ESTUDO DO

ESPALHAMENTO RAMAN RESSONANTE EM GAN

Võlia Lemos

Tese apresentada ao Instituto de Física "Gleb Nataghin" da Uni versidade Estadual de Campinas, para a obtenção do título de Mestre em Ciências.

UNIVERSIDADE ESTADUAL DE CAMPINAS

ESTUDO DO ESPALHAMENTO RAMAN RESSONANTE EM GAN

Tese de Mestrado

Võlia Lemos

- .1972 -

Auxílios provenientes do Conselho Nacional de Pesquisas, Fundação de Amparo ã Pesquisa do Estado de São Paulo e Ministêrio do Planej<u>a</u> mento permitiram a realização de<u>s</u> te trabalho.

A meus país João de Sã Lemos e Elza Veloso Lemos

ţ

AGRADECIMENTOS

Ao Professor Carlos Alfredo Argüello por sua dedic<u>a</u> da orientação, seus comentários e revisão da tese.

Ao Professor Rogêrio Cézar de Cerqueira Leite pelas valiosas sugestões durante o desenvolvimento do trabalho.

Ao Professor Roberto Luzzi pelas discussões elucid<u>a</u> tivás do problema.

Ao Professor Josē Carlos Valladão de Mattos pela colaboração na montagem do sistema e assistência à exper<u>í</u> ência.

Ao Professor Jacques I. Pankove pelos cristais gentilmente cedidos.

A Srta. Irani Rodrigues Valdo pelo paciente serviço de datilografia.

Ao Sr. Orlando Gilberto Feriani pela confecção cuidadosa dos desenhos.

Nosso sincero reconhecimento a estas pessoas, cuja contribuição foi indispensāvel ā realização deste trabalho.

> A todos meu Muito Obrigada.

PREFACIO

O espalhamento Raman ressonante por fonons óticos no GaN foi observado sob condições que permitiram comparação com a teoria de exitons. A concordância obtida foi excelente. Os resultados cobriram uma faixa de energia entre 980 e 660 m ev abaixo do gap do cristal, mostrando que mesmo a tais energias os efeitos de exitons são dominantes.

INDICE

Ι	-	INTRODUÇÃO
		I.1 - Histórico
		1.2 - Escopo deste trabalho
II	-	EQUIPAMENTO EXPERIMENTAL
		II.1 - Descrição Geral
۰.		II.2 - Fonte
		II.3 - Sistema de Coleção 8
		II.4 - Espectrômetro
	-	II.5 - Detetor
111		PARTE EXPERIMENTAL
		III.1 - Comentários sobre o cristal
		III.2 - Sistema de medida
IV	-	RESULTADOS EXPERIMENTAIS
		IV.1 - Apresentação dos resultados experimentais . 22
	•	IV.2 - Discussão
V	-	CONCLUSTES
		\mathbf{x}
		REFERÊNCIAS

I.1 - <u>Histórico</u>

Quando um feixe de luz monocromática incide em um meio livre de partículas de impurezas, a maior parte da luz atravessa-o sem ser afetada, desde que a frequência seja escolhida de tal forma a não cair na região de absorção. Uma parte da radiação incidente é espalhada e esta contém em adição a luz de mesma energia, novas l<u>i</u> nhas, cujos deslocamentos em frequência, relativos a linha, primária são características do material espalhador.

O efeito foi descoberto em 1928 independentemente por Raman na Índia, trabalhando em benzeno, e por Landsberg e Mandelstan, na União Soviética, trabalhando em quartzo.

O interesse despertado pelo efeito Raman, prevaleceu durante vários anos, o que pode ser constatado examinando as revisões de Menzies (1), Poulet (2), Mathieu (3) e o clássico resumo de Loudon (4).

Da suposição que se esgotavam as substâncias, onde a intens<u>i</u> dade da radiação Raman era detetãvel com as técnicas disponíveis, o entusiasmo decaiu.

Na ūltima decada, novo impulso foi adicionado ao problema, com a introdução do laser (5), como fonte de excitação.

Nuitos processos anteriormente inaccessíveis, envolvendo excitações elementares em sõlidos, puderam ser investigados. Verificou-se então, que o efeito Raman pode ocorrer como modos vibracionais moleculares, modos fonônicos de vibração da rede, modos de plasmas, ondas de spins em sõlidos magnéticos e transições eletrônicas entre níveis de energia de um ãtomo (35).

O laser permitiu sobretudo, um grande progresso no estudo do espalhamento Raman ressonante, devido a versatilidade de linhas.

A primeira evidência de ressonância, foi encontrada hã 40 anos por Rasetti, quando notou que a intensidade espalhada crescia rapidamente em espectros Raman de cristais excitados com a linha 2537 Å de mercūrio.

Em geral, se a frequência de excitação é próxima de alguma frequência de absorção do material, ocorre aumento ressonante na eficiência de espalhamento.

Resultados experimentais neste campo, são encontrados – nos trabalhos de Behringer (6) e Shorygin (7) para líquidos, no artigo

- 1 -

de Holzer e colaboradores (8) para gases, nas reportagens sobre e<u>s</u> palhamento da luz por sólidos (9[°], 10) e especialmente para semico<u>n</u> dutores nos trabalhos do grupo da Bell Telephone Laboratories (11-17).

Deve-se a Ovander (18) uma das primeiras aproximações teóricas para cristais, da dependência da intensidade Raman espalhada com a frequência da luz incidente próximo a ressonância. O autor explica o espalhamento Raman em termos de decaimento de polaritons.

A participação eletrônica na interação de espalhamento foi ressaltada por Loudon (19, 20) introduzindo pares eletron-buraco livres como estados intermediários do processo.

Ganguly e Birman (21), consideram a interação Coulombiana e<u>n</u> tre elétrons e buracos no esquema de exitons como estados intermediários.

O interesse teórico permanece (22 - 24), pois Raman ressona<u>n</u> te e uma vasta area de trabalho aberta a investigação.

As diversas teorias predizem aumento ressonante da secção de choque de espalhamento. Hã, porēm, uma diferença fundamental entre elas, quando a frequência de excitação coincide exatamente com a de uma transição ótica permitida no material. Algumas expressõespara a eficiência de espalhamento contêm termos que divergem neste ponto (21) enquanto em outras, todos os termos permanecem finitos (19, 20).

A razão básica para se estudar o espalhamento Raman ressona<u>n</u> te, além do simples aumento da secção de choque, é a possibilidade de determinar quais são as interações predominantes no processo de espalhamento quando a frequência da luz incidente se torna próxima a de uma transição eletrônica. Convêm ressaltar qua a secção de choque diverge ou se torna grande, também para ressonância com a frequência do foton espalhado (17, 25).

Alēm disso, os resultados experimentais ainda são poucos, l<u>i</u> mitados pelo número de linhas de laser insuficiente, e apenas r<u>e</u> centemente começam a aparecer dados experimentais indicando a forma da linha da secção de choque no pico de ressonância (30, 37,57).

Por outro lado, os espectros de espalhamento Raman longe da ressonância com transições eletrônicas, são sempre interpretados seguindo as regras de seleção usuais. Mas para o efeito Raman res sonante, nem sempre estas regras de seleção são aplicaveis (26,27). Portanto, saber onde e como as regras de seleção para espalhamento mudam com respeito ao caso não ressonante comum, é um incentivo ao estudo do espalhamento Raman ressonante.

2 -

E um estudo atrativo também na região para frequências inc<u>i</u> dentes acima do gap, onde nunca se conseguiu concordância entre resultados experimentais e teoria. Acredita-se até, que o mecani<u>s</u> mo de espalhamento 'Raman abaixo e acima do gap, sejam basicamente diferentes (15).

