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Abstract

Earth’s magnetic field is essential for orientation of migratory birds. The most
promising explanation for this orientation employs the photo-stimulated radical pair
(RP) mechanism, conjectured to occur in cryptochrome photoreceptors. This last con-
jecture has been particularly reinforced recently by the evidence of magnetosensivity of
human cryptochrome. The radicals must have an intrinsic anisotropy in order to define
a reference frame for this kind of “compass”. This anisotropy, when introduced through
hyperfine interactions, imposes immobility of the RP formed within the eye of the bird,
and implies that entanglement between the unpaired electrons of the RP is preserved
over long times of hundreds of microseconds; therefore the coherence times are longer,
even if the role of entanglement in the reaction remains unknown. We show that this
kind of anisotropy due to hyperfine interactions is not necessary for the proper func-
tioning of the compass. Isotropic radical pairs, i.e., molecules performing diffusional or
rotational motion able to average away any anisotropy in the hamiltonian, when sub-
jected to a fast decoherence process, are able to provide the anisotropy required for the
compass to work. The environment in which the RP is immersed is then responsible for
the reference frame of the compass, relaxing the immobility assumption. This signifi-
cantly expands the range of applicability of the RP mechanism providing more elements
for experimental search, as the candidate molecules must not be fixed within the retina.
Using this external source of anisotropy, we show that entanglement is not necessary
for the proper working of the compass, given that separable states can form anisotropic
yields under proper conditions. Classically correlated initial conditions for the RP, or
in other words, initial states without quantum correlations, can provide another source
of the required anisotropy for the proper working of the compass; given that the initial
state is not a perfect singlet (or triplet) state between the electronic spins and therefore
is not a maximally entangled state, this new source of preferred direction in the creation

of the chemical products gains relevance.
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Resumo

O campo magnético da Terra é essencial na orientacao de passaros migratérios. A
explicacao mais promissora para esta orientagao utiliza o mecanismo de pares ra-dicais
(PR) criados em uma reacao foto-estimulada, a qual é conjecturada ocorrer em fotor-
receptores criptocromo. Esta tltima conjectura foi particularmente reforcada recente-
mente pela evidéncia de sensibilidade magnética do criptocromo humano. Os radicais
devem ter uma anisotropia intrinseca, a fim de definir um quadro de referéncia para esse
tipo de “bussola”. Esta anisotropia, quando introduzida através de interacoes hiperfinas,
impoe imobilidade ao RP formado dentro do olho do pédssaro, e implica na preservagao do
emaranhamento entre os elétrons desemparelhados do PR por tempos longos (de cente-
nas de microssegundos). Consequentemente, os tempos de coeréncia sao também longos,
mesmo que o papel do emaranhamento na reagao permaneca desconhecido. Mostra-se
que esse tipo de anisotropia devido as interacoes hiperfinas nao é necessario para o
funcionamento da bussola. Pares radicais isotrépicos, isto é, moléculas que executam
um movimento de rotacao ou de difusao capaz de remover qualquer anisotropia no
Hamiltoniano quando submetidos a um processo de decoeréncia rapida, sao capazes de
fornecer a anisotropia necessaria para que a bussola funcione. O ambiente no qual o PR
esta imerso é responsavel pelo referéncial da bussola, relaxando a hipétese de imobili-
dade. Isto expande significativamente a gama de aplicabilidade do mecanismo de PR
fornecendo mais elementos para pesquisa experimental, quanto as moléculas candidatas
nao devem estar fixas na retina. Utilizando esta fonte externa de anisotropia, mostramos
que o emara-nhamento nao é necessario para o bom funcionamento da bussola dado que
estados separdveis podem formar produtos anisotrépicos sob as condigoes apropriadas.
Condicoes iniciais classicamente correlacionadas para o PR, ou em outras palavras, es-
tados iniciais sem correlagao quantica, podem fornecer uma outra fonte da anisotropia
necessaria para o bom funcionamento da bussola; dado que o estado inicial nao é um
estado singleto (ou tripleto) perfeito entre os spins eletronicos e portanto nao é um es-
tado maximamente emaranhado, esta nova fonte de direcao preferencial na criacao dos

produtos quimicos ganha relevancia.
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Chapter 1

Introduction

Magnetic fields can change the products or yields of certain molecular chemical reac-
tions [1, 2|, and even weak fields, such as the Earth’s, can produce significant effects.
Even though the energy involved in the interaction between the magnetic fields and
the molecules is much smaller than the average thermal energy k7', the sensitivity in
production of different reaction outcomes can still exist. This allowed in the 1960s the
observation of unusual line shapes in electron paramagnetic resonance (EPR) spectra
of the intermediates in radical reactions, and in the nuclear magnetic resonance (NMR)
spectra of their products [3], and a consistent interpretation was made in terms of the
radical pair mechanism (RPM) [4, 5]. Radical pairs involved in chemical reactions cover
a wide field by their own, having applications explaining diffusive motion of molecules
[6, 7], electron site exchange [8, 9] and detecting reactions occurring during photosyn-
thesis [10]. We are interested in the means by which the magnetic field of the Earth can
influence animal navigation [11]. A magnetic sense was reported in a variety of species,
going from bacteria [12] to mollusks [13], fish [14], butterflies [15] and birds [16, 17]. One
of the hypothesis that has been proved more consistent with experimental data in the
efforts of trying to understand the avian navigation, is based on the existence of a radical
pair reaction by means of an anisotropic production of chemical yields [18-22]. Although
the model has existed for many years there are still fundamental questions about the
physics involved. Specifically about the role of quantum correlations in the working of
this sort of compass, and the possible sources of anisotropy needed. In the following two
sections a summary of the most important experimental facts that give its importance
to the RPM as a viable explanation for avian navigation, as well as the basics if this

mechanism itself, are going to be presented. In the last section of this chapter we are



Figure 1.1: The European robin (Erithacus rubecula rubecula) was the first to be shown
to have a magnetic compass sense.

going to present a brief summary of the most reliable candidate molecules to form the
radical pair. In the next chapters we are going to set the theoretic ground to study the
implications of quantum correlations and environmental effects in the working of the
compass. In Chapter 2 we are going to study the terms present in the spin Hamiltonian
that explain the RPM, as well as a discussion about the anisotropy in the model, specifi-
cally in the hyperfine tensor. The study of this Hamiltonian is not enough to understand
the problem; we also need the influence of the environment, and in order to include it
we are going to need the density matrix formalism, that will be described in Chapter 3,
along with two functions that can take into account quantum correlations. Chapter 4
contains the results of our work, and in Chapter 5 are summarized the conclusions at

which we arrived.

1.1 Avian navigation

The first experiments to show an avian compass were conducted in 1966 with European
robins (Erithacus rubecula rubecula) caught in Frankfurt, Germany, and it was shown
that they use the magnetic field of the Earth to orientate in the correct direction for
migration 23, 24]. Several important experimental observations have been made regard-

ing the avian compass, and based on those it was possible to build a good theoretical



Figure 1.2: Figure adapted from [24] summarizing their findings. (A) Birds in the natural
magnetic field preferred to orient in a northerly direction. (B) Using a set of Helmholtz
coils to generate a small magnetic field (46p7") with opposite polarity, it was shown that
these birds continued to orient in the same direction. (C) The vertical component of
the magnetic field was reversed, causing the birds to orient in an incorrect, southerly
direction. (D) The horizontal component of the magnetic field was reversed, causing the
birds to orient in an incorrect, southerly direction.

model. The first important observation is that the magnetic perception is not sensitive
to the polarity of the magnetic field of the Earth but only to the inclination, i.e., birds
using this compass cannot distinguish North from South, but are able instead to per-
ceive the axis of the field lines [23, 24], as is depicted in Figure 1.2. The next logic step
in those experiments was to test the sensitivity of the magnetic compass of the birds
to intensity and frequency of the ambient light [17, 25]. In the four species tested in
those papers, the evidence showed that the light in the blue-green part of the spectrum
was necessary for magnetoreception. In a different work [26] it was shown that there
are other species that depend on the frequency of the light for their magnetic sense.
Besides the frequency, it seems that intensity is also important, but most of the works
in this sense are trying to separate a motivational effect of the ambient light from a
biological effect [27, 28] without a conclusive result so far. In Figure 1.4 we can see
the results of experiments that exposed the European robin to different light energies;
it can be seen that when exposed to light with energies above certain threshold estab-
lished near the blue-green part of the spectrum, even UV light, the birds can orientate

without any problem; for yellow or red lights the orientation disappears. The results of



Rotationaxis

Figure 1.3: Approximate diagram of the Earth’s magnetic field. The field lines make an
inclination angle of 6 degrees with the surface of the Earth.

the experiments conducted on light intensity can be seen in the right panel of Figure
1.5; it’s shown that small intensities cannot give the underlying compass mechanism
enough information for it to work properly. After learning that many migratory birds
need ambient light in certain frequencies and intensities in order to navigate using the
magnetic field of the Earth, a natural question arises: where in the bird this light has
its effect? An experiment where a bird with its left eye covered was able to orient nor-
mally was performed, but one with the right eye covered was not [30]. Apart from the
biological question regarding why this asymmetry in the compass, the experiment shows
clearly that the light receptors involved in the geomagnetic sense are located in the eyes
of robins. Another evidence of this was shown by measurement of genes in the brain
of warblers and European robins; it was found that there are significant neural activity
during night time orientation tasks in a region of the brain dubbed cluster N [31], and
this neural activity was absent in the brains of two non-migratory species of birds. The
role of cluster N seems promissory in the processing of neural signals in the compass,
but a conclusive proof is yet to be provided [32]. After the fundamental role of light was
shown, the attention turned to experiments with environmental variations of magnetic

fields, such as their intensity [11, 29, 33]; European robins that can orient themselves in
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Figure 1.4: Figure from [29] with permission of The Royal Society. Letters UV, B, T,
G, Y and R correspond to illumination colors, and W, S, E to directions of orientation.
When the birds are exposed to light with energies above certain threshold established
near the blue-green part of the spectrum the birds can orientate without problem; for
yellow or red lights the orientation disappears.

w

the magnetic field of the Earth (which has a magnitude of 46uT in Frankfurt) cannot
orient in fields of 34uT or 60uT; however a continued exposure to the new magnetic
field intensity, force the compass to adjust itself [29, 34] allowing the birds to navigate.
Strong, short magnetic field pulses [35] were also superimposed to the magnetic field of
the Earth in several species of birds. A magnetite-based compass might be realigned
following the direction of the magnetic field pulse, but a radical pair mechanism should
not be affected by it. However the response to the pulse depends strongly on the size
and shape of the magnetite particles in an organism, and given the correct size and form
(long and thin particles of magnetite), the compass may only remagnetize in the same
direction in which they were originally magnetized. From the data collected a conclusion
could not be extracted: in some birds within the same species the pulse appears to have
no effect, in others it produces reorientation in an incorrect direction and in others it
produces a reorientation in the correct direction. The final experiment conducted with

external magnetic fields was the application of a radio-frequency magnetic field perpen-
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Figure 1.5: Figure from [29] with permission of The Royal Society. The Right Panel
shows the average orientation with different intensities of light applied; their results show
that for cyan or green light small intensity is enough, and for blue and UV light a greater
intensity is necessary. The Left Panel shows experiments conducted with appropriate
light, i.e., green and cyan light, when there is an external magnetic field produced by
Helmholtz coils; their results showed that the magnetic orientation disappears due to

the rf field.

