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Abstract

In machine learning, classification problems were traditionally addressed by supervised learning

algorithms, which only use labeled data for training. However, labeled data in many problem

domains are really hard to collect, while unlabeled data are usually easy to collect. Also, in

machine learning, only unsupervised learning is capable to learn the topology and properties

of a set of unlabeled data. In order to do a classification using knowledge from labeled and

unlabeled data, it is necessary to use concepts from both supervised and unsupervised learning.

This type of learning is called semi-supervised learning, which has claimed to build better

classifiers than the traditional supervised learning in some specific conditions, because it does

not only learn from the labeled data, but also from the natural properties of unlabeled data as

for example spatial distribution.

Semi-supervised learning presents a broad collection of methods and techniques for classifi-

cation. Among them there is graph based semi-supervised learning, which model the problem of

semi-supervised classification using graph theory. One problem that arises from this technique

is the cost for training large data sets, so the development of scalable and efficient algorithms

for graph based semi-supervised learning is a interesting and promising problem to deal with.

From this research we developed two algorithms, one for graph construction using unsupervised

neural networks; and other for graph regularization using graph signal processing theory, more

specifically using FIR filters over a graph. Both solutions showed comparable performance to

other literature methods in terms of accuracy.
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Resumo

No aprendizado de máquina, os problemas de classificação de padrões eram tradicionalmente

abordados por algoritmos de aprendizado supervisionado que utilizam apenas dados rotulados

para treinar-se. Entretanto, os dados rotulados são realmente difı́ceis de coletar em muitos

domı́nios de problemas, enquanto os dados não rotulados são geralmente mais fáceis de recol-

her. Também em aprendizado de máquina só o aprendizado não supervisionado é capaz de

aprender a topologia e propriedades de um conjunto de dados não rotulados. Portanto, a fim

de conseguir uma classificação utilizando o conhecimento a partir de dados rotulados e não ro-

tulados, é necessário o uso de conceitos de aprendizado supervisionado tanto como do não su-

pervisionado. Este tipo de aprendizagem é chamado de aprendizado semi-supervisionado, que

declara ter construı́do melhores classificadores que o tradicional aprendizado supervisionado

em algumas condições especificas, porque não só aprende dos dados rotulados, mas também

das propriedades naturais dos dados não rotulados como por exemplo a distribuição espacial

deles.

O aprendizado semi-supervisionado apresenta uma ampla coleção de métodos e técnicas

para classificação, e um dos mais interessantes é o aprendizado semi-supervisionado baseado

em grafos, o qual modela o problema da classificação semi-supervisionada utilizando a teoria

dos grafos. Mas um problema que surge a partir dessa técnica é o custo para treinar conjuntos

com grandes quantidades de dados, de modo que o desenvolvimento de algoritmos escaláveis

e eficientes de aprendizado semi-supervisionado baseado em grafos é um problema muito in-

teressante e prometedor para lidar com ele. Desta pesquisa foram desenvolvidos dois algorit-

mos, um para a construção do grafo usando redes neurais não supervisionadas e outro para a

regularização do grafo usando processamento de sinais em grafos, especificamente usando fil-

tros de resposta finita sobre o grafo. As duas soluções mostraram resultados comparáveis com

os da literatura.
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Chapter 1

Introduction

Machine Learning, or Pattern Recognition, is a subarea from the Intelligent Systems (IS) or

Artificial Intelligence (AI) area [32]. The task of machine learning is to make the computers do

things for which they were not explicitly designed to.

Traditionally machine learning can be divided in three types: supervised learning, unsuper-

vised learning and reinforcement learning.

• Supervised Learning: the objective is to predict the type of certain group of patterns. In

order to accomplish that it is already known some subset of patterns with its correspond-

ing types. The idea is to use these already known types and the corresponding patterns

for learning a rule that let us know the type of other patterns, from which we do not know

their types. These types can be labels or numbers. Supervised Learning can do two task:

Classification (when the types are labels) and Regression (when the types are numbers).

Supervised Learning is widely use in Identification and Recognition Systems [13].

• Unsupervised Learning: the objective is to find relations among a group of patterns, and

organize them by their topological distribution in the patterns space. The more common

applications of unsupervised learning are clustering, outlier detection and dimensionality

reduction [13].

• Reinforcement Learning: the objective is to maximize the rewards obtained from doing

some specific action in some specific environment. Many applications of reinforcement

learning are used in distributed agents and robotic systems [44].

Beyond these three types of machine learning there exists another one which is a combina-

tion of supervised and unsupervised learning, called Semi-Supervised Learning (SSL). It can be

applied in classification, dimensionality reduction, clustering, etc [57, 7]. In Semi-supervised

Learning for classification, the learning algorithms take advantage of the unlabeled data that a

1



2 Chapter 1. Introduction

Figure 1.1: A sample data set, with two labeled data-points.

traditional supervised classifier can not use. In Figure 1.2, one can see a simple comparison of

a semi-supervised learning algorithm with a supervised algorithm (KNN) over the data set of

Figure 1.1. As the supervised algorithm can not use the unlabeled data-points to learn about

the distribution or topology of the data set it can have the result shown in Figure 1.2(b) while

the semi-supervised algorithm shows a better looking result that respects the data distribution

(Figure 1.2(a)).

In most real problems, unlabeled samples are easier to get and are available in larger quan-

tities than their labeled counterparts. Sometimes obtaining labeled data is quite difficult, it can

require help from a specialist in the corresponding knowledge area, which can be very expen-

sive. Therefore, semi-supervised learning algorithms that learn from the labeled (in very small

quantities) and unlabeled data (in big quantities) can have better performance than traditional

supervised algorithms in the same conditions. That conditions happen when it is not possible

to obtain enough quantities of labeled data, but obtaining unlabeled data is quite easy. These

conditions can be called as semi-supervised learning conditions for classification [57, 58, 55].

The semi-supervised learning area for classification has five groups of algorithms: Mix-

ture Models, Co-Training, Self-Training, Semi-supervised Support Vector Machines and Graph

based methods; the first four groups are adaptations of supervised algorithm (they will be briefly

described in chapter 2) and just the fifth is semi-supervised by nature [57, 58, 55]. This master

dissertation is focused on Graph based Semi-supervised learning. The graph based methods use
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(a)

(b)

Figure 1.2: (a) Semi-supervised learning solution (Harmonic Regularizer). (b) Supervised

learning solution (1NN algorithm).

a graph representation of the problem which give us a powerful backbone theory to use. Also

the graph signal processing theory, an emerging theory that use the traditional signal processing

area applied to graphs [39, 41], can be very useful in this problem.
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In this Master dissertation, we propose two different methods; a graph construction tech-

nique based in an unsupervised learning neural network, and a regularization algorithm with a

graph signal processing approach.

1.1 Motivation

Nowadays, machine learning applications are everywhere. We use them several times a day

without knowing it. Examples of machine learning applications are spam filters, web search,

face detection, etc. Also new possible applications are very promising in the software industry,

turning them into rising Start-Ups. The growing numbers of machine learning applications is

partially due to the rising interest in the area by new researchers, and because many existing

problems can have solutions modeled with machine learning approaches.

Semi-supervised learning can help a great number of machine learning applications:

• Text categorization, in applications of spam detection. Labeled samples can be hard to

obtain, because not all users like to keep labeling the mails they got as spam or not spam.

But unlabeled samples are as common as the quantity of mails received by the user. So

the semi-supervised learning condition is fulfilled.

• Natural language parsing, in order to recognize text. It is imperative to train a good parser

algorithm, for this is needed pairs of sentences know as treebanks, these treebanks are

built by linguistic specialists. Since it takes considerable time to build them, treebanks

are difficult and expensive to obtain in large quantities. But the unlabeled samples for

these problems (sentences) are just everywhere. Again this problem satisfy the semi-

supervised learning condition.

• Video Surveillance, in this problem the samples are the video frames, and the labels are

the kind of objects that appear in each frame. Labeling all the video frames is a slow and

tedious task, so the number of labeled samples is very low, but the unlabeled samples are

a lot, because video cameras can record all day long.

• 3D protein’s structure prediction, the DNA sequences are the data-points in this specific

problem, and the labels are the 3D protein’s structure. For a specialist in the domain, this

task could take months, so labeled samples are very difficult to find, but there are a lot of

DNA data sets available for research.

There are many more applications beyond the ones mentioned above. As it was said before,

any problem that satisfies the semi-supervised learning condition is ready to be solve with a

semi-supervised approach. Also, Graph based methods are good in classification tasks where
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patterns that are very similar between them belong to the same class, and those that are very

different tend to be of different classes. This supposition is reasonable for many real problems.

1.2 Problem definition

The problem to be addressed in this master dissertation is:

Given a data set X of l + u patterns (|X| = l + u), where ∀ x ∈ X , x ∈ R
n (X ⊂ R

n),

with l labeled points and u unlabeled points (l ≪ u). It is also given a set Yl of labels of size l

(|Yl| = l), Yl ⊂ Y , where Y is the set of all the labels of X (including the known labels Yl and

the unknown labels Yu), |Y | = l + u, ∀ y ∈ Y , y ∈ {0, 1}. We aim to predict the labels’ set Yu

(|Yu| = u), Yu ⊂ Y and Y ∁
l = Yu (Yl ∪ Yu = Y ) (for each x ∈ X exist only one y ∈ Y ). As

premise for this prediction, ∀ xi, xj, xh ∈ X if xi and xj have the same labels (that is yi = yj),

also if xi and xh have different labels (yi 6= yh), then the similiarity of xi and xj is higher than

the similarity of xi and xh.

The similarity measure is a function s(d, xa, xb) ∈ [0, 1], if it is 1 (or the maximum possible

value depending of the similarity measure) then xa = xb and 0 if the opposite happens; d is

a distance function, the similarity has to be based in a distance function so if d(xa, xb) = 0

then s(d, xa, xb) = 1. Thus if yi = yj and yi 6= yh then s(d, xi, xj) > s(d, xi, xh) (also

d(xi, xj) < d(xi, xh)).

