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Abstract

An open-set recognition scenario is the one in which there are no a priori training samples

for some classes that might appear during testing. Usually, many applications are inhe-

rently open set. Consequently, the successful closed-set solutions in the literature are not

always suitable for real-world recognition problems. Here, we propose a novel multiclass

open-set classifier that extends upon the Optimum-Path Forest (OPF) classifier. OPF

is a graph-based, simple, parameter independent, multiclass, and widely used classifier

for closed-set problems. Our proposed Open-Set OPF (OSOPF) method incorporates

the ability to recognize samples belonging to classes that are unknown at training time,

being suitable for open-set recognition. In addition, we propose new evaluation measures

for assessing the effectiveness performance of classifiers in open-set problems. In expe-

riments, we consider six large datasets with different open-set recognition scenarios and

demonstrate that the proposed OSOPF significantly outperforms its counterparts of the

literature.

Resumo

Em reconhecimento de padrões, um cenário aberto é aquele em que não há amostras de

treinamento para algumas classes que podem aparecer durante o teste. Normalmente, mui-

tas aplicações são inerentemente de cenário aberto. Consequentemente, as soluções bem

sucedidas da literatura para cenário fechado nem sempre são adequadas para problemas de

reconhecimento na prática. Nesse trabalho, propomos um novo classificador multiclasse

para cenário aberto, que estende o classificador Optimum-Path Forest (OPF). O OPF

é um classificador de padrões baseado em grafos, simples, independente de parâmetros,

multiclasse e desenvolvido para para problemas de cenário fechado. O método que pro-

pomos, o Open-Set OPF (OSOPF), incorpora a capacidade de reconhecer as amostras

pertencentes às classes que são desconhecidas no tempo de treinamento, sendo adequado

para reconhecimento em cenário aberto. Além disso, propomos novas medidas para ava-

liação de classificadores propostos para problemas em cenário aberto. Nos experimentos,

consideramos seis grandes bases de dados com diferentes cenários de reconhecimento e de-

monstramos que o OSOPF proposto supera significativamente as abordagens existentes

na literatura.
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Chapter 1

Introduction

Typical Pattern Classification refers to the problem of assigning a test sample to one or

more known classes. In a typical classification problem, it is not necessary to indicate that

the test sample does not belong to one of the known classes. For instance, classifying an

image of a digit as one out of 10 possible digits (0. . . 9). We know, by definition, that this

problem has 10 classes. On the other hand, recognition is the task of verifying whether a

test sample belongs to one of the known classes and, if so, finding to which of them the

test sample belongs. In the recognition problem, the test sample can belong to none of

the classes known by the classifier during training. For instance, classifying if a biometric

sample belongs to one of the persons registered in the system or automatically reject it

otherwise. The recognition scenario is more similar to what we call an open-set scenario,

in which the classifier cannot be trained with all possible classes because the classes are

ill-sampled, not sampled, or unknown [43].

In some problems, all classes are known a priori, leading to a closed-set scenario.

For example, suppose that inside an aquarium there are only three species of fish and

biologists are interested in training a classifier with all three classes. In this application,

all test samples are assigned to one out of those classes because it is known that all fish

that could be tested at the aquarium belong to one of those three classes. The same

classifier, however, is unsuitable for being used in a new larger aquarium containing the

same three species and some new ones, i.e., in an open-set scenario in which new species

are unknown. In this case, the trained classifier will always classify an unknown sample as

belonging to a known class because it was developed to be used in the closed-set scenario

(first aquarium), leading to an undesired misclassification.

Open-set classification problems are typically a multiclass problem. The classifier

must assign the label of one of the training classes or an unknown label to test samples.

Approaches aiming at tackling this problem must avoid the following errors:

• the test sample belongs to one of the known training classes but the classifier assigns
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it to a wrong class;

• the test sample belongs to one of the known training classes but the classifier assigns

it to the unknown label (false unknown); and

• the test sample is unknown but the classifier assigns it to one of the known training

classes (e.g., the aforementioned fish species recognition error).

In a closed-set classification scenario, only the first kind of error is possible. A common

approach to partially handling the open-set scenario relies on the use of threshold-based

classification schemes [38]. Basically, those methods verify whether the matching score is

greater than or equal to a previously defined threshold. Phillips et al. [38], for example,

used this approach to classify a sample as unknown when the most similar training class

is not enough similar. In this approach, without that threshold on the matching score, an

unknown test sample will always be assigned to one of the training classes.

Another trend relies on modifying the classification engine or objective function of

Support Vector Machines (SVM) classifiers [11, 12, 43]. The traditional SVM classifier (a

binary classifier) assigns a test sample to a certain class even if the test sample is far from

the training samples of the class. SVM defines half-spaces [7] and does not verify how far

the test sample is from the training samples. This strong generalization may not be useful

in the open-set scenario given that probably the faraway test sample must be classified as

unknown. Therefore, we can understand the binary SVM as a closed-set classifier. The

One-vs-All multiclass SVM (SVMMCBIN) [39, 40], however, can be considered an open-set

classifier, as all the One-vs-All binary SVMs used in the SVMMCBIN procedure [7] are able

to classify a test sample as negative and, in this case, the test sample could be considered

unknown. Figure 1.1 illustrates this case.

An SVM is obtained by solving an optimization problem whose objective is to minimize

the empirical risk1 measured on training samples. In an open-set recognition scenario,

the objective is to minimize the risk of the unknown2 by minimizing the open space of

risk3 instead of minimizing only the empirical risk. The open space of risk is the region of

the feature space in which a test sample would be classified as known (one of the available

classes for training). As SVMs define half-spaces, it is not easy to create a bounded open

space of risk. Every SVM extension for open set we found in the literature [11, 12, 43]

maintains an unbounded open space of risk. Potential solutions for open-set recognition

problems should minimize the open space of risk, preferably making it bounded.

1Approximation of the actual risk. It is calculated by averaging the loss function on the training set.
2Risk of the unknown from insufficient generalization or specialization of a recognition function f .
3Open space representing the learned recognition function f , outside the support of training sam-

ples [43].
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This is a whole new research branch with countless applications.

In addition to the proposed open-set solutions, we have designed a special experimental

protocol for benchmarking open-set solutions. In many works in the literature, in spite of

the explicit discrimination between classification and recognition, authors perform tests

on recognition problems considering a closed-set scenario instead of an open-set one [2,

9, 20, 26]. Consequently, the observed results are not similar to what is observed in real-

world open-set applications. Another limitation of existing experimental protocols is the

lack of appropriate measures to assess the quality of the open-set classifiers. Therefore,

another contribution of this work is the discussion of two measures adapted to the open-

set scenario: the normalized accuracy and the open-set f-measure. The purpose of such

adapted measures is to evaluate the performance of classifiers when handling both known

and unknown test samples.

To validate the proposed methods and to compare them with existing ones in the

literature, we considered a diverse set of recognition problems, such as object recognition

(Caltech-256, ALOI and ukbench), scene recognition (15-Scene), letter recognition (let-

ter), and sign language recognition (Auslan). The number of classes in such problems

vary from 15 to 2550 and the number of examples vary from a few thousands to hundreds

of thousands. The experiments were performed by considering training scenarios with

three, six, nine, and twelve classes, and testing scenarios with samples of the remaining

classes as possible unknown. We compared the proposed OSOPF with a multiclass ver-

sion of the SVMDBC, which is an open-set SVM extension recently proposed by Costa

et al. [11, 12]. We also compared the OSOPF with the traditional OPF, the SVMMCBIN,

and the One-vs-Set Machine recently proposed by Scheirer et al. [43]. The proposed

OSOPF outperformed all existing solutions, with statistical significance.

We organized the remainder of this work as follows. In Chapter 2, we present related

work in open-set recognition. In Chapter 3, we describe the OPF classifier and its concepts

as well as its properties by focusing on the context of open-set recognition. In Chapter 4,

we introduce the first ideas for the development of the proposed method and some of its

properties. Then, in the same chapter, we describe the OSOPF in its inherent-multiclass

form. In Chapter 5, we show the performed experiments as well as the failing cases of the

proposed method and possible future improvements. Finally, in Chapter 6, we conclude

the work and outline important research directions for future work.



Chapter 2

Related work

In this chapter, we present previous approaches that somehow deal with open-set classifi-

cation scenarios. Those approaches can be divided into four main categories: approaches

based on one-class classifiers; approaches based on binary classifiers; approaches used in

similar problems; and approaches that explicitly deal with the open-set scenario. As we

will see, all previous solutions for the open-set scenario are based on SVM classifiers.

2.1 Approaches based on one-class classifiers

Schölkopf et al. [44] proposed an extension of SVM called the one-class SVM (OCSVM).

