EFEITOS DE MUITOS CORPOS E PROPRI<u>E</u> DADES DE COERÊNCIA NO PROCESSO DE EXCITAÇÃO DE UM ÂTOMO POR IMPACTO ELETRÔNICO.

Fernando Jorge da Paixão Filho

Orientador.- Prof. Dr. Gyorgy Csanak

Tese apresentada ao Instituto de Física "Gleb Wataghin" para a obtenção do título de Doutor em Ciências

Agosto 1980

Aos meus amigos Malu, Julia, Tiago, Leda, Everardo, Mariana, Stela, Wa<u>l</u> demar, Mônica, Eraldo, Carlos Erne<u>s</u> to, Mário e Geraldo.

• •

AGRADECIMENTOS

Agradeço ao Prof. Dr. Gyorgy Csanak pela orientação deste trabalho.

Aos Prof. Dr. V. McKoy e Dr. D.C.Carlwright pelas sugestões ao longo deste trabalho.

Aos colegas de grupo Gilda, Nely, Luis Eug<u>e</u> nio, Emerson e Irineu pela inestimável ajuda.

Ao Dante, Lee e demais membros do CCUEC.

A Loritilde, Ana e Valdir pela datilografia.

Ao Vasco, Charles, Marta e Antonela pelo d<u>e</u>

senhos.

Ao apoio financeiro em diversas fases da Universidade Federal da Paraíba e da CAPES e do CNPq.

GLOSĂRIO

coordenadas espaciais ----**+** 1: coordenada de spin $r = (\vec{r}, r)$ coordenada de espaço e spin* t coordenada temporal $J = (r, \zeta)$ coordenada de espaço, spin e tempo $J^{\dagger} = (T_{i}, C_{i}^{\dagger})$ $C_{j}^{\dagger} = C_{j} + \epsilon \quad (\epsilon - \epsilon_{i} + \epsilon_{j})$ V(1-1') $V(\vec{r}, -\vec{r}_{1}) \delta(t_{1}-t_{1}') = \frac{1}{|\vec{r}-\vec{r}'|} \delta(t_{1}-t_{1}')$ dr significa integral em \vec{r} soma sobre os spins σ (*) sempre que o spin for desacoplado das equações usamos r como r = $|\vec{r}|$

SUMÁRIO

No Capitulo I

A teoria de muitos corpos em primeira ordem , (FOMBT) é aplicada para calcular a seção de choque diferencial (SCD) por excitação eletrônica dos estados 4¹S e 4³S do He a energias 40ev, 60ev e 80ev.

No Capitulo II

Baseado nas idéias da FOMBT, uma teoria é desenvolvida para excitações de átomos inicialmente em estados meta-estáveis.

No Capitulo III

A teoria de Fano-Macek para experiências de coincidência é aplicada para estados com J=l, nos quais a interação spin-órbita é importante, alguns efeitos novos são enfatizados, uma parametrização é introduzida e usamos a FOMBT numa forma modificada para calcular os novos parâme tros para os estados 4¹P₁ e 4³P₁ do Ar.

No Capitulo IV

Uma teoria de muitos corpos em segunda ordem é desenvolvida e aplicada a excitação de estado 2³S do He a 40.1ev.

ABSTRACT

In the chapter I first order many body theory (FOMBT) is applied to the calculation of diferential cross section for impact excitation of the 4^{1} S and 4^{3} S states of He by electrons at energies 40ev., 60ev and 80ev.

In the chapter II we use Martin-Schwinger many body Green's function techniques to develop a theory for excitation of meta-stable targets in first order.

In the chapter the theory of Fano-Macek, for electron-photon coincidence experiments is applied to states with J = 1 and where the spin-orbit interaction is important, new effects are stressed and FOMBT in a modified form is used to calculate the new parameters of this theory.

In the chapter IV a second order many body is used to the excitation of 2³S of He at 40.1 ev. vi.

INDICE

	PÅG.
INTRODUÇÃO	٦
CAPÍTULO 1 FOMBT para Excitação dos Estados 4 ¹ S, 4 ³ S do He	4
CAPÍTULO 2	
Espalhamento Inelástico de Elétrons por Atomos em Estados Metaestáveis	18
CAPÍTULO 3	
Experiência de Coincidência Elétron-Fóton em Espalhamento Inelástico de Elétrons por Atomo	31
CAPÍTULO 4	
Teoria de muitos Corpos em Segunda Ordem	
por $Atomo$, 2 ³ S He	67
REFERÊNCIAS	81
APÊNDICE A	88
APÊNDICE B	90
APENDICE C	92
APENDICE D	94
APÊNDICE E	96
APENDICE F	98
APENDICE G	00 I

Este trabalho e dedicado ao estudo do espalhamento inelástico eletrons por átomos, mais especificamente -He e Ar, numa região de energia definida entre o limiar de ionização até aproximadamente 100ev, chamada intermediária, como também a estudos no caso em que o foton, subsequentemen te emitido ao processo de excitação eletrônica, é detectado em coincidência retardada com o eletron espalhado inelastica mente através do uso da teoria de muitos corpos^(1-3,16).Devi do a sua aplicação a problemas de astrofísica, plasma, la sers, um grande número de trabalhos tem sido dedicados a es te tema . Recentemente Bransden e McDowell⁽⁸⁰⁾ num artigo de revisão sobre o assunto analisaram os modelos teoricos usados para este problema. A comparação com os resultados experimen tais mostraram que dentre os modelos, um chamado teoria de muitos corpos em primeira ordem⁽⁷⁾(FOMBT), fornecia para as excitações dos estados 2'P e 2'S do $He^{(8)}$ os melhores resul tados como também para os parâmetros obtidos através das ех periências de coincidência⁽¹⁰⁾. Assim os bons resultados jun to com a simplicidade deste modelo, nos levou a usa-lo em problemas ainda não estudados. Por outro lado, este modelo sofre de limitações exemplo: o átomo usado deve ter estado fundamental 'S, isto nos deixa ainda muitos casos a disposição. Outra restrição é a não inclusão de efeitos relativísti cos numa forma "ab initio".

bhy

Recentemente a interação spin-órbita no átomo alvo foi incluida semi-empiricamente⁽⁶⁷⁾.

Esta tese então tem no seu todo dois pontos de contato um, o estudo do espalhamento de elétrons por átomos através do uso das técnicas de muitos corpos, especificamente da função de Green de muitos corpos de Martin- Schwinger Desta forma dispensamos um capítulo de conclusão jã que cada capítulo nos seus resultados é a própria conclusão. Mas exi<u>s</u> te entre eles a perspectiva que nos referimos.

Assim no capítulo I a FOMBT é usada para estudar os estados 4¹S e 4²S do He, trabalho que buscava obter o comportamento desta teoria para estudos excitados mais altos que outras tecnicas como acoplamento forte (close conpling) levaria a número muito grande de equações acopladas. No capitulo II uma teoria para espalhamento inelástico de eletrons por ātomos em estados metaestāveis no mesmo espirito em que a FOMBT é usada para o estado fundamental. No Capítulo III o interesse de se estudar o Ar⁽⁶⁷⁾ e usar a FOMBT numa forma modificada para parâmetros de coincidência dos estados 4³P, e 4¹P₁. Isto nos levou, através do uso da teoria do Fano е Macek, a entender o efeito da interação spin-órbita no áto mo alvo. Este entendimento nos mostrou que as experiências feitas para atomos onde este efeito era importante não po diam ser interpretadas como no caso do He e existiam certas regras de seleção para estas experiências. Nos introduzimos nova parametrização e a FOMBT foi usada para obter valores quantitativos. Por fim no capítulo IV estudamos a excitação do 2³S do He onde uma preliminar aplicação da teoria de muitos corpos em segunda ordem ⁽⁸¹⁾ forneceu bons resultados Este é o primeiro cálculo em segunda ordem de muitos corpos.

2.

Ur,

Não nos referimos ao uso de tecnicas de teoria dos grupos, jã que isto quase se confunde com física atômica. Mas relacionado ao mesmo desenvolveremos uma técnica para d<u>e</u> sacoplar o momentum angular da amplitude de Bethe-Salpeter entre estados excitados usando a maneira de se construir te<u>n</u> sores no R_3 .

Isto está no apêndice A.

CAPITULO I

FOMBT para Excitação dos Estados 4'S,4³S do He

Para construir uma teoria quantitativa para ātomos de muitos elétrons é necessário desenvolver uma apro ximação para a equação de Schrödinger do sistema, seja qual for a natureza do problema com a notável exeção em algumas características do hidrogênio. Dentre os vários métodos usados para fornecer numa solução aproximada ao problema existem aqueles derivados da aplicação dos métodos da teoria de muitos corpos(1-3). Originalmente desenvolvida em fi sica nuclear e partículas, tem desde de sua primeira aplicação por Kelly(4), ao estudo da energia de correlação do estado fundamental do Be , sido aplicada em proble mas de física atômica e molecular com excelentes resultados⁽⁵⁻⁶⁾. Estas aplicações teem mostrado que para obter resultados razoáveis a aproximação em ordem zero não é em absoluto num problema simples necessitando de uma solução numérica.

Estamos interessados numa aplicação ao estudo do espalhamento inelástico de elétrons por átomos dos métodos de muitos corpos em especial usando o fo<u>r</u> malismo da função de Green desenvolvido por Martin--Schwinger⁽²⁾. Derivada originalmente por Csanak e outros⁽⁷⁾ esta teoria teve como primeira aplicação o co<u>n</u> junto de estados como n=2 do He ⁽⁸⁾ sendo após estendida para outros estados do He ⁽⁹⁻¹⁰⁾ e Ar ⁽¹¹⁾

com bons resultados. Neste capitulo vamos deduzir a FOMBT para aplicā-la a excitação por elétrons do estado 4's e 4^{3} S do He, em primeiro lugar jā que esta teoria não foi aplicada a estes estados como também é interessante se c<u>o</u> nhecer como esta teoria se mostra quando aplicada em e<u>s</u> tados mais altos. Esta dedução ⁽⁷⁾ apesar de conhecida será importante para aplicações posteriores.

Iniciamos com a dedução da matriz S usa<u>n</u> do o formalismo de Lehmann-Symanzik-Zimmerman (LSZ)⁽¹²⁾

 $Snqup = \lim_{t \to \infty} \langle \Psi_n | a_q(t) q_p(t) | \Psi_0 \rangle = 1$ onde $|\Psi_0 \rangle (|\Psi_n \rangle) \stackrel{t' \to \infty}{=} a$ função de onda do estado fu<u>n</u>

onde $|\Psi_{n}\rangle$ $(|\Psi_{n}\rangle)$ there is a função de onda do estado fundamental (excitado). Para definir aq e ap suponhamos num operador de campo para o elétron $\Psi_{(rt)}$ na representação de Heisemberg e obedecendo regras de anticomutação nos limites $t \rightarrow \infty (-\infty)$ definirã formas assintóticas num passado (futuro) distante. Estas formas assintóticas podem ser expandidas em uma séria de ondas planas e desta expansão definiremos a_n^+

 $\lim_{t \to +\infty} \frac{1}{t} + \lim_{t \to$ onde cip - Line citte

Em termos de operadores de campo a equação 1.1 pode ser escrita

$$S_{n_{q},op} = \lim_{\substack{t \to -\infty \\ t' \to +\infty}} \int dr dr \left(\frac{1}{q} (rt) \frac{1}{$$

onde

ē chamada amplitude de Bethe-Salpeter para buraco-partīcula. Esta amplitude terā por espalhamento inelāstico o me<u>s</u> mo papel que a função de Green de uma partīcula para espalhamento elāstico^(7,13,14).

Para obter uma equação para X^{o (1,1)} in<u>i</u> ciamos da equação

 $\int dz G G(z,z) G'(z,1) = S(1-1)$

Usando a técnica da diferenciação funcional de Schwinger(15-16) em relação a um potencial U(2) e a d<u>e</u> finição de resposta linear generalizada(3-16) na equação anterior

 $R(12, 1'2^{+}) = \frac{SG_{1}(1, 1)}{SU(2)} = -G_{2}(12, 1'2^{+}) + G_{1}(1, 1)G_{1}(2, 2')$

onde $G_{2}(12, 52^{4}) = (15^{4} (4) + (4) + (2) + (2) + (2) + (12) +$

T é o operador de ordenação de Wick para obter

$$\mathsf{R}(12,12^{4}) = G_{1}(1,2)G_{1}(2,1) + \int dz dz dz dz G_{1}(1,3)G_{1}(3,1) \equiv (34,34) \operatorname{K}(42,42^{4}) = 1.3$$

para qual definiremos = (34,340= chamada

função de vértice onde $\sum_{i=1}^{3} (3,4)^{(3-4)}$ e auto energia da equa

ção de Dyson para G,

$$G_1(1,1) = G_1^{\circ}(1,1) + \int dz dz' G_1^{\circ}(1,z) \sum_{i} (z,z') G_i(z',1)$$

e para ∑ temos

$$\sum_{i=1}^{n} (1,1') = i V(1-1') G_{i}(1,1') - i \delta(1-1') \int d3 V(1-3) G_{i}(3,3') + i \int d3 d4 V(1-3) G_{i}(1,4) \frac{S \sum_{i=1}^{n} (4,1')}{S U(3)}$$

7.

Usando a operação do Gell-Mann e Low (17-18) (L) em R(12,12⁺) podemos obter uma equação para X_n^o (1,1')

$$\chi_{n}^{o}(1,1') = \frac{1}{d_{n}} \int_{t_{z}^{+}00} \left(dr_{z} R(1z,1'z^{+}) \chi_{n}^{o}(z,z^{+}) \right)$$

onde $\mathcal L$ ar e definida como:

isto aplicado em (1.3) darã:

 $\chi_{\gamma}^{9}(1,1') = \int d3d3' d4d4' G_{(1,3)} G_{(3,1')} \equiv (34,34') \chi_{m}^{0}(4',4) = 1.4$

Uma outra equação para matriz S pode ser obtida usa<u>n</u> do (1.4)

$$S_{nq.op} = -\int d3d3'd4d4' \int g^{(3)} \int_{p}^{(3)} \Xi(34, 34') \chi_{n}^{o}(4, 4) 1.5$$

onde

$$f_{q}^{(3)} = i \lim_{t \to \infty} \int dn \ \Psi_{q}^{*}(1) G_{i}(1,3)$$

$$f_{p}^{(3)} = i \lim_{t \to \infty} \int dn' \ \Psi_{p}(1') \ G_{i}(3',1')$$

$$f_{p}^{(3)} = i \lim_{t \to \infty} \int dn' \ \Psi_{p}(1') \ G_{i}(3',1')$$

Um problema clássico que surge quando se aplica a função de Green é a cadeia infinita de equações acopladas. Isto força em algum ponto o truncamento das equações.* Em FOMBT isto é feito tomando-se G₁(1,1') na aproxim<u>a</u> ção Hartree-Fock e

$$= (34, 3'4') = \frac{\delta \sum_{HF} (3, 3')}{\delta u(4'4)} = [i \delta(3 - 4') \delta(4 - 3') - i \delta(3 - 3') \delta(4 - 4')] V(3 - 4) I.8$$

nde $\sum_{HF} (3, 3') = i V(3 - 3') G_{i}^{F} (3, 3') - i \delta(3 - 3') \int c \delta V(3 - 5) G_{i}^{F} (5, 5')$

Se usada em(1.4) estas condições fornecem a equação RPA para os estados excitados do sistema⁽¹⁹⁻²⁰⁾. Em (1.5) fornecem

 $\sum_{n=1}^{\infty} \int d3 d4 \int_{q}^{q} (3) \int_{p}^{(3)} V(3-4) X_{n}^{*}(4,4^{*}) - i \int d3 d4 \int_{q}^{(3)} \int_{p}^{(3)} V(3-4) X_{n}^{*}(3,4) J. q$

A dependência temporal pode ser resolvida integrando⁽¹⁻⁹⁾ usando-se

(*) Para uma discussão mais geral sobre o assunto ver ref. 16.

$$X_{n}^{o}(i,i') = e^{i\omega_{n}T_{1}} X_{n}^{o}(n_{1},n_{1}';C) \qquad T_{i} = \frac{T_{i}+T_{i}'}{2} \qquad C = C_{1}-C_{i}'$$

$$f_{q}^{o,*}(i) = e^{i\epsilon_{q}C_{1}} f_{q}^{o,*}(n_{2}) \gamma_{u_{q}}^{u_{q}}(G_{i}) \qquad f_{p}^{(i)} = e^{i\epsilon_{p}C_{i}} f_{p}^{(n_{1}')} \gamma_{u_{p}}^{u_{p}}(G_{i}')$$

obtendo-se

$$S_{nq,op} = -2\pi \epsilon \partial (\epsilon_{q} + \omega_{u} - \epsilon_{p}) \int \int dn_{3} dn_{4} - f_{4}^{(n_{3})} - \int_{p}^{p} (n_{q}) V(\vec{n}_{3} - \vec{n}_{4}) X_{n}^{o} (n_{3}, n_{4}; \vec{D})$$

$$- \int dn_{3} dn_{4} - f_{4}^{(n_{3})} - \int_{p}^{(n_{3})} V(\vec{n}_{3} - \vec{n}_{4}) X_{n}^{o} (n_{4}, n_{4}; \vec{D})$$

Chamamos

$$\widetilde{X}_n(n_{4,n_3}) \stackrel{\scriptscriptstyle \sim}{=} X_n^{\circ}(n_{4,n_4}, D^{-})$$

Pode-se mostrar que a parte de spin na matriz densidade de transição $\widetilde{X}_n(r^+,r)$ pode ser fatorada* a soma sobre os spin realizada obtendo-se

$$T_{nq,op} = (-1) \cdot (-1) C_{up} u_q - M_s^{*} [ZT_p \delta_{s,0}^{*} - T_E] 1.10$$

onde
$$T_D = \int d\vec{n}_1 d\vec{n}_2 f_q(\vec{n}_1) f_p(\vec{n}_1) V(\vec{n}_1 - \vec{n}_2) \tilde{X}_n (\vec{n}_2, \vec{n}_2) = 1.11$$

$$T_{E} = \int d\vec{n}_{1} d\vec{n}_{2} - fq(\vec{n}_{1}) + f_{p}(\vec{n}_{2}) V(\vec{n}_{1} - \vec{n}_{2}) \tilde{\chi}_{n}(\vec{n}_{2}, \vec{n}_{1}) \qquad 1.12$$

A matriz T foi obtida pela expressão

(*) No Apêndice A o caso mais geral é desenvolvido.

Para calcular a seção de choque diferencial, usamos para os orbitais $f_k^{(\pm)}$ a expansão

$$\int_{k}^{(\pm)} = \sqrt{\frac{8}{k}} \frac{1}{n} \sum_{k=1}^{k} (-i)^{k} e^{\pm i \delta_{k}(k)} P_{k}(n) Y_{km}(k) X_{km}(k) + 1.13$$

com

 $\lim_{k \to \infty} P_{kl}(r) = \sqrt{\frac{27}{\pi k}} \operatorname{sen}(kr - \frac{1}{2}(n + S_{\ell}(k))) \qquad 4.14$

Mostrou-se que^{(21)'} a FOMBT pode ser vista como numa aproximação de ondas distorcidas onde o efeito de troca é incluido para o elétron na continuo e tanto o elétron in cidente como o espalhado são calculados no campo do estado fundamental. A matriz densidade de transição é cal culada em RPA; para ondas distorcidas na forma usada por Madison e Shelton⁽²²⁾, usa-se Hartree-Fock. Esta **u**ltima diferença para o He não é importante. Em nossa aplicação nos ainda vamos fazer uma aproximação adicional na matriz densidade de transição, tomando-a na aproximação Hartree-Fock(HF). Esta aproximação adicional foi introdu zida para o estudo da excitação dos estados 2'P e 3'P dos He⁽¹⁰⁾ com õtimos resultados quando comparados com a experiência e num calculo RPA⁽⁸⁾ também foi extendida ao Ar com excelentes resultados⁽¹¹⁾.

 $\tilde{\chi}_{n}(\vec{n}',\vec{n}) = \hat{\eta}_{n}^{*}(\vec{n}') \hat{H}_{is}(\vec{n}) \qquad 1.15$

onde \mathcal{A}_{15} é calculado na aproximação HF e \mathcal{A}_{N} é o estado excitado calculado na aproximação HF com o caroço \mathcal{A}_{15}

congelado^{*}.

Com o comportamento assintótico definido a matriz T relaciona-se com a seção de choque diferencial través de

$$\frac{d\sigma}{da} = \frac{1}{4\pi^2} \frac{q}{p} \left[\frac{1}{\mu_{q,op}} \right]^2 \qquad 1.16$$

Como usualmente as experiências são feitas com feixes não polarizados e o spin não é detectado devemos fazer uma m<u>é</u> dia sobre o estado inicial a uma soma sobre o estado final

$$\frac{dG}{dR} = \frac{1}{4\pi^2} \frac{417}{PZmp} \sum_{mq} \frac{1}{M_s} \frac{1}{12} \frac{$$

Isto fornece para

$$5^{n}=0$$
 $\frac{d\sigma}{dr}=\frac{1}{9}\frac{9}{18}\frac{1}{7}\frac{1}{9}\frac{1}{18}\frac{1}{9}$ $\frac{1}{9}\frac{1}{18}\frac{1}{9}$

$$S^{n}=1$$
 $\frac{dC}{dR}=\frac{1}{8\pi^{2}}\frac{4}{7}3.1T_{E}1^{2}$

Usando as equações (1.13) e (1.15) em (1.11)e(1.12) obtemos as expressões

$$T_{D} = \frac{2\pi^{2}}{V_{Pq}} \sum_{\substack{lp}} e^{i\left(\delta l_{p}(p) + \delta l_{p}(q)\right)} (2l_{p+1}) R^{0}(pl_{p}, ns; ql_{p}, 1s) P_{l_{p}}(ssp)}$$

$$T_{E} = \frac{2\pi^{2}}{V_{Pq}} \sum_{\substack{lp}} e^{i\left(\delta l_{p}(p) + \delta l_{p}(q)\right)} R^{l_{p}}(pl_{p}; ql_{p}; ns; 1s) P_{l_{p}}(ssp)}$$
onde
$$R^{l}(ql_{q}, pl_{p}; 1s; nl_{n}) = \int dxdy P_{q}(y) \frac{p}{p}(y) \frac{p}{r_{s}}(y) \frac{p}{nl_{n}}(y)$$

(*) Para maiores detalhes ver ref.⁽²³⁾, Apêndice AB-1.