In order to accomplish this prediction of labels, it is going to be used the semi-supervised

learning with graphs theory, for developing a method that is effective and scalable to solve this

problem. Using the aid of graph signal processing theory and unsupervised neural networks.





Chapter 2

Semi-Supervised Learning

Semi-Supervised Learning (SSL) is a hybrid between supervised learning and unsupervised

learning, where labeled data is exploited together with unlabeled data in order to do classifi-

cation, regression, clustering and dimensionality reduction. This dissertation focus on semi-

supervised learning for classification. In semi-supervised classification, the input data set X

can be of three different types:

• The Labeled Data set Xl = {x1, x2, ..., xl} of size l (|Xl| = l); whose labels Yl are al-

ready known before the semi-supervised learning takes place ((Xl, Yl) = {(x1, y1), (x2, y2),

..., (xl, yl)}).

• The Known Unlabeled Data set Xu = {xl+1, xl+2, ..., xl+u} of size u (|Xu| = u); whose

labels Yu are not known before the semi-supervised learning takes place ((Xu, Yu) =

{(xl+1, yl+1), (xl+2, yl+2), ..., (xl+u, yl+u)}). It is supposed that these labels have to be

discovered by the semi-supervised learning algorithm. The Xu set is a numerous set, and

this entire set is known before the algorithm takes place.

• The Unknown Unlabeled Data set Xk = {xl+u+1, xl+u+2, ..., xl+u+k} of size k (|Xk| =

k); whose labels Yk are not known before the semi-supervised learning takes place,

like the data-points themselves ((Xk, Yk) = {(xl+u+1, yl+u+1), (xl+u+2, yl+u+2), ...,

(xl+u+k, yl+u+k)}). This set becomes known only after the learning.

Semi-Supervised learning for classification can be of two types depending of its input data,

transductive or inductive. The description and differences between these two types are explained

below.

7
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2.1 Transductive Learning

Transductive learning works with the (Xl, Yl) and Xu sets as inputs. It trains a function f :

R
n −→ L, where L is the label set, for binary classification L = {0, 1}. The parameters of f

are learned from Xl ∪ Xu and Yl in order to predict the labels Yu of the Xu set, respecting the

already known Yl labels [57]. The process is shown in Figure 2.1. The transductive learning can

be divided in two steps, one for placing the data or build some structure from it (initialization),

and other for the labeling process (transductive classification).

Initialization

(Training)

Transductive

Classification

(Training)

✲ ✲ ✲

(Xl, Yl)
Xu

(Xl, Yl)
Xu

(Xu, Yu)

Figure 2.1: Transductive Learning Process.

2.2 Inductive Learning

Inductive learning works with (Xl, Yl), Xu and Xk sets as inputs at different phases of the pro-

cess. It trains a function f : Rn −→ L. It learns f from Xl ∪ Xu and Yl, in the training process

it discover the labels Yu (Transductive Learning), and then it can do the inductive step, making

predictions on future data Xk, discovering the labels of Yk. It is assumed that the elements of

set Xk can be analyzed one by one, and k is not known [57]. Figure 2.2 shows the inductive

learning process. The semi-supervised inductive learning needs a transductive learning before

it can work. The inductive learning can vary its learning parameters while it its classifying new

data-points x (x ∈ Xk), this is why it is called learning.

Initialization

(Training)

Transductive

Classification

(Training)

Inductive

Classification

(Induction)

✲ ✲ ✲ ✲

(Xl, Yl)
Xu

(Xl, Yl)
Xu

(Xu, Yu) (Xk, Yk)

Figure 2.2: Inductive Learning Process.
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2.3 Semi-supervised methods

The semi-supervised learning for classification literature categorize all of its methods in five

groups, regardless if they are inductive or transductive, see Figure 2.3. Semi-supervised algo-

rithms make assumptions about the distribution and topology of the data related to each label.

That is one can assume that the data-points related to one specific class have some properties

in common, the assumption are the properties that are assumed to be true for each problem.

Generally semi-supervised learning methods, in order to be applied to a specific problem, the

involved data set should meet the following three assumptions [7]:

• The semi-supervised smoothness assumption. If two points x1, x2 in a high-density

region are close, then the corresponding labels y1, y2 should be equal.

• The cluster assumption. If x1 and x2 are in the same cluster, they should have equal

labels.

• The manifold assumption. The high dimensional data lie on a low dimensional mani-

fold.

Each semi-supervised method type assumes some specific assumptions related to those men-

tioned above.

Semi Supervised Learning methods

Mixture Models 
and EM Algorithm

Transductive Support 
 Vector Machines

Graph based
 Methods

Self-Training Co-Training

Figure 2.3: Semi-supervised methods.

2.3.1 Self-training

This is a semi-supervised adaptation from a supervised algorithm. The idea is to train a tradi-

tional supervised classifier fst with the available labeled data Xl. After that it is picked some

subset Xs from Xu (Xs ⊂ Xu). Then Xs is classified by fst, after that fst is trained again with

the new labeled data Xl ∪ Xs. Later a new unlabeled subset is picked from Xu − Xs, and it is
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classify by the new fst. The process is repeated until there is no more unlabeled data [57, 37, 53].

The assumption of self-training is that its own predictions are relatively correct, at least the

high confidence ones; for example, this would be the cases when the data forms highly separable

clusters (cluster assumption).

2.3.2 Co-training

It is a wrapper method (as Self-training) that adapts a supervised classification algorithm into

a semi-supervised one. First each data point’s descriptor has to be split in two parts which we

are going to call as representations so each x ∈ X would be expressed as x = [x(1), x(2)], be-

ing x(1) its first representation and x(2) its second representation. Also there are two classifiers

f (1) and f (2), f (1) would work with the first representation of the data-points and f (2) would

work with the second representation of the data-points. Each classifier is trained with Xl, after

that they classify the data in Xu (using its corresponding data representation). then each clas-

sifier picks its k most confident predictions (Xf (1) and Xf (2)). Then Xf (1) is trained again with

Xl ∪ Xf (2) and Xf (2) with Xl ∪ Xf (1) . The process is repeated until there is no more unlabeled

data [57, 26, 22, 6, 28].

Co-training makes the following assumptions: each data point can be divided in two co-

herent different representations; each representation alone is sufficient to make a good classifi-

cation; and the two representations are conditionally independent given the class label, that is

if we know the true label from one representation, knowing the other representation does not

change anything.

2.3.3 Mixture Models and EM

This is the Semi-supervised adaptation of the traditional Mixture Models combined with an ex-

pectation maximization algorithm. It is perhaps the oldest semi-supervised learning method in

the literature. It assumes a generative model p(x, y) = p(y)p(x|y), where x is a data-point , y

the corresponding label and p(x|y) is an identifiable mixture distribution. With big quantities

of unlabeled data, the mixture components can be identified. Then with just one or very few

labeled points per class, we can fully determined the mixtures distributions [57, 10, 36].

The assumption behind Semi-supervised Mixture Models is that the data-points actually

come from the mixture model distribution, where the prior probability p(y), the conditional

probability p(x|y) and the number of components are the real ones (manifold assumption).



2.3. Semi-supervised methods 11

2.3.4 Semi-supervised Support Vector Machines

These are the semi-supervised variation of the traditional supervised support vector machines.

They were originally call Transductive Support Vector Machines (TSVMs), but now are com-

monly called Semi-supervised Support Vector Machines (S3VMs). S3VM uses labeled and

unlabeled data, to maximize the geometric margin not just by using the labeled data Xl but

also the unlabeled data Xu. S3VM finds the hyperplane that separates better the classes of Xl

and at the same time that best divides Xu, which is not the same one of the supervised ver-

sion [51, 3, 8]. See Figure 2.4 and 2.5 for a comparative example.

Figure 2.4: Traditional Support Vector Machine (SVM) decision boundary.
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Figure 2.5: Semi-supervised Support Vector Machine (S3VM) decision boundary.

The Semi-supervised Support Vector Machines” assumption is that the classes are well sep-

arated, and that the decision boundary falls into a low density region in feature space (cluster

assumption).



Chapter 3

Semi-Supervised Learning with Graphs

Semi-Supervised Learning algorithms with graphs are transductive by nature, but there are also

algorithms for inductive classification [57, 58]. The idea is to build a graph G = (V, E) from

the input data-points (Xl ∪ Xu, depending of the type of graph the number of vertices would be

|V | = l + u), and then propagate the information from the labeled data Xl to the unlabeled data

Xu over the graph (transductive learning). Figure 3.1 shows an already built graph, propagating

the information of its vertices.

Figure 3.1: Label propagation along the graph, from the labeled data (x1 and x9) to the unlabeled

data.

13
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Most semi-supervised graph based methods have three steps:

• Graph Construction, done from the input data-points.

• Graph Regularization or Transductive Classification, when the labels are propagated

along the graph, from the labeled to the unlabeled data.

• Graph Induction or Inductive Classification, when new data-points are classified one by

one.

The schemes of Transductive learning and Inductive learning in Semi-supervised learning

with graphs are shown in Figures 3.2 and 3.3 respectively. In this work, we focus just in trans-

ductive learning with graphs.

Inicialization

(Graph Construction)

Pseudo-Classification

or Training

(Graph

Regularization)

✲ ✲ ✲

(Xl, Yl)
Xu

(Xl, Yl)
Xu

(Xu, Yu)

Constructed

Graph

G = (V, E)

Regularized

Graph

G′ = (V, E)

Figure 3.2: Transductive Learning with Graphs.

