"ESTUDO DE MONOCROMADORES ASSIMÉTRICOS

DE RAIOS-X*

IRINEU MAZZARO

Tese apresentada ao Instituto de Física "Gleb Wataghin" da Universidade Estadual de Campi nas, para a obtenção do Título de Mestre em Ciências.

Orientador- Prof. Dr. Stephenson Caticha Ellis.

Campinas - São Paulo - Novembro de 1.979.

Este trabalho foi realizado no laboratório de Cristalografia do Instituto de Física "Gleb Wataghin" da Universidade Estadual de Campinas, com auxílio financeiro da Funda ção de Amparo a Pesquisa do Estado de São Paulo. (FAPESP). Em especial, agradeço ao Prof. Dr. Stephenson Caticha Ellis, pela escolha deste tema de pe<u>s</u> quisa e orientação dada durante todo o seu desenvolvimento. AGRADECIMENTOS

Agradeço ao Dr. Shin Lin Chang pelas discussões durante o trabalho.

A Dra. Iris C. L. Torriani pela cooperação nas diversas etapas desta pesquisa.

Aos Colegas Cicero Campos e Lisando Pavie Cardoso pelas discussões, colaborações e amizade ofer<u>e</u> cidas no decorrer do desenvolvimento deste tema.

Aos Colegas José Otávio Bigatto, Ariel Cat<u>i</u> cha Alfonso, Amilton da Costa Lamas e Sheila Maria Del Nery pela cooperação, convivência e amizade.

A Todos os funcionários do Instituto de F<u>í</u> sica "Gleb Wataghin", que de alguma maneira colaboraram para a obtenção deste objetivo, em especial a José Alfredo Fraymann pela preparação das fotografias.

Ao Colega e Amigo Lisandro Pavie Cardoso, pela datilografia do texto e pelo carinho oferecido por sua família.

Aos meus Pais, aos meus Irmãos e a Leonor pelo apoio, incentivo e compreensão, oferecidos durante o desenvolvimento deste trabalho. Dedico

.

Aos meus Pais. Aos meus Irmãos. A Leonor.

,

RESUMO

Neste trabalho são estudados monocromadores assimétricos, isto é, formado por cristais com a superfície cortada segundo um ângulo ϕ_0 com os planos refletores. O estudo experimental baseado no mét<u>o</u> do de Evans, Hirsch & Kellar(11), é feito medindo a intensidade de raios-X espalhada pela reflexão Ge₍₁₁₁₎, com o cristal montado de forma a poder ser girado ao redor da normal ao plano correspondente.

No decorrer do trabalho mostramos que o metodo de Evans, Hirsch & Kellar, que experimentalmente e muito atraente, necessitandose cortar o cristal com o ângulo ϕ_0 e simular diferentes ângulos de cor te por meio do giro ao redor da normal aos planos refletores, implica em complicações teóricas bastante difíceis de serem superadas, muitas das quais foram resolvidas neste trabalho.

Na parte teórica deste trabalho, deduzimos em forma geral as expressões da potência e da intensidade refletidas em reflexão assimétrica por um cristal cortado sob um ângulo ϕ_0 em relação aos planos de reflexão, baseando-nos exclusivamente na teoria da interacão dos fe<u>i</u> xo: multiplamente difratados em cristal mosaico (Caticha-Ellis S., 1969 (9)).

Foram encontrados efeitos novos, tal como a rotação do fei xe difratado numa reflexão assimétrica, efeito que não tinha sido encon trado pelos demais autores que jã trabalharam em problemas de reflexão assimétrica. O acordo entre os resultados teóricos e experimentais é analisado no texto.

Experimentalmente, fizemos medidas da potência e intensidade do feixe difratado e do ângulo de rotação da seção transversal deste feixe, assim como medidas da intensidade refletida pelas superfícies p<u>a</u> ralela e inclinada, em função do tratamento aplicado a elas.

As equações desenvolvidas para a potência e intensidade relativas do feixe refletido em função da assimetria, permite afirmar que a mãxima relação possível a ser esperada na intensidade do feixe conce<u>n</u> trado com relação a reflexão simétrica, e sempre menor do que 2,0.

A variação da potência total concorda bem com os valores

previsto pela teoria, as maximas discrepâncias ocorrendo para as p<u>o</u> sições de máxima assimetria, onde os valores experimentais devem ser possivelmente mais influenciados pelos fatores instrumentais e pelos defeitos de regularidade e planaridade da superfície.

Dos resultados experimentais concluimos que para obtermos máxima intensidade com um monocromador assimétrico, o ângulo ϕ entre planos refletores e superfície deve ser aproximadamente igual a 4,8° para a Ge₍₁₁₁₎ e de 5,3° para a Si₍₁₁₁₎, dando origem a aumento de intensidade da ordem de 41% e 31% respectivamente em relação à superfí cie paralela aos planos. A posição desses máximos depende do tratamento superficial o que faz então impossível dar uma solução valida para todos os casos. Além do mais o valor correto a ser usado deverá ser obtido apos as correções da curva pelos fatores instrumentais, sendo estes muito complicados e atingem grande importância para maiores graus de assimetria, isto é, $\beta = \frac{1}{2}$.

O perfil w obtido apresenta irregularidades (vários picos com forma esquisitas), segundo o tratamento superficial da amostra. Os polimentos mecânicos, mesmo feitos de forma extremamente cuidadosa com grãos de até 0,05µm de diâmetro, não foram cap_zes de eliminar essas irregularidades. O tratamento químico puro (etching) também foi imcapaz de resolver o problema. Somente o tratamento mecânico-químico desenvolvido neste trabalho conseguiu obter picos de varredura de for ma correta, reproduzivel e quase sem variações de um sítio do cristal a outro.

Nos tratamentos teóricos feitos até agora, pelos diferentes autores, a partir de Evans, Hirsch & Kellar em diante, faziam depender a intensidade e a potência de um so parâmetro geométrico de assi metria. Neste trabalho mostramos que é necessário introduzir mais um parâmetro que depende da relação entre o ângulo de corte ϕ_0 e do ângulo de Brag θ_B . Foi assim definido o fator de corte do cristal: $k = tg\phi_0/tg\theta_B$ em função do qual diversas expressões adotam formas con venientes. Finalmente são discutidas prováveis extensões deste traba lho.

ABSTRACT

Asymmetric X-ray monochromators, firsts introduced by I. Fankuchen (1937) with the purpose of concentrating an X-ray beam, have been the subject of numerous investigations.

Evans, Hirsch and Kellar as early as 1948, based their well known and hitherto unchallenged study on the hypothetic existence of a non-reflecting surface layer with an absorption coefficient different from that of the bulk crystal which they used to fit a "theoretical" curve to their experimental data. In this Thesis it is shown that the physical behavior of asymmetric monochromators can be explained; without recourse to any kind of artificial hypothesis, by means of the theory of multiple scattering of X-rays (Caticha-Ellis, 1969). The differential equations governing the interchange of power among the incident and the diffracted waves were solved in the two-beam asymmetric case and the solutions expressed in terms of the asymmetry parameters: $R = sen(\theta_R - \phi)/sen(\theta_R + \phi)$ or $\beta = 1-R/1+R$, where θ_R is the Bragg angle and ϕ_0 the angle between the reflecting plane and the reflecting surface measured on the plane of incidence ϕ_{0} is the dihedral angle between the plane surface and the reflecting planes. The solutions were found to depend not just on one but on two parameters, one of assymmetry and k=tg $_{0}$ /tg θ_{B} which was called a "cutting parameter".

The experimental method used here is based in that of Evans et al. A crystal cut with $\phi_0 > \theta_B$, turns around the normal to the reflecting planes thus generating different asymmetry ϕ angles. The experimental advantage is that only one crystal has to be cut. The theoretical complications involved, most of which are discussed here in detail, are the price for that simplifications. A new effect, the rotation of the asymmetrically diffracted beam was predicted and confirmed experimentally. The theory also demonstrates that the intensity in the concentrated beam can not be move than twice the intensity of the symmetrically reflected beam, a fact already known to previous authors.

The measured diffracted power agrees well with theory, the maximum discrepancies occur when approaching the positions of maximum asymmetry $\beta = \frac{1}{2}$, where the experimental values are largely affected by surface irregularities as well as by instrumental factors, which however have not yet been studied.

 ω - profiles taken on different regions of the crystal showed pronounced differences according to the suface treatment; even after extremely careful polishing with corrudum powder of 0,05µm grain size. Etching worsened the situation by splitting the ω -peak in several smaller anes. Only a hybrid mechanical-chemical treatment, developped for this purpose was able to produce surfaces whose ω -profiles possess a reasonable peak shape and are practically invariant for the differente regions of the crystal.

In conclusion, the theory used in this thesis explains well the power and intensity diffracted asymmetrically by a crystal cut with an angle ϕ_0 with respect to the reflecting planes except under extreme conditions of asymmetry where the instrumental and surface effects are dominant.

INDICE

e II.

• 7

Capītulo I-	Introdução e Objetivos01
Cap¶tulo II-	Tratamento teórico para o caso de difração
	com dois feixes num cristal mosaico em re-
	flexão assimétrica.
in in the second se	1. Soluções das Equações Diferenciais07
	2. Equações de Potência e Intensidade rela
	tivas12
	3. A variãvel y14
	4. A variāvel β18
	5. Variação da potência e intensidade rela-
	tivas em função de β25
	6. Caso de cristal não absorvente27
	7. Caso de cristal com absorção infinita27
	8. Grandezas a serem medidas27
	9. Variação da assimetria nas medidas28
Capitulo III-	Efeito de rotação do feixe difratado.
	1. Suposição sobre o feixe incidente de
	Raios-X
•	2. Reflexão simétrica
	3. Reflexão assimétrica: rotação dos eixos
n general a superior and the	da seção do feixe difratado
	4. Estudo da função que descreve o ângulo 43 .
Capītulo IV-	Parte Experimental
	I. Generalidades47
	2. Alinhamento do Difratômetro

	3. Orientação do cristal cortado assime-
	tricamente
	4. Preparação da amostra54
	5. Efeito do tratamento da superfície do
	cristal de Ge na intensidade e potên-
	cia difratadas
	6. Medida do ângulo _{¢o} 58
	7. Escolha do monocromador, fendas e radi <u>a</u>
	ção61
Capitulo	V- Resultados Experimentais.
	l. Caracteristica do feixe incidente64
	2. Medidas de potência e intensidade69
	3. Reflexão Ge ₍₁₁₁₎ no caso simétrico71
	4. Medidas da potência e intensidade para
	a reflexão assimétrica do Ge ₍₁₁₁₎ 77
·	5. Medida do ângulo de rotação do feixe di-
	fratado83
	6. Resultados experimentais num monocroma-
	dor assimétrico de Si ₍₁₁₁₎ 88
	7. Efeito de Difração Mültipla92
Capītulo	VI- Conclusões e possíveis extensões do trabalho
	1. Conclusões95
	2. Põssiveis extensões do trabalho100
Bibl iogra	fia

CAPITULO I

INTRODUÇÃO

Nos trabalhos com raios-X, frequentemente tem-se a necessidade de usar feixes de radiação monocromática de baixa divergência angular. Isto é normalmente conseguido re fletindo o feixe policromático produzido no tubo de raios-X numa família de planos hkl de um monocristal adequado. aue em virtude da lei de Bragg, reflete apenas a radiação de com primento de onda λ , e os subharmônicos, na direção determina da pelo ângulo de Bragg $\theta_{\rm R}$ O uso de colimadores dimensionados e posicionados adequadamente conduz à limitação da di-vergência, eliminação de radiação de comprimentossde onda proximos também espalhados pelo cristal sobretudo:quando é de tipo mosaico, etc. O resultado é um feixe dotado de uma certa divergência angular com uma distribuição espectral bas tante estreita centrada ao redor do λ desejado e que normal mente inclui pequenas frações dos harmônicos da mesma. 0 processo de reflexão (geralmente as refletividades são baixas) e a limitação do espectro conduzem necessariamente a uma perda muito grande de energia, ou seja, o feixe difrata do, e de varias ordens de grandeza mais fraco que o inciden te.

Interessa obter meios para aumentar a potência do feixe, mas mantendo a monocromaticidade e a baixa dive<u>r</u> gência. Um avanço nessa direção é fornecido pelo uso dos m<u>o</u> nocromadores assimétricos. Os monocromadores assimētricos foram introduzidos por Isidor Fankuchen (12) que inspirou-se numa idēia de Stepen & Barnes (35).

A idēia bāsica ē a de que um cristal cortado de modo a que sua superficie forme um ângulo ϕ_0 , com os planos refletores do cristal pode concentrar o feixe difratado, ou ainda desconcentra-lo, se o feixe vem da direção oposta(V<u>e</u> ja Fig. 5). Os cristais usados por Fankuchen possuiam âng<u>u</u> lo de corte $\phi_0 \neq \theta_B/2$ aproximadamente, com os quais para θ_B **não** muito grande conseguiu uma concentração espacial do fe<u>i</u> xe da ordem de 3:1, com o que o tempo de exposição em seus trabalhos chegou a ser reduzido num fator de ~50%.

R.C.Evans,P.B.Hirsch & J.N.Kellar (11), usando cristais de fluorita, calcita e quartzo, foram os primeiros a fazer um estudo experimental da intensidade refletida por um monocromador assimétrico com $\phi_0 > \theta_B$ em função do ângulo de assimetria ϕ . Eles analisaram para $\phi=0$ o comportamento da intensidade integrada em função do tratamento da super-fície.

Os resultados experimentais obtidos por Evans, Hirsch & Kellar quando comparado com as expressões da inte<u>n</u> sidade derivadas por Debye & Menke (10), assim como por M.Renninger ($_{34}$) eram discordantes, o que levou-os a form<u>u</u> lar uma expressão que concordasse com os valores experimentais. Nesta expressão encontrada aparecem dois coeficien-tes de absorção linear referenciando a um mesmo material. Um o qual chamaram de coeficiente de absorção linear da matriz e o outro coeficiente de absorção linear da camada superficial. Evans,Hrisch & Kellar, afirmaram deste modo a existê<u>n</u> cia de inomogeneidades sobre a superficie, equivalentes a uma

camada absorvente não refletora de espessura t do material depositado sobre a superfície do cristal. Aquela expressão \vec{e} ajustada aos valores experimentais, a qual apresenta um máximo para a intensidade que é sempre menor que 2 vezes a intensidade para $\phi=0$ e que se produz para um certo valor de ϕ , isto é:

 $\phi \simeq \theta_{\rm R} - \sqrt{\mu t sen \theta}$

Outros trabalhos experimentais foram realizados apõs aquele de Evans,Hirsch & Kellar, entre os quais citaremos: P. Gay, P.B.Hirsch & J.N.Kellar ($_{16}$) em 1951; P.Gay (14) em 1952 e mais recentemente Mathieson ($_{27}$ e $_{28}$) em 1975-1977. Todos eles aceitam sem discussão a hipótese de Evans,Hirsch & Kellar, sobre a existência na superfície do cristal de uma camada absorvente e não refletora, causada pelo desbaste e polimento mecânico dado a superfície.

Sob o ponto de vista teórico, Hirsch e Ramacha<u>n</u> dra (19) desenvolveram um tratamento teórico para a varia-ção da intensidade integrada em função de um parâmetro de a<u>s</u> simetria da reflexão, do fator de estrutura e do comprimento de onda da radiação, para o caso Bragg de reflexão de um cri<u>s</u> tal perfeito e absorvente. Compararam os resultados da in-tensidade integrada para o cristal perfeito com a intensidade integrada para o cristal perfeito com a intensidade integrada para o cristal mosaico. Todo o desenvolvimento foi baseado na teoria dinâmica na forma apresentada por Zachariasen em 1945 (36). Este importante trabalho contem êrros também importantes, sobretudo em relação aos cristais mosaicos.

Um dos trabalhos experimentais que utilizaram o desenvolvimento teórico de Hirsch e Ramachandram foi o P. Gay (₁₅), em 1952.

Trabalhando com cristais perfeitos de Silicio, Kohra e seus colaboradores (24) encontraram um reforçamento

de intensidade transmitida (caso Laue) em difração assimétr<u>i</u> ca de raios-X ao redor de 4 vezes. Esse reforço é de origem dinâmica e concorda bem em seus calculos, usando uma aprox<u>i</u> mação da teoria dinâmica mais precisa que a nonmalmente us<u>a</u> da. Entretanto, o reforço achado não é tanto uma consequência do efeito de concentração de Fankuchen mas do efeito Borrmann de origem dinâmico.

Recentemente em nosso laboratório Cardoso e Cati cha: Ellis (§) usando um monocromador assimétrico de Germã nio, cortado com o ângulo $\phi_0 = 16^{\circ}$ em relação aos planos (111) superfície polida mecanicamente e radiação Crk_a, obtiveram um aumento de intensidade da ordem de 3 a 5 vezes com relaçção a intensidade espalhada por um cristal de superfície p<u>ía</u> na pertencente ao mesmo bloco do anterior, mas sem tratame<u>n</u> to previo de sua superfície.