AN

Para a função $\frac{V_{1,s}}{V_{1,s}}$ foi utilizada a publicada por Clemente e Roetti⁽²⁴⁾ mas fizemos testes com uma função ls obtida pelo programa publicado pela C.Froese Fischer⁽²⁵⁾, bem como outra função ls obtida usando uma base gaussiana por ۷. McKoy⁽²⁶⁾ num cálculo RPA não dando nenhuma diferenca dentro da precisão de nossos cálculos. Para o estado excitado usamos a função de onda fornecida por um programa desenvolvido por G.Bates⁽²⁷⁾ adaptado ao nosso computador PDP-10 por G.D.Menezes, N.T.Padial e por mim. Este programa ē usado tambēm para obter os orbitais no continuo. Para calcular as integrais R^{ℓ} adaptamos o programa desenvolvido por G.D.Menezes⁽²³⁾ para as nossas necessidades. C<u>o</u> mo o nosso estado excitado é ortogonal ao estado fundamental não necessitamos de correção analítica em nossas integrais diretas. A qualidade da aproximação HF para $X_n(\vec{n},\vec{n})$, foi analisada fazendo-se o cálculo para a sessão de choque diferencial para os estados 2¹S, 2³S, 3¹S, 3³S, usando-se o resultado RPA⁽²⁶⁾ como também a aproximação H.F. fornecida pelo programa de G.N.Bates⁽²⁷⁾ para energia de 40ev do elétron incidente. Comparamos entre si e com os resultados publicados por Thomas e outros⁽⁸⁾, obtivemos uma concor dância por dentro de um desvio de 10%.

Os nossos resultados para energia do elétron incidente de 40ev, 60ev e 80ev para 4'S, 4³S estão nas figuras 1 e 2 e nas tabelas 1 e 2. Na figura 1 os resul-

^(*) Para uma descrição suscinta do programa ver referência 23 pg. 80.

tados teóricos para 4¹S são comparados com os resultados experimentais de Pochat e outros⁽²⁸⁾ a 60ev. A comparação ... dentro das limitações do modelo é razoável tendo-se em vista que para ângulos pequenos importantes efeitos de polarização não estão incluidos como mostra o estudo original de -Thomas e outros⁽⁸⁾. Modelos mais complexos⁽²⁹⁾ foram aplicados por Scott e McDowell⁽³⁰⁾ para o 4'S com resultados não substancialmente melhores que os nossos. Os resultados para 4³S estão na figura 2, mas não existem dados experimentais para esta transição. Esta aplicação simples da FOMBT reforça resultados anteriores que ⁽⁸⁻⁹) para transicões onde existe num termo direto tais como n'P e n'S, esta teoria da bons resultados. O mesmo não acontece para estados ${}^{3}L^{\times}$, onde num puro processo de troca não é suficiente para descrever este processo. Efeitos de acoplamento entre os canais de espalhamento devem ser importantes nestas transições. Estes podem ser incluídos num esquema de muitos corpos e faremos no Capítulo 4.

TABELA1.1

SEÇÃO DE CHOQUE DIFERENCIAL PARA 4¹S DO HELIO

ANGULO	40ev	60ev	80e v
έσους το το 1 - τ Γ Γ		0.14207368+02	9.25384896-03
[:] Š	9.941901900000 9.9419019000000	0.09337988-03	······································
10	0.30363058403	0.93445048-03	4. 19751738-03
15	0.26291948-63	6.93764648-03	0.10643958-03
20 ,	0.21457392-03	0.72928612-03	0.13133925-03
25	0,17184002-03	0,59575558-03	0.11021138-03
30	0.13891028+03	0.4750178E-03	0.10294438-03
35	0.11604408+03	0,36989332-03	0.10351516-03
40	0.10094955-03	9,28228738-03	0.10472632-03
45	0,90649768-04	0.21456852-03	0.10173808-03
50	3 . 8270697E+04	9 . 16543948~03	0,93636408-04
55	0.75691342-04	0.13219902-03	0.82235092-04
60	0.69024812+04	0.11191902-03	6.70203686-04
65	0.62794038+04	9.19167468+93	0.59657278-04
70	0.57432298-04	0,99374078-04	0.51716348-04
75	0.53684542-04	9.19526738-03	0.46743118-04
80	0.52592546+04	0.31/27148=03	0.44784098-04
85	0.55478828-04	0,13553558-93	0.45770508-04
90	0.63838450-04	0.16024752+03	0.49612868-04
95	9.79996600g-04	0.19094892=03	0,56011422-04
100	0.10224542-03	0,22745598-03	0.64132026-04
105	0.13345528-03	. U.JOVIK188+03 . 04000000 00	0.74122538-04
110		V.J1099000-93	0.84305006-04
110	9.2149/476-03	టం,⊅త0ఉపపువఉదాంభవ న కళణశలదంగా నండ	다
1.20	9.39903344+03	0.4912942030.403 A 19444229 A3	0.1041907E-03
420			- √●ままがで後後少に準備す み ◆ ♪♪ひらうオク らう
136	ఆ∎ుకుకో≴పుపెంటం⇔ాలివి న పెంటు జనికోకున నున	9	- ∨ _⊜ ఓవివివివిశిలి⇔ిరివి ఈ శాసంతార్పందా⊑ురా
140	- ジェネタママストランやしょ 	్ ఉప్పోజుప్రమానువి గ్ ఉప్పోజుప్రమానువి	9.13233436-993 0.13386-80-83
145	1 999999999999999999999999999999999999	ショウマゴマナウマルアクロ 作 人気法学院すらがよらつ	
156 /	.\ 3000000000000000000000000000000000000	7. 703383.150743 7. 703383	
155		9.75959557463 9.759588557463	3 1aa13737493
165 1	్ఞమాశవాచుందు గ్రాహామువై ఈ పొళ్యారు కొత్తారు	4_83233258+43	
165	· · · · · · · · · · · · · · · · · · ·	0_32346278~63	0 190951920-022 0 190955122
170	1、 · · · · · · · · · · · · · · · · · · ·	0.04934598-03	
175	19 11 - 19 1	0.36148738-03	0.17432766-03
180	0.31393858-63	0.85557148-03	9.17136832-03
	nan i uu i un i inne i nan and		we have a solution to the termination of the solution of the s

TABELA 1.2

SEÇÃO DE CHOQUE DIFERENCIAL PARA 4³S DO HELIO

ANGULO	60ey	40ey	80ev
Č.	0.32113638-02	0.02623526+72	0.82541978-02
5	0.31260008-02	0.00219456-02	6.78455522-02
10	0,23846398+02	0.03536018+320	0.07383755-02
15	0,25101928+02	0.43135676-02	9-52351750-02
20	1 0.20047308-02	9.33335275-02	5.30870978-02
25	0.1000000000000000000000000000000000000	0.23373438	6.23682216-02
3.0	9.115015H8+42	0.15197878-02	0.14075248-02
35	9.77513828-93	0,92507623-03	0.80101000-03
41	0.41080396×03	6.54302070-03	0.16343176-03
45	0.2053120%*04	0.33023866-03	0.31235908-93
50	0.13430128-03	0.23304116+93	0.25313138-03
55		0.20798628++3	0,23039968-03
60	0.00424022404	0,21628482-03	0.2430951E-03
o 5	3.77832372003	0.24368098-03	0.25009805-03
70	0,12106458+03	6.27236958-03 (0.25638126-03
75	0.11005992+01	0.2935693E-03	0.25813218-03
- 8 0	0.23077548-93	0.31993602-03	0,25589032-03
85	V.★ Z # DO % 8 4 8 ₩ 0 3	0.33593848-03	0.25904162-03
90	· · · · · · · · · · · · · · · · · · ·	0,34723488-03	0.24369678-03
95	いったからのなるかした。 (1) オマスのなるものしたの	0.35466065-03	0.23015788-03
100	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	0,35937278-93	0.22804558-03
105	1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	9,35234772+93	0.22138136-03
110		V. 30923002-33	0.21441598-03
115	సం∦ైశఫివర్ధకప్⇔ాతప ప్రభుధారణపుప్పు ఎంప	0.30003308-03	0.20784426-03
120	U & UUX419911 ****3 A & ***********************************		0.20185040-03
125	్ చి శా శావికి కొండి కొండి కి సంద్య ఉది కొండి కాటించింది.	ోశం కాటిశిశ్వాశ్వందించిన సౌకర్యం కార్యం చిల్లా కారు.	0.196657E-63
130		27 • 30 31 × 07 4 cm 193	0.19233786-03
135	·○●行行は好ともに近世ない。 14、現代的名句はその正の第	ほんすのがなまなけるやける シーストロームスストー ペード	0.18877918-03
140	1. 1 1411414777777777	లు వాహిస్తో లోచినినిస్తో లోపి ఎ సాహాపుడు శాతర సార	0.18578026.03
145		- ジョンドオフクエアムペリカ 	0.18315126-03
150	్రాథికి చౌయోచారు. చెకుపు ొల్చా ప్రైథికు పోరుకు సర్హీట్ ఇవ్ పొ	- ಚ್ ಕ ಾಶಿಕ್ಷೇಶಿಶಿಕ್ಷೇಟ್ರೋ - ೧ - ನ ತಡ್ಡಜ್ಞರವರ್ಶನ - ಇಂ ನ	0.10012952-03
155	6 75.09972.093	- ಶೋತ್ರವಂಭವ್ ಕಾರ್ಯಕ್ರಮ್ ಬ್ರಾಂ - ರ - 22 ಗಾತ್ರವಾದ ಮಾಡಿದ್ದ - ನಾಗಿ - ನ	0.17887052-03
160	· · · · · · · · · · · · · · · · · · ·	- 後日また見後の際と応望した。 - 広一時時の自身にかり、15回	0.17790435-03
105	·····································		0.17548258-03
110	0.773306AN#33	- とんがとさてはように気がない。 - 今日間で入れてきでによりつ	0.17503418-03
1/5	. 0.77421018-03	an an an tha an an an tha tha an an an tha an an an tha an an an an an	0.17588598-03
LUU		రంఘు చార్శో చో చో చో చో చేసింది. "ో చో ఫి	V.17555115-VB

16,

FIGURA1.2

Phil

7.N

CAPÍTULO II

Espalhamento Inelástico de Elétrons por Atomos em Estados Me-JA.^{NA} taestáveis

O estudo dos processos de colisão envolvendo atomos inicialmente num estado excitado é muito importante para o estudo de fenômenos em fisica de plasmas, lasers de ex cimeros, descargas em gases onde excitação a partir do estodo excitado é um dos canais mais importantes entre os processos envolvidos. Do ponto de vista teórico, tem sido feitos mui to poucos calculos de excitação de atomos em estados metaestáveis por elétrons.

Existem apenas os cálculos de Marriot ⁽³¹⁾ usando acoplamento forte para dois estados, aproximação de Born ⁽³²⁻³⁴⁾. aproximação eikonal de muitos canais ⁽³⁴⁻³⁵⁾, a aproximação Vainshtein _ Presnyakov - Sobelman ⁽³³⁾ а aproximação de Glauber ^(36 - 37), na maior parte dedicados аo He e a obtenção da seção de choque, poucos estudam a distri buição angular (34 - 37). Do lado experimental, apenas três trabalhos publicados,dois dedicados a seção de choque to tal ^(38 - 39) e um terceiro com resultados preliminares para He seção de choque das excitações do tipo $(2^{3}S \rightarrow n^{3}L)$ (40) Comparada com as teorias usadas em estudos de excitação а partir do estudo fundamental a FOMBT, tem fornecido resultados superiores, pelo menos para estados em que o processo direto existe. Sendo assim é nosso objetivo neste capítulo de senvolver uma teoria para espalhamento de elétrons por ātomos inicialmente em estados metaestáveis dentro da FOMBT. Es

ta teoria e original e sua total implementação numerica esta em progresso⁽⁴⁹⁾.

Nós iniciamos pela matriz S do processo e<u>s</u> crita como:

$$S_{nq,mp} = \lim_{t \to \infty} \langle \exists_u | \mathbf{q}_q(t) | q_p(t) | \exists_m \rangle$$

 $t \to \infty$

Usando os operadores de campo podemos obter $Snq.mp = \lim_{\substack{t \to \infty \\ t \to \infty}} \int dn dn' \left(q^{(1)} \right) \left(q^{(1)} \right) X_n^m (a, 1') \quad z. 1$ $X_m^m (1, 1') = \langle \Psi_u | T (\Psi(1) \Psi^{\dagger}(1')) | \Psi_m \rangle$

onde

Esta amplitude tera para o espalhamento por studos metaestáveis o mesmo papel para a função de tem para espalhamento elástico ⁽¹³⁻¹⁴⁾. Então para obter uma expressão para a matriz S na FOMBT devemos chegar numa еx pressão para $\chi_{n}(\iota,\iota')$ na aproximação RPA. Esta expressão jā foi deduzida por Csanak⁽⁴¹⁾ quando resolveu a transição en tre estados excitados na aproximação RPA, usando a função de Green de muitos corpos de Martin - Schwinger. Outra alternativa para calcular $X''_{n}(1,1')$ ē a tēcnica da equação de mo vimento⁽⁴²⁾ usada por Mckoy e colaboradores⁽⁴³⁾ para o calculo de fotoionização de He nos estados $2^{1}5 e 2^{3}5$. Nos usaremos o primeiro metodo.

Definindo $R_3(123, 1^{1}2^{+}3^{+}) = \frac{S^2G_1(1, 1^{1})}{Su(2)Su(3)} \Big|_{u=0} 2.3$

podemos usando a equação (1.3) obter uma equação integral p<u>a</u> ra esta grandeza.

20.

$$R(123,123) = R(13,23) G_{*}(2,1) + G_{*}(1,2) R(23,13) + \int d4d4'd5d5'$$

$$\left[R(13,43') G(4',1) + G_{*}(1,4) R(4'3,13')\right] \equiv (45,4'5') R(5'2,52')$$

$$+ \int d4d4'd5d5' G_{*}(1,4) G_{*}(4',1) \equiv (45,4'5') R(5'23,52'3') = 2.4$$
Aplicando a operação de GellMann-Low duas ve
zes. $\chi_{n}^{o}(2,2')$ a direita e $\chi_{0}^{o}(3,3')$ a esquerda obteremos uma
equação para $\chi_{n}^{o}(1,1')$
 $\left(\chi_{n}^{o}(1,1') = i^{-1} \int d2d2'd3d3' [\chi_{0}^{o}(1,2') G_{*}(2,1') + G_{*}(1,2') \chi_{0}^{o}(2,1')] \equiv (2'3',23) \chi_{n}^{o}(3,3')$

$$+ \int d2d2'd3d3' G_{*}(2,2') G_{*}(2,1') \equiv (2'3',23) \chi_{n}^{o}(3,3') = 2.5$$
A aproximação RPA estã em usar G₁ na aproximação Hartree-Fock,
 $\chi_{n}^{o}, \chi_{0}^{o}, \chi_{0} RPA = \equiv (2'3',23) \text{ como } 1.8$
Usando isto (2.5) em (2.1)

$$S_{nq,mp} = - \int dz dz' dz dz' dz' dz' \int_{-1}^{+\infty} f_{q}^{(z')} f_{p}^{(z)} + f_{q}^{(zz)} f_{p}^{(z)} f_{p}^{(z)}] = (zz', zz) X_{n}^{o}(z, zz')$$

$$- \int dz dz' dz dz' f_{q}^{(z')} f_{p}^{(z)} = (zz', zz') X_{n}^{(z)} (zz') = (zz', zz') X_{n}^{(z)} (zz') Z_{n}^{(z')} (zz') = (zz', zz') Z_{n}^{(z')} = (zz', zz'$$

onde definimos
$$\int_{q}^{m_{G},*} \int_{q}^{m_{G},*} \int_{q}^{m_{G},$$

o terceiro termo da equação 2.6 Tembra o re sultado da FOMBT para excitação a partir do estudo fundamental e a influência do estado inicial do átomo está apenas em $X_n^{(1,1)}$ E interessante notar que tanto $\int_P^{(0)} e \int_{q}^{(0)} são$ calculados com o potencial do estado fundamental, nos primeiros termos mostram a influência do estado inicial mas a densi dade de transição usada é a do estado fundamental para o esta do final. De modo que para se obter uma interpretação física para esta expressão é preciso se ter sempre em conta que est<u>a</u> mos fazendo teoria de pertubação em torno do estado fundamental.

Vamos obter equações mais explicitas para $\int_{\infty}^{\infty} e^{-\int_{\infty}^{\infty} definidas} em (2.7) e (2.8) nos quais estã a influência do estado metaestável. Usando$

$$X_0^{m}(1,2') = \int (d_3d_3'd_4d_4'G_{(1,3')}G_{(3,2')} \equiv (3'4',34) X_0^{m}(4,4') Z.9$$

em (2.7)

$$-\int_{q}^{m_{1},s,\star} = \lim_{t \to \infty} \int_{ch} d\mathbf{3} d\mathbf{3} d\mathbf{4} d\mathbf{4} G_{1}(1,s') \Psi_{q}^{\star}(1) G_{1}(3,z') \equiv (34',34) X_{0}^{t}(4,4')$$

Lembrando a equação (1.6)

 $-\int_{q}^{m} \frac{(z)^{*}}{(z')} = \frac{1}{t} \int d3d3d4d4' f_{q}^{(z')} G(3z') \equiv (3'4',34) X_{0}^{m}(4,4') = 10$

Usando (2.9), (1.7) em (2.8) obteremos

$$f_{p}^{(G)}(z) = \frac{1}{i} \int d3d3d4d4' G_{i}(z,3') f_{p}^{(G)}(3') \equiv (3'4',34) X_{i}^{(M)}(4,4') = 2.11$$

podemos agora obter a dependência temporal de spin e espacial

$$de \left(\frac{f^{(m(4))}}{f_{P}} e - \frac{f^{(m(4))}}{f_{P}} \right) = f_{-i} \delta(3-3i) \delta(4-4i) + i \delta(3-4i) \delta(3-4i) J V(3-4i)$$