Inicialization

(Graph

Construction)

Training

(Graph

Regularization)

Classification

(Induction)
✲ ✲ ✲ ✲

(Xl, Yl)
Xu

(Xl, Yl)
Xu

(Xu, Yu) (Xk, Yk)

Constructed

Graph

G = (V, E)

Regularized

Graph

G′ = (V, E)

Figure 3.3: Inductive Learning with Graphs.
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3.1 Graph based method’s assumption

The Graph based methods assume that if two data-points are close to each other, they should be

of the same class, and if they are far away, they should be in different classes (semi-supervised

smoothness assumption). In other words, it means that labels’ variation should be smooth with

respect to the built graph. That is, in a similarity graph, if two vertices are connected with a

strong edge, large weight, these two vertices tend to have the same label. Also if there exists an

edge with a very low weight, in contrast with many of the other edges, the vertices adjacent to

it should have different labels [57].

Spectral graph theory give us a precise notion of smoothness over a graph. In order to show

that, it is necessary to first introduce the graph Laplacian. Given a graph G = (V, E) represented

by its weighted matrix W of size l + u × l + u, the unnormalized graph Laplacian ∆ is given

by Equation 3.1, where the diagonal matrix D of size l + u × l + u is shown in Equation 3.2.

∆ = D − W (3.1)

Dii =
l+u∑

j=1

wij, i = 1, 2, ..., l + u (3.2)

Also there is a normalized version of the graph Laplacian, which is shown in Equation 3.3,

where I is the identity matrix.

∆′ = D−1/2∆D−1/2 = I − D−1/2WD−1/2 (3.3)

We have just introduced the graph Laplacian and its normalized version. Now lets talk about

eigenvectors and eigenvalues. A vector φ is an eigenvector of a square matrix M if Equation 3.4

holds, where λ is the associated eigenvalue. Also if φ is an eigenvector, cφ is another eigenvector

of M for any constant c 6= 0. But we will focus on unit length eigenvectors (‖φ‖ = 1).

Mφ = λφ (3.4)

Spectral graph theory is concerned with the eigenvalues and eigenvectors of the graph.

These pairs of eigenvectors and their corresponding eigenvalues are called graph spectrum.
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In spectral graph theory the graph is commonly represented by its unnormalized Laplacian ∆

or its normalized version ∆′. The unnormalized Laplacian presents the following properties:

• A graph of with l + u vertices would have a graph spectrum of l + u eigenvalues and

eigenvectors pairs (λi, φi)
l+u
i=1 . Some eigenvalues can have the same value, and all the

eigenvectors are orthogonal between them, that is φ⊤
i φj = 0 for any pair i 6= j.

• The Laplacian matrix ∆ can be decomposed in a weighted sum of outer products of its

eigenvectors, as Equation 3.5 shows.

∆ =
l+u∑

i=1

λiφiφ
⊤
i (3.5)

• The Laplacian ’s eigenvalues are non-negative real numbers, and can be sorted as 0 =

λ1 ≤ λ2 ≤ ... ≤ λl+u.

From these we can say that if a graph has k connected components it also has k eigenvalues

of zero value (λ1 = ... = λk = 0). Also the corresponding eigenvectors are constant on

individual connected components and zero else where.

3.2 Graph construction

The first step in the semi-supervised learning process is the graph construction. The graph is

built from the input data-points; it has to represent the similarities among the data-points, de-

scribing its distribution and topology in some way. The graphs can be completely connected

or sparse. The literature points out that in practice completely or fully connected graphs have

worse results than sparse graphs, also the sparse graphs are cheaper in space and faster in train-

ing time. The edges weights of the graph have to represent the similarity between the vertices.

In sparse graphs the edges can have no weight, because one can assume that each vertex con-

nects only with the vertices that have some high similarity with it.

In most graph construction algorithms, a graph G = (V, E) is build from Xl and Xu, where

each x ∈ Xl ∪ Xu becomes a vertex v ∈ V , and the weight wij of each edge eij ∈ E adjacent

to the vertices vi and vj represents the similarity between xi and xj (the corresponding labels

for xi and xj would be yi and yj).

The most used graphs in semi-supervised learning with graphs are:
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There are also more specialized construction algorithms in the literature that generate other

type of graphs [52, 1, 12, 11].

3.2.4 Similarity Measures in Graphs

In this context a similarity measure tells if two vertices are similar to each other. If it is close

to 1 then the vertices should be very similar (if it is 1 the vertices are exactly equal), and if it is

close 0 then the vertices should be very different (see section 1.2). The similarity measure in a

weighted graph can be of different types. The two most common ones in the literature are:

• exp-weighted graphs; these graphs use as weights the values expressed by the exponential

function of Equation 3.6, where the weight wij between the vertices i and j is a continuous

value between 0 and 1, d(i, j) is a distance function (popularly the Euclidean distance)

between data-points i and j, and σ is the hyper-parameter that controls the decay rate of

the exponential function.

wij = e
−d(i,j)2

σ2 (3.6)

• tanh-weighted graphs; these graphs use as weights the values expressed by the hyperbolic

tangent function of Equation 3.7, where σ1 and σ2 are hyper parameters that control the

function’s slope and cut off, respectively. If d(i, j) ≫ σ2 then wij ≈ 0, and if d(i, j) ≪ σ2

then wij ≈ 1.

wij =
tanh(σ1(d(i, j) − σ2)) + 1

2
(3.7)

3.3 Graph regularization

Transductive learning in Graph based Semi-supervised learning is also called as graph regular-

ization. The idea is to propagate the labels from the labeled vertices to the unlabeled vertices,

respecting the Semi-supervised learning with graphs assumption. We look for a function f

(f : V → R) over the graph that correctly assign labels to all the vertices, respecting two

conditions:



3.3. Graph regularization 19

• Labeled data have to remain with the same label at the end of the regularization step,

in other words minimize a loss function that sternly penalize the variation of labels of

labeled data, after and before the regularization step.

• Labels’ transitions over the graph have to be smooth (as the graph based methods as-

sumption says), minimizing an energy function (the regularizer) over the graph (example:

R(f) =
∑

eij∈E wij(f(xi) − f(xj))
2) ; that should keep vertices connected by high-

similarity edges with the same label [57, 58, 55]. If two adjacent vertices have different

labels, the distance between them has to be the largest possible one. In a similarity graph,

this edge should have the smallest possible weight, and by this if an edge has a high

weight, the adjacent vertices should have the same label.

One interpretation of the graph regularization step is as the solution of the minimization

problem of Equation 3.8. Most of Graph based Semi-supervised Learning are variations of this

equation.

arg min
f






loss function
︷ ︸︸ ︷

Q(f) + R(f)
︸ ︷︷ ︸

regularizer




 (3.8)

Another way to see the regularization process is as a special case of the Mincut prob-

lem [4, 5], where, given a similarity graph G = (V, E), we want to find the edges that have

the smallest values, in order to delete them and divide the graph in two different connected

components. And so the vertices within the same connected component should have the same

label, and the vertices in different connected components should have different labels.

The literature presents many ways to carry out the regularization. Like the harmonic regular-

izer [57, 56], other methods are of iterative nature. They use label propagation algorithms that

would converge to a solution in a determined number of iterations, but this could take a while

or never happen [58, 27]. In this work, we do not examine iterative label propagation algo-

rithms because of its time consuming nature. Following, we present two classical regularization

methods from the literature.

3.3.1 Harmonic regularizer

A Harmonic function has the same values as given labels on the labeled data, and the value as-

signed to each unlabeled vertex is the weighted average of its adjacent vertices’ values (weighted

average property), see Equation 3.9.
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f(xi) = yi, i = 1, 2 ... l.

f(xi) =

l+u∑

j=1

wijf(xi)

l+u∑

j=1

wij

, i = l + 1, l + 2 ... l + u.

(3.9)

The Harmonic regularization scheme and the loss function minimization are shown in Equa-

tion 3.10, being the first part of the Equation the loss function and the second one the regularizer.

As f can accept real values in between −1 and 1, being −1 one class and 1 the other (thresh-

olding at zero) [57, 56].

arg min
f :f(x)∈R

∞
l∑

i=1

(yi − f(xi))
2 +

l+u∑

i,j=1

wij(f(xi) − f(xj))
2 (3.10)

With the graph Laplacian Equation 3.10 can be redefined as is shown in Equation 3.11.

arg min
f :f(x)∈R

∞
l∑

i=1

(yi − f(xi))
2 + f⊤∆f (3.11)

If the graph Laplacian matrix is redefined as in Equation 3.12, with labeled (l) and unla-

beled (u) data-points well organized, and solving the optimization Equation on 3.11, it can be

obtained the Equation 3.13, where f is directly defined in closed form.

∆ =

[

∆ll ∆lu

∆ul ∆uu

]

(3.12)

fl = Yl

fu = −∆−1
uu ∆ulYl

(3.13)

3.3.2 Global and Local consistency

The methods based in global and local consistency use a normalized version of the Laplacian

in their regularizer. Equation 3.14 shows the normalized regularizer form of the regularizer of

Equation 3.10 [54].
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1

2

l+u∑

i,j=1

wij




f(xi)√

Dii

− f(xj))
√

Djj





2

= f⊤D−1/2∆D−1/2f = f⊤∆′f (3.14)

Then the minimization scheme with the loss function would be as in Equation 3.15.

arg min
f :f(x)∈R

∞
l∑

i=1

(yi − f(xi))
2 + f⊤∆′f (3.15)

3.4 Graph Methods for Fast Computation

As most Graph based Semi-supervised algorithms need to process the whole graph (such as

calculating the graph Laplacian), they tend to be very expensive in terms of memory space, pro-

cessing time and complexity. Also the graph construction step (depending of the type of graph)

can be a very slow process. These problems are reflected even in not too large data sets (of no

more than 2000 data-points).

