
I

--·---~

Análise Comparativa e Proposta de
Extensão à Arquitetura Criptográfica Java

Alexandre itfelo Braga

Dissertação de Mestrado

Análise Comparativa e Proposta de Extensão à
Arquitetura Criptográfica Java

Este exemplar corresponde à redaçãü final da
Dissertação deYldamente corrlgida e defendi­
da por Alexandre ~Ido Braga e aprovada pela
Banca Examinadora.

Campinas) 21 de Setembro de 1999.

~C0~z4
Ricardo Da.hab (()rientador)

Dissertação apretJent.ada ao Instituto de Com­
putação, UN!CAR4P, como requisito parcial para
a obtenção do título de 1-:Testre em Ciência da

Computa.çào.

~~,~- ~-'~#~-~~"""""""''~~,~~~-~---~~- o---~~~~-~--~~~-

InstitUtO de Computa.çã.o

niversÍda.dc Estadm:tl de Campinas
·~-~--,~~ -~.--- --

1111111111111111111111111111
1150058909

O·tMECC
TIUNICAMP !373a

Análise Comparativa e Proposta de Extensão à
Arquitetura Criptográfica Java

Alexandre l'v1elo Braga1

Set.embro de 1909

Banca Examinadora:

• Ricardo Dahab (Orientador)

• Profa< Dilma Menezes da Silva
Departamento de Ciência da Computação (lME-USP)

• ProL Cláudio Leonardo Lucchesjj
Departamento de Ciência da Computação (IC-UNICAJ\1P)

• ProL Paulo Lfcio de Geus (Suplente)
Departamento de Ciência da Computação (JC-UNICAMP)

1 Supportod in pa.rt by CAPES, F.APESP, grant 97 /11128M3, and ALFA Prujcct for E:x­
cltangc of -Post-graduatcs bctwccn Latiu America and Europe

8tb,h:L -­
Df'!J;; __ ._

li'' (i% <;'Í)Qf,·\0dil

lt\11:~~~

'!omtw 1Mi

I
IB73a

L'l

FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DO IMECC DA UNICAMP

Braga, Alexandre Melo

Anãlise comparativa e proposta de extensão ã. arquitetura

criptográfica java I Alexandre Melo Braga - Campinas, {S.P. ;s.n.1

1999<

Orientador : Ricardo Dahab

Dissertação (mestrado) ~ Universidade Estadwü de Campinas,

Instituto de Computação.

1. Criptografia. 2. Programação orientada a objetos (Computação).

l
; 3. Engenharia de software. L Dahab, Ricardo. 11 Universidade Estadual

______ d_e_c_"run __ p_i_n_~_"_ln_g_i_m_'_o_d_e_c_"o_m_p_u_ta_ça_-o_"_l_ll_<_T_im--lo_"--------~------"

TERMO DE APROVAÇÃO

Tese defendida e aprovada em Oí de setembro de 1999, pela

Banca Examinadora composta pelos Professores Doutores:

-~~;~~~~~~~~~ - -
Profa. Ora. Dilma E!nezes da Silva
IME-USP

~,---·---""&1L~~c::..::.__' -
Prof. Dr. Cláudio Leonardo lucchesi
IC-UNICAMP

Prof. Dr Ricardo Dahab
IC- UNICAMP

\'F ar betler -it is to dare rnighty things1 to win

glorious tri'<trnphs, even though checkered b;J
faihJite, than to take rank '!.ltdh thosc poor spírits

'l.vho nedher enjoy nor suffer too m·uch, becau~

se they li-ve in th e gray i~cilight that knows not
victory nor defeat •:

É melhor lançar-se à luta em busca do triun~­

jo, m.esnw expondo-se ao insucesJO, a jorrnar
filas com. os pobres de esp{rüo que nem sofrem

muito) nem goz(tm muito" porque vú1ern nessa
penumbra cinzenta que nào conhece 'uitória ou
derrota.
Theodore Roosouelt (1858- 19.L9}

v

Prefá.cio

o limiar da sociedade da. informação, cada computador pessoal, aparelho de televisãü
ou telefone celular contêm: ou conterá muito em breve, software para comunicação em
rede. Esse soft\vare deve garantir as propriedades de scgunwça (integridade, autenticação,
sigilo e não reptl.dio) de uma grande V'Jxiedade de alividad(;s, tais como comércio eletrônico.

correío eletrônico, acesso a bases de dados distribufdas, teleconferéncia, etc. A seguranç,11
de informações baseada em criptografia, antes conhecida apenas por um grupo pequeno
de especialistas, hoje preocupa uma boa parcela da comunidade de soft\YüH\ quer na
indústria1 quer na academia.

Por outro lado, softvvare não é mais desenvolvido como há quatro décadas, SoluçOes
monolíticas programadas an..esanalmente para problemas específicos não são econômicas.
A composição de componentes e a reutilização em larga escala são duas características
que devem estar presentes nos softwares de segurança modernos.

Esta dissertação combina técnicas de engenharia de software e segurança de infor­
mações. O resultado é um arcabouço de software que não somente oferece reutilização -em
larga. escala de mecanismos da criptografia: mas (princípalmente) captura o conjunto de
cenários fundamentais de utilização das técnicas criptográficas.

Atividades i:nterdisciplinan~s às vezes exigem traduções de conceitos de uma disciplina
para outra. Esta dissertação ofereee uma abordagem inovadora para o tratamento dos
mecanismos da criptografia: uma redefinição ou reescrita dest(% mecanismos como um
conjunto fortemente coeso de padrões de projeto. Este conjunto de p&,drôes auxiliará en­
genheíros de software inexperientes em segurança a identlfcar os serviços mais adequados
à.s suas necessidades.

vi

Agradecimentos

?\o dia 2 de Março de 1997 eu cheguei a Campinas para iniciar o \!estrado em Ci?ncia
da Computação na Unicamp, Como todo início. o primeiro semestre daquele ano não foi
fácil. i\ão somente por ter ddo o primeiro semestre do mestrado, mas por ter ddo o início
de um período de grandes mudanças na minha vida. A paisagem era nova e as pessoas
também. Logo depois veio a procura por orientação e projeto de pesquisa, seguidas de
um fase de multo trabalho (e alguma diversão). Já se passaram quase dois anos e meio
desde entâo e1 em quanto eu escrevo estas linhas1 aqui do outro lado do oceano, não consigo
evitar um sentimento de dever cumprido a.companhado de uma gratidão imensa por todos
aqueles que, de uma maneira ou de outra, direta ou indiretamente, contribuíram para o
suce.'l-~o do meu mestrado.

Eu gostaria de agradecer a minha família, pelo apoio incondicional e compreensão de
que eu precisava buscar o meu destino longe de casa, e a meus orientadores pela amizade
e orientação, sem as quais esta dissertação não teria sido possíYeL

Eu também gostaria de agradecer aos amigos que me acolheram em Campinas e na
Gnlcamp. A lista seria enorme; para não pecar pelo esquecimento1 eu apenas faço estas
referências gerais: os meninos da repúbiica.; os membros do MST -4 (l\:Iovlmento dos Sem
Tese 4 de Maio); os colegas da turma de mestrado de 1997; os colegas do Laboratório
de Sistemas Distribuídos; o meu escravo de iniciação científica; todos os colegas da pós·­
graduação1 professores e funcionários do instítuto de cmnputação da Unicamp; os meus
amigos de Belém) sempre presentes apesar da distância; os colegas, professores e funci­
onários do Departamento de Sistem-as Distribuídos~ Instituto de Sistema,s de Informação,
da Universídade Técnica de Viena,

v li

Conteúdo

Prefácio vi

Agradecimentos v:ii

l Introdução Geral 1

2 Composing Cryptographic Servkes:: A Comparison o.fSix Cryptographk
APis 4
2.1 lntroduetion , ... _ ... ,

Cryptographic Go.als and Patterns.
2.2.1 Cryptographic Patterns

2.3 Comparatíve Analysís

2.3.1 General E;;aluation . . .
2.3.2 How CAPis "F'erform Signing .
2.3.3 Fíow CAPis Support Service Composition.
2.3A Pattern Sttpport ..

2.4 Conclusions and Fut.ure VVork

3 Tropyc: A Pattern Laugoage for Cryptographic Ohject-Oriented Soft­
ware
3J. Introduction ...
3.2 PayPerClick- An Electronic Payment System
3.3 A Pattern Language for Cryptographic Software

3.3.1 Pattern 1: Secure-Channel Cormnunication .
3.3.2 Pattern 2: Informatüm Secrecy .

3.3.3 Pattern 3: Message Integrity . . .
3.3.4 Pattern 4: Sender Authentication
3.3.5 Pattern 5: Signature
3.3.6
3.3.7

Pattern 7: Secrecy with Sender Authentication .
Pattern 8: Secrecy with Signatme .

vi i i

4

5

6
9
9

11

15
16
17

18
18
19
2!
23
26
28
30
32
35
37

3.3.8 Pattern 9: Signature with Appendix
:3.3.9 Pattern 10: Secrecy with Signature \vith Appendix

3A, Deploying the Cryptographk Pattern Language
::t5 Condusions

38

39
41
46

4 A Refiective Variation for the Secure-Channel Con1munication Pattern 47
4.1 Introduction ..
4.2 Reftective Secure-Channel Communication Patt-ern
4.3 Condusions and Future \Vork

5 A l'v!eta.-Object Library for Gryptography
i:d Introductlon
5.2 Cryptographic Services and Patterns ..
5.3 \'Ieta-Object. Library

5.3.1 Securing Keys with 1-leta Proxíes
5.3.2 Refiecting Over Transformations .
5.3.3 Composing Cryptographic Services
5.3.4 The Underlying Cryptographíc Service Library .

5A Reflective Framework for Cryptography .
5.5 MOLCs Reconfiguration Policy
5.6 IVIOLC Prograrnming Overview
5. 7 Condnsions and Future \Vork .

6 The Role of Patterns in an Object-Oriented Frarnework for
graphy
6.1 Introduction _ .
6.2 Cryptographic Patterns Overview

6.2.1 Reflective Secure-Channel Communication
6.3 Pattem Languages Generate Frameworks .
6.4 Documeming the Framework .

6A.l Using the Frarne\vork ...
6.4.2 Designing the Framework

6.5 Performance Evaluation . . .
6.6 Condusion and Future VVork ...

47
48

59

60
60
61
62
6:3
64
67

69
72
74
77
81

Crypto-
82
82
83
87
88
89
90
94

100
104

7 RefiectiveJVHMi! A Reflective Security Wrapper to the MiMi E-Commerce
Tool 106
7.1 Introduction ..
7.2 MiMi E-Comrnerce Tool

IX

106
. 107

7,3 Reflectivei'vii::VH \Vrapper

7.4 Performance Evaluation
7 _;·) Conclusions and Future \Vork

7.6 Acknowledgments

8 Conclusão Geral

A Bask Cryptographic Concepts
1 Cryptographic ?dacbanisms .

A.2 Common Attacks .
A.~) Auxiliary Services .

Bibliografia

X

108
112
115

ll6

117

120

120
122

124

Lista de Figuras

2.1 Relationships Among Cryptographic Services. . . . __

Pattern Dlstribution Over the Regions of Cryptography Services.
:;via.t.rix of Crypt.ographic Services Combínations ..

6
7

8
2A St.a.te Diagram for Cryptographic Transformations. 10

Cryptographlc APis and the fviechanisms They SupporL 10

LG Cryptographic APis and the Pattems they SupporL 16

3.1 Participants in an Electronic Payment Transaction 20
3.2 Cryptographic Design Pattems and Their Relationships. 22
3.3 Class Diagram for the Secure-Channel Communication Pattern. 24
3.4 Sequence Diagram for the Secure-Channel Communication Pattem. 2;)
3.5 Class Díagram for the Payment Transaction. . . 41
3.6 Sequence Diagrarn for the Payment Transaction. 42

4.1 Secure-Channel Communication Structure. . . . 49
4.2 Seeure-Channel Communication Dynamics. . 49

4.3 Refiective Secure--Channel Communication Structure. 51
4.4 Reflective Secure~Channel Comrnunication Dynamics. 52
4.5 Ted Structure. . 54
4J3 Ted Dynamics. . . . , 55

Architecture of MOLC. 63
5.2 Abstract Meta-Objects for Generic Transformations. 65

5.3 I\Jeta-Objects for Cryptographic Services and Their Compositions. 66
5.4 l\Aes.sage Hierarchy for Crypt.ographic Servke Seleetion. 58

Relationships among Meta-Objects and Adapters. 70
5.6 Secure Objects Hiearachy. 71
5.7 Cryptographic Service Verification Exceptions. 72
5.8 A Refiective Object-Oriented Fratnework for cryptography-based Security, 73
5.9 R.untíme configuration for the example applícation. . 75

5.10 Summary of the R.econfiguratíon Policy Applícabílity. 76

Xl

tU Secnre-Channel Cornmunication Structure
6.2 Cryptographic Design Patterns and Their Relationshíps.

6.3 R.efiective Secure-Channel Communication Structure.

6.4 Sequencing of Actions During f.Jethod Tnterception.

6.5 Levels for Framework's Design Documentat.ion.

tL6 Frarnevvork High-Level Organization.
6.7 Pattems in the Design of the Cryptographic Frame\\'ork
6.8 Instantiations of Adapter and Nul10bject Patterns.

6.9

6.10

6.11

6.12

).1etaEncryptionParams' super classes.
Cost for I\·1ethod !nterception and Re-sending. . .
Cost for Some Cryptographic Tran.sformations Performed by J\.teta Object.s
in a)JicroSparc.

Cost for Some Cryptographic Transformations Performed by Meta Objects
in a SparcStation-5 ..

6.13 Cost for Storing Objects of Different Sizes 1 with and \víthout Security in a

84
85
88
9:3
94
96
97
gg

gg

102

103

103

MícroSparc 100 :Vlllz. , , . , , ... 104
6.14 Cost for Storlng Objects of Different Sizes, with l\-Teta-Level Securit.y in a

MicroSparc 100 MHz .. , 105

7.1 Flow of Sensitive Data through :Vfí::\Ji Participants. 107
7.2 Coin Class Hierarchy. 110
i .3 Refleetivei\·1i~H Class Diagram. . . , , . , . , . . . 111
7.4 Time Required by l'dlMiOrder to Receive # Coins VVith and \Vithout En-

cryption in the Meta LeveL 113

7.5 Time Required to Perform Encryption and Decryption ·with Integrit.y Chec-

king, \Vith and \Vithout Reflection 113
7.6 Time Consumed by HotJava (Vílith Encryption) and M:!MiVendor (\Vith

Encryption in the Meta Level) to Process a Purchase Transaction. 114

A.1 .A Typical Cryptosystem 121

xii

Lista de Classes, Interfaces e Techos
de Código

3A.1 Classes Signer and Verifier
3 Class Payer _
.'3.4.3 Class Payee , ...

3.4.4 C!ass Broker

4.2.1 ncorruptedObject

4.22 Ted
4.2.3 Method Ted.main()
4.2.4 AliceAndBob . . .

5JU Creating Cryptographic :V'leta Objects
5JL2 Composing Cryptographic Lvfeta Objects
Zl.6.;J Executing The Base-Leve! Application
5.6A Protecting Keys in Meta Objects
5.6.5 The Glue Program ,
6A.1 SaveObject.java ·~- Saves SeriaJized Objects
6.4.2 SecureObjeet.java -~ Application's ::VIain Prograrn

6.4.3 l'v1etaEncryptionParams.ja.va
6.4.4 SealedObject.java

xiii

43
44
45
46
56
57
57
58
78
79
79
80

80
90
92

. 100

. 101

Capítulo 1

Introdução Geral

Esta dissertação aborda o uso de técnicas avançadas de estruturação de soft.\vare na im~
plememação de requisitos de segurança; em particular, um arcabouço de software cripto­
gráfico capaz de oferecer facilidade de uso e reutilização 'em larga escala.

Programadores de soft.vare criptográfico se preocupam1 geralmente, com algoritmos
e protocolos. Tendo em vista a preferência; justificada, dos desenvolvedores de software
criptográfico pela implementação eficiente (veloz) e eficaz (segura) de tais algoritmos e
protocolos1 a produção de bibliotecas de software para serviços de segurança reutilizáveis e
fáceis de usar tem recebido pouca atenção. Mecanismos criptográficos geralmente recebem
implementações monolfticas ou são agrupados em coleções de funções pouco relacionadas,
Assim 1 bibliotecas criptográficas disponíveis atualmente não provêem, de forma. satis­
fatória) a combinação de mecanismos e não oferecem interfaces de programaçil.o simples,
dificultando a tarefa de prognrmadores não especialistas em criptografia. Em contraste1

t mecanismos criptográficos não costumam ser usados isolada.mante, mas ern combi­
nações apropriadas.

A criptografia tem papel fundamental no uso comercial da.s :redes abertas de computa­
dores: como a Internet. O enorme aumento no uso dest,as redes para troca de informações
''aliosas tem contribuído para o aumento na procura por serviçps de segmança de com­
putadores. Mecanismos de criptografia estão presentes nào somente em aplicações com
requisitos de segurança fortes, como por exemplo os sistemas de pagamento eletrônico\ mas
também em softwares de uso geral, tais como processadores de 1;exto e correio eletrônico.
Consequentemente um número grande de programadores usa serviços criptográficos em
seus produtos, mas muito poucos são especialistas em segurança ou criptografia. Nesse
contexto1 bibliotecas criptográ:fica.o; reutiJizáveis e fáceis de usar podem inibir a proliferação
de implementações pobres e o uso incorreto dos serviços de segurança.

Segurança baseada em criptografia é geralmente um requisito não funcional ou adm­
nist.ratlvo (isto é 1 aqueles nâo diretamente relacionados às finahdades da aplicação) em

1

2

aplicações de uso geraL Tecnologias que promovem a separação explícita entre as respon~

sabilidades da aplicação e os serviços de segurança facilitam o reuso em larga escala de
softv;are críptográfico e diminuem a carga de conhecimento sobre criptografia exlg-ida dos
programadort:s.

Esta dissertação possui dois tópicos fortemente relacionados. Primeiro, uma aborda··
gem inovadora para o projeto e implementação de mecanismos criptográficos: o trata­
mento destes mecanismos corno uma linguagem de padrões de projeto capaz de auxiliar
engenheiros dB software sem e::x:períência em técnicas criptográficas a tratar os reqnisi~

tos de segurança das aplicações. Segundo 1 um arcabouço de software para criptografia
usado tanto no desenvolvimento de sofhvare com requisitos de segurança fortes, como
na adição a posteriori de mecanismos criptográficos a softwares de terceiros e sistemas

legados. Técnicas avançadas de estruturaçã.o de soft\vare, tais como padrões de projeto,
estilos de arquitetura de software e reflexão computacional, são usadas neste arcabouço
para proporcionar facilidade de uso e reutilízaçã.o em larga escala de mecanismos crip­

togrâfico:s. Este arcabouço está implementado na linguagem de programação Java e usa
uma arquitetura de software reflexiva para esta linguagem [OGB98].

Um estudo comparativo de bibliotecas criptográficas [BDR99b] mostrou que elas não
satisfaziam a algumas características desejáveis em usos prâtícos dos mecanismos crip­

tográficos: reutilização em larga escala1 facilidade de uso e composição. Por outro la­
do, o interesse em padrões e arquiteturas de soft1vare e a exístência de soluções bem
conhecidas para problemas recorrentes de segurança de informações motivaram o desen­

volvimento de uma linguagem de padrões para software criptográfico orientado a obje­
tos [BRD99c, BRD98a, BRD98b], Este conjunto de padrões de projeto é uma abordagem
inovadora no uso das técnicas criptográficas, e valoriza a combinação de mecanismos.

Uma biblioteca de metaobjetos criptográficos [BDR99a] foi construída sobre a interface
de programação criptográfica Java e usa um protocolo de metaobjetos para esta lingua­
gem. Assim como os padrões) esta biblioteca também valoriza a composição de mecanis­
mos. Uma variação reflexiva do padrão criptográfico fundamental [BRD99a] documenta
a separação explícita entre responsabilidades da aplicação e serviços de segurança; esta
separação é necessária à obtenção de facilidade de uso. Esta biblioteca de metaobjetos
foi amplíada e constitui um arcabouço de software para criptografia [BRD99b: BDR99a_]

usado tanto no desenvolvimento de software com requisitos de segurança fortesJ como na
adição a posterlori de mecanismos criptográficos a software de terceiros e sistemas legados.

Este arcabouço porporciona reutilização de software criptográfico em larga escala.

Finahnente, o arcabouço de software criptográfico foi usado para adicionar, a pos­
teriori, integridade de dados e sigilo a uma ferramenta experimental para pagamento
eletrônico. Esta tarefa [Bra99] foi realizada com pouca intrusão na aplicação alvo (sendo
completamente transparente em alguns casos) e apresentou uma porcentagem bastante

3

alta de reutilização.

Esta dissertação é a coleção de relatórios técnicos e artigos científicos, publicados
ou submetidos para publicação em confen3ndas internacionais~ obtidos durante este pro­
jeto de pesquisa. O restante desta dissertação está organizada da seguinte forma: o
Capítulo 2 [BDR99b] compara alguns exemplos da abordagem tradicional para imple­
rnentat;_'ào de mecanismos criptográficos e aponta fraquezas nestas abordagens: o Capítulo

3 [BHD98a, BRD99c] apresenta uma abotdagem inovadma para a compreensão dos me­
canismos da criptografia como um conjunto fortemente coeso de padrões de projet.o; o
Capítulo 4 [BRD99a] oferece uma variação reflexiva para o padrão de projE'to fundamental

do Capítulo 3 e prepara o terreno para a biblioteca de rnetaobjetos criptográficos apresen­
tada no Capftn1o 5: a hierarquia de classes e o funcionamento da biblioteca de metaobjetos
criptográficos são tratados pelo Capítulo 5 [BDR99a]; o Capitulo 6 [BRD99b] estabelece
o relacionamento intrínseco entre os padrões de projeto criptográficos d% capítulos 3 e 4
e um arcabouço de software baseado nos metaobjetos do Capitulo i5; o Capítulo T [Bra99]
apresenta um estudo de caso no qual o arcabouço de soft.,.vare para criptografia ê usa­
do para adicionar integTidade de dados e sigilo a um software experimental dí~ comércio
eletrônico: o Capítulo 8 contém as conclusões obtidas com esta pesquisa. o Apêndice A
contém uma breve introdução à criptografia (extraída de [BRD99c]).

Capítulo 2

Composing Cryptographic Services:
A Comparison of Six Cryptographic
APis

2.1 Introduction

2víodern sofhvare systemsr such as eleetronic commerce apphcations, usuaJly have strong

crypt.ography-based security requirements 1 which usuaHy need either thn composition of

severa! cryptographic mechanisms as higher-level services or the combination of cryp­
tographic services in a quasi-tra.nsparent way. Although the: number of cryptographic
mechanlsms and their valid combinations is smaH, mnst of the presently widely used
Cryptographic Application Programming Interfaces (CAPis) do not support the full set
of valid mechanism combinations. How easlly an unsupported comb!nation of mechanisms
can be obtained from the supported ones is) in our opínion, au important criteria forCA­
Pl evaluation and ls directly related not only to the CAPI's reusabiHty but aJso to
cryptographic unawareness. Cryptographic awareness is the amount of know1edge about

cryptography required by the appllcation programmer [gcs96]. \Ve have documented the
set of cr::yptographic mechanism combinations in a pattern hnguage for cryptographic

software, called Tropyc [BRD98a],
In this work, Tropyc is used to evaluate sh. widely used CAPis. Compliance to J!ropyc

means that the CAPI has the basic mechantsms required to either offer hlgher-level cryp­

tographic s:ervices or insta.ntiate the corresponding (:ryptographic. pattems. Cryptographic
service L'! a high-level, ustrally more complex, cryptographic work perforr:ned/offered by

an entlty) based on the corresponding cryptographic mechanisms, upon receiving requests
from lts clients. The cryptographic servke$ are the following subset of the security services
defined by TSO [íso98] (also called cryptographic goals [MvOV96]): data confidentiality,

4

2.2. CrJ'Ptographic Goals and Patterns

data integrity, authentication and non-repudiatiorL Accordingly, cryptographic rnecha­

nisms are the follmdng subset of JSO's secur:ity mechanisms [iso98]: encryption~ digital

slgnatures, dat.a integríty and authentication exchange.
\Ve present a comparative study of six cryptographic APTs \vith respect to huw they

support Tropyc's paltems. Our goal is to contrast the cr_:yptographic mechanisms offered

by widely used cryptographie APls \-vith the complete set of cryptographic patterns. Par­
ticularly, we want to answer three questlons: (í) V'lhat patterns are supported by each

AFI? (ii) How easily are they supported? (úi) Does the lack of any pattern influence

the usefulness o f the API in any way? Other CAPI eompaúsons, based on quite different

criteria, can be fmmd in [Tea97, rnsc],
This text is orga.nized a.s follows. Section 2.2 summarizes the goals of modem Cr}'·p­

tography and gives an overview of Tropyc and hmv it can be used to evaluate CA.Pis.
Section 2.3 compares the cryptographic libraries and analyzes their support to Tropyc.

Section 2.3.2 a.nalyses, using function interfaces, the approaches used by CAPis for the

signlng data and compose cryptographlc mechanísms, Condusions and future work are
in Section 2.4.

2.2 Cryptographic Goals and Patterns

lVIodern cryptograph:r addresses four security goa1s [IvivOV96] or services [iso98]: eon­
fidentiality1 integTity, authentication 7 and non-repudiation. Accordingly; there are four

basic cryptographic mechanisms: (i) encryptionjdecryption) (ii) MDC (Modification De­
tection Code) generationjverification1 (iii) MAC (:tvíessage Authentication Code) gene­
rationjverification, and (iv) digital signing/verification. These four rnechanisrns can be

combined in spedfic and limited ways to produce more high-level ones and are the building
blocks for security services as well as security protocols. ConfidentiaJity is the ability to
keep inforrnation secret except from authorized users. Data integrity is used to gn.arantee

that ínformation has not been modified without permission: which indudes the ability

to detect unauthorized manipulation. Sender (origin) authentícation corresponds to the
assurance, by the cornmunicating parties, of the origin of an information tr.ansrnitted th­
rough an insecure communication channel. 1\on-repudiation is the ability to prevent an

entity from denying its actions or commitments in the future.
As shown in Figure 2.1, the cryptographic mechanisms corresponding to the services

for data integrity1 sender authentication and (digital) signatures relate to each other as
follows: MACs support data. integrityl signatures support both sender authentication and
data integrity as well as non-repudiation, Encryption, which supports confidentiality, is
orthogonaJ to the other cryptographic mechanisms and can be combined with each of

them. It is important to notlce that Fígure 2.1 is related to cryptographic mec.hanisms

Cryptographic Coais and Pattems 6

Data lntegrity

Authentication

Non-repudiation

Figura 2.1: Relatíonships Among Cryptographic Service.s.

and services, it does not necessarily work for security protocols.

2.2.1 Cryptographlc Patterns

The basic cryptographic services are lnvoked. in appropriate cornbinations tvhh other servi­
ces and rnechanisms in order to satisfy appHcation requirements_ f'articular cryptographic
mechanisms can be used to imp]ernent the basic services. Software systems ma.y imple­
ment particular combinations of the basic cryptographic services for direct ínvocation. V'Ve
have proposed in (BRD98aj 1 a pattem language which addresses the proper combinations
of cryptographic servires) when security a.spects are so important that they cannot be
delegated (relegated) to the communication or storage subsystem and should be treated
by the application ítself [SRC84]. The cryptographic deslgn patterns eorresponding to
the basic cryptogTaphic services and their composition;; are summarized in Table 2.2. L
The codes column Code of Table 2.2.1 are used in Figures 2.2 and 2.3 to name the
cr,yptographic patterns.

2.2. Czyptographic Goals anà Patterns

I Pattern N ame CodeT Scope Purpose
I lnformation Secrecy !S Confidentiality Pnnides secrecv of lnfonml.tion

I 1viessage lntegrity Ml lntegrity Detects corrup~ion of a message-~
! Sender Authentication SA Authentication Authenticate,s the oriJ;,;in of a message

i
Signature s ::\on-repudiation Provides che authorshíp of a message
Signature with Appendix S'\p Kon-repudiatioD Separares message frorn signature
Sec:recy Rith lntegrity SI Confidentiality Detects corruption of a secret

'
and lntegrity

i
Secrecy with Senda· SSA I Confidemialíty Authemicates the oriJ:,>in of a secret
Authentication ! and . .:\ uthentication
Sen·ecy with Signm:ure I ss I Confidentiality Pwves the authmship of a semt I

' and :.iorHepudíation

I
Secrecy with Signature I SSAp Confidemiality Sep.arates secrer f"rom signature
witb Appendix and :'\on-repudiadon

Table 2.2.1: The Cryptographic Design Patterns and Theír Purposes.

SA

MI
\

ss

SSAp

'&::==+- s

--------------~N~o:n=-r:e:p:u:dl:·a:ti~o;n~L_- SAp

Figura 2.2: Pattem Distribution Over the Regiom; of Cryptography Services.

7

Fígure 2.2 shows the distribution of cryptographic patterns over the regions of Figu­
re 2.L There is at least one pattern in each region, and two of them when an alternative,
usually faster, variation exists. Because there are no uncovered regions in Figure 2.2, that
ís regions without a pattern bound to itj ali the proper combinations of the four ba..<;ic
cryptographic mechanisms are represented by Tropyc. Furthermore, there are no nev;"
cornbinations available, This fact is supported by the matrix of Figure 2.3.

Additionally, Ttopyc documents both the use and appropriate combination of crypto­
graphic mechanisms in order to accornplísh not only the basíc cryptographic services, but
also the high-level composed ones. In fact, the comblned pattems can be viewecl as high-
1eve! services able to íncrease the ease of use of cryptographíc libraries and APis. CAPis

2.2. Cryptographic Go:als and Pauerns 8

should offer not only the basic four mechanisms, but also their compositions. From a

programmer point o f view1 CAPls cem support the composed cryptographic pattems in a
,-arlety o f ways 1 ranging from t:xplidt progrannner-made composiiion of basic mechanisms
to transparent composition hidden in high-leve], not necessarily programnu.'r·-friendly, in­
terfaces.

