PARÂMETROS ELÁSTICOS E ANELÁSTICOS DO SIS-TEMA NB-H. 300 K - 77.3 K

Antonio Carlos Barata

ORIENTADOR: Prof. Dr. Sergio Moehlecke

Dissertação apresentada no Instituto de Física "Gleb Wataghin" da Universidade Estadual de Campinas, para obtenção do Título de Mestre em Física. Aos meus Pais

À Cleide, Gu e Tati A Realização deste Trabalho Foi Possível Graças à:

UNICAMP:

- Grupo de Baixas Temperaturas
- Grupo de Física Aplicada
- Grupo de Cristalografia
- Centro de Tecnologia (Metrologia e Mecânica)

CNPq: Conselho Nacional de Desenvolvimento Científico e Tecnológico

Agradecimentos

- Ao Prof. Dr. Sergio Mochlecke, pelo Apoio e Orientação
- Ao Mestre Sérgio Gama, pelas Discussões e colaborações inestimáveis
- Aos Prof. Drs. Daltro Garcia Pinatti e Nikos Alexandropoulus, pela Sugestão Inicial do Tema desta Dissertação
- Ao Jair Scarmínio, pelo Crescimento dos Monocristais
- Aos Técnicos Cícero, Fernando e Cláudio pelas colaborações durante o Trabalho
- À Célia, pelos Auxílios gerais e Eventuais
- A Todos os Professores do Departamento de Física e Química da Universidade Federal do Espírito Santo, pela Compreensão e Apoio
- À Cleide, pela Compressão
- Ao Barata, pela Datilografia e Confecção dos Gráficos e Tabelas

"Yo tengo tantos hermanos, Que no los puedo contar..." A. Yupanqui

RESUMO

Foram medidas as constantes elásticas do Nb puro e após hidrogenação até 9.2% at, no intervalo de 300K a 77.3K. Uma análise mais precisa da teoria levou à conclusão que se deveriam usar valores diferentes para a constante relaxada de um cristal com defeitos e a constante de um cristal puro. É feita uma interpretação dos nossos resultados em função de um modelo que é consistente com os resultados de outros trabalhos.

Concluimos que o efeito Snoek devido à presença do Hidrogênio na rede do Nióbio não é desprezível e corresponde a uma ocupação tetraedral. Esta conclusão é baseada no fato de o tensor de deformação ter uma elipticidade relativamente pequena.

ABSTRACT

The elastic constants of pure and hidrogenated (up to 9.2 at %) N5 were measured in the range 300K - 77.3K. We made a analy sis more precise of the theory. We conclude from this analysis that the values used for the relaxed constant and the constant of pure metal must be differents. It is carried out a explanation of our results from a model that is compatible with the results of others works.

We concluded that the Snoek effect, related to the H <u>a</u> toms in the Nb matrix, is not negligible and corresponds to a tetrahedral ocupations. This, because the ellipticity of the deformation tensor is small.

Símbolos Usados neste Trabalho

.

a	a	Parâmetro de rede
А	. <i>A</i>	Fator de Anisotropia
at	at	Atômica (concentração)
В	B	Mõdulo de Bulk
ср	Cp.	Parâmetro de ordem da distribuição de dipolos
С	Ç	Constante elástica de rigidez
С _Ģ	Co.	Concentração molar
E	. <u>Ē</u>	Campo Elétrico
f	f	Frequência
F	<i>F</i>	Força
S	g	Energia livre (a menos da contribuição configuracional)
G	. G	Função de energia livre de Gibbs; Módulo de Cizalhamento
Н	. <u>H</u>	Entalpia
k	. <u>k</u>	Constante de Boltzmann ($1.381 \ 10^{-16} \ erg/K$)
L	. <u></u>	Expressão das deformações térmicas num cristal
m	m	Índice (de um eixo dipolar)
М	M	Módulo cristalino (qualquer)
n	n	Número de defeitos num cristal
nr	nr	Não relaxado
No	Ne	Número de Avogadro ($6.0225 \ 10^{23}$)
Р	A.	Índice (de uma orientação dipolar)
q	. ?	Índice (de uma orientação dipolar)
r	γ	Relaxado
S	<u>, Ş</u>	Constante elástica de complacência; Entropia
٦	<i>T</i>	Temperatura absoluta
U	U.	Energia
v	N	Velocidade
v	No	Volume Atômico (para o Nb: $1.796 \ 10^{-23} \ \text{cm}^3$)
v	. Vo	Volume Molar (para o Nb: 10.817 cm ³)
x	x	Deslocamento

Modulo de Young w Frequência angular .W. Energia elástica X Coseno diretor de uma direção cristalina \mathcal{B} 0 Ħ . . K. . п 11 $\triangle X$ Variação absoluta da guantidade X Variação relativa da quantidade X; "Relaxação de Re-Δχ. sistência do módulo X " . 1. Parâmetro de orientação cristalina E Deformação σ Tensão <u>.</u> Componente do tensor de deformação; O próprio tensor . <u>P</u>. Densidade; Multiplicador de Lagrange 2 Tempo de relaxação [abc] Direção cristalina Todas (e qualquer) as direções [a b c] <a b e > (abc) Plano cristalino

Υ

w

W

f

PARÂMENTROS ELÁSTICOS E ANELÁSTICOS DO SISTEMA NU-H. 300 K - 77.3 K

INDICE

	Pag.
APRESENTAÇÃO	
I. – INTRODUÇÃO	
1.1 - Soluções Sólidas Intersticiais	.3
I.2 - Anelasticidade - Fricção Interna e Relaxação	5
1.3 - Campo de Deformação dos Defeitos Puntuais	9
1.4 - Dipolos Elásticos	11
1.5 - Termodinâmica dos Dipolos Elásticos	15
1,6 - Defeitos na Rede - ccc - O Efeito Snoek	21
II, - AMOSTRAS - SISTEMÁTICA EXPERIMENTAL	
II.l - Obtenção do Nióbio e Crescimento do Cristais	25
II.2 - Orientação e Polimento dos Monocrístais	26
II.3 - Tratamento e Hidrogenação	31
II.4 - Transdutores	35
III MEDIDAS - SISTEMÁTICA EXPERIMENTAL	
III.l - Criogenia e Vácuo - Suporte de Amostras	37
111.2 - Controle de Temperatura e Sistema Ultrasônico	37
III.3 - Constantes Elásticas	41
111.4 - Correções pela Ligação Acústica e pela Dilatação Térmica	43
III.5 - Erros de Medidas	45
IV RESULTADOS E DISCUSSÕES	
IV.1 - Constantes Elásticas do Nióbio Puro	49
1V.2 - Influência do Hidrogênio nas Constantes do Nióbio	54
IV.3 - Diagrama de Fase	62
V CONCLUSÕES	
V.1 - Interpretação dos Resultados	64
V.2 - Comentários	71
V.3 - Propostas para Novos Trabalhos	72
BIBLIOGRAFIA	73

APRESENTAÇÃO

No começo da década de 40 Snoeck^(14 e 15) descobriu um efeito pos-elastico no Fe contendo Carbono, semelhante ao efeito pos-magné tico que já estudara neste mesmo metal. Sua explicação do fenômeno foi que a aplicação de tensão provoca uma redistribuição dos átomos de Carbono nas posições intersticiais da rede do Fe.

Diversos tratamentos ^(2,3,4,,17,20,39) foram depois d<u>e</u> senvolvidos colocando o problema em termos da reorientação de defeitos (cons<u>i</u> derados como dipolos elásticos) nas diversas simetrias de ocupação.

O estudo desse efeito para os interticiais $^{(52,53)}$ pesados (C, N, O) está razoavelmente bem estabelecido na literatura, o que não aconte ce quando o intersticial é o Hidrogênio. De fato, há uma controvérsia na lite ratura quanto à possibilidade de o H ser responsável por um efeito anelásti co considerável nas redes dos metais de transição. Segundo alguns trabalhos - $^{(23, 26, 55)}$ o efeito Snoek devido à presença de H na rede do Nb (p.ex.) é inexistente, ou muito pequeno. Outros autores $^{(21, 56)}$ concluem pela existên cia de um efeito Snoek considerável devido à adição de H ao Nb .

No capítulo I procuramos colocar o problema de forma a possibilitar uma compreensão geral da anelasticidade devida à reorientação dos defeitos puntuais numa rede metálica. A aplicação para os dipolos tetrago nais numa rede ccc é tirada diretamente dos resultados da teoria, o que nos parece ser uma maneíra mais conveniente para a compreensão das equações corres pondentes. Damos ênfase à teoria anelástica para um sólido linear padrão, pois isso será necessário para o modelo de interpretação que propomos.

No capítulo II damos os procedimentos experimentais com as amostras: sua obtenção, crescimento, orientação, polimentos, tratamentos, hi drogenação e corte do transdutores.

No capítulo III descrevemos os procedimentos referen tes às medidas: pesagem, comprimento, velocidade, correções e desvios das medidas.

Apresentamos, no capítulo IV,a análise e os resultados das medidas. Procuramos apresentar principalmente os resultados relacionados mais diretamente à compreensão do efeito Suoek no sistema Nb-H . São apre sentados, também, diversos outros resultados que julgamos importantes, embora não diretamente relacionados a esse efeito. 2

No capítulo V desenvolvemos um modelo através do qual interpretamos nossos resultados e os obtidos em outros trabalhos.

Neste trabalho usamos a expressão "constantes elásti — cas" para designar tanto as quantidades S_{ij} quanto as C_{ij} . Quando uma distinção se torna necessária ou conveniente, chamamos C_{ij} de "módulos de rigidez" e S_{ij} de "módulos de complacência.

I. – INTRODUÇÃO

I.1 - Soluções Sõlidas Intersticiais

Numa rede compacta de átomos esféricos formam-se, normalmente, espaços entre os pontos de contato das esferas. Átomos como o hidrogênio, carbono, nitrogênio, oxigênio, muito leves para funcionarem como substitucionais, tendem a ocupar esses interstícios da rede. A essa dissolução de átomos pequenos nos interstícios de uma matriz de átomos normalmente pesados (metais) dá-se o nome de solução sólida intersticial^(*). Numa rede compacta fec há dois tipos de intersticiais: tetraedral e octaedral, sendo a posição tetraedral menor que a octaedral. Na posição tetraedral pode ser colocado um átomo com raio 0.225 do raio do átomo da matriz sem haver distorção.⁽³⁹⁾ Na posição octaedral essa razão eleva-se a 0.414. Numa rede coc também hã do is tipos de intersticiais: tetraedral (Fig(I.1)). Mas nesse caso a posição tetraedral é maior que a octaedral. Na posição tetraedral (má figura e aso a posição tetraedral é maior que a octaedral não produziria deformação na rede; jã na posição octaedral essa razão é de apenas 0.155.

Na rede ccc temos doze posições intersticiais tetraedra is por célula unitária e seis posições octaedrais. Temos, portanto, seis posi ções tetraedrais e três octaedrais por volume atômico (ou por átomo). A maioria dos metais de transição pode formar, também, carbetos, nitretos, hidretos que são compostos mais estáveis. Não há, realmente uma clara distinção entre uma solução sólida intersticial e o "composto intermetálico" correspondente. É, mais, uma questão de regularidade e mobilidade dos intersticiais.

A mais importante solução sólida intersticial é aquela

^(*) O que a distingue da solução solida substitucional cujo requisito fundamental é a equidade dos diâmetros atômicos do soluto e do solvente.

de carbono em ferro. A 1539°C o ferro puro solidifica-se numa estrutura cec (ferro delta); a 1400°C ele transforma-se para uma estrutura cfc (ferro gama) e a 910°C nova mudança de fase ocorre, transformando-o para uma estrutura ccc (ferro alfa). A solubilidade máxima do carbono a 723°C na matriz cfc do fer ro é de aproximadamente 1.4%, enquanto na matriz ccc, nessa mesma temperatura, é de apenas 0.025%. Assim, aquecendo ou esfriando uma amostra de aço-carbono podemos dissolver ou precipitar carbono na matriz do ferro.

Na têmpera do aço o que fazemos é manter, com o resfriamen to rápido, uma grande percentagem (maior que o limite de solubilidade) de carbono em solução sólida na matriz coc (ferro alfa). Como os interstícios da rede coc são bem menores que os da rede cfc, as distorções provocadas na ma triz serão consideráveis, funcionando como barreiras ao deslizamento das dislo cações; daí o consequente endurecimento do aço.

Foi nessa solução sólida que Snoek⁽¹⁴⁾descobriu um efeito pós-elástico semelhante ao efeito pós-magnético que já havia estudado. Esse efeito, generalízado para outros átomos intersticiais em outras matrizes metál<u>i</u> cas ccc, é que traz o seu nome. Nosso trabalho consiste, basicamente, em est<u>u</u> dar esse efeito para o Hidrogênio dissolvido na matriz do Nióbio.

octaedral

tetraedral

I.2 - Anelasticidade - Fricção Interna e Relaxação

Na teoria clássica da elasticidade linear é sempre assumi da uma validade exata da lei de Hooke:

ou

$$\sigma_{ij} = C_{ij\kappa l} \mathcal{E}_{\kappa l} \qquad (I.l)$$
$$\mathcal{E}_{ij} = S_{ij\kappa l} \sigma_{\kappa l} \qquad (I.2)$$

onde σ é a tensão aplicada, \mathcal{E} é a deformação e \mathcal{C} e \mathcal{S} são as constantes elásticas do corpo. Isso implica que as deformações num sólido perfeita mente elástico são uma função bi-unívoca da tensão aplicada, a dependência tem<u>p</u>oral das deformações sendo completamente determinada pela dependência temporal da tensão. E mais, a deformação e a tensão estão sempre em fase. Conseque<u>n</u> temente não há dissipação de energia no processo de deformação e o corpo sob deformação, quando submetido a uma tensão harmônica, teria suas amplitudes de oscilação tendendo ao infinito, mesmo para pequenas tensões aplicadas. A equa ção de movimento para um sólido perfeitamente elástico, sujeito a uma força ex terna F, será dada por:

$$F = m\ddot{x} + lx \quad (I.3)$$

onde α é o deslocamento, que dá a amplitude da oscilação do sólido, m é uma medida da sua inércia e ℓ de suas propriedades elásticas. Para uma tensão aplicada da forma $F = F_0 \exp(iwt)$ a solução correspondente de (I.3) será:

$$x = x_o \exp(i\omega t) \quad (I.4)$$
$$x_o = \frac{F_o}{m(w_o^a - w^a)} \quad (I.5)$$

. . 1

com

onde $\omega_{o} = (l/m)^{\prime/2}$ é a frequência de ressonância.

Tal tratamento serve como uma aproximação mais ou menos <u>a</u> dequada, mas não traduz o que acontece num solido real que, normalmente, não obedece a lei de Nooke. Isto significa qua as deformações não são uma função bi-unívoca da tensão e seu valor instantâneo, dada uma tensão, será seguido - por uma deformação dependente do tempo. Isto resulta num processo histerético quando temos uma tensão oscilatória. Esse é um efeito anelástico^(*) e, à dissipação de energia resultante, chamamos "fricção interna". Formalmente, a equação de movimento para um sólido elástico linear pode ser modificada para levar em consideração a dissipação de energia num sólido anelástico, simplesmente adicionando um termo proporcional à taxa da deformação; teríamos, então:

$$F = m\ddot{x} + k\dot{x} + lx \qquad (I, 6)$$

onde m , k , l são constantes independentes do tempo.

A medida da fricção interna num corpo submetido a uma ten são oscilatória será dada pela razão entre a energia dissipada num ciclo de tensão (ΔW) e a máxima energia elástica (W) armazenada no corpo: Para uma oscilação livre (F= 0) uma boa medida da fricção interna é dada⁽³⁹⁾ pelo decrescimento logarítmico (δ).

$$\frac{\Delta W}{W} \stackrel{\sim}{=} 2 \frac{x_1 - x_2}{x_2} \stackrel{\sim}{=} 2 \ln \frac{x_1}{x_2} = 2\delta \qquad (I.7)$$

onde \mathcal{X}_{ℓ} e $\mathcal{X}_{\mathcal{J}}$ são duas amplitudes sucessivas de oscilação. Outra medida comumente usada é a atenuação de ondas acústicas de alta frequência no corpo.