Figure 1.6: Figure from [30] with permission of Nature Publishing Group. The European
robin was subjected to monocular testing. The results of these experiments showed
conclusively that the mechanism was located in the eyes of the bird.

dicular to the field of the Earth. In 2003 [36] it was found that an RF field much weaker
than the magnetic field of the Earth, with a magnitude of B = 470nT and a frequency

of oscillation of w,y = 7TM Hz could disorient European robins. The relative orientation



between the applied field and the geomagnetic one was important: for parallel fields
the effects were negligible; for relative orientations of 24° or 48° a perturbation was
recorded, but a small orientation was still present. The complete disappearance of the
compass was only accomplished when the fields were perpendicular. Similar studies, at
frequency w,; = 1.315M Hz and with B = 485nT" were conducted [37]. Once again, the
robins remained oriented when fields were parallel, but they lost some orientation for
24° and 48°, and all orientation for perpendicular fields. As an important note, in [37]
the frequency 1.315M Hz was chosen because its the Zeeman resonance splitting for a
free electron in the magnetic field of the Earth for a magnitude of 46uT, which is the
magnitude in Frankfurt, were the experiments were made. These results can be seen in

the left panel of Figure 1.5.

1.2 Avian compass mechanism

There are several animals that use magnetoreception as a mechanism for navigation.
Until now it has not been possible to determine a magnetic organ in any animal [28] and
there are at least three viable mechanisms that can explain the existence of the com-
pass, each of them well established in the literature and consistent with the experiments
performed in several species, from fish to birds. There are however few suggestions of
other mechanisms without enough experimental support [38-40]. The first of the pro-
posed mechanisms is magnetoreception by electromagnetic induction. Some fish species
are known to swim following magnetic field anomalies in the bottom of the ocean. It is
suggested that they can sense the induced EMF as they swim through the magnetic field
[14]. However it is known that sea water currents could also induced EMF's; this implies
a difficulty trying to separate the EMFs from motion in the magnetic field of the Earth
from other magnetic fields in the ocean [41, 42]. However this is unlikely to be the basis
of magnetoreception in land or airborne animals. The second viable proposal is that
magnetoreception is due to the response of small crystals of magnetite, FezO, [27]. This
kind of magnetoreception is responsible for the orientation of magnetotactic bacteria
[12]. Magnetite deposits have been found in many animals, although it has been diffi-
cult to show a connection between these minerals and the nervous system. Until now
there are two species which show the best behavioral evidence for a magnetite-based

compass: trouts and pigeons [28], although recent reports suggest that these deposits



are macrophages [43] without any role in avian navigation. This mechanism also con-
tradicts experimental evidence: a magnetite-based compass should work as a polarity
detector but the navigation mechanism in the European robin cannot detect changes
in polarity [29]. The third proposal is that magnetoreception operates by means of
anisotropic chemical magnetic field effects on the rate or product yield of a biochemical
radical pair reaction [18-20, 44-46]. From the experimental evidence this is the most

viable mechanism in the case of European robins.

1.2.1 Radical pair mechanism (RPM)

Besides being established as the basis for many chemical reactions, the RPM field effects
have also been observed in some interesting biological systems [47-49]. Some of these
effects have been observed in the co-enzyme Bj3[47, 50] and in modified photosynthetic
reaction centers [51-53] using small magnetic fields with a magnitude of By = 1mT,
which can produce changes in the product of the singlet of Oy [54]. A schematic view

of the process can be seen in Figure 1.7. In the solid state, the RPM proceeds like this:

e A diamagnetic precursor DA reacts to form a pair of radicals, D and A: this
involves an electron transfer due to a photochemical reaction. There are now two

molecules each of them with a free electron.

e The creation of the two radicals happens at the same time due to the same reaction,
and because of this their electronic spins are correlated. In fact, they form either
singlet or triplet states. For simplicity we are going to work only with an initial

singlet state, but the results are independent of which one is chosen.

e The spin state is then going to evolve under the Hamiltonian containing, at least,
a Zeeman and an hyperfine term. This interconversion is going to depend strongly
on the applied magnetic field magnitude and inclination angle, as well as some

source of anisotropy in the system.

e There is a reaction between singlet and triplet radical pairs, and as a result different
chemical yields (or the same yield at different rates) are produced. The production

rates are going to be labeled as kg and kr.

e Finally, the yield or amount of each of the reaction products is going to vary

according to the applied magnetic field inclination.
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Figure 1.7: Schematic representation of a solid state radical pair mechanism. A pre-
cursor molecule DA, subjected to light influence, reacts to form a radical pair D* A
correlated by the spin; the initial state of the RP is a singlet or triplet state (S or T);
the interconversion between states S or T is performed by the magnetic field, and the
yields of the reaction are produced at rates kg and kg respectively.

1.2.2 A RPM compass

In a solid state RP we may assume that the radicals are immobile, or in other words, that
they do not make significant diffusional motion nor they are able to perform significant
rotations about their axis; these movements cause anisotropic hyperfine and dipolar
interactions to be averaged away making the existence of a compass impossible. The
RPM yields can depend on the relative alignment of the magnetic field with respect to
the sample [52, 53], and from this exists the possibility of the formation of a radical pair
compass. Based on the experimental evidence presented in Section 1.1, it is required
blue-green light in order to initiate the formation of the radical pair by photochemically-
driven electron transfer. We also know that covering the eyes disrupt the possibility
of orientation; this means that this mechanism is located in the eyes of the bird; we

also know that oriented radicals are necessary in order to prevent an averaging of any



anisotropic magnetic field effects. Anisotropy and its relevance will be explained in
greater detail in the next chapter. If the singlet or triplet products of this chemical
reaction are neurotransmitters, it is then easy to imagine transduction of the magnetic
sense to the nervous system. Some studies confirm that a magnetoreceptor based in
the radical pair mechanism could detect the magnetic field of the Earth, even if there
is stochastic noise produced by magnetic or electric fields present in the environment
or physiological temperature variations [55]. There are several molecules that can be
involved in the production of the radical pairs responsible for magnetoreception [18, 38,
46, 56, 57|. The cryptochrome protein has been the most studied as it proved to form
radical pairs in the human eye [58]. A schematic of the process of cryptochromes located

in the retina can be seen in Figure 1.8.

1.3 Cryptochromes

Although it is not yet known which molecule is responsible for creating the radical pair
that may be in charge for the magnetic sense in some birds, there is strong evidence
suggesting the Cryptochromes as a candidate. Cryptochromes are a family of photore-
ceptor proteins that can absorb light in the blue and UV part of the spectrum, and
have been found in many fungi, plants and animals [60]. In plants they regulate the
growth of the hypocotyl in seedlings [61], and in mammals they have a role regulating
the circadian clock [62, 63]. X-ray structures of two cryptochromes CRY-1 and CRY-3
from the mustard Arabidopsis thaliana have been found [64, 65]. Cryptochromes are
flavoproteins, which means that they bind FAD as a catalytic cofactor, and flavins have
a rich photochemistry [66, 67] and are involved in radical reactions. The cryptochrome
photocycle is not clear [56, 57, 68] but it seems that cryptochromes can produce long-
lived spin correlated radical pair intermediates, a necessary prerequisite for a radical
pair-based compass. Cryptochromes have been isolated in the retina of the European
robin [69] and in migratory garden warblers [70]. It was shown that in garden warblers
the expression of retinal cryptochromes increases when birds are orienting [70, 71]. All
these results point to the cryptochrome as having a photo-chemistry sensitive to the
presence of a magnetic field, and that it plays a role in avian navigation, although fur-
ther work is necessary to prove this unequivocally. Even if this protein proves to be the

donor-acceptor molecule creating the radical pair in a photochemical reaction, nothing
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Figure 1.8: From [59] with permission of Biophysical Journal. Oriented radical pairs
could be created photochemically in the retina. The cryptochrome protein is a very
strong candidate to be the responsible for the creation of the RP involve in the magne-
toreception.

is known about the path the message can take in the neural system of the bird, although
some hypothesis have been made [72]. Even with the advances of the last decade, there

is a big amount of work to be done in order to fully understand avian navigation senses.
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Chapter 2

Hamiltonian for the Radical Pair

A radical pair (RP) is created due to a photochemical reaction in a molecular precursor.
This implies that a RP is a molecule with a large number of nuclei and electrons in
their orbits, besides two interacting unpaired electrons. As a result of the large number
of degrees of freedom the dynamics of the unpaired electron spins in each pair of the
radical may be incredibly complex. We can describe the RP by a general wavefunction
U(r;,s;,t) evolving under the influence of a Hamiltonian H (t), with r and s being spatial
and spin (angular momentum) coordinates for the i-th electron. The unpaired electrons
will interact with all the others in the molecule, each of these interactions giving rise
to a correlation. In principle there is going to be a coupling between the spatial and
spin coordinates. There is no easy way to accomplish this task, even with the Born-
Oppenheimer approximation.

In order to simplify this complex problem a very useful approximation is to consider
the spatial and spin coordinates separately [73, 74] converting the full Hamiltonian into
a spin Hamiltonian [75, 76]. With this approach we can restrict ourselves to well known
Hamiltonian terms involved in spin dynamics. Using this Hamiltonian we can explain all
the interactions involved in the singlet-triplet interconversion resulting in the production
of anisotropic yields, that finally lead to the existence of a magnetic sense in the system.
Despite this simplification the complexity of a spin Hamiltonian in a molecular reaction
is still considerable. However all the fundamental features present in a RP reaction can
be explained considering a radical pair formed by one proton and its unpaired electron,
and an unpaired electron acting as the second radical, i.e., a one-proton radical pair. As

will be clear through this Chapter, the effective hamiltonian containing all the important
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Figure 2.1: Schematic view of the one-proton radical pair where the nucleus and its
unpaired electron interact by means of an anisotropic hyperfine term, and the intercon-
version between singlet and triplet states is mediated by the Zeeman influence of the
geomagnetic field over the electronic spins.

features of this system is:

F[:il-A-Sl—kge;;BB-(Sl—kSQ), (2.1)

where §; and S, are the spin operators for electron 1 and 2 respectively, I, is the spin
operator of the nucleus, B is the geomagnetic field and A is the hyperfine tensor. A
general spin Hamiltonian consists of at least Zeeman, dipolar, hyperfine and exchange
interactions (which is studied in Appendix (A)). In this chapter we are going to lay down
the physical considerations taken over a general spin Hamiltonian that allow us to obtain
this effective Hamiltonian for a one-proton RP studying each of these interactions, and
to stablish why the anisotropy in the system is esential to obtain a RP-based compass.
The fundamental Hamiltonian terms involved in the construction of an avian compass

based on a one-proton RP can be seen in Figure 2.1.
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2.1 Spin Hamiltonian

2.1.1 Zeeman interaction

An atom possesses a rotationally symmetric potential, and in such a system the Zeeman

influence of a magnetic field over an electron is [77]
f{Z = MB(E + geg) . B, (22)

where pp is the Bohr magneton, L is the vector operator that describes the electron
orbital angular momentum, g, is the electron g-factor and B is the applied magnetic field.
In a general molecule the rotational symmetry no longer exists (except a rotation by 27,
i.e., the identity) and as a consequence the g-factor becomes a tensor accounting for the
orbit-spin couplings, allowing us to introduced the influence of L in a phenomenological
way [77]. However, for small organic molecules interacting with a very weak magnetic
field (46uT) it is possible to assume that the g-factor is approximately constant and

close to that of a free electron, allowing us to write (2.2) as
H; = g.usS-B = —~.hS - B. (2.3)

In the last expression 7. = —|ge|up/h. The nuclei in the radical pairs also feel the
Zeeman effect produced by the magnetic field, but due to the nuclear gyromagnetic
ratios being smaller than the electronic ones, we can consider these terms negligible;
even in the case of a proton there are two orders of magnitude in difference between the
gyromagnetic ratios, so it is safe to leave outside our considerations the nuclear Zeeman

term. This is not the case with hyperfine interactions.

