

"EFEITOS DA PRESSÃO UNIAXIAL NOS LASERS DE SEMICONDUTORES DE In_{1-x}Ga_xAs_yP_{1-y} E DE POÇO QUÂNTICO DE Ga_{1-x}Al_xAs"

CELSO PEREIRA TOMÉ ROSA

Orientador PROF. NAVIN B. PATEL Co-Orientadora PROFA. THERESINHA DE J. SERRA MATTOS

Tese apresentada ao Instituto de Física "Gleb Wataghin" da Universidade Estadual de Campinas, como parte dos requisitos para obtenção do grau de Mestre em Física.

Agosto, 1985

Agradecimentos

AO Prof. Navin B. Patel, pela sua paciência e dedicada orientação.

Ao Prof. Francisco C. Prince, pelo seu interesse e dedicação durante o tempo que me orientou.

A Profa. Theresinha de J.S. Mattos, pelas dis cussões e sugestões durante o desenvolvimento do trabalho.

A UNICAMP e a TELEBRÁS pelas oportunidades que me foram dadas.

A FAPESP e ao CNPq pelo apoio financeiro.

Aos meus amigos, João Hermes, Gibson, Thebano, Alba, Carlos, Alcides, que me auxiliaram de várias maneiras neste trabalho.

Aos técnicos e funcionários e professores do Laboratório de Pesquisa em Dispositivos.

Ao José Luiz, pelo trabalho de datilografia.

A Sueli, Charles e Guilherme pela confecção dos desenhos.

Ao Francisco Marcos pela leitura cuidadosa dos manuscritos.

Enfim a todos aqueles que de alguma maneira tornaram possível este trabalho.

E finalmente, a Deus por tudo e por todos.

A minha esposa Estela, pelo seu amor, apoio e compreensão.

.

Aos meus pais, Tomé e Elza, e ao meu irmão Alex, pelo carinho e incentivo em todas as horas.

.

RESUMO:

Neste trabalho, estudamos o comportamento dos lasers semicondutores de InGaAsP-DH e GaAlAs-OW, quando submetidos a aplicação de pressão uniaxial.

Na primeira parte, fazemos uma correlação entre os dados experimentais, obtidos para a variação da corrente limiar com aumento da pressão uniaxial dos lasers de InGaAsP, e a teoria desenvolvida por Patel e outros para os lasers de GaAs. Previa-se, teóricamente, um aumento da co<u>r</u> rente limiar com a pressão, o que foi observado para 80% dos lasers testados; para os 20% restantes observamos uma r<u>e</u> dução da corrente limiar. Acreditamos que tal redução possa ser explicada supondo-se a presença do mecanismo de recombinação não radiativo (efeito Auger) nestes lasers. Acreditamos também, que a não homogeneidade observada nos resultados é devida a um desajustamento nos parâmetros de rede das cam<u>a</u> das.

Na segunda parte, fazemos um estudo sobre o guiamento da luz em laser de poço quântico de GaAlAs, analisando-se o guia de ondas nas direções transversal e paralela a camada ativa. Observamos experimentalmente um atraso na emissão estimulada. Este atraso é função da corrente de injeção e pode ser explicado supondo-se a existência de um guia de ondas induzido pelo efeito da temperatura. Uma comparação entre os resultados experimentais e teóricos para o laser de SCH-QW de GaAlAs de espessura da camada ativa de 200Å apresenta boa concordância. Além do estudo da evolução do ganho com o tempo, observamos experimentalmente que a aplicação de pre<u>s</u> são uniaxial causa um aumento no atraso da emissão estimul<u>a</u> da. Este aumento no atraso é devido a uma redução do ganho modal. Uma relação empírica que mostra a evolução do ganho modal com a pressão uniaxial é proposta.

$\underline{\mathbf{1}} \ \underline{\mathbf{N}} \ \underline{\mathbf{D}} \ \underline{\mathbf{I}} \ \underline{\mathbf{C}} \ \underline{\mathbf{E}}$

Parte I - Laser Semicondutor de InGaAsP-DH	
. Capítulo I I-l - Introdução	. 1
. Capítulo II II-l - Laser Semicondutor	
	4
. Capítulo III	
III-l - Definição de Corrente Limiar	11
III-2 - Coeficiente de Ganho	12
III-3 - Mecanismo de Perda	13
III-4 - Condição Limiar	15
III-5 - Mecanismo de Recombinação Auger	17
. Capitulo IV	
IV-1 - Teoria	22
IV-2 - Hamiltoniana da Pressão	25
IV-3 - Autovalores da Hamiltoniana na Direção (0,0,1)	31
IV-4 - Comportamento da Corrente Limiar com a Pressão	
Uniaxial na Direção (0,0,1)	35
. Capítulo V	

٠	Capitulo	VI													
	VI-1 -	Resultados	Experimentais	• •	• •	-	•	•	••	•	•	•	•	•	49
•	Capitulo	VII													
	VII-1 -	Análise e	Comentários		• •	•	•	•	•••	•	•	•	•	•	55

Parte II - Laser Semicondutor de GaAlAs-QW

. Capitulo IX

IX-1 -	Conceitos Básicos de Poços Quânticos 63
IX-2 -	Ganho na Estrutura dos Lasers de Poço Quântico. 73
IX-3 -	Confinamento Modal de Lasers de Poço Quântico 79
IX-4 -	Corrente Limiar no Laser de Poço Quântico81

. Capitulo X

X-1 -	Guiamento de Luz no Laser	84
X-2 -	Perfil do Índice de Refração Complexo	87
X-3 -	Perturbação Causada Pelos Portadores	88
X-4 -	Efeito da Temperatura	90
X-5 -	Distribuição de Portadores ao Longo da Junção	95
Х-б -	Portadores Versus Temperatura 1	.00

. Capítulo XI

XI-1 -	Atrasos	em	Lasers.	•	٠	•	•	•	•	•	٠	٠	٠	٠	٠	٠			•		.10)3
--------	---------	----	---------	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	--	-----	----

XI-2 -	Calculo do Ganho
XI-3 -	Análise do Modo Fundamental
XI-4 -	Îndice de Refração Efetivo
XI-5 -	Ganho Modal
XI-6 -	Efeito da Pressão Uniaxial no Ganho Modal em
	Lasers de Poço Quântico de GaAlAs 117

. Capítulo XII

XII-l -	Resultados Experimentais
XII-2 -	Comparação dos Resultados Experimentais com
	Resultados Teóricos
XII-3 -	Niveis de Energia

. Capítulo XIII

XII-l - Conclusão.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	-	•	14	3
--------------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---

•	Apêndice	I.	•	•	•	•		-	• •		-	•	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	144
•	Apêndice	II.		•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		•	•	151
•	Referênci	ias.	•	-	•	•	•	•	•		•	•		•	-	•			•	•	•	•			-	•		•	153

PARTE I

Laser Semicondutor de InGaAsP-DH

· •

CAPÍTULO I:

Introdução:

÷

Os lasers de $In_{1-x}Ga_xAs_yP_{1-y}$ são de grande importância para a comunicação óptica, pois, além de operarem à temperatura ambiente, oferecem boas condições de operação em fibras-ópticas, devido ao fato de emitirem a radia ção eletromagnética na faixa de comprimento de onda de 1,2 a 1,6µm. Nesta região as perdas nas fibras-ópticas são minimas e a dispersão é praticamente nula (30). Isto faz com que considerável atenção tenha sido dedicada ao estudo destes lasers, e uma grande quantidade de informação tenha sido divulgada sobre vários temas que envolvem estes dispositivos. Um destes temas, é o mecanismo de recombinação que é responsável por uma série de fatores, entre os quais está a corrente limiar, ou densidade de corrente limiar.

Uma maneira de se estudar como os mecanismos de recombinação influenciam o comportamento do laser é aplicar pressão uniaxial e observar seu efeito sobre a densidade de corrente limiar.

Como veremos no decorrer desta apresentação, a aplicação de pressão uniaxial em semicondutores numa direção definida, produz uma redução da simetria do material o que induz mudanças significativas nas bandas eletrônicas de energia. Uma dessas mundanças, é a eliminação parcial ou total da degenerescência, o que induz o aparecimento de efe<u>i</u> tos fortemente pronunciados, como a mudança nos parâmetros

- 1 -

de rede e na simetria de um semicondutor os quais, por sua vez, produzem importantes modificações nos estados eletrônicos e vibracionais. Assim pode-se obter informações sobre as propriedades intrínsecas do cristal não deforma do, bem como sobre os potenciais de deformação.

A aplicação de pressão uniaxial nos lasers semicondutores de InGaAsP e GaAs e GaAlAs, produz uma red<u>u</u> ção da simetria do cristal, de cúbica para tetragonal, e uma quebra parcial na degenerescência, o que induz mudanças na corrente limiar destes lasers. Estas variações na corre<u>n</u> te limiar foram medidas experimentalmente para pressão uniaxial perpendicular ao plano da camada ativa na direção (0,0,1).

No capítulo II, fazemos uma breve discussão sobre algumas propriedades básicas do laser.

No capítulo III, definimos o coeficiente de ganho, perdas e corrente limiar, bem como a influência do me canismo de recombinação não radiativo, tipo efeito Auger, na densidade de corrente limiar, e finalmente, passamos a discussão do efeito da pressão uniaxialna corrente limiar dos lasers de InGaAsP.

O modelo matemático, que calcula o efeito da pressão uniaxial nos lasers semicondutores, proposto por Patel e colaboradores (10), (11), é desenvolvido no capítulo IV. Neste capítulo, se obtém o deslocamento da banda de valência em relação a banda de condução, bem como a variação do ganho líquido com a pressão.

A montagem, e métodos utilizados na obtenção dos resultados experimentais, estão descritos no capitulo V.

- 2 -

No capitulo VI, é feita a exposição dos resultados experimentais da variação da corrente limiar com a pressão uni<u>a</u> xial.

- 3 -

Finalmente no capítulo VII, é feita a anál<u>i</u> se e comentários dos resultados baseando-se no que foi expo<u>s</u> to no trabalho.

CAPÍTULO II:

Laser Semicondutor - Considerações Gerais:

Os primeiros lasers semicondutores, lasers de homojunção, consistiam simplesmente, da difusão de Zinco em um substrato tipo n de GaAs (Arseneto de Gálio), formando uma junção p-n, através da qual conseguiam recombinação radiativa por meio de injeção de elétrons na região de recombi nação, ou região ativa, como é mais frequentemente chamada. Os elétrons injetados na região ativa, rapidamente recombinam se, emitindo fótons de energia próxima à faixa de energia proibida. A radiação estimulada é obtida quando o ganho ou amplificação de luz, ao atravessar o material, supera todas as perdas sofridas nessa travessia. Bernard e Duraffourg⁽¹⁾ mostraram que a condição necessária para que isso aconteça é que a diferença dos quase-níveis de Fermi na banda de condução e valência Fc-Fv, tenha valor maior ou igual ao valor da banda proibida do material. Na figura 1, mostramos um diagrama representativo da energia versus densidade de estados, para um semicondutor no estado excitado, com uma população de elétrons na banda de condução e uma população de buracos na banda de valência.

- 4 -

Figura 1 - Diagrama de energia versus densidade de estados para um semicondutor no estado excitado

Fc - Fv > hv

Condição de Bernad-Duroffourg, para que oco<u>r</u> ra emissão estimulada.

Pelo fato de o semicondutor ter um alto índi ce de refração, as faces clivadas exibem considerável reflectividade e formam entre elas uma cavidade de Fabry - P<u>e</u> rot. Este ressonador é excitado dentro do laser, até uma corrente limiar e, pelo fato de se ter uma alta emissão estimulada nos semicondutores, um pequeno ressonador é suficiente para gerar o "feed-back" necessário para a oscilação. Nos lasers de homojunção, a densidade de corrente limiar é muito alta, e se o laser não for resfriado , estará na faixa de 35 a 100 KA/cm². Este alto valor provém, em parte, da natureza fundamental do semicondutor e das altas densidades de estados eletrônicos nas bandas de condução e de valência. Contudo, além desses, outros fatores são responsáveis pela alta densidade de corrente limiar. São eles:

a+ O baixo confinamento dos elétrons injetados na região ativa.

b- O baixo confinamento óptico na região de ganho.

Na figura 2, esquematizamos a estrutura fís<u>i</u> a de um laser de homojunção, polarizado no sentido direto; o diagrama de energia; o Índice de refração e; a distribuição de intensidade luminosa, num diagrama muito ilustrativo.

Um avanço em relação às homojunções foram as hetero-estruturas, as quais são formadas pela junção de dois semicondutores diferentes com os mesmo parâmetros de rede, e diferentes energias de banda proibida e índice de refração.

Assim, com a finalidade de eliminar ambas as deficiências <u>a</u> e <u>b</u>, surgiu a dupla-hetero-estrutura, a qual é formada por um semicondutor de banda proibida menor, entre dois semicondutores de banda proibida maior. Quando envolv<u>e</u> mos um material de "gap" menor p ou n com camadas de *gap" maior, criamos uma barreira de energia, que limita a difusão dos portadores. Um diagrama das bandas de uma dupla-hetero-estrutura N - p - P é ilustrada na figura 3 (geralmente, nos referimos aos materiais de maior "gap" de energia com caracte-

- 6 -

Figura 2 - Estrutura física de um laser de homojunção.

- a- Energia
- b- Índice de refração
- c- Intensidade luminosa

• 7 -

res letras maiúsculas e, aos de menor "gap", com minúsculas).

Figura 3 - Diagrama de bandas para uma dupla-hetero-estrutura.

As descontinuidasdes nas bandas de condução e valência confinam os portadores injetados na camada ativa, o que resulta na inversão de população necessária para se obter emissão estimulda. A primeira descontinuidade cria uma barreira para elétrons na junção p-P, confinandoos na camada p. A descontinuidade na banda de valência cria uma barreira para os buracos na junção N - p, o que i<u>m</u> pede sua injeção na camada N. Cria-se assim, uma região de inversão de população definida pela camada ativa de tipo p,

- 8 -

onde se dá a recombinação de elétrons e buracos, resultando na emissão de luz. Além do confinamento de portadores, esta estrutura aumenta eficientemente o confinamento óptico da radiação emitida dentro da região ativa. Este confinamento é devido à variação do índice de refração existente entre a região ativa e as camadas adjacentes, formando um guia de onda óptico na direção perpendicular à junção N ~ p - P. I<u>s</u> to faz com que o estabelecimento da emissão estimulada aco<u>p</u> teça como um modo normal, ou um auto-modo deste guia, formado pela dupla-hetero-estrutura.

Na figura 4, esquematizamos a estrutura fisica de um laser de dupla-hetero-estrutura polarizado no sentido direto; o diagrama de energia; o índice de refração e a distribuição de intensidade luminosa, num diagrama mu<u>i</u> to ilustrativo.

Essa propriedade, confinamento de portadores e da luz permitem a operação do dispositivo à temperatura ambiente, a uma densidade de corrente limiar de até duas ordens de grandeza menor (de l a 2 KA/cm²) que a da simples homojunção.

- 9 -

Figura

ra 4 - Estrutura física de um laser de dupla-hetero-estrutura.

a- Energia

b- Índice de refração

c- Intensidade luminosa

III-1 - Definição de Corrente Limiar:

A corrente limiar, ou mais especificamente a densidade de corrente limiar é, sem dúvida, a propriedade mais significativa de um laser semicondutor. A corrente l<u>i</u> miar do dispositivo sendo baixa, nos elimina muitos problemas, como por exemplo, facilita bastante a operação do laser em regime contínuo, minimizando o aquecimento associado com a resistência e recombinação não radiativa. Em adição a isso, a baixa corrente limiar simplifica muito os circuitos de polarização, na medida em que os lasers são colocados em sistemas de comunicações ópticas ou outras aplicações.

Podemos definir a corrente limiar como a cor rente necessária para injetar na região ativa uma densidade de portadores minoritários, suficiente para gerar ganho igual às perdas existentes na cavidade.

A expressão matemática para a densidade de corrente limiar pode ser calculada levando-se em conta o coeficiente de ganho e os mecanismos de perdas existentes em um laser semicondutor.

III-2 - Coeficiente de Ganho:

Podemos definir o ganho como uma razão entre o número de fótons emitidos numa transição banda a banda,ou, banda nível de impureza e o número de fótons absorv<u>i</u> dos entre essas bandas,ou, em outras palavras, o ganho pode ser definido como a probabilidade de um fóton criar um fóton estimulado.

Quando injetamos na região ativa dos lasers semicondutores um número de elétrons <u>n</u> por cm³, criamos ce<u>r</u> ta probabilidade de emissão espontânea e estimulada. Tudo isto, é descrito no coeficiente de ganho.

F. Stern, em 1973(2), calculou, usando vários modelos, o coeficiente de ganho g em função da densid<u>a</u> de de correntenominal J_{nom}, que ele definiu como:

$$J_{\text{nom}} = e R_{esp} d_0$$
 {1}

onde $\underline{R_{esp}}$ é a razão de emissão espontânea por volume, <u>e</u> a carga do elétron e d₀ é uma espessura nominal de lµm.

Para O InGaAsP, O modelo mais apropriado é o desenvolvido por N.K. Dutta e R.J. Nelson (3).

J_{NOM} (KA/em²µm)

- 12 -

- 13 -

Observando a figura (5) , podemos notar que, acima de 30cm^{-1} , o ganho comporta-se linearmente, e a relação entre g e J_{nom} pode ser escrita como:

$$g = \beta J_{nom} - \alpha \qquad \{2\}$$

onde os valores $\beta \in \alpha$ podem ser retirados da equação da reta, que está plotado na figura (5), para a temperatura de 300 K

Logo, teremos:

$$\beta = 0,08 \text{ cm } \mu\text{m/A}$$
$$\alpha = 240 \text{ cm}^{-1}$$

III-3 - Mecanismo de Perda:

A definição de mecanismo de perda é a inversa da definição do coeficiente de ganho, ou seja, o mecani<u>s</u> mo de perda é definido como a probabilidade de um fóton ser absorvido.

Todo fóton gerado por transições ópticas el<u>é</u> tron-buraco, pode ser perdido no volume da região ativa pela ação de diferentes mecanismos. Podemos enumerá-los como: choques com portadores livres (α_{pl}), espalhamento por imperfeições ou rugosidades nas paredes do guia (α_{sc}) e saídas pelos espelhos do dispositivo (α_{esp}). Somando, temos a perda total que denotaremos com α_m :

$$\alpha_{\rm T} = \Gamma \alpha_{\rm pl}^{\rm a} + \frac{1-\Gamma}{2} (\alpha_{\rm pl}^{\rm n} + \alpha_{\rm pl}^{\rm p}) + \alpha_{\rm sc}^{\rm c} + \alpha_{\rm esp}^{\rm c} \{3\}$$

onde Γ é o fator de confinamento, e os sub-indices <u>a</u>, <u>n</u> e <u>p</u> definem as perdas na região ativa, passiva <u>n</u> e <u>p</u>, respectivamente.

A fórmula pela qual vamos descrever o fator de confinamento foi descrita por H.C. Casey Jr. (4).

$$\Gamma = \left| 1 + \frac{\cos^2(kd/2)}{\gamma | d/2 + \frac{1}{k} (\cos \frac{kd}{2}) (\sin \frac{kd}{2}) |} \right|^{-1} \{4\}$$

O cálculo do fator de confinamento em função da espessura para os lasers de InGaAsP, foi feito e plotado por F.C. Prince (5).

Figura 6 : Fator de confinamento em função da espessura da região ativa d. (ref. 5)

- 14 -

Tendo-se definido o coeficiente de ganho e os mecanismos de perda, torna-se fácil definir a densidade de corrente,

Uma vez que,

$$J_{\text{nom}} = \frac{J_{\text{n}}}{d}$$
 {5}

onde:

η = eficiência interna

d = espessura da região ativa

A densidade de corrente limiar, pode ser def<u>i</u> nida como a densidade de corrente necessária para gerar ganho igual às perdas existentes na cavidade, ou seja quando o ganho é igual à perda, J passa a ser J_L.

Temos então:

 $g = \alpha_{T}$ {6}

como vimos na equação {2} , g é dado por:

$$g = \beta J_{nom} - \alpha$$

e como vimos na equação $\{3\}$, $\alpha_{\mathbf{m}}$ é dado por:

$$\alpha_{\rm T} = \Gamma \alpha_{\rm pl}^{\rm a} + \frac{1-\Gamma}{2} (\alpha_{\rm pl}^{\rm n} + \alpha_{\rm pl}^{\rm p}) + \alpha_{\rm sc} + \alpha_{\rm esp}$$

- 15 -

Resultando:

$$\beta J_{\text{nom}} - \alpha = \alpha_{\text{T}}$$
 (7)

ou

$$\beta \left(\frac{J_{L}^{n}}{d}\right)^{n} - \alpha = \Gamma \alpha^{a}_{pl} + \frac{1-\Gamma}{2} \left(\alpha^{n}_{pl} + \alpha^{p}_{pl}\right) + \alpha_{sc} + \alpha_{esp} \qquad \{8\}$$

ou ainda,

$$J_{L} = \frac{d}{\beta \eta} \left\{ \Gamma \alpha^{a}_{pl} + \frac{1 - \Gamma}{2} \left(\alpha^{n}_{pl} + \alpha^{p}_{pl} \right) + \alpha_{sc} + \alpha_{esp} + \frac{\alpha d}{\beta \eta} \right\}$$
(9)

Esta é, portanto, a equação teórica para corrente limiar. Podemos, contudo, aproximar esta equação para uma mais simples, levando-se em conta dados experimentais, ou seja, empiricamente podemos descrever a corrente limiar:

$$J_{L}(T) = J_{L}(T_{1}) \exp \left|\frac{T-T_{1}}{T_{0}}\right|$$

$$(10)$$

O fato da corrente limiar estar em função da temperatura é devido ao fato de α e β serem, também, função da temperatura.

