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L eSUMo

Hé um grande ndmero de aplicagbes ambientais requisitando o gerenciamento sofisticado
de vérios tipos de dados, incluindo dados espaciais e imagens de seres vivos. Entretanto, os
sistemas de informacio disponfveis oferscem suporte limitads para gerenclamento destes
dados de uma maneira integrada. Por um lado, aplicacBes ambientals baseadas em Bis-
temas de Informacg8o Geogrifica permifem a correlacgio espacial de dados geofisicos e
informagao de sspéeles vivas. Por cutro lado, sistemas de informacio de imagens usados
por bidlogos suportam o gerenciamento de fotos de paisagens e/ou animais, mas sem ne-
nhum tipo de referéneia espacial. Esta tese prové uma soluciio que combina estes requisitos
de consultas, aproveitando-se da tecnologia de bibliotecas digitais para gerenciar coleg@es
de dados heterogéneos de maneira integrada. Ksta pesguisa contribui, desta forma, para
resolver problemas de especificagio e implementac8o de sistemas de informagéo de biodi-
versidade que combinem o gerenciamento de imagens de seres vivos, descricdes textuais e
dados espaciais no contextc de bibliotecas digitais. Esta solugfio prové pesquisadores em
biodiversidade com novas opgdes de consulta.

As principais contribuicBes desta tese sfo: (i) uma arquitetura genérica, baseada
em componentes de bibliotecas digitais, para gerenciamento de colegdes de dados he-
terogéneos, pars acessar fontes de dados de biodiversidade {texto, imagens e dados es-
paciais); (i) a proposta de novos descritores de forma para suportar a recuperagho de
imagens por conteddo; (ili) um novo componente de biblioteca digital para busca de
imagem por conteddo; (iv) adoglo de estruturas visuais distintas para exploracio de re-
sultados em bancos de dados de imagens; e {v) validaggo parcial da arquitetura, através
de um protétipo que usa dados sobre peixes.
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Abstract

There is a wide range of environmental applications requiring sophisticated management
of several kinds of data, including spatial data and images of living beings. However,
available information systems offer very limited support for managing such data in an
integrated manner. On the one hand, environmental applications based on Geographic
Information Systems {GIS) allow spatially correlating geophysical data and information
on living species. On the other hand, image information systems used by biologists provide
management of photos of landscapes and /or animals, but without any kind of geographical
referencing. This thesis provides a solution to combine these query requirements, which
takes advantage of current digital library technology to manage networked collections
of heterogeneous data in an integrated fashion. The research thus contributes to solve
problems of specification and implementation of biodiversity information systems that
manage images of species, textual descriptions and spatial data in an integrated way,
under the digital library perspective. This solution provides bicdiversity researchers with
new querying options.

The main contributions of this thesis are: (i} a generic architecture, based on digital
library components, for managing heterogeneous data collections, to access biodiversity
data sources (text, images, and spatial data); (i) a proposal of new shape descriptors
for supporting content-based image retrieval; (ii) a new digital library component, for
content-based image search; (iv} adoption of distinet visual structures for exploring query
results in an image database; and (v) partial validation of the architecture, through
implementation of a prototype that uses fish-related dats.
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Capitulo 1

Introducao

1.1 Motivacao

7

I crescente a preocupacio com a conservacido do meio ambiente. Para permitir iniciati-
vas nesta drea, € necessdrio disponibilizar um grande ntmerc de informacgfes ambientais
e sofiwares para gerencid-las. Mudangas ambientais t8m emergide como uma importante
questdo na agenda global. Consegiientemente, hé uma demanda por acesso seguro ¢ atu-
alizado das informagdes ambientais. Sistemas de informagio ambientals s8c uma resposia
a esta demanda. Eles visam o gerenciamento de dados sobre o meio ambiente, incluindo
informagdes sobre o solo, a 4gua, o ar e sobre as diversas espécies de animais e plantas
existentes.

As aplicagbes ambientais tém como caracteristicas marcantes o grande volume de
dados envolvidos e o georreferenciamento destes dados (aplicagdes geogréficas) {52]. Em
alguns casos, os dados incluem também fotos de paisagens ou de seres vivos. No entanto,
exceto no casc de imagens de sensoriamento remoto (satélite, radar, etc.), imagens sio
mantidas a parte do banco de dados propriamente dito, que fica restrito a dados espaciais.
(C ideal, em func¢do da demanda dos usudrios; seria integrar todos estes dados sob um
dnico tipo de gerenciamento. Em especial, uma grande gama de aplicacBes ambientais
reguer consultas tipicas em banco de dados de imagens ~ dentre outras, as chamadas
consultas por conletido — mas nio disponiveis nos sistemas existentes. Nao existe, no
entanto, ambiente que integre gerenciamento conjunto de fotos e de dados espaciais para
aplicagbes ambientais.

As imagens de sensoriamento remoto sdo usadss em sisternas ambientais para deter-
minar fatores como aspectos climaticos, pedoldgicos, estresse vegetal, poluicio ou erosdo.
Tais dados sdo usados como base para estudo e simulaggo de ecossistemas e até mesmo
infludncia do homem na natureza. Por outro lado, fotos obtidas em trabalho de campo
{de seres vivos, ou de paisagens), apesar de serem ums importante fonte de informagio,
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né&o tém sido devidamente exploradas neste tipo de sistems.

O trabalho desenvolvido nests tese comiribul para resolver este problema. A tese
aborda um tipo especifico de sistema ambiental — aguele que trata de questdes ligadas
4 biodiversidade. O trabalho realizado estd centrado em combinar pesquisa em bancos
de dados de imagens (e processamento de imagens por conteddo) e aspectos de bancos
de dados geograficos (e correlagles espaciais). Esta combinagio estd baseada em um
arcabougo de bibliotecas digitals, facilitando extensibilidade e reusabilidade. Como se verd
no decorrer do texto, tal enfoque deu origem a um nove tipo de sistema para aplicactes
de biodiversidade.

1.2 Aspectos de Pesquisa Envolvidos

Os principais desafios a serem considerados em sistemas de informacéo ambientais sdo
a necessidade de mecanismos de inferacdo com usuério para facilitar a especificaclo de
consultas, & dificuldade em combinar mecanismos de consulta por conteddo a bancos de
imagens ¢ consulta a bancos de dados geogréficos, e a complexidade do gerenciaments
diferenciado de dados de naturezs tdo distinta. Estes desafics envolvem trabalhos em
duas frentes: bancos de dados (contendo imagens e dados geograficos) e processamento
de imagens. Além disso, como a solugdo adotada envolve bibliotecas digitais, o trabalbo
também precisou levar em consideragio este fator.

Uma biblicteca digital pode ser vista como um sistema de informago complexo que
prové uma colecdo de recursos organizados, mecanismos para visualizaco e busca, am-
bientes distribuidos em rede e um conjunto de servigos, objetivando a satisfacdo das
necessidades de usudrios [93]. A biblioteca digital considerada nesta pesquisa disponibi-
liza colegbes de dados sobre imagens de seres vivos, fendmenos geograficos e ecoldgicos,
assim como mapas e metadados.

A pesquisa em bibliotecas digitais envolve descobertas em diferentes dreas tais como
hiper-texto, recuperagio de informacho, servicos multimidia, gerenciamento de bancos
de dados e interfaces [76]. O processo de construgdo de uma biblioteca digital envolve a
especificagéo do contetdo a ser armazenado, como estes contetidos sdo organizados, estru-
turados, descritos e acessados, quais servigos so oferecidos pela biblioteca {visualizago,
busca, recomendagio, etc.), e como usudrios podem interagir com cada servigo oferecido
pela biblioteca digital [76}.

Hé varias iniciativas na édrea de bibliotecas digitais que cobrem tdépicos relacionados
com a pesquisa da tese. Hong et. ol [83], por exemplo, apresentarn uma biblioteca digital
de borboletas de Taiwan. Esta biblioteca armazena informagdes sobre o ecossisterna
das espécies € prové mecanismos para recuperagio por conteldo de imagens. Consultas
bhassadas na localizagic espacial das borboletas nio séo posssfveis.( Um outro exemplo
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f

sdo as bibliotecas digitais de flora (FDL) [182], que compreendem repositérios contendo
informagfes sobre taxonomia, mapss, ilustracBes e descrigbes morfoldgicas de plantas.
A recuperacdo de imagens por contetide ndo € prevista. Outras iniciatives referem-se a
colegdes de imagens de satélites [165)] e de videos [28]. Nos dois casos, as bibliotecas digitais
suportam a atribui¢do de referéncias espaciais {localizagfo} aos documentos. No entanto,
consultas que envolvam a combinacio de predicados espaciais e recuperagio baseada no
contetdo das imagens ou dos videos nfo sio permitidas.

A contribuic@c de processamento de imagens em sistemas de biodiversidade envolve
vérios fatores. O principal consiste na especificagio e definigio de algoritmos que manipu-
lam ¢ conteddo das imagens {objetos e suas propriedades de forma, cor e textura). Estes
algoritmos visam extrair ¢ descrever o conietde das imagens de forms que s descrigic
possa ser utilizada para indexar as imagens e manipulé-las segundo este contetido, em
um banco de imagens. Para efeito da tese, o conteldo de uma imagem é definide como o
conjunto de objetos (flores, peixes, ete.) que a compbem. Embora vérios projetos referen-
ciem recuperacio por contedldo, a maloria destes usa caracteristicas de toda imagem e
nio de seus cbjetos.

Um descritor de imagem pode ser caracterizado por: (i} um algoritmo de extragéo de
vetores de caracteristicas e (ii} uma méirica de comparagao destes vetores. O algoriimo de
extracdo de vetores de caracteristicas é responsével por manipular ¢ contelddo da imagem
{os objetos e suas propriedades tais como cor, textura e forma). Esta manipulaco re-
sulta na extraciio de uma série de vetores de caracteristicas, que sdo conjuntos de valores
numéricos que sumarizam o contetido de uma imagem. Por exemplo, as cores podem
ser descritas usando histogramas [19, 148] que registram o nidmero de pizels para uma
dada cor. O conteldo do descritor de cor seria assim um vetor de valores descrevendo o
ndmerc de pizels de uma imagem com uma mesma cor. A descrigdo de textura, por sua
vez, envolve muitas alternativas, tais como a matriz de co-ocorréncia [81] ou representagdes
baseadas em transformadas wawvelets [95]. A descricdo da forma é usualmente baseads no
pré-processamento de imagens para extragdo dos seus objetos — uma técnica chamada seg-
mentagdo [79] ~ e pela conseguinte caracterizacio de suas formas [37,100,162]. Exemplos
de descritores de forma incluem Curvature Scale Space [1,109] e Beam Angle Statistics
(BAS) [6,7].

Estes vetores de caracteristicas podem ser usados, em seguida, para indexar as imagens
¢ para manipulé-las segundo conteddo em um banco de dados de imagens. Neste contexto,
métricas de comparagdo sdo utilizadas para computar a distincia entre dois vetores, e,
portanto, a distdncia entre duas imagens. Ou seja, dois vetores de caracteristicas de
imagens sdo proximos se as imagens sio similares; caso contrério, sfo distantes. Exemplos
de métricas de distincia incluem a distdncia Euclideana [53] cu algoritmos de casamento
(matching) como o optimal correspondent subsequence (OCS5) [156] usado na comparacio
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do descritor de forma BAS[8,7].

Bancos de Dados de lmagens apresentam diversos desafios do ponto de viste de
pesquisa e implementacio, envolvendo problemas que vao desde quesifes de armazena-
mento até interfaces amigdveis (53,129,139, O aspecto complicador reside no fato de
que o8 objetos envolvidos (imagens) sBo muito mais complexos de gerenciar do que ob-
jetos textuals. Do ponto de vista de armazenamento, imagens ocupam muito espaco.
Além disso, a indexacio de imagens deixa de ser uma questio de processamento de
strings e passa & depender de cutras caracteristicas, inclusive de diferentes aspectos cog-
nitivos relativos & interpretagdo visual. Vérios outros problemas - linguagens de con-
sulta, atualizagdo - contribuem para atrair cada vez mais pesquisadores para esta éres.
Varios exemplos de pesquisa em Bancos de Dados de Imagens s8o descritos na liter-
atura [24,71,121, 122,140, 153]. Estes sistemas sfo monoliticos ¢ utilizam um conjunto
de descritores pré-definido, o que dificulta a sua utilizagdo em diferentes dominios.

Bancos de Dados Geogréficos sfio repositérios de informagso coletada empiricamente
sobre fendmenos do mundo real {por exemplo, forestas, rios, cidades). A semelhanca de
bancos de dados de imagens, apresentam desafios tanto tedricos guanto de implementagéo.
Parte destes desafios é devido 2 natureza intrinseca dos dados geogréficos. Estes dados
ocupam muito espago e variam com o tempo. Além disso, sfo geralmente provenientes de
fontes diferentes com niveis distintos de generalizacéo e escalas incompativeis. Outro as-
pecto complicador reside no fato de que a dimens&o espacial introduz questdes de restri¢do
de integridade espacial & processamento de consultas espaciais [127]. E mais, estratégias
padréo de otimizacho de consultas nem sempre sdo adequadas para dados geogréficos [68].
O processamento de consultas em bancos de dados geogréficos envolve trés tipos de con-
sulta — aquelas que retornam caracteristicas de localizagdo (para determinar “onde” de-
terminado fendmeno ocorreu), aquelas relacionadas com caracteristicas descritivas {para
determinar “o que” foi encontrado em uma dada localizacio), e aquelas que retornam
caracteristicas temporais {para determinar “quande” um fendmenc ocorreu}. Consultas
mais complexas — tals como andlise de tendéncia ~— podem ser especificadas como com-
binacg8o destas trés. As consultas espaciais podem, ainda, ser classificadas de acordo com
os tipos de operador utilizados. Uma classificagio comum distingue as consultas entre
topoldgicas, métricas e direcionais {80].

A combinacio de consulta por conteddo e consulta espacial abre novas perspectivas
para pesquisadores em biodiversidade. Um exemplo de consulta espacial em um sistema
de biodiversidade é “Mostre as dreas onde a espécie de peixe Percine Rex fol observada”.
Desenhos ¢ fotos de espécies também podem ser usados neste contexto. Eles sdo ar-
mazenados em arquivos de dados do sistema e séo tratados como documentacio auxiliar,
sendo usualmente recuperados pelo nome da espécie. Jé um exemplo de consulta envol-
vendo arquivos de imagens seria “Mostre todas as fotos contendo espécies do peixe Percing
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Rer’. Em outras palavras, as imagens s30 acessadas somente via consultas textuals, néo
havendo possibilidade de recuperagio de imagem por conteddo.

Idealmente, os pesquisadores em biodiversidade gostariam de combinar processamento
de imagens de espécies com processamento de predicados textuals e espaciais. Um exemplo
de consulta de imagem por conteddo no contexto de biodiversidads utilizaria uma imagem
de consulta {por exemplo, uma foto de um peixe) ¢ pediria ac sistema para “Recuperar
todas as imagens do banco de dados que contenham peixes que t8m forma similar dquela
apresentada na imagem de consulta”. A combinag8o destas consultas consiste em “Mostre
as 4reas onde peixes da espécie Percina Rex coexistem com peixes cujas nadadeiras t8m
forma similar aquela apresentada na imagem de consulta”.

N&o se conhece um sistema de informacio de biodiversidade que combine recuperagéo
de imagem por conteldo com gerenciamento de dados espaciais e convencionais. Esta
tese contribui para solucionar este tipo de problema.

1.3 Objetivos e Contribuicoes

O objetivo da tese é contribuir para resolver problemas de especificacdo ¢ implementagio
de sistemas de informagic de biodiversidade que combinem o gerenciamento de imagens
de serss vivos, descrigbes textuais e dados espaciais no contexto de bibliotecas digitais.

O trabalho utilizou dois conceitos bésicos para especificagio e implementacdo da ar-
quitetura: (i) a nogdo de componentes de software, para facilitar reuso e extensibilidade;
e (ii) o arcabougo de bibliotecas digitais, para permitir acoplamento de grandes colegbes
de dados de biodiversidade e seu gerenciamento. O uso destes dois conceitos permite a
criacdo de sistemas sob perspectiva diferente do que € encontrado na maioria dos casos
neste dominio. Os sistemas de informacio de biodiversidade sdc em geral monoliticos e
dedicados a tipos especificos de dados, reduzindo bastante seu uso genérico.

A figura 1.1, retirada do Capitulo 2, apresenta a arquitetura proposta para a criacéo de
sistemas de informacao de biodiversidade que gerenciem dados espaciais, dados textuails
e imagens. Esta arquiteturs é composta por trés camadas: BIS Manager, responsével
por receber consultas, processé-las, envid-las para os componentes de busca apropriados,
e por combinar os resultados de cada componente, enviando & resposta para o usudrio
final; por uma camada de componentes de busca, sendeo uma para cada tipo de evidéncia;
e os repositérios de dados.

As principais contribuices desta tese séo:

1. Especificaclo de um ambiente para gerenciamento integrado de fotos, mapas e dados
convencionais, que permite a cientistas em biodiversidade a extragio de informacio
segundo suas necessidades [47,49]. Este ambiente ¢ ilustrado na Figura 1.1. A
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Figura 1.1: Arquitetura proposta para construgio de Sistemas de Informagio de Biodi-
versidade.

proposta deste ambiente € uma contribuicBo para desenvolvedores de sistemas de
informacio de biodiversidade.

2. Criagdo de um componente de busca para recuperacio de imagens por contetdo [48],
que pode acomodar diferentes tipos de descritores e métricas de comparagio. Esta
¢ ums. contribuicéo pars a drea de bibliotecas digitais, na medida em que desen-
volvedores desta area podem usar este componente para suportar consultas de ima-~
gens por conteido., Esta contribuicio estd relacionada ao médulo C marcado na
Figura 1.1.

3. Especificagio e implementacdo de novos descritores de imagem baseados na forma
de objetos [41,42, 44, 50], validados através de testes experimentais. Experimentos
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incluiram a avaliscBo de dezenss de descritores & o uso de diferentes colegfes de
imagens; apenas os melhores resultedos sho apresentados nesta tese. A proposta
destes descritores representa contribuicic para a drea de processamento de imagens.
Esta contribuicdo estd relacionada ao médulo D marcado na Figura 1.1.

4. Proposta e desenvolvimento de novas estruturas visuals, visando noves tipos de
interagio em interfaces, para sistemas de recuperac@o de imagens por conteddo [40].
Esta é umea contribuigBio para & area de interfaces, estando relacionada ao mdédulo
A marcado na Figurs 1.1

5. Implementacioc parcial do ambiente, usando as demais contribuigBes, validando-o -
para um $ipo especifico de imagem {peixes) e perfil de usudrios (ictidlogos), para
suporte ao processo de identificacBo de espéeles [47, 48], Esta implementaco parcial
constitul contribuicio para usudrios de sistemas de biodoversidade, mais especifica-
mente, para estudantes de biologia, professores e ictidlogos.

As coniribuigbes, desta forma, cobrem nfo apenas a especificagdo do ambiente e sua
validacBo, mas também aspectos em processamento de imagens, consultas que combinam
pardmetros de varias naturezas e aspectos de interface humanoc-computador. Seus usudrios
passam a contar com uma variada combinacdo de operagles até agora ndo disponiveis em
sistemas existentes.

1.4 Organizacao da Tese

O texto desta tese estd organizado agrupando os principais artigos publicados e/ou sub-
metidos para publicacdo que foram resultado da pesquisa realizada. Pequenas corregdes
foram feitas no texto original destes artigos {definigles, notagles, erros de ortografia, etc.),
de modo a manter a consisténcia do texto final da tese. Us Capitulos 2 e 3 tratam de
contribuigbes de combinagdo de processamento de imagens, consultas em bancos de dados
espaciais e bibliotecas digitais; os Capitulos 4 e 5 apresentam resultados em processa-
mento de imagens; o Capitulo § apresenta resultados em interfaces e o Capitulo 7 conclui
& Lese.

1.4.1 Capitulo 2

O Capitulo 2 {Integrating Image and Spatial Data for Biodiversity Information Manage-
ment Systems) inclui os resultados apresentados em [49].

Um exemplo de uma consulta espacial padric em sistemas de biodiversidade seria
“Mostre todas as dreas onde a espécie de peixe Percing rez tem sido observada”. Uma
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consulta tipica de correlagdio espacial requer a combinacio de informaco sobre a locali-
zacio de espécies e condigles climdticas. Desenhos ¢ fotos de espécies também podem
ser usados neste contexto. Eles sfio armazenados & parte em arquivos de dados, sendo
tratados como documentaco auxiliar, usualmente sendo recuperados a partir dos nomes
das espécies. Um exemplo de uma consulta envolvende arquivos de imagens seria “Mostre
todas as fotos do peixe Percing rez”. Imagens sfo acessadas apenas a partir de consuifas
textuals, ignorando-se recuperacio de imagem por conteddo.

O gerenciamento de imagens baseado em conteiido, por outro lado, permite a cientistas
identificar espécies usando uma dada imagem (l.e., uma foto) e buscar emn um banco de
dados por imagens “mais similares”. A distribuicio geogréfica, neste caso, é armazenada
como metadado textual (i.e., nomes de regifes), nfo sendo possivel realizar correlagdes
espaciais. )

O objetivo deste trabalho € a criagio de Sistemas de Informacio de Biodiversidade que
combinam estes tipos de caracteristicas de busca através de consultas exploratdrias. Este
=18 ajudard cientistas a melhorar ou completar seu conhecimento e entendimento sobre
espécies e seus habitats ao combinar consultas textuals, consultas baseadas no contetdo
de imagem e consultas geogréficas. Um exemplo de consulta deste tipo poderia comegar
por definir uma imagem de entrada (por exemplo, uma foto de peixe), e ento pedir ao
sistema que “Recupere todas imagens do banco de dados contendo peixes cujas nadadeiras
tém forma similar aquelas do peixe mostrado na foto”. Uma combinagio desta consulta
com predicados textuals e espaciais consistiria em “Mostre as bacias hidrograficas onde as
espécies de peixe com ‘olhos grandes’ coexistem com peixes cujas nadadeiras sao similares
as do peixe da foto”.

