathbf{\dot{f}}_{q}^{(h)} = \frac{2\pi m_{h}}{n^{3}} |U_{o}|^{2} \frac{1}{q^{3}} \sum_{k} \frac{1}{k} \{(\mathbf{l}+\mathbf{f}_{q}) e^{\beta(\mathbf{t}) \left[\varepsilon_{k}^{h}-\mu^{h}(\mathbf{t})\right]} -$$

$$- f_{\underline{q}} e^{\beta(t) \left[\varepsilon_{k}^{h} - \mu^{h}(t) + \hbar \omega_{LO} \right]} f_{\underline{k}}^{h} + \underline{q} f_{\underline{k}}^{h} \delta \left(\frac{q}{2k} - \frac{m_{h}^{\omega} LO}{\hbar kq} + \cos \theta \right)$$
(70)

é o termo associado à interação com os buracos e $\frac{f_q - f_o^f}{\tau_q}$ é o termo associado à interação anarmônica, para o qual foi usada a aproximação do tempo de relaxação. O parâmetro τ_q é obtido a partir de resultados experimentais.

Consideraremos, a seguir, duas situações. Primeiro caso. Condições do experimento: ⁽³⁴⁾

Características da fonte de excitação

I (intensidade da radiação)	$9,12 \times 10^{24} \text{ eV/cm}^2 \text{s}$
ኸ $\omega_{ m L}$ (energia do foton)	2,16 eV
t (tempo de duração do pulso) p	2,5 ps

T_b (temperatura da rede) 77 K

t _o (tempo de microrrelaxação)	0,1 ps
n(t _o) (concentração de portadores)	$4,0 \times 10^{16} \text{ cm}^{-3}$
ν (n9 de fonons LO produzidos por portador)	1

Condições iniciais:

β(t _o)	4,894 eV ⁻¹	$\mu^{e}(t_{O})$	0,384 eV
$\beta_{\rm LO}(t_o)$	151,0 eV ⁻¹	$\mu^{h}(t_{o})$	-1,66 eV

Para o valor inicial de f_q consideramos duas situ<u>a</u> ções obtidas a partir do resultado experimental correspondentes a, aproximadamente, 55% e 60% do valor do pico. O valor de q foi escolhido de forma a corresponder ao valor experimental.

$f_{\alpha}^{(1)}(t_{\alpha})$	0,29	$f_{\alpha}^{(2)}(t_{\alpha})$	0,45	q	7,6x10 ¹⁵ cm ⁻¹
_d , o,	- ,	_d ,_o,	- ,		

Tempo de relaxação anarmônico

τ 50 ps τ 7 ps q	τ	50 ps	τq	7 p s
----------------------------	---	-------	----	--------------

O valor de τ foi obtido seguindo o mesmo procedimento dos casos anteriores e, o de τ_q , da ref. (34).

Os resultados são mostrados nas figuras seguintes.

Fig. 15. Evolução da temperatura efetiva dos portadores (11nha contínua) e fonons LO (linha tracejada). A seta indica o fim do pulso.

Fig. 16. Evolução da população de fonons no modo $q = 7,6x10^5$ cm⁻¹. A linha contínua corresponde a condição inicial $f_q(t_0) = 0,45$ e a linha tracejada a $f_q(t_0) = 0,29$. Os pontos correspondem a valores experimentais.

Segundo caso.

A fim de melhor esclarecer o problema consideramos também uma situação oposta ao caso anterior, isto é, um pulso de duração maior e uma temperatura da rede mais baixa. Como condições experimentais foram tomadas as mesmas que as do terceiro caso citados a pg. 62.

q (cm ⁻¹)	$f_q(t_o)$
1,0x10 ⁶	0,026
7,0x10 ⁵	0,074
4,0x10 ⁵	0,390

Consideramos três valores diferentes para q

Tempo de relaxação anarmônico

Esse valor foi obtido a partir da ref. (35).

Os resultados são mostrados nas figuras seguintes.

Fig. 18. Evolução da temperatura efetiva dos portadores (linha contínua), fonons LO (linha tracejada) e fonons nos modos $q = 4,0x10^5 \text{ cm}^{-1}$ (1), $q = 7,0x10^5 \text{ cm}^{-1}$ (2) e $q = 1,0x10^6 \text{ cm}^{-1}$ (3). A seta indica o fim do pulso.

CONCLUSÕES E COMENTÁRIOS

Como já tivemos ocasião de observar, o progresso da pesquisa científica e as exigências do desenvolvimento teg nológico tem mostrado a importância do estudo de situações de não equilíbrio. No que se refere ao estudo de semicondutores um grande esforço, tanto experimental quanto teórico, tem sido feito nessa direção. Fundamentalmente o que se procura entender é o comportamento dos diversos tipos de excitações el<u>e</u> mentares associadas ao sistema na situação de não equilíbrio e, consequentemente das taxas de transferência de energia entre esses sub-sistemas. Do ponto de vista teórico esse estudo tem sido feito pela construção de equações integro-diferenciais, para as variáveis relevantes, de uma forma intuitiva ^(29,36,37,38). Hã, portanto, a necessidade de um tratamento mais sistemático do problema.