É importante notar que esta equação é válida somente para uma pequena faixa de temperatura em torno da tem peratura ambiente.

O parâmetro T₀ embutido na equação {10}, expressa o fato que jã comentamos na introdução, da forte dependência da corrente limiar com a temperatura. É interessante notar aqui que é justamente T_0 a diferença fundamental entre os lasers de InGaAsP e os laser de GaAs. Enquanto, os lasers de GaAs, apresentam um valor típico de $T_0 \approx 120^\circ$ 160° C, os lasers de InGaAsP apresentam $T_0 \approx 50-75^\circ$ C (5). Is to indica uma diferença fundamental nos mecanismos de recom binação, coeficiente de ganho, ou até mesmo no confinamento dos portadores injetados na região ativa pelas barreiras la terais. Estes são pontos bastante discutidos na atualidade, e tudo indica que emissão não radiativa, tipo efeito Auger, esta fortemente envolvida nos mecanismos de recombinação.

III-5 - O Mecanismo de Recombinação Auger:

O efeito Auger é um mecanismo de recombinação não radiativo, que pode estar presente nos semicondutores. A recombinação Auger foi proposta pela primeira vez pelos au tores Beattie e Landsberg (6) com base numa estrutura de ba<u>n</u> da bastante simples, mostrada na figura 7.

Posteriormente muitos trabalhos foram publica dos usando estrutura de banda mais complicada, consistindo de banda de condução, banda de buracos leves e banda de buracos pesados (7).

No efeito Auger, a energia liberada por uma re combinação de um elétron é imediatamente absorvida por outro elétron, que dissipa esta energia por emissão de fónons. En tão, esta colisão que envolve três portadores, dois elétrons e um buraco, ou dois buracos e um elétron, resulta na não e-

- 17 -

missão de fotons. Um grande número de processo Auger pode acontecer, dependendo, no entanto, da natureza da transição e da concentração de portadores.

Figura 7 - Recombinação Auger proposta por Beattie e Landsberg (Ref. 6).

A figura 8 ilustra a transição banda a banda, para três portadores; a figura (8a), ilustra o caso de dois elétrons e um buraco, onde a energia liberada da recombinação do 1º elétron com o buraco é usada para excitar o 2º elétron para um estado de energia mais alto na banda de condução, em material do tipo n; a figura (8b), ilustra o caso de dois buracos e um elétron, em material do tipo p, onde a énergia cinética liberada da recombinação do elétron com o 1º buraco é usada para levar o 2º buraco a um estado de ener gia mais alta na banda de valência.

A recombinação Auger é usualmente caracteriz<u>a</u> da por sua dependência com a densidade de portadores, o que a distingue dos outros processos de recombinação. Albert Hang (8) estudou a dependência da transição Auger como função da

· 18 -

densidade de portadores e especificou vários casos:

- 1- Recombinação Auger "normal" số é possível em semicondutores de "gap" pequeno, e a razão de recombinação é proporcional ao pro duto np que são as densidades de elétrons e buracos.
- 2- Recombinação Auger com a participação de fónons é a que predomina em semicondutores com "gap" Eg ≈ 1 ev, e tem a dependência usual n²p.
- 3- Recombinação Auger de segunda ordem, com dois elétrons Auger, vai com n^{7/8} aoinvés de n³p,como seria esperado.

Figura 8 - Diagrama do processo Auger, (a) envolvendo dois elétrons e um buraco, (b) envolvendo dois buracos e um elétron.

Além disso para altas concentrações, (n,p \sim

- 19 -

 10^{19} cm⁻³) a razão de recombinação pode ser diminuida pela interação coulombiana entre os portadores. Com base neste trabalho de A. Hang (8) podemos escrever que:

$$R_{A} = B_{1} n^{2} p$$
 {11}

onde R_A é a razão de recombinação Auger, B_1 a constante de recombinação Auger, e n e p são as densidades de elétrons e buracos, respectivamente. Essa equação é a discussão do caso mais simples de recombinação Auger, sem conservação de \vec{k} , ou seja, com a participação de fônons.

A razão de recombinação radiativa, que origina a emissão estimulada e espontânea nos semicondutores de gap direto, é dada por (9):

$$R_{R} = \int_{0}^{\infty} \gamma_{spon} (h\nu) d(h\nu) \qquad \{12\}$$

Para um cálculo qualitativo, vamos assumir o mais simples dos casos, onde a recombinação não seja governada pela conservação de \vec{k} , assim a razão de recombinação radiativa fica proporcional aos produtos de estados cheios na banda de condução pelos números de estados vazios na ban da de valência:

$$R_{p} = B n p$$
 {13}

Escrevendo então a razão total de recombinação como a soma das recombinações radiativas mais as recom

- 20 -

- 21 -

binações Auger teremos:

$$R_{T} = R_{R} + R_{A} = B n p + B_{1} n^{2} p$$
 {14}

Com base nestes argumentos, podemos definir a eficiência das recombinações radiativas como:

$$\eta_{i} = \frac{R_{R}}{R_{R}+R_{A}} = \frac{Bnp}{Bnp+B_{1}n^{2}p}$$
[15]

ou simplesmente:

$$\frac{1}{\eta_1} = 1 + \frac{B_1}{B} \quad n$$
 {16}

Podemos, também, calcular J_L em função dos coeficientes de recombinação, usando a equação {9} e a equação {16}.

Reescrevendo a equação {9} temos:

$$\mathfrak{I}_{\mathbf{L}} = \frac{\mathbf{d}}{\Gamma\beta\eta} \left[\alpha_{\mathbf{T}} \right] + \frac{\alpha \mathbf{d}}{\beta\eta}$$

$$\{17\}$$

onde α_{T} e os demais parametros, já foram definidos anterior mente.

Usando a equação {16} podemos reescrever {17}

 $\frac{1}{J_{L}} = \frac{\Gamma\beta}{d[\alpha_{T} + \Gamma\alpha]} - \frac{B_{L}\tau}{Bed}$ [18]

Desta eq. observamos que o mecanismo de recom binação Auger, representado por B₁,tende a aumentar a densidade da Corrente Limiar.

CAPITULO IV:

IV-l - Teoria:

Para se calcular a variação do ganho líquido de um laser semicondutor, com a pressão uniaxial, é necessário o conhecimento da deformação causada por esta pre<u>s</u> são na estrutura cristalina do semicondutor.

Um modelo que calcula a variação do ganho $l\underline{i}$ quido com a pressão uniaxial em laser semicondutores foi elaborado por Patel e outros (10), (11).

Como sabemos, a estrutura cristalina do InGaAsP aproxima-se da estrutura cristalina do InP, a qual, como da maioria dos semicondutores, é do tipo zinc-blende e constitui-se, essencialmente, de duas redes cúbidas f.c.c. interpenetrantes; a primeira de In e a segunda de P, situ<u>a</u> da a 1/4 da diagonal do cubo da primeira. Desse modo, um átomo de In ficará no centro de um tetraedro, rodeado por quatro átomos de P situados nos quatro vértices e vice-ve<u>r</u>

sa (figura 9).

Figura 9 - Estrutura cristalina de um sem<u>i</u> condutor do tipo Zincblende.

Deste modo, o topo da banda de valência, situado em $\vec{k} = 0$, é triplamente degenerado, com orbitais tipo p ($\ell = 1$), tem simetria orbital Γ_{15} e, com spin, seria seis vezes degenerada.

Agora, quando consideramos a interação spinórbita, esta degenerescência vai se separar em uma duplamen te degenerada, com j = l + s = 3/2, que se transforma como Γ_8 (figura 10).

Figura 10: Esquema das bandas degeneradas com interação spin órbita

No caso do InGaAsP, é fácil ver que uma pres-

- 23 -

são uniaxial na direção (001) vai reduzir a simetria, de cú bica, para tetragonal. Mais especificamente, vamos passar do grupo cúbico para o tetragonal. Logo, vai separar a ba<u>n</u> da quatro vezes degenerada em $\vec{k} = 0$ no extremo da banda de valência em duas, cada uma duplamente degenerada a saber, uma $|V_1\rangle$, de buracos pesados, correspondente aos estados ($3/2 \pm 1/2$), com simetria orbital Γ_7 , e outra $|V_2\rangle$ de buracos leves, correspondente aos estados ($3/2 \pm 3/2$), com sim<u>e</u> tria orbital Γ_6 . A banda $|V_3\rangle(1/2 \pm 1/2)$ continua duplamente degenerada (figura 11).

Além disso, a componente de pressão hidrost<u>á</u> tica da pressão uniaxial aplicada, desloca o "centro de gr<u>a</u> vidade" das bandas $|V_1\rangle$, $|V_2\rangle$ e $|V_3\rangle$, relativamente à banda de condução.

Figura ll: Diagrama de Bandas de Energia do InGaAsP. a- Sem pressão b- Com pressão

- 24 -

A seguir, daremos início ao cálculo da Hamiltoniana da pressão, para que, assim, possamos estimar os deslocamentos das bandas de valência em relação à banda de condução causadas pela variação da pressão uniaxial.

IV-2 - Hamiltoniana da Pressão:

Para construirmos a hamiltoniana da tensão , partiremos do cristal não deformado em $\vec{k} = 0$, cuja função de onda $\Psi_0(\vec{x})$ é periódica para cada cela elementar. Sob pressão, modifica-se $\Psi_0(\vec{x})$ para uma nova função de onda $\Psi_{\vec{k}}$, em virtude de que as celas elementares do cristal, sob deformação, também se deformam, mantendo, porém, a nova função de onda periódica com um período das novas celas elemen tares.

Pikus e Bir (12) e Kleiner e Roth (13), estuda<u>n</u> do a deformação de cristais, descreveram a deformação por um tensor $\tilde{\epsilon} = \{\epsilon_{ij}\}$, considerando os termos, contendo esta deformação, com uma pertubação e,fazendo uma transformação de coordenadas inversa que combina a cela elementar deform<u>a</u> da com a cela elementar não deformada, obtiveram a equação $\Psi_{\vec{k}}$ do cristal deformado

$$(H_0 + H) \Psi_k = E \Psi_k$$
 {19}

onde,

$$H_0 = \frac{h^2}{2m} \nabla^2 + V(r)$$
 {20}

hamiltoniana do cristal não deformado

- 25 -

- 26 -

$$H = H_{p} + H_{k} + H_{so}$$
 {21}

hamiltoniana de deformação. Onde:

$$H_{\mathbf{k}} = \frac{\mathbf{h}}{\mathbf{m}} \mathbf{\vec{k}} \cdot \mathbf{\vec{p}}$$
 {22}

hamiltoniana \vec{k} . \vec{p}

$$H_{so} = \frac{h^2}{4m^2c^2}$$
 {23}

hamiltoniana da interação spin-órbita.

 H_p é a pertubação em H_0 causada pela pressão. Como em (12);(13), (14), (15), H_p pode ser escrito em termos dos momentos angulares e dos $E_{\alpha\beta}$ que ligam a transformação dos eixos X, Y, Z aos novos X', Y', Z'. Isto porque a aplicação de pressão uniaxial sobre um cristal vai di<u>s</u> torcer seus eixos unitários X, Y, Z para X', Y', Z' (16)

$$H_p = -a^i (Exx + Eyy + Ezz) - 3b^i | (L_x^2 - \frac{1}{3}L^2) Exx + p.c.|$$

$$- \frac{6 d^{i}}{\sqrt{3'}} \quad (\{L_{x}L_{y}\} Exy + p.c.)$$
 {24}

onde,

- o superscrito i é o índice da banda.
- $E_{\alpha\beta}$ são as componentes do tensor de tensão. - L'éo operador momento angular.
- p.c. denomina permutações cíclicas com respeito aos índices X, Y, Z.
- { $[L_x L_y]$ } indica produto simetrizado

$$\{L_x L_y\} = \frac{1}{2} (LxLy + LxLy)$$

- aⁱ potencial de deformação hidrostático para a banda i.
- bⁱ é o potencial de deformação uniaxial p<u>a</u>
 ra tensões de simetria tetragonal.

Temos ainda que definir a hamiltoniana para a pertubação $\vec{k} \cdot \vec{p}$, H, que determina a forma das bandas na vizinhança de k = 0; a qual, por sua vez, também é apresentada em termos dos mesmos operadores (17), (18) e (19).

$$H_{k} = A (K_{x}^{2} + K_{y}^{2} + K_{z}^{2}) - 3B | (L_{x}^{2} - \frac{1}{2} L^{2}) K_{x}^{2} + p.c. |$$

$$- \frac{6D}{\sqrt{3'}} |\{\mathbf{L}_{\mathbf{x}}\mathbf{L}_{\mathbf{y}}\} | \{\mathbf{K}_{\mathbf{x}}\mathbf{K}_{\mathbf{y}} + \mathbf{p.c.}\} | \{25\}$$

onde A, B e D são os parâmetros definidos por Dresselhaus, Kipe e Kittel (17).

Generaliza-se mais o problema se incluirmos na hamiltoniana total a variação do termo de interação spin órbita, com a pressão H_{SO}^{i} . Porém, na realidade, a variação de H_{SO}^{i} foi considerada por Suzuki-Hensel (20) e Lande-Pollak-Cardona (21) através de uma hamiltoniana de pressão dependente do spin e verificou-se que sua contribuição é realmente muito pequena.

Com a finalidade de simplificar os cálculos, podemos tratar a hamiltoniana da pressão H_p e a hamiltoniana de $\vec{k} \cdot \vec{p}$ H_k numa mesma hamiltoniana, H_T, a qual é a soma de H_k e H_p.

- 27 -
- 28 -

então,

$$H_{T} = H_{k} + H_{p}$$
 {26}

pode ser escrita.

$$H_{T} = B_{1} \Phi$$
 $- 3B_{2} | (L_{x}^{2} - \frac{1}{3} L^{2})V_{xx} + p.c. |$

$$-\frac{6B_3}{\sqrt{3}} |\{L_x, L_y\} V_{xy} + p.c.|$$
 {27}

onde,

$$V_{\alpha\alpha} = BK_{x}^{2} + b^{i} E_{\alpha\alpha}$$

$$V_{\alpha\beta} = a^{i} E_{\alpha\beta} + DK_{\alpha}K_{\beta}$$

$$\Phi = AK^{2} - a^{i}_{\alpha}\Sigma (E_{xx})$$
(28)

Podemos dividir esta hamiltoniana em duas pa<u>r</u> tes. Uma escalar, responsável pela descrição da parte hidrostática:

$$H_{\mu} = B_{\mu} \Phi$$
 {29}

e outra responsável pelos efeitos da pressão uniaxial:

$$H_{T}' = -3B_{2} | (L_{x}^{2} - \frac{1}{3} L^{2}) V_{xx} + p.c.| -\frac{6B_{3}}{\sqrt{3}} | [L_{x}, L_{y}] V_{xy} + p.c.| \{30\}$$

O primeiro termo é um escalar; não contém op<u>e</u> radores, e, como estamos interessados em diferenças relativas, ele não tem uma importância relevante nos cálculos. P<u>o</u> demos, depois de feitos os cálculos, adicionar, se necessário, essa diferença de energia.

- 29 -

Usando como base as auto-funções de \vec{j}^2 e \vec{j}_z onde $\vec{j} = \vec{L} + \vec{s}$, $|j, mj\rangle$, com $\ell = 1$ e s = 1/2 para a banda de valência são dadas a seguir em termos das harmônicas esféricas (18):

$$|3/2, 3/2\rangle = |V_2^+\rangle = Y_{11}^+$$

$$|3/2, 1/2\rangle = |V_1^+\rangle = \frac{1}{\sqrt{3!}} |\sqrt{2}Y_{10}^+ + Y_{11}^+|$$

 $|1/2, 1/2\rangle = |V_3^+\rangle = \frac{1}{\sqrt{3}} |-Y_{10}^+ + \sqrt{2} Y_{11}^+|$

$$|3/2, -3/2\rangle = |V_2^-\rangle = Y_{1-1}^+$$
 {31}

$$|3/2, -1/2\rangle = |v_1^{-}\rangle = \frac{1}{\sqrt{3}} |\sqrt{2} y_{10}^{+} + y_{1-1}^{+}|$$

$$|1/2, -1/2\rangle = |V_{3}^{-}\rangle = \frac{1}{\sqrt{3}} |Y_{10}^{+} - \sqrt{2} Y_{1-1}^{+}|$$

onde ↑↓ significam, respectivamente, "spin-up" e spin-down", com respeito ao eixo de tensão.

Juntando a hamiltoniana H'_T com a interação spin-órbita, podemos definir a hamiltoniana H':

$$H' = H_{SO} + H'_{T}$$
 {32}

cujos elementos de matriz, na base referida {32}, são:

- 30 -

 $|H'| = \begin{vmatrix} -R & S & T & 0 & -\sqrt{\frac{1}{2}} S & -\sqrt{2} T \\ S^* & R & 0 & T & -\sqrt{2} R & \sqrt{3/2} S \\ T^* & 0 & R & -S & \sqrt{3/2} S^* & \sqrt{2} R \\ 0 & T^* & -S^* & -R & \sqrt{2} T^* & -\sqrt{1/2} S^* \\ -\sqrt{1/2} S^* & -\sqrt{2} R & \sqrt{3/2} S & \sqrt{2} T & -\Delta_0 & 0 \\ -\sqrt{2} T^* & \sqrt{3/2} S^* & \sqrt{2} R & -\sqrt{1/2} S & 0 & -\Delta_0 \end{vmatrix}$ onde:

onde:

$$R = \frac{B_2}{2} (2 V_{zz} - V_{xx} - V_{yy})$$

$$S = -B_3 (V_{xz} - iV_{yz})$$
(34)

$$T = \frac{\sqrt{3}}{2} B_2 (V_{xx} - V_{yy}) + i B_3 V_{xy}$$

e Δ_0 é a separação entre os multipletos j = 3/2 e j = 1/2 devido à interação spin-órbita.

Considerando $\Delta_0^{>>R}$, S ou T, ou seja \vec{K} e pressão pequenos, podemos usar o cálculo de perturbação em primeira ordem, onde teremos os auto-valores de {33}.

$$E_{1}' = (R^{2} + |S|^{2} + |T|^{2})^{1/2}$$

$$E_{2}' = -(R^{2} + |S|^{2} + |T|^{2})^{1/2}$$

$$E_{3}' = -\Delta_{0}$$
(35)

Acrescentando o termo $B_1^{-} \phi$, obtemos os auto-valores da hamiltoniana perturbada pela pressão com a or<u>i</u> gem de energia no topo da banda de valência não perturbada (em $\vec{K} = 0$ e sem pressão).

$$E_1 = B_1 \Phi + (R^2 + |S|^2 + |T|^2)^{1/2}$$

Buracos pesados.

$$E_2 = B_1 \Phi - (R^2 + |S|^2 + |T|^2)^{1/2}$$
 {36}

Buracos leves.

$$E_3 = -\Delta_0 + B_1 \Phi$$

Separada

IV-3 - Autovalores da Hamiltoniana na Direção (0,0,1):

Em nossos lasers, aplicamos a pressão perpendicularmente ao plano da junção, ou seja, na direção (0,0,1) (veja figura 12).

- 31 -

Figura 12: Direção da pressão no laser

As componentes de tensão, para a pressão apl<u>i</u> cada na direção (0,0,1), são (16).

$$E_{zz} = S_{11}P$$
$$E_{xx} = E_{yy} = S_{12}P$$
$$E_{xy} = E_{xz} = E_{yz} = 0$$

onde S₁₁ e S₁₂ são constantes de compliança elástica. Se substituirmos {37} em {34}, teremos:

$$\mathbf{S} = \mathbf{T} = \mathbf{0}$$

{38}

{37}

$$R = \frac{b}{2} (2S_{11}X - 2S_{12}X)$$
 {39 }

ou ainda, definindo:

· · •

e

 $\delta_{H} = a^{i} (S_{11} + 2S_{12}) = (\partial E_{g} / \partial P)$

de potencial de deformação hidrostática e {40}

$$\delta_{\mu}^{(0,0,1)} = -2b (s_{11} - s_{12})$$

de potencial de deformação uniaxial, e substituindo {40} em {39} e, logo após, em {36}, chegamos a:

$$E_{1} = -\delta_{H}P + \frac{1}{2} \delta_{\mu}^{(0,0,1)}P$$

$$E_{2} = -\delta_{H}P - \frac{1}{2} \delta_{\mu}^{(0,0,1)}P \qquad \{41\}$$

$$E_3 = -\Delta_0 - \delta_H P$$

Do resultado obtido em {41}, podemos dizer que a pressão uniaxial atuando sobre um semicondutor do t<u>i</u> po InGaAsP, vai produzir dois efeitos sobre os niveis de energia das bandas $|V_1\rangle$, $|V_2\rangle$ e $|V_3\rangle$.

l- Sua componente hidrostática vai deslocar uniformemente esses três níveis de $-\delta_{\rm H}^{}$ P.

2- Sua componente uniaxial vai levantar pa<u>r</u> cialmente a degenerescência que existia entre os níveis co<u>r</u> respondente as bandas $|V_1\rangle = |V_2\rangle = \vec{K} = 0$, antes da pressão uniaxial ser aplicada. Essa componente provocará des-

Figura 13 - Deslocamento das bandas $|V_1\rangle$, $|V_2\rangle$ e $|V_3\rangle$ devido a pressão uniaxial.