 $\chi_{o}^{m}(1, s') = e^{-i\omega_{m}T_{i}} \chi_{o}^{m}(n_{s}, n_{i}'; z_{i})$ $G_{1}(1,1') = G_{1}(n,n';z)$ $f_{q}^{(-)}(3) = e^{i \epsilon_{q} \epsilon_{3}} f_{q}^{(-)*}(n_{3})$ $f_{p}^{(4)}(3) = e^{i \epsilon_{p} t_{3}} f_{p}^{(0)}(n_{3})$ em 2.10 e 2.11 $\frac{1}{4}(2) = e^{-i(e_q-u_w)t_2} \int dn_3 dn_3 dn_4 dn_4 \int (-s^{\star}) G(n_3, n_2) E_q-u_w) W(n_3 n_4; n_3 n_4) X_u(n_4, n_4) 2-12$ onde $G(\pi, n'; w)$ ē transformada de Fourier de $G(\pi, n'; z)$ $W(n_{3}'n_{4}', n_{3}n_{4}) = [\delta(n_{3}-n_{3}')\delta(n_{4}-n_{4}') - \delta(n_{3}-n_{4}')\delta(n_{4}-n_{3}')]V(n_{3}-n_{4}) - 2.13$ $X_{u}(n_{u},n_{u}) = X_{0} | \Psi(n_{u}) \Psi(n_{u}) | u > = - X_{0}^{u}(n_{u},n_{u}; \sigma)$ assim $\begin{array}{c} m & (-)^{\star} \\ f_{p}(z^{\star}) = e^{-i(e_{q}-w_{m})t_{z}^{\star}} & f_{q}(n_{z}^{\star}) \\ f_{q}(n_{z}^{\star}) = z. \ 14 \end{array}$ onde $\left(\int_{q}^{w_{e}} (n_{z}) \right)$ pela equação (2.12) não depende do tempo $\int_{p}^{mGt} = e^{i(G_{p}+w_{u})t_{z}} \left| c \ln_{3} dn_{3} dn_{4} dn_{4} G(n_{z}n_{3}^{'}) G_{p} w_{u} \right| - \int_{p}^{G_{s}} W(n_{3}n_{4}^{'}) n_{3}n_{4} \left| \chi_{u_{1}}(n_{4}^{'}n_{4}) \right| 2.15$ da qual podemos escrever $f_p(2) = e^{i(\epsilon_p + w_m)t_2} f_p(n_2)$ que pela equação (215) $\int_{p}^{w(G)}$ não depende do tempo. Podemos também desacoplar os spins usando

$$\begin{split} & \int_{p}^{\infty} (n_{3}) = \int_{p}^{(n_{1})} \eta_{u_{p}}(\sigma_{5}) \\ & \int_{p}^{(n_{1})} (n_{3}) = \int_{p}^{(n_{1})} \eta_{u_{p}}(\sigma_{5}) \\ & G(n_{2},n_{3})^{+} w) = G(\sigma_{2},n_{3})^{+} w) = G(\sigma_{2},n_{3})^{+} w) = G(\sigma_{2},n_{3})^{+} w = G_{3},\sigma_{3} \\ & X_{u_{n}}(n_{5},n_{n}) = X_{u_{n}}(n_{3},n_{n})^{+} \frac{1}{2}s_{n_{1}n_{3}}^{+} w = G_{3},\sigma_{3}) \\ & \int_{q}^{(n_{1},2)} = \int (ch_{5}ch_{5}^{+}ch_{5}^{+}dn_{4}^{+}h_{4}^{+}(n_{5}^{+})) G(n_{3},n_{2}^{+}) = c_{w}w) W(n_{5}^{+}n_{3}^{+}n_{5}^{-}) X_{u_{n}}(u_{4}^{+},n_{4}^{+}) \\ & \int_{q}^{(n_{1},2)} = \int (ch_{5}ch_{5}^{+}ch_{4}^{+}dn_{4}^{+}h_{4}^{+}(n_{5}^{+})) G(n_{3},n_{2}^{+}) = c_{w}w) W(n_{5}^{+}n_{3}^{-}) X_{u_{n}}(u_{4}^{+},n_{4}^{+}) \\ & \int_{q}^{(n_{1},2)} = \int (ch_{5}ch_{5}^{+}ch_{5}^{+}dn_{4}^{+}h_{4}^{+}(n_{5}^{+})) G(\sigma_{3}^{+},n_{2}^{+}) G(\sigma_{3}^{+},n_{4}^{-}) G(\sigma_{3}^{+},n_{4}^{-}) \\ & \int_{q}^{(n_{1},2)} = \int (ch_{5}ch_{5}^{+}ch_{5}^{+}dn_{4}^{-}(n_{4}^{+})) G(\sigma_{3}^{+},n_{4}^{+}) G(\sigma_{3}^{+},n_{4}^{-}) G(\sigma_{3}^{+},n_{4}^{-}) \\ & \int_{q}^{(n_{1},2)} \int (cn_{3}^{+}-n_{4}^{-}) G(\sigma_{3}^{+},n_{4}^{+}) G(\sigma_{3}^{+},n_{4}^{-}) G(\sigma_{3}^{+},n_{4}^{-}) \\ & - \sum_{q,q}^{(n_{1},q)} \eta_{u_{q}}^{+}(\sigma_{5}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) G(\sigma_{3}^{+},n_{4}^{-}) G(\sigma_{3}^{+},n_{4}^{-}) G(\sigma_{3}^{+},n_{4}^{-}) \\ & - \sum_{q,q}^{(n_{1},q)} \eta_{u_{q}}^{+}(\sigma_{5}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) X_{u_{4}}(n_{4}^{+}) (n_{4}^{+},n_{4}^{-}) \\ & - \sum_{q,q}^{(n_{1},q)} \eta_{u_{q}}^{+}(\sigma_{5}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) X_{u_{4}}(n_{4}^{+}) (n_{4}^{+},n_{4}^{-}) \\ & - \sum_{q,q}^{(n_{1},n_{4}^{+})} \int (cn_{3}^{+}-n_{4}) \int (cn_{3}^{+}-n_{4}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) X_{u_{4}}(n_{4}^{+}) (n_{4}^{+},n_{4}^{-}) \\ & - \int (dn_{4}^{(n_{1},n_{4}^{+})} \int (cn_{3}^{+}) \int (cn_{3}^{+},n_{4}^{+}) \int (cn_{3}^{+}-n_{4}^{+}) X_{u_{4}}(n_{4}^{+},n_{4}^{-}) \\ & - \int (dn_{4}^{(n_{4},n_{4}^{+})} \int (cn_{3}^{+}) \int (cn_{3}^{+},n_{4}^{+}) \int (cn_{3}^{+},n_{4}^{+}) X_{u_{4}}(n_{4}^{+},n_{4}^{-}) \\ & - \int (dn_{4}^{(n_{4},n_{4}^{+}) \int (cn_{3}^{+}) \int (cn_{3}^{+},n_{4}^{+}) \int (cn_{3}^{$$

23.

Podemos transformar numa equação diferencial usando

C

$$\begin{cases} d\vec{n}_{2}^{i} \quad \vec{G}(\vec{n}_{2}^{i},\vec{n}_{2}^{i};\omega) \quad G(\vec{n}_{3}^{i},\vec{n}_{3}^{i};\omega) = S(\vec{n}_{3}^{i}-\vec{n}_{2}^{i}) \\ G'(\vec{n}_{1},\vec{n}_{1}^{i};\omega) = Lw-h(\vec{n}) \quad J \quad d\vec{n}_{1}^{i},\vec{n}_{1}^{i};\omega) \\ h(\vec{n}) = -\frac{1}{2}\nabla^{2} - \frac{2}{1^{2}} \\ f(q_{1},\vec{n}_{2}^{i},G_{1}^{i},\omega) = \int d\vec{n}_{2}^{i} \sum (\vec{n}_{1},\vec{n}_{2}^{i},G_{1}^{i},\omega) \int_{q_{1}^{i}}^{q_{2}^{i}} \int d\vec{n}_{1}^{i} \sqrt{(\vec{n}_{1},n_{1}^{i})} \chi_{u} (\vec{n}_{1},\vec{n}_{1}^{i}) \\ f(\vec{n}) = -\frac{1}{2}\nabla^{2} - \frac{2}{1^{2}} \\ f(q_{1},\vec{n}_{2}^{i}) = \int d\vec{n}_{2}^{i} \sum (\vec{n}_{1},\vec{n}_{2}^{i},G_{1}^{i},\omega) \int_{q_{1}^{i}}^{q_{2}^{i}} \int d\vec{n}_{1}^{i} \sqrt{(\vec{n}_{1},n_{1}^{i})} \chi_{u} (\vec{n}_{1},\vec{n}_{1}^{i}) \\ f(q_{1}^{i},\omega) = \int d\vec{n}_{2}^{i} \sum (\vec{n}_{1},\vec{n}_{2}^{i},G_{1}^{i},G_{1}^{i}) = \int d\vec{n}_{1}^{i} \int d\vec{n}_{1}^{i} \sqrt{(\vec{n}_{1},\vec{n}_{2}^{i})} \\ f(q_{1}^{i},\omega) = \int d\vec{n}_{2}^{i} d\vec{n}_{1}^{i} (\vec{n}_{1}) - \int d\vec{n}_{2}^{i} \sum (\vec{n}_{1},\vec{n}_{2}^{i},G_{1}^{i},G_{1}^{i}) \\ f(\vec{n}_{2}^{i}) = \int d\vec{n}_{2}^{i} d\vec{n}_{1}^{i} (\vec{n}_{1}) - \int d\vec{n}_{2}^{i} \sum (\vec{n}_{1},\vec{n}_{2}^{i},G_{1}^{i},\omega) \\ f(\vec{n}_{2}^{i}) = \int d\vec{n}_{2}^{i} d\vec{n}_{1}^{i} (\vec{n}_{1},G_{1}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) = \int d\vec{n}_{2}^{i} (\vec{n}_{1},\vec{n}_{1}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i}) = \int d\vec{n}_{2}^{i} d\vec{n}_{1}^{i} (G(\vec{n}_{2},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i}) \end{bmatrix} \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i}) \\ f(\vec{n}_{2}^{i},\vec{n}_{2}^{i}) \\$$

que podem ser transformadas para uma forma diferencial $[G_{prwm} - h(\vec{n})] f_{p,1}(\vec{n}) - [d\vec{n}_{2} \sum_{i} (\vec{n}_{i}, \vec{n}_{2}) \in p + w_{m}) f_{p,1}(\vec{n}_{2}) = f_{p}(\vec{n}) [d\vec{n}_{3} \vee (\vec{n} - \vec{n}_{3}) \chi_{u}(\vec{n}_{3}, \vec{n}_{3})]$ $Feptide_{m} - h(\vec{n}) \int \{ p_{1,2}(\vec{n}) - \int d\vec{n}_{2} \sum_{i} (\vec{n}_{i},\vec{n}_{2}) eptide_{m} \} \{ p_{1,2}(\vec{n}_{2}) = \int d\vec{n}_{3} \cdot f_{p}(\vec{n}_{3}) V(\vec{n}_{3} \cdot \vec{n}) X_{m}(\vec{n}_{3},\vec{n}) \}$ As equações diferenciais obedecidas por $\int_{P} (\vec{n})$ e $\int_{q} (\vec{n})$ são do tipo não homogêneo. A parte homogênea da equação diferencial admite uma separação entre a parte ra diale e a parte angular.

Vamos desenvolver o termo não homogêneo das equações

 $(1,(\vec{n}) = \int_{q}^{Q}(\vec{n}) \int d\vec{n}_{q} V(\vec{n} - \vec{n}_{q}) X_{m}(\vec{n}_{n},\vec{n}_{q})$

usando para $f_{q}^{(m)}$ a equação (1.13)

 $V(\vec{n} - \vec{n}_{4}) = \sum_{k_{3}, w_{3}} \frac{4r}{2k_{3} + 1} \frac{r_{4}^{k_{3}}}{r_{5}^{k_{3} + 1}} \frac{\gamma_{ew}(z_{r})}{\gamma_{ew}(z_{r})} \frac{\chi^{*}(z_{r_{4}})}{\chi^{*}(z_{r_{4}})}$

Em geral podemos escrever^{(44)*}

parte de spin do Apêndice A

Para $Q_2(\vec{n})$

$$\begin{aligned} Q_{2}(\vec{n}) &= \int d\vec{n}_{4} \int_{q}^{q} (\vec{n}_{4}) \, V(\vec{n} \cdot \vec{n}_{4}) \, \chi_{m}(\vec{n}, \vec{n}_{4}) \\ Q_{2}(\vec{n}) &= \sqrt{\frac{8}{9}} \prod^{3/2} \sum_{i, l'}^{2} (-i)^{l_{1}} \frac{i \, \delta I(q)}{e^{i} \, \delta I(q)} \sum_{u_{i}, u_{i}'}^{2} (-i)^{l_{1}, u_{i}'} \frac{i \, L^{i} \, L^{i} \, L^{i}}{\sum_{u_{i}, u_{i}'}^{u_{i}'} \frac{i \, L^{i} \, L^{i} \, L^{i} \, L^{i}}{\sum_{u_{i}, u_{i}'}^{u_{i}'} \frac{i \, \delta I(q)}{\sum_{u_{i}, u_{i}'}^{2} (-i)^{u_{i}'} \frac{i \, \delta I(q)}{\sum_{u_{i}, u_{i}'}^{2} \frac{i \, \delta I(q)}{\sum_{u_{i}'}^{2} \frac{i \, \delta I(q)}{\sum_{u_{i}, u_{i}'}^{2} \frac{i \, \delta I(q)}{\sum_{u_{i}'}^{2} \frac{i \, \delta I(q)}{\sum_{u_{i}'}^{2$$

Para $Q_3(\vec{n})$

$$Q_3 = \int_p^{(4)} \left(c \ln_3^2 V(n_1^2 - n_3^2) X_{111}(n_3^2, n_3^2) \right)$$

Por similaridade com $Q_{l}(\vec{n})$

$$\begin{aligned} & (k_{3}) = \sqrt{\frac{8}{p}} \frac{\pi^{3/2}}{n} \sum_{p|l} (i)^{p} e^{i \frac{\partial (p)}{p} (p)} \int_{p|p}^{p} (n) \left[\frac{L(p) L(l)}{L(m)} \right]^{2} \sum_{mp|l}^{2} (n) C_{mp|l}^{m} H_{m}^{m} \\ & (k_{1}, k_{2}) C_{p}^{m} (k) \sum_{p|l}^{2} C_{p}^{l} (k_{2}, k_{2}) \int_{m_{3}}^{m} dn_{3} \frac{k_{1}}{n_{3}} X_{m}^{m} (k_{1}, k_{2}) \\ & (k_{1}, k_{2}) C_{p}^{m} (k_{1}, k_{2}) \int_{m_{3}}^{2} C_{p}^{l} (k_{1}, k_{2}) \int_{m_{3}}^{2} dn_{3} \frac{k_{1}}{n_{3}} X_{m}^{m} (k_{1}, k_{2}) \\ & (k_{1}, k_{2}) \int_{m_{3}}^{2} (k_{1}, k_{3}) \int_{m_{3}}^{2} (k_{1$$

Para Q₄

$$\begin{split} & Q_{4}(\vec{n}) = \int d\vec{n}_{3} f_{p}^{(4)}(\vec{n}_{3}) \, V(\vec{n} \cdot \vec{n}_{3}) \, \chi_{u_{1}}(\vec{n}_{3},\vec{n}) \\ & Q_{4}(\vec{n}) = \sqrt{\frac{8}{7}} \int_{1}^{3/2} \sum_{i=1}^{7} (i)^{i} e^{i S h_{i}(p)} \sum_{u_{1}, u_{1}}^{i} (i)^{i} e^{i S h_{i}(p)} \sum_{u_{1}, u_{2}}^{i} (i)^{$$

Pela expressão em ondas parciais do termo não homogêneo das equações para $\int_{p}^{w(c)} n_{2} = \int_{q}^{w(c)} uma$ expansão que separa a parte angular da parte radical na forma

$$f_{p}(\vec{n}) = \sqrt{\frac{8}{p}} \frac{\pi^{3/2}}{n} \frac{Z_{1}}{\lambda_{1}\lambda_{1}}(i)^{l_{1}} e^{i\lambda_{1}(p)} F_{kl_{1}k_{1}}(r) \sum_{u_{1},u_{1}} (\tau)^{l_{1}} C_{u_{1},u_{1}}(u)^{l_{1}} Y_{i_{1}u_{1}}(x) Y_{i_{1}u_{1}}(x)$$

$$f_{q}(n) = \sqrt{\frac{9}{q}} - \frac{\pi^{3/2}}{n} \sum_{l,l'} (u)' \in i\delta_{R}(q) C_{l'}(l') \sum_{m,m'} (l')' C_{m,m'm'''} Y_{l'm''}(l') Y_{l',m'}(p)$$

 $\begin{aligned} usando a expansão \\ &\sum_{i}^{1} (R_{i}R_{i}^{*}w) = \sum_{i,m} \frac{\sum_{i}^{l} (n_{i}R_{i}^{*}w)}{n_{i}} \chi_{iu}(R_{i}) \chi_{iu}(R_{i}) \chi_{iu}(R_{i}) \\ &= \frac{1}{2} \frac{d^{2}}{dr^{2}} G_{kll}(R) + \left[(e_{q}ww) - \frac{2}{n} - \frac{(il^{2}+i)}{R^{2}} \right] G_{kll}(R_{i}) - \left[dn_{2} \sum_{i}^{l} (n_{n_{2}}) e_{q}w_{i} \right] G_{kl}(R_{i}) \\ &= 2 S S_{i} O P_{q,i}(n) (1) \left(\frac{\Gamma(\Gamma IC^{i})}{\Gamma(w)} \right)^{2} \sum_{i,k} C_{i} (2h^{m}) \left(cl_{n_{2}} n_{2}^{2} \frac{n_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}^{m}} \right) \\ &= \frac{2}{n} C_{i} e_{k} e_{k} \left(c_{i} (2h^{m}) \left(cl_{n_{2}} n_{2}^{2} \frac{n_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}^{m}} \right) \\ &= \frac{2}{n} C_{i} e_{k} e_{k} \left(c_{i} (2h^{m}) \left(cl_{n_{2}} n_{2}^{2} \frac{n_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}^{m}} \right) \\ &= \frac{2}{n} C_{i} e_{k} e_{k} \left(c_{i} (2h^{m}) \left(cl_{n_{2}} n_{2}^{2} \frac{n_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}^{m}} \right) \\ &= \frac{2}{n} C_{i} e_{k} e_{k} \left(c_{i} (2h^{m}) \left(cl_{n_{2}} n_{2}^{2} \frac{n_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \right) \\ &= \frac{2}{n} C_{i} e_{k} e_{k} e_{i} \left(c_{i} (2h^{m}) \left(cl_{n_{2}} \frac{n_{i}^{2}}{n_{i}} \times \frac{L_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \times \frac{L_{i}^{h} H_{i}^{m} S_{i}^{m}}{n_{i}} \right) \\ &= \frac{2}{n} C_{i} e_{i} e_{i}$

e para Frel teremos

$$\frac{1}{2} \frac{d^{2} F_{k}(r)}{dr^{2}} + \left[(e_{p} + w_{m}) - \frac{z}{n} - \frac{r'(z'_{+1})}{r^{2}} \right] F_{12}(r) - \left[dn_{2} \sum_{i} (n, n_{2}) e_{p} + w_{m} \right]$$

$$\frac{1}{2} \frac{d^{2} F_{k}(r)}{dr^{2}} + \left[(e_{p} + w_{m}) - \frac{z}{n} - \frac{r'(z'_{+1})}{r^{2}} \right] F_{12}(r) - \left[dn_{2} \sum_{i} (n, n_{2}) e_{p} + w_{m} \right]$$

$$\frac{1}{2} \frac{d^{2} F_{k}(r)}{dr^{2}} + \left[(e_{p} + w_{m}) - \frac{z}{n} - \frac{r'(z'_{+1})}{r^{2}} \right] F_{12}(r) - \left[dn_{2} \sum_{i} (n, n_{2}) e_{p} + w_{m} \right]$$

$$\frac{1}{2} \frac{d^{2} F_{k}(r)}{dr_{k}(r)} = 255^{n}(r) P_{p}(n) (r) \left(\frac{\Gamma(r)\Gamma(r)}{\Gamma(r)} \right)^{2} \sum_{i} (c_{i}, z_{i}) \int dn_{2}n_{2} \frac{n_{k}}{n_{k}} \times \frac{n_{m}}{m} \frac{n_{m}}{m$$

Para que o nosso sistema tenha solução é necessário que a parte não homogênea vã a zero quando 🗂 🖛 ∞

 $\lim_{k \to \infty} \left\{ dn_{2} n_{2}^{2} n_{k}^{\mu} X_{\mu}^{\mu} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l_{\mu}} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l_{\mu}} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l_{\mu}} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l_{\mu}} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2} \right\} = \left(\lim_{n \to \infty} \frac{1}{n^{\mu} + l_{\mu}} \right) \int_{0}^{\infty} dn_{2} n_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} \left\{ 1, l_{2}^{2 + l_{\mu}} X_{\mu}^{\mu} X_{\mu}^{$

 $==igle \chi_{\mathbf{w}}(ec{\mathbf{n}},ec{\mathbf{n}})$ para um estado ligado

 $\int dn_2 n_2^{2+1} \chi_{u_1(l_1, l_2)}^{(n_2, n_2)} = \langle n^{t_1} \rangle_{out}$

onde $\langle \ \rangle_{out}$ valor médio para transição entre o estado fund<u>a</u> mental e o estado excitado m.

Uma importante característica da aproximação RPA para a matriz densidade é que devido as propriedades de ortogonalidade desta aproximação $(46) < n^{2}$ para $L^{2} = O$ é zero. Isto é uma decorrência da ortogonalidade entre os orbitais Hartree-Fock.

Para o outro termo jã que a solução no contínuo está na integral teremos de X_{∞} um comportamento de estado ligado que fará o termo ir a zero para $\Gamma \rightarrow \infty$

Como se trata de uma equação não homogênea

as funções $G_{\underline{k}\underline{\ell}\underline{\ell}}$ e $\overline{T}_{\underline{k}\underline{\ell}\underline{\ell}\underline{\ell}}$ não necessitam ser normalizadas jã que isto está implícito na solução homogênea. As condições de contorno que $G_{\underline{k}\underline{\ell}\underline{\ell}}$ e $\overline{T}_{\underline{k}\underline{\ell}\underline{\ell}}$ devem obedecer podem ser tira das de argumentos físicos como os de Chang e Poe⁽⁴⁹⁾ em prö blema semelhante ou de maneira mais formal⁽⁴⁸⁾. Ambos forne cem que a fase destas funções será \overline{T}/Z a mais que a solução homogênea deste problema regular na origem. Devemos notar que quando $\underline{c}_{\underline{k}} < \underline{W}_{\underline{k}}, \underline{G}_{\underline{k}\underline{\ell}}$ será uma função de quadrado integrável.

Da equação 2.6 para matriz S podemos obter a matriz T como

Tuqiop = (dnzdnid vadnis I fg (nis) fp(nis) + fq (nis) fp(ne)] W(niznis, ning) Xn (nis, ni) + $\left(\operatorname{clnzdn}_{2} \operatorname{clnz}_{3} \operatorname{clnz}_{3} \right) \left\{ \begin{array}{c} \left(n_{2}^{2} \right) + \left(n_{2}^{$

Usando 2.13 teremos para

$$T_{uq,op} = \int dn_{z} dn_{z} \ L_{fq}^{(u_{c})*} f_{q}^{(u_{c})} + f_{q}^{(v_{c})} f_{p}^{(v_{c})} J \quad \forall (n_{z}^{2} - n_{z}^{2}) \quad \forall (n_{z}^{$$

O segundo e quarto termo são os processos de troca correspon dentes aos primeiro e terceiro termos, assim discutiremos <u>a</u> penas estes. O terceiro termo é semelhante ao termo direto, no caso do espalhamento inelástico a partir do estado funda-
mental e o elétron incidente e espalhado é calculado no campo fundamental. Quando usa-se o potencial do estado inicial, exem plo, $\int_{P}^{\infty(r)}$, a matriz densidade é a do estado fundamental ao final. É fundamental entender esta expressão como uma expansão pertubativa. No primeiro termo ainda temos que quando o elétron incidente é calculado no campo de estado inicial (m) o espalhado é calculado no do fundamental e vice-versa. Isto mostra a invariância da teoria frente uma inversão temporal.

Nos podemos calcular os dois últimos termos, sem haver necessidade de mais recursos computacionais que na primeira ordem. Porém um cálculo completo presentemente está sendo desenvolvido⁽⁴⁹⁾.