Um dos objetivos desse trabalho foi mostrar que o método desenvolvido no cap. II responde, de maneira bastante satisfatória a essa necessidade uma vez que permite: l9, consi derar o problema a partir de um estado arbitrário, 29, carregar os efeitos de memória, 39, evidenciar os efeitos termo-me cânicos. Por outro lado devemos observar que uma de suas características fundamentais é dada pelo parâmetro τ_{μ} , o tempo de micro-relaxação, que é o tempo a partir do qual torna-se possível a descrição macroscópica do sistema, ou seja, podemos escolher um conjunto de variáveis P_m necessárias a essa descrição e escrever para essas variáveis, um conjunto de equações de trans porte. A evolução temporal do sistema é dada pela solução des sas equações. É claro que para obter essa solução temos que ter as condições iniciais que, no estudo de situaçõe concretas, só podem ser obtidas experimentalmente. Isso mostra que, para um emprego efetivo do método, o trabalho teórico tem que ser desenvolvido conjuntamente com o experimental.

Várias aplicações, feitas no cap. III, mostram o método "em ação". Notamos que, mesmo considerando a menor ordem de aproximação, ou seja, tomando $K(\tau_1) = 1$ e obtendo o te<u>r</u> mo de colisão expandido até segunda ordem nas interações, os r<u>e</u> sultados concordam de forma satisfatória com os dados experimentais e várias conclusões interessantes sobre o comportame<u>n</u> to do semicondutor podem ser tiradas.

Como consequência das aproximações feitas as equa ções de transporte generalizadas tomam um aspecto que formalmente corresponde a equações do tipo Boltzmann, na aproximação de Born, porém contendo as funções de distribuição instantâneas para todas as excitações elementares envolvidas. Nessa aproximação os termos de colisão correspondentes aos diferentes processos de espalhamento não apresentam efeitos de interferência entre si, nem modificações do tipo termo-mecânica. Outra cons<u>e</u> quência é que essas equações tornam-se markovianas perdendo, portanto, os efeitos de memória.

Como podemos ver, as equações obtidas correspondem, mesmo nessa mais baixa ordem, ao tratamento intuitivo de Elci et al.⁽²⁹⁾

Ainda quanto às aproximações, faremos um coment<u>á</u> rio sobre a hipótese feita de que os fonons acústicos perman<u>e</u> cem constantemente em equilibrio com o reservatório a temper<u>a</u> tura $\frac{T_b}{b}$. Os fonons acústicos seriam aquecidos principalmente devido a energia transferida dos fonons óticos via interação anarmônica. Para amostras de GaAs com um volume ativo de dimensões lineares em torno de alguns micrometros, e usando valores típicos para a condutividade térmica e calor específico, encontramos que o esfriamento, por difusão de calor, ocorre n<u>u</u> ma escala de tempo de 10 a 100 ns para temperaturas da rede en tre 10 e 300 K. Portanto, em princípio, o aquecimento dos fonons acústicos deve ser considerado. Entretanto, se $T_A(t)$ for a temperatura efetiva instantânea dos fonons acústicos e C_A e C_{LO} ds contribuições aos calores específicos instantâneos devidas, respectivamente, aos fonons acústicos e óticos teremos:

$$\frac{\left|\frac{\mathrm{d}\mathbf{T}_{\mathbf{A}}}{\mathrm{d}\mathbf{T}_{\mathbf{LO}}}\right| = \left|\frac{\mathbf{\dot{T}}_{\mathbf{A}}}{\mathbf{\dot{T}}_{\mathbf{LO}}}\right| = \frac{C_{\mathbf{LO}}}{C_{\mathbf{A}}} \left|\frac{-\langle \mathbf{\dot{H}}_{\mathbf{p}}| \Rightarrow_{\mathbf{A}} - \langle \mathbf{H}_{\mathbf{LO}}| \Rightarrow_{\mathbf{A}}}{-\langle \mathbf{\dot{H}}_{\mathbf{p}}| \Rightarrow_{\mathbf{LO}} + \langle \mathbf{H}_{\mathbf{LO}}| \Rightarrow_{\mathbf{A}}}\right|$$

e, desde que o valor absoluto do termo que envolve as transferências de energia é menor ou, no máximo, da ordem de um e, uma vez que $\frac{C_{LO}}{C}$ é muito menor que um, a baixas temperaturas, ou próximo de^Aum, na temperatura ambiente, duas situações podem ser consideradas. A baixas temperaturas e intervalos de tempo não muito grandes, T_A deve aumentar bem menos que T_{LO} , enquanto que para temperaturas intermediárias até a temperatura ambiente ambas as temperaturas efetivas devem aumentar de for ma similar mas, muito pouco acima da temperatura do reservat<u>ó</u> rio. Portanto, a aproximação usada, $T_A = T_b$ não altera, sign<u>i</u> ficativamente, os resultados obtidos.

Em seguida faremos algumas considerações sobre os resultados aos quais chegamos pela aplicação do método.