Uma maneira alternativa de observar os efeitos do comportamento anelástico de um sólido é considerar as mudanças que esse comportamen to introduz na relação tensão-deformação do sólido. Tal tratamento é feito a partir de um modelo mecânico em que o sólido é considerado um combinação de molas 'hookeanas' (deformação proporcional à tensão) e de pistões viscosos .. (taxa de variação da deformação proporcional à tensão). Em tal modelo, a relação tensão-deformação será uma combinação linear da tensão, da deformação e das suas respectivas taxas de variação. No modelo mais geral, proposto por Zener, teremos:

^(*) Um sólido é considerado elástico quando a energia total de deformação de pende somente do estado de deformação e não do caminho pelo qual esse es tado é obtido. Esta definição inclue os sólidos elásticos línear e não linear. No último caso, a tensão é também uma função bi-unívoca da deformação, mas sua expressão ínclue termos de deformação de ordens mais altas(29, 39 etc).

onde a , b , c , a' são constantes.

Um corpo que obedece esta equação é chamado <u>sólido linear</u> <u>padrão</u>. Se temos um sólido com comportamento anelástico, suas relações tensãodeformação devem ser expressas por essa equação. A resolução desta equação d<u>e</u> ve levar a um resultado que expresse a decorrente relaxação dos módulos elásticos do sólido, que pode ser escrita como ^(39, 49):

$$M_{M}(\omega) = M_{NR} - \frac{M_{NR} - M_{R}}{1 + (\omega z)^{2}}$$
 (I.9)

onde M_M é o módulo dinâmico (que é <u>medido</u> numa frequência angular $\mathcal{U} = 2\pi f$), M_{NR} é o módulo (elástico) não relaxado do sólido, M_R é seu módulo (elás tico) relaxado, e \mathcal{T} é o tempo de relaxação para tensão (ou deformação) constante. Podemos reescrever a eq(I.9) da seguinte forma:

$$\frac{M_{M}(\omega) - M_{NR}}{M_{NR}} = \frac{\Delta M(\omega)}{M} = \Delta_{M} \frac{1}{1 + (\omega \tau)^{4}} \quad (I.10)$$

onde $\Delta_{M} = \frac{M_{NR} - M_{R}}{M_{NR}}$ chamamos de "relaxação da resistência" ("relaxation strenght"). Ao termo à esquerda da eq(I.10) chamaremos de "defeito modular".

A expressão para o amortecimento das ondas (frição interna) será dada por:

$$\phi = \Delta_{M} \frac{\omega \tau}{1 + (\omega \tau)^{2}} \qquad (I.11)$$

onde ϕ é uma medida da fricção interna e está relacionada com o decresci — mento logarítmico por:

$$\mathcal{S} = \pi \phi \qquad (I.12)$$

que $\mathcal{WZ} \gg 1$, o defeito modular será desprezível, isto é, o módulo medido terá o mesmo valor do módulo não velaxado (M_R), e o sólido apresenta um comportamento elástico. Para $\mathcal{WT} \ll 1$ o defeito modular será essencialmente idêntico à relaxação da resistência e o sólido terá um comportamento também elástico, somente que com um módulo elástico diferente. Finalmente, para... $\mathcal{WT} \sim 1$ o defeito modular vai depender fortemente da frequência, isto é, o módulo medido depende de \mathcal{W} .

Este comportamento pode ser melhor entendido supondo 0 sólido caracterizado por um certo parâmetro de ordem genérico, responsável pe lo seu comportamento anclástico. Para frequências muito grandes ($\omega au \gg 1$), o parâmetro de ordem não dispõe de um tempo hábil para agir: sua ação durante um ciclo é, de fato, nula. Nestas condições, variando a frequência não podemos observar nenhuma alteração nos módulos cristalinos e, por outro lado, o atrito interno será nulo. O sólido se comporta como um sólido elástico, com um módulo igual ao módulo relaxado. Para frequências muito pequenas o parâmetro de ordem age sempre em equilíbrio com a tensão aplicada. No primeiro quar to do ciclo é armazenada energia na rede, devido ao ordenamento ocorrido; no segundo quarto do ciclo essa mesma quantidade de energia é 'devolvida' pela rede para o campo de tensão. O resultado é nenhuma transferência líquida de energia para a rede e, portanto, a fricção interna será nula. Aqui, também, o cristal tera um comportamento elastico, porem com um modulo diferente daquele do caso anterior. Quando temos uma frequência da tensão aplicada que possibilite ao parâmetro de ordem atuar sem, no entanto, obtermos um equilíbrio instantâneo entre a tensão e o ordenamento ($\omega au \, {\scriptstyle {\cal N}} \, 1$), então no primeiro quarto do ciclo será armazenada energia na rede e, como o ordenamento está atrasado em relação à tensão, isso ocorrerá também no segundo quarto. Apenas no fim do segundo quarto do ciclo uma parte da energia será retransferida da rede para o campo externo. Teremos, então, um fluxo líquido de energia (do cam po externo para a rede) que será dissipada como um aumento da entropía do cris tal. Portanto temos fricção interna, cujo pico ocorrerá para $\omega \, r = 1$. Por outro lado, o defeito modular será dependente da frequência, isto é, o módulo

medido dependerá da frequência utilizada e, dessa maneira, o sólido não se comporta elásticamente.

I.3 - Campo de Deformação dos Defeitos Puntuais

Os defeitos puntuais (vacâncias, intersticiais intrínsecos e extrínsecos, substitucionais etc) constituem-se nos mais simples (dimensão zero) defeitos estruturais que podem ocorrer numa rede cristalina.

O que torna os defeitos puntuais observáveis usando medidas de fricção interna são as simetrias das deformações da rede provocadas pelos defeitos. Consideremos um cristal contendo um defeito. Este defeito, tomado separadamente, é caracterizado por sua própria simetria e pelo local que ele ocupa na rede. O cristal sem o defeito é caracterizado, também, pelo grupo de simetria puntual da classe cristalina a que pertence (isto é, a soma de todas as operações de simetria que existem no cristal). O grupo puntual de uma posição num cristal é sempre um subgrupo do grupo puntual da rede cristalina. Se um defeito é colocado numa rede cristalina perfeita, então o grupo de simetria do defeito será composto pelas operações de simetria comuns ao próprio defeito e a posição por ele ocupada na rede. Portanto o grupo de simetria do defeito (sua Ordem - O_d)^(*) nesta posição será também um subgrupo do grupo da rede cristalina (O_p). Então:

$$n_{d} = o_{r} / o_{d} \qquad (I_{\bullet} / 3)$$

será um inteiro; n_d representa o número de configurações (ou orientações) do defeito que são fisicamente distinguíveis, embora cristalograficamente equi valentes. Cada uma dessas *Nd* configurações designaremos com o índice 'p'. NUm cristal não tensionado todas as configurações são equiprováveis, signifi-(*) Como estamos trabalhando com defeitos puntuais simples, de símetria esféri ca, 0_d será sempre igual ao grupo de simetria da posição do def. na rede. cando que a mesma quantidade de energia está associada à formação de um defeito em quaisquer das n_d configurações. Se esse cristal for agora submetido a um campo de tensão, pode haver, sob determinadas condições, uma quebra da deg<u>e</u> nerecência das diferentes configurações; o campo de tensão mudou as energias potenciais do cristal associadas com cada uma das diferentes configurações de defeitos, essa mudança sendo (eventualmente) diferente para cada uma das conf<u>i</u> gurações. Essa separação dos níveis de energia associados a cada configuração (Fig(I.2)), faz com que algumas configurações venham a ser 'preferidas', resul tando numa redistribuição dos defeitos. Esse 'ordenamento induzido por tensão', quando temos uma certa concentração de defeitos C_o , da origem a uma deformação macroscópica <u>anelástica</u> (\mathcal{E}_{an}) que, para tensões pequenas, é diretamente proporcional ã tensão. Como o valor final de \mathcal{E}_{an} só é atingido depois de um certo tempo, gradualmente, este fenômeno é um processo de relaxação.

Define-se "relaxação da resistência", Δ , como $\Delta = \frac{\mathcal{E}_{a}}{\mathcal{E}_{el}}$, a razão entre a deformação anelástica final (tomada quando $\mathcal{E} \rightarrow \infty$) e a defor mação elástica. Como ambas as deformações são diretamente proporcionais à tensão, Δ independe da tensão. Por outro lado, Δ vai depender da temperatura , da orientação do cristal e das suas constantes elásticas, assim como de certos parâmetros que caracterizam os próprios defeitos. O que compete é, pois, encon trar alguma maneira conveniente de descrever os defeitos em termos desses parâ metros.

Fig(1.2) - Separação dos níveis de energia interna correspondentes a duas configurações diferentes de defeitos, devida ã aplicação de uma tensão. A posição 2 tornou-se 'preferi da' em relação a posição 1. O tratamento dos defeitos puntuais como dipolos elásticos foi proposto pimeiramente por membros da escola de Stuttgart (Kroner, Dehlinger, Mann, Seeger e outros, (1958 - 1962))^(2, 3, 4, 20) visando estudar, bas<u>i</u> camente, o efeito Snoek^(14, 15) nos metais coc e os defeitos em forma de halteres nos metais cfc, desenvolvendo o conceito de força dupla (sem torque) já tratado por Love⁽¹⁾.

Um tratamento mais completo e elegante é dado por Nowick e Heller^(17, 18, 19) onde as componentes tensoriais dipolares são adimensio nais e é levada em consideração a interação entre os defeitos, assim como as reações entre os dipolos.

Este tratamento torna-se mais interessante pela analogia (não completa, claro) que pode ser feita entre os dipolos elásticos e os dipolos elétricos, lembrando sempre que um dipolo elétrico interage com um campovetorial elétrico, enquanto um dipolo elástico interage com um campotensorial (de segunda ordem) de tensão. Assim, um dipolo elétrico num cristal é definido pelo seu momento dipolar (\mathcal{M}) e pela sua orientação com respeito - aos eixos cristalográficos. Pode haver, normalmente, diversas orientações cristalograficamente equivalentes, digamos n_d . Cada uma dessas n_d orientações vamos designar pelo índice ρ . Assim o dipolo pode ser descrito pelo vetor $\mathcal{M}_{i}^{(P)}$ ou pelas suas componentes $\mathcal{M}_{i}^{(P)}$ (i = 1, 2, 3). Portanto a energia de interação^(*) desse dipolo com um campo elétrico (\vec{E}) será:

$$U_{p} = -\bar{\mu}^{(p)}. \bar{E} = -\sum_{i} \mathcal{M}_{i}^{(p)} E_{i}$$
 (I.14)

onde \mathcal{E}_{i} são as componentes de $\tilde{\mathcal{E}}$. Está claro, pela eq(I.14), que as energias para a criação de dipolos em diferentes orientações serão, geralmente, diferentes nas diversas orientações p, isto é, a presença do campo destruiu a degenerescência dos níveis de energia dos dipolos nas diferentes orienta

^(*) Trabalho necessário para criar o defeito na presença do campo menos o trabalho para criá-lo na ausência do campo.

ções.

concentração será dada por:

Na eq(I.14) podemos considerar U_p como a densidade de energia por unidade de concentração volumétrica de dipolos, todos alinhados na p-ésima orientação. As componentes $\mu_i^{(p)}$ seriam, então, o momento dipolar

$$U_{p} = -\sum_{i,j} n_{ij} \sigma_{ij} \qquad (I.15)$$

onde os σ_{ij} são as componentes do tensor de tensão. Como $U_{
m P}$ é um escalar, o dipolo elástico deve ser descrito por um tensor de segunda ordem , \mathcal{N}_{ij} . Como \mathcal{N}_{ij} tem dimensão de volume, é conveniente introduzir o parâm<u>e</u> tro adimensional λ_{ij} , o que fazemos fatorando o volume atômico (N_0) do cristal:

por unidade de volume, por unidade de concentração. Baseados nessa definição

seríamos levados facilmente a uma expressão análoga para o caso de considerar

mos dipolos elásticos. Se um número de defeitos estão todos alinhados na mes-

ma orientação p na presença de um campo de tensão $\,\sigma\,$, a energia de inte

ração com este campo de tensão, $U_{
m
ho}$, por unidade de volume, por unidade de

$$U_{p} = -w_{o} \sum_{i,j} h_{ij} \sigma_{ij} \qquad (I.16)$$

Assim, λ_{ij} (ou N_{ij}) serão, por analogia com o momen to dipolar elétrico, as componentes do dipolo elástico. O significado dessas quantidades pode ser percebido claramente das eq(I.15 e I.16):

 $\mathcal{N}_{ij}^{(r)}$ são as componentes da deformação pura homogênea provocada no cris tal quando uma unidade de concentração volumétrica de defeitos com orientação p é introduzida no cristal.

têm o mesmo significado, somente que a concentração deve ser expres sa em fração molar.

Portanto:

 $\mathcal{N}_{ij}^{(P)}$ =

onde C_v é a concentração volumétrica e C_o a concentração expressa em fr<u>a</u> çao molar.

Trabalharemos apenas com o tensor $\lambda_{ij}^{(p)}$, que chamaremos tensor λ . Como se trata de uma deformação pura e homogênea o ten sor λ é simétrico, isto é, $\lambda_{ij}^{(p)} = \lambda_{ji}^{(p)}$. Por outro lado, como todo tensor de deformação ele pode ser diagonalizado, com uma conveniente rotação dos eixos de coordenadas. Teríamos, então:

Os valores principais podem, então, ser representados por um elipsóide de deformação (Fig(I.3). Deve ser notado que as seis componentes do tensor serão, agora, substituidas por outras seis quantidades: os três valores principais do tensor diagonalizado e um conjunto de três variáveis ind<u>e</u> pendentes, que dá a orientação do elipsóide de deformação em relação aos eixos cristalinos.

Fig(I.3) - Orientação dos eixos do tensor A com respeito aos eixos do cristal. Normalmente sua orientação é mais simétrica.

Desde que todas as orientações dos dipolos (p = 1,...,n) são cristalograficamente equivalentes, então cada tensor $\lambda_{ij}^{(P)}$ deve ter o mesmo conjunto de valores principais. Em outras palavras , o traço do tensor λ é um invariante. Assim λ_1 , λ_2 , λ_3 são independentes de p. Nes se sentido eles caracterizam o dipolo elástico da mesma maneira que a magnit<u>u</u> de de $\vec{\mu}$ caracteriza o dipolo elétrico. Por outro lado, a orientação do el<u>i</u> psóide de deformação depende, geralmente, de p.

Suponhamos a eq(I.17) diagonalizada dos dois lados. Não precisamos, portanto, específicar o Índice p. Fica claro, então, que:

$$\lambda_1 + \lambda_2 + \lambda_3 \equiv tr(\lambda) = \frac{\Delta V}{V} \frac{1}{C_0} \qquad (I.18)$$

onde C_o é a concentração total de defeitos no cristal (expressa em fração molar) e $\frac{\Delta V}{V} = \mathcal{E}_{II} + \mathcal{E}_{22} + \mathcal{E}_{33}$ é a mudança relativa de volume devida à pr<u>e</u> sença dos defeitos. Isto é, o traço do tensor λ é igual à mudança relativa de volume por unidade de concentração (de dipolos). Num cristal com simetria cúbica, de parâmetro de rede \mathcal{A} , a eq(I.18) torna-se:

$$\frac{1}{c_o} \frac{\Delta a}{a} = \frac{1}{3} tr(\Lambda) \qquad (I.19)$$

O termo da esquerda da eq(I.19) é conhecido como "fator de grandeza" associado com a introdução dos defeitos. Assim, a média dos valores principais do tensor λ é o fator de grandeza do defeito considerado. de ma neira similar, podemos dizer que as diferenças entre dois valores principais , $\lambda_1 - \lambda_2$, etc, seriam os "fatores de forma" dos defeitos, representando as di ferenças de deformação por unidade de concentração, ao longo de duas direções principais; isto seria uma medida do grau de elipticidade da distorção no plano formado pelas duas direções consideradas.

