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T Far hetfer i is fo dore mighty things, to win
glovious friumphs, even though checkered by
fadbure, than io take ronk with those poor spirits
who neither enjoy nor suffer too much, beca-
se they fve i the gray twilight that brnows not
vickory nor defect.”

E melhor langar-se & lute em busca do triun-
Jo, mesme expondo-se wo dnsucesso, a formar
flas com s pobres de espivito gue nem sofrem
Wmuto, nem gozam mullo, porQue pivem nesst
penumbrn cinzents que ndo conhiece vilorie ou

derrota.
Theodore Roosevelt (1858 - 1918)



refacio

No Hmiar da sociedade da informacio, cada compitador pessoal, aparetho de televisio
ou telefone celular contém, ou conterd muito em brave, software para comunicacio em
rede, Bsse software deve gavantir as propriedades de seguranga {integridade, auntenticacio,
sigiio e ndo repudio) de uma grande variedade de atividades, tals como coméroio eletrdunico,
correio eletrinico, acesso & bases de dados distribufdas, teleconferfneia, etc. A segurancs
de informaches baseada em oriptografia, antes conheclda apenas por v grupe pequenc
de espercialistas, hoje preocups uma boa parcela da comunidade de software, quer ns
indistria, gquer na academia,

Por outre lado, software ndo é mais desenvolvido como ha quatre décadas. Solughes
menoliticas programadas ariesanalmente para problemas especificos nao 80 scondmicas.
A composicgoe de componentes e 8 reutilizacio em larga ascala so duas caracteristicas
gque devem estar presentes nos softwares de sepuranca modernos.

Esta dissertaclo combina téonicas de engenharia de software e segurancs de infor-
maghes. O resultade é um arcabouco de software gue ndo somente oferece reutilizagio em
farga escals de mecanismos da eriptografia, mas {principalmente} capturz 0 conjunto de
cenarios fundamentals de utilizagio das téenicas criptograhcas.

Atividades interdisciplinares &5 vezes exigem tradugdes de conceitos de wma disciplina
para ovutra. Esta dissertagdo oferece uma abordagem inovadora pata o tratamento dos
mecanisinos da criptografia: uma redefini¢io on reescrita destes mecanismos como um
confunto forternente cosso de padrdes de projeto. Este conjunto de padrdes auxiliard en-
genheiros de software Inexperientes em seguranca & identifcar 0s servigos mals adeguados
4% suas necessidades,

vi
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Fsta dissertacio aborda o use de téonicas avancadas de estruturacio de software na im-
plementacio de reguisites de seguranga: em particular, um arcabougo de software cripto-
grafico capaz de oferscer facilidade de uso e reutilizacio em larga escals.

Programadores de software criptogréfico se preccupam, geralrhente, com algoritmos
s protocolos, Tendo em vists a preferéncia, justificada, dos desenvolvedores de softwarse
criptografico pela implementacio eficiente {veloz} e eficaz (segura) de tais algoritmos
protocclos, s produgio de hibliotecas de software para servicos de segurangs reutilizéveis e
faceis de usar tem revebido pouca atencio. Mecanismos eriptogrificos gerabmente recobem
implementacdes monoliticas ou sfo agrupados em volecdes de fungdes pouco relationadas.
Assim, biblictecas eriptogrificas disponivels stualmente nfio provéem, de forma satis-
fatdria, a combinacio de mecanismos ¢ nio oferecem interfaces de programacio simples,
dificultando a tarefa de programadores ndo especialistas em criptografia. Em contraste,
tals mecanismos criptograficos ndo costumam ser usados oladamante, mas em combi-
nagdes apropriadas.

A vriptografis tem papel fundamental no uso comercial das redes abertas de computa-
dores, como a Internet., O enorme aumento no uso destas redes para troce de informagbes
valiosas tem contribuido para ¢ sumento na procura por servicos de seguranca de com-
putadores. Mecanismos de criptografia est&o presentes nfo somente em aplicacles com
requisitos de seguranca fortes, como por exemplo 0s sistemas de pagamento eletrlnico, mas
também em softwares de uso geral, tals como processadores de fexto e correio eletrfaico.
Conseguentemente win ndmero grande de programadores usa servigos criptograficos em
seus produtos, mas muito poucos sfo especialistas em segurance ou criptografia. Nesse
contexto, bibliotecas criptogrificas reutilizdveis e ficels de usar podern inibir 2 profiferacio
de implementagfes pobres e 0 uso incorreto dos servigos de seguranga.

Seguranga baseads em criptografia ¢ geralmente um requisito ndo funcional ou adm-
nistrativo {isto €, agueles nio divetamente relacionados a8 finslidades da aplicaglo) em



aphicactes de uso geral. Tecnologias que promovem a separagio explicita entre a8 respon-
sabilidades da aplicacBo ¢ o5 servigos de seguranca facilitam o reuso em larga escala de
software criptografico e diminuem g carga de conhecimento sobre eriptograBa exigida dos
programadores,

Esta dissertacdo possui dois tdpicos fortemente relacionados, Primeiro, uma aborda-
geny inovadora para ¢ projeto e mplementaciio de mecanismos criptogrificos: o trata-
mento destes mecanismos como uma linguagem de padrdes de projeto capaz de awsiliar
engenheiros de software sem experidncia em téenicas criptogrificas a tratar os requisi-
tos de seguranca das aplicagbes. Segundo, um arcabouce de software para criptografia
usado tanto no desenvolvimento de software com requisitos de seguranca fortes, como
na adigdo & posteriori de mecanismos criptograficos a softwares de terceiros e sistemas
legados. Técnicas avancadas de estruturacio de software, tals como padrdes de projeto,
estilos de arquitetura de software e reflexdio computacional, sio usadas neste arcabouco
para proporoionar facilidade de uso e reutilizagho em largs escala de mecanismos crip-
tograficos. Este arcabougo estd implersentado na linguagem de programacic Java e usa
uma arquitetura de software reflexiva para esta linguagem [OGB9S].

Um estudo comparativo de bibliotecas eriptograficas {BDRS9L] mostrou que elas nio
satistaziam a algumas caracteristicas desejéveis em usos praticos dos mecanismos erip-
tograficos: reutilizacdo em larga escala, facilidade de uso e composicie. Por outro la-
do, o interesse em padrdes e arquiteturas de software 8 a existéncia de solugles bem
conheridas para problemas recorrentes de seguranga de informagtes metivaram o desen-
volvimento de nma Hnguagem de padrles para sofeware criptografico orientado a obje-
tos [BRD9%c, BRDS98s, BRDYBL]. Este conjunto de padries de projeto é ums abordagem
movadora no uso das técnicas criptograficas, e valoriza a combinacio de mecanismos.

Uma biblivteca de metacbjstos criptogréficos [BDR9%a] fof construida sobre a interface
de programacio criptogrdfica Java e usa um protocolo de metaobjetos para esta lingna-
gem. Assim como os padrdes, esta biblioteoa também valoriza a composigdo de mecanis-
mos. Uma variagdo reflexiva do padrio criptogrifice fundamental [BRIDS%a] documenta
a separacio explicita entre vesponsabilidades da aplicagBo e servigos de seguranga; esta
separacdo ¢ necessaria 4 obtenclo de facilidade de uso. Esta biblioteca de metaobietos
foi ampliada e constitut um arcabougo de software para criptografia [BRDO9L, BDR9%a)
usado tanto no desenvolvimento de software com requisitos de seguranca fortes, comeo na
agicio a posterior! de mecanismos criptogrificos a software de terceiros e sistemas legados.
Este arcabougo porporciona reutilizacio de software criptogréfice em larga escala.

Finalmente, 0 arcabougo de software criptogrifico foi usado para adicionar, a pos-
teriori, infegridade de dados e sigilo a wma ferramenta experimental para pagamento
eletronice. Esta tarefa [Bra99] foi realizada com pouca intrusio na aplicacBo alve {sendo
completamente transparente em alguns casos) e apresentou uma porcentagers bastante



aita de reutilizacio.

Esta dissertaciio é a colegdn de relatérios téoenicos e artigos cientificos, publicados
ou subanetidos para publicacdo em conferéncias internacionais, obtidos durante este pro-
feto de pesquisa. O restante desta dissertagdo estd organizada da seguinte formar o
Capitulo 2 [BDREISL] compara alguns exemplos da abordagem tradicional para imple-
mentagdo de mecanismeos eriptogrificos e aponta fraquezas nestas abordagens; o Capiinlo
3 [BRDY8a, BRDY9¢] apresenta wma abordagem novadora para a compreensdo dos me-
canismos da criptografia como um conjunio fortemente coeso de padrdes de projeto; o
Capitulo 4 [BRD99s) oferece uma variagdo reflexiva para o padriio de projeto fundamental
do Capitulo 3 e prepara o terreno para a biblioteca de metaobietos criptogrdficos aprosen-
tada no Capitulo b; a hierarquia de classes e o funcionamento da biblioteca de metashjetos
criptogréficos sdo tratados pelo Capitulo 5 [BDRIa]; o Capitulo § [BRDGOL! estabelece
o relacionamento intrinseco entre ps padrdes de projeto criptogréficos dos capitulos & e 4
e wm arcabougo de software baseado nos metachjetos do Capftulo 5; o Capitulo 7 [Brafy]
apresenta um estudo de caso no qual o arcabouge de software para criptografia £ usa-
do para adictonar integridade de dados e sigilo & wm software experimental de comércio
eletrdnico; o Capitulo 8 contém as conclusdes obtidas com esta pesquisa. o Apéndice A
contém uma breve introdugdo & criptografia {extraida de [BRDUS]).
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®

Cryptographic

2.1 Introduction

Modern software systems, such 55 electronic commerce applications, usually have strong
eryptography-hased security requirements, which usually need either the composition of
several eryptographic mechanisms as higher-level services or the combination of covp-
tographic serviess in 4 guasi-transparent way. Although the number of cryptographic
mechanisms and thelr valid combinations iz small, most of the presently widely used
Cryptographic Application Programming Interfaces {CAFIs) do not support the full set
of valid mechanism combingtions. How easily an unsupported combination of mechanisms
can be obtained from the supported ones is, In our opinion, an important eriteria for CA-
PT evaluation and s directly related not only 0 the CAPDs reusability but also to0 it's
cryptographic unawareness. Cryptographic awareness is the amount of knowledge about
cryptography required by the application programmer [ges96], We have documented the
set of cryptographic mechanisn combinations in a pattern language for crvptographic
software, called Tropye [BRDSBal.

In this work, Tropyc is used to evaluate six widely used CAPIs, Compliance to Tropye
means that the CAPT has the basic mechanisms required to either offer higher-level cryp-
tographic services or instantiate the corresponding cryptographic patterns. Cryptographic
service is5 a high-level, nsually more complex, eryptographic work performed/offered by
an entity, based on the corresponding cryptographic mechanisms, upob receiving requests
from its chients. The ervptographic services are the following subset of the security services
defined by 18O [is098] (also called cryptographic goals [MvOVO8]): dats confidentiality,



2.2, Cryptographic Goals and Patierns 3

data integrity, authentication and non-repudiation. Accordingly, cryptographic mecha-
nisms are the following subset of 180 security mechanisms [is098]: encryvption, digital
signatures, data integrity and anthentication exchange.

We present & comparative study of six cryptographic AP with respect to how they
support Tropype’s patterns. Our goal is to contrast the cryptographic mechanisms offered
by widely used cryptographic APIs with the complete set of cryptographic patterns. Par-
tieularly, we want to answer three questions: {7) What patterns are supported by each
APT? (i) How easily are they supported? (#2) Does the lack of any pattern influence
the usefulness of the AP in any way? Other CAPT comparisons, based on guite different
criteria, can be found in [Tead7, msc].

This text is organized as follows. Bection 2.2 summarizes the goals of modern cryp-
tography and gives an overview of Tropye and how it can be used to evaluate CAPIs.
Sectiop 2.3 compares the crvptographic Hbraries and analyzes their support to Tropye.
Section 2.3.2 analvses, using function interfaces, the approaches used by CAPIs for the
signing data and compose crvptographic mechanisms, Conclusions and future work are
in Section 2.4

2.2 Cryptographic Goals and Patterns

Modern cryptography addresses four security goals [MvOV96] or services [iso98]: con-
fidentiality, integrity, authentication, and non-repudiation. Accordingly, there are four
basic cryptographic mechanisms:. (¢} encryption/decryption, (74} MDC (Modification De-
tection Code) generationfverification, (#31) MAC {Message Authentication Code) gene-
ration/verification, and (v} digital signing/verification. These four mechanisms can be
combined in specific and Hmited ways to produce more high-level ones and are the building
blocks for security services as well as security protocols. Confidentiality is she ability o
keep information secret except from authorized users. Data integrity is used to guarantee
that information has not been modified without permission, which includes the ability
to detect unauthorized manipulation. Sender {origin) authentication corresponds to the
assurance, by the communicating parties, of the origin of an information transmitted th-
rough an insecure comiunication channel. Non-repudiation is the ability to prevent an
entity from denving its actions or commitments in the future.

As shown in Figure 2.1, the cryptographic mechanisins corresponding to the services
for data integrity, sender authentivation and {digital} signatures relate to each other as
follows: MACs support data integrity, signatures support both sender authentication and
data integrity as well as non-repudiation. Encryption, which supports confidentialivy, is
orthogonal to the other cryptographic mechanisms and can be combined with each of
them. It is important to notice that Figure 2.1 18 related to cryplographic mechanisms
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Figura 2.1: Relationghips Among Cryptographic Services.
and services, it does not necessarily work for security protocols.

2.2.1 Cryptographic Patterns

The basic eryptographic services are invoked in appropriste combinations with other servi-
ces and mechanismms in order to satisfy applicstion requirements. Particulsr cryptographic
mechanisims can be used to implement the basic services. Software systems may imple-
ment particnlar combinations of the basic cryptographic services for divect invonation. We
have proposed in [BRII08a, a pattern language which addresses the proper combinations
of crvptographic services, when security aspects are 80 important that they cannot be
delegated [relegated) to the communication or storage subsystem and should be treated
by the application itself [SRCE4]. The cryvptographic design patterns corresponding o
the basic cryptographic services and their compositions are summarized in Table 2.2.1.
The eodes in column Code of Table 2.2.1 are used in Figures 2.2 and 2.3 o name the
cryvptographic patterns,
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with Appendix

and Non-repudiation |

Pattern Name Code | Beope Purpose
Information Sscregy I8 Confidentiality Provides secrecy of information
Meszage Integrity afl Inteprity 1 Detects corruption of a message
Sender Authentication SA Authentication Authenticates the origin of 2 message
Slgnarure 3 Non-repudistion Provides the suthorship of 2 message
Stgnature with Appendix | SAp | Non-repudistion Separates wessage from signarare
Secrecy with Imtegrity 58§ Confidentiality Dietects corruption of a secret
and Integrity
Secrecy with Jender 554 | Confidentialivy Authenticates the origin of a secret
Authentication and Authentication
Sacrecy with Signature 85 Confidentiality Proves the anthorship of a secret
ang Non-repudiation
Secrecy with Slgnature 88Ap | Confidentiality Separatas secret from signature

Table 2.2.1: The Cryptographic Design Patterns and Their Purposes,

&

Anthentication

Data Integrity i~

Non-repudiation

SAp

Figura 2.2: Pattern Distribution Over the Regions of Cryvptography Services.
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Figure 2.2 shows the distribution of cryptographic patterns over the regions of Figu-
re 2.1, There is at least one pattern in each vegion, and two of them when an alternative,
usually faster, variation exists. Because there are no uncovered regions in Figure 2.2, that
is regions without a patiern bound to it, all the proper combinations of the four basic
cryptographic mechanisms are represented by Tropye. Furthermore, there sre no new
combinations available. This fact is supported by the matrix of Figure 2.3

Additionally, Tropye documents both the use and appropriate combination of erypio-
graphic mechanisms in order to accomplish not ouly the basic cryptographic services, but
aiso the high-level composed ones. In fact, the cornbined patterns can be viewed as high-
level services able to increase the ease of use of eryptographic Hbraries and APIs. CAPIs
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should offer not only the basic four mechanisms, but also thelr compositions. From a
programmer point of view, CAPIs can support the composed crvptographic patterns in a
variety of ways, ranging from explcit programmer-made composition of basic mechanisms
to transparent composition hidden in bhigh-level, not necessarily programmer-risndly, in-
terfaces.
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Figura 2.3: Matrix of Cryptographic Services Combinations.

The matrix of Figure 2.3 shows how to obtain valid combinations of mechanisms. The
full set of mechanisms in columns are combined with the same sel in rows. A square-
marked position means that the combination does not add any new crvptographic feature
to any of its generators. A left-arrow-marked position means that the resulting combina-
tion is slready fmplicitly supported by the row generator. An up-arrow-marked position
means the combinativn is already impdicitly supported by the colurn generator. The
valid combinations are marked with the codes naming the patterns. Three Ohservations
emerge from that figure: (1) the number of distinet valid positions (combinations] is small;
{11} there are alternative ways of reaching an appropriate combination; and {71} it is not
necessary to add either c@%amm or rows to the matrix because thers are no new valid
rombinations beyond 5S5Ap.

Since Tropye completely covers not only the cryptographic services, but also their
commpositions, the evaluation of CAPIs based on it is complete too. Such CAPIs should
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not only support the basic patterns, but also the combined ones, in ovder to be complete.
A CAPT supporting only the basic set is considered to be less adeguate for modern appli-
cations than a complete one. On the other hand, the level of abstraction for providing the
combinations is ancther aspect to be analyzed, These two aspects, support to appropriate
combinations and level of abstraction, are different approaches of evaluation, in the sense
that the first is quantitative and the sevond is gualitative.

2.3 Comparative Analysis

Our analysis focuses on six well known CAPIs: IBM's Common Cryptographic Archi-
tecture {CCA) [JDKT91, LMIWYZ], the oldest of the group; BSA’s Cryptoki [Kalds}
Microsoft’s CryptoAPT [Mic96]; Sun’s Java Cryptographic Architecture and its Extension
{(JCAFICE) [IBKSE, Oak3d8, MDOY98], the newest of the six; X/Open’s Generic Secu-
rity Service APT {(GOS-APT) [ges86], presently deprecated; and Tutel's Comumon Security
Services Manager APT (TSSM-APT) [essd7].

Most of these CAPIs, except JCA/ICE and CCA, were evaluated in another com-
parison according to quite different criteria [TeaB7]. Section 2.3.1 provides a general
evaluation of the six CAPIs according to the cryptographic services they support. The
CAPIs” support to patterns is evaluated in Section 2.3.4. A complete description of each
CAPI is beyond the scope of this text.

2.3.1 General Evaluation

Object-oriented TAPIs, supported by object libraries, are easier to use, and more difficult
to abuse, than those ones based on function libraries. Object libraries hid potentially
harmful information and offer higher abstractions than function-based ones. Among the
analyzed CAPI, only Sun's JCA{JQE and RSA’s Cryptoki present an object-oriented
design, but only the first has widely available object-oriented implementations. In both
cases, classes encapsulate families of semantically related functions. The other CAFIs
are collections of loose-related functions (usually with large argument lists) and data
types. They are usually less friendly and more prone to programming errors than the
obisct-oriented ones.

Despite the kind of transformation performed, both objsct-oriented and non-object-
oriented CAPIs traverse the same state diagram, shown in Figure 2.4, during data trans-
formation. There are three states: (¢} Initialization, during which the cryptographic
engine responsible for data transformation is initialized with keys and other algorithm
parameters; (11} Buffer Updating, in which the eryptographic engine’s internal buffer is
filled and some intermediary transformation is optionally performed; and {1¢7) Finaliza-
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Figura 2.4: State Disgram for Cryptographic Transformations.

tion, in which the last part of input data is accumulated and transiormed. Accordingly,
there are three main kinds of methods or functions responsible for state transitions: init{},
update!) and fnal{},

Almost all CAPIs use byvte srravs as the data structure for input and output. This
requires from the CAPIY client a great conirol on both dats gramularity and length. In
fact, all CAPIs, except JCA/ICE, force their clients to worry about both block size and
padding. JCA/JCE i5 able to work not only with byte arrays, but also with serializable
ohiects for both signing and encryption [G898].

e APY

///Ser\,;:;\\\\\ i

| Encryption

Encrypuon and Authentication
Encryprion and Data Integrity
Encryption and Nop-repudiation
Digital Signature with Recovery
Dugital Signature with Appendix
Cryptographic Hashing/MDC
Random Numbers

Kev/kev Pair Generation

Koy Derivation

kev Wranping

Rey Agreement

Message Anthentication Code

JCANICE
| CSSMLAPT

Figura 2.5 Cryptographic APIs and the Mechanisms They Support.
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The table in Figure 2.5 summarizes the cryptographic mechanisms the six CAPIs ap-
proach. These mechanisms can be divided in three main groups. The basic mechanisms:
encryption, hashing/MDC, MAC, and Signature with recovery; their compositions, for-
med by the Signature with appendix and the combinations of encryption with digital
signatures, M DUs, or MACs; and the others, forming the group of management or auxi-
Hary functions. Most of the CAPIs support the basic mechanisms, though a few of them
explicitly support mechanism composition. Auxiliary functions are not uniforraly suppor-
ted, Figure 2.5 shows that none of the analyzed CAPIs offers routines for the complete
set of mechanisms and thelr compositions. Furthermore, from a programimer point of
view, mechanizm composition is usually a difficelt task, which requires a lot of knowledge
about the topic. Microsoft's CryptoAPT is the meost complete, but Sun’s JCA/ICE is
the most programmer-friendly. Section 2.3.2 offers a comparison of function and method
interfaces for Dada signing and Section 2.3.3 analyses the corposition of ervptographic
mechanisms,

2.3.2 How CAFPIs Perform Signing

This Section comparss how CAPIs perform data signing and illustrates the key differences
among them. These solutions go from unique powerful-but-complex functions to easy-
to-use objects which encapsulate both signatures and signed dats. We compare Sun’s
JCA, X-Open's GUS-API RSA's Cryptoki and Microsoft’s CryptoAPL Each of them
uses a different approach for data signing. Two CAPIs are not shown here: USSM-API
approaches signing similarly to Cryptoki and 1BM's CCA behaves like GCS-APL

minor_status generate.checkvalue(

gsgssion.context, a2 outputss
input_data, Fx anput o/
iv, F input, optionals/
chainflag, e anput
e, e dnput, cuipsi
intermedistexesuly, S daput, euipui /S
check.valua A output 5/

X-Open's GUE-APT uses a simple function, generate_check value(}, for all stages of
data transformation {the stages are shown in Figure 2.4 and are initialization, buffering,
and signing). Such a powerful function, whose ioterface is above, requires a large num-
ber of arguments, seven in total, to perform iis task over arrays of bytes (input.data,
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intermediate result, and check.value) A fHag chainflag, indicates whether the
transformation is in first, middle or final stage. Large arvayvs can be split and trea-
ted by succsssive calls, in such a case, the function should be explicitly fed bak with
intermediate.results. Bye the time of the final call, checkovalue contains the signa-
ture. cc stands {or cryvptographic contexy, which s a structurs for encapsulating both
sensitive data, such as keys, and the signature engine. iv is an optional initialization
vestor,

BOGL WINAPI Cryptlreatelash(

HORYPTPROV bhProv, A osnput =/
ALG.ID Algld, S input =/
HORYPTEEY bXey, A input =/
DWORD dwPFlags, S input v/
HORYPTHASH sph¥ash S output w0
25
BOUL WINAPI CryptHashDatel
HCRYPTHASH bHash, Frognput &/
BYTE spbData, S gnput =f
DHURD dwhatalen, S dnput
DWORD dwFlags S input xS

3

BOOL WINEPI CryptSigaHagh(

HORYPTHASH hHash, Fuodnput &/
DWORD dwKeySpec, S dnput s/
LPOTSTR slhescription, S gnput &/
DWORD dwFlage, S dnput =/
BYTE spbSignature, S ooutput &S
DWORD pdwSiglen S odnput, ouipul =/

CryptoAPTs functions for signing, above, can only produce signatures with appen-
dix and split the signing operation in two tasks: CryptHashData() buflers data in suc-
cessive calls and generates & hash from them; CryptSignHash() signs the hash stored
in phHash and returns an array of bvies containing the signature; a third function,
CryptCreatelash (O, is ysed for creating a hash engine, returned in phHfash.
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CH_RY CE_ENTRY Signlunit{

CE.BESSION HANDLE hBession, S input s/
CE_MECHANISM PTR pMechanism, A& dnput s
CEOBJECT HARDLE bhkey S input f

31

CK.BY CE.ENTRY Sign(

CE_SESSION. HANDLE hSession, Sx dinput w/
CK.BYTE_PTR pData, Fe inpul «/
CK_USHORT usDatalen, S dnput /S
CK_BYTEPTR pSignature, Jx output =/
CEUSHURT.PTR puslignaturslen s vutput %/
33
CH.RY CK.ENTRY SignUpdate(
CHUOSESEION HANDLE hismgsion, e input =/
CE.BYTEPTR pPart, e input =S
CE.JSHORT usPartLen S inpub =/

33

CE.BV CEK.EWTRY SignFinalf(

CK.BESSION.HANDLE hSession, Fe saput =/
CEKBYTE PTR pSignature, Fe output /7
CE.USHORT PTR pusfignaturelen Su output +/

The four interfaces above represent the Cryptoki’s family of functions for signing.
InitBignl) initializes the signing operation; then, the function called should be Sign (3,
if data should be processed in a single part; otherwise, successive calls {0 SigoUpdate(},
followed by a call to BignFinal () should take place.