A solução do sistema de equações discutido nos c<u>a</u> pítulos anteriores fornece os valores das temperaturas do si<u>s</u> tema de portadores, T(t), e de fonons LO, $T_{LO}(t)$, bem como os potenciais químicos efetivos dos elétrons e buracos, $\mu^{e}(t)$ e $\mu^{h}(t)$.

Em todos os casos considerados observamos que o comportamento de T passa por três estágios. No primeiro, que se inicia em T_o e dura alguns décimos de pico-segundo, ocorre uma queda extremamente rápida de T. O segundo vai até o final do pulso e, a variação na temperatura é menos acentuada que anteriormente, para o caso C, onde a duração do pulso é de 25 ps esse comportamento é evidente (fig. 11). Notamos que hã uma tendência de T se manter acima de T_{LO}. Finalmente, após terminado o pulso T cai rapidamente até se igualar a T_{LO}.

O comportamento de T_{LO} depende essencialmente da temperatura da rede, que, no nosso caso era igual a temperatu ra do banho ${\rm T_h}.$ Quando o experimento é realizado a temperatura ambiente (T_b = 300 K) a concentração de fonons em equil1brio é da ordem de 10^{21} cm⁻³ e, nas condições experimentais de pulso não muito longo e concentração máxima de portadores da ordem de 10^{19} cm⁻³ a produção de fonons LO em excesso é muito pequena, portanto, T_{LO} se afasta muito pouco de T_{b} . Entretanto, quando a temperatura é baixa, nos casos considerados tinhamos $T_{\rm b}$ = 10 K e $T_{\rm b}$ = 7,2 K, o excesso de fonons produzido pelo decaimento dos portadores para o fundo da banda é maior que a concentração de equilíbrio, sendo assim, T_{LO} torna-se maior que T_b e cresce até se igular a temperatura T dos portadores. Podemos observar, nas figuras 7 e 11, que após se igualarem essas temperaturas tendem muito lentamente para $T_{\rm b}$, apresentando qua se que um patamar. Esse comportamento foi observado em várias experiências ^(32,33,39,40). Yoshida e outros ⁽³⁹⁾ propõe, como explicação para esse quase patamar, o efeito Auger assistido

por fonons. Nossos resultados mostram que, embora esse efeito possa contribuir, ele não é estritamente necessário para explicar o longo tempo de relaxação à temperatura T_b.

As figuras 4, 8 e 12 mostram o comportamento dos potenciais químicos efetivos de elétrons e buracos. Notamos, em todos os casos, uma variação rápida e $\mu^{e}(t)$ e $\mu^{h}(t)$ correspondendo ao primeiro estágio de variação na temperatura dos portadores. Nessa região o comportamento dos potenciais quím<u>i</u> cos éfetivos é governado pela variação de T, uma vez que a v<u>a</u> riação na concentração de portadores é muito lenta. No caso A, a variação de T no terceiro estágio, pode ser visto na fig. 3, é muito grande, esse efeito pode ser notado na fig. 4. Notamos, também, que o gás de portadores tende, rapidamente, nos casos estudados entre 1 e 2 ps, do estado clássico inicial, a um estado final quântico degenerado.

A solução do sistema de equações permite também o conhecimento das taxas de transferência de energia entre os sub-sistemas considerados, fig. 2. Nos três casos estudados o tempo de aplicação da excitação externa (t_p) não foi suficiente para que se atingisse a saturação assim, a taxa de transferência de energia do laser para o sistema permanece pra ticamente constante. Obtivemos os seguintes valores: 1,9x10¹⁹ $eV/ps cm^3$, 6,6x10¹⁷ $eV/ps cm^3 e$ 1,8x10¹⁶ $eV/ps cm^3$ para os ca sos A, B e C respectivamente. Para a interação, portadores-fo nons óticos, portadores-fonons acústicos, anarmônica e para a recombinação, as variações da energia com o tempo em função do tempo são mostradas nas figuras 7, 9 e 13. Como podemos ver, durante a aplicação o pulso, o principal canal de transferên cia de energia é a interação de Frohlich, porém, terminado o pulso seu valor cai muito rapidamente, o que é natural, uma

vez que é nessa região que as temperaturas T e T_{LO} vão se igu<u>a</u> lar. Assim, logo após o final do pulso, passa a predominar a interação anarmônica que é o principal mecanismo para o sistema retornar ao estado de equilíbrio. A interação com os fonons acústicos via potencial de deformação tem uma influência muito pequena na diminuição da energia dos portadores. O mesmo pode ser dito para as perdas de energia por recombinação. A taxa correspondente a essa interação cresce com o tempo e, inclus<u>i</u> ve, torna-se mais importante que a devida ao potencial de defo<u>r</u> mação. Para intervalos de tempo mais longos, quando T_{LO} , e co<u>n</u> sequentemente T, aproxima-se de T_b a variação de energia dos portadores devido a recombinação torna-se o canal predominante. Lembramos, no entanto, que aqui outros canais não considerados passam a ser importantes.