Na região de nosso estudo, pelo fato da frequência incidente estar abaixo da estrutura vibracional das bandas de absorção eletrônicas do cristal, o efeito é denominado pré-ressonância ou quase-ressonância, por alguns autores (6, 46).

A história de 44 anos de pesquisas não pode ser devidamente apresentada nesta pequena introdução. Muitos problemas interessa<u>n</u> tes, nos quais se tem trabalhado intensamente nos últimos anos, tais como ressonância com níveis de impurezas e similares, não f<u>o</u> ram sequer citados.

Espera-se entretanto, que a bibliografia apresentada venha ilustrar eficientemente uma boa extensão do problema de espalha mento Raman ressonante por fonons óticos em cristais puros.

I.2 - Escopo deste trabalho

Estimulo suficiente para estudar o espalhamento Raman ress<u>o</u> nante por vibrações da rede no GaN, foi encontrado nos seguintesfatos:

GaN tem a simetria da Wurtzite, uma das mais simples estruturas de cristal uniaxial. O grande número de materiais com esta simetria e a existência do grupo do Zinc-blende bastante relacionado com eles, são fatores que tornam valiosa a investigação de<u>s</u> tes cristais (28).

E um composto do grupo III - V, e o espalhamento Raman para este tipo de composto é restrito à ressonância com bandas de ener gia superiores (14, 29, 30, 32), sendo a energia de absorção fundamental muito pequena (31) para as frequências de laser comumente disponíveis. Em contraste, o GaN tem gap direto a 3,39 ev, sa tisfatoriamente próximo das linhas do laser de ions de argônio.

Por outro lado, resultados experimentais em espalhamento R<u>a</u> man ressonante para compostos III - V, nunca foram comparados aos modelos teóricos existentes.

Este é o primeiro estudo de espalhamento ressonante por fonons óticos no GaN. As energias incidentes variaram de 2,4 a 2,73 ev .

· 3.

Os resultados foram comparados ao modelo teórico de Loudon (19) que considera pares eletron-buraco não interati vos como estados intermediários, e ao modelo de Ganguly e Bi<u>r</u> man, onde os estados intermediários são exitons(21).

Excelente concordância foi obtida com a teoria dos ex<u>í</u> tons. Isto mostra que mesmo em regiões afastadas do gap, os <u>e</u> feitos de exitons são importantes.

II - EQUIPAMENTO EXPERIMENTAL

II.1 - Descrição Geral

Devido a que o espalhamento Raman proveniente de vibrações da rede é um efeito fraco, o uso da excitação mais eficiente, õt<u>1</u> ca de iluminação e coleção, e sistema de deteção são fatores muito importantes em espectroscopia Raman.

Fundamentalmente, para se observar o efeito Raman, são necessários:

- a) uma fonte de radiação intensa;
- b) um suporte para amostra e conjunto ótico adequado;
- c) um monocromador;
- d) um detetor.

E interessante examinar estes itens em detalhes.

II.2 - Fonte

Antes dos lasers eram usadas lâmpadas de mercurio com li nhas a 2537, 4047, 4078, 4108, 4358, 4557, 4916, 4960 e 5461 Å, como fonte de excitação Raman. As duas linhas mais intensas e co<u>n</u> sequentemente mais usadas sendo a 2537 e 4358 Å.

Como ē de interesse que a amostra seja transparente ā rad<u>i</u> ação excitadora (4), estas fontes eram adequadas apenas para o e<u>s</u> tudo de materiais de gap grande.

Esta limitação excluiu o estudo de efeito Raman de grande número de cristais e principalmente semicondutores.

Os lasers vieram substituir as lâmpadas de mercūrio com ef<u>i</u> ciência bastante superior.

O laser emite radiação monocromática, enquanto que as lâmp<u>a</u> das de mercurio têm uma série de linhas simultâneas. A monocromat<u>i</u> cidade da radiação quando usada a lâmpada de mercurio, era obtida cobrindo o tubo da amostra com filtros cilíndricos concentri - cos de soluções que eliminavam as linhas indesejāveis. Ainda assim, a linha 4358 Å da lâmpada de mercurio, por exemplo, aprese<u>n</u> tava uma emissão de radiação contínua, embora relativamente fr<u>a</u> ca entre 4358 e 4916 Å (33).

Os lasers são extremamente direcionais e alguns com polarização bem definida em contraste com a radiação despolarizada <u>e</u> mitida pelas lâmpadas de mercurio em todas as direções.

A maior parte dos lasers são mais potentes que as lâmpa das de mercúrio.

E finalmente, a versatilidade dos lasers com linhas no in tervalo 3250 a 10648 Å, é bem maior que a oferecida pelas lâmpadas de mercurio com este intervalo reduzido para 2537 a 5461 Å e apenas duas linhas realmente eficientes.

Na tabela l, ref. (35), são ap**resentados os lasers fr**eque<u>n</u> temente usados, e indicada a potência máxima que se consegue na respectiva linha:

Pode-se observar nesta tabela, que a região verde-azul do visíval é bem favorecida.

No ultra-violeta, tem-se apenas o laser de nitrogênio a 3371 Å, uma linha do laser de câdmio a 3250 Å e a 3324 Å do la ser de Neônio. O laser de Argônio pode operar também no ultra-vi oleta, nas linhas 3511 e 3638 Å, com potência total de 200 mw.

Hã porễm, um intervalo cerca de 800 Å, entre a linha 4416 À de Cd e a 3638 Å do Ar[†], onde não se tem emissão laser.

O vermelho também apresenta intervalos consideráveis destituídos de lasers a gás.

Estas restrições podem ser superadas com o uso dos dye la sers. Estes lasers são obtidos de geração de luz em soluções orgânicas. As grandes vantagens dos dye lasers estão nos seguintes fatos: l) operam num intervalo de frequência relativamente grande onde sua frequência pode ser sintonizada; 2) existem dyes cobrindo todo o espectro ininterruptamente desde o ultra-violeta próximo ao infra-vermelho longínquo.

Uma lista de aproximadamente 90 dyes, em que a ação do l<u>a</u> ser foi observada, no intervalo 343 a 1060 nm, foi publicada recentemente por Dewey (36).

Os dyes têm sido empregados para observar em detalhes a dependência espectral da secção de choque Raman (30, 37, 57).

Certamente a flexibilidade oferecida pelos dye lasers, os colocam como a melhor fonte existente para o estudo do espalha mento Raman ressonante.

í 6

Wavelength	Power	Remarks
	YAG:Nd* soll	d-state laire
1.065 µ	200 waits}	Second harmonic frequencies
1.317 µ}	50 watts	in the red and preen
·1.336 µJ.	1.14.	O suitable a mention as liquid
	4 MW	mitogen temperatures
	Gailium arsenide semicor	ductor Injection laire
8370 A	1 watt	Continuously temperature-tunable over
9050 A		indicated range; single limitudica mode operation at reduced power other manifolds with allow taken
• •	Atton to	t lasse
3511 A	109 mw 3	
3638 🔥 👗	100 mw	
4579 . 8	400 mw	
4008 A.S.	159 mw {	
4765 2	250 mw	Wavelengths selectable with
4880 - 1	DUN DIW	intercavity prism
4965 Å	2 watts	en e
5017 Å	460 mm	
5145 A	2 watta	•
2573 🔥	50 mw	Second because of that I was
	The second s	Second narmonic of 3143-A line
3507 8	Krypion #	ar laser .
3564	100 mw	
4762 Å	> 100 mw	
4825 A	20 mm	***
5208 A	>200 ruw	wavelengths selectable with
5682 🔥	100 mw i	mercavity prism
6471 A	500 mw	د
7993 👗 🗄	100 mw	•
	No.	1
3324 🗸 🖌 🗸	50 mw	laser
' 1		
4417 **	Cadmium j	tas laser
3250 A	50 mw	
,	13 MW	
	CO, N, 2	13 laset
between S	100 wetts	Plasma tube cooled to tighta
and 62 u		Bilrugen temperatures
·	CO. N	at Intel
10.6 µ]	Not true	10161
נע מיל		•
	Helle	
6328 🔥	100 mw	s laser
<u>1.15 д</u>	50 mw	
. 3.39 <u>µ</u>	20 mw	
	v .	
9698 🔥	10 mut	s laser
;8716 A		
	- inw	
3371 1	Nitrogen a	as laser
-5401	100 kw]	Pulsed operation 100 - at at
	10 keys C	

A tabela 1, ref. (35), sugere também lasers de injeção de semicondutores como fontes de excitação Raman. Apesar de serem lasers de frequência controlável com a variação de temperatura, têm a grande desvantagem da falta de monocromaticidade. Esta, <u>a</u> cima de outros incovenientes, (tais como: o pequeno número de lasers com emissão no ultra-violeta; feixe não colimado, etc.), impedem o uso deste laser em espectroscopia Raman.