L::
I

~~~r~s i i ri 
S Ml SSA SI i SS i SApjSSA~ - ., +··--
í:ri<?~D 

-----+------~---- r-=:::-r 
1i1! SSA SSAj 'Í} I {"- I [J 1 -+ [_ _ _] : '_' -

SI ID "+~·-:-~-~ ss DllJ.ss~p~[J: 
~ 
s I SSAj D 
l <? ss D' SAp' ss SSA~ l]JLJ: D: i s 

'---
l i <;o. I SI SAp I D í} D "G·+"ê I !i I 1~ 

I I ss 
I '-' I -- I{ __ ' -" ' ~---'' 

AIU11J ss I<>!Cl <? í}!ssApinl 
. .. --· ~ ~---~ . 

.:.l SSAI u ,~A~ n I v D I~A~Ss~ÇJ I s 
!--
1 s 
f--

s ! <? D D <? D SSAp LJISSA~ di 
· p § ssÃr [J <? I ssAp ssAp ssA~t:TI!l I iSA 

:ss Aplll n,e 1 JJID o,rJ[Jilll 
! t.............. ~ -·---' I - -~~ 

[] Not slgnHicant 
í} Supported by Colurnn 

<? Supported by line 

Figura 2.3: Ma.trix of Cryptographic Servics'S Combinations. 

The matrix of Figure 2.3 shmvs hmv to obtain vaJid combinations of mechanisms. The 
fuU set of mechanisrns in colurrms are combined with the same set in ro\vS. A square-. 
marked position means that the combínation does not add any nmv cryptographic feature 
to any of its generators. A !eft-arrow-marked position means that the resulting combina­
tion is a1ready impHdtly supported by the rmv generator_ An up-auow-ntarked position 
means the combination is already implicitly supported by the column generator. The 
valid combinations are marked vdth the codes naming the pattern.s, Three Observations 
emerge from that figun~: (i) the number of distinct vahd positions ( combinations) is small; 
(ii) there are altemative ways of reaching an appropl"iate eombination; and ( íií) it is not 
necessary to add either coiumns or rows to the matrix because there are no new valid 

combinations beyond SSAp. 
Since Tropyc completely covers not only the cryptographic services. but also their 

compositions. th~; eva.luation of CAPis based on it is complete too. Such CA.Pls should 



2.3. Comparative Ana(vsis 

not only s:uppott the basíc patterns, but also the combined ones, in order to be complete. 

A CAPI supporting only the basic set is considered to be less adequate for modem appli­
cat.ions than a complete one:. On the other hand, the leve"! of abstracüon for providing the 
combinations is another aspect to be analyzed. These tvm aspects) support to appropriate 

combinatlons and levei of abstraction, are different approaches of evaluation, in the sense 
that the first is quantltative and the second is qualitatíve. 

2.3 Comparative Analysis 

Our analysis focuses on six \veH known CAPis: IBIV1's Common Cryptographic Archi­

tecture (CCA) [JDK+9l, L'\UW93j, the oldest of the group; RSA's Cryptoki [Kal95]; 
)/licrosoft's CryptoAPI [Mic96]: Sun's Ja\'a Cryptographic Architecture and its Extension 
(JCAIJCE) [JBK98, Oak98, j\,!DOY98], the newest of the six; X/Open's Generic Secu­

rity Service API (GCS-API) [gcs96], presently deprecated; and Intel's Common Securíty 
Servires Manager APl (CSSM-APl) [css97]. 

l\lost of these CAPis, except JCA/JCE and CCA) were evaluated in anoth;;w com­
parison according to quite different criteria [Tea97]. Section 2.3.1 provides a general 

evaluation of the six CAPls a.ccording to the cryptographic services they support. The 
CAPis' support to patterns is evaluated in Section 2.3.4. A complete description of each 
CAPI is beyond the scope of this text. 

2.3.1 General Evaluation 

Object-oriented CAPis, supported by object libraries, are easier to use, and more difficult 
to abuse, than those ones based on function libraries. Object Hbraries hld potentiaHy 

harmful information and offer higher abstractions than function-based ones. Among the 
analyzed CAPis, only Sun's JCAjJCE and RSA's Cryptoki present an object-oriented 
design, but only the first has wíde)y available object-oriented implementations. In both 

cases, classes encapsulate families of semantically related functions. The other CAPis 
are eollections of ioose-related functions (usually with large argument lists) and data 
types. They are usually less friendly and more prone to programming errors than the 

object-oriented ones. 
Despite the kind of transformation performed: both object-oriented and non-object­

oriented CAPis traverse the same state diagram, shown in Figure 2.4, during data trans­

fonnation. There are three states: (i) Initializationj during whlch the cryptographic 
engine responsible for data transformatíon is initialized with keys and other algorithm 
parameters; (ii) Buffer Updating, in whích the cryptographic engine's internai buffer is 
fiUed and some intermediary transformation is optionally performed; .and ( i·ii) Finaliza-



Comparative Analysris 10 

J (j) 
> (\ "T/ 

U, -~ 
--, final() (- -l 

1 
lni.tialization ~- -- ----"------i Finallzatíon 

"-.... L_ -· 

]1--finad 
update() 

~----~ 

update() r- ' 
L--- B í'l' U > . 4 u ·er 'puatmg 

L_ 

Figura 2.4: State Dia.gram for Cryptographic Transformations. 

tion, in which the la'it part o f input data is accumulated and nansformed. Accordingly, 
there are three main ldnds of methods or functions responsíble for state transiLions: initO~ 
update() and final(). 

A1most ali CAP1s use byte arrays ac:; the data structure for inpul and output. This 
requires from the CAPJs· dient a great control on both data grarmlarity and 1ength. In 
fact: ali CAPis, except .JCAf,JCE) force their clients to worry about both block size and 
padding. ,JCA/3CE ís able to work not onl:y with byte arrays, but aJso 1:vith r>eriaHzable 
objects for both signing and encryption [GS98]. 

Service 

Figura 2.5: Cryptographic APis and the Mechanisms They Support. 



2.3. Comparative AnalJ:sfs 11 

The table in Figure 2.5 summarizes the cryptographic mechanisms the six CAPis ap­

proach. These mechanisms can be divided in three main groups. The basic mechanisms: 
encrypüon, hashingjl\JDC, MAC, and Sig.11ature 1.vith reeovery; their compositions, for~ 
med by the Signature with appendix and the combinations of encryption with digitai 

signatmes, fv1DCs, or 3rlACs; a.nd the others, forming the group of management or auxi­
liary functions. J\-lost o f the CAPls support the basic mechanisms, though a few o f them 

explicit.ly .support mechanism composition. Auxiliary functions are not uniformly suppor·· 

ted. Figure 2.5 shows that none of the analyzed CAPis offers routines for the complete 
set of :mechanisrns and thelr compositions. Furt.hermore, from a programmer point of 

·dew, mechanism composition is usuaHy a difficult task, which requires a lot of knowledge 
about the topic. ::V1icrosoffs CryptoAPI is the most complete, but Sun's ,TCA/JCE is 
the most programmer-friendly. Sectíon 2.3.2 offers a comparlson of function nnd method 
interfaces for Dada signing and Section 2.3.~1 analyses the compositíon of cryptographic 

mechanisms. 

2.3.2 How CAPis Perforrn Signing 

This Section compares hO\v CAPis perform data signlng and illustrates the key differences 
among them. These solutions go from unique powerful-but-complex functions to easy­
t.o-use objects tYhich encapsulat.e both signatures and signed data. \Ve ccnnpare Sun's 

JCA, X-Open's GCS-API, RSA's Cryptoki and Mícrosoft's C:ryptoAPI. Each of them 
uses a different approach for data signing, Two CAPis are not shuvm here: CSSM-API 

approaches signing similarly to Cryptoki and 1BM's CCA behaves like GCS-APL 

mino:r _status generate_check..value ( 
session_context, 
input_data, 

) ; 

i v • 

chaiUlag, 

cc, 
intermediate-result, 
check_value 

;. 

;, 
;. 

h output*/ 
/!<. input *I 

input.,. optionah/ 

I* in-put •I 
input, output •I 
input, output *I 

h output •I 

X-Open's GCS-API uses a simple function, generate_checlLvalue0 1 for ali stages of 
data transformation ( the stages are shown in Figure 2.4 and are initialization, buffering~ 

and signing). Such a powerful function, whose interface is above, requires a large num­
ber of arguments, seven in total 1 to perform its task over arrays of bytes ( input-data~ 



2.3. Cornpa.rat.i\re A.naJ.ysis 12 

intermediate~result 1 and check_value). A Hag, chain_flag1 indicates whether the 

tn:msformation is in fir::;t, middle or final stage, Large an:ays can be split .and trea-· 
ted by calls, in such a case, the function should be explicitly fed bnck \Vith 
.intermed.iate_results. Bye the time of the final ca11, check_value contains t.he signa­
ture. cc stands for cryptographic contextt -.,vhich is a structure for encapsulating hot.h 
sensitive data. such as keys 1 and tlw signature engine. iv is an optional lnltlalization 

vector. 

BOOL WINAPI CryptCnaateHash( 

HCRYPTPROV hProv, 
ALG_ID Algid, 

HCRYPTKEY bKey, 

DWORD dwFlags, 

HCRYPTHASH *PhHash 

) ; 

BOOL WINAPI C:ryptHashData( 

HCRYPTHASH hHash, 
BYTE *pbData, 

DWORD dwDataLen, 

DWORD d:wFlags 
) ; 

EOOL WINAPI CryptSignHash( 
HCRYPTHASH hHash, 
DWORD dwKeySpec, 
LPCTSTR sDescri.ption, 
DWORD dwFlags:, 

) ; 

BYTE *pbSignature, 
DWORD pdwSigLen h 

h input */ 
/lf input ,; 
A input t/ 
I* ínput *I 

h out.put ;,..f 

/t input 4 
/t ínput t/ 
/t input t/ 
A input 

h input 
/t input t/ 
A input t/ 
/t input */ 

I* output t/ 
inpu:t, outp-ut t/ 

Crypto.APrs functions for sígning, above, can only produce signatures with appen­
dix and split. the signing operation in two tasks: CryptHashDataO buH'ers data in suc­
cessive calls and generates a hash from them; CryptSignHashO signs the hash stored 
in phHash and retums an array of bytes containing the sig:nature; a third function, 

CryptCreateHash (), is used for creating a hash enginel retumed in phHash. 



2.3. Comparatíve AnaJ::vsis 

CKJW CK...ENTRY Signinit( 

CK-BESSION~qANDLE hSession, 
CKJMECHANISM_FTR pMechanism, 
CK_OBJECTJiANDLE bkey 

) ; 

CL~V CK-ENTRY Sign( 

CK-SESSION.JlANDLE hSession, 

CK...BYTE...PTR pData, 
CK_USHORT usDataLen, 

) ; 

CK. . .BYTLPTR pSignatu.re, 

CK_USHO:RLPTR pusSignatureLen 

CK.JW CK_ENTRY SignUpdate ( 

Cl_SESSIDNJHANDLE hSession, 
CK . ..BYTE...PTR pPart, 
CK_USHORT usPartLen 

) ; 

CK-RV CKJENTRY SignFinal( 
CK-SESSIONJHANDLE hSession, 
CK . .BYTE....PTR pSignature, 

GK_USHORTJPTR pusSignatureLen 
) ; 

13 

/i< input +I 
h input ;f 

;, input *I 

I+ ir>put >t/ 

I* input +I 
;, input +I 

h ot~tput 4 
;, oui:put 4 

h inpt>t *I 
h input 4 
A inpt>t ,; 

h input *I 
A output */ 
/* output */ 

The four interfaces above represent the Cryptoki's family of functions for signing. 
InitSign() initializes the signing operation; then, the function called should be SignO) 
lf data should be processed in a single part; otherwise, successive calls to SignUpdate O, 
follm-ved by a caH to Sign.Final O should t.ake place. 

These three APis foHO\v a procedural programming paradigm, in fact both CryptoA.PI 
and Cryptoki use C programming language in their spedfications. Such a binding to pro~ 
cedural langu.ages has direct consequences over the API desig1L For example) arguments 
that could be made impHcit) such as handles, in object-oriented programming, are explicit 

and increa<:ie the list of arguments. Two aspects are due to C-programrning binds: the 
use o f pointers to arrays of bytes and the explicit use of variables to store the length of 

a.rra:ys. 

public abstract class Signature{ 



) 

public static getinstance(String algorithm); 

public static getinsta.nce (String algorithm, String p:rovider) ; 
public final void initSign(PrivateKey prvkey); 
public final void initVerify(PublicKey pubkey); 

public final void updatJ?. (byte [] b) ; 

public final byte [] signO ; 
public final boolean verify (byte [] signatnre) ; 

14 

public final dass SignedObject implements Serializ.able{ 

l 
} 

public SignedObj ect (Serializable o ,Pri vateKey pk, Signa-cure s) ; 

pu.biic boolean verify{PublicKey pk,Signature s); 

public Object getContentsO; 

The JCA's Signature class, abuve, groups a Cryrptoki-líke set of functions and ofl'ers 
the benefits of object~oriented programming. The .statíc method getinstance O can be 
used w instantiate particular algorithm impiementat.ions; method initSj.gn() initiaJizes 
the engine for signlng with a private key; update O is used for data bufferlng either in 
single or multip1e calls. Method s.ignO signs huffered data and returns the signature as 
an array of bytes. Since object-oriented paradlgm is being used, cryptographic transfor­
mations should be applied not only over bytesj but also ov0r objN:::ts. Alternath:ely to 
the byte-based API, JCA offers tbe SignedObject class~ whích can be used to sign and 
verify (serializable) objects . .JCA also offers specialized streams to handle encryption over 
continuous data. 

These four approaches are not limlted to sisrrüng. Each CAPI keeps analogous beha­
Yior for encryption, hashing a.nd authentk,.ation, as weU a.s for decryption and verification 
procedures. In summary1 the four ways used by CAPis to perform signlng are the fol­
lovting. 

L A unique pmverful function signs data in successive ealls .and flags determine the 
sta.ge of lhe transformation. Feedback of intermediary results is usuaHy required. 

2. Explicit separatíon of signing from both buffering and hashing. In this ca~e 1 buffe-
dng can take multiple function dass, feedback is avoide<L 

3. A fa:mi1y of functions performs initia.Iization, bufi'ering and signing. Hashing is 
hidden and feedback is also avoidect 

4. Signing is performed not onl_v over byte arrays, but a!so over objects: h,Y using a 
hlgh levei, usual1y more intuitive, programming interface. 



2.3. Comp:uative Anatvsi.•; 15 

2.3.3 How CAPis Support Service Composition 

Among all CAPis ana1yzed in this t.ext, only GCS-API and CryptoAPT explicit1,y· offer 
cryptographic mechanisms composition procedures. GCS-AP1 stiH apply íts approach 
and offer a single potverful-but-complex function to all kinds of cornbinations. Such a 
funct ion interface, be!ow, requires two eryptographic contexts ( one for confldentiality~ the 
other for either integrity or signature) and returns pointers to two outpnts conta.ining the 
encrypted data and the check value. Intermediate results still should be fed baek and a 
ftag controls vdwther transformation should be performed in single or multiple pans, as 

welJ as the stage o f transformation. 

minor_status protect_data( 

session_context:, 

inputAata, 

) ; 

J.V, 

chain....flag, 
confidentiality....cc, 
integrity_cc, 

intermediate..xes:ul t, 
output_data 

check-value 

f* 

h 
h 
;, 

/-+ ouiptd;*/ 

f* input *I 
input, optionab/ 

I* input 'I 
inpuL output *I 
input, output ;,c f 
input, output *I 

h output ,; 
I* output 'I-/ 

:-.ficrosoft's CryptoAPI us-es the function interface below to combine encryption \Vith 
finger print genera.üon mechanisms. An authentication engine1 which can be either a 
2,fDC or MAC generator or even a signature engine, is passed as an argument to the 
function and is used intemallv to buffer the data before authentication. Similarly to 
CGS-API, a fiag indicates the last or single function calL The fingerprint is obtained by 
calling CryptSignHash (), see Sect!on 2.3.2, thus only data buffering is, in fact, composed. 

BDOL WINAPI CryptEncrypt( 

HCRYPTKEY hKey, 
HCRYPTHASH hHash, 
BOOL Final, 

DWORD d-wFlags, 
BYTE *pbData, 

DWORD *PdvDataLen 
DWORD .:tdwBufLen 

;, 
A 

f* input 
;, input •I 
;, input *I 
f* input *I 

input~output *I 
input~ output *I 

I* input */ 



2.3. Compa.ratilm Ana.l_vsis 16 

) ; 

.Although not allowing a'Xplicit support for crypt.ographic service composition, Sun ·s 
JC . .-\ reduces the complex.ity of this task by using SignedObjects and SealedObjects as 
specializations of dass Serializable. \Vhen using objects for securing data1 the struct.uring 
of the seeure classes as specialization of serializable object.s allmvs chaining of objects, 
since seriallzable signed objects contain other serializab1e objects., whieh can be ínstances 
of other secure otjects, and so on. This is an applica.tion of the Composite [GHJY94] 
design pattern. 

2.3.4 Pattern Support 

The \Videspread use of design patterns has reached the design and implementation of 
object libraries for cryptogmphy, For instance, Sun ·s .JCAjJGE makes extensive use of 
Factory !vfet!wds [GHJV94] in order to allow subclasses to specify the objects to be crea.ted. 
There are other pattems rela.ted to security aspects o f a.pphcatiom: [\·"B97J. In this sectlon, 
the CAPls support to Tropyc's cryptographie patterns is analyzed. Compliance to Tropyc 
means that the CAPI has the mechanisms required by an application order to easily 
instantlate the patterns. 

Pattems 

11 Expllcit Use 8 In:ternal Use [' Not Available .I 

Fig-ura 2Jl: Cryptogra.phlc APis and the Patterns they Support. 

The table of Figure 2.5 confirms t.he resuJts obtained frorn Figure 2.5. Figure 2A) 
shmvs again that Microsoft's CryptoAPI is the most complete CAPL Alth:ough crlt1cize:d 



2A" Conclusions and Fut11re lVOrk 17 

for íts gn:at complexity1 GCS-API is the second most mmplete. In generaL the CAPTs 
support the four simple patterns but not the composed ones. Signat-ure is usuaHy only 
internally supported because it is a building block for Signatu-re -with Appendix, \vhich 
is usuaHy support.ed in a high-level wa.y. ?dodem a.pplications \Vith cryptography-based 
security requirements should use either Sun:s JCAfJCE or ~'Íicrosoft's CryptoAPL The 
first does not have objects for composed rnechanisms1 but isso easy to use that mechanism 
composition becomes a less difficult task. The second has a less friendly interface, but 
possesses the func-tions necessary to instantiate the composed cryptographic patterns whh 

relative t.ransparency. 

2.4 Condusi.ons and Future Work 

This vmrk uses Trop:IJc, a pattern 1anguage for cryptographic software, to eyaJuate Cryp­
tographic Application Programming Interfaces (CAPis). In this text ;,ve evaluated six 
-;,videly used CAPis and argued that, in general1 they do not support crypiographíc mecha­
nism composítion in an easy-to--use way. Furthermore1 none of them provides transp.arent 
cryptographic mechanism composition. Modem applications 1 such as elect.ronk commerce 
systerns, possess strong requirements on composíng cryptographic meehanisms: in a way 
that there is a practical need for cryptographíc object 1ibraries supporting this composi­
tion. This deficiency can be overcome by either developing (proposlng) a new CAPI or 
extending an existing o:ne. In sue h a case the JCA/ JCE is the best choice for an extensible 
CAPI because of its modem and fiexible programming interface. \Ve are using Tropyc 

to guide the <'~xtension of a household irnplernentation of JCA/JCE, in order to explicitl.r 
address easy composition of cryptographic mechanisms, as well as easy inst.antiation of 
cryptographic patterns. 



Capítulo 3 

Tropyc: A Pattern Language for 
Cryptographic Object-Oriented 
Software 

3.1 Introduction 

HistoricaH.r associated to eneryption, modem crypt.ogr.aphy is a broader subject, encom­

passing the study and use of mathemat.ical techniques to address lnformation security 
problems. Crypt.ographk mechanlsms are used in a \vide Y<:ulety of applicatlons, such as 
elect.ronic mail, database protection, and electronic cmmnerce. The present. lnterest in 
sofhvare architectures and patterns, and the existence of ..,vell-knm-vn cryplographic solu"· 
tions to rerurring security problems) motiva te the development of çryptographic sofüvare 

architectures and cryptographie patterns. 
In thls work1 >ve present. Tropyc 1 a pattem language addressing four fundamental 

security-related ser-vices [iso98]: data confidentiality, data integrity) sender authenticationj 
and sender non.-repudiation, organized as a pattern language for cr:yptographic sofhvare. 
Data confidentiality ls the ability to keep lnformation secret except from authorized users. 

Data integrity guarantees that information has not been modified wlthout permission; 
\vhich indudes the ability t.o detect unauthorized manipu1at.ion. Sender authentication 
corresponds to the as:surance1 by the communicating parties! of the origin of information 
transmitted through an insecure communkation channeL Non-repudiation is the ability 
to prevent an entity from denying its at~tions or commitments in the future, 

Tmpyc is composed of ten pattems. The foundation patt.ern is Secure~Charmel Com­
munication, which expands into four basie patterns that correspond to the sen·ices just 
descrlbed: lnformaiion Secrecyj Afessage Integrity, Sender Authent-ication, and Signatu­
re< These, 1n turn, generate the five remaining pattems in the language: Secrecy with 

18 



3.2. PayPerClick - An Electronic Payment Syswm 19 

IniegritJJ, Secreq; with Sender Authentication, Secrecy wiih Signatur·e, SigrwtVJ'f wüh .A.p-­
pendix, and Secrecy -t.t~th Signatu.re 1Dith Appendi::r:. 

The intended of this paper isto help soft>vare developers not familiar '\:\"ith crypto­
graphic tedmlques address the security requirements of applications. Devnlopers looking 

for general software archítectures for their cryptographic soft·..vare or components Ina_y also 
be interested. 

The remainder o f the text is organized as follows. Section 3.2 moti vates 1 h e need 

for cryptography~based security through an electronic payment application, PayPerClick 
\v·hich is also used t.hroughout t.he paper to illustrate ho'<lt cmr pattems ca.n be ernployed. 

Section 3.3 describes TropJIC and its ten patt.erns. Sectlon .3.4 describes a design of Pay· 

PerClick using Ttop?fc. Condusions and future >vork are sho•vn in Section :3.5. 

3.2 PayPerClick- An Electronic Payment System 

Electronic commerce applications are very good examples of sy~tems that require cryp­

tographic servires. A simpie somario of a commercial tra.nsaction using a credit card 
follows: 

1. Alice, a cust.om, asks Bob, a bookseller) for a nice book about cry'ptography. 

2. Bob replies that he has only one copy in stock and offers it to Alice for a reasonable 
price. 

3. Alice accepts Bob's offer, 

4" Alice sends her credit card nmnber and some further information to Boh upon his 
requesL 

5. Bob conta.cts the credit card's issuer to valldate the ca.rd information. In case of 

positive validation, he a~cepts t-he payment. 

6. Bob sends the hook to Alice along v.ith a receipL 

There are four SEX'.urity issues implicit in this scenario, which are very important when 

one uses an open net'\"Ork, such as the Internet) to implement the system. First, Alice 
requires conftdentiality when sensitive inform.ation1 such as credit card numbers, is sent 
to a selleL Second) this information should arrive uncorrupted at. its destlny; that isl its 
irrtegrity should be preservedj so it can be correctly validatecL Third1 Alice and Bob need 
mutual assurance of each otfu?r's ídemity during the transact.ion; that they should 
authentlcate the sender of the exchanged messages. The same holds for Bob and the 



.:L2. PayPerCUck- _An Electronic Payment S:vstem 20 

credit card's issuer. Fourth1 the payment receipt should be- sig-ned by Bob. This simple 
so:narlo beco:mes more complex lf electronic money is used instead of credit cards. ?\e\-Y 

req_uirements, such as anonymity and prevention of doub1e spending 1 may arise. 

- Broker ~ 

E 
z ~ ""' ~ -" ~ 

" u ~ 

" ~ .:d u 
c "§ " c 

c 
o ti "' - o " 

iZí u 
Electronic Payment 

l Payer 
I i I Payee 

j 
Goods + Rece1pt 

Fígura 3.1: Participants in a11 Electronic Payment Transaction 

Figure 3.1 shows the three main participants of an elect.ronic payment transaction and 
the fimv of money and sensiti ve data between them [AJSVV97]. The Broker is usually 
a bank or any other kind of financiai institution. The Payee ean he an Internet access 
pruvider and the Payer is the customer. The Payer makes a request to the Broker for 
electronic cash. t11at can be used to buy (electronic) goods over the Internet. The PayeT 
can request a receipt issued by the Payee. The Payee request redemption of electronic 
ca.sh to the Broker. Usually real money fiovrs from the Broker to the Payee. 

Electronic payment systems are good exarnples of the end-to-end argurnent [SRC84] 
applied to cryptography. In fact, cryptography-based security is such an important feat.u­

re of electronic payment systems, that. the apphcatlon itself should deal with it avoiding 
delegation to underlying communication subsysterns. Additlonal information about elec­
tronic payment systems can be found in [FD98, HY97]. 

FayPerClick [BDR98] is a tool for electronic purchase and on-hne distrihuticm of hy­
pertext documents based on the modelo f Figure 3.1. Hypertext documents are aecessible 
through links to HTML pages andare visible through \Veb brmvsers. PayPerClick can be 
nsed, for instance, to sell on-line books through links in their table of contents. Therefore, 
customers can buy specific parts of the book by clicking on a hyperlink. The hyperdo­
cmnents are structnred according to the Composite [GHJV94t 163} pattern, ;,vhich makes 
the computation of the cost and fingerprint of a hypertext document an easy task. The 
fingerprint of a hyperdocument is a ?IJiodification Detection Code (MDC) (see Appen­
dix A) computed by traversing its tree in some order. The Payer can be implemented 



3,3. A, Pattern Language for Cr"vptographic Software 21 

as Java applets, \vhich communicate \vith \Veb servers, instances of either Payee or Bro­

ker. Payers usually have an electronic y;alleL Brokers issue to Payers e1ectronic cash, a 
multip1e of fixêd-vahw dectronic coins. 

3.3 A Pattern Language for Cryptographic Software 

This Section presents Tropyc, a pattem 1anguage for eryptograph!c sofhvare, wlüch focuses 

on three goals: (i) the definition of a software architecttJre for cryptography-.based sr:cure 

communication: (ii) the description of cryptographic services as patterns. and (i'ii) the 

organization of these cryptographic pattems as a pattern language. 

i :tll}~~-·---+1 7 sr,_o"p"cc------t'c;;P~=- ~ i 1 .I! Secure-Channel Gene ri c Pro vicies a gent-"Tic software archi" 
~ Communicario:n tectme fOr cry~hlt~ system~ 

Confidentíaiity Provtde:> of infonm>tion 
Integrity Detens conuption of a message 

!-!4'!-Ji_S~. e~n~d~o~r~A~u::;;:th~o~n~n~c~a~ti~o~u;_+~A~l:n~h 0 on~t'i'caEt'io~r,r c--+ 7 A 2 u~tSh~cc~u~.i~e<zo"';; d:w ~ 1:ness5~:?~~ 
I S Signature :'\on-repudiation Provides tlw 1:\.uthorship of a message 
~i' ~6-+1

1
-s~o~A::~r~ec~,~. 

0

" 0 •i 0 th-,ln-,-,-gc-i 0 t}-.-+~C 0 o
0

n°fi 0 d~e
0

u~t:i 0 al~i
0

t)
0

" '--+~D 0 o 0 re-,c
0

·t
0

s
1

r,_o_n_c
0

tption of a s<!cn;t 

I , and Jnteg.Tity 

rJ 1 Secrecy with Sender Confidentiality .:\uthemlcates the origin of a secnJt 

I 1 /tuthentication and Authenticatíon 
~--+~,~~=::::_~---c---;----,---·-·--
1 8 1 Secrecy with Signat:ure Confi.dentiaHty Proves rhc tnlthorship of a secret 
' í and :\on-repudiation 

.IL:-.J. ~se· ,.r,-".tlr" "'"th ·'11Pt"'d'x-· !-':,. 7 ••o~·n~~r~"'~pcu.~d 2 r·a't 7 to'u=
0
~+,-~·- ----.,--~-----1 , ' : ~·~ ""' " '" " •• , ~~ - .. "' , SepBJ·ates mesmge from sig:natunl 

1 1.0 .1 S~crecy with .Signature , Con6dentialit:y Separa te':' sw.:ret from signature 

L i wn:h App,c,n~d=cx, ____ J~n,r:_~ Non··repudíation 

Table 3.3: The Crypt.ographic Patterns, with Their Scopes and Purposes. 

Table 3.3 summarizes the ten patterns that compos€ Tropyc. Secure-Channel Com­
munication abstracts common aspects of both structun; and bchavior relative to secure 
comrrnmlcations, regardless of the kind of cryptographic transforrnation performed. lnfor­

ma:tion Secrecy provides confidentiality of data in transiL However, informatlon secrec:y 
alone does not prevem modification or repiacement of data. Particularly in (mline corn­

munication, granting !v[essage fntegritr1 and Sender Aut-henticaúon is also important. In 
other situations, it is necessary to prevent entities from denying their actions or com­

mitments> Thns, some form of Signature is necessary. These four basic cryptographic 
servíces, in suitable combinations, generate three more patterns: Secrecy ~viih Integrity: 
Secrecy with Sender .Authe-nticaiíon1 and Secrecy with SignaturY~. For implementation ef­
fklency purposes 1 two additional patterns are provided: Signature with Apperulà and 
Secrecy with Sigrwture with Appendix. 



3.3. .A Pattern Language for Cryptograplúc Softtva.re 

(1) 
Secure-Channel Communication 

I (2) 
I Informatwn 

. S'' . l I 
1 •. ecrecy wlt 1 i 
J Imeg~ 

Legend: 

(3) 

(7) 
Secrecy with 

Sender 
Authentication 

i Basic Derived 
I Patte~l-"'1 Partem 

(4) 
Sender 

Authentication 

(8) 
Secrecy with 

Signature 
Signature 

with Appendix 

(lO) 
Secrecy witl1 

Signature 
with Appendix 

Figura ,3.2: Cryptographíc Design Patterns and Their Reiationships. 



Pattern Language for Cr}ptographic Software 23 

Figure 3.2 shmvs a directed acydie gTaph of dependencies between pattems. An ed­

ge from pattern A to pattern B means pattern A generates pattern B. Secun:··Channel 
Communication gem~rates the four basic patterns. The remainíng patterns me derived 
from combinations of these, A walk on the graph is directed by TI-YO questions. FirsL hm:v 

should the cryptographic sofhvare be structured to ohtaín boí.h easy reuse and flexlbilit}'? 
Second, wha.t cryptogra.phic services should be used to address application requirements 

and user needs? In other -;.vords, what cryptographic servkes shou1d be addt?.d to the 

current instantiation of Secure-Channel Communícation in order to overcorne its present 

d f' ' ' ? e Ictencws. 

ln the following patterns Alice and Bob represent tv.'o communicaüng part.icipants, 
tvhile Eve is an adversary eavesdropping emd possibly modifying informntion exchanged 
by AHce and Bob, 

3.3.1 Pattern 1: Secure-Channel Communlcation 

Context Alice and Bob exchange data through messages, on whích t.hey need to perform 
cryptographic transformations< l'vforeover1 a flexible and reusable cr:rptographic S()ff-'N<:He 

archltecture is required to make cryptographic service composhion easíer a:nd to separate 
concerns bet:ween application functlonality and seeurity requirements" 

P:roblem How should one structure Hexibie and reus.able cryptographic soft>vaxe for 
secure comrxmnication? 

Applicability 

• V/hen separation of concerns between functional r-equirements and non-functional 
security requirements should be promoted. 

• \Vhen the incorporation of security in soft\vare systems should be done in a struc­
tured and disciplined manner to avoid an increase in the soft\vare's complexity. 

Forces 

• The dependencies between cryptographic features and the application 's functionality 
should he minimized to fadlitate reuse of the cryptographic components. 

• Software with cryptographic code should be easy to understand, modify; and ada.pL 

• The increase of the systerns' compiexity due to the lnc1uslon of securl sen·ices 
should be kept under controL 



3.3. A Pattern Language for Cr_vptographic Software 24 

• The P<~lformance o f cryptographic algorithms should not be affected by applicatiorú 
deslg;n. 

Solution Alice performs a cryptographic transformation x = f(rn) on data rn beforc 

sending it to Bob. Bob receives x and performs transformatlon y = g(x). Alice and Bob 

must previously agrt.>e on transformations f and g and either share or distribute keys, if ne·· 

cessary. Figure 3.3 shmvs a dass diagram that models the cryptographic t.ransformations. 
The diagram defines two template classes, Alice and Bob) and two hook classes, CodHier 

and Decodifier. The CoJ.ifier class has a hook method f(), which performs a c:ryptogra.phic 
transformation on rn. The Decodifier dass has a hook method g( ), which performs the 
transformation, y = g(f(m)). Figure 3.4 shmvs the interaction diagram between Alice and 
Bob. In these diagrams1 a1 b, c and dare the roles perfonned by inst.antiations of dasses 
Aúce, Bob, Godifier and Decod'ijier1 respectívely. The Secure-Channel Communication 
pattem is a high-leve1 abstraction which is inherited b.Y the remaining pattems of the 
language. 

Alice a 

:x =c.f(m) 

b .recei ve( x) ' 

sendO f 
'----,<>c'----' 

I c 

Codifier 

f() 

: !* Cryptographic 

~ transfonnation */ 

b Bob 

.I* y=g(f(m)) */ 

Figura 3.3: Class Diagr.am for the Secure-Channe] Cornmunication Pattern. 

Consequences The use of the Secure-Channel Commu.nication pattern has the fol­

lo"'ing consequences: 

• It separatas the concerns related to the application domain from those related to 
the provision of cryptographic mechanisms in a stnlct.ured and discipHned fashion 

for application developers. 



3.3" A Pattern Language for Cr~·vptograpllic Sohware 25 

c:Codifier a:AJice b:Bob d:Decodifier 

receive(x) 

íj. g(x) . 

i Y I 
r----·---~ 

Figura :}.4: Sequence Dia.gram for the Secure-Channel Commnnication Pattern. 

• Tt promotes reusability of cryptographic mechanisms> 

e It allo\YS applícation developers to choose the rnost adecp.-1ate security strateg:_y for 
the system 's implementation. 

• lt provides a system design that is easier to maintain, adapt, change, and extend 
tha.n traditional approaches developing cryptogTaphic software. 

o It may introduce inefficiencies in the cryptogra.phic. protoc.ols:, dueto the references, 
implicit and otherwise1 ma.de in the object-oriented design" 

Resulting Context Alice and Bob can instantiate t.he overall architecture of crypto­
graphic systems. However, they should choose the cryptographie pattems that are the 
most adequate for their a.pplieation:s requireme:nts. Concrete implementations of this 
pattem should be ba..<ied on the four basic pattems) .lnforrnation Secrecy, Sender A-uthen­
tication, Message Integrity, and Signatu-re, aml suitable combinations of them. 

Implementation 

o This paUern can be adapted to deal íYith file storage and recovery. In these situa­
tions, messages for storing and recovering a file replace those used for sending and 
receiving information. 

• The refiection pattern ean be used to irnplement the securit:y requirements in a 
tnmsparent and non-intrusive manner for application programmers, that is 1 without 
interfering in the application's original structure. The reflection :mechanism encou­
rages modular descriptions of software systems by introducing a ne\V dimension of 



3,3. .4 Pattern La.ng11age for Cr.\<-ptograpbic Software 26 

modubrity: the separatlon of base-levei and meta-level computation. Reftection 
allmvs the creation of meta-objects that imp1ement the cryptographic mechanisms 
and that control and extend the behavior of application objects located at the base 
leveL 

• Before secure comrnunication beginsl a negotiation step is necessar_y in order for 
the partleipants not only to agree on \Yhich transformation to per:form~ but also to 
exchange information 1 such as keys and algorithm parameters. 

• Eve's role depends on the concrete implementations. She can replace or modify a 
rnessage in transit in the channel, or insert her ow·n messages. 

Example Electronic payment systm-ns have high security requirements. They can be 
hetter süuctured when the Secure-Channel Comm'l.mication pattern is used. Sections ,'3.2 
and 3.4 discuss some important aspects of our case study, PayPerClick. 

Known Uses In the literature we can find various systems that use the Secun::~Channel 
Cornmunicatíon p<tttern, such as [HY97, Her97, CGHK98, Hl\98, Lin93, Zim95, BDRJJ8], 

Related Patterns Severa] well-known pattems can be used ... vhen instantiating Secure­
Charmel Communicaüon. The Strategy [GHJV94, 315] pattern can be used to obtain 
algorithm independence. The Bridge [GHJV941 151] pat.tem can be appHed to pro­
mote implementation independence. The Abstract Factory [GHJV94, 87] pattern can 
be employed in the negotiation step to choose whiC'll cryptographic aJgorithm or im­
plementation to use_ Tl!e Observer [Gll,JV94, 293], Proxy [GHJV94, 207], and Ciient­

Dispatcher-Server [BMR+96j 323] patterns can be used to obtain location transparency. 
The Foru;arder-Receiver [BMR+961 307] pattm11 can be combined with the cryptogra.phk 
patterns in order to offer secure and transparent inter-process comrrnmication, so that 
Alice becomes part of the Fonvarder and Bob is incorpora.ted into the Receiver. The 
8tate [GHJV94l 305] pattem can be used to provide state dependent beha.vior, such as 
turning the secnrity of the channel on and off. The Null Object [MRBV97, 5J pattern can 
be used to design a nuH transformation. The Rejlection [BMR+96j HK~] pattern can be 
used to separate application functionality from the securíty requirements. The crypto­
g_raphic infrastructure1 as encryptionjdecryption algorithrns, pseudo-ra.ndorn generators, 
h.ashing algorithms, etc., can be provided by a Security AcceBs Layer [YB97, 16]. 



3.8. A Pattern Languag-e for Cryptographic Soft>v.are 

3.3.2 Pattern 2: Information Secrecy 

Context A1ke wants to send sensltive messages to Bob. :Aoreover, she \vants to keep 

these messages secret from Eve1 >vhom Alice suspects rnay be tr_ying to read its contents. 

Problem T1ow can Alief: send a message to Bob so that Eve carmot possibly read its 
contents? 

Applicability 

• \Vhen two participants need to share confidential information. 

• \Vhen it is necessa.ry to decouple encryption/decr:yptíon acüv·ity from either data 
communication or storage. 

Forces 

a Evf.: cannot, ín any situation, gain .access to the message content.s. 

• The cost of encryption/decryption should not be greater than t.he imrinsic value of 

the mess:age being encrypted. 

e The cost of cryptoanalysis by Eve should be much higher than that of the: message 

itself. 

Solution This pattern supports encryption and decryption of data .. Alice and Bob h ave 
previously agreed on an (assumed public) encr.yption function and a shared secret key 
(in public-key cryptography1 Bob nmst first obtain Alice1s public key). Bob encrypts the 
message and sends it to Alice. Alice decrypts it and recovers the original rnessage. 

Consequences 

e Encryption is1 in genera-l) a slow task. The security of ~mcrypted infonnation relies 
on the secrecy of the encryption key and on the strength of the encryption algorithm. 
Clearly a key must be long enough to prevent exhaustive search o f the key space. 

• Eve carmot read the message contems, but she still can repla.ce or modify encrypted 
messages. 

• Transmission or storage errors can potentiaHy render the recovery of the original 
message dlfficult. 



3.3. A Pattern Language for Cryptograpi1ic Software 28 

Resulting Context Alice and Bob use an encrypted channel for their communication. 
Hovvever: this channel does not provide data integrity, sender authentication, or non­
repudiation. To achieve integrity without loss of secrety, Alice and Bob should instam. iate 
Secrecy with lntegrity. If they '\vant to add Sender Auihentication to lnformation Secrecy1 

they should instantiate Secrecy with Sender Authentication. Furthermore, if sender non­
repudiation of secrets is desired1 one should instantiate Secrecy with Signa.ture. 

Implementation 

• Both private (in public-key, or asymmetric, systerns) and secret (ín secret~key, or 

symmetric, S)''Stems) ke:ys must be kept protected from unauthorized access. 

• An infrastructure to distribute public keys is required. 

Exrunple ln PayPerClick1 when a Payer makes a cash request, he sends the Broker his 

credit card nmnber in encrypted form. The Broker decrypts the card nurnber \vith her 
decrypti.on key and charges the Payer's credit card with the requested cash amounL 

Known Uses Common uses of this pattern can be found, for example, in electronic 
mail systems [Zim951 Lln93, Her97}: automatic banking machines, and voice encryption. 

3.3.3 Pattern 3: Message Integrity 

Context Alice send.<=> 1ong messages to Bob, who wants to veri(y the integ;rit;y of the 
received messages. He suspects that they may have been corrupted accidentallyl due to 
transmission errors. Alice and Bob do not share cryptographic keys. 

Problem How can Bob determine whether a message he received has been modified? 

Applicability 

• In the detection of occurrence of errors in elther transmission or storage of data. 

• In the detection of unauthorized modífication of data. 

• ·vvhen it is necessary to generate l'fingerprints 11 for eithe:r messages or data records. 

For-ces 

• The mechanism should be robust against unauthorized, accidental or not, modifi­
cation of data. 

• The mechanism shouid be cost-effective. 



3,8. A. Pattern Langua.ge for Cryptogra.pbic Software 29 

Solution Alice and Bob agree to use a ~'lDC (Appendix .A} Alice computes t.he fdDC 
of the message and sends both message and MDC to Bob. Bob computes the MDC of 
the message and compares it to the one rect:ived from Alice. Tf they match, the message 
has not been altered. 

Consequences 

• h is necessary to verify a relatively small MDC to determine whether a large amount 
of data has been modified. 

• Eve still has the ability of substit.uting both message and the corresponding ~vfDC. 

• ?\.'fl)Cs by themselves do not guarantee the a.uthorshtp of a message. 

Resulting Context Alice and Bob use MDCs to detect corruptíon of data. Hmvever, 
this tedmlque guarantees neithe,r sender authentication nor non-repudiation. If these are 
requlred 1 other patterns; sueh as Sender Authenticaúon and Síg-nature, should be used 
instead. I\rforeover, Tnformation Secrecy can be combined wít-h iVle$sage Jntegrity in the 

Secrecy with Integr-ity pattern) thus providing int.egrity and secn~cy at. the sarne time in 

the channeL 

Implementation 

• A message must be bound to its corresponding MDC to avoid rnismatch o f rnessages 
and MDC:s, 

• \'Ieasures should be taken to recover the original contents of cormpted dat<:L \.fDCs 
can detect corruption, but not correct iL One st.andard solution IS rnessage re­

pla.ying. 

• \Vhen feasible) sending two or more copies of a messagE\ with the additional feature 
of allowing \veak correction capability, is an alternative to employing ~TDCs for 
detecting eorruption. 

• lviDCs are often implemented uslng cryptographic hashing algorithms [Mv0V96]. 

Example In PayPerClick) electronic payments must h.ave their integrity preserved in 
order for the Payee verification to succeed. Thus, the payment should be sent by the 
Payer along with its MDC. The Payee recomputes the MDC of the n~ceived payment and 

checks it against the r-s>ceived MDC. 



3.3. A Pattern Language for Cr_ypt.ographic Softv.nue 30 

Known Uses Two common uses of fviDCs are the detection o f file modification caused 
by viruses and the generation of passphrases to produce cryptographic keys. Privacy~ 

Enhanced MaU [Lin93] Js one of the systems that provides Afessage Integrity. MDCs can 
also be used as unique identifiers of electronic coins in electronic commerce .applicati­

ons [FD98]" 

3.3.4 Pattern 4: Sender Authentication 

Context Alice and Bob want to exchange messages, but they cannot dist.inguish t.heir 

own messages from spurious ones, perhaps inserted by Eve1 in the communication channeL 
::Vforeover, we assume that they have previousl.'y established a secret key uslng some secure 
channeL 

Problem Hmv can genuine messages be distinguished from spuríous ones'! 

Applicabi!ity 

• \Vhe:n the occurrence of errors during transmission or storage must be detected. 

• \Vhen the detection of corruption or unauthorízed modification of datais necessary. 

• \Vhen it is necessary for both Alice and Bob to eertify the origin of exchanged 
messages. 

Forces 

• The authenticated messages should be hard to forge .. 

• The authentication mechanism should detect accidental data mod.ification, as \VeH 

as those supposedly done by Eve, 

• The authentication procedure should be cost-effective; that 1s, it should not imply 
a cost higher than the intrinsic value of the data being authenticated, 

Solution .Alice and Bob agree beforehand on a shared secret key and a cryptographic 
algorithm for generation of Message Authentication Codes (MACs) (Appendix A). Alice 
computes the MAC of the paír (message. key) and sends both message and MAC to Bob. 
Bob computes the MAC of the received me'3,sage and the shared key and compares it with 
the MAC he received from Alice. If they match, the message is genuine and must have 
heen sent by Alice because, other than Bob, only Alice knows the secret key and can 
compute the correct MAC for a given message. 



3.3. A. Pattern Language for Cr_yptograpbic Software 31 

Consequences 

• .A mess.age is correctly authenticated i f and only i f the sharüd key ís kept secret from 
third partles. 

• The amh.orship of a message produced by Alice or Bob cannot be proved t.o a third 
party~ since both sides can compute valid I\L\Cs. 

• Eve may lnsert a previously seen message along wit.h its (correct) ?dAC into the 
communication charme!; thus fooling Alice and Bob. In this situation, some gua­
rantee of the message freshness should be provided. A common solution for this 
problem is the inclusion o f timestamps or sequence numbers as part of the message 