Assim, podemos dizer que, durante o tempo no qual o sistema se encontra bastante afastado do equilíbrio os principais canais de transferência de energia são:

Notamos que, nos casos para os quais a temperat<u>u</u> ra da rede é tal que permite o aparecimento de uma população de fonons LO maior que a concentração de equilibrio, ou seja, quando há um forte aquecimento desses fonons ocorre o aparec<u>i</u> mento de um quase patamar, isto é, as temperaturas T e $T_{LO}^{=T}$ permanecem acima de T_{b} durante um longo intervalo de tempo.

Até esse ponto tinhamos considerado a temperatura efetiva T_{IO} como um parâmetro termodinâmico associado à energia total do sub-sistema de fonons LO mas, sabemos que, devido a interação com os portadores, os modos de maior comprimen to de onda tem uma população maior que os outros, assim podemos atribuir a cada modo um parâmetro T $_{\alpha}$ que seria a sua temperatura efetiva. A equação cinética para a função de ocupação desses modos foi escrita em termos dos parâmetros termodinâmicos que descrevem o estado macroscópico de não equilibrio. A variação da população de um modo, (1º caso), $(q = 7, 6 \times 10^5 \text{ cm}^{-1})$ é comparada com os resultados experimentais nas figuras 16 e 17. Observamos que, durante a aplicação đo pulso, f_o, embora siga o comportamento experimental, não se ajusta perfeitamente a esse resultado devido a forma do pulso utilizado nos cálculos. Depois do pulso, f $_{\alpha}$ segue, de forma satisfatória, os dados experimentais.

A fig. 18 (2º caso), mostra o comportamento de $T_{LO} \in T_q$ para três valores diferentes de q. Para um tempo de 50 ps depois do fim do pulso, quando $T_{LO} = 52$ K obtivemos os seguintes valores para T_q : $T_q (q=4,0x10^5 \text{ cm}^{-1})=60$ K; $T_q (q =$ 7,0x10⁵ cm⁻¹)=56 K; $e T_q (q=1,0x10^{-1} \text{ cm}^{-1})=54$ K. O que nos pe<u>r</u> mite avaliar, para esse caso, o tempo necessário para que oco<u>r</u> ra a termalização interna do sistema de fonons LO entre 50 e 60 ps após o pulso. Notamos, portanto, que o comportamento das popula ções de modos individuais de fonons LO apresenta-se distinto do comportamento termodinâmico médio do sistema.

Como mostram os resultados acima, obtivemos uma descrição do estado termodinâmico do plasma altamente excitado no semicondutor o que permitiu a análise dos processos ultrarápidos que nele ocorrem.

Para finalizar faremos algumas observações sobre pos**ŝi**veis futuras extensões desse trabalho.

Uma continuação natural seria incluir os efeitos que não foram considerados permitindo assim estender os cálculos para intervalos de tempo arbitrário, bem como para ordens mais altas de aproximação, evidenciando dessa forma os efeitos de memória e termo-mecânicos. Outro aperfeiçoamento seria ado tar uma forma mais realista para o perfil do pulso. A partir dai outros materiais de interesse tecnológico poderiam ser ana lisados. Ainda sob o ponto de vista de aplicações poderia ser feito um estudo de parâmetros tais como coeficiente de difusão e coeficiente de recombinação não linear que são relevantes pa ra áreas de "recozimento" de semicondutores por laser e "danos causados por radiação de laser". Outro campo de interesse prático que poderia ser considerado é o estudo de transitórios ultra-rápidos em "camadas semicondutoras".

Por outro lado, uma descrição mais completa da termodinâmica de sistemas em não equilíbrio poderia ser obtida utilizando-se a solução do sistema de equações de transpor te generalizadas juntamente com os critérios de evolução de Glansdorff e Prigogine. ^(41,42)

Concluindo, podemos dizer que a grande vantagem do método apresentado é sua simplicidade e clareza, permitindo definir o problema de forma apropriada e determinar suas limi tações dependendo das possibilidades experimentais e tipo de observação, criando, portanto, condições para um estudo sist<u>e</u> mático de fenômenos ultra-rápidos em semicondutores altamente excitados, estudo esse que tanto interesse tem despertado atualmente e cujas possibilidades futuras parecem ser bastante amplas.

.

APÊNDICE

Nesse apêndice vamos mostrar que, partindo das equações (64a.II) e (64b.II) é possível obter (66a.II) e (66b.II). Considerando primeiramente (64a.II) teremos:

$$J_{k}^{(2)'} = \frac{-1}{\hbar^{2}} \sum_{\ell} \int_{-\infty}^{0} dt_{l} e^{\epsilon t_{l}} \left(\left[H_{l}, P_{k} \right]; \left[H_{l}(t_{l}), P_{\ell}(t_{l}) \right] | t) F_{\ell}(t+t_{l}) =$$