2.1.2 Hyperfine interaction

The hyperfine interaction couples the unpaired electron spin with the internal magnetic
field from the spins in the nuclei of the radical. There are two different contributions
in this interaction [76]. The first one is the direct dipolar interaction between magnetic
moments of electron and nuclei. In a liquid phase, this interaction is averaged away by
the diffusive and rotational movement of the radicals; in a solid state radical pair, this
term makes the hyperfine interaction anisotropic. In the next section this anisotropy is

going to be discussed in more detail.
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The other contribution to the hyperfine interaction is the Fermi contact interaction.
This term arises from the magnetic interaction between an electron and the nuclear
spin when the electronic wavefunction does not vanish in the nuclear position. This
interaction is isotropic: it does not depend on the orientation of the electronic or nuclear
spins respect to the molecule; in fact, it only depends on the relative orientation between

spins. In this case the hyperfine interaction can be written as

I:IHF = Zaigi ’ ii> (2-4)
i
where a; is the isotropic hyperfine constant between the electronic and nuclear spins, S,

and i, of the i-th radical. The Hamiltonian (2.4) for a one-proton radical pair will read:

I:]HF == G(Slfl + SQIQ + 8313). (25)

Here S = {S, 55,53} and I = {1}, I, I5}.

We have to consider also the Exchange interaction, but its details will be presented
in Appendix (A), as well as the criteria that allow us to avoid its inclusion in the spin
hamiltonian for the RPM.

2.1.3 Dipolar interaction

Owing to the magnetic field experienced by one unpaired electron due to the other
one, we have to consider a dipolar interaction. This interaction is described by the
Hamiltonian [78]

2

o MoOUBY1Ig2 Ta & & & O Ta &4 3 /4 &

HD = W[Sl -Sg——(Sl-r)(Sg-r)} = E[Sl Sg—r—z(Slr)(Sgr)} (26)
Here the g;’s are the electron g-factors for each radical 1 and 2, S; are the spin operators
for the electrons, pg is the vacuum permeability and pp is the Bohr magneton. We have
to note that Eq. (2.6) is only valid for point dipoles separated by r. In molecules this
vector can be approximated by the centers of the single occupied molecular orbits in
each radical. It can be shown [79, 80] that Eq. (2.6) can be written as

HD = %én D - SQ, Dij = 0ij — 3175 (2.7)
r
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where D is the dipolar tensor. For strong fields the dipolar interaction goes to zero
in a radical pair; however for weak fields the dipolar interaction acts to suppress the
magnetic field effects [79]. As in the exchange interaction discussed in Appendix (A),
the influence of Eq. (2.7) is constrained to a small separation between the magnetic
dipoles, i.e., to a small nuclear distance which allows the formation of a bond between
the atoms. For distances where the bond dissapears, where the diatomic molecule can
be considered a radical pair, the strength of both interactions, dipolar and Exchange, is
small. Even more, Efimova et al. proved that for the cryptochrome protein in a radical
pair the exchange and dipolar interactions cancel each other [81]. Based on these results,
in the rest of the thesis we are going to take into consideration only the hyperfine and

Zeeman terms in our spin Hamiltonian to model the behavior of the radical pair.

2.2 Reduced spin Hamiltonian

If a RP reaction is to be sensitive to a magnetic field at all, there must be Zeeman
influence of a magnetic field over the unpaired electron spins. Hence, we consider the

hamiltonian made up with terms (2.3) and (2.5):

H(B) = Hz(B) + Hyr, (2.8)
where the dependence on the magnetic field B has been made explicit; H z(B) is the
Zeeman contribution and Hyp is the hyperfine contribution. The hyperfine hamiltonian

between the nucleus and the electron that form a (single) radical can be written as

A

Hyp=1-4-8, (2.9)

with I the nuclear spin operator, A the hyperfine tensor and S the electronic spin oper-
ator. The dot products are taken in a x,y, 2z coordinate system. We can expand (2.9)

as

The Zeeman effect of the magnetic field over the unpaired electron spin S on one radical

can be written as:

ﬁZ _ gelB

B-S, (2.11)
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where g, is the electron g-factor and up is the Bohr Magneton; we assume that the
electron g-tensor is isotropic and close to that of a free electron; care must be taken
because if the molecules involved in the reaction were greater than the bio-molecules
involved in photochemical reactions, an anisotropic geometric structure should be con-
sidered in the g-factors as well: g-tensors describing magnetic moments and spin-orbit
couplings in molecules with dozens of atoms are necessarily non-diagonal; this implies
that the Zeeman interaction can also be a source of anisotropy in a different kind of
chemical process. Based on the considerations of the previous section, let us neglect all
the other interactions such as exchange and dipolar and write the full radical pair spin

Hamiltonian for our problem as a sum of terms for radicals 1 and 2,
H=H+ H? (2.12)

where the contribution from radical N is

M
iy = (ZLN Ay - SN) + gegBB Sy, (2.13)
=1

in which ¢ labels the ¢-th nucleus in radical N.

To gain some insight in the qualitative problems that come with the Hamiltonian
(2.13) we are going to study the simplest model of a radical pair that still contains the
main features of the process. This is the one-proton radical pair. For that case the

Hamiltonian (2.13) can be reduced:

ﬁ:il.A-SﬁgegBB-(SﬁSQ), (2.14)

where now S; and S, are the spin operators for radical 1 and radical 2 respectively.
Radical 2 is just an electron. In the following we will omit the subindex in the nuclear
spin operator.

The magnetic field is B = Bg(siHHCos @€, + sinfsin ¢é, + cos Qéz); to simplify
calculations, and without loss of generality, we are going to set the angle ¢ = 0; with

this assumption the field now reads:
By = Bo(sin 0é, + cos Héz). (2.15)
Then the explicit form of the hamiltonian (2.14) is

H=1,-A-S; + wo(sin Q(Su + SQI) + cos&(S’lz + S’QZ)>, (2.16)
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where wy = gupBy/h, g is the electronic g-factor, pp is the Bohr magneton and B is
the field amplitude. The direction of the applied magnetic field with respect to the fixed

axis system of our radical pair is then defined in terms of the polar angle 6.

2.2.1 Preferred basis

In order to make calculations we could use two different basis: the most obvious choice
is the basis that set eigenstates for the operator SQ, i.e., the singlet and triplet states
coming from the addition of the spin angular momenta of the two electrons in the
radicals, plus spin up or down for the nucleus. In this case the ket is just |i, j), where
i = {s,to,ty,t_1} and j = {1/2,—1/2}. The action of the operator S, over the general
ket |4, j), given that S=8§,+8S,, is:

Sali ) = m(@)li, ), (2.17)

where m(s) = 0,m(to) = 0,m(t; = 1) and m(t_,) = —1. Furthermore, we can write the

other cartesian components of the spin operator in terms of the ladder operators:

These operators acting on our kets give:

Sili,j) = hy/ (i — m(i)) (i + m(i) + 1)|{i, m(i) + 1}, j) (2.20)
S_li,5) = h/(i + m(i))(i — m(i) + 1)|{i,m(i) — 1}, 5). (2.21)

On the other side the spin operator for the nucleus acting on its eigenstate is:
AL h . .
As before, we can write I, and fy in terms of ladder spin operators, such that

Lyli, j) = h8;1p2li, 1/2), (2.23)
[A*|Z>]> = ha],1/2‘27 _1/2> (224)

In the last equation 6;_;/» and d;,/» are Kronecker deltas. The other basis will be

more useful for us in the determination of the effect of anisotropy in the energy levels

19



of our system. This basis will be just an eigenbasis for the operators of each of the
two electronic spins and the nucleus: S., Sh., 52, 52, I. and I2. This basis is just
[£1/2)g, ® |£1/2) ¢, ®[£1/2); = |[£1/2,41/2,£1/2). In this basis the ladder operators

are easy to treat:
gl-l— |i7j7 k> = héi,—l/? |1/27]7 k> (225)
Sl— |i7j7 k> = h(si,l/Z |_1/27]7 k> . (226)

Having set the spin Hamiltonian, let us turn our attention to the function of anisotropy

in the model.

2.3 Anisotropy in the RP model

As early as 1978 Shulten showed that the avian ability to sense the magnetic field,
based on a RPM, should come from anisotropic yields of a chemical reaction happening
in the bird itself [45], i.e., the chemical products should depend on a preferred spatial
direction; to form such a compass the radical pair in the reaction should have anisotropic
interactions. From the possibilities explored in the previous section we know that this
anisotropy may come from different sources, such as hyperfine (in the hyperfine tensor),
exchange, dipolar (in the dipolar tensor), or electron-Zeeman interactions (in the g-
factor). Shulten explored these sources of anisotropy and proposed that the most likely
was an anisotropic hyperfine interaction [45, 46].This idea has been revived recently [18],
and several experiments have been conducted since then using radio frequency magnetic
fields [36, 37] that support the idea of a solid state RPM compass.

Until today only two studies [19, 20] advanced the hypothesis of a solid state radical
pair mechanism compass (i.e., radicals that due to their confinement can have a well
defined average orientation compared to the magnetic field of the Earth) to test the-
oretically; if in fact the RPM was responsible for the avian navigation, the remaining
question is about the identity of the biochemical substance, although the cryptochrome
is a good candidate as was explained in (1.3).

In this section we are going to address the question about the suitability of the
hyperfine interaction as responsible for the anisotropy necessary in the system in order
to have a compass, using a simple model: a RP formed by a nucleus and its unpaired
electron, and a free unpaired electron acting as the other radical in the pair, i.e., a

one-proton radical pair.
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2.3.1 Anisotropic hyperfine interaction

The hyperfine interaction between an electron and a magnetic nucleus is described, in
general, by an hyperfine tensor (HFT) A which can be represented as a real, symmetric,
3r3 matrix:
Qry  Qry Qg
A= lay ay ay . (2.27)

Qzy  Qzy Gy

yx

In reactions occurring in liquid phase radical pairs, rapid rotations and diffusion of
the radicals remove any anisotropic parts of the hyperfine interaction, leaving only an
isotropic hyperfine coupling: in the lifespan of the RP, random orientations due to molec-
ular movement will not produced a net preferred direction. These isotropic couplings
can be characterized using a constant a, as in the hyperfine Hamiltonian defined in (2.4).