These three APDs follow a procedural programming paradigm, in fact both CryptoAP]
and Cryptoki use C programming language in their specifications. Such a binding to pro-
cedural languages has divect consequences over the APT design. For example, arguments
that conld be made impiicit, such as handles, in object-oriented programming, are explicit
and increase the list of arguments. Two aspects are due to C-programming binds: the
use of pointers to arrays of bytes and the explicit use of variables to store the length of
BITAYS.

public abstract class Signature{
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public static getinstance(String algorithul;

public static getInstance(String algovithm, String provider);
public #inal void initSign{Privateley prvkey);

public final void initVerify{PublicKey pubkey);

public fnal void updats (bytell bl;

public final bytell sign(};

public final boolesn verify(bytel] sigoaturs):

public final class SignedUbject implements Serislizable{
public Signedibject (Serializable o, PrivateKey pk,Signaturs g);
public boolean verify(PublicKey pk,Bigmaturs ¢
public Object getContents{};

The JOA's Signature class, above, groups a Cryptoki-like set of functions and offers
the benefits of object-oriented programming. The static method getInstance() can be
used to instantiate particular algorithm implementations; method initS8ign (O initializss
the engine for signing with a private key; update () is used for data buffering either in
single or multiple calls, Method sign() signs buffered data and returns the signature as
an array of bytes. Since cbject-oriented paradigm is being used, cryptographic fransfor-
mztions should be applied not only over bytes, but also over objects. Alternatively to
the byte-based APIL JCA offers the SignedObjiect class, which can be used to sign and
verify {serializable) objects. JCA also offers specialized sireams to handle encryption over
contingous data,

These four approaches are not limited to signing. Bach CAPT keeps analogous beha-
vior for encryption, hashing and suthentication, as well as for decryption and verificstion
procedures. In summary, the four ways used by CAPIs to perform signing are the fol-
lowing. '

1. A unigque powerful function signs data in successive calls and Hags determine the
stage of the transformation. Feedback of intermediary results 15 usually required.

2. Explicit separation of signing from both buffering and hashing. In this case, buffe-
ring can take multiple function class, but feedback is avoided.

3. A family of functions performs initislization, buffering and signing. Hashing is
hidden and feedback is also avoided,

Signing is performed not only over byte arrays, but also over objects, by using s

NN

high level, usually more intuitive, programming interface.
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2.3.3 How CAPIs Support Service Composition

Among all CAPIs analyzed in this text, only GUS-APT and CryvptoAPT explicitly offer
cryptographic mechanisms composition procedures. GUCS-APT still apply its approach
and offer » single powerful-but-complex function to all kinds of combinations, Such a
function interface, below, requires two cryptographic contexts (one for confidentiality, the
other for either integrity or signature) and returns pointers to two cutputs containing the
encrvpted data and the cheek value, Intermediate results still should be fed back and a
fag controls whether transformation should be performed in single or multiple parts, as
well as the stage of transformation.

minor.5tatus protect datal

session.context, /% outpuis/
input.data, S Anput v
iv, S dnput, optionelss
chain.flag, FeoAnput S
confidenptialitycc, Sk input, output =7
integrity.cc, S input, output «/
intermediste result, /v input,output xS
output.data A output =/
check.value S output &/

Migrosoft’s CrvptoAP] uses the function interface below te combine encrvption with
finger print generation mechanisms. An authentication engine, which can be either a
MDO or MAC generator or even a signpature engine, is passed as an argument to the
function and is used internally to buffer the data before authentication. Similarly to
CGS-APT, & flag indicates the last or single function call. The fingerprint is obtained by
calling CryptBignHash(}, see Section 2.3.2, thus only data buffering is, in fact, composed.

BODL WINAPT CrypiEmcrypt!

BCRYPTKEY nKey, S5 dingut &/
HORYPTHASH nHash, S tnpud w/
BOOL Finmal, A dnpud xS
DWORD guFlags, A dinput =/
BYTE #+phData, 7% imput,ouipul =/
DUWORD spdwDatalen S input, outpetl 7

BWORD sdwBuflen S duput xS
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Although not allowing explicit support for cryptographic service composition, Sun's
JUA reduces the complexity of this task by using SignedObjecis and SealedObjects as
specializations of class Derializable. When using objects for securing data, the structuring
of the secure classes as specialization of serializable objects allows chaining of shiects,
since serializable signed objects contain other serializable objects, which can be instances
of other secure objects, and so on. This is an application of the Composite IGHIVH4]
design pattern.

2.3.4 Pattern Support

The widespread use ol design patterns has reached the design and implementiation of
object librarvies for cryptography. For instanes, Bun's JUA/JCE makes extensive use of
Foctory Methods [GHIV34] in order to allow subclasses to specifly the objects to be created.
There are other patterns related to security aspects of applications [YB97]. In this zection,
the CAPL support to Tropye’s ervptographic patterns is analyzed. Compliance to Tropyc
means that the CAPI has the mechanisms raquired by an application in order to easily
mstantinte the patterns.

/ i ! i i
d - ! . ol B o
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Sender Authentication

Signature

Signatire with Appendix

Secrecy with Signature

Secrecy with Integrity

Secrecy wf Sendey Authengication
Secreey w/ Signature w/ Appendix

Explicit Use

Internal Use B Mot Available

Figura 2.6 Cryptographic APIs and the Patterns ihey Support.

The table of Figure 2.8 confirms the results obtained from Figure 2.5, Figure 2.4
shows again that Microsoft's CryptoAP! is the most complete CAVPL Although criticized
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for its great complexity, GCS-APT is the second most complete. In general, the CAPIs
support the four simple patterns but not the composed ones. Signature is usually only
internally supported because it is a building block for Signature with Appendin, which
is psually supporied in a high-level way. Modern applications with cryptography-based
sacurity requirements should use either Sun's JCA/ICE or Microsoft’s CryptoAPL The
first does not have objects for composed mechanisms, but is so easy t0 use that mechanism

possesses the functions necessary to instantiate the composed crypiographic patterns with
relative {ransparency.

2.4 Conclusions and Future Work

This work uses Tropye, 2 pattern language for cryptographic software, to evaluate Cryp-
tographic Application Programming Interfaces (CAPIsh. In this fext we evaluated six
widely used CAPIs and argued that, in general, they do not support cryptographic mecha-
nism composition inan easy-to-use way. Furthermore, none of them provides transparent
cryptographic mechanism composition. Modern applications, such as electronic commerce
systems, possess strong requirements on composing cryptographic mechanisms, in & way
that there is & practical need for crvptographic object libraries supporting this cornposi-
tion. This deficiency can be overcome by either developing (proposing) a new CAPT or
extending an existing one. In such a case the JCA/JCE 15 the best choice for an extensible
CAPI because of its modern and flexible programming interface. We are using Tropyc
to guide the extension of a household implementation of JCA/JCE, in order to explicitly
address easy composition of cryptographic mechanisms, as well a8 easy instantistion of
cryptographic patterns.



3.1 Introduction

Historically associated to encryption, modern cryptography is & broader subject, encom-
passing the study and use of mathematical technigues to address information security
problems. Cryptographic mechanisms are used in a wide variety of applications, such as
electronic mall, dajabase protection, and electronic comumerce. The present intersst in
software architectures and patierns, and the existence of well-kuown eryptographic soln-
tions to recurring seourity problems, motivate the development of ervptographic software
architectures and cryptographic patterns.

In this work, we preseat Tropye, 3 paitern language addrassing fouwr fundamental
security-related services [isoB8]: data confidentiality, dats integrity, sender authentication,
and sender non-repudiation, organized as a pattern language fov cryptographic software.
Data confidentiality is the ability to keep information secret except from authorized users.
Data integrity guarantees that information has not been modified without permission,
which includes the ability to detect unauthorized manipulation. Hender authentication
corresponds to the assurance, by the communicating parties, of the origin of information
transmitted through an insecure communication channel. Non-repudiation is the ability
to prevent an entity from denving i3 actions or commitments in the future.

Tropy: 18 composed of ten patterns. The foundation pattern is Secure-Channe!l Com-
surication, which expands into four basic patterns that corvespond to the services just
described: Information Secrecy, Message Integrity, Sender Authentication, and Signatu-
re. These, In turn, generate the five remaining patterns in the language: Secrecy with
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Integrity, Secrecy with Sender Authentication, Secrecy with Signature, Signature with Ap-
pendin, and Becrecy with Signoature with Appendiz,

The intended of this paper i1s 1o help software developers not familiar with crypto-
graphic technigues address the security requivements of applications. Developers looking
for geneval software architectures for thelr cryptographic software or components may also
be tnterested.

The remainder of the text is ovganized as follows. Section 3.2 motivates the need
for cryptography-based security through an electronic pavment application, PayPerClick,
which is also used throughout the paper to illustrate how our patterns can be emploved.
Section 3.3 describes Trepye and its ten patterns. Section 3.4 describes a design of Pay-
Perllick using Tropye. Conclusions and future work are shown in Section 3.5.

3.2 PayPerClick - An Electronic Payment System

Electronic comimerce applications are very good examples of svstems that reguire cryp-
tographic services. A simple seenario of a2 commercial transaction using a credit card
follows:

1. Alice, s custom, asks Bob, a bookseller, for a nice book about cryptography.

Z. Bob replies that he has only one copy in stock and offers it 1o Alice for a reasonable
price.

3. Alice accepts Bob's offer,

4, Alice sends her eredit card number and some further information o Bob upon his
request.

7. Bob contacts the eredit card’s issuer to validate the card information. In case of
positive validation, he accepis the payvment.

6. Hob sends the book to Alice along with a receipt.

There ars four security issues tmplicit in this scenario, which are very mportant when
one uees an open nebwork, such as the Internet, to implement the svstem. First, Alice
reguiires confidentiality when sensitive information, such as credit card numbers, is semt
to & seller. Second, this information should arrive uncorrupted at its destiny; that is, its
integrity should be preserved, so it can be corvectly validated. Third, Alice and Bob need
mutual assuranee of each other's identity during the transaction; that is, they should
guthenticate the sender of the exchanged messages. The same holds for Bob and the
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credit cavd’s issuer. Fourth, the payment receipt should be signed by Bob., This simple
scenario becomss more complex if slectronic money is used instead of credit cards. New
requirements, such as anonymity and prevention of double spending, may arise.

o o S N

Real Cash
Redemption Request

Credit Card Numbor

Plectronie Cash

%f Electronic Payment ¥

a ! e )
. Payer i Pavee |
N . o

Goods + Receipt
Figura 3.1: Participants in an Electronic Payment Transaction

Figure 3.1 shows the three main participants of an electronic payment transaction and
the flow of money and sensitive data between them {AJSWET]. The Broker is usually
a bank or any other kind of financial institution. The Payee can be an Internet access
provider and the Payer s the customer. The Payer makes a request to the Broker for
electronic cash that can be used to buy (electronic) goods over the Internet. The Payer
can request a receipt issued by the Payee. The Payee request redemption of electronic
cash to the Broker. Usually real money flows from the Broker to the Payee,

Electronic pavment systems are good examples of the end-to-end argament [SRC84]
applied to cryptography. In fact, cryptography-based security is such an important featu-
re of electronic payment systems, that the application itself should deal with it avoiding
delegation to underlying communication subsystems. Additional information about elec-
tronic payment systems can be found in [FD88, HY97].

PayPerClick [BDRI8] is a tool for electronic purchase and on-line distribution of hy-
pertext documents based on the model of Figure 3.1, Hypertext documents ave accessible
through links to HTML pages and are visible through Web browsers. PayPerClick can be
used, for instance, to sell on-line books through links in their table of contents. Therefore,
customers can buy specific parts of the bock by clicking on a hyperlink. The hyperdo-
cuments are structured according to the Composite [GHIV94, 163] pattern, which makes
the compuiation of the cost and fingerprint of 2 hypertext document an easy task. The
fingerprint of a hyperdocument is a Modification Detection Code (MDC) (see Appen-
dix A} computed by traversing its tree in some order. The Payer can be implemented
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as Java applets, which communicate with Web servers, instances of either Payee or Bro-
ker. Payers usually have an electronic wallet. Brokers issue to Pavers electronic cash, a
multiple of fixed-value electronie coing,

3.2 A Pattern Language for Cryptographic Software

This Section presents Tropye, a pattern language for eryptographic software, which focuses
on three gosls: (1) the definition of & seftware architecturs for cryptography-based secure
communication, {(#) the description of cryptographic services as patterns, and {éf) the
organization of these cryplographic patterns as a pattern language.

i % | Patrern Renpe Purpose
1} Secure-Uhannel freneric Provides a generic sofoware grobi-
Communication tecture for cryprosranbic sysiems
2| Wformation Secrecy Confidentiabity Provides seorecy of informazion
3 1 Message Integricy 1 Integricy Detecys covruption of 5 message )
4 | Bender Authentication Authentication Authenticats she onigin of & message
& 1 Bignsture Non-vepudiation Provides the authorship of 2 message
§ | Becrecy with Integrity Confidenyialisy Detects oorruption of a secres
and Integrity
7 | Seceecy with Sender Confidentiality Authenticates the ongm of 4 seoret
| Authentication and Authensication
] & | Becrecy with Signature Confidentialivy Proves the aurhorship of g secret
{ and Non-repudiation
4 | Signature with Appendix | Nop-repudiation Zeparates message from signature
13 | Secrecy with Signature | Confidentiality Separates secret frov signatare )
! i with Appendix snd Nowrepudiation

Table 3.53: The Cryptographic Patterns, with Their Scopes and Furposes.

Table 3.3 summarizes the ten patterns that compose Tropye. Secure-Channed Com-
munication abstracts common aspects of both structure and behavior relative 10 secure
comrmunications, regardless of the kind of ervptographic transformation performed. Infor-
mgtion Secrecy provides confidentiality of data in transit. However, information secrecy
alone does not prevent modification or replacement of data. Particularly in online com-
munication, granting Message Integrity and Sender Authenticaiion is also Important. In
other situations, it is necessary o prevent entities from denving thelr actions or com-
mitments. Thus, some form of Signefure is necessary. These four basic cryptographic
services, in suitable combinations, generate three more patterns: Secrecy with Infegridy,
Seerecy with Sender Authenticolion, and Secrecy with Signofure. For implementation ef-
ficiency purposes, two additions! patterns are provided: Signoture with Appendiy and
Seerecy with Signature with Appendiz.
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Figura 3.2: Cryptographic Design Patterns and Their Relationships.



F.3. A Pattern Language for Cryptographic Software 23

Figure 3.2 shows a directed acyclic graph of dependencies between patferns. An ed-
ge from pattern A to pattern B means paltern A generates pattern B, Secure-Channel
Communication generates the four basic patterns. The remaining patterns are derved
from combinations of these. A walk on the graph is directed by two questions. First, how
should the cryptographic software be structured to obtain both easy reuse and fexibility?
Second, what eryptographic services should be used to address application requirements
and user needs? In other words, what cryptographic services should be added to the
current instantiation of Secure-Channel Communication in order to overcome its present
deficiencies?

In the following patterns Alice and Bob represent two communicating participants,
while Eve 15 an adversary eavesdropping and possibly modifving information exchanged
by Alice and Bob.

3.3.1 Pattern 1: Secure-Channel Communication

Context Alice and Bob exchange data through messages, on which they need to perform
crypiographic transformations. Moreover, a flexible and reusable cryptographic sofiware
architecture iz reguired to make cryptographic service composition easier and 1o separate
concerns hetween application functionality and security requirerents.

Problem How should one structure Hexible and reusable cryptographic sofiware for
secure communicasion?
Applicability

» When separation of concerns betwesn functional requirements and non-functional
security requirements should be promoted,

s When the incorporation of security in software systems should be done in & struc-
tured and disciplined manner to avoid an ineresse in the software’s complexity.
Forces

» The dependencies between cryptographic features and the application’s functionality
should be minimized to facilitate reuse of the cryptographic components.

» Software with crvptographic code should be easy to understand, modify, and adapt,

# The increase of the zystems’ complexity due to the inclusion of security services
should be kept under control.
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& The parformance of cryptographic algorithims should not be affected by application’s
design.

Solution  Alice performs a cryptographic transformation ¢ = fim/ on data m before
sending i to Bob. Bob receives z and performs transformation y = gfz). Alice and Bob
must previously agree on transformations fand g and either share or disiribute keys, i ne-
cessary. ¥igure 3.3 shows a class diagram that models the cryptographic transformations.
The diagram defines two template classes, Alice and Beb, and two hook classes, Codifier
and Decodifier. The Codifier class has a hook method f{ 1, which performs a cryptographic
transformation on m. The Decodifier class has a hook method gf J, which performs the
transformation, y = g{fim}). Figure 3.4 shows the interaction diagram between Alice and
Bob. In these diagrams, a, b, ¢ and 4 are the roles performed by instantiations of classes
Alice, Bob, Codifier and Decodifier, respectively. The Secure-Channel Communication
patiern 18 & high-level abstraction which is inherited by the remaining patterns of the
languags.

Alice a b Bob
send(y e receivel) e :
Q x=cfm)
‘haeceive(x):
! c SR ‘i d
Codifier _ rographic Dizcodifier
f{} e BT : Algorithm g{} .......
f* Cr}fptographic"'““*i ' e yeg(f(m)) *;
transformation */ SRR RTRRUUTU {

Figura 3.3: Class Diagram for the Secure-Channel Communication Pattern.

Consequences The use of the Secure-Channel Communication patiern has the fol-
lowing conseqguences:

# [t separates the concerns related to the application domain from those related to
the provision of eryptographic mechanisms in a structured and diseiplined fashion
for application developers.
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o odifier arAlice mBob G:Decndifier

fimj

receive{x )
b 5 by

v

Figura 3.4: Sequencs Diagram for the Secure-Channel Communication Pattern,

s [t promotes reusability of cryvptographic mechanisme.

e It allows application developers to choose the most adequate security strategy for
the system’s implementation.

e [t provides a system design that is easier t0 maintain, adapt, changs, and extend
than traditional approaches for developing eryptographic software.

® [t may introduce inefficiencies in the cryptographic protocols, doe to the refsrences,
implicit and otherwise, made in the oblect-oriented design.

Hesulting Context Alice and Bob can instantiate the overall architecture of crypto-
graphic systemz. However, they should choose the crvptographic patterns that are the
most adequate for thelr application’s requivements. Concrete implementations of this
pattern should be based on the four basic patterns, Iformetion Secrsey, Sender Authen-
fication, Message Indegrity, and Signature, and suitable combinations of them.

Implemegtation

s This pattern can be adapted to deal with file storage and recovery. In these situs-
tinns, messages for storing and recovering a file replace those used for sending and
receiving information.

s The reflection pattern can be used to implement the security requivements in a
transparent and non-intrusive manner for application programmers, that is, without
interfering in the application’s original structure. The reflection mechanism encoy-
rages modular deseriptions of software systems by introducing a new dimension of
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modularity: the separation of base-level and meta-level computation. Reflection
allows the ereation of meta-obiects that iroplement the cryptographic mechanisms
and that control and extend the behavior of application objects located a1t the base
level,

¢ Before secure communication begins, a negotiation step i8 necessary in order for
the participants not only to agree on which transformation to perform, but also to
exchange information, such as kevs and algorithm parameters.

# kve's role depends on the concrete implementations. She can replace or modify a
message in transit in the channel, or insert har own messages,

Example Electronic payment systems have high security requirements. They can be
better structured when the Secure-Channel Communication pattern is used. Sections 3.2
and 5.4 discuss some important aspects of our case study, PayFerllick.

Known Uses In the lterature we can find various systems that use the Secure-Channel
Commurnication pattern, such as [HY97, Her§7, CGHKS8, HNUE, Lind3, Zim95, BDRIE].

Related Patterns Several well-known patterns can be used when instantiating Secure-
Channel Communicetion. The Strategy [GHIVG4, 315] pattern can be used to obtain
algorithm independence. The Bridge [GHIVO4, 151] pattern can be applied to pro-
mote implementation independence, The Abstract Factory [GHIVY4, 87 patters can
be employed in the negotiation step to choose which crypiographic algorithm or im-
plementation to use. The Obgerver (GHIVO4, 203], Prozy [GHIVO4, 207], and Clent-
Dispatcher-Server [BMRY06, 323] patterns can be used to obtain location transparency.
The Forwarder-Recetver [BMRT96, 307] pattern can be combined with the eryptographic
patterns in order to offer secure and iransparent inter-process communication, so that
Alice beromes part of the Forwarder and Bob iz incorporated into the Heceiver. The
Btate [GHIVO4, 305] patiern can be used to provide state dependent behavior, such as
turning the security of the chanrel on and off. The Null Object [MRBVS7, 5] pattern can
be used to design a null trassformation. The Reflection [BMRT06, 193] pattern can be
used to separate application functionality from the security requirements. The cryplo-
sraphic infrastructure, as encryption/decryption algorithms, pseudo-random generators,
hashing algorithims, etc., can be provided by a Security Access Layer [YBYT, 18]
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3.3.2 Pattern 2: Information Secrecy
Context Alice wanis to zend sensitive messages to Bob. Moreover, she wants to keep

these messages secret from Eve, whom Alice suspects may be trying to read s contents,

Problam  How can Alice send o message to Bob so that Eve cannot possibly read its
contents?
Applicability
s When two participants need to share confidential information.
» When it is necessary to decouple encryvption/decryption activity from sither data
communteation or storage.
Forces
® Dve tannoet, in any situation, gain access to the message contents.

2 The vost of encryption/decryption should not be greater than the intrinsic value of
the message being encrypted.

# The cost of cryptoanalysis by Eve should be much higher than that of the message
itsell

Solution  This patters supports encryvption and decryption of data. Alice and Bob have
previously sgreed on sn (assomed public) encrypiion function and a shared secret key
{tn public-key ervptography, Bob must first obtain Alice's public key). Bob encrypts the
message and sends it to Alice. Alice decrypts it and recovers the original message.

Conseguences

# Encryption is, in general, a slow task. The security of encrypted information relies
on the secrecy of the encryption key and on the strength of the encryption algorithm.
Clearly a key must be long enough o prevent exhanstive search of the key space.

e Eve cannot read the message contents, but she still can replace or modify encrypted
N1eS8aZes,

= Transmission or storage errors can potentially render the recovery of the original
message diffcnit.
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flesulting Context  Alice and Bob use an encrvpted chanpel for their communication,
However, this channel does not provide data integrity, sender authentication, or non-
repudiation. To achieve integrity without loss of secrecy, Alice and Bob should instantiate
Seerecy with Integrity. I they want to add Sender Autheniication to Information Secrecy,
they should instantiate Secrecy with Sender Authentication. Furthermore, if sender non-
repudiation of secrets is desired, one should instantiate Secrecy with Signature.

Implementation

s Both private {in public-key, or asymmetric, systems) and secret [in secret-key, or
symrnetyic, systems) kevs must be kept protected from unauthorized access.

e An infrastructure to distribute public keys is required.
Example In PayPer(lick, when a Paver makes a cash request, he sends the Broker his

credit card number in encrvpted form. The Broker decrvpts the card momber with her
decryption kev and charges the Payer’s credit card with the requested cash amount.