This classifier is trained on just one known class. It finds the best margin with respect to

the origin. This is the most reliable approach in cases where the access to a second class

is very difficult or even impossible. As it focus only on the positive class of interest, this

approach is suitable for the open-set scenario. Zhou and Huang [55], however, mention

that the OCSVM has a limited use because it does not provide good generalization nor

specialization. Several works dealing with OCSVMs try to overcome the problem of lack

of generalization [6, 21, 27, 53].

Jin et al. [21] improved the OCSVM using subsets of negative samples as positive

samples. They assume that training the classifier with negative classes are possible and

may lead to good classification results. Despite its effectiveness, the authors present no

theoretical explanation for their approach.

Strategies based on the combination of classifiers have also been proposed for one-

class classification problems. One example is the cascade approach proposed by Cevikalp

and Triggs [6]. The first stage of the cascade approach is a linear classifier that uses an

intersection of affine hyperplanes to approximate the class of interest. Then, an OCSVM

classifier based on a hypersphere model is used in the (non-kernelized) input space.

Wu and Ye [53] trained a classifier by partitioning the training data between normal

5



2.2. Approaches based on binary classifiers 6

and outlier samples. A hypersphere containing most of the normal samples is constructed.

This closed and tight boundary around the normal data is defined by a Gaussian kernel.

The volume of such sphere is as small as possible. At the same time, the margin between

the surface of this sphere and the outlier training data is as large as possible. An op-

timization problem is constructed to maximize the margin between the positive volume

and the outliers.

Manevitz and Yousef [27] proposed a one-class classifier that selects some outliers

based on a novel outlier detection approach and used the binary SVM classifier. The

outlier detection approach tries to select the data points close to the origin. The authors

justified that choosing the outliers as features close to the origin is a general idea, but the

rationale for using the procedure is specific to the problem of document classification.

According to Scheirer et al. [43], the lack of generalization and specialization, com-

bined with the use of testing protocols that consider only the closed-set scenario, are the

main reasons for the small development of the OCSVM until now. Also, according to

the same authors, although the OCSVM is inherently suitable for open-set classification

problems, the potential of the binary SVM should not be neglected. They claim that

if the knowledge of the negative classes is increased, a better SVM classifier can be de-

fined. Some approaches in the literature introduced modifications on the SVM that can

be, somehow, applied to open-set problems nevertheless the testing protocols used do not

consider open-set classification scenarios.

2.2 Approaches based on binary classifiers

In [2], Bartlett and Wegkamp considered a binary classification problem in which a clas-

sifier can choose not to classify a sample. In that work, the reject option is presented to

avoid a misclassification of a doubtful sample. Their work, however, does not consider

the cases where test samples do not belong to a training class, i.e., the open-set scenario.

Malisiewicz et al. [26] took into account the cases where the access to the positive

samples is limited and there are many negative samples. The method is based on training

a separate linear SVM classifier for every positive sample in the training set. Each of the

so-called Exemplar-SVMs is defined by a single positive sample and multiple negative ones.

According to them, the use of several Exemplar-SVMs leads to a good generalization.

Malisiewicz et al. [26] do not address the case in which training with certain negative

classes is not possible. Another drawback of the method is that training many SVMs can

be very expensive when implementing a multiclass SVM classifier based on the One-vs-All

approach (the approach that allows unknown classification).

Jayadeva et al. [20] presented the Twin SVM (TWSVM), an approach that defines two

nonparallel hyperplanes such that each hyperplane is close to samples of one of the two
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classes and is distant from samples of the other class. According to the authors, TWSVMs

yield better results than SVM. Similarly, Chew et al. [9] also handle parallel-hyperplanes

constraints and propose the Modified Correlation Filters (MCF) to the problem of facial

expression recognition. The MCF is a supervised binary classification algorithm inspired

by correlation filters and SVMs. According to the authors, the resulting classifier can be

accommodated to be much more robust against noise and outlying training samples.

2.3 Approaches used in similar problems

In the machine learning literature, the concept of zero-shot learning can be understood as

the procedure of learning a classifier that must predict novel classes that are not present

in the training set [32]. To cover this problem, researchers explore knowledge transfer

approaches between object classes. As the information of the test classes cannot be

learned at training phase, this information often must be added to the system by human

effort [24].

The knowledge transfer between object classes has been accepted as a promising re-

search venue towards scalable recognition. As presented by Rohrbach et al. [42], this is

done by reusing acquired knowledge in the context of newly posed, but related recog-

nition tasks. The zero-shot learning is also a way to deal with the need for increasing

amounts of training data. As mentioned by Scheirer et al. [43], these approaches have

formal definitions, but without constraints on smoothness or data accuracy.

Open-set recognition problems differ from the unsupervised and semi-supervised learn-

ing techniques as well. In the open-set scenario, it is necessary to classify the test sample

as belonging to either one of the known (trained) classes or to the unknown “class.” On

the other hand, in an unsupervised learning procedure, the objective is only to group sim-

ilar samples. The semi-supervised learning technique is also very different because in the

open-set scenario, we are not interested in propagating labels from the known classes to

the unknown ones. In the case of using the open-set solutions as a semi-supervised learn-

ing technique, the evaluation procedure must be significantly different, as the evaluation

protocol must simulate the open-set scenario.

2.4 Approaches proposed for open-set problems

Some recent approaches have turned the attention to open-set problems directly and

extended the SVM classifier to deal with the modified constraints of the open-set sce-

nario [11, 12, 43]. As the original SVM’s risk minimization is based only on the known

classes (empirical risk), it can misclassify the unknown classes that can appear in the
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testing phase. Differently, possible open-set solutions need to minimize the risk of the

unknown [43].

Costa et al. [11, 12] presented a source camera attribution algorithm considering the

open-set scenario and developed an extension of the SVM classifier. According to the

authors, their method, called SVM with Decision Boundary Carving (SVMDBC), is suit-

able for recognition in open-set scenario. As the SVMDBC is a binary classifier extension

and the authors presented no multiclass-from-binary version of the SVM using it, we can

state that Costa et al. [11, 12] proposed a method that minimizes the risk of false positive

instead of the risk of the unknown. The minimization of the risk of false positive of the

SVMDBC method is done by moving the decision hyperplane found by the traditional

SVM by a value ǫ inwards (possibly outwards) the positive class. The value of ǫ is defined

by an exhaustive search to minimize the training data error. In our work, we present

a multiclass-from-binary version of the SVMDBC using the One-vs-All approach for a

comparison purpose. We call this multiclass-from-binary version as SVMDBCMCBIN.

Scheirer et al. [43] introduced the 1-vs-Set Machine with a linear kernel formulation

that can be applied to both binary and one-class SVMs. Also, the idea is to minimize the

risk of the unknown, but in reality only the risk of the false positive is minimized, as the

1-vs-Set Machine is a binary classifier.

Similarly to Costa et al. [11, 12], Scheirer et al. [43] also move the original SVM

hyperplane inwards the positive class, but now adding a parallel hyperplane “after” the

positive samples aiming at decreasing the open space of risk of the positive class. The

hyperplanes are initialized to contain all the positive samples between them. Then, a

refinement step is performed to adjust the hyperplane to generalize or specialize the

classifier according to the user parameter pressures. As noted by the authors, better results

are usually obtained when the original SVM hyperplane is near to the positive boundary

seeking a specialization and the added hyperplane is adjusted seeking generalization.

Although the open space of risk is minimized by the second hyperplane for the positive

class, the open space remains unbounded.

Scheirer et al. [43] also did not present a multiclass-from-binary for the classifier. Their

experiments considered the partial results of binary classification problems only. Here, we

present a multiclass-from-binary extension of the 1-vs-Set Machine using the One-vs-All

approach for comparison purposes from now referred to as SVM1VSMCBIN.

2.5 Remarks

Most of the discussed related work, can be somehow extended or adapted to be used for

open-set recognition problems with some effort. The state-of-the-art methods, however,

contain some drawbacks (e.g., the unbounded open space of risk and the limitation to
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binary classification) that must be avoided in real-world open-set classification problems.



Chapter 3

Optimum-path forest classifier

The Optimum-Path Forest (OPF) classifier, originally proposed by Papa et al. [34, 36],

is a graph-based classifier that was developed as a generalization of the Image Forest-

ing Transform (IFT) [16] from the image domain to the feature space. Afterwards, the

Optimum-Path Forest was proposed as a methodology and allowed the development of

unsupervised [41] and semi-supervised [1] classification methods. However, in this work

we refer to OPF as the supervised classifier [34, 36].

OPF classifier is similar to the well-known k-Nearest Neighbors (kNN) [4] algorithm

for k = 1 [46, 47], inherently multiclass, and parameter independent. The OPF makes

no assumption about the shapes of the classes and can support some degree of class

overlapping [34]. It has shown good results in many classification problems [13, 14, 33,

34, 35, 37, 49].