contents, 

Resulting Context Alice and Bob can authentlcate the origín of messages they ex­
change as well as detect their corruptton. However1 if they want to prove the authorshíp 

o f messages 1 the Signatnre. pattem should be used instead, I f desired, encryption facilities 
can be added to the communication channel to apply the Secrecy with Sender Authent·i­

cation pattern. 

hnplementation Factors 

e A secure means for exchanging and mainta.ining a secret key is necessary, 

e Simílarly to MDCs, a message must be correctly bound to its corresponding J\ifAC. 

• fvlAC generators can be implemented in many \vays. T'so common possibilities are 
symmetric cryptosystems and cryptographic hash functions. 

• As with 0/lDCs, additional measures should be taken if error correction is deshed.. 

Exarnple In PayPeTClick) Eve may try to substitute her coins for someone else)s. Thls 

snbstitutlon c.an be prevented if MACs of the payments are computed by the Payer whe­
never they are sent to the Pa;y-ee. Such a solution ensures that the Payee will ahva.rs 
receive valid payments. However 1 a Payee can generate a fake payment tmd stiH request 
redemption to the Broker. Analogously, a Payer can repudiate old legitimate payments 
claiming that they were generated by the Payee, If the value of payments is rela.tively 

and coin losses are frequent, the use of the Signature pa.ttem is a bett.er sol.ution to 
this problem. 

Known Uses MACs have been used, among other appiications, to authenticate TP 
pack:age.s over the Internet fCGHK98]. 



3.3. A. Pattern Language for Cryptographic Software 32 

3.3.5 Pattern 5: Signature 

Context Alice sends messages to Bob) but he cannot distinguish Alice's messages from 
the ones Eve may insert in the communication channel. Furtherrnore, Alice ca.n later 
dispute the authorship of a message actually sent by her, denying Bob the ability to prove 
to a t.hird party that only Alice could have sent that particular message. \Ve assume that 
Alice has a puhiic/private key pair and that her public key is widely available. 

Problem How can one correctly attribute the authorship of a message in such a way 
that this authorship cannot be 1ater disputed? In other \Vords, how ean the receiver of 
a particular message convince himself and a third party of the identity of the sender of 
th.at message? 

Applicability 

• 1n contexts \vhere non-repudiation of messages must be guaranteed. 

Forces 

• Signatures must be dependent from the data being signed. Otherv.ise, they could ea­
sily be copied and tied to a different message. Thus~ signatures implicitly guarantee 
data integrity and sender authentication. 

• Signatures must be hard to forge or a!t.er. 

• The cost of signing must be substantíally io"ver than the cost of the data being 
signed. 

• lt must be possible to verify the authenticity of a signature without its author's­
cooperation. 

Solution Alice and Bob agree on the use of a pubhc-key digital-signature protocol 
(Appendix A). In most such systems, Alice applies the decryption algorithm to a message 
using her private key and sends the result (her signature) to Bob. He then encrypts the 
signed message with Alice1s public verifiçation key. If the result rnakes sense to Bob, that 
is, if Bob recog:nizes in the resulting data what he expected to be tbe original message, 
then it must be true that Alice is the sender of that message. This is the case, since only 
the knowledge of the key used by Alice in the signature generation procedure could have 
produced that signature. 



3.3. Patt:ern Language fOr Cryptograpiúc Software B3 

Consequene:es 

• The verification of a message's signature is based on t.he secrecy of the author's key 
and the strength of the signing algorithm. Thus, Alice could presumably den:-" the 
authorship of an. old message by daiming loss or theft o f her private key. 

• Signatures are usually a..>7 large as the data being signed. sometimes produclng an 
intolerable overhead. 

Resulting Context Bob can I'lü\V prove t.o a third part.)' i:hat a message he has received 

carne indeed from Alice. Data int:egrity and sender authentícation are impliclt in the use 

of digital signatures. However: signatures are as large as the data being signed and often 
even largeL A more efficient approach would be to sign a much smaller fingerprint (the 

hash yaJue) of a message, instead of the message itse1f and semi the signed fingerprint 
along \-vith the message. This is exactly -what is provided by t.he Signature with .Appendi.x: 

pattern. Finall)') encryption can be added to the signing process _giy·ing rise to the Secrecy 

wüh Signature pattenL 

Irnplexnentation 

• Publie-key cryptographic algorithms are generally used to generate digital signatu­

res. 

e A secure means of storing the author"s prlvate key 1s necessary. 

• An infrastructure t.o make pub1ic key-·s for signat.ure verífic;;üion broadly available is 
necessary. 

• For efficiency purposes, it is often preferred to sign the hash value rather than the 

messa.ge itseJf 

Exaxnple This pattem is used in PayPerClickin two situations of sender non-repudiation: 

cash issuing by a Broker and receipt issuing by a Payee. 1n t h e flrst case, a Broker pro­
duces a cash amount, signs it and Símds the signed cash to a Payer) wbich verifies the 
Broker:s signature. 1n the second case; a Payee verifies the _Brolwr's signature in coins 
recein~d from the Payer before issuing t.he reeeipL 

Known Uses Electronic commerce applications use digital signatures to authenticate 

both customers and merchants [FD98]. Digital signatures can also be used to guarantee 
aut.henticity and non-repudiation of information obtained over the Internet [HN98J. Both 
Privacy-Enlmneed .Mail [Lin93J and Pretty Good Privacy [Zim95J provide non-repudiation 

o f electronic mail based on digital signatures. 



3.3< A Pattern Language for Cryptographic Sofhvare 34 

Pattern 6; Secrecy with Integrity 

Context A.lice and Bob exchange encrypted messages, and they vmnt to verify the 
integrity of the exchanged messages. Alice and Bob do not share cryptographic keys for 
purposes other than encrypt.lon. 

Problem Hmv to verify the integrity of an encrypted rnessage without loss of secrec;(? 

Applicability 

• In the detection of occurrence of errors in either transmission or storage of secret 
data. 

• In the detection of unauthorized modification of SE~cret data. 

• \Vhen it is necessary to generate ''fingerprints"for either secret messages or secret 
data records. 

Forces 

• It is desirable that the integrity of secret information can be verified \vithout dis­
closure of the information. 

• Granting secrecy and data integrity at the same time should not happen at the 
expense of one or the other. For instance, it should not be a.ny easler to decipher a 
message in the presence of its ~v1DC than it is wlthout it. 

Solution Two hasíe patterns are combined to solve this probiem: Information Secrecy 
and Messa.ge Integríty. The !viDC is computed over the origínaJ non-encrypted message 
which is then encrypted and sent, along with the MDC, to Bob. This pattern requin~s 
only one public/private key pair (ora shared secret key) used for encryption purposes. 

Consequences 

• Malicious replaeements of messages can still garble valid data, thus rendering it 

useless after dt""Cryption. 

• The computation and verification of MDCs may cause a noticeable decrease of 
performance. 



33. A Pa.ttem Langua.ge for CrJ"ptographic Software 35 

H.esultlng Context Alice and Bob combine lvfDC generation functions and encryption 

in such a way that they preserve the integrity of an encrypted message without loss of 
secrecy. 

Implen1entatlon 

• This pattem can be imp]emented by cornputing the message's T\'lDC elther before 
or afH~r encryption. In the first case, transmission errors can be detect-ed before de­

cryption. In the second, \vhen the mE\'3-Sage structure is unknO\YU) small tnmsmission 
ermrs ca.n only be detected after both decryption and lVTDC verificatlon. 

Example If a Payer's encrypted card number arrives corrupted at the Broke-r, it wíll 
not be decrypted successfuUy. Thus, the Broker should have t.he abihty to detect the 
corrupt:ion of an encrypted message) to prevent the acceptance of a wrong but perhaps 

vaJid card number. So1 during a PayPerClick cash request) the Payer shou}d compute the 
);-fDC of the card number, then encrypt the card mnnber, and semi both the MDC and 

encrypted nurnber to Broker. 

Known Uses Privacy-Enhanced :Mall [Lin93j protocols provide both encryption and 
message integrity for electronic maiL 

3.3.6 Pattern 7: Secrecy with Sender Authentication 

Gontext Alice and Bob use pubtk-key cryptography to exchange encrypted messages. 
may intercept messages, but she cannot read their contents. However1 she may 

replace or modify these messages in such a way that Alice and Bob cannot detect these 
modifications or replacements. 

Problem Hmv can .AJice authentlcate the sender of an encrypted message without !oss 

of secrecy? 

Applicabillty 

• \Vhen the occurrence of errors during transmission or storage of a secret must be 
detected. 

• \Vhen detection of corruption or unauthorized modification of secret datais neces·· 

sary. 

• 'VVhen ít is necessary for both Alice and Bob to certify the origin of exchanged 
messages that we:re encr:ypted using public-key aJgorithms. 



8.8. A Pattern Language for Cryptographic Software 36 

Forces Similar to the Secrecy '-''i·ith Integrity pattern. 

Solution \Ve combine two basic cryptographic pat.terns to solve this prohlem: Jnforrna­
tion 8ecrecy and Sender Authentication. The ]\fAC should be computed over the original 
non-encrypted message< Both the encrypted message and the corn:sponding lviAC are 
sent to Bob. The secret key used to compute the MAC must, of course, be different from 
the public key used for encryption. 

Consequences 

• Sender Authentication restricts the number of entitíes who can produce genuine 
encrypted messages but do not grant authorship. 

• Sender Authenticatlon inserts a ne\Y step in both the encryptíon and the decryption 
processes in order to compute and veri~y a MAC, \vhích can afl'ect the system1s 
performance. 

Resulting Context Alice and Bob combine ~IAC generatíon functions and encrypti­
on in such a way that they not only preserve the inte-grity, but also guarantee sender 
authentication of an ímcrypted message without loss of secrecy. 

Implernentation 

• If Alice and Bob use secret-key cryptography for encryption, then Sender Authen­
tication is redundant and useless, except for granting an extra degree o f seeurity. 

• As with Secrecy with Jntegrity, this pattern can be implemented by computing ~JAC 
befor-e or after message encryption. 

Example In a PayPerClick cash request, if the public key is used for card number 
encryption, then the Payer can US(~ this pattern to ensure sender authentication vis-à-vis 
the BrokeL 

Known Uses Secrecy and authenticatlon can be combined to secure IP packages over 
the Internet [CGHK98]. 



3.3. A Pat.tem Language for Cryptograpl1ic Soft;ware 37 

3.3.7 Pattern 8: Secrecy with Signature 

Context Alice and Bob exchange encrypted messages, but they cannot prow the author­

ship of such message-s. ?vforeover, Eve can modify1 replacE\ or insert messages ln the 

communication charme1 in such a •vay that. Alice and Bob cannot detect these spurious 
messages, \Ve assume that Alice and Bob alre.ady share keys for secrecy purposes. 

Problem How can Bob prove t.o a third party the authorship of Allce's encrypted 
mesf;ages without loss of secrecy? 

Applicability 

• VVhen non-repudi.a.tlon of a. secret is desired. 

Forces Similar to Secrecy w'ith Sender A-uthenticaüon and Secrecy tuith Integrity pat­
terns. 

Solution \Ve combine tv;;o basic cryptographlc patterns to address this prob!ern: In~ 

fonrwtion Secrecy and Signature" Alice si,gns a rnessage vvith her signing key, encrypts 

the signed messa.ge with Bob's encryptlo:n key) and sends it to Bob. Bob c!.edphers the 

encrypted mess.age wíth his decryption key and verifies the signed message wit.h Ahce's 

verificatio:n key. 

Consequences 

• Slgnatures provi de a proof of authorship of encrypted messages. However, the cost 
of signing long rnessages may become intolerab1y high. 

Resulting Context Alice and Bob combine mechanisms of digital signatnres and en­
cryption achieving non-repudiation of secret messages and, implicitly, sender authentica­

tion and corruption detection~ of such messages, Huw--o2ver- the resulting signatures are at 

least as large as the data being signed. VVhen possible1 the Secrecy with Signature wüh 
Appendix pattern should be used, providing a more efficient solution, since the signing 
procedure is applied on the "fingerprint?of the encrypted message. 

l1nplementation 

• Different keys should be used in encryption and signing purposes. 



3.3< A. Pattem Language for Cr:vptographic Software 38 

o As hefore, this pattem can be implmnented in t>:vo different \vays, aceording to 
ihe order in v,vhkh encryption and signature are cornputed on the message. \\,hen 
encryption is applied first 1 verification of the signature can only be done after de­
cryption, since, in principie) signatures have no apparent structure. This appan:mt 
difficulty ean be easily overcome by atta.ching to the encrypted message a known he­
ader before signing. H the signature is applied first to the non-encrypted data, then 
signature verification must expose the encrypted content. This ma:y be unaccepta­
ble when different parties are responsible for decryption and slgnature verification. 
Gsually, a better strategy is to use Secrecy wlth Signature with Appendix. 

Example ''v'í/hen sending credit card numbers over the Internet, a user \Vishes it to 
remain secret. At the vendor's side there is the need for that number to be tied to the 
correct user, in a non-repudiable fashion. 

Known Uses Both Privacy-Enhanct.~d I\Tail [Lin93] and Pretty Good Privacy [.Zim95] 
combine encryption and digital signatures for electronic maiL 

3.3.8 Pattern 9: Signature with Appendix 

Context Alice anel Bob sign exchange signed messages. However 1 they not only have 
limited resources for both storage and processing 1 but also the messages they exchange 
are very large and produce large slgnatures. 

Problem How c:m memory requirements for signatures be redu.ced ·while increa<sing the 
performance of the digital signature protocol? 

Applicability 

• \Vhen a message can be kept separate from its sig11ature. 

• VVhen space and time requirements for the digital signature protocol .are tight. 

Forces Similar to those of the Signa,ture pattern. 

Solution Two patterns are combined to solve this problem: Sígnature and MesBage 
Inte:grity. The resulting pattern implements a digital signature protocol over a rnessage 
hash value, whkh is an lviDC. Alice computes a hash value of the message and signs it. 

Both message and signed hash value are sent to Bob. Bob decrypts the signature and 
recovers the hash value. He then computes a new hash value and compares it. with the 
one recovered from the signature. If they match, the signature is true. 



3.3. J-\ Pattern Language for Cryptograpllic Software 39 

Consequences 

• \Vhen no teehnique to reduce slgnature size is used, digital signatures are at least 
as large as the data being signed. However, ifmessages are smaH, the induslon of a 
ne'N computation step to reduce the signature size is not necessary, 

• The com.bination of \Veak !viDCs and signatures can potentiaBy decrease t.he securit;y 
of digital signature protocok 

Resulting Context Alice and Bob reduce their time and memory requirements by 
reducing the size of the data to be signed. Encryption mechanisms can be included in the 
signing process to instantiate the Secrecy with Signat·ure u.rith Appem!:ix pattem. 

Example In PayPerClick1 non-repudiation of a receipt could be achieved Ly signlng 

it. However, using the Signature pattern by itself in each node of the hyper-documenfs 
tree is not practicaL Even i f /Ngnature with A ppendix is computed for each tree node., 

this computation may produce a large receipL I-hnvever, signing a single fingerprint of a 
hyper-document's tree1 as in Signatttre with Appendix, is a much faster proeedure. The 
resulting receipt is at:taehed to the corresponding purehased hyp.:.:r-documents. 

Known Uses VVhen the user o f an Internet applicatíon must digitally sign information, 
small signatmes shou!d be favoreci [CGHK98]. An example of this are signed applets: 
Java Deveiopment Kit uses Signai11re urith Appendix to produce small signatures for large 
amounts of code [JBK98]< 

3.3.9 Pattern 10: Secrecy wlth Signature wíth Appendix 

Context Alice and Bob exchange encr.ypted signed messages in order to .achieve secrecy 
and non-repudiatlon. They possess limited storage and processing resources, and the 
messages they excha.nge are large. 

Prohlem How ean one reduce the amount of memory necessary to store a message"s 
signature, while increasing system performance1 without loss of secrecy? 

A pplicability 

• Wflen secret data may be separated from its signature. 

e 'Nhen the digital signature protocol operates in Hmited resource environments. 



3.3. .A. Panern L:1nguage for CrJptographic Software 40 

Forces Similar to prevíous pattern combinations. 

Solution Two patterns are combined to address this problem: Information Sec-recy and 
Sig-nature wüh Appendi.x. Alice computes a hash value of the message and signs it with 
her signing key, She then encrypts the original message \Vlth Bob's eneryption key. Both 
encr:ypted message and its signed hash value are sent to Bob. He deciph~:rs the encrypt.ed 
message with his decryption key and verifies the signature of the hash value using Alicc:s 
veriflcation key. Bob then computes a new hash value of the message and compares it 

\Vith that received from Alice. I f they match) the original message is correctly signed. 

Resulting Context Alice and Bob not only achieve hoth secrecy and non-repudiatíon 
in their communication, but also teduce the arnount of time and memor:y required for 
signatures. 

Consequences 

• The inclusion of a hash computation in a procedure that alre.ady has two proces­
sing phases may seem a difficult decision to make. However 1 hash computations 
are arnong the fastest in cryptographic software. ivioreover1 the reduction in sig­
ning/verification time and space certainly compensate for the hashing overhead. 

Imp1ementation 

• This pattern can be implemented either by signing the m.essage's MDC before mes­
sage encryption or by signing an encrypted message 's MDC directly. 

Exrunple Electronic forms usua.Hy contain some sensitive informa.tion that requires both 
confidentiality and non-repudiation. A typlcal cash request form could have fields for 
credit card information such as number, ex.piration date1 card type a.nd owner; other 
fields rna.y contain the amount of cash requested, value -of coins, and so forth. The use of 
digital signatures to guarantee non-repudiation of such data can potentially result in large 
signatures. Secrecy wit'h Signature with Appendix solves this problem .. vi.th a substantial 
gain in performance. 

Known Uses Digital signatures for electronic mail 1 alone or in combination with en­
cryption, are provided by Privacy-Enhanced Mail [Lin93] and Pretty Good Pri'vacy IZlm95J 
using signatures "'ith appendlx. 



3.4< D-eplo.ring the Cr,y·ptograph.ic Pattern Language 41 

3.4 Deploying the Cryptographic Pattern I,anguage 

, X"' e_encode(coins.) 
: b.gctPayment(x + coin5) 
: sreceipt:::: b.emitReceiptO : 
rcceipt"' v.verify(snx:eipl); 

Figura Class Diagram for the Payment Transaction. 

Figures :t5 shows the dass diagram for a PaJ;PerClick payment transaction, usmg 
Sender Authentication and Signnture. The first. pattem authenticates the sender of the 
payment; the second signs the receipt. Consider a payment scenarío, which íllustrates the 
use of tht~se patterns: 

Let a and b be two objects, instances of the Payer and Payee dasses1 respectively. 
The encoder of a has been initialized 1vith a secret key shared with b, and its Yeri'fier ha.s 
been inltlalized -with b 's pubhc key. Líkewise, b 's verifier and signer have been pre-viously 
initialized >vith the shared secret key and \vlth b1s private key, The foHmving sequence of 

events complete the scenario (Figure 3.6): 

L a uses the Encoder e to compute a MAC x of his/her colns. 

2. a sends the coins along ~vith x as payment to b, who uses its Verifier v to check the 
validity of x, thus authenticating the sender of the coins, name'ly ~L 

3. a requests a receipt from b, who uses the Signer s to generate a signed rece!ptj 
sreceipt~ and returns lt to a. 

4. a verifies sreceipt using the signature verifier. 

The Java code in this Section corresponds to a PayPerClick tra,nsaction and u6es Java 
Crypr.ographic Architecture (,JCA). Classes SecureRandoru, Signatu.re, SignedObject, 



3A" Deploying the CrJ-ptograpl!ic Pattern Lang1mge 42 

v:Verifier e:Encoder a:Payer b:Payee v:Verifier s:Signer 

I 
encode(coins) 

! 

c-- X 
getPayment(x+coins) 

> verify(x, coins) 

paymentOk 
~-

emitReceiptO 
sign{receipt) 

I 'I 
srece.ipt I I 

sreceipt 
verify(sreceipt) 

! 
I 

r1..>eeipt I 

Figura 3.6: Sequence Díagram for the Payment Transactíon. 

PublicKey, and PrivateKey are provided by JCA. Classes Cipher, Sealed0bject 1 and 

SecretKey are supported by Java Cryptographic Extenslon (JCE). 1nforma.t.ion about the 
Java cryptographic API can be found in [Knu98]. 

ClassBs Signer and Verifier (Sample Code 3.4.1) perfmm signing and verification, 

respectiveiy. A Signer should be initialized with a PrivateKey anda Signature engine. 
A Verifier uses a Signature engine and a PublicKey. The method signO in the 
Signer class returns a SígnedObject containing the object being signed and hs digital 
signature. The method verify() of the Verifier class takes as input a SignedObject 

and returns true if 1,he verification succeeds. 

The Payer class (Sample Code 3.4.2) contains a Sígner s, which signs payments, an 
Encipher e, which encrypts credit card numbers1 and two instances of Verifier: one, 

vPayee, verifies payment receipts issued by a Payee; the other, vBroker 1 verifies cash 
issued by a Broker. An instance of Vector is a simple electronic waHeL Payer has two 
rnethods1 payForGoods O, which perforrns a payment to Payee and reque.sts a sígned 
receipt, and cashRequestO, which asks the Broker for money. l\Tethod payForGoodsO 
returns a SignedObject containing a payment of amount coins to a Payee. The required 
amount of coíns is removed from the wallet, the payment is signed and sent to the 
Payee, from whom a receipt is requested. A payment transactíon succeeds if the payment 
succeeds and the receipt is authentic. Method cashRequest O a.sks the Broker for an 

arnount of electronic money1 which should be charged to the Payer's credit card. The 



3A. Dep_loying the Cryptographic PMtern Language 

dass Signer { 

} 

priv.ate Signature eng'iue; 
private PrivateKey key; 

puhlic Signer(Signatu.re engine, PrivateKey key) 
{ this. key "" key; this, engine "' engine;} 

public SignedQbject sign(Serializab1e o)} 
{ retm:n(new Si.gn.edObject (o ,key ,engiM));} 

dass V<arifier{ 

l 

private Signaturé engine; 
prhmte PublicKey .key; 

public VerifierCSignature engine, PublicKey key) 
{ this.key = key; this.engine = engiM;} 

public boolean verify(SignedObject o) 
{ return(o. verify(k.z,y ,engine));} 

43 

--------------

number of t-he Payer·s card is sent to the Broker in a. SealedQbject. A SignedObject 
containing cash ls :received, vedfied, and credited. to the Payer's wallet. 

Cl.ass Payee (Sample Code 3-4.3) co:ntains a Signer s, used to slgn receipts anel hvo 
instancüS of Ver.ifier. One, vPayer, is intended for verification of payments signed by 

the Payer; the other: vBroke:r1 for verification of single coins issued and signed the 
Broker. Payee has two methods, issueReceiptO, which issues a signed rect<ipt, and 

getPayroent0 1 used to verify and check payments and coins. :VIethod iss:ueReceiptO 

retums a SignedObject, which contains the number of valid coins received since the 
issuing of the Jast receipt. This implementation does not: consider the purchased goods 

for \Vhich this receipt is being issued" A better solution should contain the fingerprint 
of the purchased document. ?vfethod getPaymentO takes a SignedObject and verifies 

;.vhether it is a vaiid payment with vaJid colns in it. The Payer verifíer checks payments; 
the Broker verifier checks coins. The method returns true i f ali these verifications sueceed. 

The Broker class (Sample Code 3.4.4) eontains a Decipher) whlch decrypts the 
Paye:t·'s card number, anda Signer S 1 which authenticate:':l cash issued by BrokeL It has 
two methods: getCreditCardO, \Vhich receives a SealedObejct containing the Payer's 

encrypted number, and issueCash() 1 used to generate an amount of coins. Tn 
method issueCashO an amount of cash hs a Vector In which each co in ls a SJ.gned.Object 



3.4. Deploying t:he Cryptograpbic Pattern Language 

Class 3.4.2 Class Payer 

dass Payer{ 

) 

private Verifier vPayee, vBroker; 
private Encipher e; 
pri.,--ate Signer s; 

prlvate SignedObject receipt; 
private String myCard.1<l:umber "' "0001 0002 0003 0004"; 
púvate Vector uallet; 

public Payer{Signer s, Encipher e, Verifier vPayee, Verifier vBroker) 
{ th:is.s"' s; this.e"" e; this.v-Payee, vPayee; this.vBroker = vBroker;} 

publie boolean payForGoods(Payee b, .int price){ 
booleillll ok "" true; 

) 

Vector payment = nev.r Vector O; 
forOnt i "' O; i < príce; i++) { 

} 

Object coin ~ wallet.firstElement(); 
paymeut.addElement(coin); 
wallet.removeElement(coin); 

ok &= b.getPayment(s.sign((Serializable) payment)); 
receipt ~ b.issueReceipt(); 
ok &~ vPayee.verify(receipt); 
if (ok) System.out.println(receipt.getObject()); 
return{ok); 

pubHc boolea.n cashRequest{Broker b, int amount){ 
boolean ok; 

} 

ok ~ b.getCreditCard(e.encrypt(myCardNumber)); 
SignedObject o= b.issueCash(amount); 
ok &= vBroker.verify(o); 
if(ok) wallet ~ (Vector) o.getObject(); 
return(ok); 

44 



3.4. Deplo_-ving the CI}']Jtographic Pattern Lang11age 

class Payee{ 

) 

prh<:tte Signer s; 
private Int;~ger coinCmmter = new Xnteger(O) ; 
prh-ate Ve:rifier vBroker, vPayer; 

puhlic Payee(Signer s, Verifi-er vBroker, Veri:.fier vPayer) 
{ this.s = s; thls.vBroker = vErokêr;this.v-Payer""' vPayer;} 

public SignedObject issueRec-eiptO{ 

l 

Stri.ng str""' (-coinCounter.intValueO -::f:. 1?"s":}; 
String: :receipt = "1 received " + 

coiuCounter. toStringO + "coin"+str+ 
"from You. Since last :receipt was issued."; 

this.coi:uCc-unter"' new Integer(O); 
return(s.sign(receipt)); 

public boolen:n getPayment(8i.gnedDbj"'.ct payment){ 
boolean ok; 

) 

lnt counter "' coinCoun:ter. int-ValueO; 
ok "' vPayer. verify(payment); 
Vector coins "" {Vector) payment .g;etObjec:t O; 
forOnt i"" O; i< coins.sizeO;i++) { 

} 

ok &"" vBroker. verify( (SignedObj ect )coins. elemEmtAt (i)) ; 
if(ok) this.coinCoun-cer"' new Integer(++couuter); 

return ( ok) ; 

-----

45 



3.5. Conclusions 

Class 3.4.4 Class Broker 

dass Broker{ 

} 

private Decipher d; 

pri...,<lte Signe:r s; 

public Broker(Decipher d, Signer s){ this.d"" d; this.s"' s;} 

publ.ic boolean getCreditC:ard(SealedObject o){ 
System.out.println("Card Nunber is "+d.decrypt(o)); 
return(true); 

} 

publie SignedDbject issueCash(iut amount){ 
lfector casb "" new Vector(amou:ut); 
SecureRandom sr "' uew SecureRandomO; 
byte[] random "' new byte[20]; 
sr.nextBytes(random); 

) 

for(int i "" O; i<amount; i++) cash. add.Element (s. sign (new String(r<mdom))); 
retu1·n(s. sign(cash)); 

containing a random value. Another SignedObject contains the \Vhole cash amount. 

3.5 Conclusions 

46 

Cryptography-supported security facilitíes are becoming; a standard feature in many mo­
dem applications. To facilitate the design, implementation, and reuse of cryptographic 
software~ the architectural aspects of cryptographic software and the patterns that emerge 
from them should be considered. In this work, we present a pattern language for cryp­

tographic software. VVe consider our pattern language to be complete and dosed into 
the cryptographic services dornain for two reasons. First, the p.atterns represent not only 
the overaH architecture of typkal cryptosystems, but also a:H the valid combinations of 
the four basic cryptographic mechanisms. Second, the cryptographic patterns are wl­
dely used ín many applícations [HY97, Her97, CGHK98, HN98, Lin93, Zim95] and are 
supported by many cryptographic APls [JBK98, Kal95, css97], However, other auxili­

ary patterns and pattern languages, supporting infrastructure services for cryptosystems: 
conld be possible. Tropyc documents the current usage of cryptographic techniques and 
the experience of cryptographic software practitioners. Therefore, it can be used to guide 
the decision-making process for the design of cryptographic features. 



Capítulo 4 

A Refl.ective Variation for the 
Secure-Channel Communication 
Pattern 

4.1 Introduction 

In many applications, cryptography-based seeurity is a non-functional requirementj those 
requirement.s related to how 'U.!Cll an application accomplishes its purpose [SV\796]. Security1 

distribution and fault t.olerance are ot.her examples of non-functlonal requlrements whieh 
are usually indepe:ndent of applieation functionality. The \Videspread use of cryptographie 
techniques and the present interest and resea:rch on flexible/extensible software ardiitec­
tures led us to a reflective object-oriented approach for the d.esígn of cryptographic com­
ponents. This approach ai!ows the explicit separation of functional and (non-funet1ona1) 
cryptographic requirements of object-oriented applications. 

The use of computational refiection ln object-oriented programmingis not new !Mae87], 
neither is the use of meta-object protoeols ln the implementation of non-functional re­
quirements of object-oriented applications [S\V96]. The encapsulation of authentica.tion 
facilities and their composition to fault tolerance and dist.ribution 1 in dient-server ap­
pllcations using a meta-object protoeo!, were proposed by Fabre and Pérennou [FP961. 
Meta-Object protocols for cryptographically secure communication are a recurrlng so­
lution for the insecure communication problem in refiective soft;vare archltectmes, and 
ean be abstracted and formally specified as architectural connectors [VVS98a]. Software 
architectural styies are composed of connectors and cornponents [SG96J. 

This work presents Refiecti-ve Secure-Channel Com-munication1 a re!inement o f the ge­
nedc object-or.iented cryptographic- architecture proposed in [BRD98b, BRD98a], in order 
to decouple objects responsible for cryptographic services from the application objects. 



4.2. Reflective Secure-Cbannel Communication Pattern 48 

The contribut.ion of this work is the pro posai of a design pattern obtained by the combina­
tion of Secure~Channel Cornrnunication [BRD98a] pattem and Reftection [BlvfR+96, 19.3] 
archit.ectural pattern. Reflec:tive Secure-Channel Comrnunicaiion is useful in t'\'lO situati­
ons: (i) during design of general purpose application with non-functional cryptography­
based security requlrements,: ('li) in addition of cryptography-based security to third-part.y 
commercíal-off-the-shelf components and applicatíons. In fact, the pattern proposed here 
was used to design a reftective object-oríent.ed framework ba.sed on a meta-object Hbrary 
for cryptography [BDR99a]. The diagrams in this paper are present.ed using Garnma et 
oL :s·notation [GH.JV94J. Those readers interested in cr,yptography techniques should take 
a look at [Sch96, MvOV96, Sti95]. 

4.2 Reflective Secure-Channel Communication Pat­
tern 

Context VVe have proposed a pattern language for cryptographic software whieh is com­
posed by a set of teu design patterns [BRD98a]: Secure- Channel Comrrwnú:ation, lnfor·· 
mation Secrecy1 Sender Authentícatio~ Nfessage lntegr'ity, Sígrwture, Secrecu 1vith Sertder 
A-ui'hentication, Secrecy with Signatu-re, Secrecy with Jntegrity, Signature with Appendix, 
and Secrecy wiih Signature -with Appendix. These patterns document the experience and 
the expertlse of practitioners in designíng cryptographic services, sue h as secrecy, integritj/, 
authentication and non-repudiation, for secure commun ication and storage applications. 
These patterns share the same structure and dynamic beha\'ior. This aspects can be 
abstracted in a generic cryptographic archltecture, \vhích is stabi1ished hy the foundati­
on pattem, Secure-Channel Comrnunication. Ho>-veverl these patterns do not explicítly 
capture the design of cryptog,Taphic services as non-functional requlrements, 

Figure 4.1 shows this generic structure defining two template classes, Alice and Boh1 

which are application classes, and t\'>'O hook classes, Codifier and Decodifier, whieh are 
cryptography-aware classes. Class Codífier has a hook method f(), which performs cryp­
tographic transformatlons. The class Decodifier defines a hook method g(), v:/hich per­
forms the reverse transformation, x = g(f(x)). The transfonnation and its reverse are 
based on the sarne cr:_yptographic algorithm. The objects1 interaction diagram ls shown 
in Figure 4.2. 

A Hmitation of this design is that it forces functional objects (ínstances of Alice and 
Bob) to explicitiy take care ofnon-functionaJ (cryptography-aware) objects. That is, Ahce 
and Bob reference cryptographic objects and decide when a cryptographic transformation 
should take place. This highly coupled desígn has the following disadvantages: 

• It Hmhs the reuse of Alíce and Bob. 



4.2. Reflective Secure-Channel Communication Pattern 

,--~-·---, l Alies -ji-' __ 

I sendO f 
'-l\__J 

y 
jc 

x= c f(m) 

b rece1ve(x) 

~--~ 

Codifier 

: /* Cryptographic 

traruformarion */ 
• !' yeg(f(m)) 'I 

Figura 4.1: Secure-Channel Communication Structur€. 

c:Codifier a: Alice 

fr~ . ..::.f(m_;;_) ---1 
I X 

receive(x) 

b:Bob d:Decodífier 

~~ g(x) .,._ 

(r--"----
---Yr 

Figura 4.2: Secure-Channel Communication Dynarnics< 

49 



4.2. Reflective Secure-CJ:u3-nnel Communication Pattern 50 

• It pollutes application objects with explicit references and method invocat.ions of 
non-functional cr:yptography-ay.;are objects, reducing readability. 

• It requires some background on cryptography frorn applícation programmers. 

Applicabi!ity 

• \\'hen cryptography-8.\\0..te objects address non-functional application requirements. 

• \1/hen reuse of functional objects should be fa.dliütted. 

• \Vhen the separation of concerns bet\veen functional and non-funclional aspects 
should be rnade explicit. 

Problem Hmv could the separatíon of eoncerns between application functionaJ objects 
and cryptography-aware objects be explicitly represented in a way that reuse and rea­
dability can be improved? In other ;.vords) can cryptography-based security be added 
transparently to third-party a.pplications or components., even if source code is not aval­

lable7 

Forces 

• Cryptog.Taphic services are usually non-functional requirements related to comnm­
nication and persistence requirements, but orthogonal to these. Leavíng application 
respon5ibiHties decoupled frorn security services facilitates reuse and securíty policy 
changes, and frees applicatlon programmers from having to acquire cryptog.Taphic 
knowledge. 

• The explidt separation of concerns can lead application deslgners to: (i) procras­
tination of hnportant security policy dedsions ln cryptogra.phy-aware a.pplications; 
(ú) lack of controJ over cryptographic features, frorn the applica.tion programmers' 
point of view. 

• Delegation of cryptography-aware decisions has the advantage of encouraging the 
utillzatlon of largely tested (cryptanalyzed) components. However, it can also ex­
pose appHcation functions and sensitíve data to third party's Trojan horses. 

Solution In order to overcome the limitation stated ín the Section "Context", a restruc­
turing of the interaction mechanlsm among objects can be used. fv1eta-object protocols 
with message interceptíon mechanisms can potentially invert the dependencies among 
non-functional objects and functional ones} in a way tha.t non-functional requirements are 



4.2. Reflective Secure-Channel Communication Pattern -1 ,') ' 

transparently accomplished by non-functional objects) which may not be known by the 
applícation functional objects. 

'-~ç~;/i"fi;:;] r-c --- DecodVterJ_ 
j ryptographic f---_f--::;;.c'-j 

l_}()]l---~• 1 Algod!hm g() I 
e+ d t 

I I 
i MetaAli~e :· 
' ~ ' c ·"" eJ(rn) 
I handle() ·· · 
L___ a.SL"Ud(C) 

A 

~--

MetaBob ! 
.J1andle() ---1---

~ 

y:;;; d.g{x) 

·: D.recelve(y) 

<<retiect>> <<reiiect>> MetaLevel 

<<reify>> Base Level 

Figura 4.~1: Refiective Secure-Channel Communicat.ion Struct.ure. 

The use of a meta-object protocol explicitly separat.es cryptographic requirements 
from appiication functionalities. Figure 4.3 addresses Secu,re~charmel Com.munication in a 
reftective Classes ?vJeta.Aiíce and IVIetaBob are responsible for cryptographic method 
calls and for the re-sending of base·-level methods, which were previously intercepl ed. 
Figure 4.4 shows the interadion diagram. For instance) method sendO is intercepted by 
?viOVs reftective kernel and materia.lizet:l in a send-operation object. This oper.ation object 
n.nd its argument

1 
m 1 are treated by the meta-object, mal which requests the cryptographic 

transformat.ion a.ccording1y. The intercept.ed method is) then, re-sent ( containing now the 
encrypted arg;ument1 c) by MOP's kernel to its original t.argeL The same happens wit.h 

method receive(). 

Consequences This design has the foHO\'I"ing advantages: 

• Decoupling o f functional objects from non-functiona] ones in a way that appiication 
objects do not need to know either what kind of (cryptographic) transfonnation is 
taking place or what kind of seeurity requirements are being accornpli.shed { confiden­
tla1ity1 integrity) authentlcation1 non-repudiation1 or some a.propriate combinatlon 
of tllese). 

• Sepa.ration of cryptographic objects from appHcation object~: so that it is potentiaHy 
possible to understand application code without cryptographlc background. 



4.2. Refiective Secure-Channel Communication Pattern 52 

;Cliem b:Bob ma:Mcta.lJice e:Codífler mb:MetiBob d:Ikcodifier 

f(m) 

recdve(y) 

- -:;....- lntercepted Message 

Figura 4.4: Refiective Secure-·Channel Communlcation Dynamics. 

• De>.'elopment and testing of cryptographic components can be done only once1 se­
parately, for highly reused components. 

Its main disadvantage is a potential decrease of performance1 for two reasons: 

• A relatively large number o f method calls, due to a larger number of indirections in 
code. 

• A time delay due to the method interception mechanisrn. 

A minor disadvantage is the larger number of objects \-\'ithln the whole application" 
Cryptographic algorithms are usual1y implemented within methods. If cryptographic 
transformations are perfom1ed fa.ster enough, small losses of performance, due to method 
invocation and interceptlon, can be negligible. 

Implementation Factors 

e The a priori negotiation1 conceming the usage and agreement of cryptographic 
services and the generation, exchange and storage of keys, may or may not be 
handled at the meta-level. This decision depends on the degree of control over the 



Reflecti'tre Secure-Clumnel Communicat"ion Pattern 

cryptographic services the application programmer lntends to have. For instance, 

application programmers may be interested on 'vhat kind of sen:ice is being used 
at a given mornent, maintainlng the abiBty of turning the security aspects of the 
channel on and off 

• The tmver of meta-objects [:vfae87J can be as high as the nmnber of non-functional 
requirements. The decision concerning \Vhich position cryptography \ViH occupy in 

this tower is not s1mple. Aspects such as requirement composltion or chainlng must 
be considered earefully. For inst..ance 1 since cryptogra.phy is orthog:onal to persistence 
and c.ommunication, 1vhich r.--an, in turn 1 stay at tbe meta-levei, cryptography should 

be accomplished at the meta Ie,vel of these, that is, at. a meta-meta JeveL l1mvever, 

if fault to1erance is another requirernent 1 1t can be accomplished either abo·ve or 
beluw encryption [FP96]. 

• The number of cryptographic meta-objects may var)t among three main possibiliti­
es: (i) a. single meta-object responslble for encryption and decryption: this solution 
works i f Alice and Bob share the same address space; (i i) nvo meta-objects, one 
instance of MetaAlicel associated to a method Alice.sendO: and one instance of 0.1e­
taBobl ;vhich treats method Bob.recei've(), recommended for secure communication; 
(iii) at least as many meta-ohjects as the number of Alice and Bob instances. The 
?viOP's ahility to manage the need for distinct simultaneous instances of Encoders 
and Decoders, potendally initiaHzed with keys used for different purposes, in order 
to simnltaneously keep track of channels with different degrees of securlty, deter­
mines the final number of met.a-objects, How easily this task ean be aceomplished 
dep(mds on the LvíOPs ability for meta-object composition. 

• There are sit.uations ín which the resuh of an {intercepted) operation should be 
encr:ypted 1 authenticated or verifled for non-repudiation. Hovr easily this can be 
accomplished depends on the flexibility of the meta-ohject protocoL tviOPs offering 
fea.tures for both result interception and modification facilitates transparent secrecy 

as \vell a."> authentication of result;.L 

• There are two approaches for adding cryptography-based security to third-party 
components: (i) performing behavioraJ changes dynamicaHy\ on-the-fl}\ over exe­
cutable (byte) code; in this case! a hook (weil known) interface [VVel97J must be 
avaílable; ( ii) working ovf!f the source code7 potentially performing some preproces­
sing. 

• The rneta-level applicat.ion can work as an object-oriented framework Lew9G) Pre95] 
and the inversion of controll whlch characterizes framevvorks 1 takes p ace (BDR.99a). 



-4 .. 2. Refleaive Secure-Channel Communication P.attern 

Example Ivfodern software systerns are be:ing modeled according to architectural styles 
[SG96j, \Vhich consist of groups of cornponents glued together by connectorsJ according to 

some criteria. Commercial-off-th<Hhelf {COTS) applicatlons and components usually pre­

sent legal and practical obstades in accessíng their source code1 these obstades restdct 

cornponent fiexibillty. Ho\vever, in component-based applications 1 it is often necessa:r:y 

either add features to or rnodify- the behavior of COTS. For instance, cryptography-based 

secnrity can be added to a COTS communieation cornponent in order to transparen­
tly modify its behavior and provide confidentiality, integrity1 authentication and non­

repudiatíon. vtithont COTS modification. 1n this situation, a :\.J()p can be used as the 
architectural connector that glues a cryptographic component to the COTS communica­
tion componenL 

~~:~~"'_· ----J--:gc;;(~--:"=1 ... j .... t.:1_._ct~;;hl~-; ). 
'---;:--·~· "··; R!turnh(m}+m 

handle() ·+·· · 
Meta-levei <<:refiect» 

---- ····------ .... , ......... _.., .......... (MõP}··· 
Base Leve! 

Plus signs (+)are. u."ed for conca.tenation 

Figura 4.5: Ted Structure. 

.j 

if ("n,-...--:-e:i\-e") { 
m"" c.g(x) 
bob.receive(m) 

if ("send") ( 
x"" c.f(m) 
alice.send(x) 

The diagrams on Figures 4.5 and 4.6 show the structural and d;ynamic models for 
a simple program implemented in Section "Sample Code". The meta-levei application, 
Transparent error detection (Ted), is used to modify the behavior of the base leveJ .appH­

cation, AHceAndBob. The MOP transparently add cryptography-based lntegrity to data, 
exchanged through method calls, in the base leveL Ted does not need to access AliceAnd­

Bob source code. Hm\"ever, in this case, it requires at least a known (hook) interface to be 
accessed by the MOP. In this example) this interface is based on (static) dass methods. 



4,2. Reflective Secure-Channei Communication Pattern 

:Client :AlíceAndBob :AliceAndBob 
send(m) 

:Ted 

hilndte(rend+m) 

I' 

I , I 

send(x) 

reccive(x) 

- -:t;... Intercepted Message 

Plus sign (+) means concateuation 

Figura 4,6: Ted Dynamics. 

55 

c:Coder 

f(m) 

m 

Meta-Levd 



4.2. Reflective Secure-Channel Communication Pattern 

Class 4.~.1 UncorruptedObject 

class CncorruptedObject írnplement.'l Serializable { 

} 