II.3 - <u>Sistema</u> de <u>Coleção</u>

O conjunto ótico deve ser construido de tal forma a permitir o melhor uso da luz do laser e da luz Raman espalhada.

Recentemente Schwiesow (38), publicou os valores otimos das variaveis na iluminação da amostra e coleção da luz espalh<u>a</u> da para um sistema Raman com as características: 1) iluminaçãocom laser; 2) espectrometro dispersivo; 3) volume de amostra <u>i</u> limitado; 4) iluminação e eixo de observação a 90⁰, tal que a imagem do volume cilindrico de espalhamento, seja paralelo a fenda do espectrometro.

A análise se resume no seguinte: um feixe incidente de comprimento de onda λ e diâmetro D sobre uma lente de distância focal F, produzira uma distribuição luminosa axialmente simétr<u>i</u> ca no foco.

Cerca de 95% do primeiro máximo do padrão de difração f<u>o</u> cal, está contido em um cilindro de diâmetro:

$d' = 2 \lambda F/D$		· ·		(1)
comprimento	 · · ·		•	

 $1' = 14 \frac{1}{\lambda} F^2 / D^2$

é

conforme o esquema da figura l.

Das expressões (1) e (2), pode-se notar que, para um dado diâmetro do feixe incidente consegue-se o menor "spot size" com lente de distância focal bem pequena.

O volume espalhador da amostra sera identico ao cilindro focal de diâmetro d' e comprimento l'. Sua imagem se formara na fenda do espectrômetro, através da ótica coletora, em geral uma objetiva.

Se a objetiva tem magnificação linear M, a imagem do vol<u>u</u> me espalhador da amostra, terã dimensões:

- d 🛥 Md'
- 1° = 'M1 '

O ângulo solido de aceitação do espectrômetro Ω sera alargado no volume espalhador para :

(5)

(6)

 $\alpha' = M^2 \alpha$

como mostra o esquema da fig. 2.

Se a fenda do espectrômetro tem largura w e a altura h, o volume de espalhamento efetivo, será um cilindro truncado se a fenda é aberta, tal que:

w < d

e h < 1

Como o ângulo Ω é fixo pela geometria do espectrômetro e, Ω' é limitado na prática (em geral para um esferorradiano), M é limitada por considerações de ângulo solido.

Entretanto, se a lente focalizada tem distância focal suf<u>i</u> cientemente pequena, é possível colocar

Estas são condições necessárias para que todo o fluxo Raman coletado entre no espectrômetro.

Portanto, é aconselhável escolher uma lente focalizada de distância focal:

 $F \leq Dw/2 \lambda M$

II. 4 - Espectrômetro

A espectroscopia Raman é otimizada não sô com laser como fonte, mas também com o uso de um espectrômetro duplo (fig.3).

O espectrômetro duplo, e um instrumento desenhado espec<u>i</u> almente para aumentar a capacidade de rejeição da luz difusa e consequentemente permitir a deteção de espectros fracos como o Raman, em presença de radiação Rayleigh, bem mais intensa.

A luz difusa tem origem quase que inteiramente na grade do espectrômetro.

Uma grade imperfeita produz reflexões espúrias junto ao feixe de luz difratado a qualquer ângulo.

As imperfeições da grade são problemas de construção. -Grades são feitas riscando-se uma placa de alumínio com diamante. Qualquer deslize do diamante neste processo, e mesmo imperfeições na própria cabeça de diamante, introduzem rugozidades na superfí cie da grade. Além disso, é vaporizado alumínio sobre a grade e

<u>FIGURA 1</u>. Iluminação da amostra. D: diâmetro do feixe incidente; F: lente de distância focal F,d; l¹; dimenções do cilindro focal (34).

FIGURA 2. Coleção da radiação espalhada; 0: objetiva; A': ângulo sólido de coleção; A: ângulo sólido de aceitação do espectrômetro; W, h: dimenções da fenda (34).

tirada uma réplica em plástico. Ambos, alumínio e plástico, possuem irregularidades nas superfícies. A versão final da grade, tem portanto, uma série de pequenos defeitos acumulados, que re fletem e espalham a luz aleatoriamente.

Em um espectrômetro simples, uma boa porcentagem dessa luz espūria, chega à fenda de saïda, gerando um ruído de fundo contí nuo no espectro, e dependendo da sua intensidade, pode cobrir al gumas, e até todas as linhas Raman.

Landon e Porto (39), compararam as características da luz espalhada por um espectrômetro duplo e um simples, ambos com gr<u>a</u> des de mesma fabricação.

Na fig. 4, a curva superior representa a intensidade da luz. espalhada por um espectrômetro simples, e a cruva inferior, por um duplo.

Note-se nesta figura, que a uma separação em comprimento o de onda de 5 Å da linha do laser, radiação tão fraca quanto 10⁻⁴ ou seja, 0,01% da original, pode aparecer acima do ruído de fundo com o espectrômetro simples. Com o duplo, radiação da ordem de 5 x 10⁻⁸ (ou 0,000005% do pico central), pode ser detetada.

Por outro lado, existe também influência dos fantasmas da rede no espectro Raman. Estes são pares de linhas aparecendo de ambos os lados do pico de laser e podem ser confundidos facilme<u>n</u> te com os Stokes - Antistokes reais. As intensidades destes fantasmas podem ser iguais e até superiores as linhas Raman produz<u>i</u> das por um espectrômetro simples.

Cālculos e esperiências mostram que o duplo quadra a inte<u>n</u> sidade fantasma. Como ele ē provido de duas redes, supondo cada uma com intensidade fantasma cerca de 0,06% da linha principal, na fenda de saīda, esta intensidade serā de 3,6 x 10⁻⁵, ou seja, 3,6 x 10⁻³% (39).

Ainda assim, a intensidade fantasma reduzida pode guardar semelhança com algumas linhas Raman mais fracas. A discriminação é feita lembrando que os fantasmas são equidistantes da linha original em termos de comprimento de onda, enquanto que o par St<u>o</u> kes - Antistokes real em termos de número de onda.

Um par fantasma pode aparecera ± 150 Å da radiação incidente de comprimento de onda 4965 Å. Em número de onda, a compone<u>n</u> te Stokes correspondente estaria a 587 cm⁻¹ e a Antistokes a 631 cm⁻¹ da frequência de excitação.

Como os espectrometros para analise Raman são usualmente calibrados para leituras diretas de $\Delta K(cm^{-1})$, os fantasmas da rede são facimente eliminados.

O espectrômetro duplo pode produzir linhas não identificãveis, provenientes de poeira, objetos estranhos no caminho do l<u>a</u> ser e impressões digitais nos elementos óticos. Estes, porem, não podem ser confundidos com Raman, pois são picos individuais, não aparecem aos pares como os fantasmas e os pares reais.

Para o uso adequado do espectrômetro, deve-se controlar fa tores aparentemente antagônicos.