In this case the hyperfine tensor can be written as

0 0

A= 0| =al, (2.28)
a

o O 2

a
0
where [ is the 3x3 identity matrix. As was stated in section 2.1.2, hyperfine interactions
can come from two sources. The anisotropic part comes from the coupling between the
electron and nuclear magnetic moments if both are treated as point dipoles. Using the
Born-Oppenheimer approximation, which allows us to break the wavefunction of the
molecule in electronic and nuclear parts, we can state that the spatial distribution of
the unpaired electron around the fixed nuclei depends on the molecular orbital that the
electron is occupying. There are some computational packages that allow a relatively
simple calculation of molecular orbits, and in turn allow to calculate the anisotropic part
of the hyperfine tensor. The isotropic contribution comes from the breakdown of the
point dipole approximation, and as we said before it is known as the Fermi contact inter-
action [76]. This interaction is valid when the electronic wavefunction does not vanish
in the nuclear position; its strength is determined by the value of the electron’s wave-
function very close to the nucleus. In this region the Coulomb interaction between the
nuclear and electron charges is strong, and this implies that electron correlation effects
are considerable. As a consequence the isotropic part of the hyperfine interaction is hard
to calculate. Before we address the study of the energy levels of the spin Hamiltonian,

let us define some quantities to make more readable the eigenvalue expressions.

21



2.3.2 Axiality and rhombicity of the hyperfine tensor

In order to quantify the degree of asymmetry or anisotropy in a second-rank tensor in

euclidean 3 — d space [82] without specifying its orientation, we can use three useful

expressions:
1
a = g(al + as + (Zg), (229)

which is the isotropic part of the hyperfine interaction, and a; is the i-th eigenvalue of

the hyperfine tensor A. We can order the eigenvalues such that
la; — a| <as — a|] < lag — al. (2.30)

Now we can define the anisotropic (asymmetric) part of the hyperfine interaction using

two quantities: the axiality parameter

o= %(Gg — a) = %(2@3 —ay — 0,2), (2.31)

and the rhombicity parameter

£= (a1 —ay). (2.32)

| —

2.3.3 Zero-field energy levels

Taking B = 0, the hyperfine tensor with entries in its diagonal A = diag(as, as, as) and
projecting the Hamiltonian (2.16) with the basis kets defined in (2.25), we get a 8x8

energy matrix for the Hilbert space spanned by the three 2x2 spin spaces:

i 140, 1—o.
<H>:E: J;U @ h+ 20 ® h,

with o, the usual Pauli operator, and h:

& 0 0 wg=
4 4
_as ai1+taz
h_| 0 i t 0
0 ai1+taz _as 0
4 4
ai1—az as
4 0 0 4

The a; are the eigenvalues of the hyperfine tensor A. The first case of interest is the
isotropic hyperfine tensor A = al, with [ the 323 identity matrix. In this case the
eigenvalues of the matrix are —3a3/4 = —3a/4 with a 2-fold degeneracy and a3/4 = a/4
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Figure 2.2: Zero-field energy levels in a one-proton radical pair for three different values
of the hyperfine tensor: isotropic, axial and rhombic. Hyperfine anisotropy introduces
energy level splittings not present in the isotropic case.

with a 6-fold degeneracy. If the axiality (2.31) becomes different from zero with the
rhombicity (2.32) equal to zero, the 6-fold degenerate level splits into a 2-fold and a
4-fold degenerate levels: the eigenvalues are going to be 1/4(—2ay — a3) = —3a/4 with a
2-fold degeneracy, 1/4(2as —a3) = a/4—o with a 2-fold degeneracy and a3/4 = a/4+0/2
with a 4-fold degeneracy. If we increase the anisotropy, i.e., fully rhombic, there are 4

energy levels 2-fold degenerated with eigenvalues:

1 3a
—Z(CL1+U/2+CL3): 1

i(al—l—ag—ag):%—a

i(al—ag—%ag)—%—l—%—l—g
i(—al—i—ag—%ag):%—l—%—g.
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For a rhombic anisotropy the only degeneracy, with the magnetic field turned off, comes

from the unpaired electron spin of the radical which does not contain a nuclei.

2.3.4 Energy levels considering Zeeman interaction

The consideration of a magnetic field different from zero allows the splitting of the
remaining 2-fold degeneracies. To get the energy matrix we proceed as before, applying
our spin Hamiltonian to the states (2.25). Setting ¢ = 0, the resulting magnetic field is
given by B = Bo{ sinf, 0, cos 0} and the energy matrix is:

a3z+4w: o Wz,0 0 ai1—az Wz,0 0 0 0
4 2 4 2
Wy < Wy
i R U I I
az—4w w. Wy
0 a1Za2 _as - 2,0 120 0 0 ;;,0 0
a1—ao Wz ,0 as Wz, 0
g | == 0 > ZEN 0 0 .
z 0 0 0 @ 0 0 e
0 Wz, 0 O 0 Wz, 0 . a3+4wz,0 ai1+as 0
2 Wz, 0 2 a +i11 4(1 Wzx,0
0 0 5 0 0 airaz 1 2 _ Zs Z
Wz, 0 al1—as Wz, 0 a3 —aWz 0
0 0 0 - aTe 0 > -

Here wy = gupBy/h, w. o = wpcosf and w, o = wpsinb.

Figure 2.3 shows the behavior of the energy levels of the one-proton radical pair
with an anisotropic (axial) hyperfine tensor; with higher values of the magnetic field
the Zeeman interaction dominates the dynamics and the anisotropy of the hyperfine
interaction makes little difference to the energy levels. Both the field strength and the
energies are plotted in multiples of the isotropic part of the hyperfine interaction a as
was defined in Equation (2.29).

In radical pair reactions occurring in a liquid phase solution, the dynamics of the
radical pair yields is dictated by the low field effect (LFE) [83-85]. Knowing that the
Earth’s magnetic field is about 50uT’, we expect that the answer of any radical pair to
it would be as a result of the LFE. It is known, however, that this effect arises due to
the high degeneracy of the energy levels in a RP with isotropic hyperfine coupling [84].
The weak magnetic field removes this degeneracies, and hence, changes the eigenvalues
of the radical pair Hamiltonian in a significant way. This implies that a weak magnetic
field can have a significant effect in the singlet (or triplet) yields. However, as shown
in Figure 2.2, radical pairs with axial or rhombic hyperfine tensors do not have highly

degenerate states. Even if the high degeneracy present in the zero-field isotropic case is
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Figure 2.3: Energy levels in a one-proton radical pair, with the isotropic hyperfine
coupling constant given by a; the rhombicity is & = 0. The green curve corresponds
to an axiality o = 0, i.e., an isotropic hyperfine tensor. The The red curve shows an
axiality of 0 = a/10 and an angle 6 = 7/2. The blue curve shows an axiality of o = a/10
and an angle 6 = 0.

lost, in Figure 2.4 we can see that radical pairs with anisotropic hyperfine interactions
have several crossings of the energy levels at weak fields. In Figure 2.4 the crossings
are marked with red arrows. We can associate the energy crossings with fast changes in
the eigenstates of the radical pair, and consequently, in the singlet yield. There are two
things to note: the first one is that the crossings occur at fields a > By, like the field of
the Earth. The second thing to note is that the fields at which the crossings occur depend
highly on their orientation, i.e., for a static field with fixed amplitude, there are going
to be resonant effects on the singlet yield with some orientations, but not with others.
In Figure 2.1 we can see a graphic of our model summarizing all the details described in
previous sections: a one-proton radical pair where the nucleus and its unpaired electron
interact by means of an anisotropic hyperfine term, and the interconversion between
singlet and triplet states, which are total spin Angular momentum states, mediated by

the Zeeman effect over the electronic spins.
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Figure 2.4: Magnified view of the energy crossings with low fields, with an axiality
parameter of ¢ = a/10. The blue curve corresponds to an angle inclination of = 0,
and the orange curve corresponds to an angle inclination of 6 = /2.

2.4 Radio Frequency field

Recent works have revealed that weak Radio Frequency fields (RF) of the order of
nT are capable of disrupting the magnetic compass sense of European robins under
certain circumstances [36, 37]. Long-lived radical pairs that can sustain a photoinduced
anisotropic radical yield creation, show Zeeman resonance even in the geomagnetic field
for which By ~ 50uT, setting the most appropriate frequency for the disruption.

This Zeeman resonance occurs at a radio frequency of:
Uy f = |7e| Bo = 28.054ByMHz/mT,

where v, = —|ge|pup/h. For an amplitude of By = 47uT the above frequency gives
vyp = 1.317 MHz. Ritz and coworkers [36, 37| showed that the choice of frequency is
independent of the hyperfine structure and hence of the identity of the radical pair.

In order to describe the RF field, one can define its orientation using spherical polar
coordinates; we already have (9, <b) for the static By Earth’s magnetic field (2.15), so
we choose (gp, n) for the RF field. This approach does not provide a simple way to fix

the relative orientation of RF and Earth’s magnetic fields, which is vital to interpret the
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Figure 2.5: Illustration of the position in the 3D cartesian space of the magnetic field of
the Earth By and the RF field BrF'; for simplicity they are confined in the x — z plane.

experiments. Given that we are not concerned with experimental set-ups, this approach
will suffice. To simplify the expressions let us set one of the polar angles defining the
RF field orientation as zero. In Figure 2.5 we can see a schematic representation of both
fields in the 3D plane with ¢ = 0 for By and n = 0 for the RF field, which can be written

as:

B, = B, cosw,t(sinpcosné, + sinpsinné, + cos pé,) (2.33)
= B, s cos wrft( sin é, + cos goéz) )

In this equation w,; = 27,5 and B, s is going to be in the order of nT, i.e., three orders

of magnitude less than the average amplitude of the geomagnetic field.
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Chapter 3

Density Matrix formalism

To give to our model a more realistic context, we need to consider the effect of the envi-
ronment on the spin Hamiltonian. Although there are some ways to do this effectively,
the more general description can be get using the density operator. In this chapter we
are going to describe general aspects of the theory involving the density operator, as
well as the fundamentals of quantum correlations measured using it. With the density
matrix formalism and the hamiltonian described in the last Chapter, we can obtain a

complete picture of the physics involved in the RP-based compass.

3.1 Basics

In open quantum systems, the use of the density matrix or density operator is a conve-
nient method for describing systems whose state is not completely known. It is defined
as [86-88]:

p="> P |tm) (Uml, (3.1)

where [1),,) are the accessible states of the quantum system, and p,, denotes the prob-
ability for the quantum state |¢,,); as any probability, it fulfills ) p,, = 1. Necessary
conditions for the density matrix are that it has a trace equal to one and it is a self-

adjoint, semi-positive operator [86]. The unity of the trace is proved by
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giving that the trace of an operator A defined in a basis {|1),)} is define as Tr(A) =
> (Wn] A [4,). The self-adjoint condition, p' = p, comes directly from the definition
(3.1).