Da experiência que se possui da FOMBT em e<u>s</u> palhamento inelâstico esperamos que para transições onde exi<u>s</u> ta um termo direto, esta teoria forneç**a** bons valores para ILM seção de choque diferencial.

CAPITULO 3

Experiências de coincidência elétron-foton em espalhamento inelástico de elétrons por átomos.

Ao lado das experiências clássicas de excitação de um átomo por impacto eletrônico, a área de colisões tem t<u>i</u> do um renovado interesse despertado pelo uso nos últimos anos das técnicas de coincidência (50-64). Estas tem sido utilizadas para obter informações mais detalhadas das amplitudes que descrevem o processo de espalhamento. De uma maneira geral m<u>e</u> didas de coincidência e a respectiva teoria tiveram uma gra<u>n</u> de ênfase em física nuclear (65) onde diversos tipos medidas de coincidência são utilizados. Dentre os diversos tipos o que nos interessa específicamente \tilde{e} a coincidência retardada entre o elétron espalhado inelásticamente com o fóton emitido pelo átomo excitado, excitação esta provocada pelo elétron d<u>e</u> tectado.

Em 1971 Macek e Jaecks⁽⁵¹⁾ desenvolveram uma teoria para as experiências de coincidência elétron-foton n<u>u</u> ma forma especificamente aplicavel para colisões com átomos . Este trabalho é o primeiro a enfatizar que observando-se o f<u>o</u> ton emitido com coincidência com o elétron espalhado pode- se obter informações mais detalhadas sobre as amplitudes de esp<u>a</u> lhamento. Esta teoria foi reformulada por Fano e Macek⁽⁵³⁾ que introduziram os parâmetros de orientação e alinhamento, resu<u>l</u> tando numa formulação mais compacta e elegante deste teoria . Existem outras formulações devido a Wykes⁽⁵²⁾ e Blum e Kleinpoppen⁽⁵³⁾.

Desde a publicação da primeira curva da medida da correlação angular entre o elétron e o fóton, por Emynian, MacAdam, Slevin e Kleinpoppen⁽⁵⁴⁾ surgiram uma serie de trabalhos dedicados ao tema, boa parte destes estudavam 0 He (2'P, 3'P), mas existem alguns trabalhos sobre Ne, Ar, Kr e Hg e recentemente também a molécula $H_2^{(66)}$. Os cálculos teóricos pelo menos no caso do He concordam razoávelmente com ' os resultados experimentais e entre os modelos que obtiveram sucesso esta a FOMBT⁽¹⁰⁾. A nossa motivação inicial foi estudar o Ar. Como desenvolvida originalmente por ser uma teoria que não inclui efeitos relativísticos a FOMBT não pode ser aplicada a caso do Ar mas recentemente foi proposta uma forma aproximada de se incluir a interação spin-órbita no á tomo alvo e as SCD calculadas concordam, para estados momen tum angular eletrônico (J) igual a um, muito bem com os resul tados experimentais⁽⁶⁸⁾. A interação spin-õrbita não permite mais uma fatorização dos spins e levantou a questão de como interpretar uma experiência de coincidência. Para responder estas questões escolhemos usar a teoria de Fano e Macek ⁽⁵³⁾ pela simplicidade e generalidade da mesma.

A primeira hipótese que se faz é sobre a multi polaridade da radiação emitida, em física atômica se supor ' dipolo elétrico é para efeitos práticos exata. Só por comparação em física nuclear em correlação angular gama-gama a multipolaridade é uma das questões que a experiência busca ' responder. Na segunda hipótese os processos de excitação e emissão são considerados independentes, mas a emissão deve ser considerada como produzida pelo sistema elétron-ãtomó⁶⁹. Sendo assim a intensidade I medida por um detector sensível

32.

 h^{1}

a luz com vetor polarização $\hat{\epsilon}$ $\tilde{\epsilon}$ proporcional a $\sum_{m_{t}} \left| \left(\Pi \hat{\epsilon}^{\dagger} \tilde{r}^{\dagger} \Pi \right) \right|^{2} >$, onde \tilde{r} $\tilde{\epsilon}$ operador de transição dipolar do ātomo, $\sum_{m_{t}}$ indica soma sobre os valores ' do número quântico magnético final e $\langle \cdot \cdot \rangle$ indica média sobre o estado inicial. É bom lembrar que o "estado inicial" – $\tilde{\epsilon}$ produzido pela colisão e o final $\tilde{\epsilon}$ o que o sistema atinge após a emissão do foton. Por outro lado a média sobre o estado inicial $\tilde{\epsilon}$ efetuada usando-se como pêso as amplitudes de espalhamento.

$$J = C \sum_{m_{f}} \langle (1 \in \mathcal{F}^{*}|f)(f| \in \mathcal{F}|i) \rangle = 3.1$$

$$C = \frac{e^{2} \omega_{f}^{4}}{2\pi c^{2} R^{2}} = 3.2$$

onde wfi é freqüência da luz emitida, R é a distância do detector à fonte.O vetor $\hat{\epsilon} \equiv (\cos\beta_i i \, \sin\beta_i 0)$ está definido um sistema de referência fixo no detector conforme a figura <u>F1</u> Para $\beta = 0$ representa detecção de luz com polarização linear e $\beta = \pi/4$ de luz circularmente polarizada.para direita.

A.M

Temos ainda que $\hat{\epsilon}.\hat{r}$ está definido no sistema de referência fixo no detector, as amplitudes de espalhamento definidas no sistema de colisão^{*}. Para então calcular as médias é necessário definir tudo num mesmo sistema de refe rência, porém é mais simples definir a polarização no detector e as amplitudes de espalhamento e os "estados" no sistema de colisão. Isto será usado e antes que usemos as propri<u>e</u> dades de transformação destas grandezas, a dependência com a polarização será fatorada do valor médio. Para executar i<u>s</u> to a equação (3-1) será rearranjada usando os seguintes fa tos

> i) $\sum_{w_{f}} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{P_{f}(\vec{r}, \vec{r}')}{1}$ onde P_{f} ē um oper<u>a</u> dor que se transforma como um escalar para rotações

ii) Pode-se reacoplar os produtos escalares $\hat{\epsilon}$. \vec{r}' $\hat{\epsilon}^*$ \vec{r}' obtendo-se tensores que so dependem das compone<u>n</u> tes de $\tilde{\epsilon}$ ou de \vec{r} .

O produto escalar entre dois vetores pode ser visto da mesma forma com que se constroem tensores⁽⁷⁰⁻⁷¹⁾, fazendo-se a multipolaridade do tensor zero.

 $\hat{e}_{\cdot}\vec{F}' = \sum_{q=-1}^{2} (-i)^{\gamma} \hat{e}_{q}\vec{r}'_{q}$ onde $\hat{e}_{s} = -\frac{1}{\sqrt{2}} (\hat{e}_{s}+i\hat{e}_{\gamma}) \quad \hat{e}_{s} = \hat{e}_{z} \quad \hat{e}_{\tau} = \frac{1}{\sqrt{2}} (\hat{e}_{s}-i\hat{e}_{\gamma})$ e de forma similar para as componentes de $\vec{F} = (\hat{\xi}, \gamma, \gamma)$ (*)Uma formulação deste problema usando a técnica da matriz densidade é desenvolvida nas referências 63 e 64.

$$\hat{\epsilon}.\vec{r}\cdot\hat{\epsilon}\cdot\vec{r} = \sum_{q_1q_2} (\epsilon_1)^{q_1+q_2} \epsilon_{q_1}r_{q_1}\epsilon_{q_2}r_{q_2} \epsilon_{q_2}r_{q_2} \epsilon_{q_2}r_{q_2}$$
 3.3

Definindo tensores na forma

$$S_{q}^{k} = \sum_{q_{1},q_{2}} (11k) t_{q_{1}} t_{q_{2}}$$

$$F_{q_{1},q_{2}} = \sum_{q_{1},q_{2}} (11k) t_{q_{1}} t_{q_{2}}$$

$$3.4$$

Usando (3.4) e (3.5) a equação (3.3) pode ser escrita como:

$$\hat{c}, \hat{r}, \hat{c}, \hat{r} = \sum_{k,q} (-i)^{k-q} \tilde{L}_{-q} \tilde{J}_{q}^{k}$$
 3.6

Substituindo na equação (3.1)

$$I = C \sum_{k,q} (-1)^{k-q} \langle (i' | S_q^k P_j(F_i F') | i) \rangle E_q^k$$
 3.7

Devido a escolha de $\hat{\epsilon}$ =(cos β ,i sen β ,0), teremos os seguintes tensores \bar{E}_{4}^{k} diferentes de zero

 $E_{2}^{2} = E_{-2}^{2} = \cos 2\beta/2$ $E_{0}^{2} = 4\sqrt{2}$

 $E_0' = seuzprivz' \qquad E_0' = V_{13}$

Como $P_f(r_1r')$ é um escalar frente a rotações então o produto $S_q^k P_f(r_1r)$ deve se transformar da mesma forma que S_q^k . Agora fazemos uso do teorema de Wigner-Eckart para apontar o fato de que

$$\frac{(i'| T_q^k|_{L})}{Ci'| S_q^k|_{L}} = \frac{(i'|| T^k||_{L})}{(i|| S^k||_{L})} 3.8$$

onde T_q^k \tilde{e} um tensor construïdo com as componentes do momentum angular (J). A escolha do momentum angular, orbital(L) <u>e</u> letronico (J) ou total (F) \tilde{e} fundamental para cada caso. A particularização para J não retira a validade geral do resultado, bastando substituir o J pelo momentum angular -

mais adequado.

A equação (3.8) por si sõ não simplificariamu<u>i</u> to, jã que normalmente empregam-se os elementos de matriz re duzidos do Teorema de Wigner-Eckart como parâmetros independentes para cada k. Nesta caso particular devido a equação -(3.7) ser reacoplamento de (3.1) que depende de um parâmetro, o elemento de matriz reduzido do operador dipolo, pode-se mo<u>s</u> trar a seguinte relação

$$\frac{(i'' s^{k} ||i)}{(i'' \tau^{k} ||i)} = \int_{1}^{1} \frac{(i'' s^{o} ||i|)}{(i'' \tau^{o} ||i|)} \frac{(i'' s^{o} ||i|)}{(i'' \tau^{o} ||i|)}$$
3.9

onde *

$$h(j_{i},j_{f}) = (-1)^{j_{i}} \frac{\left(j_{i},j_{i},k\right)}{\left(j_{i},j_{i},k\right)}$$
3.10

Ainda podemos definir

$$\frac{(\tilde{c}'|_{1}\tilde{s}^{\circ}|_{1}\tilde{c})}{(\tilde{c}'|_{1}\tilde{\tau}^{\circ}||_{1}\tilde{c})} = \frac{S}{J_{1}\tilde{g}_{1}+1}$$
3.11

Usando (3.8) a (3.11) em (3.7) $J = \frac{1}{3}CS \left\{ 1 - \frac{1}{2}h^{(2)}_{(J_1,J_2)} A_0^{det} + \frac{3}{2}h^{(2)}_{(J_1,J_1)} A_{21}^{det} \cos 2\beta + \frac{3}{2}h^{(2)}_{(J_1,J_1)} O_0^{det} \sin 2\beta \right\}$ onde foram introduzidos no sistema do detector dois parâme tros de alinhamento

$$A_{o}^{det} \leq \langle (i'| 3 J_{q}^{2} - J^{2} | i \rangle \rangle / J_{i}(J_{i+1})$$
3.13

$$A_{2+}^{det} = \langle (i^{1} | d_{z}^{2} - J_{y}^{2} | i \rangle \rangle \langle j_{i}(j_{i+1}) \rangle$$
 3.14

e um parâmetro de orientação

$$O_0^{\text{det}} = \langle (i \mid d_{\mathcal{Z}} \mid i) \rangle / j(q_{i+1})$$
 3.15

* usamos o símbolo 6j na definição do Edmonds⁽⁴⁵⁾

Como podemos ver por (3.12) S que depende da intensidade da luz emitida na transição i → f foi fatorada deixando uma expressão em três parâmetros que dependerão do estado inicial criado pela colisão. Neste ponto e importante transformar os valores médios obtidos no sistema do detector para o sistema de colisões.

$$D_c^{det} = O_{L}^{cc} seu \theta seu \phi$$
 3.16

$$A_{0}^{(let)} = A_{0}^{(o)} \frac{1}{2} (3\cos^{2}\theta - 1) + A_{1}^{(o)} \frac{3}{2} \sec^{2}\theta \cos^{2}\theta + A_{2}^{(o)} \frac{3}{2} \sec^{2}\theta \cos^{2}\theta = 3.17$$

+ $A_{2+} \{ \frac{1}{2} (1 - \cos^2 \Theta) \cos \phi \cos^2 \psi - \cos \Theta \sin^2 \phi \sin^2 \psi \}$ 3.18 onde Θ e ϕ são os ângulos polares do eixo do detector e ψ e o ângulo que identifica a orientação do polarizador linear.

$$Q_{i}^{(o)} = \langle J_{y} \rangle / J_{i}(J_{i+1})$$
 3.19a

$$\Delta_0^{(\omega)} = \langle 3J_z^2 - J^2 \rangle \langle J_i(j_{i+1}) \rangle$$
 3.19b

$$A_{1+}^{(o)} = \langle J_X J_Z + J_Z J_X \rangle / J_i(j_i+1)$$
 3.19c

$$A_{z+}^{(0)} = \langle u_x^2 - u_y^2 \rangle / j_i(j_i+1)$$
 3.19d

Estes parâmetros no sistema de colisão depen dem do ângulo de detecção do elétron e a anisotropia na emis são do foton depende apenas de fatores geométricos. Isto é explicitado nas equações 3.16 a 3.18.

A primeira aplicação desta teoria para coincidência elétron-fóton foi a de Emynian e outros⁽⁵⁴⁾ para exc<u>i</u> tação do He 2'P. Neste caso como a interação spin-órbita é n<u>e</u> gligenciável então usa-se L em vez de J para nas equações^{*} Assim

$$Q_{1}^{(m)} = -\sqrt{2} I_{m}(a(0)a(0))/5$$
 3.20a

$$A_0^{(0)} = [[a(1)]^2 - [a(0)]^2] / 5$$
 3.20b

$$A_{1+}^{(o)} = \sqrt{2} R_{e} (a^{*}(o)a(i))/5$$
 3.20c

$$A_{2+}^{(0)} = \frac{1}{4} (-1) \alpha(1) / \sigma$$
 3.20d

onde $a(M_1)$ é amplitude de espalhamento do subnivel magnéti co M_L , $\sigma_M = \alpha(M) \alpha(M)$ é a SCD do subnivel M_L e $\sigma = \sigma_0 + 2\sigma_1$. Devido a simetria de reflexão no plano de espalhamento temos $\alpha(M) = (-i^N \alpha(M))$. A exis tência desta simetria e a independência do spin do processo ' levam a uma redução do número de parâmetros. Isto foi feito por Emynian e outros⁽⁵⁴⁾ introduzindo dois parâmetros chamados λ e χ definidos como:

 $\lambda = \sigma_0 / \sigma_1 \qquad \qquad 3.21$

$$\chi = \frac{\alpha(i)\alpha(o)}{(\alpha(i))}$$
3.22

 λ serā então a razão entre as seções de choque diferenciais do subnīvel M_L = 0 e a para os três subnīveis e χ a diferença de fase entre as matrizes T que excitam o subnīvel M_L = 1 e a que excita o M_L = 0. Assim

(*) O ângulo azimutal para o elétron é suposto zero

$$Q_{1}^{(o)} = -\left[\lambda(1-\lambda)\right]^{Y_{z}} \sec \chi$$

$$A_{0}^{(o)} = (1-3\lambda)/2$$

$$A_{1+}^{(o)} = \left[\lambda(1-\lambda)\right]^{Y_{z}} \cos \chi$$

$$3.23c$$

$$3.23c$$

$$3.23c$$

39).

$$A_{2+}^{(c)} = (\lambda - 1)/2$$
 3.23d

Aplicar esta teoria para o Ar implica em usar J para construir os tensores, jã que J, M_J são bons números quânticos para os estados excitados do Ar. Isto leva para as equações 3.19

$$O_{-1}^{(a)} = -12 J_{u} (alosacu) /6$$
 3.24a

$$A_{o}^{(o)} = \left[\left\{ a(i)a(i) \right\} - \left\{ a(i)a(i) \right\} \right] / \delta$$
 3.24b

$$A_{1+}^{(o)} = \sqrt{2} R_e \langle a(o)a(o) \rangle / \sigma \qquad 3.24c$$

$$A_{2+}^{(o)} = \langle a(-) a(-) \rangle / \sigma$$
 3.24d

onde ag**ora**

$$\langle \alpha(\mathbf{M}) \alpha(\mathbf{M}') \rangle = \frac{1}{2} \sum_{\mathbf{W}_{S_1}, \mathbf{W}_{S_2}}^{\prime} \alpha_{\mathbf{W}_{S_1}, \mathbf{W}_{S_2}}^{\prime} \alpha_{\mathbf{W}_{S_1}, \mathbf{W}_{S_2}}^{\prime}$$

 $Ms_1(Ms_2)$ ē a componente z do spin do elētron incidente(espalhado) e Ω_{ws_1,ws_2} ē a amplitude de espalhamento para spin incidente (Ms_1) e espalhado (Ms_2). Esta dependência no spin leva a uma simetria menor nas médias por exemplo: no caso de He 2'P, usa-se simetria $\Omega(wa) = (1)^{H} Q(-wa)$ em , agora com a indução explicita do spin a relação de simetria a ser utilizada é

$$\langle a(\mathbf{m})a(\mathbf{m}') \rangle = \langle e_1 \rangle^{\mathbf{m} + \mathbf{m}'} \langle a(-\mathbf{m})a(+\mathbf{m}') \rangle$$

Como conseqüência, o número de parâmetrosindependentes aumentava e introduzimos a seguinte parametrização para este caso.

 $\lambda = \sigma_0/\sigma \qquad \qquad 3.25a$

$$\cos \Delta = |\langle \alpha(\omega) \alpha(\omega) \rangle| / (\langle \zeta_0 \langle \sigma_1 \rangle)^2$$
 3.25b

$$los z = Re (alosa co) / ((alos a los)) 3.25c$$

$$\cos \varepsilon = - \langle \alpha(-i) \alpha(i) \rangle \langle \sigma_1 \rangle$$

Das quais obtém-se

$$O_{-1}^{col} = - \left[\lambda (1 - \lambda) \right]^{2} seu \left[\chi \cos \Delta \right]$$
 3.26a

$$A_0^{col} = (1-3\lambda)/2$$
 3.26b

$$A_{1+}^{(\omega)} = \left[\lambda(1-\lambda)\right]^{1/2} \cos \lambda \cos \Delta$$
 3.26c

$$A_{2+}^{(o)} = (\lambda - 1) \cos c / 2$$
 3.26d

Como primeira conseqüência a introdução da in teração spin-õrbita leva a quatro parâmetros independentes, caso a polarização circular não seja detectada então $\beta = 0$ implicando que o produto cosx cos∆ deve ser considerado um ūnico, definido como⁽⁶¹⁾

$$(o_{S})_{L} = (o_{S})_{L} (o_{S})_{L} \qquad 3.27$$

Esta parametrização possui vantagens, como por exemplo no c<u>a</u> so L.S cos ε = cos Δ =1, o que leva a se interpretar a vari<u>a</u> ção de ε e Δ do valor zero como um efeito da interação spin-órbita, mas não é a única. Hermann e Hertel⁽⁷²⁾ recent<u>e</u> mente estudavam uma parametrização similar ou mesmo pode-se escolher os próprios parâmetros de Fano e Macek⁽⁵³⁻⁷³⁾ A intensidade poderá ser escrita no caso mais geral como

$$I = \frac{1}{3} (S(1 + \frac{1}{4}(1-3\lambda)(3\cos^2\theta - 1) - [\lambda(1-\lambda)] \frac{1}{2} \cos \lambda \cos \Delta \frac{3}{2} \sin^2\theta \cos \varphi$$

+ $\frac{3}{4} (\lambda - 1) \cos \varepsilon \sin^2\theta \cos 2\psi - 3 \left\{ \frac{1}{4} (1-3\lambda) \sin^2\theta \cos 2\psi \right\}$
+ $[\lambda(1-\lambda)]^{\frac{1}{2}} \cos \lambda \cos \Delta (\sin \theta \sin \psi \sin^2 \psi + \sin \theta \cos \theta \cos \psi \cos^2 \psi)$

+ $\frac{1}{2}(\lambda-1)\cos e\left[\frac{1}{2}(1+\cos\theta)\cos 2\psi\cos 2\psi-\cos\theta\sin 2\phi\sin 2\psi\right]\cos 2\beta$

Após obtermos estes resultados verificamos que todas as experiências para átomos em que a interação spin-ó<u>r</u> bita e importante tais como Ar⁽⁶¹⁻⁷⁴⁾, Kr⁽⁶⁰⁾ e Hg⁽⁶²⁾ fo-

ram interpretadas da mesma forma que o 2'P do He⁽⁷⁵⁾. Na mai<u>o</u> ria destas experiências não é detectada a luz circularmente ' polarizada, $\beta=0$, de modo que temos apenas três parâmetros; > , ε , χ . Mas agora χ não terá a mesma interpretação física dada para o caso LS. A interpretação como no caso LS impl<u>i</u> ca <u> $\varepsilon=0$ </u> o que não pode se justificar a priori.