Graph representation in the data structure is very important when thinking about memory

space. It is very common to use matrices (sparse matrices when the graph is not a completely

connected one), because it facilitates the graph Laplacian calculations, as it is represented with

another matrix. Other expensive steps, in terms of memory space and processing time, are the

matrix inversions, matrix multiplications and matrix spectral decomposition. For example, if a

semi-supervised classification problem has a data set of ten thousand data-points, there would

be matrices of 10000 × 10000 (one hundred million elements!), even if we are working with

sparse matrices the number of elements of this matrix is just excessive.

In order to avoid these expensive steps (see Figure 3.5) in the semi-supervised learning with

graphs process, the research community has put special attention in graph methods for fast com-

putation [55, 17, 27, 14, 45]. We are going to present the most relevant graph methods for fast

computation in the literature, describing the mathematical nature and the algorithmic procedure.
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Expensive Steps in Graph
 based Semi Supervised Learning

Whole Graph 
 Memory Storage

Matrix 
 Multiplication

Matrix 
 Inversion

Explicit Graph
 Construction

Graph Laplacian
 Calculation

Matrix Spectral 
 Decomposition

Figure 3.5: Expensive Steps in Graph based SSL.

3.4.1 Krylov Subspace Iteration and MINRES Algorithm

This is a fast computation method that minimizes the error function E(Yu) (regularization

scheme) of Equation 3.16 [27].

E(Yu) =
1

2




∑

i,j∈Xl

wij(yi − yj)
2 + 2

∑

i∈Xu,j∈Xl

wij(yi − yj)
2 +

∑

i,j∈Xu

wij(yi − yj)
2



 (3.16)

Using matrix notation, Equation 3.16 can be rewritten as in Equation 3.17. Differentiating

and equating to zero Equation 3.17 leads to the closed form solution shown in Equation 3.18 as

a system of linear equations.

E(Yu) = Y ⊤
u ∆uuYu − 2Y ⊤

u WulYl + Y ⊤
l ∆llYl (3.17)

∆uuYu = WulYl (3.18)

Directly solving the system in Equation 3.18 would lead to a O(u3) complexity algorithm.

One way to reduced this complexity is by using the fixed point updates of Equation 3.19 (re-

ducing the complexity to O(u2) in the average case), but it is possible that this update scheme

would take too many iterations to converge.

Y t+1
u = D−1

uu [WuuY (t)
u + WulYl] (3.19)
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Equation 3.17 can be solved by approximating with an iterative method, like the MINRES

algorithm [35], which uses Krylov subspace iterations to find the solution. In Krylov subspace

methods is used the history of what has been already learned in every iteration to make an ap-

proximation to the solution of the system of linear equations, projecting some M -dimensional

space into a lower dimensional space [38, 42, 27].

Given the graph Laplacian matrix and the vector b = WulYl, the corresponding Krylov

matrix is denoted in Equation 3.20.

Kr(t) = [b ∆uub ∆2
uub ... ∆t

uub] (3.20)

To find an estimate of Y (t)
u at some iteration t, it can be done a projection onto the Krylov

subspace (the spaces spanned by the column vectors of matrix Kr(t)). As t increases in ∆t
uub,

it is converging to the eigenvector corresponding to the largest eigenvalue of ∆uu. Kr is a

poorly conditioned matrix, thus the algorithm uses a well-conditioned orthogonal matrix Q(t) =

[q(1) · · · q(t)] that spans the same space as the matrix Kr(t) (of t columns). In order to find this

matrix Q, we can use the Gram-Schmidt process, with the recurrence of Equation 3.21, where

β(t) is a normalizing constant at iteration t and α(t) is given by Equation 3.22.

β(t)q(t+1) = ∆uuq(t) − β(t−1)q(t−1) − α(t)q(t) (3.21)

α(t) = q(t)⊤
∆uuq(t) (3.22)

Equation 3.22 is the Lanczos iteration [25], which produces a Schur decomposition (Equa-

tion 3.23) [34], where H̃(t) is a tridiagonal Hessenberg matrix (Equation 3.24).

∆uuQ(t) = Q(t+1)H̃(t) (3.23)

H̃(t) =













α(1) β(1) 0 · · · 0

β(1) α(2) β(2) · · · 0
...

...
...

...
...

0 · · · 0 β(t−1) α(t)

0 · · · 0 0 β(t)













(3.24)
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In order to solve the system of linear equations of Equation 3.18, it is used the MINRES

algorithm [35]. At each step t, it is approximated the solution by the vector in the Krylov

subspace at iteration t that minimizes the norm of r(t) = b − ∆uuY (t)
u . As Y (t)

u is in the Krylov

subspace, it can be rewritten as a linear combination of the columns of the Krylov matrix Kr(t),

like in Equation 3.25, so now the objective is to find the vector c that reduces this expression.

arg min
c∈Rt

‖∆uuKr(t)c − b‖ (3.25)

Since Q(t) spans the same space as Kr(t), we use a linear combination of the columns of

Q(t), so the least square problem now is as the one in Equation 3.26.

arg min
c∈Rt

‖∆uuQ(t)c − b‖ (3.26)

And from Equation 3.23, Equation 3.26 can be rewritten as Equation 3.27, So now the

problem is just of (t + 1) × t dimensions.

arg min
c∈Rt

‖Q(t+1)H̃(t)c − b‖ (3.27)

Q(t) is orthonormal, so Equation 3.27 can be rewritten as Equation 3.28.

arg min
c∈Rt

‖H̃(t)c − Q(t+1)⊤
b‖ (3.28)

The algorithm starts the iterations with β(0) = 0, q(0) = 0 and q(1) = b/‖b‖, then Q(t+1)⊤
b =

‖b‖e1, where e1 is a unit vector with one in its first entry. So we have a least-squares problem

at each iteration t as shown in Equation 3.29.

arg min
c∈Rt

‖H̃(t)c − ‖b‖e1‖ (3.29)

Finally the current estimation t of Yu is given by Y (t)
u = Q(t)c. Summarizing the MINRES

algorithm at each iteration t = 1, 2, 3... calculates the parameters of Equation 3.29 (α(t) and β(t)

for H̃(t)) and also Q(t), solves a least square problem of size (t+1)× t and then calculates Y (t)
u ,
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as is shown in Algorithm 1.

Algorithm 1 MINRES Algorithm for Krylov Subspace Iteration

Require: it ∈ N, ∆, W, Yl

β(0) ⇐ 0, q(0) ⇐ 0, q(1) ⇐ b/‖b‖
t ⇐ 1
while t ≤ it do

v ⇐ ∆uuq(t)

α(t) ⇐ q(t)⊤
v

v ⇐ v − β(t−1)q(t−1) − α(t)q(t)

β(t) ⇐ ‖v‖
q(t+1) ⇐ v/β(t)

c ⇐ leastSquareOptimization(‖H̃(t)c − ‖b‖e1‖)
Y (t)

u ⇐ Q(t)c
t ⇐ t + 1

end while

return Y (t)
u

3.4.2 Manifold Learning using Isomap and Nystrom approximate spec-

tral decomposition

This method uses a graph in order to discover the topological relations of the input data and

maps them into geodesic distances, which later would be treated as euclidean distances, by ap-

plying a KNN classifier in the transformed space, and by this, propagate the labels from the

labeled data to the unlabeled data. This technique of non linear dimensionality reduction is

called Isomap or Isometric Feature Mapping [45, 49]. The idea behind the algorithm is to use

the Isomap reduction to transform the data and then apply a traditional KNN classifier; so each

unlabeled vertex would have the label of the labeled vertex that has the shortest path to it.

The Isomap method has three steps. First we build an undirected neighborhood graph from

all the labeled and unlabeled data-points. This step follows the classical semi-supervised learn-

ing building graph procedures, but instead of similarity as the edge weights it would be just

the distance between the two vertices as the edge weight. Also this graph has to be an ǫ-graph

or a k-graph. The second step computes a (l + u) × (l + u) matrix of geodesic distances DG

for all pair of nodes. By geodesic distance we refer to the shortest paths from one vertex to all
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the other vertices. Then the matrix DG is centered as the procedure in Equations 3.30 and 3.31

shows, where Iij is the identity matrix of size (l + u) × (l + u).

τ(DG) = −HSH/2 (3.30)

Sij = DG
2
ij

Hij = Iij − 1
(l+u)

(3.31)

Finally the last step of Isomap takes the centered matrix τ(DG) and gets its spectral decom-

position. By this the new low-dimensional data representation X ′ (of p number of dimensions),

would be given by Equation 3.32, where Σp is the diagonal matrix storing the top p eigenvalues

of τ(DG) (Σp1/2
ij =

√

Σp
ij for 0 < i, j < l + u + 1), and Up are the associated eigenvectors

(τ(DG)Up
i = Up

i Σp
ii for 0 < i < l + u + 1).

X ′ = Σp1/2Up⊤ (3.32)

In order to speed up the Isomap reduction method, it is necessary to apply an approximate

spectral decomposition in its third step, where the τ(DG) matrix can be very large and expensive

to decompose in its eigenvectors and eigenvalues. The Nystrom method can calculate approxi-

mate spectral decomposition of a matrix in an acceptable computational cost [2, 15, 30]. If the

τ(DG) matrix is randomly sampled in r ≪ l + u columns, then we have the matrix τ(DG)s of

l + u × r size. As τ(DG) is a symmetric positive semi-definite matrix it can be rearranged as in

Equation 3.33, where M are the intersections of those r random sampled columns.

τ(DG) =

[

M S⊤
21

S21 S22

]

τ(DG)s =

[

M

S21

]

(3.33)

From τ(DG)s, the eigenvalues (ΣM ) and eigenvectors (UM ) of matrix M , can approximate

the eigenvalues and eigenvectors of τ(DG) as Equations 3.34 and 3.35 shows. Σ̃ and Ũ are

the approximated eigenvalues and eigenvectors of τ(DG) respectively, and Σ+
M is the pseudo

inverse of ΣM .