Known Uses Common uses of this pattern can be found, for example, in electronic
mail systems [Zim85, Lin83, Her87], sutomatic banking machines, and voice encryption.

3.3.3 Pattern 3: Message Integrity

Context Alice sends long messages to Bob, who wants to verify the integrity of the
received messages. He suspects that they may have been corrupted accidentally, due to
transmission errors. Alice and Bob do not share crypiographic keys.

Problem How can Bob determine whether a message he received has been modified?
Applicability
e In the detection of ccourrence of ervors in either transmission or storage of data.

¢ [n the detection of vnauthorized madification of data.

¢ When it is necessary 0 generate "fingerprints” for either messages or data records.

Forces

& The mechanism should be robust against unauthorized, accidental or not, modifi-
cation of data.

¢ The mechanism should be cost-effective.
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Solution  Alice and Bob agree to use a MDC {Appendix A}, Alice computes the MDC
of the message and sends both message and MBC 1o Bob. Bob computes the MDC of
the message and compares 1t to the one reeeived from Alice. If they mateh, the message
has not been altered,

Conseguences

o It is necessary to verify a relatively small MDC 1o determine whether a large amount
of data has been modified.

& Ive stili has the ability of sebstituting both message and the corresponding MDC.

# MIIs by themselves do not goarantes the anthorship of & message.

Resulting Context  Alice and Hob use MDGCs to detect corruption of data. However,
this technigque guarantess neither sender authentication nor non-repudiation. I these are
required, other patterns, such as Sender Authenticotion ond Signoturs, should be used
instead. Moreover, Informaotion Secrecy can be combined with Message Mntegrity in the
Secrecy with Integrity pattern, thus providing integrity and secrecy at the same dims in
the channel.

Implementation

e A message must be bound to its corresponding MDC to avold mismateh of messages
and MDCs.

» Measures should be taken 1o recover the original contents of corrupted data, MDCs
van detect corruption, but not correct it. One standerd solution is message re-

playing.

e When feasible, sending twe or more copies of & message, with the additional feature
of allowing weak correction capability, is an alternative to employing MDCs for
detecting corruption.

e MDCs are often implemented using cryptographic hashing algorithms [MvOV96]

Example In PeyPerClck, slectronic pavments must have their integrity preserved in
order for the Pavee verification to succeed. Thus, the payment should be sent by the
Payer along with its MDC. The Payee recomputes the MDC of the received payment and
chechks it agsinst the received MDC.



3.3. A Pattern Language for Cryptographic Softwars 30

Kunown Uses Two common uses of MDCs are the detection of file modification caused
by viruses and the generation of passphrases to produce cryptographic kevs. Privacy-
Emhanced Mail [Lin93] is ons of the systems that provides Message Integrifty. MDCs can
also be used as unique identifiers of electronic colns in electronic commerce applicati-
ons [FDY8L

3.3.4 Pattern 4: Sender Authentication

Context Alice and Bob want to exchange messages, but they cannot distinguish their
own messages from spurious ones, perhaps inserted by Eve, in the commaunication channel.
Moreover, we assume that they have previously established a secvet key using some secure
channel.

Problem How can genuine messages be distinguished from spurious ones?

Applicability
# When the ocouwrrence of errors during transmission ov storage must be detscted.
# YWhen the detection of corruption or unauthorized modification of data is necessary.

s When it is necessary for both Alice and Bob to certify the origin of exchanged
MESSAEES.

Forces
e The authenticated messages should be hard to forgs..

¢ The authentication mechanism should detect accidental data modification, as well
as those supposedly done by Eve.

s The anthentication procedure should be cost-effective; that is, it sheould not tmply
a cost higher than the intrinsic value of the data being authenticated.

solution  Alice and Bob agree beforehand on a shared secret key and a cryptographic
algorithm for generation of Message Aunthentication Codes {MACUs) (Appendix A}, Alice
computes the MAC of the pair (message, key) and sends both message and MAC 1o Bob.
Bob computes the MAC of the received message and the shared key and compares it with
the MAC he received from Alice. If they match, the message is genuine and must have
been sent by Alice because, other than Bob, only Alice knows the secret key and can
compute the correct MAC for a given message.
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Conseguences

» A message is correctly authenticated if and only if the shared key is kept secret from
third pariiss.

s The authorship of 2 message produced by Alice or Bob cannot be proved to a third
party, since both sides can compute valid MACs.

s Bve may insert a previously seen message along with its (correct) MAC into the
communication channel, thus fooling Alice and Bob. In this situation, some gua-
rantee of the message freshness should be provided. A common solution for this
problem 1 the inclusion of timestamps or sequence numbers ss part of the message
contents,

Hesulting Context Alice and Bob can austhenticate the origin of messages theyv ax-
change as well as detect their corruption. However, if they want o prove the authorship
of messages, the Signaefure pattern should be used instead, I desived, encrvption facilities
can be added to the communication charmel to apply the Secrecy with Sender Authenti-
cation patiern.

Dmplementation Factors
s A securs means for exchanging and maimntaining a secret key is necessary.
& Simnflarly to MIDCs, a message must be correctly bound to Hs corresponding MAC,

# MAC gonerators can be implemented in many wavs. Two common possibilities are
symmetric cryvptogysiems and cryptographic hash functions.

o As with MDCs, additional measures should be taken ¥ error correction is desired.

Example Tn PayPerClick, Eve may try to substitute her coins for someonse else’s. This
substitetion can be prevented if MACs of the pavments are computed by the Payer whe-
never they are sent to the Payee. Juch a solution ensures that the Pavee will abways
recetve valid payments, However, a Payee con generate a fake payment and s6i request
redemption to the Broker., Analogously, a Payer can repudiate old legitimate payments
claiming that they were generated by the Payee. I the value of payments is relatively
larpe and coin losses are frequent, the use of the Signature pattern is a better solution to
this problem.

Konown Uses MACs have been used, among other spplications, io aythenticate IP
packages over the Internet {CGHEOE]
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3.3.5 Pattern 5: Signature

Context  Alice sends messages to Bob, but he cannot distinguish Alice’s messages from
the ones Eve may insert in the communication channel. Furthermore, Alice can later
dispute the authorship of a message actually sent by her, denying Bob the ability to prove
to a third party that only Alice could have sent that particular message. We assume that

Alice has a public/private key pair and that her public key is widely available.

Problems How can one correctly attribute the authorship of & message in such a way
that this authorship cannot be later disputed? In other words, how can the receiver of
a particular message convince himself and a thind party of the identity of the sender of
that message’

Applicability

# In contexis where non-repudiation of messages must be guaranteed.

Forces

# Signatures must be dependent from the data being signed. Gtherwise, they could ea-
sily be copied and tied to a different message. Thus, signatures implicitly guarantee
data integrity and sender authentication.

» bignatures must be hard to forge or alter.

e The cost of signing must be substantially lower than the cost of the data being
signed.

» 1t must be possible to verify the authenticity of a signature without its author's
cooperation,

Solution Alice and Bob agree on the use of a public-key digital-signature protocol
{Appendix A). In most such systems, Alice applies the decryvption algorithm to a message
using her private key and sends the result (her signature) to Bob. He then encrypts the
signed message with Alice’s public verification key. If the result makes gense to Bob, that
15, if Bob recognizes in the resulting data what he expscted to be the original message,
then it must be true that Alice is the sender of that message. This is the case, since only
the knowledge of the keyv used by Alice in the signature generation procedure could have
produced that signature.
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Consequences

o The verification of a message’s signature 15 based on the secracy of the author’s key
andd the strength of the signing algorithm. Thus, Alice could presumably deny the
anthorship of an old message by claiming loss or theft of her private key,

# Signatures are wsuaily as large as the data belng signed, sometimes producing an
intolerable overhead.

Hesulting Context  Bob can now prove to 2 third party that a message he has received
came indeed from Alice. Data integrity and sender authentication are implicit in the use
of digital signatures. However, signatures are as large as the data being signed and often
even larger. A more efficient approach would be t0 sign a much smaller fingerprint {the
hash value) of a message, instead of the rmessage itzell and send the signed Hngerprint
slong with the message. This i exactly what is provided by the Signature with Appendiz
pattern. Finally, encryption can be added to the signing process giving rise to the Secrecy
with Signature pattern,

fmplementation

e Public-key cryptographic algorithmg are generslly used to generate digital signatu-

TEE.
» A secure means of storing the anthor’s private key is necessary.

¢ An infrastructure to make public kevs for signature verthcation brosdly available ig
NECesSATY.

» For efficiency purposes, it is often preferred fo sign the hash value rather than the
message itself.

Example This pattern is used in PoyPerClickin two situations of sender non-repudiation:
cash issuing by a Broker and receipt issuing by a Pavee. In the first case, a Broker pro-
duces a essh amount, signs it and sends the signed cash 1o & Payer, which verifies the
Broker's signature. In the second case, s Pavee verifies the Broker's signature in coins
received from the Payer befors issuing the receipt.

Krnown Uses Electronic commerce applications use digital signatures o authenticate
both customers and merchants [FD88l. Digital signatures can also be used to guarantee
authenticity and nos-repudiation of information cbtained over the Internet [HN9S! Both
Privacy-Enhanced Mail [Lin23] and Pretty Good Privacy [Zim95] provide non-repudiation
of electronic mail based on digital signatures,
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Pattern 6; Secrecy with Integrity

Confext Alice and Bob exchange encrypted messages, and they want to verily the
integrity of the exchanged messages. Alice and Bob do not share crvptographic keys for
purposes other than encryption.

Problemy How to verify the integrity of an encrypted message without loss of secrecy”?

Applicabllity

» In the detection of occurrence of errors in either transmission or storage of secret
data.

e In the detection of unsuthorized modification of secret data,

# When it is necessary to generate "fingerprints”for either secret messages or secret
date records.

Forces

# It is desirable that the integrity of secret information can be verified withous dis-
closure of the information.

s (ranting secrecy and data integrity at the same time should not happen at the
expense of one or the other. For instance, it should not be any easter to decipher a
message in the presence of its MDC than it is without it

Solution Two basic patierns are combined to solve this problem: Information Secrecy
and Message Integrity. The MDC is computed over the original non-encrypted message
which is then encrypted and sent, along with the MDC, 1o Bob. This patiern requires
only one public/private key pair (or a shared secret key} used for encryption purposes.

Consequences

# Malicious replacements of messages can still garble valid data, thus rendering it
useless after decrypiion.

& The computation and verification of MDUs may cause 2 noticeable deecrease of
performance. :
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Hesulting Context Alice and Bob combine MDC generation fanctions and encryption
i such & way that they preserve the integrify of an sncrvoted message without loss of
SECTECY.

Implementation
& This pattern can be implemented by computing the message’s MDC eithar before
or after encryption. In the first case, transmission errovs can be detected before de-
cryption. In the second, when the message structure is unknown, sroall transmission
grrors can only be detected after both decryption and MDD verification.

Example If a Payer's encrypied card number arrives corrupted at the Broker, 1t will
not be decrvpted successfully. Thus, the Broker should have the ability to detect the
corruption of an encrypted message, to prevent the acceptance of a wrong butl perhaps
valid card number. So, during a PayPerClick cash request, the Payver should compute the
MDC of the card number, then encrvpt the card number, and send both the MDC and
encrvpied aumber to Broker.

Known Uses  Privacy-Enhanced Mail [Lin93] protocols provide both encryption and
message integrity for electronic mail,

3.5.6 Paitern 7: Secrecy with Sender Authentication

Context  Alice and Bob use public-key cryptography to exchange sncrypted messages.
Eve may intercept messages, but she cannot read their contents. However, she may
replace or modify these messages in such a way that Alice and Bob cannot detect these
modifications or replacements.

Problemn  How can Alice authenticate the sender of an encrypted message without loss
of secrecy?

Applicability
s When the ocourrence of errors during fransmission or storage of a secret must be
detected.
& When detection of corruption or unauthorized modification of secret data is neces-

BATY.

» When § is necessary for both Alice and Bob to certify the orlgin of exchanged
messages that were encrypted using public-key algorithms.
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Forces Similar to the Sevrecy with Integrity pattern.

Solution We combine two basic cryptographic patterns to solve this problem: Informa-
fron Secrecy and Sender Auwthentication. The MAC should be computed over the original
non-encrypted message. Both the encrypted message ang the corresponding MAQ are
sent to Bob., The secret key used to compute the MAC must, of course, be different from
the public key used for encryption,

Consequences

e Sender Authentication restriets the mumber of entities who can produce genuine
encrypted messages but do aot grant authorship.

# Sender Authentication inserts a pew step in both the encryption and the decryption
processes in order to compute and verify a MAC, which can affect the system’s
performance,

Hesulting Context Alice and Beb combine MACU generation functions and encrypti-
on in such a way that they not only preserve the integrity, bul also guarantee sender
authentication of an encrypted message without loss of secrecy.

Implementation

& 1 Alice and Bob use secret-key cryvplography for encryption, then Sender Authen-
tication is redundant and useless, except for granting an extra degree of security.

@ As with Secrecy with Fnfegrify, this pattern can be implemented by computing MAC
before or after message encryption.

Example In a PoyPer(lick cash request, if the public kev is used {or eard number
encryption, then the Paver can use this pattern $0 ensure sender authentication vis-b-vis

the Broker.

Known Uses Secrecy and anthentication can be combined to secure IP packages over
the Internet [CGHKO8].
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3.3.7 Pattern 8: Secrecy with Bignature

Context  Alice and Bob exchange encrypted messages, but they cannot prove the author-
ship of such messages. Moreover, Eve can modify, replace, or insert messages in the
communication channel in such a way that Alice and Bob cannot detect these spurious
messages. We assume that Alice and Bob alveady shéa,re keys for secrecy purposes.

Problem How can Bob prove to a third party the authorship of Alice’s encrypied
messages without loss of secrecy?

Apuplicability

& VWhen non-repudiation of & secret is desired.

Forces Similar to Secrecy with Sender Authentication and Secrecy with Infegrity pat-
terns.

Solution We combine two basic cryptographic patterns to address this problem: In.
formation Seerecy and Signeture. Alice signs 2 message with her signing kev, encrypts
the signed message with Bob's encryption key, and sends 1t to Bob. Bob deciphers the
encrvpied message with his decryption kev and verifies the signed message with Alice’s
verification key.

LIONSeNUences

» Signatures provide a proof of authorship of encrypted messages. However, the cost
of signing long messages may hecome intolerably high.

Resulting Context Alice and Bob combine mechanisms of digital signatures and en-
cryption achieving non-repudiation of secret messages and, implicitly, sender authentica-
tion and corruption detection, of such messages. However, the resulting signatures ars at
least as large as the dats being signed. When possible, the Secrecy with Signafure with
Appendiz pattern should be used, providing & more efficient solution, since the signing
procedure is apphied on the "fingerprint” of the encrypted message.

Implementation

e Different kevs should be vsed in snorvption and signing purposes.
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# As before, this pattern can be implemented in two different ways, according to
the order in which encryption and signature are computed on the message. When
encryption 15 applied fivst, verification of the signature can only be done after de-
cryption, since, in principle, signatures have no apparent structure. This apparent
difficulty can be sasily overcome by attaching to the encrypted message a known he-
ader before signing. 11 the signature is applied first to the non-encrypted data, then
signature verification must expose the encrypted content. This may be unaccepta-
ble when different parties ave responsible for decryption and signature verification.
Usually, a better strategy s to use Secrecy with Signature with Appendix.

Example When sending credit card numbers over the Internet, a user wishes it to
remain secret. At the vendor’s side there is the need for that number Lo be tied to the
correct user, in a non-repudiable fashion.

Kunown Uses Both Privacy-Enhanced Mail [Ling3] and Preity Good Privacy [Zim85]
cotnbine encryption and digital signatures for electronic mail.

3.3.8 Pattern 9: Signature with Appendix
Context Alice and Bob sign exchange signed messages. However, they not only have

Brnited rescurces for both storage and processing, but also the messages theyv exchange
are very large and produce large signatures.

Problem How can memory requirements for signatures be reduced while increasing the
performance of the digital signature protocol?

Applicability
# When a message can he kept separate from its signature.

s When space and time requirements for the digital signature protocol are tight,
Forces Similar to those of the Signature pattern.

Solution Two patterns are combined to solve this problem: Signafure and Message
Integrity. The resulting pattern implements a digital signature protocol over & message
hash valae, which is an MDC. Alice computes 2 hash value of the message and signs it
Both message and signed hash value ave sent to Bob, Bob decrypts the signature and
recovers the hash value. He then computes a new hash value and compares it with the
one recovered from the signature. If they match, the signature is true.



3.3, A Pattern Language for Cryptographic Software 39

Consequences

# When no technique to reduce signature size is used, digital signatures are 2t least
as large 85 the data being signed. However, if messages are small, the inclusion of &
new computation step o reduce the signature size Is not necessary,

# The combination of weak MDCs and signatures can potentially decresse the security
of digital signature protocols.

Resulting Context Alice and Bob reduce their time and memory requirements hy
reducing the size of the dats to be signed. Ervcryption mechanisms can be included in the
signing process Lo instantiate the Secrecy with Signature with Appendic pattern,

Example In PoyPerClick, non-repudiation of a receipt could be achieved by signing
it. However, using the Signefure pattern by itself in each node of the hyper-document’s
tree is not practical. Bven if Signature with Appendiz is computed for each tree node,
this computation may produce a large receipt. Howsver, signing » single fingerprint of &
hyper-document's tree, as in Signoture with Appendiz, is a much faster procedure. The
resulting receipt is attached to the corresponding purchased hyper-documents.

Boown Uses  When the user of an Internet application must digitally sign information,
small signatures should be favored [CGHKE8]. An example of this are signed applets:
Java Development Kit uses Signaiure with Appendiz to produce small signatures for large

ammounts of cods [JBRIBL

3.3.9 Pattern 10: Secrecy with Signature with Appendix

Context Alice and Bob exchange encrypted signed messages in order to achieve secrecy
and non-repudiation. They possess limited storage and processing resources, and the
messages they exchange are large.

Problem How can one veduce the amount of memory necessary 10 store a messags's
signature, while increasing system performance, without loss of secrecy”

Avpplicability
e When secret data may be separated from its signature.

« When the digital signature protocol operaies in limited resource environments,
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Forces Similar to previous pattern combinations.

Splution Two patterns are combined to address this problem: Information Secrecy and
Signoture with Appendiz. Alice computes a hash value of the message and signs it with
her signing key. She then sncrypts the original message with Bob's eneryption key. Both
enerypied message and its signed hash value are sent to Bob. He deciphers the encrypted
message with his decryption key and verifies the signature of the hash value using Alice’s
verification key. Bob then computes & new hash value of the message and compares it
with that received from Alice. If they match, the original message s correctly signed.

Hesulting Context Alice and Bob not only achieve hoth secrecy and nen-repudiation
in their communication, but also reduce the amount of time and memory required for
signatures.

COnSequences

& The inclusion of a hash computation in a procedure that already has two proces-
sing phases may seem a difficelt decision to make. Howewer, hash computations
are among the fastest in cryptographic software. Moreover, the reduction in sig-
ning/verification time and space certainly compensate for the hashing overhead.

Implementation

# This pattern can be implemented either by signing the message’s MDC before mes-
sage encryption or by signing an encrypted message’s MDC directly,

Example Electronic forms usnally contain some sensitive information that requires both
confidentiality and non-repudiation. A typical cash request form could have fields for
credit card tnformation such as number, sxpivation date, card type and owner; other
fields may contain the amount of cash requested, value of coins, and so forth. The uge of
digital signatures to guarantee non-repudiation of such data can potentially result in large
signatures. Jecrecy with Signafure with Appendiz solves this problem with a substantial
gain in performance.

Knpnown Uses Digital signatures for electronic mall, aloue or in combination with en~

eryption, are provided by Privacy-Enhanced Mail [Lin93] and Pretty Good Privacy [Zim85]
using signatures with appendix.
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3.4 Deploying the Cryptographic Pattern Language
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Figura 3.5 Class Diagram for the Payment Transaction.

Figures 3.5 shows the class disgram for a PayPerClick payment transaction, using
Sender Authenticadion and Sipnature. The first pattern authenticates the sender of the
payment; the second signs the receipt. Consider a payment scenario, which Hhasteates the
use of these patterns:

Let a and b be two obiects, instances of the Payer and Payee classes, respectively.
The encoder of & has been initialized with a secret key shared with b, and H& verifier has
been initialized with b's public key, Likewize, b's verifier and siguner have heen previously
initislized with the shared secret key and with b's private keyv. The following sequence of
events complete the scenario (Figure 3.61:

1. a uses the Encoder & to compute a MAC x of his/her coins.

2. @ sends the coins along with x as pavment to b, who uses its Verifter v £o check the
validity of x, thus authenticating the sender of the coins, namely a

3. & requests a receipt from b, who uses the Bigner s {0 generaie a signed receipt,
sreceipt, and returns it 1o a

4. a verifies sreceipt using the signature verifier.

The Java code in this Section corresponds to a PeyPerClick transaction and uses Java
Cryptographic Architecture (JCA). Classes SecureBandom, Signature, SignedObjiect,
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Figura 3.6: Sequence Diagram for the Payment Transaction.

PublicKey, and Privatekey are provided by JCA. CUlasses Cipher, SealedObject, and
Secrethay are supported by Java Cryptographic Extension {JCE}. Information about the
Java cryptographic APT can be found in [Knu88].

Classes Signer and Verifier (Sample Code 3.4.1) perform signing and verification,
respectively. A Signer should be initialized with a PrivateKey and a Signature engine.
A Verifier uses a Signature engine and a PublicKey., The method sign() in the
Signer class returns & SignedUbject containing the object being signed and its digital
signature. The method verify (3 of the Verifier class takes as input a SignedObiect
ana returns true if the verification succeeds.

The Payer class (Sample Code 3.4.2) contains a Signer s, which signs payments, an
Encipher e, which enorvpts eredit card numbers, and two instances of Verifier: one,
vPayee, verifies payment receipts issued by a Payes; the other, vBroker, verifies cash
issued by a Broker. An instance of Vector is a simple electronic wallet. Payer has two
methods, payForGeods (3, which performs a payment to Payee and requests a signed
receipt, and cashRequest (), which asks the Broker for money. Method payForGoods (O
returns a SignedObiect containing a payment of amount coins to a Payee. The required
amount of coing is removed from the wallet, the payment is signed and sent to the
Payes, from whom a receipt is requested. A pavment transaction succeeds if the payment
succeeds and the receipt is aunthemtic. Method cashRequest () asks the Broker for an
amount of electronic money, which should be charged to the Payer’s credit card. The
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Class 3.4.1 Classes Signer and Verifier

class Signer{
private Sipnavure enging,
private Privateley key;

public Signer (Signature sagine, PrivateKey key}
{ this.key = key; this.engine = engipe;}

public Signedibject sign{ferializable o)}

{ return{new Siguedibisct{c,key.enginadl;}
h
class Verifier

private Signature engine;
private PublicKey key:

public Verifier(Signature eogine, Publicley key)
{ this.key = key; this.engine = engine;}

public boolean verify(Signedibiect o)
{ retwrnic. verify{key,engine) )}

number of the Payer's card is sent to the Broker in a Ssaled(bjiect. A Signedlbject
containing cash is received, verifisd, and credited to the Payer’s wallet.

Class Pavee {Sample Code 3.4.3) contains a Signer 8, used to sign receipts and two
instances of Verifier. One, vPayer, is intended for verification of paymenis signed by
the Payer; the other, vBroker, for verification of single coins issued and signed by the
Broksr. Payee has fwo methods, issueReceipt (), which issues a signed receipt, and
getPayment (), used to verify and check paymenis and coins. Method issueReceipt ()
returns a SignedObject, which contains the mumber of valid coins received since the
issuing of the last receipt. Thiz implementation does not consider the purchased goods
for which this receipt is being issued. A better sclution should contain the hngerpring
of the purchased document. Method getPayment () takes a SignedUbject and verifies
whether it is & valid pavment with valid coing in it. The Payer verifier checks pavments;
the Broker verifier checks coins. The method returns true if all these verifications succead.