O fato de a teoria de Evans,Hirsch & Kella^(*)ser bastante insatisfatória e de que o trabalho de Hirsch & Ramachandran contém êrros grosseiros no tratamento dos cri<u>s</u> tais mosaicos, era necessário analisar as causas que produziram aumentos maiores que os previstos teoricamente nas e<u>x</u> periências de Cardoso e Caticha-Ellis.

(*)

A Teoria proposta por Evans, HIrsch e Kellar (11), na qual po<u>s</u> tula a existência de uma camada superficial não refletora no cristal, embora produza um acordo razoãvel com os dados exper<u>i</u> mentais, não esta de acordo com resultados posteriormente obt<u>i</u> dos mediante técnicas muito mais evoluidas de difração multipla (Caticha-Ellis S. 1969 (9)), que provam que geralmente sobre a superfície do cristal polido mecanicamente existe uma camada mais refletora em contradição com o esperado por EvansR.C. et al. O estudo teórico feito neste trabalho para determinar as funções de intensidade e potência espalhada pelo monocromador em função do ângulo de assimetria ϕ e de outras variáveis, esta baseado na teoria da difração multipla na forma proposta por Caticha-Ellis em 1969 (9). A intensidade e a potência foram assim obtidas a partir das equações que regem a interação entre potências dos feixes no interior do cristal na difração multipla, dada naquele trabalho. 5

Propomos no presente trabalho estudar o comporta mento dos monocromadores assimétricoa de tipo mosaico, e te<u>n</u> tar otimizar o seu funcionamento levando em conta:

 a) O efeito da concentração geométrica da radia ção;

b) O efeito do estado da superfície;

c) O possível reforçamento por difração Múltipla.

Neste trabalho, então são estudados monocromadores formados por cristais de Germânio, cortado de modo que a s<u>u</u> perfície forma um ângulo $\phi_0 > \theta_B$ com o plano (111), sendo θ_B o ângulo de Bragg decsa reflexão para a radiação usada.

O estudo experimental baseado no método de Evans Hirsch & Kellar, é feito medindo a intensidade de raios-X es palhada pelos planos (111) com o cristal montado de forma a poder ser girado ao redor da normal a esses planos. O valor do azimute permite determinar o efeito da variação no ângulo ϕ de assimetria. Como mostraremos no decorrer deste trabalho, o método de Evans, Hirsch & Kellar, que experimentalmente é muito atraente porquanto so necessita-se cortar o cristal com ângulo ϕ_0 e simular diferentes ângulos de corte por meio do giro ao redor da normal aos planos refletores, implica em complicações teóricas bastante difíceis de serem superadas. A teoria conseguiu prever em forma bastante acu rada os valores experimentais quando o tratamento superfi-cial realizado, motivo de pesquisa cuidadosa neste trabalho, foi suficiente para (quase) eliminar a camada superficial danificada do cristal. Mesmo assim, nos casos extremos de a<u>s</u> simetria, com o feixe incidente ou o difratado passando rasantes à superfície do cristal, não obtivemos concordância.

Fica então a incognita de se o tratamento su-perficial usado não foi bastante completo, ou de se os fat<u>o</u> res de aberração instrumental, muito importantes mas até agora não estudados por ninguém, são capazes de preencher a lacuna deixada no presente estágio desta pesquisa.

CAPITULO II

TRATAMENTO TEÓRICO PARA O CASO DE DIFRAÇÃO COM 2 FEIXES NUM CRISTAL MOSAICO EM REFLEXÃO ASSIMÉTRIÇA.

1. Solução das Equações Diferenciais.

Nesta seção calculamos a potência e a intensid<u>a</u> de difratadas por um cristal cortado com um ângulo ϕ_0 em relação aos planos difratantes.

As equações (1) (Zachariasen, 1965(37), Moon & Shull, 1964(29) e Caticha Ellis, 1969(9)), para a difração mū<u>l</u> tipla por um cristal plano são gerais, fornecendo a interação entre potências dos feixes i e j para os n pontos da rêde rec<u>í</u> proca em condições de difração.

$$\frac{dP_{i}}{dx} = -\frac{P_{i}}{\gamma_{i}}\mu + \sum_{j=0}^{n} \bar{Q}_{ij}\left(\frac{P_{j}}{\gamma_{j}} - \frac{P_{i}}{\gamma_{i}}\right). \quad (1)$$

 $\gamma_i e \gamma_j são os cossenos diretores dos feixes i e j relativo a$ $normal a superfície plana do cristal. <math>\overline{O}_{ij}$ \overline{e} a refletividade \underline{e} fetiva do plano i-j e P_i a potência do feixe i.

Caticha Ellis S. (1969), resolveu as equações acima em forma geral para o caso de n feixes e deu soluções exatas para os casos de 2 e 3 feixes.

Para o caso Bragg de 2 feixes as equações acima reduzem-se ã:

$$\dot{P}_{0} = -A_{0}P_{0} + BP_{1}$$

$$-\dot{P}_{1} = CP_{0} - A_{1}P_{1}$$
(2)

onde as constantes $A_0, A_1, B \in C$ são;

$$A_{0} = \frac{1}{\gamma} (\mu + \bar{Q}_{01}), \qquad B = \frac{\bar{Q}_{10}}{\gamma_{1}}, \qquad (3)$$
$$A_{1} = \frac{1}{\gamma_{1}} (\mu + \bar{Q}_{01}), \qquad C = \frac{\bar{Q}_{10}}{\gamma_{0}}.$$

Mudando os sinais de A_l e C nas equações acima tem-se a potência do feixes no caso Laue (feixe transmitido). Devido o processo de resolver as equações diferenciais simultâneas ser relevante para a introdução das cond<u>i</u>

ções de contorno,ele é mostrado aqui com mais detalhes:

$$\dot{P}_{0} = -A_{0}\dot{P}_{0} + B\dot{P}_{1}$$

$$-\dot{P}_{1} = C\dot{P}_{0} - A_{1}\dot{P}_{1},$$
(2')

escrevendo cada uma das equações em têrmos de uma única variãvel P,fica:

$$P = (A_1 - A_0) P + (A_1 A_0 - BC) P$$
 (4)

A mesma equação diferencial (4) e valida para ₽≈P_o ou P=P₁.

> As soluções de (4) são: $P_1 = F_1 \exp k_1 x + F_2 \exp k_2 x$ $P_0 = F_3 \exp k_1 x + F_4 \exp k_2 x$ (5)

Onde $k_1 = k_2 s$ ão as raízes da equação característica; F_1 , F_2 , F_3 ϵ F_4 são constantes de integração e a variavel x é medida ao Nongó da normal a superfície.

A solução da equação característica

$$K^{2} + (Ao - A_{1})K + (BC - A_{1}Ao) = 0,$$
 (6)

ē:

$$\kappa = \frac{(A_1 - A_0)}{2} + \left[\frac{A_0 - A_1}{2}^2 - (BC - A_1 A_0) \right]^{1/2} .$$
 (7)

Desde que só usaremos cristais bastante espessos, pode-se com muita precisão supor que estes são efetivamente de espessura infinita. No caso Bragg,teremos obviamente

$$P_{0}(\infty) = 0$$
(8)
$$P_{1}(\infty) = 0$$
(9)

Supomos ainda que a potência do feixe incidente (P_0) sobre a superfície do cristal (em x=0) é conhecida, isto é:

$$P_{0}(0) = P_{0}$$
 (10)

Eliminando P₁ em ambas as equações (1) obtém-se

$$A_{1}P_{0}(0) - BP_{1}(0) = (BC - A_{1}A_{0})P_{0}, \qquad (11)$$

onde jā foram tomados os valores de $P_0 = P_1$ na superficie, isto ē, em x=0.

As condições (8),(9);(10) e (11) determinam co<u>m</u> pletamente as constantes de integração que resultam:

$$F_{1}=0$$

$$F_{2} = (A_{1}k_{2}-D)P_{0}/Bk_{2}$$

$$F_{3} = 0$$

$$F_{4} = P_{0}$$
(12)

(13)

onde $D = BC - A_1 A_0$.

Nas equações (12), $k_2 \in aquela entre as raízes k$ $que é negativa. Como veremos, com esta escolha o discriminante <math>\Delta$ ē positivo e as raízes são reais e de sinais contrários.

Substituindo as constantes de integração nas s<u>o</u> luções, obtemos $P_n \in P_1$:

$$P_{1}(x) = \frac{A_{1}k_{2}^{-D}}{Bk_{2}} P_{0}^{exp}(k_{2}x)$$
(14)

$$P_{0}(x) = P_{0} \exp(k_{2}x)$$
 (15)

E interessante escrever as raízes k em têrmos dos cossenos diretores,então:

$$K = \frac{A_1 - A_0}{2} + \sqrt{\Delta}, \qquad (16)$$

substituindo os valores de A_o,A_l,B e C,obtemos para o discrim<u>i</u> nante

$$\Delta = \bar{Q}_{01}^{2} \left[\left(\frac{1+y}{2\gamma} \right)^{2} - \frac{1}{\gamma_{0}\gamma_{1}} \right]$$
(17)

e para as raízes

$$K = \bar{Q}_{01} \left[\frac{(1+y)}{2\gamma^*} \pm \left[\left(\frac{1+y}{2\gamma} \right)^2 - \frac{1}{\gamma_0 \gamma_1} \right]^2 \right]$$
(18)

onde foram usadas as seguintes definições:

$$y = \mu/\bar{Q}_{01} \tag{20}$$

$$\frac{1}{\gamma} = \frac{1}{\gamma_0} + \frac{1}{\gamma_{ll}}$$
(21)

$$\frac{1}{Y^{*}} = \frac{1}{Y_{1}} - \frac{1}{Y_{0}}$$
(21)

A figura 1, ilustra a geometria de uma reflexão assimétrica,onde

FIG. 1

Esquema mostra um cristal cuja superficie foram um ângulo ϕ com os planos difratantes.

$$\Upsilon_{0} = \operatorname{sen} \left(\theta_{\mathrm{B}} + \phi \right) \tag{22}$$

$$\gamma_1 = \operatorname{sen} \left(\theta_R - \phi \right) \tag{23}$$

sendo ϕ medido no sentido trigonometrico a partir da normal $\overline{\mathbb{N}}_{O}$ aos planos de Bragg até a normal $\overline{\mathbb{N}}$ à superfície do cristal.

Posteriormente os resultados acima serão expressos em função de um parâmetro de assimetria.

Definimos o coeficiente de assimetria:

$$R = \frac{\operatorname{sen}(\theta_{B} - \phi)}{\operatorname{sen}(\theta_{B} + \phi)} .$$
 (24)

E facil de ver na figura l, que a razão entre a area do feixe difratado e incidente e R.

Evidentemente podem ser definidos outros parām<u>e</u> tros de assimetria para maior conveniência nas equações ou nos grāficos,o que faremos depois.

2. Equações de Potência e Intensidade relativa.

As soluções encontradas para $P_1 = P_0$, equações (15) e (16), fornecem as potências refletida e incidente que são transmitidas nos feixes de área S e S₀ respectivamente. Entretanto o valor que interessa no nosso caso é o do valor de P_1 re lativo ao de P₀ sobre a superfície do cristal (x=0):

$$p_{1}(0) = \frac{P_{1}(0)}{P_{0}(0)} = \frac{A_{1}k_{2}-D}{Bk_{2}} .$$
 (25)

As potências transmitidas por unidade de área

são:

$$I_{1}(x) = \frac{P_{1}(x)}{S_{1}}$$

$$I_{0}(x) = \frac{P_{0}(x)}{S_{0}}$$
(26)

O valor relativo da intensidade difratada na s<u>u</u> perfície do cristal \vec{e} :

$$i_{1} = \frac{I_{1}(0)}{I_{0}(0)} = \frac{P_{1}(0)}{P_{0}(0)} \cdot \frac{S_{0}}{S_{1}} = \frac{P_{1}(0)}{R} .$$
 (27)

Das equações (15),(16),e (24) temos:

$$i_1 = \frac{A_1}{RB} - \frac{D}{RBk_2}$$
 (28)

Substituindo $A_1, B, D \in K_2$ nas equações (25) e (26), e levando em conta que:

$$\gamma_{1}/\gamma^{*} = 1 - \gamma_{1}/\gamma_{0} = 1 - R$$

$$\gamma_{1}/\gamma = 1 + \gamma_{1}/\gamma_{0} = 1 + R$$
(29)

$$\gamma_{1}^{2}/\gamma_{1}\gamma_{0} = \gamma_{1}/\gamma_{0} = R$$
,

obtem-se:

е

$$i_{1}(0) = \frac{1+y}{R} + \frac{2y(y+2)}{(1+y)(1-R) - [(1+y)^{2}(1+R)^{2} - 4R]^{1/2}} (30)$$

$$P_{1}(0) = (1+y) + \frac{2y(y+2)R}{(1+y)(1-R) - [(1+y)^{2}(1+R)^{2} - 4R]^{1/2}} .(31)$$

Para o caso da reflexão simétrica, q=0, R=1, obte-

mos -

e

$$i_1(0) = (1+y) - \sqrt{y(2+y)}$$
 (32)

$$p_1(0) = (1+y) - \sqrt{y(2+y)}$$
 (33)

3. <u>A variavel y</u>.

Até o presente,as expressões para a intensid<u>a</u> de e potência relativas foram escritas em função das variãveis y e R.

A variãvel y expressa pela equação (19),tra-duz uma relação entre o coeficiente de absorção μ e a refletividade efetiva \bar{Q}_{01} característico do cristal e da radia-ção usados. Onde \bar{Q}_{01} envolve informações sobre a largura m<u>o</u> saico do cristal. De modo geral,para a intensidade de pico, Caticha-Ellis (1969) mostrou que:

$$\bar{Q}_{ij}^{\text{pico}} = \frac{Q_{ij}^{\text{o}}}{\eta\sqrt{2\pi}} . \qquad (34)$$

E portanto,

$$y = \frac{\mu \eta \sqrt{2\pi}}{Q_{01}^{0}}$$
 (35)

Interessa obter os limites das expressões de p<u>o</u> tência e intensidade (30 e 31) relativas paras os casos de mãxima assimetria,isto e,para ϕ aproximando-se de $\theta_{\rm B}$ ou de $-\theta_{\rm B}$

FIG. 2

- a) Intensidade relativa ou potência relativa do feixe primārio difratado para a reflexão simétrica em função da variável y ou seja equações (32) ou (33).
- b) Intensidade relativa do feixe difratado no caso $\phi=\theta_{\rm B}$ e potên cia relativa do feixe difratado no caso $\phi=-\theta_{\rm B}\cdot Eqs$ (37) e (38).
- c) Razão entre a potência relativa para $\phi=0$, e $\phi=0$. Essa relação tende a 2 quando y→∞. Relação análoga para a intensidade e a mesma função: g(y) equação (40).

(o que equivale a fazer naquelas expressões,R tender a O ou a infinito respectivamente). Encontra-se pelos métodos clássi-cos:

> a) $\lim_{\phi \to \theta_B} \theta_B$ (ou R+0) = 0 (para qualquer y) (36)

b)
$$\lim_{\substack{\phi \to -\Theta_B \\ (ou \ R \to \infty)}} = \frac{1}{1+y}$$
 (37)

c)
$$\lim_{\phi \to \Theta_B} (38)$$

(ou R+0)

d) lim i(0) = 0 (para qualquer y) (39) $\phi \rightarrow -\theta$ (ou R $\rightarrow \infty$)

E interessante observar o comportamento das cur vas de intensidade e potência relativas para os casos da refle xão simétrica e reflexões assimétricas extremas quando $\phi=\theta_{\rm B}$ e $\phi=-\theta_{\rm B}$, (figura 2 (a), (b) e (c)) em função da variável $y=\frac{\mu}{Q_{01}}$.

Desde que $y = \frac{\mu \eta}{\sqrt{2\pi}} \sqrt{2\pi}$, vê-se na figura 2(c), que Q₀₁ a māxima relação possível a ser esperada na concentração do fe<u>i</u> xe (para $\phi = \theta_B$) com relação a reflexão simétrica é sempre menor que 2. Quanto maior o y, mais essa relação se aproxima de 2,o que acontece para

a) cristais muito absorventes,

- b) cristais com largura mosaico grande,
- c) reflexões fracas.

No caso simétrico (fig. 2(a)), a potência e a intensidade relativas tal como foram definidas (equações 25 e 27 respectivamente) são representados pela mesma curva (eqs.32 e 33). Para y crescente (absorção crescente, reflexões muito fracas ou \bar{Q}_{01} pequena), a potência e a inte**nsi**dade relativas a zero.

No caso $\phi=\theta_{\rm B}$, a māxima concentração do feixe,a curva da intensidade representa uma hipérbole equilâtera assi<u>n</u> tótica ao eixo de abcissas. Essa curva é idêntica à que se obtem para a potência relativa quando o feixe tem o sentido in-verso, $\phi=-\theta_{\rm B}$ ou seja, o caso de māxima desconcentração.

É interessante observar o comportamento da rela ção da intensidade relativa no caso $\phi=\theta_B$ (assimetria máxima) à do caso de reflexão simétrica $\phi=0$.