Uma especificação completa do tensor λ exigiria, além dos três valores principais, um conjunto de direções que dá a orientação dos ei xos do tensor λ com relação aos eixos cristalinos. A equação abaixo dá a relação entre as duas maneiras equivalentes de descrição de tensor λ :

$$A_{ij}^{(P)} = \sum_{m=1}^{3} \alpha_{im}^{(P)} \alpha_{jm}^{(P)} A_{m}^{(P)} \qquad (I.20)$$

onde $\propto_{im}^{(P)}$ é o coseno diretor entre a direção fixa e o eixo principal para a orientação p.

Tratamos até agora com uma espécie apenas de dipolos. Pode acontecer, normalmente, que tenhamos mais de uma espécie de dipolos, cada espécie caracterizada pelo seu próprio conjunto de valores principais. Neste caso poderíamos ter, sob um campo de tensão, além da reorientação dos dipolos da mesma espécie, uma interconversão entre as diferentes espécies de dipolos. A essa interconversão chamamos 'reação' dos dipolos. È interessante observar que, dada uma espécie de dipolos, podemos determinar, através de medidas de fricção interna, o conjunto dos valores princípais de seu tensor \hat{A} ; porém o inverso não é verdadeiro se não tivermos um outro instrumento de análise. Uma análise bastante produtiva é a consideração das simetrias que envolvem as deformações causadas pelos defeitos.

1.5 - Termodinâmica dos Dipolos Elásticos

Daremos, aqui, um tratamento para o caso em que há apenas uma espécie de dipolos, isto é, onde não há reação entre dipolos. Levaremos em conta, por outro lado, apenas teóricamente, as interações que podem existir e<u>n</u> tre os dipolos. Optamos por esse tratamento intermediário por diversas razões: primeiro, um tratamento muito geral, como o dado por Nowick e Heller⁽¹⁷⁾, exigiria uma quantidade muito grande de símbolos gráficos e, mais importante, te<u>n</u> deria a obscurecer os conceitos principais; por outro lado, um tratamento muito particular, para apenas duas orientações (ibidem) necessitaria, de qualquer m<u>a</u> neira, uma posterior generalização para aplicação no nosso trabalho. Vimos, jã, que o tensor λ é representado por seis variáveis independentes. Esse número pode ser reduzido por considerações de sime tria (e isso usaremos mais tarde). Desde que qualquer operação de simetria que leva o defeito para uma posição indistinguivel deve produzir o mesmo tensor λ , então o tensor λ deve possuir, pelo menos, todos os elementos de simetria do defeito que representa. Pode, mesmo, ter uma simetria maior do que a do defeito, desde que é possível a duas configurações fisicamente distinguíveis ter o mesmo tensor λ . Portanto a ordem do grupo de simetria do tensor po du ser maior que a ordem de simetria do defeito. Da mesma maneira que determinamos o número de orientações possíveis para um defeito (eq(I.13) podemos de terminar, também, o número de tensores distintos para representar os defeitos:

$$n = \frac{O_r}{O_t} \qquad (I.21)$$

onde O_t é a ordem do grupo do tensor. Claramente, n será um submúltiplo de n_t . Por convensão consideraremos distintos apenas os defeitos cujos te<u>n</u> sores forem diferentes. Se n = 1, todos os defeitos terão o mesmo tensor de deformação, não ocorrerá nenhuma redistribuição dos defeitos induzida por tensão e, portanto, nenhuma relaxação dos módulos cristalinos. Se n > 1, <u>e</u> xistirá um certo campo de tensão que pode causar uma diferença entre o nível <u>o</u> cupacional de energia de um dipolo numa orientação p, quando comparado com o nível ocupacional de um dipolo numa outra orientação q; teremos, assim , uma reorientação dos dipolos sob o campo de tensão. Portanto, haverá um proces so de relaxação num cristal com defeitos se, e somente se, n > 1.

Consideremos um cristal com n orientações dipolares equivalentes. Cada uma dessas n orientações designaremos por p (p = 1,... .., n). Supondo que temos uma concentração total de defeitos que chamamos C_o , o desvio da concentração de cada dipolo p será, então:

$$\mathcal{L}_{p} = C_{p} - C_{o}/n \qquad (I.22)$$

onde C_p é a concentração dos dipolos com orientação perpressa, como .. C_o , em fração molar. Assim definido, \mathcal{L}_p é um parâmetro que descreve convenientemente o estado de ordem do cristal com os defeitos. Como supomos que a concentração total (C_o) é conservada, então:

$$\sum_{P=1}^{n} \mathcal{L}_{p} = 0 = F(\mathcal{L}_{p}) \qquad (I.23)$$

onde a função $\mathcal{F}\left(\mathcal{L}_{p}
ight)$ fica definida pela própria equação.

Suponhamos um estado de referência onde a tensão aplicada é nula ($\sigma = o$), o cristal esteja num estado de ordem zero ($\mathcal{L}_{\rho} = o$) e a temperatura seja T_{r} (temperatura de referência). Nestas condições, a deformação (\mathcal{E}) do cristal, num estado genérico de tensão (σ), pod<u>e</u> rá ser escrito como:

$$\mathcal{E}_{ij} = \sum_{k,l} S_{ijkl} \sigma_{kl} + \sum_{P=l}^{n} \delta_{ij}^{(P)} \mathcal{L}_{P} + L_{ij} (T - T_{r}) \qquad (I. 24)$$

onde S_{ijkl} são as constantes elásticas não relaxadas do cristal (isto é, medidas com frequência infinita (49)) e L_{ij} são os coeficientes de deformação térmica do cristal. O primeiro termo desta equação vem diretamente da eq(I.1), o segundo termo decorre da definição do tensor de deformação λ (eq(I.17)), e o terceiro termo leva em conta a expansão térmica da amostra a partir da temperatura de referência. Temos, assim, que o estado de deformção do cristal é uma função da tensão, do estado de ordem momentânea (representado por \mathcal{L}_{ρ}) e da temperatura.

Já falamos que a reorientação dos dipolos não se dá instantaneamente. Na verdade, o estado de ordem é regulado por uma equação do t<u>i</u> po da de Arrhenius. Isso possibilita-nos (pelo menos em princípio, 'jogando ' com as outras duas variáveis, $\sigma \in T$) "congelar" o estado de ordem em qualquer valor pré-determinado. É possível, então, definir uma pseudo função de energia livre do tipo de Gibbs (G = G(E, S, T)) em que σ , T, e \mathcal{L}_{p} serão tomados como variáveis termodinâmicas independentes: G(σ , \mathcal{L}_{p} , T). Para pequenos valores de σ , os \mathcal{L}_{p} também serão pequenos. Então pode mos expandir G ao redor de $\sigma = 0$ e $\mathcal{L}_{p} = 0$, retendo apenas os ter mos até segunda ordem.

$$G(\sigma, x_{p}, T) = G(o, o, T) + IA^{*}\sigma^{*} + B^{*}\sigma + IC^{*}c^{*} + D^{*}\sigma \quad (I.25)$$

onde A^* , B^* , C^* , D^* são constantes a determinar.

A ausência de um termo linear em \mathcal{L} advém do fato de que, para $\mathcal{O}=0$, o valor $\mathcal{L}_{\rho}=0$ corresponde a um estado de equilíbrio.

Por outro lado, esta mesma função de energia, na sua forma diferencial, deve ser escrita como:

$$dG(\sigma_{x_l}, \mathcal{L}_p, T) = -V_0 \sum_{k,l} \mathcal{E}_{x_l} d\sigma_{x_l} - SdT - \sum_{p} A_p d\mathcal{L}_p \quad (I.26)$$

onde $\sqrt{6}$ é o volume molar do cristal, 5 é a entropia e A_p é uma variável termodinâmica chamada "afinidade". Para termos um equilíbrio termodinâmico à tensão e temperatura constantes, e em vista da eq(I.23), devemos ter:

$$A_{\rho} + \rho \frac{\partial F}{\partial z_{\rho}} = 0 \qquad (I.27)$$

onde ρ \tilde{e} uma constante (multiplicador de Lagrange).

Fora do equilíbrio, A_P dá a grandeza da 'tendência' p<u>a</u> ra o equilíbrio. Comparando as eq(I.25 e I.26), obtemos:

$$\mathcal{E}_{kl} = -\frac{1}{V_0} \frac{\partial G}{\partial \sigma_{kl}} = -\frac{1}{V_0} \left(A^* \sigma_{kl} + B^* c_p + D^* \right) \quad (I.28)$$

Finalmente, comparando a eq(I.28) com eq(I.24), temos:

$$A^* = -V_0 \sum_{i,j} S_{ijkl} \qquad (1.29)$$

$$\mathcal{B}^{*} = -V_{o} \sum_{P} \Lambda_{\kappa_{l}}^{(P)} \qquad (I.30)$$

$$D^* = -V_o(T - T_r) L_{*l}$$
 (I.31)

Na expressão da energia livre deveremos ter um termo .. $-TS_{cf}$ onde S_{cf} é a entropia de configuração. Este termo configuracional é uma parte de C^* na eq(1.25). Portanto devemos escrever C^* como:

$$C^* = C^*_{cf.} + C^*_{it}$$
 (I.32)

A parte configuracional da entropia, para valores pequenos de $\measuredangle
ho$ serã $^{(39)}$:

$$S_{LS} = -\frac{n N_{o} k}{2 C_{o}} \sum_{p} z_{p}^{2}$$
 (I.33)

A outra parte (G_{it}^{*}) da eq(I.32) pode ser melhor compreendida definindo-se uma quantidade Δg como a diferença de energia livre quando <u>um dipolo espe</u> <u>cífico</u> muda sua orientação de p para q. Isso representa a diferença de energia livre <u>excluindo</u> a contribuição do termo configuracional da entropia. Assim:

$$\Delta g = \frac{1}{N_0} \frac{\partial (G + T S_{cf})}{\partial \mathcal{L}_p} = -\frac{V_0}{N_0} \sum_{k,l} \int_{kl}^{(n)} \mathcal{T}_{kl} + \sum_{q} \frac{C_{qr}}{N_0} \mathcal{L}_q \qquad (I.34)$$

onde \mathcal{N}_0 é o número de Avogadro. Esta equação mostra que a diferença de ener gia para uma reorientação $p \rightarrow q$ dos dipolos depende tanto da tensão como do estado de ordem. Isto é, se C_{it}^{*} não é nulo, isto significa que o estado de ordem, por si mesmo, resulta numa separação de estados (é um fato bas tante semelhante à formação dos domínios magnéticos). Por conveniência, definimos o negativo de C_{it}^{*}/\mathcal{N}_0 , que será conhecido como parâmetro de interação entre os dípolos p e q.

$$b_{pq} = -\frac{C_{in}^*}{N_o} \qquad (I.35)$$

Se não temos interação entre os dipolos, então os b_{pq} são todos nulos. Podemos, agora, escrever a eq(1.25) em termos dos parãmetros fundamentais dados nas eq(1.29 - 30 - 31 - 33 e 35):

$$G(\sigma_{\kappa_{l}}, \mathcal{L}_{p}, T) = G(0, 0, T) - \frac{1}{2} V_{o} \sum_{ij \kappa_{l}} S_{ij\kappa_{l}} \sigma_{ij} \sigma_{\kappa_{l}} + \frac{1}{2} V_{o} \sum_{\kappa_{l}} \sigma_{\kappa_{l}} \sum_{p} \Lambda_{\kappa_{l}}^{(p)} \mathcal{L}_{p} - \frac{1}{2} N_{o} \sum_{pq} b_{pq} \mathcal{L}_{p} \mathcal{L}_{q} + \frac{1}{2} V_{o} (T - T_{r}) \sum_{\kappa_{l}} \mathcal{L}_{\kappa_{l}} \sigma_{\kappa_{l}} + \frac{1}{2} N_{o} kT \frac{n}{C_{o}} \sum_{p} \mathcal{L}_{p}^{2} \qquad (I.3b)$$

Queremos, agora, calcular as concentrações de equilíbrio $\overline{\mathcal{L}}_{P}$. Isso fazemos com o auxílio das eq(I.36 e I.27). Para pequenas concentr<u>a</u> ções de dipolos (como usamos) os termos de interação podem ser desprezados. E<u>n</u> tão temos, usando a condição de equilíbrio :

$$\frac{\partial G}{\partial L_{p}}(\sigma, L_{p}, T) = 0 \qquad (I.37)$$

Resolvendo as equações resultantes em \mathcal{L}_{p} , com a restrição imposta pela .. eq(I.27), teremos os valores de equilibrio ($\overline{\mathcal{L}}_{p}$):

$$\overline{c}_{p} = \frac{N_{o}}{n k T} \sum_{ki} \sigma_{ki} \left(\lambda_{ki}^{(p)} - \frac{1}{n} \sum_{q} \lambda_{ki}^{(q)} \right) \quad (I.38)$$

Mas a relaxação das constantes S_{ijkl} serã dada pela parte anelástica da eq(I.24), com a concentração de equilíbrio ($\vec{\mathcal{L}}_p$) no lugar de $\vec{\mathcal{L}}_p$:

$$\Delta S_{ijkl} = \frac{(\bar{\mathcal{E}}_{ij})_{an}}{\sigma_{\bar{k}l}} = \sum_{P=1}^{n} \frac{\lambda_{ij}}{\sigma_{\bar{k}l}} \bar{\mathcal{L}}_{P} \qquad (I.39)$$

Portanto:

$$\Delta S_{ij\kappa_{l}} = \frac{n \kappa C_{o}}{k T n} \left[\sum_{P} \lambda_{ij}^{(P)} \lambda_{\kappa_{l}}^{(P)} - \frac{1}{n} \left(\sum_{P} \lambda_{ij}^{(P)} \right) \left(\sum_{P} \lambda_{\kappa_{l}}^{(P)} \right) \right] \quad (I.40)$$

Esta equação representa a solução completa do problema de relaxação quando temos n orientações dipolares de uma mesma espécie .. (simetria) de dipolos e não há interação entre esses dipolos. É uma equação geral, aplicada a todas as simetrias cristalinas e a todas as simetrias de d<u>e</u> feitos (não fizemos nenhuma restrição desse tipo). Ademais, n é um número normalmente pequeno (n = 1, 2, 3, 4, 6, ..., 24).

A solução para cada simetria € tanto mais simples quan-

to mais altas forem as simetrias particulares do defeito e da rede considerada. A equação (I.40) pode ser posta numa forma mais conveniente se usarmos a equação padrão de transformação (eq(I.20)) do tensor λ . Obteríamos assim, uma expressão em termos dos valores principais e das suas direções com respeito aos eixos cristalinos. Com essa transformação teremos:

$$\Delta S_{ij\kappa l} = \frac{N \tilde{c} C_{o}}{\eta \, k \, T} \left[\sum_{p} \left(\sum_{m=1}^{3} \alpha_{im}^{(p)} \alpha_{jm}^{(p)} \, \lambda_{m} \sum_{m=1}^{3} \alpha_{\kappa m}^{(p)} \alpha_{\ell m}^{(p)} \, \lambda_{m} \right) + \frac{1}{\eta} \left(\sum_{p} \sum_{m=1}^{3} \alpha_{im}^{(p)} \alpha_{jm}^{(p)} \, \lambda_{m} \right) \left(\sum_{q} \sum_{m=1}^{3} \alpha_{\kappa m}^{(q)} \alpha_{\ell m}^{(q)} \, \lambda_{m} \right) \right] \qquad (I. 4/)$$

onde os $\mathcal{A}_{im}^{(P)}$ são os cosenos diretores entre a direção fixa no cristal (i) e a direção do valor principal m do tensor $\mathcal{A}^{(P)}$.