The Broker class (Sample Code 3.4.4) contains » Decipher, which decrypts the
PFaver’s card number, and a Signer s, which authenticates cash lssued by Brokey. It has
two methods: getCreditCard (), which receives a SsaledDbeict containing the Payer’s
encrypted card number, and issueCasb(), used to generate an amount of coins. In
mothod issueCash{) an amount of cash is a Vector inwhich each coin is a Signedfbject
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Class 3.4.2 Class Paver

class Paver{
private Yerifiesr vPayee, vBroker;
private Encipher e
private Sigoer s;

private SignedQbiect receipt;
private 3tring myCardfumber = “0001 0002 0003 00047,
private Yector wallet:

public Payeri{Signer =, Encipher o, Verifier vPayee, Verifisr vBroker)
{ this.s = s; this.e = e; this.vPayee = vPayee; this, vBroker = vBroker;}

public boolean: payForGoods(Payee b, int price){

hoolean ok = {rue;

Vector payment = new Veotor (3

for(int 1 = 0; 1 < priace; i+s+} {
Dhisct coin = wallet.firstElement(};
payment . adéflement (coin);
wallet.removeflement {coin);

¥

ok &= b.getPayment{z.sigul((Serializable) payment}]);

receipt = b, issusReceipt{};

ok &= vPayee.verifyl{recaipt};

if (o) System. out.printinireceipt.gesfbiect());

returnick);

¥

publisr boolean cashRequest{Broker b, int amount}{
boolean ok
ok = b.getCreditCard{e. encrypt (myCardiumber));
Signedlbiect o = b, iszneCash{amonnt);
ol k= vBrokery.verify{oc);
if{ok) wallet = (Veckor) o.getlbject(};
retuwrn{sk);
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Class 3.4.3 Class Payves

class Payeel
private Signer s
private Integer coinfounter = new Integer{Q);
private Yerifier vBroker, vPayer;

public Payee(Rigrer &,Verifier vBroker,Verifisr vPayer)
{ this.s = »; this.vBroker = vBroker;this.vPayer = vPayer:}

public Siguedlbiect issuaReceipt{}{
String sty = {coinfounter.intValuel} # 177%™},
Brring receipt = "I recaived ¥ 4
cotnConnter.teliring (O + “coln’tatys
“from You. Since last recelipt vas issued.®;
this, coinfonnter = now Ioteger{0};
returnis. sign{recaiptl);
t
i

public boolean getPayment {Signedibjiect payment){

boelean ok;

int sounter = colnConnter.intValue():

ok = vPayer.verify{paynent};

¥Yeotor coins = {Vector) payment.getObiect();

for(int 1 = 0; L < coins.size();i++) {
okt &= vBroker.verify{{Signedibiectcoins. elemmntinl{i}y;
ok} this.coinflounter = new luteger(+toountsr);

}

retorniok):
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Class 3.4.4 Class Broker

class Broker{
private Decipher d:
private Signer s

public Broker(Decipher ¢, Signer s){ this.d = d; this.s = s}

public boolean getCradizCard(Sealedlhiect o)
System.out . printin("Card Nupber is "+d.decryptic));
return{trae)

}

public Signedibiect issveCashiint amcunt)}{

Yector cash = new Vector (amount):

SecureRandom ar » new Securelandom{);

bytel]l random = new hwie{20]:

sr.pextBytes (random};

for(int 1 = D; i<amount; i++) cash.addflement(s.sign{new String{random)));
returnis. sign{cash));

containing & random value. Another SigoedObject contains the whole cash amount.

3.5 Conclusions

Cryptography-supported security facilities are becoming a standard feature in many mo-
dern applications. To facilitate the design, implementstion, and reuse of cryptographic
software, the architectural aspects of cryptographic software and the patterns that emerge
from them should be considered. In this work, we present a pattern langunage for cryp-
tographic software. We consider our pattern language to be complete and closed into
the cryptographic services domain for two reasons. First, the patierns represent not only
the overall architecture of typical cryptosystems, but also all the valid combinations of
the four basic cryptographic mechanisms, Second, the cryptographic patterns are wi-
dely used in many applications [HYG7, Her07, CGHKIE, HNOS, Lind3, Zim95] and are
supported by many cryptographic APIs [JBKO8, Kal95, ¢ss87]. Howsver, other auxili-
ary patterns and pattern languages, supporting infrastructure services for cryptosystems,
could be possible. Tropye documents the current usage of cryptographic technigues and
the experience of cryptographic software practitioners. Therefore, it can be used to guide
the decision-making process for the design of crvptographie features.



4.1 Introduction

In many applications, cryptography-based security is & non-functional requirement, those
requirgments related to how well an application accomplishes its purpose [SW86[. Security,
distribution and Tault tolerance asre other ezamples of non-functional requirements which
are usually independent of application functionality, The widespread use of cryptographic
techniques and the present interest and research op flexible/extensible software architec-
tures led us to a reflective ohiect-oriented approach for the design of cryptographic come-
ponents. This approach allows the explicit separation of functional and {non-functional}
eryptographic requirements of object-oriented applications.

The use of computational reflection in object-oriented programining is not new {MaelT],
neither is the use of meta~object protocols in the implementation of non-funciional re-
quirements of object-oriented applications [SW98]. The encapsulation of suthentication
facilities and their composition to fault tolerance and distribution, in client-server ap-
plications using a meta-object protocol, were proposed by Fabre and Pérennoun [FPISL
Meta-Ubject protocols for eryvptographically secare communication are a recurring so-
lution for the insecure communication problem in reflective software architecturss, and
can be abstracted and formally specified as architectural connectors [WS98s]. Software
architectural siyles are composed of connectors and components [SG96].

‘This work presents Reflective Secure-Channel Uommunicalion, a refinernent of the ge-
neric ohject-oriented cryptographic architecture proposed in [(BRDY8L, BRIDS84], in order
to decouple objects responsible for cryptographic services From the application objecis.

47
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The contribution of this work is the proposal of a design pattern obtained by the combina-
tion of Secure-Channel Communication [BRI98s] pattern and Reflection [BMRE 96, 193]
architectural pattern. Heflective Secure-Channel Communication is useful in two situati-
ons: (1) during design of general purpose application with non-functional cryptography-
based security requirements; (#1) in addition of cryptography-based security o third-party
commercial-off-the-shelf components and applications. In fact, the patiern proposed here
was used 1o design a reflective object-oriented framework based on a meta-ohiect library
for cryptography [BDE99al. The diagrams in this paper are presented using Gamma ef
al. s notation [GHIVO4]. Those readers interested in cryvptography technigues should take
a look at {Schd, MvOV06, 56i05].

4.2 Reflective Secure-Channel Communication Pat-
tern

Context We have proposed a patiern language for cryptographic software which is com-
posed by a set of ten design patterns [BRD98a): Secure- Channel Communication, Infor-
mution Secrecy, Sender Authentication, Message Infegrity, Signature, Secreey with Sender
Authentication, Secrecy with Signature, Secrecy with Infegrity, Signafury with Appendiz,
and Secrecy with Signature with Appendir. These patierns document the experience and
the expertise of praciitioners in designing cryptographic services, such as secrecy, integrity,
authentication and non-repudiation, for secure communication and storage applications.
These patterns share the same structure and dynamic behavior. This aspects can be
abstracted in a generic cryptographic architecture, which is stabilished by the foundati-
on pattern, Secure-Channel Communicotion. However, these patierns do not explicitly
capture the design of cryptographic services as non-functional requirements.

Figure 4.1 shows this generic structure defining two template classes, Alice and Bob,
which are application classes, and two hook classes, CodiBier and Decodifier, which are
eryptography-aware classes. Class Codifier has a hook method f{), which performs cryp-
tographic transformations. The class Decodifier defines a hook method (), which per-
forms the reverse transformation, x = ¢{f{z}). The transformation and its reverse are
based on the same cryvptographic algorithm. The objects’ interaction diagram is shown
in Figure 4.2,

A limitation of this design is that it forces functional objects {instances of Alice and
Bob) to explicitly take care of non-functional {eryptography-aware) objects. That is, Alice
and Bob reference cryptographic objects and decide when a cryvptegraphic transformation
should take place. This highly coupled design has the following disadvantages:

s It Dimite the reuse of Alice and Bob.



4.2 Refloctive Becure-Channel Communication Pattern

Alice b Bob

send(y ey receive()

i? x = c\,f{m}‘\"é \_}
{borecaive(x)!

e
odifie N Decodifier '
Codifier Cryprographic cofifie

f &lgorithin

:.“..,,.....\._..J.,...,....,.,....?:_.::..IE 2_...“,._...,,.“,;. .4-\-—v\w»§
. /* Cryptographic £ yegEmy) */ s
| transformation */ |

Figurs 4.1 Secure-Channel Communication Structure.

o odifier asdlice Bob dilecodifier
()

X

reneivei

g(x}

|

Figura 4.2 Secure-Channel Communication Dynamics.

49



[ 3]
L

4.2, Hefloctive Secure-Channel Communication Patlern

s It pollutes application objects with explicit references and method invocations of
non-functional cryptography-aware objects, reducing readability.

s It requires some background on cryptography from application programmers.

Applicability
& When cryptography-aware objects address non-functional application requirements,
® When rense of functional objects should be facilitated,

s When the separation of concerns between functional snd non-functional aspects
should be made explicit.

Problem How could the separation of concerns between application functional objects
and crvptography-aware objects be explicitly represented in &4 way that reuse and rea-
dability can be improved? In other words, can cryptography-based security be added
transparently to third-party applications or components, even if source eode is not avai-
lable?

Forces

s Uryptographic services are usually nen-funciional requirements related to commu-
nication and persistence requirements, but orthogonal to these. Leaving application
responsibilities decoupled from security services facilitates reuse and security policy
changes, and frees application programmers from having to acquire cryptographic
knowledge.

e The explicit separation of concerns can lead application designers to: (1) procras-
tination of important security policy decisions in eryptographyv-aware applications;
{41} Yack of control uver crypiographic features, from the application programmers’
point of view,

s Delegation of cryptography-aware decisions has the advantage of encouraging the
utilization of largely tested {cryvptanalvezed) components. However, it can also ex-
pose spplication funetions and sensitive dats to third party’s Trojan horses.

Bolution In order to overcome the limitation stated in the Section ¥Context”, a restrue-
turing of the interaction mechanism among objects can be used. Meta-object protocols
with message interception mechanisms can potentially invert the dependencies among
non-functional objects and functional ones, in & way that non-functional requirements are
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transparently accomplished by non-functional obiects, which may not be knows by the
apphication functional objeets.
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Figura 4.3: Reflective Secure-Channel Communication Structure.

The use of a meta-ohject protocol explicitly separates cryptographic requirements
from application functionalities. Figure 4.3 addresses Secure-channel Communicationin a
reflective way. Classes MetaAlice and MetaBaob are responsible for cryptographic method
calls and for the re-sending of basedevel methods, which were previously intercepied.
Figure 4.4 shows the intergetion diagram. For instance, method send!] is intercepted by
MOP's reffertive kernel and materislized in & sendeoperation obiect. This operation object
and its argument, m, are treated by the meta~-object, ma, which requests the eryptographic
transformation accordingly. The intercepted method is, then, re-sent {containing now the
encrypted argument, ¢} by MOP's kernel to its original target. The same happens with
method receive().

Conseqguences  This design has the following advantages:

» Decoupling of functional objects from non-functional ones in a way that application
obiects do not need to know either what kind of (eryptographic) transformation is
taking place or what kind of security requirements are being accomplished {confiden-
tiality, integrity, suthentication, non-repudiation, or some apropriate combination
of these}.

» Separation of cryptographic objects from apphication objects so that it is potentially
possible to understand application code without cryptographic background.
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Figura 4.4: Reflective Secure-Channel Communication Dynamics.
s Development and testing of cryptographic components can be done only once, se-
parately, for highly reused components.
Its main disadvantage is a potential decrease of performance, for two reasons:

» A relatively large number of method calls, due to 2 larger number of indirections in
code,

# A time delay due to the method interception mechanism.

A minor disadvantage is the larger number of objects within the whole application.
Cryptographic algorithros are usually implemented within methods. If cryptographic
transformations are performed faster enough, small lasses of performance, due 10 method
mvoeation and Interception, can De negligible.

Implementation Factors

# The ¢ priori negotiation, concerning the usage and agreement of oryptographic
services and the generatlon, exchange and storage of kevs, may or may not be
handled at the meta-level. This decision depends on the degree of control over the
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cryptographic services the application programmer intends to have, For instance,
application programimers may be inferested on what kind of service is being used
at a given moment, maintaining the ability of turning the security aspects of the
channst on and off

The tower of meta-objects [Mae87] can be as high a8 the numnber of non-functional
requirements. The decision concerning which pesition cryptography will occupy in
this tower Is not stmple. Aspects such as requirement composition or chaining must
be considered carefully. For instance, since cryptography is orthogonal to persisience
and communication, which can, In turn, stay at the meta-level, cryvptography should
be accomplished at the meta level of these, that is, at a mela-mets level, However,
if fault tolerance is another requirement, it can be accomplished cither above or
helow encryption [FP96.

The number of crypiographic mets-objects may vary among three main possibiliti-
ss: {1} a single meta-object responsible for encrvption and decrvption: this solution
works if Alice and Dob shave the same address space; {#} two meta-objects, one
wstance of MetaAlice, associated to a method Alice.send{), and one instance of Me-
taBob, which treats method Bob.receive(}, recommended for secnre communication;
(134} at least as many mets-objects as the number of Alice and Beb instances. The
MOP’s ability to manage the need for distinet simultaneous instances of Encoders
and Decoders, potentislly initialized with keys used for different purposes, in order
Lo simultaneously keep track of channels with different degrees of seonrity, deter-
mines the final number of meta-obiscts, How easily this task ¢an be accomplished
depends on the MOPs ability for meta-object composition,

# There are situations in which the result of an (intercepted) operation should be

encrypbed, authenticated or verified for non-repudiation. How sasily this can be
accomplished depends on the flexibility of the meta-object protocol. MOPs offering
features for both result interception and modification facilitaies transparent secrecy
as well as authentication of results,

There are two approaches for adding cryptography-based security so thivd-party
components: {2} performing behavioral changes dynamically, on-the-fly, over exe-
cutable {byte} code; in this case, a hook {well known} interface [Wel97! must be
svatlable; (31) working over the source code, potentially performing some preproces-
sing.

The meta-level application can work as an object-oriented framework [Lew38, Pregs]
and the inversion of control, which characterizes frameworks, takes place [BDR9a].



4.2, Reflective Secure-Channel Communication Pattern Hd

Example Modern software systems are being modeled according to architectural styvles
[SGDE], which consist of groups of components glued together by connectors, according to
spme griteria. Commercial-off-the-shelf (COTS) applications and components usaally pre-
sent legal and practical obstacles in accessing their souree code, these obstacles restrict
component flexibility. However, in component-based applications, it is often necessary
either add features to or modify the behavior of COTS. For instance, cryplographv-based
security can be added to a COTS communication component in order to fransparen-
tly modify its behavior and provide confidentiality, integrity, authentication and non-
repudiation, without COTS modification, In this situstion, a MOP can be used as the
architectural connector that glues a cryptographic component to the COTS communica-
tion component, '
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Figura 4.5; Ted Structure.

The diagrams on Figures 4.5 and 4.8 show the structural and dynamic models for
a simnple program implemented in Section “Sample Code™. The meia-level application,
Transparent srror detection {Ted), is used to modify the behavior of the base level appli-
cation, AliceAndBob. The MOP transparently add cryptography-based integrity to data,
exchanged through method calls, in the base level. Ted does not need to access AliceAnd-
Bob source code. However, in this case, it requires at least a known (hook) interface to be
accessed by the MOP. In this example, this interface is based on (siatic} class methods.
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Class 4.2.1 UncorruptedObject

class UncorruptedObist implements Sertalizable {
public UncorruptedObiect!Seriglizable obiect, MessageDigest hashBoygine);
public final Objert getObject(}
public Boal boolean werify{MessageDigest hashBngine);

}

class Coder {
public UncorrupredOhject encode(Serializable o);
public Object decode(Berializable o)

sample Code  The following Java code corresponds to a simple program, Ted, that adds
crypiography-based modification detection facilities to another program, AliceAndBob.
Ted works over AliceAndBob bytecode. Tt is based on a hook interface of AliceAndBob’s
static methods, though, Ted uses Guarond [OGBY8], a meta-object protocel for Java. Ted
is activated by typing, in a unix shell, the command line: ¥ guarana Ted AlicebndBob,
Guarand interprets Ted which takes AliceAndBob as an argument. Ted was written with
Guarnng MOP in mind and executed by the Guarand. On the other hand, AliceAndBob
is & common Java class file which is used witheut any modification.

Classes Uncorruptedbiect{Class 4.2.1), Coder and Ted belong to the meta-level ap-
plication, The public interfaces for those classes are shown below. UncorruptedObject
encapsulates a serializable object and its fingerprint, computed by a MessageDigest en-
gine from the package java.security. Method verify () checks the object’s fingerprint,
and method getDbiect{) returns the original object. Uncorruptedbject is analog
£ class SignedUbject from java.security. Class Coder emcapsulates the creation of
Uncerruptedibiects in method encode () fingerprint’s verification and object recovery
are in method Coder. decede ().

Class Ted{Class 4.2.2) extends Guurend’s Hetalbject and has two interesting methods:
& handle () for {reified) intercepted Operations and main(), responsible for base-level
class loading and association to meta-objecis. Method handle () obtains the method na-
me from the reified UOperation, taken as parameter, and tests it in order to determine i it
i pither a receive() or » send() call. In the first case, the argoment is encoded; in the
second, it is decoded. After that, the Uperation, now containing the modified argument,
replaces the old one and is invoked.

Method Ted . main () (Class 4.2.3) loads a class, which name was passed as an argument,
locks for its main() method and uses Guarana.reconfigure(), a call 1o the reflective
kernel, to turn a Ted’s instance into the primary meta-ohject of the loaded class. Bince
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bt 1

lass 4.2.2 Ted

public vlass Ted extends MetaObjest {
pubiie Hesult handle(final Opseration op, final Objsct ob) {
{peration veplace = aull;
switch {op.getOpTypel}) {
case Operativnmethaedinvocation:
try {
Object] args = op.getArgumens{);
Seriatizable arg0 = {Serializable) argsil];
String § = op.getMethod () getName( )
Systern.out.priotln “Method Y454 Vinterceped
if {sequale{"receive’}} argll = [Serializable) c.decodelnrglh
i {seguals(Psend™)) argl = [Berishizable} cencode(argl);
argelll] = (Object) argly
replace = opfact.invoke {op.getMethod(}, args, opl;
replace. validare();
1
vatch{Exception ¢) {e.primtStackTrace() System.exitid)}
Regult rez = Bemlt.operation{replace Result noResultMode)

return s

i
return BesulfnoResuls;

Sample Code 4.2.3 Method Ted.main{}

public static void main{Stringl] argyv)d
javadang Class © = ClassforName{argv]0]);
javadang reflect. Method m = cgetMethod{"main™, new Clase]] { Buriugllelass i
Gaarapareconfigureic, mdl, new Ted{});
minvoke{null, sew Object[{argv});
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Class 4,2.4 AliceAnidBob
public class AllceAndBob{

public static vold send{Serializable o, AliceAndBob biob)
{ System.cut.printin{bob.receive(ol); }

public statlc Serializable recejve{Serializable o}
{ return("T received: "+o4%, is it ok?*)}

publie static void main(String[] argv){
send{"This string must mot be corrupted” mew AliceAndBob{}};

}

p—

Ted's instance is associated to a class, not 1o instances, only static {class) method calls
can be interceptsd, Finally, the main () method of the loaded class is invoked.

Class AliceindBob{Class 4.2.4) is the base-level applicaction. It has three stavic
methods: main(), send () and receive (), which are not cryptographically secure. Thus,
the target of a receive() message cannot determine whether the object received was
corrupted or savesdropped.

An interesting feature of this example is the inversion of control over the main execu-
tion flow; that is, Ted is the main program which loads AliceAndBob. In fact, Ted works
as 2 small object-oriented framework [Lewd6, Predd| for adding cryptography-based error
detection to AliceAndBob-like applications. This framework can be extented in order to
not only offer other cryptographic services, but also cover a broad range of object-oriented
applications [BDRO%a].

Known Uses  Friends [FP96] is a reflective software architecture for implementing fault
tolerance and authentication to object-oriented applications, which uses a meta-obiect
protocol for avthentic communication. Transparent addition of security features to third-
party {off-the-shelf) Java componentes, based on a reflective architecture, is another in-
teresting application of this pattern [WS98b, Wel97].

The 1deas present in the sections “Example” and “Sample Code” can be extended to
gther cryptographic services. We have used this pattern during the realization of the basic
destgn features of a reflective ohject-oriented framework based on s meta~object Hbrary
for cryptography-based security [BIDR99a], which focuses on three points: easy reuse
of eryptography-aware code, easy composition of cryptographic services snd transparent
addition of cryptography-based security to third-party eode. The framework is applicable
to not only third-party commercial-off-the-shelf applications, but also legacy systems. In
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this framework, instances of MetaAlice and MetaBob are especialization of an abstract
Metalevel App class, which offer hooks as in the Template Method [GHIVO4, 325 pattern.

The main goal of this meta-object lbrary is to provide base-level applications with
rensable cryptography-based security features in which addition and composition of cryp-
tographic services are transparent, from the point of view of the base-level programmer.
This powerful approach allows the addition of cryptography-based security to {(Java) ap-
plications even when source code is not available. This meta-oblect ibrary scig in the
realm of object communieation in such a way that dats exchanged among communicating
{potentially distributed} objects through method calls are transparently secured. The
reflective obisci-oriented framework provides the proper inversion of control in order to
assure that cryvptographic code is not known by base-level applications,

This pattern can also be used recursively. For example, secure meta proxies can be
used to protect objects for eryptographic keys, handled in meta level, against corruption
and unanthorized copy [BIDR9%al.

Related Patterns  Heflective Secure-Channel Communication is a refinement of Tropye's
Secure-Channel Communication [BRDO8s] obtained by combining the later and the Re-
Hection [BMRTO8, 193] architectural pattern.

£

4.3 Conclusions and Future Work

Although our cryvptographic design patierns were proposed with the intent of facilitating
design reuse, practice has shown that the high coupling, due to the use of explicit referen-
cos, among crypiographv-aware objects and functional objects leads to both reduction of
apphcation objects reuse and decrease of design understandability. Specific applications,
specially those in which cryptography plavs a non-functional role, could benefit from a
combination with computational reflection mechanisms in & way that both readability of
application code and components reuse are increased. The composability of cryptographie
mechanisms, such as confidentiality, integrity, authentication and non-repudiation, is also
facilitated by a mets-object protocol in which meta objects could be sasily composed. The
reflective variations of cur cryptographic design patterns can be used to document not
only the usage [Joh92], but also the design {for example, when selfsecuring cryptographic
keyvs} of a reflective cryptographiv framework for secure object-oriented applications.



5.1 Introduction

Fields such as computer networking, distributed systems, electronic messaging and brow-
sing have strong security concerns in granting integrity, authentication, non-repudiation
and confidentiality. Modern crvplography Is used in applications such as slectronie com-
merce systems, legacy systems, not originally developed with security features, and soft-
ware systems in which crvptography-based security plavs a non-functional role. In order
to facilitate the reuse of fHexible and adaptable cryptographic software in such an hetero-
geneous environment, the architectural aspects of cryptographic components, the design
patterns that emerge from them and the gluing techriques for the combination of security-
aware components with comuercial-off-the-shelf ones should be considered.

This work presenis a Meta-Object Library for Cryptography (MOLC for short). The
main gosl of this hbrary is to provide base-level applications with reusable cryptography-
based security features in which addition and composition of cryptographic services are
transparent, from the point of view of the base-level programmer. This powerful approach
allows the addition of eryptography-based security to (Java} applications even when sourcs
code 1s not available. MOLC acts in the realm of object communication in such 8 way that
daty sxchanged among communicating (potentially distributed) obiects through method
calls arve transparently secured. MOLC was implemented in CGuorend, s meta-object
protocol for Java, which is fully documented in & sevies of technical reports (OGBS,
OBg8a, OBY8L, OBY8e].