- 35 -

locamentos das bandas $|V_1\rangle = |V_2\rangle$ de $\pm \frac{1}{2} \delta \mu P$, respectivamente, como esquematizamos na figura 13.

Uma vez que conhecemos à variação causada pela pressão uniaxial nos níveis de energia das bandas de valência de buracos leves, pesados e separada, podemos calcular o ganho líquido dos lasers, como uma função da pressão uniaxial.

Segundo o trabalho de Patel e outros (11), as transições da banda de condução $|C\rangle$ para o nível de banda de valência de buracos leves $|V_2\rangle$, é permitido apenas para luz polarizada paralelamente ao plano da camada ativa (modo TE), enquanto que transições da banda de condução $|C\rangle$ para o nível da banda de valência de bur<u>a</u> cos pesados $|V_1\rangle$ é permitido tanto para a luz polarizada perpendicularmente, como paralelamente ao eixo da pressão, embora a componente paralela (modo TM) seja quatro vezes mais forte.

Quando a pressão uniaxial é aplicada perpendicularmente a camada ativa, o ganho óptico líquido a baixo da corrente limiar, do modo Te e do modo TM foi determinado por Patel (10), (11), como sendo:

$$G_{TE}(I) = g_{TE}(I) - L_{TE}$$
 {42}

$$G_{TM}(I) = g_{TM}(I) - L_{TM}$$

$$\{43\}$$

Onde o ganho líquido $G_{TE}(I)$ (paralelo a junção) e $G_{TM}(I)$ (perpendicular a junção), são funções do elemento de matriz momentum $\langle C | \vec{P}_i | a \rangle$ P é o momentum linear entre a banda de valência e o nível aceitador, e i é a direção do campo elétrico óptico de uma dada polarização, $|C\rangle$ é a função de onda da banda de condução, $|a\rangle$ é a função de o<u>n</u> da do nível aceitador a uma dada pressão, a qual foi dada por Ripper e outros (22) como sendo:

$$|a\rangle = \frac{1}{\sqrt{\alpha^{2} + \beta^{2^{*}}}} |\alpha| |v_{1}\rangle + \beta |v_{2}\rangle| \qquad \{44\}$$

cuja energia é,

$$E_{a} = E_{a0} + |-\partial_{H} + \frac{(\alpha - \beta)}{\sqrt{\alpha^{2} + \beta^{2}}} \delta_{\mu}| \qquad \{45\}$$

e onde α e β são soluções de:

$$\alpha = \frac{1}{E_{a0} + | -\frac{\alpha - \beta}{\sqrt{\alpha^2 + \beta^2}} - 1 | \delta_{\mu}P}$$

$$\beta = \frac{1}{E_{a0} + | -\frac{\alpha - \beta}{\sqrt{\alpha^2 + \beta^2}} + 1 | \delta_{\mu}P}$$

$$\{46\}$$

Desta maneira, a variação da função de onda do nível aceitador com a pressão afeta o ganho dos modos do laser e, consequentemente, sua corrente limiar, I . Em nossa situação experimental, na qual a pressão é aplicada

- 36 -

perpendicularmente à junção, o modo TE tem campo elétrico perpendicular à direção da pressão, e o modo TM tem campo elétrico paralelo à direção de pressão. Assim:

$$G_{TE}(I) = g(I) < C |P_{\perp}|a>^2 - L_{TE}$$
 {47}

$$G_{TM}(I) = g(I) < C |P_{\parallel}| a >^2 - L_{TM}$$
 {48}

onde g(I) é uma função da corrente e L_{TE} e L_{TM} são as perdas do modo TE e TM, respectivamente, e $|\langle C|P_i| \rangle|^2$ é proporcional à intensidade de transições ópticas. onde:

$$| < C | P_{//} | | V_1 > |^2 = K$$

 $| < C | P_{\perp} | | V_1 > |^2 = 1/4K$
 $| < C | P_{//} | | V_2 > |^2 = 0$
 $| < C | P_{//} | | V_2 > |^2 = 3/4K$

onde K é uma constante.

Substituindo $|a\rangle$ dada por $\{44\}$ e os valores da matriz transição dada por $\{49\}$, no limite que $\delta_{\mu}^{P<<E}_{a0}$, nos temos:

$$G_{TE}(I) = \gamma_1 - \gamma_2 P - L_{TE}$$
 {50}

$$G_{TM}(1) = \gamma_1 + 2\gamma_2 - L_{TM}$$
 {51}

- 37 -

onde:

$$\gamma_{1} = \frac{g(I)K}{\sqrt{2'}}$$
$$\gamma_{2} = \frac{g(I)\delta_{\mu}K}{2\sqrt{2'}E_{a0}}$$

Das equações $\{50\}$ e $\{51\}$, verifica-se que o <u>ga</u> nho para o modo TE diminui linearmente com a pressão, enqua<u>n</u> to que o ganho para o modo TM aumenta linearmente com a pre<u>s</u> são (veja figura 14 a e b), referência 11.

O laser começa operar no modo de polarização maior, ou seja, onde a diferença entre ganho e as perdas da cavidade seja maior. Em laser de heteroestrutura dupla o mo do TE possui uma maior refletividade nos espelhos do que o mo do TM (23), (24) e consequentemente apresenta menores perdas que o modo TM, ou seja:

$$L_{TE} < L_{TM}$$
 {52}

Assim, à pressão zero, vemos pelas equações $\{50\}$, $\{51\} \in \{52\}$, que o laser começa a operar no modo de ganho líquido mais alto, isto é, o modo TE. Conforme a pressão vai aumentando, o $G_{TE}(I)$ vai diminuindo, enquanto $G_{TM}(I)$ vai caumentando. Numa determinada pressão crítica, P_0 , vamos ter $G_{TE}(I) = G_{TM}(I)$, isto é, o ganho líquido para ambas polarizações será igual (figura 14 c). Esta pressão é dada pela relação.

$$P_0 = \frac{(L_{TE} - L_{TM})}{3\gamma_2}$$
 {53}

Como o laser opera no modo e polarização de ganho líquido mais alto, para pressões menores que P_0 o laser opera no modo TE e o ganho decresce com maiores pressões e, consequentemente, a corrente limiar, I_L , deve aumentar com a pressão uniaxial.

A declividade da curva de I_L versus p, varia consideravelmente de diodo para diodo, o que deve ser esperado pelo fato de γ_2 ser uma função do valor do nivel aceitador E_{a0} .

Figura 14 - Comportamento do ganho e da corrente limiar do laser, (ref. 11).

- 39 -

Montagem Experimental:

Os lasers por nós usados na execução deste trabalho foram fabricados pelo método LPE (Liquid Phase Epitaxy). Este método consiste em crescer camadas a partir da fase líquida sobre um substrato. Em nosso caso, as cama das de In_{1-x}Ga_xAs_yP_{1-y} são crescidas sobre substrato de InP tipo N (0,0,1) dopado com estanho. Estas camadas são crescidas num reator de três zonas com controle de temperatura de décimo de grau. Cristais de InP, GaAs, InAs são dissolvidos em soluções de In a 660,0°C. Um tempo de 4hs nessa temperatura é necessário para homogeneização da solução. De pois disso inicia-se uma lenta e controlada descida de temperatura na razão de 0,7ºC/minuto, coloca-se a solução em contato com o substrato onde o excesso de As, P, Ga deposita-se no substrato sob forma de In_{l-x}Ga_xAs_yP_{l-y}.

A composição química x e y é analisada com microscopia eletrônica de varredura e o parâmetro de rede é medido por raio-X. A qualidade da superfície é analisada por microscopia óptica com contraste de fase e,a espessura das camadas medidas com o microscópio eletrônico de varredu ra.

Estes lasers possuem dimensões aproximadas de 380µm de comprimento por 250µm de largura. A largura da fa<u>i</u> xa utilizada para limitar a emissão é apenas um filamento de 10µm. A espessura dos lasers é de aproximadamente 100µm, enquanto que a espessura da região ativa dos lasers varia de 0,15 a 0,20µm.

As áreas aproximadas dos lasers são de 1,0 x 10⁻³cm. Um desenho que explica melhor pode ser visto na figura (15).

Figura (15): Laser de heteroestrutura dupla.

Na figura (16), que se segue, mostramos o sis tema utilizado para aplicar pressão uniaxial em laser de heteroestrutura dupla, à temperatura ambiente.

O laser é colocado entre dois diamantes metalizados, de faces paralelas, para obter pressão uniaxial per pendicular à junção, como mostramos na figura, sendo o inferior colocado sobre um micro-posicionador X-Y e, o superior, comprimido sobre o laser por uma sanfona, na qual se introduz hélio gasoso.

Conhecemos a pressão P_0 do hélio, medindo-se <u>a</u>

- 41 -

Figura (16): Sistema de pressão

través de um manômetro. Essa pressão atua sobre a área \underline{a} da sanfona, transmitindo para a ponta que comprime o diamante, com um força \underline{f}

Então, conforme observamos:

$$f = p_0 x a$$
 {54}

Essa forçaé uniformemente distribuída sobre a área <u>A</u> do laser, o que resulta numa pressão <u>P</u> sobre o laser, diferente da pressão medida no manômetro.

Então, a pressão <u>P</u> no laser será:

$$p = \frac{f}{A}$$
 {55}

mas como:

$$f = p_0 x a$$

$$p = p_0 x \frac{a}{2}$$
(56)

Como podemos observar, a pressão no laser s<u>e</u> rá igual à pressão p medida no manômetro vezes um termo, que é a razão entre a área da sanfona e a área do laser.

A área da sanfona utilizada é de 2,42cm² e as dimensões do laser são cerca de 380µm por 250µm, o que resu<u>l</u> ta em uma área de aproximadamente 10^{-3} cm² sendo que esta será m<u>e</u> dida exatamente para cada laser através de um microscópio el<u>e</u> trônico.

Para se ter uma idéia do que foi dito acima ,

- 43 -

esquematizamos o processo na figura (17).

Figura (17): Esquema de forças

onde:

p = pressão medida no manômetro a = ārea da sanfona p = pressão sobre o laser A = ārea do laser

Além da parte mecânica da nossa montagem, temos a montagem dos equipamentos eletrônicos, o que nos garan tem/a medida das mudanças ocorridas quando aplicamos pressão.

O laser, no interior do conjunto utilizado para aplicação de pressão uniaxial, é excitado por um gerador de pulsos Hewlett Packard, modelo 214A.

Pulsos de corrente de largura de 100 a 150ns, a uma razão de repetição de 1,0KHZ, são aplicados ao laser. A razão destes valores baixos para a largura de pulso e razão de repetição é minimizar efeitos de aquecimento.

A luz emitida pelo laser é recolhida por uma lente montada sobre um microposicionador XYZ, analisada em polarizadores especiais para a região infravermelha ($\lambda \simeq$ 13.250A⁰), alinhado no Fotodetector de Germânio, também especial para a região infravermelha.

Os sinais do fotodetector são,então,enviados a um osciloscópio de amostragem (Tektronix modelo 465) onde fixa-se a posição mais conveniente do pulso de luz (normalmente no início do pulso).

A seguir, o sinal é colocado em um amplificador tipo "box-car" Par modelo 162, para a obtenção de uma corrente continua, proporcional ao pulso de luz, que pode então ser registrado por um XY Philips modelo PM 8120 canal (Y).

A corrente limiar do laser, I_{th}, é obtida através de um processo similar. O pulso enviado ao laser pelo gerador, é analisado por um sensor de corrente Tektronix, modelo 6015, e enviado a um "box-car" Par, modelo 160, para a obtenção de uma corrente contínua, proporcional ao pulso enviado ao laser, que pode então ser registrado por um XY Philips modelo PM 8120 canal (X).

Na figura (18) mostramos um esquema da montagem eletrônica descrita, acima.

Nas medidas de emissão espectral, a luz em<u>i</u> tida pelo laser, após ter passado pela lente e pelo polaria zador, é alinhada na fenda de um espectrômetro Spex 1402 e<u>d</u>e tectada por um fotodetector de Germânio ou fotomultiplicadora.

Para obter-se uma boa resolução para a emis-

- 45 -

Figura 18 - Montagem para a determinação da corrente limiar e polarização do laser.

46

são espectral, utilizou-se fendas de 20µm de largura,co<u>n</u> seguindo-se uma resolução de .1 A°.

Os sinais do fotodetector são amplificados por um pré-amplificador Par modelo 115 e enviados ao osc<u>i</u> loscópio de amostragem (Tektronix modelo 465).

A seguir, o sinal segue o mesmo procedime<u>n</u> to usado na medida de corrente limiar I_{th}, passa pelo "box-car" para ser integrado e é enviado ao registrador XY, canal Y.

Conhecendo a velocidade do "scanning" do espectrômetro em (A⁰/min), podemos determinar a posição do pico de emissão estimulada do laser (medida em comprimento de onda, λ) na sua corrente limiar.

Para uma dada pressão são medidas a corrente limiar do laser e a frequência de seu modo de oscilação. A seguir, a pressão é variada para um valor maior e, novamente é medida a corrente limiar e frequência, para esta nova pressão. Depois de obtida uma série de valo res para as corrente e frequências, a diferentes pressões (cuja variação aproximada é de 0 a 500 atmosferas), voltase a pressão a zero e mede-se a corrente limiar para ver<u>i</u> ficar, através de alguma diferença considerável de seu v<u>a</u> lor inicial, se houve dano permanente no diodo, o que introduziria erros na medida.

Na figura (19), mostramos o esquema da mo<u>n</u> tagem descrita acima.

- 47 -

Figura (19): Montagem usada nas medidas espectrais

- 48 -

CAPÍTULO VI:

VI-1 - Resultados Obtidos:

Com a finalidade de facilitar a interpretação dos resultados, faremos a seguir a apresentação destes de forma a ressaltar o comportamento padrão dos resultados experimentais.

Nas páginas seguintes, apresentamos alguns resultados experimentais típicos, obtidos para a variação da corrente limiar com aumento da pressão uniaxial.

Nas figura 20, 21, 22. 23, 24, 25, 26 e 27, mostramos o comportamento médio observado nos lasers sem<u>i</u> condutores de InGaAsP, para variação da corrente limiar com a pressão, nas seguintes condições experimentais:

- Temperatura ambiente (figuras 20 e 22).
- Baixa temperatura (figuras 22 e 23).
- Variando a temperatura (figuras 24, 25, 26 e 27).

Ressaltamos que estas medidas foram feitas com o uso de um polarizador.

Análise e comentários das figuras é feita no capítulo VII.

Figura 20 - Redução da corrente limiar com aumento da pres são uniaxial a temperatura ambiente, modo TE.

Figura 21 - Aumento da corrente limiar com aumento da pres são uniaxial a temperatura ambiente, modo TE.

- 50 -

Figura 23 - Aumento da corrente limiar com aumento da pressão uniaxial a baixa temperatura (-160°C), modo TE.

- 51 -

Figura 24 - Variação da corrente limiar com aumento da pres são uniaxial no intervalo de temperatura (25 a $I_{L}(P)$ -160°C), modo TE.

Figura 25 - Variação da corrente limiar com aumento da pressão uniaxial no intervalo de temperatura (25 a -160°C), modo TE.

- 52 -

Figura 26 -

Variação da corrente limiar com aumento da pressão uniaxial no intervalo de temperatu ra de (25 a -160°C), para os modos TE e TM.

- 53 -

- 54 -

CAPÍTULO VII:

VII-1 - Análise e Comentários:

Quando iniciamos este trabalho em Agosto de 19⁸2, tinhamos por objetivo observar a dependência da corre<u>n</u> te limiar com a pressão uniaxial dos lasers semicondutores de In_{1-x}Ga_xAs_yP_{1-y}.

A princípio, a expectativa era de que o comportamento destes lasers, com a pressão uniaxial, fosse o mesmo que o dos lasers de GaAs e GaAlAs de homojunção e de heterojunção, tão bem explicado por Patel e outros (10), (11).

Nos lasers, na base de GaAs, foi observado que a corrente limiar dos lasers aumentava com o aumento da pressão uniaxial para luz polarizada, paralelamente ao plano da junção (modo TE), até uma certa pressão crítica P₀, a partir da qual, os lasers mudavam de polarização para modo TM, ou seja, passa a estar polarizada perpendicularmente ao plano de junção, e a corrente limiar passa a diminuir com aumento da pressão uniaxial.

Já em nosso trabalho, ao iniciarmos as medidas, os primeiros resultados observados, mostraram-se surpr<u>e</u> endentes, pois a corrente limiar diminuia com o aumento da pressão uniaxial, a temperatura ambiente para luz polarizada paralelamente ao plano da junção (modo TE), o que não se com

- 55 -

patibiliza com os resultados observados para os lasers de GaAs (figura 20).

Com a redução da corrente limiar com aumento da pressão uniaxial, passamos a suspeitar de um possível e<u>n</u> volvimento dos processos de recombinação não radiativo, em particular, do mecanismo de recombinação Auger (25), (26), (27). Contudo estas medidas foram repetidas para outros l<u>a</u> sers de InGaAsP e um novo resultado foi observado, foi ver<u>i</u> ficado um aumento da corrente limiar com a pressão uniaxial (figura 21).

Com a finalidade de esclarecer esta ambiguidade, fizemos algumas tentativas. Passamos a investigar o<u>u</u> tros aspectos importantes na caracterização dos lasers sem<u>i</u> condutores que são:

- a- Variação da concentração de Zinco na terceira camada confinante.
- b- Variação dos stripes dos laser de uma mes ma concentração de Zinco.

Com estas implementações, analisamos o comportamento de variação da corrente limiar, com a pressão uni<u>a</u> xial, ã temperatura ambiente, para uma quantidade de aproxim<u>a</u> damente 50 lasers, os quais são formados de cinco grupos, ou melhor, cinco"wafers" de concentração diferentes de Zinco, dos quais, cada wafer", nos dã 10 lasers de stripe" variado. Os "stripes" dos lasers de um mesmo "wafer" variam de 5µm a 50µm, de acordo com esta ordem:

(5,0; 7,5; 10,0; 12,5; 15,5; 17,5; 20,5; 25,0; 35,0; 50,0). A análise dos resultados obtidos com estas împlementações, não ofereceu condições para uma conclusão

- 56 -

sobre o comportamento da corrente limiar com o aumento da pressão uniaxial, e com isso passamos a fazer novas tentativas; passamos a investigar o comportamento da corrente l<u>i</u> miar com a pressão uniaxial variando a temperatura das amo<u>s</u> tras na faixa de 25°C a -160°C.

Com estas medidas, acreditamos ter observado evidências da recombinação não radiativa (efeito Auger) ne<u>s</u> ses lasers, pois como está descrito nas figuras 22, 26 e 27 do capítulo VI, à baixa temperatura, a corrente limiar aume<u>n</u> ta com a variação da pressão, e à medida que se eleva a temperatura, a partir de -40°C, a corrente limiar passa a diminuir com o aumento da pressão. Estes resultados eram esper<u>a</u> dos, uma vez que, à baixa temperatura, o mecanismo predominante de recombinação é o radiativo, enquanto que, a medida em que a temperatura é elevada, começa haver influência dos mecanismos não radiativos, principalmente a do efeito Auger.

Estes resultados podem ser explicados, levando-se em consideração o mecanismo de recombinação Auger, como podemos observar da equação {18}, do capítulo III

$$\frac{1}{J_{\rm L}} = \frac{\Gamma\beta}{d|\alpha_{\tau} + \Gamma\alpha|} - \frac{B_{\rm l}\tau}{\beta\eta}$$

onde, o mecanismo Auger esta representado, nesta equação, atr<u>a</u> vés do segundo termo.

Se considerarmos que a pressão uniaxial atua de forma a reduzir o mecanismo Auger, uma quantidade maior de fótons serão gerados, e uma densidade de corrente menor, será necessária para se chegar ao limiar.

- 57 -

Contudo, estas medidas foram repetidas para uma vasta quantidade de lasers de $In_{1-x}Ga_xAs_yP_{1-y}$ e os resultados destas medidas não se mostraram homogêneos (fig<u>u</u> ras 23, 24, 25), ou seja, não existe somente um comportamento para a corrente limiar com a pressão uniaxial, mas sim, dois:

- a- A redução da corrente limiar com aumento da pressão uniaxial para luz polarizada paralelamente a junção (modo TE), que podemos estimar, como sendo cerca de 20% da vasta quantidade de lasers testados.
- b- Aumento da corrente limiar com aumento da pressão uniaxial para luz polarizada par<u>a</u> lelamente à junção (modo TE), que podemos estimar como sendo 80% dos resultados observados.

Concluimos que o resultado obtido no item <u>b</u>, e<u>s</u> tá em concordância com a teoria proposta por Patel, desenvolvida para laser de GaAs, e que aqueles do item <u>a</u> podem ser obtidos teóricamente levando-se em consideração o mecanismo de recombinação não radiativo (efeito Auger).

Acreditamos que a não homogeneidade dos resultados obtidos sejam devidos a uma não concordância exata das rêdes na heterojunção, o que ocasiona grandes desvios nos parâmetros dos lasers, causando, assim, tensões internas nas heteros-junções.

A similaridade entre os parâmetros de rede das camadas entre si, e da camada com o substrato, é o principal fator para obtenção de lasers de dupla-hetero-estrutura de alta qualidade. No caso dos lasers de In_{1-x}Ga_xAs_vP_{1-y}/InP,

- 58 -

as camadas crescidas epitaxialmente não possuem exatemente o mesmo parâmetro de rede do InP, o que ocasiona tensões i<u>n</u> ternas. Para se ter uma idéia da grandeza dessas tensões, um desajuste no parâmetro de rede de 0,05% causa uma tensão na rede de aproximadamente 10^8 dinas/cm².