In the OPF supervised classifier, the training samples are labeled graph nodes linked

by arcs whose weights are distances between samples in the feature space. Each label is

associated with a different class. The OPF has two phases: fitting and prediction. In the

fitting phase, OPF finds a set of prototypes (which are training samples) and creates an

optimum-path forest rooted in these prototypes. In the prediction phase, a test sample

receives the same label of the prototype that offers the lowest cost (the most strongly

connected prototype), according to some cost function defined a priori. In the following

sections, we describe these two phases in more detail.

3.1 Fitting phase

Let Z be a set of m labeled training samples divided into n classes, as follows:

Z = {(s1, λ(s1)), (s2, λ(s2)), . . . , (sm, λ(sm))}, (3.1)

10
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where si, i = 1, . . . , m, is a feature vector and λ(si) is the actual class of si, i.e., λ(si) ∈

L = {ℓ1, ℓ2, . . . , ℓn}, where L is a set of labels representing n distinct classes.

The weight w(s, t) of the arc (s, t) in the complete graph A = (Z ×Z) is the distance

(the Euclidean distance, in this work) between samples s and t in the feature space.

For computing the set S of prototypes, the supervised classifier computes the Minimum

Spanning Tree (MST) M of A. Every sample s is considered a prototype when s is

connected to some sample t in M such that λ(s) 6= λ(t). The k prototypes form the set

S ⊂ Z of prototypes:

S = {(sp
1, λ(sp

1)), . . . , (sp
k, λ(sp

k))}, (3.2)

An important difference of OPF when compared to other classifiers relies on the path

cost function used. A path πs,t = 〈s = s1, s2, . . . , sp = t〉 with length p from source node

s to target node t is defined as a sequence of nodes, such that there is an arc between si

and si+1. A path πs,s = 〈s〉 is a trivial path. The OPF path cost function f is given by

the maximum arc weight w in the path, represented by:

f(〈s〉) =







0 if s ∈ S

+∞ otherwise,

f(πs,u · (u, t)) = max{f(πs,u), w(u, t)}. (3.3)

where πs,u · (u, t) denotes the concatenation of a path πs,u ending at u and an arc (u, t).

A path πs,t with terminus t is said optimum if f(πs,t) ≤ f(πu,t) for all u ∈ Z. Based

on the path cost function f , the supervised classifier assigns an optimum path P ∗(t) for

every sample t ∈ Z. Note that every optimum path is from s ∈ S, S ⊂ Z, according to

the Equation 3.3. Then, every sample t holds its minimum cost C(t):

C(t) = f(P ∗(t)) (3.4)

Algorithm 1 is an extension of the IFT algorithm [16] from the image domain to the

feature space specialized for f . The optimum-path forest P ∗ and the cost map C are

obtained using Algorithm 1. This algorithm also returns the label map L that maintains

the information of the label that each sample s ∈ Z holds in the trained classifier. When

the set S of prototypes is obtained based on the MST, as described earlier, it is guaranteed

that L(s) = λ(s) for all s ∈ Z [34]. Based on P ∗, the root R(t) ∈ S of a sample

t is obtained by following the predecessors backwards along the path. Note that it is

guaranteed that L(t) = λ(R(t)) for all t ∈ Z.

3.2 Prediction phase

The classification of a test sample s is accomplished by creating arcs linking s to all nodes

of the optimum-path forest (OPF). The prediction phase consists in an optimization
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Algorithm 1 OPF algorithm.

Require: Set of training samples Z
Require: Set of prototypes S
Ensure: S ⊂ Z
Output: Optimum-path forest P
Output: Cost map C
Output: Label map L

1: for all s ∈ Z\S do
2: C(s)← +∞
3: end for
4: for all s ∈ S do
5: C(s)← 0; P (s)← nil; L(s)← λ(s)
6: Insert s in Q
7: end for
8: while Q is not empty do
9: Remove s from Q such that C(s) ≤ C(t) for all t ∈ Q, s 6= t

10: for all t ∈ Z such that s 6= t do
11: cst← max{C(s), w(s, t)}
12: if cst < C(t) then
13: if C(t) 6= +∞ then
14: Remove t from Q
15: end if
16: P (t)← s; L(t)← L(s); C(t)← cst
17: Insert t in Q
18: end if
19: end for
20: end while



3.3. Properties of the optimum-path forest classifier 13

problem in which the objective is to find the prototype sp whose path to s offers the

lowest cost, i.e.,

sp = arg min
∀sp∈S

{f(πsp,s)}, (3.5)

or simply

sp = R(arg min
∀t∈Z
{max{C(t), w(s, t)}}). (3.6)

Note that for the prediction, not all training samples need to be verified if they are

maintained sorted by its costs [35].

Given the found prototype sp, the class prediction process consists in assigning the

label of sp to s, i.e.,

L(s) = λ(sp). (3.7)

For a better understanding, Figure 3.1 depicts OPF’s operation in a toy–example

scenario of five training samples: s1 and s2 from the blue class; and s3, s4, and s5 from

the red class. Figure 3.1a depicts the complete graph A. In Figure 3.1b, the MST M is

calculated and s2 and s3 are chosen as prototypes. These steps correspond to the fitting

phase. In the prediction phase illustrated in Figure 3.1c, the test sample s is assigned to

the tree rooted in s3 because it offers the lowest cost, based on Equation 3.3. Node s is

therefore classified as belonging to the red class.

3.3 Properties of the optimum-path forest classifier

In this section, we present some properties of the OPF when analyzing it for the open-set

scenario. There are important properties of the OPF we need to highlight for a better

understanding of the proposed OSOPF, and its main differences when compared to other

available open-set approaches such as SVMMCBIN, SVMDBCMCBIN, and SVM1VSMCBIN.

First of all, suppose a simplified version of OPF that is simply the OPF itself as a

binary classifier. We call this classifier as OPFBIN. The OPFBIN can be obtained by

simply using the OPF restricted to two classes. For reference, we use OPFBIN only to

explicit that we are using the OPF with only two classes for training.

Let OPFMCBIN be the multiclass-from-binary version of the OPF. That is, the OPFMCBIN

decomposes the general multiclass problem into n binary ones, where n is the number of

available classes for training. In this case, we suppose the OPFMCBIN using the One-vs-All

approach.

The One-vs-All approach for the OPFMCBIN can be accomplished in the same way it

is done for the SVMMCBIN: (1) if none of the OPFBIN classifies an input as positive, then

the OPFMCBIN classifies it as unknown; (2) if one or more OPFBIN classifies an input as





3.3. Properties of the optimum-path forest classifier 15

Let OPFn
BIN be the OPFBIN of the OPFMCBIN trained with the nth class as a positive

class. Let the classification result of the test sample s with OPFn
BIN be positive. Then,

L(R(s)) is positive. We call this prototype node R(s) as sp. We are going to show that

L(R(s)) is positive for no other OPFBIN. The OPF behavior creates a Voronoi tessellation

in the feature space, as OPF is based on the path cost function of Equation 3.3 (that is

based on distances). The positive class of OPFn
BIN is a negative class in other OPFBINs

when using the One-vs-All approach. For any other OPFBIN, there are two possible cases:

(1) sp continues to be a prototype or (2) sp is no longer a prototype. Analyzing case (1):

If sp continues to be a prototype, the best path of the OPFBIN under consideration is

equal to the best path of the OPFn
BIN. But now L(sp) is negative and s is classified as

negative. Note that the Minimum Spanning Tree (MST) of training phase of all OPFBINs

are equal, as all available training samples are used. Analyzing case (2): If sp is no

longer a prototype, the best path continues passing through sp to reach a new prototype.

In the OPFBIN under consideration, sp is negative and to reach a positive subgraph, the

path needs to pass through a negative prototype and then a positive prototype. As the

negative prototype is reached before, R(s) is the negative prototype and the OPFBIN under

consideration classifies the input as negative.

Now we must show that at least one OPFBIN classifies an input as positive. Let the

classification result of the test sample s with OPFn
BIN be negative. Then, L(R(s)) is

negative. We are going to show that L(R(s)) is positive for at least one OPFBIN other

than OPFn
BIN. The best path πb from a (negative) prototype to s in OPFn

BIN passes through

samples of one or more training classes (considering the real class information). In some

cases, the path reaches the same training class more than once, but it does not influence

our proof. Let sn be the neighbor of s in πb. Let sp be the last sample in πb with the same

label of sn such that all samples between sn and sp have the same label of sn and sp. Let

πs be the subpath of πb from s to sp. Now, it is easy to see that when the class λ(sn) is

the positive class of one OPFBIN, πs is the best path and sp is a positive prototype. Then,

s is classified as positive by one OPFBIN.

Figure 3.2 depicts the Proposition 2 situation. A test sample in any possible point in

the feature space is in the positive region of some OPFBIN.

Proposition 3. The OPFMCBIN classifier is equivalent to the OPF classifier.