publlc iJncorruptedObject(Serializable object, MessageDigest hashEngine); 

puhlic final Object getObject(); 

publk final boolean verify(MessageDigest hashEngine); 

dass Coder { 

public CncorruptedObject Bncode(Serializable o),; 
public Object decode(Seriahzable o); 

56 

San1ple Code The following Java code corresponds to a simple prog,Tam: 1Bd: tha.t adcis 

cryptograph:y-based modifica.tion detection facihties to another program, AliceAndBoh, 
Ted works over AHceAndBob bytecode. It is based on a hook interface of Alice.\ndBob's 
static methods 1 though. Ted uses Guaraná [OGB98], a meta-object protocol for Java. Ted 
ls activated by typing, in a uni.'{ sheH, the command line: % guarana Ted AliceAndBob. 

Guaraná interprets Ted which takes AliceAndBob as an argument. Ted •v as written vtith 
Guaraná MOP in mind and executed by the Guaramí. On the other hand, AliceAndBob 

is a cornmon Java dass file which is used without any modification. 
Classes UncorruptedObject(Class 4.2.1), Ceder and Ted belong to the rneta-level ap­

plication. The public interfaces for those classes are shown below. UncorruptedObject 

encapsulates a serializable object and its fingerprint~ computed by a MessageDigest en­
gine from t.he package java.security. Method verifyO checks the object~s fingerprint 1 

and method getObjectO returns the original object. UncorruptedObject is analog 
to class SignedObject from java.security. Class Coder emcapsulates the creation of 
UncorruptedObjects in method encode (); fingerprint's verification and object recovery 
are in method Coder. de c ode O. 

Class Ted( Class 4.2.2) extends Guaraná's MetaObj ect and has two interesting methods: 
a handle() for (reified) intercepted Operations and m.ainO 1 responsible for base-levei 
dass loading and association to meta-objects. Method handleO obtains the method na.­
me from the reified Operation, taken as parameter, and tests it in order to determine if it 
ls either a receiveO ora sendO call. In the first ca;:;e1 the argument is encoded; in the 

second 1 it is decoded. After that) the Operation, now containing the modified argument1 

replaces the old one and is invoked. 
J.\,1ethod Ted.main() (Class 4.2.3) loads a class, which name was passed as an argument, 

look.s for its mainO method and uses Guarana.reconfigureO, a call w the refiective 
kernel, to turn a Ted1s instance into the primary meta-object of the loaded da<;s. Since 



4.2. Refiect:ive Secure-Channel Communication Pattern 

Ç)!'SS 4.2.2 Ted 

public dass Ted extends lv!etaObject { 

puhlic Result handle(final Operation op, final Object ob) { 

Operation replace ~· nutl; 

J 

switch (op.getOpTypeO) { 

case Operation.methodfnvocation: 

} 

try { 

} 

Object[] args = op.getArguments(); 

Seria.Jizab!e argü = (Serializable) args[O]; 

String s = op.get),Jethod().get?\ame(); 

System.ouLprintln(''Metbod "+s+"interceped. "): 

if (s.equals("receiveH)) argO = (Serializable) c.decode(argO): 

if {s.equals("send")) argO = (Seria!izable) c.encode(argO}: 

args[O] = (Object) argú; 

replace = opfact,invoke (op.getMethod(), args, op); 

replace.\o-alidate(); 

catch(Exception e) { e,print.StackTrace();Systern.ex:it(O);{ 

Result res = ResulLoperation(teplace,Result.noResult:'dode): 

return res; 

return Result.noResuk; 

----·------------

Sample Code 4.2.3 Method Ted.main(i!.) ______ _ 

public static voíd main(StringQ argv){ 

javA.Jang.Class c= ClassJorName(argv[O]); 

57 

-----

--·-----

javaJang.refl.ectJv1ethod m = c.getMethod("main", new ClassQ { .String:O.class }); 

Guaranaxeconfigu.re(c, null, new Teci()); 

m.invoke(null, new ObjectQ{argv}); 

} 



42" Reflective Secure-Charmel Communication Pattern 

Class 4.2.4 AliceAndBob 
public class AliceAndBob{ 

• r 

public static void send(Serializable o, AliceAndBob bob) 

{ SysterrLout.println(bob.receive( o));} 

public sta.Hc Serializable receive(Serlalizable o) 

{ return("I received: "+o+", is it o"k?");} 

publlc static vuid main(String[] argv){ 

send("This stri.ng must not be corrupted",new AliceAndBob()); 

l 

58 

Ted·s instance ls associated to a classj not to instances~ only static (dass) rnethod caHs 
can be intercepted. Finally·, the main O method of the loaded dass is invokecL 

Class AliceAndBob(Class 4.2.4) is the base-level applicaction. It has three static 
methods: mainO, sendO and receiveO~ •vhich are not cryptographically secure. Thus 1 

the target of a recei ve O message cannot determine •vhether the object received was 
corrupted or ea.vesdropped. 

An interesting feature of this example is the inversion of control over the m.ain execu­
tion fl.o,Y; that is, Ted is the main program which loads AHceA.ndBob. In fact~ Ted \vorks 
as a small object-oriented frarnework [Lew9ô, Pre95] for adding cryptography-ba'Sed error 
detection to AliceAndBob-líke applications. This framework can be extented in order to 
not only offer other cryptographic services1 but also cover a broad range of object-oriented 
a.pplications [BDR99a]. 

Known Uses Friends [FP96] is a reflective software architecture for implementing fault 
tolerance and authentication to object-oriented applications, which uses a meta-object 
protocol for a.uthentk communicabon. Transparent addítion of security features to third­
party ( off-·~he-shelf) Java componentes) ba.sed on a. reflective .architecture) is another in­
teresting application of this pattern [WS98b, Wel97]. 

The ideas present in the sections "Exarnple" and "Sample Code" can be extended to 
other cryptographic services. We have used this pattern during the realiza.tion of the basic 
design features of a reftective object-oriented framework based on a meta-object library 
for cryptography-based security [BDR99a], which focuses on three points: easy reuse 
o f cryptography-aware code1 easy composition of cryptographic services and transparent 
addltíon of cryptography-based security to third-party code. The framework ls applicable 
to not on1y third-party commercial-off-the-shelf applications, but also legacy systerns. In 



4.3~ Conclusions and Future \>Vork 59 

this framcwork 1 instances of lvfetaAlice and :tvietaBob are especia.Hzation of an abstract 

l\.fetaLevelApp dass, -..vhich offer hooks a.':i in the Ternplate Methoâ [GHJV94, 325~ pattem. 

The main goal of this meta-object library is to provide base-k:ve1 app!ications vvith 

re.usable crypto!çraphy-based security features in \vhich addition .and composítion of cryp­
tographic services are transparent, from the point of vie'iY of tlw base-le,:el progn1mmer. 

This po,verful approach altmvs the addition of cryptography-based security to (Java) ap­
plications even when source code is not avallable. This rneta-object. library a.cts in the 
realm of object comrnunlcation Jn such a ~.vay that data exchanged 2lmong communicating 
(potí~ntially distributed) objects through method calls are transparently secured. The 
refl.ective object-oriented framework provides the proper inn:rsion of control in order to 
assure that cryptographíc code is not knmvn by base-levei applkations. 

This pattern can also be used recursiYely. For example, secure meta proxies can be 
used to protect objects for cryptographic keys) handled in meta. lm:el, against corruption 
and unauthorized copy [BDR99a]. 

Related Patterns Reflective Secnre-Channel Cmnmuniwtion ls a refinement ofTropyc"s 
Secure~Cfwnnel Communication [BRD98a] obtained by combining the !ater and the Re·· 
flection [Bl\:fR+96, 193] architectural pattern. 

4.3 Conclusions and J;uture Work 

though our cryptographic desígn patterns were proposed with the intent. of facilitatlng 
design reuse, practice hao.; shovm that the high coupling, dueto the use of expJicit referen­
ces, among cryptography-aware objeets and functiona.l objects leads to both reduction of 

application objects reuse and decrease of design understandabilhy. Specifrc a.pplications, 

specially those in which cryptography plays a non-funetional rolE;) could benefit from a 
combination with computational reflection mechanisms in a way that both readability of 
appllcation code and cornponents reuse are increased. The composability of cryptographic 
mechanisms, such as confidentiality, integrity, authentication and non-repudlation, is also 
facilitated a meta-object protocol in \vhich meta objects could he easily composed. The 
refiecüve vari.ations of our cryptographic design pattems can be used to document not 
only the usage [Joh92], but also the design (for example, \vhen self-securing- cryptographi.c 
keys) of a refiective cryptographic framework for secure object-oriented applicatíons. 



Capítulo 5 

A Meta-Object Library for 
Cryptography 

5.1 Introduction 

Fíe!ds such as computer networking1 distributed systems 1 €leetronie messaging and brow­
sing have security concerns in granting integrity1 a.uthentieation) non-repudiation 
and confidentiality. :viodern cryptography is used in applications such as electronic com­
merce systems1 iegacy systems, not originally developed with secmity feawres, and soft­

\Vare systems in which cryptography-based security plays a noo-functional role. In arder 
1-0 facilita te the reuse of fle.xible and adaptable cryptographic wftware in such an hetero­
geneous environment, the architectural aspects of cr;yptographlc components, the design 
patterns tbat emerge from them and the gluing techniques for the combination of security­
aware components with commercial-off-the-shelf ones should be considered, 

This work presents a Meta-Object Library for Cryptography (MOLC for short). The 
main goal of this library is to provi de base-level applica.tions vvith reusable cryptogTaphy­
based security features in whkh additi.on and composition of cryptographic services are 
transparent, from the point of vie\v of the ba"J:e-levd programmer, This powerful approach 
allO\vs the add1tion of crypt.ography-based set::urity to (Java) applications even when source 
code is not available. i\.JOLC acts in the realm of object communication in such a way that 
data exchanged among communlcating (potentía.lly distributed) objects through method 
calls are transparently secured. J\'fOLC was imp!emented in Guaraná, a meta.-object 
protocol for Java1 whic.h is fu.lly documented in a series of technical reports [OGB981 

OB98a, OB98b, OB98cj. 
This text is organized as follows. Section 5.2 reviews the main cryptographlc serví­

ces and the role of cryptographic pattems. Section 5.3 approaches the ma1n aspects of 
I\~fOLC's design. The de,.5ign issues in adding security to third-part.y applícations are in 

60 



5.2. CrJ·ptographic Services and Patterns 61 

Sect ion 5.4. The meta-levei reconfigration polky is trea.ted in Section 5.5. Section 5. 6 
outlines irnplementation issues. Conclusion and future \~mrk are in Section 5.7. 

5.2 Cryptographic Services and Patterns 

Iviodern cryptography addresses four security goa.ls [Mv0V96]: confidentiality, integrity1 

authentication 1 and non~repudiation. Accordingly, there are four basic cryptographic 
services: (i) encryptionfdecryption to obtain secrecy or privacy, (ii) :vl'DC (J/Iodifica.t.i­

cm Detection Code) generation/verífication1 (iíi) MAC (ivíessage Authentication Code) 
generationjverification, and (ú1) digital signing/verification. These four servlces can be 
combined ín specific and limited ways to produce more specíallzed ones and are the buil­

ding blocks for security protocols. Confidentiality is the ability to keep inforrnation secret 
except from authorized users. Data integrity is used to guarantee that infonnation has 
not been modifi.ed without permission, which includes t-he abilíty to detect un.authori­
zed manipulation. Sender (orígin) authentication corresponds to the assurance) by thP 

comrnunicating parties, of the origin of an information transrnitted through an insecme 
cornmunication channet :0ion-repudiation is the ability to prevent an entity from denying 

his actions or cormnitments in the fut.ure. 
Some combination of the basic cryptographic services are required in order to accom­

piish the securíty requirements of applications. "\V~e have proposed a pattem language 
for cryptographic software [BRD98a] '"-'hich addresses the valid combína-tions of crypto­
graphic services in the context of secure communication 1 when security a.<:;pects are so 

import.ant that they cannot be delegated to t.he communkation or persistence subsystem.s 
and are treated by the application itself. The cryptographic design pattems correspon­
ding to the basíc services and their valid compositions are summarized in Table 5.2. The 

Secure-Channel Commum·ro#on pattern is an ab..'"itraction for the others' common a.spects 
of behavior and structure. 

Computational refiection techniques aUow the explidt sepa.ration of c.oncerns betwe­
en functional and non-functional requirements of object-oriented applications. Software 

systems, specially those in which. cryptograph.y plays a non-functional role, could benefit 
from a combination with computational refiection mechanisms in such a way that both. 
readabihty of application code and reuse o f software components are increased. \V e have 

proposed in [BRD99a] a refinement for the cryptographic patterns in order to decouple 
objt>cts responsible for cryptographic services from the appHca.tíon's objects. This appro­
ach is useful: (i) during the design of general purpose application with non-functional 
cryptography-based security requirements; ( ii) in addition of cryptography-based secu­

rlty to either legacy systems or third-party commercial-off-the-shelf components. MOLC 
provides a set of meta objects whose main goals are the instantiation of the reftective 



5.3. Meta-Object Ubrary 

cr;.:ptogra.phic patterns and thc composition of cryptographic services. 

cure~ 1arme IO'V1 es a genenc so tw:r;n; an:m-
Comrrrunicatíon tectu:re for crypt.ographic S}'Stems 

-· ---
2 Information Secrecy , Provides secrecy Qf infortMJ.tion 

3 11Bssage Integri~- ~uption of a message 
-""-

L 4 Sender Authent.1canon 
I 5 Signature I 

i 
6 Set'Tecy w\th .lntegrity 

~ 
Secrecy wir.h SBnder 

Authentication 
Secrecy with Signature 

I 

I g Signatun:~ \Vith Appendix 

[lO Secrec:y "\11,-ith Signature 

i tYitb Appendlx 

Authentícats thic odg\n of a message 
·-·-

Provides thB authmship of a messagt' 

Detect.s corrupt.ion of a secret 

' Authenticates the origin of a secret 

Proves the authorsbip of a secret 

Separates message from signMure 

Separates secret from signatmB 

i 
I 

Table 5.2: The Cryptographlc Design Patterns and Their Purposes. 

5.3 Meta-Object Library 

62 

The communication among objects can take place through elther method calls or bufl:Brs. 
In the first case) rnethod calls can be local or remote and references to objects can be 

direct or through proxies. In the second, buffers can be eit.her persistent: or t.ransient. 
Tn these situations, cryptography-based security can be applied to both arguments and 
results of methods, A meta-object protocol can be used to provide transparent security 
to data exchange. For example, method caHs and returned results are intercepted b:y the 
meta level and the operation)s arguments or results are converted to some secure forrnat 
according to the communication security requirements. The target object of the method 
caH or returned result have to restore data to their originai insecure format. Of comse~ 
meta objects must agree on cryptographic features, such .as keys and algorfthms, before 
the com.munication begins. A cryptography subsystem is supposed to be responsible for 
such an agreement. 

The general software architecture for this rneta-object library is shown in Figure 5.1. 
~V10LC contains the flow of prograrn's execution) which -in turn contains the base-level 
application. Such a feature char.acterizes MOLC as an object-oriented framework [Pre9-5J. 
The cryptographic routines are obtained from a Java Cryptographic Service Provider 
[JBK9SJ. Because the cryptographic provider's routines are in a low leve! of abstraction, 
an adapter layer between MOLC and the Java Cryptographic Provider is necessary in 



5.3. Met.a-Objcct Library 

c 
p 

6:3 

MOLC Framework 

Base-Levei Application 

Figura 5.1: Architecture of MOLC. 

order to reduce both the complexity of meta objects and the dependencíes from particu­
lar implementations of cryptographic services. Besides offering meta objects for crypto­
graphic transformations over base-levei data, 2v10LC can also refiect about it.self in order 
to secure its own data. An interesting example of such a recmsive Hse of the reftectí­
ve cryptographic pattern is t.he impiementation of secure proxies for cryptographic keys 
as meta objs'Cts. Another possibility is seU authent.ication of either cornpiled classes or 
distinct algorithm implementations. 

5.3.1 Securing Keys with Meta Proxies 

Keeping cryptographic keys securely stored in computer memories is always a problem. 
Protecting keys from unauthorized copy or modification is a difficult task because they 
are usually ordinary objects kept insecurely in computer memories, A step toward making 
key manipulation in memory less insecure is to reduce the time keys t."iay in memory as 
active objeets. If keys only stay in memory as local variable.':i of methods, the chances 
for unauthorlzed copy are greatly reduced because objects local to methods are usually 
dealloca.ted at the end of method execution ( or garbage-collected when unreachabie) and 
the memory freed so that it h.as a greater chance to be used by another method's local data 
in a rehtively short period oftime. Particularly, Java objects are stored in the heap ln an 
implementation specific format and Java local variables are kept into the method's stack1 

whose memor:y is rele.ased after t:he method)s execution. Such features greatly reduce the 
chance of memory scans looking for sentivive data, but the rlsk still persists. 

Protection proxies [GHJV941 207] can be used to control access to cryptographic keys, 
We have implemented a meta object1 called MetaKeyj for proxing cryptographic keys, 
which are kept encrypted in persistent storage and whose contents are supposed to be 
decrypted only for use in the innermost methods as a local variable. VVe used Guaraná:s 
facilities for creating proxies and associating meta obje<:ts to them. The proxy is .a Key's 
instance created by Guarantfs makeProxy() method and which has a :meta object of class 



.Meta-Object Library 

::vJet.a.Ke:v associated to it. Any attempt to access the proxy contcnts is intercepted by the 

meta levei and redirected to t h e real key object kept secure in persistent swrage. 

5.3.2 Reflecting Over Transformations 

By extendlng the basic Ouaran(Í:S }JctaObject dass1 -;ve ha.ve imp!emented a class hierar­
chy responsible for t.ransformations over arguments and results of imercepted operations. 
These classes are shown in the diagram of Figure 5.2. Class j..:fet.aCryptoEngine T'i/Orks as 

a specialized message handler useful for communlcation among meta object.s or between 
base level and meta leveL I\.YetaCryptoEngine recognizes three subtypes of Guaranás 
:VIessage interface: ::V'fethodToReHectAbout is used to add a method, \"vhose arguments 

wi11 be secured, to the meta object's list of methods; TumOn and TurnOff are used to 

turn the security of the dmnnel on and off, respect.ively. The broadcasted messages Tur­
nOn. and TurnOff are associated to the abstract meth.ods turnon() and tumoff() that are 
supposed to be overloaded by subclasses ünplementing specifi.c lransforma.tions, 

shown in Figure 5.2) JvletaCr_ypt.oEnglne has four direct subclasses, dh:ided in two 
palrs. I\-'IetaTransformationParams and MetaReverseTransformatlonParams are n:sponsi­
ble for performing transformatíons a.nd their reverses over parameLers. I\·1etaTransforma­
tionResult and l\TetaReverseTransform.ationResult act over ret urned results of operatlons. 
The first pair overloads t.he 1\'IetaObjeces handle for operation in order to perform the 
transformation and their reverses over intercepted rnethods' arguments. The second pair 
overloa.ds the handle for result in order to transform t.he returned results of íntercepted 
operations. All these meta transformations havt: abstract methods (transformParam(), 
revertParam()) t.ransformResnlt(), and revertR.esult()) whieh are supposed to be imple­
ment.ed by subdasses for specifie transformations, 

Specific Cryptograph:ic '.fiansfor-mations 

There are four subdasses for ea.ch meta transformation of Figure 52. Each of them 
corresponds to one of the four categories of cryptographic servkes. For example, class 
:vfetaTransformationParams has the subdasses MetaEncryptionPara.ms, I\·fetaMdcGene­
ratorParams) lV1'etaMacGeneratorParams, and tvietaSignatureParams. The corresponding 
reverse transformation dass1 I\·'fet.aReverseTransformationParams1 has the following four 
subda.sses; MetaDecryptionParams 1 MetaMdcVerificationParams, l>,tfetaMacVerlfication­
Params) and MetaSignatureVerificattonParams. The complete hierarchy, shown In Figu­
re 5.3, contalns 16 concrete classes for the basic cryptographic services. These classes do 
not cope with cryptographic servlee composition, and, ahhough these meta objects ca.n be 
used separately, the po'itrer of MOLC lies in the composition of them, \V e have developed 
special meta objects for thls purpose. 



5.3. ;\Jeta-Object Libmry 

i h;mdk(messagc) 

I rurnOn() 

I turnO/f() 

i!::_fumdOn() 

~ 

i i'líiito.RrN!t:'i<!TronsformatiimPunJms 
I {!limratt) 

j h:imd!e(<:>jX'~I!lítrn) 
revertParami]Jaramj l revmPataffi'l(<~rgs{l,pararnsí]) 

MetaR.cvuse1 ramfl.ln'1UlMnRemlt 
I {ahstroct} 

I rewrtii:esr.dr!re.ndt) 

'lh·.mdlt{ opcra.tian) 

handle(ra~u!t) 

I 
I 

I 

I 

I 
I 

J 
lf (r=g~ "MellwiToRdlectAb<mÔ·-~ 

m;,cl>o<J, .~dd (rn<;<;;,,ge. g<>tli.1..U.ocl()); : 

!f (me<&Jge i>TurnOn) mrnOn(); 

lf (m"l-'~!':e h Tu:rnOfD rurnOl'f(); 

llfewTnmsfvrmuiirmParnm.1 10 med!nd) 

{afmrnct} pl<>ill "<>r<""'tion.t"'-"-rgs(): 

handJe(aperation) · ............. , .... 
cíplwr"' actlve1';Mr;f.t'(plún): 

opFa=y.imokc(uteiliOO,cipMr); 

- mmsfonnParam(param) 

] tramformPararm(args[J,par;rms!J) 
for ~ch pmmm[i] do 

I o:rgs[param«!ill"' 
trallSfcrmP:ttam(args[po.ra=[l]]): 

~I 
Metti.Tnms./llrmaiwnResult. 

{abstwçt} 

lrcmsformResu/t( ruu!t) 

L
ha.nd!e(operation) -

haudle(resul.t}, 
OfX."'Ü<.m" l<'m.llt.gc<Op=tionO: 

If(op~tioagetMeth<!d() is mettwd) 
resclt~ açti..,aRruJ$f,f(=:ilt); 

retoru ft:;J;Ul1; 

Figura 5.2: Abstract Meta-Objects for Generic Transformations. 

65 



5,8, Meta-Object Líbrary 66 

· MetaSignature Verifica!ionPar~ 

___ , ____ -:! 

1 MetaSiguatureVerificationResult 1 
, -----~ 

1 Meta:Mdc VerificationResult 

-~----~ 
Metat\1ac Verification.Resul! ---------

Figura 5.3: Meta-Objects for Cryptographic Services and Their Compositions. 



5.3. 1\.Ieta-Ob}ect Library 67 

5.3.3 Composing Cryptographic Services 

The cryptographic services for MDCs, :\-'JACs and digital signatures are mutually exdusive 
and relate to each other as follows: IvlDCs support data integrity only, Iv:tACs support 

sender authentication and data integrity1 digital signatures support non-repudiation and 
both sender authentication and data integrity. Encryption is orthogonal to the other 
cryptographic services and can be combined to each of them. Our pattern language 

[BRD98a] documents the constraints over cryptographic -services carnbination by Hmiting 
the number of vaHd patterns. The ways meta objects for cryptographic transformations 

are cornposed are limited by the number of cryptographic patterns. 
The reftective architecture of Guantná provides an e.asy \-vay for meta-object compo­

sition [OB98a], An abstract subdass of MetaObject caUed Composer can be used to 
define arbitrary policies for delegation of control to other meta objects, separating the 
functionality of the meta level from its organization and management aspects. Parti­
cular!y·, Guaraná's Sequentia.iComposer delegate:; control to its aggregated meta object.s 
sequentially and recovers the results of tht)m in reverse order. 

VVe subdassed the Cornposer meta object and obtained a ConfigurableComposer1 whi­
ch has the ability ofturningits meta objects on and off according to a Hst ofvalid Niessage's 
subclasses, which are received and used as filters or function selectors. Another useful 
subdass of Composer we have irnplemented is the SelectiveComposer, which iinplements 
mutually exclusive selection of meta objects, That is, at any time1 there ls at mo..st one 
meta object active, the others are kept ofL The selection of active meta objects, similarly 
to the ConfigurableComposer 1 is based on subclasses of Guarana":'s Message which work 
as function selectors. The messages that can be understood by ConfigurableComposers, 
SelectiveComposers a.nd MetaCryptoEngines are sbown in Figure 5.4, The static rela­
tions among these three meta objects are shown in Figure 5.3. ConfigurableComposers 
can contain instances of SelectiveComposers, MetaCryptoEngine and other Configurable­
Composers. SelectiveComposers can contain only instances of MetaCryptoEngine. 

SelectiveComposers can be used to irnplement the mutuaHy exclusive aspect for the 
composition of meta objects responsible for MDCs, MACs1 and signatures. In such a 
situation, r,he messages used to select functions are the subclasses of FingerprintOn and 
Fingerprintüff. ConfigurableComposers can be used to com pose orthogonal meta objects 1 

presen<'ing the ability of arbítrarily turning thern on and ofL A com.mon configuration 
is to use a ConfigurableComposer to combine the behaviors of an encryption meta ob­
ject a:nd a SelectiveComposer, already initiaHzed with meta objects for signature, MACs, 
and lviDCs. In this ca.se1 the messages used for function selection are the subdasses of 
EncryptlonOn and EncryptionOff and the messages addressed to the lnstance of Selecti­
veComposer. Another useful configuration is the use of a SelectiveCornposer's instance 
to select among alternative encryption algorithms. Any meta configuration1 using cryp-



68 

~kxnp.GllarJ.naM"~sage) 

l 

Figura 5A: I\:1essage Hierarchy for Cryptographic- Service Selection. 



5.3. lVfeta-Ob.fect Librar;v 69 

tographic meta objects e\ther individually or in compositions, is an instantiat.lon of the 
reHective cryptographic pattern IBRD99a]. An lnterest.ing property o f our implementation 
is that cryptography-av1rare meta objeets can be composed in any order. 

5.3.4 The Underlying Cryptographic Service Library 

Since version 1.1.2 of the Java Development Kit, Java has offered an object librar.v for 
low-levd cryptographk services such as digital signatures and hash functions [.JBK98 1 

Oak981 ?viDOY98]. Encr:yption facilities, due to export re..<1trictions, are not ava.ílable 
from the basic library issned by Sun. An extension to Sun's basic library is available only 
in Uníted Stated and Canada, though free implementations can also be found. Such a 
libnn·y, knnwn as the Java Cryptographic Architecture (.JCA), isso flexible that its API 
can be used as a hook to either JCA 1S third-party implernentations or to other proprietar_y' 
implementations. In both cases, services are accessible through the JCA~s APL In order t.o 

overcome the export restrictíons, we have deve]oped our own cryptographic library bastc'-d 
on Java 1.1 's JCA. This approach has also brought greater contro1 over implementation 
details, vvhich are usually not available from third-party code. The description of cmr 
household JCA implementation will be available as a technical report. 

The Java cryptographic API1 though quite complete, offers only iow-level control over 
cryptographic rout.ines and secured data !BDR99bj. Similarly to old cr,yptographic /\PJs, 
byte arrays are the data structure used to inpuL and output. There are few facilities to 
encipher and sign objects [JBK98, GS98]. Another potential disadvantage is the amount 
of knowledge that a dient object should have about the API. Such a client object should 
look after cryptographic objects1 initíaHzation with keys and block splitting for input and 
output. A cryptograpby-aware meta object which takes care of such an old-style and 
perhaps unfriendJy API is also complex enough to make its reuse very difficult. 

Tn order to sirnpUfy the design and implementation of the cryptography-aware me­
ta objects 1 we have developed a set of adapters1 in the sense of the Adapter (GHJV94, 
1:39] design pattern, which deals with the low-levei cr:yptographic API and provides meta 
objects with easier abstractions to deal with. Some of these adapters and the static re­
lationshlp between them and meta objects are shown in Figure 5.5. Each cryptographic 
meta object contains a reference to an adapter. Such a reference can be ea.~ily switched 
between a real adapter and a null one. This approach irnplements the null state vdria­
tion of the NullObject pattern [MRBV97, 5} makíng the modification of the meta-level 
behavior easy without having to change meta objects. For example, the meta object res­
ponsible for signing methods' parameters, MetaSignatureParams, contains a reference to 
a Signerlnterface which can be either a Signer or a NullSigner. The corresponding meta 
object for veri:fication o f signatures, Meta.Signature Verification, contains references to an 



5.3. Afeta-Object Library 

r --l 
1 /i.fetaCryptoEngitte_l 

Ll\-tetaDccryptiQnPararns 

I' Decipherlmerface 
,---- ------
1 SignatureVerifierln!!_iface: 

I lSrypt(Scrializab::~:a~~-
1 Nulll)c"Cipher ----l 

--i de;.._Typt(Seria!izable ):Serializab.lÇ-
------··J 

Decipber(Cipher} I 
decrypt(Seria!izable):Seri~l:J 

w:rify( Serializable ): Seúalízabl 

r--------------"--, 
I NullSignatu~.!Yer.ifier -~ 

verify(Seria1tzable):SeriaEzab~ 

1----CS"i~g~n=a~eV~tcifier 
j Signatm:e V erifi<".r(Slgnamre,PublicKey· 

1 verify(Seriatizable):Serializable 

Figura 5.5: Relationships among Meta-Objects and Adapters. 

70 



5.3. Meta-Object Ubrary 71 

adapter which can be an instance of either Signature Verifier or a ::\ullSignat ure Verifier. 
The other cryptography-a;,vare meta objects -..vork in the same way. 

Adapters use serializable objects in both input and output. Such a feature elimina­
tes the disadvantage mentioned above, \vhích vms the use of a lower-level abstraction for 

input and outpuL \Ve have extended .JCA's set of classes that handle objects, that is 
SignedObject and SealedObject, in order to cover a.lso authentlcat.ion \Vith :\.1ACs and 
integrity checking with MDCs. This set of secure objects are shown in the dass hierarchy 
o f Figure 5.6. This lmplementation o f the Serialization [?v1RBV97} pattern is also a Com­
posite [GHJV94, 163] in the sense that the composition of cryptographic features such 
as signing and encryptlon is facilitated. Implementation details, such as object serializa­
tion and bJock splitting1 are no longer a problem and are tre.ated by such objects in an 
lmplement.ation dependent "'Way, which is hidden from the user of MOLC. 

1----'s""""'"d"'o"'b"''"''-' ---1 
' Seal.x!Ohject(Serializable,Cipher) 

getObject(Ciphcr):Serilizable 

I Un.c<~rrupt-edObjed I 
· UncorruptedObject{ Seri!Uable.MessageDigest)f<=>J 
makeFlngerprint(Serilizable.MessagcDigest) 
getObject():Serializable 
vedfy( Sel..'tetKey .MessageDlgesl) :boole.m 

AuthentictJbject 'l 
AnthenticObject(Serilizable,SecretKey .MaC)I '• 

authenticati..-'"d(SeriJiubkSecretKey ,Ma c l 
getObject():Serializable 
veri(v( SecretKey,Mac }: !x10k21n 

SlgnedObje<et 
·-~ 

Sit,TJ!edObject(Serilizabk.,PrivateKey 5i!;,'Nl.t1Jre) 

i<> ~ign(Serilizabl.e.PrivateKey }li gnature) 
getObject(,t:Serializabl-e 
verify(PublicKey .Signature): boolean _j 

Figura 5.6: Seeure Objects Hiearachy" 

The use of adapters and serializable secure objects simplifies the design of cryptography­
aware meta objects in such a v<tay that meta objects do not have to worry about JCA's 
API specifics. Meta objects are free from such low-Jev-el responsibilities and are concer­
ned only vvith whether a transformation should be perfonned or not, The composition of 
cryptographic service.s can be ea..<.;i}y accomphshed using SequentialComposer's delegation 
facilities. The sets of adapters and secure objects and the {:ryptographic service library 
eonstitute the lower layer of the MOLC framevmrk. 

Adapters sign errors during fingerprint verification or decryption using exceptions from 



5A. Refiecti•le Framen'Drk for CrJpWgrapfly 

l." jaV<L~~-~~~~ 

ÚnsuccessfUlVerJ ficationExc~l 
rc-------~-·- j 

l-1 Finger~~atchExcepti;;r 
--;rs -, -------, 

L-1 ModificationException ! 

~--f'SutstüutionExcep!Í'Zn i 

1 ' ~.;;;;;;~i;-i~~Pti;;;;:] 
I r----l L~ DecryptionException 

Y ln~·alidMessageExcepÜon l 

Figura 5. 7: Cryptographic Service Verifieation E:xceptíons. 

the class hierarchy o f Figure 5, 7, This hierarchy captures the containment relation among 

differem kinds of fingerprints. For insta.nce1 a SignatureivJatchException can be caused 

by either substitution or modlfication durlng verificatlon of a digital signatme. Errors 

of -:\'fAC verifkation can cause a SubstitutionException to thro,vn. Similarly, MDCs 
errors thro\V t.JodificationExceptions and decryption ones t.hn:J\V DecryptionExceptions. 
ConfigurableComposers and :tVIetaCryptoEngines throw an Inva1idivfessageException upon 
receh:lng~ an unknown Message's instance. Ali the exceptions ofFlgnre 3,7 c.an bt~ eneap­
sulated in a Guaranris :tvietaException. 

5.4 Reflective Framework for Cryptography 

The I\TOLC's procedure for adding cryptogra.phy-based securit:y has the follmving steps: 

L Load base-level classes. That is, load the classes for which a r.neta configuration is 
required, 

2. Reflect abont ba.'>tO"-level classes, which means to cre.ate the meta configuration re­
quired by t.he base-levei application. 

3. Start up the meta objt'Cts from a secure initia1 state. 

4. Load the dass of the base-level appHcation. 



5.4. Reflective Framework for Cryptography 73 

5. Execute the base-levei application from the meta 1eve1. 

Steps 1~ 3 and 4, are the same for any applicatlon, having a few·, parameterizable, 
differences. Steps 2 and 5 are \vhat can vary among appiications. In step 2, a meta 
configuration is created based on the base-levei application's security requirements and1 

ahhough a limite<.-!. number of cryptographic services is available) the requirements can 
vary a lot and produce strongly different meta configurations. Step 5 has at least two 
main variations: execute a st.atic method, probably a main() one, or create an instanee 
of the application class and then execute .some ordinary method. 

! baseClasses"" loadBaseClasses(dassLü;t) 
· rei1ectAboutClasses(baseClasses) 

broadcastMess:ages(lll$gs.ba$eClasses) 

main.Clas~"' loadMainCJass( dassNume) 

cxecuteBa.>:e(mainClasg) 

MetaLevelApp {.abstracij : ~ ,--

1 

metaMain() ·········---------·--·· .. ··· 1• 
ioadB aseCla.«Ses{ dassListfJ) · ·· · ········ · .: 

I 
refkctAboutCla$ses(Classes[J) j 
broadcastlVíes><ages(m.s;.gsfJ,classes{J ·· 

. loafu\1ainClass(className) ·_=J,. ... _. .... ··; 

\ uecuteBase(mainClass) 
"------~-,--~--. 

~ for(ínt i=O;i<clas:s.List.kng<h:l++) 

classes[i] ""ClasdorNarne(elassList{i]l 

~ for(int i""O;i<.:msgs.length;i++) 
i'or(int jzoú;j<clasoes.length;j+-+) 

G-uanma.hroadcai>t(m-;:gs[i] ,classes[j ]j 

if( className~=nult) 

retum Class.i'-orName(className) 

IM ) J [/*configure Alice' o meta-leve] fpr 

I ,,:~:~~u7~::::~:,~m L4 !;:~~:::;:;::;;,~~~,':~:'"' 
\ executeBase{mamClass) -- - ----+·--+- -<"do nothing:·~._; 

[_ BobMetaLevelApp ui ~;";~-~~~-~=·~~b's meta-levei for 
~ params decryption!vedfication and 

li re:flectAboutClasses(Classes[J) 1 , ··--·j_;-::~_1;1~~-~~?!r:P.~i.?.~.~!~!~~-1!--,~~~~?~ .. :L 
! executeBase(roamCla.>s) -- I ' ....:= ' m<lin"" mainCla.,.,R.getM'ethod{"main") 

mainJnvoke(nuJ.l,new Object[O]) 

Figura. 5.8: A Reflective Object-Oriented Frarne\vork for cryptography-based Securíty. 

This small a!gorit.hm can constítute a simple object-oriented framework (Pre95] for 
adding cryptography-based security to any object-oriented applícation and can be im­
plemented as the Template Method [GHJV94, 325] desig11 pattern. Figure 5,8 shows the 
design of the frarnework The abstract class MetaLevelApp implements the algorit.hm's 



74 

inYariant parts) 1eaving hooks for subda-"ises. 7v1ethod meta\Iain() performs the algo­

rithm. The methods loadBaseClasses(), load?\'laínClass() and Broadcast?tfessages() are 
the invariant parts. The abstract methods reí1ectAboutC1asses(J' and execute.\hinn are 

' '' 
the hooks. 

In order to test the frameworkj two subdasses of ~AetaLevelApp tvere implemented, 
Alice\IetaLevelApp and Bobi\:fetaLe\·elApp. These classes Ü:Tlplement the meta confi_gu­
ration shown in Figure 5.9, which also present.s the runtime- relationships among objects 

for such an application. It is important to not.ice that, as the number of 'D.tetaLevelApp 

subclasses increases, the use of YIOLC becomes more and more like a biack box. The 
applicatlon levei contains Alice and Bob instances anda base-leve! applicatimú:; instance, 

shmvn in Figure 5.9. The frarnework classe.<s \York as a glue layer bet.ween t.he base-·!evel 

appllcation and the meta-object library. In such a glue leve! there is a I'vJainProgram 

svhich cont.ains instances of the frame1vork's classes Alice?vietaLfYVelApp and Bobl\-Jeta­

Level:\.pp. These classes are responsible for reflecting abont Alice and Bob classes and 

instances. They also start up the base-level appllcatiorL AllceJ/IetaLevel.App <lnd Bob:\Ie­

taLevelApp create nvo symmetrie meta configurations. Symmetric meta configurations 

means cornplernemary functions in each end o f the communication channeL That when 

.Aiice's data should be encrypted, Bob's data should be decrypted and so on< Composer 
meta objects distinguish among mutual exclusive services and services composítions. 

The meta configurations are associated to classes, that is Alice and Bob) and •vhen ne\v 

instances o f such classes are created, the meta configurations are pwpagated" \rVe decíded 
to cop;y dass meta configuration t.o each ne\Y instance} instead of sharíng: a single one 

among severaJ instaJJceS1 in order to simpiify the management tasks1 particular1y1 the ones 

conceming key managemenL 

5.5 MOLC's Reconfiguration Policy 

G-uamná's meta-object protocol allows dynamic meta-h~vel reconfiguration through re­
placement of meta objects during program execution. Although this feature makes the 

design of Guanmá extremely flexible, it is potentiaUy harrnful for security-aware meta 

objects" .A secure policy for meta-leve! reconfiguration should be taken in order to avoid 

naive replacements of cryptography-aware meta objects. 

\Vhen a cryptographic meta object is asked for reconfiguration, it can follmv either 

a conservative ora non-conservative approach. In the conservative one, weakening the 
cryptographic features of an object's meta configuration is not allowed, Tn this approach, 

meta configuration can either :remain the same or aHow self-stTengthening, Tn the non­

conservative approach, the weakening of meta configura.tions is also allowed. \Ve adopted 

a con&~rvative approach for rneta-level reconfigurat'ion. In our approach, a meta object for 



5.5, AJOLC's Reconfiguration Policy 75 

! 
I 

o I 

, I 
I
! 

l!J
j' 

' " 1'2 

' 

~' I '0 
.:':~~i_í??> li " <<:reflett>> I ' <<retlect>> ~ I E r ...... :~<re_i~?>,_ 

• 
" I 8 o 

w 

js "' <<rei!:'r>.?. __ I ~ <<"-:refiect>> 

G 
I 

8 <<.reHe..-t>> 
• ';-;' 

(Meta-Obj<:ct übrwy) 

,,,, 
Meta-Levei 

,,,,,,,,,, ----:---
BaseL;;:vel 

Pro!ocol 

j [ :(AliC-e\1ctaLevelApp) :M:.inProgram :(B"bMet.ã-evdApp) J 

c 
I 
I ' 

, ____ '::::::::l(Alke).das~ J l:(Ba:!cl&vdApp).d;,ss] l:(Bob).da.%] 

Glue Le-vd {Framewrn:k} 
'''' 

Applkation Le,·d 

.................. 'i:(A!i~e) 
:(Ba.<eL,;ve!App) :(Bob) L 

Figura 5.9: Runtime configuration for the -example application. 



;;Lo. AJO.LC''s Reconflguration Palie)-' 76 

slgnature cannot be replaced by neither a MAC meta object nora tTDC one and n l\IAC 
meta objec.t. cannot be replaced by a ),.JDC one. Meta objects of the same type cannot 
replace each other ehher. A. single encryption meta object can be composed! through a 
ConfigurabJeComposer, vdth any meta object for Sigmnure, :\JAC or :..'fDC. figLJre 5.HJ 
su:mmarizes the contexts tn which the follo\ving rules for reeonfiguration are applkable. 
Thís mínimum set can be easily ext.ended to support more interesting policies. Start.ing 

from the most conservative, the rules \Ye have implemented are: 

I I 
I 

'] 
! I 

New § Q 
-~ ' ~ 

~ " o CJ 
Currenl o < c 5b 

" :E :E V) I '" 
Encryption 1 3 3 3 110--j 
MAC 3 ! 1 2 +1 i 
MDC 3 2 ! I 2 lI ]j 
Slgnature 3 l 1 1 ~-1 -
SelectiveComposer 1 1 1 1 1 1 ! 

-
ConfigComposer 1 1 ! I ! 1: __ t_j 

Figura .5.10: Surnmary of the Reconfiguration Policy Applicability, 

L The current meta configuration is not replaced. 

2. A selective composition of both current and new meta configurations replaces the 
current one. 

3. A coníigurable composition of both current and ne>v metH configurations repiaces 

the current one< 

4. The new configurat3on replaces the current. one. 

It is important to notice that sucb reconí:iguration policy is only applicable when 
base leve1 and meta level are co-designed and base leve! has a sman control over which 
transformation should be active, On the other hand, when cryptog,:raphy-ba.sed security ls 
.added to third-party components1 such components do not ha.ve aecess to the meta leveL 
Thus 1 there is no possibility of changing the meta configuratiorL Furthermorej the meta 
configuration of a key instance, that a i\'IetaKey instance, cannot be modified in any 
case. 



5.6. MOLC Programming Orerview 77 

5.6 MOLC Programming Overview 

The goal ofthis Sectíon isto provide programrners with some feeling on integrating ).JOLC 
to third-party ,Java applications. VVe approach the instantiation of cryptographic meta 
objects, the composition of them and the integration of programs and meta programs. 
The fol1m.ving sample code creates part of the m\~ta configuration shmvn in Figure 5.9 and 

outHnes the implementation of the hooks of Figure 5.8. 
MetaLevelApp's subdasses implement the abstract method reflectAboutClassesO, 

which is responsíble for creating meta config,urations. Sample Code 5.6.1 is a fragmented 
implementation o f AliceMetaLevelApp1

S reflectAboutClasses O method~ All cr_ypto­
graphic meta objects are instantiated similarly to the MetaEncryptionParans's instance. 
It reeeives a se-t of Iviessage subc!asses, to which it is supposed answer, an initialized 
adapier and a list of Aliee~s methods) ou which the cryptographíc operations •vork h 
is impon.ant to state that cryptographic operations work on an Alice\; methods suhset 
\vhose result or argurnents are serializable. 

A ConfigurableComposer 1 (Sample Code 5.6.1.) a_cc, eontains lnstances of both 
f1etaEncryptionParams and MetaDecryptionResult. A SelectiveComposer's instance, 
a_sc1, has a.n array ofMetaEncryptionEngine 1s subclasses (MetaMacGenerationParams, 

MetaMdcGenerationParams 1 and MetaSignatureParams). a...sc2, another instance of 

MetaEncryptionEngine, contains meta objeets for Alice's verification of Bob's signatu­
res, MACs, or ~'íDCs, on his methods. Another ConfigurableComposer, a_c 1 aggregates 
all the other Composers and acts as Alice's príma.ry met-a object. Guaraná's reconfigure 
method performs the task of setting an object's primary meta objecL 

MetaLevelApp's execute O (Sample C ode 5.6.3) method executes the mainO method 
of BaseLevelApp. Both AliceMetaLevelApp and BobMetaLevelApp have to implement 
the execute() method. However, Alice and Bob belongs to the same program and there 
is no need for ex.ecuting it twice. Thus 1 AliceMetaLevelApp 1S execute() is nnll 1 while 
BobMetaLevelApp's, below1 perforrns the real work. 

Meta proxies for crypt.ographic keys ean be created in the following way (Sample 
Code 5.6.4). A SecretKey object) as well as a pass phrase used to encr:ypt the key anda 
file name, is passed to a MetaKey constructor, during MetaKey creation. Both t.he Metak:ey 
object and the SecretKey class are used by Guaramfs makeProxy () method to create a 
SecretKey proxy1 which can be attributed to a SecretKey variable. A MetaKey created 
\Vith only a pass phrase and a file narne is used to recover an already securely stored key 
from a file_ 

There should be a main program to launch the base-levei app!ication and settle its 
meta configuration. The main rnethod o f such a main program 1 Sample Code 5.6.51 is res·· 
ponsible for initializing the meta configuration from a secure state, creating adapters and 



5.6. AJOLC Programming Overview 78 