Essa relação ē:

$$g(y) = \frac{i_1(0)_{\phi=\theta_B}}{i_1(0)_{\phi=0}} = \frac{1}{(1+y) - \sqrt{y(2+y)}} \cdot \frac{1}{1+y} , \quad (40)$$

coincide com a relação

$$p_1(0)$$

 $\phi = -\theta_B$, e estã representada na
 $p_1(0)$
 $\phi = 0$

Contudo devemos fazer notar que esta conclusão, jã encontrada por outros autores $(_{10}),(_{34})$ e $(_{11}),$ pode neste trabalho ser devidamente justificada usando so a teoria do espalhamento multiplo para o cristal mosaico (Caticha-Ellis,1969) no caso de dois feixes, sem necessidade da introdução de quaisquer outras hipóteses físicas acessórias (caso do trabalho de Evans, Hirsch & Kellar(11)).

Não podemos então garantir que ela seja válida em casos em que haja interação de mais de dois feixes como ap<u>a</u> rentemente aconteceu na Tese de Mestrado de L.P.Cardoso (IFGW, UNICAMP,1976)(₈) que encontrou esporadicamente relações superiores a 2.

Ainda mais,as expressões das intensidades relat<u>i</u> vas dependem da relação assumida entre as seções dos feixes i<u>n</u> cidente e refletido as que como é mostrado no capitulo seguinte,não são validas em experiências,que como a nossa,usam o método de Evans,Hirsch & Kellar para variar o ângulo ¢,isto é,<u>gi</u> rar o cristal em torno da normal aos planos de reflexão.

4. A variāvel B.

As equações (30) e (31) as quais dão a intensidade e potência relativas respectivamente,estão escritas em fun ção da variável de assimetria R (eq.24), que é função do ângulo ϕ (ver seção 8). Aquelas equações não são fáceis de serem est<u>u</u> dadas em função de R,pois suas derivadas tornam-se mais compl<u>i</u> cadas ainda.

A introdução de um outra variável de assimetria β, que também é função de φ simplifica, aquelas equações.Então

definimos:

$$\beta = \frac{1-R}{1+R} , \qquad (40)$$

ou seja,

$$=\frac{1-\beta}{1+\beta} \qquad (41)$$

Mostra-se facilmente que a (40) ē equivalente a:

$$\beta = \frac{tg\phi}{tg\theta_{B}}$$
 (42)

Esta função estã representada na fig. 6.

R

As equações (30) e (31) escritas em função de β ficam:

$$i_{1}(\beta) = \frac{(1+y)(1+\beta)}{(1-\beta)} + \frac{y(y+2)(1+\beta)}{(1+y)\beta - \sqrt{y(y+2)+\beta^{2}}}$$
(43)
$$p_{1}(\beta) = (1+y) + \frac{y(y+2)(1-\beta)}{(1+y)\beta - \sqrt{y(y+2)+\beta^{2}}}$$
(44)

E interessante observar a forma das curvas $p_1(\beta)$ e $i_1(\beta)$,para -1<β<1 (como justificado a seguir) e utilizando y como um parâmetro. O uso do y como parâmetro nestas curvas e f<u>í</u> sicamente justificado,pois para um cristal,reflexão e radiação dados,y e constante. A figura 3, mostra as curvas $i_1(\beta)$ e $p_1(\beta)$, para y variando de O ate 9.

Verifica-se que as curvas $p_1(\beta)$ e $i_1(\beta)$ são simétricas uma da outra em relação à origem,ou seja

$$p_1(\beta) = i_1(-\beta)$$
 (45)

(46)

A demonstração algébrica, não é difícil, partindo se de: v(v+2)(1-e) (1+v)(1+e) v(v+2)(1+e)

$$(1+y) + \frac{y(y+2)(1-\beta)}{(1+y)\beta - \sqrt{y(y+2)+\beta^2}} = \frac{(1+y)(1-\beta)}{(1+\beta)} \frac{y(y+2)(1-\beta)}{(1+y)\beta + \sqrt{y(y+2)+\beta^2}}$$

FIG. 3

Representação das curvas $i_1(\beta) e p_1(\beta)$, usando y como par $\underline{\hat{a}}$ metro. As curvas a, b, c, d, e, f, g, h, i e j foram calc<u>u</u> ladas para y= 0,000005, 0,005, 0,05, 0,1, 0,25, 0,5, 1, 2, 4 e 9.

20

FIG. 5 Diferentes casos de reflexão assimétrica.

Comportamento da função $\beta(\phi)$ usando em a, b, c e d $\theta_{\rm B}$ igual 10° , 15° , 20° e 30° respectivamente. Os valores de β no intervalo -1< β <1, correspondem ao intervalo em ϕ dado por $\theta_{\rm B}<\phi<\theta_{\rm B}$. Fisicamente, isto significa que o feixe difratado sai para fora do cristal. Alem desse intervalo o feixe difratado penetra no cristal dificultando sua medida.

e simplificando com o que se chega a uma identidade valida para todo valor de y.

Os valores de $i_1(\beta)$ e $p_1(\beta)$ para $\beta=1$ e -1, casos de extrema assimetria na reflexão, em função de y são represe<u>n</u> tados pela curva b da figura 2, na seção anterior.

A figura 4 mostra a função $\beta=\beta(R)$. Trata-se de uma hipérbole equilátera. A interpretação física dos diferentes trechos I,II,III e IV da mesma será feita a seguir. Pr<u>e</u> viamente convencionamos em medir o ângulo ϕ desde a superfície até o plano refletor,dando-lhe o sinal positivo quando ele tem o sentido trigonométrico e o negativo no caso contrário.

As figuras 5(I), 5(II), 5(III) e 5(IV) ilu<u>s</u> tram respectivamente os **ea**sos poss**īveis**. Em todas elas o feixe incidente vem da direita ā esquerda.

Caso I. Fig. 5(I).

 $\phi>0$, contido no intervalo $0<\phi<\theta_{\mbox{\scriptsize B}},$ ou seja, 0<R<1.

Neste caso o feixe e concentrado.

Caso II.

 $\phi>0$ e superior a θ_B , mas inferior a $\pi/2$: $\theta_B < \phi < \pi/2$, ou seja, -1< R< 0. Neste caso o feixe é concentrado,mas o feixe di

fratado penetra dentro do cristal.

Caso III.

Depois de passar pelo caso límite $\phi=\pi/2$ (R=-1) onde o sentido físico é perdido,atingimos valores que de acordo à convenção adotada na medida de ϕ ,faz com que esse ângulo seja negativo $\phi < 0$, $|\phi| > \theta_{\rm B}$

Resulta R <-1, $\beta < 0$.

Trata-se de um caso desconcentrador,sendo que o feixe incidente deve penetrar no cristal por baixo da superfi cie exterior. Na prática entrará pela outra face do cristal.

Caso IV.

 $\phi < 0$, $|\phi| < \theta_B$ Resulta R > 1, 0 > β > -1.

Caso desconcentrador,com o feixe penetrando e saindo por cima da superfície.

Neste estudo apenas nos limitamos aos casos I e IV que correspondem a valores de R>O e consequentemente β variando no intervalo $1 > \beta >-1$.

O estudo de Evans,Hirsch & Kellar estā restrito apenas ao caso I,que foi o proposto inicialmen'e por Fankuchen (12) como monocromador concentrador. O caso IV tem sido usado por Kohra e colaboradores para obter feixes de seção grande e baixa divergência angular o que permite obter vantagens apreciãveis em topografia de precisão de cristais.

5. Variação da potência e intensidade difratadas em função de B.

As curvas respresentativas de $p_1(\beta)$ e $i_1(\beta)(eqs.$ 43 e 44) aparecem na fig. 3 onde o parâmetro y varia entre 0 e 9.

Mostrou-se ainda no paragrafo anterior qué elas se correspondem numa reflexão através do eixo de ordenadas. O intervalo de β (-1< β < 1) corresponde aos casos I e IV estuda
neste trabalho.

Para estudarmos a variação de p_j(β) calculamos a derivada da equação (44) em relação a β. Ve-se facilmente que:

 $\frac{dp_1(\beta)}{d\beta} < 0 \quad \text{para qualquer valor de } \beta, \qquad (47)$ então a função é decrescente.

Para verificar a existência de extremos nesta função fazemos

$$\frac{dp_1}{d\beta} = 0.$$
 (48)

Chamando na eq.44 o denominador por "DEN":

$$\frac{dp_1}{d\beta} = \frac{-y(y+2)(DEN) - [(1+y) - \beta(y(y+2) + \beta^2)^{-1/2}]y(y+2)(1-\beta)}{(DEN)^2}.$$
(49)

Sempre que (DEN) \neq 0, isto \overline{e} , para $\beta \neq -1, 1$, teremos:

$$1+y = \left[y(y+2)+\beta^{2}\right]^{1/2} + \beta(1-\beta)\left[y(y+2)+\beta^{2}\right]^{-1/2}$$
(50)

Simplificando a equação acima para solução em β ficamos com:

$$\beta^2 - 2\beta + [2(1+y)^2 - 1] = 0$$
 (51)

Esta equação tem como solução,

$$\beta = 1 \pm (1 + y) i$$
 (52)

onde i é a unidade imaginária $\sqrt{-1}$, o que mostra que $p_1(\beta)$ não

apresenta extremos para valores reais de β. Fisicamente isto significa que a notência do feixe difratado em função da ass<u>i</u> metria decresce continuamente.

Pelas propriedades de simetria mostradas acima a função $i_i(\beta)$ também não apresenta extremos para valores reais, sendo continua e crescente entre -l< β <1.

6. Caso de cristal não absorvente.

Para o caso do cristal não absorvente(µ=0), ou seja y=0, a potência do feixe difratado pode ser obtida como o limite quando y aproxima de zero.

No intervalo $-1 < \beta < 0$, obtemos: $\lim_{y \to 0} p_1(\beta) = 1$, para $+1 < \beta < 0$ ou seja $0 > \phi > -\theta_{B}$; (53) y + 0No intervalo $1 > \beta > 0$, aparece interminação 0/0, que é resolvida usando a regra de L'Hôpital, obtendo-se: $\lim_{y \to 0} p_1(\beta) = \frac{1-\beta}{1+\beta} \equiv R$, para $0 < \beta < 1$ ou seja (54) y + 0No caso intermediário $\beta = 0$, obtem-se o mesmo limite por ambos os lados $p_1(0) = 1$.

As curvas de potência e intensidade no cristal não absorvente estão dadas na fig. 3, curva a.

7. Caso de cristal com absorção infinita.

Para o caso de um cristal muito absorvente, μ e y grandes, as curvas de potência e intensidades relativas se <u>a</u> proximam a uma reta, como ilustra a fig. 3.

Normalmente os cristais mosaicos usado não correspondem nem ao limite de absorção infinita, nem nula.

Os valores que são frequentemente obtidos na pr<u>ã</u> tica estão aproximadamente no intervalo ≃0,5< y<10.

8. Grandezas a serem medidas .

Apõs a solução das equações diferenciais em tê<u>r</u> mos da potência total do feixe incidente e refletido,tirou-se relações da potência relativa e intensidade relativa,eqs.(43) e (44), em função da variãvel de assimetria β. Os resultados experimentais deverão ser comparado com os resultados gráficos das equações citadas (fig. 3).

Repetindo novamente aqui as equações (25) e (27), em função da variãvel ß :

$$P_1(\beta) = \frac{P_1(\beta)}{P_0(\beta)} , \qquad (25)$$

$$i_{1}(\beta) = \frac{P_{1}(\beta)}{P_{0}(\beta)}, \frac{S_{0}}{S_{1}}$$
 (27)

E de se notar que a medida de $p_1(\beta)$ apresenta maior facilidade que a de $i_1(\beta)$, pois esta última envolve a r<u>e</u> lação entre as āreas. Por outro lado, como estamos muito interessados nas vantagens da utilização de uma reflexão assimétr<u>i</u> ca para obter concentração do feixe de raios-X (monocromador assimétrico), serã interessante obter os resultados da medida de $i_1(\beta)$.

Com a equação (31) aplicada para a reflexão simétrica obtivenos a equação (33). Esta, en princípio contém uma medida da largura mosaico do cristal, pois $p_1(0)$ é uma razão experimental e y envolve os valores μ , Q_{01} conhecidos e η a ser determianda. Bastaria ajustar a escala da curva medida da potê<u>n</u> cia total, para poder escolher o valor adequado de y, e porta<u>n</u> to, de η . Este processo pode ser facilitado ajustando primeiro o valor para $\beta=0$.

9. Variação da assimetria nas medidas.

A variāvel de assimetria βintroduzida nas equações de intensidade e potência do feixe difratado e obtida atr<u>a</u> ves da relação (42) que depende do ângulo φ..O ângulo φ e aqu<u>e</u> le formado entre os planos refletores e a projeção do feixe d<u>i</u> fratado sobre a superfície do cristal. Nesta experiência,segui<u>n</u> do Evans,Hirsch & Kellar fazemos variar ϕ rodando o cristal ao redor da normal ao plano de reflexão, o que tem a vantagem de que obtemos dados para diferentes ϕ com um so corte do cristal feito com o ângulo ϕ_0 . Òbviamente, da fig. 7, vem::

$$tg\phi = sen\chi.tg\phi_0$$
. (55)

Entretanto, essa simplificação experimental é contrabalançada pela maior complicação dos calculos, a deforma ção da seção do feixe refletido e a aparição de fatores instrumentais complicados que analisaremos mais adiante, mas que não foram levador em conta por Evans, Hirsch & Kellar. Entre outras consequências dessas diferenças, a intensidade refletida para o cristal cortado com ϕ_0 , no caso $\chi=0$ (reflexão simétrica), não é exatamente a mesma para o cristal com $\phi_0=0$, com o mesmo tratamento superficial.

E necessário determinar também, o ângulo formado entre a superfície inclinada da amostra em relação aos planos refletores, quando este é medido num plano que é normal a superfície do cristal e ao plano de incidência. Chamaremos este ângulo de «'. Ele verifica uma relação semelhante à anterior:

 $tg\phi' = \cos\chi \cdot tg\phi_0 \quad (56)$

A origem do azimute χ é tomada de forma que em χ =0 a reflexão seja equivalente a uma reflexão simétrica,isto é, ϕ =0 (ver fig. 7). O ângulo χ pode ser variado e medido dir<u>e</u> tamente sobre o arco do goniostato.

O estudo da deformação do feixe na reflexão no cristal cortado com ângulo ϕ_0 ,que não foi levado em conta pelos autores que trataram do tema até agora,será o objetivo do capí tulo seguinte.

CAPITULO III

EFEITO DE ROTAÇÃO DO FEIXE DIFRATADO

1. Suposição sobre o feixe incidente de raios-X.

Suponhamos um feixe de raios-X incidente, com d<u>i</u> vergência δ maior do que a largura angular n do cristal mosaico usado na análise e com intensidade constante. Isto pode ser co<u>n</u> seguido experimentalmente quando se usa um monocromador II, com largura mosaico grande e fendas I e II circulares, que selecionam a região central do feixe difratado por aquele monocromador adequadamente dimensionados.

Esquema do arranjo para selecionar uma secção de intensidade uniforme do feixe incidente.

FIG. 9

Esquema da secção circular do feixe incidente projetado sobre a superfície da amostra. Esta projeção e valida apenas em forma aproximada.

> Ω 2

2. Reflexão simétrica.

Com um feixe de raios-X de seção circular e divergência ô, a área banhada sobre um cristal com superfície p<u>a</u> ralela aos planos refletores é uma seção cônica, no caso uma <u>e</u> lipse. A equação (57) representa aproximadamente o contorno da seção projetada, e a fig. 9 esquematiza esta projeçao. Então: tão,

$$\frac{x^2 \sin^2 \theta_B}{r^2} + \frac{z^2}{r^2} = 1, \qquad (57)$$

onde θ_{B} é o ângulo de Bragg e r o raio da seção do feixe incidente ao chegar à superfície do cristal.

Esta aproximação é boa quando d>>r, sendo d a distância do ponto entre as fendas I e II (ver fig. 8) onde os feixes de máxima divergência se cruzam até a amostra.

Entretanto,a ārea efetiva que irā contribuir p<u>a</u> ra a difração do feixe incidente deve depender tanto de n como de δ e também serã uma cônica cujos eixos apresentam dime<u>n</u> sões diferentes das anteriores.

O eixo (c) da mancha que e normal ao plano de i<u>n</u> cidência, e limitado apenas pela divergência do feixe incidente, isto e

(58)

O eixo da elipse paralelo ao plano de incidência tem seu tamanho efetivo limitado pela largura mosaico do cristal difratante, isto é, quando o cristal está fixo, a única po<u>r</u> ção do feixe incidente que tem condição de difratar é aquela que apresenta uma divergência δ , no máximo igual a n, portanto o tamanho máximo para este eixo da elipse será:

h≅ d η/sen θ_B, (59) onde θ_B ē o ângulo de Bragg para a radiação e plano cristalogr<u>ã</u> fico em referência. Então a área sobre o cristal que terã cond<u>i</u> ções de difratar é limitada pela curva

$$\frac{z^2}{c^2} + \frac{x^2}{h^2} = 1 \quad \text{ou} \quad \frac{z^2}{d^2 \delta_{\max}^2} + \frac{x^2 \sin^2 \theta}{d^2 \eta^2} = 1 \quad (60)$$

A ārea do feixe difratado serā a projeção da cu<u>r</u> va acima naquela direção, isto ē, serā aproximadamente limitada pela curva:

$$\frac{z^2}{d^2 \delta_{\text{max}}^2} + \frac{x^2}{d^2 \eta^2} = 1 .$$
 (61)

Isto e, na reflexão simétrica não hã mudança apreciável da fo<u>r</u> ma da seção do feixe incidente efetivo para o difratado.