Desafios incluem trabalhos em duas frentes: processamento de imagens e bancos de
dados. Sistemas disponiveis ndc atacam estas questdes simultaneamente — eles se concen-
tram em dados de imagem ou dados espaciais. De fato, SIGs que suportam consultas de
imagens lidam com correlagdes espacias e nao com caracteristicas de imagens tais como cor
ou textura. Nosso trabalho, ac contrério, combina estas fontes de evidéncia beneficiando-
se de facilidades de bibliotecas digitais, que oferecem uma infra-estrutura organizada para
integrar rede de colecBes de dados heterogéneos. Estes dados incluem imagens de seres
vivos e distribuicio geogréfica, assim como mapas ¢ metadados ecoldgicos, geogréaficos e
de imagens. Nossa solugéo estd sendo instanciada em um Sistema de Informagio de Bio-
diversidade para espécies de peixe em uma aplicacdo real. O objetivo é ajudar estudantes,
pesquisadores e membros do piblico em geral a identificar espécies de peixes usando as
ferramentas de consulta disponiveis na arquitetura proposta.
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1.4.2 Capitulo 3

O Capftule 3 (4 Digital Library Framework for Biodiversity Information Systems) inclui
os resultados apresentados em [47].

O objetivo da pesquisa apresentada neste trabalbo é combinar resultados obtides em
processamento de imagem, bancos de dados e bibliotecas digitais para prover pesquisadores
em biologia com um sistema de informacBo de biodiversidade que integre consultas envol-
vendo tanto conteldo de imagens guanto dados textuais. Neste contexto, por exemplo,
usuérios somente precisario prover uma imagem de consulta {i.e., uma foto de uma folha
de uma planta e solicitar ac sistema que “mostre todas as dress do Brasil onde a espécie
de planta Acacia polyphylle coexiste com plantas cujas folhas t8m formato similar & a-
presentada na foto”,

Com esta finalidade, este trabalho apresents wms arquitetura de biblicteca digital
genérica para gerenciamento de dados heterogéneos sobre seres vivos e seus ecossistemas.
Estes dados envolvemn néo somente catacteristicas textuais e de localizagfo, mas também
imagens destes seres vivos. Uma nogdo chave considerada é a de componente de biblictecas
digitais, um médulo de software especialmente projetado para encapsular funcionalidade,
daf suportando modularidade, flexibilidade e reusc na construcic de infra-estrutura de
biblictecas digitais. Devido ac seu projetc baseado em componentes, esta arquitetura
resolve o problema de interoperabilidade que sistemas existentes de informacao de biodi-
versidade apresentam. Para ilustrar o uso desta arquitetura em uma aplicac8o real, ela foi
instanciada para suportar a criagio de um sistema de informacioc para espécies de peixes.
0 objetivo deste sistema € ajudar pesquisadores em Ictiologia no processo de identificagéo
de espécies usando técnicas de recuperacdo disponiveis na arquitetura proposta.

As principais contribuicbes deste trabalho s8o as seguintes: {a) uma arquitetura
genérica para gerenciamento de colegdes heterogéneas, baseada em componentes de bi-
bliotecas digitais, para acessar fontes de dados heterogéneos (texto e imagens), que per-
mitem a combinagao de consultas baseadas em texto com consultas baseadas no contetido
de imagem; e (bj um novo componente, para busca de imagem por conteido, integrado
& arquitetura proposta. Este componente, recentemente propostc em Torres et al [48],
supcrta ¢ uso dos descritores de forma apresentados nos Capitulos 4 e 5.

1.4.3 Capitulc 4

O Capitulo 4 {A Graph-based Approach for Multiscale Shape Analysis) inclui os resultados
apresentados ern [44].

Este trabalho apresenta os resultados referentes & proposta de novos descritores de
forma (dimensfo fractal multi-escala do contorno — Contour Muliiscale Fractal Dimen-
siom— e saliéncias do contorno — Confour Saliences), utilizados no suporte & recuperagéo
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de imagens por contetldo. O céleulo deste descritores usa o Transformada Imagem-
Floresta {image foresting transform — IFT), uma abordagem baseads em grafo para
projeto de operadores de processamento de imagens [63-65, 67, 101]. Neste caso, os des-
critores de forma sdo obtidos & partir de representacdes criadas pela IFT.

A dimensao fractal multi-escala {36,39] & um conceito nove, que soluciona muitos dos
problemas dos métodos existentes [110,120] para estimacfo numérica da dimenséo frac-
tal. A dimenséo fractal de uma forma é calculada através da Transformada de Disténcia
Buclideana {TDE) dos seus pixels. A TDE destes pixels é também relacionada com seus
diagramas de Voronoi geométrico [126], onde cada pixel define uma zona de influéncia
{regido discreta de Voronoi) composta pelos pixels mais préximos. As saliéncias de uma -
forma sBo calculadas a partir das 4reas das regifes Voronoi dos pixels de mais alta cur-
vatura dentro de uma regifio estreita ao redor da forma [36]. Esta abordagem permite a
guantificacio dos valores de curvatura {centro dos pixeis) onde & curvatura analitica seria
infinita. A IFT prové o cdleulo simulténeo da TDE e dag regibes discretas de Voronol em
tempo usuabmente proporcional ao ntmero de pixels [65], sendo malis eficiente do que o
método proposto em [38].

Este trabalho também infroduz melhoramentos no céleulo da dimensdo fractal multi-
escala e das saliéncias do contorno. A abordagem original para cdlculo da dimenséo fractal
multi-escala sofre com oscilactes indesejadas na curva fractal, e a localizagio dos pontos
de major curvatura 20 longo do contorno, importante para cdlculo das saliéncias, é muito
sensivel no caso de formas complexas e intricadas. O problema da oscilagio € resolvido
usando regressdo polinomial. A relagdo entre pontos de saliéncia de um contorno e dos seus
esqueletos interno e externo — um conceito importante introduzido por [97] — ¢ usada
para localizar os pontos de maior curvatura ac longo do contorno, melhorando considera-
velmente a robustez do céculo de suas saliéncias. Esta relag8o € obtida de maneira direta
através do arcabougo da IFT. O descritor de saliéncia de contorno é também redefinido
de modo a incluir a localizagio e o valor de saliéncia ao longo do contorno e uma métrica
de distdncia especial, o0 que produz ums alts eficdcia no reconhecimento de formas.

Os descritorss propostos s8o comparados com & dimensdo fractal simples, dois des-
critores cléssicos (Fourier descriptors [154] ¢ moment invarianis [84]) e dois descritores
recentemente publicados {Curvature Scale Space (CSS) [1,109] e Beam Angle Statistics
(BAS) [8,7]) no que diz respeito aos seguintes aspectos: compaciebilidade e separabili-
dade. A compactabilidade de um descritor indica sua invaridncia a variagdes de objetos
pertencentes & uma mesma classe, enguanto a separabilidade indica sua habilidade de
diseriminar objetos que pertencem a classes diferentes. Em outras palavras, um descritor
4 considerado “bom” quando ele cria agrupamentos compactos bem separados uns dos
outros, para todas as classes em um espacgo de caracteristicas correspondente.
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1.4.4 Capitulo 5

O Capitulo 5 (Contour Salience Descriptors for Effective Irnage Retrieval and Analysis)
inclui os resultados apresentados em [41].

HEste trabalho apresenta os resultados referentes & proposta do descritor de forma
chamado de saliéncias do segmento do contorno — Contour Segment Saliences, utilizado
no suporte 3 recuperacio de imagens por contende. Além disso, ele apresenta uma nova es-
tratégia para incorporar as saliéncias cdncavas no descritor saligncias do contorno, definido
em [44] (Capitulo 4).

Costa et al. [36] propuseram o uso de saliéncias de forma para a representacio de
objetos. As saliéncias de uma forma s8o definidas como as dreas de influéncia méxima
dos pontos de mais alta curvatura, considerando uma regido estreitg em ambos os lados
da curva e 55 regides de Voronol dos seus pontos. Um ponto de contorno, por exemplo,
é considerado convexo quando sua drea de influéneia € maior fora do que dentro do con-
torno, e ¢dncavo, caso contraric. Uma regifo esireita € usada para reduzir ¢ quanto seia
possivel a infludncia cruzada de partes opostas de um contorno complexo. Torres ef al. [42]
apresentarain uma maneira mais eficiente para caloular as saliéneias de uma forma usando
a Transformada Imagem-Floreste [67] e um descritor de saliéncia do contorno para recu-
peragdo [50] e andlise [44] de imagem. Em ambos os trabalhos, as saliéncias do contorno
foram comparadas com vérios outros descritores, incluindo o curvature scale space [1, 109]
e o recentemente proposto beam angle statistics [6,7]. Entretanto, as saliéncias do con-
torno nunca consideraram os pontos de saliéncia cdncava, porque sua efetividade era muito
sensivel & localizagBo precisa destes pontos. Este trabalho resclve este problema incorpo-
rande os pontos concavos ao descritor de saliéncia do contorno. .Além disso, ele propde um
outro descritor baseado nos valores de saliéncia de segmentos do contorno. O contorno é
dividido em um nmimere fixo de segmentos e as dreas de influéneia dos seus pixels dentro
¢ fora do contorno sfo usadas para calcular ag saliéncias do segmento. O descritor de
saliéncia de segmento consiste nos valores de saliéncia dos segmentos de contorno e de um
algoritmo de casamento como func@o de disténcia. Este trabalho também discute novos
resultados experimentais que mostram a superioridade deste descritor no que diz respeito
as métricas separabilidade e compactabilidade.

1.4.5 Capitulo 6

O Capitulo 6 { Visual Structures for Image Browsing) inclui os resultados apresentados
em [40].

Tipicamente, o resultade de uma consuita em um banco de dados de imagens € um
conjunto de imagens, mostradas em um Visualizador. Infelizmente, estes conjuntos sdo
usualmente extensos, o que dificulta ¢ processo de visualizacio e/ou exploragio de re-
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sultado. A técnica de apresentacho de resultado mais comum & baseada em se mostrar
uma matriz de duas dimensdes de versdes em miniatura de imagens [71,117]. Esta ma-
triz € organizada de acordo com a similaridade de cada imagem retornada em relagio ao
padrio de consulta (i.e., da esquerda para direita, de cima para baixo). Trata-se de uma
matriz n X m, onde 2 posicio (1,1) é ocupada pela miniatura do padrio de consulta, 2
posicio (1,2) pela imagem meals similar 2 ele, e assim por diante. Este método facilita
a visualizacio, permitindo aos usudrios que eles percorram o conjunte de imagens como
se estivessem lendo um texto [128]. Esta abordagem, entrefanto, mostra as imagens com
diferentes graus de similaridade com a mesma disténcia da imagem de consulta: i.e., ima-
gens (1,2) e (2, 1) 880 mostradas com a mesma disténcia fisica do padro de consulta, mas
a primeira é mais similar do que a ultima. QOutras abordagens para visualizaglo tentam
considerar a similaridade relativa n2o somente entre o padrio de consulta & cada imagem
recuperada, mas também enire todas as imagens retornadas [133,143]. Estas iniciati-
vas t8m como desvantagem o fato de que imagens similares que s8o colocadas préximas
umas das outras parecem se sobrepor, sendo menos atraentes do que se estivessem sepa-
radas [128].

Este trabalho apresenta uma nova abordagem para estes problemas de interacio de
usudrios. Esta abordagem € baseada na adocdo de técnicas de Visualizacio de Informacso
para prover usuédrios com apresentagdes de resultados semanticamente enriquecidos, e
novos tipos de mecanismos de interagio. Visualizacdo de Informagio ¢ um importante
campo dentro da Interagio Homem-Computador (IHC} que objetiva o estudo e o uso de
representacOes visuais interativas para abstragio de dados de modo a ampliar cognigdo [22,
28,137].

As principais contribuigBes deste trabalho sfo as seguintes:

e apresentacdo de duas téenicas de visnalizagio baseadas em Espiral e Anéis Concéniri-
cos para explorar resultados em bancos de dados de imagens. Estas técpicas pos-
sibilitam a usudrics novos meios de ranqueamento de imagens similares sem so-
breposigdes;

¢ descrigao de um protétipo de sistema de recuperacio de imagem por contetddo que
incorpora estes paradigmas de visualizacdo. As propriedades de visualizagdo e in-
- teragao do protdtipo sdo baseadas no modelo de referéncia descrito em [22].

‘Finalmente, o Capitulo 7 conclui a tese, sumarizandc suas contribui¢des e extensdes.

1.4.6 Outras Publicacodes

Além destes trabalhos principais que complem o cerﬁyo da tese, os seguintes trabalhos
foram publicados durante a pesquisa:
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Shape Description by Image Foresting Transform [42]: Este artigo introduz os des-
critores de forma Conlour Multiscale Fractal Dimension e Contour Saliences, usando
o arcabougo da Transformada Imagem-Floresta {Image Foresting Transform - IFT).
A IFT ¢ uma nova metodologia para & reducio de wm problema em processamento
de imagens em um problema de floresta de caminho de custo minimo em um grafo,
cuja solugdo pode ser obtida em tempo linear [67].

Effective Image Retrieval by Shape Saliences [50]: Este artigo apresenta mais de-
talhes relativos & extracfo do descritor de forma Contour Soliences, inicialmente
apresentado em [44]. Aldm disso, ele descreve resultados experimentais usando
métricas como precisfio e revocagdo com intuito de comparar o descritor proposto
com outros descritores cldssicos da literatura.

Using Digital Library Components for Biodiversity Systems [46], pdster apresentado
no ACM-IEEE Joint Conference on Digital Libraries (JCDL 2004). Ele introduz o
uso de componentes de Bibliotecas Digitais na construcéo de sistemas de informagio
de biodiversidade {veja Capitulos 2 ¢ 3).

An OAI Compliant Content-Based Imege Search Component [48], relacionado a
uma demonstracéo realizada no ACM-IEEE Joint Conference on Digital Libraries
(JCDL 2004). Esta demonstragio teve como cbjetivo apresentar um novo compo-
nente de busca de imagens por contetdo. Este componente foi utilizado na imple-
mentacio da arquitetura proposta para sistemas de informacio de biodiversidade
(veja Capitulo 3).



Capitulo 2

Integrating Image and Spatial Data
for

1odiversity Information

Management

2.1 Introduction

Biodiversity Information Systems — BIS (e.g., [5, 15, 16]) — involve huge sets of geographic
data as well as large databases concerning species’ descriptions (e.g., taxonomic classifi-
cations). Most biodiversity systems are concerned with determining spatial distribution
of one or more living species, and the spatio-temporal correlations and trends of these
distributions. This requires combining data on species {when and where they are ob-
served, by whom and how) with geographic data (characterizing the ecosystems where
the species are observed). Data integration usually is based on spatial properties, and
thus Geographic Information Systems (GIS) and geographic databases are essential to
develop this kind of system.

An example of a standard spatial query in a biodiversity system is “Show the areas
where the fish species Percina rez has been observed”. A typical spatial correlation query
requires combining information on species location and climatic conditions. Drawings
and photos of species also may be used in this context. They are stored apart in data
files, and treated as auxiliary documentation, usually being retrieved by species’ name.
One example of a query involving image files would be “Show all photos of fish species
Percina rex”. Images are accessed only via textual gueries, ignoring content-based image
retrieval. In these systems, scientists must always search for specific species by name.

Content-based image management, on the other hand, allows scientists to identify
species using a given image {e.g., 3 photo} and search in a database for the “most similar”
images. Geographic distribution, in this case, is stored as textual metadata {e.g., names

15
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of regions}, and spatial correlations are infeasible.

The objectives here is to provide biodiversity researchers with a BIS that combines
these types of searching characteristics for exploratory querving. This BIS will help
scientists to enhance or complete their knowledge and understanding sbout species and
their habitats by combining textual, image content-based and geographical queries. An
exarmple of such a query might start by providing an image as input (e.g., a photo of &
fish} and then asking the system to “Retrieve all database images containing fish whose
fins are shaped like those of the fish in this photo”. A combination of this query with
textual and spatial predicates would consist of “Show the drainages where the fish species
with “large eyes” coexists with fish whose fins are shaped like those of the fish in the
photo”. ‘

Challenges involve work on fwo fronts: lmage processing and databases. Available
systems do not attack these questions simultaneously — they either concentrate on image
dats or on spatial data. Indeed, GIS that support image gueries are concerned with spatial
correlations and not with image features (such as color or texture features). Our work,
instead, combines these sources of evidence taking advantage of digital library facilities,
which offer an organized infrastructure to integrate networked collections of heterogeneous
data. These data consist of images of the living beings and geographic distribution, as
well as maps and geographic, ecological, and image metadata. QOur solution is being
instantiated in a BIS for fish species in a real application. The goal is to help students,
researchers, managers, and members of the general public to identify fish specimen by
using retrieval techniques.

This text is organized as follows. Section 2.2 outlines the architecture of the BIS.
Section 2.3 discusses the application scenario that instantiates the architecture for an
ichthyology biodiversity system. Section 2.4 gives a brief introduction to related research.
Finally, Section: 2.5 presents conclusions and ongoing work.

2.2 Architecture

Figure 2.1 shows the basic architecture proposed for biodiversity information management.
This architecture is composed by three main layers: data collections (see Section 2.2.1)
search services (Section 2.2.2), and BIS Manager (Section 2.2.3).

Collections are organized in a digital library comprised of a set of search services.
The BIS combires textual queries with image processing algorithms to extract image
descriptors, and spatial data management in geographic databases based on location and
on ecological features.

Although this architecture has been specified in a generic way, its implementation
is being carried out for particular fish species. Thus, image data consists of fish photos,

¥
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Figura 2.1: BIS System Architecture.

geographic data concerning areas where these fishes are likely to be found, and biodiversity
metadata on fish and their ecosystems. As will be seen in Section 2.3, a considerable part
of this architecture has already been implemented and tested. We are now working on
the final integration with the geographic data search component.

2.2.1 Data Collections

This layer is responsible for database storage and low-level data management — image,
geographic, and metadata databases. Sections 2.3.2 and 2.3.3 comment on the data
collections used in the present implementation.
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2.2.2 Bearch Services

Three search components are provided: a geographic data search component, a content-
based image search component called CBISC, and a2 metadata-based search component
called ESSEX.

Geographical Data Search Component

The Geographical Data Search Component (GDSC) encapsulates a Web Feature Server
(WFS) {158], an OpenGIS consortium [118] recommendation for fostering interoperabil-
ity. It defines an interface allowing requests for geographical features across the Web, and
uses the XML-based Geography Markup Language (GML) [75] for data exchange. GML
utilizes XML fo express geographical features. It can serve as a modeling language for ge-
ographic systems as well as an open interchange format for geographic data. We are using
the GeoServer [74] free implementation of OpenGIS Consortium’s WFS implementation
specification.

The WFS submodule of the GDSC is responsible for performing queries on the data
sources: it receives HTTP requests from the client (the Ezecution submodule in Figure 2.1}
and returns results as a GML or XML document, depending on the request. A WFS
request consists of a description of a query or a data transformation operation, applied
to one or more features. Available operations include:

GetCapabilities: A WFS must be able to describe its capabilities. Specifically, it
must indicate which feature types and what operations are supported on each feature
type. For example, it could define that a feaiure type named ekey:fishspecies encoding
occurrences of fish species within a specific region is available. It also could indicate
supported operations on this feature type {such as operations based on spatial predicates
- a.g., Intersect, Within, etc.).

DescribeFeatureType: 4 WFS must be able, upon reguest, to describe the strue-
ture of any feature it can service. :

GetFeature: A WFS must be able to answer a request, and retrieve feature instances.

Content-Based Image Search Component

One of the most commeon approaches to image retrieval is based on the so-called Content-
Based Image Retrieval (CBIR) systems. Basically, these systems iry to retrieve images
similar to & user-defined pattern (e.g., image example). Their goal is to support image
retrieval based on conient properties {e.g., shape, color, or texture), which are often
encoded in terms of image deseripiors.

The Content-Based Image Search Component {CBISC) is a new search engine recently
developed to support content-based queries on image collections [48]. It supports retrieval
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using color, shape, and texture descriptors, with the corresponding feature vectors, stored
in 1D or 2D structures. CBISC encapsulates metric index structures [31] to speed up the
search process.

CBISC is based on the Open Archives Initiative {OAI) [1186, 145] principles. The
QA develops and promotes interoperability standards that aim to facilitate the efficient
dissemination of content.

Our CBISC component is an OAl-like search component that supports queries on
image content. As in the OAI protocol [94,118], queries are given by way of HITP
requests. However, we generalize to have an extended OAI (XQOAI) protocol for image
search that fits into the Open Digital Library (ODL) framework [145,147]. As is typical
with XOAT protocols, each request specifies the Internet host of the HTTP server and
gives a list of key-value pairs. Two different reguests {“verbs”) are supported by this
image search component:

ListDescriptors: Used to retrieve the list of image descriptors supported. No argu-
ments are required for this verb.

GetImages: Used to retrieve a set of images by taking into account thelr contents.
Required arguments specify the query image, the descriptor to be used, and the kind of
query. The present version of CBISC supports two kinds of queries: K-nearest neighbor
guery (KNNQ) and range query (RQ) [31].

Metadata-Based Search Component {(MBSC)

The ESSEX search engine [59] is being used as our metadata-based search component.
ESSEX is a componentized vector-space search engine optimized for digitel libraries.
ESSEX acts as the core portion of an Open Digital Library (ODL {145]} search component,
answering requests transmitted through an extended OAI (XOAI) protocol. ESSEX,
available as open source software, was primarily developed for the CITIDEL (Computing
and Information Technology Interactive Digital Educational Library) project [32], and
also is being used in the PlanetMath project [123]. In ESSEX, all information is indexed
in “chunks” associated with field names, where chunks may correspond to XML elements
in & metadata record. Its high speed is the result of both keeping index structures in
memory and using a background daemon model based on socket communication with the
DL application.

2.2.3 BIS Manager

This module comprises & Web interface and a guery mediator.
A} Web Interface:
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This interface supplies query specification and visualization of results. The user will be
able to formulate fextual queries, interactive queries on maps, queries for lmage content,
or a combination of these.

B} Query Mediaton:

The search services are supported by a Query Mediotor implemented as a server, which
combines query mechanisms in metadata, image, and geographic data collections.

Its Analysis submodule receives as input a specification in terms of a query image,
query terms, and/or rectangle coordinates in a map ~ and parses it. The parsing process
takes advantage of previous knowledge of the GDSC and CBISC. In the former case, this
information is obtained in the form of XML and XML schema documents, obtained each
time it performs GetCopobilities and DescribeFeature Type vequests on the GDSC In the
latter case, the Anaolysis submodule performs a ListDescriptor request on CBISC to obtain
the enumeration of the image descriptors supported. Note that this information also can
be used to guide the guery optimization process.