S.H. Chiao and R.L. Moon (28) elaboraram um gráfico que auxilia muito na obtenção de camadas de InGaAsP com mesmo parâmetro de rede do InP. Esse gráfico dá uma descr<u>i</u> ção detalhada da variação do parâmetros de rede e da energia do "gap" para o sistema $In_{1-x}Ga_xAs_yP_{1-y}/InP$ com a composição de (x,y) (figura 28).

Figura 28 - Diagrama de banda proibida contra parâmetro de rede de alguns semicondutores do grupo III-V.

- 59 -

Eliseev e outros (29) estudaram o comportamento dos lasers de InGaAsP quando sujeitos a aplicação de pressão uniaxial, e encontraram resultados similares aos no<u>s</u> sos. Justificaram estes como sendo devido a um desajustame<u>n</u> to no parâmetro de rede da hetero-junção (InGaAsP-InP).

Fica aqui como proposta de trabalho futuro, o estudo detalhado da influência do desajustamento do parâmetro de rede na corrente limiar dos lasers de InGaAsP, bem como a influência da pressão uniaxial sobre esse desajustamento e, consequentemente, sobre a corrente limiar.

- 60 -

PARTE II

Laser Semicondutor de GaAlAs-QW

.

CAPÍTULO VIII:

Introdução:

Este trabalho tem por objetivo analisar o com portamento do ganho modal nos lasers de poço quântico (QW), com confinamento separado por índice de refração gradual (SCH QW), em função da pressão uniaxial. Os lasers estudados tem camada ativa da ordem de 200 Å, com canaleta confinadora de corrente criada por bombardeamento de prótons de largura 4μ m.

A análise do comportamento de ganho modal em função da pressão é feita experimentalmente, e é baseada na hipótese de que o atraso temporal da emissão estimulada enco<u>n</u> trados nestes lasers torna-se maior, a medida que a pressão uniaxial aumenta.

O guiamento de luz é estudado, baseando-se na hi pótese de que o guia de ondas formado neste tipo de dispositivos, é resultado da variação espacial do indice de refração complexo na camada ativa e camadas adjacentes. É dado Anfase ao fenômeno da formação do guia de ondas nas direções transversal e paralela ao plano da camada ativa. Nesta direção, a va riação do indice de refração complexo ocorre em consequência dos processos pertubativos que acontecem dentro e fora da camada ativa, quando o laser estã em operação. Os principais processos pertubativos considerados são; o efeito dos porta dores injetados, restrito a camada ativa, e o efeito da varia ção da temperatura na camada ativa e adjacentes.

A análise é então desenvolvida a partir do mo-

delo para guia de ondas proposto por Prince e colaboradores (31), (32), o qual segue basicamente os mesmos princípios do modelo de guiamento de ondas em laser de canaleta confinadora, descrito por Paoli (33), e é caracterizado por uma constante dielétrica bidimensional. Esta constante dielétrica descreve a variação espacial do índice de refração complexo nas direções paralela e perpendicular à camada ativa.

Antes de se entrar no problema do guiamento da luz, é feito no capítulo IX, uma breve revisão sobre o l<u>a</u> ser semicondutor de poço quântico. No capítulo X, é estudada a formação do guia de ondas no laser, e se considera o efeito dos processos perturbativos sobre a variação espacial do índice de refração complexo.

O modelo matemático parao guia de ondas, proposto por Prince, é desenvolvido no capítulo XI. Neste capí tulo se encontra a solução para equação de onda, a qual é dada em termos do polinômio de Hermite-Gauss, e a partir desta, se encontra o valor da meia largura do modo fundamental, bem como uma expressão teórica para evolução do ganho modal com o tempo.

No capítulo XII é feita análise dos dados ex perimentais, bem como a comparação com os resultados teóricos obtidos pelo método computacional. Ainda neste capítulo são apresentados algumas observações experimentais sobre os níveis de energia dos lasers de poço quântico, suas v<u>a</u> riações com a pressão uniaxial.

Finalmente, no capítulo XIII são apresentadas conclusões e sugestões para o aprimoramento das análises d<u>e</u> senvolvidas no presente trabalho.

- 62 -
IX-1 - Conceitos Básicos de Poço Quântico:

Na figura 29, mostramos o diagrama de bandas de energia de um laser de heteroestrutura dupla sob polarização direta.

Figura 29 - Diagrama de energia de banda para um laser de dupla hetero-estrutura.

As descontinuidades nas bandas de valência e condução criam uma barreira de potencial que impede o fluxo de portadores na direção z. Nestes lasers, a dimensão da região ativa é maior que o comprimento de onda de difusão do portador, e as descontinuidades servem meramente para conf<u>i</u> nar os portadores na região ativa.

Quando a espessura da camada ativa de um la ser de heteroestrutura dupla é muito pequena frente as outras dimensões, $L_z^{<<} L_x^{}$, $L_v^{}$, e este valor é comparado ao $\infty \underline{m}$ primento de onda de Broglie ($\lambda = h/p = 10^{-5}$ cm) da partícula ou seu caminho livre médio na camada, novos fenômenos físicos aparecem e tem sua raiz na natureza discreta da matéria em pequenas dimensões. Estes efeitos são conhecidos como "Efeito de Dimensões Quânticas". Em particular, estes efei tos estão presentes em semicondutores onde a massa dos portadores é pequena e $\lambda \sim L_z$. A quantização do movimento partícula na direção z deve ser levada em conta na descrição das propriedades eletrônicas da camada ativa. Este movimen to deve ser separado daquele nas direções x e y onde não hã restrição ao movimento dessas partículas. Neste sentido, os elétrons e buracos na camada podem ser considerados com num gás de elétrons em duas dimensões.

Para um poço quadrado de barreiras potenciais infinitas, v = ∞ , a equação de Schroedinger em uma d<u>i</u> mensão é do tipo:

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dz^2} = E\Psi$$
 {57}

e suas soluções são (34)

- 64 -

- 65 -

$$\Delta En = \frac{n^2}{2m_z^*} \left(\frac{n\pi}{L_z}\right)^2$$
(58)

onde,

- n número inteiro 1, 2, 3.
 L_z largura do poço.
 m_z massa efetiva dos portadores associado a direção z.
- ΔEn é o n-ézimo nível de energia quantiz<u>a</u> do.

AEn é medido do fundo do poço ou do fundo, da banda de condução ou valência, no caso de materiais semicondutores.

Agora, no caso de um semicondutor real, as barreiras de potênciais não são infinitas, e a solução da equação de Schroedinger (equação 57), não mais se aplica. Assim para um poço de barreira pontencial finita V, os níveis de energia podem ser encontrados resolvendo-se as equ<u>a</u> ções transcendentais:

$$\left[\begin{array}{c} \frac{m_2^{\star}}{m_1} \left(\frac{V-E}{E}\right)\right]^{1/2} = tg \left(\frac{m_1^{\star} E L_z^2}{2\hbar^2}\right)^{1/2}$$
 {59}

para $n = 1, 3, 5 \dots$

е

$$\left[\frac{\frac{m_2^{\star}}{m_1}}{m_1}\left(\frac{V-E}{E}\right)\right]^{1/2} = -\cot g \left(\frac{\frac{m_1^{\star} EL_z^2}{2\hbar^2}}{2\hbar^2}\right)^{1/2}$$
 {60}

para $n = 2, 4, 6 \dots$

onde, m_1^* é a massa efetiva dos elétrons ou buracos, dentro do poço, e m_2^* é a massa efetiva dos portadores nas barreiras potenciais.

Para o poço quântico de nosso interesse cujo material do poço é GaAs, e o material na barreira é $Ga_{1-x}Al_xAs$, (com x = 0,20); teremos os sequintes valores:

$$\frac{GaAs}{m_0} = 0,0665$$

$$\frac{m_{1c}}{m_0} = 0,085$$

$$\frac{m_{2c}}{m_0} = 0,0832$$

$$\frac{m_{1VL}}{m_0} = 0,08$$

$$\frac{m_{2VL}}{m_0} = 0,091$$

$$\frac{m_1 VP}{m_0} = 0,45 \qquad \frac{m_2 VP}{m_0} = 0,51$$

 $\Delta E_{c} = 0,65 \Delta Eg$

 $\Delta Ev = 0,35 \Delta Eg$

onde, $m_c \in a$ massa efetiva para elétrons na banda de condução, $m_{VL} \in a$ massa efetiva dos buracos na banda de valência de buracos leves, e $m_{VP} \in a$ massa efetiva dos buracos na banda de valência de buracos pesados; $\Delta E_c = \Delta E_v$ são as descontinuidades na banda de condução e banda de valência, respectivamente, e $\Delta Eg \in a$ diferença entre a energia da banda proibida do GaAlAs e o GaAs.

Na figura 30 , ilustramos diagrama de bandas de energia para um laser de poço quântico usado neste estu-

- 66 -

do e é mostrado também os níveis de energias permitidos para banda de condução e banda de valência de buracos leves e pesados.

Figura 30 - Espectro de energia para um laser de poço quântico formado por uma heteroestrutura.

onde, n é o número quântico para banda de condução, e n_L e

- 67 -

 n_{H} , referem-se ao número quântico para buracos leves e pes<u>a</u> dos, na banda de valência, respectivamente.

As funções de onda, associados com estes auto - estados, são da forma:

$$\Psi \sim \Psi_{xy} \cos \left(\left[\frac{m_{z}^{\star} E_{n}}{2n^{2}} \right]^{1/2} z \right)$$

para n = 1, 3, 5 ... e

$$\Psi \sim \Psi_{xy} \operatorname{sen} \left(\left[\frac{\mathfrak{m}_{z}^{\star} \mathfrak{E}_{n}}{2\mathfrak{n}^{2}} \right]^{1/2} \mathfrak{z} \right)$$

para n = 2, 4, 6 ... e

$$\Psi = \Psi_{xy} \exp \{-m_{z}^{*}(E_{n} - \Delta E_{1})/2\hbar^{2} |z|$$

$$|z| > L_{z}/2$$
(62)

onde Ψ_{xy} é a porção da função de onda associada com o movimento no plano x-y. Na aproximação de massa efetiva Ψ_{xy} , toma a seguinte forma:

$$\Psi(\mathbf{x},\mathbf{y}) \sim \exp\left(\mathbf{i}\vec{k}_{1},\vec{p}\right) \cup \int_{j} (\mathbf{r})$$
 {63}

onde U_j é a porção modulada da função de Bloch em três dimensions sões e $\vec{\rho}$ é \vec{x} + \vec{y} . A figura 31 mostra a forma funcional do envesiope z da função de onda, e também a dependência das auto - energias em relação a profundidade do poço quântico finito de largura L_z .

 $|z| < L_{z}/2$ {61}

- 69 -

Figura 31 - Funções de onda para auto-estados do poço de p<u>o</u> tencial retangular finito.

Existem muitas consequências da quantização dos estados permitidos no poço quântico, que são importantes para a operação de um laser baseado em tal estrutura (35). De fundamental importância é que o espectro de energia dos estados permitidos seja alterado. Em particular, o estado de mínima energia para elétron e buraco é aumentado por uma energia ΔE , que depende da largura da região ativa L_z . Ao diminuir essa largura, a energia minima de emissão de um QWH pode ser aumentada. A figura 32 ilustra a dependência dos minimos da banda de condução (Γ , X, L), com a largura do poço quântico de GaAs confinado por hetero-barreiras de AlAs (36).

Também indicamos, na figura 32, o aumento do do "gap" efetivo da banda, $E_{lL} + E_{lh}$. Note-se que o 'gap" ef<u>e</u> tivo da banda pode ser aumentado em aproximadamente 0,6 a 0,8 eV, se construírmos um poço quântico fino (L_z <20A).

Figura 32 - Dependência da energia do primeiro estado con finado de um poço-quântico para vários mínimos na banda de condução versus a largura do poço para AlAs/GaAs (ref.36).

Isto resulta, primariamente, num aumento do nível E_l na ba<u>n</u> da de condução e sugere que lasers de emissão no vísivel p<u>o</u> dem ser fabricados com estruturas de poço quântico.

A segunda consequência da quantização é que a densidade de estados (nº de estados/unidade de intervalos/ volume) é alterada pela estrutura do poço quântico. Em três dimensões a densidade de estados tem dependência usual $E^{1/2}$ acima da borda da banda (37). Materiais de poço quântico po dem ser considerados como de quase-duas dimensões, porque o movimento associado com cada nível quantizado é restrito ao plano x-y. A densidade de estados ligados para um sólido

- 70 -

de duas dimensões é independente da energia. Assim, a de<u>n</u> sidade de estados para um sólido de quase-duas dimensões é uma função "escada", como mostra a figura 33.

Figura 33 - Densidade de estados num semicondutor de poço quântico, (ref. 37).

Associada com cada nível de energia quantizado existe uma densidade de estados em duas dimensões, que depende da energia. A relevância desta forma de densidade de estados para o ganho e corrente limiar tornar-se-á apare<u>n</u> te nas secções seguintes. É suficiente mencionar que as mudanças abruptas nos números de estados possíveis, nas energias dos níveis quantizados, contribui para que a dependência do ganho com a densidade de corrente seja maior nos lasers de poço quântico, do que nos lasers convencionais (38). Isto permite que se alcance um limiar de corrente mais ba<u>i</u> xo e uma eficiência quântica interna maior nos lasers de poço quântico.

Para uma banda parabólica, com barreira potenciais infinitas, pode-se mostrar que a densidade de est<u>a</u> dos na banda de condução é dada por(37).

$$\rho_{\mathbf{C}} (\mathbf{E}) = \left(\frac{\mathbf{m}^{*}}{\mathbf{\pi}\hbar^{2}\mathbf{L}_{\mathbf{Z}}}\right) \quad \text{Int} \left[\frac{(\mathbf{E}-\mathbf{E}_{\mathbf{C}})}{\Delta \mathbf{E}_{1\mathbf{C}}}\right]^{1/2} \qquad \{64\}$$

onde:

$$\Delta E_{lc} = \frac{\pi^2 \hbar^2}{2m^* L_z^2}$$

é a diferença entre o primeiro estado eletrônico confinado e a borda da banda de condução E_c e Int(x) é a função i<u>n</u> teira. Para um poço potencial finito, a densidade de est<u>a</u> dos deve-se aproximar daquela do sólido em três dimensões no limite de pequeno ΔE_c ou grande L_z . A forma mais geral da densidade de estados aplicável a ambos os poços finito e infinito no intervalo onde a quantização dos níveis de energia ocorrem, é dado por:

$$\rho_{c} (E) = \left(\frac{1}{2\pi^{2}}\right) \left(\frac{2m_{c}^{*}}{\hbar^{2}}\right)^{-3/2} \Sigma_{n} (En-Ec)^{1/2} \Theta (E-En) \qquad \{65\}$$

- 72 -

onde Θ (E), é a função de grau. Para energias acima do topo do poço a densidade de estados assume a dependência usual $E^{1/2}$.

IX-2 - <u>Ganho na Estrutura dos Lasers de Poço Quântico</u>:

A excitação de pares elétrons buracos no poço quântico por injeção elétrica ou excitação óptica resulta na emissão de luz, via recombinação radiativa desses pares. Consideraremos aqui o caso de não equilíbrio de um poço quântico não dopado de modo tal que:

$$\mathbf{n} = \mathbf{n}_0 + \Delta \mathbf{n} \sim \Delta \mathbf{n} = \Delta \mathbf{p} = \mathbf{p} \qquad \{66\}$$

O grau de excitação pode ser especificado p<u>e</u> la posição dos quasi-níveis de Fermi para elétrons e buracos, E_{fn} e E_{fp}, respectivamente. A posição dos quasi-níveis de Fermi é determinada, implicitamente, pelas equações:

$$\Delta n = \int_{E_{c}}^{\infty} \rho_{c} (E) f_{c} (E, E_{fn}) dE \qquad \{67\}$$

onde $\rho_{\rm C}({\rm E})$ é a densidade de estados da banda de condução e f_c é a função de Fermi para elétrons. Usando a densidade de estados para um sólido quase bidimensional (eq.64), pod<u>e</u> mos escrever:

$$\Delta n = \frac{4}{\pi} \left[\frac{m_c^* KT}{2\pi \hbar^2} \right] \qquad \sum_{n=1}^{3/2} \left[\frac{E_{nc} - E_c}{KT} \right]^{1/2} \qquad \ln \left\{ 1 + \exp \left[\frac{E_{fn} - E_n}{KT} \right] \right\} \{68\}$$

Uma expressão similar pode ser escrita para os buracos na banda de valência, onde a soma deve ser sobre os buracos na sub-banda leve e pesada. A solução dessas equações determina os quasi-níveis de Fermi para qualquer ní vel de excitação, o que nos permite calcular a probabilidade de ocupação para qualquer estado da banda de valência ou da banda de condução.

Para um sistema sob condições de baixo nivel de excitação a razão na qual os fótons são emitidos no∵intervalo de energia dE em torno de E, devido à emissão estimulada, é dada por (9).

$$r_{est}(E) dE = \Sigma \left(\frac{4n^2 e^2 E}{m^2 \hbar^2 c^2} \right) |M|^2 (f_s - f_i) \quad \{69\}$$

onde $f_s e f_i$ são as probabilidades de ocupação para os est<u>a</u> dos superiores e inferiores, cujas energias são separadas por E, e n é o índice de refração e, $|M|^2$ é o elemento de matriz para transições eletrônicas entre estados com o mesmo vetor de onda \vec{k} .

Integrando a equação {69}, e usando a conservação do momentum do cristal, obtém-se:

- 74 -

$$r_{est}(E) = \left(\frac{4n^{\circ}e^2}{m^2\hbar^2c^2}\right) |M|^2 \rho_{red}(E) (f_s - f_i) \{70\}$$

onde $\rho_{\mbox{red}}$ é a densidade de estados reduzida, dada por:

$$\rho_{\text{red}} = \frac{1}{2\pi^2} \left(\frac{2m_r^{\star}}{\hbar^2} \right)^{-3/2} \sum_{n} (E - E_{nc} + E_{nv})^{1/2} \oplus (E - E_{nc} + E_{nv}) \quad \{71\}$$

onde:

$$\frac{1}{m_r} = \frac{1}{m_c^{\star}} + \frac{1}{m_v^{\star}}$$

Seguindo o tratamento de Lasher e Stern(9), o ganho líquido, em tal material, pode ser escrito como:

$$g(E) = \frac{\hbar^{3}c^{3}}{8\pi\hbar^{2}E^{2}} \quad r_{est}(E)$$
 {72}

Para calcular o ganho como função da corrente nos lasers de poço quântico, devemos relacionar o excesso de portadores à corrente. A aproximação usual (39) que se faz é calcular a corrente nominal J_{nom} , injetada por unidade de volume (normalizada em uma área de lcm x lcm e de espessura lµm) necessária para gerar An pares de elétrons-buracos, se a recombinação radiativa espontânea for o único mecanismo de recombinação (isto é, a eficiência quântica interna $\eta = 1$):

$$J_{\rm nom} = e B (\Delta n)^2$$

onde B é o coeficiente de recombinação radiativa. Implicito neste tratamento está o fato de que a razão de emissão estimulada é relativamente menor, se comparada à razão de emissão espontânea ($r_{est} < r_{esp}$). A figura 34 mostra um exemplo onde calculou-se o espectro de ganho de duas heteroestruturas de larguras diferentes (L_z) do poço quântico, sob as mesmas densidades de portadores injetados $\Delta n = 2 \times 10^{18} \text{ cm}^{-3}$ (38).

Figura 34 - Espectro do ganho teórico para dois lasers de largura (L_z) 100 e 300Å (ref.38)

Comparando os valores do g_{max} dos dois lasers de poço quântico, nós vemos que o ganho máximo para L_z de 100Å é muito maior que L_z de 300Å. Isto, provém do fato que

- 76 -

{73}

o g_{max} para $L_z = 100 \text{\AA}^{0}$ ocorre para transições envolvendo o primeiro nível de energia confinado onde o fator de inve<u>r</u> são de população ($f_s - f_i$) é maior, enquanto que o g_{max} para $L_z = 300 \text{\AA}^{0}$ corresponde a transições envolvendo o segundo n<u>i</u> vel de energia confinado, onde o fator de inversão de pop<u>u</u> lação é menor.

Ainda, neste exemplo, observamos que o poço de L_z = 300Å mostra um espectro de ganho deslocado para ene<u>r</u> gia menor do que aquela do poço de L_z = 100Å.

Pela definição, há condição limiar de "Lasing" ocorre quando o ganho máximo gerado na camada ativa é igual as perdas existente na cavidade óptica, ou seja:

$$g_{\max} = \Sigma \alpha_{i}$$
 {74}

onde α_i são as várias perdas na cavidade óptica. Para dete<u>r</u> minar as características de um laser em particular, devemos determinar o ganho máximo como função da razão de excitação, ou outro parâmetro do sistema. A figura 35 mostra um modelo de cálculo de g_{max} versus largura de um poço quântico para vários níveis de excitação dado pela concentração de portadores injetados (40).

Da figura 35, podemos observa que, o ganho máximo aumenta de zero no intervalo de $0 < L_z < 50 \text{\AA}$ para um máximo na faixa de $70 < L_z < 100 \text{\AA}$ para vários níveis de excitação, e decresce com uma leve ondulação acima desta largura de po ço. A ocorrência de g_{max}, a largura de poço menores, é d<u>e</u> vido ao aumento das transições envolvendo o primeiro nível de energia permitido. A queda rápida para valores muito pequenos é devido a ocupação incompleta do nível de energia permitido $\hat{\vec{F}}$ 3000 _____

Figura 35 - Variação teórica do ganho máximo g_{max} versus a largura do poço, para vários níveis de excitação (ref. 40).