To prove the semi-positivity property, let us consider the mean value with respect to

an arbitrary state |¢):

(0l plo) = me (@] Ym) (| @) = me|¢|wm>|2>o (3.3)

The density operator can also describe quantum systems whose state |1) is well known
[86]. In this case > p, = p1 = 1, and the matrix reduces to p = |¢) (¢|. This system is
called pure; the equation (3.1) defines in general a mized ensemble; these mixed states
are a weighted sum over pure states, i.e., an statistical ensemble of pure states. In order
to distinguish between these two cases, we use the square of the density matrix: a pure
state has an idempotent density operator, p? = (|7,D> (V| ) ( |1)) <¢|) = p and together
with equation (3.2) we arrive at Tr(p?) = 1. For a mixed state, it holds [8§]

Tr(p*) = pmbn (Wnl (180) Wnl ¥m) (] ) [¥n) =D pmpal (Gl Ym) >, (3.4)

m,n m,n

where we used the fact that the trace does not depend on the basis representation. Using
then that [(¢| ) <1if n#m, and Y, pn, =1, it follows that

= anme|<¢n| ¢m>|2l <L (3.5)

~~
<1

This means that Tr(p?) < 1, with equality only for a pure state.
Using the density operator we can also calculate the average of quantum mechanical

operators A as the average over the expectation values of the accessible states:

(A) = Tr(pd) = me (] ) (Gl A Y1)

= me <¢m’ A W)m>7
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where 9, ,,, is the Kronecker delta. Inserting unity I = )" _|a) (a| for a complete basis

{|a)} in the last equation yields:

(A) =3 o (Wl TAT ) = 3 o (o] @) (al A8} (0] )

m,a,b

= 3" P (0] ) (il @) (al A b)

m,a,b

= Z (b| pA |b = TT’(pA).
b
With simple rearrangement of the coefficients we obtain:

(A) = > pun al A1) (6] $in) (Wom] a) (3.6)

m,a,b

and with this we prove that:
Tr (p/l) = Tr(Ap). (3.7)
Within an orthonormal basis {|¢;)}, the matrix elements of p read [89]:

(@ 0103) = 300 (P o) (Wil ) 105) = 3 (0 ) (] ). (38)

For the diagonal elements i = j, the projections onto the basis states can be simplified
to get P |(Ps| Wm)|?; this implies that the diagonal elements of a density matrix describe
the probability of finding the system in the state |¢;) if the system is on the state [iy,).
Since this state is in general not known, the elements (¢;| p |¢;) = p;; are summed over
all m’s; as a consequence these elements are an averaged probability of finding the system
in the state |¢;). We can also say that the diagonal element p;; is the population of the
state ¢;. The off-diagonal element p; ; is the average of the cross terms; this elements
express interference effects between the states ¢; and ¢;; the interference effects appear
if the state 1, is a superposition of these states; off-diagonal elements are known as
coherences of the density matrix. It is important to note that the diagonal elements
are sums of real positive numbers, but the off-diagonal elements are sums of complex

numbers.
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Another important question we can address is about the possibility to learn about
the state of one subsystem of a multipartite system. To answer it we refer to the
reduced density operator [86]. Suppose that we have two systems A and B which can
be described by a density matrix psap for the bipartite system. The reduced density
operator of subsystem A is defined as the trace over the state space of the subsystem B
[90]:

Np

pa=Tru(pas) =D (La @ (Wyl)pan(la ® [vy) ), (3.9)
j=1
where the states 1); are an orthonormal basis in the Hilbert space of subsystem B, Hp,
with dimension Ng. From a dynamical point of view, in general we cannot write down
pap(t) = pa(t) ® pp(t); this is known as the Born Approximation, and it implies that
both subsystems have a sufficiently different time scale so that the evolution of one of
them is not going to affect the evolution of the other. In other words, there are no
correlations between A and B.
Let us consider two simple examples. First, suppose that the quantum system is in
a product state of its subsystems, i.e pap = (4 ® (B, which in turn implies that A and
B are uncorrelated. To get the reduced density matrix of A we take the trace over B:

Np

pa = Z (Ta @ (¥5]) (¢4 @ ) (14 @ ) ) (3.10)

(L @ (%] ) (Ca @ CalYy) )

Jj=1

Np
=Ca® Y (W] Cslvy) = Ca,
j=1
Tr(Cp)=1

where we have used condition (3.2). Analogously, the trace over A is pg = (g. Then,
the reduced density matrix of a subsystem A in pap, without correlations, is ps. For a

more conclusive example, let us examine the density matrix

)= <|0AoB>J§I1AlB>) (<0AOB|J§<1A13|>

1
= 5( 0405) (0405] —10405) (1alp| — [1alp) (0405] + [14lp) (1alp|).

(3.11)
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Here |0405) = |0) , ® |0) 5, where |0) , belongs to subsystem A, and |0) 5 to subsystem
B; 10) , and |0) 5 define orthonormal basis. According to definition (3.10), the partial
trace over B is calculated as

1
oA = §TTB( 0405) (0405] — [0408) (1alp| — [1alp) (0405] + [141p) (1als]|)

1

= 5(( (05| 05) (0] 08) + (15| 0) (05| 15) ) [04) (0.4
((05] 05) (1] 05) + (15| 05) (15| 15) ) [0.4) (1]
— (08| 15) (05| 05) + (15| 15) (05| 15) ) [14) (0]
((0B] 1) (1] 0p) + (15| 15) (15| 15) ) [14) <1A!)
= 5(104) 0a] + 14} (1a]).

Unlike in the previous example, here it is not possible to write (3.11) as a direct product
of the density operators of the subsystems, i.e., we cannot write pap = |14) ®@|p) (Ya|®
(1 g|. Tt is also possible to define operators which may act on only one of the subsystems;
let us suppose there is an operator that acts on the states of A, S4. The operator then can
be written as S AB = S 4 ®1p [87]. Using the partial trace we can obtain its expectation

value:
<SAB> =TraTrp (pABSAB> = TTA<T7’B(pAB)SA)> = TTA(pASA) = <§A>. (3.12)

Having the fundamental theoretic background to understand the properties of the density

operators, let us study the evolution of a system described by p(t).

3.2 Dynamics

3.2.1 Closed quantum systems

A closed quantum system is decoupled from its environment, i.e. there are not dissipation
or noise effects due to a reservoir. A closed system can be driven by external forces,
and in that case the Hamiltonian H is time-dependent [87]. Otherwise, for H # H(t),
the system’s energy is going to remain a constant of motion. The Schrodinger equation
ihd (1)) = H(t)|4(t)), governs the time evolution of the state [1)(t)); we can express

the solution of this equation in terms of unitary time evolution operators U (t,to), that
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take the initial state [1)(f)) in a time ¢y to a state |¢(¢)) in a time ¢:

(1)) = U(t, to) [(to)) -

Inserting this into the Schrodinger equation, we obtain an expression for the time-

evolution operator with initial condition U (o, t,) = 1,

d
ih=U . to) = HOU (L. to) (3.13)

Its solution can be written as a time-ordered exponential

A~

Ut to) = Te:pp[ - % /t t H(s)ds}, (3.14)

where T is the time ordering operator.If the system is in a mixture of states we must

use the density operator, and its evolution can be written as

P) =D P [V (D) ()] =D pmU (E, 10) [ (to)) (m (o) UT (2, 1)
= U(t, to)poU (¢, to).

Therefore, the derivative of p(t) yields for H # H(t):

0 (Ut to)poU(t,t0)) = (AU (£, 1)) paU (¢, t0) + Ut ta)po (O:U (£, 1)) (3.15)

1 ~ ]
=——Hp(t)+ -p(t) H
FHp() + p(0),

and we obtain:

l

aup(t) = — [ H.p(t)]. (3.16)

This equation is called the von-Neumann equation, and it is also valid for a time-
dependent Hamiltonian. If the density matrix commutes with the Hamiltonian, p does
not show any explicit time-dependence and the system is stationary. Although this
seems as the dynamic of operators in the Heisenberg picture, it is not the case. The

former is defined as

dAp(t) = 0, Au(t) — % [AH, H] (3.17)
where
Ay (t) = enft Ag(t)e w1, (3.18)
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The time dependence of As(t) can only be explicit [91]. On the other hand, since states
are time-independent in the Heisenberg picture, the corresponding density matrix has
to be time-independent too, i.e. d;pg = O;pg = 0. In the Schrodinger picture, the total
time derivative of pg vanishes, i.e. d;ps(t) = 0 and the density-matrix is a constant of

motion (as in the case of statistical mechanics).

3.2.2 Open quantum systems

Now let us turn our attention to the situation in which a system S is coupled to an
environment E [87]. The system S is called open if there is an exchange of energy with
the environment E. If the environment has an infinite number of degrees of freedom, it is
called reservoir or heat bath (a reservoir in a thermal equilibrium state). The combined
system S + F is closed, and as such it follows a unitary time-evolution. Due to the
correlations present in the dynamics between S and E, we can no longer say that any
part of the complete system S+ FE is closed anymore. In order to learn something about
the subsystem of interest S, we have to eliminate the environmental degrees of freedom.
The Hilbert space of the total system S + E is the tensor product of both subsystems,
and we may write the total Hamiltonian as H(t) = Hg ® Iy + Ig ® Hp + H;(t) where
Hg denotes the system’s Hamiltonian, Hp the free Hamiltonian of the environment and
H 7(t) the interaction between them. To get expectation values of observables in S we
have to perform a partial trace over the environment eigenstates; as a result the time
evolution of the system’s density matrix is governed by a reduced von-Neumann-equation
(3.16):

Drp(t) = —%TTE<[1£I, o(0)]). (3.19)

In general the right-hand side of this equation does not factorize due to the correlations
between system and environment, and therefore pg(t) is not just a direct tensor product
of the density matrices of S and E. Depending on the nature of the problem, one
derives from this equation an approximate equation called master equation [87, 88, 92].
To get an useful expression we need the general formulation of the time dependence
of the density matrix: the Lindblad equation. To make its structure plausible, let us
start by discussing the concept of quantum operations [86]. In this context, quantum
operations map a density operator to other density operator. Suppose that system and

environment are initially decoupled, i.e., psg(to) = ps(to) ® pe(tp). This is an important
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assumption and evidently not true in all situations. However we can prepare a system
in a certain state that allows us to cut off all correlations between the system and
the environment. We can also prepare the environment, such that at ¢ = ¢y it is in
the state pg(to) = |€o) (o] where |ex) is an orthonormal basis for a finite-dimensional
environmental state space. The needed quantum operation can be get tracing away the

environmental degrees of freedom on the system S + E to obtain pg in a time ¢:

E(p) = Tru(p(t)) (3-20)
= TT‘E(U{PS(to) ® PE}ﬁT)
= (Is @ (] ) U (ps(to) @ leo) (el )UT (Is @ |ex))

=3 (ts@ fal) (ns)0 0 1o (o] ) 15 @ )

= Z (Uﬂs to)U ) (€x| U’€o> 60|UT ) = ZEkps t)E}.
i

Ek ET

This is the operator-sum or Kraus representation. The FEj, = (e;| U |eo) are the Kraus
operators, which act on the state space of the principal system. Taking the trace of the

operation &(p)
Trs(E(p)) = Trs ( 3y Ekpg(t)E;) = Trg ( 3 EkE,ipS(t)) ~1, (3.21)
k k
we obtain that