3- <u>Reflexão assimétrica:rotação dos eixos da seção do feixe di-</u> fratado.

Quando a superficie do cristal está inclinada com relação aos planos difratantes, a área efectiva que contribui para a difração e a área do feixe difratado são diferentes daquelas acima. Se o feixe incidente e aproximadamente cônico, essas seções continuam sendo aproximadamente elípticas como v<u>e</u> remos a seguir.

Para maior facilidade de entendimento vamos pr<u>i</u> meiro determinar o ângulo que o eixo c" da elipse forma com a normal ao plano do difratômetro, em função do ângulo o de ass<u>i</u> metria.

As variāveis envolvidas nos cālculos dos ângulos e comprimento dos eixos que definem a ārea da seção do feixe d<u>i</u> fratado estão representadas na figura 10. Nesta figura, o cri<u>s</u> tal estã posicionado de modo a ter-se uma reflexão simétrica, isto \bar{e} $\phi=0$. O feixe incidente de altura c estã contido no plano ACQ, normal ao plano de incidência. Se a superfície fosse paralela aos planos refletores, o feixe difratado estaria contido no plano QRCR' e teria a mesma altura c.

No caso da superficie ser inclinada de um ângulo ϕ_0 em relação aos planos refletores, o feixe incidente no plano vertical intercepta a superficie do cristal ao longo de AQ e é refletida por esta superficie no plano AQRR". A altura deste feixe é dada pela distância RR" (=c") e forma um ângulo α com o plano definido por QRCR'. No caso ideal de um cristal com absorção infinita, $\mu=\infty$, todo o feixe difratado estaria contido nesse plano. Para μ finito o valor de α variarã em forma cont<u>í</u> nua entre $\alpha=0$ e o valor que calcularemos a seguir.

Determinaremos então o valor de α para o caso $\mu = \infty$, num cristal cortado com um ângulo ϕ_0 em relação aos planos refletores, colocado numa posição azimutal χ qualquer, ao redor da normal a estes planos.

As relações que envolvem ϕ e ϕ 'com o ângulo az<u>i</u> mutal χ são difíceis de serem observadas nas figs. 10 e 12. Na seção (9) do capítulo II, jã foram analisadas estas relações as quais citaremos aqui novamente:

tg¢ ≕	senχ	. ^{tg∲} o		(62)
tg ¢' =	cosχ	. ^{tg¢} o	•	、 ·

O ânguloφ é aquele formado entre a projeção do feixe difratado sobre a superfície e os planos refletores, med<u>i</u> do no plano de incidência, no sentido trigonométrico (vide Fig. 7). O ângulo φ' é aquele formado entre a superfície do cristal e os planos cristalográficos de referência,(lll) em nosso caso) medido na direção normal ao plano de incidência.

Se (x,y,z) são as coordenadas de um ponto fixo em um sistema S, quando fazemos a rotação desse sistema de um ângulo χ no sentido trigonométrico em torno do eixo x, obtemos

Esquema de uma reflexão simétrica pela superficie inclinada de um ângulo ϕ_0 em relação aos planos difratantes. Se o cristal tivesse a superficie paralela aos planos refletores ($\phi_0=0$), o feixe plano de altura c contido no plano vertical, seria refletido no plano também vertical QRCR' e teria a mesma altura vertical c. O cristal com ângulo de corte ϕ_0 , para o mesmo feixe incidente reflete entretanto segundo o plano QRAR'' inclinado do ângulo α com relação ao anteior e de largura c''> c.

Esquema mostrando a rotação do cristal em torno do eixo x.

37

Esquema da rotação do cristal em torno do eixo x. Mostra o comportamento do feixe difratado na superfície A'B'Q'M'. Este feixe é inclinado de um ângulo em relação ao pl<u>a</u> no CR'RQ

(x',y',z') como as novas coordenadas em relação ao sistema S', isto ē:

$$x' = x$$

$$y' = y \cos \chi - z \sin \chi$$

$$z' = -y \sin \chi + z \cos \chi$$
(63)

ou seja, obtém-se da matriz transformação T.

$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \chi & -\sin \chi \\ 0 & \sin \chi & \cos \chi \end{bmatrix}.$$
 (64)

A figura ll, mostra um esquema geométrico de um cristal cortado com um ângulo o em relação aos planos refl<u>e</u> tores. Inicialmente o cristal estã fixo com sua base (plano ABCO) apoiada no plano xy do sistema de coordenadas cuja origem é tomada em O.

ABQM e o plano definido pela superfície inclina da do cristal e, a equação deste plano e:

$$\frac{x}{a} + \frac{z}{c} = 1$$
, (65)

onde a e c são as distâncias das interseções do plano com os e<u>i</u> xos x e z respectivamente. Ou ainda:

$$x + tg\phi_0 z - a = 0$$
, (66)

onde do triângulo retângulo AOM,

$$tg\phi_0 = a/c . \tag{67}$$

A normal a este plano N_s é então,

 $\vec{N}_{s} = (1, 0, tg\phi_{0})$ (68)

O ponto P extremo do vetor \overrightarrow{OP} , normal à superfi cie do cristal antes da rotação ē:

$$\overline{OP} = (a+1, 0, tg\phi_0)$$
 . (69)

O ponto P' resulta de rodar P ao redor do eixo x, de um ângulo χ , medido no sentido trigonométrico. Aplicando a transformação dada pelas equações (63) ao ponto P,obtém-se as coordenadas de P no sistema linha, e portanto teremos:

 $\overline{OP}'' = (a+1, -tg\phi, tg \phi').$ (71)

A normal ao plano A'B'Q'M'
$$\tilde{e}$$
:
 $\overline{OP}' - \overline{OA} = \overline{N}_{s'} = (1, -tg\phi, tg\phi')$. (72)

A equação deste plano serã:

 $x - tg\phi y + tg\phi^{t} z + K = 0$, (73)

onde, impondo a condição de que o plano deve passar por (a,0,0) resulta K=-a, ou seja:

$$x - tg\phi_{,y} + tg\phi_{,z} - a = 0$$
 (74)

ou

 $x \operatorname{ctg}_{0} - y \operatorname{sen}_{\chi} + z \cos_{\chi} - c = 0$. (75).

Na figura 10, podemos ver que a seção vertical do feixe incidente estã contido num plano que tem por equação

 $x + tg\theta_{R} \cdot y - a = 0$ (76)

A interseção do plano da superfície A'B'Q'M' (fig. ll), com o plano do feixe incidente é a reta comum aos planos dado pelas equações (74) e (76).

Sejam (m',n',p') as componentes de um vetor co<u>n</u> tido nessa linha (vetor diretor). Ele deve ser normal as normais a ambos os planos:

$$m' ctg\phi_{0} - n'sen\chi + p'cos\chi = 0$$

$$m' + n'tg\theta_{R} = 0$$
(77)

Ou seja:

$$(m',n',p') = (1,-ctge_B, \frac{ctg\phi_0+ctge_Bsen\chi}{\cos \chi}).(78)$$

Vamos escrever o vetor diretor da reta AR" que define a direção do feixe difratado que passa por A. A equação da reta AR" é:

$$y = (x-a)ctge_B$$
 (79)
 $z = 0$.

Seja (m,n,p) o vetor diretor dessa reta. Então, as relações entre suas componentes é dada por,

$$mctge_{B} - n = 0$$
 (80)
p.1 = 0 ,

fazendo m=1, obtemos

$$(m,n,p) = (1,ctge_{R},0)$$
 (81)

Os vetores (m,n,p) e (m',n',p') estão sobre o plano AR"NR"' (ver fig. 12).

O produto vetorial desses 2 vetores ē um vetor N, normal a este plano:

$$\vec{N} = (\Gamma ctg\theta_{B}, -\Gamma, 2ctg\theta_{B})$$
(82)

onde r ē dado por,

г

$$= \frac{\operatorname{ctg}_{\phi_0} + \operatorname{ctg}_{B}\operatorname{sen}_{\chi}}{\operatorname{cos}_{\chi}} . \tag{83}$$

O vetor Nº normal ao plano CR'QR ē :

 $\vec{N}' = (\operatorname{ctg}_{\mathfrak{B}}, -1, 0) . \tag{84}$

Finalmente, o'ângulo procurado é:

$$\cos \alpha = \frac{\vec{N} \cdot \vec{N}'}{\left| \vec{N} \right| \left| \vec{N}' \right|}$$
(85)

Portanto,

$$\cos_{\alpha} = \frac{\Gamma (ctg^2 \theta_B + 1)}{(1 + ctg^2 \theta_B)^{1/2} \left[\Gamma^2 (1 + ctg^2 \theta_B) + 4ctg^2 \theta_B \right]^{1/2}}$$
(86)

ou simplificando:

$$\cos \alpha = \frac{1}{(1 + \frac{4\cos^2 \theta_{\rm B}}{\Gamma^2})^{1/2}}$$
 (87)

A equação (83) para Γ , pode ser simplificada quando escrita em têrmos da variável de assimetria β e do ângulo¢'. Usando as equações (62) e a definição de β dada pela equação (42) na seção 4 do capitulo II, podemos escrever:

$$\Gamma = \frac{\beta+1}{tg\phi'} \qquad (88)$$

Tambén usando as equações (62), podenos obter a relação entre os ângulos $\phi, \phi' = \phi_0$:

$$zg^{2}\phi' = tg^{2}\phi_{0} - tg\phi \qquad (89)$$

Substituindo na equação (87) o valor de Γ dado pela equação (88), tg¢ dado pela equação (89), a definição de β e simplificando, obtemos:

$$\cos \alpha = \left[1 + \frac{4 \sin^2 \theta_{\rm B} (\frac{t g^2 \phi_0}{t g^2 \theta_{\rm B}} - \beta^2)}{(\beta + 1)^2} \right]^{-1/2} . \quad (90)$$

Nesta equação observamos que α é função da variável β e depende do parâmetro ϕ_0 , assim como do ângulo de Bragg.

Chamaremos de constante de corte do cristal à re

$$k = \frac{tg \phi_0}{tg \theta_B} , \qquad (91)$$

que obviamente sera sempre $|k| > |\beta|$ pois $|\phi| > |\phi|$. E, portanto a equação (91) torna-se

$$\cos \alpha = \left[1 + \frac{4 \sin^2 \theta_{B} (k^{2} - \beta^{2})}{(\beta + 1)^{2}} \right]^{-1/2} . \quad (92)$$

Esta equação mostra que para a descrição da r<u>e</u> flexão assimétrica não é suficiente usar só o parâmetro de a<u>s</u> simetria, seja β ou o R definidos anteriormente. Cristais cortados sob ângulos ϕ_0 diferentes produzirão diferentes giros do feixe difratado mesmo para idênticos valores de B.

E necessário introduzir mais um parâmetro para levar esse fato em conta. O parâmetro que parece mais adequado é o k definido como constante de corte do cristal.

Isto demonstra que o método de Evans,Hirsch & Kellar de girar o cristal cortado com ângulos ϕ_0 em torno da normal aos planos de Bragg, distorce os resultados pois altera a forma do feixe difratado em forma diferente do que foi por eles prevista.

4. Estudo da função que descreve o angulo α.

A equação (92) é da forma:

$$f(\beta) = \frac{1}{\cos^2 \alpha} = 1 + A \frac{k^2 - \beta^2}{(\beta^2 + 1)^2}, \qquad (93)$$

onde A=4 sen² $\theta_{\rm B}$.

Basta estudar a função

$$g(\beta) = A - \frac{k^2 - \beta^2}{(\beta^2 + 1)^2},$$
 (94)

pois f(β) e g(β) diferem en uma translação igual a unidade.

A função g(β) apresenta para todo valor de k singularidade em β =-1, zeros em β =± k, no caso |k|>1, possue um mínimo em β =-k², e no caso |k|< 1 apresenta um máximo em $\beta = k^2$.

Apresentam-se 3 casos diferentes segundo o valor do parâmetro de corte k seja maior,menor ou igual a 1. As Figs. 13 (a), (b) e (c) representam a função f(β)= $\frac{1}{\cos^2 \alpha}$ para os casos k>1,k=1 e k<1 respectivamente. Pode ver-se que o comport<u>a</u> mento do cristal é diferente em cada caso.

FIG. 13

Os gráficos a, b,e c ,mostram o comportamento da função $f(\beta) = 1/\cos^2 \alpha$, nos casos em que k>1, k=1 e k<1.

Gráfico da função $f(\beta) = 1/\cos^2 \alpha$, para a reflexão assimétrica Ge₍₁₁₁₎. O ângulo de corte para este cristal é $\phi_0 = 18.5 \pm 0,2$

Sendo que a função $f(\beta)$ deve necessariamente ser maior do que a unidade, resulta que ela so tem sentido físico no intervalo $|\beta| < k$.

Alēm do mais no caso k>l, nos intervalos l<β<k e -l>β>-k, o feixe refletido penetra dentro do cristal. Isto faz com que as condições de contorno com que foram resolvidas as equações diferenciais no Capītulo II não sejam mais válidas.

A consideração desses casos necessitaria resolver de novo aquelas equações com as condições de contorno adequadas.

Em outros tērmos a parte vālida da anālise feita estā limitada ao intervalo -1<ß<l para k>l. No caso k<l, a an<u>ā</u> lise ē vālida no intervalo -k<ß<k.

Na fig. 14 é representada uma aplicação da teoria,com o comportamento geral da função f(ß), para o caso do Ge(111), com constante de corte k=1,53.

CAPITULO IV

PARTE EXPERIMENTAL

H.Generalidades

Neste experimento utilizamos os seguintes equipamentos convencionais de produção e deteção de raios-X:

- a) Gerador de raios-X PW 1140/00/60,
 b) Goniômetro horizontal PW 1380/60,
 c) Detetor de cintilação PW 1964/30,
- d) Painel eletrônico de medidas composto de scaler (PV 4234);timer(PV 4262);ratemeter(PV 1362);amplificador e analisador de altura de pulsos (PV 4280),etc.

Estes aparelhos são todos de fabricação Philips. Mediante algumas adaptações foi possível a util<u>i</u> zação deste difratômetro projetado para trabalho em pó,como um difratômetro de monocristal. Um goniostado pertencente aos equ<u>i</u> pamentos do difratômetro de baixo ângulo de marca Rigaku,foi <u>a</u> daptado no lugar do eixo suporte de amostra do goniômetro da

Philips horizontal.

Tivemos de projetar e construir na nossa oficina mecânica as seguintes peças de adaptação:

a) Eixo suporte para o goniostato;

b) Suporte do sistema de fendas horizontal e ve<u>r</u> tical,sendo que a horizontal e provida de abertura regulavel e de movimento de translação;

c) Suporte para o detetor de radiação.

O sistema de monocromatização e colimação do fei xe incidente esquematizado na fig. 15, conjunto 6, faz parte daquele construído por Cardoso e Caticha-Ellis (7) na construção

FIG. 15

Esquema mostrando a disposição do arranjo experimental.

 Tubo de Raios-X. (2) Colimador. (3) Monocromador I, com ajustes de translação horizontal e vertical, arco sobre a cabeça goniométrica e ajuste do ângulo 0.
 (4) Fenda I com respectivo ajuste. (5) Fenda II com respectivo ajuste. (6) Base de aço, suporte de (2), (3), (4) e (5) em (1). (7) Goniostato de 4 eixos completo.
 (8) Cristal em análise. (9) Detector com sistema de fendas horizontal e vertical.

ω

do Nicrodensitômetro de raios-X. Este sistema é de muita precisão,permitindo um ajuste fino no ângulo de Bragg para o monocr<u>o</u> mador I (fig. 15) na ordem de 0,005⁰. As fendas I e II circul<u>a</u> res,permitem serem ajustadas independentemente e com muita precisão (ajuste muito menores do que 10µm).

O goniostato de circulo completo é esquematizado na figura 16.0s eixos $\hat{e}_{\omega}, \hat{e}_{\phi}$ e \hat{e}_{χ} , são eixos independentes, permitindo o ajuste espacial da amostra para a obtenção da reflexão desejada. O eixo 20 permite ajustar o ângulo que o detetor fo<u>r</u> ma com o feixe incidente. A mesa do goniostato vista de cima, acha-se esquematizada na figura 15.

A amostra é fixa sobre uma cabeça goniométrica que possue dois arcos e duas translações perpendiculares,permi tindo o alinhamento da mesma.

Quando o goniômetro encontra-se alinhado,o feixe de raios-X passa pelo centro do arco χ do goniostato e incide sobre a amostra formando um ângulo reto com o eixo \tilde{e}_{μ} .

O sistema mecânico do goniostato,permite a ada<u>p</u> tação de um motor sincrono,para fazer a varredura continua do arco χ,se necessário.