Fundalmentamente é de interesse obter máximo poder de resolução e "throughput".

0 poder de resolução do instrumento é definido teoricamente por:

$$R = \frac{\lambda}{\Delta \lambda} = \frac{2}{\Delta \lambda} = 2 \operatorname{sen} \alpha (W / \lambda) = mN$$
(7)

onde

 λ = comprimento de onda

-))= nümero de onda
- N = número total de ranhuras da grade
- W = largura da grade
- m = ordem de difração
- a = ângulo entre a direção do feixe difratado e a normal ã superfície da amostra.

Como o poder de resolução \vec{e} função linear da largura da grade W, deve-se providenciar para que esta seja efetivamente <u>u</u> sada. Isto se consegue, iluminando por completo o espelho colimador (M₁, na fig. 3).

As condições para iluminação do espectrômetro foram discutidas no îtem anterior. Com uma lente coletora apropriada, de tamanho suficiente para coletar cerca de um esferorradiano de luz, forma-se uma imagem aumentada da fonte na fenda do espec trômetro.

A fenda de entrada deve ser aberta para acomodar excencial mente toda a imagem aumentada. O ângulo de aceitação do espec trômetro, por construção, é tal que o feixe divergente cobre completamente o espelho colimador. Deve-se tomar a precaução de evitar que a luz ultrapasse os limites do espelho, o que resulta em produção de luz difusa e, consequentemente, ruído de fundo.

Nestas condições, o fluxo de luz total dentro do espectr<u>ô</u> metro é máximo, e portanto também o "throughput".

As circunstâncias são favoráveis para que o poder de res<u>o</u> lução também seja máximo, devido ao uso de toda a largura da grade.

Fig: 3 _ Espectrômetro Raman. M: espelhos; S: fendas ; G: grades ; PM: fotomultiplicadora ; O: objetiva ; A:amostra ; F:lente focalizadora ; B: divisor de feixe ; MP: medidor de potência ; C:atenuador de intensidade do feixe. Porem, na pratica, o fator que mais influencia o poder de resolução e a largura da fenda w do espectrômetro. "w", deve ser pensado em termos de banda passante, ao inves de largura de fenda mecânica.

A banda passante é proporcional à dispersão linear reciproca. Esta, por sua vez, depende do comprimento de onda incidente, da distância focal do espectrometro e da ordem espectral em questão.

Para o Spex 1401, com uma grade de 1200 linhas/mm e usado em primeira ordem, a dispersão linear recíproca é dada na tabela II, em função do número de onda (linhas do laser de Argônio).

Por exemplo, para k = 19436 cm^{-1} , e fendas abertas a 100u, este espectrômetro tera uma banda passante de 2 cm⁻¹.

Para a mesma situação e fendas de 20 u, a resolução cai a $0,4 \text{ cm}^{-1}$. Assim, o poder de resolução sera tanto maior, quanto mais estreitas forem as fendas.

Entretanto, com as fendas no mínimo imposto pela resolução desejada, pode-se correr o risco de perder estabilidade. Por estabilidade, entende-se a abilidade contínua do instrumento de produzir o mesmo comprimento de onda nas fendas intermediária e de saída.

As causas de instabilidade são fatores incontrolaveis,tais como pressão atmosférica e temperatura instâveis, vibrações lo cais, etc.

Por outro lado, são efeitos sensíveis apenas quando as medidas são efetuadas a longo período de tempo (acima de uma hora). Neste caso, com fendas de 20u pode-se observar grandes mudanças nas intensidades do espectro, o que não ocorre se pelo menos uma das fendas é aberta a 100u.

E inconveniente usar 100u na fenda de saída, pois a dispersão fica sacrificada. Se a intermediária é aberta, a dispersão não é afetada. Um valor mínimo de 100u na fenda intermediária é suficiente para superar os efeitos de deslocamento de comprimento de onda.

II.5- Detetor

Sinais Raman em geral, são detetados fotoeletricamente. Existem muitos tipos de fotomultiplicadoras com eficiência quântica alta e corrente de escuro relativamente baixa na região visível do espectro.

Não é possível fornecer no contexto uma lista completa das

15 -

TABELA II

Dispersão <u>Reciproca Linear para o monocromador duplo</u> <u>Spex - 1401 com grades de 1200 linhas / mm, usadas</u> <u>em 1^a. ordem.</u>

Nūmero de Onda (cm ⁻¹)	Dispersão Linear Reciproca. (cm ⁻¹ /mm)
19436	20,6
20140	22,0
20491	22,8
20986	24,0
21468	25,2
21838	26,4
22002	26,6

mais recentes inovações nos tubos de fotomultiplicadoras.

Para detalhes e referências, o trabalho de Topp e cooper<u>a</u> dores (40) fornece discussões sobre as fontes de ruído e possibilidade de eliminã-los.

Eletrônica especialmente escolhida, também discrimina co<u>n</u> tra ruído e aumenta sinais fracos para leituras imediatas.

- 17 -

III - PARTE EXPERIMENTAL

III.1 - Comentários sobre o cristal

O cristal usado neste trabálho, GaN, foi preparado pela tecnica de crescimento a partir do vapor(41).

O filme monocristalino, cerca de 20 u de espessura, depositado sobre substrato de safira, é um semicondutor do grupo III - V.

A preparação dos compostos III - V, se desenvolveu em geral, envolvendo os elementos As, P e Sb do grupo V.

Os materiais resultantes, com gap de energia correspondendo a valores no intervalo espectral desde o infra-vermelho, até a metade do visível, foram amplamente investigados.

Em contraste, pouco se tem feito para obter compostos contendo nitrogênio. Os produtos das combinações do N com el<u>e</u> mentos do grupo III, são de gap relativamente grande, estendendo atravês do visível e ultra-violeta.

Os nitretos preparados por crescimento a partir de vapor, começaram a aparecer apenas recentemente (41), apesar de seu potencial como fotocondutores em experiências de cátodo e eletro-luminescência.

O GaN obtido por este processo, com gap direto a 3,39 ev a temperatura ambiente, correspondendo ao ultra-violeta, porémpróximo do limite do visível, é de particular interesse especialmente porque : (1) os lasers disponíveis com grande versatil<u>i</u> dade de linhas emitem no visível e portanto a comprimentos de onda próximo ao gap deste material; (2) são amostras de volume grande o suficiente para produzir espalhamento Raman observável.

Este cristal é hexagonal, do grupo espacial P6mc, com estrutura da wurtzite e parâmetros da rede a = 3,180 Å e c = 5,166 Å (42).

Cristais uniaxiais com a estrutura da wurtzite tem qu<u>a</u> tro átomos por cela unitária e em decorrência, doze graus de l<u>i</u> berdade.

A teoria de grupo prediz os seguintes ramos de vibração da rede:

Os ramos acūsticos $A_1 \in E_1$ responsáveis por tres graus de liberdade e os ramos óticos A_1 , E_1 , dois E_2 e dois B_1 , soman do nove graus de liberdade.

O ramo A_1 se caracteriza pela polarização do fonon na d<u>i</u>reção z(*), sendo ambos Raman ativo e infra-vermelho ativo.

O ramo E_1 pode ter o fonon polarizado na direção x ou na direção y, e é também Raman ativo e infra-vermelho ativo.

Os dois ramos E₂ são apenas Raman ativos e os dois B₁ são inativos.

Os modos õticos $A_1 \in E_1$ são divididos em componentes lo<u>n</u> gitudinal (LO) e transversal (TO), por um campo elétrico assoc<u>i</u> ado com a componente longitudinal.

Se a direção de propagação do fonon é ao longo de um dos eixos x, y ou z, apenas fonons longitudinais puros e transver sais puros de características de simetria bem definidas, são observados em espectroscopia Raman.