> BBl =1s. (3.22)
k

From this point we can motivate the time evolution of the density matrix of the system
S as a quantum operation. To do that we have to specify the timescale 6t on which
we are considering changes in p(t) [87]. First and most important, ¢ should be greater
than the time the reservoir takes to forget information acquired from the system; in
other words, the timescale of the system must be high enough compared to that of the
environment to prevent correlations appearing in the environment due to its interaction
with the system. This information dissipated by the system S in the environment may
even flow back, and hence we want to look at a timescale on which such a feedback

is not possible. This is known as the Markov approximation. On the other hand, t
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should be small enough so that all significant changes in the system S are incorporated
into the dynamics: compared to the system the environment is not changing; this is
known as the Born approximation, which states that for all time ¢ the density matrix of
S+ Eis p(t) = ps(t) @ pg. In this way the evolution of p is going only to depend on
the present density matrix, and we can look for a quantum operation (equation (3.20)),

which changes the initial state to order dt:
ps(0t +to) = E(po) = Y _ ErpoEf = po + O(5t). (3.23)
k

Note that due to the Born approximation this is true for any time ¢ as initial state.
This result can be obtained if one of the Kraus operators is given by Ey = Ig + O(6t),
and the others are proportional to 6¢t'/2. Now let us assume that Ej characterizes an
infinitesimal change in time due to an effective Hamiltonian er ff = H g + ihKK where
Hg is the Hamiltonian of the system and K denotes the coupling to the environment.
The Kraus operators can be written as:

By =1Ts = Hepydt = Ts + (K - %HS> 5t (3.24)

By =V6th,, k>1 (3.25)

where L, are the Lindblad operators. Also, from the normalization condition of the
Kraus operators equation (3.22), and taking into account the hermitian nature of both
Hg and K, ie., Hs = Hi, K = K, we obtain:

_ > iy > i f 5 oy 2
Iy = (]15 + Kot ﬁH55t> (]15 + K6t ﬁH55t> + zk: LeLlst + 0(52)
— I+ Kot + %ﬁ;at Kot — %ﬁgét + 3 LiList + 0(t?)
k
= Ig + 2K6t + Y _ Ly Lot + O(58%).
k

Consequently

o 1 A A
_ T
K= Ek LiLi. (3.26)
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Inserting Equations (3.24) and (3.25) into equation (3.23) yields
ps (0t +to) = (]Is + (K - %HS> (5t) o (]Lg + (K + %Hs) (5t>

+ 3 LipoLiot + O(5t)
k

- (po + K podt — %Hspoat) (115 + Kot + %ﬁ55t>

+ 3 LipoLiot + O(5t)
k
— po — %[HS po} 5t + {K ,00}575 + 3 Lipolfst + O@t2),
k

and therefore, ignoring terms of order O(dt*) and using Equation (3.26), we arrive at

the following differential equation for any time ¢:

?

Oups(t) = — | Hs. ps(t)] + Z (Leps(Zl — 2 pstt). LLLs}). (3.27)

This result is known as the Lindblad equation. As a final step we need to specify the
effective Hamiltonian:
.. = th PP
efy =Hs = ZLkLk~ (3.28)
k

Building the Lindblad equation we have made strong approximations, and in order to
make clear our points let us summarized them. We assumed that system and environ-
ment are initially decoupled and that the evolution of the reduced density matrix is
Markovian. On the appropriate timescale, we characterized the transition from pg(to)
to ps(dt + to) using a quantum operation of first order in dt. The change in time is
formally represented by arbitrarily Kraus operators. This operators are transition ele-
ments of the initial environmental state to a final state, over which we carried out the
trace. The operator FE, is an effective time evolution, which adds a slight perturbation
to the initial state. With all this the Lindblad equation is represented by a commutator
between the density matrix and the Hamiltonian plus a term containing the influence
of the environmental operators. It can be seen that neglecting the reservoir degrees of

freedom in (3.27), we obtain a von-Neumann-like equation:

A A

0us(t) = 1 (Fsgos(t) — ps(t)Blyy ). (3.20)
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In the case where there are no couplings to the environment, i.e.,lﬁ[eff = I:[S, equation
(3.27) becomes equation (3.16). For the closed system the time evolution of the density

operator is
ps(t) = Uepg(t,t0)poUly (1, to) = e~ Ters(tmto)/h iy t=to)/m (3.30)

There is however a fundamental difference with the previous results; here we cannot
expect neither the effective Hamiltonian to be hermitian nor the evolution to be unitary
given that our approach actually consists in ignoring information about the overall sys-
tem, specifically the one belonging to the environment. The effective evolution in the
Lindblad equation characterizes an evolution according to H, 7 [87]. Let us suppose for
example that the system is in a pure state with a density matrix p(t) = [¥(t)) (¢ (¢)].
From equation (3.29) we see that [¢(¢ + 6t)) = (1 —+ effét) |1(t)). We can then write

an operator containing this evolution:
L=> LipLL =Y (Lilw®)) (WEILL) = () (dn(t)] . (3.31)
k k

These are the projections -or jumps- from the state |14 (t)) to one of the possible | (t))
states. Together both contributions preserve the unity of the trace.

The Lindblad equation (3.27) may also be written formally as [87]:

dps(t) = L()ps(), (3.32)

where L£(t) contains the right side of (3.27). Its solution can be written as the action of

a time evolution operator:

ps(t) = Texp[/tt L(s)ds} Po- (3.33)

With the theory developed so far we can solve the dynamics of our spin Hamiltonian us-
ing the Lindblad equation in order to take into account the influence of the environment
over the radical pairs. Before we address our RP Hamiltonian with the tools presented
here, it is necessary to talk about quantum correlations and to describe tools to measure
it.
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3.3 Entanglement

The generation of a radical pair due to a photochemical reaction sets the initial state of
the electronic spins of the radicals in a singlet (or triplet) state, and this state is a max-
imal entangled one. Some discussions have been given recently about the importance of
entanglement in the magneto-perception process [93, 94|, but this still remains obscure.
In this section we are going to define entanglement and a way to measure it.

A pure state is separable if [ap) = |14) ® [¢p) where |14) and |¢p) are the states of
the quantum subsystems A and B [95, 96]. This state only can show classical correlation
between its subsystems, which means that the state |t 4p) contains the same information
that there is in the subsystem’s states |1)4) and |¢p). As discussed in section 3.1, tracing
over one of the subsystems yields the density-matrix of the other subsystem and it is
therefore clear that they do not have influence on each other.

Let us define the state |t 4p) as:

[Wap) = al0408) +b|041p) +¢[1408) + d[1alp). (3.34)

In order to (3.34) be a separable state, we require that ad — bc = 0. If we cannot write
|vap) as a tensor product of its subsystems, then it is an entangled state. An example

of such a state is:

! (|HaHp) + |VaVp) ) = i( |HH) +|VVY)). (3.35)

M:E 7%

The density matrix of this system can be written as:

(3.36)

p=s(IHH)+ |VV)) ((HH|+ (VV]) = 5

DN | =
_ O O =
o O OO
o O OO
_— o O =

As discussed in subsection 3.1, the off-diagonal elements py; = (VV|p|HH) and p14 =
(HH|p|VV), ie., the coherences, characterize the quantum correlation between the
states |[HH) and |V'V).

In general, the density matrix of an entangled, mixed state cannot be written as

p=> pi(pai®pp), (3.37)
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To measure the degree of Entanglement there are few theoretic tools, depending on the
dimensions of the subsystems. We can measure entanglement if the Hilbert space of
the total system is H = H% @ H% or H = H% ® H3, i.e., when we have two qubits or
one qubit and a qutrit interacting. In the last case it is possible to use the negativity
[97, 98]; however we are going to work with the two spin space defined by the electron in
each radical. In this case we can use the Concurrence, which is a quantitative measure
for entanglement [99]. To obtain it, one starts by computing the spin-flip matrix of the

complex conjugated density matrix p:

p= (Uy ® Uy)p* (Uy ® Uy)7 (Uy = {{0,}, {z, O}}) (3.38)

With this is possible to determine the non-hermitian matrix pp; using the square roots

of its eigenvalues \; we can then calculate the Concurrence, which is defined as:
C(p) = max{(), A=A — Ay — )\4}. (3.39)

The square roots of this eigenvalues are ordered as (A; > Ay > A3 > A\y). For the pure
state (3.34) the Concurrence is given by C(p) = 2|ad — be|. Maximal entanglement is
reached for ¢ = d = 1/\/5,6 =c=0o0rb=c= 1/\/§,a = d = 0. Either choose
of parameters yields the maximum value C'(p) = 1, i.e., a Bell state. On the other
hand, a disentangled state, like a = b = ¢ = d = 1/2, has C(p) = 0. In conclusion,
the Concurrence lies in between 0 and 1 with maximal entanglement for C'(p) = 1. To

illustrate the procedure consider the density matrix [90]

(3.40)

ool —
N OO W
o O = O
O = O O
w O O
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First, we compute the spin-flip matrix p = (ay ® ay) P (ay ® ay)

0=

0 00 —1 0 0 —1
o o1 0of.]o0 1 0
“lo 10 of”]o0 0 0

100 0 100 0

300 12
~1{o10 o0
—3loo 1 0

200 3

The eigenvalues of this matrix are {5/8,1/8,1/8,1/8}, and the Concurrence therefore
reads

1
C(p) = max{O, 5/8—1/8—1/8 — 1/8} =< (3.41)
There is another interesting quantity that can allow us to say something about the
quantum correlations in our system beyond entanglement, and it is known as the Quan-

tum discord.

3.3.1 Quantum discord

Any measurement made in quantum mechanics perturbs the systems. In general the
state of a system is not known, and the result of any measurement only says to us the
collapsed state product of the interaction of the system and our apparatus. This is not
true in a classical system, when the measure of the canonical variables does not perturb
the system and defines without uncertainty its state. The idea of Quantum discord [100]
is to take advantage of the disturbance made by measurements as a test to the presence
of quantum correlations in a bipartite two-level quantum system living in the Hilbert
space H = H% ® H%. The mutual information function is used to monitor the effects of

measurement in the system, and is defined as:
Isp = Sas+ Sg— Sag, (342)

S is the von Neumann entropy of system z such that S(p) = —Tr(p log, p). This
function measures the amount of information shared between the subsystems A and B.

It can be seen as the amount of correlation between them, either classical or quantum.
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The next step is to perform a measurement on one of the subsystems, and looking
the effect this measurement has on the mutual information it is possible to tell if there
are quantum correlations in the total system AB. To achieve this it is sufficient to
compare both functions, after and before the measurement. This is the most difficult
part of the process, since the measurement that can be made is no unique and it is
necessary to make an optimization over all possible measurements. We can define all
the set of measurements (or projectors) acting on one of the subsystems, say B, as I1Z;

the measurement-induced mutual information takes the form:
T = max [S(pa) - > paS(e)].
where p, = Tr {112 p 45112} is the probability of obtaining the result z from the measure
and p% = Trp{lIZp,pI12} /p, is the density matrix of the system after the measurement
is applied. The maximum is taken over the positive measurements {II?} made over the
system B.
The final form of the Quantum discord is then:

045 = lap — J43- (3.43)

Computation of ¢4 is in general a non-trivial effort due to the big amount of possible
measurements that can be performed; only some systems have an analytic solution (see
for example [101, 102]). In our radical pair system an analytic solution is no possible,
and only numeric results can be obtained.