A interação spin-õrbita dā origem a outro efe<u>i</u> to interessante se o elétron é detectado no ângulo Θ_e (em relação ao feixe incidente) igual a zero. O que nos queremos mostrar é que $\langle O(O(O) \rangle = \langle O(O(O(O)) \rangle = 0)$ mas $\sigma_0 = \sigma_1$ são diferentes de zero

Para provar supomos o ãtomo no estado fundamental ${}^{1}S(J=0)$ negligenciamos a interação hiperfina assumindo que o spin nuclear ${}^{(I)}$ e sua orientação 7 > permanecem inalterados durante o processo de colisão e emissão ${}^{(76)}$. Num espalhamento inelástico nos ângulos $\mathfrak{R} = \mathcal{O} \subset \mathfrak{M} \mathfrak{C}$, coinci dindo com o eixo Z de quantização, a componente ao momentum angular total do sistema elétron mais ãtomo neste eixo deve ser conservada. Inicialmente a única componente do momentum ângular neste eixo é devido ao spin do elétron que nos fornece duas situações possíveis.

(i) ms₁ = ms₂ implica na conservação do com
 ponente do momentum ângular total do átomo (M_F = M_I + M).
 Como M_I não se altera, M_J também não.

(ii) $ms_1 \neq ms_2$ implica $\Delta M_F = \frac{1}{2}$ 1 dependendo do spin incidente ($ms_1 = \frac{1}{2}$ 1/2), com $\Delta M_J = 0$ então $\Delta M_J = \frac{1}{2}$ Para um ãtomo no estado fundamental do tipo ¹S

o caso (i) significa a excitação do $M_1=0$ e o caso (i) do $M_1 = \pm 1$ estes fatos implicam que $\sigma_0 = \sigma_1$ são diferentes de zero e que < a(o) a (1) > = < a(-1) a(1) > iguais a zero.Desde que o spin nuclear não participe do processo estes resultados serão exatos, qualquer desvio destes resultados se deve ao spin nuclear. Por exemplo, no caso do År I=0, mas no caso do Hg_ existem alguns, isotopos que possuem I ≠ 0 e neste a orientação de <J> pode-se transferir para <I> como determinada por métodos óticos por Lehmann (77). Esses resultados implicam que os parã ε e Δ terão valores definidos para Θ_e = 0⁰ e 180⁰ metros Definindo $0 < \varepsilon < \Pi$ e $0 < \Delta < \Pi/2$ para $\Theta_{\rho} = 0^{\circ}$ e 180° $\varepsilon = \Delta = \pi/2$. Nas experiências onde 0_{-1}^{col} não é determinado e por conseguinte temos três parâmetros, $|\chi|$ definido em 3.27 terā valor tambēm Π/2.

Esta diferença nas experiências de coincidên cia quando se compara as interpretações nos caso do He e do Ar, também pode ser vista se analisarmos os parâmetros de Stokes⁽⁷⁹⁾ da radiação emitida. Estes quatro parâmetros ' reais podem caracterizar completamente o estado de polarização da radiação emitida. São definidos como ⁽⁶⁴⁾

$$J = I(0) + I(90^{\circ}) \qquad Jy_{3} = I(0^{\circ}) - I(90^{\circ}) \qquad 3.29$$

$$Jy_{4} = I(45^{\circ}) - I(135^{\circ}) \qquad Jy_{2} = J_{enc} - J_{LHC}$$

onde I (ψ) em intensidade de um feixe que passou por um p<u>o</u> larizador linear com o eixo de transmissão com ângulo ψ , I_{RHC}(I_{LHC}) é a intensidade de luz circularmente polarizada para a direita (esquerda). Usando a equação (3-28) para I podemos relacionar os parâmetros de Fano-Macek com os de

$$I = c_{5} \left\{ \frac{2}{3} + A_{0+} (\omega s^{2}\theta - \frac{1}{3}) + A_{1+} seuzecos \phi + A_{2+} suid(\omega s^{2}\phi) \right\}$$

$$Iy_{1} = c_{5} \left\{ 2 A_{2+} (\omega s \theta seuz\phi - 2A_{1+} seue seud) \right\}$$

$$Iy_{2} = (c_{5} 2 O_{-1}^{(o)} seu\theta seup$$

$$Iy_{3} = -c_{5} \left\{ A_{0+} seu^{2}\theta + A_{1+} seuze(\omega s\phi) + A_{2+}(sub^{2}\theta) \cos 2\phi \right\}$$

Em termos estes parâmetros definem-se outros dois

$$P = (I_{y_1}^2 + I_{y_2}^2 + I_{y_3}^2)/I = (y_1^2 + y_2^2 + y_3^2)/2$$

e

se P=l significa que pode-se conseguir um polarizador que admita todo o feixe, $\mu \in \infty$ grau de coerência complexa. Para um feixe luz completamente coerente $|P| = |\mu| = 1$.

As hipóteses usadas para interpretar as experiências de coincidência nos estados 'P do He levam a que $|P| = |\mu| = 1 \ e \ \beta$ a fase efetiva é igual X. Isto foi confir mado por Standage e Kleinpoppen⁽⁵⁵⁾ que mediram os parâme tros de Stokes da radiação emitida na transição 3'P \rightarrow 2'S, caracterizando esta emissão como completamente coerente. Is to não será mais verdade no caso do Ar e em outros átomos em que a interação spin-órbita no átomo seja importante como Ne, Kr, Hg. Para demonstrar isto, vamos determinar os parâmetros supondo o detector de luz na posição $\theta = \phi = \pi/2$ como na experiência de Standage e Kleinpoppen⁽⁵⁵⁾

$$\gamma_1 = -\frac{4 \left[\lambda(1-\lambda)\right]^2 \cos \lambda \cos \lambda}{\left[4 + \cos \varepsilon + \lambda(1 - \cos \varepsilon)\right]}$$

$$\frac{1}{2} = -\frac{4 \left[\lambda(1-\lambda)\right]^{\frac{1}{2}} \cos 4 \sec \chi}{\left[1 + \cos \epsilon + \lambda(1 - \cos \epsilon)\right]}$$

$$\eta_{3} = \frac{(3\lambda - 1) - (1 - \lambda) \cos \epsilon}{[1 + \cos \epsilon + \lambda (1 - \cos \epsilon)]}$$

$$P = \begin{bmatrix} 1 + \frac{8\lambda(1-\lambda)(2\cos^2 A - \cos t - 1)}{[(1+\lambda) + (1-\lambda)(\cos t - 1)]} \end{bmatrix}^{\gamma_z}$$

Por exemplo a $\Theta_e = 0^\circ$ como cos $\Delta = 0 | \mu | = 0$ em oposição ao caso L-S onde $\Delta = \varepsilon = 0 e | \mu | = 1 e P agorra não é necessariamente 1.$

Usando a FOMBT numa forma em que a interação spin-órbita no átomo alvo foi incluida de uma forma aproxim<u>a</u> da⁽¹¹⁻⁶⁷⁾ nos calculamos os parâmetros λ , $\overline{\chi}$, Δ , ε , e χ para

os estados $45 \lfloor 3/2 \rfloor^{\circ}$ e $45 \lfloor 3/2 \rfloor^{\circ}$ do Ar para energias incidentes 16,20,30,50 e 80.4 ev, cujos resultados estão nas tabelas 3.1 a 3.10 e nas figuras 3.1 a 3.10.

Os nossos resultados mostram que, principalmen te a energias baixas o desvio dos parâmetros ϵ e Δ do valor L.S igual a zero é bastante apreciável e esperamos que isto possa servir de indicação aos experimentais para que procurem estes efeitos, ja a comparação com os dois resultados experi mentais é pelo menos problemática devido a interpretação incorreta mas alguma coisa pode ser dita . Existem dois ângu los em que temos resultados publicados e 50ev e $\theta e=5^{\circ}$ por Malcolm e McConkey⁽⁶¹⁾ e a $\Theta = 10^{\circ}$ com energias de 50. 80 e 110 ev, por Pochat e outros⁽⁷⁴⁾, para λ e χ . Os grã ficos para λ de nossos valores teóricos mostram muita ' semelhança com os de λ para o n'P do He onde exatamente a ângulos pequenos a concordância não é muito boa e deveremos esperar o mesmo tipo de concordância. Porém nossos resultados mostram que a medida que aumenta-se a energia do elétron in cidente o primeiro mínimo da curva de λ tende para valores de ângulos mais baixos, esta tendência pode ser vista pa ra ambos os estados e também nos valores experimentais. Vale lembrar que para estes ângulos efeitos de polarização são muito grandes e não são levados em conta nesta teoria.

os estados $4 \times 1 \times 2^{n}$ e $4 \times 1 \times 2^{n}$ do Ar para energias incidentes 16,20,30,50 e 80.4 ev, cujos resultados estão nas tabelas 3.1 a 3.10 e nas figuras 3.1 a 3.10.

Os nossos resultados mostram que, principalmen te a energias baixas o desvio dos parâmetros ε e \triangle do valor L.S igual a zero é bastante apreciável e esperamos que isto possa servir de indicação aos experimentais para que procurem estes efeitos, ja a comparação com os dois resultados experi mentais é pelo menos problemática devido a interpretação incorreta mas alguma coisa pode ser dita . Existem dois ângu los em que temos resultados publicados e 50ev e $\theta e=5^{\circ}$ por Malcolm e McConkey⁽⁶¹⁾ e a $\Theta = 10^{\circ}$ com energias de 50. 80 e 110 ev, por Pochat e outros⁽⁷⁴⁾, para λ e χ . Os grã ficos para λ de nossos valores teóricos mostram muita ' semelhança com os de λ para o n'P do He onde exatamente a ângulos pequenos a concordância não é muito boa e deveremos esperar o mesmo tipo de concordância. Porém nossos resultados mostram que a medida que aumenta-se a energia do elétron in cidente o primeiro mínimo da curva de λ tende para valores de ângulos mais baixos, esta tendência pode ser vista pa ra ambos os estados e também nos valores experimentais. Vale lembrar que para estes ângulos efeitos de polarização são muito grandes e não são levados em conta nesta teoria.

FIGURA 3.6

CALCULO DOS PARAMETROS DE ALINHAMENTO PARA O 3P1 DO ARGONIO

PARAMETRO LAMBDA

ANGULÓ	16.0 EV	20.0 EV	30.0 EV	50.0 EV	80.4 EV
0	.992	.957	.975 .	1.000	1.000
- 5	.971	.916	.838	.701	449
10	.911	.8 361:	.546	.328	134
15	.813	.651	.276	.102	.056
20	.634	.481	.128	.024	.308
25	.537	.331	.171	.365	.851
30	.401	.249	.366	.813	.983
35	.319	270	,565	.899	958
40	315	.370	.684	.881	.935
45	.364	.483	.733	.853	.923
- 50	.422	.566	.739	.825	.907
55	.405	.612	.717	,787	.869
60	.487	.629	. 673	.717	.781
65	.488	.623	.615	.561	660
70	.475	\$564	, ,548	.298	.587
75	.450	•565	.482	,186	.561
80	.417	,519	.420	.272	.557
85 S	.392	.462	.364	.357	,569
90	.349	.400	.313	.408	,591
95	.323	.337	.264	.437	.620
100	, 309	,285	.221	.460	• <u>658</u>
105	*308	.254	.190	.483	.706
110	.321	.247	.180	,512	,765
115	.341	.260	.200	.546	.829
120	.365	.283	.245	.559	.868
125	.389	.307	.300	.504	.807
130	.411	,328	. 351	,389	.559
135	.428	.349	.391	.308	. 270
140	.442	, 355	.418	.293	.231
145	.452	.362	.436	.322	,365
150	.459	.366	.447	.378	.518
155	.463	.368	.453	.449	.653
160	.466	.368	.456	.529	.767
105	.467	.368	.458	.508	.855
170	.467	.357	.460	.676	,912
175	.467	.367	. 462	.721	,941
180	.467	.367	.462	.737	. 950

CALCULO DOS PARAMETROS DE ALINHAMENTO PARA O 3P1 DO ARGUNIO

PARAMETRO QUI+BARRA

ANGULO	16.0 EV	20.0 EV	30.0 EV	50.0 EV	80.4 EV
Ó	.000	•000	.969	.000	.000
5	.037	. 085	.154	.017	.102
1 Ū	. 050	.093	.225	.036	353
15	.076	.106	.398	.108	1.378
20	.128	.121	.848	2.048	2.407
25	,231	.131	1.725	2,693	2.624
30	443	.108	2.222	2,276	.955
35	_ ₩46	.132	2,261	1.447	.160
- 40	1.324	1.589	1.867	1,004	243
45	1,538	2.003	.999	.826	.415
50	1.631	1.891	.701	.703	684
55	1,529	1.624	.679	.546	1.099
60	1.330	1.267	* 777	,308	1,668
55	1,082	.891	.966	,010	2,302
70	.836	630	1.239	.388	2.853
75	.627	.335	1,548	1,904	3,008
80	.463	.174	1.805	2,954	2,683
85	.337	.070	1,963	2.782	2,428
90	.238	.007	2.025	2,718	2,221
95	.155	.026	2.009	2.691	2,042
100	.079	.038	1,936	2,686	1.881
105	.004	.030	1,837	2,701	1.737
110	.115	.001	1.783	2,754	1,607
115	.307	.076	1.928	2,911	1.475
120	.742	.625	2.527	2,704	1.200
125	1,616	2.853	3,137	1,117	.491
130	2.225	3.006	2,900	.547	,950
135	2,469	3.074	2.816	.095	.494
140	2,581	3,100	2,784	.331	,288
145	2,640	3.128	2.772	629	.627
150	2.675	3.132	2.770	,798	.741
155	2.695	3.110	2,772	.886	.791
160	2.709	3,096	2.776	.929	.825
165	2.717	3.094	2.780	.947	.857
1/70	2.721	3.075	2.783	.954	.891
175	2.724	3.059	2.785	.955	.919
180	. 096	•000	.000	.000	•000
3					

58.

 \tilde{c}

CALCULO DOS PARAMETROS DE ALINHAMENTO PARA O 3P1 DO ARGONIO

PARAMETRO QUI-MC

16.0 EV	20.0 EV	30.0 EV	50.0 EV	80.4 EV
i.571	1.571	1.571	1.571	1.571
.657	827	447	.036	105
. 489	544	353	.078	.363
. 485	456	.474	.247	1.384
.549	474	.952	1.831	2.376
.674	621	1.667	2.536	2,485
. 878	944	1.886	2.173	1.346
1,161	1,334	1.810	1.465	.537
1.433	1.573	1.626	1.075	.510
1.581	1.651	1.428	.926	644
1,603	1.637	1.274	.844	.860
1,551	1.582	1,197	.754	1.183
1.464	1,510	1.205	.623	1.655
1.362	1.431	1.286	.506	2.235
1.255	1.353	1.415	.765	2.695
1.145	1.256	1.560	1.645	2.750
1.034	1,150	1.699	2.211	2.551
.929	1.024	1.783	2.387	2.348
.845	.881	1.829	2.441	2.172
.809	740	1.829	2.451	2.014
848	.669	1.787	2.436	1.865
.959	763	1.723	2.393	1.728
1.114	1.000	1.676	2.304	1.604
1,279	1,273	1.695	2.135	1.492
1,437	1.518	1.787	1.831	1.385
1,577	1,718	1.917	1.400	1.321
1.098	1.872	2.049	1.011	1.239
1.797	1.977	2.164	.833	.935
1.874	2.064	2,251	.860	.650
1,926	2.107	2.304	.949	.744
1.953	2,116	2,316	1.027	822
1.951	2,038	2 283	1.087	875
1,920	2.032	2,206	1.142	.934
1.862	1.945	2.089	1.206	1.021
1.780	1.835	1.937	1.296	1.154
1.680	1.707	1,760	1.420	1.343
1.571	1.571	1,571	1.571	1.571
	16.0 EV 1.577 .488 .48579 .48899 .4997639 1.4507639 1.4507639 1.4507639 1.4507639 1.4507639 1.4507639 1.4507639 1.439989 .9889499 .972379974 1.23779774 1.5979999 1.2377974 1.5979999 1.59799999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.5979999 1.59799999 1.59799999999999999999999999999999999999	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.0EV20.0EV30.0EV $i.571$ 1.571 1.571 1.571 $.657$ 827 $.447$ $.489$ 544 353 $.485$ $.456$ $.474$ $.549$ $.474$ $.952$ $.674$ $.621$ 1.667 $.878$ $.944$ 1.886 1.161 1.334 1.810 1.433 1.573 1.626 1.501 1.651 1.428 1.603 1.637 1.274 1.551 1.582 1.197 1.464 1.510 1.205 1.352 1.431 1.286 1.255 1.353 1.415 1.145 1.256 1.560 1.034 1.150 1.699 $.929$ 1.024 1.783 $.845$ $.881$ 1.829 $.868$ $.669$ 1.787 $.959$ $.763$ 1.723 1.114 0.00 1.676 1.279 1.273 1.695 1.437 1.518 1.787 959 $.763$ 1.723 1.114 0.00 1.676 1.279 1.273 1.695 1.437 1.518 1.787 1.577 1.718 1.917 1.693 1.872 2.049 1.797 1.977 2.304 1.953 2.136 2.316 1.951 2.038 2.283 1.920 2.032 2.066 1.862 1.945 </td <td>16.0 EV20.0 EV30.0 EV$50.0 EV$i.5711.571i.571i.571.657.827.447.036.489.544.353.078.485.456.474.247.549.474.9521.831.674.6211.667.2536.878.9441.8862.1731.1611.3341.8101.4651.4331.5731.6261.0751.5811.6511.428.9261.6031.6371.274.8441.5511.5821.197.7541.464.5101.205.6231.3521.97.7551.4551.2561.5601.6451.0341.1501.6992.211.929.0241.7832.387.845.8811.8292.441.809.7401.8232.451.848.6591.7872.436.959.7631.7232.3931.114.0001.6762.3041.2791.2731.6952.1351.4371.518.7871.8311.5771.718.9171.8311.577.038.2283.0601.926.107.304.9491.951.038.2283.0871.920.032.206.142.946.935.937.2961.780.835.937.2961.920</td>	16.0 EV20.0 EV30.0 EV $50.0 EV$ i.5711.571i.571i.571.657.827.447.036.489.544.353.078.485.456.474.247.549.474.9521.831.674.6211.667.2536.878.9441.8862.1731.1611.3341.8101.4651.4331.5731.6261.0751.5811.6511.428.9261.6031.6371.274.8441.5511.5821.197.7541.464.5101.205.6231.3521.97.7551.4551.2561.5601.6451.0341.1501.6992.211.929.0241.7832.387.845.8811.8292.441.809.7401.8232.451.848.6591.7872.436.959.7631.7232.3931.114.0001.6762.3041.2791.2731.6952.1351.4371.518.7871.8311.5771.718.9171.8311.577.038.2283.0601.926.107.304.9491.951.038.2283.0871.920.032.206.142.946.935.937.2961.780.835.937.2961.920

CALCULO DES PARAMETROS DE ALINHAMENTO PARA O 3P1 DO ARGONIO

PARAMETRO DELTA

ANGULO	16.0 EV	20.0 EV	30.0 EV	50.0 EV	80.4 EV
()	1.571	1.571	1.571	1.571	1.571
5	.656	.824	.421	.032	.026
2.6	.437	. 537	.274	.069	.084
15	.480	. 445	.269	.223	260
20	,535	.400	.502	.977	.238
25	.639	.6 08	.891	.422	.423
36	.785	.940	1.033	.509	1.174
35	. 926	1,332	i.1 89	.548	.515
40	.973	1.453	1.331	.479	.452
45	.980	1,379	1.304	,479	,597
50	1,015	1.357	1.178	.515	.570
55	1.007	1.352	1.082	.550	.587
οŅ	1.106	1.305	1.045	.550	.518
05	1.115	1.348	1,053	.506	.393
70	1.089	1.300	1.072	.677	.346
. 75	1.035	1.237	1,968	1.343	, 369
80	.962	1.143	1,034	.917	.386
85	.683	1.023	987	,578	.383
90	.819	-831	.949	,576	.364
95	* 7 97	740	.927	.543	.337
100	.845	-668	.924	.559	.318
105	_ 959	,762	.955	.627	.330
110	1,110	1. 000	1.053	.762	.408
115	1.264	1.272	1.210	,989	,610
120	1.398	1.506	1,305	1,283	1.034
125	1.423	1.418	1.224	1,173	1,287
130	1,361	1.267	1.077	.900	.976
135	1.280	1.163	•939	.829	.830
140	1.211	1.077	.834	.809	.591
J 145	1.163	1,034	.771	.767	.431
150	1.140	1.026	.756	.737	.395
155	1.137	1.054	.794	, 745	.423
150	1.184	1.109		.802	. 5v3
165	1.250	1.196	1.013	.914	646
170/	1,342	1,306	1,179	1.084	.872
175	1.451	1.434	1,368	1,309	1,189
180	1.571	1,571	1.571	1.571	1.571

CALCULO DOS PARAMETROS DE ALIGHAMENTO PARA O 3P1 DO ARGONIO

PARAMETRO EPSLOS

NGULO	15.0 EV	20.0 EV	30.0 EV	50.0 EV	89.4 EV
C	1.571	1.571	1.571	1.571	1.571
4 5	1.025	1.144	.621	.046	.033
10	, ∂83	.867	.475	.976	.071
15	. 901	.812	.523	.142	.151
20	.978	- 857-	.056	.260	.311
25	1.095	.994	.894	. 484	745
30	1.243	1.180	1,209	.885	2.023
35	1.414	1.417	1,591	1.028	. 940
. 40	1,593	1.691	1,955	.858	780
45	1,753	1.968	2.152	.797	.821
50	1.868	2,189	2.104	.817	.981
55	1,919	2.279	1,915	,874	.878
60	1.908	2.223	1.701	.943	. 797
65	1.858	2.031	1.508	.995	696
70	1.790	1,916	1.351	1.001	,609
75	1.722	1.759	1.234	.971	.542
80	1.665	1.620	1.154	941	.496
85	1,623	1.503	1.105	.926	.472
90	1.599	1.410	1.082	,927	.467
95	1.592	1,345	1.075	,945	480
100	1.001	1.309	1,081	.983	.523
105	1,622	1,302	1,095	1,050	.519
110	1,651	1.319	1.115	1.161	.801
115	1,681	1.352	1,135	1.324	1,134
120	1.709	1.391	1.155	1,482	1,643
125	1.731	1.429	1.173	1.435	1.529
130	1.742	1.463	1.194	1.201	1.152
135	1.744	1.512	1.220	1,019	. 853
140	1.735	1,511	1,253	•939	.684
145	1.718	1.527	1.294	.925	. 604
150	1.694	1,540	1.349	.953	, 588
155	1,067	1.551	1.391	1,013	.630
150	1,638	1.557	1.442	1.103	.731
165	1.612	1.563	1.491	1.226	.904
170	1.590	1.567	1,532	1.374	1,156
/175	1.576	1.570	1.561	1.511	1,435
180	1.571	1.571	1.571	1.571	1,571