The Ezecution submodule is in charge of decomposing the original guery into sub-
queries and forwarding them to the appropriate search component {CRISC, MBSO, or
GDSC). Finally, the Merging submodule combines the obtained results by using an ap-
propriate combination scheme, and returns a ranked list containing the “most” similar
objects matching the original specification.

2.3 Application Scenario and Implementation

The application scenario concerns the instantiation of the proposed architecture $o support
the creation of a BIS for fish species in a real application. The goal is to help fisheries
students, researchers, managers, and the general public to identify fish specimens by using
search retrieval techniques. This system will be used by students in ichthyology courses
of the Department of Fisheries and Sciences at Virginia Tech.

2.3.1 Problem

Given a mixed collection of specimens from a river, ichthyologists face the problem of
identifving which fish species are present in that collection. Their aim is to determine
the taxonomic classification (e.g., family, genus, species) of each given specimen. The
traditional approach is based on the use of dichotomous keys — basically, rules defining a
decision tree that is traversed until one reaches an identification (e.g., [89}).
Operationally, this approach suffers from several problems. First, while an experienced
scientist knows how to answer technical questions on subtle features of fish anatomy in
order to use a dichotomous key, a student or non-scientist will find it difficult or impos-
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sible to correctly answer those questions. Second, dichotomous kevs offen lack images to
support their use by non-experts. Third, dichotomous keys invariably lack reference to
geographic distributions of fishes, although geographic data can prove highly useful for
fish identification. For example, knowing only where they collected a specimen, novices
often have difficulty making species identifications. Access to geographically explicit infor-
mation on fishes occurring in a watershed — especially if related to information on shapes
and other appearance-related characters of the respective species — can aid in fish identi-
fication, reliably to genus and often to species. Often, a worker has a preliminary idea of
the genus and species of a specimen. Knowing where the fish was collected, identification
of the specimen is facilitated by access to information on the particular species occur- -
ring in that watershed. Certain families of freshwater fishes, for example, the sculpins
(Family Cotiidae}, contain a number of cryptic species that are difficult to differentiate.
Species identification is supported by taking into account spatial correlations among fish
observations.

Cur BIS tries to solve these problems, starting from the key-based approach, by creat-
ing a fish identification system that instead of being merely based on textual definitions,
improves the fish identification process by allowing users to perform successive queries
based on fish shape information, textual descriptions, and geographical data.

2.3.2 Present Implementation Stage

The MBSC and CBISC architecture components are fully operational for the goal appli-
cation, being already tested through a Web-based application interface [45]. In particular,
we have tested different kinds of queries on a collection of 11000 fish images [40]. The
present version is to be used for fish identification in the Commonwealth of Virginia, and
thus is restricted to fishes found in this ares.

QOur data collections comprise an image databsse (with fish photos); a geographic
database {containing spatial data characterizing the regions in which the fish have been
observed); and a database with metadata on the fish species and on the geographic data,
dichotomous keys for identifying fishes and fish taxonomic trees. Metadata help query
processing and are stored in a PostgreSQL database, while the current CBISC version
manages image content description as XML documents.

We are now working on both implementing the BIS Manager modules with respect
to the geographic dats handling and organizing the Geo collection database. The latter
uses PostgreSQL [125] database system and PostGIS [124]. PostGIS can be seen as an
QOpenGIS-conformant extension to the PostgreSQL, which allows geographic information
systems objects to be stored intc the database.
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2.2.3 Data Sources

The fish-related data were obtained from [89] and from a site recently created to help
students in the fish identification process [82]. Fish keys and metadate include data
about over 200 species found in the Commonwealth of Virginia, USA. A subset of these
data, covering 183 species and 187 images. is being used in this work.

Biodiversity Metadata: The biodiversity-related metadata include data about fish
taxonomic classification (species, genus, family), common names, reproductive and food
habits, metabolism, habitat description, information about similar species, and morpho-
logical descriptions.

Image Description: Current experiments configured CBISC to use several shape
descriptors [7,44]. We will further extend it to support queries on color information [148].

Geographic Data: The geographic data include maps (encoded in the ShapeFile
format), spatial, and conventional data characterizing the regions in which the fish have
been observed. (oordinates referring to the locations of cccurrence of fish species also
are stored. Data are being obtained from the Conservation Management Institute (CMI)
at Virginia Tech. The CMI's Fish and Wildlife Information Exchange (FWIE) Division
works as a technical assistance center, data analysis center, and information clearinghouse
for fish, wildlife, and land management agencies and organizations.

2.3.4 Identifying a Specimen

An example of a query including textual, geographic data and image descriptor infor-
mation is: “retrieve fish descriptions of oll fish whose shape is similar fo that shown in
Figure 2.2, which belong to genus ‘Notropis’, which have ‘large eyes’ and ‘dorsal stripe’,
and have been observed within the calchments of the ‘Tennessee’ river”. Notice that the
first part of this query {shape similarity) is typical of image information systems; genus
and physical characteristics are extracted from metadata-based systems; the last part is
typical of GIS-based biodiversity systems (using the “within” spatial operation). The
geographic component of the guery is typically processed using a buffer operator or a
user-gpecified rectangle encompassing part of the Tennessee drainage.

Figura 2.2: Example of shape outline used to define a query.

This query requires processing data from a variety of heterogeneous sources, stored in
different formats. These sources are composed of images, image metadata and content de-
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scriptors, ecology-related data {species description and taxonomic trees}, and geographical
information {spatial data and metadata).
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Figurs 2.3: Execution plan for identifying fish species.

Figure 2.3 illustrates a possible execution plan for the proposed query within our BIS.
It is composed of several steps, represented by ellipses. First, a content-based image
retrieval process is executed in an image collection. Here, the Ezecution submodule of the
Query Mediator {see Figure 2.1) performs a GetImage HTTP request on CBISC, using
the image showed in Figure 2.2 as input and a pre-defined shape descriptor (1}. CBISC
will return a list of images, ranked by similarity to the input image.

The list of similar images is next used to retrieve fish identification parameters (2} for
each image. Next, a query is performed on the MBSC to return fish species that belongs
to genus “Notropis”, whose morphological description include terms like “large eves” and
“dorsal stripe”, and whose identification parameters match those returned by CBISC (3).

In the following, a spatial query is executed in order to identify which fishes have been
observed within the catchments of the “Tennessee river” (4). This query is performed
using & GetFeature HTTP request on the GDSC. By considering the rectangle-based
query, this HTTP request might be encoded in XML as shown in Figure 2.4, where the
query Filter is a box. The result of the guery is a list of fish species’ names and scientific
names (parameters Property Name).

Finally, the results of (3) and (4) are combined by the Merging submodule and the
descriptions of the most relevant fish species are returned (5).

This is, of course, one possible processing strategy. Another alternative would be to
start with a spatial guery that would limit the set of fish species to those observed within
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<wis: ] iee="WFE" version=" LOO"
outputPormat"GrE "
xinlnsiopp="hupfwew openplans.orgfiopp”
smizsiwis="httn/www opengis.nevwiz”
amlnsogee"hitpifwww. opengis. setfoge”
mins:gmi=z"hipfwwrw.opengis.netigmi”
srninsixsi="hupieww w3.org/200 1ML Schema—instance”
zsischomal ion="hitmffwww.opengis nelfw
aupschemas.opengis.netwis/ LU WFE~basic.xad">
<wisiuery typeName="skey:fishspacies s

s Propertyk yiseientific_name<fwis:ProperiyMames
aerfaPropertyNamemsskey: . oarneiwis:FropertyMame>
<oge:Filters
zogeBBOX>

<oge:FroperiyName>the, gaom</oge:Propertyllames
<gmh:Box srsName="hitp/fwww opengis.net/gmifsrafepsgamit2T 345>
<gmbicoordinates>489154 5433017 505234,5448023</gml:comrdinates>
wigmiBox>
<foge:BBOX>
<foge:Filters
wlwinQuerys
iz GmPoates

Figura 2.4: Example of WFS XML request which fetches fish species (feature) with a
bounding box filter.

a certain range of the catchments. Next, content-based retrieval would be applied only
to those species.

The existence of alternatives to query processing concern another issue, that of op-
timization. Our work is not yet concerned with performance aspects, and so assumes a
predefined query processing strategy.

2.4 Related Work

The work proposed here involves combining research on image databases, geographic
databases, and digital libraries for bicdiversity information management. The following
paragraphs outline related work in these areas.

Biodiversity Information Systems and GIS: There are several initiatives for the
development of biodiversity information systems. Many of these initiatives are being
linked to a worldwide project called GRIF [73] — Global Biodiversity Information Fa-
cility. GBIF intends to set up an interoperable network of biodiversity databeses and
database management tools that will allow Web users to navigate and query across these
databases. Other initiatives are being conducted at smaller scales. Most of these systems
are very new, and still under construction. Considerable effort is being applied to creat-
ing databases for species’ taxonomic descriptions {e.g., [33, 61, 86]), and software on these
databases, but still with little help from GIS (e.g., [62]).

Another trend is to process species’ spatial distributions using GIS, for a more re-
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duced set of species (e.g., [5,15]}). Efficient spatial data management and retrieval, query
processing, interface design, and interoperability are among the many problems faced in
the design and development of such systems. Spatial databases pose several research and
implementation challenges {e.g., [80]). Some of these challenges are motivated by the
intrinsic nature of the geographic data ~ they are location-sensitive and vary in time.

Another difficulty is that the spatial dimension introduces questions related to spatial
integrity constraints and spatial query processing [127], involving topological, metric, and
directional queries [80]. Our work is not concerned with solving specific problems within
the geographic database realm. Rather, we have taken advantage of existing solutions in
spatial guery processing and combine them with our image processing mechanisms.

A particular issue faced by our approach is that of interoperability. Interoperability
problems occur in the GIS context {e.g., 120,69, 85,107,115, 118]). In fact, new geographic
applications appear every day, and cover several space-time scales and distinet kinds of
objects and phenomena. Moreover, the data are gathered in massive volumes, and proceed
from different sources with distinct levels of generalization and incompatible scales.

Several approaches have been discussed to provide geographic systems interoperability
and data integration/conversion. Our problem, however, is that of promoting interoper-
ability across systems of different natures — i.e., textual descriptions, image content, and
spatial data management. As far as we know, ours is the first proposal that promotes
this kind of interoperability.

Image Databases: Image databases {e.g., [71,117]) combine research on databases
and image processing, involving problems that vary from storage issues to friendly in-
terfaces [139]. Images are particularly complex to manage — besides the volume they
occupy, retrieval is application- and contexi-dependent {128]. Even though many other
content-based retrieval systems exist {71, 117,153, they do not take advantage of the com-
ponent philosophy. Thus, they are not easily amenable to reuse in distinct situations. Our
proposal has the advantage of encapsulating CBIR functionality into a DL component,
thereby ensuring its reusability and coupling to other DL-based systems.

Digital Libraries There are several DL initiatives that cover topics related to our re-
search. One example is the digital museum of butterflies [83], which aims at building a
digital collection of Taiwanese butterflies. This digital library contains 6 modules: XMI~
based information organization of digitized butterfiy collections, content-based image re-
trieval of butterflies, synchronized multimedia exhibition, compositional FAQ, interactive
games regarding butterfly ecosystems, and on-line courseware on butterflies. Queries
based on butterfly spatial location are not supported. Another example is foristic digi-
tal libraries (FDL) [132]. These are distributed virtual spaces comprising botanical data
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repositories and a variety of services offered to lbrary pafrons to facilitate the use and
extension of existing knowledge about plants. FDL uses an asgent-based infrastructure
to manage information about taxonomic keys, distribution maps, illustrations, and treat-
ments {morphological descriptions). Content-based retrieval is not supported.

2.5 Conclusions

This chapter presented results of an ongoing project for biodiversity information man-
agement, that combines work in image databases with that of geographic distribution of
species and their ecosystems. Its originality lies not so much in solving issues in geo-
graphic or in image systems, but in providing a solution that combines features from both
systems. It relies on & system architecture which extends spatial query processing with
retrieval based on Image content and textual descriptions, thereby proposing new ways of
posing georeferenced gueries. In this context, the main challenges to be considered are:
the necessity of interaction mechanisms to allow users to easily formulate queries; the dif-
ficulty of combining mechanisms of content-based retrieval in image databases and queries
of geographical databases; and the complexity of the management of such heterogeneous
data. Images, metadata, and maps are stored in databases and are to be retrieved ac-
cording to a set of predicates based on combining textual and visual descriptors of image
content, spatial operators and metadata. A key issue in this architecture is that several
query-processing techniques must be investigated, according to user profiles and to the
way images and spatial data are preprocessed before being stored.

The solution proposed is based on using new or recently developed DL components.
This architecture is easily extensible, and provides users & considerable degree of fexi-
bility in data management. Furthermore, the implementation we provide complies with
both digital library {e.g., OAI} and OpenGIS standards {e.g., GML and WFS). Our so-
lution solves many current problems in this kind of system, sllowing handling of images,
geographic data, and textual information in an integrated fashion. This architecture was
conceived to be applied to several domains. In order to show its feasibility, this chapter
describes a specific implementation of the architecture to build a fish species biodiversity
information system. In particular, this system will be used by students in ichthyology
courses at the Department of Fisheries and Wildlife Sciences, Virginia Tech.

Ongoing work concerns the investigation of query optimization technigues to speed
up query evaluation across the different sources of evidence. For this part of the work we
will take advantage of previous research and development conducted at the University of
Campinas in biodiversity query processing [52].



Capitulo 3

A Digital Library Framework for
iodiversity Information Systems

3.1 Introduction

Environmental changes have emerged as an important question in the global agenda. In
order to support the design of policies for environmental management and ecosystem bal-
ance, it is necessary to get an accurate view of existing conditions, and to understand
the complex changes that occur at all levels in the planet. One essential step to creating
appropriate scenarios is to collect relevant data about the environment and to develop in-
formation systems to manage and derive knowledge from these data. These systems rmust
furthermore combine newly gathersd data with historical and legacy information (e.g.,
from distinct kinds of archives) under homogeneous management. Therefore, scientists
concerned with environmental issues must seek support from a large set of systems. This,
of course, brings about all kinds of interoperability problems due to system mismatch,
data diversity, and variety of user profiles.

One representative example of such problems appears in the context of biodiversity,
where expert end-users must contend with at least two kinds of unrelated systems: Bio-
diversity Information Systems (BIS) and image information systems. The latter involve
software that allow users to manage images’ content (e.g., patterns, color, texture). In
the biodiversity context, they are adopted by scientists for their image archives and to
help them identify species.

A BIS (e.g., {5,15,16]) is an environmental information system that manages huge
sets of geographic data as well as large databases concerning species (e.g., natural history
collections, field observation records, experimental data). Geo-related data concern all
kinds of geophysical information, provided both by ground surveys and by remote sens-
ing. Most biodiversity information systems are concerned with determining the spatial

27
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distribution of one or more living species, and the spatic-temporal correlstions and trends
of these distribusions. This requires combining data on species {when and where they are
observed, by whom and how) with geographic data that characterize the ecosystems where
the species are observed. An example of a standard spatial query in a biodiversity system
is “Show the areas in Brazil where the plant species Acacio polyphylis has been observed”.
Besides being heterogeneous in nature {encompassing flora and fauna and the geophysical
description of their habitats), these data also are heterogeneous in other aspects - such
as spatio-temporal grapularity or storage format.

Drawings and photos of species glso may be used in this context. They are stored
apart in the system’s data files, and treated as auxiliary documentation, usually retrieved
by species’ name. Generally, images are accessed only via fextudl {metadata) queries,
without support for content-based image retrieval, e.g., “Show all photos of plant species
Acocia polyphylia”.

If, on the other hand, s scientist starts from incomplete pictorial information - e.g.,
just a photo of a plant leaf ~ he/she will have to resort to an image information system
to request “Retrieve all database images containing plants whose leaves are shaped like
those in the photo”. Once likely candidates are identified, the scientist then can continue
work by turning to a BIS. Complex biodiversity queries actually may require switching
several times across systems.

The goal of the research presented in this chapter is to combine research on image
processing, databases, and digital libraries to provide biodiversity researchers with a BIS
that provides seamless integration of queries involving both image content and textual
data. In such a context, users will just need to provide an image as input {e.g., the photo
of a plant leaf} and request the system to “Show the areas in Brazil where the plant
species Acacia polyphylle coexists with plants whose leaves are shaped like those in the
photo™.

Qur previous work in this direction has concentrated on image metadata, and image
processing and analysis techniques for extracting appropriate descriptors from species’
images [42,44, 50|, with a prototype implemented. Qur present focus is to combine these
with digital library (DL) facilities, which offer an organized infrastructure to integrate
networked collections of heterogenous data.

To this end, we present a generic digital library architecture for managing heterc- -
geneous data about living beings and their ecosystems. These data involve not only
textual and location features, but also images of these beings. A key notion considered
is that of a DL component, a specially designed software module that encapsulates spe-
cific functionality, thereby supporting modularity, flexibility, and reuse in constructing
the DL infrastructure. Due to its component-based design, this architecture circumvents
the interoperability and system-switching problems discussed. To illustrate the use of this
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architecture in a real application, it has been instantiated to support the creation of a BIS
for fish species. The goal of that BIS is to help researchers on ichthyology, in particular
to identify fish specimen by using search retrieval techniques svailable in the proposed
architecture.

The main contributions of this chapter are the following: (a) a generic architecture
for managing heterogeneous collections, based on digital library components, tc access
heterogeneous biodiversity data sources (text and irnages), that allows combining text-
based and content-based queries in a seamless way; and (b} & new component, for content-
based image search, integrated into that architecture.

The rest of this chapter is organized as follows. Section 3.2 characterizes the proposed
architecture, including its search components. Bection 3.3 describes preliminary exper-
iments conducted to validate the architecture. Section 3.4 briefly comments on related
research. Section 3.5 presents conclusions and summarizes ongoing and future work.

3.2 Avrchitecture

This chapter proposes a generic architecture for managing heterogenecus biodiversity
dats in an integrated fashion. The starting point for the solution is the assumption
that the source data are stored in a network of heterogeneous collections organized in a
digital library. This architecture takes into account two kinds of collections: image-related
and domain-specific databases. In this sense, this architecture can be instantiated for
managing data of different domains. For example: for an information system dealing with
fish information, the image-related data might include fish photos, while domain-specific
collection might contain data about fish taxonomy, morphologic descriptions, ete. For
another system handling medicinal plant data, the imeage-related collection might contain
plant photos, while its respective domain-specific collection might include description
about plant medicinal properties and known side effects.

3.2.1 Main Modules

Figure 3.1 shows the digital library architecture proposed for managing these heteroge-
neous collections. This architecture includes a set of search services (service providers)
which are executed over heterogeneous data collections (data providers).

This architecture has been implemented by using a set of digital library components
which have been developed at Virginia Tech. It uses the Open Archives Initiative (OAI)
protocol [94, 116} as a basis for interoperability. OAI is an HTTP- and XML-based pro-
tocol for metadata harvesting. It supports digital library interoperability via a two-pariy
model. At one end, data providers use the OAI protocol to publish structured data and



3.2. Architecture 20

Imtesfacy
i fuery Sp:.iﬂ::arzon Yisuzitzation
L_ﬁ___m..
N answer
imegas, "
weight | i weight
i 1
metada HTTP
HITP saquest @ ﬁ ‘mshﬁ% @ peest
image.
éd&scripw: kevwords ¥ geywonds
| cmst | g ‘ i :
MBIC MBIC
i i !
1 &
DAl @ QAT @ QAl @
[ e Tore |
; o XopC |
/ - I [
i ' t
/ N2 & e
! = X i
i | Qs)mas:i—wSpeczfc
X\ %ﬁ E Aschive |
‘:\ § Mstzdma { pres
\ mage | ! 4
Archive ; i
N E
y S
BPC ' 4 DSDFC
O/ 1©;
i
tmage Dm;:n—l;spemﬂc
Database tabase
e ————

Figura 3.1: System Architecture.

metadata, in various forms. At the other end, service providers use the OAI protocol to
harvest the metadata from data providers, to process it, and to add value in the form of
services.

The main modules interact as follows. The original date sources are stored in image
and domain-specific {e.g., ecosystem) databases. These collections must be pre-processed
in order to generate their respective {open) archives (arrows labeled 1 in Figure 3.1): the
Image Archive for the image collection and the Domain-Specific Archive for the domain-
specific collection. Archives contain metadata and content descriptors, which speed up re-
trieval of the original data sources. This process is performed by batch programs that con-
vert the original data sources into XML files. XML Data Provider Components (XDPC)
are used to publish these XML files as OAI archives {(arrows labeled 2), so that these
XML files can be accessed through OAI requests (arrows labeled 3). An archive and its
respective data provider can be seen as a complex data provider component. The complex
data provider for the image collection is named fmage Data Provider Component (IDFPC).
The Domain-Specific Data Provider Component (DSDPC) is the complex data provider
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for the domain-specific collection.

Search components process queries against these archives, Queries are specified in
terms of HTTP requests (arrows 4). A Metodaia-Based Search Component (MBSC)
handles both image metadata and domain-specific information. A Conieni-Based Im-
age Search Component (CBISC) handles image content descriptors expressed in terms of
feature vectors, which can be accessed either locally or remotely. In the former case, the
CBISC can access directly these files {arrow 7). In the latter, they are accessed via the
Image Data Provider Component {arrow 3).

These search components are activated by the Combiner Component [CombinerC).
The Combiner receives a query as input {arrow 5), decomposes it into sub-queries, dis-
patches them to the search components, combines their results in a suitable way, and then
returns a final answer to the interface layer (arrow 6).

The interface layer is not discussed in this chapter. An initial effort to provide users
with semantically meaningful result presentations in CBIR systems is described in [40].
The following is a description of the other modules.

3.2.2 Data Providers

The Image Data Provider Component (IDPC) and the Domain-Specific Data Provider
Component (DSDPC) are complex components responsible for managing archives by using
OAl-compliant XML data providers.

Archives: In this chepter, the term “archive” is used to dencte a repository of well-
structured stored information; these repositories contain sets of XML files. Two different
archives are foreseen in the proposed architecture: Jmage Archive and Domain-Specific
Archive. The Image Archive comprises image metadata and image content descriptors
(feature vectors), while the Domain-Specific Archive concerns metadata related to a spe-
cific domain.

XKML Data Provider Component (XDPC): XMLFile [145,159] is an OAl-based
component which is used as the XML Data Provider in the proposed architecture. Basi-
cally, XMLFile is a Perl module that creates an QAl-compliant repository (data provider}
to publish & set of XML files as an OAI archive. Its layout and configuration afford a
clean separation between the data provider engine, the configuration data, and the data
being published. This component does not require any specific metadata format in which
the XML files should be encoded.