With the description of the density matrix formalism and the two measures of quan-
tum correlations, we are ready to face the spin Hamiltonian and discuss the physics

involved in the radical pair mechanism.
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Chapter 4

Results

4.1 Basic features of the model

To get a better understanding of the RP system we are going to analyze the implications
of its anisotropy by studying a simplified case, i.e., the free evolution of the master
equation; this means that we need to consider only the Liouville von-Neumann equation
(3.16). To get the full reaction (the end the singlet-triplet interconversion process), we
need the influence of the environment in the form of a measurement process. These two
features are going to be presented in this section. We are going to use three different
designations for spins up and down to ease the reading equations: |1/2) = |[1) = |a) for
spin up and |—1/2) = |[{) = |B) for spin down. We are going to use angular frequency
units used in nuclear magnetic resonance problems and express the units of the hyperfine

tensor in mT for brevity.

4.1.1 Closed problem

The spin hamiltonian for a one-proton radical pair (2.14), with ¢ = 0 in the magnetic
field is:

ﬁ = il <A Sl + wWo <SZTL9 (gu + gzx) + 0059(5’12 + g22)> . (41)
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Using this Hamiltonian we can write down the Liouville-von Neumann equation (3.16):
Oup(t) = —i [, p(t)] (42)

= —i({il CA-S, +w0(sin0(5’1m + ng) + cos&(glz + §22)> }p
- p{il CA-S, —|—w0(sin9(§h + ggx) + COS@(SlZ + ggz)> }),

where A is the hyperfine tensor and S; and I; are the cartesian components of the
electronic and nuclear spins. To make further simplifications let us assume that our
hyperfine tensor has a rhombicity ¢ = 0, which means that the eigenvalues are a; =
as # az. In the following we are going to ignore the subindex in the nuclear spin

operator. With all of the above we get
Dup(t) = —i ({aw(mx +1,5,) +a.L.8. (4.3)
o+ wo (518 (S10 + Sa0) + cos(S1: + $2) ) }o
o0 (1.8, +1,8,) + 0.5,
o+ o (5in0(She + Sa2) + cos0(S: + S2z)) }) .
. Express the spin operators as a sum of ladder operators we get:
Dupt) = _i({%(ml 1 780.) +als (4.4)
+ wy <sz’n6(S}z + Ss,) + cos(Sy, + S2z)> } p
= p{%(ﬁéﬁ_ +151) +a.1.5.
o (5in0(She + Sa2) + cos0(Si: + S2z)) }> .

To solve the problem using the Liouville-von Neumann equation requires to find the
system of coupled differential equations containing expressions for each entry in the
density matrix. A general state for the three-spin system read |i); ® |n)g ® [p)g, =
li,n,p), where {i,n,p} can take the values a or f; for example the matrix element
corresponding to the diagonal element where the nucleus and both electrons are in the

up spin state will read:
(aaal plaaa) = (111 p 1) = pacs = piil, (4.5)
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Figure 4.1: Dynamics of the closed isotropic (a; = as = ag) one-proton spin Hamiltonian.
(a) the evolution of Quantum discord (blue curve) and Concurrence (red curve). (b) the
evolution of the population of the singlet state.

and a general matrix element will read

(jmal p linp) = pl. (4.6)

Using this notation we can express Equation (4.4) using the base states |i,n, p), and
in this way we can write a generic equation for each of the matrix elements. Although
this is not a useful form to make analytical calculations it can give some insight in the

general behavior of the system. The general matrix entry reads:

8th$ = —% (al (6ja6m5piﬁno;oq + 5j65maﬂ?£aq - %51150%;’25 (4.7)
+ 61-,36mp§g§> + B, <5mapjf§§ + Omp et + Sgapl’
+ 0gs 0 — Ol — OnsPlay — Opalimy — 5pﬁﬂfﬁq>
— (QBZ(p —q+n—m)+az(ni— mj))p%)q).
Here B, = gupBysinf and B, = gugBycosf are z and z components of the magnetic
field, @y = a2 # as are the three diagonal entries of the hyperfine tensor and d.p

are the Kronecker deltas between the states. In the following we are going to use as

initial condition a singlet state for the two electrons. This state is defined as |s,0) =

47



10

Figure 4.2: Dynamics of the closed anisotropic (a; = ag # a3) one-proton spin Hamilto-
nian. (a) and (b) the evolution of Quantum discord (blue curve) and Concurrence (red
curve) for 0 = w/2 and 6 = 0 respectively. The variation of the angle now changes the
behavior of quantum correlations. (¢) Dynamics of the closed anisotropic (a; = as # as)
one-proton spin Hamiltonian. The singlet population for three different angles.

Z(11/2)[=1/2) = [=1/2) [1/2) ) = 5 ([1}) = [¥1) ). So, the initial condition reads:

po = 5,0) (s,0] = (%( 1) = [41) )) (%(w — (4] )) (4.8)
= 2 (109D 00 = 1409 €0 = 1103 (0 + 1) 1), (4.9)

As we are interested in the influence of the magnetic field on the singlet products, we

can trace out the nuclear spin to get the dynamic between the two unpaired electrons:
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Figure 4.3: Angle variation of the magnetic field using an axial hyperfine tensor
(ge/LB/h)A = (ge/ﬁg/h)diag(al,al,ag), with ay = 2a;. A difference in the strength
of the measurement process can affect the singlet production. Black curve: k = 1MHz;
the singlet and triplet states with short time to interact, and the reaction is going to fin-
ish in ~ 50us. Red curve: with k = 0.1MHz the radical pair have a lifetime of ~ 150us.
Blue curve: with k = 0.01MHz the radical pair have a life time of ~ 1000us.
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If the hyperfine tensor is axial, i.e., a; = as # a3 all terms created by the action of the
operator S, in the Zeeman term are going to disappear and the only remaining angular
dependence is due to the S,. If the hyperfine tensor is isotropic all angular dependencies
introduced by the Zeeman term disappear. In Figure 4.1 the dynamics of the closed
isotropic (a; = as = ag) one-proton spin Hamiltonian is summarized. In (4.1) (a) the
evolution of Quantum discord (blue curve) defined in (3.3.1) and Concurrence (red curve)
defined in (3.3) is depicted. There is a periodic appearance of maxima and minima in

both C'(p) and §(p). This is an obvious consequence of the lack of environmental influence
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Figure 4.4: Influence of the RF field over the singlet yield production. The frequency
of the RF field is v,y = w,;/2m = 1.317 MHz and its magnitude is B,; = 150nT; the
magnitude of the magnetic field of the Earth is By = 47uT. The difference between
the inclination angles of By and B, is denoted by €;. The dashed line is the reference
singlet production without RF field (lifted by 0.005 in order to be able to differentiate
it from the parallel case).

on the system. The quantity that contains the information about the yield production

is the population of the singlet state; we can write it as:

1
pss(t) = 5 <pﬁ + ol — Pl — pﬂ) (4.10)

However in a closed system it is not possible to talk about singlet yield since the chemical
reaction never ends and the chemical products will recombine over and over again. In
(4.1) (b) we can see the evolution of the population of the singlet state.

If we consider an anisotropic hyperfine tensor with a; = as # a3 the sensitivity with
the magnetic field inclination is clear. In Figure 4.2 (a) and (b), we plot the evolution
of Quantum discord (blue curve) and Concurrence (red curve) for § = 7/2 and 6 = 0
respectively, in order to observe the behavior of quantum correlations. The variation of
the angle affects the behavior of the quantum correlations: for a small angle there are

going to be more sudden deaths of entanglement [103] and maxima of the concurrence
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Figure 4.5: Influence of the RF field over the singlet yield production of one-proton RP
subjected using different rates k.

and discord. For § = 7/2 not only the minima and maxima have a longer period,
but there are now local minima and maxima. In (4.2) (¢) the singlet population for
three different angles is plotted. Now it can be seen how in a closed system with an
axial hyperfine tensor the populations as well as quantum correlations are affected by
changes in the inclination of the magnetic field. To complete the description of a radical
pair reaction we need to take into account the influence of the environment; due to its
intervention the chemical reaction can end and it will be possible to talk about (singlet

or triplet) yields.

4.1.2 Measurement process

To model the scape rates from singlet and triplet states to form singlet or triplet
yields, i.e., to show how the singlet-triplet interconversion ends allowing the formation
of anisotropic chemical products that will carry the information of the magnetic sense,
we add two new states |\S) and |T) [94] that will reduce our 8x8 density matrix for the
three spins to a 2x2 density matrix with the total population of singlet states S in one

of the entries of the diagonal, and the total triplet state population 7" in the other one.
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These new states will allow us to use projector operators P, to take the general kets
|li,n, p) with {i,n, p} being either | or 1, into the states |S) or |T). In other words, these
projectors will allow us to make a measurement of the amount of singlet yield (chemical
product) in the reaction. To define them we need to use the singlet-triplet base for the
electronic spins defined in (3.1): {|s) ® |5), [to) @ [5),]t-1) ®1j), [t1) ® |5) }, where |5)
is the nuclear spin state {1,J} and

1
5 =0,ms =0) = s) = 75 (114}~ 1) )
S =1 ms = —1) = |t1) = [11)

5 = Lms =0 = o) = —= (1t + 11D

S =1,ms=+-) = [ty) = 1]),

are the electronic spin states, where the state with total spin S = 0 is described by |s)
and the states with total spin S = 1 are described by |¢;). In this notation ¢ is the

projection for each state mg = {—1,0, 1}. The projectors are then:

P = 15) (s, 1
Pgp =15) (s, {|
Pr_p = |T) {t-1, 1|
Pryy = [T) (to, 1
Priy = |T) (t1, 1]
Pr,, = |T> <t—1,“
Py = T) (to, {|
Pryy = T) {t:, 4]

The strength of the process is modulated by a factor k, given in angular frequency units.
If it is of the order of tens of MHz the process will end fast avoiding the interconversion;
if it is less than kHz the system will be almost closed, giving unrealistic long radical pair

lifetimes. Using a Lindblad-like operator we can write the measurement process as:

L) = Y E@P0)P] - PIRt) - p)PLP). (411)
n={S,T}
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As with any projector it is easy to show that PnTPn = PnPg = P,, and the previous
equation is now:
k
Lp)= Y 5(2Pp(t)P] = Pup(t) — p(t)P), (4.12)

2
n={S,T}

and the master equation is:

Dup(t) = =i I, p(t)] + L(p(1)). (4.13)

As was done in the previous section we use generic states of the tripartite system on
L(p) to get a generic equation that can be added to (4.7) to solve the dynamic; a matrix

element for our Lindblad-like operator is:

£l = (h/3) (2005 49m) (3150l + OrsBail ) (4.14)
o+ 28500 (20430maplfe + 20000maplsh + (1+ dgm)plid)

o 28003 ( 20y0mapll + 20sa0mapls] + (1+ dgm)olis)

np

+ (=3 +4pn + 4¢(1 + 4pn)m) 'mq) :

Using both Eq. (4.7) and Eq. (4.14) we can now talk about a singlet yield. In Figure 4.3
we can see the result of the angle variation of the field using an axial hyperfine tensor
(ge,uB/h)A = (geuB/h) diag(ay, ai, as), with ay = 2ay; first we choose one angle 6, solve
the master equation, and pick the singlet population when the dynamic has arrived at
the steady state. This steady state represents the end of the interconversion process
(the end of the chemical reaction leaving only triplet and singlet chemical products). In
Figure 4.3 we can see how a difference in the strength of the measurement process can
affect the singlet production. We used three different decay rates k in MHz. If the decay
rate is k = 1MHz the singlet and triplet states are going to have little time to interact,
and the reaction is going to end soon, being the time of singlet production ~ 50us; the
yields are going to be produced faster and there is no angular sensitivity to talk about:
the remains are insensitive products that are going to start a neurophisiological travel
in order to say to the brain of the bird that the inclination of the field is different. It
is necessary the emphasize that the amount of singlet yield is not as important as the

difference of it with different angles. These results are opposite to those presented in
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Figure 4.6: One-proton RP subject to a RF field using different rates P and ~. The
dashed line represents the yield production of the system without environmental noise,
using a rate & = 0.001MHz for the measurement process in all the cases, B,; = 150nT,

By = 47uT and v,y = 1.317TMHz.