Proof. For any test sample s, exactly one binary classifier in the OPFMCBIN will classify

s as positive (see Proposition 2). The positive class is the same class to which the OPF

classifier would assign s because OPF behavior creates a Voronoi tessellation in the feature

space.

According to the Propositions 2 and 3, Figure 3.2 can also depict the inherently

multiclass OPF classifier.





Chapter 4

Open-set optimum-path forest

classifiers

In this work, OSOPF stands for the Open-set Optimum-Path Forest classifier. In this

chapter, we present two proposed open-set classifiers. Both methods are similar in their

structure, but different in their behavior. We present the methods as multiclass-from-

binary classifiers. Then, in Section 4.3, we show how the multiclass-from-binary methods

are extended to inherently multiclass ones.

First, we present the binary version of the two proposed classifiers: the OSOPF1
BIN

and OSOPF2
BIN. Both binary classifiers are similar to the OPFBIN, but with an additional

verification step.

4.1 Proposed binary open-set classifiers

Given a test sample s, the OSOPF1
BIN computes the paths from prototypes with the best

and second best classification costs (see cost function in Equation 3.3). Next, it checks

the labels of the identified prototypes in each case. If both paths yield positive prototypes,

then s is classified as positive; if some path is rooted in a negative prototype, s is classified

as negative. Figure 4.1a illustrates the OSOPF1
BIN classifier. OSOPF1

BIN avoids classifying

as positive the “ambiguous” samples, i.e., the samples that are relatively not close enough

to prototypes of the positive class.

The OSOPF2
BIN, in turn, computes the paths with the best classification costs from

positive and negative prototypes. Next, it computes the ratio R between the best positive

classification cost and the best negative classification cost. If R is less than or equal to

a specified threshold T , for 0.0 < T < 1.0, the test sample s is classified as positive.

Otherwise, s is classified as negative. The R ratio can be seen as the uncertainty level

of the classification. The smaller the value of R, the more confident is the classifier in

17
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obtained better results, as we will see in Chapter 5.

Proposition 4. All test samples that would be classified as negative by the OPFBIN are

classified as negative by the OSOPF1

BIN
and OSOPF2

BIN
.

Proof. Let s be a test sample that would be classified as negative by the OPFBIN. For the

OSOPF1
BIN: if s would be classified as negative by the OPFBIN, the best path acquired

by the OSOPF1
BIN is rooted in a negative prototype. As either the best path or the

second best path acquired by the OSOPF1
BIN is negative, s is classified as negative by the

OSOPF1
BIN. For the OSOPF2

BIN: if s would be classified as negative by the OPFBIN, the

path to the negative prototype has the lowest cost. As positive cost is greater than or

equal to the negative cost, R is greater than or equal to 1. As 0.0 < T < 1.0, then R > T .

Consequently, OSOPF2
BIN classifies s as negative.

Proposition 4 shows that OSOPF1
BIN and OSOPF2

BIN increase only the true negative

compared to the OPFBIN. In Section 4.2, we show that this property helps the multiclass-

from-binary classifier to correctly identify unknown samples.

4.2 Multiclass-from-binary proposed classifiers

In this section, we present the following multiclass-from-binary classifiers: OSOPF1
MCBIN

and OSOPF2
MCBIN that uses the OSOPF1

BIN and OSOPF2
BIN, respectively.

In Section 3.3, we showed that exactly one OPFBIN of the OPFMCBIN classifies an input

sample as positive. In our proposed methods, all OSOPFBIN classifiers that compose

the OSOPFMCBIN (for both OSOPF1
MCBIN and OSOPF2

MCBIN) can classify a sample as

negative. While the OPFMCBIN is inherently closed set (no test sample is classified as

unknown), it is possible to the OSOPFMCBIN to classify input samples as unknown. Note

that, similarly to the OPFMCBIN, in the OSOPF1
MCBIN, at most one OSOPF1

BIN classifies

an input sample as positive. The same is not true for the OSOPF2
MCBIN, because in some

special cases more than one OSOPF2
BIN can classify the input as positive (see Section 4.3.2

for explanation).

Proposition 5. If the OPFMCBIN classifies s with class label ℓn, the OSOPF1

MCBIN
and

OSOPF2

MCBIN
classify s with class label ℓn or unknown.

Proof. Let OPFn
BIN be the OPFBIN of the OPFMCBIN trained with the nth class as a positive

class. Let OSOPFn
BIN be the OSOPFBIN of the OSOPFMCBIN trained with the nth class as

a positive class. There are two possible results in classification of s by the OSOPFMCBIN:

(1) unknown or (2) one of the available classes. Analyzing for (1): the proposition is

trivially valid. Analyzing for (2): we must show that L(s) = ℓn for OPFMCBIN implies
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are used. These solutions, however, rely on random partitions of classes and not always

lead to good classification results.

In this section, we present two proposed inherently multiclass Open-set Optimum-

Path Forest classifiers: OSOPF1 and OSOPF2. The OSOPF1 has the same behavior of

the multiclass-from-binary OSOPF1
MCBIN and the OSOPF2 has a similar behavior of the

multiclass-from-binary OSOPF2
MCBIN previously introduced. The OSOPF1 and OSOPF2

are extended from the binary OSOPF1
BIN and OSOPF2

BIN, respectively.

4.3.1 OSOPF1

OSOPF1 is based on the agreement of the labels of the two best paths. The fitting phase

of the OSOPF1 is identical to the fitting phase of the OPF. Its prediction phase works

as follows: it computes the paths with the best and second best classification costs and

checks the labels of the associated prototypes. If both paths lead to the same label, this

label is assigned to the test sample s. Otherwise, s is classified as unknown. We present

the OSOPF1 in Algorithm 2.

Algorithm 2 Fitting and prediction phases of the OSOPF1.

Require: Set of training samples Z
Require: Test sample s
Ensure: s /∈ Z

1: Let ℓ0 be the unknown label
2: OPF ← Traditional OPF classifier using Z
3: π1 ← Best path to s in OPF according to f
4: s1 ← R(π1)
5: π2 ← Best path to s in OPF such that its root is not equal to s1

6: s2 ← R(π2)
7: if L(s1) = L(s2) then
8: L(s)← L(s1)
9: else

10: L(s)← ℓ0

11: end if

Proposition 6. OSOPF1 and OSOPF1

MCBIN
have the same behavior.

Proof. We must prove that (1) if OSOPF1
MCBIN classifies a test sample s as unknown,

then OSOPF1 also classifies s as unknown and (2) if OSOPF1
MCBIN classifies s as ℓn, then

OSOPF1 also classifies s as ℓn.

In OSOPF1, let sp be the prototype of the best path to s. Let L(sp) be ℓn. Let

OSOPFn
BIN be the OSOPF1

BIN of the OSOPF1
MCBIN trained with the class ℓn as a positive
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class. Analyzing for (1): as OSOPF1
MCBIN classifies s as unknown, every OSOPF1

BIN of the

OSOPF1
MCBIN classifies s as negative, i.e., for each OSOPF1

BIN, either the best path or the

second best path to s is rooted in a negative prototype. Then, for the OSOPFn
BIN either

the best path or the second best path to s is negative. As we known that the best path of

OSOPFn
BIN is rooted in sp such that L(sp) = ℓn (that is the positive class of OSOPFn

BIN),

we known that the second best path is rooted in a negative prototype. Consequently, the

second best path to s in OSOPF1 is rooted in a class other than ℓn, leading to an unknown

classification, according to Algorithm 2. Analyzing for (2): as OSOPF1
MCBIN classifies s as

ℓn, both the best path and the second best path of OSOPFn
BIN is positive. Consequently,

the second best path to s in OSOPF1 is rooted in the same class of the best path, i.e.,

ℓn. Then OSOPF1 classifies s as ℓn.

4.3.2 OSOPF2

OSOPF2 is based on the cost ratio of the two best paths of different classes. The fitting

phase of the OSOPF2 is identical to the fitting phase of the OPF, except for the parameter

optimization phase used to find the best value for the threshold T . Similarly to the

OSOPF2
BIN, for the OSOPF2 we compute the ratio R between the best classification cost

for test sample s and the best classification cost to the second nearest class (according to

the path cost function of Equation 3.3). If R is less than or equal to the specified threshold

T , 0.0 < T < 1.0, s is classified with the same label of the prototype sp of the path that

yields the best classification cost. Otherwise, it is classified as unknown, i.e.,

L(s) =







L(sp) if R ≤ T

ℓ0 if R > T.

where ℓ0 is the unknown label. We present the OSOPF2 in Algorithm 3.