Um modelo de cálculo da dependência do g_{max} sob a excitação (J_{nom}) para várias larguras de poços, é d<u>a</u> da na figura 36, (38).

Figura 36 - Variação téorica de g_{max} versus J_{nom} para várias larguras de poços (ref.38).

Da figura, observamos que a declividade da característica ganho-corrente aumenta com o decréscimo na largura do poço, isto é, necessitaremos de menor nivel de excitação para atingir um determinado valor de g_{max}. Isto é uma manifestação do aumento da densidade de estados nas bordas da banda efetiva e a necessidade de maior nivel de excitação para preencher os estados possíveis, o que é mani festado em ambas excitações requeridas para se obter ganho positivo, e na inclinação da curva ganho versus sua excitação. O ganho máximo pode ser aproximado pela relação empirica linear.

$$g_{\max} = \beta \left(J_{\text{nom}} - J_0 \right)$$
 {75}

onde β e J₀ aumentam com o decréscimo na largura do poço p<u>a</u> ra L_z < 150Å.

IX-3 - Confinamento Modal de Lasers de Poço Quântico:

Em um laser no qual a região ativa é muito f<u>i</u> na (estreita) somente uma fração Γ do campo eletromagnético se propaga na região de ganho e contribui, efetivamente, para a emissão estimulada. O ganho efetivo é dado por Γg_{max} . Para um guia de onda simples, simétrico, com três camadas AlGaAs/GaAs e com uma região ativa de largura L_z , o fator de confinamento Γ é dado por (39).

- 79 -

$$\Gamma \simeq \frac{100 \times L_2^2}{\lambda_0^2}$$
 (76)

onde x é a composição de Al das camadas confinantes e λ_0 é o comprimento de onda dos fótons no espaço livre. Para $L_z = 100 \text{\AA}^{0}$ e x = 0,6, $\Gamma = 6 \times 10^{-3}$. Para que se tenha maior superposição entre a região de ganho (onde há probabilidade de amplificação de luz) e a onda eletromagnética estruturas mais complexas foram desenvolvidadas. Na figura 37, ilustramos vários exemplos de estruturas de poço quântico projetados para aumentarem a superposição entre a região de ganho e o campo fotônico. **QW**

ço quântico.

80 -

A estrutura de poço quântico com confinamento separado por índice de refração gradual, SCH-ΩW, conta com as propriedades de um guia de onda de índice gradual em butido em um meio de índice menor. O fator de confinamento modal Γ, para um perfil de índice parabólico, é dado por (38):

$$\Gamma = \sqrt{\frac{2}{\pi}} \frac{\mathbf{L}_{\mathbf{z}}}{\mathbf{W}_{0}}$$
 {77}

onde W₀ é o raio do feixe da onda gaussiana. Para W₀ = 2500Å L_z = 100Å, um valor típico de Γ é Γ = 0,03.

IX-4 - Corrente Limiar no Laser de Poço Quântico:

A condição para o limiar de um laser, cuja estrutura tem um poço quântico como região ativa, é dada pela equação {71}. Os mecanismos de perdas dominantes são aqueles devido a absorção de portadores livres na região ativa ($\alpha_{p_l}^a$) e na região passiva ($\alpha_{p_l}^p$) do guia de onda, e perdas devido à transmissão através do espelho, (1/L) \ln (1/R) onde L é o comprimento da cavidade e R é a refletividade dos espe lhos. Desde que somente a fração Γ da onda eletromagnética se propaga na região ativa e que (1- Γ) se propaga na região passiva, a condição de limiar pode ser escrita como:

$$\Gamma g_{\max}^{\lim} = \Gamma \alpha_{p_{\ell}}^{a} + (1-\Gamma) \alpha_{p_{\ell}}^{p} + \frac{1}{L} \ln \left(\frac{1}{R}\right) \{78\}$$

Usando a equação (74), podemos determinar a

- 81 -

- 82 -

razão de excitação, J_{nom}, requerida para se chegar ao limiar.

$$J_{nom}^{lim} = J_0 + \left[\Gamma \alpha_{p\ell}^{a} + (1-\Gamma) \alpha_{p\ell}^{p} + \frac{1}{L} \ln\left(\frac{1}{R}\right)\right] \frac{1}{\beta\Gamma}$$
⁽⁷⁹⁾

onde J₀ é o ganho de injeção zero e β é o coeficiente de g<u>a</u>nho.

A densidade de corrente limiar está relacionada com o volume de excitação por:

$$J_{\lim} = J_{nom}^{\lim} \frac{d}{\eta_{i}}$$
 (80)

onde d é a largura da região ativa (L_z) e n_i a eficiência quâ<u>n</u> tica interna (uma média da fração de portadores que se reco<u>m</u> binam radiativamente) é dada por:

$$\eta_{i} = \left(\frac{1/\tau_{i}}{1/\tau_{r} + \frac{2S_{v}}{d}} \right)$$

$$(81)$$

onde τ_r é o tempo de vida da recombinação radiativa e S_v é a velocidade de recombinação na interface, a qual é devido a recombinação interfacial (41).

Assim, a densidade de corrente limiar é dada por:

$$J_{\lim} = J_0 \frac{d}{\eta_i} + \left(\frac{d}{\beta \Gamma \eta_i}\right) \left[\Gamma \alpha_{p_l}^a + (1-\Gamma) \alpha_{p_l}^p + \frac{1}{L} \ell^n \left(\frac{1}{R}\right)\right] \{82\}$$

onde o primeiro termo corresponde à corrente requerida para se atingir a inversão de população, e o segundo é a corrente requerida para aumentar a razão de emissão estimulada a um nível suficiente para superar as perdas na cavidade.

Na figura 38, (38), são mostrados os resultados do cálculo da densidade de corrente limiar, como uma fração da largura do poço para uma barreira constante (x = 0,20). São mostrados, também, os pontos experimentais.

Figura 38 - Comparação entre a densidade de corrente limiar calculada e experimental, como função da largura do poço (L_z), num GRIN-SCH-QWH (ref. 38).

A densidade de corrente no intervalo de 75 < L_z < 150A está de acordo com o cálculo teórico, mas e<u>s</u> tá em desacordo para com L_z = 300Å.

- 83 -

CAPITULO X:

X-1 - Guiamento de Luz no Laser:

Uma estrutura que guia o fluxo de energia el<u>é</u> tromagnética na direção paralela ao seu eixo é chamada guia. Um laser de heteroestrutura de poço quântico do tipo SCH-QW (veja figura 39), é um guia de onda, formado por um dielétr<u>i</u> co retangular (camada ativa), entre dois meios de índice de refração gradual, menor que o da camada ativa. Esta variação no índice de refração fornece a condição necessária para que a reflexão total ocorra nas interfaces da camada <u>a</u> tiva e a onda eletromagnética seja refletida em zigue-zague dentro do guia, onde será amplificada.

Figura 39 - Representação esquemática, da variação da constante dielétrica perpendicular ao plano da jun ção, segundo as direções X, Y, Z.

84 -

Diversas soluções para a configuração do cam po (modos) têm sido propostas (42), (43) para o guia de onda simétrico. Em todas elas, a configuração do campo é dada pela solução da equação de onda na cavidade, obtida a partir das equações de Maxwell. A forma geral da equação

de onda é dada por:

$$\nabla^2 \vec{E} = \mu_0 \ \varepsilon \ \frac{\partial \vec{E}}{\partial \tau^2} \tag{83}$$

que é a equação de onda em três dimensões para o vetor campo elétrico \vec{E} ; μ_0 é a permeabilidade do meio e ε a constante dielétrica. Equação análoga é obtida para o vetor campo magnético e as soluções (modo de emissão) são encontradas pelo método de separação de variáveis, com condições de co<u>n</u> torno apropriadas.

Os modos guiados refletem as características do guia de onda e dependem explicitamente da constante dielétrica do meio. Como a constante dielétrica pode ser expressa em termos do índice de refração, conclui-se que a configuração do campo eletromagnético depende da variação do índice de refração nas direções paralela é perpendicular à junção. A constante dielétrica complexa é dada por:

$$\varepsilon = \overline{n}^2$$

ou

$$\varepsilon = \varepsilon_{\mathbf{r}} + \mathbf{i} \varepsilon_{\mathbf{i}} = (\mathbf{n} + \mathbf{i} \kappa)^2$$
[84]

onde n é a parte real do índice de refração e K⁽⁴⁴⁾ é a

- 85 -

parte imaginária do índice de refração ou coeficiente de $e_{\underline{x}}$ tinção.

O coeficiente de extinção κ está relacionado com o coeficiente de absorção α pela relação (39), (44):

$$\kappa = \frac{\alpha \lambda}{4\pi}$$
 {85}

onde λ é o comprimento de onda da radiação e α é definido como a razão do decréscimo da intensidade da luz ao longo de seu caminho de propagação.

No laser, tanto o indice de refração como o coeficiente de extinção, dependem de fatores tais como, com primento de onda, portadores injetados, temperatura, entre outros.

O Índice de refração complexo, nos lasers de SCH-QW, com faixa confinadora de corrente, varia espacialmente devido a própria estrutura do dispositivo e,também, em consequência dos processos dinâmicos que ocorrem dentro e fora da região ativa, quando o laser está em operação (45), (46), (47). Esta variação do Índice de refração complexo definirá as características de guiamento da luz gerada pelo laser. O guiamento da luz pode ser efetuado tanto pela parte real do Índice de refração complexo, como pela parte imaginária, ou por ambas. Quando o guiamento é provido principalmente pela parte real do Índice de refração, chamamos de guiamento real (45), (48). Quando o principal responsável é a parte imaginária (47), (49), através do ganho (coeficiente de absorção negativo), chamamos de guiamento por ampl<u>i</u> ficação diferencial, ou simplesmente, ganho.

- 86 -

X-2 - Perfil do Índice de Refração Complexo:

Na figura 39 representamos a estrutura de um laser SCH-QW com faixa confinadora de corrente e sua orientação em relação a um sistema de coordenadas cartesianas. Co<u>r</u> respondente a esta estrutura representamos na figura 40, a variação esquemática do índice de refração, segundo x,y.

A variação do Índice de refração complexo, na direção x, ocorre por construção. Ele varia com x, na forma de um batente, devido à mudança de material, conforme é mostrado na figura 40.

Figura 40 - Variação espacial do Índice de refração n, segundo as direções x,y.

87

Na direção y, paralela à região ativa, assumimos que não há variação do Índice de refração por constr<u>u</u> ção, ou seja, não há variação decorrente da estrutura do di<u>s</u> positivo. Ela surge somente quando o laser está em operação ocasionada por processo perturbativos que ocorrem dentro e fora da região ativa. Esta variação é causada por vários processos, tais como portadores injetados, aquecimento da r<u>e</u> gião ativa, tensões mecânicas. Consideraremos neste trabalho as pertubações causadas pelos portadores e pela temperatura, como sendo os principais processos responsáveis pela variação espacial do Índice de refração complexo na direção y, quando o laser está em operação. Estes processos serão discutidos a seguir.

X-3 - Perturbação Causada Pelos Portadores:

A influência dos portadores no índice de refração começou a ser estudada por Jonscher (50) e Thompson (46), numa tentativa de explicar a filamentação da luz que ocorria nos lasers de semicondutor.

Jonscher (50) considerava como causa da pertubação o efeito de plasma criado pelos portadores injetados na região ativa. No modelo de Thompson (46), os portadores causavam uma variação no coeficiente de absorção dev<u>i</u> do à variação da energia dos quasi-níveis de Fermi, com a injeção (deslocamento Burstein). Com várias aproximações, ele calculava $\alpha(E)$ e, com as relações de Kramers-Kroning, obtinha a variação do índice de refração com os portadores.

- 88 -

Ambos os autores, embora usando hipóteses qualitativamente diferentes, chegaram à conclusão que os portadores causavam uma pertubação negativa no indice de refração ao longo da direção y do tipo:

$$\Delta n_{a} = -A \Delta N(y) \qquad \{86\}$$

com,

$$A = \frac{e^2 n_a}{\sigma \epsilon_0 m_e^2} \qquad (ref. 51)$$

onde:

e - Carga do elétron (1,6 x
$$10^{-19}$$
C)
 ε_0^- Permissividade no vácuo (8,85 x 10^{-12})
 σ - Constante dielétrica relativa (13,6)
 n_a^- Índice de refração na ausência de carga (3,5)
 m_e^- Massa efetiva do elétron (0,065)

Com os valores indicados acima, típicos para GaAs, obtemos para a constante de proporcionalidade A = $1,29 \times 10^{-21}$ cm³.

Observamos que um aumento na variação da densidade de portadores ∆N(y), resulta numa diminuição do indice de refração, e o meio tende a dispersar a luz. X-4 - Efeito da Temperatura:

A injeção de portadores no laser de semico<u>n</u> dutor causa aquecimento da região ativa e das camadas adj<u>a</u> centes (51), (52), atravês de dois processos:

1- Transições não radiativas

2- Aquecimento por efeito Joule

O aquecimento por tansições não radiativas ocorre na camada ativa e nas camadas confinantes, mas o aquecimento por efeito Joule ocorre por todo o dispositivo onde flui a corrente.

Estes processos de aquecimento irão alterar o Índice de refração complexo da camada ativa e das camadas adjacentes.

Sabemos que a parte real do Índice de refração complexo, é função da energia da banda proibida (52), que por sua vez, depende da temperatura, através da relação:

$$Eg = Eg_0 - \frac{\alpha T^2}{\beta + T}$$
 {87}

Desta maneira, qualquer variação na temperatura produz uma variação no Índice de refração da forma:

$$\Delta n(T) = C \Delta T$$

$$\{88\}$$

- 90 -

A constante C é obtida da literatura (47) e seu valor é:

$$C = 5,7 \times 10^{-4} \, {\rm e} {\rm k}^{-1}$$
 para o GaAs

$$C = 5,0 \times 10^{-4} \, \text{k}^{-1}$$
 para o GaAlAs

Da equação {88}, tem-se que uma variação positiva da temperatura, produz um aumento na parte real do indice de refração complexo, diminuindo a dispersão do meio.

Enquanto o aquecimento por processos não radiativos ocorre nas regiões próximas à região ativa, o aque cimento por efeito Joule ocorre para todo o dispostivo por onde flui a corrente. Assim, a diferença de temperatura en tre a região ativa e as regiões vizinhas, provocadas por efeito Joule, é menos intensa do que aquelas provocadas por recombinações não radiativas. Desta forma, o perfil de calor gerado por recombinações não radiativas nas heterointe<u>r</u> faces das camadas confinantes, será maior que o perfil de calor gerado na camada ativa.

Observamos que para lasers de dupla-hetero estruturas a maior variação de temperatura ocorre na camada ativa e seu efeito sobre as camadas adjacentes pode ser de<u>s</u> prezado (53). Contudo, para os lasers de poço-quântico, devido à pequena espessura da camada ativa, a contribuição da temperatura sobre o índice de refração das camadas conf<u>i</u> nantes não pode ser desprezada.

Agora que definimos as fontes geradoras de calor, passemos ao cálculo do perfil de temperatura gerado

- 91 -

pela recombinação não radiativa nas heterointerfaces. Usan do o modelo de propagação de calor em sólidos unidimensionais, proposto por Carslow e Jaeger (54), temos que a evolução temporal da temperatura no sólido pode ser calculada através da equação:

$$T(y,t) = \frac{F_0}{k} \left\{ \left(\frac{\phi t}{\pi} \right)^{1/2} \exp\left(-\frac{y^2}{4kt}\right) - \frac{y}{2} \operatorname{erf} \frac{y}{2\sqrt{\phi t'}} \right\} \{89\}$$

onde:

 k - Condutividade térmica
 φ - Difusibilidade térmica
 erf- Função erro
 t - Tempo contado à partir do início do pulso
 F₀ - Razão pela qual o calor é gerado por unidade de área

Para o laser de poço-quântico, se considerarmos as camadas graduais como sendo um meio semi~infinito, e assumindo que o valor médio do confinamento do modo é muito menor que o comprimento de difusão térmica, definido como 2 √φt, reduzimos a equação{89} para:

$$T(y,t) = \frac{F_{Q}}{k} \left(\frac{\phi t}{\pi}\right)^{-1/2}$$

$$\{90\}$$

com

$$\mathbf{F}_0 = \frac{\mathbf{N}(\mathbf{y})}{\tau} \quad \frac{\mathbf{hc}}{\lambda} \quad (1-\eta_{\text{int}}) \quad \mathbf{d} \quad \{91\}$$

onde,

- τ Constante de tempo de recombinação total
- n_{int}- Eficiência quântica interna

- h Constante de Planck
- c Velocidade da luz no vácuo
- d Espessura da Camada ativa (L_z)
- λ Comprimento de onda da radiação

A constante de tempo de recombinação total é encontrada a partir da relação:

$$\frac{1}{\tau} = \frac{1}{\tau_R} + \frac{1}{\tau_{NR}}$$
⁽⁹²⁾

onde,

- τ_R Constante de tempo de recombinação radiativa.
- τ_{NR}^{-} Constante de tempo da recombinação não radiativa.

A eficiência quântica interna η_{int} , é econtr<u>a</u> da à partir da relação:

$$\eta_{\text{int}} = \frac{1/\tau_R}{1/\tau_R + 2S_v/d}$$
 {93}

onde, S_v é a velocidade de recombinação nas heterointerfaces (41).

Assim, uma vez que conhecemos todos os parâmetros contidos na equação que fornece a evolução da temperatura com o tempo (eq.90), podemos encontar, para o nosso caso, expressão para a diferença de temperatura criada entre o centro e a borda da canaleta quando há injeção de corrente. Consdiderando,

$$\Delta T(t) = T(y=0) - T(y=S/2)$$
 {94}

obtemos,

$$\Delta T(t) = \frac{\Delta F_0(y)}{k} \left(\frac{\phi t}{\pi}\right)^{1/2}$$
(95)

onde,

$$\Delta F_0(y) = \Delta N(y) \frac{hc}{2\lambda} (1-\eta_{int}) d \qquad \{96\}$$

e

$$\Delta N(y) = N(0) - N(S/2)$$
[97]

Assim, a variação no Índice de refração, cau sada pela temperatura (equação 88), será dada por:

$$\Delta n(t) = C \frac{\Delta F_0(y)}{k} \left(\frac{\phi t}{\pi}\right)^{-1/2}$$
[98]

- 94 -

X-5 - Distribuição de Portadores ao Longo da Junção:

Na região ativa do laser de semicondutor, ocor re a emissão de luz pela recombinação dos portadores ali inj<u>e</u> tados. A experiência tem demonstrado que, em laser com cont<u>a</u> to largo, a luz não fica distribuida uniformemente através do plano da região ativa. Ao contrário, ela é confinada em regiões discretas, na forma de filamentos distribuidos aleatoriamente ao longo do plano da região ativa. Esta filamentação da luz compromete as aplicações práticas desses disposit<u>i</u> vos, pois cada um dos filamentos pode suportar a oscilação de vários modos; além disso a emissão de luz por diferentes fil<u>a</u> mentos é incoerente entre si; e os processos que ocorrem emum filamento podem interferir nos processos que ocorrem nos outros, de forma que o laser passa a ser operado com uma compl<u>i</u> cada estrutura de modos.

A filamentação da luz no laser de semicondutor pode ser evitada, limitando-se a injeção de corrente na direção transversal, paralela à região ativa (figura 41). Com is to, os portadores são injetados em um espaço físico que permi te a formação de sómente um filamento. Isto é feito através de uma canaleta ou faixa confinadora de corrente, (55), (56), que limita a injeção de portadores a uma região estreita da camada ativa.

Em laser de canaleta confinadora, a corrente de portadores majoritários sofre um espalhamento e penetra na região ativa, através de uma área maior que a área definida pela canaleta, (veja figura 41). O espalhamento na corrente

- 95 -

cria um gradiente na densidade de portadores injetados. Es tes, então se difundem para regiões de densidade mais baixa, nas direções paralela e perpendicular à junção.

Figura 41 - Representação esquemática do espalhamento da co<u>r</u> rente em laser de D.H. com canaleta confinadora. Onde I_s é a corrente total, I_e a corrente que atravessa a camada ativa abaixo da faixa, e I₀ é a corrente espalhada lateralmente (ref. 57).

Para laser de poço quântico, cuja espessura t<u>i</u> pica da camada ativa $\notin L_z < 500$ Å, a difusão através desta camada pode ser considerada instantânea (58), uma vez que a espessura \notin desprezível quando comparada ao comprimento de dif<u>u</u> são dos portadores. Para o GaAs, o comprimento de difusão \notin da ordem de 3 a 10µm para elétrons, e de 2 a 5µm para buracos. Tendo em vista essas condições, a difusão dos portadores pode ser considerada unidimensional, na direção paralela à junção.