3.2.3 Search Components

The proposed architecture uses two different search components: a metadata based search
component called ESSEX and a content-based image search component.
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Metadata-Based Search Component (MBSC)

The ESSEX search engine [59] is being used as our metadata-based search component.
ESSEX is a componentized vector-space search engine optimized for digital libraries.
ESSEX acts as the core portion of an Open Digital Library (ODL [145]) search component,
apswering requests transmitted through an extended OAI (XOAI) protocol. ESSEX,
available as open source software, was primarily developed for the CITIDEL (Computing
and Information Technology Interactive Digital Educational Library) project [32], and
now also is being used in the PlaneiMath project [123]. In ESSEX, all information is
indexed in “chunks” associated with field names, where chunks may correspond to XML
elements in a metadata record. Its high speed is the result of both keeping index structures
in memory and using a background daemon model based on socket communication with
the DL application.

Content-Based Image Search Component {CBISC)

The CBISC is a new search component we created to support queries based on image
content. This component can be used for building special image information systems
called Content-Based Image Retrieval (CBIR) systems. These systems can be charac-
terized as follows. Assume that we have an image database containing a large number
of images. Given a user-defined query pattern (e.g., a query image), retrieve a list of
the images from the database which are most “similar” to the query pattern according
to the image content (i.e., the objects represented therein and their properties, such as
shape, color, and texture). Even though many others content-based retrieval systems
exist [11,71,117], they do not take advantage of the component philosophy. Thus, they
are not easily amenable to reuse in distinct situations. Our proposal has the advantage of
encapsulating CBIR functionality into & DL component, thereby ensuring its reusability
and coupling to other DL-based systems.

A typical CBIR solution requires the construction of image descriptors, which are
characterized by: (i) an extraction algorithm to encode image features into a feature
vector; and (ii) a similarity megsure (distance metric) to compute the similarity between
features of two images by computing the distance between the corresponding vectors.
The similarity measure is a matching function (e.g., the Euclidean distance), which gives
the degree of similarity for a given pair of images represented by their feature vectors.
Usually, the degree of similarity between two images is defined as an inverse function of
the distance metric, that is, the larger the distance value, the less similar the images.

Figure 3.2 shows an overview of our CBISC component. It receives as input an HTTP
request (arrow labeled 1 in Figure 3.2) which specifies a query in terms of the query pattern
{query image}, chosen descriptor, and kind of query. The CBISC starts processing a query
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Figurs 3.2: CBISC architecture.

by extracting a feature vector from the query image {module labeled A in Figure 3.2). This
extraction process requires validating the proposed query against the CBISC configuration
file {arrow 2) and searching for the appropriate Eziraction Algorithm in the Descriptor
Library (arrow 3). The validation process is related to check the input query parameters
accordingly to the CRISC configuration. For example, it checks if a descriptor defined in
the HTTP request is supported by the CBISC or if the input image matches the image
type (colorful or binary) used by the image descriptor used in the query.

In the following, the query image feature vector is used to rank the database images
according to their similarity (based on a metric distance) to the query image {module
B). This step relies on either performing a Distance Computation Algorithm {arrow 5}
taking into account the feature vectors of all images in the database (arrow 7}, or using
an appropriate index structure (arrow 6). Images are indexed in the CBISC according to
their feature vectors by using the M-tree [31] index structure to speed up retrieval and
distance computation. The M-Tree Library in Figure 3.2 is a repository of M-Trees. Its
implementation is based on the eXtensible and fleXible Library (XXL) [21,54]. Finally,
the most similar images are ranked (module C) and the CBISC returns an XML file
containing this ranked list {arrow 9).

The following text presents the kinds of queries CBISC supports and the steps neces-
sary to configure and install the CBISC.
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Descriptors are typically domain and usage-dependent. Thus, a given image can be
associated with very many descriptors. Many CBIR methods only support & fixed
set of descriptors. CBISC, on the other hand, allows progressive extension of the
descriptor base.

e Feature Vectors Ixtraction

Onee suitable descriptors have been identified, their extraction algorithms are exe-
cuted, generating a set of XML files containing the feature vectors for each image.
Again, this step is performed prior to component configuration. Pigure 3.3 presents
an XML schema for the feature vector information. Basically, a feature vector XML
file contains information related to the image name, descriptor name, type of feature
vector (1D or 2D curve), the feature vectors themselves represented in terms of a
curve (double vectors), and their location. A feature vector can be accessed either
locally or remotely. In the former case, the CUBISC can access directly these files
{arrow 7 in Figure 3.1). In the latter, they are accessed via the Image Dato Provider
Component {arrow 3 in Figure 3.1).
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Figura 3.3: Feature vector XML schema.

One of the most important features of the CBISC is its flexibility in supporting
different kinds of image descriptors. Firstly, the CBISC can be configured to perform
queries involving different image properties (color, texture, or shape). In this case,
it is just required that the extraction algorithm defined in an image descriptor
generates a feature vector XML file as specified in Figure 3.3, using the XMLSpy
notation [180]. Secondly, the CBISC supports extraction algorithms which create
either 1D or 2D feature vectors. Thus, 1D feature vectors can be generated for
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image descriptors like the Color Histogram [148] and the Contour Multiscale Fractal
Dimension [44] shape descriptor. Similarly, 2D feature vectors can be extracted by,
for example, the Coniour Saliences [50] or the Curvature Scale Space [109] shape
descriptors.

Figure 3.4 presents an example of a feature vector XML file. In this case, the feature
vectors were obtained by applving the image descriptor “Contour Multiscale Fractal
Dimension” [44] on image “fish0.pgm”. Note that this feature vector is encoded in
a 1D curve,

s CBISC XML Configuration

Ongce the feature vector XML files have been created, the CBISC can be configurad.
Basically, this process involves the creation of an XML configuration file detailing
which descriptors are available and the image database related to this component.
Figure 3.5 shows the XML schema that defines the CBISC Configuration XML
file. Descriptorinformation includes a Hst of descriptors that are supported by the
CBISC. Each descriptor is given in terms of its: name, extraciion algorithm, distance
computation algorithm, related feature vector size, and location of corresponding
feature vector files. Image database information includes the number of images and
their location.
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Figura 3.4: Example of a feature vector XML file.
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A list of predefined descriptors {extraction and distance computation algorithms)
is available in a tool we developed to configure the UBISC, called the CBISC Con-
fguration Tool, allowing s guick CBISC instantiation for a new image collection.
Examples include new shape descriptors like the Contour Multiscale Frocial Di-
mension and Shape Seliences, Beam Angle Statistics - BAS) [7,42, 44, 50] and eclor
descriptors, such as the BIC {144}, and the Color Histogram [148]. Common metrics
like L1 and L2 (Euclidesn distance) also are supported.
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Figura 3.5: XML schema for the CBISC Configuration file.

Figure 3.6 presents a screen shot showing the CBISC Configuration Tool developed
to support CBISC designers in the configuration process.

After the above preliminary steps are performed, the CBISC Designer is able to install
the CBISC. This task also is supported by the CBISC Configuration Tool Basically, this
process involves copying feature vectors and algorithms {extraction and distance computa-
tion algorithms) either from local directories or from remote sites (by using OAI requests)
to CBISC maln directories. The location of both the feature vector and algorithms are
defined in the configuration step.

In fact, CBISC flexibility also relies on the support of both locally and remotely defined
feature vectors and algorithms. In this sense, a CBISC Designer is able to configure a
CBISC, even without having previous knowledge about the algorithms (descriptors) code.
This ease in configuration, and the DL component philosophy, allow BIS designers to
easily combine distinct kinds of query features into the system, thereby creating different
user-tailored BISs for the same underlying archive base.
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Figura 3.6: CBISC Configuration Tool screen shot.

Note that the pre-processing of images into the image descriptors repositories adds
scalability and promotes a new, generic way of exposing image archives for creating image-
based services.

3.2.4 The Combiner Component

The Combiner component is responsible for combining three different kinds of evidence:
content-based retrieved images, image metadata, and domain-specific metadata. Basi-
cally, it receives as input a specification in terms of & guery pattern (query image) or
query terms, decomposes and regroups them into sub-queries, and forwards these result-
ing sub-queries to the appropriate search component (CBISC or ESSEX), combines the
obtained results (weighted sets) by using an appropriate combination scheme, and returns
a ranked list containing the “most” similar objects matching the original specification.

The combiner component has been implemented using search modules found in the
Jave MARIAN system [78]. MARIAN is an indexing, search, and retrieval system opti-
mized for digital libraries which has been developed at Virginia Tech. Its search module
is based on mapping abstract object descriptions to weighted sets of objects. In this case,
the weight of each object in the set serves as a measure of how well that object matches
the description.

Given a collection of weighted sets, different searching approaches can be used in
the MARIAN system to combine them. The most commonly used types of combination
include the maximization union and the summative union. The maximization union keeps
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only the maximum value of weighted objects that occur in incoming sets. The summative
approach, on the other hand, calculates an average of the sums of incoming chject sets.
Other weighting schemes such as Euclidean distance or sum-of-squares also can be used.

Consider for example, a biodiversity information system which manages fish descrip-
tions (Images and textual information). A user might start by providing an image as input
{e.g., 2 photo of an observed fish) and then asking the system to “Retrieve all database im-
ages obtained from ‘Handall's tank photos’ containing fish with contour shaped like that in
the photo, and that are found in the ‘Amazon basin’ 7. This query deals with three differ-
ent kinds of evidence: content-based image descriptors (image containing objects shaped
like that in the input photo), image metadata (images from “Randall’s tank photos”),
and domain-specific metadata (species from “Amazon basin®),

Given that query, the combiner component proceeds as follows:

1. Parse the original query. This process identifies which search component will be
activated and ifs parameters;

2. Dispatch the query image to the CBISC module;

3. Dispatch the expression “Randall’s tank photos” to the ESSEX search engine which
manages image metadata,;

4. Dispatch the term “Amazon basin” to the ESSEX search engine that manages
domain-specific metadata;

5. Each search engine returns XML files containing records which match their respec-
tive queries.

6. These XML files are converted into weighted sets, which are combined, by using,
for example, the summative union approach;

7. An XML file containing the final answer is returned to the interface layer.

3.3 Experiments

As an illustration of how this generic architecture can be instantiated, we have imple-
mented two Biodiversity Information Systems concerning fish species. The image data
consists of fish photos, and the domain-specific data concerns fish and associated habitat
descriptions. With these systems, we have carried out experiments to demonstrate the
utility of our approach.
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3.3.1 Combination of Evidences

The first experiment aimed at evaluating different strategies to combine textual and im-
age content descriptors, to support exploratory searches a8 the ones described in our
motivating examples.

Diatas Bources

The fish related data were obtained from FishBase [70], an information system available
on CD-ROMs, as well as on-line at www fishbase.org/search.cim. FishBase covers over
28,000 species of fish from all over the world, including data about taxonomic classification,
common names, population dynamics, fish morphology, metabolism, dist composition,
trophic levels, food consumption, and predators.

A subset of these data, including 703 species and 932 Images, was used in this work.
The following text describes the archives managed in this blodiversity information system.

Domain-Specific Archive: The domain-specific archive contains biodiversity meta-
data on fish and their ecosystems. It includes data about fish taxonomic classification
(species, genus, family, and order names), common names, synonyms, ecological features
(food items, diet remarks, etc.), morphological descriptions (sexual attributes, type of
mouth, type of teeth, etc.) and a list of occurrences arcund the world.

Image Archive: The image archive contains metadata on fish images, and image de-
scriptors. The main challenge in processing the images has been finding appropriate
descriptors for the images, since species’ photos are not “well behaved”, because they are
often taken using live (moving) species instead of more controlled specimens (that are
dead and preserved). Therefore, photos that must be used present many irregularities
- such as shape distortions — not found in more traditional image databases (e.g., land-
scapes or artwork}. These distortions complicate content-based retrieval. This required
a preprocessing step consisting of: image segmentation, reducing image noise, and image
binarization.

Accordingly, for experimental purposes the CBISC was configured to use the Beam
Angle Statistics (BAS) [7] shape descriptor.

The image metadata includes the picture name, the related species code (fish ID}, the
image format, the color type, the picture type, when the picture was obtained, the author
name, when the picture data was entered into the FishBase database, general comments,
and last modification date (concerning the image).
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Experimental Setup

The experiments were intended o gvaluate the effectivensss achieved through the com-
bined use of visual and textual features. In this case, we considered each available image
as a query image. All images which depict fish belonging to the same species were grouped
into the same relevant set. The average number of images in the relevant sets was 1.33.
in order to simulate the presence of users, textual search terms were defined randomly for
sach query. A random attribute was determined, and then a random textual term was ex-
tracted from it. This process was performed for both image metadata and domain-specific
descriptions.

Two different combination strategies were evaluated: the mammization union and the
summative union (see Section 3.2.4). Only the best results are presented,

Besulis

Figure 3.7 shows the precision versus recall graphs concerning the use of textual evidence
considering: only image metadata {curve named ESSEX (M) in Figure 3.7), only domain-
specific information {curve ESSEX (D&)), the combination of the textual evidence using
‘the maximization union strategy (curve ESSEX (IM + DS) MazrUnion), and finally the
combination of textual evidence using the summative union approach {curve ESSEX (IM
+ DS) SumUnion). Note that both combination-based curves present the best results for
recall values less than 0.9. From this point on, all curves present a similar behavior. The
summative union related curve is better than maximization union one until recall is equal
to 0.8. From this point on, this situation is slightly inverted. Note also the low values
found for precision. This behavior is due to the low number of elements in the relevant
sets.

Figure 3.8 shows the Precision versus Recall graphs for queries involving both the
MBSC and the CBISC search components. Seven different kinds of queries are evaluated:
queries considering only the CBISC search engine {curve named CBISC - BAS in Fig-
ure 3.8); the combination of queries on image content and textual information using the
maximization union strategy (curves CBISC + ESSEX (IM} MazUnion, CBISC + ES-
SEX (DS} MazUnion and CBISC + ESSEX (IM + DS) MozUnion for image metadata,
domain-specific information, and both together, respectively); and the same combina-
tion, now using the summative union strategy {curves CBISC + ESSEX (1M} SumUnion,
CBISC + ESSEX (DS) SumUnion, and CBISC + ESSEX (IM + DS) SumUnion. Note
that the queries which used the summative union approach vield the best results. In fact,
the best result {curve CBISC + ESSEX (IM + DS} SumUnion} concerns the combina-
tion of the three available sources of evidence, using summative union. The combination
strategies involving the maximization union strategy only vield a better behavior (than
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CBISC search engines.

The better performance of the summative union method with the three sources further
validates our assumption that a combination of several heterogenecus sources of evidence
provides enhanced performance, since in this method each source contributes to some
degree to the final score, while in the maximization union method only the evidence with
the highest score is kept in the final result set.
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3.3.2 Fish Identification Process

This experiment involves a user study concerning search retrieval techniques based on the
proposed architecture, used to support the fish identification process. The study aims at
comparing the effectiveness and the quality of the proposed method versus the traditional
key-based approach, using a task-oriented evaluation methodology. This research will
potentially have a major impact on the development of new applications for supporting
experts during the fish identification process.

The Problem

Given a mixed collection of specimens from a river, ichthyologists face the problem of
identifying which fish species are present in that collection. Their alm is to determine
which taxonomy classification {e.g, family, genus, species) is appropriate for a given spec-
imen. The traditional approach is based on the use of keys. The keys are in the form
of dichotomous {two-branched)} couplets. Each couplet has two parts (e.g., 1a and 1b);
sach part of a couplet contains one or more statements. The statements give diagnostic
(distinguishing) characteristics (e.g., anatomy, color). All statements in precisely one part
of a couplet should fit the fish at hand [89]. Keying involves a sequential comparison of
a specimen with a series of paired opposing statements (the parts of the couplets). The
process continues, following the applicable statements (those that characterize the fish),
until one ends at an identification [89]. For example, Figure 3.9 shows part of the key to
families of freshwater fish of Virginia extracted from [89].

Key io Families of Freshwater Fishes of Virginia

1a Paired fins absent; jaws absent, mouth in an oral
disk (the disk mostly surrcunded by a fleshy hood
in larvae); 7 external gill openings present in row
behindeve ...oovivieve e Lampreys - Petromyzontidae
1b Paired fins present {af least 1 set); jaws present;
1 external gill opening perside ..o 2z
2& Caudal fin heteroceroal or abbreviate heferocercal
(FIQUre B) oot s 3
2b Caudai fin protocercal (Figure 13, Part 2, upper left)
of homocercal (FIgUre 8} L. 6
3a Snout having a long paddie-fike structure; operculum
fong, flexible, and pointed posteriorly

.................................... Paddlefishes - Polyodontidae
3b Snout lacking a long paddle-like structure; operculum
BT Lo e et a e e ae e e e e s e re s 4
{...}

Figura 3.9: Part of the key to families of freshwater fish of Virginia [891.
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Experimental Setup

seven student and professor subjects from the Department of Fisheries and Wildlife Sci-
ences at Virginia Tech were recruited. The key selection requirement was expertise in the
ichthyology domain. Subjects of any age (over 18) or gender were accepted into the study.

Task: Given a fish specimen, users were asked to identify its corresponding species,
genus, and family using the traditional key-based method, and by performing queries on
the available system.

Procedure:

e 4 users tried to identify 10 specimens: 5 using the key-based approach and the other
5 using the computer system.

# The other group (3 users) tried to identify the same fish specimens, but used the
approaches in the reverse order, concerning the two groups of fish,

Opening Questionnaire: Users were asked to fill out a questionnaire aiming at ob-
taining information concerning their familiarity with computers and search engines, as
well as their expertise in the ichthyology domain and, more specifically, in identifying fish
species.

Measured metrics:
s effectiveness: number of correctly identified fish;

e “usability”: based on subjective grades (from 1=low to 10=high}. With regard to
effectiveness and ease of use of the proposed tasks, users were asked to grade both
methods. They also were asked to rate their understanding of the computer-assisted
fish identification process, both before and after using the tool.

s performance: time spent during the process.

Results

This section presents the experimental results concerning the use of the key-based ap-
proach and the computer system for identifying fish species.

On average, users performed 2.5 queries when using the computer system to correctly
identify a specimen. 90 queries were performed: 22.2% including only textual terms, 30.0%
based on only image content description, and 47.8% using both sources of evidences.
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An example of a query including both textual and image descriptor information was:
“retrieve fish descriplions of all fish whose shape is similar to that shown in Figure 3.10,
which belong to genus "notropis’, which hove ‘large eyes’ and ‘dorsel strive’, and have been
observed in boih the ‘New’ and ‘Tennessee’ rivers”.

Figura 3.10: Example of shape outline used to define a query.

Figure 3.11 presents a screen shot showing the interface used to define queries by using
the fish identification tool, Here, the user can formulate the previous query by selecting
on the screen the fish ocutline that is closest to the request. In addition, text parameters
can be entered at the bottom.

Search kiiSH fon
lnonarrh

Figura 3.11: Screen shot of the fish identification tool.

Opening Questionnaire: Even though the use of computer is not common for sup-
porting the fish identification process, users are, in general, familiar with computers (five
out of seven are “fairly familiar” or “very familiar”, while two are “somewhat familiar”}.
A similar result was found when the users were asked to grade their familiarity with search
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Understanding
hefore 4.4
siter 2.0

Tabela 3.3: Average grade for user understanding of the computer-assisted fish identifi-
cation process.

Fish Identification Method
Key | Computer System
6.1 4.1

Tabela 3.4: Average time in minutes required to identify correctly a specimen.

Users also were asked to rate their understanding of the computer-assisted fish iden-
tification process, both before and after this experiment. Table 3.3 shows the average
grades. This result {improvement from 4.4 to 8.0) confirms that users were able o learn
how to use the proposed information system for identifying fish species.

Performance: Table 3.4 shows the average time required to identify correctly a speci-
men. By using the computer-based approach, user can identify species more quickly than
by using the key-based approach (4.1 minutes against 6.1 minutes).

General Comments: In general, users believe that the computer-assisted approach
can be very useful to help them identify fish specimen. We list below some of their
comments (that relate to our evaluation, and that also can help guide future refinements
of our methods):

s “Pictures on computer-based approach were much more helpful than diagrams in
key-based approach”;

e “The key-based approach is fine to the family level, sometimes, to genus. But it
requires dissections, too many subjective judgments to identify species for large
families — e.g., Percidae and Cyprinidae. Computer approach (is) thus much more
convenient. (It) certainly can get you to the genus and sometimes to species”;

# “The best approach is a mix. Have the computer help you through the key by
providing lots of pictures, including pictures of fish showing key features in the
key...”;
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e “For some of these species, a kev is required. [ think that many misidentification
could result from the computer-based approach. The computer-based approach
could work well with Iive specimens”;

e “If I had more practice with the computer, I may come to prefer that”;

& “(The computer system) uses multiple terms for the same thing (...}, but the com-
puter does not recognize these as identical. Maybe it would help to create a glossary
so user knows which terms to choose”;

e “The program is great and can be useful for experts and beginners. I suggest leaving
the family names with the form outlines so that people with experience can narrow
search results more quickly”.

3.4 Related Work

The research described in this chapter differs from related research in the sense that it
takes advantage of tailored DL protocols to seamlessly combine textual and content-based
retrieval for biodiversity applications. Furthermore, the use of the software engineering
notion of component ensures appropriate encapsulation of data and procedures, which
allow reuse of the components developed in other DL initiatives involving content-based
retrieval.

There are some other DL initiatives for the biodiversity domain. One example concerns
floristic digital libraries (FDL} [130-132]. These are distributed virtual spaces comprising
botanical data repositories and a variety of services offered to library patrons to facili-
tate the use and extension of existing knowledge about plants. ¥FDLs use an agent-based
infrastructure to manage information about taxonomic keys, distribution maps, illustra-
tions, and treatments (morphological descriptions). Content-based retrieval, however, is
not supported.

Another example is the Talwanese digital museum of butterfiies, an initiative of Na-
tiopal Chi-Nan University and the National Museum of Natural Center {83]. This digital
library contains 6 modules: XMIL-based information organization of digitized butterfly
collections, content-based image retrieval of butterflies, a synchronized multimedia ex-
hibition, compositional FAQ, interactive games of an butterfly ecosystem, and on-line
courseware on butterflies. Even though XML documents describing butterfly species are
indexed and refrieved by a search engine, this digital library does not support gueries
that combine image content and textual data.