A divergência do feixe usado sobre a amostra é delimitada pela largura mosaico do monocromador I e pela abertura das fendas circulares I e II.

2. Alinhamento do Difratômetro

No processo de alinhamento do difratometro cons<u>e</u> gue-se o correto posicionamento de colimadores,fendas,e em geral de todo o goniômetro,de mod**o** a que o feixe incidente,jã m<u>o</u>

nocromatizado, passe pelo centro do circulo χ , sobre o qual deve ficar a amostra, e seja perpendicular ao eixo ω ; os eixos ϕ , χ e ω devem cortar-se nesse mesmo ponto. O alinhamento do fe<u>i</u> xe incidente inclui a regulagem das posições do monocromador I, das fendas I e II, assim como do tubo de raios-X, que estritame<u>n</u> te não formam parte do difratômetro.

É necessário ajustar posteriormente o discriminador de altura de pulsos (linha de base e largura da janela)p<u>a</u> ra a radiação usada,a que nestas medidas foi a CuK_e.

O processo de alinhamento é uma operação delic<u>a</u> da e longa que requer os máximos cuidados para atingir as cond<u>i</u> ções geométricas e físicas ideais sem as quais as medidas estariam afetadas de érros sistemáticos grosseiros, independentes dos que normalmente são introduzidos durante o processo de medida por efeito das fendas, largura de foco, planaridade de amostra, d<u>i</u> vergência do feixe, etc.

Contudo,e apesar de tratar-se de um processo fun damental para a realização das medidas,ele não serã descrito neste trabalho. Excelentes descrições cobrindo diferentes aspe<u>c</u> tos encontram-se em várias outras teses geradas neste Grupo (Cardoso(8),Imakuma(21),Parente(30),Pimentel(32),Campos(5), Portugal Postigo(33),etc.

O procedimento geral para alinhamento do difratômetro Philips encontra-se em detalhes no manual correspondente.

3.Orientação do cristal cortado assimetricamente.

O cristal eta formado de um unico bloco contendo uma superfície paralela aos planos refle**tores** e outra inclinada de um angulo ϕ_n em relação aos mesmos.

Esquema do goniostato de 4 círculos, mostrando os ângulos de Euler.

FIG. 17

Esquema da reflexão no cristal cortado assimétricamente com o ângulo ϕ_0 em relação aos planos difrantantes. Na figura ilustra o caso em que $\chi = 0^0$, que corresponde a di fração simétrica.

O cristal \tilde{e} fixo sobre a cabeça gonionétrica com os planos refletores praticamente perpendiculares ao eixo \hat{e}_{χ} .Para isso usa-se primeiro a face paralela aos planos refletores.

O detetor com a janela toda aberta ē fixo em um ângulo 2θ para a reflexão pela qual deseja-se orientar o cris-tal.

Posiciona-se o cristal no ângulo θ da reflexão escolhida,com o arco χ na posição OQ(veja fig. 17). Deste modo os eixos \hat{e}_{ϕ} e \hat{e}_{ω} são coincidentes. Gira-se o cristal em to<u>r</u> no do eixo \hat{e}_{ϕ} até obter-se o registro de máxima contagem. Aju<u>s</u> ta-se os arcos e translações da cabeça goniométrica.

O ângulo θ para a posição anterior tem um valor $\theta=\theta_0$ cujo valor é determinado até os centésimos de grau.Leva-se o cristal para $\chi=180$. Ajusta-se o ângulo θ no dial até obter-se máxima contagem,o ângulo lido é chamado de θ_{180} .Tomase a média

$$\theta_{m} = \frac{\theta_{180} + \theta_{0}}{2}$$

e coloca-se o dial em θ_m . Ajusta o arco ϕ atë obter-se a māxima contagem. Volta-se novamente em $\chi=0$? e repete-se o processo atë obter-se igual contagem em $\chi=0$? e $\chi=180$? para um mesmo ângulo θ .

Repete-se o processo para χ =900 e 2700. Após este processo os planos refletores estão bem orientados. Para estudar o comportamento do corte assimétrico,gira-se o cristal de 1800 através do eixo \hat{e}_{ϕ} e ajusta-se a translação sobre a c<u>a</u> beça goniométrica para que o feixe difratada caia no centro do detetor.

Da mesma maneira com que foi fixado o cristal na cabeça goniométrica (fig. 17), nas posições em que a leitu-

ra em χ são iguais à OQ e 1809,tem-se reflexões"equivalentes" à reflexão simétrica portanto as contagens em $\chi=0Q$ e 1800 de-vem ser iguais. Normalmente isto não ocorre,tendo-se a necess<u>i</u> dade de se ajustar o arco da cabeça goniométrica cujo eixo é p<u>a</u> ralelo ao eixo ê_v.

Para realizar este ajuste procede-se da seguinte maneira:determina-se N_0 ,isto ē, a contagem com o cristal em a posição $\chi=0^\circ$,leva-o em $\chi=180^\circ$ e determina-se N_{180} ;ajusta-se o arco da cabeça goniométrica até obter-se uma contagem N_m igual a:

$$N_{\rm m} = \frac{N_0 + N_{180}}{2}$$

Repete-se o processo sucessivas vezes até ter-se a mesma cont<u>a</u> gem em ambas as posições.

Como o ato de tocar no arco da cabeça goniomētr<u>i</u> ca pode provocar uma ligeira desorientação do cristal é conven<u>i</u> ente checar o alinhamento,voltando a reflexão da superfície paralela aos planos refletores.

Com a superficie inclinada nas posições com χ igual a 90º e 270º os resultados são diferentes como mostramos nos capítulos anteriores, não podendo então ser usados como ref<u>e</u> rências(o que foi observado também por Mathieson(27)), e contr<u>a</u> ria a sugestão feita por Bragg (3). Para aquelas posições são atingidos os limites de assimetria.

No nosso caso, o cristal usado é o germânio; o processo de orientação é feito usando a reflexão (333). Esta r<u>e</u> flexão tem a vantagem de ter o ângulo de Bragg em torno de 45º para a radiação usada e o feixe refletido não toca o suporte da cabeça goniométrica nas posições de χ iguais a 90º e 270º.Após orientar o cristal pela reflexão (333),o detetor e o cristal são levados acopladamente a posição da reflexão (111) a qual é então objeto de estudo.

Durante a orientação do cristal pela reflexão (333) procura-se observar se naquelas posições de χ (iguais a 09,909,1809 e 2709) usadas como referência não hã a coincidência de ter-se picos de difração multiplas,pois no caso afirmativo ter-se-ia contagens alteradas de até ± 20% o que logica-mente perturbaria as medidas.

4.Preparação da amostra.

Cortou-se dois cristais de Germânio de um mesmo bloco,com una de suas superfícies paralela aos planos (111) e outra inclinada com um ângulo ϕ_0 em relação a aqueles planos.A forma desses critais e esquematizada na figura 1. O ângulo ϕ_0 para cada uma das amostras é aproximadamente 169 e 189. Um med<u>i</u> da com maios precisão daquele ângulo foi feita após ter-se o cristal perfeitamente polido.

a) <u>Polimento mecânico</u>. Após cortá-los,as superfícies plana e i<u>n</u> clinada de cada cristal foram desbastadas com lixas 320,420 e 600 sucessivamente. Posteriormente foram polidas mecanicamente sobre um feltro umedecido regularmente com suspensão aquosa de alumina,obedecendo a seguinte ordem decrescente de grãos:l5µm, l µm,0,3 µm e 0,05 µm. Para cada uma das suspensões usa-se um unico feltro,fixo sobre um disco que gira com velocidade contr<u>o</u> lada. A passagem de um grão para o outro era feita quando se <u>a</u> tingia a honogeneidade na profundicade e no número de riscos com um certo grão.

Para que o desbaste e polimento não modificasse o ângulo de corte e também não abaulasse os cantos do cristal,

este foi fixado no interior de um cilindro ôco de acrilico,com a superficie coincidindo com sua seção transveral. Esta fixação foi feita com cera carnaúba.

. Para cada uma das faces do cristal procurou-se obter um mesmo polimento,fazendo as mesmas sequências de oper<u>a</u> ções e usando os mesmos feltros de polimento.

Como veremos no capítulo sobre resultados experimentais,as medidas obtidas com as superfícies paralela e inclinada foram diferentes,também as medidas para a superfície <u>pa</u> ralela variavam,dependendo da região com o feixe incidente banhava a amostra. Estes resultados iniciais mostraram que os r<u>e</u> sultados dependem em forma muito crítica do estado da superfície e que era então necessário obter um grau de homogeneidade e reproducibilidade bem superior ao atingido mediante polimento mecânico. Isto é,mesmo usando tamanho de grão de 0,05 μ m,a r<u>e</u> de cristalina fica muito perturbada dando resultados que variam em forma aleatória de ponto a ponto.

b) <u>Polimento químico (Etching)</u>. Existe na literatura sobre pol<u>i</u> mento químico diversos compostos recomendados para ser usados sobre o cristal de Germânio. Escolhemos entre eles,um dos quais para o polimento a temperatura ambiente,o tempo de ataque fosse mais prolongado.

> A solução escolhida tem as seguinte composição: 3 partes em volume de HF.

5 partes em volume de HNO3,

3 partes em volume de acido acético.

Para esta solução(20) o tempo de ataque seria então entre 2 a 3 minutos e temperatura ambiente. Foi feito um polimento banha<u>n</u> do todo o cristal na solução acima,de modo que as duas superficies a serem usadas ficassem em contato direto com a solução,que foi constantemente agitada.

O polimento descrito acima,foi realizado sobre a amostra de Ge com o ângulo ϕ_0 =169. Os resultados também não foram satisfatórios. Isto levou-nos a modificar o processo de polimento químico e de fato a transformã-lo num processo químico-mecânico.

c) <u>Polimento químico-mecânico</u>. Usou-se a solução acima diluida em 10 partes de água destilada e a imersão do cristal na solução, é agora substituída por um polimento mecânico das superfícies do cristal, sobre um feltro fixo a uma lâmina de vidro e que é umedecido pela solução diluida citada. O tempo de poli-mento para as duas superfícies é controlado para serem iguais. Este polimento foi feito sobre a amostra com ϕ_0 =18,59.

Em ambos os itens a) sobre polimento mecânico e c) sobre o polimento quimico-mecânico,o cristal foi movimentado sobre o feltro seguindo uma trajetória em forma de "8" para evitar induzir orientações superficiais preferenciais no polimento.

Como é mostrado mais adiante o processo químicomecânico introduzido,resultou bastante satisfatório e permitiu •obter resultados reproducíveis ponto'a ponto,assim como perfis de linha de formas satisfatórias.

5.<u>Efeito do tratamento da superficie do cristal de Ge na inten</u> sidade e potência difratadas.

Nossas experiências provaram que a intensidade do feixe de raios difratada por um cristal de Ge,depende enorm<u>e</u> mente da qualidade do polimento mecânico e mesmo do polimento químico,isto e das condições da superfície.

Para o cristal de Ge cortado com um ângulo $\phi_0^{=}$ 18,59,fizemos um conjunto de medidas paras as reflexões simé-tricas,para cada tratamento dado à superfície. Estes resultados estão apresentados na seção anterior,e foram obtidos usando o

seguinte método:

- Apos cada tratamento superficial a amostra \bar{e} orientada no goniostato como foi descrito anteriormente. Variando a translação do cristal frente ao feixe incidente de modo a utilizar diferentes regiões do cristal,fizemos as medidas de potencia total,intensidade e varredura ω das reflexões simetr<u>i</u> cas para ambas as superícies do cristal com $\phi_{o}=18,59$.

O método de tratamento das superfícies foi apr<u>e</u> sentado na seção anterior. Daremos aqui mais detalhes sobre os polimentos.

Tratamento I.

O cristal é cortado,a superfície é ligeiramente desbastadas com lixa 600 e quando apresentar-se com uma certa homogeneidade no número e na profundidade dos riscos causados pelos grãos da lixa,inicia-se o polimento mecânico sobre o fe<u>l</u> tro. O feltro está fixo sobre um disco que gira com velocidade uniforme controlada,e é constantemente umedecido com uma sus-pensão aquosa que contém alumina com grãos de lum. Cessa o polimento quando a superfície apresentar-se com uma certa homogeneidade no número de riscos causados pelos grãos da alumina usada.

Tratamento II.

Sobre o cristal que possui o ângulo $\phi_0 = 18,59, fe_{\overline{Z}}$ se o polimento mecânico como descrito no item da seção 4,de<u>s</u> te capítulo.

Tratamento III.

Sobre o polimento mecânico obtido em II,fêz-se o polimento químico-mecânico,isto é, o polimento químico alt<u>e</u> rado como descrito no ítem c da seção 4,deste capítulo. O te<u>m</u> po de polimento para cada face,foi de 30 minutos.

Tratamento IV.

Sobre o polimento obtido em III,fêz-se novamente o polimento químico-mecânico citado. O tempo de polimento foi de 90 min,para cada face.

Tratamento V.

Sobre o polimento obtido em IV,efetuou-se novamente o polimento químico-mecânico citado. O tempo de polimento foi de 30 min,para cada face.

Após os tratamento I e II a superficie do cristal tornou-se bastante refletora da luz visivel,e após os tratamentos III,IV e V gradativamente as superficies foram torna<u>n</u> do-se opacas.

6.Medida do ângulo ϕ_0 .

O ângulo φ_o foi medido após o polimento mecânico. Dois métodos foram usado. Num deles usou-se a câmara de Laue,e no outro o próprio goniostato do difratômetro e o´feixe de um laser de He-Ne.

a. Medida de ϕ_0 com a câmara de Laue. O método usando a câmara de Laue é esquematizado na figura 18. o cristal é fixo pela

superficie que não é paralela aos planos em um suporte de super ficie plana,o qual permite rotação em torno da direção do feixe incidente. Faz-se uma exposição de aproximadamente 1/2 hora, protegendo a metade do filme com uma lâmina de chumbo,em seguida gira-se o cristal de 1809 em torno da direção do feixe incidente,troca-se a posição da lâmina de chumbo para proteger o o<u>u</u> tro lado do filme que jã havia sido exposto e faz-se uma nova exposição. O valor de ϕ_0 é calculado conhecendo-se as distân-cias x e y,indicadas na fig. 18, isto é,

tg
$$2\phi_0 = \frac{x}{y}$$

onde x é a metade da distância entre as duas manchas causadas por uma mesma reflexão devida aos planos refletores em estudo, e y é a distância filme-amostra.

O ângulo ϕ_0 medido por este metodo esta sujeito a êrro de posicionamento do cristal com relação ao arco χ e de medida nas distâncias ~ e y,sendo estas ultimas mais relevan-tes.

O êrro para a medida do ângulo φ_o devido a impr<u>a</u> cisão em x e y foi avaliado em Δφ_o=1,059.Sendo que:

tg $\phi = tg\phi_0$ sen χ .

As medidas devem ser feitas para χ =909 e 2709,onde a direção do eixo χ coincide com a direção do feixe incidente. Um êrro $\Delta\chi$ =59 ou l09 resulta em $\Delta\phi_0$ =0,079 ou 0,349 respectivamente. Um êrro acima de $\Delta\chi$ =59 dificilmente ocorre,sendo portanto desprezada a sua contribuição.

b. <u>Método do goniômetro e o laser</u>. O outro método (ver fig.19) consiste em fazer passar pelo centro do goniostato e por uma fe<u>n</u> da f posicionada em um ângulo θ_0 , um feixe de luz de um laser.O cristal é bem orientado com o feixe de raios-x usando a reflexão

Esquema mostrando o arranjo usado para a medida do ângulo ϕ_0 com a Câmera de Laue.

Esquema mostrando a montagem do goniostato e de um laser He-Ne usados para a determinação do ângulo ϕ_0 .

do lado da superfície paralela aos planos refletores. O feixe de luz do laser é refletido segundo os ângulos $\theta_R = \theta_{R'}$ nas posições de máxima assimetria,pois as superfícies polidas do cristal são boas refletoras de luz. Assim o ângulo ϕ_0 pode ser obtido pela diferença:

 $4 \phi_0 = \theta_R - \theta_R$.

O êrro na medida de ϕ_0 por este processo é de-terminado pela largura horizontal do feixe do laser. O êrro avaliado na medida do ângulo θ_p ou θ_p , foi de 0,10.

7. Escolha do monocromador, fendas e radiação.

O monocromador e as fendas I e II selecionam o comprimento de onda desejado e uma distribuição de intensidade o mais uniforme possível sobre o cristal em estudo.

Nas medidas com amostra de superfície inclinada em relação aos planos cristalográficos em especial nas posições de concentração e alargamento do feixe difratado,precisa-se e<u>s</u> colher as dimensões das fendas I e II,para que o feixe incide<u>n</u> te seja completamente interceptado pela amostra. Assim, o par de fendas I e II escolhido tem diâmetros iguais a 0,4mm,separ<u>a</u> dos por uma distância de 150 mm.