A fim de determinarmos a distribuição de portadores ao longo da junção num laser de poço quântico com c<u>a</u> naleta confinadora de corrente, de largura S, supomos que p<u>a</u> ra o regime de emissão espontânea a difusão lateral obedece a equação de continuidade para elétrons (59):

$$\frac{d^2 N}{dy^2} - \frac{N}{L_n^2} = G \qquad \text{para } 0 < y < S/2 \{99\}$$

$$\frac{\mathrm{d}^2 \mathrm{N}}{\mathrm{dy}^2} - \frac{\mathrm{N}}{\mathrm{L}_{\mathrm{n}}^2} = -\mathrm{G} \exp\left(-\frac{(\mathrm{y}-\mathrm{S}/2)}{\ell_0}\right) \qquad \{100\}$$

Para
$$y > S/2$$

com

$$G = \frac{J_e}{q \text{ Dn } d}$$
 {101}

onde

- G Concentração de portadores gerada pela
 densidade de corrente injetada J_e
- q Carga de elétron
- d Espessura da camada ativa (L_z)
- L_n Comprimento de difusão do elétron

- 97 -

$$D_n$$
 - Difusibilidade do elétron

$$L_{n} = (D_{n} \tau)^{1/2}$$
 {102}

$$\ell_0 = \frac{2}{\beta R_x J_e}$$
(57) {103}

$$\beta = \frac{q}{nKT}$$
(57) {104}

K	-	Constante de Boltzmann
т	-	Temperatura absoluta
n	-	Usualmente igual a dois para junção p-n
		GaAs-GaAlAs (57)

$$\frac{1}{R_{x}} = \sum_{i} \frac{d_{i}}{\rho}$$
 (57) {105}

J_e - Densidade de corrente que atravessa a camada ativa, na região abaixo da canaleta confinadora (ref. 57)
- 99 -

$$J_{e} = \left[\left(\frac{2}{\beta R_{x} S^{2}} + J_{s} \right)^{1/2} \left(\frac{2}{\beta R_{x} S^{2}} \right)^{1/2} \right]^{2} \{106\}$$

J_s - Densidade de corrente total fornecida ao laser

$$J_{s} = \frac{I_{s}}{S L}$$
 {107}

I - Corrente total fornecida ao laser

L - Comprimento da canaleta confinadora de corrente.

Desde que todas as grandezas envolvidas nas equações {99}, {100}são conhecidas, pode-se obter as soluções destas equações, considerando a condição de continuidade de portadores no ponto (y = S/2).

$$N(y) = GL_{n}^{2} \left[1 - \left(\frac{L_{n}}{\ell_{0} + L_{n}} \right) exp \left(\frac{-S}{2L_{n}} \right) cosh \left(\frac{Y}{L_{n}} \right) \right] \{108\}$$

para 0 < y < S/2

$$N(y) = GL_n^2 \left(\frac{\ell_0^2}{\ell_0^2 - L_n^2} \right) \exp \left(-\frac{(x - S/2)}{\ell_0} \right) +$$

$$-\frac{\mathrm{GL}_{n}^{2}}{2}\left[\left(\frac{\mathrm{L}_{n}}{\ell_{0}-\mathrm{L}_{n}}\right)-\left(\frac{\mathrm{L}_{n}}{\ell_{0}+\mathrm{L}_{n}}\right)\exp\left(-\frac{-\mathrm{S}}{\mathrm{L}_{n}}\right)\right]\exp\left(-\frac{(\mathrm{x}-\mathrm{S}/2)}{\mathrm{L}_{n}}\right) \qquad \{109\}$$

para S/2 < y < ∞

е

-100 -

A partir da equação {108} calculamos a vari<u>a</u> ção da concentração de portadores entre o centro e a borda da canaleta confinadora de corrente:

$$\Delta N(y) = N (y=0) - N(y=S/2)$$

ou

$$\Delta N(y) = GL_n^2 \left(\frac{L_n}{\ell_0 + L_n}\right) \exp\left(\frac{-S}{2L_n}\right) \left[\cosh\left(\frac{S}{2L_n}\right) - 1\right]$$
 (110}

X-6 - Portadores Versus Temperatura:

A perturbação causada pelos portadores injetados e pela temperatura são mecanismos que atuam sobre o Indice de refração de maneira competitiva. O perfil de po<u>r</u> tadores produz uma variação negativa no Indice de refração (46), (50), enquanto que o perfil de temperatura atua em sentido contrário, contribuindo como um incremento positivo no Indice de refração (47).

Na figura 42 ilustramos o perfil de temper<u>a</u> tura e de portadores ao longo da junção e suas influências sobre o indice de refração em um laser de canaleta confinadora.

Figura 42 -

Perfis de Portadores N(y), e de temperatura T(y), e das variações $\Delta n(N)$ e $\Delta n(T,t)$ causadas por elas no índice de refração n, em lasers com canaleta confinadora de corrente.

- 102 -

Do que foi exposto anteriormente, vimos que a parte real e imaginária do índice de refração complexo são afetadas pelos processos dinâmicos que ocorrem dentro e fora da camada ativa, quando o laser está em operação. Portanto, para se entender a origem e natureza do guiamento da luz pelo laser de semicondutor, principalmente na d<u>i</u> reção paralela à camada ativa, tem-se que considerar a variação espacial da parte real e imaginária do índice de r<u>e</u> fração complexo.

- 103 -

CAPÍTULO XI:

XI-1 - Atrasos em Lasers:

Os estudos do comportamento dos lasers de GaAs e GaAlAs, de homoestrutura, de heteroestrutura simples, de heteroestrutura dupla e de poço quântico, mostram que existe um atraso no tempo, entre o início da excitação (por exemplo, um pulso corrente) e o início da emissão de luz es timulada. Estes atrasos podem ser divididos em dois grupos: atrasos curtos quando seu valor é de alguns nanosegundos e atrasos longos quando seu valor é de algunas dezenas ou até mesmo, centenas de nanosegundos. Enquanto o primeiro é verificado em todas as estruturas dos lasers de GaAs e GaAlAs mencionadas anteriormente, os atrasos longos são percebidos apenas em lasers de homoestrutura (60), heteroestrutura sim ples (61) e de poço quântico (62).

Para lasers de poço quântico, com canaleta confinadora de corrente, de largura (S \leq 10µm), e camada ativa de espessura (L_z \leq 150Å), foi observado por Prince e colaboradores (31), (32), um atraso da ordem de 1,0µs.

Na figura 43, mostramos o comportamento da luz em função do tempo quando um pulso de corrente é aplic<u>a</u> do. O traço superior, representa o pulso de luz, e o inferior o pulso de corrente.

Figura 43 - Representação esquemática de um pulso de luz (traço superior), com um pulso de corrente (tr<u>a</u> ço inferior), mostrando o atraso na emissão estimulada para lasers de poço quântico, cuja la<u>r</u> gura da camada ativa é 75Å.

Neste trabalho, apresentaremos uma teoria, que a partir da análise do ganho, aborda processos físicos comuns em lasers de semicondutor, para explicar os atrasos longos o<u>b</u> servados em lasers de heteroestrutura de poço quântico.

XI-2 - Cálculo do Ganho:

Para se calcular o ganho do laser é necessário o conhecimento da distribuição do campo elétrico e portanto dos modos existentes na cavidade.

O modelo usado para guias de ondas formadas

- 105 -

em laser de SCH-QW, é o de Prince e colaboradores (31), (32), o qual segue basicamente, os mesmos princípios do modelo de guiamento de onda em lasers de canaleta confinadora de corrente descrito por Paoli (33).

No modelo de Paoli (33), é suposto um guia de onda bidimensional, de maneira a localizar a variação do ganho na camada ativa. Neste modelo, ele assume que o guiamen to ao longo das direções, transversal e paralela ao plano da camada ativa (direção x e y), não pode ser considerado separadamente. Dentro do modelo bidimensional é considerado o guiamento somente por ganho. Paoli encontra para a largura (em meia potência) do modo fundamental, um valor maior que o obtido experimentalmente. Para explicar este resultado, ele considera que o guiamento da luz é feito pelo ganho, com а contribuição de uma variação positiva no índice de refração efetivo. Esta variação positiva do indice de refração coloca em acordo os resultados teóricos com os experimentais. 0 índice de refração efetivo é uma expressão definida por Paoli, que descreve a variação "efetiva" sofrida pelo indice de refração, em consequência dos efeitos pertubativos dos porta dores livres e da variação da temperatura, considerando que 🕔 a temperatura varia dentro e fora da camada ativa.

No modelo de Prince (32) também é suposto um guia de onda bidimensional, caracterizado por uma constante dielétrica bidimensional dada por:

$$\varepsilon(x,y) = \varepsilon_0 - a^2 y^2$$
 {111}
Para x na camada ativa.

- 106 -

$$\epsilon(x,y) = \epsilon_1 - b^2 y^2 - c^2 x^2$$
 {112}

Para x nas camadas graduais.

onde

- ε₀ É a constante dielétrica não pertubada na camada ativa
- ε₁ É a constante dielétrica não pertubada
 nas camadas graduais
- a É uma constante complexa, caracterizan do a focalização na direção y.
- b É uma constante real a qual caracteriza o guiamento de onda devido ao perfil de temperatura ao longo do plano da junção.
- c É uma constante real, a qual caracteriza
 o perfil embutido nas camadas graduais
 de Ga_{1-x}Al_xAs.
- x,y- São os eixos perpendicular e paralelo à junção (veja figura ³⁹).

Seguindo o tratamento convencional para anál<u>i</u> se do guiamento da luz no laser, vamos agora resolver a equ<u>a</u> ção de onda, para obter os modos guiados, usando a constante dielétrica já definida.

Os modos guiados pela cavidade de um laser, podem ser aproximadamente calculados como solução da equação de onda:

$$\nabla^2 \vec{E} + \kappa_0^2 \epsilon (X, Y, Z) \vec{E} = 0 \qquad \{113\}$$

forma:

 \vec{E} - Representa o vetor campo eletromgnético $\epsilon(x,y,z)$ - \vec{E} a constante dielétrica $K_0 - 2\pi/\lambda$ λ - \vec{E} o comprimento de onda da radiação

Como primeira aproximação, temos soluções da

$$E(x,y,z) = E_{x}(x) E_{y}(y) \exp(-i\beta z)$$
 {114}

Substituindo a equação {114}, na equação {113}, e dividindo-se por E(x,y,z), obtem-se:

$$\frac{1}{\frac{1}{E_{x}(x)}} \frac{\partial^{2}E_{x}(x)}{\partial x^{2}} + \frac{1}{\frac{1}{E_{y}(y)}} \frac{\partial^{2}E_{y}(y)}{\partial y^{2}} - \beta^{2} + K_{0}^{2} \epsilon(x,y) = 0 \quad \{115\}$$

E desde que esperamos que a constante dielétrica $\varepsilon(x,y)$ varia mais lentamente com y(ao longo do plano de junção) do que com x, assumimos que a distribuição modal $E_x(x)$ não é apreciavelmente afetada pelo confinamento ao lo<u>n</u> go da direção y, então:

$$\frac{1}{E_{y}(y)} = \frac{\partial^{2} E_{y}(y)}{\partial y^{2}} = \beta_{0}^{2}$$

$$\{116\}$$

onde β_0 é determinado pela equação de auto valores para um guia de onda plano

Então resumindo, temos:

$$\frac{\partial^2 E_{\mathbf{x}}(\mathbf{x})}{\partial \mathbf{x}^2} + \left[K_0^2 \epsilon(\mathbf{x}, \mathbf{y}) - \beta_0^2 - \beta\right] E_{\mathbf{x}}(\mathbf{x}) = 0$$

е

$$\frac{\partial^2 \mathbf{E}_{\mathbf{y}}(\mathbf{y})}{\partial \mathbf{y}^2} + \beta_0^2 \mathbf{E}_{\mathbf{y}}(\mathbf{y}) = 0$$

E, agora, usando a constante dielétrica definida anteriormente na equação {112}, encontramos a equação de onda para direção x, como sendo:

$$\frac{\partial^2 E_x(x)}{\partial x^2} + \left[K_0^2 (\epsilon_1 - c^2 x^2) - \beta_0^2 - \beta^2 \right] E_x(x) = 0 \qquad \{117\}$$

Para se obter uma equação simples para $E_y(y)$, devemos substituir a equação {117} na equação {113}, e multiplicar esta por $E_x(x)^*$, e integrar a equação em x, no intervalo de - $\infty < x < \infty$ (33), onde obtemos (veja apêndice I):

$$\frac{\partial^{2} E_{y}(y)}{\partial y^{2}} + \left[K_{0}^{2} \Gamma P^{2} - K_{0}^{2} y^{2} m^{2} + \beta_{0}^{2} \right] E_{y}(y) = 0 \quad \{118\}$$

com,

$$p^{2} = \varepsilon_{0} - \varepsilon_{1} + \frac{c^{2}d^{3}}{12}$$
 {119}

$$m^2 = \Gamma a^2 + (1-\Gamma) b^2$$
 {120}

onde o fator de confinamento Γ (39) é dado pela relação:

$$\Gamma = \frac{\int_{-d/2}^{d} |E_{x}(x)|^{2} dx}{\int_{-\infty}^{\infty} |E_{x}(x)|^{2} dx}$$
(121)

e p e m são constantes de propagação complexa.

A solução das distribuições modais ao longo do plano da junção (equação 113), é dada pelas funções de Hermite - Gauss(63).

$$E_{p}(y) = H_{p}\left[(mK_{0})^{1/2}y\right] \exp\left(-\frac{mK_{0}}{2}y^{2}\right)$$
 {122}

onde, p é um número inteiro indicando a ordem do modo, H_p, são os polinômios de Hermite-Gaus (63). Estes polinômios satisfazem as seguintes relações de recorrência:

 $H_0(\zeta) = 1$; $H_1(\zeta) = 2$

$$H_{n+1}(\zeta) = 2 H_n(\zeta) - 2nH_{n-1}(\zeta)$$

onde,

$$\zeta = (mK_0)^{1/2} y$$

A seguir, apresentamos as expressões analít<u>i</u> cas obtidas da eq. {122} para os três primeiros modos.

$$E_0(y) = \exp\left(-\frac{mK_0}{2}y^2\right)$$
 {123}

- 110 -

$$E_{1}(y) = 2\left[(mK_{0})^{1/2}y\right] \exp\left(-\frac{mK_{0}}{2}y^{2}\right)$$
 {124}

 $E_{2}(y) = 4 \left[(mK_{0})^{1/2} y) -2 \right] \exp \left(-\frac{mK_{0}}{2} y^{2} \right)$ {125}

A equação {122}, fornece a distribuição do cam po, segundo a direção y, paralela ao plano da camada ativa (dentro do guia, que é, no caso, igual à distribuição nos e<u>s</u> pelhos); o módulo ao quadrado das equações {123}, {124} e {125} fornece o campo próximo ao longo de y.

XI-3 - Análise do Modo Fundamental:

Na equação {123}, temos a expressão para o mo do fundamental y, obtida com p = 0.

A análise do modo fundamental permite comparar nossos cálculos teóricos, com nossos dados experimentais.

As medidas experimentais da largura do modo (w) são feitas em um ponto no qual a intensidade do modo se iguala a uma fração $1/e^2$, do seu valor de pico em y = 0.

Tomando-se a expressão para o modo fundamental (equação 123), e igualando-se a intensidade do modo fun damental (definida por $|E_0(y)|^2$), com a fração 1/e², obtemos:

$$\exp\left(-\frac{m_{r}^{}w^{2}}{2}\right) = \frac{1}{e^{2}}$$
^{126}

- 111 -

ou

$$w = \left(\frac{2}{m_r \kappa_0}\right)^{1/2}$$
 {127}

onde, $m_r = real (m)$

XI-4 - Indice de Refração Efetivo:

Vamos, nesta seção, examinar o guiamento de luz através do perfil de Índice de refração efetivo ao lo<u>n</u> go da direção y.

Partindo-se da equação {120}, e escrevendo-se o coeficiente complexo a em função de suas componentes real e imaginária, temos:

$$m^{2} = \Gamma (a_{r}^{2} - a_{i}^{2}) + b^{2} (1-\Gamma) + i2 \Gamma a_{r}^{a} a_{i}$$
 {128}

Conforme cálculos apresentados no apêndice I podemos escrever que:

$$a_{r}^{2} - a_{i}^{2} = \frac{8}{s^{2}} n(0) \Delta na$$
 {129}

$$a_{r}a_{i} = \frac{\lambda}{S^{2}\pi} n(0) \Delta g \qquad \{130\}$$

onde,

n(0) - é o índice de refração da camada ati
 va no centro da canaleta confinadora
 de corrente.

- Ana É a diferença criada no índice de re fração da camada ativa devido a inje ção de portadores.
- Ag É a diferença criada no ganho da camada ativa devido a injeção de port<u>a</u> dores.

As demais grandezas jā foram definidas ant<u>e</u> riormente.

Substituindo-se as equações {129} e {130} na equação obtém-se:

$$m^{2} = \left[\frac{\Gamma 8}{s^{2}} n(0) \Delta na + b^{2} (1-\Gamma)\right] + i \left[\frac{\Gamma 2 \lambda}{\pi s^{2}} n(0) \Delta g\right]$$
 {131}

O valor do coeficiente real b, é definido, inicialmente, na constante dielétrica para pontos fora da c<u>a</u> mada ativa (camadas graduais), como sendo:

 $\varepsilon(\mathbf{x},\mathbf{y}) = \varepsilon_1 - b^2 y^2 - C^2 x^2$

Considerando-se a constante dielétrica acima para pontos no centro das camadas confinantes (x=0) e nos l<u>i</u> mites da camada ativa (y=s/2), obtém-se o valor da constante real b: (veja apêndice I):

$$b^2 = \frac{8}{s^2} n_1(0) \Delta n_{CG}$$
 {132}

onde,

 $n_1(0) - E$ o Índice de refração nas camadas graduais (Ga_{1-x}Al_xAs) no centro da

- 113 -

canaleta confinadora de corrente.

Assim, substituindo-se o valor de b na equação {131}, obtém-se:

$$m^{2} = \frac{8}{s^{2}} \left[\Gamma n(0) \Delta na + n_{1}(0) \Delta n_{CG} (1-\Gamma) \right] + i \left[\frac{\Gamma 2\lambda}{\pi S^{2}} n(0) \Delta g \right] \{133\}$$

Usando-se a definição de números complexos, podemos reescrever a equação {133} da seguinte forma (veja apêndice I).

$$\mathbf{m} = \left\{ \left[\frac{8}{\mathrm{s}^2} (\Gamma \mathbf{n}(0) \Delta \mathbf{n}_{\mathrm{a}} + \mathbf{n}_{\mathrm{l}}(0) \Delta \mathbf{n}_{\mathrm{CG}} (1-\Gamma) \right]^2 + \left[\frac{\Gamma 2\lambda}{\pi \mathrm{s}^2} \mathbf{n}(0) \Delta \mathrm{g}^2 \right]^2 \right\}^{1/4}$$

$$\left(\begin{array}{ccc}\cos\frac{\theta}{2} + i \sin\frac{\theta}{2}\\\end{array}\right) \qquad \{134\}$$

onde,

$$\Theta = \operatorname{arc} \operatorname{tg} \left[\begin{array}{c} \frac{\Gamma \lambda}{\pi} & n(0) \ \Delta g \end{array} \right] \cdot \frac{1}{4 \left(\Gamma n(0) \ \Delta n_{a} + \Delta n_{CG} \ n_{1}(0) \ (1 - \Gamma) \right)} \left[135 \right]$$

Finalmente, o Índice de refração efetivo An_{eft}, é definido a partir da equação {134}, como sendo:

$$\Delta n_{eft} = \Gamma n(0) \Delta n_{a} + n_{1}(0) \Delta n_{CG} (1-\Gamma)$$
 {136}

- 114 -

Pelo fato da região ativa no laser de poço quântico ser muito fina ($L_z \approx 200 \text{\AA}$), o perfil de indice de refração complexo, estabelecido nas camadas de confinamento gradual irá influenciar o guiamento da luz, dentro da camada ativa. Como resultado, o modo que se propaga na região ativa será guiado por um indice de refração efetivo (33) que leva em conta os efeitos perturbativos ocorridos nas camadas adjacentes \tilde{a} camada ativa.

Resumindo, a equação {136} representa uma pertubação no indice de refração complexo, a qual é causada pelos perfis de portadores e temperatura estabelecidas ao longo da direção paralela à camada ativa, quando o laser está em operação.

Tomando-se as expressões dadas nas seções X-3, X-4 e X-5 (equação {86} e {88}) para as pertubações causadas pelos portadores e pela temperatura, podemos obter uma expre<u>s</u> são para Δn_{eft} em função destas perturbações:

$$\Delta n_{eff} = (-A \Delta N(y)) \Gamma n(0) + C\Delta T (1-\Gamma) n_1(0)$$

$$\{137\}$$

É importante conhecermos Δn_{eft} , porque ele nos dá informação sobre qual processo está envolvido no gui<u>a</u> mento do modo; quando $\Delta n_{eft} > 0$, estamos tendo guiamento real do modo; quando $\Delta n_{eft} < 0$, estamos tendo guiamento do modo por amplificação diferencial.

- 115 -

XI-5 - Ganho Modal:

Para que um modo esteja presente na emissão do laser é necessário que o ganho médio experimentado por esse modo (ganho modal), seja maior ou igual às perdas sofr<u>i</u> das por ele, dentro e fora da camada ativa.

O ganho modal é definido (39), como a razão de amplificação de um modo por unidade de comprimento. Ele depende do perfil de ganho existente ao longo da camada at<u>i</u> va e da ordem do modo:

$$G_{m} = \frac{\Gamma \int_{-\infty}^{\infty} g(y) |E(y)|^{2} dy}{\int_{-\infty}^{\infty} |E(y)|^{2} dy}$$
(138)

onde, g(y) é o ganho local (47), (49), o qual é dado pela r<u>e</u> lação:

$$g(y) = a N(y) - b$$
 {139}

A dependência linear do ganho local g(y), com a concentração de portadores local N(y), é fundamentada no f<u>a</u> to de N(y) variar com a posição na direção y, dentro da camada ativa, e pelo fato de g(y) ser também uma função desta posição.