DL efforts that deal with images appear in other domains. An example is the work
of Zhu et ol [165], which presents a content-based image retrieval digital library that
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supports geographical image retrieval. The system manages airplane photos which can
be retrieved through texture descriptors. Key goals of the Alexandria Digital Library
ADL [141] and its successor {the Alexandria Digital Earth Prototype System (ADEPT) [88]
are to build a distributed digital library accessible over the Internet for geographically ref
erenced materials including maps, satellite images, etc., along with their associated meta-
data. The ADL system applied image-processing techniques to achieve content {texturs)-
based access to satellite images. Both initlatives, however, have limited support for queriess
simultaneocusly involving image content properties and textual data. From the CBIR do-
main, initiatives like {11,71,117] or miore recently [24,122,153] also supports search of
images according to their content information. Even though these systems are showed to
be effective, they can not be easily customized for different domains. Firstly, they have
a pre-defined and not extensible set of image descriptors. In addition, since they do not
take advantage of the component philosophy, they can not be reused and coupled to other
information systems. The CBISC component presented in this chapter overcomes these
limitations.

In the video retrieval domain, Christel et al. [29] extract geographic references from
videos aiming at improving access o the Informedia Digital Video Library. The available
video retrieval process is based on date (when), word occurrences (what), and location
information {where}, extracted from the narrative and from the text regions in the video
segments. Interactive maps are used to display places discussed in a video segment. The
user can interact with these maps through toolbar icons that enable zooming in and
out, panning, accessing details relevant to the video content, and selecting search areas.
Content-based video retrieval is not supported.

Different strategies have been proposed, aiming at supporting the combination of tex-
tual information and visual content in the image retrieval proccess [102,113, 135, 163, 164].
One approach {135, 163] has been to combine textual information with visual contents by
using Latent Semantic Indezing (L51) and Singular Value Decomposition (SVD) to sup-
port image retrieval on the WWW. The combination strategy of Nakagawa et al. [113] is
based on clustering image objects according to their visual features and mapping the cre-
ated clusters into related words determined by psychological studies. A different approach
is presented in [164]. In this system, the unification of keywords and feature contents is
based on a seamless joint querying and relevance feedback scheme. Keyword annotations
for each image are converted into a vector which expresses the probability of a determined
keyword appearing for a given image. An algorithm for the learning of word similarities
during a relevance feedback process alsc is presented. Finally, Lu et ol {102] propose a
strategy based on semantic networks and relevance feedback to deduce and utilize the
images’ content for retrieval.

In contrast to the monolithic-method adopted by the aforementioned solutions, our
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approach calculates the combination of textual and visual content in different and au-
tonomous modules. In addition, large systems are either too complex [135,163] to be
easily configured for a new domain, or rely on search process techniques {relevance feed-
back, word similarity learning, content semantic definitions} [102, 113, 164], which are not
available in the proposed architecture. Note that new combination strategies easily can be
adopted in the proposed architecture. New combiners just have to follow the HTTP-based
communication protocel presented here.

The XML schema adopted in our Content-Based Image Search Component to encode
feature vectors {see Figure 3.3} is similar to MPEG-7 26, 138] sclutions recently proposed
to describe multimedia data content. MPEG-7, for example, includes a Description Defi-
nition Language (DDL ), which defines representation data structures such as mairices and
arrays, to encode feature vectors of different visual features. Furthermore, the MPEG-7
initiative also standardizes a set of descriptors applied fo images and/or videos [18, 105].
Current work investigates hoth the use of MPEG-7-based tags to define feature vectors
and the incorporation of MPEG-7 image descriptors into the UBISC descriptor set.

3.5 Conclusions

Interoperability has been a central research area in the digital library domain [119]. The
OAI protocol has been used to promote interoperability solutions for different digital
libraries initiatives [77,94]. Following this trend, this chapter presented an OAl-based
generic digital library architecture for integrated management of image descriptors and
textual information. The solution proposed is based on using DL components which are
mostly new or recently developed. This architecture is easily extensible, and provides
users a considerable degree of flexibility in data management. To illustrate our claim that
this architecture can be applied to several domains, this chapter describes its application
in building two biodiversity information systems on fish species. This sclution solves
many current problems in this kind of system, allowing handling of images and textual
information in an integrated fashion.

A new Content-Based Image Search Component was presented that supports queries
on image collections. Since this component is based on OQAI principles, it provides an
easy-to-install search engine to query images by content. It can be readily tailored for a
particular collection by a designer (a domain expert), who carries out a clearly defined set
of pilot experiments. It supports the use of different types of image descriptors {metric
and non-metric; color, texture and shape descriptors; with different data structures to
represent feature vectors), which can be chosen based on the pilot experiment, and then
easily combined to yield improved effectiveness. Besides, it encapsulates a metric index
structure to speed up the search process, that can be easily configured for different image
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collections.

We algo have validated the proposed architecture for two applications, dealing with
different collections on fish species. Firstly, we performed experiments concerning the
combination of textual and image content information. Preliminary results show that
when both textual and visual information are used in the image retrieval process, results
are, in general, better than those achievable using only visual or textual information. On
the average, betier results were found by using the surmmative union combination strategy.
Secondly, we have evaluated the use of the proposed architecturs to help fish experts in the
process of fish identification. Results show that the fish identification process based on the
information system built on top of the proposed architecture is more effective, easier and
less time consuming than that based on the traditional key-based approach. Consequently,
we plan to provide students in ichthyology courses at Depariment of Fisheries and Wildlife
Sciences at Virginia Tech with an information system based on the proposed architecture
aiming at supporting the process of learning new fish species.

Ongoing work concerns the instantiation of the proposed architecture in other domains.
For instance, we are trying to combine queries on image content with textual description
in the archeology domain [60]. In this case, the image collection comprises photos of
archaeological artifacts (e.g., pottery, coins, etc) and the domain-specific collection cor-
responds to both archaeological site information and artifact descriptions. Preliminary
experiments confirm the reusability of the components developed. Future work includes
performing user experimentis to evaluate the different combination strategies which can
be used by the Combiner Component. We also intend to evaluate other image descrip-
tors [44,109, 144, 148] in the combination process.



Capitulo 4

A Graph-based Approach for
Multiscale Shape Analysis

4.1 Introduction

In pattern recogrition and related areas, shape is an important characteristic to identify
and distinguish objects [100]. The shape variations expressed with respect to a given
scale, named multiscole shape representation, provide even more information about the
objects. In this context, shape descriptors have been used to encode such representations
into signatures (i.e., feature vectors). In practice, objects belong to certain semantic
categories, each category defines a class, and the problem consists of grouping the objects
that belong to a same class. The main challenge here is to find out “good signatures” to
perform such a task successfully.

This chapter presents the advantages of computing two recently proposed shape de-
scriptors, multiscale fractal dimension and contour saliences [36,42], using the image
foresting transform {IFT)— & graph-based approach to the design of image processing
operators [63-65,67,101]. In this case, the shape descriptors are obtained from the multi-
scale shape representations created by the IFT. The multiscale fractal dimension [36, 39]
is a new concept, which copes with many serious drawbacks in current methods [110, 120]
for numerical estimation of fractal dimension. The multiscale fractal dimension of a shape
is computed based on the Euclidean distance transform (EDT) of its pixels. The EDT
of these pixels is also related to their geometric Voronoi diagram [126], where each pixel
defines an influence zone {discrete Voronoi region) composed by its closest image pixels.
The saliences of a shape are computed based on the areas of the discrete Voronoi regions
of its higher curvature pixels within a narrow band around the shape [36]. This approach
allows the quantification of the curvature values at points {center of pixels) where the
analytical curvature would be infinite. The IFT provides the simultaneous computation

53
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of the EDT and the discrete Voronoi regions in time usually proportional to the number
of pixels [65], being more efficient than the method proposed in [36]. The present chapter
also introduces improvements in the multiscale fractal dimension and confour saliences
computations. The original approach for multiscale fractal dimension suffers from unde-
girable oscillations on the fractal curve, and the location of higher curvature points slong
the contour for saliences computation is very sensitive in the case of intricate and com-
plex shapes. The osclllation problem is solved using polynomial regression. The relation
between the salience points of the contour and of its internal and external skeletons— an
important concept introduced in [97]— is used to locate the higher curvature points along
the contour, considerably improving the robustness of the contour saliences computation.
This relation is obtained in a direct way using the IFT framework. The contour saliences
descriptor is also redefined to include point location and salience value along the contour
and a special distance metric, which make it possible to reach high effectiveness in shape
recognition.

The proposed descriptors are compared with single fractal dimension, two classical
(Fourier descriptors [154] and moment invariants [84]), and two recently published shape
descriptors (Curvature Scale Space (CSS) [1, 108] and Beam Angle Statistics (BAS) [6,7])
in regarding to the following aspects: compact-ability and separability. The compact-
ability of a descriptor indicates its invariance to the object variations within a same class,
while the separability indicates its discriminatory ability between objects that belong to
distinct classes. In other words, a descriptor is considered “good” when it creates compact
clusters far away from each other, for all classes in the corresponding feature space. This
condition should be sufficient for the success of any suitable classification method.

This chapter starts by presenting an overview of the IFT in Section 4.2. The IFT is
used to obtain two types of shape representation: multiscale confours by exact dilations
and multiscale skeletons by label propagation, as described in Section 4.3. We use the
former to estimate multiscale fractal dimension and the later $¢ locate the salience poinis
along the contour in Section 4.4. Section 4.5 gives a formal definition of compact-ability
and separability, evaluates the proposed shape descriptors, and discusses the main results
of this work. We present the conclusion and our current research on shape descriptors in
Section 4.6.

4.2 Image Foresting Transform

The image foresting transform (IFT) is a recent approach to the design of image pro-
cessing operators based on connectivity [63-65,67, 101]. The IFT reduces image partition
problems based on a given seed set to the computation of a minimum-cost path forest in
s directed graph, whose nodes are the pixels and whose arcs are defined by an adjecency
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relation between pixels. A path in this graph is a sequence of adjacent pixels. The cost
of a path is determined by a suitable path-cost function, which usually depends on local
image properties along the path— such as color, gradient, and pixel position. For suitable
path-cost functions, the IFT assigns to sach image pixel a minimum-cost path from the
seed set, such that the union of those optimum paths form an oriented forest spanning
the whole image. The nodes of sach rooted tree in the forest are composed by pixels that
are “more closely connected” to ifs roo? pixel than to any other seed in some appropriate
sense. The IFT assigns to each pixel three attributes: its predecessor in the optimum
path {predecessor map P), the cost of that path {cost map (), and the corresponding
root {root map R) or some label associated with it (label map L.

For g given set S of seed pixels, the IFT can provide the simultanecus computation of
the Buclidean distance transform in the cost map C and of the discrate Voronol regions
in the root map R [67]. This operator asks for an Euclidean adiacency relation 4 and a

i

path-cost function f.,. defined for any path 7 =< 15,52, ..., 9 > in the graph as:

g€ Alp) = (2, — xp)g + (yg — yp}g < g, (4.1}

(Zpo = Tpu 2+ (U — U )5, D1 €5,
— 72 3 ' 1 2
Jouel) { +00, otherwise. (4.2)

where p is the adjacency radius and {z,,,,,) are the (z,y) coordinates of a pixel p; in
the image. Note that, the main idea is to find for every image pixel p, & path P*{p,) from
a seed pixel p; € S, such that fo . (P*(p,)) is minimum. The exact Euclidean distance
transform will depend on the appropriate choice of p, as demonstrated in [67]. However,
for most practical situations involving 8-connected curves, such as contours and skeletons,
p = +/2 is enough [65]. Algorithm 1 below presents an IFT procedure with fey..

Algorithm 1:

Input: An image I, a set S of seed pixels in 7, and an Euclidean adjacency relation A;
Output: An optimum-path forest P, and the corresponding cost map € and root map K.
Auxiliary Data structures: A priority queue @Q.

1. For all pixels p of the image I, set O{p) « +o0;
2. Forali p € 8, set Plp} « nil, R(p) « p, C(p) «— 0, and insert p in ¢;
3. While @ is not empty, do

3.1. Remove from @ a pixel p = (z,, y») such that C{p) is minimum;
3.2. For each pixel g = (z,,¥,) such that g € A(p) and C{g) > C{p), do
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3.2.1. Set O« (3, — Zr)* + (¥, — yrp ), where R(p) = (Zry), yay) i the
root pixel of p;
3.22. I < Clg), then
3.2.2.1. ¥ C{g) # +oo, then remove ¢ from Q.
3.2.2.2. Bet Plg) « p, Clg) « ', Rlg) « R{p), and insert g in Q.

Note that, the IFT algorithm is essentially Dijkstra’s shortest-path algorithm {13,
55,72,111], slightly modified to multiple sources and general path-cost functions. Its
correctness for weaker conditions that are applied to only optimum paths in the graph is
prasented in [67)].

4.3 Multiscale Shape Representation

A shape can be represented along = range of scales spanning from coarse to fine. If
the shape is to be used as an invariant indicator of an object in a scene in which the
viewing distance is variable, a multiscale structure is necessary to relate various views,
thereby making the representation invariant with respect to the viewing distance [25].
The IFT with fe.. allows efficient computation of multiscale contfours by ezact dilations
and multiscale skeleions by label propagation [65)].

4.3.1 Multiscale Contours by Exact Dilations

Given a set S of points, represented in terms of their Cartesian coordinates (z,y), its
exact Buclidean dilation by a radius r, henceforth represented as 5., is defined as being
the union of all disks of radius r centered at each of the points in §. Observe that, this
definition is valid for both discrete and continuous objects. Subsequent dilations of a
given shape by increasing values of r create a family of progressively simplified instances
of the original shape, as illustrated in Figure 4.1 for a contour. _
Multiscale contours by exact dilation result from Algorithm 1, where the pixels of the
original shape (contour) are taken as the seed set 5. Each instance of the multiscale shape
is obtained by thresholding the cost map C at a given squared Euclidean distance value.
The higher the threshold value, the more simplified the shapes become, with smalier
details being progressively removed as the threshold increases.

4.3.2 Multiscale Skeletons by Label Propagation

Given a contour with IV pixels, its internal skeleton is defined as the geometric location
of the centers of maximal disks contained in the contour [17,92]. A similar definition is
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(@) (b)

Figura 4.1 (8} A contour of a fish and (b) multiscale contours by exact dilation.

valid for the external skeleton.

Algorithm 1 applied to the contour creates a root map R. Multiscale skeletons can be
computed from A if each contour pixel p {root) is assigned to a subsequent label value
Alp), varying from 1 to N, while circumscribing the contour (Figure 4.2a). A label map
L can be created by computing L{R(p)) to each image pixel p (Figure 4.2b). A more
efficient way, however, is to propagate the labels of the contour pixels during Algorithm
1. In this case, the labeling function A is used in step (2}, when the contour pixels are
inserted in ¢, and the label map L is created similarly and simultaneously to the root
map R. A difference image D results from the label map L by computing the following
for each pixel p inside and outside the contour (Figure 4.2¢):

D(p) = vgxgﬁp}{min{é(p, q), N ~d8(p,a)}}, (4.3)

where §(p,q) = L{g) — L(p) and Ap) is the set of pixels ¢ that are 4-neighbors of p.
The difference image represents the multiscale internal and external skeletons by label
propagation [38,83,65]. One-pixel wide and connected skeletons can be obtained by
thresholding the difference image at subsequent integer values (Figure 4.2d-f). The higher
the threshold value, the more simplified the skeletons become, with smaller details being
progressively removed as the threshold increases.

It is important to observe that Equation 4.3 corrects the original Equation, reported
in [63, 65], as pointed out in [66].

4.4 Shape Descriptors

"This section presents the process of creating shape descriptors from the multiscale shape
representations presented in Section 4.3
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(a) (b) (c) (4) (e) {£)

Figura 4.2: Maltiscale skeletonization by label propagation. {a) Labeled contour, (b)
label map, (¢} difference image, and (d-f} skeletons at three differsnt scales.

4.4.1 Multiscale Fractal Dimension

While the topological dimension is restricted to integer values, fractal dimension allows
fractionary values. Disseminated by Mandelbrot [104], fractal dimension provides an
interesting means for characterizing the self-similarity {or self-affinity) of abstract and
real objects, being closely related to the concept of power-laws. A particularly intuitive
and useful definition of fractal dimension is the Minkowski-Bouligand dimension [152],
which is here introduced in terms of the following example. Let the shape under analysis
be represented in terms of the set 5 of the Cartesian coordinates of each of its elements,
and let S, be its dilation by r (see Section 4.3.1). Let A(r) be the area of the respective
dilated version of the shape, i.e. §,. The Minkowski-Bouligand fractal dimension, hence
F, is defined as '

o log(A(r)

In other words, the fractal dimension descriptor in this case (i.e. considering a two-
dimensional space) is a number within [0,2]. It should be borne in mind that F' agsumes
perfect self-similarity of the shape for small spatial scales, i.e. for 7 close to 0, which is
never verified for real data. Indeed, while shapes in nature can exhibit an infinite degree
of detail as one moves into the microscopic scales, the self-similarity along these scales is
not preserved for an infinite interval. For instance, a fern leaf presents just a few orders
(3 or 4) of self-similarity. The situstion is even more complicated for experimental data,
where the finite resclution of the acquisition device contributes further to limit the small
scale detail.
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In spite of such limited fractality observed for real objects, the standard numerical
procedure for estimating fractal dimensions involves linear interpolating the logarithm
curve of the area (A(r)) in terms of dilating radius, computing the angular coefficient
{A'{r}} of this line and taking F as F{r) = 2— A'(r) {see Pigures 4.3a and 4.3b}. Observe
that the area values A{r) for each logarithm of the dilation radius r can be simply obtained
by computing the accumulated histogram of the cost map of the IFT with f,,.. Therefore,
it is obtained from the multiscale contours by exact dilations (Section 4.3.1}.
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Figura 4.3: (a} An object similar to the Koch star, whose fractal dimension is known as
about 1.26 (= %ﬁ-}. {b) The logarithmic area function. By taking 2 minus the inclination
of the fitted straight line, the fractal dimension obtained is about 1.23.

EuglA)

Although the deviations of shapes from perfect self-similarity seriously undermine
the aforementioned experimental method, several practical applications of the fractal
dimension have been reported in the literature {e.g., [149]). Fractal dimensions have been
considered as features useful for expressing the area coverage and the “complexity” of
shapes ranging from neurons {39] to heartbeat dynamics [4]. In the particular case of the
Minkowski-Bouligand dimension, the value of F provides an interesting indication of how
much the shape constrains its own dilation. Therefore, simple shapes, such as the point or
the straight line impose relatively less constraints to their own dilation and consequently
have smaller fractal dimension values than those of an intricate curve in the plane.

in order to address the subjectivity implied by the choice of the interval over which the
logarithmic curve is interpolated and to fully take into account the limited self-similarity
exhibited by the geometry of real shapes, the concept of multiscale fractal dirnension was
recently reported [36]. This approach involves taking into the infinitesimal limit the pre-
vious concept of linear interpolation [110,120], which naturally leads to the estimation of
the derivafive of the logarithmic area function. Therefore, the multiscale fractal dimen-
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sion becomes a function of the spatial scale rather than a single scalar global value, By
expressing the fractality explicitly in terms of the spatial scale, this new measure provides
& richer description of the self-similarity of the analyzed shapes along the spatial scales.
The derivative function therefore becomes completely independent of the choice of the
spatial scale interval adopted for interpolation,

The approach presented here fits a polynomial curve by regression to the logarithmic
area function from which the sought derivatives can be immediately obtained. One im-
portant advantage of this approach is to be free of the undesirable oscillations often found
in the derivative estimation of sampled curves. Note that, the commonly used fractal
dimension can be understood as a particular case of the multiscale dimension when the
adjusting polynomial is linear. The multiscale fractal dimension is obtained whenever
the degree of the polynomial is greater than one. In the examples of this chapter, the
multiscale fractal dimension is represented by a polynomial of degree nine. In this work
the multiscale fractal dimension descriptor is represented by a vector of 50 sample points
of this polynomial. The polynomial degree and the vector size were determined through
a set of experiments. These experiments showed that vecters containing more than 50
samnple points do not improve the results. Two multiscale fractal vectors are compared
using the L, metric.

Figure 4.4 illustrates the concept of multiscale fractal dimension with respect to the
contour in Figure 4.3a. Observe that the maximum value of the curve in Figure 4.4b is
close to 1.26, which is the actual fractal dimension of the Koch triadic curve (up to three
digits).
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Figura 4.4: {a) The logxlog curve of the areas of each exact dilation radius for Figure 4.3a.
{b) The multiscale fractal dimension of its contour.
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4.4.2 Shape Saliences

The storage of the area evolution for each point of the shape also provides perspectives
for shape descriptions. The influence areas of higher curvature points, namely salience
points [38], are expected to be greater than the influence areas of the other points of the
shape. Moreover, in the case of & contour, the influence ares of a convex point (point
A} iIs greater outside the contour than inside, and the other way around for a concave
point (point B, see Figure 4.5). The influence area A of each salience point relates to the
aperture angie 8, illustrated in Figure 4.5, by the formula:

g x r?

2 ¥

where r is a dilation radius. Costa et al. [36] proposed to estimate the salience points

by thresholding the influence areas, computed for low values of v (eg., v = 10}, The
influence area A of each pixel belonging to a shape (contour or skeleton) can be simply
obtained from the histogram of the root map R created by Algorithm 1, restricted to
pixels p where C{p) < r°. This approach, however, misses important salience points
in opposite parts of the shape which come close to each other. It has otherwise been
particularly effective for skeletons and for simple contours, such as convex polygons, but
it falls in finding the salience points of more complex and intricate contours. A robust

approach to solve this problem for contours is described next.

Areg = (4.5}

Figura 4.5: Internal and external influence areas of a convex {A) and a concave {B) point.