O feixe de raios-X incidente sobre o monocromador I é delimitado pelas fendas do colimador de entrada (2 na figura 15) com uma divergência relativamente alta. O feixe refletido pelo monocromador I é selecionado por ele próprio, <u>a</u> penas permitindo para este feixe uma divergência horizontal da ordem da largura mosaico do cristal (n) e a divergência vertical é limitada pelo feixe nele incidente.

Por esse motivo,a escolha do cristal monocromador I e das fenda I e II,situadas a uma distância fixa,estão i<u>n</u>
terligadas pela condição de que a largura angular n da distribuição mosaiço do cristal seja superior a divergência permitida pelo conjunto dessas fendas. Em caso contrário não será possível obter um feixe de intensidade uniforme.

Assim,na nossa primeira tentativa usando a refl<u>e</u> xão (111) de um cristal de Ge como monocromador I,com n≃0,19 d<u>e</u> terminado por Cicero Campos,S.L.Chang e S.Caticha-Ellis (6) e com o conjunto de fendas de 0,4mm(divergência de 0,159 com rel<u>a</u> ção ao feixe médio) resultou numa distribuição de intensidade não uniforme.

Escolhemos finalmente um cristal de LiF trat<u>a</u> do de modo especial sob irradiação por neutrons (Susuki,(36)), com o qual obtivemos boa uniformidade na seção do feixe incidente, limitado pelo par de fendas com 0,4 mm de diâmetro. E<u>s</u> se cristal apresenta uma alta refletividade e uma largura mosaico de ao redor de 0,4⁰.

A figura 20 mostra a uniformidade do feixe c<u>o</u> limado,quando usamos a reflexão (200) do LiF.

FIG. 20

A fotografia mostra a distribuição de intensidade do feixe colimado pelo par de fendas I e II com 0,4mm de diâmetro. Radiação CuK_{β}, monocromador I LiF₍₂₀₀₎. a, b, e c referem-se ao filme colocado nas posições: a) após a fenda II. b) no centro do goniostato. c) junto ao detetor de radiação. Tensão 40KV, corrente 20mA, tempo de exposição: 30 segundos e 60 segundos.

a)

b)

FIG. 21

Fotografias da montagem experimental.

- a) Mostra o goniostato e o conjunto de fendas horizontal e vertical frente ao detetor.
- b) Mostra a montagem como esquematizado na figura 15.

CAPITULO V

RESULTADOS EXPERIMENTAIS

k. Característica do feixe incidente.

Com um monocromador I de LiF (reflexão 200) e o jogo de fendas I e II, selecionamos a radiação β proveniente de um tudo de raios-X com alvo de cobre.

O feixe difratado pelo monocromador I e colimado pelas fendas I e II, serã denominado feixe incidente. Sua i<u>n</u> tensidade estã distribuída de forma homogênea, como pode ser o<u>b</u> servado na fig. 20 e também na fig. 22, que apresenta o seu perfil.

A distribuição da densidade de energia do feixe incidente é obtida fazendo uma varredura do mesmo, com uma jan<u>e</u> la frente ao detetor limitada por duas fendas cruzadas, uma horizontal com 0,10mm de altura, e outra vertical com 0,03mm de largura. Estas foram posicionadas de forma que durante a varredura, a janela percorre o feixe incidente cruzando pelo centro da sua seção (vide esquema inserido na Fig. 22).

Praticamente, como a varredura acima e feita pe lo detetor que percorre um arco com centro diferente do "ponto espalhador", tivemos que determinar uma relação geométrica que expressa a divergência do feixe incidente δ em função do ângulo medido v. Como mostra o esquema apresentado na figura 23; O é o ponto onde se cruzam os feixes de máxima divergência definido pelo sistema de fendas I e II. C é o centro do goniosta to; OC=f é a distância do foco (O) ao centro (C). D'B é o arco percorrido pelo detetor, e b é o raio do goniômetro. Da figura 23. obtém-se a relação:

FIG. 22

Distribuição da densidade de Energia do feixe incidente na região central da seção reta deste feixe. O esquema inserido representa o percurso das fendas (horizontal e vertical) cru zadas frente ao feixe incidente.

$$tg \delta = \frac{bsen v}{f + bcos v}, \qquad (95)$$

onde ve ô são os ângulos dados pelo arco O'B, quando visto do . centro do goniostato (C) e do foco, respectivamente.

A figura 24, mostra um desenho em escala do ca minho ótico dos feixes provenientes do foco pontual F nas condi ções usadas na experiência. Os feixes de máxima divergência que atingem a amostra parecem provir de um "foco aparente" situado entre as fendas I e II (ponto O na Fig. 24).

O ângulo da divergência māxima calculado pelas limitações das fendas fI e fII e 0,1529. A medida deste ângulo obtida atraves da "varredura 20" do feixe incidente e usando a expressão (95) e de 0,137⁰, o que e um bom acordo, pois o feixe não termina em forma abrupta.

A medida da potência total do feixe incidente é obtida colocando o detetor frente ao feixe direto com a janela toda aberta,de modo a receber toda a radiação que nele chega. Este processo de medida não pode ser usado se a potência do feixe é muito grande podendo ocasionar danos ao detetor,o que não é o nosso caso,pois a contagem por unidade de tempo é ainda menor que o inverso do tempo morto do detetor de cintalação usado.

O intervalo de tempo de 20 segundos para as co<u>n</u> tagens nas medidas da potência total e nas medidas da intensidade foi o mesmo em todas as medidas. Também o par de fendas h<u>o</u> rizontal e vertical citado na medida da intensidade do feixe i<u>n</u> cidente é o mesmo usado em outras medidas da intensidade.

O número de pulsos obtidos nas medidas da potê<u>n</u> cia total P_{oT} e intensidade do feixe incidente P_{oA} para uma m<u>é</u> dia tomada entre 5 medidas, durante 20 segundos foram:

 $P_{oT} = 2 111 600 e P_{oA} = 27 100$, onde as medidas de $P_{oT} = P_{oA}$ foram obtidas como descrito acima,

FIG. 23 .

Esquema da geometria envolvida na conversão do ângulo medido vno ângulo de divergência do feixe incidente δ .

> OC = fCB = CO'= b = raio do difratômetro.

Desenho em escala do caminho ótico do feixe proveniente do foco F no Tubo de Raios-X. C- Colimador. M- Monocromador I. fI e fII- Fendas circulares. c- Centro do goniostato. δ_{max} - ângulo máximo de divergência do feixe incidente. v_{max} - ângulo máximo obtido na varredura 20 pelo detector.

σ ∞

com o aparelho operando com a tensão de 45kV e 35 mA,condições estas que foram mantidas para todas as medidas.

2. Medidas de potência e intensidade.

No estudo de monocromadores as medidas que apr<u>e</u> sentam grande interesse são a potência total do feixe e a inte<u>n</u> sidade de pico uma vez que geralmente os monocromadores permanecem fixos no ângulo $\theta_{\rm B}$ para a radiação usada, difratando pa<u>r</u> te da energia contida no feixe incidente.

Para as amostras de Germânio e Silício com supe<u>r</u> fícies paralelas e inclinadas aos planos (lll) fizemos as se-guintes medidas:

- i) Varredura ω;
- ii) Potência total do feixe difratado;
- iii) Intensidade do feixe difratado.

i) <u>Varredura ω </u>. Não necessita comentários. O o<u>b</u> jetivo é verificar se na região cristalina utilizada temos rea<u>l</u> mente um monocristal. Esta medida é importante também pois, em função do tratamento superficial foi encontrado, nos primeiros estágios, regiões com refletividades bem diferentes indicando inomogeneidades na distribuição dos danos da rede na camada <u>su</u> perficial. Veremos mais na frente como um tratamento superfic<u>i</u> bem mais sofisticado permitiu fazer (quase) desaparecer essas diferenças.

ii) <u>Potência total do feixe difratado (P_{T})</u>. A medida da potência total do feixe difratado é obtida fixando a <u>a</u> mostra no ângulo $\theta_{\rm B}$ no qual se obtém a máxima contagem. O det<u>e</u> tor é fixo no ângulo 2 $\theta_{\rm B}$ com a janela toda aberta, de modo a r<u>e</u> ceber integralmente o feixe refletido pelo cristal. A contagem durante um intervalo de tempo fixo, e proporcional a potência total do feixe difratado pela amostra.

A quantidade medida à comparar com a teoria \bar{e} a razão entre a potência do feixe difratado P_{IT} e a potência do feixe incidente P_{oT},isto \bar{e} : p_I= P_{IT}/P_{oT}.

iii) <u>Intensidade do feixe difratado(i1)</u> . A inte<u>n</u> sidade média espacial do feixe difratado é determinada conhece<u>n</u> do-se P_T potência total do feixe, e a área da seção reta do me<u>s</u> mo, isto é, por definição a intensidade I é:

$$I = \frac{P_T}{A} . \tag{96}$$

Em nosso caso a potência total e a ārea do feixe são variāveis em função da assimetria (ou seja, do ângulo ϕ e do parâmetro de corte k). A medida precisa da ārea para cada va lor de ϕ , torna-se difícil, uma vez que a seção do feixe difra tado tem forma elíptica e os seus eixos são inclinados em rela ção à normal ao plano do difratômetro.

Uma fenda de ārea a, muito menor do que a ārea A da seção do feixe difratado, posicionada no centro desta seção, permite a passagem de uma potência igual a P_{la}. A intens<u>i</u> dade local do feixe difratado é dada por:

$$I_{la} = \frac{P_{la}}{a} \qquad (97)$$

Do mesmo modo para o feixe incidente,tem-se:

$$I_{oa} = \frac{P_{oa}}{a} \qquad (98)$$

Ambas as medidas (97) e (98) fornecem intensidades locais médias ao redor de um ponto dado dentro do feixe. Entretanto, sendo que a distribuição (perfil) não é linear, esses valores dependem da área <u>a</u> da fenda. As medidas realizadas foram tomadas no máximo dos perfis incidente e difratado, o que implica na existência de um critério que permite repro-duzir as medidas. Ademais, estando perto do máximo a variação de intensidade devido a um pequeno êrro no posicionamento da fenda é mínimo, Em consequência, a relação:

$$i = \frac{I_{1a}}{I_{0a}} = \frac{P_{1a}}{P_{0a}}$$
(99)

para fendas de ārea a << A ē praticamente independente do valor de <u>a</u>, isto ē, tem sentido fīsico comparar os valores obtidos usando a relação (99) com os valores previstos pela teoria (vide Cap.II).

3. Reflexão Ge(111) no caso simétrico.

Apresentamos nesta seção os resultados da varr<u>e</u> dura ω, potência total e intensidade do feixe difratado, para a reflexão simétrica do Ge(111).

Apresentam-se dois casos de reflexão simétrica:

a) reflexão simétrica num cristal com a superf<u>í</u> cie paralela aos planos refletores.

b) reflexão simētrica (R=1 ou β =0) num cristal cortado com a superfície formando um ângulo ϕ_0 com os planos refletores.

Estes dois casos tem sido confundidos na liter<u>a</u> tura após os trabalhos de Evans,Hirsch & Kellar. Como já vimos teoricamente no Cap.III, eles apresentam distribuições espa÷÷ ciais diferentes na intensidade do feixe difratado. Como se v<u>e</u> rá nas seções seguintes deste Capítulo, isto foi verificado e<u>x</u> perimentalmente.

As figuras 25, 26 e 27 mostram os perfis ω obt<u>i</u> dos em ambos os casos para os diferentes tratamentos superfi-- ciais feitos. A tabela l, mostra os valores obtidos para a potência e intensidade do feixe difratado obtido pela mesma re-gião do cristal usada nas varreduras ω.

Os diagramas na figura 25, mostram as varreduras w para a reflexão simétrica do Ge(111) na superfície paralela. O diagrama 25(a) foi obtido com a superfície da amostra após ser serrada de um bloco maior, sem sofrer tratamento. Observase ao microscópio sobre esta superfície a existência de pequenas estrias causadas pela serra de corte.

O diagrama 25(a) foi obtido com a mesma superf<u>í</u> cie, apos o tratamento I citado na seção 5 do Cap.IV.

Os diagramas 25(c), 25(d) e 25(e) provem de di ferentes áreas da mesma superfície após o tratamento II.

A Fig. 26 mostra os perfis ω provenientes de 3 areas diferentes para a reflexão simétrica na superficie paral<u>e</u> la (Figs. 26(a), 26(b) e 26(c)) e inclinada (Figs. 26 (d), 26 (e) e 26(f)) após a aplicação sucessiva dos tratamentos II,III e IV. Observou-se que o tratamento químico-mecânico III feito após o II (mecânico), não introduziu modificações importantes talvez devido a sua curta duração. Entretanto, após o tratamen to IV aparecem modificações importantes. A forma dos perfis da reflexão na superficie paralela piorou, decrescendo as intens<u>i</u> dades e dando origem a picos múltiplos (Figs. 26(a), 26(b) e 26 (c)). Entretanto, na superficie inclinada com o mesmo tratamento a forma dos picos é bastante satisfatória (Figs. 26(d), 26(e) e 26(f)) e existe uma maior uniformidade.

Quando feito o tratamento V, essencialmente o mesmo que o IV, so que com maior duração e feito adicionalmente a aquele, obteve-se uma uniformização bastante razoãvel tanto para a superfície paralela (Figs. 27(a), 27(b) e 27(c)) e

Diagramas da varredura ω , para a reflexão simétrica Ge₍₁₁₁₎ da superfície paralela.

Diagrama a')-Superficie sem tratamento, apos ter sido cortada pela serra, o intervalo de varredura foi entre $\theta_i = 11,60^\circ e \theta_f = 12,90^\circ$. Diagrama a'')-Mesma superficie que originou a') apos sofrer o tra tamento I. O intervalo de varredura foi entre $\theta_i = 11,50^\circ e \theta_f = 13,00^\circ$. Diagramas a, b, c)- Mesma superficie da amostra que originou a' apos o tratamento II. Os 3 diagramas foram obtidos com o feixe incidindo em diferentes regiões da superficie do cristal. Em todos êles os in tervalos de varredura foram iguais; $\theta_i = 12,10^\circ e \theta_f = 12,60^\circ$.

FIG. 26

Diagramas de varredura ω para a reflexão simétrica Ge₍₁₁₁₎ na superfície paralela (a,b, c) e inclinada (d, e, f), após ter,se aplicado a estas superfícies a sequência de tratamento II, III, e IV. Os diagramas para ambas as superfícies foram obtidos variando a região de incidência sobre o cristal. O intervalo de varredura, o mesmo para todos os casos foi entre: Θ_i =12,10° e Θ_f =12,60°.

¥+

FIG. 27

Diagramas da varredura W, para a reflexão simétrica Ge nas superfícies paralela (a, b, c) e inclinada (d, e, f), apos ter-se aplicado a estas superfícies a sequência de tratamento II, III, IV e V. Os 3 diagramas para ambas as superfícies foram obtidas variando a região de incidência sobre o cristal. O intervalo de varredura, o mesmo para todos os casos foi entre $\Theta_i = 12,10^\circ$ e $\Theta_f = 12.60^\circ$.

-

TRATAMENTO DA	SUPERFICIE PARALELA							
SUPERFICIE	(a)		(b)		(c)			
DA AMOSTRA	РІТ	P _{1a}	^Р 1Т	P]a	P _{1T}	P _{la}		
CORTE COM SERRA	107300	2700	· · ······					
Ì	112635	5600						
I + Iļ	261872	10046	166834	7196	208919	10081		
I + II + III + IV	163950	8929	127917	5083	149178	5042		
I + II + III + IV +V	195356	7153	153435	5049	176770	5538		
······································	SUPERFICIE INCLINADA							
	(d)		(e)	. į	(f)			
and a second	Ріт	Pla	^Р 1т	P _{la}	P _{1T}	Pla		
I + II			198531	5508				
I + II + III + IV	175300	5055	159790	5,367	165223	4437		
I + II + III + IV+ V	193200	5485	164500	4370	189500	4600		

TABELA 1

.

76

.

 ${\bf v} \in {\bf v}$

inclinada (Figs. 27 (d), 27 (e) e 27 (f)).

Este resultado mostra que o polimento químicomecânico realizado produz efeitos reproduzíveis o que sem dúvi da se deve a eliminação das camadas superficiais em que a rede do cristal fica muito distorcida pelo processo mecânico. O pr<u>o</u> cesso químico puro ("etching") também não da bom resultado po<u>r</u> que a reatividade é desigual sobre diferentes pontos da superfície, em particular sabe-se que a afloração de uma deslocação na superfície quando atacada químicamente produz um "etch-pit".

Medidas da potência e intensidade para a reflexão assimétri <u>ca- do Ge(111)</u>.

Medidas da potência total e intensidade do feixe difratado em função do ângulo de assimetria foram obtidas para o cristal de Germânio, com a superfície inclinada de um ângulo ϕ_0 =18,5⁰ em relação aos planos (111), após sua superfície rec<u>e</u> ber o tratamento II e os tratamentos II,III,IV e V.