Os valores das constantes a e b na equação {139}, no caso de lasers DH de GaAlAs com canaleta,confinadora de corrente feita por bombardeamento de prótons, foram ob tidas por Hakki e Paoli (64), em medidas espectrais do ganho abaixo do limiar de emissão estimulada. Eles obtiveram os seguintes valores para a e b.

$$a = (1,08 \pm 0,06) \times 10^{-16} cm^2$$

$$b = 146 cm^{-1}$$

Para os lasers de poço quântico de GaAlAs, foi medido experimentalmente, que o valor do ganho local g(y) é aproximadamente duas vezes maior que nos lasers de DH (65). Portanto g(y) ~ 2 g(y) QW DH

O ganho modal G_m, foi calculado por Nasch (47), integrando a equação {138}, e usando a aproximação para g(y) equação {139}. Ele obteve que o ganho modal é dado por:

$$G_{m} = \left[g(0) - \Delta g \left(\frac{w}{S} \right)^{2} \right] \Gamma \qquad \{140\}$$

onde,

g(0) - É o ganho local no centro da canal<u>e</u> ta confinadora de corrente.

e, é dado pela seguinte relação:

$$g(0) = a N(0) -b$$
 {141}

∆g - É a variação entre o centro e a borda da canaleta confinadora de corren te. e, é dada pela seguinte relação:

$$\Delta g = g(0) - g(S/2)$$
 {142}

ou

$$\Delta g = a (N(0) - N(S/2))$$
 {143}

W - É a largura do modo de ordem zero, e foi determinado na seção XI-3 como sendo:

$$W = \left(\frac{\lambda}{\pi}\right)^{1/2} \frac{1}{\sqrt{m_r}} \qquad \{144\}$$
$$m_r - \tilde{E} \text{ a parte real (m), a qual foi encon-}$$

trada a partir da equação {134}.

$$\mathbf{m}_{\mathbf{r}} = \left\{ \begin{bmatrix} \frac{8}{\mathrm{s}^2} & \Delta \mathbf{n}_{\mathrm{eft}} \end{bmatrix}^2 + \begin{bmatrix} \frac{\Gamma 2\lambda}{\pi \mathrm{s}^2} & \mathbf{n}(0) & \Delta \mathrm{g} \end{bmatrix}^2 \right\} \quad \frac{1/4}{\cos(\frac{\Theta}{2})} \quad (145)$$

Como a corrente limiar do laser por nós usado não é suficientemente alta, e a largura da canaleta conf<u>i</u> nadora de corrente é estreita ($\sim 4 \mu m$), o ganho modal é calculado somente para o modo de ordem zero.

XI-6 - Efeito da Pressão Uniaxial no Ganho Modal em Lasers de Poço Quântico de GaAlAs:

Como foi discutido no capitulo IV, a aplic<u>a</u> ção de pressão uniaxial em lasers semicondutores, produz uma redução da simetria do material de cúbica para tetragonal, o que induz mudanças significativas nas bandas eletrônicas de energia, o que causa variações nos ganho líquidos dos modos (equações 50 e 51).

No caso dos lasers de poço quântico, o efeito da aplicação da pressão uniaxial será analogo aos dos lasers de heteroestrutura dupla.

Como jã foi discutido anteriormente, os lasers de poço quântico, apresentam um atraso longo na emissão estimulada. O efeito da pressão uniaxial sobre o ganho modal, destes lasers, serã analizado observando-se a dependên cia deste atraso com a pressão.

Observamos experimentalmente que a pressão uniaxial, provoca um aumento no atraso da emissão estimulada, o que pode ser entendido como uma redução no ganho modal.

A análise experimental nos permitiu escrever uma expressão empírica para o comportamento do ganho modal com a pressão uniaxial, partindo da equação {140}.

$$G_{m} = \left[g(0) - \Delta g\left(\frac{w}{S}\right)^{2}\right] \Gamma - \gamma P \qquad \{146\}$$

onde, γ deve ser uma função da estrutura de banda do semico<u>n</u> tor, do tensor de compliança elástica, e da densidade de po<u>r</u> tadores (11). Portanto γ é uma valor característico do dispositivo.

O valor de γ é determinado experimentalmente plotando-se o valor do ganho modal em função da pressão unia xial. Uma discusão mais detalhada sobre o comportamento dos lasers de poço quântico com a pressão uniaxial, será feita no capítulo seguinte.

CAPÍTULO XII:

XII-1 Resultados Experimentais:

Os lasers de poço quântico, usados neste trabalho, possuem uma estrutura de confinamento separada por índice de refração gradual (SCH-QW). Esta estrutura é conveniente pois permite um maior confinamento dos po<u>r</u> tadores na região ativa, que as estruturas covencionais de poço quântico. Os lasers foram crescidos pelo proce<u>s</u> so de MOCVD (Metalorganic Chemical Vapor Deposition) (66) e tem faixa definida por bombardeamento de prótons, o que limita a emissão de luz em apenas um filamento. Os lasers têm, tipicamente,500 x 400µm de área,100µm de e<u>s</u> pessura da camada ativa. Na figura 44, ilustramos esqu<u>e</u> maticamente a estrutura de um SCH-QW laser, crescido por MOCVD, e seu diagrama de banda associado.

As medidas experimentais foram feitas, com laser operando em regime pulsado, com uma razão de repet<u>i</u> ção de lKHz, a temperatura ambiente. A montagem experimental está descrita no capítulo V.

As medidas foram feitas para diferentes tempos, dentro do pulso utilizando-se um"box-car" com "gate" de~30 ns.

A seguir apresentamos vários resultados ex perimentais, obtidos para lasers de poço quântico de GaAlAs.

Figura 44 - Estrutura esquemática de um SCH-QW laser crescido por MOCVD, e seu diagrama de banda.

Iniciamos nosso trabalho, observando a depe<u>n</u> dência temporal da curva característica do laser (Intensid<u>a</u> de Luminosa x corrente), figura 45.

Observa-se na figura 45, uma redução da co<u>r</u> rente limiar, com evolução do tempo. Este comportamento, é decorrente da variação da temperatura da camada ativa e das camadas confinantes, e o consequente aumento do ganho modal, conforme discutido no capítulo X. Observa-se também, para tempos suficientemente longos, uma variação brusca na declividade da curva, o que sugere o aparecimento de um novo modo de emissão, como será discutido na seção XII-3.

Figura 45 - Variação curva caracteristica do laser, com a evolução do tempo.

122

Para se obter maiores informações, sobre a evolução da intensidade luminosa com o tempo, fomos levados a investigar o comportamento do ganho dos modos em fu<u>n</u> ção do tempo.

A figura 46, mostra o espectro de emissão espontânea, para diferentes tempos durante o pulso. Nela podemos observar um nítido aumento da amplitude dos modos com a evolução do tempo, o que torna evidente o efeito da temperatura sobre o guia de ondas do meio.

A partir destes espectros podemos calcular o ganho dos modos do laser, utilizando-se o método propo<u>s</u> to por Hakki-Paoli (64). Este método consiste em medir a profundidade da modulação, r_i, produzida pelas ressonâncias na cavidade de Fabri-Perot, no espectro de emissão espontânea, isto é:

$$r_{i} = \frac{P_{i} + P_{i+1}}{2V_{i}}$$
 {147}

onde, $P_i \in P_{i+1}$ são dois modos consecutivos do espectro, e V_i o vale intermediário (veja figura 47).

O ganho dos modos ou ganho modal, como é m<u>a</u> is comumente chamado, g_i, é dado pela relação (64):

$$\Gamma g_{i} = \frac{1}{L} \ell_{n} \left(\frac{r_{i}^{1/2} + 1}{r_{i}^{1/2} - 1} \right) - \frac{1}{L} \ell_{n} R \quad \{148\}$$

onde, Γ é o fator de confinamento (39), L é o comprimento do laser, e R é a refletividade dos espelhos.

Figura 46 - Evolução do ganho dos modos com o tempo durante o pulso aplicado.

124

Figura 47- Ganho dos modos em função do comprimento de onda (ref. 64).

A evolução do ganho modal com o tempo, é calculada a partir do espectro de emissão espontânea, e é ilustrada na figura 48, para duas corrente de injeção.

Da figura 48, observa-se que o valor maximo do ganho líquido, ocorre emtorno de $\lambda \approx 8140$ Å. Observa-se também uma redução na variação do aumento do ganho com a evolução do tempo, e uma tendência de saturação para tempos suficientemente longos. Esta saturação no ganho é result<u>a</u> do da estabilização da temperatura da camada ativa com o te<u>m</u> po, devido a perda de calor para as camadas vizinhas.

A partir da figura 48, plota-se a evolução do ganho modal com o tempo, para o comprimento de onda que tem maior ganho líquido, ($\lambda \approx 8140 \text{ Å}$), (veja figura 49). Desta figura, torna-se evidente a saturação do ganho modal, com o tempo. Nota-se também que esta saturação ocorre para tempos menores, a medida que a corrente aumenta. Isto mais uma vez,

Figura 48 - Ganho espectral em função do tempo para duas correntes de injeção, I=56mA e I=54mA.

- 126 -

confirma a hipótese de se ter um guiamento induzido pela temperatura.

Figura 49 - Ganho modal em função do tempo para duas correntes de injeção, I = 56mA e I = 54mA, para $\lambda \approx 8138 \text{ Å}.$

- 127 -

A seguir mostramos comportamento da corrente limiar com a variação da pressão uniaxial, na figura 50.

Figura 50- Variação da corrente limiar com aumento da pressão uniaxial.

Como se observa, a pressão causa um aumento na corrente limiar do laser. Este aumento é devido a diminuição do ganho líquido.

Além do aumento da corrente limiar, a pressão uniaxal, causa atraso na emissão estimulada, como mostra a

Figura 51- Variação no atraso da emissão estimulada nos lasers de poço quântico (L_z = 200 A), causada pelo aumento da pressão uniaxial.

Nesta figura, observa-se um aumento gradual no atraso da emissão estimulda, e uma redução da intensidade de luz, o que mostra, estar havendo uma redução do ganho dos modos do laser com aumento da pressão uniaxial. Com a finalidade de estudar, o efeito da pre<u>s</u> são uniaxial, sobre ganho de modos, observamos a evolução do ganho com o tempo para diferentes pressões. Na figura 52, Ilustramos este comportamento.

Figura 52 - Variação do ganho modal com o tempo para diferentes pressões.

- 130 -

Como era esperado, a figura 52, mostra uma redução gradual no ganho dos modos, com aumento da pressão.

A partir da figura 52, plotamos na figura 53, a evolução do ganho modal com o tempo para $\lambda \approx 8138$ Å. Estes resultados mostram claramente a redução do ganho com a pressão uniaxial.

Figura 53 – Variação do ganho modal com aumento da pressão unaxial, $\lambda \simeq 8138 \text{\AA}$.

Na figura 54, plotamos o ganho modal em fun ção da pressão para diferentes tempos. Esta figura deixa claro que a redução do ganho com a pressão uniaxial é linear para todos os tempos observados. O valor do coeficiente angular da reta, γ , para este laser é $\gamma = -1,578 \times 10^{-2} \text{ cm}^{-1}/\text{atm}$. O valor de γ é uma função da densidade de portadores da constante de compliança elástica e da estrutura de banda do semicondutor, e deve variar de dispositivo para dispositivo.

ferentes tempos.

XII-2 - <u>Comparação dos Resultados Experimentais com Resulta</u>dos Teóricos:

A evolução do ganho modal com o tempo durante o pulso de corrente, foi calculada teóricamente a partir da equação {146}.

$$G = \left| g(0) - \Delta g \left(-\frac{W}{S} \right) \right| \Gamma \qquad \{146\}$$

O cálculo teòrico que simula a evolução do <u>ga</u> nho do modo com o tempo, foi feito com auxílio de um programa computacional que tem como váriaveis de entrada, a corre<u>n</u> te fornecida ao laser I_o, a espessura da camada ativa L_z, o comprimento de difusão dos elétrons L_n, a constante de tempo τ , o comprimento de onda λ , a velocidade de recombinação nas hetero interfaces S_v, e a pressão P, (veja apêndice II).

Na figura 55, comparamos os resultados exper<u>i</u> mentais com os teóricos, obtidos para a evolução do ganho com o tempo, para duas correntes.

Na figura 56, a mesma comparação é feita, levando-se agora em conta o efeito da pressão uniaxial.

A boa concordância existente entre os resultados teóricos e experimentais, permite concluir que o modelo proposto, representa bem os processos envolvidos na determinação do guiamento de luz.

Figura 55 - Comparação entre os resultados experimentais e teóricos para evolução do ganho com o tempo pa ra duas correntes. Experimental (o) e (•), téoco (--).

Figura 56- Comparação entre os resultados experimentais e teórico para evolução do ganho com o tempo para diferentes pressões.

XII-3 - Niveis de Energia:

Na figura 57, representamos os niveis de energia de um poço quântico de largura $L_z \simeq 200 \text{\AA}$, com barreiras potenciais finitas $\Delta E_c = 65\% \Delta Eg$ e $\Delta E_v = 35\% \Delta Eg$ para banda de condução e valência, respectivamente. Mostramos também algumas das possíveis transições e seus respectivos comprimento de onda.

Na figura 58, apresentamos a evolução espectral do ganho com o tempo, para um laser de poço quântico de espe<u>s</u> sura da camada ativa de L_z = 200Å.

Os vários picos observados na figura 58, representam recombinações entre os níveis de energia da banda de condução com a banda de valência.

Se compararmos a figura 58 d, com a figura 57, observamos que existe uma correspondência entre os níveis de energia do poço quântico, com os picos observados. Contudo, para uma conclusão mais detalhada entre os níveis de energia do poço com os picos observados, um estudo mais cuidadoso d<u>e</u> ve ser feito.

Na figura 59, apresentamos o que acreditamos ser evidências de emissão estimulada de um outro modo de emi<u>s</u> são, o qual deve estar associado a recombinação entre niveis de energia do poço quântico.

A figura 59, mostra claramente que este "nível de energia" é uma função da densidade de corrente, e que segue basicamente os mesmos processos de guiamento do modo já discutido.

Figura 57 - Diagrama de energia para um poço quântico de largura $L_z = 200 \text{\AA}$.

- .138 -

Figura 58 - Evolução do ganho para vários tempos.

- 139)-

Figura 58- Evolução do ganho para vários tempos.

Na figura 60, mostramos o comportamento de<u>s</u> te possível "nível de energia" com a pressão uniaxial. Observa-se que a medida que a pressão aumenta a intensidade desse "nível de energia" diminui, chegando até a desaparecer completamente. Destes resultados podemos dizer que este po<u>s</u> sível "nível de energia" segue os mesmos processos que definem o guiamento do modo, como foi discutido anteriormente.

Para se obter maiores informações sobre o com portamento destes possíveis "ríveis de energia", sua dependência com a densidade de corrente e pressão uniaxial, maior número de dados devem ser analizados.

rias pressões.

- 143 -

CAPÍTULO XIII:

XIII-l - Conclusão:

Como foi observado no decorrer do trabalho, os lasers de poço quântico de GaAlAs com estrutura SCH-QW, apresentam um atraso na emissão estimulada, devido a competição entre dois efeitos opostos no índice de refração da camada ati va: injeção de portadores, perfil de temperatura.

A injeção de portadores na camada ativa cria um anti-guia de ondas, o qual tende a desfocalisar o modo. Este anti-guia é compensado pela evolução no tempo e no espaço de um guia de ondas gerado pelo perfil de temperatura ao longo do plano da junção. Uma comparação entre os resultados experimen tais e teóricos para o laser de GaAlAs de 200Å de espessura, mostrou que o modelo teórico descreve muito bem a dinâmica envolvida no guiamento.

Foi observado que a aplicação de pressão uniaxial nos lasers de poço quântico, provoca um aumento na corren te limiar e no atraso da emissão estimulada, o que é devido a uma redução do ganho. Pela análise experimental, foi possível escrever uma equação empirica para o comportamento do ganho mo dal com a pressão uniaxial.

Além desses resultados foram observados, experimentalmente, emissões correspondentes a transições entre os ni veis de energia do poço quântico. Foram observados também, a evolução espectral no tempo, e seu comportamento com aplicação de pressão. Contudo, nenhuma afirmação pode ser feita enquanto maior número de dados não forem analisados. APÊNDICE I

Solução da Eguação de Onda:

A equação {113}, mostra a equação de onda, que permite obter as configurações dos campos dentro do guia de ondas:

$$\nabla^2 \vec{E} + K_0^2 \epsilon(x, y, z) \vec{E} = 0$$
 {A-1}

consideramos $E(x,y,z) = E_x(x) E_y(y) \exp(-i\beta z)$ {A-2} substituindo {A-2} em {A-1} temos:

$$\frac{1}{E_{\mathbf{x}}(\mathbf{x})} - \frac{\partial^2 E_{\mathbf{x}}(\mathbf{x})}{\partial \mathbf{x}^2} + \frac{1}{E_{\mathbf{y}}(\mathbf{y})} - \frac{\partial^2 E_{\mathbf{y}}(\mathbf{y})}{\partial \mathbf{y}^2} - \beta^2 + \kappa_0^2 \epsilon(\mathbf{x},\mathbf{y}) = 0 \{A-3\}$$

seja,

$$\frac{1}{\frac{E_{y}(y)}{E_{y}(y)}} = \frac{\beta_{0}^{2}}{\beta_{1}^{2}} = \beta_{0}^{2}$$
 [A-4]

temos a equação para direção x:

$$\frac{\partial^2 E_x(x)}{\partial x^2} + \kappa_0^2 (\epsilon_1 - C^2 x^2) - \beta_0^2 - \beta E_x(x) = 0 \quad \{A-5\}$$

A equação para direção y, é encontrada multiplica<u>n</u> do-se {A-5} por $E_x^*(x)$ e substituindo-se esta na equação {A-3}, e integrando sobre o intervalo de -∞ <x <∞

$$\beta_0^2 + \frac{1}{E_y(y)} - \frac{\partial^2 E_y(y)}{\partial y^2} - \frac{\partial^2 E_y(y)}{\partial y^2}$$

- 145 -

$$-\kappa_{0}^{2} \qquad \left[\int_{-\infty}^{\infty} E_{x}(x) \left(\varepsilon_{1}-C^{2}z^{2}\right) E_{x}(x)^{*} dx + \int_{-\infty}^{\infty} E_{x}(x) \varepsilon(x,y) E_{x}^{*}(x) dx\right] = 0$$

$$\left\{A-6\right\}$$

considerando,

$$A = \int_{\infty-}^{\infty} E_{x}(x) (\varepsilon_{1}-C^{2}x^{2}) E_{x}^{*}(x) dx + \int_{d/2}^{\infty} E_{x}(x) (\varepsilon_{1}-C^{2}x) (\varepsilon_{1}-C^{2$$

$$+ \int_{-d/2}^{d/2} E_{x}(x) (\epsilon_{1} - C^{2}x^{2}) E_{x}^{*}(x) dx + \int_{d/2}^{\infty} E_{x}(x) (\epsilon_{1} - C^{2}x^{2}) E_{x}^{*}(x) dx$$

$$B = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \ \varepsilon(\mathbf{x},\mathbf{y}) \ E_{\mathbf{x}}^{*} d\mathbf{x} = \int_{\underline{\theta}_{\infty}}^{-d/2} E_{\mathbf{x}}(\mathbf{x}) \ (\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{-d/2} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{x}}(\mathbf{x}) \left(\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}\right) \ E_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} + \frac{d}{d} = \int_{\underline{\theta}_{\infty}}^{\infty} E_{\mathbf{$$

$$\int_{-d/2}^{d/2} E_{x}(x) (\varepsilon_{0} - a^{2}y^{2}) E_{x}^{*}(x) dx + \int_{d/2}^{\infty} E_{x}(x) (\varepsilon_{1} - b^{2}y^{2} - C^{2}x^{2}) E_{x}^{*}(x) dx$$

temos:

$$A-B = \int_{\frac{d}{2}}^{\frac{d}{2}} E_{x}(x) (\varepsilon_{1}-C^{2}x^{2}) E_{x}^{*}(x) dx - \int_{-\frac{d}{2}}^{\frac{d}{2}} E_{x}(x) (\varepsilon_{0}-a^{2}y^{2}) E_{x}(x) dx + \int_{-\frac{d}{2}}^{\frac{d}{2$$

$$+ \int_{-\infty}^{-d/2} E_{x}(x) b^{2}y^{2} E_{x}^{*}(x) dx + \int_{d/2}^{\infty} E_{x}(x) b^{2}y^{2} E_{x}(x) dx$$

- 146 -

$$A-B = \varepsilon_1 \Gamma - \frac{c^2 d^2}{12} - (\varepsilon_0 - a^2 y^2) \Gamma + 2b^2 y^2 \quad (1-F) \{A-7\}$$

onde, F é dado pela equação {121}.