For a given contour, multiscale internal and external skeletons are first obtained by
iabel propagation as described in Section 4.3.2. For small scales (e.g., 5% of the maximum
label difference N — 1), each salience point of the internal skeleton corresponds to one
convex point of the contour and each salience point of the external skeleton corresponds
to one concave point of the contour [97] (see Figure 4.6). Let L, R;, B, be the label and
root maps resulting from Algorithm 1 applied to the contour with label propagation, to
the internal skeleton, and to the external skeleton, respectively. The influence areas of
each point of the skeletons are determined based on the histogram of R; and R., restricted
to pixels within a narrow band around the skeletons (e.g., r = 10). The salience points
of the skeletons are those with influence area greater than an ares threshold obtained by
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setting § = 70 in Equation 4.5. In order to locate the salience points along the contour
from the salience points of the skeletons, the algorithm uses the label map L as follows.
Note that, Equation 4.3 essentially assigns to each pixel inside and outside the contour
the maximum length of the shortest contour segment between two roots equidistant to the
pixel. Figure 4.7 illustrates this situation for a salience point ¢ in the skeleton, which is
related to a salience point ¢ in the contour. The difference value D{c) is the length of the
segment dab. Suppose the root pixel of ¢ is b, the point & can be reached from the point
¢ by skipping dab/2 pixels in the anti-clockwise orientation along the contour starting
from b. Similarly, the point a can bé found from ¢ through d following the clockwise
crientation, when d is the root pixel of ¢. The method needs only to determine which is
the root pixel, either b or d. If the contour pixels are labeled in clockwise orientation, the
roof pixel of ¢ will be b whenever d{p, g} > (N — é(p,¢)} in Equation 4.3 for L{g) = L(d)
and L{p) = L{b). Otherwise, the root pixe!l of ¢ will be d for L{g) = L(b) and L{p) = L{d).
The same rule is applied for the external skeleton.

(&) (v) (0

Figura 4.6: (a) Saliences of the contour of a leaf and (b-¢) saliences of its internal and
external skeletons.

Figura 4.7: Relation between skeleton and contour saliences.
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The location and the influence area of the salience points along the contour represent
important local and global information for shape analysis. The influence areas (salience
values) are obtained from the histogram of L restricted to a narrow band around the
contour {e.g., 7 = 10). They are signed negative for concave points and positive for convex
points, An arbitrary peint of the contour is taken as reference point and the algorithm
computes the relative position of each salience point with respect o the reference point
along the contour. Finsally, a contour saliences descripior is defined as two vectors of
the same size: one with the salience values and the other with the relative position of
the salience points zlong the contour. Note that the dimension of these vectors may be
different for different contours as well ag the reference points. A special algorithm has
been designed for matching this descriptor between two contours taking into account these
differences. This algorithmm is described in Section 4.5.3.

Figure 4.8 illustrates the contour saliences descriptor for a polygon. The contour of the
polygon, its reference point {A), the internal and external skeletons, and the respective
salience poinis are indicated in Figure 4.8a. Figure 4.8b indicates the salience values of
the vertices of the polygon by their relative position along the contour.

G.2

A DER H '

A 5 . D ost + B DF 1K
- ﬁ’\
4

o1t
0.05 |
0 -
0.05 |
0
! .15 ¢
3G 02 F

PR e .25 ¢ ¢

Sl 0.3

0 02 04 06 08 1
i H Contowr point

(8) (b)

Figura 4.8: {a) Contour and skeletons of a polygon, where salience points are indicated
by dots. (b) The salience values of the vertices of the polygon by their relative position
along the contour.
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4.5 Ewvaluation

For classification purposes, a descriptor is considered more effective than another one
when it increases the number of correctly classified objects. These objects are organized
into classes according to some semantic criterion. A “good” shape descriptor should
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represent different classes of objects by compact clusters of points separated from each
other in the corresponding feature space. These aspects ask for two concepts: compaci-
ability and seporebility. The compact-ability of a descriptor indicates its invariance to
the object characteristics that belong to 2 same class, while the separability indicates
its discriminatory ability between objects that belong to distinct classes. They evaluate
the “goodness” of a description independent of the classification method. Moreover, the
separability determines the effectiveness of the descriptor independent of the compact-
ability. However, the compact-ability gives an idea of how the separability may be affected
if the number of classes increases.

The shape descriptors presented in this chapter are evaluated with respect to compact-
ability and separability in the context of a specific application. This application aims at
designing and implementing an architecture for integrating image and spatial data for
biodiversity information management. This architecture has been specified in & generic
way, but its implementation is being carried throughout for the specific case of fish species.

(Ons thousand and one hundred fish contours were obtained from the database available
at [138] for the experiments. Figure 4.9 shows some examples of fish contours and their
respective skeletons together with the respective salience points.
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Figura 4.9: Fish images used for descriptor evaluation. The concave points were defer-
mined through the salience points of the external skeleton, not shown in the figure.

Since there is no semantic definition of classes for the fish contours in this database,
each class is defined as consisting of 10 different manifestations of each contour by rotation
and scaling. Then, the problem consists of 1,100 classes with 10 shapes each, totalizing
11,000 contours. In this case, compact-ability becomes the invariance to possible rotation
and scaling of a given shape, and separability becomes the discriminatory ability of a
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descriptor among the 1,100 classes of the database.
A precise definition of compact-ability and separability, the matching algorithm for
contour saliences, and the experiments are presented in the next sections.

4.5.1 Compact-ability

Let T be a set {database) of x shapes organized in classes. The compact-ability ¢5(C) of
a descriptor U for a given class ' in T is defined as:

EW,jeC’ &D(i1 3}
| maxvi jec{Op(3, )}

where [C] is the number of shapes in the class C, Ap(i,§) = Distance(D;, D;) and
I, is the value of D for shape 4. Note that this measure is normalized with respect to the
maximum disbance between a pair of shapes, considering all shapes in the class C.

The compact-ability of & given descriptor is the average of the normalized compact-
abilities of this descriptor over all classes in £, e

op = EVCEE op (0) ; {4‘7)
=
where |Z| is the number of classes in the set Z.

¢p(C)=1—

(4.6)

4.5.2 Separability

Let ¥ be a set (database) of x shapes organized in classes. The separability ¥5(C)
of a descriptor D for a given class C is defined as follows. An arbitrary shape 7o is
taken as reference for the class C and the distances Ap(re,i) = 5}_.32,;(,,{,25;,&}.; where M =
maXvienvro100(re, 1)}, is computed for all shapes 7 in Z.

The distance range is quantized in a certain number of values from z to 1.0 with
intervals of dz (e.g., z = 0.02 and dz = 0.02). Let n,,(z) be the number of shapes, whose
distance from the reference shape is less than or equal to = (A(re,7) £ z) and do not
belong to the class C {i ¢ C). For each distance value from z to 1.0, the separability
¥p{C) of a descriptor D with respect to class C is defined as:

¥p(C) =1 T2, (48)

These separability values define a mulitiscale curve of separability for the class C along z.
The separability of a descriptor D is defined as the average of the multiscale separability
over all classes, i.e.:



4.5. Evaluation ‘ | 86

Tp = E\:’Cel}g‘rfﬁ{(j} {4,9}

4.5.3 Matching Algorithm for Contour Saliences

YWhenever two contours of 2 same object appear in different positions, they should be rep-
resented by the same salience points along the contour. Therefore the pairwise comparison
between objects using contour saliences requires matching between contours.

The contour saliences descriptor considered in the current work preserves the sallence
values of the points along the contour and their relative position regarding to a reference -
point. These characteristics encode a lot of information about the shape. The reference
point is used only for correction of the relative positions after the matching. The matching
algorithm proposed in this chapter is based on the matching algorithm proposed to match
Curvature Scale Space (USS) images presented in [1, 109].

- Let Sa4 = {{ua1,841), .-, (%an, 84.)} and Sp = {{up1, 881}, (Upm, 55m)} be two
salience descriptors of contours 4 and B, where {4y, $4;) stands for the i*" salience value
S4; at the position ug; € [0,1] along A.

1. Create Sy = {(uly1, 5%1), - -, (Uap, 540} } and Sp = {{tlpy, 551); -+ (Upem, SBm)} DY
sorting 54 and Sp according to the decreasing order of salience values.

2. Create a list L containing a pair of matching candidates points from 5% and Sj.
A pair ((uly;, 8%:), (45, 85;)) belongs to the list L if |8y, — spy| < 0.25),. A pair
{((ups» 85 )s (Wass 874;)) Delongs to the list L if |sh, — 57| < 0.26%;.

3. For each pair of matching candidates in the form Py = ({uly, 8%y}, (Wp;, 85;)) in L,
find the shilt parameter o 88 o = uly; — ujp;. Shift 54 salience points by a, yielding
f:i = {(&215 Sa1)s (?—ﬁlﬁzv 3'12 3o (ui’im Sifin)}'
4. The distance d between 5% and Sp is given as:

min{n,m}

d= > d,

k=1

where

g, = { V(8 —use) + (e = s56)®, i e —umel < 02
8% + 5Bk otherwise.

Finally, if n % m, it is added to d the height s of the not matched points.

5. Repeat the steps 3 and 4 by considering matching candidate pair in the form Fj; =
({4, 555), (W 83)) i L.
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8. Select the lowest distance d as the distance between 54 and 5p.

4.5.4 Experiments

Clearly, the multiscale fractal dimension is not scale invariant. In order to reduce this
problem the contours have been first normalized according to their diameter. Even though
the area thresholding method can be applied o locate the salience points of an external
skeleton, These points may not correspond to relevant concave salience points along the
contour. The reason is that the external skeleton may present spuriocus branches due to
rotation and scaling of the contour, and the salience points of those branches should not
be considersd. In fact, they can be climinated for distinct contours by varying the area
threshold in Equation 4.5 (see Figure 4.9). However, a fixed area threshold (e 6 = 70
and 7 = 10 in Equation 4.5) may affect the performance of the contour saliences deseriptor
with the concave points are considered. Therefore, the experiments used only the convex
salience points along the contour.

Table 4.1 shows the set of implemented shape descriptors. The proposed descripiors
(D2 and D) are compared with the single fractal dimension (D1}, two classical descrip-
tors (Fourier descriptors (D4 ) and moment invariants (D5)}) and two recently published
shape descriptors {Curvature Scale Space (D6) and Beam Angle Statistics {D7}}. Many
versions of these methods have been presented, but this work considers their conventional
implementations.

Descriptor Id Descriptor Name
D1 Fractal Dimension
D2 Multiscale Fractal Dimension
D3 Contour Saliences
D4 Fourier Descriptors
D5 Moment Invariants
D6 Curvature Scale Space {CS5]
D7 Beam Angle Statistics {BAR)

Tabela 4.1: List of evaluated descriptors.

Fourier Descriptors: The Fourier descriptors of a contour consist of a feature vec-
tor with the 126 most significant coefficients of its Fourier Transform using the method
described in [79, 106]. The Euclidean distance was used to measure the similarity between
two Fourier-descriptors vectors.

Moment Invariants: For Moment Invariants, each object was represented by a 14-
dimensional feature vector, including two sets of normalized Moment Invariants [87, 84],
one from the object contour and another from its solid sithouette. Again, the Euclidean
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distance was used to measure the similarity between different shapes represented by their
Moment Invariants.

Curvature Scale Space Descriptor {C88): The CSS descriptor is a shape descrip-
tor, adopted in MPEG-7 standard [18], which represents a multiscale organization of the
curvature zero-crossing points of a planar curve. The extraction algorithm of the CS5
descriptor is described in {1,109]. A special matching algorithm is necessary to compare
two CSS descriptors (e.g., the algorithm presented in Section 4.5.3). The experiments
used a C version of the Matlab prototype presented in [108].

Beam Angle Statistics (BAS): The BAS [6,7] is a novel shape descriptor which
has been compared with several others [14,30,91,96,99,108]. In [7], it is shown that
BAS functions with 40 and 60 samples outperform all of them. The experiments of the
present chapter used the BAS descriptor with 60 samples. Basically, the BAS deseriptor
is based on the beams originated from & contour pixel. A beam is defined as the sef of lines
connecting a contour pixel to the rest of the pixels along the contour. At each comtour
pixel, the angle between a pair of lines is calculated, and then the shape descriptor is
defined by using the third-order statistics of all the beam angles in a set of neighborhood
systems. The BAS algorithm is presented in [6,7]. The similarity between two BAS
morment functions is measured by an optimal correspondent subseguence (OCS} elgorithm
as shown in [7].

4.5.5 Experimental Results

Initially, the multiscale fractal dimension of a contour (D2} was compared with its single
fractal dimension (DI). Figure 4.10 shows that the multiscale version of the fractal
dimension descriptor presents the best separability curve.

Figure 4.11 shows the separability curves of the proposed descriptors (D2 and D3},
against the Fourier descriptors (D4 ), the moment invariants (D5}, the CSS (D6} and the
BAS {D7). Observe that the Contour Saliences (D3), CS88 (D§) and BAS (D7) present
equivalent performance for search radii less than 18% of their maximum distance. From
this point on, the BAS’s separability curve {D7) decreases quickly, being worse than
the separability of the Multiscale Fractal Dimension {D2) and of the Fourier descriptors
{D4) for search radii above 25%. This behavior indicates that the BAS descriptor is
neither robust nor effective for search radii greater than 25%. The Multiscale Fractal
Dimension (D2) has a better separability curve than Fourier descriptors (D4), moment
invariants (D5} and BAS (D7) for search radii between 25% and 40%. Its performance,
however, decreases, being lower than Fourier descriptors (D4 ) for search radii greater than
40%. The most relevant result is that the Contour Saliences descriptor (I3} has the best
separability curve considering all search radii. Although its performance is equivalent to
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Figura 4.10: Multiscale separability diagrams for the shape descriptors based on fractal

dimension.

Descriptor 1d | Compact-ability |
D1 0.93
D2 0.97
D3 0.70
D4 0.77
D5 .97
D8 0.73
D7 0.95

Tabela 4.2: Compact-ability values of the evaluated descriptors.

the famous CSS descriptor {J6) for search radii less than 30%, it is more robust and more
effective for higher search radii. ‘

Table 4.2 presents the compact-ability values of the evaluated shape descriptors. The
higher values were found for single fractal dimension {D1), multiscale fractal dimension
(D2), moment invariants {D5), and BAS (D7), while the contour saliences (D3) presented

the lowest value.

Fortunately, the compact-ability 0.70 of D& can not be considered

sufficiently low to interfere in its separability, even considering a database with 1,100
classes. According to these experiments, D3 is more effective than the others.
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Pigura 4.11: Comparison of the proposed descriptors with the Fourier descriptors, invari-
ant moments, CS8, and BAS.

4.6 Conclusion

This chapter has presented two effective shape descriptors, multiscale fractal dimension
and contour saliences, using the framework of the IFT. The presented method to compute
multiscale fractal dimension is more efficient [65] and robust than the one published in [36],
since the undesirable oscillations commonly found in Fourier-based approaches have been
eliminated here by the use of polynomial regression. The location of salience points along
a contour was computed in a direct way using the IFT framework to exploit the relation
between the contour and its skeletons [97]. This method is more robust and efficient
than the approach presented in [36]. Moreover, the chapter redefines the contour salience
descriptor to include point location and salience value along the contour and a special
distance metric.

The multiscale fractal dimension and the contour saliences were also extensively eval-
uated for the first time, using a database with 1,100 classes and 11,000 contours. Their
“goodness” (compact-ability and separability) have been showed by using as references
the single fractal dimension, two classical (Fourier descriptors [79, 154] and moment invari-
ants [57, 84]) and two recently proposed shape descriptors (Curvature Scale Space [1, 109]
and Beam Angle Statistics [6,7]). The underlying ideas of compact-ability and separabil-
ity may not be totally new concepts, however this chapter has presented an original way
to compute them, especially the multiscale separability.

The experiments showed that the contour saliences descriptor was the most effective
{with the best separability curve}. This is certainly a breakthrough result considering
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that the experiments have talen into account recent descriptors and & database with
1,100 classes. The Multiscale Fractal Dimension is competitive with BAS and Fourier
Descriptors in terms of separability and compact-ability, but it is less effective than the
58S and the Contour Saliences. This may indicate that the normalization procedurs
was not sffective to make the Multiscale Fractal Dimension totally scale independent.
In {7}, the BAS descriptor was shown to be more effective than CSS for the MPEG-7 Core
Experiments shape-1. The experiments with separability showed the opposite result. Note
that one cannot say that a descriptor is better than another without faking into account
several application domains.

Current work concerns to solve the scale-dependency problem of the multiscale fractal
dimension and to incorporate concave points in the composition of the contour saliences
descriptor. In view of that, we are investigating a special distance metric for the multiscale
fractal dimension and an automatic ares thresholding method to avold salience points
of the spurious branches of the externsal skeleton. We are also interested in velidating
the proposed descriptors for other application domains. In special, we are currently
considering applications in content-based image retrieval.
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Contour Salience Descriptors for

etrieval and

ective Image

nalysis

5.1 Introduction

Recent technological improvements in image acquisition and storage have supported the
dissernination of large databases, where the design of information retrieval systems based
on image properties becomes a challenge [139]. In these Content-Based Image Retrieval
(CBIR) systems, image properties are usually represented by shape, color, and texture
of objects/regions within the image. A CBIR system essentially consists of an image
database, a descripior, and a data structure for image indexation. The descriptor is a
pair, feature vector and distance meiric, used for image indexation by similarity. The
feature vector subsumes the image properties and the distance function measures the
dissimilarity between two images with respect to their properties. Each image can be
interpreted as a “point” in the underlying metric space, where similar images form groups
of points. For given user-defined specification or pattern (e.g., shape sketch, guery image),
the CBIR system aims at retrieving groups of similar images which are relevant to the
query (effectiveness) as fast as possible (efficiency). Clearly, the efficiency of the system
depends on the indexing structure {e.g., & Metric Access Method [31,151]) and on the
complexity of the distance function, while its effectiveness is solely related to the ability
of the descriptor in representing distinct groups of relevant images as far as possible in the
metric space. That is, different descriptors define different CBIR systems with distinet
degrees of effectiveness, where the goal of research is to find the descriptor with maximum
effectiveness for 2 given application. The descriptors are also important in image analysis,
where the groups of relevant images form classes or patterns for recognition [56]. The
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present chapter is mainly concerned with shape descriptors and their effectiveness for
image retrieval and analysis.

Costa et al [36] proposed the use of shape saliences for object representation. The
saliences of & shape are defined as the maximum influence areas of its higher curvature
points, considering & narrow band in both sides of the curve and the Voronoi regions of
its points. A contour point, for example, is considered convex when its influence area
is greater outside than inside the contour, and concave otherwise. The narrow band is
used to reduce as much as possible cross-influence of opposite parts of the curve, which
come close to each other. Torres ef al [42] presented 2 more efficient way to compute
shape saliences using the image foresting transform [67] and a contour salience descriptor
for image retrieval [50] and analysis [44]. In both works, the contour salience descriptor
was compared with several other shape descriptors, including the popular curvature scale
space [1,100] and the recently proposed beam engle statistics [6,7]. However, the contour
salience descriptor never considered concave salience points, because its effectivensss was
very sensitive to the precise location of these points. This work solves the problem,
incorporating concave points to the contour salience descriptor. In addition, it proposes
another shape descriptor based on the salience values of contour segments.

The methods use the image foresting transform to compute the salience values of
contour pixels and to locate salience points along the contour by exploiting the relation
between a contour and its internal and external skeletons [97]. The contour salience
descriptor consists of the salience values of salient pixels and their location along the
contour, and on & heuristic matching algorithm as distance function. The contour is also
divided into a fixed number of segments and the influence areas of their pixels inside
and ocutside the contour are used to compute segment saliences. The segment salience
descriptor consists of the salience values of contour segments and an optimal matching
algorithm as distance function.

The chapter describes the computation of shape saliences using the image foresting
transform in Section 5.2. Section 5.3 provides a detailed description of the algorithm to
locate salient contour pixels via multiscale skeletonization. The new contour and segment
salience descriptors are presented in Section 5.4 and compared with the convex contour
saliences, curvature scale space, and beam angle statistics in Section 5.5. Section 5.6
states the conclusion and discusses the current research on CBIR systems.

5.2 Shape Saliences

The algorithm proposed by Costa et al. [36] to determine shape saliences is based on the
concept of Fract Dilation with Label Propagation (EDLP). The BDLP of a given labeled
seed set S assigns to each image pixel ¢ a value C(t) and a label L{¢), which are the
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minimum Huclidean distance between ¢ and & (Euclidean distance transform} and the
label of its closest pixel in 5 {discrete Voronoi regions), respectively.

The EDLP algorithm can take contour pixels as seeds and determine the influence areas
of each seed as the areas of its discrete Voronoi regions inside and outgide the contour.
The influence areas of higher curvature poinis, namely salience poinis, are expected o be
greater than the influence areas of other contour pixels. Moreover, the influence area of
2 convex point (points A, B, D, and E in Figure 5.1} is greater outside than inside the
contour, and the other way around is true for a concave point (point C in Figure 5.1).
The influence area of each salience point relates o the aperture angle 4, illustrated in
Figure 5.1, by the formula:

g xr?
2

where 7 is a dilation radius. Costa et al [36] proposed to use as safience value of 2
contour point the maximum influence area between the areas computed outside and inside
the contour for a low value of r {e.g., 10}, in order to avoid cross-influence of opposite
parts of the contour which come close to each other. They also suggested to locate the
salience points along the contour by thresholding their salience values (i.e. Area > 23‘5?3;
for some value of §).

Areg = (5.1)

External [nflusnce Ares
BR Internsl Influence Ares

Figura 5.1: Internal and external influence areas of convex (A, B, D, and E} and concave
(C) points.

5.2.1 Shape Saliences by Image Foresting Transform

Costa et al.’s algorithm [36] can be more efficiently implemented (in time proportional to
the number of pixels) by using the Image Foresting Transform (IFT) [42]— a graph-based
approach to the design of image processing operators based on connectivity [64, 65,67,
101].

The IFT reduces image partition problems based on a given seed set to the compu-
tation of a minimume-cost path forest in a directed graph, whose nodes are the pixels
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and whose arcs are defined by an adjacency relation between pixels. The cost of a path
in this graph is determined by an application-dependent path-cost funciion, which usu-
ally depends on local image properties along the path — such as color, gradient, and
pixel position. For suitable path-cost functions, the IFT assigns to each image pixel a
minimum-cost path from the seed set, such that the union of those optimum paths form
an oriented forest spanning the whole image. The nodes of each rooted tree in the forest
are composed by pixels that are “more closely connected” to its root pixel than to any
other seed, in some appropriate sense. The IFT assigns to each pixel three attributes: its
predecessor in the optimum path (predecessor map P}, the cost of that path {cost map
€}, and the corresponding root (root map R) or some label associated with it (label map
L).