Por exemplo, se a direção de propagação do fonon \tilde{e} x, p<u>o</u> de-se observar três modos óticos puros de vibração da rede. Um longitudinal E₁(x), com polarização do fonon na direção x, um transversal E₁(y), com polarização do fonon na direção y, e outro transversal A₁(z), com o fonon polarizado na direção z.

Geralmente, se a direção de propagação não é ao longo dos eixos, a situação é mais complicada devido a competição entre os efeitos de forças de longo alcance (eletrostáticas) e forças interatomicas de curto alcance (anisotropia).

As forças eletrostáticas predominam sobre a anisotropia das forças interatomicas em cristais com simetría wurtzite.

Neste caso a separação LO - TO é muito maior que a sep<u>a</u> ração A₁ - E₁, ou seja

 $|\omega_{L0}^{\mu} - \omega_{T0}^{\mu}| e | \omega_{L0}^{\mu} - \omega_{T0}^{\mu}| >> | \omega_{L0}^{\mu} - \omega_{L0}^{\mu}|e | \omega_{T0}^{\mu} - \omega_{T0}^{\mu}|$ onde os indices e ", indicam as polarizações dos fonons normal e na direção do eixo ótico respectivamente.

As inequações em frequência acima, requerem que independentemente da direção de propagação, os fonons em questão são sempre transversais puros ou longitudinais puros (28).

Os arranjos esperimentais para se observar os fonons õt<u>i</u> cos em cristais de wurtzite, estão bem detalhados no trabalho de Argdello e colaboradores (28).

(*) Para a estrutura da wurtzite e convenção tomar z como o eixo otico, e os eixos x e y forman com z um sistema de coord<u>e</u> nadas cartezianas.

- 19 -

E adotada uma notação (43) em que o espectro é descrito por quatro símbolos, a(i, j)b, indicando as direções de propa<u>ga</u> ção e polarização relativas aos eixos do cristal. Luz incidente polarizada na direção i se propaga ao longo do eixo a, enquanto que a luz espalhada polarizada na direção j, se propaga na dir<u>e</u> ção b.

Quatro dos fonons óticos permitidos no GaN descritos a seguir, foram observados anteriormente por Manchon e colaborad<u>o</u> res (44) em espectros Raman a angulo reto e temperatura ambie<u>n</u> te.

Na convenção x(z, y)z, que permite apenas o aparecimento do modo $E_1(TO)$, é observado um pico a 559 cm⁻¹. A linha mais intensa detetada a 568 cm⁻¹, na condição z(x,y)x, corresponde a um fonon E_2 . O espalhamento $A_1(TO)$, na configuração x(z, z)y, <u>o</u> corre a 533 cm⁻¹. E finalmente o modo E_2 de baixa frequência a 145 cm⁻¹ é visto com o arranjo x(y, x)y.

O efeito Raman da safira, α - Al₂ O₃, foi medido por Porto e Krishman (45). Os sete fonons Raman ativos foram encontrados e determinadas suas simetrias.

Os picos do nosso interesse são o A_{lg} que é o pico mais intenso da safira e aparece a 418 cm⁻¹, e o E_g (externo) a 378 cm⁻¹.

III.2 - <u>Sistema</u> <u>de</u> medída

A amostra foi excitada com o uso de um laser de ions de argônio, modelo 53 A da Coherent Radiation. Sua capacidade de operar numa variedade de comprimentos de onda, (ver tabela l), permite o estudo da dependência das intensidades Raman espalhadas com a frequência incidente.

As linhas 5145, 4965, 4880, 4765, 4658, 4579 e 4545 Å, foram usadas sem que houvesse fluorescência do laser influindo no espectro.

A analise da luz espalhada, foi feita com um monocromador duplo, de distância focal 0,75 m, tipo Czerny Turner, modelo 1401 da Spex.

Um esquema do instrumento está incluido na fig. 3.

As grades com 1200 linhas por milímetro e comprimento de onda "blaze" a 5000 Å, com movimento calibrado diretamente em número de onda, foram usadas em primeira ordem, onde a efi-

20 -

ciência é máxima na região do espectro de nosso interesse.

Provido externamente com dois contadores de cinco dígi tos, um para leitura de número de onda, e outro que pode ser colocado em zero para qualquer frequência de excitação, fornece o deslocamento de frequência Δk (cm⁻¹).

As fendas permitem ajuste vertical de 2 a 50 mm e horizontal de 5 μ a 3 mm.

As velocidades de varredura variam de 0,4 a 1000 cm⁻¹/ min. Varrendo a velocidades muito baixas, sob condições de resolução superiores (largura de fenda mínima), impõe o maior d<u>e</u> sarranjo no comportamento do espectrômetro.

Pela escolha da velocidade de varredura v, e a largura da fenda w (banda passante), a constante de tempo τ foi ajust<u>a</u> da para otimizar as condições de registro pela formula de Sch<u>u</u> bert (47):

 $v\tau = W / 4$

A deteção foi por meio de uma fotomultiplicadora FW -130, número 097018 da Electron Tube Division ITT, com máxima <u>e</u> ficiência quântica na região azul - verde do espectro.

Para redução de emissão termoiônica a valores desprezíveis, a fotomultiplicadora foi resfriada termoeletricamente.

O sinal amplificado por um eletrômetro 610 Solid State da Keithley Instruments, foi registrado com o registrador de dois canais 17505 A da Hewlett Packard.

A potência do laser foi atenuada para evitar aquecime<u>n</u> to excessivo da amostra e monitorada com o Radiant Flux Meter 8330 A da Hewlett Packard.

21 _

(8)

IV - RESULTADOS EXPERIMENTAIS

IV.1 - Apresentação dos resultados experimentais

Para examinar simultâneamente todos os modos Raman ativos, o feixe incidiu a 609 da normal a superfície da amostra, produzi<u>n</u> do luz espalhada polarizada em diversas direções. O feixe espalh<u>a</u> do foi analisado diretamente, sem o emprego de um polarizador.

Isto permitiu a deteção de tres modos óticos $\Lambda_1(T0)$, $E_1(T0)$ e E_2 , do GaN e os modos Λ_{1g} e E_g (externo) da safira, a serem usados como normalizadores.

Os espectros para todas as frequências excitadoras são análogos ao mostrado na fig. 5, para comprimento de onda incidente de 4965 Å e a temperatura ambiente.

A posição dos picos em frequência concordam plenamente com os resultados publicados anteriormente, tanto para o GaN(44), quanto para a safira (45).

O modo E₂ de baixa frequência, não foi analizado por nos, devido a mistura com linhas de fluorescência sempre presentes próximo a linha do Argônio.

Contrário as espectativas, os modos longitudinais do GaN não foram observados.

Na configuração de espalhamento y(z, y)x, para deteção de fonons $E_1(TO) = E_1(LO)$, este último não : é visto. Com a geome tria $\tilde{x}(y, y)$ \tilde{x} , adequada para o aparecimento de fonons $A_1(LO)$ e E_2 , apenas o modo E_2 é observado.

Medidas da secção de choque absoluta, são difíceis particularmente próximo à ressonância onde ha incerteza envolvida na correção dos dados para a absorção da amostra.

A dificuldade e removida com o uso de uma tecnica previamente descrita (13, 48) para medidas relativas de secção de choque.

Assim, tomando as razões das intensidades das linhas Raman do GaN, pelas da safira, a compensação para a absorção bem como correções instrumentais, foram feitas automaticamente.

A dispersão da safira foi considerada proporcional apenas a quarta potência da frequência incidente. Consequentemente, as curvas de dispersão para os modos $A_1(TO)$, $E_1(TO)$, e E_2 , mostra dos na fig. 6, são o desvio de sua dependência em frequência da lei w⁴ (incidente).

Nesta fígura, é apresentada também a teoria dos estados de Bloch (19), correspondendo a curva tracejada.