CALCULO DOS PARAMETROS DE ALINHAMENTO PARA O 191 DO ARGONIO

PARAMETRO LAMODA

ANGULO	16.0 EV	20.0 EV	30.0 EV	50.0 EV	80.4 EV
0	999	. 997	• 998	1.000	1.000
5	* 885	•958	.862	.701	449
10	. 929	.852	.569	.328	.134
15	.843	.699	.287	.099	053
20	.726	.517	.107	.009	.305
25	.575	.317	.128	.356	.868
0 Ç	.397	.127	.399	.837	.997
35	.231	.045	.721	.925	.968
40	.196	.220	.898	.906	.946
45	.383	.553	.946	.883	.937
50	.639	.796	.928	.865	.926
55	, 845	.906	.874	.841	.894
$\delta \sigma$.877	.941	.799	.787	.812
65	.891	,938	.714	.633	.696
70	.973	.897	.631	.270	.623
- 75	831	.874	.564	.064	.593
80	.767	.818	.514	.206	584
85	.632	.740	.476	.341	590
90	.574	.637	.441	.423	607
95	• 447		.400	.477	.633
100	. 314	.353	.348	.524	.669
105	.198	.206	.284	.579	.719
110	,122	.096	.220	.653	788
115	.098	.044	.132	.746	.874
120	,123	.047	.187	.810	.954
125	.182	. 991	.231	.701	946
130	.262	.158	.294	.433	689
135	.350	.247	.360	.270	.315
140	.441	.324	.426	.248	.255
145	.532	.414	.491	.303	.395
150	.619	.507	.559	397	.551
155	.702	.692	.632	.516	.689
150	.777	.691	.709	.645	808
165	.841	.773	.788	.773	.899
170	.890	.840	.859	.880	.958
/175	.921	. 884	.911	.952	1988
180	.932	.990	.930	.978 '	,997

ð,

CALCULO DOS PARAMETROS DE ALIMHAMENTO PARA O 1P1 DO ARGONIO

PARAMETRO QUI-BARRA

ANGULO	16.0 EV	20.0 IV	30.0 EV	50.0 gV	89.4 EV
0	.000	.000	.000	.000	.000
5	.022	.066	,150	.017	.102
10	.030	.069	.219	.036	352
15	. 047	.074	.392	.110	1.374
20	.079	.075	.909	2.048	2.417
25	.142	• 067	2.034	2,698	2.645
30	.280	.003	2.538	2.302	1.002
35	<u>.630</u>	1.304	2.640	1,472	.170
40	1.427	2.770	2.460	1.007	.261
45	2.007	2.860	1.731	.822	.438
50	2.155	2,922	1.105	.700	.702
55	2.057	3.064	.970	.551	1.090
50	1.675	2.422	1.016	.319	1.627
05	1.031	.855	1,142	.020	2,274
70	.576	.639	1.311	.513	2.861
75	.367	.485	1,496	2.139	2,991
80	.272	.407	1.665	3.116	2.676
95	.226	.336	1.801	2.898	2.434
90	.291	.265	1.898	2.814	2.237
25	.179:	.194	1,963	2.782	2.062
100	.139	.124	2.013	2.782	1.899
105	.046	959	2,073	2.817	1.746
110	.201	.014	2.212	2,914	1.598
115	_830	.034	2.468	3.120	1.425
120	1,552	2.612	2.795	2.462	1.013
125	1.863	2.749	3.047	1.487	547
130	1.973	2.718	3,095	.841	915
135	2.010	2.637	3.024	.298	.546
140	2.016	2.617	2,991	.168	200
145	2.007	2.567	2,979	.468	578
150	4,993	2.522	2,977	.634	708
155	1.977	2.475	2.980	.721	763
160	1.961	2.447	2,985	.767	.797
1,65	1,948	2.420	2,989	.790	.831
170	1,938	2.400	2,992	.800	.866
/175	1.932	2.388	2.994	.804	895
180	.000	.000	.000	.000	.000

CALCULO DOS PARAMETROS DE ADINHAMENTO PARA O 1P1 DO ARGONIO

PARAMETRO DUI-MC

3

 \sim

ANGULO	16.0 EV	20.0 EV	39.9 EV	50,0 EV	80.4 EV
Ð	1.571	1.571	1,571	1.571	1.571
5	. 198	.282	.188	.019	.102
10	.139	.170	.231	.040	352
15	.141	.145	.397	.124	1.375
20	.170	,1 50	.917	2,017	2.415
25	.234	.134	2.013	2,685	2,633
30	.375	.394	2.465	2.294	1.104
35	.724	1.494	2,497	1.473	.223
. 40	1,443	2.370	2.253	1.013	.288
4.5	1,958	2.485	1.683	.831	.458
50-	2.058	2,403	1,192	.713	.717
55	1.924	2,151	1.034	.571	1.097
60	1.632	1.734	1.056	.357	1.627
65	1,280	1.316	1.167	.152	2,269
70	. 983	1.050	1.325	. 551	2.846
75	.770	.829	1.499	2.044	2,962
80	.621	. 654	1.661	2,852	2.056
85	.514	.560	1.791	2.829	2.428
90	.436	.447	1,884	2,776	2,233
95	. 388	.342	1,946	2,750	2,050
100	.387	.267	1.994	2,747	1,898
105	.483	.293	2,053	2,765	1,745
ay 110	.745	.524	2.168	2.805	1,598
115	1.170	1.090	2.370	2,783	1,428
120	1.559	1.858	2.592	2,321	1,065
125	1,733	2.273	2.729	1,494	- 750
130	1,899	2.430	2,791	.877	,949
135	1.947	2.452	2.820	.392	.589
1.40	1,961	2.474	2.836	.298	,257
145	1.957	2,445	2.842	,516	. 589
150	1.942	2.492	2.833	.664	.715
155	1,920	2.343	2.801	. 749	,769
160	1,891	2.231	2.736	.799	.807
1/55	1,952	2.191	2,622	,836	.847
170	1.794	2.058	2.426	*888	.902
175	1.701	1.852	2.087	1.039	1.014
180	1.571	1.571	1.571	1.571	1.571

. ·

64.

3

CAUCULO DOS PARAMETROS DE ALIMHAMENTO PARA O 1P1 DO ARGONIO

PARAMETRO DELTA

ANGULO	16.0 EV	20.0 EV	30.0 EV	50.0 EV	90.4 EV
11	1.571	1.571	1.571	1.571	1.571
5	. 196	,274	.114	.008	.007
10	.136	.155	.072	018	.021
15	.133	.125	.070	.057	068
20	.151	.130	.149	.352	.062
25	.137:	.192	.294	.111	.113
.30	.252	.394	.328	.138	.583
35	.372	1.274	.423	.157	.145
. 40	.475	.693	.624	.135	.123
45	.407	.601	.793	.135	.139
50	555	. 711	.604	.147	.157
55	.736	.988	.440	.160	.161
ΰÐ	.936	1.353	.366	.163	.141
65	* 6 8 9	1.176	.338	.150	.107
70	.848	.902	, 329	.210	.094
75	.693	.702	.322	.563	.098
· 8 0	.556	.566	.312	.288	.102
ð 5	. 465	.457	.301	.198	.100
90	.389	.364	.292	.166	.095
95	.346	.234	.288	.157	.088
100	.395	.237	,290	.166	.083
105	.481	.287	.303	.194	.087
110	.722	.524	.344	,250	.110
115	.954	1.088	.410	.358	.130
120	.893	1.236	.436	.503	.413
125	.727	,796	.402	.420	. 542
130	, 695	. 590	.347	.288	.299
135	.529	. 491	.300	.259	.232
140	.436	.434	.267	,247	,162
145	.472	.419	.253	,227	.116
150	. 483	.433	.262	.215	.106
155	.522	.480	. 301	.220	.114
100	. 595	.556	.376	.249	.139
165	.710	•035	. 499	.311	.189
179	.906	-833	.703	.440	.294
/175	1,193	1.180	1.048	.751	.564
180	1.571	1,571	1.571	1.571	1.571
TABELA 3.10

CALCULD DUS PARAMETROS DE AUTUHAMENTO PARA O 1P1 DO ARGONIO

PARAMETRO EPSLOG

ANGULO	16.9 EV	20.0 EV	34.9 EV	50.0 EV.	80.4 EV
0	1.571	1.571	1,571	1.571	1.571
5	.315	-495	.171	.012	.008
10	.2.18	. 253	.125	.919	.018
15	. 251	.228	.139	.036	038
20	.275	.243	.181	.066	.080
25	.317	.234	.255	,125	200
30	.377	.350	.380	.242	1.059
35	.451	.449	.601	296	.267
40	.578	. 594	1,003	.243	.214
. 45	.745	.816	1,379	.227	.228
50	.980	1.151	1.108	.236	.247
55	1,286	1.670	.795	.259	.245
5 Q	1,501	2.067	.611	.283	220
55	1.581	1.800	.501	.295	.190
70	1.377	1.371	.433	,287	.165
75	1.151	1.061	.392	.271	,146
80	.974	.849	.370	.261	.132
35	.846	.699	.360	.258	.125
90	.755	.590	.359	.261	.122
95	.690	.513	.362	.272	125
100	.645	.462	.367	,291	.137
1.05	.614	.431	.369	.326	.163
110	,595	.417	.367	.390	.216
115	.534	.416	.369	.512	.336
120	.530	.425	.353	.673	.693
125	.533	.440	.348	.563	.793
130	.591	.452	.350	.376	. 381
135	.696	.501	.361	.291	.248
140	.623	.523	381	.262	189
145	. 583	.567	.413	,259	.164
150	. 7061	.025	.460	.273	.159
155	,772	.795	.527	.303	.172
100	.868	.811	.024	.354	.206
155	1.009	.966	.772	.445	.274
/170	1.208	1,181	1.003	.619	416
175	1.444	1.434	1.339	1,011	.777
. / 136	1.571	1.571	1.571	1,571	1,571

CAPITULO 4

Teoria de muitos Corpos em Segunda Ordem em Espalhamento Inelástico de elétrons por átomos, 2³S He

A teoría de muitos corpos em primeira ordem (FOMBT) usada para estudar o espalhamento inelástico de elé trons por átomos apresenta várias deficiências por não incluir efeitos considerados importantes na região de energia que nos interessa. Por exemplo os estados no contisão calculados com num potencial de Hartree-Fock,cha nuo mado de potencial direto e de troca. Certamente com tal descrição efeitos de polarização, estado final entre outros estão excluídos. As tentativas de se incluir efeitos além do Hartree-Fock tem uma longa história e recentemente Bransden e McDowell⁽⁸⁰⁾ num artigo de revisão, apresentam num apanhado dos modelos em uso para superar este pro-Observando-se os resultados obtidos pela aplicablema. ção da FOMBT aos estados com n=2 do He(8) vê-se que 0 S estados do tipo ³L são as que apresentam as maiores dis crepâncias para os valores experimentais, mostrando que D unico termo, de troca, usado para descrever este processo não é suficiente. Para incluir outros defeitos é natural que analisemos outros termos da expansão da qual a FOMBT ē apenas o primeiro deles. Isto será feito numa teoria de muitos corpos em segunda ordem (SOMBT) como desenvolvida por Csanak e outros⁽⁸¹⁾.

Iniciamos com a expressão da matriz S (1-15)

 $S_{nq,op} = -\int d_3 d_3 d_4 d_4 f_4^{(3)} f_{\mu}^{(3)} = (34, 3'4') X_n^{\circ}(4', 4)$

Em primeira ordem os f são obtidos através de função de $\mathcal{J}_{\mathcal{H}}$ Green de uma partícula na aproximação Hartree-Fock (HF) e as $\chi_n^{o(4'4)}$ da função de Green de duas partículas na aproximação RPA. A solução de G₁ e G₂ não é auto-consiste<u>n</u> te, jã que esta não é fundamental em física atômica. Existem várias alternativas de se colocar efeitos de ordem mais alta. Por exemplo se usarmos a auto energia Σ

 $\sum (1,1') = i V(1-1') G_1(1,1') - i \delta(1-1') \int d3 V(1-3) G_1(3,3')$ $+ i \int d3 d4 V(1-3) G_1(1,4) = \sum (4,1') \qquad 4.1$ onde usando-se a definição de = (45,1'6) = $\frac{5 \sum (4,1')}{5 G_1(6,5)}$ $\sum (1,1') = i V(1-1') G_1(1,1') - i \delta(1-1') \int d3 V(1-3) G_1(3,3')$ $+ i \int d3 d4 d5 d6 V(1-3) G_1(1,4) = (45,1'6) R(63,53') 4.2$

pode-se conseguir uma auto energia Σ além da aproximação HF = $\Xi = S \Xi / SG \Xi S \Xi_{HF} / SG$

e R_2 na aproximação RPA. A equação de Dyson com esta apr<u>o</u> ximação de Σ definirá uma função de Green, G^{GRPA}, onde novos efeitos estão incluídos. A análise desta nova auto-<u>e</u> nergia foi efetuada por Csanak e Taylor⁽⁸²⁾ e foi usada para espalhamento elástico com He por Yarlagadda e outros⁽⁸³⁾ com excelentes resultados. Isto também pode ser feito em espelhamento inelástico usando-se os nossos fp na expressão da matriz S. Pode-se também ir além em \equiv usa<u>n</u> do-se para calcular este a nova auto energia Σ ou incluir estes efeitos na equação X_n^0 . A maneira com que introduz<u>i</u> remos segue a segunda alternativa. Podemos escrever a matriz S como

$$Snq.op = \frac{1}{c} \int ds dr \int_{q}^{corr} (0) \int_{p}^{q} (0) V_{ou}(0,1) \qquad 4.3$$

onde

$$V_{on}(1,1) = \frac{1}{L} \left[dzdz' \equiv (1z,1'z') \chi_{n}^{o}(z',z) \right] 4.4$$

 $\overline{s} \stackrel{\text{(1,1')}}{Su(3)} = \int dz dz' \equiv (12, 1'2') R(z'3, 23')$

aplicando a operação de Gell Mann-Low teremos

 $\frac{1}{dn} \int_{3-\infty}^{1} \int \frac{J_{n}(3,3')}{3u(3)} \chi_{n}^{0}(3,3') = \int \frac{J_{n}(3,3')}{3u(3)} = \int \frac{J$

esta expressão quando substituída em 4.4 mostra que existe uma maneira de se introduzir outros efeitos não incluídos numa teoria de primeira ordem. Assim no nosso modelo usaremos G_1 na aproximação H-F, os X_n^0 na aproximação H.F. de caroço congelado, mas iremos mais longe na expansão de

 $\frac{\delta\Sigma}{\delta u}$ que numa teoria de primeira ordem, incluiremos termos em segunda ordem na interação V. Isto é uma essência o nosso modelo.

Para obter a expressão da matriz S, tomamos a equação 4.1 para Σ e fazendo uma interação teremos

$$\begin{split} \sum_{i}(1,1') &= i V(1-1') G_{i}(1,1') - i \delta(1-1') \int d_{3} V(1-3) G_{i}(3,3^{*}) \\ &+ i \int d_{3} d_{4} V(1-3) G_{i}(1,4) t V(4-1') R(43,1'3^{*}) \\ &- i \int d_{3} d_{4} V(1-3) G_{i}(1,4') t V(1'-4) R(43,4'3^{*}) \\ &+ i \int d_{3} d_{4} d_{5} d_{5}' V(1-3) G_{i}(1,4) V(4-5) R(43,5'3^{*}) \frac{\delta \sum_{i}^{2} (5',1)}{\delta u(5)} \\ &+ i \int d_{3} d_{4} d_{5} d_{5}' V(1-3) G_{i}(1,4) V(4-5) G_{i}(4,5') \frac{\delta^{2} \sum_{i}^{2} (5',1')}{\delta u(5)} \\ \end{split}$$

onde negligenciamos os dois últimos termos assim

$$\begin{split} \delta \overline{\Sigma}(1,1) &= i V(1-1) R(12,1'2') - i \delta(1-1') \left[d_3 V(1-3) R(32,3'2') - \int d_3 d_4 V(1-3) R(12,42') V(4-1') R(43,1'3') - \int d_3 d_4 V(1-3) G_1(1,4) V(4-1') R(432,1'3') + \int d_3 d_4 V(1-3) R(12,1'2') V(4-1') R(43,4'3') + \int d_3 d_4 V(1-3) R(12,1'2') V(4-1') R(432,4'3') + \int d_3 d_4 V(1-3) G_1(1,1') V(4-1') R(432,4'3'2') + \int d_3 d_4 V(1-3) G_1(1,1') V(4-1') R(432,4'3'2') + \int d_3 d_4 V(1-3) G_1(1,1') V(4-1') R(432,4'3') + \int d_4 d_4 V(1-3) G_1(1,1') V(1-1') R(432,4'3') + \int d_4 d_4 V(1-3) G_1(1,1') + \int d_4 d_4 V(1-3) G_1(1-3) + \int d_4 d_4 V(1-3) + \int d_4 d_4$$

com a qual usando-se 4.4 e 4.5 obtém-se $V_{on}(1,1') = V(1-1') \chi_{n}^{o}(1,1') - \delta(1-1') \int d3 V(1-3) \chi_{n}^{o}(3,3')$

$$-\frac{1}{c} \int d3d4 V(1-3) P(43,1'3') V(4-1') X_{n}^{o}(1,4)$$

$$-\frac{1}{c} \int d3d4 V(1-3) G_{n}(1,4) V(4-1') P_{n}^{T}(43,1'3')$$

$$+\frac{1}{c} \int d3d4 V(1-3) P(43,4'3') V(4-1) X_{n}^{o}(1,1')$$

$$+\frac{1}{c} \int d3d4 V(1-3) G_{n}(1,1') V(4-1') P_{n}^{T}(43,4'3') (4.7)$$

onde*
$$R_{n}^{T}(43,1'3') = \prod_{d_{n}} \int_{z_{2} \to \infty} \int_{z_$$

substituindo (4-7) na equação (4.3) obtém-se a matriz S usada, na qual a dependência temporal pode ser integrada pa ra obter-se a matriz T. Usamos

$$G_{3}(1,1') = G_{1}(n_{1},n_{1}'; \zeta_{1},\zeta_{1}') \qquad X_{u}^{\circ}(1,1') = e^{iW_{u}T_{1}}X_{u}^{\circ}(n_{1},n_{1}';\zeta_{1}')$$

$$R(43,4'3') = \sum_{w\neq 0}^{1} \left[\Theta(t_{4},t_{3}) X_{0}^{w}(4,4')X_{u}^{\circ}(3,3') + \Theta(t_{3},t_{4}) X_{0}^{u}(3,3')X_{u}^{o}(4,4') \right]$$

$$R_{u}^{T}(43,4'3') = i \sum_{w}^{1} \left[\Theta(t_{4},t_{3}) X_{u}^{w}(4,4')X_{u}^{\circ}(3,3') + \Theta(t_{3},t_{4}) X_{u}^{o}(3,3') X_{u}^{o}(4,4') \right]$$

$$- i \left[X_{u} \right] \frac{1}{(3)^{1}(3)} \log X_{0} \right] \frac{1}{(44)^{1}(4)^{1}(4)} \log X_{0} + X_{u} \right] \frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)} \frac{1}{(43)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)^{1}(4)} \log X_{0} \right] \frac{1}{(43)^{1}(4)} \log X_{0} \left[\frac{1}{(43)^{1}(4)} \log X_{0} \right] \frac{$$

obteremos uma matriz T como: $Tuq_{iOP} = \sum_{i=1}^{M} T_{uq_{iOP}}^{(i)}$

onde

$$T_{nq,op}^{(1)} = \int cln_{s}cln_{s} fq^{(n_{s})} fp^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}^{(1)}) \tilde{X}_{n}(n_{s}, n_{s}^{(1)}) \\ T_{nq,op}^{(2)} = -\int cln_{s}cln_{s} fq^{(n_{s})} fp^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}^{(1)}) \tilde{X}_{n}(n_{s}, n_{s}) \\ T_{nq,op}^{(3)} = -\int cln_{s}cln_{s} fq^{(n_{s})} fp^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}^{(1)}) \tilde{X}_{n}(n_{s}, n_{s}) \\ T_{nq,op}^{(3)} = \sum_{w\neq o, m} \int dn_{s}cln_{s}cln_{s} fq^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}) fp^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}) \tilde{G}(n_{s}, n_{s}) \tilde{G}(n_{s}, n_{s}) \tilde{X}_{n}(n_{s}, n_{s}) \\ T_{nq,op}^{(4)} = \sum_{w\neq o, m} \int cln_{s}cln_{s}cln_{s} fq^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}) fp^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}) \tilde{G}(n_{s}, n_{s}) \tilde{G}(n_{s}, n_{s}) \tilde{X}_{n}(n_{s}, n_{s}) \tilde{X}_{n}(n_{s}, n_{s}) \\ T_{nq,op}^{(4)} = \sum_{w\neq o, m} \int cln_{s}cln_{s}cln_{s} fq^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}) \int p^{(n_{s})} V(\vec{n}_{s} \cdot \vec{n}_{s}) \tilde{G}(n_{s}, n_{s}) \tilde{G}(n_{s}, n_{s}) \tilde{X}_{n}(n_{s}, n_{s}) \tilde{X}_{n}(n_{s}, n_{s}) \tilde{X}_{n}(n_{s}, n_{s})$$

(*) No Apêndice. D uma equação para R_n^1 é derivada.

$$T_{uq,pp}^{(0)} = -\int_{0}^{1} \int_{0}^{1} \int_{0}$$

As expressões para $G_1 >$, $G_1 <$ estão no apêndice <u>B</u> e para $X^0 > X_n^0 >$ no apêndice <u>C</u>.