O cristal posicionado em $\chi=0^{\circ}$, foi transladado frente ao feixe incidente com a finalidade de se obter uma região na qual o feixe difratado possuisse a maior intensidade. No caso do tratamento II esta região corresponde a posição (e) na Țabela l, e com o tratamento II,III,IV e V a região encontr<u>a</u> da corresponde a posição (d) da mesma tabela. Estas posições permaneceram fixas durante cada serie de medidas.

a) <u>Medida da potência total</u>. O cristal é levado sobre a cabeça goniométrica a posição χ =-32⁰ lido diretamente no arco do gonio<u>s</u> tato, a qual corresponde o ângulo de assimetria ϕ e a variável de assimetria ß dadas pelas equações (55) e (42) respectivamente.

Esta é a posição inicial para a medida da potência, pois como veremos para ângulos menores a seção transversal do feixe inc<u>i</u> dente excede a área da superfície assimétrica da amostra.

A potência do feixe difratado foi medida para χ , variando de 4⁰ em 4⁰, seguindo o método descrito no item ii) da seção anterior, até obter-se contagens no valor do background.

O angulo O que era ajustado para cada valor de χ , não diferia de mais de 0,02⁰ daquele lido quando $\chi=0^{0}$.

b) <u>Medida da intensidade</u>. Na medida da intensidade usamos uma fenda horizontal de 0,10 mm e outra vertical de 0,03 mm cruzadas, posicionadas de modo a interceptar o centro do feixe di-fratado como descrito a seguir.

Em $\chi=0^{\circ}$, a fenda horizontal é fixada na posição de máxima contagem. O cristal é levado sobre a cabeça goniométrica até a posição $\chi=-28^{\circ}$ e o ângulo θ ajustado dentro de 0,02° do valor anterior. Insere-se a fenda vertical e faz-se uma va<u>r</u> redura por passos de 0,01° em 2 θ . A máxima contagem obtida é a intensidade do centro da seção transversal do feixe difratado, para aquele valor de χ .

A posições de medida são exatamente as usadas p<u>a</u> ra a potência.

c) <u>Resultados das medidas</u>. Os valores de $p(\beta)$ e $i(\beta)$ medidos <u>pa</u> ra a reflexão (111) do Ge cortado com ângulo $\phi_0 = 18,5^{\circ}$, mostra-dos na Tabela 2, foram usados para construir os gráficos das Figs. 28 e 29 . Os pontos experimentais foram obtidos a inte<u>r</u> valos constantes do azimute χ , iguais a 4^o entre -32^o e 40^o. A figura 28 corresponde as medidas obtidas apos o tratamento superficial II e a fig. 29 apos o tratamento V.

TAJELA 2

			TRATAMENTO II				. TRATAMENTO II, III, IV ę V			
х (°)	¢ (°)	ß	P]a (contagen)	P _{lT} (contagen)	$i_1 = \frac{p_{1a}}{p_{0a}}$	$p_1 = \frac{P_1T}{P_0T}$	Pla. (contagen)	P _{lT} (contagen)	$i_1 = \frac{p_{1a}}{p_{0a}}$	Pj= <mark>PjT</mark> ØT
-32	-10,05	-0,812	-	392340	-	0,186	-	387119	-	0,183
-28	- 8,93	-0,720	-	382613	-	0,181	1550	369740	0,057	0,175
-24	- 7,75	-0,624	1973	338027	0,073	0,160	2100	329061	0,077	0,156
-20	- 6,53	-0,525	2538	306173	0,094	0,145	2600	300166	0,096	0,142
-16	- 5,27	-0,423	3100	281257	0,114	0,133	3255	275439	0,120	0,130
-12	- 3,98	-0,319	3688	262960	0,136	0,125	3900	250776	0,144	0,119
- 8	- 2,67	-0,214	4281	242272	0,158	0,115	4510	230307	0,170	0,109
- 4	- 1,34	-0,107	4894	221219	0,181	0,105	4940	211293	0,182	0,100
0	0,00	0,000	5508	198531	0,203	0,094	5550	192784	0,205	0,091
4	1,34	0,107	6352	176966	0,234	0,084	5990	165298	0,221	0,078
8	2,67	0,214	6948	154132	0,256	0,073	6540	149649	0,241	0,071
12	3,98	0,319	7375	135705	0,272	0,064	7640	130235	0,282	0,062
16	5,27	0,423	7770	114573	0,287	0,054	7790	113145	0,287	0,054
20	6,53	0,525	7680	95537	0,283	0,045	7180	95148	0,265	0,045
24	. 7,75	0,624	6580	77185	0,243	0,037	6630	78511	0,245	0,035
28	8,93	0,720	5410	60979	0,200	0,029	5430	6 36 34	0,200	0,030
32	10,05	0,812	3566	641758	0,135	0,020	3910	47983	0,144	0,023
36	11,13	0,902	3133	27872	0,079	0,013	2410	34171	0,089	0,016
40	12,14	0,986	494	7354	0,018	0,003	720	15332	0,027	0,007

Potência e Intensidade relativas para a reflexão assimétrica $Ge_{(111)}$, medidas para a amostra com $\phi_0 = 18,5^{\circ}$, apõs o tratamento II da superfície. a) Potência relativa, b) Intensidade relativa.

Potência e Intensidade relativas para a reflexão assimétrica Ge₍₁₁₁₎, medidas para a amostra com ϕ_0 = 18,5⁰, apõs o tratamento V da superfície. a) Potência relativa, b) Intensidade relativa.

FIG. 30.

Comparação entre os valores medidos para a Potência relativa após o tratamento II(cruzes) e após o tratamento V(pontos), e as curvas teóricas $p_1(\beta)$ para diferentes valores do parâme tro η da largura da distribuição mosaico.

Na Fig. 30 é feita a comparação entre os val<u>o</u> res medidos para a potência relativa $p_i(\theta)$ em ambos os casos (após tratamento II e V respectivamente) e as previsões teór<u>i</u> cas feitas para essa grandeza física no Cap.II (eq. 44). As curvas traçadas correspondem a quatro valores do parâmetro n (largura da distribuição mosaico), sendo que elas foram calc<u>u</u> ladas para os valores n=4,6,7 e 8'. Pode-se ver que os valo-res medidos são compatíveis com um valor de n bastante próximo de 6' e que o comportamento das medidas segue bastante bem a previsão teórica, com desvios perto dos valores extremos $\beta=\pm1$.

5. Medida do ângulo de rotação do feixe difratado.

Os resultados aqui obtidos comprovam o desenvo<u>l</u> vimento teórico do Cap.II. Para tal temos de medir o ângulo α de rotação do feixe difratado, quando variamos o ângulo de a<u>s</u> simetria ϕ , através da variação do ângulo χ medido sobre o <u>go</u> niostato.

Usamos aqui, a têcnică fotogrăfica para a dete-ção da distribuição espacial da intensidade do feixe difratado.

Adaptamos frente ao suporte de fendas do dete-tor um dispositivo provido de translação na direção normal ao plano do goniômetro. Fixamos a este dispositivo um envelope co<u>n</u> tendo 2 filmes fotográficos.

Iniciamos a exposição com o cristal posicionado em χ =-32⁰. Após cada exposição o cristal é levado ao ângulo χ anterior acrescido de 4⁰ e o envelope é transladado de aproximadamente 4 mm, ao longo da vertical ao plano do difratômetro. O intervalo de tempo mantido para cada exposição é de 2 minutos. O processo $\bar{\rm e}$ repetido até a leitura em $\chi{=}40^{\circ}$.

A Fig. 31 mostra a sequência das reflexões ass<u>i</u> métrica detetadas por um filme fotográfico como descrito acima. Esta distribuição espacial de intensidade foi obtida para a r<u>e</u> flexão assimétrica Ge(111) com $\phi_0 = (18,5 \pm 0,2)^0$ após a superfície sofrer os tratamentos II,III,IV e V.

O Ângulo de giro dessas manchas sobre o filme foi medido usando um aparelho de medida de ângulos. A seção transversal do feixe difratado tem aproximadamente a forma eli<u>p</u> tica, e o ângulo medido é aquele que o eixo maior dessa elipse forma com a direção normal ao goniostato. O êrro estimado para a leitura no ângulo é de aproximadamente 2⁰.

Como apresentado na figura 14 quando k>1, o intervalo de interesse para comparação com os resultados experimentais em nosso caso $\vec{e} - k \beta < 1$. Na Fig. 32 comparamos o r<u>e</u> sultado experimental de $\frac{1}{\cos^2 \alpha}$ com o teórico, no intervalo <u>a</u> cima. Os dados experimentais acompanham o andamento da curva teórica.

As causas de êrro no acordo, que parece consistir num deslocamento da curva teórica com relação aos valores experimentais ao longo do eixo de abcissas são:

a) A curva teórica foi obtida sob a hipótese de μ infinito, isto é, o valor de α é obtido apenas da contribuição da superfície e não do volume. Sendo que o cristal possue nas condições usadas na experiência, $\mu \approx 306 \text{ cm}^{-1}$, ele é bastante absorvente e poderia se esperar que o acordo qualitativo seja bom como de fato aconteceu. Ainda o acordo quantitativo é bom para valores β >-0,3. É facil ver seguindo esta linha de raciocínio que o desacordo deve crescer quando β >-1, devido á esta causa.

b) Um êrro de translação da variável B. Isto ocorreria se o zero no arco χ não correspondesse exatamente a posição em que $\phi=0$, ou seja, posição na qual a reflexão pela superfície inclinada é simétrica. Se atribuíssemos o êrro na medida devido a translação da variável B este deveria ser apr<u>o</u> ximadamente $\Delta \beta \approx 0,15^{\circ}$ o que para $\chi=-30^{\circ}$, ou seja, $\beta=-0,76$, corresponde a $\Delta \chi=6,6^{\circ}$. Esse valor é grande demais pois com um êrro de χ desta ordem não se conseguiria obter a orientação do cri<u>s</u> tal como descrito no Cap.IV.

Alem do mais, o maximo êrro de posicionamento em χ durante o alinhamento foi avaliado em $\Delta \chi \approx \pm 1^{\circ}$, o que correspon de, para $\chi = -30^{\circ}$ a

 $\Delta \beta = \pm \frac{tg\phi_0}{tg\theta_B} \cdot \cos\chi\Delta\chi = \pm K\cos\chi\Delta\chi = \pm 0,023,$ com um máximo $\Delta \beta = \pm 0,027$ para $\chi = 0.$

c) O êrro na leitura do ângulo α . Esta êrro influe mais quando o ângulo α é grande. Por exemplo, mesmo com êr ro $\Delta \alpha = 2^{\circ}$ se $\alpha = 65^{\circ}$ tem-se que $\Delta(\frac{1}{\cos^{2}\alpha}) = \pm 0,95$ e se $\alpha = 30^{\circ}$ então $\Delta(\frac{1}{\cos^{2}\alpha}) = \pm 0,06$. Entretanto, este êrro é de caráter acidental e produziria um espalhamento dos pontos ao redor da curva, e nu<u>n</u> ca um deslocamento da mesma. Esse efeito não é visível na Fig. 32 e os pontos experimentais seguem a tendência da curva teór<u>i</u> ca.

d) A influência dos fatores intrumentais. Estes fatores para o caso assimétrico, não são ainda bem conhecidos e o seu estudo atinge uma complexidade bastante elevada. Eles não serão analisados neste trabalho e serão o objeto de uma pe<u>s</u> quisa posterior neste Grupo.

As causas de êrro a) e d) são provavelmente as que causaram as maiores discrepancias na região de β <-0,3, embora a última ainda não foi analisada. Isto poderia estar acom panhado de um pequeño efeito de origem b).

FIG. 31

Registro do feixe difratado por uma reflexão assimétrica Ge₍₁₁₁₎ com ângulo $\phi_0 = (18,5\pm0,2)^\circ$ variando o ângulo χ . Os números a direita da fotografia indica o valor de χ correspondente. SP indica as reflexões geradas pela super fície paralela aos planos (111) em diferentes regiões sobre esta superfície. SI indicas as reflexões geradas pela superfície inclinada. Observa-se ainda,que para $\chi = 0^\circ$ na superfície inclinada α é diferente de zero de acordo com às previsões teóricas.

Condições experimentais: Tensão 45KV, Corrente 35mA, Tempo de exposição 2 minutos.

Comparação entre os valores teóricos e experimentais de $1/\cos \alpha^2$, para a reflexão assimétrica Ge₍₁₁₁₎, com o cristal cortado com o ângulo $\phi_0 = (18,5\pm0,2)^0$ após o tratamento de superfície V. $\theta_B = 12,30^0$. Caso k > 1.

6. Resultados experimentais num monocromador assimétrico de Si.

Un cristal de silício foi cortado com um ângulo ϕ_0 em relação aos planos (111). Suas superfícies paralela e in clinada sofreram o polimento mecânico semelhante aquele dado ao Germânio citado na seção 4.a do Cap.IV. O ângulo ϕ_0 foi medido pelo processo usando laser e resultou ser $\phi_0 = (17,5\pm0,2)^0$.

Para esta amostra fizemos medidas da potência t<u>o</u> tal e intensidade do feixe difratado de maneira idêntica aquelas do Germânio, citadas na seção 4,deste Capítulo. A figura 33 mostra um gráfico mostrando a variação da potência total e da intensidade do feixe difratado em função da variável de assinetria β.

A potência total e intensidade do feixe reflet<u>i</u> do pela superfície inclinada em $\chi=0$, foram dentro dos êrros e<u>s</u> tatísticos idênticas aquelas obtidas para a superfície paralela aos planos (111).

Na Fig. 34 apresentamos uma cópia do filme registrando o feixe difratado quando se varia χ , as condições de operação do aparelho foram as mesmas que usamos nas medidas do Germânio, mas o tempo de exposição foi dobrado, ou seja, 4 min. Nesta fotografia observa-se a rotação da seção transversal do feixe difratado. Esta seção é aproximadamente elíptica. Mediuse o ângulo α de giro do eixo maior variando χ em intervalos de 4[°].

Na figura 35 apresentamos uma comparação entre os valores medidos do ângulo α com os teóricos previstos pela equação .

Como observação, podemos citar que este silício ē muito mais perfeito que o cristal de Germânio usado anterio<u>r</u> mente, pois os perfis para a varredura ω com o feixe incidindo

Potência e Intensidade relativas para a reflexão assimétrica Si₍₁₁₁₎ com o ângulo de corte ϕ_0 = 17,5°, para a superfície submetida ao tratamento II.

Registro do feixe difratado por uma reflexão assimétrica Si(111) com ângulo $\phi_0 = (17,5\pm0,2)^0$ variando o arco χ . Os números a esquerda da fotografia indica o valor de X correspondente e SP indica a reflexão gerada pela superfície paralela aos planos (111).

Condições experimentais: Tensão 45KV, Corrente 35mA, Tempo de exposição 4 minutos.

Comparação entre os valores teóricos e experimentais de $1/\cos^2$, para a reflexão assimétrica Si₍₁₁₁₎, com o cristal cortado com o angulo $\phi_0 = (17,5^{\pm}0,2)^{\circ}$ após o tratamento de supeficie II. $\theta_B = 12.83^{\circ}$. Caso k > 1

9]

em diferentes partes sobre a superfície deste cristal, result<u>a</u> vam repetitivos e idênticos.

A figura 33 mostra que o decrescimo na intensid<u>a</u> de relativa do feixe difratado inicia-se em $\phi=7,3^{\circ}$, e este valor é maior do que aquele obtido para o Germânio onde $\phi=5,3^{\circ}$. Este resultado talvez possa ser explicado devido a ser Si me-nos absorvente que o Ge e o feixe difratado conseguiria perco<u>r</u> rer um caminho maior sem ser absorvido dentro do bloco, isto e<u>s</u> tá diretamente ligado com as extinções primária e secundária <u>a</u> presentada pelos respectivos cristais.

A não coincidência dos ângulos α medidos com os calculados en função da variável de assimetria, devem ter mot<u>i</u> vos semelhantes aqueles apresentados para o caso do monocromador de Ge, no parágrafo anterior.

7. Efeito da Difração Multipla.

Ocorre difração Multipla quando um monocristal estã orientado en relação a um feixe de raios-X, tal que um ou mais planos satisfazem a lei de Bragg simultaneamente.

Em têrmos da rede reciproca isto ocorre quando dois ou mais nos tocam a esfera de Ewald simultaneamente.

No laboratório,o fenômeno é produzido quando um monocristal é fixado no goniostato de modo que uma direção cri<u>s</u> talográfica particular, fique paralela ao eixo de rotação, com o detetor monitorando a reflexão do feixe difratado, chamado de primária. Através da rotação do eixo \hat{e}_{χ} (ver figura 36), outros pontosda rede recíproca atingema esfera de Ewald, dando origem a feixes secundários.

Diversos autores trataram sobre diferentes aspe<u>c</u> tos da difração multipla,Renninger (34),Zachariasen (34),Moon

FIG. 36

Potência total $P_1=P_1(\beta)$ da reflexão assimétrica Ge₍₁₁₁₎ obtida por varredura contínua entre os limites $-32^{\circ} < \chi < 40^{\circ}$. O efeito da difração múltipla é pouco importante, salvo no ponto $\chi = -28^{\circ}$, que corresponde aproximadamente a $\beta = -0,75$. Observar que o eixo das abcissas estã orientado em sentido oposto ao das demais figuras deste trabalho.

& Shull (29); Caticha-Ellis e colaboradores (30, 31, 32, 33, 6).