Thig text is organized as follows. Section 5.2 reviews the main cryptographic servi-
ces and the role of cryptographic patterns. Section 5.3 approaches the main aspects of
MOLC's design. The design issues in adding security to third-party applications are in

&0



5.2. Cryptographic Services and FPatterns §1

Section 3.4, The meta-level reconfigration policy is treated in Section 8.5, Section 5.6
cutlines irnplementation issues. Conclusion and future work are in Seclion 5.7

5.2 Cryptographic Services and Patterus

Modern cryptography addresses four security goals [MvOVS6]: confidentiality, integrity,
authentication, and non-repudiation. Accordingly, there are four basic cryptographic
services: (1) encryption/decryption to obtain seerecy or privacy, {#) MDC {(Medificati-
on Detection Code] generation/verification, (iid) MAC (Message Authentication Code)
generation/verification, and {iv) digital signing/verification. These four services can be
combined in specific and lmited ways to produce more specialized ones and are the buil-
ding blocks for security protocols. Confidentiality is the ability to keep information secret
except from anthorized users. Data integrity is used to guasrantee that information has
not been modified without permission, which includes the ability to detect unauthork-
zed manipulation. Sender {origin) authentication corresponds to the assurance, by the
communicaiing parties, of the origin of an information transmivted through an insecure
communication channel, Non-repudiation is the abllity to prevent an entity from denying
his actions or commitments in the future.

Some combination of the basic crvptographic services are required in order to accom-
plish the security requirements of applications. We have proposed a pattern langnage
for cryptographic software {BRDO8a] which addresses the valid combinations of erypto-
graphic services in the context of secure communication, when securify aspecis are so
important that they cannot be delegated to the communication or persistence subsystems
and are treated by the application itself. The cryptographic design patterns correspon-
ding to the basic services and their valid compositions are summarized in Table 5.2, The
Secure-Channel Communication pattern is an abstraction for the others’ common aspevts
of behavior and structure.

Computational reflection techniques allow the explicit separation of concerns betwe-
en functional and non-functional reguirements of vbject-oriented applications. Software
systems, specially those in which cryptography plays 3 non-functional role, could benefit
from a combination with computational reflection mechanisms in such 2 way that both
readability of application code and reuse of software components are increased. We have
proposed in [BRD992) a vefinement for the cryptographic patterns in order to decouple
objects responsible for eryptographic services from the application’s obijects. This appro-
ach is useful: (i} during the design of general purpose application with non-functional
cryptography-based security requirements; {if}) in addition of aryptography-based secu-
rity to either legacy systems or thivd-party commercial-off-the-shelf componenis. MOLC
provides a set of meta objects whose main goals are the instantiation of the reflective
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ervptographic patterns and the composition of eryptographic services.

Purpose

D odh 1 Pattern
1 ! Recyre-Channal
Communteation

Provides a generle software archi-
wecture for cryprographic svstems

2 | Informuation Seerscy Frovides secrecy of information

3 ] Message Integrity Detects eorruption of & message

4 | Bender Authentication Authenticats the ovigin of & message
5 | Bignaturs Provides the authorship of a message
& | hecreoy with Inteprity Detects corruption of a secret

iy

Berrecy with Sender
Authenticasion

Authenticates the origin of a secret

B 1 becrery with bignature

Froves the authorship of a secret

9 Signature with Appendix

bSeparaes message fom signature

15 1 Secrecy with Signaturs

Separates secret Fom signature

with Appendix

Table 5.2: The Cryptographic Design Patterns and Their Purposes.

5.3 Meta-Object Library

The communication among objects can take place through either method calls or buffers.
in the first case, method calls can be local or remote and references to objects can be
divect or through proxies. In the second, buffers can be sither persistent or trapsient.
In these situations, cryptography-based security can be applied to both arguments and
results of methods. A meta-obiect protocol can be used fo provide transparent security
to date exchange. Por example, method calls and returned results are intercepted by the
meta level and the operation’s arguments or resulls are converted to some secure formag
aceording to the communication security requirements. The target oblect of the method
call or returned result have to restore data to their original insecure format. Of course,
meta objects must agree on cryptographic features, such ss keys and algorithms, before
the communication begins. A cryptography subsystem is supposed to be responsible for
such an agreement.

The general software architecture for this meta-object Bbrary is shown in Figore 5.1
MOLC contains the flow of program’s execution, which in turn containg the base-level
application. Such a feature characterizes MOLT as an object-oriented framework [Preds).
The cryptographic routines are obtained from a Java Cryptographic Service Provider
[JBKS8]. Because the cryptographic provider’s routines are in a low level of abstraction,

an adapter layer between MOLC and the Java Cryptographic Provider is necessary in
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MOLC Framework

< %

Hase-1evel Application

tava Cryplography Providey
Adapier Layer

Figura 5.1: Architecture of MOLC,

order to reduce both the complexity of meta objects and the dependenciss from particu-
lar implementations of cryptographic services. Besides offering mets objects for crvpto-
graphic transformations over base-level data, MOLC can also reflect about itzell in order
to securs its own data. An interesting example of such a recursive use of the refiecti-
ve crypiographic pattern is the implementation of secure proxies for cryptographic keys
as meta objecis. Another possibility is self authentication of either compiled classes or
distinct algovithrn implementations.

5.3.1 Securing Keys with Meta Proxies

Kaeping cryptographic keys securely stored in computer mermories is alwavs a problem,
FProtecting keys from unawthorized copy or modification is a difficult tashk because they
are usually ordinary obiects kept insecurely in computer mercories. A step toward making
key manipulation in memory less insecure Is to reduce the time keys siay in memory as
active objects. I keys only stay in memory as local variables of methods, the chances
for unauthorized copy are greatly reduced because objecis local to methods are usually
deallocated at the end of method execution (or garbage-collected when unveachable} and
the mamory freed so that it has a greater chance o be used by another method’s local dats
in a refatively short period of time. Particularly, Java objects are stored in the heap in an
implementation specific format and Java local variables are kept into the method’s stack,
whose memory is released after the method’s execution. Such features greatly reduce the
chance of memory scans looking for sentivive data, but the risk still persists.

Protection proxies [GHIVY4, 207] can be used to control access to eryptographic keys.
We have implemented a meta object, called MetaKey, for proxing eryptographic keys,
which are kept encrypted in persistent storage and whose contents are supposed to be
decrypied only for use in the innermost methods as a local variable. We used Guarend's
facilities for creating proxies and associating meta objects to them. The proxy is a Kev's
instance created by Guerend’s makeProxy{) method and which has & meta object of class
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Metakey associated to i, Any attempt to access the proxy contenis s intercepted by the
meta level and redivected to the real key object kept securs in persistent storage.

5.3.2 HReflecting Over Transformations

By extending the basic Gusrand’s MetaObject class, we have immplemented a class hierar-
chy responsible for transformations over arguments and results of intercepied operations.
These classes are shown in the diagram of Figure 5.2, Class MetaCryptoEngine works as
a specialized message handler wseful for communication among meta objects or between
base level and meta level. MetaCryptoEngine recognizes three subtypes of GFuerands
Message interface: MethodToRellectAbout Is used to add a method, whose arguments
will be secured, to the meta object’s list of methods; TumOn and TurnOf are used to
turn the security of the channel on and off, respectively. The broadeasted messages Tur-
nOn and TurnOf ave associated to the abstract methods turnond} and turnoff{) that are
supposed t0 be overloaded by subclasses implementing specific transformations.

As shown in Figure 5.2, MetaCryptoEngine has four direct subelasses, dividsed in fwo
pairs. MetaTransformationParams and MetaReverse TransformationParams are responsi-
ble for performing transformations and their reverses over parameters. MetaTransforma-
tlonResult and MetaReverse TransformationHesult act over returned resulis of operstions.
The fivst pair overloads the MetaObject’s handle for operation in order to perform the
transformation and their reverses over intercepted methods’ arguments. The second pair
gverioads the handle for result in order o transform the returned results of intercepted
operations. All these meta transformations bave abstract methods {transformParam(),
revertParam{), transformBesult(}, and revertResult(}} which are supposed to be imple-
mented by subelasses for specific transformations.

Specific Uryptographic Transformations

There are four subclasses for each mets transformation of Figure 520 Each of them
corresponds to one of the four categories of cryptographic services, For example, class
Meta TransformationParams has the subclasses MetalinervptionParams, MetaMdcGene-
ratorParams, MetaMacGeneratorParams, and MetaSignatureParams. The corresponding
reverse transformation class, MetaReverseTransformationParams, has the following four
subclasses; MetaDscryptionParams, MetaMdeVerificationParams, MetaMacVerification-
Parsms, and MetaSigmatureVerificationParams. The complete hieravchy, shown in Figy-
ve 5.3, rontaing 16 concrete classes for the basic cryptographic services. These classes do
not cope with eryptographic service composifion, and, although these meta objects can be
used separately, the power of MOLC lies in the composition of them. We have developed
special meta objects for this purpose,
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5.3.3 Composing Cryptographic Services

The cryptographic services for MDCs, MACs and digital signatures are mutually exclusive
and relate to each other ss follows: MDCs support data integrity only, MACs support
sender authentication and data integrity, digital signatures support non-repudiation and
hoth sender authentication and data integrity. Encryption is orthogonal to the other
cryplographic services and can be combined to each of them. Our patiern language
[BRDA8a} docurments the constraints over cryptographic services combination by limiting
the number of valid patierns. The ways meta objects for cryptographic transformations
are composed are Hmited by the number of cryptographic patierns.

The reflective architecture of Guarand provides an easy way for meta~-obiect compo-
sition [OB98a]. An abstract subclass of MetaObject called Composer can be used to
define arbitrary polivies for delegation of control to other meta objects, separating the
functionality of the meta level from its organization and management aspects. Parti-
cularly, Guarand's SequentialComposer delegates control to its aggregated meta objects
sequentially and recovers the results of them in reverse order.

We subelassed the Composer meta object snd obtained a ConfigurableComposer, whi-
ch has the ability of turning its meta objects on and off according to o Hst of valid Message's
subclasses, which are received and used as Blters or funciion selectors. Another useful
subclass of Composer we have implemented is the SelectiveCompuoser, which implements
stually exclusive selection of meta objects. That Is, at any time, there i af most one
mets obiect active, the others are kept off. The selection of active meta objects, similarly
to the ConfigurableComposer, is based on subclasses of Guarand’s Message which work
as function selectors. The messages that can be undersiced by ConfigurableComposers,
SelectiveComposers and MetaCryptoEngines are shown in Figure 5.4, The static rela-
{ions among these three meta objects are shown in Figure 5.3. ConfigurableComposers
can contain instances of SelectiveComposers, MetaCryptoEngine and other Confizurable-
Composers. SelectiveComposers can contain only instances of MetaCryptoEngine.

SelectiveComposers can be used to implement the mutually exclusive aspect for the
composition of meta objecis responsible for MDCs, MAUs, and signatures. In such a
gituation, the messages used to select functions ave the subelasses of FingerprintOn and
FingerprintOff. ConfigurableComposers can be used to compose orthogonal meta objects,
preserving the ability of arbitrarily turping them on and off. A common configuration
is to use a ConfigurableComposer 1o combine the behaviors of an encryption meta ob-
ject and a SelectiveComposer, already initialized with meta objects for signatare, MACs,
and MDCs. In this case, the messages nsed for function selection are the subclasses of
EncryptionUn and EncryptionOff and the messages addressed to the instance of Selecti-
veCompaoser. Another useful configuration is the use of a SelectiveComposer’s instance
to select among alternative encrypiion algorithms. Any meta configuration, using cryp-
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tographic meta objects either individually or in compositions, is an instantiation of the
reflective cryptographic pattern [BRD99al. An interesting property of our implementation
is that cryptography-aware meta objects can be composed in any order.

5.3.4 The Underlying Cryptographic Service Library

Since version 1.1.2 of the Java Development Kit, Java has offered an object library for
{ow-level cryptographic services such as digital signatures and hash functions [JBKOS,
Oak88, MDOY98. Encryption facilities, due to export restrictions, are not available
from the basic library issued by Sun. An extension to Sun's basic ibrary is available only
in United Stated amd Capada, though free implementations can also be found. Such &
fibrary, known as the Java Cryptographic Architecturs (JCA), is s0 flexible that its API
can be used &5 & hook to either JCA's third-party implementations or to other proprietary
implementations. In both cases, services are accessible through the JUA’s AFL In order to
overpome the export restrictions, we have developed our own cryplographic library based
on Java 1.1's JCA. This approach has also brought greater control over implementation
details, which are usually not available from third-party code. The destription of our
household JCA implementation will be available as a technical report.

The Java cryptographic APL though quite complete, offers only low-level control over
exryptographic routines and secured data [BDROOb]. Similarly to old cryptographic APIs,
byte arrays are the data strocture used to input and cutput. There are fow facilities to
encipher and sign objects [JBKS8, GE98]. Another potential disadvantage is the amount
of knowledge that a client object should have about the APL Such a client object should
look after cryptographic cbiects’ inttialization with kevs and block splitting for input and
output. A cryptography-aware meta chject which takes care of such an old-style and
perhaps unfriendly API iz also complex enough to make its reuse very difficult.

In order to simpiify the design and implementation of the cryptography-aware me-
ta ohjects, we have developed a set of adapters, in the sense of the Adapter [GHIVE4,
129] design pattern, which deals with the low-level cryptographic API and provides meta
abjects with easier abstractions to deal with. Some of these adapters and the static re-
iationship between them and meta objects are shown in Figure 5.5, Each cryptographic
mets object containg a reference to an adapter. Such a reference can be easily switched
between a real adapter and » nuoll one. This approach implements the null state varia-
tion of the NullObject patiern (MRBVY7, 5] making the modification of the meia-level
behavior easy without having to change meta objects. For example, the meta object res-
ponsible for signing methods’ parameters, MetaSignatureParams, contains a reference o
a Signernterface which can be either & Signer or g NullSigner. The corresponding meta
abject for verification of signatures, MetaSignatureVerification, containg references to an
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Figura 5.5: Relationships among Meta-Objects and Adapters.
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adapter which can be an instance of either SignatureVerifier or a NullSignatureVerifier.
The other cryptography-aware meta objects work in the same way.

Adapters use serializable objects in both input and output. Such a feature elimina-
tes the disadvantage mentioned above, which was the use of a lower-level abstraction for
input and output. We have extended JUA's set of classes that haadle objects, that is
SignedUbiect and SealedObject, in order to cover alse authentication with MACs and
mtegrity checking with MDCUs. This set of secure objects are shown in the class hisrarchy
of Figure 5.6. This implementation of the Serialization [MRBVYT7] pattern is also a Com-
posite (GHJIVE4, 163] in the sense that the composition of cryptographic features such
as signing and encryption is facilitated. Implementation details, such as object serinliza-
won and block splitting, are no longer 2 problem and are treated by such objects in an
implementation dependent way, which is hidden from the user of MOLC.

I javalong Serigtizable = ]
£
_ i i |
| FrstObjest UncorruptedObject
1 FlatedObjeck Seralizable) UncomuptedOtiect Serilizable MessageDigast)
makeFingerprint(Serilizable MesssgaDigest
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veriiv{ Secreifey Messageligast bonlean

v

E&flﬁ}b}ﬂﬁt{_}:gmﬁﬁbfﬁ

SealedOlbiect i -
SealedUhiect|Serializable Cipher)p-— AuthenticOhject

get(hiectCipher): Seritizable AuthenticObjectSerilizable Secrati ey Mac) ::

1 authenicawd{Sertzable SocretB ey, Mac)
getbject( Serintizable
verifviSecret¥eoy, Mao) boolean
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Figura 5.6: Secure Objects Hiearachy.

The use of adapters and serializable secure objects simplifies the design of cryptography-
aware meta objects in such 2 way that meta objects do not have to worry about JCAs
APT specifics. Meta objects are fres from such low-level responsibilities and are concer-
aed only with whether a transformation should be performed or not. The composition of
cryptographic services can be easily accomplished using SequentialComposer's delegation
facilities, The sets of adapters and secure objects and the cryplographic service library
constitate the lower layer of the MOLC framework.

Adapters sign errors during fingerprint verification or decryption using exceptions from
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the class hierarchy of Figure 5.7, This hierarchy captures the containment relation among
different kinds of fingerprints. For instance, a BignatureMatchException can be caused
by either substitution or modification during verification of a digital signature. Errors
of MAL vertfication can cause a SubstitutionException to be thrown. Similarly, MDCs
srrors throw ModificationExceptions and decryvption ones throw DecrvptionExcepiions.
ConfigurableComposers and MetaCryptoEngines throw an InvalidMessageException upon
receiving an unknown Message's instance. All the execeptions of Figure 5.7 can be encap-
sulated in a Guorend’s MetaException.

5.4 Reflective Framework for Cryptography

The MOLC’s procedure for adding cryptography-hased security has the following steps:

1. Load base-level classes. That is, load the classes for which 2 meta configuration is
required.

2. Reflect about base-level classes, which means to creste the meta configuration re-
guired by the base-level spplication.

A Start up the mefa objects from a securse initial state.

i

Load the class of the base-level apphication.
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5. Execute the base-level application from the meta level

Steps 1, 3 and 4, are the same for any application, having a few, parameterizable,
differences. Steps 2 and 5 are what can vary among applications. In step 2, a meta
configuration is created based on the baselevel application’s security requirements and,
although a limited nwmber of cryptographic services is available, the reguirements can
vary a lot and produce strongly different meta configurations. Step & has at least fwo
main variations: execute s static method, probably a main) one, or create an instance
of the application class and then execute some ordinary method.

B SRR PR T

| baseClasses= loadBaseC lussestalassList)
: reflectAbontClassestbasel lasses)
 nroadeasthiessages( misgs. haselUlasses)
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[ E Tor(nt i=thi<classtist Jengthiey 4
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metdMaln() v
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reflecsAbsutClasses(Classes] }} . forfing j=Uij<classes long i+ :
oroadeastMessages(msgsilelasses{Ty Guarana broadeast(msgsli] classesfil |
k}adkriaincziass{cl&ssﬂamﬁ} Sraseasennien ey e P
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Figura 5.8 A Reflective Object-Oriented Framework for cryptography-based Security.

This small algorithm can constitute a simple object-oriented framework [Preb} for
adding cryptography-based security to any object-oriented application and can be im-
plemented as the Templote Method [GHIVO4, 325] design pattern. Figure 5.8 shows the
design of the framework. The abstract class MetalevelApp implements the algorithm’s
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invariant parts, leaving hooks for subeclasses. Method metaMain{) performs the algo-
rithm. The methods loadBaseClasses(}, loadMainClass{) and BroadeastMessages() are
the invariant parts. The abstract methods reflectAboutClasses(} and executeMain{) are
the hooks.

In order to test the framework, two subclasses of MetalevelApp were implemented,
AliceMetalevelApp and BobMetaleveldpp, These classes implement the meta configu-
ration shown in Figure 5.4, which also presents the runtime relationships among objects
for such an application. B is important to notice that, as the number of MetalevelApp
subclasses incresses, the use of MOLC becomes more and more like a black box. The
application level contains Alice and Bob instancss and a base-level application’s instance,
shown in Figure 5.9, The framework classes work as a glue laver between the base-level
application and the meta-object Hbrary, In such a glue level there s 2 MalnProgram
which confains tnstances of the framework’s classes AliceMetalovelApp and BobMeta-
LevelApp, These classes are responsible for reflecting abous Alice and Bob classes and
instances. They also start up the base-level application. AliceMetalevelApp and BobMe-
taLevelApp create two symmetric meta configurations. Symmetric meta configurations
means complementary Tunctions in each end of the communication channel. That is, when
Alice’s data should be encrypted, Bob's data should be deerypied and so on. Composer
meta objects distingoish among mutual exclusive services and services compositions.

The meta configurations are associated to classes, that is Alice and Bob, and when new
instances of such classes are created, the meta configurations are propagated. We decided
to copy the class meta configuration to each new instance, instead of sharing o single one
among several instances, in order to stmplify the management tasks, particularly, the oneg
concarning key management,

5.5 MOLC’s Reconfiguration Policy

GFugrand's meta-object protocol allows dynamic meta-level veconfiguration through re-
placement of meta obiects during program execution. Although this feature makes the
design of Guarand extremely flexible, it is potentially harmful for security-aware meta
objects. A secure policy for meta-level reconfiguration should be taken in order to avoid
naive replecements of cryplography-aware meda objects.

When a cryptographic meta object is asked for reconfiguration, it can follow sither
a conservative or a non-comsgrvative approach. In the conservative one, weakening the
cryptographic features of an object’s meta configuration is not allowed. In this approach,
the meta configuration can either rerain the same or allow self.strenpthening. In the non-
conservative approach, the weakening of meta configurations is also allowed. We adopted
a conservative approach for meta-level reconfiguration. In our approach, a meta object for
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signature cannot be replaced by neither 2 MAC meta obiect nor a MDBC one and 2. %1AC
meta object cannot be replaced by a MDC one. Meta objects of the same type cannot
replace each other either. A single encryption meta object can be composed, through a
ConfigurableComposer, with any meta object for Signature, MAC or MDC. Figure 5,18
summarizes the contexts in which the following rules for reconfiguration are applicable.
This minimum set can be easily extended fo support more interesting policies. Starting
from the most conservative, the rules we have implemented are;

Setectivelomposer
onfipComposer

New { & o

£ :

Eeb Laioga; 3

Crurrent 2105 4 %

o EE
Encryption BERE R
MALC slililall
MO G A I B I 1
Signature 700 N W N S S S A
SelectiveComposer | 1] 3 {1 31 ¢ 111
ConfigComposer I T O T N A T

Figura 5.10: Bummary of the Reconfiguration Policy Applicability.

1. The current mets configuration is not replaced.

B

A selective composition of both current and new meta configurations replaces the
current o

EL&?

A configurable composition of both current and new meta configurations replaces
the current one.

4. The new configuration replaces the current one.

It is important to notice thst such reconfiguration policy I only applicable when
base level and meta level are co-designed and base level has a small control over which
transformation should be active. On the other hand, when cryptography-based security is
addad to third-party components, such components do not have access to the meta level.
Thus, there is no possibility of changing the meta configaration. Furthermore, the meta
configuration of a key instance, that is, a MetaKey instance, cannot be modified in any
case.
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5.6 MOLC Programming Overview

The goal of this Section is 1o provide programmers with some feeling on integrating MOLC
to third-party Java applications. We approach the instantiation of cryptographic meta
obiscts, the compeosition of them and the integration of programs and meta programs.
The following sample code creates part of the meta configuration shown in Figure 5.9 and
putlines the implementation of the hooks of Figure 5.8,

Metaleveldpp's subclasses rnplement the abstract method reflectiboutClagsas (),
whieh is responsible for creating meta configurations, Sample Code 5.6.1 is a fragmented
implementation of AliceMetalevellpp's reflectiboutllasses () method. Al crypto-
graphic meta objscts are instantiated sboilarly t0 the MetaBncryptionParans’s instance.
It receives 2 set of Lessage subclasses, to which it is supposed answer, an initialized
adapter and a 1ist of Alice’s methods, on which the cryptographic operations work. T
is important to state that eryptographic operations work on an Alice’s methods subeet
whoge result or arguments are serializable.

A ConfigurableComposer, {Sample Code 5.6.1) a.ce, contains instances of both
MetaEncrypticnParams and MetaDecryptionResult. A SelectiveComposer’s instance,
a.scl, has an array of MetaEncryptionEngine’s subclasses (MetaMacGensrationParams,
MetaMdcGenerationParams, and MetaSigneturePavams). a.5¢2, ancther instance of
MevaEncryptionfngine, contains meta objects for Alice’s verification of Bob's signatu-
res, MACUs, or MDCs, on his methods. Another ConfigurableConposer, ac , aggregates
all the other Composers ared acts as Alice’s primary meta object, Guarand’s reconfigure
method performs the task of setting sn object’s primary meta object.

Metalevellpp's execute (O {Sample Code 5.6.3) method executes the main{} method
of BassLeveldpp. Both AliceMetalevelApp and BobMetalevelipp have to imaplement
the axecute() method. However, Alice and Bob belongs 1o the same program and there
is ng need for executing it twice. Thus, AliceMetaleveldpp’s execute () is null, while
BobMetalevelipp's, below, performs the real work.