$$=\frac{-1}{\hbar^{2}}\sum_{\ell}\int_{-\infty}^{0}dt_{1}e^{\epsilon t_{1}}\left\{\int_{0}^{1}d\tau < [H_{1},P_{k}]e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{0}|t_{1}| + \frac{1}{2}e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{0}|t_{1}| + \frac{1}{2}e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{0}|t_{1}| + \frac{1}{2}e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{0}|t_{1}| + \frac{1}{2}e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{0}|t_{1}| + \frac{1}{2}e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{0}|t_{1}| + \frac{1}{2}e^{-A\tau}[H_{1}(t_{1}),P_{\ell}(t_{1})]e^{A\tau}|t_{0}|t_{$$

$$+\frac{1}{\hbar^{2}}\sum_{\ell}\int_{-\infty}^{0} dt_{l}e^{\epsilon t_{l}}\int_{0}^{1} d\tau \langle [H_{l},P_{k}]|t\rangle_{O} \langle [H_{l}(t_{l}),P_{\ell}(t_{l})]|t\rangle_{O}F_{\ell}(t+t_{l})$$
(1)

Mas, usando o seguinte resultado:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} e^{-A\tau} H_{1}(t_{1}) e^{A\tau} = \sum_{\ell} e^{-A\tau} \left[H_{1}(t_{1}), F_{\ell}(t) P_{\ell} \right] e^{A\tau} ,$$

e, lembrando que, se queremos manter somente termos até segunda ordem no operador de colisão podemos fazer a aproximação:

$$\sum_{\ell} F_{\ell}(t+t_{1})P_{\ell}(t_{1}) = \sum_{\ell} F_{\ell}(t)P_{\ell} ,$$

verificamos que o primeiro termo, no lado direito de (l) pode ser escrito como:

$$\frac{-1}{\hbar^2} \sum_{\ell} \int_{-\infty}^{0} dt_1 e^{\epsilon t_1} \int_{0}^{1} d\tau \langle [H_1, P_k] e^{-A\tau} [H_1(t_1), P_\ell(t_1)] e^{A\tau} |t\rangle_0 F_\ell(t+t_1) =$$

$$= \frac{-1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} [H_{1}(t_{1}) \sum_{k} F_{k}(t+t_{1})P_{k}(t_{1})] e^{A\tau} |t_{2}|_{0} =$$

$$= \frac{-1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} [H_{1}(t_{1}), \sum_{k} F_{k}(t)P_{k}] e^{A\tau} |t_{2}|_{0} =$$

$$= \frac{-1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} T_{r} \{ [H_{1}, P_{k}] (\bar{\rho}(t)H_{1}(t_{1}), \bar{\rho}(t)]^{-1} H_{1}(t_{1})) \bar{\rho}(t) \} =$$

$$= \frac{-1}{\hbar^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} dH_{1}(t_{1}), [H_{1}, P_{k}] ||t_{2}|_{0}$$

Considerando, agora, o outro termo, verificamos que, $\frac{1}{n^2} \sum_{\ell} \int_{-\infty}^{0} dt_1 e^{\epsilon t_1} \int_{0}^{1} d\tau \langle [H_1, P_k] | t \rangle_0 \langle [H_1(t_1), P_\ell(t_1)] | t \rangle_0 F_\ell(t+t_1) =$

$$=\frac{1}{n^{2}}\int_{-\infty}^{0}dt_{1}e^{\epsilon t_{1}}\int_{0}^{1}d\tau < [H_{1},P_{k}]|t>_{O} < [H_{1}(t_{1}),\sum_{\ell}F_{\ell}(t+t_{1})P_{\ell}(t_{1})]|t>_{O} = 0$$

pois

$$\left\{ \left[H_{1}(t_{1}), \sum_{\ell} F_{\ell}(t+t_{1}) P_{\ell}(t_{1}) \right] t \right\}_{O} = T_{r} \left\{ \left[H_{1}(t_{1}), \sum_{\ell} F_{\ell}(t) P_{\ell} \right] \overline{\rho}(t) \right\} = 0 ,$$

uma vez que $\Sigma F_{\ell}(t)P_{\ell} = \rho(t)$ comutam. *l*Portanto:

$$J_{k}^{(2)'} = \frac{-1}{n^{2}} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} < [H_{1}(t_{1}), [H_{1}, P_{k}]] | t_{0}$$
(2)

Reescrevendo a eq. (64b.II)

$$J_{k}^{(2)"} = \frac{-1}{\hbar^{2}} \sum_{m\ell} \int_{-\infty}^{0} dt_{l} e^{\varepsilon t_{l}} \left[\left[H_{l}, P_{k} \right]; P_{\ell}(t_{l}) | t \right] \frac{\partial F_{\ell}(t+t_{l})}{\partial \langle P_{m} | t \rangle} \left\langle \left[H_{l}(t_{l}), P_{m}(t_{l}) \right] | t \rangle_{O} = \frac{\partial F_{\ell}(t+t_{l})}{\partial \langle P_{m} | t \rangle} \right] \left[t \right]$$

$$=\frac{-1}{\hbar^{2}}\sum_{m,\ell}\int_{-\infty}^{0} dt_{l}e^{\varepsilon t_{l}}\int_{0}^{1} d\tau \langle [H_{l},P_{k}]e^{-A\tau}\frac{\partial F_{\ell}(t+t_{l})}{\partial \langle P_{m}|t\rangle} \langle [H_{l}(t_{l}),P_{m}(t_{l})]t\rangle \langle H_{l}(t_{l})\rangle \langle P_{m}(t_{l})|t\rangle \langle H_{l}(t_{l})\rangle \langle H_{$$

$$x(P_{\ell}(t_1) - \langle P_{\ell}(t_1) | t \rangle)e^{AT} | t \rangle_{O}$$

Se pudermos mostrar que essa expressão depende de t_1 somente através de $H_1(t_1)$ teremos que:

 $J_{k}^{(2)} = \frac{-1}{\hbar^{2}} \sum_{m,\ell} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}| t \rangle} \langle [H_{1}(t_{1}), P_{m}] | t \rangle_{O} \langle P_{\ell} - \langle P_{\ell}| t \rangle \rangle e^{A\tau} \rangle_{O} = \frac{1}{\hbar^{2}} \sum_{m,\ell} \int_{-\infty}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}| t \rangle} \langle [H_{1}(t_{1}), P_{m}] | t \rangle_{O} \langle P_{\ell} - \langle P_{\ell}| t \rangle \rangle e^{A\tau} \rangle_{O} = \frac{1}{\hbar^{2}} \sum_{m,\ell} \int_{0}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}| t \rangle} \langle [H_{1}(t_{1}), P_{m}] | t \rangle_{O} \langle P_{\ell} - \langle P_{\ell}| t \rangle \rangle e^{A\tau} \rangle_{O} = \frac{1}{\hbar^{2}} \sum_{m,\ell} \int_{0}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}| t \rangle} \langle [H_{1}(t_{1}), P_{m}] | t \rangle_{O} \langle P_{\ell} - \langle P_{\ell}| t \rangle \rangle e^{A\tau} \rangle_{O} = \frac{1}{\hbar^{2}} \sum_{m,\ell} \int_{0}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}| t \rangle} \langle [H_{1}(t_{1}), P_{m}] | t \rangle_{O} \langle P_{\ell} - \langle P_{\ell}| t \rangle \rangle e^{A\tau} \rangle_{O} = \frac{1}{\hbar^{2}} \sum_{m,\ell} \int_{0}^{0} dt_{1} e^{\varepsilon t_{1}} \int_{0}^{1} d\tau \langle [H_{1}, P_{k}] e^{-A\tau} \frac{\partial F_{\ell}(t)}{\partial \langle P_{m}| t \rangle} \langle [H_{1}(t_{1}), P_{m}] | t \rangle_{O} \langle P_{\ell} - \langle P_{\ell}| t \rangle \rangle e^{A\tau} \rangle_{O} = \frac{1}{\hbar^{2}} \sum_{m,\ell} \int_{0}^{1} d\tau \langle P_{m}| t \rangle \langle P$

$$=\frac{-1}{\hbar^2}\sum_{m\ell}\int_{-\infty}^{0}dt_1e^{\varepsilon t_1} < [H_1(t_1), P_m] | t>_0 \int_{0}^{1}d_{\tau} < [H_1, P_k] | t>_0 (e^{-A\tau}P_\ell e^{A\tau} - < P_\ell | t>_0) | t>_0 \frac{\partial F_\ell(t)}{\partial < P_m | t>};$$

$$= \frac{-1}{n^2} \sum_{m,k} \int_{-\infty}^{0} dt_1 e^{\varepsilon t_1} ([H_1, P_k]; P_k]t) \frac{\partial F_k(t)}{\partial \langle P_m|t \rangle} \langle [H_1(t_1), P_m]|t \rangle_0$$

que é o resultado (66b.II).

Vamos, então, mostrar que a validade da hipótese feita, ou seja que $J_k^{(2)}$ " depende de t₁ somente por intermédio de H₁(t₁).

Com esse fim façamos os seguintes cálculos:

$$\frac{\partial \langle \mathbf{P}_{\mathbf{k}} | \mathbf{t} \rangle}{\partial F_{\mathbf{n}}} = \frac{\partial}{\partial F_{\mathbf{n}}} \mathbf{T}_{\mathbf{r}} \{ \mathbf{P}_{\mathbf{k}} \bar{\rho}(\mathbf{t}) \} = -\frac{\partial^{2} \ell n Q_{\mathbf{0}}}{\partial F_{\mathbf{n}} \partial P_{\mathbf{k}}} = -\int_{0}^{1} d_{\tau} \langle \mathbf{P}_{\mathbf{k}} e^{-\mathbf{A}\tau} (\mathbf{P}_{\mathbf{n}} - \langle \mathbf{P}_{\mathbf{n}} | \mathbf{t} \rangle_{\mathbf{0}}) e^{\mathbf{A}\tau} | \mathbf{t} \rangle_{\mathbf{0}}$$

onde

$$Q_0 = T_r e^{-A}$$

Usando esse resultado teremos:

$$\frac{d}{dt} \frac{\partial \langle P_{k} | t \rangle}{\partial F_{n}} = \frac{-\partial^{2}}{\partial F_{n}} \frac{dQ_{0}}{\partial F_{k}} = \frac{\partial^{2}}{\partial F_{n}} \frac{\Sigma}{\partial F_{k}} \sum_{m} F_{m} \langle P_{m} | t \rangle =$$
$$= -\sum_{m} \frac{\partial^{3} L n Q_{0}}{\partial F_{n}} \frac{\partial F_{k}}{\partial F_{k}} \frac{\partial F_{m}}{\partial F_{m}} \frac{dF_{m}}{dt} ,$$

mas, usando a eq. (56.II) e tendo em vista que desejamos conservar somente termos até segunda ordem na interação podemos escrever essa equação como:

$$\frac{d}{dt} \frac{\partial \langle P_{k} | t \rangle}{\partial F_{n}} = \frac{-1}{i\hbar} \sum_{mj} \frac{\partial^{3} ln Q_{o}}{\partial F_{n} \partial F_{k} \partial F_{m}} \alpha_{jm} F_{j} \qquad (3)$$

Se diferenciarmos a identidade $\sum_{jm} F_{j\alpha_{jm}} < P_m | t > = 0$ jm jm com respeito a $F_k \in F_n$ vamos obter

 $\sum_{jm}^{\Sigma} \alpha_{jm} F_{j} \frac{\partial^{3} ln Q_{o}}{\partial F_{n} \partial F_{k} \partial F_{m}} + \sum_{m}^{\Sigma} \alpha_{rm} \frac{\partial^{2} ln Q_{o}}{\partial F_{k} \partial F_{m}} + \sum_{m}^{\Sigma} \alpha_{km} \frac{\partial^{2} ln Q_{o}}{\partial F_{n} \partial F_{m}} = 0$

Substituindo esse resultado na eq. (3) ficamos com

$$\frac{d}{dt} \frac{\partial \langle P_{k} | t \rangle}{\partial F_{n}} = \frac{-1}{i\pi} \sum_{m} (\alpha_{nm} \frac{\partial \langle P_{k} | t \rangle}{\partial F_{m}} + \alpha_{km} \frac{\partial \langle P_{m} | t \rangle}{\partial F_{n}}) \qquad (4)$$
Diferenciando a identidade $\sum_{n} \frac{\partial F_{n}}{\partial \langle P_{m} | t \rangle} \frac{\partial \langle P_{m} | t \rangle}{\partial F_{k}} = \delta_{nk}$
com respeito a t, usando a eq. (4), multiplicando o resultado
por $\frac{\partial F_{k}}{\partial \langle P_{i} | t \rangle}$ e somando em k, teremos:

$$\frac{d}{dt} \frac{\partial F_n}{\partial \langle P_i | t \rangle} = \frac{1}{i\hbar} \sum_{k} \alpha_{kn} \frac{\partial F_k}{\partial \langle P_i | t \rangle} + \frac{1}{i\hbar} \sum_{n} \alpha_{mi} \frac{\partial F_n}{\partial \langle P_m | t \rangle} \quad . (5)$$

ŕ

Mas, sabemos também que:

$$\frac{dP_{k}}{dt} = \frac{-1}{i\hbar} \sum_{\ell} \alpha_{k\ell} P_{\ell} + \frac{1}{i\hbar} \left[P_{k}, H_{l} \right]$$
(6)

Com o auxílio das equações (5) e (6) é possível mostrar, dentro da aproximação considerada, que:

 $\frac{\mathrm{d}t}{\mathrm{d}t_{1}} \sum_{m_{\ell}} \left[\frac{\partial F_{\ell}(t+t_{1})}{\partial \langle P_{m}|t \rangle} \langle \left[H_{1}(t_{1}'), P_{\ell}(t_{1})\right] | t \rangle_{O} \left(P_{\ell}(t_{1}) - \langle P_{\ell}(t_{1}) | t \rangle_{O}\right) \right] = 0 \quad ,$

e, portanto, que a hipótese anteriormente feita é válida.

- 1. K. Hess and N. Holonyak, Physics Today <u>33</u>, 40 (1980); C.V. Shank and D.H. Auston, Science <u>215</u>, 797 (1982).
- D.H. Auston, Picosecond Spectroscopy of Semiconductors, em Physics of Semiconductors, BLH.Wilson ed. The Institute of Physics, (Bristol, 1978).
- 3. D. Bernoulli in Kinetic Theory, S.G. Brush, Pergamon Press,
 (London, 1965).
- 4. J. Herapath, loc. cit. (3).
- 5. J. Joule, loc. cit. (3).
- 6. A.K. Krönig, loc. cit. (3).
- 7. R. Clausius, loc. cit. (3).
- 8. J.C. Maxwell, loc. cit. (3).
- 9. L. Boltzmann, loc. cit. (3). Para maiores detalhes sobre a história da teoria cinética dos gases ver também: S.G. Brush, The Kind of Motion We Call Heat, North-Holland Publishing Company (Amsterdam, 1976).
- 10. G.V. Chester, The Theory of Irreversible Processes em Many-Body Problems, Progress in Physics, a Reprint Series, W.A. Benjamin, (New York, 1969).
- 11. J.O. Hirschfelder, C.F. Curtis, R.B. Bird, Molecular Theory
 of Gases and Liquids, John Wiley & Sons (N.Y., 1964).
- 12. Para uma descrição desses métodos ver: R. Jancel, Fundations of Classical and Quantum Statistical Mechanics, Pergamon Press (Oxford, 1970).
- 13. H. Mori, Prog. Theor. Phys. <u>33</u>, 423 (1965).
 -----, Prog. Theor. Phys. <u>49</u>, 764 (1973).
- 14. R. Zwanzig, Boulder Lectures in Theoretical Physics, <u>3</u>, 106 (1960).