~~~~~~~~~----~~~~~---------------­Sarnple Code 5.fLl Creating Cryptographic ?vleü~ Objects ·-----· --------------·-·- ----------~---

void reflectAboutClasses(Cla'>sO classes){

)

:vietaCryptoEngine a.mep =
new M.:;taEncryptíonParams(

new ClassQ{?vlethodToReflectAbontPararns.dass,
Par arnsEn cryption On. dass,
ParamsEnnyptionOfLda<>s},

endpher,alke1Jethods):

Composer a.cc = new Configurab!eComposer(new lvleta.ObjectQ{a..rnep,i'LJIJdr}):

Cmnposer a.sd =
new SelectiveComposer(

Composer a..sc2 ~
new SelecüveComposer(

new MetaCryptoEngineQ{a_..":\p.aJlp, ::Lsp},
new Class[]{MethodToReH.ectAbontPararns.cla.ss,

ParamsFíngerprintOn.dass,
ParamsF'ingerprintOff.cla.'>s});

new MetaCryptoEngineO{ a.:<ro.p,a....Yhr ,assr},
new ClassQ{?viethodToRcllectAboutResu1Ldass,

ResultFingerpdntOn,da.ss 1

ResultFingerprintOfLclass});

Composer a....c = new Conf\:,"UrableCompowr(new MetaObj«:ctQ{a-c:c,a.scl,a_<>c2});
Guarana< reconfigure(class€s[i} ,null ,a_c);

5.6. AifOLC Programming Overview

Samp le C ode 5.(L2 Composing Cryptogr.aphic.c);c:!c.et:::.a~.::Oc:b:ocJe:c'c:ctccs _________ _

)

Composer a...cc = new ConfigurableCornposer(new :MetaObjectU{a...mep,a..rrtdr});

Composer a...scl =
new SelectiveComposer(

Composer a.....<;c2 =
new SelectiveComposer(

new MetaCt:yptoEngineQ{a..ap_.a...hp, a...sp },
new Class[] { .t<J l'thodToR.efiectA boutP arams. class1

ParamsFingerp:rintOn.da.ss,
Pa:ramsFingerprintOfLclaslii});

new ,\1etaGryptoEngineD { <'-"Vap, a-vhr,a...vsr},
new ClassQ{Iv1.ethodToRef!.ectAboutResult.da.;;s,

R.esultFingerprintOn.dass,
ResultFingerprintOff.dass});

Composer a....c = new ConfigurableComposer{new MetaObjectü{a-cc,a..sd,a-sc2});
Guarana.reconfigure{ classes[i] ,null,a._c);

Sample Code 5.6.3 Executing The Base-Level Application

void execute(Class c)
{ { c.getMetbod("ma in", new Class[]{ StringQ.cl.ass}))

.invoke(null, new Object[]{new String[O]});}

79

5.6. AfOLC .Prognt.mmíng Overvievv 80

Sample Code 5.6.4 Protecting Keys in Meta Objeets -----------------------

SecretKey kO "" new Secretl(ey(),
kJ ;;;; (SecretKey) Guarana.makeP:roxy(Secret.Key.dass,

new MNaKey(kü,"passphrase", 11 K;ay. ser")),
k2 = (SecretKey) GuaramLmakeProxy(SecretKey.c:lass,

new lVIetaKey{"passphrase" ,"Key .ser")):

Sample Code 5.6.5 The Gl;:u;:e-"P-'r.Co-"g'-ra:::m=------------

)

public statie void main(String[] argv) {

}

Message intia!State[.l = new lVless.ageQ { uew ParamslntegrityOn O,
new ParamsEncryptionOn())
new Resu1tSenderAuthO:n() 1

new ResultEncr,yptionün()};

Objec:tO adapters ~ new übjectQ{ new MdcGenerator(messagedigest),
new MdcVerifier(messagedigest),
new &'lacGenerator(:r:mtc,k 1),
uew MacVerifier(m.ac,kl),
ne:w Endpher{dpherl),
uew Decipher(cipher2)};

Alice!'v1etaLt•velApp aHceApp =
new Atice~de:t.aLevelApp(new StringO {" Alice'1 } ;null,initialState);

BobMetaLeveiApp bob~<\pp::;;;;
new BobMet:aLevclApp(new StringQ{"Bob"}, "BaseLevelAp:p'' ,initialState);

all.ceA pp ,cr:yptolnit (adapters);
bobA ppA::r:;"Ptoinít(adapters);
aliceApp.meca.Main();
bobApp.met;aMaln();

5. 7. Conclusians and Future VVOrk 81

launching meta Alice and meta Bob, whose execute() method launches BaseLevelApp.
A Hst of ~'Íessag;e's instances represents the meta config:uration's initial state, which

is check int.egrity of, and perforrn encryption on the arguments of Alice's methods, and

perform sender authentication and encryption on results of Bob\s methods. A Hst of

adapters supplies the cryptographic transforrnations for such an initial state. Lacking

features, such as non-repudiation, are internaHy filled by null adapters in order to be kept

turned off, Alice's and Bob's MetaLevelApps receive the initiai state 1 the name of the

base-levei apphcation (in which case Alice's MetaLevelApp receive.s null), and finally the
names ofthe classes to reflect about, that is, Alice and Bob, Before cal!ingthe metaMain O

methods of meta Alice and meta Bob, both o f them recelve the list o f adapters.