Mete proxies for cryptographic keys can be created in the following way (Sample
Code 5.6.4). A SecretKey object, as well as a pass phrase used to encrypt the key and a
file name, is passed to a MetaKey constructor, during MetaKey creation. Both the Metskey
cbiject and the SecretBey class are used by Guargond’s makeProxy () method fo create a
SecretKey proxy, which can be atiributed to a SecretKey variable. A MetaKey created
with only a pass phrase and a file name is used to recover an already securely stored key
from a file.

There should be a main program to launch the base-level application and settle its
meta configuration. The main method of such 2 main program, Sample Code 5.6.5, is res-
ponsible for initializing the meta configuration from a secure state, creating adapiers and
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Sample Code 5.6.1 Creating Cryptographic Meta Objects

void reflect AboutClasses{Class{] classes){

MetaCryptoEngine asmep =
new MetaEncryptionParsms!

new (lass[{ Method ToBeflectAboutPararas class,

Paramsbneryptioniin class,
ParamsEncryption(f.class},
encipher,aliceMethods);

Composer ace = new ConfigurableComposer(new MetaObject{l{aanep,a.mdr});

Composer asel m
new SelectiveComposer{
new MeaCryproEngine[{a.ap.abip, a.sp},
new Class{}{ MethodToReflect AbontParamms. class,
ParsmsFingerprint (. clasy,
ParamuFingerpring O class} ),

Corpposer 2808 =
new Selectivelomposer{
new MeaCryptoEngine[l{avapavbhra.ver),
new Class{]{MethodToReflect AboutResult.class,
ResultFingarprintOn.class,
ResultFingerprintOff class ) );

Commposer a4 = new ConfigurableComposer{new MetaObject{{a.ceascla.502});

Gusrana.reconfipure{classes(i] null sl
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Sample Code 5.68.2 Composing Cryvptographic Mets Objects

Compuser a.co = new ConfigurableCompozer(new MetaObject[[{amep amdr});

Composer a8l =
new SslectiveComposer|
new MetaCryptoEngine]|{aap.abp, a.spl,
new Class(}{MethodToReflectAbourParams.class,
ParamsFingerprintUn. class,
ParamsFingerprint O elass} ),

Composer 2.502 =
new SelectiveComposer(
new MetaCryptoEaginel]{avap, avhr aovsel,
new Class{]{MethodToRelect About Hesult.class,
ResultFingerprintOn class,
ResultFingerprintOff class});

Composer a.¢ = new ConfigurableCompaoser{new MataObject[{{a ceascla.5c2} )
Guaranareconfigure{classesfil,nullac);

Sample Code 5.6.3 Dxecuting The Base-Level Application

void executs{{lass ¢
{ {c.getMethod{"main®, new Class{[{String]].class})}
dovoke(null, new Object[[{new String{0]} )}
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Sample Code 5.8.4 Protecting Kevy in Meta Objects.

SecretKey kil = new RecretKer(),
k1 = (SecretBey) Gusrana.makeProxy (%cmt}&ey clasy,
. new MetaKey {E%E ”’pasczphraw” "Hey . sertil,
k2 = (ﬁﬁﬁ:?ﬁ?}{ﬂ} (3 paranamakeProsy{SecretKev.class, :
: : new Metaley{"passphrasa”,"Ker. ser® )}

Sample Code 5.6.5 The Glue Program

public statie void main(Stringl} argy) {

Eiab,qage mtmé&t&tﬁ] W peW "sk&&;@&g@ﬂ {mw ?az*am%int?grm Om(y,
© wew ParamsEneryptionCa(l,
new ResuBSender AuthOnl),
new ResultEncryptionOn(}};

C(jectl] adapters = new Objectll new MdcGenerator{messagedigent),
. new. \/Idc\/erzﬁergm%mge&gest},
e Z‘zi&{}{ri’n@l’dﬁ}ﬂ?ﬁﬂﬁ k13,
vew MacVeriflerfmackl),
~new: Encigher{cipherl},
new Decipher{cipher?)}:

AliceMetalevelApp alleedpp =

new AliceMetalevelAppinew Stringll{"41ice” L pullinitialSoate};
BohMetalevelApp bobdop =

new BobMetalevelApplnew Stringll{"Bab®}, "BaseLeveldpp™ initialftate};

alicedpp cryvprolnit{adapters);
bobApp.aryptolnit{adapters);
alice App.rnetaMainl
bobhpp.metaMainl};




am

5.7. Conclusions and Future Work A1

Inunching mets Alice and meta Bob, whose execute{) method launches BaseLevelipp.
A Tist of Message's instances represents the meta configuration’s initial state, which
is check integrity of, and perform encryption on the arguments of Alice’s methods, and
perform zender authentication and encryption on results of Bob's methods. A Hst of
adapters supplies the cryptographic transformations for such an initial state. Lacking
featyres, such as non-repudiation, are internally filled by null adapters in ovder to be kept
turned off. Alice’s and Bob's Metalevelapps receive the initial state, the name of the
base-level application {in which case Alice's Metalevellpp receives null), and finally the
names of the classes 1o reflect about, that is, Alice and Bob. Belore calling the metaMain O
methods of meta Alice and meta Bob, both of them receive the list of adapters.

5.7 Conclusions and Future Work

In this work, the main aspects of & meta-object library for cryplography were presented.
This meta-obiect libvary is a reflective extension of a well known eryptographic object
library, Sun’s Java Cryptography Architecture. In addition to being an object-oriented
framework for transparent addition of cryptography-based security to third-party compo-
nents, this reflective extension is able to easily compose cryptographic services, a lacking
feature of many cryptographic libraries {BDR99B], according to a set of cryptographic pat-
terng, An interesting feature of MOLC is the ability to use the reflective ervptographic
pattern recursively, for example, when securing kevs with meta proxies. Future improve-
ments {0 this meta-object library can focus on such a self-securing ability. Particulardy,
efforts can be directed to self~authenticaiion of classes in order to prevent unauthorized
substitution of fmplementations and illegal reading or corruption of internal data.



6.1 Introduction

Cryptography software design is an important topic these days. There is an urgent ne-
cessity for eryptography-based security in applications ranging from electronic commerce
to word processing. It is not economicvally feasible still developing cryptographic softwars
as it used 1o be in World War 11, from scratch. Crvptography is a complicate subject, it
is not a good idea to suppose everyone is able to {or has the and money to) lesrn cryp-
tographic techniques. We are living in the object-oriented component-based era. Thus,
what programmers, who have to deal with ¢ryptography-based security requiremenis, re-
ally want is an sasy-to-use highly reusable oryptographic component as well as a divect
way to find out the vight security feature. In order to help programmers in finding the
right cryptographic services for their requirements, we have proposed a pattern language
for cryptographic object-oriented software [BRD982). In order to provide programmers
with easy-to-use crypiographic mechanisms, we have developed a reflective object-oriented
framework as well as & meta-object library for cryptography [BDR99a).

It has been extensively argued that patterns generate architectures [BJ%4], as well as
pattern languages document frameworks [Joh82, BMAYY]. In this work we address the role
of patterns n using as well as designing an object-oriented framework for cryptography.
Cur case study is a reflective cryptographic pattern [BRDO%a), which is a variation of
the ones present in the pattern language for cryplographic software [BRDO8a), applied to
docurnent the usage of a reflective object-oriented framework for cryptography [BDR9%a].
In order to illustrate bow patterns can document design, we present the overall design of

82
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the cryptographic framework as a set of integrated patterns instantiations.

This paper is organized as follows: Section 6.2 is an overview of cryptographic design
patterns. bection 6.3 is a discussion about the intrinsic relation among pattern languages
and frameworks; Section 6.4 introduces the framework’s design issues and examples of
usage. Section 6.5 presents some performance measurements on using the framework.
Conclusion and future work are in Section 6.6. This text nses a UML-like notation for
diagraras, otherwise a legend Is avallable when necessary. The Java programming language
15 used for code samples.

6.2 Cryptographic Patterns Overview

Modern cryptography addresses many security services [iso@8]. Four of them are con-
sidered main security goals [MvOVU6]:: confidentiality, integrity, authentication, and
ron-repudiation. Accordingly, there are four basic cryptographic mechanisms: (1) en-
cryption/ decryption, {#) MDC (Modification Detection Code) generation/verification,
{7i1) MAC {Message Authentication Code) generation/verification, and (iv) digital sig-
uing/verification, These four mechanisms can be combined in specific and Hmited ways
to produce more high-level ones and are the building blocks for security services as well
as security protoeols.

Confidentiality is the ability to keep information secret except from aunthorized users.
Data integrity is used to guarantes that information has not been modified without per-
mission, which includes the ability to detect unauthorized manipulaiion. Sender {ori-
gin) authentication corresponds to the assurance, by the communicating parties, of the
origin of an information transmitted through an insecure communication channel. Non-
repudiation is the ability to prevent an entity from denying its actions or commitments in
the future. The basic cryptographic services can be invoked in approprigte combinations
with other services and mechanisms. Particolar eryptographic mechanisms can be used 10
implement the basic services. Practical realizations of systems may implement particular
combinations of the basic cryptographic services for direct invoration.

The present interest in software architectures [5G96, BMR796] and patterns [GHIVE4,
383, MRBVYT, BRD9%¢], and the existence of well-known cryptographic solutions to re-
curring security problems [{s089, 15088, MvOV96, Schd6] motivate the development of
cryptographic software architectures and cryvptographic patterns. Cur paltern langoa-
ge offers a set of ten closely related patterns and supports the decision making process
of choosing which eryptographic services address application requirements and user ne-
eds. Securing a communication channel can be such an important task that it should
be accomplished by the application itself, without compromising its main fanciionality.
Secure-Channel Comnunicotion, the foundation pattern, documents general aspects of
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both structure and behavior common to secure communication, independent from the
kind of cryplographic transformation performed. Figure 8.1 shows this generic structu-
re defining two template classes, Alice and Bob, which are application classes, and two
hook classes, Codifier and Decodifier, which are cryptography-aware classes. The class
Codifier has & hook method f{), which performs a cryptographic transformations. The
class Decodifier defines a hook method g{), which perforins the veverse transformation,
y = g{f{z}}. The transformation and its reverse are based on the same ¢ryptographic

algorithin.
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; F 3 Pattern Wame Purpose

1 Secure-Chanmel A General Software Architecture
Communication for eryptographic software

2 Information Seorecy provide secrecy of informarion

3 Messnge Integrity detect corruption of a message

4 Bender Authentioation | authenticate the origin of 2 mossags

5 Signature provids the authorship of & message

& Secrecy with Integrity | detect corruption of & secrer

2

7 Sevrecy with Sender authenticate the origin of a sevret
Authentication

8 Secvery with Blgnature | prove the puthorship of a secret

% | Blgnature with Appendix | sepavate wmessags from signature

101 Secrecy with Signature | separate secret from signature
with Agpendix

Table 6.2: The Crvptographic Design Patterns and Thelr Purposes,

Table 6.2 summarizes the patterns corresponding to the basic cryvplographic mecha-
nisms and their valid compositions. They are applicable as follows. When either on-line
cotonunication or exchange of information through files takes place, sometimes, due to
great sensitiveness of data, (Mmformafion) Secrecy should be guaranteed. However, se-
crecy alone does not prevent either modification or replacement of data. Particularly in
on-line communication, granting Message Inilegrily and {Sender) Authenticotion is also
important. Sometimes, it is necessary to prevent an entity from denying ber actions or
commitments. For example, some form of Signature 15 necessary when purchesing slec.
tronic goods over the Toternet. The cryptographic services, in appropriate combinations,
Iead to Secrecy with Tntegrity, Secrecy with Sender Authenlication ov Secrecy with Sig-
nadyre, Cryptography can be so time consuming that algorithm performance is always
important. Signature can be speeded up by a Signotfure with Appendiz. Stmilarky, Secrecy
with Signature can be speeded up by Secrecy with Signolure with Appendiz.

Figure 6.2 is a directed acyclic graph of dependences among patterns. An edge from
pattern A $o patiern B means pattern B derives from pattern A, Seeure-Channel Commu-
niceiton generates the micro-architecturs for the four basic patierns. All other patterns
are combinations of these. Thus, all the lower-level cryptopraphic patierns instantiate
Secure-Channel Commundcation. A walk on the graph is directed by two questions. First,
how should the cryptographic software be structured to obiain both easy revse and fexi-
bility? Second, what cryptographic services should be added to the current instantiation
of Secure-Channel Commurdcation in order to address application reguirements and uger
needs?

The cryptographic mechanisms corresponding to the services for data integrity, sender



8.2, Cryptographic Patterns Cverview

(1

Secure~-Channel Communication

(2 3} Cy (5}
Information Message Sender Signature
Secrecy Integrity Authentication 7 f

© NoE ® )

Secrecy with Secrecy with Secrecy with Signature
Integrity Sepder | | Signature - with Appendix
Axthentication \ /
_ (10}
Legend: Secrecy with
Hasic Derived Signatwe
Pattern Pattern | with Appendix

Figura 6.2 Cryg)tﬁgmgjhi{: Design Patterns and Their Relationships.



§.2. Cryptographic Patterns Overview B7

authentication and (digital) signatures relate to each other as follows: MAUs support
data integrity, signatures support both sender authentication and data integrity as well
as non-repudiation. Encryption, which supports confidentiality, is orthogonal to the other
cryptographic mechanisms and can be combined with each of them.

Our pattern language documents both the use and appropriate combination of cryp-
tographic mechanisms in order to accomplish not only the basic crvptographic services,
but also the high-level compased ones, in secure communication. In fact, the combined
patterns can be viewed a3 high-level services able to increase the cryptographic unaware-
ness of cryptographic libraries, which should offer not only the basic four mechanisms, but
also thetr compositions. From a programmer point of view, such libraries can support the
composed cryptographic patterns in a variety of ways, ranging from explicit programmer-
made composition of basic mechanisms to transparent composition hidden in high-level,
not necessarily programiner-friendly, interfaces.

Object-oriented applications with non-functional cryptography-based security requi-
rements can benefit from a flexible design in which cryptographic objects and application
functional objecis are weakly coupled. We argue that the combination of compuiational
reflection and cryptographic design patterns can improve reuse of both design and code
{while decreasing coupling and increasing flexibility) of cryptographic components, this
combination can also be treated as & design pattern. Following, the Reflective Secure-
Channel Communication Pattern is presented In a stmple format. The complete pattern
description can be found in [BRD99s]. The use of computational refiection and object-
oriented programming is not new [Mae&7], neither is the use of meta-object protocols in
the implementation of non-functional requirements of ehject-oriented gpplications [SWIE].
Meta-object protocels have also been used to encapsulate authentication facilities and
compose them with fault tolerance and distribution [FPg6].

§.2.1 BReflective Secure-Channel Communication

Context Secure-Channel Communication forces functional objects {Alice and Bob) to
sxphicitly take care of non-functional objects. That is, Alice and Bob reference ervpto-
graphic obiects and decide when a cryptographic transformation should take place. This
highly coupled design has the following disadvantages: (1) it lmits the rense of Alice and
Baob: {¢4) it pollutes application objects with explicit refersnces and method Invocations
of non-functional cryptography-aware objects, reducing readability; (44) it reguires some
background on cryptography from application programmers.

Problem How could the separation of concerns between application functional objects
and cryptography-aware objects be explicitly represented in a2 way that reuse and res-
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dability can be tmproved? In other words, can cryptographyv-based security be added
(transparentiv) to third-party applications or components, even if source code is not avai-
lable?

Forces

» Cryptographic services are usually non-functional requirements of genersl purpose
applications related fo communication and persistence requirements, but are ortho-
gonal to these. Leaving application responsibilities decoupled from security services
facilitates reuse and security policy changes, and frees application prograrmers from
having to acquire {(too much} cryptographic knowledge.

e The explicit separation of concerns can lead designers tor {¥) procrastinstion of
important security policy decisions in cryptography-aware designs applications; {34)
lack of control over crypiographic features (for instance, kev management), from
the application programmers’ point of view.

e Delegation of crypiography-aware decisions has the advantage of encouraging the
utilization of largely tested (cryptanalyzed) components. However, i can also ex-
pose application functions and sensitive data to third party’s Trojan horses.

Solution In order to overcome the lmitation stated in the Section *Context” | a restrue-
turing of the interaction mechanism among obiects ¢an be used. Meta~oblect protocols
{(MOPsy with message interception mechanisms can potentially invert the dependencies
among non-functional objects and functional ones, in such a way that non-functional re-
quireraents are transparently sccomplished by non-functional objects, which may not be
known by the application functional obiects,

The use of & meta-oblect protocol explicitly separates cryptographic regquirements from
application functionalities. Figure 6.3 is the reflective version of Secure-Channel Commu-
aeation. Classes MetaAlice and MetaBob are responsible for cryvptographic method calls
and for the re-sending of base-level methods, which were previously intercepted. For ins-
tance, the send{) method is intercepted by the MOF’s reflective kernel and materialized
in a send-operasion object. This operation object and its argument {m) sre treated by
the meta object ma, which requests the cryptographic transformation accordingly. The
intercepted method is, then, re-sent (containing now the encrypted srgument x) by the
MOP's kernel to its original target. The interception of methed receive(} presents an
anaiogous behavior.
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Figura 6.3 Reflective Secure-Channel Communication Structure.

6.3 Pattern Languages Generate Frameworks

Pattern Janguages genovate frameworks when 2 framework offers the building blocks (pu-
blic interfaces, hook methods and abstract classes) which can be used to solve problems
targeted by a pattern language. Object-oriented frameworks are not off-the-oven black-
box components, instead they have to evolve in time. This evolution is called the fra-
mework life span [BMAS7]. The pattern langusge which accompanies the framework also
evolves in time. Such an evolutional relation is stronger than parallel evolution. {Evo-
lution in response to the same environmental stimulus, but not necessarily influencing
each other.) It can be called co-evolution because modifications in one partner causes
modifications in others. A framework’s evolution ranges from white-box raw frameworks
to black-box ones.

In the beginning of a framework’s life gpan, the firstly implemented parts are archi-
tectural elemenis, which reflect the most general scenarios in the pattern language. As
new applications (basad on the framework) appear, the framework itsell evolves by in-
corporating more specialized black-box components provided by these applications. The
solutions a framework offers can be in one of three levels of abstractions [BMABT]: {4}
elementary components responsible for architectural aspects and more general scenarios;
{i1) basic design specializations, applicstion independent components, conceived for spe-
cific domains; (744} domain specific components, specializations of the ones in the previpus
category, obtained from framework’s applications and added as black boxes. Tn maturad
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frameworks, most components are domain-specific black boxes, which reflect more spe-
cialized scenarios of framework’s usage and generate variations for the patterns in the
evolving patiern language.

We have developed a reflective oblect-oriented framework based on a meia-obiect
ibrary for crypiography [BDR99al. This framework offers the cryptographic services
stated in the cryptographic pattern language [(BRDO%c] using a reflective variation of
those patterns [BRID@Gal, We classify this framework, according to scope [FSUT), as a
system infrastructure framework because it helps the development of software systems
eryptography-based security infrastructures. Also, it can be called a young white-box
frammework since s mainly functionality is svailable through class inheritance and hook
methods overloading { Terplate Method [GHIVY4] pattern). However, it has a great po-
tential to becoming 8 black-box framework since it is based on a closed, relatively small,
set of patterns of usage for orvptographic services. Furthermore, the framework for eryp-
tography already has specializations for reflective cryptographic patterns. These domain
specifie patterns are applicable when crvptographyv-based security 18 a non-functional re-
guirement of appheations and should be delegated to & meta-level in order to achieve
separation of concerns between application’s Tunctiopality and non-functional require-
TRENts,

6.4 Documenting the Framework

In this Section we show, by an example and structured docwmentation, how o both
use and desizn the cryptographic framework. There are two kinds of documentation
for object-orienied frameworks [MCKS7]: (3} user documentation, istended to the final
user sud consisting of scenarios, tutorials and sxamples, and (74} design documentaiion,
information concerning the design of the framework; in both cases, patterns play an impaort
role. These two types of documentation should target three kinds of users [MCKS7L {1}
users deciding which framework to use, {37} users wanting to build a typical application
and (44} users wanting to extend the framework. User docurmentation targets both users
choosing a framework and users building typical apphications with it. The third user type,
users extending the framework, is mainly targeted by design documentation. This section
tries to target both documentation fypes.

6.4.1 Using the Framework

We argue that the cryptographic pattern language can be used to choose a cryptographic
sarvice. Particularly, a walk in the graph of Figure 6.2 can lead to specific pattern instan-
tiations., Once this pattern is known, tutonials and examples should be used to show how
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{Class 6.4.1 SaveUbject.java — Saves Serialized Objects

public elass SaveObject {
publie static void main(Siring]] args) {

if {(argslength> 218 & {args Jength<1}) {
System.ercprintn{"java Savelbject [-r] <classname"):
System.edit{-1}3}

try {
3 (args[l.equals(~x")} Systern.out.printin{readObject{args{1}+" . sexr™}};
elze writeObject{Class for Name{args{0]).newlnstance(), args{0]+7 . sex™};

} cateh {Exception e} { e.printStackTrace();}

E

public static void writeObject{Ubject o, String n) throws H)Exeeption {
OUbjectOurpntStresm out = new UblectGurputStream{mew FileOuipusSiream{ind);
gut.wriraObjectiol;
cut.flushi}; out.closa();

}

publis static Serializable readUbject(String n)
throws [0Excaption, ClassNotFoundException{
ObjectinputStream in = pew Objectinputirream(new FielnputSoream{nd);
Obisct o = inreadQbject();
inclose();
retarn{Senalizable) o};
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to instantiate the pattern from framework’s classes. A framework’s usage documentation
should not only provides scenarios of applicability for each pattern tn the corresponding
pattern language, but alse show how to instantiate the application from the classes of the
framework. A pattern format can be used for this task [0QCU7]. Since the intent of this
text i exemnplify the framework’s usage, we target both features for one pattern in free
prose format.

We extend a simple command-line program for saving objects in order to encrypt and
test the integrity of the persistent instance. The command to save objects has the fel-
lowing syntax: Savelbject [-r] <Class¥ame>, in which ~v i3 an optional switch used to
rand an ebject from persistent storage. The command for coping, encrypting and testing
integrity of objects; Secuvelbject [-r] <ClassName>, generates an encrypied copy of
<Class¥ame> instances, still made by SaveQblect, in persistent storage upon receiving a
password. The ~r switch loads, decrvpts and tests the integrity of <ClassName>’s persis-
tent instances. A scenario of usage for SecureObject can be the following, regarding that
both Alice and Bob know the password: (i} Alice uses SecureUbject Valuable to protect
her sensitive data, that is, the instances of class Valuable; {4} Bob uses Securelbject
~r Yaluable to recover the sensitive data.

The most important requirement of SecureObject, besides being secure for both en-
ervption and data integrity, is do not change SaveDbject cods, since we want 1o keep
the ability to simply save objects by typing Savelbject Valuable. When looking at
the cryptographic pattern language for a pattern that fits this requirements, one can find
that basic eryptographic services should be combined o achieve both confidentiality and
data integrity. This lead to the Seerecy with Infegrify pattern. However, 2 non-intrusive
approach is alse reguired to avoid code modification. Thus, a veflective cryptographic
pattern should be used. The kev idea is extend SaveDbject without intrusion.

The next step is to determine what should be known about SaveUbject. In other
words, what should be the SaveObject’s hook interface to SecureObject. This informati-
on van be obtained from either design documentation or code listings. Class 6.4.1 show
that SaveObiect uses FileInputStreams to read from files and FileOutpuiBtreams to write
to files. Fortunately, the code for saving and recovering s hidden in two methods, wri-
teObject() and readObject(). A simple solution can intercept SaveObiect’s read/write
aperations and perform the necessary cryptographic transformations over those parame-
ters or result.