Convem destacar, aqui, que a relaxação das constantes

 \tilde{e} entendida como: $\Delta S_{ij\kappa l} = S_{ij\kappa l} (R)^{-} S_{ij\kappa l} (NR)$

I.6 - Defeitos na Rede - 0 Efeito Snoek

Para descrever completamente as propriedades elásticas de um cristal com simetria cúbica necessitamos apenas três constantes elásticas: S_{II} , $S_{I2} \in S_{44}$. Essas constantes estão relacionadas com as constantes elásticas do tensor de quarta ordem S_{ijkl} por:

$$S_{11} = S_{111}$$

$$S_{12} = S_{1122}$$

$$S_{112} = \frac{1}{2}S_{1122}$$

$$(I.42)$$

Queremos calcular a relaxação dessas constantes para intersti

ciais na rede coc (Fig(I.1)). Ambos intersticiais, octaedral ou tetraedral, possuem simetria tetragonal, isto é, onde um dos eixos do cristal permanece um eixo de simetria de rotação - 4 (ou rotação - 4 - inversão) na presença do de feito. Este eixo precisa ser, portanto, um dos eixos principais do tensor λ . Podemos chamar, ao valor principal associado a esse eixo tetragonal, de λ_1 . Devido à simetria tetragonal, não pode haver distinção entre os eixos perpendi culares à direção de λ_1 , portanto $\lambda_2 = \lambda_3$, isto é, o elipsóide de de formação será um elipsóide de revolução.

Por outro lado, há três escolhas possíveis para a orientação desse elipsoide, isto é, λ_1 pode ser associado a qualquer dos três eixos cú bicos (a, b) ou c) do cristal; portanto o número de orientações dipol<u>a</u> res será n = 3.

Assim, conhecendo a simetria do tensor de deformação e suas possíveis orientações, e com o uso da eq(I.41), fica 'fácil' calcular a relax<u>a</u> ção para as constantes do cristal cúbico (eq(I.42)). Teremos, portanto:

$$\Delta S_{ii} = \Delta S_{iii} = \frac{N_{\bullet} C_{\bullet}}{kT} \cdot \frac{1}{3} \left[\left(\Lambda_{i}^{2} + \Lambda_{2}^{2} + \Lambda_{3}^{2} \right) - \frac{1}{3} \left(\Lambda_{i} + \lambda_{2} + \lambda_{3} \right)^{2} \right]$$
$$= \frac{2}{9} \frac{N_{\bullet} C_{\bullet}}{kT} \left(\Lambda_{i} - \lambda_{2} \right)^{2} \qquad (I, 43)$$

$$\Delta S_{i2} = \Delta S_{i1222} = \frac{N_o C_o}{k T} \frac{1}{3} \left[\left(\lambda_i \lambda_2 + \lambda_3 \lambda_i + \lambda_2 \lambda_3 \right) - \frac{1}{3} \left(\lambda_i + \lambda_2 + \lambda_3 \right)^2 \right]$$

$$= -\frac{1}{3} \frac{N_o C_o}{k T} \left(\lambda_i - \lambda_2 \right)^2 \qquad (I. 44)$$

$$\Delta S_{44} = \Delta S_{2323} = 0 \qquad (I. 45)$$

Como primeira constatação devemos notar que:

$$\Delta S_{II} = -2\Delta S_{I2}$$
 (I. 46)

E interessante, para entendermos esses resultados, escrevermos as constantes da eq(I.42) na seguinte forma:

$$S = S_{44}$$

$$S' = 2(S_{11} - S_{12}) \qquad (I.47)$$

$$S'' = S_{11} + 2S_{12}$$

Da eq(1.46), vemos claramente que $\Delta 5''=0$. Isso era de se esperar , desde que 5'' é um terço da compressibilidade hidrostática: para tensões aplicadas igualmente nas três direções cúbicas ortogonais, não haverá separa ção nos níveis ocupacionais de energia para diferentes ocupações dipolares e, consequentemente, não devemos esperar uma relaxação dos módulos elásticos.

Para melhor compreender a ausência de relaxação para a constante 5_{yy} , é conveniente escrevermos o módulo de Young (Y) da seguínte forma (ver capítulo (III)):

$$V_{T'}^{-1} = \frac{5'+5''}{3} + (5-5')T'$$
 (I.48)

onde $\int^{1} = \chi^{2} \beta^{2} + \beta^{2} \beta^{2} + \beta^{2} \chi^{2}$ é um parâmetro direcional, sendo χ , β e β os cosenos diretores da direção de aplicação da tensão em relação aos <u>e</u> ixos cristalinos. Assim:

$$\Delta(Y_{r}') = \frac{\Delta S'}{3} + (\Delta S - \Delta S')r \qquad (I.49)$$

Se temos uma tensão aplicada num cristal, na direção $\langle III \rangle$, então o fator de orientação serã T = 1/3 e, portanto, teremos:

$$\Delta(\chi_{\langle III\rangle}^{-\prime}) = \frac{\Delta S}{3} = 0 \qquad (I.50)$$

Ora, isso é bastante razoável desde que a tensão aplicada na direção $\langle /// \rangle$ forma ângulos iguais com as três orientações dipolares [/00], [0/0] e [00/]. Portanto, não deve haver separação dos níveis de energia e, novamente, menhuma relaxação dos módulos.

Assim, a única constante com relaxação serã 5'. Da eq(1:49)

e dos resultados dados no capítulo (III) (ver eq(III.3)), podemos escrever, finalmente:

$$\Delta S' = 3 \Delta \left(\gamma_{I 1007} \right) = \frac{2}{3} \frac{N_0 C_0}{kT} \left(\lambda_1 - \lambda_2 \right)^2 \qquad (I.51)$$

ou

$$\frac{AS'}{S'} = -\frac{AC'}{C'} = \frac{2}{3} \frac{C' \frac{N_0}{K_T} C_0}{k_T} \left(\lambda_1 - \lambda_2\right)^2 \qquad (I.52)$$

Com estas equações podemos determinar somente o valor absolu to $\left| \lambda_{1} - \lambda_{2} \right|$ do fator de forma que, como já vimos, dá o grau de elipticida de da distorção provocada pelo defeito. Uma análise direta das ocupações octa edrais ou tetraedrais na rede ccc leva-nos, porém, à conclusão de que, em ambos os casos, a distorsão na direção do eixo tetragonal (λ_{1}) é maior que nas outras direções, levando a um valor positivo para o fator de forma (λ_{1} , λ_{2}).

Por outro lado, o conhecimento do coeficiente de expansão v<u>o</u> lumétrica (ou linear) do cristal em função da concentração de defeitos, permite-nos, com a eq(I.19), calcular o traço do tensor de deformação $(\lambda_1 + 2\lambda_2)$. Podemos, dessa maneira, obter os valores principais do tensor de deformação. II. - AMOSTRAS - SISTEMÁTICA EXPERIMENTAL

II.1 - Obtenção do Nióbio e Crescimento dos Cristais

O metal com que trabalhamos foi obtido a partir do minério – das minas de Araxá, Minas Gerais, pelo processo desenvolvido por Da. G. Pina<u>t</u> ti, basicamente uma reação fortemente exotérmica do Pirocloro com Alúminio . A refinagem do Nióbio foi feita no forno de feixes eletrônicos (Electron — Bean, Typ. ES 1/3/60, 60 KW, da Leybold Heraeus) do laboratório de Baixas – Temperaturas do Instituto de Física da UNICAMP. O metal é refinado em oito etapas, ou fusões. Nas últimas fusões o processo é feito num vácuo de aproxim<u>a</u> damente 10^{-5} Torr. Isto porque, nas primeiras fusões há um desprendimento i<u>n</u> tenso de gases e outros elementos voláteis.

Após todas as refinagens o metal puro está em forma de lingo tes com diâmetro de 5 cm e comprimento de -20 - 25 cm. Para o crescimento dos monocristais esses lingotes são laminados a fim de se obter cilindros de 15 - 20 cm de comprimento e diâmetro correspondente ao diâmetro desejado para o monocristal, normalmente entre 4 e 9 mm de diâmetro. A seguir é feito o crescimento dos monocristais através do processo de fusão por zona, em vácuo nominal de 10^{-6} Torr. Esses monocristais têm comprimento de 140 mm e diâme tros entre 5 e 8 mm. A maioria dos monocristais foram crescidos sem sementes; dessa maneira o eixo geométrico do cristal tem uma orientação cristalina mais ou menos alcatória. Não obstante, quase todas as amostras que analizamos tinham o eixo geométrico próximo a uma orientação $<\!\!2$ l l> . Como nos era co<u>n</u> veniente obter um monocristal com eixo geométrico paralelo à direção $\langle 1 | 1
ightarrow$, fizemos duas tentativas de crescer um monocrístal com semente. Para isto era obtida a orientação da face (110) cuja perpendicular $\begin{bmatrix} 1 & 0 \end{bmatrix}$ fosse mais próxima do eixo geométrico de um monocristal já crescido. O cristal era então cortado paralelamente a essa face. Após, era então o cristal deformado

de forma a que a face cortada (110) girasse horizontalmente ao redor de seu centro.

Esse processo não foi bem sucedido na primeira tentativa, pois o diâmetro da semente era muito pequeno e, como a semente também fica próxi ma à temperatura de fusão, o peso do material que vai sendo depositado é suficiente para deformá-la. Na segunda vez, com uma semente de maior diâmetro, o crescimento transcorreu normalmente. Mesmo assim, o eixo de crescimento do monocristal distava 10° da direção $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$. Não nos foi possível fazer novas experiências pois o forno necessitava ser desativado para refinagens de novos materiais.

O processo de crescimento é bastante demorado, tendo demandado aproximadamente 3 a 4 meses de trabalho. Para se ter uma idéia, uma barra monocristalina com 100 - 150 mm de comprimento e 5 - 8 mm de diâmetro exige, normalmente, 3 a 4 dias de trabalho, pois são feitas seis fusões sucessivas. Acresça-se, aí, mais 2 dias para a obtenção da fotografia de Laue e identificação dos eixos. No total foram crescidas e identificamos os eixos de doze barras monocristalinas.

II.2 - Orientação e Polimento dos Monocristais

De todas as barras monocristalinas obtidas, escolhemos aquela cujo eixo de crescimento mais se aproximava de uma direção $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$. Suas d<u>i</u> mensões eram de 7.7 mm de diâmetro e 135 mm de comprimento. Na Fig(II.1) pode-se ver a fotografia de Laue obtida com o feixe de Raio-X perpendicular ao eixo geométrico da barra. Na Fig(II.2) damos a projeção estereográfica correspondente a essa fotografia, onde se pode notar que o eixo da barra dista aproximadamente 10° da direção $\langle 1 & 1 & 0 \rangle$. A seguir foram feitas mais duas fot<u>o</u> grafias em outros pontos, também com o feixe de R-X perpendicular ao eixo da barra, para novas identificações dos eixos cristalinos. Isto porque supúnhamos a hipótese de o monocristal ter crescido levemente 'espiralado', o que se ria plausível devido ao processo particular de crescimento. Em vista dos resultados pudemos afastar essa hipótese.

A partir deste monocristal foram cortadas quatorze amos — tras (com comprimentos entre 0.5 e 0.8 cm) com as faces perpendiculares \tilde{a} direção $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ dentro de 3°. Este corte era feito numa Servomet pelo

Fig(II.1) - Diagrama de Laue. Eixo da barra perpendicular ao R-X. A distância da face ao filme é de 30 mm.

processo de eletro-erosão. A orientação final na câmara de Laue, pelo método de retro-reflexão^(7, 8, 9), era feita no goniômetro de dois eixos, de alta pr<u>e</u> cisão, acessório próprio da Servomet. Esta orientação é feita apenas com a car ta de Greninger (pois já identificamos os eixos), com uma precisão de l^o.Ver Fig(II.3).

Fig(II.2) - Projeção estereográfica do diagrama da fig(II.1) obtida com a carta de Greninger. São mostrados alguns eixos cristalográficos principais e a projeção do eixo geométrico da barra. O ângulo entre a direção [1 1 0] e o eixo da barra é de 10°. Após a orientação de uma face, o goniômetro era transportado para a Servomet e a amostra faceada até obtermos o polimento desejado.

Em todas as operações que exigiam a amostra fixa (orient<u>a</u> ção, corte, polimento etc) esta era fixada com cola Stabilit Express^(*). Esta cola tem as conveniências de ser bastante resistente (para esse tipo de trab<u>a</u> lho), ter secagem rápida ($\frac{+}{2}$ 20 min) e fácil descolagem (20 a 60 min) em acetona. Os contatos elétricos, quando necessários (corte e polimento), eram obtidos com tintura de prata misturada à cola já no processo de mistura do põ e da pasta constituintes da cola. Isto permite um contato elétrico perfeito entre a amostra e a base. As colagens eram feitas sempre com a amostra diretamente sobre a base e com pontos de fixação na periferia da amostra. Isso permite um contato melhor entre as superfícies da amostra e da base garantindo, assim, o paralelismo entre as faces (e facilita a descolagem).

Após o polimento da face orientada a amostra era descolada. O goniômento era então zerado e a face polida do cristal colada em sua base. Com o goniômetro zerado e comprovávamos, novamente na câmara de Laue, a orientação da primeira face. Buscávamos agora, através de rotações apenas do eixo $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ da amostra, evidenciar as direções $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ e $\begin{bmatrix} 1 & \overline{1} & 0 \end{bmatrix}$, am bas perpendiculares à primeira e, portanto, no plano da face (1 1 0). O go niômetro era transferido novamente para a Servomet, polida a segunda face e marcadas as direções $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ e $\begin{bmatrix} 1 & \overline{1} & 0 \end{bmatrix}$. Esta marcação era feita com uma barra de latão (em posição de corte na Servomet), orientada com relação ao goniômetro; as marcas se faziam nas bordas do cristal para não haver prejuizo da superfície ultrasonicamente útil do cristal (problemas de reflexão nas paredes laterais).

Como o ângulo entre as faces deve ser menor que 10^{-5} rad, (5)algumas amostras precisaram ser polidas manualmente, num dispositivo – que criamos, para obtermos um padrão de ecos satisfatório. Este polimento era feito com pasta de diamante até 0.1μ num suporte para relógio comparador da Mytotoyo. Na base do suporte desliza, em movimentos manuais não uniformes, uma peça cilíndrica de faces paralelas. Na face superíor é colada a amostra

^(*) Henkel und Cie GmbH Dusseldorf.

a polir, que atrita levemente (através da pasta) com uma haste de latão, fixa na parte superior do suporte. É um processo demorado, mas com resultados ótimos.

II.3 - Tratamento e Hidrogenação

Após a orientação e polimento das amostras eram elas subm<u>e</u> tidas a um ataque químico numa solução de HF (10%), HCL (10%), HNO₃(20%) e H₂O (60%). Isto permite retirar a camada policristalina que se forma na superfície da amostra durante o polimento. Entre cada operação com as amostras, e dependendo da operação anterior e da posterior, elas passam por uma limpeza em água, álcool, acetona e tetracloreto de carbono. Muitas vezes em apenas um ou dois desses líquidos. O manuseio das amostras era sempre feito com pinças de ponta de plástico ou aço, conforme a conveniência; algumas vezes com luvas de pano, sempre evítando o contato manual, que poderia contaminar as amostras.

Após o ataque químico as amostras eram tratadas em vácuo de 10^{-6} Torr, à temperatura de 1900 - 2000°C, por um tempo médio de dez horas. Este aquecimento é feito por indução num formo de Rádio-Frequência "Politron" - 10 KW^(*). A amostra fica dentro de um cílindro de quartzo cujos anéis de borracha são refrigerados a água. O "trapp" do sistema é de aço inoxidável e, também, refrigerado a água. O vácuo é conseguido através de uma bomba mecânica e uma difusora. A leitura da temperatura faz-se com um pirômetro ót<u>i</u> co, feitas as correções especificadas para a emissividade do Nióbio. Atingida a temperatura desejada, mantém-se a corrente de placa até o final do tratame<u>n</u> to (devido ao depósito de óxido de Nb nas paredes internas do cilindro de quartzo, novas leituras acusariam valores menores que o real, devido ao esva<u>e</u> cimento da luz).