- 22 -

<u>FIGURA 6.</u> Dados experimentais para as in tensidades Stokes de espalhamento Raman de fonons óticos em GaN, e comparação com a teoria de Loudon.

25

*

A fig. 7, traz a comparação dos resultados experimentais com a teoria de Ganguly e Birman (21) indicada pela curva s $\underline{\tilde{o}}$ lida.

IV.2 - Discussão

O espalhamento Raman por vibração da rede é tratado por Loudon (19), numa aproximação de terceira ordem, em que os elementos de matriz do operador de espalhamento (cujo módulo ao quadrado aparece na regra de ouro de Fermi para o cálculo da eficiência de espalhamento) contém denominadores de energia do tipo:

$$\sum_{n,n'} \frac{\langle f | H_{er} | n' \rangle \langle n' | H_{e1} | n \rangle \langle n | H_{er} | i \rangle}{(\omega_n - \omega_1) (\omega_{n'} - \omega_2)}$$

onde n e n' são estados intermediários do processo; $\omega_1 = \omega_2$ as frequências do foton incidente e do foton espalhado respectivamente; i , f , os estados inicial e final do sistema; H_{er} à interação elétron-foton, e H_{e1} a interação elétron-fonon.

A interação dos elétrons com a radiação, é função dos elementos de matriz da quantidade de movimento e o acoplamento dos elétrons com fonons transversais, depende dos elementos de matriz do operador potencial de deformação.

Considerando-se os elementos de matriz da quantidade de movimento Ραβ e do potencial de deformação Ξαβ independentes do vetor de onda k, a expressão obtida para o operador de espalhamento ē:

$$R_{12}^{i}(-\omega_{1},\omega_{2},\omega_{0}) = \frac{1}{V} \sum_{\alpha,\beta} \frac{P_{0\beta}^{2}P_{\beta\alpha}^{1}\Xi_{\alpha0}^{1}}{(\omega_{\beta}+\omega_{0}-\omega_{1})(\omega_{\alpha}+\omega_{0})} + \frac{P_{0\beta}^{1}P_{\beta\alpha}^{2}\Xi_{\alpha0}^{i}}{(\omega_{\beta}+\omega_{0}+\omega_{2})(\omega_{\alpha}+\omega_{0})}$$

$$+ \frac{P_{0\beta}^{2} \Xi_{\beta\alpha}^{i} P_{\alpha0}^{1}}{(\omega_{\beta} + \omega_{0}^{-} \omega_{1})(\omega_{\alpha}^{-} \omega_{1})} + \frac{P_{0\beta}^{1} \Xi_{\beta\alpha}^{i} P_{\alpha0}^{2}}{(\omega_{\beta} + \omega_{0}^{+} \omega_{2})(\omega_{\alpha}^{+} \omega_{2})}$$

$$+ \frac{\Xi_{0\beta}^{i} P_{\beta\alpha}^{2} P_{\alpha0}^{i}}{(\omega_{\beta}+\omega_{2}-\omega_{1})(\omega_{\alpha}-\omega_{1})} + \frac{\Xi_{0\beta}^{i} P_{\beta\alpha}^{1} P_{\alpha0}^{2}}{(\omega_{\beta}+\omega_{2}-\omega_{1})(\omega_{\alpha}+\omega_{2})}$$

(9)

- 26 -

Onde os indices superiores 1 e 2, nos elementos da matriz P, indicam que suas componentes são tomadas nas direções de polarização dos fotons incidente e espalhado respectivamente; ω_0 é a frequência do fonon ótico; α e β são estados de pares -(elétron-buraco) livres.

Quando a energia incidente se aproxima da energia do gap do material, alguns dos denominadores na expressão (9) tendem a zero. A maior divergência ocorre no terceiro termo da direita para a esquerda, que é denominado "termo ressonante". Os termos ligeiramente dependentes da frequência, são denominados "não-ressonantes".

Mantendo-se apenas o termo ressonante, e considerando - se a aproximação de banda parabólicas simples com massa reduzi- da μ , a expressão para a intensidade Stokes de espalhamento-Raman \vec{e} :

$$I = C \left\{ \int_{0}^{K \text{ max}} dk \left(\omega_{g}^{-} \omega_{2}^{+} + \frac{h^{2}k^{2}}{2\mu} \right) \left(\omega_{g}^{-} \omega_{1}^{-} + \frac{h^{2}k^{2}}{2\mu} \right) \right\}^{-1} \left| \int_{0}^{2} (10 - a)^{2} dk \left(\omega_{g}^{-} - \omega_{1}^{-} + \frac{h^{2}k^{2}}{2\mu} \right) \right|^{2} dk$$

ou

$$I = C' | \omega_0^{-1} (\omega_g^{-} \omega_2)^{1/2} - (\omega_g^{-} \omega_1)^{1/2} | (10-b)$$

onde $\omega_{\mathbf{q}}$ indica a frequência de gap e k o vetor de onda.

A expressão (10-b) e representada na fig.6, pela curva tracejada. Nesta figura vê-se que foi obtida concordância qual<u>i</u> tativa de nossos resultados com a teoria de Loudon.

Uma simples extensão da teoria de Loudon para incluir termos não ressonantes, junto aos termos ressonantes usuais na amplitude de espalhamento Raman, foi suficiente para ajustar os modos transversais em cristais de CdS e ZnS (49,50).

A eficiência de espalhamento Raman para o CdS, conforme Ralston e colaboradores (49), sofre um decrescimo pronunciado quando a energia do foton incidente se aproxima da energia de ressonância.

O mesmo fenômeno foi observado por Damen e Scott (51), para modos E_2 no CdS e por Lewis e colaboradores (50) para modos transversais em ZnS.

Para explicar este tipo de comportamento, e sugerido a possibilidade de efeitos de cancelamento entre termos ressonantese não ressonantes, na secção de choque. Foi considerado para os compostos supra citados, que o sinal do termo ressonante e oposto ao do termo não ressonante.

O sinal destes termos é governado pelo sinal do potenc<u>í</u> al de deformação.

O sinal do potencial de deformação associado com as diversas bandas, pode ser tanto positivo, quanto negativo, o que faz plausível a diferença entre contribuições ressonante e não ressonante.

Porem, esta consideração e justificável apenas com o c<u>o</u> nhecimento detalhado dos potenciais de deformação com distorções Raman específica. Isto e, seria necessário conhecer como a ene<u>r</u> gia de cada banda do espaço k, muda quando ha uma distorção de dada simetria, A₁, E₁ ou E₂ por exemplo, num cristal de wurtzite.

No nosso caso, como os três modos se comportam igualme<u>n</u> te (ver fig. 6), seria necessário que as distorções das difere<u>n</u> tes simetrias A_1 , E_1 e E_2 , dessem exatamente a mesma mudança nos sinais dos diferentes potenciais de deformação.

A curva solida da fig. 7, e uma extrapolação da fig. 1, ref. (52), e descreve a teoria dos exitons. O ajuste desta curva e muito bom para os três modos considerados.

A teoria foi desenvolvida por Ganguly e Birman (21), on de consideram os estados intermediários como estados de exitons devido a interação Coulombiana entre elétrons e buracos. Os hamiltonianos para os sistemas de interação de elétrons, fotons e fonons, são escritos na forma da segunda quantização e os autoestados do sistema de elétrons, na representação de exiton de Wannier.