Class 6,.4.2 shows SecureQbject, the main program responsible for launching the appli-
cation and giving control to the framework. In ovder to use the framework, SecureObject
should instantiate one of MetalevelApp's specializations responsible for fils encryption
and integrity checking, called SecureFile. This class can etther encrypt or decrypt objects,
aeeording 1o a erypt flag, upon receiving a password; integrity checking is performed duo-
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Class 6.4.2 SecureQbject java — Application’s Main Program

public class SscureObiect {
public static void main{String]] argv){
boolean crypt = largviDequals{-r®);
String password = new String{"Easy passwordi™)l;
Sering className = "Savelbject;
Method tolntercepy;
Method ToRefloct About message;
Message mf};
try{
i {erypei{
wolntercept = Clags forName{className). getMethod (P uritelbiect?,
new Clase[l{Object.class, Soing.class});
message = new MethodToReflectAboutParams{tolntercept);
m = new Message[[{
new ParamsintegrityOn(),
new ParamsBucryptionOn() message};
}oelse {
tolntercept = ClassforName{className)
getMethod(®readibject? new Classl{String.class}y;
message = new MethodToReflectAbout Result{tolntercept);
m = new Messagell
{new ResultintegrityOn{) new BesultEncryptionOn{},messape};
}
SecureFile sf = new SecureFile{cryps, password,
new String{}{className},"Savelbjest® m};
sf.setArgviargv);
stanetadain)
1 catch[Exception £}{System.out.println{e);}
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ring decryption.

Cryptographic transformations are activated by events. Evenis can not only turn both
encryption and integrity on and off, but also add methods to the list of secured methods.
When the fiag is on, the events ParamsEncryptionOn and ParamssIntegrityOn are used
for Securelile initialization; otherwise, events ResultDecrvptionOn and ResultIntegrityUn
take place. Method setArgv() transmits the application’s argument list to SaveObject.
Method metaMain{) catches application’s main loop.

: el wiiteObject(y
[Memﬁna}fmima?msé 3 ) B
f A 2, - (wwwum‘% L{ A Janany
MetalmiegrityParams = ® i"fcsmpﬁsex} &.S,‘,& Obect g
L |
{b} Without Security
% 1
& ¥
- l | Method
1. writeObject() - ’} = inEICEPtOD
R -
SaveObject | Exchanged
j Drata
{a) With Meta-Level Security

Figura 8.4 Sequencing of Actions During Method Interception.

Figure 6.4 show the runtime behavior for SecureObject. The important objscts are the
three mets-level objects and the base-level object. Classes SecureQObject and Securelile
are not shown in the figure, since they are not portant at rantime; the Hrst is a glne clasg
for framework launching the second instantiated the framework behavior. Figure 6.4a
shows the sequence of actions concerning method SaveFile writeObject{} interception, the
data handling at meta level and the method re-sending to base level. Figure §.4b shows
the usual behavior of SaveObject.

The cryplographic patterns instantiation, as well as the framework use, imposes dis-
cipline in programming. Por example, its easler to find out the hook interface for Sa-
veOhiect because the input/output operations are encapsulated in two methods, which
can be mapped to Alicesend{) and Bob.receive(). Also, users intending o develop com-
mon applications from the framework do not need to know that computational reflection
is being used to invert the dependencies between objects, because this is a design in-
formation. Summarizing, the process of using the cryptogrephic framework comprises
the following peneral steps, which should be supported by meta-~ohiject Horary catalogs,
tutorials, examples, and pattern instantiation’s scenarios:
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1. Determine the adequate cryptographic pattern {or instantiation.

2. Find out the hase-level application’s hook imterfzce. Cryptographic transformation
are usually performed over input/output operations for efther communication or
storage.

3. Define the event flow, if any, from base level to meta level. This step is usually
necessary when the principle of separation of concerns should be neglected.

[

. Look for an specialization of MetalevelApp that addresses both the patiern from
step 1 and the hook Interface from step 2. In this step, the specialization’s secu-
rity specification, such as cryptographic algorithrs implementation and kev length,
should be evalnated according to security requirements.

wa

. Implement an adequate MetalevelApp subcelass if none could be found in step 4.
This specialization shonld be added 1o the framework. This step can be skipped
more often ag the framework matures.

. Implement a glue program {in this text, SecureGbject) for framework initialization
and launching.

6.4.2 Designing the Framework

The documentation of a Framework’s design can be structured as a four-level-depth tree
{OQCYT], in which each level addresses a deeper aspect of the software, as shown by Figu-
re §.5. Level 1 targets the system architecture. Doing so, it describes the purpose of the
system as well as the properties of the approach. Level 2 documents the properties expo-
sed by Level 1 as 3 set of interrelated patiern instantistions. This level can also comtains
pattern instantiation details; for example, modifications in standard structure in order to
address particular aspects of the present instantiation. Level 3 documents the classes in
detail, but relsgating the documentation of source eode to Level 4. Hypertext-based tools
can be used to materialize this tree-structured docuwmentation [OQCHT, MCKOT].

Level 1r Bystem Architecture

A key design issue in this framework is to support ease of use and flexdbility for reuse of
cryplography services, that is, the possibility of using cryptographic features without {too
much} knowledge about eryptography. The following three properties enforee this issue.

1. Implicit invocation of eryptographic services. Cryvptographic services do not need fo
be explicitly invoked by function calls. Instead, a hierarchy of messages (or events)
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Figura 6.5: Levels for Framework’s Design Documentation.

can be broadeasted by the application and target framework (meta) objects 83 in
the Implicit Invocation [SGB6] architectural style.

b

Transparent composision of services. Cryptographic services can be applied not
only individually, but also in combinations to application’s data in a way that ap-
plication’s objects cannot determine the order of cryvptographic transformations
gxecution.

3. Potentially transparent addition of security features. Cryptosraphy-based security
can potentially be added to third-party software without code recompilation. Even
when source code is not available. This kind of program extension is obtained by
using meta objects as in the Reflecifon [BMRT96! architectural pattern. A strong
constraint of this approach is that the framework should be informed about what
methods and objects should be made secure. Events from the implicit invocation
mechanisn can be used to broadeast this information.

A number of cryptographic application programming interfaces and cryptographic
libraries are available todsy [JDEY91, LMIWO3, Kalod, Mico8, JBKIS, Oakis, goalis,
ess97]. However, none of them targets sase of use and Hexibility for reuse, since they
use procedure calls for expliclt serviee invocation and, in general, do pot provide service
composition in an easy-to-use way [BDROSbL

Figuare 6.6 shows the maln components of this architeciure. The framework contains
the flow of program’s execation, which in turn contains the base-level application. This fe
ature characterizes it as an object-oriented framework [Preds, Lew86]. The cryptographic
routines are obtained from a Java Cryptographic Service Provider [JBKS88, Oakd8]. Be-
canse the cryptographic provider’™s routines are in a low level of abstraction, an adapier
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Figura 6.6: Framework High-Level Organization.

laver between meta-object Hbrary and the Java Cryptographic Provider is necessary in
arder 1o reduce both the complexity of meta objects and the dependencies from particu-
lar implementations of the Java cryptographic library. Besides offering meta objects {or
crvptographic transformations over base-level data, the framework can also reflect about
iself in order 10 secure its own data, for example, crvptographic keys.

We distinguish between base-level applications with and without source code avallable.
In the first, both meta level and base level are, probably, heing developed in parallel and
it can be desirable for the base level t0 control some aspects of security services. For
example, turn either epcryption or authentication of 2 communication channel on and
off or even ask for security in & new aspect of its computation. In this situation, base-
level applications should be supplied with mechanisms for communicate with meta level,
but without polluting their code with explicit references 1o cryptographic services. The
implicit invocation mechanism of the framework targets this ssuse divectly.

1t is important to notice that the idea behind base-level objects communicating, even
implicitly, with meta-level objects is not conceptually correct in computational reflection,
since such a feature breaks the separation of concerns principle. However, It represents an
attempt of using meta-object protocols as architectural connectors for component com-
munication, in which fwo-way communication between components s usually necessary.

In the second case, when either source code s not available or 1t is desirable to preserve
the explicit separation of concerns, base-level applications cannot change any aspect of
security featurss determined in the meta level, mainly due to two reasons. The first is the
constraint that modifications should not be allowed. The second is an implementation
constraint that eryptographic features are not known by the base-level code. In both
cases, with and without access to source code available, the meta level should be notified
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about which aspects of base level's computation should be made secure. These aspects
consiitute 2 hook, not necessarily public, base-level interface known by meta-level objects.
We have implemented this hook interface 25 2 set of mathods in which either parameters or
results can be serializable. That is. methods with the property of using serializable data in
their signatures. Such methods are the Template methods Alice send() and Bob Receive(}
from the Secure-channe! Communication pattern and its reflective variation.

Level 2: Design Patterns

Inn order to accornplish the three issues from Section 6.4.2, we adopted a design pattern-
based approach in which patterns instantiations are prouped in clusters. A cluster cor-
responds t0 the blend of s patierns in such & way that all these patterns are applised
together 1o solve a problem. In a cluster, it Is difficult to separaie a member pattern’s im-
plementation from the others’. This design contains six main clusters, shown in Figure 6.7
and Hsted below, which are put together by the reflection [BMR796! pattern instantiated
by Guarand (OGBS, a meta-object protocol for Java based on method interception and
raeta-object composition. The pattern clasters are the following:

1. Meto-Key Prozy. Recursive yse of the reflective crypitographie pattern to implement
secure proxies for cryptographic keys as meta objects.

oo

Selective Broodeast {Fmplicit Invocation). Two patierns instantiated in Guurand
{Reactor [CB95, Sch9b] and Coemposite [GHIVO4]) are combined to implement an
tmplicit invocation mechanism.

3. Secure (bjects. Secure objects are electronic envelops for (encrypted] data and their
fingerprint. Bach kind of secure object targets one cryptographic mechanism, say,
encryphion, data integrity, sender authentication and digital signing. This cluster
uses Composite [GHIVI4] and Serialization [MEBVS7] to obtain easy eryptographic
gerviee composttion.

4. Seeurity Service Twrning. This cluster uses the NullObject [MREVEY] pattern, a
specialization of the Stafe [GHIV84) pattern, to tmplement the ability of turning
a cryptographic mechanism on and off. Null objecis are instantiated over adap-
ters, producing null adapters. Real adapters offer cryvptographic services based on
secure objects, instead of streams or arrays of bytes. Thus, adapters simplify the
instantiation of the reflective cryptographic patterns.

5. Framework Behavior. The inversion of control is provided by a Templote Method
[GHIVS4] instantiation, which provides some hooks for creating the abstract factory
responsible for cryptographic ohlects instantiation.
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6. Security Service Composition. In this cluster; meta objects for eryptographic me-
chanisms are specializations of a generic cryptographic engine. Members of its class
hierarchy share the ability to turn themselves on and off upon receiving an event.
There are two ways for composing orvptographic mechanisros, mutually exelusive
composition, used for mechanisms which should not be used simultaneously (for
example, data integrity should not be used with signatures, sinee the second may
imply the first) and chaining composition, used fo combine orthogonal mechanisms,
for example, encryption and data integrity.

— ' Eneryptionlnterface {Abstract}
MetabncryptionParams | e
SealedObject encrypi(Sericlizable o)
i | |
MultEncipher Encipher [ & Cipher
@ﬁ{jr}?p{{} ....... ﬁﬁ@fypi{} R S
i* do nothing *ﬁ" return new Seaieé@bjaaiéms}

Figura 6.8 _fi‘-@.si—_&m%&tif}ns of .&Eﬁa?ﬁ:ey aﬂd N;}Eif}h‘émt ?’a%ems.

In Figure 6.8, an Adepter [GHIVO4] pattern instantiation, MetaEacryptionParams
uses the simpler interface from Encrv;}tiasihz{erface instead of the low-level pne from
Cipher, fhz{mgh A Bﬁcxpher A pammiaz i’ea‘mm of this mz;ﬁemenmmn which distin-
puishes it from the standard Aéapﬁer pattem is that Ciphers, the adaptess, are not called
i r@cth by Encapherg %he f‘adapters Tnsteat, Sealed(}hjga% are responsible for the details
of this Laﬁmg This instantiation ::;mpiﬁzen ncst {}nh« meta object design, but also adapter
design, since {ie‘?;a,ﬁﬁ of cxp%x:er% such as padiimg are also hidden from adapters. A Nul-
IEncipher instantiates %%1& WallOkject {V?RBV@{] pat%:em when \?eta@ncwg}tmn?dmmg
should be turned off,

Levels 3 and 4: Classes and Source Codse

tevel 3 can detail not only individual classes, but also clags relationships not shown by
patterns, as deep inheritance hierarchies and package grouping. The class hierarchy for
MetaEncryptionParams is in Figure §.9. This class 15 a MetaEncryptionEngine speciali-
zation for pararmeters encryption, so that it is a MetaTransformationParams. It inherits
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Figura 6.9 MetaEncryptionParams’ super classes.

the ability for reacting to events from its grandparent class and the ability for intercepting
base-levels operations and eapturing its parameters from its parent class. It also imple-
ments the hook methods in order to obtain the ability for encryption of dats and turning
encryption on and off.

In order to complete this case study, we present the source code for two classes.
Class 6.4.3 contains the source for Mgta’ﬁncryptien?arams and {Class 6.4.4 detalls Seale
dChblect. Tweo interesting points are the focus of that code sarnples. First, how adapters
make MetaEncryptionParams’s implementation really small and simple. Second, how the
knowiedge about the underlie cryptographic library is encapsulated by SealedObject and
potentially hidden from upper levels. Its important to mention that sealed objects, per
5, are not a new concept [GS88]. One of the contributions of this framework is 1o extend
the encrypted-object concept to all other ¢ryptographic mechanisms, producing & family
of secure objects.
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Class 6.4.3 MetaEncryptionParams. java

public class MetalnoryptionParams extends MetaTransformationParams{
orotected Eocipherinterface transt, active transt,

public MetaEvcryprionParams{Class]] valid msgs, Encipherlnterface t,?ﬁeﬁhﬁé.{} methods)
theows InvaildMessageException
{super(valid rosgs methods ) this.transl = gransf}

Seriatizable massformParam{Serializable p){ return(activetransfencrypt{plh}
final veid wrnOnl}{activedranst = transf)}

final void curnOf) {activeransl = new NullEacipher();}
final boolean isTurnedOnl} {returol{activetransf instanceof NullEncipher);}

Class 6.4.4 SealedObject java

public class SealedObject implements Serislizable {
private byte{l encryptedObiect;

private bytel] addPadding{bytel] serialForm, Cipher ¢){ ...}
private byte{] subPadding{bytel] serialform}{ ...}

public SealedOblect{Serializable oblect, Cipher ¢j{
trv{ epcryptedObjecs = cdoFinal{addPaddingSerializer. serialize{object)o) i}
catoh {Exception e System.cut.pristiniel;]

¥

public final Object gesOblect{Cipher o)
{bisct oblect = mall :
try {object = Serializer unserislize{subPadding{c.doFinat{encryptedObject) )}
cateh {Exception e}{ System.ous.printinie);}
returniobisctl;
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6.5 Performance BEvaluation

The goal of the performance measurements below is to evaluate the impact of the meta-
object Bbrary for cryptography [BDRY99a) over the implementation of common security
services. The measurements were performed over methods of type Alice.send{) and
Bob.receive{}. In the first, Alicesend(), method interception and cryptographic trans-
formations are performed over arguments; in the second, Bohoreceive[), over returned
results.

We measured the cost for using the framework in three situations: (¢} over method
interception only (that is, using a mull adapter); (¥4} over cryptography transformations
when performed by sither meta objects or Alice and Bob themselves; (442} and over storing
secured objects when security is either in meta level or base level. Here, encryption means
the encapsulation of & serialized encrypted form of the uriginal object in a sealed object.
Thiz meaning iz analogous for both integrity and authentication. Securing means the
encapsulation of a serialized encrypted form of the original object in a sealed object,
which is also encapsulated {along with 3 modification detection code) by an integrity
obisct.

The messurements weve performed on a 100 MHz MicroSpare workstation running
Sun(5 3.5.1 and a 110 MHz SparcStation-5 running SunO85 551, The Java virtual
machine was Kaffe openVM 1.0.b2 tempered with Guarand 1.5.1. The cryptographic
function for encryption was the DES symmetric-key algorithm in ECB mode. The MDD
hash function was used for integrity checking purposes and was applied after encryption
and before decryption. MDD was also used for MAC generation. A 1000-iteration loop was
used for measurement. Time, in milliseconds, was measured as the elapsed time between
two calls of the System.current TimeMillis{) function. All graphs below show mean values.

Figure 6.10 compares the time, in milliseconds, required by a cryptographic meta ob-
ject for both method interception and re-sending in two different workstations. In this
case, we used a null adapter so that arguments and results were not modified by meta
objects. Both argument and result have a size of 128 bytes after serialization. This figure
also shows that method interception and re-sending can be very fast for eryptographic me-
ta objects. Interception of Bob.receive() result is faster than interception of Alice.send()
arguments, because the latter should parse the argument list for serializable elements.

Figures 6.11 and 6.12 put together times for performing some crypiographic transfor-
mation, with and without reflection (in the figures, w.R. stands for with Reflection} for
two different machines: a MicroSparc 100 MHz {Figure 6.11) and SparcStation-5 110 MHz
{Figure 6.12). Measurements were made for integrity checking, authentication, encryption
and encryption with integrity’. The bars in these figures are analogous and roughly differs

1A current incompatibility between kaffe L0.b2 and Sun’s Hbrary for large integers made impossible
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Figura 6.12: Cost for Some CUryptographic Transformations Performed by Meta Objects
in & SparcStation-5.

only by a seale factor. These figures show that times for protecting receive() methods,
with and without reflection, are very similar, despite method interception. Times for
sending differ due to parsing and element substitution in the argument list of intercepted
methods,

Figure 6.13 shows the cost in time for storing and loading objects, either alone or
secured with encryption and integrity checking, for four different object sizes. The cost
for storing, as well as the cost for encryption and integrity checking during storage, i3
directly proportional to object size. Storing is usually faster than Ioading, because the
later requires not only decryption, but also a successful integrity checking.

Figure 6.14 contains the cost in time for storing and loading objects when security is
performed by cryptographic meta objects. This cost is alse proportional to object size
and can be very high for larger objects due to their manipulation in meta level (that
is, serialization, creation, encryption}. This figure also shows the size of secured objects
{beside input size) handled at meta level. Different from Figure 6.13, loading is faster
than storing, because the cost for computational reflection is greater than the cost for
crypiography transformations.

In general, the cost for performing cryptography transformation inside meta objects

measurements concerning digitsl signarures.
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is greater than the cost for performing them inside Alice and Bob, This conclusion was
waited, however. It is important to notice that the impact of using cryptographic meta
obiects, instead of implementing it in base level, is not so high and, as technology evolves,
can become cheaper. Another consideration is that the benefits of flexibility for reuss and
sase of use can worth a manageable decrease in performance.

6.6 Conclusion and Future Work

As the necessity for computer cominunication grows, grows alsc the urgency for preser-
ving privacy, mtegrity and authenticity of exchanged data. Upen networks, such as the
Internet, had found a variety of unexpected uses these days snd cryptography-based secu-
rity, formerly a military exclusive subject, are becoming a default feature in most modern
software present in household desktop computers. Tven those not interested in encryption
can benefit from cryptography-based integrity checking and authentication mechanisms.
Cryptographic software cannot still be developed as 1t used to be four decades ago. It is
not sconomically feasible to rewrite cryptographic software every fime a security functi-
on should be added to either a legacy system or & new project. Instead, cryptographic
services should be able to rense in large scale. In this text we have shown how modern
software structuring techniques and concepts can be successfully applied to the develop-
ment of eryptographic software in order to achieve ease of use and flexibility for reuse in
the large, _

The uzse of design pattern for implementing secure cornmunication imposes discipling
on programming along with advantages and disadvantages. Program understanding is
easier when software is structured according to patterns. For example, the task of adapting
a third-party software for security S‘Zmﬁgﬁhen s greatly simplified If the aspect to be
secured is localized, for instance, in a single class. However, this assumption cannot
always be made for third-party software. The use of framework technology applied to
crvptography is a promising subject. However, problems, as performance constraints and
key management, still remain and sﬁggest branches for future research.



7.1  Introduction

Web-based slectronic commerce appeared as a response to the common business problems
of cost lowering in product distribution, brokers shimination In reaching customers, and
market growing by exposition to a larger audience. The claim for secure electronic tran.
sactions in open networks, such as the Internet, led to the use, by commercial application,
of cryptography-based security protocols. Traditionally free Internet rescurces, such as
weh pages, are becoming sources of sensitive data which should no more be accessed free
of charge. This change of paradigm, from free unrestricted access to charged restricted
use of network resources and information, produces a lack of software systems targeting
the new fast-growing commercial branch of Internet. This lack can be filled out by new
zpplications as well as adapted legacy systems.

Security s often s non-functional requirement, that not directly related to the main
functionality of spplications, which i usually neglected by software developers during
rapid release eveles. In this situation even the more rudimentary seenrity procedures
can be forgotten. In other cases, application’s réquirements may change so that software
should be adapted to a new context. For example, the charging of formerly free web pages
requires not only a scheme for electronic payment, but also mechanisms for avoiding {or
at least inhibiting) thieving of sensitive information.

This paper exeraplifies a reflective approsch to adapt thivd-party applications for stron-
ger security requirements by {potentially transpsrent) addition of cryptography-based
security facilities. ReflectiveMiMi is a reflective wrapper for addition of both privacy

108
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protection and integrity checking to MiMi [VHHO7. MiMi is an electronic commerce
tool for purchasing of web pages over the Internet, which encompasses at experimental
implementation of the MicroMint [RS96] payment scheme.

The text is organized as follows, Section 7.2 offers an overview of MiMi and analyses
some points in which ifs security can be improved. Section 7.3 describes the design issues,
as well as some implementation tradeoffs, of ReflectiveMiMi. BSection 7.4 presents some
performance measurements. Conclasions and futare work are in Section 7.5,

7.2 MiMi E-Commerce Tool

MM [VHHS7] is an electronic commerce tool for purchasing web pages over the Internst,
which encompasses an experimental implementation of the MicroMint payment scheme.
MicroMint [RSB6] is a micropayment scheme which provides security at a very low cost
and is optimized for low-value unrelated payments. A strong requirement of this payment
scheme is to completely avoid, for efficiency reasons, the use of public-key operations. It
was designed to discourage large-scale attacks, such as massive coln forgery or persistent
double spending caused by coln thieving., Micropayments ave payments of very low value,
done very quickly, possinly at high frequencies. The support for micropayments reguires
high efficiency from applications, especially during coin minting, otherwise the cost of the
mechanisie will excesd the value of the payment,

Bedempion Bequest

+ {oing
MidMiBrokey st MibiVendor pes

Broker Wallet Vendor Wallet

Page

Coins Request
Page Request
+ Coin

I MiMiGrder | | Hotlava

Customer Wallet
Figura 7.1: Flow of Sensitive Data through MidMi Participants.

Figure 7.1 shows the general organization of MiMi and the main How of sensitive
data {electronic coins and payed web pages) among its components. There are three
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main entities: MiMiBroker, responsible for coln minting and issuing MidiVendor, the
purchaser of web pages; and the customer. The customer part s divided in two modules:
a coin ordering tool (MiMiOrder) snd 5 modified HotJava browser, which also recognizes
mimi links 1o addition to HTML ones. The customer orders coins from MiMiBroker and
stores themy in his wallet; 4 modified HotJava browser can then be used to withdraw
electronic colns from the loeally stoved customer wallét and buy web pages identified
by a mimi tag. Bach web page costs ene coir MiMiVendor periodically performs coin
redemption requests to MiMiBroker.

Since the focus of MiMUs design 'was the implementation of the micropayment sche-
me; some security requirements, as authentication of communicating parts and privacy
{(important even on micropayment-based apphcatwns J; were neglecied by the designers
during implementation. For example, elecironic colns are both stored in a walles file and
iransmitted over the network in an unencrypted and non-anthenticated format, leaving
the present MiMi's implementation 8‘1;5{’8;:%&?}%{3 to eavesdmppiny message tempering and

masquerading, The rationale behind MiMP's fow security is that the system can afford
thieving of a few coins, while large-scale thieving is inhibited by the payment scheme.

7.3 ReflectiveMiMi Wrapper

ReflectiveMiMi is a reflective security wrapper for addition of both symmetric-key encryp-
tion and. integrity checking to MiMi. Tt provides confidentiality, weak authentication and
integrity while preserving MiMi's a‘arigirgai_:fti;zzcﬁ;imaiigty. and performance requirernents.
This wrapper extends a reflective object-oriented framework for cryptography (BDRO%a]
based on Guarend [OGBYE], & me&weﬁj&cﬁ protocel for the Java programming language.