[94], where the authors found that a bigger decay rate k implied a singlet production
more sensitive to changes in the inclination angle. The other two measurement rates
depicted in the Figure, k = 0.1MHz and & = 0.01MHz, have a lifetime of ~ 150us and
~ 1000us respectively. We can only suppose that there is enough time for orientation-
sensitive yields being produced at the end of the reaction; to be sure we can use one of
the experimental discoveries described in Chapter 1 and Section 2.4: the elimination of
the magnetic sense applying a radio frequency magnetic field [36, 37]. Using the Earth’s
magnetic field given by Eq. (2.15) and the RF field in EQ. (2.33) the new Zeeman term
became

iy = ge;;BB 81+ 8y)

_ geltB
h
+ B,y coswrft( sin pé, + cos gpéz)> . (gl + §2)

(BO (sinfé, + cosbé.)
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Figure 4.7: Angle sensitivity of isotropic hamiltonians with k& = 0.01MHz caused by
environmental-induced asymmetries. We used different strengths for the decoherence
process: Green curve: decoherence rates of P = 0,7 = 5k. Red curve: P = v = 2k
and Blue curve: P = 10k,~v = 5k. In absence of anisotropies in the hamiltonian
a decoherence process or environmental noise can give the asymmetries the compass
needs to work correctly. The Black curve in the Figure is a reference state: a singlet
initial conditions with anisotropic hyperfine tensor, measurement rate £ = 0.01MHz and
P=~=0.

In Figure 4.4 the influence of the RF field over the singlet yield production is shown.
The frequency of the RF field is ¢,y = w,p/sm = 1.317 MHz and its magnitude is
B,y = 150nT; the magnitude of the magnetic field of the Earth is By = 47uT. The
difference between the inclination angles of By and B, (see Figure 2.5) is denoted by
€p. For angle differences of ¢y = 48° or ¢y = 90° there are no variations in the singlet
yield for any inclination angle of Bg. For ¢y = 24° there are less sensitivity but the
disruption of the compass is not complete. Finally, when both fields are parallel the RF
field does not exert any influence over the yield sensitivity.

This is a useful experimental fact: any model proposed have to be in agreement with
the disruption of the magnetic sense when a RF field with the appropriate frequency and

inclination angle is applied. In Figure 4.5 the one-proton radical pair is subjected to a RF
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Figure 4.8: Schematic view of the one-proton radical pair where the nucleus and its
unpaired electron interact by means of an isotropic hyperfine term, and the intercon-
version between singlet and triplet states is mediated by the Zeeman influence over the
electronic spins. The anisotropy needed by the RP is induced by environmental noise.

field using different rates k. For measurement processes with rates over & = 10°s~! the
sensitivity in the yield production to changes in the inclination angle does not disappear,
in contradiction with the experiment; in all the following calculations we are going to
use k = 10°s7! for the measurement process rate. It is possible to obtain a graphic
representation of the anisotropy in the RP model expanding the singlet yield as a sum of
spherical harmonics. The coefficients of such a expansion may have relevant information
about the behavior of the asymmetry in the avian compass. In Appendix (B) the steps
to obtain the spherical harmonic expansion of the singlet yield are shown, as well as the

polar representation of the anisotropy in the compass for four sets of different parameters.
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4.2 Alternative sources of anisotropy

One of the main results of our work was to show that there are reliable sources of
anisotropy outside the Hamiltonian; given any of these sources we could get a magnetic

sense in a one-proton radical pair with an isotropic hyperfine tensor.

4.2.1 Environmental noise

In an open environment such as the eye of the bird, it seems natural to have a faster
decoherence than that suspected in previous works [93, 94, 104]. We can model the
environmental influence, e.g., dipole interactions, distance fluctuations between the rad-
ical pairs or any other spin-related interaction, proposing a suitable noise processes that

leaves untouched the energy of the system. We proposed the operator R, defined as:

R=S,058,I, (4.15)
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Figure 4.9: Angle sensitivity for non singlet or triplet initial conditions, specifically

po = |aa) (aal. Black: nuclear spin initially set to |[1). Blue: nuclear spin initially set
to a mixed state (1) + |{))/v2. Red: nuclear spin initially set to |{).
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Figure 4.10: Histogram of thousands of random initial conditions. The evolution
was driven by an anisotropic hyperfine tensor in Equation (4.18), and environmental
anisotropy was avoid setting the decoherence processes off, i.e., P = v = 0. a) Real
off-diagonal entries in py. b) Complex off-diagonal entries in pg. ¢) Random populations
or diagonal entries in py.

where S’i,{l,g} are the ladder operators for spins 1 and 2 respectively, tensored with
the 2x2 identity matrix of the nuclear spin space. The role of this operator is to flip
spins [{1) <> [11), making the states [11) and |[{{) zero. In this way we can intensify the
interconversion between singlet and triplet states introducing an environment-induced
asymmetry previously inexistent. One of the advantages of using a master equation

formalism is that we can add in a simple way any environmental influence using a
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Figure 4.11: Perturbations in a singlet initial condition with an anisotropic hyperfine
tensor without environmental noise. The red curve represents the mean of several hun-
dreds of perturbed singlet initial conditions compared with the unperturbed singlet
initial condition (black curve). The dashed lines are four random yields taken from the
sample.

Lindblad superoperator (3.32) [86, 87]:

P . N A A A A
Li(p) = 5 2R p(t) R — RR'p(t) — p(t) RET) (4.16)
+ %(QRp(t)RT — R'Rp(t) — p(t) R'R).
Equation (4.16) has the form of a decay process mediated by the rate P plus a pumping
process mediated by the rate v, both in frequency units. In this way we avoid a drastic
preferred direction of the interconversion between singlet and triplet states. When both
rates are equal only the coherences in the reduced density matrix are going to be affected;
if they are different, there is going to be a small contribution to the populations pgg and

sz A matrix element for our Lindblad-like operator £(p) is:

jm P i in; 1o
L) =5 (25pa5ng5qa5mgpja/g — SysOmap?, — 5p55napjjq) (4.17)
i iBa in, iBa
+ 9 (25p65na5q65mapj%a - 5qa5mﬂpjgi - 5pa5nﬁpj€nq)-
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Finally, taking into account the one-proton Hamiltonian (2.14) and the Lindblad oper-

ators (4.12) and (4.16) we arrive at our final master equation:

Qup(t) = —i[H, p(t) | + L(p(t)) + L1(p(1)) (4.18)

,p<t>] S E@Pp() P, — Puplt) — plt)P2)
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In Figure 4.6 we test the allowed values of the rates P and v applying a RF field to
the radical pair model. The dashed line represents the yield production of the system
without environmental noise, using a rate £ = 0.001MHz for the measurement process.
As with the measurement process the expected behavior is the insensitivity of the singlet
yield production under changes in the inclination angle of the magnetic field. Whenever
the rates are equal, i.e. P =+, the sensitivity will only be there for few angles. A most
interesting behavior emerges when both rates are different, indicating an asymmetric
production of singlet (or triplet) yield. The asymmetry in the rates transforms the
maxima of singlet yield in # = 0 and # = 7 into minima, and two new maxima appear at
0 = /4 and 6 = 37 /4. A similar behavior of incorrect orientation was observed under
two different circumstances: continued exposure to red light [105] and application of
pulsed magnetic fields [35]. A substantial orientation only appears when the difference
between the rates is of at least 10k; any choice of rates P and ~ under this assumption
will produce a behavior in agreement with experimental data. When there is a fast
enough decoherence process present in the master equation, like the processes mediated
by P and ~, the angular sensitivity of the radical pair yield production is strengthen.
If the hamiltonian is isotropic, with singlet or triplet initial conditions, the expected
behavior is an absence of change in the production rates of the yields and there is going
to be sensitivity only if there is a decoherence process present. This can be understood
as another class of anisotropy induced by the environment, which chooses a preferred
direction for the system through the dissipation. This can open the search of a suitable
chemical species responsible for the RP creation, because the molecule does not need
to have anisotropic hyperfine or Zeeman interactions, and the degree of entanglement

is not going to be crucial; in other words, the molecule originating the radical pair
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can be subjected to rotational or diffusional motion, given that the preservation of the
anisotropy of the hyperfine tensor is not a requirement anymore. The only requirement
for the correct functionality of the compass is then the decoherence, which is a must
in such an open system. In Figure 4.7 the singlet yield production with an isotropic
hyperfine tensor and different values for the rates P and v can be seen. In Figure 4.8
we can see a schematic view of the system in the presence of environmental noise with

an isotropic hyperfine tensor.

4.2.2 Classical correlated initial conditions

Following the discussion in Ref. [93] the initial state in the radical pair mechanism is
not a perfect singlet (or triplet) state. However, due to the nature of the reaction itself
it will not start in a complete uncorrelated state. This raises the question about the
robustness of the mechanism when this inherent randomness in the initial state is taking
into account. Using initial separable states in the radical pair master equation (4.18)
with only classical correlations, as well as an isotropic hyperfine tensor, we showed that
the inclination sensitivity of the singlet yield will be still present. As an example, an

initial state without coherences, such as:

po= 5 (laB) (@Bl +180) {al ), (4.19)

gives an appreciable change in the yields (and therefore allows sensitivity) for different
angles . This can be seen in the blue curve in Figure 4.9. In the absence of either an
explicit anisotropy in the hyperfine tensor, in the g electronic factor or an anisotropy
produced by the environment, the sensitivity depends on the inhomogeneity of the pop-
ulations in the density matrix. An initial state like py = |aq) (aal, where the state
|ar) belongs to the space of the two electronic spins H; ® Ha, will produce a lower
but still appreciable angle sensitivity. More interesting is that it generates a different
distribution for the singlet yield depending on the nuclear spin state, as it is shown in
the red and black curves in Figure 4.9. This implies a preferred direction of the reaction
path based on the states of the spins prior to the beginning of the yield production,
and shows us that the randomness in the singlet (or triplet) initial state will strengthen
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