Próximo a ressonância, a expressão obtida (52) para a intensidade Stokes de espalhamento é da forma:

$$I(\omega_1) = A N_{ex}^2$$
 (11)

onde A é uma constante, e

$$N_{ex} = \frac{1}{\pi a_{\rho}^{3}} \sum_{m} \left\{ \left[m^{3} (\omega_{m} - \omega_{2}) (\omega_{m} - \omega_{2}) \right] \right\}$$

$$\left[\begin{bmatrix} m^{3} & (\omega_{m} + \omega_{2}) & (\omega_{m} + \omega_{1}) \end{bmatrix}^{-1} \right\} +$$

28 -

+
$$\frac{1}{(2\pi)^3} \int_{0}^{k_{max}} dk \frac{\pi \alpha \exp \pi \alpha}{\sinh \pi \alpha} \left\{ \left[(\omega_g - \omega_2 + \frac{k^2}{2\mu}) (\omega_g - \omega_1 + \frac{k^2}{2\mu}) \right]^{-1} + \right]$$

$$\left[\left(\omega_{g} + \omega_{2} + \frac{k^{2}}{2\mu} \right) \left(\omega_{g} + \omega_{1} + \frac{k^{2}}{2\mu} \right) \right]^{-1} \right\}$$
(12)

onde $\omega_{\rm m}$ é a energia do m-ézimo estado discreto de exiton, a o raio de Bohr e α = $|R^+ / 1/2 k^2|^{1/2}$, onde R' é a constante de Ry<u>d</u>. berg para o exiton.

Note-se nesta equação, que as contribuições de todos os estados discretos de exitons, estão agrupadas em um termo, e a contribuição do contínuo de exitons em outro.

O comportamento do espalhamento Raman com o segundo te<u>r</u> mo, é semelhante ao predito pela teoria dos estados de Bloch, e é predominante para frequências excitadoras afastadas do gap de energia do material em questão. Bem próximo ãs frequências de ressonância a contribuição predominante para o espalhamento é devida aos estados discretos de exitons. Uma comparação destas contribuições é fornecida pela fig. 9, na ref. (52).

Na região investigada por nos, era de se esperar uma d<u>e</u> pendência da secção de choque de espalhamento quase que exclusiva dos estados de Bloch. Os resultados mostram entretanto, que mesmo relativamente longe do gap, deve-se somar sobre todos os estados intermediarios, incluindo os discretos de exiton, para se obter um aumento da secção de choque coincidente com os dados experimentais.

Por outro lado, \bar{e} admirável a concordância dos modos A₁ (TO) e E₁(TO) com a teoria dos exitons. Isto está em desacordo com Scott e colaboradores (13), que acreditam que os fonons TO exibem ressonância com o contínuo de estados de pares eletron-b<u>u</u> raco.

A fig. 7, traduz por si propria a importância dos exitons no espalhamento Raman pelos fonons TO observados no GaN.

É estranho o fato dos fonons longitudinais do GaN não t<u>e</u> rem sido observados. Isto nos levou a formulação da seguinte an<u>ã</u> lise: a mudança na polarizabilidade para uma componente transve<u>r</u> sal durante a vibração, não é necessariamente igual a de uma

- 29 -

componente longitudinal.

A diferença vem da natureza do acoplamento eletron - f<u>o</u> non.

Para ondas transversais, hã apenas acoplamento do tipo potencial de deformação, enquanto que para ondas longitudinais, hã também acoplamento eletrostático (interação Fröhlich).

As duas contribuições podem ser aditivas ou subtrativas e as intensidades Raman resultantes devido a fonons longitudi nais e transversais podem ser consideravelmente diferentes.

Porēm, ē aceito que, na ressonância, a interação Fröhl<u>i</u> ch domina a interação elētron-fonon, (46, 53 - 55).

Um exemplo é o espalhamento Raman por fonons $F_{1\mu}$ normal mente inativos (**), observado em cristais centrosimétricos sob ressonância, em primeira ordem (53) e em segunda ordem (54).

No espalhamento Raman de primeira ordem, o fonon $F_{1\mu}$ não aparece enquanto que o $F_{1\mu}$ (LO) exibe forte ressonância. Os autores (53), consideram este último espalhamento ressonante co mo devido a interação Fröhlich e concluem que tal interação é muito maior que a interação tipo potencial de deformação, res ponsável pelo espalhamento Raman ressonante por fonons transve<u>r</u> sais.

O espalhamento de segunda ordem observado nos mesmos cristais (54), é proveniente de mecanismos de vetor de onda fi nito, envolvendo elementos de matriz da interação Fröhlich.

Martin (55), examina o comportamento da secção de choque de espalhamento por fonons óticos longitudinais, via intera ção Fröhlich intrabanda. Ele sugere que a representação para f<u>o</u> nons de vetor de onda finito, seja diferente da representação <u>u</u> sual a vetor de onda nulo. O aparecimento de fonons de vetor de onda finito é justificado considerando nos desenvolvimentos das expressões teóricas para a amplitude de espalhamento, termos d<u>e</u> pendentes de a / λ , onde λ é o comprimento de onda da luz e é o comprimento característico dos elementos de matriz de espalhamento.

(**) As regras de seleção para cristais que possuem centro de inversão, são baseadas em considerações de paridade. Na atribuição do fonon an centro da zona de Brillouin, vibrações com paridade împar, cujas representações tem subindice μ, na notação de Loudon (4) podem ser ativas apenas no infra-vermelho. Mas a vetor de onda finito, fonons oticosnão tem polaridade bem definida, e portanto, processos de espalhamento Raman considerados inativos, podem ser observados.

A interação Fröhlich intrabanda (que é nula para $a/\lambda=0$), pode dar origem a aumento significativo da secção de choque de espalhamento próximo a ressonância com exitons de raio grande, e portanto $a/\lambda\neq0$. Longe da ressonância o espalhamento Fröhliché muito pequeno e valem as regras de seleção usuais para o comprimento de onda grande.

Alem destes exemplos, resultados experimentais em Raman ressonante por fonons óticos no CdS, exibem comportamento interessante.

Foi observado por Leite e colaboradores (48) neste cris tal, que a secção de choque para fonons TO cresce mais rapida mente com a frequência, que para fonons LO, para excitação longe do gap. Além disso, os fonons LO dão ressonância com a fre quência do exiton (48), enquanto que os TO sofrem saturação na região pouco abaixo do gap. E, finalmente, quando a energia de excitação estã dentro da banda de absorção, observa-se espalhamento por 2LO, 3LO,...,9LO (15), enquanto que nenhum fonon TO é observado nesta região ou acima do gap.

Estas observações são compativeis com a consideração de que o aumento ressonante dos fonons LO e devido a interação -Fröhlich, e dos TO e devido a interação de potencial de deform<u>a</u> ção.

Neste esquema, pode-se pensar que na região investigada por nos, a interação Fröhlich não domina o acoplamento eletro<u>n</u> -fonon, devido a ausência de fonons longitudinais do GaN. Prov<u>a</u> velmente as contribuições do potencial de deformação e intera ção Fröhlich para o espalhamento Raman dos fonons LO deste cri<u>s</u> tal são de sinais opostos. Um cancelamento destas contribuições muito fracas, justificando a impossibilidade de deteção dos fonons longitudinais.

Nossos resultados são confinados a uma região distante do gap de energia do GaN. Para melhor estudar o comportamento dos fonons óticos deste cristal, será necessário estender ae m<u>e</u> didas para frequências incidentes mais próximas do gap, certa mente com o emprego de dye lasers.

Por outro lado, Pinczuk e Burstein (32), consideram fr<u>a</u> ca a interação entre exitons e fonons transversais, visto que a intensidade de espalhamento para o fonon TO em In Sb não exibe mudança alguma com o decrescimo da temperatura. Uma experiência

- 31 -

anāloga no GaN, talvez viesse a comprovar que a interação ex<u>i</u> tons com fonons TO não é desprezível neste cristal.

Estas experiências poderão ser úteis no sentido que permitirão entender melhor os principios básicos referentes ao espalhamento Raman por modos vibracionais. O principal resultado obtido neste trabalho, foi a observação dos efeitos exitons numa região relativamente distante do gap de energia do cristal.