For a given set 5 of seed pixels, the IFT can provide the simultanecus computation of
the Euclidean distance transform in the cost map ¢ and of the discrete Voronol regions
in the root map R [67]. This operator asks for an Euclidean adjacency relation A and a
path-cost function f.,. defined for any path © =< p1,Pa, ..., P» > in the graph as:

g € A(p) == (2, — 2, )" + (Yo~ w)* < 7%, (5.2)
_ (Tp, — Tpy >+ (ypn - ym)za ifp €85,
feuel) = { 400, otherwise, (53)

where g is the adjacency radius and (z,,, yp,) are the (z,y) coordinates of a pixel p; in
the image. Note that, the main idea is to find for every image pixel p, & path P*(p,) from
a seed pixel p; € S, such that f...(P*(p,)) is minimum. The exact Euclidean distance
transform will depend on the appropriate choice of p, as demonstrated in [67]. However,
for most practical situations involving 8-connected curves, such as contours and skeletons,
o= +/2 is enough [65]. Algorithm 1 below presents the IFT procedures for feue.

Algorithm 1:

Input: An image J, a set 5 of seed pixels in 7, and an Euclidean adjacency relation A;
Qutput: An optimum-path forest P, and the corresponding cost map C and root map £.
Auxiliary Data structures: A priority gueue {J.

1. For every pixel p of the image 1, set C{p) — +oo;
2. For every p € S, set P(p) « nil, R(p) « p, C{p} « 0, and insert p in &;
3. While @ is not empty, do

3.1. Remove from ) a pixel p = (2,,y,) such that O(p) is minimum;
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3.2. For each pixel g = (z,,y,) such that g € Alp) and C{g) > Clp), do
3.2.1. 8Bet O — (35 — map)® + (U — Vaw)®, where R(p) = (2ay, ¥re)) is the
roob pixel of p;
322 ¥ < g}, then
3.2.2.1. If Clg) # +o0, then remove ¢ from .
3.2.2.2. Set Plg) « p, Clg) « ', Rlg) «— Rlp), and insert ¢ in ¢.

Note that, the IFT algorithm is essentially Dijkstra’s shortest-path algorithm [55],
slightly modified to multiple sources and general path-cost functions. Its correctness for
weaker conditions that are applied to only optimum paths in the graph is presented in [67].

A natural exfension of this algorithm to compute contour saliences consists of obtaining
one histogram of the resulting root map for each side of the contour, restricted to a small
neighborhood of the curve in order to eliminste the cross-influence of its opposite paris.
Each bin of the histograms indicates the area of influence of the respective root inside {or
outside) the contour. The root is classified as convez, when the external area is greater
than the internal area, and otherwise as concove.

As in the original approach [36], a point of the curve is classified as salient by thresh-
olding its maximum influence area [42]. This approach, however, may miss important
salience points when opposite parts of the contour come too close to each other, even for
a small radius v in Equstion 5.1. It has otherwise been particularly effective for skeletons
and for simple contours, such as polygons, but i fails in finding the salience points of
more complex and intricate curves. Torres et al. [44, 50] have proposed & partial solution
for this problem, which is described next.

5.3 The Use of Skeletons for Contour Saliences

First, rultiscale skeletons [65] are computed for the contour {Section 5.3.1), and one
internal skeleton and one external skeleton are chosen by thresholding the multiscale
skeletons. Second, the internal and external skeleton saliences are found similarly to as
described in the previous section {Section 5.3.2). The location of the contour saliences are
determined by relating the salience points of the internal skeleton to convex contour points
and the salience points of the external skeleton to concave contour points {Section 5.3.3).

5.2.1 Multiscale Skeletonization

Given a contour with N pixels, its internal skeleton is defined as the geometric location
of the centers of maximal disks contained in the contour [92]. A similar definition is valid
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for the external skeleton.

Algorithm 1 applied to the contour creates a root map K. Multiscale skeletons [65]
can be computed from R if each contour pixel p (root) is assigned o a subsequent label
value A{p), varying from 1 to &V, while circumscribing the contour (Figure 5.22). A label
map L can be created by computing L{R(p)}) to each image pixel p (Figure 5.2b}. A more
efficient way, however, is to propagate the labels of the contour pixels during Algorithm
1. In this case, the labeling function A is used in step {2}, when the contour pixels are
inserted in ¢, and the label map L is created similarly and simultaneously to the root
map K. A difference image D results from the label map L by computing the following
for each pixel p inside and outside the contour {Figure 5.2¢):

D(p)= max {min{é(p,q), N - 5(p,g)}}, (54)

Yoh Aglp)
where 6{p,q) = L{g} — L(p) and A4{p) is the set of pixels g that are 4-neighbors of 2.
The difference image represents the multiscale internal and external skeletons by label
propagation [38,65]. One-pixel wide and connected skeletons can be obtained by thresh-
olding the difference image at subsequent integer velues (Figures 5.2d-f). The higher
the threshold value, the more simplified the skeletons become, with smaller details being
progressively removed as the threshold increases.

IN
//~ N Xe‘i’%‘\
(a) (b) (c) (d) (e) {f)

Figura 5.2: Multiscale skeletonization by label propagation inside a contour. (a) Labeled
contour, {b) label map, (c) difference image, and (d-f} internal skeletons at three different
scales.

5.3.2 Skeleton Saliences

For small scales {low thresholds ~e.g., 5% of the number N of contour pixels), each salience
point of the internal skeleton corresponds to one convex point of the contour and each
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salience point of the external skeleton corresponds to one concave point of the contour {see
Figure 5.2}, The salience points of the skeletons are determined similarly to as described
in Section 5.2.1 by taking the skeleton points as seed pixels and executing Algorithm 1 for
each skeleton separately. For a small dilation radius {r = 10}, the histogram of the root
map gives the influence areas of each skeleton point. The salience points of the skeletons
are those with influence area greater than the area threshold obtained by setting § = 70
in Equation 5.1,

E; ‘ ; i )
A h . S N
i % - r . P
% 0 i .
“:;a H i i ® . .
l". Ixz' ﬁ"‘\‘.&\_s -
S - -, -
&7 T e ~a
(a) (b) {c)

Figura 5.3: {a) Salience points of the contour of a fish and (b-¢) salience points of its
internal and external skeletons.

5.3.3 Contour Saliences Via Skeletons

The relation between the contour and its internal and external skeletons [97] is directly
obtained by applying Algorithm 1 to the contour 44, 50]. Equation 5.4 assigns to each
pixel inside and outside the contour the maximum length of the shortest contour segment
between two roots equidistant to that pixel according to the cost map. Figure S4a
illustrates this situation for a salience point ¢ of the skeleton, which is related to a salience
point a of the contour. The difference value D{e) is the length of the segment dab. Suppose
b is the root pixel of ¢, point a can be reached from point ¢ by skipping dab/2 pixels in
the anti-clockwise orientation along the contour, starting from &, Similarly, point a could
be found from ¢ through d following the clockwise orientation, when d is the root pixel
of ¢. The method only needs to determine which is the root pixel, either & or d. If the
contour pixels are labeled in clockwise orientation, the root pixel of ¢ will be & whenever
8(p,q) > N — 8{p,q) in Equation 5.4 for L{g) = L{d) and L{p} = L(b). Otherwise, the
root pixel of ¢ will be d for L{g) = L{b) and L{p) = L{d). The same rule is applied for
the external skeleton. Figures 5.4b-c illustrate the same concept applied to a real shape.
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Figura 5.4: (a) Relation between skeleton and contour saliences. (b) The same concept
applied to a contour. {¢) A zoomed region of the figure in (b).

The correct orientation {clockwise or anti-clockwise) can be encoded in the difference
image D by signaling it. Equation 5.4 must be substituted by the following algorithm
applied to all pixels p in image I

Algorithm 2:
Input: A root label map L.
Output: A signed difference image D.

1. For every pixel p of the image D, do

1.1. Set dgax ¢ —oc.
1.2. For each pixel g € Aulp), do
1.2.1. Set A « min{é(p,¢), N — 8(p,q)} and 5 « 1.
122. & =N —5(p,q), then
1.2.2.1. Set s « —1.
1.2.3. If A > dpox, then
1.2.3.1. Set dpax « A and sign «— 3.
1.3. Set D(p) e sign X pax-

The pixels of I with absolute values greater than 5% of N are chosen to represent
the internal and external skeletons. The salience points of the skeletons can be obtained
by the area thresholding method described in Section 5.2. Finally, the signaled values of
the skeleton salience points in D and their roots on the contour are used to locate the
corresponding contour salience points, as illustrated in Figure 5.4.
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Although the method works fine for convex contour points, it adds non-relevant con-
cave points, Decause the external skeleton may present spurious branches due to con-
tour rotation and scaling. Unfortunately, these non-relevant concave saliences reduce the
performance of the contour saliencs descriptor [44,50]. Also, if the threshold of 5% is
increased to elitninate the spurious branches of the external skeleton, the method misses
relevant concave points of the contour. In this chapter, the spuricus branches are elimi-
nated by an alternative skeleton labeling process and the problem is solved as follows.

The branches of the external skeleton are labeled with both, the labsl of their related
root pixel on the contour and the length of the branch. The length-labeled skeleton image
is thresholded and the resulting binary image is multiplied by the root-labeled skeleton
image. These last steps remove conceve contour saliences related to small branches and
preserve the relevant concave saliences.

5.4 Contour Salience Descriptors

Although the salience values along the contour can not be used to locate salience points
in the case of intricate and complex contours, they encode important local and global
information about the contour which can be exploited to create effective shape descriptors.

An example is the descriptor based on the convex contour saliences presented in 44,
50]. Since, the problem of estimating concave points is solved now, this chapter proposes
the same contour salience descriptor including the concave points {Section 5.4.1) and a
new shape salience descriptor for contour segments {Section 5.4.2).

5.4.1 Contour Saliences (CS)

After determining the salience points along the contour (Section 5.3}, concave peints
have their salience values signed negative and the salience values of convex poinis remain
positive. One arbitrary salience point on the contour is taken as reference and the method
computes the relative position of each salience point with respect to the reference point.
Thus, the signed salience values and the relative position of the points form two feature
vectors of the same size, which are used in the contour salience descriptor. Figure 5.3
illustrates these feature vectors for a polygon. The contour of the polygon, its reference
point, the internal and external skeletons, and the respective salience points are indicated
in Figure 5.5a. The plot shown in Figure 5.5b indicates the salience values versus the
relative position of the points along the contour.

Whenever two contours of the same object appear in different positions (e.g., rotations
and scales}, they should be represented by the same salience points. However, the point
taken as reference may not be the same in both. Also, the feature vectors of distinct ob-
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Figura 5.5: {a} Countour and skeletons of a polygon, where salience points are indicated
by dots. {b) The salience values of the polygon in {a).

jects may have different sizes. Therefore, the contour salience descriptor uses a heuristic
matching algorithm between contours which registers their feature vectors using the refer-
ence points and computes their similarity taking intc account their difference in size. This
matching algorithm is based on the algorithm proposed by Abbasi and Mokhtarian [1,109]
to match Curvature Scale Space (CSS) images, and it is described in [44, 50].

5.4.2 Segment Saliences (8S)

The segment salience descriptor is a variation of the contour salience descriptor which
incorporates two improvements: the salience values of contour segments, in the place
of salience values of isclated points, and another matching algorithm that replaces the
heuristic matching by an optimum approach.

The salience values along the contour are computed as described in Section 5.2.1 and
the contour is divided into a predefined number s of segments of the same size. The
internal and external influence areas of each segment are computed by summing up the
influence areas of its corresponding pixels. A contour segment is considered convez, when
its accumulated external area is greater than its accumulated internal area, and it is
concove otherwise. The difference between them is defined as the salience value of the
contour segment, which is positive when it is convex, and negative when it is concave.
These signed salience values form the feature vector of the segment salience descriptor.
Algorithm 3 below presents the procedures to compute this feature vector for a given
contour.

Algorithm 3:
Input: A contour ( in an image [; number s of segments.
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Cutput: A feature vector S5 encoding the contour segment saliences.

1. Apply Algorithm 1 using the pixels in { a5 seeds and create 5 label map L as
described in Bection 5.3.1.

2. For each T € {, compute its internal {Hpm.(¢)} and external {H,»(£)} influence areas.

3. Split the contour ¢ into aset § = {Seq, Segq, ..., Segs + with s segments of the same
size.

4. For each segment in S, compute its internal (A;(Seg;)) and external {A..(Seq))
influence areas as follows:

4.1. Ag,;g{gggé} = Ztéé‘eg,: ng{ﬁ)
4.2 Aexz(segéj = Et@ﬁegi Hexi(i}

. Compute the feature vector S5 of size s as:

L

5.1, SS(i) = Aue(Segi} — Ame{Seg;), for 1 <4< s

Figure 5.6 illustrates this feature vector for a contour, which is divided into 10 segments
(Figure 5.6a}. The curve shown in Figure 5.6b indicates the salience value of each segment
along the confour.

The fixed number of segments per contour allows the use of the optimal correspondent
subsequence {(OCS; algorithm [136] to match feature vectors between contours. This
matching algorithm is the same used in the Beam Angle Statistics (BAS) descriptor {7}
Feature vectors of the same size also simplify the storage and access methods of the image
database.

5.5 Evaluation

The evaluation process consists of defining & shape database, an effectiveness measure
and a set of shape descriptors for comparison.

5.5.1 Shape Database

The shape database is a set with one thousand and one hundred fish contours obtained
from [136]. Since there is no semantic definition of relevant images {classes of contours) for
this database, each group of relevant images is defined as one fish contour and 9 different
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Figura 5.6: {a) A comtour with 10 segments. {b) The salience values of the segments.

manifestations of rotation and scaling applied to it. Therefore, the problem consists of
1100 classes with 10 shapes each.

5.5.2 Effectiveness Measure

The experiments adopted the guery-by-ezample (QBE) [8] paradigm. In the CBIR con-
text, an image is given as an input and two types of searches are possible: similarity range
and similarity rank. The search by similarity range returns the images of the database
whose distance from the guery image is less than a given search radius. The search by
sirnilarity rank returns a specified number of images in the increasing crder of distance
with respect to the query image. In both cases, the effectiveness of the system is related
to the relevance of the retrieved images. It is expected that the relevant images return
before non-relevant images in the second case and the non-relevant images do not return
in the first case. In some applications, the relevance of the retrieved images depends on
the user’s opinion. However, there are several other applications where predefined classes
determine groups of relevant images independent of user. Any query image in a given
class should return the images of the database belonging to this class first. In such a case,
it makes sense to compare descriptors based on objective measures.

The experiments of this chapter evaluate the ability of shape descriptors to distinguish
between different fish contours and to identify a fish contour independent of possible ro-
tation and scaling transformations. Note that the effectiveness of the shape descriptors
apply for image retrieval and image analysis, considering the resemblance between both
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Classes Descriptor 1
class 1 | {{1.50,2.50), (1.50,2.00), (2.00,2.00), {1.05,2.00), (1.50, 1.50)F
class 2 1 {(31.00,1.00),{1.00,2.00}, (1.00,3.00}, {1 00, 4.00%, (1.00, 5.00)}

{lasses Descriptor 2

class 1 ¢ {(2.00,1.00), (2.00, 2.00}, {2.00, 3.00), {2.00, 4.00), (2.00,5.00)}
class 2 | {(1.40,1.40),(1.60,1.40}, (1.60, 1.20), (1.40,1.20), {1.50, 1.30}}
Classes Descriptor 3

class 1 | {{1.B0,2.50}, {1.50,2.00}, (1.75,2.25), (1.25, 2.00), (1.50, 1.50}}
class 2 | £(1.50,5.50}, (1.25,5.00), {1.50,5.00), (1.15,5.00), (1.50,4.50) }

Tabela 5.1: Coordinates of each image in classes 1 and 2 for the three hypothetical
descriptors.

problems. Since each shape descriptor represents a contour as a “point” in the corre-
sponding metric space, its effectiveness will be higher as more separate the clusters of
relevant contours are in the metric space; and as more compact the clusters are in the
metric space, higher will be the robustness of the shape descriptor with respect to an
increase in the number of classes. Therefore, a “good” effectiveness measure should cap-
ture the concept of separability, and perhaps the concept of compact-ability for sake of
robustness. More formally, the compact-ability of a descriptor indicates its invariance
to the object characteristics that belong to a same class, while the separability indicates
its discriminatory ability between objects that belong to distinct classes. While these
concepts are commonly used to define validity measures in cluster analysis [51, 58], they
seem 1o not have caught much attention in the literature of CRIR systems, where one of
the most used effectiveness measures is Precision x Recall [112].

A simple example can be used to illustrate that Precision x Hecall does not capture
the separability and compact-ability concepts, and therefore, it should not be used as
effectiveness measure. Consider the existence of two classes {class 1 and class 2) composed
by 5 images each and three different image descriptors {descriptor 1, descriptor 2, and
descriptor 3), whose extraction algorithms create feature vectors belonging to R? space.
Table 5.1 shows the coordinates of each image in each class for these three hypothetical
descriptors. ‘

Figures 5.7, 5.8, and 5.9 show the classes 1 and 2 in the Cartesian plane for descriptors
1, 2 and 3, respectively.

Note that, it is reasonable to expect that the descriptor 3 will be more effective than
the descriptor 2, which will be more effective than the descriptor 1. However, Figure 5.10
shows the average Precision x Recall graph for these descriptors, and even though de-
scriptor 3 presents the best Precision x Recall curve, descriptor | outperforms descriptor
2.
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Figura 5.7 Descriptor 1

On the other hand, the concepts of separability and compact-ability seem to be bet-
ter represented by the measures proposed in [44]. Figure 5.11 shows, for example, the
multiscale separability curves for the three descriptors. Note that, descriptor 3 presents
the best curve again. However, curves of descriptors 1 and 2 have the opposite behavior
when compared to the Precision X Recall graph. Now, descriptor 2 is more effective than
descriptor 1, as expected.

Due to these observations, the present chapter uses the concepts of compact-ability and
multiscale separability proposed in [44] to evaluate the shape descriptors. The Segment
Saliences (55) implementation considered in this experiment used 30 segments.

5.5.3 FEvaluated Descriptors

The proposed shape descriptors, contour saliences {CS) and segment saliences (S8}, are
compared with the following shape descriptors.

Curvature Scale Space (CS8) [1,109]:. The CSS descriptor is used in the MPEG-
7 standard and represents a multiscale organization of the curvature zero-crossing points
of 2 planar curve. In this sense, the dimension of its feature vectors varies for different
contours, thus a special matching algorithm is necessary to compare two CSS descriptors
{e.g., [44]). The implementation of the CSS descriptor is a C version of the Matlab
prototype presented in [108].

Beam Angle Statistics (BAS) [6,7]: The BAS descriptor has been compared
with several others [14, 30,91, 96,99, 109], including the CSS descriptor. In [7], it was
shown that the BAS functions with 40 and 60 samples outperform all of them. The
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Figura 5.8: Descriptor 2

experiments of the present chapter use the BAS descriptor with 60 samples. Basically,
the BAS descriptor is based on the beams originated from a contour pixel A beam is
defined as the set of lines connecting a confour pixel to the rest of the pixels along the
contour. At each contour pixel, the angle between a pair of lines is calculated, and the
shape descriptor is defined by using the third-order statistics of all the beam angles in a
set of neighborhoods. The similarity between two BAS moment functions is measured by
an optimal correspondent subsequence {OCS) algorithm, as shown in [7].

Convex Contour Saliences (CCS) {44, 50]: The CCS is the same descriptor de-
scribed in Section 5.4.1, without the concave saliences. The CCS has cutperformed Mul-
tiscale Fractal Dimension [44], Fourier Descriptors [79, 106], Moment Invariants [57, 84],
88 [1,109] and BAS [7] with respect to the multiscale separability measure [44]. Experi-
ments with Precision x Recall have also showed better results with the CCS as compared
to CS8, Fourier Descriptors, and Moment Invariants [50]. Since the fish database is the
same used in these experiments, only BAS and C88 were maintained for comparison.

Table 5.2 summarizes the set of evaluated shape descriptors.

5.5.4 Experimental Results

Figure 5.12 shows the separability curves of the evaluated descriptors. Observe that the
Contour Saliences {CS) presents a better separability curve than the Convez Contour
Saliences {CCS) for search radii less than 80% of their maximum distance. This indicates
that the US descriptor encodes more information {due to the concave points} than the
CCS. The most relevant result is certainly the best separability curve of the Segment



5.6. Conclusion 88

Deszriptor 3

glass § @

[
%
%
L3

:

BB e b et o e .
=
=]
2 D .
s
H S J
] A é .
4] 0.3 1 i3 2 2.3 3
X

Figura 5.9 Descriptor 3.

Descriptor Id Descriptor Name
55 Segment Saliences
CS Contour Saliences
CC8 Convex Contour Saliences
CSS Curvature Scale Space
BAS Beam Angle Statistics

Tabela 5.2: List of evaluated descriptors.

Saliences {S8) for almost all search radii.

Table §.3 presents the compact-ability values of the evaluated shape descriptors. The
higher values were found for Beam Angle Statistic (BAS) and 88, while CCS presented
the lowest value. According to these experiments, the S5 descriptor is more effective than
the others, since it provides the best separability, and the second most robust (due to its
compact-ability). This is certainly 2 very relevant result.

5.6 Conclusion

This chapter has presented a more robust approach to incorporate concave saliences into
the contour salience descriptor and a new shape descriptor based on salience values of
contour segments. They both make use of the image foresting transform as a general
tool for the design of image processing operators. The results indicate segment saliences
as the most effective descriptor among contour saliences, convex contour saliences [44,
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Deseriptor Id 1 Compact-ability
58 .93
[oF:] 0.73
CCs 0.70
S8 0.73
BAS 0.9

Tabela 5.3: Compact-ability values of the evaluated descriptors.

50|, curvature scale space [1,109], and beam angle statistics [6,7], using & fish database
with 11,000 images organized in 1,100 classes. They also confirm the improvement of
incorporating concave saliences into the contour salience descriptor. It is important to
notice that the segment salience descriptor does not require the location of salient points
along the contour. In this sense, it is much simpler than the contour salience descriptor,
which together with its high compact-ability make the results even more relevant.

The effectiveness in image retrieval was discussed with respect to the PrecisionxRecall
measure and the multiscale separability {44] was proposed as a more appropriate effec-
tiveness measure.

Ongoing developments consider the creation of shape descriptors, which combine the
salience features with color- and texture-based descriptors, and applications in CBIR that
use the proposed shape descriptors as effective indexing vectors.
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Capitulo 6

Visual Structures for Image
Irowsing

6.1 Introduction

Advances in data storage and image acquisition technologies have enabled the creation of
large image datasets. In order to deal with these data, it is necessary to develop appro-
priate information systems to efficiently manage these collections. The most common re-
trieval approach is to attach textual metadata to each image and use traditional database
query techniques to retrieve by keyword. An alternative are the so-called Content-Based
Image Retrieval (CBIR) systems. Basically, these systems try to retrieve images similar to
a user-defined specification or pattern (e.g., shape sketch, image example). Their goal is
to support Image retrieval based on content properties, e.g., shape, color or texture [139].
Research in CBIR systems is multidisciplinary and ranges from finding appropriate index-
ing and storage schemes for images, to cognitive problems in query specification. From
the user’s perspective, CBIR systems offer more flexibility in specifying queries than those
based on metadata. On the other hand, they present new challenges. The first is how to
interpret & query — e.g., when a user provides an image as input, what are the similarity
criteria to be used. Another problem is information overload — how to present the result
t0 the user in a meaningful way. A third issue is that of providing users with tools to
interact with the system in order to refine their query.