Substituindo $\{A-7\}$ em $\{A-6\}$, temos:

$$\beta_{0}^{2} + \frac{1}{E_{y}(y)} \frac{\partial^{2} E_{y}(y)}{\partial y^{2}} + \left[\Gamma K_{0}^{2} (\epsilon_{0} - \epsilon_{1} + \frac{C^{2} d^{3}}{12}) - K_{0}^{2} y^{2} (\Gamma a^{2} + b^{2} (1 - \Gamma)) \right] = 0$$

ou

$$\frac{\partial^2 E_y(y)}{\partial y^2} + \left[K_0^2 \Gamma p^2 - K_0^2 Y_m^2 + \beta_0^2 \right] E_y(y) = 0 \qquad \{A-8\}$$

onde,

$$p^{2} = \varepsilon_{0} - \varepsilon_{1} + \frac{c^{2} d^{3}}{12}$$
 {A-9}

$$m^2 = \Gamma a^2 + (1-\Gamma) b2$$
 {A-10}

A solução da equação de onda {A-8}, é dada pelas junções de Hermite-Gauss.

$$E_{p}(y) = H_{p}\left[(mK_{0})^{1/2}y\right] \exp\left(-\frac{mK_{0}}{2}y^{2}\right)$$
 {A-11}

onde, H $\stackrel{e}{p}$ é o polinomio de Hermite de onda p.

Para o modo fundamental, p = 0, H₀ = 1, a meia la<u>r</u> gura (W), no ponto de intensidade $1/e^2$, é dada por

$$W = (\frac{2}{m_r K_0})^{1/2}$$

- 147 -

onde, $m_r = real (m)$.

Escrevendo a constante complexa <u>a</u>, em função de suas componentes real e imaginária, e substituindo em {A-10} temos:

$$m^{2} = \Gamma(a_{r}^{-i}a_{i})^{2} + (1-\Gamma) b^{2}$$

ou

$$m^{2} = \Gamma(a_{r}^{2} - a_{i}^{2}) + b(1-\Gamma) + i2 a_{r}a_{i}$$
 {A-12}

As constantes $(a_r^2-a_i^2)$ e a_ra_i , são encontradas a partir da equação {111}, e da equação {84}.

$$\varepsilon(\mathbf{x},\mathbf{y}) = \varepsilon_0 - a^2 y^2 \qquad \{A-13\}$$

$$\varepsilon = (n+i\kappa)^2$$
 {A-14}

de {A-13}, temos:

$$a_{r}^{2}-a_{i}^{2}+2_{i}a_{r}a_{i}=\frac{\varepsilon_{0}^{-}(x,y)}{y^{2}}$$
 {A-15}

onde,

$$\varepsilon_{0} = \varepsilon_{r}(0) + i \varepsilon_{i}(0)$$

$$\{A-16\}$$

$$\varepsilon(x,y) = \varepsilon_{r}(x,y) + i\varepsilon_{i}(x,y)$$

substituindo {A-16} em {A-15}, temos:

$$y^{2} (a_{r}^{2}-a_{i}^{2}) = \varepsilon_{r}(0) - \varepsilon_{r}(x,y)$$
 {A-17}

- 148 -

$$y^{2} (2a_{r}a_{i}) = \epsilon_{i}(0) - \epsilon_{i}(x,y)$$
 {A-18}

considerando o ponto y = S/2, e substituindo {A-14}, em{A-17}, temos:

$$\frac{s^2}{4} (a_r^2 - a_i^2) = n^2(0) - n^2(S/2) - \left[\kappa^2(0) - \kappa^2(S/2)\right]$$

lembrando que $\kappa = \frac{\lambda \alpha}{4\pi}$ e que $\alpha = -g$, e que $\Delta n = n(0) - n(S/2)$ e $\Delta g = g(0) - g(S/2)$, temos:

$$a_{r}^{2} - a_{i}^{2} = \frac{8}{s^{2}} n_{0} \Delta n$$
 {A-19}

e

$$a_r a_i = \frac{\lambda}{s^2 \pi} \Delta n(0) \Delta g$$
 {A-20}

substituindo $\{A-19\}$ e $\{A-20\}$ em $\{A-12\}$, temos:

$$m^{2} = \begin{bmatrix} \frac{8}{\Gamma s^{2}} & n(0) & \Delta na + b^{2} & (1-\Gamma) \end{bmatrix} + i \begin{bmatrix} \frac{2\lambda}{\pi s^{2}} & n(0) & \Delta g \end{bmatrix} \{A-21\}$$

A constante real <u>b</u> é encontrada a partir da equação {112}.

$$\varepsilon(\mathbf{x},\mathbf{y}) = \varepsilon_1 - b^2 y^2 - C^2 x^2$$

considerando pontos no centro da camada ativa (x=0), temos:

$$b^{2} = \frac{\varepsilon_{1} - \varepsilon(x, y)}{y^{2}}$$
 {A-22}

onde,

$$\epsilon_{1} (0) = n_{1}^{2}$$
{A-23}
 $\epsilon_{1} (x,y) = n^{2} (x,y)$

considerando o ponto y = S/2, e substituindo {A-23}, em {A-2], temos:

$$\frac{s^2}{4} \quad b^2 = n_1^2 \quad (0) - n_1^2 \quad (S/2)$$

lembrando que

$$\Delta n_{CG} = n_1(0) - n_1(S/2)$$

nós temos:

$$b^2 = \frac{8}{s^2} n_1(0) \Delta n_{CG}$$
 {A-24}

substituindo $\{A-24\}$ em $\{A-21\}$, temos:

$$m^{2} = \frac{8}{s^{2}} \left[\Gamma n(0) \Delta na + n_{1}(0) \Delta n_{CG}(1-\Gamma) \right] + i \left[\Gamma \frac{2\lambda}{\pi s^{2}} n(0) \Delta g \right]$$

Pela definição de número complexo

$$z = a + ib$$

 $z = re^{i\Theta} = \sqrt{a^2 + b^2}$. (cos0 + i sen0)

onde $\theta = \operatorname{arc} \operatorname{tg} \left(\frac{b}{a} \right)$

se considerarmos $z = m^2$, temos:

$$m^{2} = \left\{ \left[\frac{8}{s^{2}} (rn(0) \Delta n_{a} + n_{1}(0) \Delta n_{CG} (1-r)) \right]^{2} + \right.$$

+
$$\left[\Gamma \frac{2\lambda}{\pi S^2} n(0) \Delta g \right]^2 \right\}^{1/2}$$
, $e^{i\theta}$

onde

$$\Theta = \operatorname{arc} \operatorname{tg} \left(\frac{\Gamma \lambda}{\pi} n(0) \Delta g \cdot \frac{1}{4(\Gamma n(0) \Delta n_a + \Delta n_{CG} n_1(0) (1-\Gamma))} \right)$$

$$m = \left\{ \left[\frac{8}{s^2} (\Gamma n(0) \Delta na + n_1(0) \Delta n_{CG}(1-\Gamma) \right]^2 \right\}$$

+
$$\left[\Gamma \frac{2\lambda}{\pi S^2} \quad n(0) \Delta g \right]^2 \left\{ \begin{array}{c} 1/4 \\ e^{1/2} & i\Theta \end{array} \right\}$$

е

$$\mathbf{m}_{\mathbf{r}} = \left\{ \begin{bmatrix} \frac{8}{s^2} & (\operatorname{Fn}(0) \ \Delta \operatorname{na} + \operatorname{n}_1(0) \ \Delta \operatorname{n}_{\mathrm{CG}}(1-r) \end{bmatrix}^2 \right\}$$

+
$$\left[\Gamma \frac{2\lambda}{\pi S^2} \quad n(0) \quad \Delta g \right]^2 \right\}^{1/4} \quad \cos \left(\frac{\Theta}{2} \right)$$

APÊNDICE II

.

.

С	PROGRAMA DELA
Ċ	PARAMETROS USADOS NOS CALCULOS
Ū	TYPE 98
00	ropmat(r) = pressant(r)
70	
	TYPE 18
18	FORMAT(' CORRENTE EM AMPERE==>')
	ACCEPT *, RI
	TYPE 99
99	FORMAT(/ FATOR DE MULTIPLICACAO DO GANHO==>/)
	ACCEPT *, ZZ
	TYPE 19
19	FORMAT(1 LARGURA DA FAIXA EM M1CRONS==>1)
17	
20	EDRMAT() ERRESURA DA CAMADA ATIVA EM $(M==5)$)
EU	
	AUGER (*) 0 TVDE 24
21	FURMAT(' SURPACE VELOUITY (CM/S)==2')
	ACCEP1 *, 5V
	TYPE 22
22	FORMAT(' COMPRIMENTO DE DIFUSAC EM CM==>')
	ACCEPT *, RLN
	TYPE 26
26	FORMAT(' TEMPO DE RECOMBINACAO RADIDATIVA (S) ==>')
	ACCEPT *, TR
	TYPE 27
27	FORMAT('\$ VALOR DO COMPRIMENTO DE ONDA EM microns ==> ')
	ACCEPT *, WL
C	TNR, BETA E WO SAO VALORES DEFINIDOS NO TRABALHO DE KAMSET
Ū	BFTA=19 32
	RS=1000
	C=1 E=A
	4-1.6°7 TND#D//O_8CU)
	NR=D7(2, *37)
	RL=300. E-4
	GAMA = (D/WU) * (2, 73, 1416) * *0.5
	E=1.6E-19
С	RS=SHEET RESISTIVITY
С	C=FATOR DE CONVERSAO DE MICRON PARA CM
С	D=ESPESSURA DA CAMADA ATIVA
С	RL=COMPRIMENTO DO LASER
с	SV=VELOCIDADE DE RECOMBINACAO SUPERFICIAL
с	TNR=TEMPO DE RECOMBINACAO NAO RADIOATIVO
С	TR= TEMPO DE RECOMBINACAO RADIOATTIVO
ē	RL=COMPRIMENTO DO LASER
č	E=CARGA DO ELETRON
č	RI=CORRENTE EM AMPERE
č	S=LARGURA DA FAIXA EM MICRON
č	NETA=FEICIENCIA QUANTICA
č	
C	
C	
C	
C .	GUEGANDU TRA-TEKRR EM CEOLNINGE
C	IFU-ICNRU EN BEGUNDUB
	WKITE(3,9)KI/2
9	FURMA)(2X, 11(A)=',G,2X, '8=',G,/)
1	TYPE 2, RI, S
1 2	FURMAT(2X, F5, 3, F4, 1)
	WRITE(3,6)RLN, SV

.

· · · · · · · · · ·

.

. -

- 152 -

6	FORMAT(2X, 1DIF. LENGTH=1, G, 2X, 1SURFACE VELOCITY=1, F6. 1, /)
7	WRITE(3,7)D FORMAT(2X,'ESPESSURA DA CAMADA ATIVA=',G,7)
-	WRITE(3,8)TR FORMAT(3, CTEMPS, DE RECOMPLINACAS, DADIDATING, (.).
B	WRITE(3, 28)WL
28	FORMAT(2X, 'COMPRIMENTO DE ONDA (microns) = ',G,/)
30	FORMAT(2X, 'FATOR DE MULTIPLICACAO DO GANHO=',G,/)
21	WRITE(3,31)PP FORMAT(2), (PRESSAD EM ATM#/ C /)
01	RUS=RI/(S*C*RL)
	PA=2. /(BETA*RS*S*C*S*C) R.E=((PA+R.S)**0. 5-PA**0. 5)**2
	TAU=TR*TNR/(TNR+TR)
	NETA=TAU/TR DN=RI N#RI N/TAU
	RLO = (RJS/RJE-1.) * 5 * C/2.
	G=RJE/(DN*E*D) RNO=G*RIN*RIN-G*RIN*RIN*(RIN/(RID+RIN))*FXP(-S*C//2_*PIN))
	CH=(EXP(S*C/(2, *RLN))+EXP(-S*C/(2, *RLN)))/2
	RNS2=G*RLN*RLN+G*(RLN**2)*(RLN/(RLO+RLN))*CH*EXP(+S*C/(2,*RLN)) WRITE(3,3)G,RUE,RUS,RED
З	FORMAT(2X, 'G= ',G,2X, 'Je= ',G,2X, 'Js= ',G,2X, 'LO= ',G,/)
29	WRITE(3, 27)RNO, RNS2 EDRMAT(2X, (DENS PORT(X=0)) = (, G, 2X, (DENS PORT(XX=0/2)) - (, G, ())
	GANO=ZZ*(1.08E-16*RNO-146.)
	GANS2=ZZ*(1.OBE-16*RNS2-146.) $DELC=GAMA*(GANO-GANS2)$
	DELNN=-5. 0E-21*(RNO-RNS2)
	TYPE 4, GANO, GANS2, DELG, DELNN WRITE(3, 4) GANO, GANS2, DELG, DELNN
4	FORMAT (2X, 4G, /)
j C	CALCULD DA TEMPERATURA DELED=(1 -1.00*NETA)*1 24/WL*1 602E-19*D/TAU*(RMO-RMS2)
	DELFDII=(11.00*NETA)*1.24/WL*1.602E-19*D/TAU*RND
	WRITE(3,23)DELFO,DELFOII TYPE 23,DELFO,DELFOII
23	FORMAT(/, 5X, 'DELFO=', G, 5X, 'DELFOII=', G, /)
	WRITE(3,24) TYPE 24
24	FORMAT(5X, 'TPO', 14X, 'DELT', 11X, 'DELTO', 9X, 'DNEF', 12X, 'RMR', 14X,
	*'WE',12X,'GM',/) DD 10 J=1,41
	TPD=(J-1)*50.*1E-9
	DELT=DELFU/U.13*(0.12*TPU/3.1416)**0.5 DELTO=DELFUII/.13*(.12*TPU/3.1416)**0.5
	DELNT=DELT*5. OE-4
	DNEF=3.56*GAMA*DEENN+3.42*(I-GAMA)*DEENI AR=8.*DNEF/(S*C*S*C)
	AI=2.*(WL*C)*3.56*DELG/(3.1416*S*S*C*C)
	IE(DNEF)15, 16, 16
15	RMR=-SIN(TETA/2,)*(AR*AR+AI*AI)**0.25
16	GU 10 17 RMR=(AR**2+AI**2)**0.25*COS(TETA/2.)
17	WE = (WL * C/(3.1416 * RMR)) * *0.5
	TYPE 5, TPO, DELT, DELTO, DNEF, RMR, WE, GM
·	WRITE(3,5)TPD, DELT, DELTO, DNEF, RMR, WE, GM
5	FORMAT(2X, 7G)
. 10	STOP
	END
••••••••••••••••••••••••••••••••••••••	

REFERÊNCIAS

.

.

. .

•

REFERÊNCIAS:

- (1) M.G. Bernard and G. Duraffourg Phys. Status Solidi, <u>1</u>, 699, (1961)
- (2) F. Stem IEEE J. of Quantum Electron., QE-19, 290, (1973)
- (3) N.K. Dutta and R.J. Nelson Appl. Phys. Letter, <u>38</u>, 407, (1981)
- (4) H.C. Casey Jr. J. Appl. Phys., <u>42</u>, 3684, (1978)
- (5) F.C. Prince Tese de Doutoramento apresentada no IFGW - (1981)
- (6) A.R. Beattie and P.T. Landsberg Proc. R. Soc., A-249, 16 (1958)
- (7)- A.R. Beattie and G. SmithPhys. Status Solidi, <u>19</u>, 577, (1969)
- (8) A. Hang Solid State Electron., 21, 1281, (1978)
- (9) G. Lasher and F. Stern Phys. Rev., 133, A553, (1964)
- (10)- J.E. Ripper, N.B. Patel and P. Brosson Appl. Phys. Letter, 21, 121, (1972)
- (11)- N.B. Patel, J.E. Ripper and P. Brosson IEEE J. of Quantum Electron., <u>QE-9</u>, 338, (1973)
- (12) G.E. Picus and G.L. Bir Sov. Phys. Solid State, 1, 1502, (1960)

- (13) W.H. Kleiner, and L.M. Roth
 Phys. Rev. Lett., 2, 334, (1959)
- (14) F.H. Pollak and M. Cardona
 Phys. Rev., 172, 816, (1968)
- (15) M.S. Sartório
 Tese de Mestrado apresentada no IFGW (1975)
- (16) C. Kittel
 Introd. to Solid State Phys. John Wiley Cap. IV
- (17) G. Dresselhaus, A.F. Kip and C. Kittel
 Phys. Rev., <u>98</u>, 368, (1955)
- (18) C. Kittel
 Quantum Theory of Solids John Wiley-Cap. XIV
- (19) E.O. Kane Phys. Rev., <u>178</u>, 1368, (1969)
- (20)- K. Suzuki and J.C. Hensel
 Bull. Am. Phys. Soc., <u>14</u>, 113, (1969)
- (21) L.D. Lande, F.H. Pollak and M. Cardona Phys. Rev., <u>3</u>, B2623, (1971)
- (22)- J.E. Ripper, N.B. Patel and P. Brosson
 Proc. 11th Int. Conf. Phys. of Semic., Warsaw, Poland
 (1972)
- (23) F.K. Reinhart, I. Hayashi and M.B. Panish J. Apply. Phys., <u>11</u>, 4466, (1971)

(24) - T. Ikegami IEEE - J. Quantum Electron., QE-8,470, (1972)

- 154 -

- (25)- A. Sugimura IEEE J. Quantum Electron., QE-17, 627, (1981)
- (26)- N.K. Dutta and R.J. Nelson
 J. Appl. Phys., <u>53</u>, 74, (1982)
- (27)- R.J. Nelson and N.K. Dutta
 J. Appl. Phys., <u>54</u>, 2923, (1983)
- (28)- S.H. Chiao and R.L. Moon
 Prog. Cristal Growth, 2, 251, (1979)
- (29)- P.G. Eliseev, B.N. Sverdlov and N. Shokhvdzhaev Quantum Electron. (USSR), 11, 1665, (1984)
- (30)- M. Horiguchi and H. Osamai Electron. Letter, <u>12</u>, 310, (1976)
- (31)- F.C. Prince, N.B. Patel, K. Kasemset and C.S. Hong Electron. Letter, 19, 435, (1983)
- (32) F.C. Prince, T.J.S. Mattos, N.B. Patel and D. Kasemset IEEE J. Quantum Electron., <u>QE-23</u>, , (1985)
- (33)- T.L. Paoli IEEE J. Quantum Electron., <u>QE-13</u>, 662, (1977)
- (34)- R. Eisberg and R. Resnick
 Quantum Physics-John Wiley Appendix G
- (35)- N. Holonyak, R.M. Kolbas, R.D. Dupuis and P.D. Dapkus IEEE J. Quantum Electron., <u>QE-16</u>, 170, (1980)
- (36)- M.D. Camras, N. Holonyak, K. Hess and J.J. Coleman Appl. Phys. Letter, <u>41</u>, 317, (1982).

- (38)- D. Kasemset, C.S. Hong, N.B. Patel and P.K. Dapkus IEEE J. Quantum Electron., QE-19, 1025, (1983)
- (39)- H.C. Casey and M. Panish Heterostructure Laser - Academic Press, (1978)
- (40)- A. Siguimura IEEE J. Quantum Electron., QE-20, 336, (1984)
- (41) R.J. Nelson and R.G. Sobers Appl. Phys. Letter, <u>32</u>, 761, (1978)
- (42)- A. Yariv
 Introduction to Optical Electronics Holf, Rinehartand,
 Winston
- (43) D. Marcuse Theory of Dielectric Optical Weveguides - Academic Press
- (44) J.I. Pankove Optical Processes in Semiconductors - Prentice Hall
- (45) T.H. Zachos and J.E. Ripper IEEE J. Quantum Electron., <u>QE-5</u>, 29, (1969)
- (46) G.H.B. Tompson Optic Electronics, <u>4</u>, 257, (1972)
- (47) F.R. Nash J.Appl. Phys., <u>44</u>, 4696, (1973)
- (48) F.D. Nunes, N.B. Patel, J.G. Mendoza and J.E. Ripper J. Appl. Phys., <u>50</u>, 3852, (1979)

- 156 -

(49) - D.D. Cook and F.R. Nash

J. Appl. Phys., <u>46</u>, 1660, (1975)

- (50) A.R. Jonscher and M.H. Boyle
 Proc. of IPPS Symposin on GaAs, pag 78, (1966)
- (51) F.D. Nunes Tese de Doutoramento apresentada no IFGW - (1976)
- (52)- C.H. Gooch Galliun Arsenide Lasers - John Wiley
- (53) T. Kobayashi, Y. Furukawa Japan J. Appl. Phys., <u>14</u>, 1981, (1981)
- (54) H. Carslow and X. JaegerConduction of Heat in Solid Osford, pag. 75
- (55) J.C. Dyment Appl. Phys. Letter, <u>10</u>, 84, (1967)
- (56) L.A. D'Asaro Appl. Phys. Letter, <u>11</u>, 292, (1967)
- (57) W.T. Tsang
 J. Appl. Phys., <u>49</u>, 1031, (1978)
- (58)- B.W. Hakki
 J. Appl. Phys., <u>44</u>, 5021, (1973)
- (59) A.V. Zeil
 Solid State Physical Electronics Prentice Hall
- (60) K. Konnerth
 IEEE Trnas. Electron. Devices, <u>12</u>, 506, (1965)
- (61) J.W. Crowe and K.E. Niebuhr
 Solid State Commun., 2, 119, (1964)

- (62) R.D. Burnham, C. Lindströn, and T.L. Paoli Appl. Phys. Letter., <u>42</u>, 937,, (1983)
- (63)- G. Arfken

Mathematical Methods for Physicists - Academic Press

- (64)- B.W. Hakki and T.L. Paoli
 J. Appl. Phys., <u>46</u>, 1299, (1975)
- (65) H. Kobayashi, H. Iwamura, T. Saku and T. OtsukaElectron. Letters, <u>19</u>, 166, (1983)
- (66)- R.D. Dupuis and P.D. Dapkus Gallium Arsenide and Related Compounds, 1978, (Inst. Phys. Conf. Ser. Nº 45), pag. 1