A concordância dos resultados para CdS e para Gall com a mesma curva teórica, sugere que os efeitos de exitons são comparáveis nos dois compostos, apesar de que a energia de li gação de exitons em compostos III - V é pequena e consequentemente, seus efeitos não deveriam ser pronunciados como nos compostos II - VI (56). Dados recentes para a energia de liga ção do exiton livre em GaN, publicados por Dingle e Ilegems -(58), confirmam esta sugestão.

E admirável o ajuste dos fonons transversais ao modelo de Ganguly e Birman, pois considera-se fraca a interação entre modos TO e exitons(32).

. Pela primeira vez, a dependência em frequência dos modos óticos $A_1(TO, E_1(TO) = E_2$, foi comparada de maneira s<u>a</u> tisfatória a um modelo teórico.

REFERÊNCIAS

(1)	A. C. Menzies, Rep. Prog. Phys., 16, 83, (1953).
(2)	H. Poulet, Ann. Phys., (paris), 10, 908, (1955).
(3)	J. P. Mathieu, "Optics and Spectroscopy of all Wavelengths", Proc. of the meeting of the Physikalische Gesellschaft of German Democratic Republic, Jena (1960).
(4)	R. Loudon, Adv. Phys., 13, 423, (1964).
(5)	S. P. S. Porto and D. L. Wood, J. Opt. Soc. Amer., 52, 251, (1962).
(6)	J. Behringer, "Raman Spectroscopy", Ed. H. A. Szymanski, Plenum Press, New York, Vol. 1, p. 168, (1969).
(7)	P. P. Shorygin and T. M. Ivanovna, Opt. and Spectr., 25, 200, (1968).
(8)	W. Holzer, W. F. Murphy and H. J. Bernstein, J. Chem. Phys., 52, 399, (1970).
(9)	"Light Scattering of Solids", Ed. G. B. Wright, Springer, N. Y., (1969).
(10)	"Light Scattering of Solids" Ed. M. Balkanski, Paris, (1971).
(11)	R. C. C. Leite and S. P. S. Porto, Phys. Rev. Lett., 17, 10, (1966).
(12)	T.C. Damen and J. F. Scott, Solid State Comm., 9, 383, (1971).
(13)	J. F. Scott, R.C.C. Leite and T.C. Damen, Phys. Rev. 188, 1285, (1969).

- 34 -

- (14) R.C.C.Leite and J.F. Scott, Phys. Rev. Lett., 22, 130, (1969).
- (15) R.C.C.Leite, J. F. Scott and T. C. Damen, Phys. Rev. Lett., 22, 780, (1969).
- (16) J.F. Scott, T.C. Damen, R.C.C.Leite and W.T.Silfvast, Solid State Comm., 7, 953, (1969).
- (17) J.F.Scott, T.C. Damen, W.T. Silfvast, R.C.C.Leite and L.E. Cheesman, Opt. Comm., 8, 397, (1970).
- (18) L. N. Ovander, Soviet Phys. Solid State, 4, 1081, (1962); 3, 1737, (1962).
- (19) R.Loudon, Roy. Soc. London, 275 A, 218, (1963).
- (20) R.Loudon, Le J. de Phys., 26, 677, (1965).
- (21) A.K. Ganguly and J.L. Birman, Phys. Rev., 162, 806, (1967).
- (22) D.C. Hamilton, Phys. Rev. 188, 1221, (1969).
- (23) L. R. Swanson and A.A. Maradudin, Solid State Comm., 8, 859, (1970).
- (24) M.Cardona, Solid State Comm., 9, 819, (1971).
- (25) M.V. Klein and S.P.S.Porto, Phys. Rev. Lett., 22, 782, (1969).
- (26). R.M.Martin and T.C. Damen, Phys. Rev. Lett., 26, 86, (1971).
- (27) E.Mulazzi, Phys. Rev. Lett., 25, 228, (1970).
- (28) C.A. Argüello, D. L. Rousseau and S.P.S.Porto, Phys. Rev., 3, 1351, (1969).
- (29) M.A.Renucci, J.B.Renucci and M.Cardona, Phys. Status Solidi, 49, 625, (1972).

35 -

- (30) P.Y.Yu and Y.R. Shen, Phys. Rev. Lett., 29, 468, (1972).
- (31) Veja por exemplo: R.W. Keys, "Semiconductors and Semimetals", Ed. R.K. Willardson and A.C. Beer, Vol. 4, p. 333, (1968).
- (32) A. Pinczuk and E. Burstein, Phys. Rev. Lett., 21, 1073, (1968).
- (33) S. Walker and H. Straw, "Spectroscopy", Chapman and Hall L T D, vol. II, P.145, (1962).
- (34) H. W. Schrötter, "Raman Spectroscopy", Ed. H. A. Szymanskí, Plenum Press, vol. II, P.71, (1970).
- (35) A. Mooradian, Science, 169, 20, (1970).
- (36) C.F. Dewey Jr., "Modern Optical Methods in Gas Dynamic Research", Ed. Dosanjh, Plenum Press, P. 224, (1971).
- (37) F. Cerdeira, W.Dreybrodt and M.Cardona, Solid State Comm., 10, 591, (1972).
- (38) R.L. Schwiesou, J. Opt.Soc. Am., 59, 1285, (1969).
- (39) D. Landon and S.P.S.Porto, Appl. Opt., 4, 762, (1965).
- (40) J.A. Topp, A.W. Scrötter, H. Hacker and J. Brandmüller, Rev. Sci. Instr., 40, 1164, (1969).
- (41) H.P. Maruska and J.J. Tietjen, Appl. Phys. Lett., 15, 327, (1969).
- (42) "Crystal Data Determinative Tables", Ed. Donnay & Donnay, Cox & Rennard & King, A.C.A.Monograph, nº 5.
- (43) T.C.Damen, S.P.S.Porto and B. Tell, Phys.Rev. 142, 570, (1966).
- (44) D.D.Manchon Jr., A.S. Barker, J.P. Dean, R.B. Zetterstron, Solid State Comm., 8, 1227, (1970).

- 36 -

- (45) S.P.S.Porto and R.S.Krishman, J. Chem.Phys., 47, 1009, (1967).
- (46) M.P. Fontana and E. Nulazzi, Phys.Rev. Lett. 25, 1102,(1970).
- (47) H. Schubert, Expt. Techn.Physik, 8, 155, (1960).
- (48) R.C.C.Leite, T.C.Damen and J.F.Csott, "Light Scattering in Solids", Ed. G.B. Wright, N.Y. (1969).
- (49) J.M.Ralston, R.L. Wadsack and R.K.Chang, Phys. Rev.Lett., 25, 814, (1970).
- (50) J.L. Lewis, R.L.Wadsack and R.K.Chang, "Light Scattering of Solids", Ed. M. Balkanski, Paris, (1971).
- (51) T.C.Damen and J.F. Scott, Solid State Comm., 9, 383, (1971).
- (52) B.Bendow, J.L. Birman, A.K.Ganguly, T.C. Damen, R.C.C.Leite and J.F.Scott, Opt.Comm., 1, 267, (1970).
- (53) E. Anastassakis and C.H.Perry, "Light Scattering of Solids", Ed.M. Balkanski, Paris, (1971).
- (54) E.Anastassakis and E.Burstein, "Light Scattering os Solids", Ed. M. Balkanski, Paris, (1971).
- (55) R. M. Martin, "light Scattering of Solids", Ed.M. Balkanski, Paris, (1971).
- (56) J.O.Dimmock, "Semiconductors and Semimetals", Ed.R.K. Wilardson and A.C.Beer, vol.3, p. 259, (1967).
- (57) J.C.Damen and J. Shah, Phys. Rev. Lett., 27, 1506,(1971).
- (58) R.Dingle and M. Ilegems, Solid State Comm., 9, 175, (1971).

- 37 -