Σ̃ =

(

l + u

r

)

ΣM (3.34)

Ũ =

√

r

l + u
τ(DG)sUMΣ+

M (3.35)
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The Isomap method is an non-linear dimensional reduction method, which combined with

the KNN classifier in the transformed space, accomplishes a transductive learning task using

graph. And sped up with the Nystrom approximation it can be seen as a graph based SSL

algorithm for fast computation. In our Transductive Graph based SSL framework (see Fig-

ure 3.2), this method has a different graph construction approach, since it has to use distances

instead of similarities (for closest paths calculations) and can only use sparse graphs, so then

the Graph regularization would start in the second step of the Isomap process (see Algorithm 2).

Algorithm 2 Isomap with Nystrom Algorithm

Require: W, Yl, p, r ”W represents a sparse graph”

DG ⇐ geodesicDistances(W )
τ(DG) ⇐ centerMatrix(DG)
(Σ̃, Ũ) ⇐ nystromApproximation(τ(DG), r)
(Σp, Up) ⇐ selectTop(Σ̃, Ũ , p) ”Select highest eigenvalues and its corresponding eigenvec-

tors”

X ′ ⇐ Σp1/2Up⊤

Yu = KNN(X ′, Yl)
return Yu

3.4.3 Eigenvectors from the Smoothness Operator of the Graph

In this method it is used as regularization scheme the expression of Equation 3.36 [14, 40],

where λ is a hyper-parameter of the algorithm.

arg min
f∈Rl+u

∑

i∈Xl

λ(f(xi) − yi)
2 +

1

2

∑

i,j∈X

wij(f(xi) − f(xj))
2 (3.36)

In matrix notation Equation 3.36 can be rewritten as Equation 3.37, where Λ is a diagonal

matrix where Λii = λ for labeled data-points and Λii = 0 for unlabeled data-points.

arg min
f∈Rl+u

(f − Yl)
⊤Λ(f − Yl) + f⊤∆f (3.37)



28 Chapter 3. Semi-Supervised Learning with Graphs

The closed form solution for Equation 3.37 is in Equation 3.38. This solution requires solv-

ing an (l + u) × (l + u) system of linear equations. So, for large (l + u), it can be prohibitive to

solve it, because it implies a heavy matrix inversion. But the dimension of the problem can be

reduced by just working with a small number of eigenvectors of the graph Laplacian.

(∆ + Λ)f = ΛYl (3.38)

Note that the regularizer in the regularization scheme (fT ∆f ) denotes smoothness over the

graph label transitions. Within it, any possible f can be approximated as a linear combination of

the eigenvectors φ of the graph Laplacian (f =
∑

i αiφi, where ∆φi = σiφi) with the smallest

eigenvalues σ, because smoothness(φi) = φ⊤
i ∆φi = σi. As the smoothness of f has to be

minimized, the smoothness of any f would be given by
∑

i αiσi. By this way f = Uα, where

U is a l + u × p matrix whose columns are the p eigenvectors of smallest eigenvalues. Using

the eigenvectors of the smoothness operator of the graph (the graph Laplacian) with smallest

eigenvalues, the solution to Equation 3.38 can be approximated by Equation 3.39, where we

just have to find the vector α of p size.

(U⊤∆U + U⊤ΛU)α = U⊤ΛYl (3.39)

This algorithm makes calculations with a smaller matrix, built up from the graph Laplacian.

It is shown in Algorithm 3.

Algorithm 3 Eigenvectors from the Smoothness Operator Algorithm

Require: Yl, ∆, p
U ⇐ smallestEigenvalues(∆, p)
α ⇐ solveSystem(U⊤∆U + U⊤ΛU, U⊤ΛYl)
Y = Uα
return Y
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3.4.4 Eigenfunctions from the Graph Laplacian

This method uses the same minimization expression as the previous method (Equation 3.36

or 3.37). The idea is to approximate the eigenvectors of the graph Laplacian by interpolating

the eigenfunctions of a weighted smoothness operator ∆p [14]. So that, when l + u → ∞, the

smoothness regularizer ((1/(l + u)2)fT ∆f ) will approach ∆p. ∆p is defined by the assumed

densities of the data p(x), and works for any function F (x) defined on R
d (d is the dimension

of the data-points) as shown in Equation 3.40, W (x1, x2) = exp(−‖x1 − x2‖2/2ǫ2).

∆p(F ) =
1

2

∫

(F (x1) − F (x2))
2W (x1, x2)p(x1)p(x2)dx1x2 (3.40)

As the smoothness regularizer has to be minimized so is the weighted smoothness operator

∆p, and any eigenvalue σp of any given eigenfunction φp is its smoothness σp = ∆p(φp). We

are working with a set of discrete points, from which we can calculate a discrete density, and

then calculate the eigenfunctions numerically with the Equation 3.41, where W̃ is the affinity

between the discrete data-points, P is a diagonal matrix whose elements are the densities of

the data-points, D̃ is another diagonal matrix whose elements are the sum of the columns of

PW̃P , D̂ is a diagonal matrix whose elements are the sum of the columns of PW̃ , g are the

eigenfunctions and σ the corresponding eigenvalues.

(D̃ − PW̃P )g = σPD̂g (3.41)

The eigenfunctions of a set of discrete data-points can be found firstly by finding rotations

for the data that make them as independent/uncorrelated as possible, for example using principal

component analysis (PCA) or independent component analysis (ICA) over the data and working

with each component one by one. Then a histogram has to be approximated for each indepen-

dent/uncorrelated component. After that, solve Equation 3.41, this can be done by solving an

eigenvalue problem for a B × B matrix, where B is the number of the bins of the histogram.

Finally sort the eigenfunctions by their increasing eigenvalues and choose the p-first eigenfunc-

tions, then interpolate linearly the data by each chosen eigenfunctions with the corresponding

bins generating approximated eigenvectors. At the end use the approximated eigenvectors in

Equation 3.39, and find the solution to the linear system.
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Algorithm 4 Eigenfunctions from the Graph Laplacian Algorithm

Require: X, Yl, p, B
X ′ ⇐ independentRotations(X)
H ⇐ calculateHistogram(X ′)
W̃ , P ⇐ getW̃AndP (H)
D̃ ⇐ getColumnsSum(PW̃P )
D̂ ⇐ getColumnsSum(PW̃ )
G, Γ′ ⇐ getEigenfunctions(D̃ − PW̃P, PD̂) ”G is a matrix which columns are the

numerical eigenfunctions”

U ′′ ⇐ interpolate(X ′, G)
U ′, Γ ⇐ selectEigenvectors(U ′′, Γ′, p)
α ⇐ solveSystem(Γ + U ′⊤ΛU ′, U ′⊤ΛYl)
Y = Uα
return Y

This method is particularly interesting because it does not need to calculate the graph Lapla-

cian, moreover you do not need to build the graph, because we approximate the eigenvectors

of the graph Laplacian by interpolating them from the numerically calculated eigenfunctions,

which were calculated from the data histogram, so there is no need to build the graph, we just

need the data. Then, as we are assuming that U ′⊤∆U ′ = Γ, where Γ is a diagonal matrix

with the p smallest eigenvalues (smoothness operator) and U ′ are the approximated eigenvec-

tors, Equation 3.39 would be as Equation 3.42, where all the parameters are independent from

the graph similarity matrix W and graph Laplacian ∆. Algorithm 4 shows the complete method.

(Γ + U ′⊤ΛU ′)α = U ′⊤ΛY (3.42)
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GNG Graph Construction approach

In this chapter, we describe our first contribution. It is a graph construction algorithm based in an

unsupervised neural network called Growing Neural Gas (GNG). This new graph construction

approach aims to represent the data set with fewer vertices than data-points in order to save

memory for later steps in the semi-supervised learning with graph process. The resulting graph

would be call as GNG-Graph. First we are going to describe the traditional Growing Neural

Gas from the literature; after that, we introduce a new index that describes the state of a graph

with respect to the data set it is mapping; and finally we explain how this index is used within

the GNG algorithm as a stopping criterion, and how it works in the semi-supervised learning

scheme.

4.1 Growing Neural Gas Algorithm

A GNG neural network is an unsupervised incremental algorithm that learns topological rela-

tions of a given input data set. This neural network can change its configuration while it is train-

ing itself, adding and removing neurons and connections whenever necessary [16, 9, 18, 43].

Unlike other unsupervised neural networks, this behavior optimizes the speed and memory use.

This neural network can be seen as a graph G = (V, E), where each vertex v ∈ V is a

neuron and the edges e ∈ E are the connections between the neurons. Each vertex has the

following structure: v = (p, ξ), where p are the coordinates of the neuron v, p ∈ R
n (as the

input data-points x ∈ R
n) and ξ ∈ R is the associated error of neuron v. Each vertex should

represent a subset of data-points with high similarity, so |V | ≤ (l + u).

The edges has also a configuration structure; each edge e = (vi, vj, wij, tij), vi and vj are the

adjacent vertices to e, wij is the edge’s weight (which could be the euclidean distance between

them) and tij is the edge’s age, in terms of training iterations. The classic GNG algorithm is

31
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explained below:

• The GNG begins with just two isolated neurons (|V | = 2 and |E| = 0), randomly dis-

posed in the data-points’ space.

• At each iteration one data-point x is analyzed (we call as iteration every time an input

pattern is analyzed). The two nearest neighbors to x are picked from V , say vs and vt,

being vs the closest vertex to x. Every time a vertex vs is found to any data point x, we

will say that the neuron vs was activated by x.

• Then the error rate ξs of vs is updated as in Equation 4.1; where d(x, ps) (d is a distance

function, ex: Euclidean distance) is the distance between x and vs (which is at ps coor-

dinates), by this way the vertices that were activated by more data-points tend to have a

bigger error ξ.

ξs = ξs + d(x, ps) (4.1)

• After updating the error, we create an edge est = (vs, vt, 0, 0), if it already exists then just

the age tst is set to 0.