5.7 Conclusions and Future Work

In this work, the main aspects of a meta-object library for cryptography ""T~n; presente&
This meta-object lihrary is a reflective extension of a we11 knmm cryptographic object
library, Sun's Java Cryptography Archltecture. In addition to being an object-oriented
framework for transparent addition of cryptography-based security to third-party compo­

nents, this reftective extension is able to easily compose cryptographic servicesl a lacking;
feature of many cryptographic librarias [BDR99b], according to a set of cryptographic pat­
terns, An interesting feature of I\·'IOLC is the ability to use the reflective cryptographic

pattem recursively, for example1 when securing keys with meta proxies. Future impwve­
ments to this met.a-object library can focus on such a self-securing ability. Particulariy,
efforts can be directed to self-authentication of classes in order to prevent unauthorized
substitution of implernentations and iHegal reading or corruption of internai data,

Capítulo 6

The Role of Patterns in an
Object-Oriented Framework for
Cryptography

6.1 Introduction

Cryptography software desig:n is an important topic these days_ There is .an urgent ne­

cessíty for cryptography.-based security in applications rang-ing from electronic comrnerce

to word processing. It is not economicaHy feasible still de:veloping cryptographic softvn1-re
as it used to be VVorld \\rar II .. from scratch. Cryptography is a comp!icate subject 1 it

is nota good idea to suppose B\-'er:fone is able to (or has time and money to) leam cryp­

tographic tedmiques. \Ve are living in the object-oriemed component-based era. Thus,
;;v-hat prograrnmers, \Vho have to deal 1vith cryptography- ba..sed security requirements 1 re­
a!ly '"'ant is an e.asy-to-use hlghly reusable cryptographic component as wcll. a'l a direct
wa:y to find out the right security feature. In order to help programmers in finding the

rlght cryptographic services for their requirements, we have proposed a. pattern language
for cryptographic object-oriented software [BRD98a]. In order to provide programmers

with easy-to-use cryptographic mechanisms, we have developed a reftectíve object--oriented
framework as \Vell as a meta-object library for cryptography [BDR99a].

It has been extensivdy argued that patterns generate architectures [RJ94L as 'v-eH as
pattem languages document frameworks [Joh92, BlvfA97]. In this work we address the role

of pattems in using as weH as designing an objt-"Ct~oriented framm-vork for cryptography.
Our ca.se study is a reflective cryptographic pattern [BRD99a] 1 which is a variation of

the ones present in the pattem language for cryptographic software [BRD98aL applied to

document the usage of a re:flective object-oriented framework for cryptography [BDR99a].
Jn order to illustrate how patterns ean document design1 we present the overall design of

82

6.2, Cryptographic Patterns Oven"iew

the cryptographic frame ... vork as a set of integrated patterns instantiations.
This paper is organized as follows: Section 6.2 is an overview of cryptographic design

pattems. Sectlon 6.3 is a discussion about the intrinsic relation among pattem languages

and frameworks: Section 6.4 introduces the framework's design 1ssues and examples of
usag"t:. Section 6.5 presents some performance measurements on using the frame·work.
Condusion and future work are in Section 6.6. This text uses a "C0.-l"L-like notation for
diagrarns, otherwise a legend is available when necessary. The Java programmlng language
is used for code samples.

6.2 Cryptographic Patterns Overview

1ilodern cryptography addresSL"S many security services [iso98]. Four of them are con­
sidered main security goals [Mv0V96]: confidentiality, integrit_y, authentica.tion, and
non-repudiation. Accordingly1 there are four basic cryptographic mechanisms: (i} en­
crypt.ion/ decryption, (1.i) lVIDC (Ivlodification Detection Code) generation/verification;
(iii) ?\'fAC {1'1essage Authentication Code) generationfverification, and (iv) digital sig­
ning/verification. These four rnechanisms can be combined ín spedfic and hmited ways
to produce more high-level ones and are the buHding blocks for security services as weH
as security protocols.

Confidentia1ity i.s the ability to keep informatíon secret except from authorized users.
Data integrity is used to guarantee that information has not been modified \vithout per­
mission, whkh includes the ability to detect unauthorized manipulatlon. Sender (ori­
gin) authentication corresponds to the assurance, by the communieating parties, of the
origin of an ínformation transrnitted through an insecure co:mmunication channel. Ncm­
repudiation ís the ability to prevent an entity from denying its actions or commitments in
the future. The ba:sic cryptographic services can bP invoked in appropriate combinations
with other services and mecha.nisms. Particular cryptographic meehanisms can be used to
implement the ba.sic services< Practical realizations o f systems may implement particular
combinations of the basic cryptographic services for direct invocation.

The pre.':lent interest in software architectmes [SG96, B.MR+96] and patterns !GHJV94,
CS95, MR.BV97, BRD99c], and the existence of well-known crypt.ographic solutions to re­
curring security problerns [iso89, iso98, M v0V96, Sch96] motivate the development o f
cryptographic software architectures and cryptographic patterns. Our pa.ttern langua­
ge offers a set of ten closely related patterns and supports the decision making process
of choosing which cryptographic services address applkation requírements and user ne­
eds. Securing a communication channel can be such an important task that it should
be accomplished by the application itself1 without compromising its main functionality.
Secure*Channel Communicatíon, the foundation pattern, documents general aspects of

6.2, Cryptograpllic Patterns Overvíew

i I* Cryptographic
! transfonnation *!

I* y~g(f(m)) *I

Figura tU: Secure-Channel Communicaticm Struct.ure.

84

both structure and behavior common to secure communication, independent from the
kind of cryptographic transformation perfomted. Figure 6.1 shows this generic structu­
re defining two template classes, Alice and Bob, which are application classes, and t.wo
hook classeS1 Codifier and Decodifler: which are cr:yptography-aware classes. The class
Codifier has a hook method f(), \Vhich perfor:ms a cryptogra.phic transformations. The
dass Decodifier defines a hook method g{) 1 \vhich performs the- reverse transforma.tlon1

y = g(f(x)). The transformation and its reverse are based on the same cryptographic
algorithru.

6"2. Cryptographic Patterns Overvien'

2
1 7 ! Sec;ecy with Sender

Authemication

8

!9

Set;ecy with Signature

Signature vtith

Secrecy with Signature
with Appendix-

authenticate the origln of a secret

prove the authorship of a secret

from

separate secret fmm signature

Table 6.2: The Cryptographic Design Patterns and Their Pnrposes.

85

Table 6.2 summarizes the patterns corresponding to the basic cr:;,rptographlc mecha­

nisms and their valid compositions. They are applicable as follows. \Vhen either on-line

communication or exchange of informatlon through files takes place, sometimes1 due t.o

great sensitiveness of data, (Jnformatwn) Secrecy should be guarameed. HoweYer, se­

crec:y alone does not prevent either modification or repiacement of data. Partículady in
on~line communica.tion, grantlng lvfessage lnte_qrity and (Sender) Authentication is also
importanL Sometimes, it is necessary to prevent, an entity fwm den;ring her actions or
commitments. For example, some forrn of Signature ís necessary >vhen purchasing elec­
tronk goods over the Internet. The cryptographic services, in appropriate comblnations1

lead to Secreq; with Tntegrity, Secrecy with Sender A uthentication or Sccrecy 'With Sig­
nature_ Cryptography can be so time consuming that aJgorithm performance ls always
important. Signat-ure can be speeded up by a Signabtre with Appendix< Similady) Secr-ec;;;
with Signal1tre can be speeded up by Secrec:lf 1.vith Signdure with Appe-ndix.

Figure 6.2 is a directed acyclk graph of dependences among patterns_ An edge from
pattern A to pat.tern B means pattern B derives from pattern A. Sec-are-Channel Cornrmt­

n~icaüon generates the micro-architecture for the four basic patterns. Ali other pattems
are combinations of these. Thus, all the lower-level cryptographíc patterns instantiate
Secure-Chrmnel Communication. A \Valk on the graph is dlrectt\{} by two questíons. First:

how should the cryptogTaphic software be structured to obtain both easy reuse and flexi­

billty? Second, what cryptographic servlces should be added to the current instantiation
of Secure-Channel Commttnicat-íon in order to address application requirements and user

needs?
The cryptographic mecha:nisrns corresponding to the services for data integrity1 sender

6.2< Cn--ptographic Pattems Overvienr

~-· (2) -1
I lnformation I

Secrecy

Legend:

(3) !
Messagc i

L!ntcgriryj

(7)
Secrecy with

Sender
Authent:ication!

'13-asi;: Deriv;~
Pattem 1--~ Partem

'----

(4) -~
Sender

Authentication I

(5) l
Signatu~l

l, ~ll (9)
Secrecy with S1gnature J
Sr~."~Zpe~~::

i (10) .
I Secrecy wíth I ' . J ' s· 1 1gnarure
I with Appendix
~------

Figura 6,2: Cryptographic Design Patterns and Thei.r Relationships.

86

62. Cr.vptographic Patterns Ov(::rview 87

authenticatíon and (digital) signatures relate to each other as fo\lows: MACs support
data integrity, signatures support both sender authentication and data integrit.Y as weil
as non~repudiation. Encryption 1 which supports confidentiality, is orthogonal to the other

cryptographic mechanisrns and can be combined with each of them.
Our pattern language documents both the use and appropriate combination of cryp­

tographic mechanisms in order to accompUsh not only the b&"1k cryptographk servkes,
bnt aJso i.he high-level composed ones, in secure communication. fn fact, the combined
pattems can be viewed as high~level servkes able to increase the cryptographic unaware­
ness of cryptographic Hbraries1 which should offer not only the basic four mechanisrnsl but

also their compositions. From a programmer point of view, such Hbraries can support the
eomposed cryptographlc pattems in a va.riety of tvays1 ranging from explicit programmer­
m.ade composition of b.asic rnechanisms to transparent composition hidden in high~level,

not necessarily programmer-friendly, interfaces,
Object-oriented applica.tions with non-functional cryptography-based security requi··

rements can benefit from a flexible design in which cryptQgraphic objects and application
functlonal objects are weakly coupled. \Ve argue that the cornbination of computationa!
refiection and cryptographie design patterns can improve reuse of both design and code
(while decreasi:ng coupling and increasing fiexlbility) of cryptographic components1 this
combination can also be treated as a design pattern. Foilowing1 the Rejiective Secure­
Charmel Commun.ica.t-ion Pat.tern is presented in a slrnple format. The complete pattern
description can be found in [BRD99a]. The use of computational refiection and object­
oriented programming is not new [Mae87J, neither is the use of meta-object protocols in

the ímplementation of non-functionaJ requirements o f object-oriented applica.tions [S\V96].

~vfeta-object protocols have also been used to encapsulate authentica.tion facilities and
compose them \Yith fault toleram·e and distribution [FP96].

6.2.1 Reflective Secure-Channel Communication

Context Set11re-Channel Communícation forces functíonal objects (Alke and Bob) to
explicitly take care of non--functional objects. That is, Alice a.nd Bob reference crypto-­
graphic objects and decide when a Cl:J'ptographic transformation shou1d take place. This
highly coupled design has the following disadvantages: (i) it limits the nmse of Alice and
Bob; (ii) ít poHutes applkation objects with explicít references and method invocations
of non-functional cryptography-aware objectsj reducing readability; (íií) it requires some
background on cryptography from application programmers.

Problem How could the separation of concerns between applic.a.tion functional objects
and cryptography-aware objects be explicitly represented in a way that reuse a.nd rea-

6',2, Cr:Fpt:ographic Patterns Overvierv 88

dahi1ity can. he improved? In other words 1 can. cryptography-hased securit.y be added

(transparently) to third~party appllcatíons or components, E~ven ifsouru~ code is not avai­
labhi'

Forces

• Cryptographic services are usually non-functional requirements of general purpose
applications related to communication and perslst.ence requirements) but are ortho­

gonal to these. Leaving application responsibilities decoupled from securHy serdces
facllitates reuse and security policy changes, and frees applícation prograrnmers from

having to acquire (too much) cryptographic knowledgc.

e The explicit separation of c.oncerns can lead designers to: ('i) procrastination of

important security policy decisions in cryptography-aware designs applications: (ii)
lack of control over cryptographic features (for instance, key management), from

the application programmers' point of ''!ev•:.

• Delegatlon of cryptography-aware dedsions h as the ad vantage of encouraging the

utilization of largely tested (cryptanalyzed) componems. However, ü can also ex­
pose applicatlon functions and sensitive data to third party's Trojan horses.

Solution Tn order to overcome the limitation stated in the Section ;·Contexe') a restruc~

turing of the interaetion mechanism arnong objects can be used. \Jeta-objt.'Ct protocols

(MOPs) with mes.sage interception mechanisms can potentially invert the dependencies

among non-functional objects and functional ones, in such a way" that non.-functional re­
quirements are tnmspa.rentiy accomplished by non-functiona·l objects1 >vhich may not
kno\vn by th.e applkation functional objects,

The use of a metwobject protocol explicitly separates er;,rptographic requlrements from
appllcation functionalities. Figure tUJ is the reflectíve version of Secure-Channel Commu­
mca.tion. Classes Meta.Alice and J\IetaBob are responsible for cryptographic method ca.lls
and for the re-sendlng o f ba.se-level methods, \Vhieh v:rere previously intercepted. For íns­

tance1 the send() method is intercepted by the MOP's reflective kernel and materialized
in a send-operation object. This operation objec't and its a,rgument (m) are treatecl by

the meta object ma1 which requests the cryptographic transformation accordingly. The

intercepted method is, then, re-sent (containing now the encrypted argument x) by the
?vlOP:s kemd to its original targeL The interception of method receive() presents an

analogous behavior.

6,3. Pa.ttern La.nguages Generate Framet.vorks

MetaAlíce I
handle() ·· L '

. ...J ' .

<<reflect>>

<<reify>>
!

· Cryptographic

Algoríthm

x = c.f(m)

a.send(x)

b.receive(m)

Decodtfier

g()

d

MetaBob

handle() ··
A

< <reflect> >

<<reify>>

'

y = d.g(x)

b.receive(y)

MetaLevel

Base Level

receive() -· --~ store = m
"---'----'

Figura 6.3: Refl.ective Secure-Channel Communication Structure.

6.3 Pattern Langnages Generate Frameworks

89

Pattern languages generate frameworks when a fr-amework offers the buHding blocks {pu­
bUc interfaces, hook methods and abstract classes) which can be used to solve problems
targeted by a pattern language. Object-oriented frame\vorks are not off-the-oven black­
box components 1 instead they have to evolve in time. Thls evolution is called the fra­
rnework life span [BMA97]. The pattem language which accompanie..s the framework also
evolves in time. Such an evolutional relation is strong:er than paraHeJ evolution. (Evo­
lution in response to the sarne environmental stimuJus, but not necessarily infiuendng
each other.) It can be called co-evolution beca use rnodifications in one partner causes
modifications in others. A framework's evolution ranges from white-box ra\v fn:l.me\vorks
to black-box ones.

In the beginning of a frame\vork 1s life span, the firstly implemented parts are archi­
tectural elements, which reflect the most general scenarios in the pattem language. As
new applications (based on the framework) appear, the framework itself evolves by in­
corporating more specialized black-box components provided by these applications. The
solutions a framework offers can be in one of three levels of abstractions [Bl'v1A97J: (i)
elementary components responsible for architectural aspects and more general scenarios;
{ii) basic design specializations, application independent cornponents 1 conceived for spe­
cific domalns; (iii) domain specific components, specializations of the ones in the previous
category, obtained frorn framework~s applieations and add.ed as black boxes. In matured

6A. Documenting tbe Framenrork !lO

frame\vorks, most components are domain-specific black boxes, vvhich refkct more spe­

cialized scenarios of framework's usage and generate variatlons for the patterns in the
evolving pattern language<

\Ve ha\'e developed a reflectíve object-oriented framework based on a meta-object.
library for cryptography [BDR99a]. This framework offers the cryptographic senices
sta.ted in the eryptographic pattern Janguage [BRD99c] using a refiective variation of

those patterns (BRD99a]. VVe classlfy this frame>vork, aeeording to scope [FS97], as a
em infrastructure framework because it helps the development of soihvare s;.-'stems;

cryptography-based security infrastructures. Also, it can be called a young white~box

framevwrk sínce its mainly functionality is availabie through class inheri1ance nnd hook

methods overloading (Template Meihod [GHJV94] pattern). Ho.,vever) it ha.s a great po­

tent.lal to becoming a black-box frame·work since 1t is based on a closed, relativelyr small,

set of patterns o f usage for cryptogrnphíc services. Furthermore1 the framework for cryp­

tography alread:v has specializatioos for reflective cryptogra.phic pattems. These domain
specific patterns are applkahle when cryptography-based seeurity ls a non-functlonal re­

quirement of applications a.nd should be delegated to a. meta-levei in order to achieve
separatíon of concerns between application's functionaJity and non-functiona! require­

ments.

6.4 Documenting the Framework

In this Sect.ion \Ve showj by an example and structured docnmentation, hmv to both
use and design the cryptographic f:ramework. There are two kinds of documentation

for objstt-orient.ed frameworks [::V1CK97]: (i) user documentation 1 intended to the final

user and consisting of scenaríos, tutoriais and examples, and (ii) design documentation,
information conceming the design of the frarnework; in both cases: patterns play an import
role. These two types of documentation should target three kinds of users [MCI\:97]: (i)

users deciding \Vhich framework to use, (ü) users wa.nting to build a typical application
and (úí) users wanting to extend the framework. User documentation targt:t.s both users
choosing a framework and users building typical applications wit.h i L The third user type)
users extending the framework, is main}y targeted by design documentatlon. This section

tríes to target both documentation types.

6.4.1 Using the Framework

·vve argue that the cryptographic pattern !angu.age can be used w choose a cryptographic
ser vice< P.articularly) a walk in the graph o f Figure 6.2 can lead to specific pattem instan­
tiations. Once this pattern is known: tutoriais and examples should be used to show how

6.4. Documenting the FramevFork

Class 6.4.1 SaveObject.java Saves Serialized Objects

public dass SaveObject {

)

publk sta.tic void main(StríngQ args) {

l

i f ((args.length> 2)&&(args.length < 1)) {
System.err.println("java SaveObject [-r] <cla.ssname>"):
System.exít(-1);}

try {
if (args[O].equals(-r")) System.out.printhl(readObject(args[l]+". ser"));
else vrriteObject(Class.forName(args[OJ).newlnstance(), args[O]+". ser");

} catch (Exception e) { e.printStackTrace();}

publi:c static void "'rriteübject(Object o, String n) throws 10Exeeptíon {
ObjectOutputStream out = :uew ObjectOutputStream(new FileOutputStream(n));
out.. \\'TiteObject(o};
out.fiush(); out.dose();

}

public static S.;lrializable readObject(String n)
throws IOException,ClassNotFoundException{

)

ObjectlnputStrBam in= new ObjectlnputStream(new Fi!einpmStream(n});
Object o = in.re.:>dObject();
in.close();
return((Serializable) o);

91

6'A. Documenting the Framework 92

to instantiate the pattern from framework·s classes. A frarnelvork's usage documentation

should not only provides scenarios of applicability for each pattern in the corresponding

pattern Janguage, but also sho"v how· to instantiate the application from the classes of the
framework A pat.tern format can be used for this task [OQC97], Since t.he intent of this

text is ex:emplify the frame>vork~s usage, \Vú target both features for one pattem in free

prose formaL
\Ye extend a simple command-llne program for saving objects in order to e:ncrypt and

test the integrity of the persist.ent instance. The command to save objects has the fo1-

Jmving syntax; SaveObj ect [-r] <ClassName> 1 in whi{;h -r is .an optlon.al switch used to

read an object from persistent storage. The command for coping, encrypting and testing

integrity of objects 1 SecureObj ect [-r J <ClassName>, generates an encrypted eOp}-"' of

<ClassName> instam:es, stiH made by SaveOhject, in persist.ent storage upon receiYing a

pass\YOrcL The -r switch loads, decrypts and tests the integrity o f <ClassNe.Jne> 's persis­
tent instances. A scenario of usage for SecureObject can be the fo1Jo,ving1 regarding that

both Alice and Bob know tlle pass\Yonl: (i} Alice uses Secu:reObject Valuable to protect
her sensitive data, that is, the instances of class Valuable; (á) Bob uses SecureObject
~r Valuable to recover the sensitive data.

The most important requirement of SecureObject, besides being secure for both en­

cryption and data integrity, is do not change SaveOhject code1 siuce we \Yant to keep
the ability to simpl~y save ohjects by typing SaveObject Valuable. \Yhen !ooking at

the cryptographic pattern language for a pattem that fits this requirements1 one can find
that baslc cry·ptographk services should be combined to achieve both eonfidentiality and
data integrity. This lead to the Secrecy with Integrity pattern. Ho\vever, B non-intrusive

approach is a1so required to a.void code modificat.iorL Thus, a reflective cryptographic
pattern shou1d be used. The key ideais extend SaveObject \vlthout intrusion.

The next st.ep is to determine what should be known about SaveObjecL Tn other
1vords1 what should be the SaveObject~s hook interface to SecureObject, Thls informati­

on can be obtained from either design documentation or code listings. Class 6.4. 1 show
that SaveObject uses FileinputStreams to read from files and FileOutputStreams to write
to files. Fortunately, the code for saving and recovering is hidden in two methods: ivri­

teObject() and readObject(). A simple solution can intercept SaveObject's read./write

operations and perform the necessary c:ryptographic transforma.tions over those parame­

ters or result.
Class 6,4.2 shm>rs SecureObjectl the rnain program responsible for launching the appli­

cation and giving control to the framework. In orde.r to use the frarne\-vork 1 SecureObject
should instantiate one of lVletaLevelApp's specializations responsible for file encryptlon

and integrity checking, caUed SecureFile. This dass can either encrypt or decrypt objects,
according to a crypt fiag, npon receiving a pass\vord; integrity checking is perfonned du-

6A. Documenting the Framework 93

Class 6.4.2 SecureObject.java Application•s Main Program

publ.ic dass SecureObject {

)

public statk void main(String[] argY){
hoolean crypt .::::: largv[O].equals(-r");

)

String password = new String("Easy password! ");
String dassName ::;o "SaveDbject";
Method tointercept;
:VIethodToRefiectAbout message;
Message mO;
try{

if (crypt){
tointercept = Clas:s.forName(dassN ame).getM ethod("wri teOb ject",

new ClassO{Object.class,String.class});
message = new MethodToRefl.ectAboutP.a:rams(tolntercept);
m = new MessageD {

new Paramslnte~:,rrityOn(),
new ParamsEncryptionün())message};

} else {

)

tointercept = Cla">s.forName{className)
.getMethod("readObject" ,new Class0{Striug.class});

message = new MethodToRefiectAboutR.esult(tolnwrcept);
m = new MessageQ

{new ResultlntegrityOn(),new ResultEncryptionOn(),message};

SecureFile sf = new SecureFile(crypt,password,
new StríngQ{ className},"SaveObject" ,rn);

sf.setArgv{argv);
sf.metaMain();

} catch{Exception e){S:rrstem.ouLprintln(e);}

6.4. Documenting the Frnmework 94

ring decr:vption.

Cryptographic transformatlons are activat.ed by events. Events can not onl.Y turn both
encryptio:o and tntegrity on and off. but also add methods to the of secured methods.
\Vhen the fiag is on, the event.s ParamsEncryptionOn and ParamsintegrityOn are used
for SecureFile initialization; othervd5(\ events ResultDecryptionün and H.esultintegTityOn

take place. I'vfethod set.Argv() transmlts the application"s argmnent list to SaveObject.
Jifethod meta:Lvíain() catches appiicat.ion ·s main loop.

l MetalmegrityP~
3.­
-1
r-___ L1
I ('
~mposer)

> !

ij 4

r--'""'--~
L writeObject() ~

SaveObject j
(a) With Meta~Level Secu:rity

i (b) Without Security

f-----
li ! Melhoü
-_,11 ~> l'nterception

I _]

Exchanged
Data

Figura 6.4: Sequencing of Actions Durlng Method Int.erception.

Figure 6A shmv the runt.ime behavior for SecureObject. The important object..s are the
three meta-level objects and the base-level objecL Classes SecureObject and SecureFile
are not shown in the figure, since they are not important at ruminH~: t.he flrs:t is a g1ue das:s

for framework launching; the second instantiated the framework behavíoL Figure 6Aa
shows the sequence of act.ion.s concerning nwthod Saveflle. \\TlteObject() interception, the
data handling at meta levei and the method re-sending to base !eveL Figure 6Ab sho\VS

the usual behavior of SaveObject.
The cryptographic pattems instantiation, as well as the frarne\vork use, imposes chs­

cipline in prograrnming. Por example, its easier to find out the hook interface for Sa­
veObject because the input/output operations are encapsulated in hvo methods) whích
can be mapped to Alice.send() and Bob.receive(). Also, users intending to develop com­
mon applications from the framework do not need to know that computational reftection
is being used to invert the dependencies between objects, because thís is a deslgn in­
formation. Summarizing, the process of using the crypt-ographk framework comprises
·the follo\ving general steps) whid1 should be supported by meta-object library ca.talogs,
tutoriais, examples, and pattern instantiation's scenarios;

6A. Docwnenting the F:rame'ivork 95

L Determine the adequate cryptographic pattern for instantiation.

2. Find nut the base-levei applica.tion 's hook interface. Cryptc)graphic uansformation
are usually performed over input/output operations for either communication or
storage.

3. Define the event fimv, if any, from base leve! to meta lev€l. This step is nsually
necessary \vhen the prineiple of separ.ation o f concems should be neg;k:..cted.

4. Look for an specialization of MetaLevelApp that addresses both the pattern from
step 1 and the hook interface from step 2. In this step, t.he specialization 's secu­
rity specification, such as cryptographic aigorithm implementation and key length,
should be evaluated according to security requirernents.

5, Tmplement an adequate MetaLevelApp subdass if nane could be found in step 4.
This speciahzation should be added to the frarnework. This step can be skipped
more often as the framework matures.

6. Implement a glue program (in this text, SecureObject) for framework initialization
and iaunching.

6.4.2 Designing the Framework

The documentation of a Fra.me-.,:vork)s design can be structured as. a four-ievel-depth tree
[OQC97], in which eaeh levei addresses a deeper aspect of the software, as sho\vn by Figu­
re 6.5. Levei 1 targets the system architecture. Doing so1 it describes the purpose of the
system as \vell as the propenies of the approach. Levei 2 documents the properties expcr·
sed by Levei 1 as a set o f interrelated pattern ínstantiations. This levei can also contains
pattern instantiation details; for exampie1 rnodifications in standard structure in order to
address particular aspects of the p:resent instantiation, Levei 3 documents the classes in
deta11 1 but relegating the documentation of source code to Level 4. Hypertext-ha...,ed tools
can be used to materialize this tree-structured documentatlon tOQC97, ~/fCK97].

Leve] 1: System Architecture

A key design issue in this framework is to support ease of use and flexibility for reuse of
cryptography services, that ist the possibility of using cryptographic fea.tures withont (too
much) knowledge about c:ryptography. The following three properties enforce this issue.

1. Implicit invocation of cryptographic serviees. Cryptographic services do not need to
be explicitly ínvoked by functíon caUs. Instead, a hierarchy of messages (or events)

6.4. Documenting the Framevvork 96

L-evei I L,evel 2 Leve!3 Level4

Figura . Levds for Frame>vork~s Design Documentation.

can be broadcasted by the application and target frame\vork (meta.) objects a.s in
the lrnplicit Tnvocation [SG96J architectural style.

2. Transpa.rent composition of services. Cryptographic servict>s can be applied not

only individually, but also in combinations to application's data in a 1-vay that ap­
plication's objects cannot determine the order of cryptographic transformations·
executiorL

Potentially transparent addition of security features. Cryptography-based security
can potent.ially be added to third-p.arty soft\vare without code recornpila.timL Even
when source code is not .availab!e. This kind of program extenslon !s obtained by
n.sing meta objects as in the Refieclion [B?v'IR+96j architectmal pattem. A strong
constraint of this approaeh is that the framework should be informed about what
methods and objects shonld he made secure. Events from the implicit hwocation
mechanism can be used to broadcast this information.

A number of cryptographic .applícation prog:ramming interfaces a.nd cryptographic
libraries are avai!able today [JDK+9l, LMJW93, Ka!95, Mic96, JBK98, Oak98, gcs96,

css97]. I1:owever, none of them targets ease of use and flex.ibility for reuse1 since they
use procedure calls for explkit servke invocatíon and, in general 1 do not provide service
composition in an easy-t.o-use way fBDR.Cf9b].

Figure 6.6 shows the main components of this architecture. The framework contains

the fiow ofprogram's execution, which in turn contalns the base-levei applicatiotL This fe­
ature characterlzes it as an object-oriented framework [Pre95, Lew96]. The cryptographic
routines are obtained from a Java Cryptographic Service Provider [JBK98, Oak98]. Be­
cause the cryptographic provider's routines are in a Iow levei of abstraction, an adapter

6.4, Documenting tbe Framework 97

ti
ry

-~ ~

o
"'" ,.,
~ j

~
~ o.
" ~
~ ü
~ E. ;[.f5 ?-> o <

MOLC Framework

!{ Event Hierarcby J
~

>
d
~ o o

~==H;:o=o=k=. lê'n'7te=rf=a;'cc=· ==~~ [
Base-Level Application Ba<>e-Level Application

Hook Interface

Without Source C ode With Source Code

Figura 6.6: Framework High-Level OrganizatiorL

layer between meta-object library and the Java Cryptographic Provider is necessary m

order to reduce both the complexity of meta objeets and the dependencies from particu­

lar implementations of the Java cryptographic library. Besides offering meta objects for
cryptographic transformations over base-levei data, the frame1vork can a1so refl.ect about
itsf:lf in order to secure its own data, for e..xample, cryptographic keys.