^(*) Companhia Nacional de Máquinas Eletrônicas.

Passado o tempo conveniente de tratamento a corrente é reduzida abruptamente para evitar a introdução de gases (principalmente oxígê nio) na amostra.

A Hidrogenação foi feita no mesmo forno, sempre a uma temperatura entre 600° e 650° C e a uma pressão entre 850 e 900 mm Hg. Na .. Fig(II.4) damos um esquema simplificado do sistema de hidrogenação. A amostra fica, agora, dentro de um tubo fino (3 cm de diAmetro) de quartzo, suspensa por um fio fino ($\frac{+}{20} 20 \mu$) de tungstênio, e a bobina de indução é externa ao tubo. O vácuo no tubo é conseguido através de um flexível de latão até o "trapp" do sistema de vácuo. O vácuo é medido em três pontos: no "trapp", através do medidor a catodo quente^(*), e no tubo de quartzo através de um medidor Veeco e um manômetro de mercúrio em U (que, de fato, irá medir a pressão do Bidrogênio no tubo).

O Hidrogênio^(**) é introduzido no tubo de hidrogenação atr<u>a</u> vés de uma serpentina de cobre mantida imersa em nitrogênio líquido. Para evitar contaminação da amostra o manômetro de mercúrio é ligado ao sistema por ou tra serpentina de cobre mergulhada em nitrogênio líquido (pois o mercúrio po<u>s</u> sui pressão de vapor elevada (10^{-3} Torr) à temperatura ambiente).

Antes de começar a hídrogenação eram feitas diversas lavagens do sistema com hidrogênio, elevando a pressão no tubo até 1200-1300 mm Hg, com anterior isolamento do "trapp". O excesso de pressão era aliviado para o ambiente (externo ao laboratório, claro!) e feito novo vácuo. Esse processo <u>e</u> ra repetido pelo menos quatro vezes. A hidrogenação propriamente dita só iníci ávamos uma hora após o vácuo no "trapp" ter atingido 10^{-6} Torr, e o medidor Veeco no tubo ter ultrapassado o fundo de escala (10^{-3} Torr). O "trapp" era então isolado, hidrogênio era passado para o tubo até a pressão referida e a temperatura da amostra elevada processando-se, aí, a hidrogenação.

A partir da equação dos gases ideais podemos determinar uma equação para a quantidade de átomos difundidos na amostra em função da variação (*) Quadruvac Q 200 da Leybold Heraeus.

(**) Fornecido pela Oxigênio do Brasil, com pureza de 99,9%.

da pressão de Hidrogênio no tubo. Para sabermos a percentagem atômica de Hidr<u>o</u> gênio difundido no Nióbio, os parâmetros, todos conhecidos, são a massa da amo<u>s</u> tra, a temperatura (do gás no sistema, da ordem de 300K) e o volume do tubo (350 cm³). Com nossas amostras (aproximadamente 3 g), para termos 1% H, a variação de pressão devia ser da ordem de 9 mm Hg. Essa variação de pressão <u>e</u> ra controlada pelo manômetro de mercúrio, através de uma escala fixa nele e de um catetômetro a uma distância de dois metros.

O tempo de hidrogenação variou sempre entre 3 e 15 min. Esses dados são bastante semelhantes aos encontrados por Albrecht e outros $^{(36)}$. A difusão se processa muito rapidamente a temperaturas próximas a 650° C, de tal maneira que podemos ver a coluna de mercúrio se mover no manômetro e parar o processo após a variação desejada. O valor da percentagem de Nidrogênio dífundido é calculado pela variação de massa da amostra, medida antes e após a hidrogenação. O Hidrogênio intersticial no Nb, assim como em outros metais , provoca um aumento no parâmetro de rede, representado pelo fator de grandeza (eq(1.19)). Dos nossos dados chegamos a um fator de grandeza médio dado por:

$$\frac{AL}{L.1\% \text{ at } H} = 6.8 \ 10^{-4} \qquad (II.1)$$

com um desvio de 8%. Este valor pode ser comparado com os obtidos por outros pesquisadores na Tab(II.1). Deve-se notar que esse valor é apenas duas ou três vezes menor⁽²³⁾ que os correspondentes aos fatores associados aos intersticiais pesados (0, N, C). Como o Hidrogênio é bastante leve, devemos esperaruma redução da densidade das amostras proporcional à quantidade de Hidrogênio difundido, o que é mostrado na Tab(III.i).

TRABALHO	<u> </u>
Waltere Chandler (13)	4.2
Fischer e outros (21)	5.7
Buck e outros (22)	6.0
Albrecht e outros (36)	6.9
Este Trabalho	6.8

Tab(11.1) - Fatores de grandeza para o sistema Nb-H, segundo diversos trabalhos

II.4 - Transdutores

Os transdutores que usamos foram obtidos de Valper-Fischer Corporation. São eles fornecidos em placas de quartzo orientas com diâmetros de uma polegada. Para o nosso trabalho tivemos de cortá-los nos diâmetros ad<u>e</u> quados ãs dimensões de nossas amostras. Para isso confeccionamos diversas ... 'brocas' de latão consistindo em cilindros ocos com paredes bastante finas... (⁺ 0.1 mm) e diâmetro de 4 mm.

A placa de quartzo é fixada, através de uma camada de piche, num suporte de vidro grosso. Através de um disposítivo que construimos, com um motor de máquina de costura, a broca é colocade a girar com rotação aproximada de 500 rpm, sobre a placa de quartzo, pressionada levemente por uma mola. O corte do quartzo é obtido com pasta de diamante (2 - 5(le)) entre a broca e a placa.

Para os transdutores transversais (corte y), antes do cor te no diâmetro desejado, tínhamos de marcar a direção de vibração. Para isso torneamos um disco com 100 mm de diâmetro e espessura de 0.1 mm. A placa de quartzo é agora fixada, através de piche, numa lâmina de microscópio que, por sua vez, é presa horizontalmente num suporte que gira livremente num eixo hori zontal que passa pelo seu centro. O disco gira com baixa rotação num eixo também horizontal paralelo ao eixo do suporte. O suporte é equilibrado de tal maneira a que haja apenas um pequeno torque, para que a pressão da placa de quar tzo contra o disco seja pequena. O disco girante atrita a placa de quartzo através da pasta de diamante. Assim são cortadas diversas 'fatias' de 4 mm de largura, com os lados paralelos à marcação original da placa. Posteriormente essas fatias são cortadas pelo processo descrito antes, em pequenos círculos de 4 mm de diâmetro, onde uma parte da circunferência fica retificada, correspondendo ao corte feito, paralelo à direção de vibração do transdutor.

Cortamos, assim, transdutores de 10 MHz e de 20 MHz de frequências fundamentais; longitudinais (corte-X) e transversais (corte-Y ou corte-AC). Para as medidas de velocidade usamos os transdutores de 10 MHz (19 e 39 harmônicos) e 20MHz (19 e 39 harmônicos).

III. - MEDIDAS - SISTEMATICA EXPERIMENTAL

III.1 - Criogenia e Vácuo - Suporte de Amostras

A montagem básica utilizada neste trabalho já foi descrita anteriormente^(43,46). Podemos vê-la, esquematicamente, na Fig(III.1). O vácuo das camisas de isolação é feito com uma bomba difusora e um bomba mecânica^(*). A câmara externa é cheia de nitrogênio líquido que, mantida sob pressurização através de uma válvula controlada por mola, pode atravessar a válvula agulha , passando pelo capilar e resfriando a amostra. A temperatura desse fluxo de gás é regulada pelo aquecedor de fluxo mostrado na figura e pela abertura da válv<u>u</u> la agulha. O nitrogênio, após passar pela amostra, é expelido através do borb<u>u</u> lhador de óleo para evitar contaminação da câmara de amostra por ar ou umidade, o que levaria a um bloqueio da válvula agulha.

Usamos um suporte de amostras com corpo de cobre para termos uma inércia térmica razoável, necessária para a estabilização da temperat<u>u</u> rara. Seu esquema está na Fig(III.2). O fio coaxial, que traz o sinal do gerador de ultrasom, é blindado, até o suporte de amostras, pelo tubo de aço inox<u>i</u> dável, em toda a extensão da câmara de amostras.

111.2 - Controle de Temperatura e Sistema Ultrasônico

O controle de temperatura é feito, como se pode ver na Fig(III.2), com um diodo de GaAs. Este diodo é alimentado com uma corrente de 10^{-6} A. A diferença de potencial no diodo é uma função da sua temperatura. O (*) O vácuo conseguido é de 10^{-5} Torr, suficiente para eliminar a condução molecular de calor pelo gás residual.

. .

Ι.,

controlador de temperatura, construido no laboratório de Baixas Temperaturas da UNICAMP, compara essa tensão com outra, que estabelecemos como ponto de trabalho, e a diferença é levada ao circuito amplificador diferencial. A corrente de saida desse circuito é amplificada (se for o caso) e levada à resi<u>s</u> tência de aquecimento no suporte de amostra. Isso é feito aliado ao controle do fluxo do gás pela amostra medido por um fluxômetro (não mostrado na figura) O diodo é calibrado de 300K até 4.2K.

Uma vez estabelecida a temperatura de trabalho, deixa-se estabilizar o sistema pelo tempo adequado. Como trabalhomos com metal esse tem po é da ordem de 3 a 7 minutos^(*). A estabilidade estimada é de 0.05K.

O sistema ultrasônico que utilizamos é basicamente o proposto pelo fabricante^(**) para trabalharmos com o método de superposição de ecos. Um diagrama do circuito é mostrado na Fig(III.3). Basicamente, o Gera dor-Receptor de pulsos (M.6600), em conjunção com o Plug-In (M.760), produzem pulsos de ultrason na banda de frequência de 10 MHz a 90 MHz que são levados até o transdutor através de cabos coaxiais. Na sua frequência fundamental (ou nos harmônicos ímpares) o transdutor vibra sob a ação desses pulsos elétricos. Essa energia de vibração do transdutor é transmitida à amostra sob a forma de um pacote de ondas acústicas que se propaga através do cristal. Este sinal acústico, refletindo na face oposta, retorna ao transdutor, onde é parcialmente reconvertido em sinal elétrico que, através do cabo, é amplificado e mandado ao osciloscópio. Como o pacote de ondas acústicas sofre múltiplas r<u>e</u> flexões nas faces paralelas da amostra temos, na tela do osciloscópio, tantos ecos quantas sejam as reflexões.

Como desejamos ter uma figura estacionária na tela do osciloscópio, o Gerador-Receptor é disparado a um intervalo de tempo conveniente, que é controlado pelo Oscilador C.W.

As medidas de velocidade são feitas, propriamente, através do Divisor de Décadas (e Atrazador). Ele tem a função de dividir a frequência do Oscilador C.W. em 10, 100, 1000 vezes e também, para emitir (*) Para as amostras hidrogenadas esse tempo é de 5 a 7 min, devido a um processo histerético associado à precipitação de hidretos.

(**) Matec, Inc.

pulsos de intensificação (cujo atraso pode ser controlado) que entram no eixo Z do osciloscópio. Dessa maneira podemos escolher e intensificar apenas dois dos ecos na tela do osciloscópio. A distância temporal entre esses dois ecos, medida no eixo X do osciloscópio, é o tempo que o sinal acústico demora para percorrer 2(p-q) vezes o comprimento L entre as faces da amostra (on de p e q são, respectivamente, o p-ésimo e o q-ésimo ecos). Na realidade, o que fazemos é ajustar a frequência do Oscilador C.W. até os ecos escolhidos se sobreporem perfeitamente na tela do osciloscópio. A frequência

Fíg (III.3) — Diagrama Típico para medidas de velocidade.

correspondente (f), medida no contador, será o inverso do tempo de percurso. Portante:

$V = 2L(P-q)f \qquad (\Pi, I)$

onde V é a velocidade da onda na amostra. Normalmente trabalhamos com os primeiros cinco ecos. Variações do tempo de percurso podem ser detetadas até 2 partes em 10⁶, o que não significa, como veremos, que seja esta a sensib<u>i</u> lidade nas medidas das constantes elásticas.

Como no nosso trabalho os valores absolutos das medidas são inportantes, seguimos os procedimentos propostos por McSkimin⁽⁴⁷⁾ e desenvolvídos por Papadakis⁽⁴⁸⁾ para a correta superposíção das 'onduletas' .

III.3 - Constantes Elásticas

Para um cristal com simetria cúbica necessitamos apenas três constantes para descrevê-lo elasticamente (ver cap(I.6)): C_{11} , $C_{12} \in C_{44}$. A solução da equação de propagação de uma onda plana harmônica num cristal cú bico com densidade ρ , e com vetor de propagação na direção $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$, l<u>e</u> va ãs seguintes^(*) relações^(5, 6, 41):

$$\mathcal{V}_{[110],[110]} = \begin{pmatrix} C_{11} + C_{12} + 2C_{44} \\ 2\rho \end{pmatrix}^{1/2} = \mathcal{V}_{7} \qquad (III.2)$$

$$\mathcal{N}_{[110],[1\overline{10}]} = \begin{pmatrix} c_{11} - c_{12} \\ 2 \rho \end{pmatrix}^{1/2} = \mathcal{N}_{a} \quad (\Pi . 3)$$

$$\mathcal{N}_{\Xi^{II0}\overline{J}, [00]} = \begin{pmatrix} C_{44} \\ P \end{pmatrix}^{1/2} = \mathcal{N}_{3} \quad (III.4)$$

 ^(*) A referência (6) escreve os valores incorretamente, esquecendo o fator
 2 que aparece nas duas primeiras equações que se seguem.

onde ${\cal N}$ é a velocidade de propagação da onda, o primeiro Índice dá a diração do vetor de propagação e o segundo a direção do deslocamento provocado.

A solução desse sistema permite-nos obter as constantes elásticas como função das velocidades dos três modos de propagação:

$$C_{11} = \rho \left(N_1^2 + N_2^2 - N_3^2 \right) \qquad (III.5)$$

$$C_{12} = \rho \left(N_1^2 - N_2^2 - N_3^2 \right) \qquad (III.6)$$

$$C_{44} = \rho(N_3^*) \qquad (III.7)$$

onde as velocidades são dadas pela eq(III.1).

Obtidos os valores de $C_{11}^{}$, $C_{12}^{}$, e $C_{44}^{}$ podemos calcular diversos outros parâmetros elásticos úteis do cristal. Assim, os modulos Young para qualquer orientação (7) serão dados por $^{(1, 39)}$: de

$$Y_{T'}^{-'} = S_{II} = [2(S_{II} - S_{I2}) - S_{44}]T$$
 (II.8)

 $T = \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$, e α , β e γ são os cosenos retores da direção da tensão aplicada em relação aos eixos cristalinos. Os modulos de complacência (S_{ij}) estão relacionados aos módulos de rigidez (C_{ij}) de forma bastante simples:

$$C_{11} - C_{12} = (S_{11} - S_{12})^{-1} \qquad (III.9)$$

$$C_{11} + 2C_{12} = (S_{11} + 2S_{12})^{-1}$$
 (III.10)

$$C_{44} = (S_{44})^{-1}$$
 (III. 11)

Podemos também calcular o Módulo de Bulk (B), que é o inverso da compressibilidade hídrostática:

$$B = \frac{1}{3} (C_{11} + 2C_{12}) \qquad (III.12)$$

Outro parâmetro que pode ser interessante, mais pelo seu valor anormalmente bai

di

xo no Nióbio, é o Fator de Anisotropia_

$$A = \frac{2 C_{44}}{C_{11} - C_{12}} = \frac{C_{44}}{C'} \qquad (III, 13)$$

onde C', definido na eq(III.3), \tilde{e} a constante de cizalhamento para uma tensão aplicada no plano (110) na direção $\begin{bmatrix} 1 & \overline{1} & 0 \end{bmatrix}$.