• Then the coordinates ps of vs and the coordinates pm of all of its adjacent vertices includ-

ing vt are updated as in Equations 4.2 and 4.3. ǫs and ǫm are real numbers in [0, 1], and

ǫs ≥ ǫm, those are hyper parameters of the GNG.

ps = ps + ǫs(x − ps) (4.2)

pm = pm + ǫm(x − pm) (4.3)

• The distance between vs and all of its adjacent vertices vm are updated, so all the corre-

sponding edges esm would be esm = (vs, vm, d(ps, pm), tsm).

• At each iteration all GNG’s edges connected to vs (esm) increment their age tsm by one,

so now esm = (vs, vm, wsm, tsm + 1).
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• The neural network grows when a given number λ of input patterns x are analyzed, λ is

also a hyper-parameter of this algorithm.

• Every λ iterations happens it is selected the vertex vmax with maximum internal error

ξmax, and then it is selected the adjacent vertex vnmax to vmax that has the maximum error

from all of vmax’s adjacent vertices.

• It is created a new vertex vnew between vmax and vnmax, pnew = 0.5(pmax + pnmax).

Subsequently the errors of vmax and vnmax are decreased as in Equation 4.4, after this the

error rate of the new neuron is updated as in Equation 4.5, α is another hyper-parameter

of the algorithm.

ξmax = ξmax − α(ξmax)

ξnmax = ξnmax − α(ξnmax)
(4.4)

ξnew = 0.5(ξmax + ξnmax) (4.5)

• This algorithm also prunes vertices and edges from the graph. There is a hyper-parameter

β; at each iteration all the edges with ages t > β are pruned and if one vertex after this

becomes isolated it is removed too. Finally all the errors of all the remaining vertices are

decreased by ξ = ξ −δξ, δ is the last hyper-parameter of this algorithm. The classic GNG

algorithm is specified in Algorithm 5.

4.2 Graph Mapping Index

Using a correct stopping criterion for our problem, that represents correctly at the right moment

(in the training process) the built graph with respect to the group of data-points is a crucial step

in our graph construction algorithm. The main idea of this algorithm is to use the GNG with

some stopping criteria to build a graph that faithfully represents Xl ∪Xu, and immediately after

this use some traditional graph regularization algorithm in order to calculate the classification

function f over the graph G built by the GNG algorithm. In order to know when the built graph

is ready we introduce a graph construction index.

The index that will be used to stop the GNG training has to tell us if there are significant

changes in the mapping of the data by the graph at every iteration. We call this index as Graph
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Algorithm 5 Classic GNG

Require: P ”Input patterns”

Require: ǫs, ǫm, β, λ, α, δ
Require: it ”Maximum number of times every pattern is analyzed”

i ⇐ 1, A.initialize(2) ”A is the set of GNG’s neurons and connections”

while i ≤ it do

j ⇐ 0
while j < Size(P ) do

vs ⇐ Nearest(A, P [j])
vt ⇐ Nearest(A − vs, P [j])
IncrementEdgeAges(vs)
UpdateError(vs, P [j])
UpdateV ector(vs, ǫs)
UpdateV ector(Neighbors(vs), ǫm)
if AreConnected(vs, vt) then

SetAge(Edge(vs, vt), 0)
else

Connect(vs, vt)
end if

RemoveEdges(A, β)
if Module(j, λ) = 0 then

vmax ⇐ MaxError(A)
vnmax ⇐ MaxError(Neighbors(vmax))
vnew ⇐ InsertBetween(vmax, vnmax)
Disconnect(vmax, vnmax)
Connect(vmax, vnew)
Connect(vnmax, vnew)
DecreaseError(vmax, α)
DecreaseError(vnmax, α)
SetError(vnew, 0.5(getError(vmax) + getError(vnmax)))

end if

DecreaseError(A, δ)
j ⇐ j + 1

end while

i ⇐ i + 1
end while

return A
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Mapping Index (GMI). The GMI is composed by two other sub-indices.

First we have the Vertex Influence Index Ivi, see Equation 4.6; pxi
are the coordinates of the

neuron that was the last to be activated by xi, xi ∈ Xl ∪ Xu (|Xl| = l and |Xu| = u). When

each pattern xi is analyzed by the GNG, it is annotated the vertex that was activated by it. This

index is a mean of all the distances of each neuron to their respective activation data-points. It

tells us basically if there are enough vertices that map the data. One neuron records only the last

data-point that activated it, also depending of the topology of the data set and the initial hyper

parameters, one data-point can activate more than one neuron.

This index has to be minimized for better results, but also depending of the topology of the

input data set, this index would reach a minimum that cannot be decreased by any other graph

configuration.

Ivi =
1

|V |
|V |
∑

i=1

d(pxi
, xi) (4.6)

The second index we use is the Vertex Distribution Index Ivd, this index is shown in Equa-

tion 4.7. Adj(vi) is a function that returns all the adjacent vertices to the vertex vi, pi and pb

are the coordinates of vertices vi and vb, the distance d(pi, pb) between them, are obtained from

the weight wib of the edge with vi and vb as adjacent vertices; finally |V | represents the number

of vertices in V . The vertex distribution index is the mean of the larger edge incident to each

vertex in the graph, it express if the graph is faithfully distributed. This index for better results

in this problem should have the least possible value. Ivd could reach a very low value if the

graph has too many vertices. From this it has to work with the vertex influence index for a good

description of the data graph mapping.

Ivd =
1

|V |
|V |
∑

i=1

max
vb∈Adj(vi)

d(pi, pb) (4.7)

When a graph faithfully maps the input data, Ivi ≤ Ivd, because we are assuming that the

vertices are uniformly distributed and the original data-points are almost at the same distance

to their activated neuron. The mean of all the distances of the data-points to their respective

activated neuron can not be larger than the distance between vertices. From this we get to the

final graph mapping index Igm in Equation 4.8, which should be maximized, but never greater

than one. This index tell us the current state of the graph with respect to the data, every time the

input patterns are analyzed by the GNG.
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Igm =
Ivi

Ivd

(4.8)

4.3 Stopping Criterion

As the literature points out, in order to train a ”good” GNG it is necessary to use a stopping

criteria, different than the number of iterations [9]. This way we optimize for time and space,

avoiding unnecessary training iterations, vertices and edges.

The GNG training with stopping criteria would be done in the same fashion as was done by

D. Chavez et al. [9] using an index error and an error factor, but replacing the SV index by the

Graph Mapping index, which tells us the state of the data graph mapping at every configuration

of the graph. Each time that a quantity of input patterns are analyzed ( we set this quantity as the

size of the input-patterns set l + u ), it is calculated the Igm index for all the analyzed patterns

(Igm = 0 at the beginning). Then it is calculated the index error eI of the Igm index, which

is the difference between the actual Igm and the last Igm. The error factor ef is the number of

times that the index error can be less than the accepted error ea (the accepted error is an hyper-

parameter of the algorithm) before stopping the algorithm.

Also another modification was made to the traditional GNG. To insert a new vertex to the

graph, not only, it has to satisfy the condition of the λ patterns analyzed, but also there has to be

checked if there are no more vertices than a proportion pr of the input patterns, this proportion

pr is also an hyper-parameter of the algorithm.

The last modification done to the traditional GNG was that if, after the training process was

done, it is obtained a not connected graph, this graph is converted to a connected graph by con-

necting the vertices of different subgraphs that are the closest between them.

After the successful training of the GNG with the graph mapping index as the stopping

criteria, we have a graph where its edge weights represent the distance between vertices, so now

we have to convert this distances into similarities (see section 3.2.4), after this the traditional

graph regularization would be done over the graph; but just before this we have to deal also

with the labels mapping. Basically a vertex would have the label that is most common for all

the labeled data-points that activated it, if those data-points do not have a label then the vertex

either does not have a label, or if there are more than one common label it would be chosen

randomly. After the regularization step, the label mapping is inverted, all the data-points would

have the label of the neuron that was activated by them, but all the data-points in Xl would
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Algorithm 6 GNG Graph Construction

Require: P ”Input patterns”

Require: ǫs, ǫm, β, λ, α, δ

Require: it ”Maximum number of times every pattern is analyzed”

Require: pr, ea, ef

i ⇐ 1, c ⇐ 0, I
(0)
gm ⇐ 0, A.initialize(2) ”A is the set of GNG’s neurons and connections”

while i ≤ it do

j ⇐ 0
while j < Size(P ) do

vs ⇐ Nearest(A, P [j])
vt ⇐ Nearest(A − vs, P [j])
IncrementEdgeAges(vs)
UpdateError(vs, P [j])
UpdateV ector(vs, ǫs)
UpdateV ector(Neighbors(vs), ǫm)
if AreConnected(vs, vt) then

SetAge(Edge(vs, vt), 0)
else

Connect(vs, vt)
end if

RemoveEdges(A, β)
if Module(j, λ) = 0 ∧ |A| < pr|P | then

vmax ⇐ MaxError(A)
vnmax ⇐ MaxError(Neighbors(vmax))
vnew ⇐ InsertBetween(vmax, vnmax)
Disconnect(vmax, vnmax)
Connect(vmax, vnew)
Connect(vnmax, vnew)
DecreaseError(vmax, α)
DecreaseError(vnmax, α)
SetError(vnew, 0.5(getError(vmax) + getError(vnmax)))

end if

DecreaseError(A, δ)
j ⇐ j + 1

end while

I
(i)
gm ⇐ GraphMappingIndex()

eI ⇐ I
(i)
gm − I

(i−1)
gm

if eI ≤ ea then

c ⇐ c + 1
if c ≥ ef then

return A

end if

else

c ⇐ 0
end if

i ⇐ i + 1
end while
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keep its original label. The GNG graph construction algorithm is shown in Algorithm 6, and

the procedure to use a regularizer with the GNG-Graph is shown in Algorithm 7.