Differently from the OSOPF1, the OSOPF2 is not equivalent to its multiclass-from-

binary version. In fact, the behavior is similar, but in specific regions of the feature space

the results differ depending on the threshold T and the shape of the graph created in

the OPF classifier. In Figure 4.3 we depict a case in which a test sample that would

be classified as unknown by the OSOPF2 would be classified as positive by two binary

classifiers that compose the OSOPF2
MCBIN. In Figure 4.3a, for the OSOPF2, the class 1 is

the best for the test sample and class 3 is the second best one. In that figure, we consider

that the test sample would be classified as unknown by the OSOPF2, as the cost to the

best class and the cost to the other best class is similar. Supposing that the OSOPF2

and OSOPF2
MCBIN would have the same behavior, then every binary classifiers of the

OSOPF2
MCBIN should classify the test sample as negative. By analyzing the Figures 4.3b

and 4.3d we cannot ensure that. In Figure 4.3b, the cost to the positive class is the same
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Algorithm 3 Fitting and prediction phases of the OSOPF2.

Require: Set of training samples Z
Require: Test sample s
Ensure: s /∈ Z

1: Let ℓ0 be the unknown label
2: T ← Threshold from parameter optimization procedure using Z
3: OPF ← Traditional OPF classifier using Z
4: π1 ← Best path to s in OPF according to f
5: π2 ← Best path to s in OPF such that its root’s class is not equal to L(R(π1))
6: R← f(π1)/f(π2)
7: if R ≤ T then
8: L(s)← L(R(π1))
9: else

10: L(s)← ℓ0

11: end if

of the cost to the best class in Figure 4.3a. But the cost to the negative class is greater

than the cost to the other best class of Figure 4.3a. Consequently, the ratio R for the

binary classifier of the Figure 4.3b is smaller than ratio R of the OSOPF2 and can be

smaller than threshold T . The same analysis can be accomplished to the binary classifier

of Figure 4.3d.

In fact, we experimentally compared the OSOPF2 and OSOPF2
MCBIN and generated

the decision boundaries for these classifiers. The decision boundary of a class defines the

region in which a possible test sample will be classified as belonging to that class. In

Figure 4.4 we present the decision boundaries comparing OSOPF2 and OSOPF2
MCBIN.

Comparing Figures 4.4a and 4.4b we can see a small difference in the decision boundaries

of the two classifiers in the bottom part of the region between the green and blue classes

for T = 0.5. The difference in the same region happens when the threshold is 0.8 (compare

Figures 4.4c and 4.4d). For T = 0.8, we can see in Figure 4.4e that in a small region of

the feature space (the gray region) the test sample would be classified as positive by two

binary classifiers of the OSOPF2
MCBIN.

Despite the difference between OSOPF2 and OSOPF2
MCBIN in a small region of the

feature space, we can ensure that OSOPF2 and OSOPF2
MCBIN have the same behavior

when the test sample is faraway from the training samples in the feature space.

Proposition 7. OSOPF2 and OSOPF2

MCBIN
have the same behavior when the distance

from the test sample to the nearest training sample is greater than or equal to the highest

arc within the Optimum-Path Forest.

Proof. We must prove that (1) if OSOPF2
MCBIN classifies a test sample s as unknown,
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best path rooted in a class other than ℓn, according to Algorithm 3, is the same cost of

the negative path in OSOPFn
BIN, as the arc weight from s to the nearest training sample

is the cost (see Equation 3.3). Then OSOPF2 classifies s as unknown. Analyzing for (2):

as OSOPF2
MCBIN classifies s as ℓn, the ratio R between the cost of the positive path and

the cost of the negative path is less than or equal to T . Consequently, in OSOPF2, R is

also less than or equal to T because the cost of the best path in OSOPF2 is the same cost

of the positive path in OSOPFn
BIN and the cost of the best path rooted in a class other

than ℓn is the same cost of the negative path in OSOPFn
BIN. Then, OSOPF2 classifies s

as ℓn.

4.3.3 Parameter optimization of OSOPF2

For the OSOPF2, we perform a parameter optimization phase adapted for the open-set

scenario to find the best value for T . In this work, the samples were divided into training

and testing sets (see Figure 4.5a). In an open-set scenario, the testing set is the union

of the known set and the unknown set, as there are classes for which samples are not

available for training (see Figure 4.5b). In our parameter optimization phase, we divide

the samples of the training set into fitting set (samples used to effectively train a classifier)

and validation set (samples used to verify the accuracy based on a value of T ), according

to the following: (1) only half of the available classes have representative samples in the

fitting set (the remaining is on the validation set) and (2) for each class considered in

fitting set, half of its samples is on the fitting set (the remaining is on the validation set;

see Figure 4.5c).

Finally, an OSOPF2 classifier is fitted based on the samples of the fitting set and a

traditional grid search [3] procedure is performed to find the best T value based on the

samples in the validation set. Step (1) is performed to simulate the open-set scenario on

the parameter optimization phase. Notice that the parameter optimization phase requires

at least three available classes in the training set because at least one of those classes

completely belongs to the validation set, as presented in Step (1), and the fitting set must

contain samples of two different classes, as shown in Section 3.1.





Chapter 5

Experiments

We compare the proposed OSOPF classifiers with the OPF, the multiclass SVM using

One-vs-All approach (SVMMCBIN), the multiclass SVMDBC [11, 12] using One-vs-All

approach (SVMDBCMCBIN), and the multiclass version of the 1-vs-Set Machine [43] also

using the One-vs-All approach (SVM1VSMCBIN) in different scenarios in terms of openness

(see Section 5.2.3).

In this section, we present the evaluation measures, the experimental setup, includ-

ing: details of the implementation of the classifiers SVMMCBIN, SVMDBCMCBIN, and

SVM1VSMCBIN, the datasets used for validation, and the experimental protocol. Then,

we present the experiments and the obtained results. The details of the SVMMCBIN

method are presented because its implementation differ from the implementation in the

LibSVM [7]. Similarly, we present details of SVMDBCMCBIN and SVM1VSMCBIN be-

cause we extended the original methods to multiclass open-set scenarios for comparison

purposes.

5.1 Evaluation measures

For evaluating classifiers in an open-set scenario, we should be aware of the unknown

classes. Most of the existing evaluation measures, like the macro- and micro-averaging

f-measure [45], the average accuracy [45], and the traditional classification accuracy [7],

do not take into account the unknown. Therefore, another contribution of this work is

the adaptation of two measures to assess the quality of open-set classifiers.

In the literature, the following classes of evaluation measures are found: (1) Mea-

sures for closed-set binary problems (traditional accuracy, f-measure, etc.); (2) Mea-

sures for closed-set multiclass problems (traditional accuracy, multiclass version of the

f-measure, etc); (3) Measures for open-set binary problems, presented in the work of

Costa et al. [11, 12] (the open-set version of the average accuracy). Measures in (1) and

28
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(2) are not appropriate as they do not consider open-set scenarios, which usually lead to

the overestimation of the performance of evaluated classifiers. The measures adopted in

(3), in turn, do not consider open-set multiclass classification problems. The measures

proposed in this work define a new class of evaluation measures, as they are suitable for

open-set multiclass classification problems.

Here, we call known samples as the samples belonging to one of the available classes

for training. The unknown samples belong to classes for which no representative sample

is used during training.

5.1.1 Normalized accuracy

For a better picture regarding the effectiveness of the classifier in open-set scenarios, we

compute the results as a normalized accuracy that takes into account both the accuracy

of known samples (AKS) and the accuracy of unknown samples (AUS). The normalized

accuracy was considered because it avoids overestimating the performance of biased clas-

sifiers, i.e., classifiers that occasionally classify almost all samples as belonging to the

most frequent class. This is important because the more open the scenario, the greater

the amount of unknown samples.

5.1.2 F-measure

Besides using the normalized accuracy to assess the quality of results of classifiers in

open-set scenarios, we also use the macro- and micro-averaging f-measure because these

measures can give us fine-grained analysis of the behavior of the evaluated methods. The

definition and the properties of f-measure are presented by Sokolova and Lapalme [45].

The following equation describes the traditional f-measure:

f -measure =
2× precision× recall

precision + recall
(5.1)

In our work, we adapt the traditional definition of f-measure to assess the quality results

of an open-set testing protocol.

A trivial extension of f-measure to open-set scenario could be to consider the unknown

as one simple class and obtain the f-measure value in the same way it is accomplished

for the closed-set scenario. But this trivial extension of the f-measure is not appropriate

to evaluate tests in open-set scenarios because all correct classification of unknown test

samples are going to be considered true positive classifications. These classification results

cannot be considered true positive because it does not make sense to consider the unknown

classes as one single positive class, since we have no representative samples of unknown

classes to train the classifier.
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belonging to the class under consideration. Similarly, the proposed multiclass f-measure

for open-set scenarios is invariant to the true unknown. But both the false unknown

(known samples incorrectly classified as unknown) and the false known (unknown samples

incorrectly classified as known) are considered in the f-measure. We adopted this strategy

for two reasons: (1) f-measure must give importance to classified known samples; and (2)

the unknown is not a single class but possibly several ones.