III.4 - Correções pela Ligação Acústica e pela Dilatação Térmica

As ondas acústicas, para se propagarem do transdutor para a amostra e vice-versa, necessitam que o transdutor esteja perfeitamente colado à amostra, isto é, que haja um meio pelo qual possa se processar convenientemente essa transferência de energia vibracional. Há diversas⁽⁵⁾ maneiras de se efetuar essa ligação acústica; não obstante há que se fazer, normalmente uma compensação entre as precisões desejadas das medidas, as possibilidades técnicas disponíveis e o tempo disponível para a realização do trabalho. Em muitos trabalhos^(43, 46) neste laboratório usou-se Araldite como ligação. Para os modos longitudinais costuma-se⁽⁴⁵⁾ usar a graxa 'Nonaq' da Fischer Scientific Co. No nosso caso, para unificar as correções nos diferentes modos e para o reaproveitamento dos transdutores, optamos pelo uso da cola Estabilit Express como acoplamento elástico.

Como o acoplamento tem sempre uma certa espessura, a onda gasta algum tempo para percorrê-lo. Assim, ao se calcular o tempo de percurso (1/f) da onda na amostra estamos incluindo, aí, o tempo de percurso no acoplamento. Se tivermos medido os tempos de percurso ($T_1 e T_2$) do mesmo modo de propagação em duas amostras com comprimentos distintos ($L_1 e L_2$), o gráfico de (T contra L) será uma reta. O valor da ordenada no ponto onde essa reta corta o eixo do tempo será o tempo de percurso da onda na ligação (T_0). Calculamos esse tempo para os modos transversais e long<u>i</u> tudinais, para valores de temperatura entre 300K e 77.3K. Para o modo lo<u>n</u> gitudinal esse tempo é de 0.03 μs e independente da temperatura.

Para os modos transversais o tempo de percurso na liga – ção aumenta com a temperatura, sendo $0.050 \mu s$ a 77.3K e $0.074 \mu s$ a 300K (Graf(III.1).

Graf(III.1) - Correção devido ao tempo de percurso da onda na ligação, para os modos transversais, de 300K a 77.3K.

A curva acima foi usada para a devida correção nas constantes elásticas em cada ponto de medida.

Para a correção devida à dilatação térmica da amostra , usamos os dados publicados por White⁽¹²⁾ e por Erfling⁽¹¹⁾ para a dilatação térmica do Nb. Traçamos a curva correspondente aos pontos graficados e, a pa<u>r</u> tir dessa curva, calculamos os fatores (divisores) de correção para intervalos de temperatura de cinco em cinco graus. Esses fatores vão desde a unidade a 300K, até 1.00136 a 77.3K. Essa correção foi aplicada tanto as amostras puras como às amostras hidrogenadas. De fato, a adição de Nidrogênio ao Nióbio tem infl<u>u</u> ência bem pequena em seu coeficiente de expanção térmica⁽³³⁾.

Outra suposição implícita nesse tratamento de correção térmica é que a expansão é isotrópica em todas as temperaturas, isto é, o com portamento dos coeficientes de expansão térmica com a temperatura é o mesmo para todas as direções cristalinas. Isto não é necessáriamente verdade, pelo menos para o Vanádio⁽⁵⁰⁾. De qualquer maneira uma diferença, se houver, não será o suficiente para invalidar o tratamento.

III.5 - Erros de Medidas

A densidade das amostras foi medida pesando-as no ar e na água destilada, suspensas por um fio fino de cobre em cuja extremidade foi fei ta uma espécie de cesto onde era colocada a amostra. Feitas as devidas corre ções no peso do fio e no empuxo da água sobre ele, devido a sua parte submersa, podemos determinar a densidade da amostra pela expressão:

$$P = (P_A - P_{Ar}) \frac{P}{P - P_A} \quad ou \quad P = (P_A - P_{Ar}) \frac{m}{m - m_A} (III.14)$$

onde P é o peso e m é a massa; os índices 'A' e 'Ar' referrem-se, respectivamente, a medidas feitas na água e no ar; m_A é a massa aparente da amostra, isto é, massa da amostra menos a massa de água deslocada por ela.

As medidas foram feitas a 25° C numa balança analítica Mettler H 20T de 5 dígitos, do Grupo de Física Aplicada da UNICAMP. Nessa temperatura $P_A = 0.99704$ g/cm³ e $P_{Ar} = 0.00118$ g/cm³. Foram medidas as densidades de duas amostras puras, trata das a vácuo. Obtiveram-se os valores $P_I = 8.5870$ g/cm³ e $P_2 = 8.5893$ g/cm³, cuja média: ρ = 8.588 g/cm³ foi usada para o cálculo das constantes da amostra pura e que pode ser comparada com os valores dados por outros pes quisadores na Tab(IIJ.1). Com a adição de Hidrogênio a densidade diminue, o que pode ser vísto, também, na tabela.

TRABALHO	P(8/cm3)	% at. H
Carroll (10)	8.560	.0
Fischer e outros (21)	8.579	.0
11	8.572	1.06
11	8.514	3.06
Este Trabalho	8.588	. 0
11	8.575	1.4
11	8.547	4.3
11	8.535	5.1
//	8.457	9.2

Tab(III.1) - Densidade do Nióbio segundo diversos trabalhos: K. J. Carrol⁽¹⁰⁾, Fischer e outros⁽²¹⁾ e Este Trabalho.

As medidas de comprimento foram feitas no Centro de Tecnologia da UNICAMP com um Comparador Vertical (Mod. ABBE - Carl Zeiss). O desvio relativo calculado das medidas foi de 0.02%.

A partir das eq(III.5, III.6, III.7) podemos estimar um erro para as medidas das constantes elásticas, a partir das precisões dos instrumentos usados. Assim, supondo uma constante C qualquer:

$$C = \rho \mathcal{N}^{2} \qquad (\text{III}.15)$$

então:

$$\frac{\Delta C}{C} = \frac{\Delta m}{m} + \frac{2 \Delta m}{m - m_A} + \frac{2 \Delta f}{f} \qquad (III.16)$$

Com uma incerteza de 10 Hz na frequência, para uma

frequência média de 200 KHz, e $\Delta m = 5.10^{-5}$, teremos um erro percentual para a constante de:

$$SC = 0.1\%$$
 (III.17)

Devemos considerar, ainda, duas outras possíveis fontes de erros, devi das ao método de medida. Consideremos, a 300K, uma incerteza de 5% (o que é razoável) no tempo de correção pela ligação acústica. Isso induz uma incer teza de 0.13% no valor da constante. Portanto, a 300K, temos um erro possí vel de 0.23%.

Outra fonte possível de erro está relacionada a uma imprecisão nas constantes de dilatação térmica. Supondo, aqui, uma imprecisão de 10%, isso se propagará nas constantes elásticas como um desvio de 0.01% a 200K e 0.02% a 77.3K. Portanto o erro percentual para as constantes elásticas a 77.3K será:

$$SC = 0.25\%$$
 (III.18)

Este será o desvio que consideraremos para todas as medidas, em todo o intervalo de temperatura. Esse desvio está associado às constantes que podemos d<u>e</u> terminar com uma única medida de velocidade, isto é, C' e C₄₄. Para as constantes C_{11} e C_{12} teremos valores maiores para o desvio. Para C_{11} o desvio será de 0.3% e para C_{12} será 0.6%.

É de se notar que o desvio numa curva será o valor dado na eq(III.18), menos o valor dado na eq(III.17). Isto é, se o valor medido de uma constante elástica em 300K for o valor correto, a 77.3K seu valor estará afetado de um desvio possível de 0.15%. Este é o desvio que supomos para calcular a relaxação da resistência.

Sensibilidade das Medidas

Queremos determinar qual a menor variação Δ C / C que poderia ser m<u>e</u> dida com o nosso <u>método de medida</u>. O sistema permite-nos uma sensibilidade de 2.10⁻⁶ na medida da velocidade. Estamos, porém, limitados por possíveis eros nas declividades das curvas de correção pelo tempo do pulso na ligação e Correção pela dilatação térmica. Em 150K um erro de 10% na declividade da curva de correção pelo tempo de percurso do pulso na ligação leva a uma flutuação de 2.10⁻⁵ em Δ C / C , para um Δ T de 1K.

Nesta mesma temperatura, um mesmo erro de 10% na declividade da cur va de correção pela dilatação térmica leva a uma flutuação de 6.10^{-7} em Δ C / C, para um ΔT de 1K.

Portanto, a menor variação nas contantes que podemos detectar sem amb<u>i</u> guidade, para uma variação de 1 K na temperatura, é de 2.10^{-5} /1K ou 0.002% /1K.

IV. - RESULTADOS E DISCUSSÕES

IV.1 - Constantes Elásticas do Nióbio Puro

Damos, a seguir, os principais resultados que obtivemos de nossas medidas, e suas concordâncias e discordâncias relativas à outros trabalhos correlatos existentes na literatura.

Optamos por apresentar apenas os dados mais relevantes à interpretação da anelasticidade devida ao Nidrogênio dissolvido na matriz ccc do Nb, procurando evitar dados em demasia que, longe de contribuir para o esclarecimento do assunto, viria apenas a ofuscar os resultados mais cons<u>e</u> quentes, dificultando sobremaneira sua interpretação.

Não obstante, queremos comparar nossos dados relativos ao Nióbio puro com outros resultados já publicados, pois nossas amostras foram obtidas inteiramente na UNICAMP e nunca antes haviam sido feitas medi das semelhantes com esse material. Como termo de comparação escolhemos o trabalho publicado por Keith J. Carroll⁽¹⁰⁾ para o Nióbio puro pois é uma referência bastante completa, cobrindo todo o intervalo de temperatura em que fizemos possas medidas.

Os Graf(IV.1, IV.2 e IV.3) apresentam os valores r<u>e</u> lativos ao Nióbio puro entre 300K e 77.3K. Foram graficados, para compar<u>a</u> ção, os valores dados por Carroll, cujas medidas foram feitas em interv<u>a</u> los de 20K. Nossas medidas são apresentadas em intervalos de 10K nas regiões onde as constantes (velocidades) variam suavemente e em intervalos de 5K nas regiões onde há uma variação mais considerável (isto se aplica, bas<u>i</u> camente, para os gráficos referentes às amostras hidrogenadas).

Para uma análise dos valores absolutos das medidas devemos consíderar que Carroll estima um erro provável em suas medidas de 0.6% para C₄₄ e C₁₁, e de 3.3% para C₁₂. Por outro lado, no capítulo (ITI.5), quando calculamos os desvios de nossas medidas, estávamos in teressados em obter valores que nos dessem o grau de confiabilidade na comparações e relações que temos de fazer entre as medidas, isto é, a coerência interna de nossas medidas. Assim, os erros totais prováveis^(*) de nossos valores devem ser maiores que os desvios ali calculados.

A dependência das constantes com a temperatura que obt<u>i</u> vemos e a de Carroll são bastante semelhantes para C_{44} e para C_{11} . As pequenas diferenças que se podemobservar devem ser imputadas às correções devidas ao tempo de percurso da onda na ligação. Enquanto obtivemos uma curva (Graf(II1.1)) para esta correção, para os modos transversais, Carroll usou um mesmo valor para todas as temperaturas. Outra possível causa dessa difaren ça pode ser, em menor grau, o tratamento dado às correções devidas à dilatação térmica: em ambos os trabalhos foram usadas as mesmas referências^(11,12) para os valores das constantes de dilatação do Nióbio. O tratamento que demos, porém, para essa correção, foi o de 'integrar' a curva do coeficiente de dil<u>a</u> tação contra temperatura de 5K em 5K para obter a correção em cada temper<u>a</u> tura. Carroll não evidencia o processo que usou para essa correção.

Para os valores absolutos, os dados concordam dentro de 1% para C_{44} e dentro de 2% para C_{11} , a 300K. Quanto à constante C_{12} , embora os valores absolutos sejam concordantes, há uma discrepância bastante acentuada no comportamento com a temperatura, que não pode ser associada a qualquer correção símples aplicada às medidas.

Esse mesmo tipo de discrepância é encontrado comumente em outros metais de transição. Somos levados a crer que ela se deve, na realidade, aos métodos de medidas: Carroll usa dois cristais orientados diferen temente (ou um cristal com duas orientações, o que é equivalente) para obter as constantes; isso leva a um erro duplo de orientação (e também na medida de comprimento, o que não é relevante, no caso), afetando o cálculo de C_{12} de maneira mais difícil de predizer.

 (*) No cálculo dos desvios no capítulo (111) não consideramos os erros siste máticos que poderíamos cometer em cada etapa de medida (p. ex.: medidas de densidade foram feitas a 25°C e as de comprimento a 20°C; ambas as medi das foram associadas (para o cálculo das constantes) a 300K.

Graf(IV,1) - Constante C₄₄ do Nióbio Puro. 300K a 77.3K. Este Trabalho e Carroll⁽¹⁰⁾.

Graf(LV.2) - Constante C₁₂ do Nióbio Puro. 300K a 77.3K. Este Trabalho e Carroll⁽¹⁰⁾.

Graf(IV.3) - Constante C₁₁ do Nióbio Puro. 300K a 77.3K. Este Trabalho e Carroll⁽¹⁰⁾.

Podemos obter uma indicação segura da origem dessa di<u>s</u> crepância em C₁₂ escrevendo a expressão usada por Carroll para obter essa constante:

$$c_{12} = 2 \rho v_{L}^{2} - (c_{11} + c_{44})$$

onde v_{L} é a velocidade medida para uma onda longitudinal propagando-se na direção $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$, e C_{11} e C_{44} são medidos na outra orientação: $\begin{bmatrix} 1 & 0 \end{bmatrix}$. Como as dependências com a temperatura das constantes C_{11} e C_{44} são concordantes em ambos os trabalhos, uma discrepância nessa dependência somente pode estar relacionada com o comportamento de v_{L} com a temperatura. Diversos trabalhos dão uma dependência suave de $C_{L} = \int^{0} v_{L}^{2}$ com a temperatura. Isso acontece, por exemplo, com o Vanádio^(50, 51) e com o Tântalo⁽¹⁶⁾.

Outra possível causa dessa discrepância poderia estar relacionada com a existência de gases dissolvidos na amostra. Quando carregamos a amostra com Hidrogênio obtivemos uma curva para C₁₂ com uma irregularidade semelhante à obtida por Carroll, se bem que com uma magnetude cerca de um quinto daquela.

IV.2 - Influência do Hidrogênio nas Contantes Elásticas do Nióbio

Nos Graf(IV.4 e IV.5) apresentamos os valores de C₄₄ e C', em função da temperatura, para as amostras jã hidrogenadas, onde é repetida a curva referente ã amostra pura.

No Graf(IV.4) pode-se notar que a influência da dissolução de \mathbb{R} no Nb é de aumentar a constante C_{44} . Esse aumento é propor cionalmente maior quando o \mathbb{R} está em solução sólida (fase \mathcal{A}) que quando está precipitado como hidreto (fase \mathcal{B}). Essa influência é aproximada mente, 1.7 vezes maior na fase \mathcal{A} que na fase \mathcal{B} . Este é um dos pontos básicos para nossa análise posterior. Devemos lembrar, desde já, que C_{44} é una constante que não deve, segundo a teoria, apresentar relaxação sob um cam po de tensão (eq(I.45)); em nossa análise associamos esse aumento de C_{44} com alterações básicas no esquema de forças interatômicas na matriz do eris tal puro. Resultado idêntico foi obtído por fischer e outros ⁽²¹⁾ para o Nidrogênio dissolvido no Vanádio. Para o Nióbio hidrogenado eles fizeram medi das apenas a 300K, que relacionamos no Graf(IV.7).