Algorithm 7 GNG Regularizer application

Require: Yl

Require: P ”Input patterns”

Require: R ”Regularizer”

Require: ΘGNG, ΘR ”GNG’s hyper parameters and Regularizer’s hyper parameters”

G ⇐ GNGGraphConstructionAlgorithm(P, ΘGNG)
if Gisnotconnected then

G ⇐ ConnectGraph(G)
end if

G ⇐ ConvertDistancesToSimilarities(G)
G ⇐ LabelsMapping(G, P, Yl)
Yg ⇐ ApplyRegularizer(R, G, Yl)
Yu ⇐ InvertLabelsMapping(P, G, Yg)
return Yu

We present an example of the GNG’s graph construction procedure below. Initially we have

a data set (|X| = 29), from which we are going to build the graph (see Figure 4.1). Each data-

point in this data set belongs to one of two classes, and we just know one labeled data-point

from each class (|Xl| = 2 and |Xu| = 27).

ss ss ss ss s s sss s ss ss
s ss s ss ss sss

✉

✉

Figure 4.1: A random data set, with two labeled data-points (|X| = 29, |Xu| = 27, |Xl| = 2).
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The GNG will initialize with two isolated vertices with random coordinates (see Figure 4.2).

ss ss ss ss s s sss s ss ss
s ss s ss ss sss

✐

✐

Figure 4.2: GNG’s initialization, two vertices with random coordinates (|V | = 2, |E| = 0).

ss ss ss ss s s sss s ss ss
s ss s ss ss sss

✐
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vt

Figure 4.3: GNG, analyzing one data-point x, finding vs and vt.

Then at each iteration is analyzed one data-point x, the GNG finds the closest neuron vs to
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x and the second closest neuron vt (see Figure 4.3). Then the internal error ξs of vertex vs is

updated as in Equation 4.1. After that the GNG creates a edge between vs and vt, as Figure 4.4

shows.
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Figure 4.4: GNG, connecting vs and vt.
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Figure 4.5: GNG, updating the coordinates ps (vs) and pm (vm), vt is also a vm vertex.
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The next stage, the GNG using equations 4.2 and 4.3 modifies the coordinates ps of vs and

the coordinates pm of all vs’s adjacent vertices vm as shown in Figure 4.5, when |V | = 2 as in

this case, the only vm is vt. After each data-point is analyzed, the distances of all the modified

edges in the current iteration are updated and the edges’ ages of all the adjacent edges to the

current vs are increased by one.

When λ data-points are analyzed (λ iterations) the GNG grows by adding one new vertex,

firstly it finds the vertex with maximum internal error vmax, and vmax’s adjacent vertex with

maximum internal error vnmax (see Figure 4.6). Then it is inserted a new vertex vnew between

vmax and vnmax as Figure 4.7 shows. In this case when |V | = 2, one vertex will be vmax and the

other will be vnmax.

ss ss ss ss s s sss s ss ss
s ss s ss ss sss✐

✐
✏✏✏✏✏✏✏

vmax

vnmax

Figure 4.6: GNG, after λ iterations, it finds the vertex with maximum internal error vmax, and

its corresponding adjacent vertex with maximum internal error vnmax.
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Figure 4.7: GNG, inserting a new vertex vnew.

After analyzing more data-points, the GNG would be as the one in Figure 4.8.
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Figure 4.8: GNG in the middle of the training process, with many inserted vertices.

The final step of each iteration is removing all the edges with ages t > β (see Figure 4.9)

and right after that remove all isolated vertices (see Figure 4.10).
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Figure 4.9: GNG, after removing the edges with age t > β from Figure 4.8.
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Figure 4.10: GNG, after removing the isolated vertices of Figure 4.9.

Figure 4.11 shows how the vertex influence is calculated (see Equation 4.6), depicting the

vertex influence area of one vertex (in blue). Figure 4.12 shows how to calculate the vertex

distribution (see Equation 4.7), depicting the larger edge of one vertex (in blue). Using the
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vertex influence and the vertex distribution, the GNG calculates the graph mapping index (see

Equation 4.8) each time that l + u data-points are analyzed, this is shown in Figure 4.13.
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Figure 4.11: GNG, calculating the vertex influence.
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Figure 4.12: GNG, calculating the vertex distribution.
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Figure 4.13: GNG, calculating the graph mapping index.

Finally the GNG will remain as in Figure 4.14, after mapping the labeled data-points’ labels

into the vertices. In this case the GNG has mapped 29 data-points into a graph of 7 vertices and

6 edges. And now a regularization method can be applied over this resulting graph.
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Figure 4.14: GNG, mapping the labeled data-points’ labels to the vertices (|V | = 7, |E| = 6).





Chapter 5

FIR Filter Regularization approach

In this chapter we introduce the second contribution of this dissertation, which is a new SSL

regularizer inspired in an application of a signal processing concept. Previously it has already

been used signal processing concepts into graph applications, mainly in computer graphics [46,

47, 48]. Also there has been recent studies to formalize a signal processing approach over

graphs [39, 41]. The proposed regularizer scheme is based in the application of Finite Impulse

Response Filters (FIR Filters) over the built graph. The aim of this filter is to propagate the

labels over the graph each time it is applied. In this chapter, firstly we introduce the concept

of FIR filters, then we describe how a FIR filter works in the transductive learning with graphs

scenario and finally we explain how we find the FIR filter coefficients for each graph instance.

5.1 FIR Filters

In signal processing, a filter removes and/or changes the amplitudes of frequency components of

a signal [33]. There are more than one way to categorize filter types, one of those is to classify

them by the duration of the impulse response of the filter: the Infinite Impulse Response (IIR)

filters and the Finite Impulse Response (FIR) filters, which exist in both continuous and discrete

spaces. A discrete time FIR filter is a weighted sum of the signal dislocated a finite quantity

of times, Equation 5.1, where y[n] is the output signal, x[n] is the input signal, K is the filter

order, or size, and ai are the filter coefficients.

y[n] = a0x[n] + a1x[n − 1] + a2x[n − 2] + ... + aKx[n − K]

y[n] =
K∑

i=0

aix[n − i]
(5.1)

47
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5.2 Transductive Learning using FIR filters

The input signal xs of the FIR filter is a vector of size |V | = l + u which has the corresponding

labels of each vertex, 1 for the positive class, −1 for the negative class and 0 for the vertices

with no known label (xs
i = 0 ∀ xi ∈ Xu). The output signal ys is also a vector of size |V | = l+u

with all the predicted labels, where ys
i = xs

i = yi(yi ∈ Y ) ∀ xi ∈ Xl. The FIR filter works

together with the graph Laplacian ∆ and a set of coefficients a, as it is shown in Equation 5.2,

where I is the identity matrix.

ys = a0Ixs + a1∆xs + a2∆
2xs + ... + aK∆Kxs

ys = a(∆)xs

ys =
K∑

i=0

ai∆
ixs ; ∆0 = I

(5.2)

We can apply the FIR filter in a very efficient form using a recursive procedure that in each

step sums a vector to a (sparse) matrix times a vector (see Equation 5.3).

ys
[0] = aKxs

ys
[1] = aK−1x

s + ∆ys
[0] (ys

[1] = aK−1x
s + aK∆xs)

ys
[2] = aK−2x

s + ∆ys
[1] (ys

[2] = aK−2x
s + aK−1∆xs + aK∆2xs)

...

ys
[K] = a0x

s + ∆ys
[K−1]

(5.3)

The recursive procedure for a fast application of the FIR filter is described in Algorithm 8

and its iterative version is described in Algorithm 9.

Algorithm 8 Recursive Fast FIR

Require: a ∈ R
K , ∆, xs ∈ {−1, 0, 1}|V |, i ⇐ K

if i=0 then

return aKxs

else

return aK−ix
s + ∆ ∗ RecursiveFastFIR(a, ∆, xs, i − 1)

end if

After applying this labeling FIR filter, ys = f . The filter should be applied iteratively

multiple times, either by a fixed number or until ys stops changing. In the next section we
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Algorithm 9 Iterative Fast FIR

Require: a ∈ R
K , ∆, xs ∈ {−1, 0, 1}|V |

i ⇐ 1
ys ⇐ aKxs

while i ≤ K do

ys ⇐ aK−ix
s + ∆ys

i ⇐ i + 1
end while

return ys

introduce one method to estimate the coefficients a, so to respect the constraints of ys
i = xs

i =

yi ∀ xi ∈ Xl.