Pode-se analisar a matriz T obtida para se

ter idéia dos processos físicos levados em consideração⁽⁸¹⁾. Na aplicação específica que faremos, isto será discutido mais longamente. Assim de uma forma geral temos que T⁽¹⁾ e T⁽²⁾ são os termos da primeira ordem de T⁽³⁾ a T⁽⁸⁾ temos processos diretos e T⁽⁹⁾ a T⁽¹⁴⁾ os processos de troca re<u>s</u> pectivos . T⁽³⁾ corresponde a termos que violam o princípio de exclusão de Pauli, que surgem em expansões diagramáticas . T⁽⁴⁾ representa dois tipos de efeito um de polarização do átomo outro de transferência de fluxo para os d<u>e</u> mais canais de espalhamento aberto. T⁽⁵⁾ e T⁽⁸⁾ representam o efeito do estado final e T⁽⁷⁾ e T⁽⁸⁾ são similares a T⁽³⁾ e T^(a) mas são de natureza dinâmica.

Nosso interesse volta-se para os estados ³L. isto implica que fazendo-se a análise de spin dos termos $T^{(1)}, T^{(3)}, T^{(4)}, T^{(5)}, T^{(6)} \in T^{(7)}$ termos que serão nulos. Para fazer o cálculo da matriz T restante exige-se um traba lho computacional ainda enorme de modo que em se tratando de uma primeira aplicação é interessante se conhecer os efeitos mais importantes que não são levados em consideração numa teoria de primeira ordem. As aplicações das teorias de muitos corpos para espalhamento elástico⁽⁸⁴⁻⁸⁷⁾ podem servir em uma primeira instância para a escolha dos termos mais importantes bem como uma aplicação em espalhamentó inelástico no \overline{a} tomo de H(2s, 2p) feita por Pindzola e Kelly⁽⁸⁸⁾ usando outra formulação para o problema. Em espalhamento elástico os termos de EPV são despresíveis o que nos confirmamos num cálculo inicial para os 2'S do He. Assim dedicaremos maior atenção a dois termos T⁽⁹⁾ e T⁽¹²⁾ pois nestes $\langle \cdot \rangle$

estão incluídos, efeitos de polarização, troca de fluxo com os canais abertos para espalhamento e interação do estado final. Poe e Chang⁽⁸⁶⁾ usando a teoria de muitos corpos i<u>n</u> cluiram efeitos de segunda ordem no potencial ótico obtenbom acordo com os dados experimentais.Como nesta aplicado ção a energia do elétron incidente estava abaixo da energia de excitação o potencial ótico é real, não existe fluxo para outros canais. Posteriores aplicações como no caso do Ar⁽⁸⁵⁾ com energias mais altas onde este efeito surgiria foi considerado despresível, isto não acontecerá no nosso caso. O efeito devido ao estado final foi apenas incluído via teoria de ondas distorcidas⁽²²⁾ e parece piorar a concordância com a experiência.

Assim em nosso modelo teremos

$$T = T^{(2)} + T^{(9)} + T^{(11)}$$

Para retirar a dependência no spin usamos o desacoplamento derivado no apêndice A, com o qual țeremos $T_{nq,op}^{(2)} = - (43)^{N_{2}} (43)^{N_{2}} (44)^{N_{2}} (42)^{N_{2}} (43)^{N_{2}} (43)^{N_{$

Nos apêndices E e F estão desenvolvidos em ondás parciais

74.

) y m

os termos T⁽⁹⁾ e T⁽¹¹⁾ que nos fornece para o caso n³S do He T_{mpop} = -(c1)^(c1) (-1)^{(cmp}C_{mp}^(b2) (-2)^(c2) (-2)^{(c}

Com a matriz T agora detalhada nos podemos ver como são incluidos os novos efeitos. O termo $T^{(9)}$, como jã menciona mos antes, da origem a dois efeitos não incluídos numa pri o termo P)dk..... dā origem aos efeitos de meira ordem; polarização no espalhamento inelástico, isto pode ser enten dido como se um elétron incidente excitasse o átomo para um estado m,lm e um elétron no continuo de momentum K, o áto mo decai para o estado ns e o eletron e espalhado com momentum q. Isto é apenas úma imagem já que por exemplo a energia não e conservada no estado intermediário (k,mln,ls). Huo⁽⁸⁹⁾ num cálculo de segunda ordem usando uma teoria aná loga a aproximação de Ochkur para a transição l'S \rightarrow 2³S ,

75.

A.M

mostrou que a contribuição do termo de segunda ordem é uma ordem de grandeza maior que o termo de primeira, para espalhamento frontal a 500 ev. usando estados intermediários só do tipo P.

Na parte imaginária está o efeito dos canais energia Ep.(⊧oj = √2(Ep:-ωj). Numa análise abertos para do espalhamento como interferência de ondas parciais, um canal aberto influi em segunda ordem com a sua primeira ordem através de $R_1^{\ell}(jlj, koj l_1; plp, 15)$ multiplicado pela intensidade do acoplamento R^{lj}(qlp,ns; koj ls, jlj). Des ta forma este termo inclui o efeito dos demais canais pertur bativamente dando origem a polarização e troca de fluxo com os canais abertos. Jã o termo $T^{(12)}$ inclui o efeito do estado final, como numa diferença entre este e o estado inicial. Todos estes resultados nos levaram a escolher na S 0 ma dos estados intermediários estados do tipo pes, no nos so caso 2³p, 3³P e 3³S que supomos serem os que darão 0 maior efeito, isto farã com que T⁽⁹⁾ seja escrito como:

 $T_{w_{j}np}^{(q)} = -(1)^{s_{w_{j}}} (-1)^{s_{w_{j}}} ($

 $s^n-M_s^n$ 1/2 mp 1/2 1/2 1 0 termo (-1) (-1) C-mp mp - M_s^n \tilde{e} comum a $T^{(2)}, T^{(9)} e T^{(11)}$ de modo que a seção de choque difere<u>n</u> cial

$$\frac{d\Gamma}{dR} = \frac{1}{4\pi^2} + \frac{1}{P} + \frac{1}{2} \sum_{mp} \sum_{mq} \sum_{mp} \left| T_{mq,op} \right|^2$$

 $\frac{dG}{da} = \frac{1}{8\pi^2} \frac{q}{p} = 3 |T|^2$

onde $T = T^{(2)} + T^{(9)} + T^{(11)}$ retirado o fator comum menci<u>o</u> nado. A forma com que realizamos numericamente o cálculo é a seguinte: usamos a função ls publicada por Clemente e Roeli⁽²⁹⁾ os estados excitados e os orbitais no continuo gerado pelo programa Bates⁽²⁷⁾, modificado para incluir ondas parciais de maior ℓ , as integrais de dois elétrons pelo programa usado no capítulo 1, a integral em k requerem num estudo especial que colocamos no apêndice G.

A figura 4.1 mostra a SCD para 2³S, calcul<u>a</u> da em FOMBT (-.-.), incluindo num estado intermediário 2³P e a parte correspondente a P (-..-.) e a parte imag<u>i</u> nária (-). O efeito mais importante é colocar o mínimo da SCD em boa concordância com o resultado experimental de Trajmar⁽⁹⁰⁾ em comparação com o resultado em primeira ordem. É interessante também notar a influência da polariza_ cão de curto alcance ao 2^3 P, bem como o fluxo entre os dois estados este em oposição ao caso elástico⁽⁸⁵⁾. Se for incluído agora o efeito da interação do estado final o resultado piora. Como primeira aplicação desta teoria, mesmo apenas este resultado é indicativo de quais efeitos físi cos são mais importantes neste processo. Na figura 4.2 temos o resultado final. O cálculo de Bhadra, Callaway ; e Henry⁽⁹¹⁾ usando acoplamento forte (close coupling), forn<u>e</u> ce para esta transição boa concordância quantitativa com os resultados experimentais. Eles atribuem este acordo ao acoplamento entre os estados 2^3 S, 2^3 P, semelhante a nossa conclusão. Outros modelos não fornecem resultados comparãveis⁽⁸⁰⁾.

Como conclusão esperamos que este seja um pr<u>i</u> meiro passo para outros estudos sobre o tema, no qual este resultado é apenas uma primeira indicação.

FIGURA 4.1

TABELA 4.1

SECAN DE CHOQUE DIFFRENCIAL PARA 235 DO HELIO

			÷		
ANGULO	A	В	C	D	
0.0 10.0 20.0 30.0 40.0 50.0 50.0 50.0 30.0 100.0 100.0 120.0 130.0 140.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	0.1402E+01 0.1232E+01 0.8455E+02 0.4731E+0. 0.2382E+0. 0.1293E+0. 0.9354E+03 0.9954E+03 0.1410E+02 0.2205E+02 0.3381E+02 0.3381E+02 0.3381E+02 0.8345E+02 0.8345E+02 0.8345E+02 0.8345E+01 0.1148E+01 0.1261E+01 0.1357E+01 0.1357E+01	3.40338-01 0.4271E-01 0.29248-01 0.1520E-01 0.5630E-02 0.1263E-02 0.1263E-02 0.1263E-02 0.1770E-03 0.1958E-03 0.1958E-03 0.60358-04 0.6391E-03 0.2690E-02 0.61738-02 0.1625E-01 0.2105E-01 0.2105E-01 0.24868-01 0.2724E-01 0.2805E-01	$\begin{array}{c} 0.4359 \pm -01 \\ 0.4207 \pm -01 \\ 0.2712 \pm -01 \\ 0.1276 \pm -01 \\ 0.1276 \pm -01 \\ 0.4160 \pm -02 \\ 0.1991 \pm -02 \\ 0.2286 \pm -02 \\ 0.2587 \pm -01 \\ 0.3556 \pm -02 \\ 0.1340 \pm -01 \\ 0.2587 \pm -01 \\ 0.2587 \pm -01 \\ 0.3506 \pm -01 \\ 0.3506 \pm -01 \\ 0.3472 \pm -01 \\ 0.3472 \pm -01 \end{array}$	$\begin{array}{c} 0.57308-01\\ 0.50298-01\\ 0.34088-01\\ 0.13138-01\\ 0.84848-02\\ 0.52488-02\\ 0.52488-02\\ 0.54278-02\\ 0.61278-02\\ 0.60418-02\\ 0.54538-02\\ 0.54538-02\\ 0.54538-02\\ 0.54538-02\\ 0.54538-02\\ 0.10868-01\\ 0.15158-01\\ 0.27578-01\\ 0.31908-01\\ 0.31908-01\\ 0.35528-01\\ 0.35528-01\\ \end{array}$	
and the second se	9 . i		-		

A - Primeira ordem

- B Inclusão da polarização do 2³P
- C Inclusão do fluxo do $2^{3}P$
- D Inclusão do estado final

REFERENCIAS

- A.A. Abrikosov, L.P. Gorkov e I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics. (Dover, 1975).
- 2) P. C. Martin e J. Schwinger, Phys. Rev., 115, 1342 (1959).
- L. D. Kadanoff e G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, 1976).
- 4) H. P. Kelly, Phys. Rev. 131, 684 (1963) 136 B, 896 (1964)
- 5) M. Ya. Amusia e N. A Cherepkov, Case Studies in Atomic Physics 5, 47 (1975).
- 6) Many-body Theory of Atomic Systems, Proceedings of Nobelsymposium 46, Ed. I. Lindgren e S. Lindqvist, Phys. Scrip. 21, No 314 (1980).
- 7) Gy. Csanak, H. S. Taylor e R. Yaris, Phys. Rev. A3, 1322 (1971).
- 8) L.D. Thomas, Gy. Csanak, H. S. Taylor e B. Yarlagadda,
 N. Phys. B7, 1719 (1974).
- 9) A. Chutjian e L. D. Thomas, Phys. Rev. All, 1583 (1975).
- 10) G. P. Menezes, N.T. Padial e Gy. Csanak, J. Phys. B 11, L 237 (1978).
- 11) N. T. Padial, G. D. Menezes, F. J.da Paixão, Gy. Csanak e D. Cartwright, Phys. Rev. A 00, 000 (1980).
- 12) P. Roman, Introduction to Quantum Field Theory (John Wiley, 1969).
- 13) J. S. Bell e E. J. Squires, Phys. Rev. Lett. 3, 96 (1959)

- 14) M. Namiki, Prog. Theor. Phys. (Kyoto) 23, 629 (1960),
 T. Kato, T. Kobayashi e M. Namiki, ibid supp. 15, 3 (1969).
- [15] J. Schwinger Proc. Nat. Acad. Sci. U.S. 37, 452 (1951).
- 16) Gy. Csanak, H. S. Taylor e R. Yaris, Adv. Atom. Mol. Phys. 7, eds D.R. Bates e J. Esterman (Academic Press, 1971) p. 287.
- 17) M. Gell-Mann e F. Low, Phys. Rev. 84, 350 (1951).
- 18) Gy. Csanak, H. S. Taylor e D. N. Tripatly, J. Phys. B 6, 2040 (1973).
- 19) P. L. Altick e A. E. Glassgold, Phys. Rev. 133, 632 (1964).
- 20) T. H. Dunning e V. Mckoy, J. Chem. Phys. 47, 1735 (1967).
- 21) T. N. Rescigno, C. W. McCurcly e V. Mckoy, J. Phys. B 7, 2396 (1974).
- 22) D. H. Madison e W. N. Shellon, Phys. Rev. A 7, 499 (1973).
- 23) G. D. Menezes, Tese de Doutoramento, UNICAMP (1978).
- 24) Clementi e Roetti, Atomic Data
- 25) C. Froese Fischer Comp. Phys. Comm. 14, 145 (1978).
- 26) V. Mckoy Comunicação Privada.
- 27) G. N. Bates, Comp. Phys. Comm. 8, 220 (1974).
- 28) A. Pochat, D. Rozuel e J. Peresse, J. de Physique 34, 701 (1973).
- 29) M. R. C. McDowell, L. A. Morgan e V. P. Myerscough, J. Phys. B 6, 1435 (1973).
- 30) T. Scott e M. R. C. McDowell, J. Phys. B 8, 1851 (1975).

- 31) R. Marriot, Proc. Phys. Soc. 87, 407 (1966).
- 32) Y. K. Kim e M. Inokuti, Phys. Rev. 181, 205 (1969).
- 33) M. R. Flannery, W. F. Morrison e B. L. Richmond, J. Appl. Phys. 46, 1186 (1975)
- 34) M. R. Flannery e K. J. McCann, Phys. Rev. A 12, 846 (1975).
- 35) P. Ton-That, S. T. Manson e M. R. Flannery, J. Phys B 14, 621 (1977).
- 36) S. T. Chen e G. A. Khayrallah, Phys. Rev. A 14, 1639 (1976).
- 37) G. A. Khayrallah, S. T. Chen e J. R. Rumble Jr, Phys Rev. A 17, 513 (1978).
- 38) H. G. Wilson e W. L. Williams, J. Phys. B 9, 423 (1976).
- 39) R. H. Neynaber, S. M. Trujillo, L.L. Marinoe E. W. Roth nos "Proceedings of the Third International Conference of the Physcs of Electronic and Atomic Collisions". Editor M. R. C. McDowell, Willey, 1964, pg. 1089.
- 40) M. L. Lake e A. Garscadden, Bull, Am. Phys. Soc. 21, 157 (1976).
- 41) Gy. Csanak, J. Phys. B 7, 1289 (1974).
- 42) D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
- 43) D. L. Yeager, M. A. C. Nascimento e V. Mckoy, Phys. Rev. A , (1975).
- 44) Gy. Csanak, Tese de Doutoramento, USC (1971) não publicado.
- 45) A. R. Edmonds, "Angular Momentum in Quantum Mechanics"

(1957) Princeton.

- 46) Gy. Csanak, J. Phys. B 7, L 203 (1974).
- 47) T. N. Chang e R. T. Poe, J. Comp. Phys. 12, 557 (1973).
- 48) R. Courant e D. Hilbert, Methods of Matematical Physycs, (Intersience, 1953).
- 49) D. C. Carlwright, F. J. da Paixão e Gy. Csanak (em andamento).
- 50) H. Ehrhardt, M. Schulz, T. Tekaar e K. Willmams, Phys. Rev. Lett. 22, 89 (1969).
- 51) J. H. Macek e P. H. Jaecks, Phys. Rev. A 4, 2288 (1971).
- 52) J. Wykes, J. Phys. B 5, 1126 (1972).
- 53) U. Fano e J. H. Macek, Rev. Mod. Phys. 45, 553 (1973).
- 54) M. Eminyan, K. B. MacAdam, J. Slevin e H. Kleinpoppen, Phys. Rev. Lett. 31, 576 (1973), idem, J. Phys. B 7,
- 55) 1519 (1974), idem J. Phys. B 8, 2058 (1975).
- 55) M. C. Standage e H. Kleinpoppen, Phys. Rev. Lett. 36, 577 (1976).
- 56) A. Ugbabe, H. Arriola, P. J. O. Tenbner e E. Weigold, J. Phys, B 10, 72 (1977).
- 57) K. T. Tan, J. Fryar, P. S. Farago e J. W. McConkey, J. Phys. B 10, 1073 (1977).
- 58) V. C. Sutclifle, G. N. Haddad, N. C. Steph e D. E. Golden, Phys. Rev. A 17, 100 (1978).
- 59) M. T. Hollywood, A. Crowe e J. F. Williams, J. Phys. B 12, 819 (1979).

- 60) I. McGregor e H. Kleinpoppen em : Coherence and Correlation in Atomic Collisions, eds H. Kleinpoppen e J. F. Williams (Plenum, 1980).
- 61) I. C. Malcolm e J. W. McConkey, J. Phys. B 12, 511 (1979).
- 62) A. Zaidi, I. McGregor e H. Kleinpoppen, XI JPEAC, Kyoto (1979).
- 63) K. Blum e H. Kleinpoppen, J. Phys. B 8, 922, (1975).
- 64) K. Blum e H. Kleinpoppen, Phys. Rep. 32, 203 (1979).
- 65) K. Siegbahn, Alpha, Beza and Ganima Ray Spectroscopy (North-Holland, 1968).
- 66) I. C. Malcolm e J. W. McConkey, J. Phys. B12, L 67, (1979).
- 67) N. T. Padial (Tese de Doutoramento) UNICAMP 1978.
- 68) A. Chutjian e D. C. Cartwright, Phys. Rev. A XX, XXX (1980).
- 69) I. C. Percival e M. J. Seaton, Phil. Trans. Ray Soc. (London), Ser. A 251, 113 (1958).
- 70) D. M. Brink e G. R. Satchler, Angular Momentum (Oxford, 1975).
- 72) H. W. Hermann e I. V. Hertel in Coherence and Coorelation in Atomic Collisions, Edited by H. Kleinpoppen e J. F. Williams (Plenum, 1980).
- 73) L. A. Morgan e M. R. C. McDowell, Comm. Atom. Mol. Phys. 7, 123 (1978).
- 74) A. Pochat, F. Gelebart e J. Peresse, J. Phys. B 13, L 79 (1980).

- 75) K. Blum, F. J. da Paixão e Gy Csanak, J. Phys. B 13, L257 (1980).
- 76) A. Kastler, Ann. Phys. (Paris), 2, 114 (1967).
- 77) J. C. Lehman, Ann. Phys. (Paris), 2, 345 (1967).
- 78) a) F. J. da Paixão, N. T. Padial, Gy. Csanak e K. Blum, trabalho apresentado na 7a. Conferência Internacional de Física Atômica, MII, Agosto, 1980.

b) F. J. da Paixão, N. T. Padíal, Gy. Csanak e K. Blum a ser publicado.

- 79) M. Born e E. Wolf, Principles of Optics (Pergamon, 5a Ed<u>i</u> ção, 1975).
- 80) B. H. Bransden e M. R. C. McDowell, Phys. Rep. 30C, 207 (1977).
- 81) Gy. Csanak H. S. Taylor e D. N. Tripathy, J. Phys. B 6,
 2040 (1973)
 Gy. Csanak e H. S. Taylor, J. Phys. B 6, 2055 (1973).
- 82) Gy. Csanak e H. S. Taylor, Phys. Rev. A 6, 1843 (1972).
- 83) B. S. Yarlagadda, Gy. Csanak, H. S. Taylor, B. Schneider e R. Yaris, Phys. Rev. A 7, 146 (1973).
- 84) H. P. Kelly, Phys. Rev. <u>160</u>, (1967); Phys. Rev. <u>171</u>, 54 (1968).
- 85) M. S. Pindzola e H.P. Kelly, Phys. Rev. A 9, 323 (1974).
- 86) R. T. Poe e E. S. Chang, Phys. Rev. 151, 31 (1966).
- 87) M. Knowles e M. R. C. McDowell, J. Phys. B 6, 300 (1973).