Interessante, também, é a dependência de C' com a temperatura, como se vê no Graf(IV.5). Esse mesmo comportamento foi obtido - por Fischer e outros para o Vanádio, e por Stewart e outros ⁽²¹⁾ para o Tânt<u>a</u> lo. Os valores encontrados por este último trabalho são dados no Graf(IV.6) - para comparação. Como se pode ver, comparando os gráficos respectivos, a influência do Hidrogênio nas constantes C_{44} e C' é idêntica a baixas temperaturas, diferindo substancialmente para temperaturas próximas à temperatura ambiente. Isto pode ser explicado pois C', à temperatura ambiente , é uma constante que apresenta relaxação sob um campo de tensão e, pela eq(I.47), essa relaxação é no sentido de diminuir C', isto é, a constante relaxada (C'_r) deve ser menor que a constante não relaxada (C'_r) que , por sua vez, é afetada de mancira desconhecida nessa temperatura.

Então, o que explica o aumento de C' para baixas temperaturas, isto é, porque a baixas temperaturas C' se comporta da mesma maneira que C_{44} ? Isto ocorre porque, para temperaturas baixas (< 150K), se gundo dados de difusão⁽³⁰⁾ de II em Nb, o valor do tempo de relaxação é tal que:

W2>71

para as frequências em que trabalhamos (ver eq(1.10)).

Assim, para baixas temperaturas, estamos medindo, na realidade, a constante não relaxada (C_{nr}^{\dagger}).

Concluimos, então, que ambas as constantes não relaxadas ($C_{44} = C'_{nr}$) são afetadas no sentido de aumentar com a concentração de Hidrogênio^(*). O único problema é que não podemos medir C'_{nr} a temperat<u>u</u>

(*) Embora esse aumento seja proporcionalmente menor para C'.

ras próximas a 300K. Se não podemos medir $C_{\rm nr}^{\dagger}$ (a temperatura ambiente) , então não podemos fazer uso^(*) da eq(I.41) para obtermos o tensor de deformação associado ao defeito que estamos considerando. Isto significa que os trabalhos que busquem observar um processo anelástico devido à inclusão de Hidr<u>o</u> gênio numa matriz de metal de transição deve levar este fato em consideração. No capítulo seguinte daremos uma interpretação dos resultados onde é dada a devida importância a esses fatos.

NO Graf(IV.7) apresentamos a variação relativa da con<u>s</u> tante C₄₄ a 300K devida à adição de Hidrogênio no Nióbio. Hã uma concordância razoável com os valores obtidos por Fischer e outros: 1.7% por 1% at. de H, contra 1.2% por 1% at. de H obtido por nós.

Finalmente damos, nas Tab(IV.1 e IV.2), diversos pavâmetros calculados a partir dos nossos resultados e os publicados por outros pesquisadores. Nestas tabelas, como bastante importante, deve ser notada a variação do módulo de Bulk (B) com a hidrogenação. A variação relativa que obtívemos para o módulo de Bulk com a hidrogenação foi de:

$$\Delta B / B = -0.4 \ 10^{-2} / 1\%$$
 at H
 $\Delta B / B = -0.08 \ 10^{-2} / 1\%$ at H

cotra:

obtido por Fischer e outros. Devemos lembrar que o módulo de Bulk, ou o inve<u>r</u> so da compressibilidade hidrostática, é também um módulo que não deve, segundo a teoria, apresentar relaxação sob um campo de tensão (ver eq(I.47)).

Na interpretação de seus resultados Fischer e outros pretendem imputar a variação obtida no módulo de Bulk a possíveis erros de m<u>e</u> didas, o que pode assim sem interpretado, no seu trabalho^(**), mas não parece ser o caso. De fato, a teoria desenvolvida no capítulo I prediz uma não vari<u>a</u> ção de B; oo entanto essa variação de B deve ser entendida como a diferença entre o 'modulo de Bulk relaxado (B_r)['] e o 'módulo não relaxado (B_{nr})[']. Os

56

^(*) Ver nota referente à eq(I.41).

^(**) Como sua percentagem máxima de hidrogenação foi de 3%, a variação a ser medida estaria ainda um pouco próxima do limite de erro.

 C_{44} do Nióbio Hidrogenado em Diversas Concentrações Graf(IV.4) = Constante Atômicas. 300K a 77.3K. Este Trabalho.

C' do Nióbio Hidrogenado em Diversas Concentrações Graf(1V.5) = Constante Atômicas. 300K a 77.3K . Este Trabalho.

Graf(IV.7) - Variação Relativa da Constante C₄₄ do Nióbio, com Referência à Constante do Metal Puro, Devida à Adição de Hidrogênio. 300K. Este Trabalho e Fischer e Outros⁽²¹⁾.

TRABALHO	<u>D544/</u> 544/Co	<u>DY100</u> Y100/Co	<u>Δ¥110</u> Y110/Co	<u>ΔΥ</u> Υ/ C.	$\frac{\Delta B}{B}/C_{o}$
Este Trabalho Med. Const. Elast.	-1.2	0. 2	0, J	1.1	- 0.4
Fischer e outros(21) Medid. Consl. Elást.	-/.7	- 0.49			- 0.08
Buck e outros (22) Péndulo Torsão			1.5	·	

Tab(JV.1) - Variação Relativa de Diversos Parâmetros em Função da Adição de Hidrogênio, Dada em Concentração Molar (C₀): S₄₄ (Módulo de Compl<u>a</u> cência), Y (Módulo de Young), e B (Módulo de Bulk). Segundo Diver sos Trabalhos.

T(°K)	% at. de H	C_{44}	Cia	С,,	C'	Y100	Y110	Y,,,	В {z (С,,+2Сц)	A C44/C'
300	0.0	2.967	13.24	25.13	5.947	16.00	9.55	8.42	17.21	.499
	1.4	2.970	13.10	24.94	5.918	15.91	9.55	8.42	17.05	• 502
	4.3	3.128	13.09	24.94	5.922	15.92	9.95	8.84	17.04	.528
	5.1	3.135	12.89	24.65	5.883	15.80	9.95	8.85	16.81	.533
	9.2	3.237								
100	0.0	3.067	13.34	25.60	6.127	16.45	9.85	8.69	17.43	.501
	1.4	3.029	13.15	25.46	6.155	16.50	9.75	8.58	17.25	.492
	4.3	3.133	13.17	25.53	6.182	16.57	10.03	8.86	17.29	.507
	5.1	3.170	12.93	25.26	6.168	16.51	10.11	8.95	17.04	.514
	9.2	3.274								

Tab(IV.2) - Comportamento de Diversos Parâmetos com a Adição de Hidrogênio em Diversas Concentrações Atômicas: C (Módulos de Rigidez), Y (Módulos de Young), B (Módulos de Bulk) e A (Fator de Aniso tropia). 300K . Este Trabalho.

valores que Fischer e nos obtivemos significam, por outro lado, a variação r<u>e</u> lativa do módulo de Bulk relaxado com referência ao módulo de Bulk do cristal puro (B_p) . E sobre essa variação nada é predíto na teoría de anelasticidade.

De qualquer maneira, a variação que obtivemos para B está fora do limite de erro calculado para nossas medidas e o tomamos como uma real variação de B_r em relação a B_r.

IV.3 - Diagrama de Fase

Como C₄₄ é uma constante que não apresenta relaxação, a mudança no seu comportamento com a temperatura está associado ⁽²²⁾ apenas com às precipitações de hidretos que ocorrem ao se abaixar a temperatura. Assim, tomando o ponto onde a curva começa a ter uma mudança de comportamento e m relação à curva do cristal puro, este será um ponto da linha "solvus" no diagrama de fase do sistema Nb-H . Estes pontos estão representados no Graf(IV.8), onde colocamos as linhas 'solvus' obtidas por diferentes autores , com o uso de diferentes métodos. O acordo entre os resultados é extremamente bom.

Como método de medida da quantidade de Hidrogênio dissolvido no Nióbio, a variação de C_{44} com a temperatura é um dos mais precisos, pela razão de esta ser uma constante sem relaxação. Isto nos permite asso ciar diretamente uma mudança no comportamento de curva com a precipitação da fase β . Por outro lado, o intervalo de medida pode ser bastante reduzido . Nossas medidas foram feitas em entervalos de 5K; poderiam ter sido feitas em intervalos de até 0.5K, por exemplo. Aliãs, se o intuito é apenas o de medir a quantidade da H dissolvido, nem necessitamos medir a constante, bastando procurar diretamente na tela do osciloscópio a temperatura em que a velocidade começa a diminuir.

Graf(IV.8) - Linha 'solvus' do Diagrama de fase do Sístema NB-H , segundo Diversos Trabalhos.

V. - CONCLUSÕES

V.I - Interpretação do Resultados

Muitas imprecisões podem ser cometidas ao se tentar transpor uma análise dos dados de relaxação com as soluções sólidas de gases pesados, para resultados obtidos quando o gás dissolvido é o Hidrogênio. A mobilidade do Hidrogênio na matriz dos metais é da ordem de 10¹⁵ vezes maior que a dos gases pesados, sendo essa a causa fundamental que pode levar a interpretações equivocadas.

O que não podemos esquecer ao estudar a anelasticidade devida à presença de defeitos nym cristal é que este não é o único fenômeno que pode causar uma variação nos módulos cristalinos. Em outras palavras, que remos dizer que os defeitos, por si próprios, somente pela sua presença no cristal, acrescentando ou subtraindo^(*) ligações entre os átomos da rede⁽⁴⁹⁾, podem ser responsaveis por uma alteração nos módulos cristalinos, mesmo na ausência de um processo de relaxação. Visto sob esse prisma, a alteração em C_{44} com a presença de Hidrogênio é facilmente entendida como uma manifestação devida somente à existência dos defeitos; o fato de C_{44} ter aumentado está relacionado a que o intersticial aumenta o número de ligações atômicas na rede, daí o 'endurecimento' da constante^(**).

Poderíamos agora perguntar: Qual seria o efeito direto (sem relaxação) do Hidrogênio na matriz do Nióbio? Isto é, quais seriamos módulos^(***) não relaxados (M_{nr}) do cristal? Certamente que esse efeito não é representado pelas curvas dadas no Graf(IV.5) na região próxima a temperatura ambiente. Isto porque, pelo menos próximo à temperatura ambiente, o

(*) Se os defeitos considerados forem vacâncias, p. ex.

(**) A mudança de C_{44} não está relacionada com as redistribuições dos defeitos sob um campo de tensão.

(***) Referimo-nos, basicamente à constante C'.

módulo que estamos medindo é, sempre, o módulo relaxado (M_r) do cristal pois, nessa temperatura, temos $\omega \tau << 1$.

Como poderíamos, então, coghecer o módulo não relaxado do sistema Nb-H na temperatura ambiente ? Simplesmente não podemos: nessa temperatura, segundo dados de difusão razoavelmente concordantes, donde calcu lamos o tempo \mathcal{T} de relaxação para o Hídrogênio no Nióbio, teríamos que tr<u>a</u> balhar numa frequência \mathcal{W} da ordem de 10^{13} rad/seg (f \cong 10^{12} Hz) para medirmos M_{nr} . Como não podemos usar tais frequências para nossas medidas, então não podemos medir os módulos não relaxados para o sistema Nb-H. Assim, todos os trabalhos que têm estudado (16, 22, 23,

26, 55, 56) os processos de relaxação nos metais de transição devidos à presen ça de Midrogênio intersticial, consideram a diferença de módulos (ou a relaxa ção da resistência) como a diferença medida entre o módulo não relaxado (M_r) e o módulo do cristal puro (M_p). Porém, segundo a teoria, o correto seria <u>o</u> bter a diferença entre o módulo relaxado (M_r) e o módulo não relaxado do cristal (M_{nr}).

Isso é até compreensível pois, no tratamento dado por Nowick⁽¹⁷⁾ (que é uma referência básica em todos os trabalhos sobre relaxação devida aos defeitos puntuais em redes cúbicas) não fica <u>expressamente</u> eviden ciado,nos resultados finais^(*), a distinção entre o módulo não relaxado e o m<u>ó</u> dulo do cristal puro.

Basicamente por isso, introduzimos no capítulo (1.2) o tratamento geral para um sólido anelástico linear padrão. Aí, procuramos evidenciar as distinções entre o módulo medido (M_m), o módulo relaxado, o móduto não relaxado e o módulo do cristal puro. Suponhamos que o tempo de relaxa ção, na temperatura T, seja \mathcal{T}_T (se o processo tiver um único tempo de relaxação). Assim, se a medida $M_m(w,T)$ é feita a uma temperatura T₁ e a uma frequência w_1 tal que:

(*) No nosso tratamento, no capitulo(I), as eq(I.40, 41, 43, 44, 45, 51 e 52)
$$W_1 \ T_{T_1} >> 1$$

então:

$$M_{m}(\omega_{1}, \tau_{r_{i}}) = M_{nr}$$

Isto é, estaremos medindo o módulo não relaxado (do cristal <u>com</u> os defeitos). Diferentemente, se a medida é feita a uma temperatura

(${\rm T}_2$) e a uma frequência (${\rm w}_2$) tal que:

 $\omega_2 \ \tau_{\tau_2} << 1$

então:

$$M_m(\omega_2, \tau_{T_2}) = M_r$$

Isto ē, estaremos medindo o modulo relaxado (do cristal com os defeitos).

Devemos notar, ainda, que o tempo de relaxação depende exponencialmente da temperatura:

$$\mathcal{T}_{T} = \mathcal{T}_{o} \exp\left(-\frac{H}{kT}\right)$$

onde H é a entalpia de ativação para os defeitos, e k é a costante de Boltzmann.

Analizemos, agora, o caso partícular do sistema Nióbio-Hidrogênio. Com os dados do coeficiente de difusão do Hidrogênio no Nióbio, p<u>u</u> blicados por Wert⁽³⁰⁾, podemos calcular, aproximadamente, os tempos de relaxação, a diversas temperaturas, através da expressão:

$$\mathcal{T} = \frac{a^2}{72D}$$

onde \mathcal{A} é o parametro de rede do Nb, D é o coeficiente de difusão do \mathbb{H} no Nb e 72 é um número referente à ocupação tetraedral. Temos, assim, a seguinte tabela para o tempo de relaxação:

D (cm² seg)	T (K)	2 (seg)	(WZ)
7.5 10 ⁻⁶	300	2 10 ⁻¹²	5. 10 ⁻⁴
4. 10 ⁻⁶	250	4 10 ⁻¹²	1. 10^{-3}
1. 10 ⁻⁷	200	1 10 ⁻¹⁰	$2.5 \ 10^{-2}$
1. 10 ⁻⁸	165	1 10 ⁻⁹	$2.5 \ 10^{-1}$
5. 10 ⁻⁹	150	3 10 ⁻⁹	7.5 10^{-1}
$2. 10^{-10}$	125	1 10 ⁻⁷	$2.5 \ 10^{1}$
5. 10^{-12}	100	5 10 ⁻⁶	$1.3 \ 10^2$

66

Como nossas medidas são feitas a frequências (w) da ordem de 10⁸ rad/seg, deveríamos ter, para essa frequência, um pico de fricção interna a temperaturas entre 1209 K e 1509 k.

Portanto,podemos esquematizar o significado das nossas medidas da seguinte maneira;

::= Acima de 150 9 K estamos medíndo o módulo relaxado do sistema Nióbio – Nidrogênio, (M_m=M_r).

::- Abaixo de 1209 K estamos medindo o módulo não relaxado. $(M_m=M_nr)$.