Some spots for security improvement in MIMi, targeted by this wrapper, are the
following:

» Aathem;catmn &f vene;iers bv bmkers and emr} g}tam of the chfmmi dunng redemp-
_ tion mque&;‘{s* Tha@ S@C&i‘ii} 3mpmvement can, pre@en% false vmders from being
redeemed f@r ;}%szbiy r:m len OIS,

= Authentication of ctigtomers by vendors and encryption of the channel in payment
i’mnsaetwm This security featare’ can ;}mvenﬁ; fais& cugtorners from buying web
pages bv using mc}ien cotns. B L ' '

» fmﬁ}mma{mﬂ {}f’ hr@k&rm 'b}’ z:’zmmmers gmd mcwp&wﬁ of the LE%&EEHGE upon receiving
new coing. This security tmprovement can. prevent. customers from receiving false
COINS.
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¢ Encryption and integrity checking of coins during storage. This feature can prevent
coin losses due to either accidental or intentional data corruption while inhibiting
coin thieving,

Security aspects related to web pages were not covered in this work. Authentication
of vendors by customers can assure custorners receive the requested page. Pages can also
be protected against modification by integrity checking, Privacy of customers may also
he desirable.

HeflectiveMiMi's design follows the steps for using the reflective framework for ervp-
tograhy [BRD%ALL

1. Determine the adequate cryptographic pattern for instantiation.
2. Find out the base-level application’s hook interface.

3. Defime the event How, if any, from base level to meta level

ren

. Find or impleraent an specialization of MetalevelApp that addresses both the pat-
tern from step 1 and the hook interface from step 2.

& Implement 2 glue program for framework initislization and launching.

The cryptographic pattern instantiated by BeflectiveMiMi should avoid public-key
operations, a constraint inherited from the payment scheme used by MiMi. On the other
hand, it should provide not only secrecy and integrity, but also weak anthentication, since
strong authentication with public-key signatures cannot be used. This leads to reflective
vartation [BRID9%a] of the Secrecy with Integrity [(BRD98a] pattern with symmetric-key
cryptography.

The tasks of transmiting coins through the network and storing therm in wallets are
handled by the class Toin itself. However, there are no methods in Coin which could be
mapped to Alice.send() and Bob.receive(}, the hook methods in cryptographic patterns.
Meathods CoinreadFrom{) and Coin. writeTol), shown in Figure 7.2, operate over streams
and do not provide a hook interface with serializable arguments and returned results which
could be handied by meta objects. In order to overcome this limitation, two methods
were added to Coin: CeinloadFrom{}, called from CoinreadFrom(}, provides the hook
interface for interception and decryption of returned results and method Coin.storeTo(),
valled from CoinowriteTo{), offers the necessary interface for argument encryption after
method interception.

Figure 7.2 shows the class hierarchy for electronie cpins. Uriginally, class Coin only
belonged to MiMi. However, in order to preserve performance requirements during coin
minting and overcome implementation restrictions in the web browser, two more types
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Figura 7.2: Coin Class Hierarchy.

of coins were added to MiMi. Class MintCoin is used by MidMiBroker only during coin
minting in order to avoid the decrease of performance caused by Coin, subjected to method
interception. Coin minting must be fast {a requirement of the payment schems [R896]},
computational reflection can slowdown the rate of coin minting to unacceptable levels, so
that its use should be avoided in this situation. After minting, by the time of ordering,
MintCoin instances are converted by the methed MintCoin.change{} to Coin instances,
susceptible to reflection.

The HotJavae Browser should also be able to handle coins in a secure way. However,
it is not possible to change browser's Java virtual machine to one capable of method
interception, such as Guarond, then cryptographic meta objects cannot be used. In this
situation, encrypiion and integrity checking should be explicilty added to coins handled
by HotJava., The class HotCoin, used only by Hotjava’'s MiMi haadle, overloads methods
CoinJoadFrom() and ColnstoreTo{) and adds encryption and integrity to them, 25 shown
by Figure 7.2. Again, by the time of psyment, HotColn instances are converted to Coin
instances.

fis important to notice that MiMiOrder and MiMiVendor do not know either Mint-
Coin, which cannot be reflected, or HotCUoin, which has its own secure methods. Hence,
encryption and integrity are added to these MiMi modules, in a complete transparent



7.3. ReflectiveMiMi Wrapper 113

ReflectiveMiMi :é{;';;';e;é\;i! MetaCoin(Coin,mainProgy; -]
. mc sethethods! {storeTo(), lnadFromi)
mainfmataProgy 1 ( 0 0 }}
- mc ametaMainlly
MatalevelApp
S LTRAE
J%\;\ I” “““““““““““““““““““““ premmmmmmmmET F«a dMenBEncryprionParams
- i {
. . i i
MetaCoin % B3 MerahideGenerationitarams
o i . e £ R S oy - ¢
ReflectAbourClasses(Coin} Composer <:>-;—” N
¥ ; 7T MetaDecrypionResult
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i b 1
(‘uamrsa recmzﬁ e Cmn n 11 ¢ : : 4
0 g: ( e } : | T ""31 MetabddeYerificationResul
wereifyse. | smrefleciso
X ¥
Coin I

Serializable logdFrom{inpuiSiream)
void storeTo{ Seriatizable DutpuiSmeam)

Figura 7.3 BeflectiveMidMi Class Diagram.

way, by intercepiing method calls, Furthermore, MiMi doss not have any knowledge
about security features reflectiveMiMi adds to it. Hence, there i no control informsation
from MiMi to its wrapper, which takes care of all aspects of security.

Figure 7.3 contains the class disgram, in UML-like notation, for ReflectiveMiMi ap-
plicaction. Classes MetaEncryptionParams, MetaMdcGenerationParams, MetaDecryp-
tionResult, and MetaMdeVerificationResult perform cryptographic transformations and
belong to the meta-object library. Class Composer is & meta obiect yesponsible for com-
binig the previous ones. Class MetaColn, responsible for creating cryptographic mets
objects and bindiog them (using method Guarana.reconfigure()} to class Coin, is created
as a specialization of MetalevelApp, reused from the cryptographic framework., Class
ReflectiveMiMi is the glue between MiMi and MetaCoin. Its responsabilities are pass Me-
taCoin the main program’s name (MiMiBroker, MiMiVendor or MiMiOrder} and inform
Metaloin which methods of class Coin should be intercepted and made secure, in this
case CoinawriteTof) and ColnreadFrom(}). An instance of Composer is the primary roeta
object of class Coin. Methods CoinloadFrom{) and Coin.storeTo() are static, so that
their calls are always handled by class Coin. This means that instances of Coin do not
need a meta configruration since those methods which worth intercepting belong to their
class. _
It is important to present some numbers on code reuse in order to Hustrate the cost {in
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terms of code rewriting and recompilation) for adapting MiMi to stronger security requi-
rements. The original MiMi had 42 classes; three of them were modified and recompiled
(MiMiOrder, Coln and RunURLConnection}; four classes were added (reflectivediMi,
HotColn, MintColn, and MetaCoin}. This leads 10 39 unchanged ¢lasses from a total of
46 and 84.8% of MiMt's code reuse.

The framework for cryptography has 160 classes to accomplish services for confidentia-
lity, integrity, authentication and non-repudiation. 36 classes were used directly {through
mstantiation) or indirectly {through inheritance of their functionality by directly instan-
tiated classes) by ReflectiveMiMi to accomplish confidentiality and integrity, reaching
22.5% of framework reuse. The final application has 82 classes and 91.5% of code reuse.

7.4 Performance Evaluation

The goal of the performance measurements below is to evaloate the impact of the meta-
ohject library for crvptography [BDR99al over a real application, the MiMi e-commerce
tool. The time for transferring a pack of coins, with and without encryption, from a broker
10 a vendor, Is measured, as well as the time required for purchasing a web page. Other
performance measurements for this cryptographic framework can be found in [BRDSGb].

The measurements were performed on a 100 MHEe MicroSpare workstation running
Sun08 5.5.1 (customer side) and a 110 MHz SparcStation-3 running Sun08 5.5.7 {broker
and vendor sides}. These machines belonged to the same local area network. The web
browser was HotJave 1.1.5. The Java virtual machine was Kaffe open VM 1.0.52 tempered
with Guarang 1.5.1. The cryptographic function for encryption was the DES symmetric-
key algorithm in BECB mode. The MDS hash function was wsed for integrity checking
purposes and was applied after encryption and before decrypiion. A 10-iteration leop
wag used for measurement. Time, in milliseconds, was measured as the elapsed time
between two calls of the System.currentTimeMillis{) function. A MiMi's electronic coin
is 21%-byte-long in serialized form and 497.-byte-tong after encryption. Encryption here
means the encapsulation of an encrypted form of the original object in a senled ohiect,
which is also encapsulated {along with a modification detection code) hy an integrity
obisct. Decryption means a successiid verification of the modification detection code,
followed by object decryption and de-serialization.

Figure 7.4 compares the time requived for MiMiOrder receive coins in two cases: (4)
when it is launched by ReflectivebiMi {indicated by the legend “With Reflection™), in
which case coins are encrypted; and {44} when it is executed divectly (indicated by a
“Without Reflection” legend). The bars in Figure 7.4 indicate thet time for transmitting
coing through the network is roughly the same, for a small number of coins {less then
160}, without encryption and reflection, and proportional to the number of coins when
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Figure 74 Time Required by MiMiOrder to Receive # Coins With and Without En-
cryption in the Meta Level.

reflection and encryption are used by both ends of the channel.

Figure 7.9 presents the time cost for encrypting s 128-byte-long object and decrvp-
ting it with integrity checking, when cryptography transformations are performed by the
application itself (indicated by a “Without Reflection” legend) or delegated to meta ob-
jects (indicated by the legend “With Reflection” ). Encryption takes roughly 250 ms,
without reflection, and 1750 ms with reflection, the delay is due to method interception
and re-sending.

Figure 7.6 presents the time consumed by both MiMi protocol handler, focally em-
bedded in HotlJava, MiMiVendor, with and without reflection, when performing secure
payment transactions. A payment transaction is the delivering of a web page, by MiMi-
Vendor, upon receiving an electronic coin from customer’s browser. The transaction i
said to be secure when coins are encrypted and protected against corruption. Figure 7.6
shows that MiMiVendor, under ReflectiveMiMi's contrsl, is slower than when it i3 execn.
ted alone. An HTML file of 4 kbytes was used in this experiment. 1t should be noticed
that fle transfer takes most of time.

The apparent low performance of ReflectiveMiMi can be overcome by performing
decryption on demand {that is, per payment) insiead of on receiving, However, this
adaptation wounld lead to a deeper intrusion into MiMi's code, reducing the presently
high rate of code reuse. MiMi was design so that a few powerful classes perform & lot
of functions. For instance, coins not only are a repository of sensitive dats, but also
perform hash calculations and streams input/outpot operations. Most of the security
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improvements should be made over coins. However, the /O operations de not know
whether they are being performed over either files or communication links, in such a
way that the same securify issues should be applied to storage and communication. The
Splitting of Coin functionality into more classes would facilitate strong security policies
adoption as well as offer betier performance.

7.5 Conclusions and Future Work

This paper Hllustrates a reflective approach for adding security features to third-party
applications, with minimal {potentially nons) modification in target application’s code.
Addition of privacy, integrity and weak authentication to MiMi, an experimental electronic
cominerce application, was accomplished in three different manners:

1. Completely transparent addition to MiMiOrder apd MiMiVendor.
2. Addition, after small adaptations on software, to MiMiBroker;

3. Exphicit inclusion of crypiographic services calls to the MiMi protocol handler em-
bedded in HotJava.

The addition of cryptography-based gsecurity features to third-party applications is
a tradeofl among several, perhaps conflicting, forces and ranges from completely trans-
parent addition of powerful security services to software re-design for security support
with explicit implementation of security services. Some of these forees, identified in this
project, are the following:

s The complexity of the security policy adopted. Different security services should be
applied to different aspects of software functionality according to a great variety of
eriteria.

# [he level of intrusion into target application. The amount of both knowledge about
target application’s internal behavior and modification necessary to support security
services. Modification may not only be restricted to scurce vode, but also reach
design decisions and architectural issues. The strength of security in the resulting
application is directly related to the original application's software architecture,
which usually not contemplates security issues and may not be adeguate for addition
of security features a posteriori, requiring adaptaion.

s The observance of target application’s original requirements. Addition of securily
features should not break critical aspects of software, usually supported by strong
requirements.
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Os mecapismos da criptografia (ciframento, integridade, anlenticacio e assinaturas) séo
utilizados em um conjunto Yunitado de cendrios. Estes cendrios estabelecem padries de
comportamento que, por sua ver, produzem um nimero também Hmitado de combinagbes
simples. Este conjunto de padrdes e suas.combinagbes definem o5 usos comuns da crip-
tografis. na maioria das aplicagBes. Estes cendrios ou padees de utilizacio podem ser
capturados por um arcabougo de software para criptografis capar de proporcionar nio sé
rentilizagao de algoritmos a’f’zpmg{éﬁw& mas tambenm 4os proprios cendrios.

A abordagem para adicio de aspécios {ie «»emmm,d a software de terceiros ¢ sistemas
legados desenvolvids neste texto é potencialmente transparente. Entretanto, aplicactes
reals exigem um compiomisso entre a compiexidade da politica de seguranca adotada, a
guantidade de conhecimento sobre o funcionamento interno do software alvo ¢ a proser-
vagdo dos requisitos emgma'zs

Esta dissertagdo € a somb de ums sequéncia de resultados na qual cada parte fun-
damenta a3 suas sucessoras e € ac mesmo tempo validada por elas. Esta sequéncia de
{:anmhm{;@es &a %egmntsﬂ"

1. O estudo comparativo de biblictecas criptogréficas e suas interfaces de programacio
no gual 08 aspectos explorados nests dissertagho (reutilizacho em larga escala e
facilidade de uso ¢ composigo) 'fa}mm dantificados.

2. A proposicio de um conjunto coeso de dez padrbes de projeto gue documentam os
AEPRCLOR arqmtewraae do software or ipt@graﬁw e 53 boag b{}iﬁw‘;(}% conhecidas para
o8 problemas comuns na seguranca de informacSes basesda s criptografia.

3. A definicio de um modelo de utilizacio para reflexiio computacional no desenvolvi-
mento de software criptografico. Este madels, definide eomo um padrio de projeto
derivado da combinagio dos padrdes criptograficos e um padrio reflexivo de arqui-
tetura, lanca os fundamentos para um arcabouge de software para criptografia.
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4. O desenvolvimento de um arcabougs de software reflexivo orientado a ohjetos para
rentilizacio em larga escala de mecanismos criptograficos, Este arcabougo é com-
poste de yuma coleclio de algoritios eriptogrificos, uma biblioteca de metanbistos
especializados em transformacSes criptogréficas sobre argumentos e resultados de
métodos interceptados, € wn conjunto de passos e algumas divetrizes para discipli-
nar o uso e a extensio do arcaboucgo.

5. A extensio de uros ferraments experimental de pagamento eletrdnico com o uso do
arcabouge de software para ceriptografia.

Dmas contribuigdes s8o consideradas prineipais. A primeira delas, caracterizada por
aspecies absiratos ¢ abordagem novadora, € o conjunto fortemente poeso de padrdes de
projeto para criptografia. & outra, caracterizada por aspectos técnicos e usos praticos, é
o arcabouco de software para eriptografia.

As aplicaches das 1délas apresentadas nesta dissertacio 580 as seguintes:

& Auxilic & engenheiros de software com pouca experiénvia em criptografia durante
& tdentificacio dos mecanismos criptograficos capazes de atender acs requisitos de
seguranca de seus sistemas.

» Adiclo pouco intrusiva (potencialmente transparente} de mecanismos criptograficos
a software de terceiros e sistemas legados.

e Implementacio rdpida de servicos de seguranca a partir de um arcabougo reutilizdvel
de software.

Algumas questdes em aberto e aspectos nfo tratados neste projeto s40 03 seguintes:

1. A implementagio de mecanismos elaborados para geréncia de chaves e certificados.
Atuslmente, o arcabouco possul mecanismos bastante simples para armazenamento
segurn de chaves eriptograficas e geracho de chaves a partir de senhas,

2. O sratamenpto de um ndmero malor de servigos de seguranga. A implementagio
atual do arcabouco trata 05 mecanismos criptograficos.

3.0 uso do arcabouge criptogrdfice no desenvolvimento ¢ extensio de um ndmero
maitor de aplicaches.

Pesgquisas futuras se direcionam para ¢ use de técpicas da engenharia de software
para auxiliar o desenvolvimento dos aspectos de segnranca em sistemas distribuidos. Os
sgguintes topicos despertam nosso inferesse:



# A investigacio de novos padrfes de projeto relacionados niio somente aos mecanis-
mios criptograficos, mas também a outros agpectos da segursnga de informagdes.

s A formalizacio da organizacio de alto nivel de sistemas de comércio eletrinico como
uma arquitetura de software especifica para este dominio de aplicagfes.

# {J apoio do arcabougo de software a politicas de seguranga. Pode ser obtida com
metachjetos capazes de realizar planos ou sequéncias de agdes no apoio a seguranga
de sistemss de computagio.

s A utilizacio do arcabougo de software em sistemas de comércio eletrénico ¢ agentes
movels.

Este projeto de pesquisa identificou a necessidade de uma abordagem diferenciada
para os mecanismos criptogréficos, estabelecen modelos abstratos & padres genéricos
de argquitetura ¢ comportamento des aplicagbes com requisitos de seguranga baseados em
criptografia, implementou estes modelos em um protétipo e os validou em situagtes reais.



Modern cryptography is a broad subject, encompassing both the study and the use of
mathematical technigues to address information security problems, such as confidentiality,
data integrity and non-repudistion.

Tt can also be defined as the discipline that embodies the principles, means, and
methods for the transformation of dstsa in order to hide its semantic content, prevent
its upauthorized use, or prevent its undetected modification [iso89]. Usually four ob-
jectives IMvOVEE], or services [1s098], of cryptography are considered: confidentiality,
integrity, authentication, and non-repudiation. Accordingly, there are four basic cryp-
tographic mechanisms: encrypiion/decryption, MDC (Modification Detection Code) ge-
neration/verification, MAC (Message Aunthentivation Code) generation/verification, and
digital signing/verification. These four services can be combined in specific and limited
ways to produce more specialized services, For further information about cryptography,
see [MvOVDE, Scho6, 5605].

Confidentiality is the ability to keep information secret except from suthorized users.
Data integrity is the guarantee that information has not been modified without permission,
which includes the ability to detect unauthorized manipulation. Sender {origin} authen-
tication corresponds to the assurance, by the communicating parties, of the origin of an
information transmitied through an insecure communication channel. Non-repudiation is
the ability to prevent an entity from denying ity actions or commitments in the future.

A.1 Cryptographic Mechanisms

Cryptographic transformations are mainly based on one-way functions, which are mathe-
matical functions for which it is computationally essy to compute an output of an in-
part, but it is computationally dificult to determine any input corvespondiog to 2 known
output. Une-way functions with trapdoors are one-way functions for which it is compu-
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tationally feasible to compute an input corresponding to a known output, if additional
information is provided {the trapdoor). One-way functions with trapdoors are the basic
construction components of reversible cryptographic transformations in which the trap-
door information works as the eryptographic key.

Secret- or svmmetric-key crvptography is the set of eryptographic techniguss in which
a single key is used to both encrypt and decrypt data. The key is a shared secret among
at least two entities. In publickey cryptography, a pair of different keys is used, one key
for encryption, the other for decryption. The encryption key is publicly known and is
called a public key. The corresponding decryption key is a secret known only by the key-
pair owner and is called 2 private key. In public-key ervptography, it is computationally
infeasible to deduce the private key from the knowledge of the public key

...............................

¢
i E B : in
g imhe : .
| Ezmg?m;mm : = Dedipherment
| e=fmki) 11 jsecure Commu- ;| M= g{ek2) i
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Figura A.1: A Typical Cryptosystem.

Traditionally, the two ends of & communication channel are called Alice and Bob. Eve
is an adversary eavesdropping the channel. Figure A.1 shows the overall architecture of
cryptosystems. Alice wants to send an encrypted message to Bob; she encrypis message
1, the plain text, with an encryption key k1 and sends the encrypted message ¢, the cipher
text, to Bob, that is, ¢ = f{m k1), Bob receives the encrypted message and deciphers it
with a decryption key k2 to recover m, that is, m = g{c.k2) and g = £1. U publie-key
cryplography is used, Alice uses Bob’s public key 1o enerypt messages and Bob uses his
private key to deerypt messages sent from anyém who used his public key. However, #
symmetric-key cryptography is used, Alice and Bob share a secret key used to encrypt
and decrypt messapges they send to each other, that is, ki = k2.

A hash function is & mathematical funetion that takes as input 2 stream of variable
length and returns as a result a stream of fixed length, usually much shorter than the
input. One-way hash functions are hash functions in which it is computationally easy to
compute the hash value of an input stream, but it is computationally difficult to determine
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any input stream corresponding to a known hash value. A cryplographic hask function
is 8 one-way collisiop~resistant hash function; that is, it Is computationally difficelt o
find two input streams that result in the same hash walue. Hash values produced by
cryptographic hash functions sre also called Modification Detection Codes (MDCs) and
are used to guaraniee data integrity. Message Authentication Codes (MACs) are usually
implemented a5 hash values generated by crvptographic hash functions that take as input
2 secret key as well as the wsual input stream. MACs are used to provide not only
authentication, but also integrity implicitly.

Digital Signatures are electronic analogs of handwritten signatures, which serve both
as the signer’s agreement to the information a document cortains and as evidence that
can be shown to a third party in case of repudiasion. A basic protocol of digital signatures
based on puble-key crvptography is: first, Alice encrypts a message with her private key
to sign ity second, Alice sends the signed message to Bob; and third, Bob decrypts the
recatved message with Alice’s pubdic key to verify the signaturve. Digital signatures must
provide the following features: they are authentic, that is, when Bob verifies a message
with Alice’s public key, he knows she signed it; they are unforgeable, that is, only Alice
knows her private key: they are not reusable, that is, the signature is a funclion of the
data being signed, so it cannot be used with other data; and they cannot be repudiated,
that is, Bob does not need Alice’s help to prove she signed a message. The signed data is
unsiterable, any modification of the dats invalidates the signature verification,

A2 Common Attacks

In a bruteforce attack, Eve tests all possible valid kevs to decrypt a cipher text of a
known plain text in order to find out the correct key. If Eve could obtain the private
kev of either Alice or Bob {or their secret shared key), all other attacks could be easily
performed. Eve can attack a crypiosystem in four basic ways. First, she can eavesdrop the
channel. Bavesdropping an open channel is essy. However, to understand esvesdropped
massages of a cryptographically secured channel, the key {or kevs) being used by Alice
and Bob are required. Second, she can resend old messages. This atiack is possible if
messages do not have temporal uniqueness, which can be obtaived nsing timestamps or
by changing keys periodically. Third, she can impersonate one of the communicating ends
of the channel. In such a case, Eve plays the role of Alice or Bob, either by deducing a
secret key or by successfully substituting her public key for Alice’s (Bob's) without Alice’s
{Bob’s} knowledge. Fourth, she can play the role of the man-in-the-middle. In order to
perform the man-in-the-middle attack successfully, Tve must have obtained the private
keve {or the secret shared kev} of both Alice and Bob, or impersonate both Alice and
Bob. In such a situation, Eve can intercept encrypted messages from Alice [Bob) to Bob
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{Alice), decrypts them with Alice’s {Bob’s) decryption key snd re-encrypt them with her
own encryption key before re-sending them.

A.3 Awuxiliary Services

An important 1ssue of implementations of cryptographic services is whether they are sup-
ported by an infrastrocture that provides a strong and secure set of anxiliary services
such as generation, agreement, distribution and storage of cryptographic keys. Usually,
key generation algorithms are based on random nnmber generators, Public kevs are usu-
ally distributed together with their digital certificates, which are packages of information
atiesting the ownership and validity of a cryptograpbic kev. These certificates are usually
signed by a trusted third party, called a Certification Authority {CA). A private or secret
key must be kept protected from unauthorized copy and medification; this can be done
in two ways: it can be stored in tamper-proof hardware; it can be stored, in both encryp-
ted and authentic forms, in general purpose hardware, such as random access memories,
magnetic disks and tapes. This requires a key-encryphion key which, in turn, must be
protected.
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