-----, Physica 30, 1109 (1964).

- 15. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, John Wiley & Sons (New York, 1975).
- 16. E.T. Jaynes, Phys. Rev. 106, 620 (1957).

- 17. B. Robertson, Phys. Rev. <u>144</u>, 151 (1966).
 ------, Phys. Rev. <u>160</u>, 175 (1968).
 ------, em The Maximum Entropy Formalism, R.D. Levine
 and M. Tribus eds., MIT, (Cambridge, 1978).
- 18. D.N. Zubarev, Neravnovesnaia i Staticheskaia Termodinamikas Naula (Moskba, 1970) (Nonequilibrium Statistical Thermodynamics, Consultants Bureau, (N.Y., 1974)).
- 19. N.N. Bogoliubov em Studies in Statistical Mechanics, Vol. I, I. de Boer and G.E. Uhlenbeck eds., North Holland (Amsterdam, 1962).
- 20. G.E. Uhlenbeck em Lectures in Statistical Mechanics, M. Kac, ed. (AMS, Providence, 1963).
- 21. P. Roman, Advanced Quantum Theory, Addison-Wesley (Reading, Massachusetts, 1965).
- 22. D.N. Zubarey and V.P. Kalashnikov, Teor. Mat. Fiz. <u>7</u>, 372 (1971) (Theor. Math. Phys. <u>7</u>, 600 (1971)).
- 23. S.V. Tishchenko, Teor. Mat. Fiz. <u>25</u>, 407 (1975) (Theor. Math. Phys. <u>25</u>, 1218 (1976)).
- 24. M. Gell-Mann and M.L. Goldberger, Phys. Rev. <u>91</u>, 398 (1953).
- 25. P.M. Platzman and P.A. Wolff, Solid State Phys. Suppl. <u>13</u>, 1 (1973).
- 26. R. Luzzi and A.R. Vasconcellos, Semiconductor Processes Probed by Ultrafast Laser Spectroscopy, R.R. Alfano ed., Academic Press (em preparação).
- 27. V.L. Bonch-Bruevich, Proceedings of the International School of Physics "Enrico Fermi", Course 34, J. Tauc ed., Academic Press (N.Y., 1966).

- 28. D. Pines, Elementary Excitations in Solids, W.A. Benjamin, (N.Y., 1964).
- 29. A. Elci, M.O. Scully, A.L. Smirl and J.C. Matter, Phys. Rev. B.<u>16</u>, 191 (1977).
- 30. P. Motisuke, Tese (UNICAMP, 1977).
- 31. C.V. Shank, D.H. Auston, E.P. Ippen and O. Teschke, Solid State Commun. <u>26</u>, 567 (1978).
- 32. R.F. Leheny, J. Shah, R.L. Fork, C.V. Shank and A. Migus, Solid State Commun. <u>31</u>, 809 (1979).
- 33. D. von der Linde and R. Lambrich, Phys. Rev. Lett. <u>42</u>, 1090 (1979).
- 34. D. von der Linde, J. Kuhl and H. Klingenberg, Phys. Rev. Lett. 44, 1505 (1980).
- 35. R.K. Chang, J.M. Ralston and D.E. Keating, in Light Scattering Spectra of Solids I, G.B. Wright ed., Springer (N.Y. 1969).
- 36. H.M. van Driel, Phys. Rev. B 19, 5928 (1979).
- 37. A.L. Smirl, S.C. Moss and J.R. Lindle, Phys. Rev. B <u>25</u>, 2645 (1982).
- 38. G.W. Bryant, P. Kelly, D. Ritchie, P. Braunlisch and A. Schmid, Phys. Rev. B 25, 2587 (1982).
- 39. H. Yoshida, H. Saito and S. Shionoya, Phys. Stat. Sol.
 (b) <u>104</u>, 331 (1981).
- 40. M. Pugnet, A. Cornet, J. Collet, M. Brousseau, B.S. Razbirin and G.V. Michailov, Solid State Commun. <u>36</u>, 85 (1980).
- 41. P. Glansdorff and I. Prigogine, Physica 20, 773 (1954).
- 42. P. Glansdorff and I. Prigogine, "Thermodynamics of Structure Stability and Fluctuation", Interscience (N.Y., 1971).