Como o método usado para observar a difração múltipla é semelhante ao que usamos para medir a variação da p<u>o</u> tência total e intensidade do feixe difratado em função do ângulo de assimetria, resultou facil realizar uma experiência v<u>a</u> riando χ em forma contínua para obter $P_1=P_1(\chi)$. Nessa medida (Fig. 36) pode-se verificar a existência de picos de difração múltipla. No caso da reflexão Ge(111) a variação de intensidade é sempre subtrativa, mas de pouca importância relativa como se observa na Fig. 36

Nos trabalhos anteriores, como por exemplo Evans Hirsch & Kellar (11) e Mathieson (27), onde se analisam a r<u>e</u> flexão assimétrica dos cristais de Calcita, Quartzo,Fluorita e Fluoreto de lítio, a possível aparição desse efeito não foi co<u>n</u> siderada.

Na figura 36 mostramos o diagrama de difração múltipla obtido para e reflexão ascimótrica do Ge(111) com a s<u>u</u> perfície inclinada de um ângulo $\phi_0 = 18,5^{\circ}$ e obtida após o trat<u>a</u> mento II,III,IV e V; usando a radiação Cuk_g. Esse diagrama não apresenta uma resolução muito boa, pois não forama tomados cu<u>i</u> dados especiais como aqueles da Tese de Cícero Campos (5).

As posições em χ (ãs que associamos a variável β) onde foram realizadas as medidas apresentadas na seção ant<u>e</u> rior, estão indicadas no diagrama da figura 36 . Apenas a medida feita em χ =-28⁰ parece ter coincidido com um pico de di-fração multipla. Para ângulos χ <-28⁰ o feixe incidente começa a ultrapassar as dimensões da superfície inclinada resultando num decrescimo aparente da potência. E justamente nessa região que são observadas medidas com erros maiores nas figuras 28, 29 e 30.

CAPITULO VI

CONCLUSÕES E POSSÍVEIS EXTENSÕES DO TRABALHO

1. Conclusões.

Na parte teórica deste trabalho foi deduzida em fo<u>r</u> ma geral a potência e a intensidade refletidas em reflexão assim<u>é</u> trica por um cristal cortado sob um ângulo ϕ_0 em relação aos plamos de reflexão. Essa dedução foi baseada exclusivamente na teoria da interação dos feixes multiplamente difratados no seio do cris-tal mosaico (Caticha-Ellis,1969 (g)), e foi encontrado um acordo razoãvel com os fatos experimentais sem necessidade de se recorrer ao uso de hipóteses artificiais por exemplo,a existência de fil-mes superficiais com diferentes propriedades de absorção como a <u>u</u> sada por Evans,Hirsch & Kellar (11) que atē agora não tinham sido questidonados, mas na verdade, também não estavam rigorosamente verificadas experimentalmente.

Este trabalho, embora não tenha sido desenvolvido atē as suas ūltimas consequências, demonstra que tais hipóteses são absolutamente desnecessárias para a compreensão física dos f<u>e</u> nômenos aqui estudados.

Também desenvolvemos a teoria que explica a rota-ção do feixe difratado numa reflexão assimétrica, efeito que não tinha sido encontrado pelos demais autores que ja trabalharam em problemas de reflexão assimétrica.

Na que se refere à parte experimental, fizemos medidas da potência e intensidade do feixe difratado e do ângulo de rotação da seção transversal deste feixe, assim como medidas da intensidade refletida pelas superficies paralela e inclinada, em função do tratamento aplicado a elas. Foi verificado em forma experimental que a variação dinâmica na intensidade e potência da reflexão assimétrica no cri<u>s</u> <u>t</u>al mosaico devida a reflexão multipla é muito pequena em refle-xões intensas e e sempre subtrativa o que é previsto pela teoria geral (9).

As conclusões gerais obtidas neste trabalho são resumidas a seguir:

a) As equações desenvolvidas para potência e intensidade relativa do feixe refletido em função da assimetria permite afirmar que a māxima relação possível a ser esperada na intensidade do feixe co<u>n</u> centrado com relação a reflexão simétrica é sempre menor que 2,0. Isto acontece para

- a) cristais muito absorventes,
- b) cristais com largura mosaico grande,
- c) reflexões fracas.

Neste aspecto, o resultado obtido ē coincidente com o obtido por outros autores (34),(11) (10).

b) O método experimental usado é equivalente ao de Evans,Hirsch & Kellar também usado por outros autores que estudaram a reflexão a<u>s</u> simétrica, usando-se um único cristal cortado com superficie in-clinada em relação aos planos refletores e montado de forma a po-der girar em torno da normal a estes planos. Este arranjo exper<u>i</u> mental tem a vantagem de sua simplicidade e a desvantagem de que o tratamento teórico torna-se difícil, pois dã origem ã deforma-ção da seção transversal do feixe difratado e a aparição de fatores instrumentais complicados os quais não foram ainda analisa-dos, nem sequer previstos por outros autores.

c) A variação da potência total concorda bem com os valores pre-visto pela teoria, as máximas discrepâncias ocorrendo para as pos<u>i</u> ções de máxima assimetria, onde os valores experimentais devem ser possivelmente mais influenciados pelos fatores instrumentais e p<u>e</u> los defeitos de regularidade e planaridade da superfície.

d) A variação da intensidade local do feixe difratado é a medida que fornece a informação mais importante na escolha do corte d-0 monocromador, quando se pretende usar um feixe monocromático de seção transversal muito estreita. Dos resultados experimentais con cluimos que para obtermos máxima intensidade com um monocromador assimétrico, o ângulo ¢ entre planos refletores e superficie deve ser aproximadamente igual a 4,8° para o Ge(111) e de 5,3° para 0 Si(111), dando origem a aumento de intensidade da ordem de 41% 9 31% respectivamente em relação à superfície paralela aos planos. A posição desses máximos depende do tratamento superficial o que faz então impossível dar uma solução válida para todos os casos. Alem do mais o valor correto a ser usado devera ser obtido após as correções da curva pelos fatores instrumentais.

e) A intensidade para ângulos de assimetria nos intervalos de $4,8^{0}<\phi_{B}$ para o Ge(111) e $5,3^{0}<\phi<\theta_{B}$ para o Si(111) torna-se d<u>e</u> crescente, embora nestes intervalos continue a existir a conce<u>n</u> tração geométrica. Este resultado não é previsto pela teoria inicial simples, que prevê um aumento continuo de intensidade em função do ângulo ϕ , Na teoria usada considera-se a superfície do cristal como um plano perfeito ademais não foi ainda desenvo<u>l</u> vida completamente a teoria das aberrações instrumentais que ce<u>r</u> tamente podem produzir variações importantes na medida como aco<u>n</u> tece no difratômetro de põ que usa amostra plana simétrica. (Vide por ex.Klug & Alexander ($_{25}$)). Os fatores instrumentais tem aqui uma origem similar, enquanto que as expressões resultam muito mais complicadas e atingem grande importância para os maiores
graus de assimetria, isto é, $\beta=\pm 1$. Concomitantemente, para es-ses valores as irregularidades da superfície e o afastamento da planaridade podem ter uma influência altíssima pois o feixe d<u>i</u> fratado ($\beta=1$) ou o incidente ($\beta=-1$) passam rasantes à superfí-cie.

f) O ângulo de rotação da seção transversal do feixe difratado : medido, concorda quase que exatamente com os respectivos valores obtidos da teoria, exceto na região β <-0,3, embora a teoria fo<u>s</u> se desenvolvida apenas considerando efeitos geométricos, exis-tem outros fatores incluidos no fenômeno, que contribuem como foi discutido no Cap.V.

g) A ārea da seção do feixe difratado apos a rotação da mesma é praticamente a mesma a aquela usada para escrever a equação de intensidade, o que significa que a intensidade média do feixe provavelmente não é muito afetada pela rotação. O mesmo não pode ser afirmado com relação a intensidade máxima, devendo-ser esperar uma concentração maior, i.e. um maior aumento da intensidade máxima para os cristais mais absorventes, o que é real-mente o caso para o Ge comparado com ơ Si.

h) O perfil ω obtido apresenta irregularidades (vārios picos com formas esquisitas) segundo o tratamento superficial da amo<u>s</u> tra. Os polimentos mecânicos, mesmo feitos de forma extremamente cuidadosa com grãos de^{do},05 µm de diâmetro, não foram capazes de eliminar essas irregularidades. O tratamento químico puro (etching) também foi incapaz de resolver o problema. Somente o tratamento mecânico-químico com o cristal sendo mantido em contato suave durante o movimento contra um feltro umedecido com a solução ácida muito diluída conseguiu obter picos de varredura ω de forma correta, reproduzível e quase sem variações de um sí-

tio do cristal a outro. Isto é, o polimento mecânico produz pe<u>r</u> turbações sobre a superficie que juntamente com os dominios de grãos irregulares origina resultados para a potência e intensidade do feixe, que variam em forma aleatória de ponto a ponto.O polimento químico (etching) convencional como é sabido, possue maior reatividade nos pontos cem que se situam os defeitos ex-tensos da rede como as deslocações, as que normalmente são ci<u>n</u> crementadas pelo polimento mecânico produzindo uma grande qua<u>n</u>ti tidade de "etch-pit"; este efeito foi maior para a superficie paralela aos planos (111).

O polimento químico-mecânico cujo uso com este propósito é feito por primeira vez neste trabalho, é mais sa-tisfatório permitindo obter resultados bastante reprodutiveis em diferentes pontos e resultando perfis de linha ω mais re<u>gu</u> lares. Isto é provavelmente devido a que o efeito do tratame<u>n</u> to consiste em eliminar lentamente por meio de ambos mecanism mos,químico(amortecido) e mecânico(suave) toda ou quase toda a camada superficial do ristal em que concentram os danos da rede introduzidos pela serra e pelo polimento.

i) Para o caso da reflexão Ge(111), não existe reforço na potê<u>n</u> cia do feixe primário difratado, que resulte da interação de mais de 2 feixes. Os casos de interações entre 3 ou mais feixes resulta sempre em decréscimos da potência do feixe primário.

j) A amostra com apenas polimento mecânico apresentou em alguns casos de reflexão simétrica aumentos elevados de intensidade. Entretanto, esses resultados não são reproduzíveis e a performance do monocromador ficaria dependendo em alto grau de pequ<u>e</u> nas variações no posicionamento do cristal, o que faria perder confiabilidade ao aparelho.

k) Nos tratamentos teóricos feitos até agora pelos diferentes a<u>u</u> tores, de Evans,Hirsch & Kellar em diante, faziam depender⁴inte<u>n</u> sidade e³potência de um sõ parâmetro geométrico de assimetria. Neste trabalho mostramos que é necessário introduzir mais um p<u>a</u> râmetro que depende da relação entre o ângulo de corte ϕ_0 e o ângulo de Bragg θ_B . Foi assim definido o <u>fator de corte do cristal</u> : k=tg ϕ_0 /tg θ_B , em função do qual diversas expressões adotam formas convenientes.

2. Possíveis extensões deste trabalho.

a) Medidas mais precisas sobre o efeito de giro e ārea da seção transversal do feixe originado de uma reflexão as simétrica, poderia ser obtido usando-se uma fonte de raios-X, quase pontual, e o microdensitômetro de raios-X, projetado por Cardoso e Caticha-Ellis ($7_{\rm C}$ 8) para fazer um levantamento das curvas de isointensidades sobre as seções do feixe difrat<u>a</u> do registrados em um filme fotográfico.

b) Estudo do efeito de μ sobre α e sobre a distr<u>i</u> buição de intensidade no feixe difratado.

O estudo do ângulo girado pelo feixe difratado c<u>o</u> mo efeito de volume e não apenas como efeito de superficie pod<u>e</u> ria mostrar varias consequências interessantes. Um estudo sumãrio permite prever que a distribuição de intensidades no plano de incidência, não deverá mais ser simétrica, estando o máximo situado tanto mais perto do lugar onde chega o feixe proveniente da superficie quanto maior seja o valor de μ . Esse desloc<u>a</u> mento do máximo introduziria um êrro sistemático no valor de α que seria maior que o obtido pela teoria geométrica simples do Cap.II. Consequentemente com o oumento de α , o valor teórico de

 $1/\cos^2 \alpha$ decresceria na zona com $\beta < -0,3$ produzindo um acordo m<u>e</u> lhor com o valor experimental obtido.

c) Extensão do estudo ao caso do cristal perfeito.

Este estudo é necessário devido as várias inconsi<u>s</u> tências encontradas no trabalho de Hirsch & Ramachandran (19) no qual os efeitos do fator de corte k assim como do giro do feixe difratado onão foram e nem sequer considerados.

d) Estudos dos fatores instrumentais para a refl<u>e</u> xão assimétrica.

Este estudo é fundamental para poder corrigir os valores experimentais mediante um processo de desconvolução, e realizar uma comparação com as previsões teóricas. Um estudo pr<u>e</u> liminar realizado, mostrou que alguns dos efeitos possuem bas-tante importância nas regiões de máxima assimetria $\beta=\pm 1$. Possivelmente, estes fatores bastariam para eliminar as discrepâncias observadas na curva da potência perto de $\beta=-1$, e da intensidade perto de $\beta=1$.

BIBLIOGRAFIA

- 1 Arndt,V.M. and Willis,B.T.M., "Single Crystal Diffractometry", Cambridge at the University Press (1969).
- 2 Azaroff,L.V., "Elements of X-Ray Crystallography", International Student Edition, Mc-Graw Hill (1968).
- 3 Bragg, W.H., Phil.Mag.,<u>27</u>, 881-899 (reproduzido na Acta Cryst. A25,3-11,(1969).
- 4 Bozorth, R.M. and Haworth, F.E., Phys. Rev., 53, 538(1938).
- 5 Campos, C., Tese de Mestrado, IEGW-UNICAMP, (1978).
- 6 Campos, C., Chang, S.L., Caticha Ellis, S., Cristalografia Iberoamericana, vol.2.
- 7 Cardoso,L.P. e Caticha-Ellis,S., J.Phys.E-Scient.Inst., <u>12</u>,545 (1979).
- 8 Cardoso, L.P., Toso de Mestrado, IFCM. UNICAMP, (1976).
- 9 Caticha-Ellis, S., Acta Cryst., <u>A 25</u>,666 (1969).
- 10 Debye, P. and Menke, H., Ergebn Tech.Röntgenk, 2,1,(1931).
- 11 Evans, R.C., Hirsch, P.B. and Kellar, J.N., Acta Cryst. <u>1</u>, 124 (1948).
- 12 Fankuchen, I., Phys. Rev., 53, 910 (1938).
- 13 Fankuchen, I., Nature, <u>30</u>, 193 (1937).
- 14 Gay, P., Acta Cryst., 5, 225 (1952).
- 15 Gay, P. and Hirsch, P.B., Brit. J. Appl. Phys, 2,218 (1951).
- 16 Gay, P., Hirsch, P.B. and Kellar, J.N., 5, 7 (1952).
- 17 Gay, P. and Hirsch, P.B., Brit. J. Appl, Phys., 4, 284 (1951).
- 18 Hirsch, P.B. and Kellar, J.N., Nature, 162, 609 (1948).

- 19 Hirsch, P.B. and Ramachandran, G.N., Acta Cryst., <u>3</u>, 187 (1950).
- 20 Holmes, P.J., "The electrochemistry of Semicondutors" pg. 368, Academic Press Inc. New York, 1962.
- 21 Imakuma,K., Tese de Doutoramento, USP (1973).
- 22 International Tables of X-Ray CRystallography (1967).
- 23 James, R.W., "The Optical Principles of the Diffraction of X-Rays", London, G.Bell and Sons (1948).
- 24 Kishino, S., Noda, A. e Kohra, K., J. Phys. Soc. Jap., 33, 158, (1972).
- 25 Klug,P.H. e Alexander,L.E., "X-Ray Diffraction Procedures", New York, John Wiley & Sons, (1974).
- 26 Matsushita, T. e Kohra, K., Phys. Stat. Sol. (2) 24, 531, (1974).
- 27 Mathienson A. McL., Acta Cryst., A31, 769, (1975).
- 28 Mathienson A. MeL., Acta Cryst., A33, 610, (1977).
- 29 Moon, L.H. & Shu. 1, C.G., Acta Cryst., A17, 805, (1964).
- 30 Parente, C.B.R., Tese de Doutoramento, USP, (1973).
- 31 Parente, C.B.R. e Caticha Ellis S., Jap. J. of Apl. Phy., 10, 13, (1974).
- 32 Pimentel, C.A.F., Tese de Doutoramento, USP, (1972).
- 33 Postigo, R.P., Tese de Mestrado, IFGW-UNICAMP, (1979).
- 34 Renninger, M., Z. Krystallogr., 97, 95, (1937).
- 35 Sthephen, R.H. & Barnes, R.J., Nature, 136, 793, (1935).
- 36 Susuki,C.K., Tese de Mestrado, IFGW-UNICAMP, (1974).
- 37 Zachariasen, W.A., Acta Crysta, 18, 705, (1965).
- 38 Zachariasen, W.A., "Theory of X-Ray Diffraction in Crystal", New York, John Wiley. (1945).