::- No intervalo de temperatura 120K - 150K o módulo medido depende fortemente da temperatura, variando entre M e M .nr

Reescrevamos, novamente, a eq(1.52) :

$$-\Delta C' = \frac{C'_r - C'_{nr}}{C'_{nr}} = \frac{\sqrt{2}}{3} C_o \sqrt{b} C'_{nr} \frac{(\lambda_i - \lambda_2)^2}{k T}$$

Vemos claramente que, para obtermos o fator de forma $(\lambda_1 - \lambda_2)$ necessitamos do valor de C'_{nr}. Não podemos assumir que C'_{nr}=C'_p, como tem sido feito até agora. De fato, tal suposição é equivalente a supor que o Hidrogênio não cau sa deformação na rede do Nióbio. Expliquemos melhor esse ponto: Se o módulo não relaxado do <u>cristal com os defeitos</u>, isto é, o módulo do cristal "com os defeitos distribuídos uniformemente pelas três orientações dipolares" (C'_{nr}), for igual ao módulo do <u>cristal puro</u> (C'_p), então não há motivo para que o <u>cristal com os defeitos "reorientados" pela tensão aplicada</u> tenha um módulo (C'_r) diferente do módulo do cristal puro. Talvez, melhor ainda; se a presen-. ça dos defeitos no cristal não altera os seus módulos, porque sua (dos defeitos) reorientação o faria?

Ora, que a presença do Hidrogênio na matriz do Nióbio altera os módulos do cristal está bem estabelecido em pelo menos cínco trabalhos diferentes: este trabalho e as referências (16, 21, 23 e 55). Que as deformações causadas na rede do Nióbio pelo H intersticial é relevante , pode ser constatado pela comparação do traço do seu tensor de deformação (Eq(I.19)) com os traços dos tensores correspondentes à dissolução de Carbo no e Nitrogênio na matriz do Ferro, dados por Nowíck;

SISTEMA	$\lambda_1 + 2\lambda_2$		
Fe-C	0. 9		
Fe - N	0.8		
<i>№</i> ₆ – Н	0.204		

Tab(V.2) - Traços dos tensores de deformação.

Para calcular C'_{nr} (já que não conseguimos medi-lo) para o sistema Nióbio-Hidrogênio faremos, então, uma suposição básica, cujas evidências passamos a enumerar:

-1) C' e C₄₄ são, ambas, constantes de cizalhamento(para as direções $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ e $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, respectivamente);

-2)Todos os trabalhos citados mostram que a constante relaxada C'_r e C₄₄ têm o mesmo comportamento com a temperatura que a respectiva constante pura (C'_p e C_{44p}), quando o Hidrogênio está numa fase definida (c ou *B*). Is to pode ser visto nos gráf(IV.4,5 e 6). O trabalho de Magerl⁽⁵⁵⁾ evidencia isto mais claramente ainda, para temperaturas entre 300 K e 600 K.
-3) O trabalho de Fischer⁽²¹⁾ mostra que, para o Oxigênio dissolvido no Nióbio e no Vanádio o efeito da dissolução do Oxigênio é o mesmo (em sinal) nas

constantes C₄₄ e C'. Ambos aumentam com a adição de Oxigênio, sendo o efeito em C' da ordem de 1/4 (para Nb) e 1/2 (para V) do efeito observado em C₄₄. E aqui a constante C' medida é a constante não relaxada (C'_{nr}). Portanto o

efeito do intersticial na constante de cizalhamento não relaxada (C_{nr}^{r}) é o mesmo que na constante de cizalhamento C_{44}^{r} . Somente que o efeito em C_{nr}^{r} é relativamente menor que em C_{44}^{r} .

— 4)Abaixo de 120 K, como vímos, os módulos que estamos medindo para o sistema Nióbio-Hidrogênio, são os módulos não relaxados. Podemos ver nosgráf(IV.5e6) que o efeito do Hidrogênio na constante não relaxada C'_{ur}) (isto é, abaixo de 120 K) é o mesmo que em C₄₄. Novamente o efeito em C' é relativamente menor que em C₄₄. Considerando estes pontos, a suposição que fazemos

 \tilde{c} a de que o efeito direto do Hidrogênie na constante não relaxada C'_{nr} , à temperatura ambiente (portanto na fase \propto), é de aumentar C'(em relação a C'_p) de maneira idêntica ao aumento em C_{44} na fase \propto e na fase \not{P} . Mais explícitamente, a razão entre o aumento relativo de C_{44} na fase \propto , e seu aumento relativo na fase \not{P} é aproximadamente 1.7. Assim, o aumen to relativo de C'_{nr} em relação a C'_p na fase \propto , deve ser 1.7 v<u>e</u> zes o aumento relativo de C'_{nr} em relação a C'_p na fase \not{P} .

Com esta argumentação recalculamos qual deve ser o valor de C'_{nr} a 300K para cada uma das concentrações, através dos va lores correspondentes a 100K, supondo o fator multiplicativo igual a $1.7^{(*)}$.

Agora, com os valores de C_{nr}^{i} , calculamos a relaxa ção da resistência ($\frac{C_{r}^{i} - C_{nr}^{i}}{C_{nr}^{i}}$) a 300K para cada concentração. Estes va lores estão no Graf(V.1).

Calculamos, então, através da eq(I.52), o valor do fator de forma correspondente ao tensor de deformação que representa o comportamento do H no Nb. Estes resultados estão na Tab(V.3).

Estes valores obtídos para as componentes do tensor de deformação são bastante significativos pois :

$$\lambda_1/\lambda_2 = 2$$

é exatamente a razão que podemos calcular teoricamente supondo um modelo de esferas rígidas, para uma ocupação tetraedral, e considerando as distorções apenas nos vizinhos mais próximos. Nesse modelo simplificado a deformação no eixo tetragonal é exatamente o dobro da deformação nos outros eixos perpendiculares. Assim somos levados à conclusão de que o H ocupa posições t<u>e</u> traedrais na rede - ccc - do Nb. De fato esta posição parece ser a mais indicada para a ocupação poís, na rede - ccc, é a mais 'espaçosa' para o inters-

(*) Uma diferença deste valor entre 1.0 e 2.0 não altera fundamental — mente o resultado final no cálculo de λ_1 e λ_2 .

Craf(V.1) - Relaxação da Resistência em Função da Concentração Átômica de Hidrogênio no Nióbio, a 300 K.

Δ c'/c。	$\lambda_i - \lambda_a$	$\lambda, +2\lambda_2$	λ,	λ_{2}
0.4	0.048	0.204	0. 100	0.05L

Tab(V.3) - Relaxação da resistência e as componentes do tensor de deformação para o Hidrogênio no Nióbio, a 300 K.

ticial (ver capítulo(I.1). Essa ocupação tetraedral foi encontrada também por Somenkov e outros⁽⁴⁴⁾ com o método de espalhamento de Neutrons.

Concluimos, portanto, que o efeito Snock no sistema Nb-H \overline{e} considerável em vista dos valores obtidos para as componentes do tensor λ .

V. 2 - COMENTÁRIOS

1) A suposição que fazemos para o cálculo da constan te C' não relaxada a 300K parece-nos bastante plausível; é melhor de todo modo, que a suposição de que C' $_{nr} = C'_{p}$. Poderia ser arguido que C' $_{nr}$ (a 300K) fosse muito maior que C' $_{p}$, e poderíamos concluir por uma ocupação octaedral. Poderia, Mas não conhecemos nenhuma evidência de que seja assim. Todas as evidências que expusemos levam à nossa suposição.

2) Nossos resultados são bastantes semelhantes aos obtidos por Fischer e outros ⁽²¹⁾ com Nb e V, por Stewart e outros ⁽¹⁶⁾ com Ta, e corroborados, para temperaturas acima de 300K, pelo trabalho de Magerl e outros ⁽⁵⁵⁾ com Nb e V. No entanto evitamos uma comparação direta entre os resultados, principalmente os valores da relaxação da resistência da constante C' ($\Delta_{C'}$), por se tratar de quantidades com diferentes significados, devido à diferença de tratamento.

No que se refere a 'variação' de C' com a concentração de Hidrogênio, a 300K, os dados, de Fischer e os nossos, tomados no mesmo grãlico, indicam um resultado mais próximo ao nosso. Isso pode ser visto no grãfico seguinte:

Graf(V.2)- 'Variação relativa de C' com a concentração de H, a 300K.

3) Pela eq(1.52) vemos que a relaxão da resistência é proporcional a T^{-1} .

Magerl e outros⁽⁵⁵⁾, segundo Alberts e outros⁽⁵⁶⁾, "falham em obter essa d<u>e</u> pendência de $A_{C'}$ com a temperatura". Na realidade essa "falha" é menos séria do que possa parecer, desde que a comparação naquele trabalho, é feita entre C'_r e C'_p .

V.3- PROPOSTAS PARA NOVOS TRABALHOS

Um dos resultados mais significativos deste trabalho é o de evidenciar uma direção possível de pesquisa nesse campo que torne os resultados não ambíguos. Há quatro variáveis principais que devem ser conside radas: o intervalo de frequência em que podemos usar o ultra-som (10-100Miz), a concentração de H, a temperatura e a possível formação de outras fases.

No caso particular do sistema Nb-II teríamos um pico de frieção interna, nas frequências acessívels, apenas no intervalo 130K - 200K. Por outro lado, pora evitar a formação de hidretos, deveríamos usar concentrações pequenas (menores que 0.5% at.) de hidrogênio. Aí, poderíamos medir tanto a atenuação das ondas (fricção interna) quanto a relaxação dos módulos em função da frequência. Há,aqui,o inconveniente de os efeitos serem pequenos para baixas concentrações, como se pode ver dos dados já obtidos.

Outra linha de trabalho, esta mais interessante, deve possibilitar a obtenção do tensor de deformação de uma maneira mais segura, po is as medidas poderiam ser feitas a temperaturas e concentrações mais altas, e numa so frequência. Basicamente consistiria em medir as valocidades de ultrasom numa certa diração de propagação, com tensões (maioresque aquelas das ondas ultrasônicas) aplicadas em outras direções conhecidas. Para isso, no e<u>n</u> tanto, seria necessário um estudo das ocupações dipolares para tensões aplica das em diferentes direções, e escolher as mais convenientes.

BIBLIOGRAFIA

- A. E. Love A Treatise on the Mathematicall Theory of Elasticity Dover Publications - N.Y. - 1944 (19 ed. Americana)
- 2) U. Dohlinger e E. Kroner Z. Metaallk 51, 457(1960)
- E. Kroner Kontinuumstheorie der Versetaungen und Eigenspannungen Berlin (1958)
- 4) E. Mann, R. V. Jan e A. Seeger Phys.Stat.Sol. 1, 17(1961)
- R. Truell, C. Elbaum e B.B. Chick Ultrasonic Meth. In Sol. St. Phys. Academic Press, Inc. - N.Y. (1969)
- R.T. Beyer e S.V.Letcher Physical Ultrasonics Academic Press, Inc. N.Y. (1969)
- 7) B.D.Cullity Addisson-Wesley Publishing Co. (1956)
- 8) L.V.Azaroff McGraw-Hill, Inc. N.Y. (1968
- 9) E.A. Wood Cristal Orientation Manual- Columbia University Press -N.Y. (1963)
- 10) K.J. Carroll Bull. Amer. Phys. Soc. 7, 123 (1962); J. Ap. Phys. 36, 3689(65)
- 11) H.D. Erfling Annalen der Physik 41, 467 (1942)
- 12) G.K. White Cryogenics 2, 292 (1962)
- 13) R.J. Walter e W.T. Chandler AIME 233, 762 (1965)
- 14) J.L. Snoek Physica 8, 711 (1941)
- 15) J.L. Snoek Physica 9, 862 (1942)
- 16) W.L. Stewart, J.M. Roberts, N.G. Alexandropoulus e K. Salama -J. Appl. Phys. - <u>48</u>, 75 (1977)
- 17) A.S. Nowick e W.R. Heller Adv. Phys. 12, 251 (1963)
- 13) A.S. Nowick e W.R. Heller Adv. Phys. 14, 101 (1965)
- 19) A.S. Nowick Adv. Phys. <u>16</u>, 1 (1967)
- 20) A. Seeger, E. Mann e R.v. Jan J. Phys. Chem. Sol. 23, 639 (1962)
- 21) E.S. Fischer, D.G. Westlake e S.T. Ockers Phys. Stat. Sol. (a) -
 - 28, 591 (1975)
- 22) O. Buck, D.O. Thompson e C.A. Wert J. Phys. Chem. Sol. 32, 2331 (1971)
- 23) J. Buchholz, J. Volkl e C. Alefeld Phys. Rev. Lett. 30, 318 (1973)
- 24) R.W. Powers e M.V. Doyle J. Appl. Phys. 30, 514 (1959)
- 25) R.A. Hoffman e C.A. Wert J. Appl. Phys. 37, 237 (1966)
- 26) H.A. Wriedt e R.A. Oriane Scripta Metall. 8, 203 (1974)
- 2/) J. Volkl, G. Schaumann e G. Alefeld J. Phys. Chem. Sol.- 31,1805 (1970)
- 28) M.S. Ahmad e Z.C. Szkopiak J. Phys. Chem. Sol. 31 1799 (1970)
- 29) C. Wert, D.O. Thompson e O. Buck -J. Phys. Chem. Sol 31 1793 (1970)
- 30) C.A. Wert J. Phys. Chem. Sol. 31, 1771 (1970)

- 31) C. Alefeld, J. Volkl e J. Tretkowski J. Phys. Chem. Sol. <u>31</u>, 1765(1970)
 32) G. Schumana, J. Volkl e D. Alefeld Phys. Rev. Lett. <u>21</u>, 891 (1968)
 33) F.M. Mazzolai e M. Nuovo Sol. St. Commun. <u>7</u>, 103 (1969)
 34) G. Alefeld Phys. St. Sol. <u>32</u>, 67 (1969)
 35) R.B. McLellan Scripta Metall. <u>9</u>, 681 (1975)
 36) W.M. Albrechet, W.D. Goode e M.W. Mallett J. Electrochemical Soc. -- 106, 981 (1959)
- 37) K. Faber e H. Schultz Scripta Metall. 6, 1065 (1972)
- 38) J.C. Langeberg e R. B. MacLellen Acta Metall. 21, 897 (1973)
- 39) R. De Batist Internal Friction of Strutural Defects In Crystalline Solids - NorthBolland Publisching Co. - Amsterdam (1972)
- 40) A.T. DiBenedetto The Structure and Properties of Materials -McGraw-Hill, Inc. - (1967)
- 41) C. Kittel Introduction to Solid State Physics John Wiley and Sons, Inc.
 N. Y. (1968)
- 42) S. Mochlecke Tese de Mestrado UNICAMP (1974)
- 43) J. A. Fernandes Leon Tese de Mestrado UNICAMP (1977)
- 44) V.A. Sowenkov Soviet Phys. Sol. St. 10, 1076 (1968)
- 45) Dy.C. Pinatti Tese de Mestrado USP São Carlos (1973)
- 46) S. Gama Tese de Mestrado UNICAMP (1977)
- 47) H.J. McSkimin J. Acoust. Soc. Am. 33, 12 (1961)
- 43) E.P. Papadakis J. Acoust. Soc. Am. 42, 1045 (1967)
- A.C. Damask e G.J. Dienes Point Defects in Metals Gordon and Breach,
 S. P., Inc. N. Y. (1971)
- 50) D.I. Bolef, R.E. Smith e J.G. Miller Phys. Rev. B Vol.3, 12, 4100(1971)
- 51) D.I. Bolef, R.E. Smith e J.G. Miller Phys. Rev. B Vol.3, 12, 4108(1971)
- 52) T.S. Kê Phys. Rev. Vol. 74, 1, 9 (1948)
- 53) T.S. Kê Phys. Rev. Vol. 74, 1, 16 (1948)
- 54) D.G. Westlake Trans. AIME 245, 287 (1969)
- 55) A. Magerl, B. Berre e G. Alefeld Phys. Stat. Sol. (a) <u>36</u>, 161 (1976)
- 56) H.L. Alberts, E.S. Fischer, K.W. Katahava e M.H. Manghamani J. Phys. F: Metal Phys. - Vol. 9, 11, L209 (1979)