5.2 Experimental setup

In this section, we present the baselines (Section 5.2.1) and the datasets (Section 5.2.2)

considered in the experiments. The experimental protocol adopted is presented in Sec-

tion 5.2.3.

5.2.1 Baselines

According to Chang and Lin [7], the current implementation of the LibSVM [7] for multi-

class classification uses the One-vs-One approach, i.e., the multiclass problem for n classes

is divided into n×(n−1)
2

One-vs-One binary problems. The class of a test sample s is de-

termined according to the classification of s by all binary classifiers. A voting scheme is

employed, according to which s is assigned to the most voted class. When two or more

classes receive the highest number of votes the tie-break policy consists in choosing the

smallest label. We can see that using One-vs-One approach, the SVMMCBIN would be a

closed-set classifier, i.e., at least one class will be the most voted and a test sample will

always be classified as one of the known (training) classes.

In our work, we use the One-vs-All approach for the SVMMCBIN. In this approach,

the multiclass problem with n classes is divided into n binary problems. As shown in

Figure 1.1, using the One-vs-All approach it is possible to classify a test sample s as

unknown: when the n binary classifiers classify a test sample as negative. This approach

does not use the voting scheme because each class appears only once as positive, while

the negative side of the binary classifiers contains n− 1 classes. In cases in which two or

more binary classifiers classify s as positive, the chosen class is based on the distance of

the tested sample to the decision hyperplane. The binary classifier, according to which

s is more distant to the hyperplane, is used to define the class of s. We used the Radial

Basis Function (RBF) kernel in the SVMMCBIN.

According to Chang and Lin [7], there are two possible ways to accomplish the grid

search for a binary-based multiclass classifier like SVMMCBIN: (1) the external and (2)

the internal grid search1. In the external approach, the grid search is performed in the

1We defined these names.
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multiclass level forcing all the binary classifiers to share the same parameters. On the

other hand, in the internal grid search, each binary classifier performs its own grid search.

According to the analysis of Chen et al. [8] considering the One-vs-One approach, the

external approach obtains parameters not uniformly good to every binary classifier. Still,

it considers the overall accuracy of the multiclass classifier. Also, the internal grid search

can over-fit the classifier.

We used both external and internal approaches in comparison to the proposed method.

We could verify that both SVMext
MCBIN (using external grid search) and SVMMCBIN (using

internal grid search) have no statistical difference between them when using the One-

vs-All approach. These results are in accordance with the analysis of Chen et al. [8]

and Chung et al. [10] when using One-vs-One approach as they stated that there are no

relevant difference between the two approaches for grid search. In open-set scenario, one

advantage of using the internal grid search would be not to deal with a “simulation” of the

open-set scenario2 in the external grid search. In fact, even keeping the traditional closed-

set grid search the internal and external approaches are equivalent. All other baselines

use the internal grid search.

Costa et al. [11, 12] presented a binary classifier named SVM with Decision Boundary

Carving (SVMDBC). In their work, it was not explained how to extend the SVMDBC

for multiclass classification. Although the source camera attribution problem addressed

by Costa et al. [11, 12] requires a specific decision among the available classes, the results

were obtained based only on the binary classifications. For example, supposing a scenario

with n = 25 classes, but with only four available classes for training, the authors in [11, 12]

computed the individual results of the four binary classifiers and merged them (e.g., using

the mean). However, a more suitable way to acquire the results in this case is to verify

the final multiclass classification, i.e., the test sample must be classified as one of the four

classes or unknown.

In our work, we trivially extend the SVMDBC for multiclass classification in the same

way it was performed for the SVM: we use the One-vs-All approach with decision based on

the distance from the hyperplane in cases in which two or more binary classifiers classify a

test sample as positive. To be clear in the text, we call that trivial multiclass-from-binary

extension, created for a fair comparison purpose, as SVMDBCMCBIN. Our implementation

of the SVMDBCMCBIN uses the RBF kernel.

The 1-vs-Set Machine proposed by Scheirer et al. [43] is also a binary classifier. Our

multiclass-from-binary trivial extension, referenced by SVM1VSMCBIN, follows the same

structure of SVMMCBIN and SVMDBCMCBIN: it uses the One-vs-All approach and the

internal grid search. The decision between two binary classifiers that classify positive is

2The “simulation” of the open-set scenario can be understood as a reproduction of the real testing
scenario using only the training samples.
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Table 5.1: General characteristics of the classifiers used in the experiments.

Method Approach Open-set Kernel Grid search

SVMMCBIN One-vs-All Yes RBF Internal
SVMext

MCBIN One-vs-All Yes RBF External
SVMDBCMCBIN One-vs-All Yes RBF Internal
SVM1VSMCBIN One-vs-All Yes Linear Internal

OPF Multiclass No – –
OSOPF1 Multiclass Yes – –
OSOPF2 Multiclass Yes – External

accomplished based on the distance from the main hyperplane of the classifier. We used

the linear kernel instead of the RBF, as the authors presented best results with a linear

kernel in their work [43]. We used the implementation of the binary 1-vs-Set Machine

released by Scheirer et al. [43].

In Table 5.1, we summarize the evaluated methods. The method is classified as open

set when it allows somehow the classification of a test sample as unknown.

5.2.2 Datasets

In this work, we performed experiments considering six datasets: 15-Scene [25], letter [17,

29], Auslan [22], Caltech-256 [19], ALOI [18], and ukbench [31]. Those datasets represent

applications of object recognition (Caltech-256, ALOI , ukbench), scene recognition (15-

Scene), sign language recognition (Auslan), and letter image recognition (letter). Ahead,

we present the description for each dataset.

• In the 15-Scene dataset, with 15 classes, the 4485 images were represented by a

bag-of-visual-word vector created with soft assignment [50] and max pooling [5],

based on a codebook of 1000 SIFT codewords.

• The 26 classes of the letter dataset represent the letters of the English alphabet

(black-and-white rectangular pixel displays). The 20000 samples contain 16 at-

tributes.

• The Auslan dataset contains 95 classes of Australian Sign Language (Auslan) signs

collected from a volunteer native Auslan signer [22]. Data was acquired using two

Fifth Dimension Technologies (5DT) gloves hardware and two Ascension Flock-of-

Birds magnetic position trackers. There are 146949 samples represented with 22

features (x, y, z positions, bend measures, etc).
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Table 5.2: General characteristics of the datasets used in the experiments.

Dataset # samples # classes # features # samples/class

15-Scene 4485 15 1000 299
letter 20000 26 16 769

Auslan 146949 95 22 1546
Caltech-256 29780 256 1000 116

ALOI 108000 1000 128 108
ukbench 10200 2550 128 4

• The Caltech-256 dataset comprises 256 object classes. The feature vectors consider

a bag-of-visual-words characterization approach and contain 1000 features, acquired

with dense sampling, SIFT descriptor for the points of interest, hard assignment [50],

and average pooling [5]. In total, there are 29780 samples.

• The ALOI dataset has 1000 classes and 108 samples for each class (108000 in to-

tal). The features were extracted with the BIC descriptor [48] and contain 128

dimensions.

• The ukbench dataset of recognition benchmark images consists of 2550 classes of

four images. In our work, the images were represented with BIC descriptor [48]

(128 dimensions).

In Table 5.2, we present the overall characteristics of the datasets we used in the

experiments. Note that we did not try to find the best characterization approach for each

dataset since this is not the focus of this work. We relied on characteristics that presented

good results according to prior work in the literature. In addition, all of the used features

are freely available3.

5.2.3 Experimental protocol

We performed experiments on all these datasets by training each classifier with n = 3, 6,

9, and 12 classes available for training among the total number of classes of each dataset.

Each experiment consists of a combination of a classifier, a dataset, and a set of n available

classes. For each experiment, we

1. randomly choose n available classes for training;

2. consider half of the known samples in each of the n classes for testing;

3http://dx.doi.org/10.6084/m9.figshare.1097614 (As of Oct. 2014)
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Table 5.3: Openness of all experiments according to Equation 5.4. The column ac indicates
the number of available classes for training. For each dataset we also present the total
number of classes.

ac 15-Scene letter Auslan Caltech-256 ALOI ukbench

15 26 95 256 1000 2550

3 0.55 0.66 0.82 0.89 0.94 0.96
6 0.36 0.51 0.74 0.84 0.92 0.95
9 0.22 0.41 0.69 0.81 0.90 0.94
12 0.10 0.32 0.64 0.78 0.89 0.93

3. consider the samples of the other classes as unknown for testing; and

4. acquire results based on the previously mentioned measures (see Section 5.1).

Scheirer et al. defined the openness of a problem4 measured based on Equation 5.4 [43]:

openness = 1−

√

√

√

√

|training classes|

|testing classes|
, (5.4)

In Table 5.3, we present the openness of the classification scenarios considered in the

experiments. Note that the more classes available for training, the less open the classi-

fication problem. The considered classification scenarios are “very open”, except for the

15-Scene and the letter datasets.