V'\-"e distinguish betv .. ··een hase-level applications ,,,.i.th and without. source code available<

In the firstJ both meta levei a.nd ba.se levei are, probably, being devdoped in pa.rallel and
it can be desirahle for the base lev-e! to control some aspects of secmity services. For
example, turn either encryption or authentication of a eommunication channei on a:nd
off or even ask for security in a new aspect of its computation. In tlás situation1 ba.se­
íevel applications should be supplied wlth mechanisms for communicate '"ith meta levei)
but -without poHuting their code \vith explicit references to cryptographíc services. The

implicit invocation mechanism of the frarnework targets this issue directly.
1t is important to notice that the idea behind base-levei objects communicating, even

implicit!y, with meta-levei objects is not conceptuaUy correct in computational reftection 1

since such a feature breaks the separation of concerns principie. However, it represents an
attempt of using meta-object protocols as architectura1 connectors for component com­

munication, in which two-way comrnunication between components is usually necessary.
In the second case, when either source code is not avaHable or it is desirable to preserve

the explicit separation of concems, base-levei applications cannot change any aspect of
security features deterroined in the meta leve}, mainly dueto two reasons. The first is the

constralnt that modifications should not be aHowed. The second is an implementation
constraint that cryptographic features are not known by the base-levei code. In both
cases1 with and without access to source code available, the meta levei should be notified

6.4. Docmnenting tbe Franw>vork 98

nhout vvhich aspects of base level's cornpntation should be made secure. These aspects

ccmstitute a hook, not necessarily public, base-leve! interface known by ffif'ta·-levd objects.
\Ve have implemented this hook interface as a set ofrnethods in •o:hich either parameters or

results can be serializable. That is. rnethods with the property of using seriallzab!e data ín

their signatures. Such methods are the Templat:e methods Alice.send() and Bob.Receive{}

from the Secure-channel Commnnication pattern and its reflect!ve variation.

Level 2: Design Patterns

In order to accomplish the three issues from Section 6.4.2, we adopted a design pattem­

based approach in which patterns instantiations are grouped in dusters. A ciuster cor­
responds to the blend of its pattems in snch a way tbat. all these patterns are applied

together to solve a problem. In a cluster, it is difficult to separate a member pattern 's im­

plementation from the others'. This design contains síx main dusters, shm,"n in Figure 6.7
and listed belo\v, whlch are put together by the refieetion [B!vfR'i-96] pattern instantiated

b,y Guaraná [OGB98); a meta~object protocol (or Java based on method interceptlon and

meta-object composition. The pattem clasters are the followíng:

L lvfeta-Key Proxu. Recursive use ofthe refiectlve crypwgraphic pattem to implement

secure proxies for cryptographic keys as meta objects,

2. Selective Broa.dcast (lmplicit lnvocationJ Two patterns instantiated in Guaraná

{Reactor [CS95, Sch95J and CompoBite [GHJV94]) are combined to implement an
implicit invocation mechanism.

3. Secure Objects. Secure objects are electronic envelops for (encrypted) data and their
fingerprinL Each kind of secure object targets one cryptographlc mechanism, say,
ew:ryption) data integrity~ sender authemication and digital signing. This cluster

uses Composit:e [GHJV94J and Serialization [lviRBV97] t.o obtain easy cryptographic

service composition.

4. ,gecurity Seruice Turning. This cluster uses the NuliObjec:t [MRBV97} pattern 1 a

specíalization of the Staie [GHJV94] pattem 1 to implement the abUity of turning

a cryptographic mechanisrr.1 on and of[Nun objects are instantiated over adap­
ters, producing nuU adapters. Real adapters offer cryptographic services based on
secure objects, instead of strr.2.ms or arra:ys of bytes. Thus, adapters simpHfy the
instantiation of the refiective cryptographíc patterns.

5, Framework Beh(wior. The inverslon of control is provided by a Template lvfetiwd

[GHJV94] instantiation1 which provides some hooks for creating the abstract fact.ory
responsib]e for cryptographic objects lnstantiation.

6.4. Documenting tbe Framework

Temp. Meth.

Straregy Abst. Fact.

Fra:mework Behavior

: Secure Objects . .

I

· Meta-Key Proxy
,-----,

M. Integrity

(Stratel)
r--,--··~··················

Adapter

State NullObject

ÜPattem
~ ... ~.~~~~.t ~~.~~~~ !.~~~~

Security Service Composition
:: Ouster

- Blend of Patterns

Fígura 6. 7: Patterns in the Design of the Cryptographic Framework.

99

6A. Documenting the Framework 100

6. Securit;v Service Cornpoúüon. Jn this duster1 meta objects for cryptographic me­

chanisms are specializations of .a generic cryptographic engine. 1\Jemhers o f its class
hierarchy share the abi!ity to tum themse1ves on and off upon receiving an ewnt.
There are two v;rays for composing cryptographlc rnechanisrns! rnui:ually r:xdusive

cornposition 1 used for mechanisms which should not be used sinmltaneously ffor
' '

example, data integrity should not be used with signatures, since the second may
imply the J1rst) and chaining cornposition, used to combine orthogonal mechanisrns

1

for example) encryption and data integrity,

__ , _____________________ ,
I

Encryptionlnteifoce {Abstract}
MetaEncryptionParams 'e---+-----;:::_ ____ _:__ _ _:__ ____ _:_ __ _j

SealedObject encrypt(Serializa!Jk o)

NulJEncípher I
encrypt() ,_ -l

.1* do nothing *I
............... ··'

6

retum new SealedObject(o,c)

Figura. 6.8: Instantiations of Adapter and Nui!Object Pattems.

In Figure 6.8, an Adapter [GHJV!14] pattern instantiation1 MetaEncryptionParams
uses the simpler interface from Encr;yptioninterface, instead of the low-level one from
Cipher, through an EncipheL A particular feature of this implementation, which di.stin­
guishes it from the standard Adapter pattern 1 is that Ciphers, the adaptees 1 are not called

directly by Endphers1 the Adapters, Insteat, SealedObjec.ts are responsible for the details
of t.his calHng. This insta.ntlation simplHies not only m.eta object design, but also adapter
design 1 since details of ciphers~ such as padding; are also hidden from adapters. A. Nul­
lEndpher instantiates t,he NullObject [MRBV97] pattern when MetaEncryptionP.arams
should be turned off.

Leveis 3 and 4: Classes and Source Code

Leve! 3 can detaiJ not only individual classes) but also cla'!s relationships not shown by
pattems 1 as deep inheritance hlera.rchies and package grouping. The dass hierarchy for
?vietaEncryptionParams is in Figure 6.9. This dass is a MetaEncryptionEngine specia.li­
zation for pararneters tmcryption, so that it is a MetaTra:n.sforrnationParams< It. l:nherits

6.4. Documenting f,he Fta.mewvrk

! MetaCryptoEngine {ahstract}

topFactory: vcl.idMsgs[J: methods(l:

Meta..MessageHandler{validMsgs(J,nwthods[J

hand1e(message) ·

tnmOn.()

tumOJfi.J

isTumedOn()

lf (message. í~ M~,tbodToReflectAOOut)·­

methods.add(m<Osmge.getMcthodOJ:

; If (roess%:e i$ TurnOn) tumOnO;

:_ If (me~ge is Turn0t1) turnOff();

l 01

handle(operation) · - -+---

lf(operation.gctMethod0 is method)

plain"' opera.tion.getArg~();

ciplwr "' a.:-tiw: T rmsfJ(:plain):
opFa~'iory .in vd::.e(f!lJ.,"'ibOd,clpher):

Mc:aEncryptionParams I
! MetaEncrypt!onPru:ams(vahdMsgs(Jí

I methods{l,Encryption1nt<.'Tface)'

I
transform.Param(param)
turuOn()

\tumOff()

cli~,T~um~oo~·On~!l~-------~

transjonnPararn{param) j
transformParams(args[J.params[J) ·j'

~-r~-;~~ct;·p·~~;i;i·ct~---

args[params{ij] =
tt;msformParnm(args[pararm:{i]]);

Fígura 6.9: lvietaEncryptionParams' super classes.

the abihty for reacting to events from its grandparent dass and the ability for intercepting
base-leYels operations and capturing its parameters frorn its parent class. 1t also imple­
ments the hook methods in order to obtain the ability for encryption of data and turning
enc!J-'ption on and ofL

In order to complete this case study, we present the source code for two classes.
Class 6A.3 contains the source fur MetaEncryptionParams and Class 6.4-.4 detai!s Seale­
dObjei:L Two interesting points are the focus of that code sa.mples. First) hm-v ada.pters
make lv1etaEncryptionParams's implementation really small and simple. Secondj how the
knm•tledge about the underlie cryptographic library is encapsulated by SealedObject and
potentially hidden from upper leveis. Its ímportant to mentíon that sealed objects, per
s(are nota new eoncept (GS98]. One of the contributions of this framework isto extend
the encrypted-object concept to aD other cryptographic mechanisms, producing a family
of secure objects.

6A. Documenting tbe Frarrw1-vork

public dass 1-letaEncrypt-íonParams extends l'víetaTransfonnationPara:ms{
protected Encipherlnterface tran.sf, active_ttansf;

)

public I\'fetaEncryptíonParams(Class[_i validJnsgs, EncípherlntBtface t,Yrethod(] me.thods)
throws I:rrva!idMessageExt"Bpüon

{super(valiclrns?,rs,methods) ;this.transf = t:nm.sf:}

Serializable wmsf'ormPa:ram(Seriatizable p) { r~~turn(active_transfencrypt(p) }: J

final void turnOn(){activ~dnmsf = t:ransf:}
final void tumOff(){active-transf = new NullEn.cipher();}
final boolean isTurnedOnO { return!(active ... uansf lin.stanceof SullEncipb.er);}

Class 6.4.4 SealedObjectjava

publi:c dass Sea1ed0bject i.mplements Seria.lizable {
ptiv·dte byteQ encryptedObject;

private byteQ addPadding(byteQ seriaU:Orm, Cipher c){. __ }

pri-wate byteQ subPadding(bytef] SBrialFonn){ ... }

pubUc SealedObject(Serializable object, Cipher c){

)

tcy{ encryptedObject :; c.doFinai(addPadding(Setializer. serialize(object),c)); }
catch (Exception e){ System.out.println(e);}

puhlic final Object getObject(Cipher c){
Object object = uull;

l

try { object. = Set"ializer. unserialize(su:bPadding (c.doFinal (-encr:ypted Ob ject)));}
cateh (Exceptkm e){ Systat:n.out.printin(e);}
return(object);

102

6.5. Performance Evaluation !03

6.5 Performance Evaluation

The goal of the performance measurements belo>s is to evaluate the impaci of the meta­
object library for cryptography [BDR99a] over t.he implementation of common security
st:rvices. The measuremems were perforrned over methods of type Alice.send() and
Bolu-eceive{). In the firstl Alice.send(), method interception and cryptographic trans­

forma.tions are performed over arguments; in the second: Bob.receive() 7 over returned
results.

\Ve mea.sured. the cost for using the framework in three situations: (i) over method
interception only (that is, using a null adapter); (ii) over cryptography transformarions
when performed by either meta objects or Alice and Bob themselves; (iii) and over storing
secured ohjects when security is either in meta levei or base levei. Here1 encryption means
the encapsulation of a seriahzed encrypted form of the üriginal object in a sealed object.
Thls meaning is analogous for both integrity and authentication. Securing means the
encapsulation of a serialized encrypted form of the oríginal object in a sealed object 1

whid.1 is also encapsulated (along "Nith a modification dete.ction code) b.Y an integrity
objecL

The measurements wP.re perfonned on a 100 MHz :..·ficroSparc workstatlon running
SunOS 5.5.1 and a 110 MHz SparcStation-5 running SunOS 5.5.1. The Java virtual
machine was Kaffe openV:\-1 1.0.b2 tempered with Guaraná 1.5.L The cryptogra.phic
function for encryption \vas the DES symmetric-key algorithm in ECB mode. The MD5
hash func.iion was used for integrity checking purposes and was applied after encryption
and before decryption. ::viD5 was also used for lviAC generation. A 1000-iteration 1oop '\Va5

used for measurement. Time, ín miHiseconds1 was measured as the elapsed. time between
two ca.Hs ofthe System.curremTimeJ/fHlis{) function. A.H graphs below show mean values.

Figure 6.10 compares the time, in milliseconds, required by a cryptographic meta ob­
ject for both method interception and re-sending in two different workstations" In this
case, we used a null a..dapter so that arguments and results were not modified by meta
objects. Both argument and result have a síze of 128 bytes after serializ.ation. This fig;ure
also shm-vs that method interception and re-sending can be very fast for cryptographk me­
ta objects. Interception of Bob.receive() result is faster than interception of Alice.send()
arguments 1 because the latter should parse the argument hst for serializable elements.

Figures 6.11 and 6.12 put together times for performing some cryptographic transfor­
mation, with and without reftection (in the figures) w.R. stands for with Refiection) for
two different machines: a MicroSparc 100 MHz (Figure 6.11) and SparcStation-5110 MHz
(Figure 6.12). Mea.surements were made for integrity checking, authentication, encryption
and encryption with integrity1 . The bars in these figures are analogous and raughly dift'ers

1 A current incompatibility between kaffe LO.b2 and Sun's library for large integers made hnpossible

6.5. Performance Eva.luation

I

300

250

~ 200 ti';

§,
!.5 () o

E
i= 100

50

o
Receive Send

Fig~ura 6.10: Cost for Iv1ethod Interception and Re-sending<

!000~-------------------------------­

lall~--

1400 ----

600j__-

400 -f--------
200-'----

0~-·-
Jntogrily Au:thentication Fncryptíon :&layption &

Integrity

L __________ _ iJiiSend WReccive ijSendw.R !]re.ceivcw.R! . ' ---------..1

104

Figura 6.11: Cost for Some Cryptogra.phie Tr.ansformations Performed b;y M"eta Objects
in a JlvJicroSparc.

6.5. Performance Evaluation

&ú.,-,---
700L·-------------------------------···
a~T----------------------------

~,·--------------~--------------

i ~ 400 -:------• ,§ 3<'l.,----

2lJ() "': --

100 -'-------

0 "'"'""'"
lntegrity Authem:ication En;.;;zyption Encryption&

Integril.y"

IOOSend !!![Roceive !@!Sendw.R QReceivew. R I
----------·-----~--~~-------~

105

Figura 6.12: Cost for Some Cryptographic Transformations Performed by lvíeta Objects
in a SparcStation-5.

only by a scale factor. These figures show that times for protecting receive() methods,
with and without. reflection 1 are very similar) despite rnethod interception. Times for

sending differ dueto parsing and element substitution in the argument list of intereepted
methods.

Figure 6.13 shows the cost in time for storing and loading objects, either alone or
secured \Vith encryption and integrity checking; for four different object sizes. The cost
for storing, as well as the cost for encryption and integrity checking during storage, is

directly proportional to object size. Stoling is usually fa..ster than loading, because the
later requires not only decryption 1 but also a successful integrity cheeking.

Figure 6.14 contains the cost in time for storing and loading objects when security is
performed by cryptographic meta objects. This cost is also proportional to object size
and can be v-ery high for larger objects due to their manipulation in meta level (that
is1 seriaHzation) creation, encryption). This figure also shows the size of secured objects
(beside input. size) handled at meta levei. Different from Figure 6.13, loading is faster

than storing, because the cost for computational reflection is greater than the cost for
cryptography tra.nsformations.

In general, the cost for performing cryptography transformation inside meta objects

measurements conceming digital signatures.

6,5. Performance Evaluation

11400::::: ::::
I 1200 +------·----------------
, 1000 1------------------
r<l'

!- &)JJ +------------------,
•
~ 600 t------·---·--------

400 t-----
200 t----

0 +--""''lill
128

106

Figura 6.1.;3: Cost for Storing Objects of Different Sizes, ·with and \Vithout Seeurity in a
'v!ícroSparc 100 1!Hz.

15000
lOOOü.

51)00

o
256'530 512/7&6

I Secure St:ore w. R ID &:cure l.oad w. R

Figura 6.14: Cost for Storing Objects of Di:fferent Sizesl with ?\Teta-Leve! Security in a
'vlicroSparc 100 MHz.

6.6. Conclusion and Future VVOrk 107

is greater than the cost for performing them inside Alice and Bob, This conclusion \Vas

waited, however. It is important to notice that the impact of uslng cryptographic meta
object.s1 instead of implementing it in base level, is not so high and, as Lechnolog:y evolves,
can become cheaper. Another consideration is that the bí:mefits of fiexibility for reuse and

ease of use can v.rorth a manageable decrease in performance,

6.6 Conclusion and Future Work

.As the necessit:y for compu ter cornmunication g,Tows, grows also the urgency for preser­
ving privacy, integrity and authenticity of exchanged data. Open networks, such as the
Internet, had found a variety of unexpected uses these days and cryptography-based secu­
rity, formerly a military exclusíve subject, are becoming a default feature in most. modem
software present in household desktop computers. Even those not interested in encryption

can benefit from cryptography~based integrity checking and authenticatlon mechanisms.
Cr.yptographic software carmot stiH be developed as it used to be four decades ago. 1t is
not economicaJly fea.sible to rewrite cryptographic software every time a security functi··
on shouid be added to either a legacy system or a new project. Instead, cr.yptographíc
servíces should be able to reuse in large scale. In this text we havü sho\VJJ how modem
software structurlng teclmiques and concepts can be succe:ssfully applied to the develop­
ment of cryptographic software in order to achieve ea..se o f u:;-e and fiexibility for reuse in
t.he la.rge.

The use of design pattern for implementing secure communication imposes discipline
on programming along wlth advantages and disadvantages, Prognun understanding is
easier when s()ftware is structured according to patterns. For ex:ampie, the task o f adapting
a third-party software for security strengthen ís greatly simpli:fied if the aspect to be
secured is iocalized 1 for instance, in a single elas..<;. However~ this assumption cannot
ahvays be made for third-party sofhvare. The use of framework technology applied to
ery1ítography is a promising subject. However 1 problemsj as performance constraints and
ke:y managernent, still remain and suggest branches for future research.

Capítulo 7

ReftectiveMiMi: A Reftective
Security Wrapper to the MiMi
E-Commerce Tool

7.1 Introduction

\Veb-based electronic commerce appeared as a response to the common business probJems
of cost lmvering in product distríbution, brokers elimination in readüng customers, and
market growing by expositlon to a larger audience, The claim for seeure electronic tran­
sactions in open networks1 such as the Internet, led to the use) by commerciaJ application,
of cryptography-based security protocok Traditionally free Internet resources, such as
web pages, are becoming sources of sensitivt:~ data \Vhkh should no more be accessed free
of charge. This change of paradigm 1 from free unrest.:ricted access to charged rt.ostricted
use of network resources and information 1 produces a, lack of soft\\<tre systems targ;eting
the nt:nv fast-growing commercial branch o f Internet. This lack can be filled out by new
applications as weH as adapted legacy systems.

Securit.y is often a non-functional requirement 1 that not directly related to the main
functlonality of applications1 which is usually neglected by software developers during
rapid re1ease cydes. In this situation even the more rudimentary security procedures
can be forgotten. In other cases) application 's requirements may change so that soft..,vare
s:hould be adapted to a new context. For example, t.he charging of formerly free web pages
requires not only a scheme for electronic payment 1 but also mechanisms for avoiding (or
at Jeast. inhibitíng) thieving of sensitiv€ information.

This paper exemplifies a reftective appmach to adapt third-party appHcations for stron­
ger security requirement.s by (potentially transparent) addition of cryptography-based
security fadlities, ReflectiveMiMi is a reflective wrapper for addition of both privacy

108

7.2. ItiL\11 E-Commerce Tool 109

protection and integrity checking to :0.·1i:Yfi [VHH97]. MEV1i is an electronk comrnerce

too1 for purehasing of web pages over t.he Internet, which encompasses an experimental

implementation of the :CviicroMint [RS96] payment scheme.

The te:x:t is organized as follows, Section 7.2 offers an overview of I'vHMi and analyses

some points in which its secur.ity can be irnproved. Sect.ion 7.3 describes the design issues,

as >Yell as some implement.ation tradeoffs, of Reflective~VliiVIi. Section 7.4 presents some

performance measurements. Condusions and future work are ín Section 7.5.

7.2 MiMi E-Commerce Tool

I\.fi::VIi [VHH97] is an electronic commerce tool for purchasing web pages uver the Internet,
which cncompa.SS€S an experimental implementation of the).:ficro)/Iínt payment scheme.
!'vHcrolviint [RS96J is a micropayrnent scheme which provides security at a vef}' low cost

and is optimized for low-value unrelated payments. A stTong requirement o f this payment.
scheme ls to complete!y .avoid 1 for efiiciency reasons, th€ use of public-key operatíons. It
was designed to discourage large-scale attacks, such as massive coin forgery or persístent
double spending caused by coin thieving. Micropayments are payrnents of very low value,

done very quickly, possibly at high frequencies, The support for micropayments requires
high efficiency from applications, especially during coin minting: otherwi:le the cost of the

mecha.nism wm exceed the value of the payment.

Redemption Request
~

+ Coins ~
MiMiBroker MiMiVe.ndor - -

Bro kerWallet

"' - VendorW'
~

" " o ·5 o o w o

" • ~ " o ü "- o
8 "' "

aUet

" " + • L,.. ~
~

"õ
MiMiOrder Hot1ava n: u

r=--
~
~ r-
'-----'

Customer W allet

Figura 7.1: Flow of Sensitive Data through MiMi Participants.

Figure 7.1 shows the general organization of MiMi and the main flow of sensitive

data (eleetronic coins and payed web pages) among its components. There are three

7.3. ReflectiveMiA,fi Wrapper 110

main entities: rvmvfiBroker, responsible for coin minting and issuing; MEvflVendor, the
purchaser of \veb pages; and the customer. The customer part is divided in hvo modules:
a coin ordering tool {IVIi?AiOrder) anda modified HotJava browser, \Vhich a1so recognizes

mimi links in addltion to HTlvfL ones. The customer orders coins from I'vfiJvliBroker and

stores them in his wallet; a modifiOO Hot.Java browser can thNI be used to withdraw
eiectronic coins from the locai!y stored customer wa.Het and buy web pages identified
by a mimi tag< Each web page costs one coin. ?vHMiVendor periodically performs coin
redemption requests to Mii'vfiBroker.

Since the foeus of MiMFs design \vas the implementation of the micropayment sche­
me; some security requirements, as authentication of comrnunicating parts and privacy
(important even on micropayment-based applications) 1 \vere neglected by the designers
during implementation. For example1 electronic colns are both stored in a \vallet file and
na.nsmitted over the network in an unencrypted. and non~authenticated format, leaving
the present ,Jll:\Trs implementation susceptible to eavesdropping, message ternpering and

masquerading. The rationale behind 0..Ji0.H's low security is that the system can aíford
thieving of a fe\v coins, while large~scale thie\·ing is inhibíted by the payment scheme<

7.3 ReflectiveMiMi Wrapper

H.ef!ective?vlil'v1l is a refiective security wrapper for addition of hoth symmetric-key eneryp­
tion and imegdty ehecking to MiML It provides confidentiality, weak authentication and
integrity while preserving MiMi's original functionality a.nd performance requirements.
This wr:apper extends a reftective object-oriented framework for c.ryptogra.phy (BDR99aJ
based on Guaraná [OGB98}; a meta-object protocol for the Java programming langu.age.

Some spots for security improvement in MiMi, targeted by this wrapper, are the
foHowing:

• Authenti.cation ofvendors by brokers and encryption ofthe chan:nel during redemp­
tlon request::L This security improvement can prevent fa1se vendors from being
redeemed for possibly stolen coins.

• Authe-ntication of G'Ustomers by vendors and encryption of the channel in payment
transactions" This security feature can prevent false customers from buying w'l?b
pages by using stolen coins.

• Authentication ofbrokt>IS by customers and encryption ofthe channel upon receiving
new coins. This security improvement can prevent customers from receiving false
coins.

Reflectivel\1i.i\.fi 1Vrtlpper 111

• Encryption and integrity checking of coins during storage. This feature can prevent
coin 1osses due to either accidental or intentional data corrnption while inhibiting
coin thieving.

Security aspects related to \Yf~b pages were not covered in this work. Authentkation

of vendors by customers can assure custorners receive the requested page. Pages can also
be protected against modHkation by integrity checking" Privacy of customers may also
be desirable.

Reftective:vHMi's design follows the steps for using the refiective framesvork for cryp­
tograhy [BRD99b]:

1. Determine the adequate cryptographic pattern for instantiation.

2. Find out the base-leve! applieation's hook interface.

3" Define the event fiow, i f any, from base level to meta leveL

4. Find or implement an specialization of h.fetaLevelApp that addresses both the pat­
tem from step 1 and the hook interface from step 2.

0. Implement a giue program for framework initialization and launching.

The cryptographic pattern instantiated by R.eflective?vfiMi should avoid public-key
operations, a constraint inheríted from the payment scheme used by fvfiMi. On the other
hand, lt should provide not only secrecy and integríty, but aJso weak authentication, since

strong authentication with public-key signatures eannot be used. This leads to reflective
,variation [BR.D99a] of the Secrecy with lntegrity [BRD98a] pattern wíth symmetric-key

cryptography"
The tasks of transmiting coíns through the network and storing them in waHets are

handled by t,he class Coin itself. However1 there are no methods in Coln which could be
mapped to Alice.send() and Bob.receive(), the hook methods in cryptographic patterns.
Methods Coin.readFrorn{) and Coin.\vriteTo(), shown in Figure 7.2 1 operate over streams
and do not provi de a hook interface with serlalizable arguments and returned results which
couíd be handled by meta objects. In order to overcome this limitatlon, two methods
were added to Coin: Coin.loadFrom{), called from Coin.readFrom(), provldes the hook
interface for interception and decryption of returned results and rnethod Coin.storeTo(),
called frorn Coin.writeTo(), offers the necessary interface for argument encryption after
method interception.

Figure 7.2 shows the dass hierarchy for electronic coins. Originally, class Coin only
belonged to MiMi. Hmvever1 in order to preserve performance requirements during coin
minting and overcome implementation restrictions in the web browser1 t\vo more types

7.3, Reflectivei\-1ii\1i VVTapper

Figura 7

relDm new Coin(Lf}is):

o"' ~.un;;erialize(is.read(thi~)):
return d.decrypt(v.vel'ify(o)J:

o"" os;;rialize(thls):
os. w:rite<;h.tnake(e.ew;:rypt(o)) j;

Coin Class Hierarchy.

112

of coins were added to MEdi. Class MintCoin is used by ?.-Ii:\ifiBroker only durlng coin
minting in order to avoid t.he decrease of performam:e caused by Coin, subjeded to method

interception. Coin mJnting must be fa.st (a requirement of the paymem scheme [RS96]),
computational refiection can siowdu .. vn the ra.te of coin minting to unacceptabie 1evels, so
that its use should be avoided in this situation. Aft.er mintíng, by the time of ordering,

1VIintCoin instance.s are converted by the method ~~IintCoin.change() to Coin instances,
susceptible to reflection.

The HotJava Browser should also be able to handle coins in a secure way. However,
it is not possible to change brovrser's Java virtual machine to one capable of method
interception, such as Ouaraná1 then cryptographic meta objects cannot be used. In this
situation) encryption and integrity checking should be explicilty added to coins handled
by HotJava. The dass HotCoin1 used only by Hotjava's Mrtvli handlel over!oads methods
Coin.loadFrom() and Coin.storeTo() and adds encryption and integrit.y to them, as shown
by Figure Again, by the time of payment, HotCoin instances are converted to Coin
instances.

Its important to notice that :tvíiMiOrder and MiMiVendor do not know either Mint­
Coin, \vhich cannot be reflected, or HotCoin, whicb has lts ow'TI secure methods" Hence,
encryption and integrity are added to these :vfiMi modules 1 in a complete transparent

7.3. ReflectiveAfiAi[i íVrapper

MetaLeve1App,
--zs.-~

. Rei1ectiveMiMi

! maín(mainProg)

'm;;:-~-~~-~i~tacoúú·c~i~,~ainp;~·g·);

; mc.setMetbods({ storeTo(),loadFromO}
· mc.mL't.&.\4ainO;

Guarana.reconfig.ure(Coin.11 ull.c) ~
' ' <<reify>>:
' ' ' '

<-<reflett>>

Coln
Serializabte loadFrom(lnputStream)
void storeTO(Serialíz.able.OutputStream)

Figura 7.3: RefiectiveMil'vii Class Diagram.

113

way1 by intercepting method caHs. Furthermore, Mil\lli does not have any knowledge
about. security features reflectiveMiMi adds t.o it. Hence, there is no control information
from MiY.Ti to its wrapper, ·v..rhich takes eare of aU aspects of security.

Figure 7.3 contains the da..'>s diagram, in UML-like notation, for Reflective'lVIi\1i ap­
plicaction. Classes MetaEncryptionParatns 1 MetaMdcGenerationParams, MetaDecryp­
tionResult, and MetaMdcVerificationResuh perfonn cr.yptographíc transformations and
belong to the meta-object library. Cla.ss Composer is a meta object responsible for com­
binig tbe previous ones. Class MetaCoin) responsible for creating cryptographic meta
objects and binding them (using method Guarana.reconfigure()) to dass Coin, is created
as a specíalization of M.etaLevelApp1 reused from the cryptographic framework. Class
Refl.ectiveMilVIi is the glue between MiMi anà MetaCoin. Its responsabílities are pass Me­
taCoin the main progmm's name (MiMiBroker, MiMiVendor or Mi~HOrder) and inform
?detaCoin which methods of class Coin should be intercepted and made secure, in this
case Coin.writeTo() and Coin.readF:rom(). An instance of Composer is the primary meta
object of class Coin. Methods Coin.loadFrom() and Coin.storeTo() are static: so that
their calls are always handled by dass Coin. This means that instances of Coin do not
need a meta configruration since those methods which 1vorth intercepting belong to their

class.
lt is important to present some nurnbers on code reuse in order to iHustrate the cost (in

7 Performance EvaíuaUon 114

terms of code re\vriting and recompilation) for adapting I\Tilvíi to stronger seeurity n-\qui­

rements" The original :VH?vll had 42 classes: three of them were modified and recompiled

CvfL'vfiOrder, Coin and Run17RLConnectlon); four classes were added (reíiectiver..-mvfi,
HotCoin, l\.fintCoin 1 and Met.aCoin). This leads to 39 unchanged classes from a total of
46 and 84.8% of rvfi~\Jrs code reuse.

The frame\vork for cryptography has 160 classes to accomplisfl serYices for confidentia-
1ity, integrit~h authentication and non-repudiation. 36 classes \Vere used directly (through

instanti.ation) or indirect}y (through inherita.nce of their functionality by directly instan­
tiated classes) by Reftective1-HIVIi to accomplish confidentiality and imegrity, reachlng

22.5% of framework reuse. The final application has 82 classes and 91.5% of code reuse.

7.4 Performance Evaluation

The goal of the performance measurements belmv is to evaluate the impact of the rneta­

object !ibrary for cryptography [BDR99a] over a real application, the Iv1L\H e-commerce
tooL The time for transferríng a pack of coins, with and whhout encryption, from a i:n·oker

to a vendor, is measured, as well as the time required for purchasing a vveb page. Other

performance rneasurements for this cr}.rptographic fra.mework can be found in [BRD99b].
The measurements were pm-formed on a 100 l\r1Hz lVIicroSparc workstadon running

SunOS 5,5.1 (customer side) anda 110 I\-'l:Hz SparcStation-5 rurming SunOS 5.5.1 (broker
and vendor sides). These machlnes belonged to the same local area net\vork The web
browser was HotJava L Ui The Java virtual machine 1vas Kaffe openV~vf LO.b2 tempered
\Víth Guaraná LO. L The cryptographic function for encryption \vas the DES symmetric­

key algorithm in ECB mode, The MD5 hash functíon was used for integrity checking
purposes and was applied after encryption and before decr:yption. A 10-iteration loop

\\'aS used for measuremenL Time 1 in milliseconds1 was measured as the elapsed time

bet\veen two calls of the System.currentTime:Minis() fundion. MiiVH's electronic coin
is 219-byte-long in seria!ized form and 497-byte-iong after encryptlon. Encryption here

means the encapsulation of an encrypted form of the original object in a sealed object,
\Yhich is also encapsulated (along with a modification detection code) by an integrity
object. DeCT)iption means a successful verification of the modification detection code1

follovved by object decryption and de-serializatiOIL

Figure 7.4 compares the time required. for MiMiOrder receive coins in two cases: (i)
when it is launched by RefiectivelvHMi (indicated by the legend "\Vith ReHectlon"), in
which case coins are encrypted; and (ii) when it is executed direcdy (indicated by a

';\Vithout ReHection1
' legend). The bars in Figure 7.4 indicato that time for transmitting

coins t:hrough the network is roughly the same, for a small number of coins (less then
100) 1 without encr:;,rption and refiection, and proportional to the number of coins when

7.4. Performance Evalua.t:ion

3000000

2500000

~ 20Q()(lQQ
' E
, 1500000
s
f=](:()000()

50%00

o
1 ü 10(1

ofCoins Tn~n~rnitted

----cc~-:-·---~- ·c---~:--~

:GJ:Without Rdleçtivn EJWJth Reflution j

115

Figura 7 A: Time Required by :\.-1Evfi0rder to Receive # Coins \>'ilíth and \Vithout En­
crypt.ion in the Meta LeveL

refiection and encryption are used by both ends of the channeL
Figure 7.5 presents the time cost for encrypting a 128-byte-iong object and decryp­

ting it with integrity checkingl when cryptography transformations are performed by the
application its:elf (indicated by a "VVithout Reflection'· legend) or deiegated to meta ob­
jects (indicated by the legend "\Vith Refiection)'). Encryption takes roughly 250 ms,
without reflection: and 1750 rns with reftection, the delay is due to method interception
and re-sending.