Typically, the result of a query is a set of images, displaved in an Image Browser.
Unfortunately, these sets are usually large, so a browsing activity must be performed.
The most common result presentation technique is based on showing a two-dimensional
grid of thumbnail {miniature) image versions [71,117]. The grid is organized according to
the similarity of each returned image with the query pattern (e.g., from left to right, from
top to bottom). It is a n x m matrix, where position {1,1} is occupied by & thumbnail

01
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of the query pattern, position (1,2} by the one most similar to it, and so on. This
helps browsing, allowing users to simply scan the grid image set as if thev were reading
a text [128]. This approach, however, displays retrieved images of different similarity
degree at the same physical distance from the image gquery: e.g., images {1,2} and (2,1}
are displayed at the same physical distance from the query pattern, but the former is more
sirnilar to it than the latter. Other display approaches try to cousider relative similarity
not only between the query pattern and sach retrieved image, but also among all retrieved
images themselves [133,143]. These initiatives have the drawback that visually similar
images which are placed next to each other can sometimes appear to merge or Oveﬁap,
making them less eve-catching than if they were separated [128].

This chapter presents a new approach to these user interaction problems. This ap-
proach is based on adopting recent findings in Information Visualization techniques to
provide users with semantically meaningful result presentations, and new kinds of inter-
sction mechanisms. Information Visualization is an important field within the domain of
Human-Computer Interface (HCI) that aims at studying the use of computer-supported,
interactive, and visnal representations of abstract data to amplify cognition [22, 28, 137].

The main contributions of this chapter are the following:

e presentation of two visualization techniques based on spiral and concentric rings for
exploring query results in an image database. These techniques provide users new
means of ranking similar images while at the same time avoid image overlap;

# description of a CBIR prototype developed which incorporates these visualization
paradigms. The visualization and interaction properties of the prototype are based
on the reference model described in [22].

The rest of this chapter is organized as follows. Section 6.2 characterizes the content-
based image retrieval process. Section 6.3 describes the proposed visualization techniques.
Section 6.4 presents implementation details. Section 6.5 discusses related work. Bec-
tion 6.8 presents conclusions and ongoing work.

6.2 Content-Based Image Retrieval Systems

CBIR is centered on the notion of image similarity — given an image database with a large
number of images, 8 user wants to retrieve the set of images which are most “similar” to
a query pattern (usually an image}. Similarity computation relies on the notion of image
descripiors. Descriptors are defined as feature vectors whose fields contain values that
encode characteristics of an image ~ e.g., color or texture properties. Similarity between
two images is computed by measuring the distance between their feature vectors, using
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specific distance functions. Usually, the degree of similarity of an image is defined as
an inverse function of the distance metric, that is, the larger the distance value, the less
similar the image is.

Usually, two kinds of gueries are supported by CBIR systems [31]. In & K-nearest
neighbor query (KNNQ), the user specifies the number k of images to be retrieved closest
to the query pattern. In a range query (K@), the user defines a search radius r and wants
to retrieve all database images whose distance to the query pattern is less than r.

Interface
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Figura 6.1: Typical image database retrieval system.

Figure 6.1 shows an overview of an image database retrieval system. The interface
allows a user to specify a query by means of a query pattern and to visualize the retrieved
similar images. The query-processing module extracts a feature vector from a query
pattern and applies & metric distance (such as the euclidean distance) to evaluate the
similarity between the query image and the database images. Next, it ranks the database
images according to their similarity and forwards the most similar ones to the interface
module. Database images are often indexed according to their feature vectors using
structures such as the M-tres [31] to speed up retrieval and distance computation.

This chapter focuses on the interface layer. It uses Information Visualization tech-
niques to enhance similarity comprehension and user interaction in a CBIR system.
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6.3 Visual Structures Proposed

Information Visualization is a very important area in HCIL It can amplify cognition in
many ways such as: increasing the memory and processing resources available to the
users; reducing the search for information, e. g. due to compacting, grouping or visually
relating information; enhancing the detection of patterns; enabling perceptual inference
operations; using perceptual attention mechanisms for the monitoring of a large number
of potential events; and encoding information in a manipulable medium [22].

Cne of the traditional approaches to present retrieved images in a CBIR system is
based on a tabular (grid) disposition. As mentioned in the introduction, this placement
affects similarity comprehension, since it displays images with different similarity degrees
at the same physical distance to the guery pattern.

A solution to overcome this ambiguity is to borrow technigues from the Information
Vigualization domain. The method proposed here is baged on: (1) placing the query
pattern at the center of the display, and (2) surrounding it with similar images, with
physical distances and sizes proportional to their respective similarity degrees. The less
similar an image is, the smaller and the farther apart from the center.

This kind of presentation relies on the fact that the user focus resides on the query
pattern and the most similar images. This so-called focus + contezt approach is used to
both center the user attention on the result and give the user a contextual notion of the
less similar images. Besides, this approach avoids image overlapping, a commoxz problem
of some CBIR systems. Two visual structures based on this method place the images
along a spiral or concentric rings.

6.3.1 Concentric Rings Presentation

A ring can be defined as a circle. In polar coordinates a circle can be expressed as r = k,
where r is the radial distance, and k is a constant. Successive rings are built by changing
the k value. Moreover, all rings have the same center and successive rings become closer as
k increases. The rings are filled from the innermost ring to the outermost one, according
to image ranking. Figure 6.2a illustrates the concentric ring visual structure implemented,
where dots represent image thumbprints.

6.3.2 Spiral Presentation

The most common planar spirals are the spiral of Archimedes, the hyperbolic spiral and
the logarithmic spiral. In order to contemplate the characteristics proposed into our
method, a spiral line should become closer to itself as it loops away. This aspect is
directly related to the images’ size variation along the structure. Since hyperbolic and
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logarithmic spirals move rapidly away from the origin, they are not appropriate to our
goal. Thus, the choice was Archimedes’s spiral, expressed in a polar equation as r = &kf¢,
where 7 i1s the radial distance, # is the polar angle, £ is 2 constant and ¢ is a constant
which determines how tightly the spiral “wraps” around itself. Figure 6.2b illustrates the
spiral adopted, considering & = 2.5 and a = —1.5. Observe that the greater # is, the
tighter the spiral line becomes, enforcing the focus on the central region.

There are two different ways to display images along a spiral line. The first associates
the image ranking to the spiral ine, in such a way that the images are disposed succes-
sively, at regular distances (Figure 6.2b). This approach, however, does not present the
real similarity degree. A second alternative maps the similarity degree to the spiral line,
that is, the image distance to the guery pattern is proportional to ifs similarity degree
(Figure 6.2¢).

6.4 Implementation

This section describes the prototype iraplemented. It is written in Builder C4+, running
on Windows. It was tested on a database of 11000 fish images and uses two shape
descriptors called Multiscale Fractal Dimension and Shape Saliences {42,43,50]. This is
part of a biodiversity information system, where users (biologists) explore a database
containing images and textual descriptions to find out details about species. Details of
this project are outside the scope of the chapter [44].

6.4.1 Formalizing the Visualization ¥Framework

Research in Information Visualization often uses the reference model of [22] as a basis to
study the cognitive enhancement provided by visual representations. This model defines a
way to analyze successive transformations from raw data to visual representations, taking
into account possible human interactions within this process through three transformation
stages: data transformation (DT), visual mapping (VM) and view transformation (VT).
The first stage considers that raw data (data in some idiosyncratic format) are initially
transformed into data tables (DT). Tables are next mapped to structures with graphical
properties — visual structures, displayed on a screen (VM). Finally, these static structures
are transformed into views, which are dynamic, interactive and information-enriched rep-
resentations (VT).

Many techniques have been proposed to deal with each transformation step and the
underlying data structures [22]. Details-on-demand is a method used within the data
transformation stage to expand a small set of objects revealing more information about
it [3,22]. Pan and zoom are commonly used together within view fransformations to
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Figura 6.2: Visual Structures. {a) Concentric rings. (b) Spiral mapping image ranking.
(¢) Spiral encoding image similarity degree. Note that image size reduction along the
structures is not shown.
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Figura 6.3: Information Visualization phases on & CBIR system.

change the viewer’s position and to focus on a specific set of data. The focus + confext
approach is also used within a view transformation stage. It simultaneously combines
overview {context) and detail information {focus), using distortion or other specific tech-
niques.

Figure 6.3 analyzes the architecture of our CBIR prototype under this reference model.
The image database represents the raw data. Image processing algorithms automatically
extract feature vectors that encode the image content. This extraction phase is the first
data transformation, and generates a data table comprised of each image and its feature
vector {T1). When a user inputs a query image (QI), a second data transformation occurs:
QI’s feature vector (FQI) is automatically extracted, and the system executes a matching
algorithm to compute the distance from the FQI to feature vectors stored in T1, thus
generating a second data table (T2). This table stores the distances from FQI to the
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Figura 6.4: Prototype screen shots. {a) 2D grid approach. (b) Concentric rings approach.

feature vector of each database image. A third data transformation occurs when the user
specifies a limit to the number of images to retrieve, leading to a third data table {T3)
that is a subset of T2. Next, the user chooses the visual structure to be used: traditional
(2D grid), spiral or concentric rings. All three visual structures take into account the
distance values stored into T3. Finally, the user can interactively manipulate the display
using details-on-demand, zoom, pan and focus + context, generating new views of the
chosen visual structure and improving user cognition.

6.4.2 A Samp}e User Session

Consider the following sample session. Initially, a user specifies a guery by providing
a query image (the query pattern). Next, the user chooses the descriptor for similarity
computation and the visual structure for displaying the guery result - 2D grid, rings or
spiral.

The 2D grid-based traditional approach just obeys the rank. When it reaches the
horizontal end of the screen, it continues the sequence of images on the next line, a
typical use of the so-called folding technique [22]. Figure €.4a shows a screen copy of
this standard visualization approach. The query image is on the left topmost part of the
screen. The result of the query, organized in a 2D grid, is on the large part on the right.
Since we use shape descriptors, the closest results are fish images whose shapes are most
similar to the query pattern’s shape. Thus, image rotation or scaling are not taken into
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consideration in similarity compusation. This is a nice property of the shape descriptors
used — see (42, 43, 50] for more details.

Figure 6.4b shows the result of the same query using the concentric rings visualization
approach. This screen shot enhances the ring structure with increasing levels of gray
to help focus user attention on the center and provide a better separation among rings
{another technique in visualization theory). The query image is at the center of the rings.
Images at rings farther from the center are less similar than those along closer rings.

(&) ®)

Figura 6.5: Prototype screen shots. Spiral placement based on (a) image ranking and (b)
similarity.

In a similar fashion, the spiral approach alsc places the query image in the center,
and fills the spiral with the retrieved images. Figure 6.5 presents the two available spiral
variants. Figure 6.5a shows a spiral in which images are placed successively, at regular
distances. Figure 6.5b, in turn, places the ranked images within the spiral considering
their similarity degree. This latter approach, however, can overlap images with similar
digtance to the guery pattern.

Users can interact with the result in many ways. Besides zoom and pan operations,
they can select a specific image as & new query, or obtain a detail-on-demand box with
a real-sized image and its filename. The user can also control the number of images
displayed {(simulating a KNN query) for all three visual representations. In the case
of spiral representation, the user can threshold the retrieved images by their degree of
similarity. This corresponds to a range query, where the search radius is controlled by the
user, '
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The user can specify a new query either by selecting an image from the retrieved
image set or by providing & new image fle name. Besides, the user can provide new
query parameters (e.g., kind of descriptor or number of retrieved images) via the textual
controls at the left pars of the screen.

6.4.3 HRelevance Feedback

Relevance feedback is a commonly accepted method to improve interactive retrieval effec-
tiveness [103]. Basically, it is composed of three steps: (a) an initial search is made by the
systemn with a user-supplied query pattern, returning a small number of images; (b) the
user then indicates which of the retrieved images are useful {relevant); (¢} finally, the sys-
tem automatically reformulates the original query bassd upon user relevance judgments.
This process can continue to iterafe until the user is satisfed.

The proposed visual structures can alsc be used to improve user interaction in the
relevance feedback process. Two kinds of interaction based on direct manipulaiion are
foreseen. First, a user can move images along the spiral line. By taking an image sway
from the spiral center, the user informs the system that this image is not relevant. The
opposite situation is also true: moving an image closer to the spiral center increases its
relevance for future queries. A similar interaction can occur on the concentric ring visual
structure. In this case, users can move an image across rings — relevance increases as the
image is moved to a position closer to the center.

8.4.4 Experimentation

Experiments conducted so far did not gather enough data to prove the superiority of
spiral or concentric rings over 2D grids. So far, our experiments have been conducted
with a limited number of users, that are not experts on research on fish. This has been a
limitation factor on interface evaluation, since we would have to consider many kinds of
user profile. Nevertheless our experiments allow the following preliminary conclusions:

e alternative (multiple) views of a result are much more useful than just the usual 2D
grid, offering users distinctive perceptions of relative distances and similarities;

s when the query for k nearest neighbor images involves large values of k, the result
clutters the screen. In this case, spiral and ring presentations help zooming into
the desired result. For small values of k& (typically when results can be seen in one
horizontal line) users see no advantage in using alternatives to 2D grid.

# users were not aware that extended visualization presentations were possible. Faced
with alternatives, they began demanding further extensions. The prototype presents
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the results ranking all images w.r.t. the query pattern. An extension would be to
allow clustering images according to the relative distance to each other. Another
request is for 3D presentation, though recent results seem to indicate that for this
kind of query 2D presentations are befter cognition-wise [35].

6.5 HRelated Work

Information Visualization is attracting considerable attention in several domains, such
as data mining, data exploration and knowledge discovery {e.g., [90, 155]). In particular,
classification in data mining is often visualized in terms of data clusters, where each class
instance is presented as a point in a 2D or 3D space. Each cluster represents a data class,
and the distances among clusters allow users to deduce the relative similarity among
clasges and their instances.

2D grid presentation can be found in several image database systems [71,117,139]. [12]
and [35] try to improve this visual structure by studying zoom properties to enhance image
browsing. Rodden et al. [128], in turn, investigates whether it benefits users to have sets
of thumbnails arranged according to their similarity, so images that are alike are placed
together. They describe experiments to examine whether similarity-based arrangements
of the candidate images help in picture selection.

Stan et al. [143] describe an exploration system for an image database, which deals
with a tool for visualization of the database at different levels of details based on a multi-
dimensional scaling technique. This visualization technique groups together perceptual
similar images in a hierarchy of image clusters. Retrieved images can overlap. The overlap
problem is also found in the El Nific image database {133]. In this context, Tian et al. [150]
propose a PCA (Principal Component Analysis)-based image browser which locks into
an optimization strategy to adjust the position and size of images in order to minimize
overlap (maximize visibility} while maintaining fidelity to the original positions which are
indicative of mutual similarities.

Spirals and rings are used to visualize information in different domains [23,87,157,
161]. [23] and {157 investigate the use of spirals to visualize time-series. They display
data along a spiral to highlight serial attributes along the spiral axis and periodic ones
along the radii. Mackinlay ef. al. [87], in turn, use 2 spiral for calendar visualization,
building iconic representations of past daily calendar entries, positioned on a spiral. A ra-
dial layout is used in [161} tc visualize graphs. In this approach, graph nodes are arranged
on concentric rings around the focus node. Each node lies on the ring corresponding to
its shortest network distance from the focus.
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6.6 Conclusion

This chapter presented a new approach to improve user interaction in CBIR systems
based on applying Information Visualization research to construct CBIR interfaces. It
discusses two visualization techniques based on Spiral and Concentric Rings to explore
guery results. These visual structures are centered on keeping user focus on the query
image and on the mosst similar retrieved images. These strategies improve traditional 2D
grid presentation and avoid image overlaps, commonly found in CBIR systems.

Ongoing work includes the finalization of user experiments, and the definition of a
new visualization strategy. This strategy extends the proposed methods by considering
the mutual similarities among retrieved images. At the same time, relevance feedback
principles are being incorporated to the prototype.
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Conclusoes

7.1  Contribuicoes

Fista tese desenvolveu pesquisa combinando aspectos de processamento de imagens, ban-
cos de dados e bibliotecas digitais. Ela abordou os desafios apresentados por sistemas de
informacio ambiental mencionados no Capitulo 1, a saber: a necessidade de mecanismos
de interagdo com usudrio para facilitar especificacio de consultas; a dificuldade em com-
binar mecanismos de consulta por conteddo a bancos de imagens e consulta a bancos de
dados geograficos; € a complexidade do gerenciamento diferenciado de dados de natureza
{30 distinta. Esta combinacdo de enfogues no processamento de uma consulia permitin
criar um novo tipoe de sistema para apolo a pesquisas de clentistas em biodiversidade.

O resultado final foi a especificagio e implementagao parcial de um protétipo de am-
biente computacional que combina ¢ gerenciamento de imagens de seres vivos e dados
espaciais para aplicagbes ambientais de biodiversidade. Este ambiente permite consultas
cujos predicados componham recuperagio baseada em contetido, de bancos de imagens,
com recuperacdo baseada em localizacio e caracteristicas geogrdficas e ecoldgicas. O tra-
balho foi implementado com base em dois conceitos: o uso de componentes de software e
a adogio de padrfes e mecanismos de biblictecas digitais.

As principais contribuicdes deste trabalho sdo:

1. Especificacio de um ambiente para gerenciamento integrado de fotos, mapas e
metadados usando o arcabougo de Bibliotecas Digitais, que permite a cientistas
a2 extracdo de informacio segundo suas necessidades;

2. Criagao de wm componente de busca para recuperacgio de imagens por contetdo;

3. Proposta de novos descritores de imagens para suporte & recuperagio de imagens
segundo o seu conteudo (forma dos objetos). Testes envolveram a avaliagdo de 50

103
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novos descritores de forma, definidos através do uso de diferentes implementagfes
dos algoritmos de extragio e comparagio de vetores de caracteristicas. Para cada
descritor, 1100 consultas foram realizadas {55000 no total) numa base de dados
com 11000 formas de peixes. Apenas os melhores descritores, avaliados através das
métricas de compactabilidade e separabilidade, sdo apresentados nos Capitulos 4
e 5

4. Proposta de novas estruturas visuais para visualizagdo de resultados de consultas
em sistemas de recuperagio de imagens por contetdo;

5. Implementagdo e validagio parcial da arquitetura proposta para um tipo especifico
de imagem (peixes) e perfil de usuério (biblogos) em uma aplicagio real de suporte
a0 processo de identificacdo de espécies de peixe. Esta implementacdo estd sendo
usada no Department of Fisheries and Sciences na Virginia Tech [43], para apoio ao
ensino de bidlogos na drea de ictiologia.

7.2 Extensoes

Ha vérias extensdes previstes, tanto do ponto de vista tedrico quanto de implementagio,
para as diferentes camadas da arquitetura. Algumas destas extensdes, inclusive, i4 estéo
sendo analisadas. Os trabalhos futuros incluem:

e Projeto de Novas Interfaces: Este trabalho de pesquisa teve como objetivo o
suporte a consultas que combinam diferentes fontes de evidéncia: descritores textu-
ais, dados espaciais e descritores de contetido de imagens. O Capitulo 6 apresentou
novas estruturas visuais para visualizagdo de resultados de consultas em bancos
de dados de imagens. Este trabalho pode ser estendido, com a inclusfo de estru-
turas visuals intuitivas para suporte na especificacdo de consultas e visualizacio de
resultados que envolvam as diferentes evidéncias consideradas. O projeto destas in-
terfaces deve considerar a realizagéo de consultas em mapas, selecBo de descritores
e imagens de consulta e ¢ uso de palavras-chave.

e Otimizacio de Consultas: O trabalho nfo abordou aspectos de desempenho no
processamento das consultas. A definicBio e implementagio de regras para otimizagéo
de consultas que envolvam as diferentes evidéncias precisam ser investigadas. Pro-
postas de solugdo para este problema incluem o uso de linguagens de consulta e novas
lgebras baseadas em similaridade recentemente propostas [2,9, 10,27, 98, 114, 142].

¢ Combinacdo de Descritores: Nas aplicacOes ambientais consideradas, o proces-
samento de consultas envolvendo o conteddo de imagens pode envolver diferentes
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propriedades, tais como cor, textura e forma. Uma extensBo neste sentido consiste
em investigar a utilizacio de mecanismos pars combinacio de descritores codifi-
cando estas diferentes propriedades. As abordagens mals comuns usam a alribuigdo
de diferentes pesos para codificar a importincia de cada propriedade [71]. Outras
abordagens, baseadas em técnicas de fusfo de consultas [34], também podem ser
consideradas.

e Uso de Ontologias: A arquitetura proposta pode ser estendida para suporte ao
uso de ontologias na definicio e processamento de consultas. Ontologias podem
ser utilizadas no gerenciamento das diferentes fontes de evidéncias: metadados de
imagens podem estar associados a2 um conjunto de termos definidos em uma on-
tologia (113, 134): ontologias especificas para a8 aplicagfes ambientais podem guilar
consultas envolvends, por exempio, informacao sobre ecossistema ou habitat de uma
espécie. Ainda, ontologias espacials podem ser utilizadas na convers@o de nomes de
lugares definidos em consultas textuais em coordenadas na superficie terrestre.

¢ Extensfc para outros Dominios: O trabalho de implementaggo foi cenirado
em sistemas de blodiversidade, considerando as necessidades deste tipo de usuério
¢ especificidade dos dados utilizados, em especial informac8o sobre coletas e os
metadados. A arquitetura, no entanto, é genérica. Assim, outra extensio possivel
seria testar a implementacio para outros tipos de sistema ambiental — por exemplo,
em modelagem de scossistemas ou em estudos de impacto ambiental. Neste caso,
seria necessario um novo tipo de andlise de conteddo de imagens. Além disso, haveria
necessidade de prover outras combinactes de consulta, pois os dados usados nestes
sistemas sdc bem diferentes daqueles tipicos de sistemas de biodiversidade.
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