- 88) M.S. Pindzola e H. P. Kelly , Phys. Rev. A 11, 221 (1975).
- 89) W. M. Huo, J. Chem. Phys. 60, 3544 (1974).
- 90) S. Trajmar, Phys. Rev. A 8, 191 (1973).
- 91) K. Bhadra, J. Callaway e R. J. W. Henry, Phys. Rev. A 19, 1841 (1975).

APÊNDICE A

Análise de spin das amplitudes de Bethe-Salpeter

$$X_{n}^{m}(n_{1}^{\prime},n_{1}) = \langle n | \Psi_{n_{1}}^{\dagger} \rangle \Psi_{n_{1}} \rangle | m >$$

Expandimos os operadores de campo

$$Y(n_{i}) = \sum_{bm_{s}} \phi_{b}(n_{i}) \gamma_{m_{s}}(a_{i}) \alpha_{bm_{s}}$$

$$Y'(n_{i}) = \sum_{bm_{s}} \phi_{b}(n_{i}) \gamma_{m_{s}}(a_{i}) \alpha_{bm_{s}}^{*}$$

Onde n_{ms} representa as funções de spin α e β para ms = +1/2e -1/2, α é um operador de destruição de um elétron de componente de spin ms e demais números quânticos estão em b.

$$X_{n}^{m}(n_{1}^{\prime},n_{1}) = \sum_{b,b^{\prime}} \sum_{w_{s},w_{s}^{\prime}} \left(f_{b}^{\star}(n_{1}^{\prime}) \oint_{b} (n_{2}^{\prime}) \int_{w_{s}^{\prime}(n_{1}^{\prime})} \int_{w_{s}^{\prime}(n_{$$

Usando as propriedades de transformação dos operadores a e (1) definimos

$$T_{bbq} = \sum_{w_s,w_s}^{1/2uw_s} C_{w_s}^{1/2} + \frac{1}{2k} a_{bw_s}^{t} a_{bw_s}^{t}$$

onde
$$\begin{cases} X_{n}^{(n_{1}',n_{2})} = \sum_{b,b' \in P_{q}} \sum_{k,q'} (-1) \phi_{(n_{1}')}^{*} \phi_{(n_{1}')}^{(n_{1}')} (-1)^{k-q} \sum_{k=q} (a, c, c, h) \langle n | T_{bb}^{k} q | m \rangle$$

 $\int_{k=q}^{\infty} (a, c, h) = \sum_{w,w} (-1)^{k} (-1$

podemos usar o Teorema de Wigner-Eckart, levando em consid<u>e</u> ração que usamos uma teoria não relativística no hamiltoni<u>a</u> no não existem termos que dépendem do spin implicando que o momentum angular L e sua componente M_L o spin total S e sua componente Ms são bons números quânticos. Isto implica em poder ser usado o teorema de Wigner-Echart apenas para a parte de spin.

 $\begin{array}{l} \langle n_{1} T_{bbg}^{k}(m) = (\begin{array}{c} k \\ g \\ m_{s}^{m}(m_{s}) \\ m_{s}^{m}(n_{s},n) = \\ kg \end{array} \right. = \left. \begin{array}{c} \langle k \\ g \\ m_{s}^{m}(m_{s}) \\ kg \end{array} \right. = \left. \begin{array}{c} \langle k \\ g \\ m_{s}^{m}(m_{s}) \\ m_{s}^{m}(m_{s}) \\ kg \end{array} \right. = \left. \begin{array}{c} \langle k \\ g \\ m_{s}^{m}(m_{s}) \\ m_{s}^{m}(m_{s}) \\ kg \end{array} \right. = \left. \begin{array}{c} \langle k \\ g \\ m_{s}^{m}(m_{s}) \\ m_{s}^{m}(m_{s}) \\ kg \end{array} \right. = \left. \begin{array}{c} \langle k \\ g \\ m_{s}^{m}(m_{s}) \\ m_{s}^{m}(m_{s}) \\ kg \end{array} \right. = \left. \begin{array}{c} \langle k \\ g \\ m_{s}^{m}(m_{s}) \\ m_$

damental, obtem-se os resultados conhecidos (2)

$$\widetilde{X}_{n}(n_{1}^{\prime},n_{2}) = (EI)^{N_{n}} \underbrace{\xi_{s_{1}}^{N_{n}}(n_{1}^{\prime},n_{1}^{\prime})}_{X_{n}(n_{2}^{\prime},n_{1}^{\prime})} \widetilde{X}_{n}(n_{2}^{\prime},n_{1}^{\prime})$$

$$X_{m}(n'_{j_{1}},n_{i}) = \sum_{m'_{m'_{j_{1}}}} \sum_{m'_{m'_{j_{1}}}} X_{m}(n'_{j_{1}},n_{i})$$

Método similar pode ser usado para o momentum angular orbital.

(1) B. Judd, Second Quantization and Atomic Spectroscopy (Johns Hopkins, 1967)

(2) Gy. Csanak, Tese de Doutoramento (U.S.C.) não publicado.

APENDICE B

Transformada de Fourier de G(1,1') $G_{1}(1,1) = (1)^{3} \langle 0| + (4^{1}(1) 4^{1}(1)) | 0 \rangle$ $G_{1}(G_{1},G) = (i)^{3} \Theta(G_{1}-E_{1}') \langle 0|\Psi(G)|\Psi(G)|\Psi(G)|O\rangle - i \Theta(G_{1}'-E_{1}) \langle 0|\Psi(G)|\Psi(G)|O\rangle$ $T_{J} = (t_{J} + t_{i}') / 2$ $z_{1} = c_{1} - c_{1}'$ $\chi_{0}(\Psi_{(1)}) = e^{iHG} \Psi_{(n_{1})} e^{iHC}$ $\Psi^{\dagger}(i) = e^{iHt'} \Psi^{\dagger}(n') e^{iHt''}$ $\langle 0|\Psi_{(1)}\Psi_{(2)}|0\rangle = \langle 0|\Psi_{(2)}\rangle \tilde{e}^{i(H-E_{0})}$ $= \sum_{i \in m} e^{i \in m \cdot \epsilon_i} \langle o| \Psi(n_i) | w \rangle \langle w | \Psi(n_i) | o \rangle$ $= \sum_{i=1}^{\infty} e^{-i G_{m}^{N+1} C_{i}} f_{m}(n_{i}) f_{m}(p_{i}^{i})$ $f_m(x) = xo(Y(x)) = e^{i(E_{m} - E_{0}^{N})t_{1}} \langle o|Y(x_{0})|w \rangle = e^{iE_{m}t_{1}} f_{m}(x_{0})$ $\langle 0| \Psi^{\dagger}(i) \Psi^{\dagger}(i) | 0 \rangle = \langle 0| \Psi^{\dagger}(n_{i}) e^{i(H-E_{0}^{*}) Z_{i}} \Psi^{\dagger}(n_{0}) | 0 \rangle$ $= \sum_{n} e^{i \epsilon_{n}^{2} \epsilon_{n}} \operatorname{kol} \mathcal{Y}_{(n_{n})} | a > \operatorname{ka} | \mathcal{Y}_{(n_{n})} | o >$ $= \sum_{n} e^{i \epsilon_{x} \cdot \epsilon_{z}} g_{x}^{*}(n_{z}^{*}) g_{x}(n_{z})$ $g_{x}(i) = \langle \alpha | \psi_{(i)} | 0 \rangle = e^{i(E_{\alpha}^{N-1} - \varepsilon_{0}^{N}) t_{i}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N}} \langle \alpha | \psi_{(n_{i})} | 0 \rangle = e^{i \varepsilon_{\alpha}^{N-1} - \varepsilon_{0}^{N-1} - \varepsilon_{0}^{N-1}$ $G_{1}(1,1) = (i)^{1} \Theta(c_{1}) \sum_{k} e^{i \epsilon_{k} c_{1}} \int_{b} (n_{1}) \int_{b} (n_{2}) \int_{b} (n_{2}) \int_{c_{1}} (n_{1}) \Theta(c_{2}) \sum_{k} e^{i \epsilon_{k} c_{1}} \int_{a} (n_{k}) g_{a}(n_{1})$

fazendo a transformada de Fourier

$$G_{j}(n_{j}, n_{j}^{i}) = \int_{-\infty}^{\infty} dz \ G_{j}(n_{j}, n_{j}^{i}) z = e^{i\omega z}$$

Usando

 $\int_{-\infty}^{\infty} d\tau, e^{i\xi_{z}\tau} e^{i\omega\tau} \Theta(\tau) = \frac{i}{\omega - \epsilon_{z} + i\eta}$ $\int_{-\infty}^{\infty} d\tau e^{i\xi_{z}\tau} e^{i\omega\tau} \Theta(-\tau_{z}) = \frac{-i}{\omega - \epsilon_{z} - i\eta}$ $\omega - \epsilon_{z} - i\eta$

Teremos

$$G_{j}(n_{\lambda},n_{\lambda},\omega) = G_{i}^{2}(n_{\lambda},n_{\lambda},\omega) + G_{i}^{2}(n_{\lambda},n_{\lambda},\omega)$$

$$G_{i}^{2}(n_{i},n_{i}^{2};\omega) = \sum_{i}^{2} \frac{c_{i}c_{i}(n_{i})q_{i}(n_{i}^{2})}{(\omega - \epsilon_{x} - i\eta)}$$

$$G_{i}^{2}(n_{i},n_{i}^{2};\omega) = \sum_{i}^{2} \frac{f_{k}(n_{i})-f_{k}(n_{i}^{2})}{(\omega - \epsilon_{k} + i\eta)}$$

$$k = \omega - \epsilon_{k} + i\eta$$

APÊNDICE C

Análise de Fourier para a amplitude de Bethe-Salpeter.

$$X_{n}^{o}(1,1') = e^{i\omega_{n}T_{1}} \left\{ \sum_{k} \Theta(\tau_{1}) e^{i(\omega_{n}/2 - \varepsilon_{k}) C_{1}} \int_{k}^{h} (n_{1}) \int_{k}^{h} (n_{1}) \right\}$$
$$- \sum_{k} \Theta(-\tau_{1}) e^{i(\omega_{n}/2 + \varepsilon_{k}) C_{1}} \int_{k}^{n} (n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) \int_{k}^{n} (n_{2}) f_{k}(n_{2}) \int_{k}^{h} (n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) \int_{k}^{h} (n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) g_{k}(n_{2}) \int_{k}^{h} (n_{2}) g_{k}(n_{2}) g_{k}(n_{$$

$$X_{on}^{o}(n_{s},n_{s}^{i};z_{s}) = \sum_{k}^{i} \Theta(z_{s}) e^{i(\omega u/2 - G_{k})z_{s}} f_{k}^{h}(n_{s}) f_{k}^{h}(n_{s}^{i})$$
$$- \sum_{k}^{i} \Theta(-z_{s}) e^{i(\omega u/2 + G_{k})z_{s}} g_{x}^{h}(n_{s}^{i}) g_{x}(n_{s})$$

Fazendo a transformada de Fourier

$$X_{n}^{o}(n_{s},n'_{s};w) = \int_{-\infty}^{\infty} dz \ e^{iwz} \ X_{n}^{o}(n_{s},n'_{s};z)$$

$$X_{n}^{o}(n_{s},n'_{s};w) = X_{n}^{o}(n_{s},n'_{s};w) + X_{n}^{o}(n_{s},n'_{s};w)$$

$$X_{n}^{o}(n_{s},n'_{s};w) = i \sum_{\alpha} q_{\alpha}^{n}(n_{s}) q_{\alpha}(n_{s})$$

$$K_{n}^{o}(n_{s},n'_{s};w) = i \sum_{\alpha} q_{\alpha}^{n}(n_{s}) q_{\alpha}(n_{s})$$

APENDICE D

Resposta Quadrática

$$R(123, 1'2^{+}3^{+}) = \frac{S^{2}G_{1}(1, 1')}{SU(2)SU(3)}\Big|_{U=0}$$

 $5u(z) Su(3) |_{u=0}$ Queremos obter uma expressão para R_n^{I} (12,1',2⁺)

$$R_{n}^{T}(12,1'2^{4}) = \frac{1}{dn} \int \int dn_{3} R(123,1'2^{4}3^{4}) X_{n}^{o}(3,3^{4})$$

$$\frac{S G_{1}(1,1')}{Su(z)} = R(1z,1'z^{+}) = -G_{2}(1z,1'z^{+}) + G_{1}(1,1') G_{1}(z,z^{+})$$

$$\frac{S G_{2}(1,1')}{Su(z)} = -\frac{S G_{2}(1z,1'z^{+})}{Su(z)} + R(1z,1'z^{+}) G_{1}(z,z^{+}) + G_{2}(1z,1'z^{+}) + G_$$

Temos a relação

$$X_{n}^{\circ}(1,1') = \frac{1}{dn} \int_{z \to \infty} \int_{z \to \infty} \int_{z \to \infty} \int_{z \to \infty} R(1z, 1'z') X_{n}^{\circ}(z, z')$$

Assim

$$\frac{1}{dn} \int_{t_3 \to \infty} \int_{t_3 \to \infty} \int_{t_3} R(13, 5'3^*) \chi_n^{\circ}(3, 3^*) = \chi_n^{\circ}(1, 1')$$

$$\frac{1}{dn} \int_{a=2}^{b} \int dn_3 R(23, 2^{+}3^{+}) X_n^{c}(3, 3^{+}) = X_n^{c}(2, 2^{+})$$

$$\frac{1}{d_{n}} \int_{J_{2} \to \infty} \int_{J_{2}} dn_{3} G(3,3^{4}) \chi_{n}^{0}(3,3^{4}) = 0$$

A função de Green de 3 partículas

$$G_{3}C_{123} \downarrow'z^{+}3^{+}) = C_{1}^{3} \times O[T(\Psi(i)\Psi(z)\Psi(z)\Psi(z))\Psi(z))\Psi(z)) (0)$$

Que pode ser escrita como

 $G_{3}(123, 1'2'3') = c_{1}3^{3} \Theta(c_{3}-c_{1}) \sum_{m} X_{0}^{m}(3,3') \langle m|T(4(n)+(c_{1})+(c_{$

+ outras ordenações que não interessarão $\frac{1}{dn} \int_{a=0}^{b} \int_{a=0}^{b=0} \int_{a=0}^{b=0} \int_{a=0}^{a=0} \chi_{n}^{0}(33') = i Kn |T(Y(1)Y(2)Y(2)Y(2)Y(2)Y(2))|07|$

Assim

$$R_{n}^{T}(12, 1'2') = i \quad \langle u| \neq (1, 1') \forall r_{2'} \rangle \forall (2') \forall (1') \rangle |0\rangle$$

$$+ \chi_{u}^{o}(1, 1') \quad G_{v}(2, 2') + \chi_{u}^{o}(2, 2') G_{v}(1, 1')$$

no caso particular l' >]'*

$$R_{n}^{T}(s_{2}, s_{2}^{t}) = i \sum_{m} \left[\Theta(c_{1}-c_{2}) X_{n}^{m}(t, s_{1}^{t}) X_{m}(c_{1}, z_{2}^{t}) + \Theta(c_{2}-c_{1}) X_{n}^{m}(c_{1}, z_{1}^{t}) \right] \\ - i \left[\kappa_{n} [Y_{(s_{1}^{t})}^{t}] Y_{(s_{1}^{t})}] O(s_{1}) + \kappa_{n} [Y_{(s_{1}^{t})}^{t}] O(s_{1}) O(s_{1}) \right]$$

APÊNDICE E

Análise em ondas parciais do Termo T⁽⁹⁾

 $T_{nq,0p} = -G_{1} = -G_{1}$

Do apêndice B

$$G(\vec{n}_{1},\vec{n}_{2};\epsilon_{p}-w_{p}) = \sum_{k} \frac{f_{k}(\vec{n}_{2}) - f_{k}(\vec{n}_{2})}{f_{k}(\vec{n}_{2})}$$

significa integral no continuo, logo substituimos k $\sum_{k} \longrightarrow \frac{1}{2\pi^3} \int dk k dk$ e usando a expansão (1.13) para os f obteremos

$$\chi_{n}^{d,0}(\vec{n}_{1},\vec{n}_{4};\epsilon_{p}-w_{d}) = \sum_{l_{1}}^{\prime} \left(clk k \frac{P_{k,k}(n_{1})}{\epsilon_{p}-w_{d}} - \frac{Y_{0,l_{1}}(k)}{r_{1}} \frac{Y_{0,l_{2}}(k)}{r_{1}} \frac{Y_{0,l_{2}}(k)}{r_{1}}} \frac{Y_{0,l_{2}}(k)}{r_{1}} \frac{Y_{0,l_{2}}(k)}$$

Na nossa aproximação para o He

$$\chi_{n}^{d_{1}0}(\vec{n}_{1},\vec{n}_{2}) = \frac{1}{\sqrt{2}} P_{n}e_{n}(n_{2}) P_{l}e_{l}(n_{2}) \frac{\chi_{l}^{*}}{\chi_{l}e_{n}u_{n}(R_{l})} \frac{\chi_{l}e_{l}u_{l}(R_{l})}{n_{2}n_{2}} E.2$$

$$\chi_{j}(\vec{n}_{1},\vec{n}_{4}) = \frac{P_{e_{j}}(n_{j})P_{s}(n_{4})}{n_{s}^{2}n_{4}} \chi_{e_{j}}(\vec{x}_{1}) \chi_{oo}(\vec{x}_{4})$$
 E.3

Usando a expansão para $V(\vec{n}_1 - \vec{n}_3)$

Obteremos

 $\frac{\left(p + k + q\right)}{\left(1 + k + q\right)} \int \frac{k + k + q}{\left(1 + k + q\right)} \frac{k + q}{k + q} \frac{k + q}{k + q$

a Z ē agora apenas sobre o número quântico principal. O nosso interesse imediato \overline{e} o estado 2³S que ser qualquer estado do tipo n³L. No nosso cálj permite culo serão incluídosos estados intermediários 2^{3} P, 3^{3} S e 3^{3} P de modo que esta expressão pode ser particularizada obtendos e

$$T_{nq,op} = -(c_1) (c_1)^{2+mp} C_{-mp}^{2} (2 \frac{1}{2} \frac{1}{2})^{2} \frac{c_1}{pq} \frac{1}{pq} \frac{1$$

J

APÉNDICE F

Anālise em ondas parciais do termo $T^{(11)}$ $T^{(s1)}_{nq,op} = (-1)^{s^{n}+m_{u}} (-1)^{l_{z}+m_{p}} (-1)^{l_{z}+l_{z}-s^{n}} \int d\vec{n}_{s} d\vec{n}_{s} d\vec{n}_{s} d\vec{n}_{s} d\vec{n}_{s} f^{(\vec{n}_{s})}_{q} V(\vec{n}_{s}-\vec{n}_{s}) f^{(i)}_{p} (\vec{n}_{s}')$ $V(\vec{n}_{s}'-\vec{n}_{s}) G^{(\vec{n}_{s},\vec{n}_{s}';e_{q})} \widetilde{X}_{n}(\vec{n}_{s}',\vec{n}_{s}) (\widetilde{X}_{o}(\vec{n}_{s},\vec{n}_{s}) - X^{n}_{n}(\vec{n}_{s},\vec{n}_{s}))$

Usando

$$X_{n}^{n,0}(n_{3}^{2},\bar{n}_{3}^{2}) - \tilde{X}_{0}(\bar{n}_{3}^{2},\bar{n}_{3}^{2}) = \frac{1}{Vz^{2}} \frac{1}{n_{3}^{2}} \left(P_{n}e_{u}(n_{3}) Y_{n}^{(2)} + Y_{n}^{(2)} P_{n}^{2} + P_{n}^{2$$

e as expressões E.1, E.2 e E.4 obtém-se

$$T_{nq,op} = -(G_1)^{N-M_{n}} (-1)^{N-M_{n}} C_{-up}^{N-N_{n}} \frac{4\pi^{5/2}}{4\pi^{5/2}} \sum_{i} \sum_{i} \sum_{j} \frac{1}{i} e_{-lq}^{i}$$

$$= (S_{i}(p) + S_{i}(p)) \left(\frac{1}{(L_{i})^{2}} \int_{2}^{N} \int_{2}$$

para o caso $ln = 0 e s^n = 1$ Teremos

 $T_{nq,op} = -(F_{0})^{s_{n}} (-1)^{s_{n}} (-1)^{s_{n}}$ -iTT [R(q6,2); q6,2) - R(q6,1); q6,1)] R(p6,46;2)] ? (000)

•

99.

APÊNDICE G

Procedimento numérico para cálculo do valor principal da Integral

Em geral temos que resolver: I= PJdkk <u>f(k)</u> Ep-wj-Ek fcb) = R(qli, ulz; bla, dla) R(pls, kla; dla, ala) Para fazer a integral dividimos a região de integração em três partes Plakk f(k) = lak kf(k) + Plak kf(k) + Odk $t_{w} = \sqrt{2w}$ $t_{w} - R$ ∞ as integrais \int_{0}^{∞} e \int_{0}^{∞} podem ser feitas usandoa regra de Simpson com 5 pontos se $\int db F(b) = \frac{\Delta k}{3} \left[F(k_1) + 4 \left(F(k_2) + F(k_3) + 2F(k_3) + F(k_5) \right) \right]$ $k_i = k_i + (i - i) A k$ onde $\Delta b = \frac{b_5 - b_1}{2}$

a integral com o valor principal é feita tomando-se um R suficientemente pequeno e expandindo em série de Taylor a função f(k)k em torno de Ku(1)

Assim
$$kf(k) = f(k_w)k_w + \left[f(k)k + f(k)\right] (k - k_w) + \cdots$$

com a aproximação R << kw a função $\frac{1}{2\omega + R}$

é constante

e teremos

ku+R P dk kt(k) = - 2 [f(kw)kw + f(kw)] R

 M.Ya. Amusia e N. A. Cherepkov, Case Studies in Atomic Physics 5, 47 (1975)