We performed the Analysis of Variance (ANOVA) statistical test and used the post-test

Tukey “Honest Significant Differences” (HSD) method [30, 54] to confirm the statistical

differences (95% of confidence) on the results. For each experiment (a combination of

classifier, dataset, and number of available classes), we ran 10 times with different sets of

available classes.

5.3 Results

In this section, we present the performed experiments to validate the proposed methods.

First, in Section 5.3.1, we show a comparison of the classification performance of seven

methods in six different datasets. In Section 5.3.2, we analyze the decision boundaries

of the proposed open-set classifier in synthetic datasets. Finally, in Section 5.3.3, we

examine the impact of parameter T in the OSOPF2 classifier.

4The openness measure serves only for evaluating open-set solutions in academic terms since in practice
it might not be possible to even estimate the actual number of classes.
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5.3.1 Classification performance

Results are presented in Figures 5.2, 5.3, and 5.4 for the letter , Auslan, and ALOI

datasets, respectively, considering the classifiers trained with 3, 6, 9, and 12 classes and

comparing SVMMCBIN, SVMext
MCBIN, SVMDBCMCBIN, SVM1VSMCBIN, OPF, OSOPF1, and

OSOPF2 classifiers. In Figures 5.2a, 5.3a, and 5.4a, we present the AKS, i.e., the accuracy

obtained based on the samples whose class is known. In Figures 5.2b, 5.3b, and 5.4b, we

present the results related to the other measure that composes our proposed normalized

accuracy: the AUS. We also present the results of the two proposed multiclass measures

for the open-set scenario: the normalized accuracy (see Figures 5.2c, 5.3c, and 5.4c) and

the micro-averaging f-measure (see Figures 5.2d, 5.3d, and 5.4d).

In spite of the OSOPF2 having the lowest AKS, as seen in Figures 5.2a, 5.3a, and 5.4a,

we can see in Figures 5.2b, 5.3b, and 5.4b that based on the AUS, it outperforms other

classifiers. The AUS points out how well the unknown samples are identified at testing

phase.

The cause of the lower AKS of the OSOPF2 presented in Figures 5.2a, 5.3a, and

5.4a is that all doubtful test samples are classified as unknown. In this vein, all samples

in an overlapping region are going to be misclassified as unknown instead of one of the

overlapping classes. Overlapping regions refer to the regions with some density of training

samples of two or more different training classes.

In AUS, NA, and MIFM measures in Figures 5.2, 5.3, and 5.4, we can see that the

open-set classifiers of the literature (the SVMDBCMCBIN and SVM1VSMCBIN) did not

obtain a good performance. Even the multiclass-from-binary version of the traditional

SVM (the SVMMCBIN) obtained better results.

We can see in Figures 5.2b, 5.3b, and 5.4b that OPF has no AUS. This is because of

the first property of the OPF presented in Section 3.3: the standard OPF never classifies

a test sample as unknown. On the other hand, the OPF obtained the best results based

on the AKS.

In Figures 5.2c, 5.3c, and 5.4c we can see that the OSOPF2 and the other classifiers

are somehow stable as the scenario opens. Still, the micro-averaging f-measure illustrated

in Figures 5.2d, 5.3d, and 5.4d indicates that all classifiers are impacted as the scenario

gets more open.

Similar graphs were obtained for the ukbench dataset: the AKS of the OSOPF2 is

a little bit worse compared to the AKS of the other classifiers; based on the AUS, nor-

malized accuracy, and micro-averaging f-measure, the OSOPF2 is always better than the

other classifiers. For the Caltech-256 and 15-Scene datasets, the AKS and AUS are also

worse and better, respectively, compared to the other classifier, but the OSOPF2 did not

obtain the best micro-averaging f-measure. In Caltech-256, the OSOPF2 obtained the

best normalized accuracy for 3, 6, 9, and 12 available classes, but its normalized accuracy
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on the 15-Scene was not the better one.

We believe that worst OSOPF2’s performance on the Caltech-256 and 15-Scene is

because these datasets are not very well separable, i.e., there are a considerable number

of overlapping regions.

In Tables 5.4 and 5.5, for each pair of methods (the intersection between the row and

the column) the arrow indicates the winner method as verified with the ANOVA and

Tukey post-hoc tests. An empty cell indicates that the difference between the pair of

methods is not statistically significant. The column ac refers to the number of available

classes. We present the results for 3, 6, 9, and 12 available classes.

In Table 5.4 we present the results of Tukey HSD post-test for all datasets together

to compare the overall behavior of the methods. Note that we performed the statistical

test of all datasets as the post-test Tukey HSD method allows this kind of testing.

In Table 5.5, for each pair of methods, we present separated results for six datasets:

15-Scene in the first cell, letter in the second cell, Auslan in the third cell, Caltech-256 in

the fourth cell, ALOI in the fifth cell, and ukbench in the last cell. We can see that the

proposed OSOPF2 is superior to the other classifiers in most of the cases.
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Table 5.4: Statistical tests for all datasets. The arrows point to the winner methods
for each pair of compared methods (row and column). Empty cells indicate there is no
statistical difference between the pair of methods. The column ac indicates the number
of available classes during training.

ac SVMMCBIN SVMext
MCBIN SVMDBCMCBIN SVM1VSMCBIN OPF OSOPF1 OSOPF2

SVMMCBIN

3 ← ← ↑
6 ← ← ← ← ↑
9 ← ← ← ← ↑
12 ← ← ← ↑

SVMext
MCBIN

3 ← ← ↑
6 ← ← ← ↑
9 ← ← ← ← ↑
12 ← ← ← ↑

SVMDBCMCBIN

3 ← ↑
6 ↑ ↑ ← ↑ ↑
9 ↑ ↑ ← ← ↑ ↑
12 ↑ ↑ ← ↑ ↑

SVM1VSMCBIN

3 ↑ ↑ ← ↑
6 ↑ ↑ ← ↑ ↑
9 ↑ ↑ ↑ ← ↑ ↑
12 ↑ ↑ ← ↑ ↑

OPF

3 ↑ ↑ ↑ ↑ ↑ ↑
6 ↑ ↑ ↑ ↑ ↑ ↑
9 ↑ ↑ ↑ ↑ ↑ ↑
12 ↑ ↑ ↑ ↑ ↑ ↑

OSOPF1

3 ← ↑
6 ↑ ← ← ← ↑
9 ↑ ↑ ← ← ← ↑
12 ← ← ← ↑

OSOPF2

3 ← ← ← ← ← ←
6 ← ← ← ← ← ←
9 ← ← ← ← ← ←
12 ← ← ← ← ← ←
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Table 5.5: Statistical tests for every dataset. d1, d2, d3, d4, d5, and d6 refer to the following datasets, respectively:
15-Scene, letter , Auslan, Caltech-256, ALOI , and ukbench. The arrows point to the winner methods for each pair of
compared methods (row and column). Empty cells indicate there is no statistical difference between the pair of methods.
The column ac indicates the number of available classes for training.

SVMMCBIN SVMext
MCBIN SVMDBCMCBIN SVM1VSMCBIN OPF OSOPF1 OSOPF2

ac d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

SVMMCBIN

3 ← ← ← ← ← ← ← ← ↑ ↑ ↑
6 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ↑ ↑ ↑
9 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ↑ ↑ ↑ ↑
12 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ↑ ↑ ↑

SVMext
MCBIN

3 ← ← ← ← ← ← ← ← ← ↑ ↑ ↑
6 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ↑ ↑ ↑ ↑
9 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ↑ ↑ ↑
12 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ↑ ↑ ↑

SVMDBCMCBIN

3 ← ← ← ← ← ← ↑ ↑ ↑
6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑
9 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ← ← ← ← ← ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
12 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

SVM1VSMCBIN

3 ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑
6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑
9 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ← ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
12 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ← ← ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

OPF

3 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
9 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
12 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

OSOPF1

3 ↑ ↑ ↑ ← ← ← ← ← ↑ ↑ ↑
6 ↑ ↑ ↑ ↑ ↑ ↑ ← ← ← ↑ ← ← ← ↑ ← ← ← ← ← ← ← ↑ ↑ ↑ ↑
9 ↑ ↑ ↑ ↑ ← ← ↑ ← ← ← ← ↑ ← ← ← ← ← ← ← ← ← ↑ ↑ ↑ ↑
12 ↑ ↑ ↑ ↑ ↑ ← ← ← ← ← ← ↑ ← ← ← ← ← ← ← ← ← ↑ ↑ ↑ ↑

OSOPF2

3 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
6 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
9 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
12 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←



5.3. Results 43

Based on Tables 5.4 and 5.5, we can note the effectiveness of the proposed methods.