Figure 7.6 presents the time consumed by both MiMi protocol ha.ndler, locally em­
bedded in HotJava1 Mi:V1iVendor, with and without reflection1 when performing secure

payment transactions. A payment transaction is the delívering of a \veb page 1 by Mi.tvli­
Vendor) upon receiving an electronic coin from customer's browser. The transaetion is
sald to be secure when coins are encr:vpted and protected against corruption. Figure 7.6
shows that ?viilvfiVendor, under ReftectiveMiMi 's control, is slower than when it is execu­
ted alone. An HTML file of 4 kbytes was used in this experimenL It should be noticed
that file transfer takes most of time.

The apparent low perfonnance of RefiectiveMiMi -can be overcome by performing
decryption on demand (that is, per payment) instead of on rt>t.-eiving. Hmveverl this
adaptation would lead to a deeper intrusion into MiMfs code, reducing the presently
high rate of code reuse. MiMi was desígn so that a few powerful classes perform a lot
of functions, For instance, coins not onJy are a repository of sensitive data, but aJso
perform hash calculations and streams inputfoutput operatíons. fdost of the security

7.4. Performance Evaluation 1!6

2000

1500
~ • s
" 1000
a ,..

500

o
Encryption Decryptíon

: 1!1 W ithout R.eflection [] W íth Ref!ection

Figura 7 Time Required to Perfonn Encryption and Decryption with Integrity Chec-
king, 'VVith and YVithout R.ef!.ection.

i6000

14000

12000

" 10000 •
"

8000

E sooo ,_
4000

2000

o
Wilh EncrypHnn Without Encryp!ion

HctJava E]MiMN endor

fígura 7.6: Time Consnmed by HotJava (With Enerypt.ion) and MíMiVendor (Wíth
Encryption in the Meta Levei) to Process a Purchase Transaction,

75 Conclu!:>ions and Ftiture VVork 117

improvements should be made over coms. Howe,,.er, the 1/0 operations do not knm.v
whether they are being performed over either files or commnnication links, in such a

wa_y that the sarne security issues should be applíed to storage and communication. The
Splitting of Coin functionality into more classes would fadlitate strong security policies
adoption as well as oifer better performance.

7.5 Conclusions and Future Work

This paper illustrate~ a refiective approach for adding security features to thlrd-party
applications, wit.h minimal {potentially none) modification in target application "s code.
Addition o f privacy, integrity and Yveak authentication to ~'1i?v1i, an experimental electronic
commerce application, was accomplished in three different manners:

L Completely transparent addition to :\IilVIiOrder and JvfiMiVendor.

2. Addltion, after srnal1 adaptations on software, to MiMiBroker;

3. Explieit indusion of cr:_rptographíc services calls to the :V1üv1i protocol handler em­
bedded ín HotJava.

The .addition of cryptography-based security featu-res to third-party applications ls
a tradeoff among sevt!ral 1 perhaps confticüng, forces and ranges from completely t.rans­
parent addit.ion of po,vt:rful security serv:ices to software re-desígn for security support
with expHcit hnplementation of security services. Some of these forces, identified in this
project, are the foliov.ring:

• The complexity of the security poiicy a.dopted. Different securhy services should be
apphed to different aspects of soft\vare functionality accordlng to a great variety of
cri teria.

o The levei ofintrusíon in to target. application. The amount of both knowledge abont
target application 's internai behavior and modification necessary to support security
services. IVIodification may not only be restrícted to source code, but also reach
design decisions and architectural issues. The strength of security in the resulting
application is directly related to the original application's software architecture1

\vhich usuaHy not contemplates security íssues and rnay not be adequate for addition
of security features a posteriori 7 requiring adaptaion.

• The observam~e of target application's original requirements. Addition of security
features should not break critíeal aspects of software) usually supported by strong
requirements.

7.6. Acknowleâgments 118

The reHective object-oriented frame;mrk for cryptography >v as valitated by this case
study. The kmnvledge obtained in this experiment suggests branches for future research
in both architettural issues for electronic commerce applications and refiect.ive implemen­
tation of security policias as an evolution to the current approach of treating security

services.

1.6 Acknowledgments

This \vork •vas panially .:mpported by the ALFA Project for interchange of post-graduates
between Europe and Latin America. Is also used computational rcsources from the De-­
partmem of Distributed Systems, Tnst\tute for Informat!on Systems, Technical \.Jninnsity
ofVienna.

Capítulo 8

Conclusão Geral

Os mecanismos da criptografia (ciframento1 integridade, autenticação e assinaturas) são

utilizados em um conjunto limitado de cenários. Estes cenários estabelecem padrões de
comportamento que, por sua ·vez, produzem um número também limitado de co:rnbinações
simples. Este conjunto de padrões e suas combinações definem os usos comuns da crip­
tografia na maioria das aplicações. Estes cenários ou padrões de utilização podem ser
capturados por mn arcabouço de software para criptografia capaz de proporclonar não só
reutihzação de algoritmos criptognificos1 mas também dos próprios cenários,

A abordagem para adição de aspectos de segurança a software de terceiros e sistemas
legados desenvolvida neste tf~xto é potencialmente trans-parente. Entret:anto, aplicações
reais exigem um compromisso entre a complexidade da politiça de segurança adotada: a
quantidade de conhecimento sobre o funcionamento interno do software alvo e a preser­
vaçã-o dos requisitos originais.

Esta dissertação é a soma de uma sequência de resultados na qual cada parte fun­
damenta as suas sucessoras e é ao mesmo tempo vaHda~da por elas. Esta sequência de
contribuições é a seguinte:

1. O estudo comparativo de bibliotecas criptográficas e suas interfaces de programação
no qual os aspectos explorados nesta dissertação (reutilização em larga escala e
facilidade de uso e composição) foram identificados.

2. A proposição de um conjunto coeso de dez padrões de projeto que documentam os
aspectos arquiteturais do software criptográfico e as boas soluções conhecidas para
os problemas comuns na segurança de informações baseada em criptografia.

3. A definição de um modelo de utilização para reflexão computacional no desenvolvi­
mento de software criptográfico. Este modeto1 definido como um padrão de projeto
derivado da combinação dos padrões criptográficos e um padrão refl-ex:ivo de arqui­
tetura, lança os fundamentos para um arcabouço de softwa-re para criptografia.

119

120

4. O desenvolvimento de um arcabouço de software reflexivo orientado a objet.os para

reutilização em larga escala de mecanismos criptográficos, Este arcabouço é com­
posto de uma coleção de algoritmos criptográficos, uma biblioteca de metaobjetos
especializados em transformações criptográficas sobre argumentos e resultados de
métodos interceptados, e um conjunto de passos e algumas diretrizes para discipli­

nar o uso e a extensão do arcabouço.

v. A extensão de uma ferramenta experimental de pagamento eletrônico com o uso do
arcabouço de software para criptografia.

Duas contribuições são consideradas principais. A primeira delas, caracterizada por
aspec--tos abstratos e abordagem inovadora 1 é o conjunto fortemente coeso de padrões de
projeto para criptografia. A outra, caracterizada por aspectos técnicos e usos práticos, é
o arcabouço de software para criptografia.

As aplicações das idéias apresentadas nesta dissertação são as seguintes:

• :-.\.uxf!io a engenheiros de software com pouca experiência em criptografia durante
a Hentifkação dos mecanismos criptográficos capazes de atendt;r aos requisitos de
segurança de seus sistemas.

• Adição pouco intrusiva (potencialmente transparente) de mecanismos criptográficos
a soft'.vare de terceiros e sistemas legados.

• Implementação rápida de serviços de segurança a partir de um arcabouço reutíllzávei
de software.

Alguma') questões em aberto e aspectos não tratados neste projeto são os seguintes:

L A implementação de mecanismos elaborados para gerência de chave."i e certificados.
Atualmente) o arcabouço possui mecanismos bastante simples para armazenamento

seguro de chaves críptográ:ficas e geração de chaves a partir de senhas.

2. O trat.amento de um número maior de serviços de segurança. A implementação
atual do arcabouço trata os mecanismos criptof:,rráficos.

3. O uso do arcabouço criptográfiço no desenvolvimento e extensão de um número
maior de aplicações.

Pesquisas futuras se direcionam para o uso de técnicas da engenharia de software
para auxiliar o desenvolvimento dos aspectos de segurança em sistemas distribuídos. Os
seguintes tópicos de..spertam nosso interesse:

121

• A. investigação de novos padrões de projet.o relacionados não somente aos mecanis­

mos criptográ.ficos, mas também a outros aspectos da seguran~;a de ínformaçõt->S.

• A formalização da organização de alto nível de sistemas de comércio eletrônico como
uma arquitetura de sofnvare especifica para este domínio de aplicações,

• O apoio do arcabouço de software a políticas de segurança. Pode ser obtida com
metaobjetos capazes de realizar planos ou sequências de aç.ôes no apoio a segurança
de sistemas de computação.

• A utilização do arcabouço de software em sistemas de comércio eletrônico e agentes
móveis.

Este projeto de pesquisa identificou a necessidade de uma abordagem diferenciada
para os mecanismos criptográficos, estabeleceu modelos abstratos e padrões genéricos

dt: arquitetura e comportamento das aplicações com requisitos de segurança baseados em
criptografia, implementou estes modelos em um protótipo e os validou em situações reais.

Apêndice A

Basic Cryptographic Concepts

?\Jodem cryptography is a broad subject, encompassing both the stndy and the US(~ of
mathematica] techniques to address information security problems, such as confidentia1ity,

data integrity and non-repudlation.
Tt can also be defined as the discipline that embodies the principies, means, and

methods for the transformation of data in order to hide its sema.ntic content, prevent
its unauthorized use, or prevent iis undetected rnodification [iso89]. t:~mally four olr
jectlves [:tv1v0V96], or serviees [iso98], of cryptography are consldered: confidentiality,
integríty, authentication1 and non-repudiation. Accordingly, there are four baslc cryp·­
tographic mechanisrns: encryptionjdecryption, 11IDC (Modifica.tlon Detection Code) ge­
neration/verification1 ?viAC (l\--Jessage Authentication Code) generationfverification, and
dig;üa1 signing/ verification. These four services can be cmuhined in specific and limited
ways to produee more specialized services< For further information about cryptography)
see [:V!vOV96, Sch96, Sti95].

ConfidentiaJity is the ability to keep information secret except from authorized users.
Data integrity is the guarantee that lnformation has not becn modified without pennission)
which includes the abillty to detect unauthodzed manipulation. Sender (origin) authen­
tication correspo:nds to the assurance, by the communicating parties, of the- origin of an
informatlon transmitted through an insecure communication channeL Non··repudiation is
the ability to prevent an entity from denying its actions or commitments in t.he future<

A.l Cryptographic Mechanisms

Cryptographic transformations are mainly based on one-way functions, ·which are mat.he­
matical functions for which it is computaüo:nally easy to compute an output of an in­
put, but it is computationaHy difficult to determine any input corresponding to a l;nown
output. One-way functions with trapdoors are one-\V"'dY functíons for which it is compu-

!22

A.l, Cryptograpb.ic }\Jecbanisms 123

tationa.lly feasible to compute an input corresponding to a k:nown output, if additionai
information is provided (the trapdoor). One-way functions \Vith trapdoors are the basic
constructíon components of reversibie cryptographic transformations in '>vhich the nap­
door informatíon works as the cryptographic key.

Secret- or symmetric-key cr.vptography is the set of cryptographic technlques in which
a single key is used to both encrypt and decrypt data. The key ís a shared secret among
at least nvo entitie.s. In public-key cryptography, a pai r of dífl'erent keys is used 1 one key
for encryption 1 the other for decryptíon. The eneryption key is publicl_y knmvn and is
caHed a public key, The corresponding decr.:vption key is a secret known only by the key­
pair owner and is called a prívate key. In public-key cryptography, it is computationally
infeasibie to deduce the priva te key from the knmv1edge of the public key.

Alice

m
>

~ kl

Enciphennent

c =j(m,kl)

'

,

Eve

A
' '
'

'1/
c

>

lnsecure Cormnu­
nication Charmel

Dedphennent J

m = g(c,k2)
1

Figura A.l: A. Typical Cryptosystem.

Bob

m
>

Traditionally, the two ends of a comrnunication channel are called Alice and Bob. Eve
ls an adversary eavesdropping the charmel. Figure A.l shows the overaH architecture of
cryptosystems. Alice wants to send an encrypted message to Bob; she encrypts message
m, the plain text, with an encryption key kl and sends the encrypted message c, the cipher
text) to Bob, that is, c :::::: f(m,k1). Bob receives the encr:ypted message and deciphers ít
with a decryption key k2 to recover m 1 that is, m = g(c,k2) and g = f-1. If public-key
cryptography is used, Alice uses Bob's public key to encrypt messages and Bob uses hís
private ke:y to decrypt messages sent from anyone who used his public key. However1 if
symmetric-key cryptography is used, Ahce a.nd Bob share a secret key used to encrypt
and decrypt rnessages they send to each other1 that is, k1 = k2.

A hash function is a rnathematical function that takes as input a stream of variable
length and returns as a result a stream of fixed length~ usuaHy much shorter than the
input. One-way hash functíons are hash functions in which it ís computationally easy to
compute the hash vaJue of an input stream, but it is computationaJly difficult to determine

Common Att:acks !24

any input stream correspondlng to a known ha.sh ·va!ue, A cryptographic hash function
is a one-way eollision-resistant hash function; that is, it is computatkmally diHicult to
find t\vo input. streams that result in the sa:me ha.sh value. Hash valueb produced by
cryptographic hash functions are also called)Jodification Detection Codt~s (\fDCs) :md
are used to guaramee data integrity. ~-'l"essage Authentication Codes (:tvíACs) are usua.Hy
imp!emented as hash Ya!m:s generated by cryptographic hash functlons that. take as ínput

a. secret key as weU as the usual input stream. MACs are used to provide not. only
authentlcation~ but aJso integrlty implicítly.

Digital Signatures are e.lectronic analogs of hand·wrítten signatures, which serve both

as t.he signer·s agreement to the informa.tion a document cont.a!ns and as evidence that
can be shm-vn to a third party in case of repudiation. A basic protocol o f digital sígnatures
ba..c;;ed on public~key cryptography is: first, Alice encrypts a messa.ge \Vlth her private key
to sign lt, second) Alice sends the signed mt>ssage to Bob; and i. hird, Boh decrypts the
received rnes:sage wit..h AHce's publk key to verify the signature, Digital signatures must
provide the follov.:1ng features: they are authentic, that when Bob verifies a mes..sage
'>Yith Alice's pubiic key, he knows she signed it; they are unforgeable, that only Alíce
knows her private key: t.hey are not reusable, that is, the signalure is a function of the
data being signed 1 so it cannot he used with other data: and they cannot be repudiated,
that is, Bob does not need A,Jice's help to prove she signed a. message. The signed datais
unalterable, any modification of the data invalidates the signature 'ierification.

A.2 Common Attacks

In a brute-force att.ack 1 Eve tests ali possible >:alid keys t-o decrypt a cipher text of a
known plain text in order to find out the correct key. U Eve could obtain the pri'vate
ke:_F of either Alice or Bob (or their secret shared key), all other attacks cou!d be easily
performed. Eve can attack a cryptosystem in four basic ways. First1 she can eavesdrop the
charmeL Eavesdropping an open chanmd is easy. Hmvever, to understand eavesdropped
messages of a cryptographically secured ch.annel, the key (or keys) being used by Alice
and Bob are required. Second, she can resend old messages. This attac.k is pos::iible i f
messages do not have temporal uniqueness, which can be obtained using timestamps or
by chang;ing keys periodicaHy. Third1 she can impersonate one o f the com:municating ends
of the channeL In such a case, Eve playrs the role of Alice or Bob, either by deducing a
secret ke:y or by successfully substituting her public key for A.lice's (Bob's) without AHce's
(Bob's) knowledge. f'ourth 1 she can play the role of the man-in~the-nriddle. In order to
perform the man-in-the-middle attack successfully, Eve must ha.v--e obtained the private
keys (or the seeret shared key) of both Alice and Bob, or impersonate both A.lice and
Bob. In such a situation 1 Eve r,an intercept encrypted me.ssages from Alice (Bob) to Bob

125

(Alice): decrypts thern \vith Alice:s (Bobls) decryption key and re--enerypt them with her
own encryption key before n'-sending them,

A.3 Auxiliary Services

An !mportant issue o f implementatlons of cryptographic services is whet her they are sup­
ported by an infrastructure that provides a strong and secure set of auxiliary services
such as generat.ionl agreement) distrlbution and storage of cryptographic keys. "'Csuallyl
key generation algorithms are based on random number generators. Publk keys are usu­
aHy distributed together •vith their digital certíficates 1 which are padcages of information
attesting the ownership and vaiidity of a cryptographic key. These certificates are usually
signed by a trusted third party, caHed a Certification Authority (CA). A private or secret
key must be kept protected from unauthorized copy and modification; this can be done
in two w.ays: it can be stored in tamper-proofhardware; it can be stored, in both encryp­
ted and authentic forros, in general purpose hardware1 such as random access rnemories~
magnetic d1sks and tapes. This requires a key-encryption key which, in tum, must be
prott:cted.

Bibliografia

[AJS\V97] ;\, Asokan, Philippe Janson,),{ichael Steiner, and Yíicllael \Vaidn<::-L The

State of the Art in Electronic Payment Systems. IEEE Computer, pages
28-35, September 1997.

[BDR98] Alexandre 'VL Braga, Ricardo Dahab, and Cecília M. L Rubira. PayPerC!ick:
Um Frame\vork para Venda e Distribulção On-line de Publicações Baseado
em Ivficropagamentos. In SBRC'98 - 16o Símpósio Brasileiro de Redes de
Computadores, page 7671 Rio de Janeiro) RJ, BrasiL May 1998. Extended
summary.

[BDR99a] Alexandre M. Braga, Rícardo Dahab, and Cecl1ie M. F. Ruhíra. A Met.a­
Object Llbrary for Cr_yptography. TechnicaJ Report IC-99-06, Stat.e t:ni\·ersity

of Campinas, Institute of Computing, 1999.

[BDR99b] Alexandre M. Braga, Ricardo Dahab, and Cecílía M. F. Rubíra. Composíng
Cryptographic Services: A Comparison of Six Cryptographic APis. Technical
Report IC-99-05, State l:niversity of Campinas, Institute of Computing, 1999,

[BJ94j K Beck and R. Johnson. Pattems Generate Archit.ectures. In lVL Tokoro and
R Pareschi, editors, ECOOP'94, pages 139-149. Springer-Ver1ag1 1994.

lBMA97] Davide Brugali, Giuseppe Menga1 and Amund Aarten, The Franwv;-'ork Life
Span. CommH,nications of the ACAf, 40(10):65-68j October 1.997.

[B:tviR+96] Frank Buschmann, Regine Ivleuniet\ Hans Rohnert, Peter Sommerlad, and

l.VHchad StaL Pattern-Oriented Software Architectv:re.- A SyJJtern of Patterns.

John VVJiey and Sons Ltd., Chichester, UJ\., 199{t

[Bra99] Alexandre M. Braga. RefiectiveMiMi: A RefiEX.:t:i've Security VVrapper to the

MiMi E-Commerce TooL Teehnícal Repor! TUV-1841-99-12, TechnicallJni­
versity of Vienna, Information System Institute1 Distrlbuted System Depart­
ment, July 1999.

126

BIBLIOGRAFIA 127

[BRD98a] Alexandre JvL Braga, Cecília ?vL F, Rubira~ and Ricardo Dahab, Tropyc: A

Pattern Language for Cryptographic Software. In 5th Pattern Langu.ages of

Progrurnming (PLoP 798) Conjerence) 1998. \Vashington 'Cniversity TedmicaJ
Report #\?VUCS-98-25 and State University of Campinas Technical Report

#TC-99-03 (Updated Version).

[BRD98b] Alexandre M Braga, Cecília M. F. Rubíra, and Ricardo Dahab. üm Sistema
de Padrões para Software Criptográfico Orientado a Objetos. In X[[Simpósio

Brasileiro de Engenharia de Software, pages 171-186~ I'viaringá1 Paraná, Bra­

sil, Ortober 1998.

[BRD99a] Alexandre M. Braga, Ceo1ia :V!. F. Rubira, and Ricardo Dahab. A Reflec­
tive Variation for the Secure-Channel Comrnunica.tion Pattern. Tn PLoP'99
Conference- 6th Pattern Langttages of Programs, 1999. State University of

Campinas (Brazil) Technical Report #IC-99-04.

[BRD99bJ Alexandre ?.vL Braga, Cecília).,.J. F. Rubira, and Ricardo Dahab. The Role
of Patterns in an Object-Oriented Framework for Cryptography. Technkal
Report TUV-1841-99-11 1 Technical University ofVienna, lnformation System
Institute, Distributed System Department, July 1999.

[BRD99c] Alexandre M. Braga, Cecília M. F. Rubira, and Ricardo Dahab. Tropyc: A
Pattern Language for Cryptogra.phic Object-Oriented Softv;rare. In Neil Har­
rison1 Brian Foote, and Hans Rohnert, editors, Pattern Languages of Program
De.5ign 41 chapter 16. Addison-VVesley, 1999. to Appear.

[CGHK98] Pau··Chen Cheng, Juan A. Garay, Amir Herzberg, and Hugo Krawczyk. A Se­
curity Architecture for the Internet Protocol. .!Blv.f Systerns Journal, 37(1):42·-
60, 1998.

[CS95]

[c.ss97]

[FD98j

[FP96]

.Jamer O. Coplien and Dougles C. Schmidt, editors. Pattern Lanfj1.Jages of
Progra.m Design 1. Addison-Wesley, 1995.

Common Security Services Manager API, draft
\l!lWW ,opengroup.org/ pu blicjtech f security /pki/index.htm, June 1997.

Lucas Ferreira and Ricardo Dahab. A Scheme for Analyzing Electronic Pay­
ment Systems. In 14th ACSAC- Annual Cornputer Secur-ity Applications

Conference {ACSAC 198), Scottsdale1 Arizona1 December 1998.

Jean-Charles Fabre and Tanguy Pérennou. Friends: A Flexible Architec­
ture for Implementing Fault Tolerant and Secure Distributed Applications.

BIBLIOGRAFIA 128

iFS971

[GHJV941
. '

'C'S98' l :., j

[Has97}

[Her97]

[H'\98]

fHY97l
r '

[iso89]

[i.so98]

ln .Andrzej Hlawezka, João Gabriel Silva, and Luca Sirnoncini, editors. Se­
cond E-uropean Dependable Co-rnputing Conference (BDCC-2), 1/0hHne 1150

of LNCS, pages 3-·20, T:aormina1 Italy) October 199EL Springer,

?v'lohamed E. Fayad and Dougles C. Schmíd'L Objeet-Oriented Applicatlon
Frameworks. Comm:unication;;; of the ACM1 40(10):32--38, October 1.997.

Generic C!:yptographíc Servire AP! (GCS-AP!) ~Base Draft 8, 1996. X/Open
Preliminar:< Speciflc.ation.

Erlch Gamma, Richard Helm, Ralph Johnson, and John Vlissldes. Design

Patte·ms.· Elements of Reusa.ble Object-Oriented Softu.!a.re. Addison VVesley
Pub1ishing Company1 A.pril 1994.

Li Gong and Roland Schemers< Signing, Sealing and Guarding Java Objects.
In G. Virg,na, edit-or 1 Afobiie Agents and Security: volume 1419 of LNCS;

pages 206~216, Berlin Heide!berg, 1998. Springer-Verlag.

Vesn.a Ha..qsler. Internet Security: State-of-the-Art and IUture Trends .. Te-­
chnical Report TGV-1841-H7-08, Teclmic.:'tl Universily Vienna, Informatíon
Syst.em 1nstitute1 Dlstributed Syst-em Department, April 1997.

f\·1ichael Herfert. Security-Enhanced Mailing Llsts. IEEE Network;, pages
30 .. :l3, June 1997.

Amir Herzberg and Dalit)Jaor. Surf'N'Sign: Client Signatures on \Veb Do­
cuments. IBM Systems Journal1 37(1):61--71 1 1998.

Amir Herzberg and Hilik Yochai MiniPay: Charging per Click on the \Yeb.
Comput:er Ne:tworks a-nrl ISDN Systems, pages 9:39-·951) 1997.

Information Processing Systerns - Open Systems lnterconnection ·-· Ba<:sic Re­
ference 1vlode1 ~ Part 2: Security Architt.>cture. ISO/IEC 7498··2 1 1989.

Inform.ation Technology ~ Vocabulary - Part

1998.

Security. ISO /PSC 2382-8,

[JBK98] Jonathan B. Knudsen. Java Gryptogmphy. O'Reilly, 1998.

[JDK'91] Don R Johnson, George M. Dolan, Michael Ke1ly, An V. Le, and
Stephen fvL Matyas. Common Cryptographic Architecture Cryptographic
Applkation Programming Interface. !Blvf Systems Jott.rnal1 ;}0(2):130-150)
199L

BIBLIOGIUtFIA 129

[Joh92]

'K 19'' L a oj

[Lew96]

[Lín9:l]

[LYLJW93]

[:Vfa.e87]

[MCK97]

Ralph Johnson, Documenting Frame\vorks Using Patterns. In OOPSLA '92,

volume 27 of ACJVf SIGPLAN Notices) pages 63~76, October 1992.

R KaliskL Cryptoki: A Cryptographic Token Interface, Version 1.0.

www.rsa.cornfrsa!absfpubs/PKCS/html/pkcs--ll.html, 1995.

T Lewis. Object-Oritented Application Frameworks. Prentice-Hall, 1996.

J. Linn. Privacy Enhancement. for Internet Electronic \Jail, Part 1:).c{essage
Encipherment and Authentication Procedures. RFC 1421) February 1993.

An V. Le~ Stephen I\L Matyas, Donald B. Johnson, and John D. \Vilkins.

A Public Key Extension to the Common Cryptographic Architecture. lBA-f
811stems Jo·arnal, 32(3):461-485, 1993.

Pattie l\rlaes. Concepts and Experirnents m Computation Refiection, In
OOPSLA '87, volume 22 of ACNf SIGPLAN Notíces, pages 147-155, Decem­
ber 1987.

Matthías Meusel, Krzysztof Czarnecki, and VVolfgang Kõpf. A Model for
Structuring User Documentation of Object-Oriented Prameworks Using Pat­
terns and hypertext. In ?vfehmet Akslk and Satoshi Matsuoka) editors, ECO­

OP'97, volume 1241 of LNCS, pages 206-216. Springer-Verlag, 1997.

[MDOY98J Robert Macgregor, Dave Durbin, ,John Owlett, and Andrew Yeomans. JAVA
Network Security. Prentice Hall, 1998.

[Mie] Microsoft Corporation. Using CryptoAPL
msdn.microsoft.com/library / sdkdoc/ crypto /1 using-80kp.htm.

iMic96i
' '

Microsoft Corporation. Applications Programmer's Guide: Microsoft Cryp­
toAPL Version 2.0, 1996.

[MRBV97] Robert C. !\.1artin, Dirk Rjeh]e1 Frank Buschmann 1 and John Vlissides, edi­

tors. Pattern Languages o f Progmm Desígn 3. Addison-VVesley, 1997.

[rnsc] Comparison of the Open Group's GCS-API and Microsoft CryptoAPI Vl.O.

v.'1.-vw .opengroup.orgfpublic/tech/ security f gcs/ms_comp.htm.

[MvOV96] Alfred J. Menezes, Paul C. van Orschot, and Scott A. Vanstone. Hwndbook
of Applied Cryptography. CRC Press, 1996.

[Oak98] Scott Oaks. Java Security. O'ReaHy & Associates, 1998.

BIBLJOGHAFIA 130

!OB98a!
' '

Alexandre Oliva and Luiz Eduardo Buzato. Cornposition of l\.Jeta-Objects in

Guaraná. Technical Report IC-98-33, Institute of Computing: State- mver~

sity of Compinas 1 Septernber 1998.

i.'OB98b] Alexandre Oliva and Luiz Eduardo Buzato. Guaraná: A tutoriaL Techni­
cal Report IC-98-31, Institute of Computing, State Dniversily of Campína.s)
Sept,ernber 1998.

[OB98c} Alexandre Oliva and Luiz Eduardo Buzato. The Implementation of Guaraná

on Java. Technical Report IC-98-32: Instit.ute of Cornputing, State '[niversity

of Campinas, September 1998.

[OGB98] Alexandre Oliva, Islene Cakiolari Garcia., and Luiz Eduardo Buza.to. The

Reflexive Architecture of Guaraná. Tedmlcal Report IC-98-14, Institute of
Computing1 State Univers!ty of Campinas) April 1998.

[OQC97j Georg Odenthal and KVms Quibeldey·-CirkeL 1;slng Pati..ems for Design and.
Docmnenta!.ion. In 1-Jehmet Aksik and Satoshi \-Tatsuoka, editor:~; ECO~

OP 197, volume 1241. of LNCS, pages 20!}-·216. Springer-Verlag, 1997.

lPre95] 'V\"'o1fga.ng Pree. Design Patterns for Object- Oriented Software Development

Addíson-Wesley, 1995.

[HS9GJ Ilonald L Rivest and Adi Shamir. Pay\Vord and \IicroMínt: Two Simple
1-Hcropayment Schemes. http:j ítheoryJcs.miLedu/~iinrivest/Rive-stShamir­
mpay.ps, 1996. Presented at the RSA'96 Conference.

[Sdl95] Dougles C Schmldt. Csing Design Fattem lo Develop Reusable Object­
Oriented Communicatlon Software. Commumcatifms oj the ACJ\11 38(10):65-
74, October 1995.

[Sch96]

[SG96]

[SHC84]

íSti951
' '

Bruce Schneier. Appl-ied Cryptograph.y ~-- Protocols, Algorithms ,. and Source

Code in C. John VViley and Sons, 2nd edition, 1996.

ivfary Shaw and David Garlan. Soft-ware Architectur-e.· PerspectúJe/; in an

Emerging Disápline. Alan .Apt, 1996.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in Sy.stem
Design. ACM Transactions on Cornputer Science, 2(4):277-288, November

1984.

Douglas R Stinson. Cryptography Thwry and Practice. CRC Press) 1995.

BIBLIOGRAFIA 131

[SW96]

[Tea97]

[VHH97]

[Wel97J

[WS98a]

Robert J. Stroud and Zhíxue VV~L Using ::vietaobject Protocols to Satisfy Non­

Functional Requirements. In Chrls Zimmerrnann, editor, Object-Oriented

Metalevel Architectures and Refiection1 chapter 3, pages 31·-52. CRC Press,
1996.

l\SA Cross Organization CAPI Team. Security service API: Cryptographic
AY1 Recomendation Updated and Abridged Edition. Technlca] report 1 The
r\ational Security Agency) FL I\Jeade, ?vferyland 1 July 1997.

1'viichael Fischer Vesna Hassler. Robert Bihlmeyer and Manfred Haussvirth. . .
MEvii: A Java Irnplementation ofthe Micromint Scheme. In lVorld Conference

o! the lfl-VW, Internet and Intranet (lc'VebNee97), Toronto, Canada1 1fJ97.

Technical 'Universit;l of Vienna Technical Report #TUV-1841-97-04.

Ian \Velch. Adding Security to Commercial Off-the-Shelf Software. In Europe­
an Research Seminar on Advances in Distributed Systems (ERSADS), Zlna1,
S\vitzerland, March 1997.

Jan VVekh and Robert Stroud. Adaptation of Connectors in Soft·ware Ar­
chitectures. In ECOOP'98 Workshop on Component-Oriented Programming,
BruseHs, Bdgium1 July 1998.

[VVS98b] Ian \i1lelch and Robert Stroud. Dynamic Adapt.ation o f the Security Properties
of Applications and Components. In ECOOP'98 VY''orkshop on Distributed
Object Security, Brussels1 Belgium, July 1998.

[YB97]

[Zim95)

.Joseph Yoder and Jeffrey Barcalow .. Application Security. PLoP'91 Confe­
rence, Washington University Technical Report #WUCS-97-34, 1997.

F R Zimmen:nann. The Ojficíal PGP User's Cuide. lviiT Press) 1995.

·-~·~-----~m~'-'""''"''<·•--·-~~'"-·~--~

UOJ\ ÇtdJ