Our more prominent open-set version of the OPF, the OSOPF2, obtained results better

than or equal to SVMMCBIN, SVMext
MCBIN, SVMDBCMCBIN, SVM1VSMCBIN, OPF, and

OSOPF1 in all experiments. OSOPF2 yields strictly better results than other classifiers

in letter , Auslan, and ALOI datasets. Also, note that impressive results obtained with

ukbench which shows that the proposed methods can deal with open-set problems even

when presented with just a few training samples per available class (see Table 5.2).

5.3.2 Analysis of decision boundaries

Aiming at visually understanding the different behavior of the classifiers, we also per-

formed tests on 2-dimensional synthetic datasets. We used the Cone-torus, Four-gauss [23],

and R15 [51] datasets. We trained the classifiers using all samples of the dataset to plot

the decision boundaries for each class. The decision boundary of a class defines the region

in which an possible test sample will be classified as belonging to that class.

In Figures 5.5, 5.6, and 5.7, we present the decision boundaries for the Cone-torus,

Four-gauss, and R15 datasets, respectively. The non-white regions represent the region

in which a test sample would be classified as belonging to the same class of the samples

with the same color. All samples in the white regions would be classified as unknown.

Based on these figures, we can note that OSOPF2 successfully classifies test samples

as unknown when necessary. While the SVMMCBIN are able to classify as unknown only

the doubtful samples among the available classes, OSOPF2 also avoids recognizing the

faraway samples. In this work, our proposed OSOPF2 is the only classifier able to create

a bounded open space of risk.

5.3.3 The impact of threshold T

In the previous experiments, we performed the parameter optimization phase presented in

Section 4.3.3 to obtain the best value for the threshold T . In this section, we evaluate the

impact of the threshold T on the performance of the OSOPF2. We performed experiments

simulating five available classes for each dataset, ranging T from 0.0 (all samples are

classified as unknown) to 1.0 (no sample is classified as unknown) stepping by 0.005.

The obtained results are plotted in known–unknown curves (see Figure 5.8) that show the

trade-off between the AKS and the AUS. For each T , we ran 10 experiments with different

sets of five available classes. In the curve, it is shown that OSOPF2 is well-behaved despite

parameter changing, i.e., a reasonable T estimation ensures the definition of a suitable

open-set classifier for usage in an operational scenario. The cross–red point in the curves

indicate the point with the best normalized accuracy in the testing. The x-axis (AKS) for
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5.4.1 Trying to minimize the false unknown

Here, we present a possible alternative to minimize the false unknown of the OSOPF2.

However, this modification (called OSOPFmc) did not yield good results. We also present

the possible reason for the low performance of the OSOPFmc and infer a possible general

principle leading to unsuccessful modifications. We call this modification as OSOPFmc

because it takes into account the intraclass maximum cost.

The OSOPFmc verifies if the test sample s is in an overlapping region. The pertinence

verification of s to an overlapping region is accomplished when R > T , i.e., when s is going

to be classified as unknown. For the class of the best path and the class of the second

best path (in the same way it is obtained for the OSOPF2), we obtain the maximum

costs c1 and c2, respectively, among all samples of the class based on OPF’s cost function

of Equation 3.3. Obtaining the maximum cost of the samples of a class is equivalent to

obtaining the maximum arc intraclass. We obtain the neighbor s1 of s in the first path

and the neighbor s2 of s in the second path. If w(s, s1) ≤ c1 or w(s, s2) ≤ c2, s is classified

as belonging to the same class of the prototype of the first path, as it would accomplish

if R ≤ T . Otherwise, if w(s, s1) > c1 and w(s, s2) > c2, s is classified as unknown (see

Equation 5.5).

L(s) =







L(s1) if R ≤ T or w(s, s1) ≤ c1 or w(s, s2) ≤ c2

ℓ0 if w(s, s1) > c1 and w(s, s2) > c2

(5.5)

where ℓ0 is the unknown label, and w(s, t) is the distance between s and t.

The idea of this verification is to recognize when the test sample s is into an overlapping

region by comparing the distance from s to its path’s nearest neighbor to the maximum

intraclass distance of the path’s class. When the distance from its neighbor is greater

than the intraclass distance, this indicates s is faraway from the path’s class and possibly

is really unknown. When the distance from its neighbor is smaller than the intraclass

distance, possibly s is in the influence of the path’s class (considering the two best paths)

and then it must be classified as the most probable class instead of unknown even when

R > T .

Despite the boundary images for simple cases (see Figure 5.9) of the OSOPFmc have

some sense, we did not obtain good results with this classifier in high-dimensional spaces.

See the statistical comparison in Table 5.6. In fact, its results are very similar to the ones

of the traditional classifiers, e.g., SVMMCBIN, therefore not handling the open-set nature

of the problems.

In the OSOPF2, defining a threshold based on the ratio of similarity scores instead of

the similarity score itself led to a good adaptation to the known classes aiming to avoid

the unknown ones. We believe that the use of the raw similarity score (the OPF’s cost
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Throughout this work, we presented the requirement of a bounded open space of

risk for open-set classification. Our solution to the open-set problem in fact creates a

bounded open space of risk. However, the external open space of risk is not so tight as it

would be according to our subjective analysis of the boundary images (simple cases; see

Figures 5.5g, 5.6g, and 5.7g). We believe that further reducing the external open space

of risk will improve the accuracy of unknown samples of the OSOPF2 in some open-set

problems.

A faraway test sample is classified as unknown by the OSOPF2 when the ratio R

between the cost of the best class and the cost of the second best class approaches 1.0.

For faraway test samples, R approaches 1.0 as both the cost of the best class and the

cost of the second best class are high. The ratio R also approaches 1.0 for a doubtful

test sample: when it is between two known classes. We must note that, compared to the

doubtful test samples, the ratio R for faraway test samples approaches 1.0 more slowly.

That is the cause why the external open space of risk is not so tight as the internal one.



Chapter 6

Conclusions

There is a lack of open-set classifiers in the literature. Usually, experiments are performed

considering that all classes of the problem are available classes for training, i.e., a closed-

set scenario. However, in real-world situations, the amount of classes during test is many

times larger than the known classes. That means that real systems must be able to

deal with unknown elements that appear only during the system use and not during its

development. In this work, we have two main contributions:

• the introduction of two new graph-based open-set classifiers extending upon the

original formulation of the closed-set Optimum-Path Forest classifier.

• two new evaluation measures to assess the quality of methods in multiclass open-set

classification problems and

To the best of our knowledge, the proposed evaluation measures are the first in the

literature for dealing with multiclass and open-set scenarios.

The two proposed open-set classifiers (OSOPF1 and OSOPF2) have the advantage

of being inherently multiclass (non-binary–based), while the state-of-the-art methods are

multiclass from binary. As more classes are available, multiclass-from-binary classifiers

get slower, while the proposed classifiers remain with the same efficiency.

Based on the results obtained with one of the proposed measures, we showed that

the proposed OSOPF2 is better than (or equivalent to) OSOPF1 and the baseline classi-

fiers evaluated (SVMMCBIN, SVMext
MCBIN, SVMDBCMCBIN, SVM1VSMCBIN, and OPF) for

several datasets: 15-Scene, letter , Auslan, Caltech-256, ALOI , and ukbench datasets.

We confirmed the superiority of the proposed method using the Analysis of Variance

(ANOVA) and the post-test Tukey “Honest Significant Differences” (HSD). As we can see

in Figures 5.5g, 5.6g, and 5.7g, only the proposed OSOPF2 is able to limit the open space

of risk [43].
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Future work will be dedicated to reducing the external open space of risk of the

OSOPF2. We refer to external open space of risk as the open space of risk that is not

among the training samples, i.e., the open space of risk outside the convex hull [15] of the

training samples. Note that, in our current implementation, the internal open space of

risk is already reduced.

Another important improvement for the OSOPF2 is to reduce the false unknown rate.

We note that all test samples in the overlapping regions are going to be classified as un-

known because the OSOPF2 classifies doubtful and faraway samples as unknown. Over-

lapping regions refers to the regions with some density of training samples of two or more

different training classes. The improvement is to identify if a test sample s is in an over-

lapping region and classify s as the most probable overlapping class instead of unknown.

It is not a trivial task in high dimensional spaces, as we could see in Section 5.4.

Another future work consists in using the proposed parameter optimization for the

OSOPF2 as a general open-set grid search procedure and investigating whether this novel

grid search procedure obtains better parameter estimation than the traditional grid search

for general classifiers in the open-set scenario.

It is also worth to investigate the use of the OSOPF2 for novelty detection. The novelty

detection refers to the problem of inferring new classes and aggregate them to the training

model when a substantial set of input samples classified as unknown is obtained [28]. As

the OSOPF2 creates a bounded open space of risk for each class, we believe it can be

somehow successfully applied to the problem of novelty detection.
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