5.3 Learning the coefficients of the FIR filter

In our problem, the optimum labeling function f should minimize Equation 5.4, where α > 0

is a smoothing parameter. This Equation follows the same structure as Equation 3.8, with an

energy function that works as regularizer.

arg min
f∈R|V |

α
∑

i∈Xl

(fi − xs
i )

2 +
∑

ij∈E

wij(fi − fj)
2 (5.4)

To find the coefficients a of the FIR filter ( remember that fi = ys
i =

K∑

h=0

ah(∆hxs)i ), we

rewrite Equation 5.4 as Equation 5.5.

arg min
a∈RK

α
∑

i∈Xl

(fi − xs
i )

2 +
∑

ij∈E

wij

(
K∑

h=0

ah[(∆hxs)i − (∆hxs)j]

)2

(5.5)

In Equation 5.5, λh
ij = (∆hxs)i − (∆hxs)j , and the loss function also would be expressed

using the FIR filter notation, as in Equation 5.6.

arg min
a∈RK

α
∑

i∈Xl

((
K∑

h=0

ah(∆hxs)i

)

− xs
i

)2

+
∑

ij∈E

wij

(
K∑

h=0

ahλh
ij

)2

(5.6)

Using matrix notation, Equation 5.6 could be rewritten as Equation 5.7, where a is a column

vector of size K containing the coefficients of the FIR filter, Ci is a column vector of size K
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where each element is (∆hxs)i, and λij is another column vector of size K where each element

is λh
ij .

arg min
a∈RK

α
∑

i∈Xl

(C⊤
i a − xs

i )
2 +

∑

ij∈E

wij(λ
⊤
ija)2 (5.7)

Continuing with the regularizer and expressing the loss function as a dot product, we reach

Equation 5.8, where C = [ C0 C1 C2 · · · Cl−1 ], a matrix of K × l size.

arg min
a∈RK

α
[

(C⊤a − xs) · (C⊤a − xs)
]

+ a⊤




∑

ij∈E

wijλijλ
⊤
ij



 a (5.8)

Using vector magnitudes in the loss function and introducing matrix A =
∑

ij∈E

wijλijλ
T
ij of

size K × K in the regularizer we attain Equation 5.9, which leads to the lower dimensional

linear system problem in Equation 5.10 which can be solved in closed form.

arg min
a∈RK

α‖C⊤a − xs‖2 + a⊤Aa (5.9)

(A + αCC⊤) a = αCxs (5.10)

Algorithm 10 Transductive FIR Learning

Require: t, K, α, W, xs ∈ {−1, 0, 1}|V |

∆ ⇐ calculateLaplacian(W )

Φ ⇐ calculateKrylovMatrix(∆, xs, K)

A, C ⇐ calculateAnC(Φ, W )

Yl ⇐ getKnownLabels(xs)

a ⇐ calculateFIRCoefficients(α, A, C, Yl)

f ⇐ fastFIR(a, ∆, xs)

repeat

f ⇐ fastFIR(a, ∆, f)

until done t times or f no longer changes

return f
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The transductive learning algorithm over the graph using FIR filters is summarized in Al-

gorithm 10. The FIR filter can be applied more than one time. As notion, we should apply it

as many times as the greater number of edges in the graph between a labeled and an unlabeled

vertices, as it propagates the the labels from the labeled data-points to the unlabeled ones.

As the FIR filter is going to be applied several times, first over xs and then over the result

of that filtering, over and over again for a while, we denote f 0 = xs, being fn the n-th estimate

of f . A Krylov matrix Φ for our problem is defined in Equation 5.11. By this the (n + 1)-th

estimate of f would be fn+1 = Φna.

Φn =
[

fn ∆fn ∆2fn · · · ∆Kfn
]

(5.11)

From the Krylov matrix Φ, we can calculate the matrices A and C (Equation 5.12), where

Φi is the i-th row ( as a row vector ) of the Krylov matrix Φ.

A =
∑

(ij)∈E

wij

[

(Φi − Φj)
⊤(Φi − Φj)

]

C =
[

Φ⊤
i · · ·

]

; ∀ i ∈ Xl

(5.12)

Below, we present a running example of the FIR filter procedure for semi-supervised learn-

ing over the graph of Figure 5.1. This graph has 10 vertices (|V | = 10) and 12 edges (|E| = 12),

it has two labeled vertices, each one from a different class (|Xl| = 2), one class of blue vertices

and the other of red vertices. It was generating by a synthetic procedure, only for demonstrative

purposes.



52 Chapter 5. FIR Filter Regularization approach
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Figure 5.1: Graph representing a data set with two labeled data-points, each label from one

different class (|V | = 10, |Xl| = 2, |Xu| = 8).

From the graph of Figure 5.1 it is constructed the signal xs, as it is shown in Figure 5.2.
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Figure 5.2: Graph and its corresponding initial signal xs.

Then, the algorithm calculates the graph Laplacian (see Equations 3.1 and 3.2). In this case
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it would a 10 × 10 matrix.

∆ =






. . .
. . .






10×10

From the initial signal xs (remember that xs = f 0) and the graph Laplacian ∆, the FIR

regularizer calculates the Krylov matrix Φ (see Equation 5.11). For this example it will produce

a 10 × K matrix, being K the filter size.

Φ =






. . .
. . .






10×K

Using the Krylov matrix Φ, it calculates the matrices A and C (see Equation 5.12). A would

be a square matrix of K × K, and C would be a K × 2 matrix (|Xl| = l = 2, the number of

labeled data-points).

C =






. . .
. . .






K×2

A =






. . .
. . .






K×K

At last, we calculated the FIR filter coefficients using the matrices A, C and the input signal

xs (solving Equation 5.10). Producing a column vector of K size.

a =






...

...






K×1

Finally, with the column vector a, we can applied the FIR filter over the graph a finite

quantity of times (using Algorithms 8 or 9). Figure 5.3, shows the signal after the filter was

applied one time.
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Figure 5.3: FIR regularizer, after being applied one time over a graph.

Figure 5.4 shows the signal after the filter was applied two times. The filter can be applied

a predefined i number of times, or until the signal does not varies anymore.
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Figure 5.4: FIR regularizer, after being applied two times over a graph.

Figure 5.5 shows the signal after being processed by the FIR filter an i number of times. At
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this point the vertices would have positive or negative values (not necessarily 1 or −1). Setting

a threshold at 0 would make the classification.
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Figure 5.5: FIR regularizer, after being applied i times over a graph, and the final corresponding

signal ys.
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Figure 5.6: A labeled graph, processed by the FIR regularizer.

Figure 5.6 shows the result of the FIR regularizer, with all the vertices correctly labeled.





Chapter 6

Experiments and Results

In this chapter we present the experimental methodology, analysis and results, from comparing

our two proposed methods to the literature ones. First we will explain the characteristic of

the experimental data sets. Then we explain the experimental methodology and criteria. Then

we present the results obtained from the experiments done with the GNG graph construction

algorithm. After that we make a theoretical analysis of the cost of each regularization algorithm

(including the FIR regularizer). Finally we present the regularization algorithms’ results.

6.1 Data Sets

We use for all our experiments the data sets from the semi-supervised learning benchmark [7,

19]. This data sets encompasses artificial (g241c, g241n, Digit1) and real-world problems

(COIL, BCI). The CIFAR-10 label set with the Tiny Images data set, represents a real problem

where semi-supervised learning classification can be applied (when there is a lot of unlabeled

data, and few labeled data), in this case in a content image classification domain [23, 50]. The

Madelon data set, is an artificial and highly non-linear data set, from the UCI machine learning

repository. Each data set is described in detail below. Table 6.1 summarizes the important in-

formation of them.

• The Semi-supervised learning benchmark. The SSL literature describes an SLL data

set benchmark of 8 data sets (in this research just five of them were used) [7, 19]. Three

data sets are artificial, in order to represent each of the SSL learning assumptions, the

other five are derived from real world data sets. The purpose of the benchmark was to

evaluate the power of the SSL algorithms themselves in a way as neutral as possible. This

group of data sets were chosen because it is customary to use them in this research topic.

57
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– g241c data set. This is an artificial data set that contains 1500 data-points of 241

dimensions that belong to 2 balanced classes. Each data point was built from one

of two unit-variance isotropic Gaussians with some overlapping degree, the label

corresponds to which Gaussian generated the data point. All dimensions are stan-

dardized, shifted and rescaled to zero-mean and unit variance. This data set holds

the cluster assumption.

– g241n data set. This is also an artificial data set that contains 1500 data-points of

241 dimensions that belong to 2 balanced classes. Each of the data-points were gen-

erated from one of four unit-variance isotropic Gaussians. The classes are defined

from which of the Gaussians they belong. Each class is represented by two of the

four Gaussians, the Gaussians of the same class have their centers more separated

than the center of one of the other two Gaussians of the other class.

– Digit1 data set. This is an artificial data set that contains 1500 data-points of 241

dimensions that belong to 2 balanced classes. It was designed in order to hold the

manifold assumption and not the cluster assumption. It was built from a system that

generates artificial writing binary images of the digit 1 [21]. All the points were

generated by randomly sampling these images (of 16 × 16 pixels), the label of each

data point is defined by the tilt angle of the sampled images. To each image it was

added some noise and they were rescaled too.

– COIL data set. This data set was derived from the Columbia object image library

(COIL-100). Originally the images correspond to 100 different objects, each image

of 128 × 128 pixels was down-sampled to a 16 × 16 image (in the red channel) [29].

Then was selected randomly 24 objects from 100, at first instance the objects were

partitioned in groups of four objects, but for the binary classification scenario they

were partitioned in groups of 12 objects each. Finally to each image it was added

some noise and were rescaled too, leading to a data set of 1500 images of 241

dimensions in 2 balanced classes.

– BCI data set. This data set was originally derived from a brain computer interface

data set. One single person performed movements with his left (-1 class) and right

(+1 class) hands. In each trial, an electroencephalography was recorded from 39

electrodes [24]. The data set consist of 400 data-points of 117 dimensions.

• CIFAR-10 label set with the Tiny Images data set. The Tiny images data set consist

of 79302017 images, each being a 32 × 32 color image [50]. These images for our ex-

periments were described using global image descriptors, specifically the GIST descrip-

tor [31], which is a holistic descriptor for complete scenes of 384 dimensions. From this

data set there are labels just for 60000, the CIFAR-10 label set gives 10 labels for each of
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these 60000 [23] (6000 images for each label), see Figure 6.1. This data set was chosen

because it was already used in the literature for SSL evaluation and also because it repre-

sent a large data set of a real problem.

Figure 6.1: CIFAR-10 label set.

.

• Madelon data set. This data set was part of the NIPS feature selection challenge of

2003 [20], it consist of 4400 artificial data-points of 500 dimensions from two classes.

The data set was designed from 32 clusters placed in the corners of a 5 dimensional

hypercube, each cluster was randomly labeled as +1 or -1. 15 linear combinations of those

5 dimensions were added to form 20 more redundant dimensions, the rest of dimensions

were added as distractor features with no predictive power. The order of the features

were randomized. This data set was chosen because of its artificial nature in contrast to

the Tiny images data set, and also because it represent a very difficult set to work with.
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Table 6.1: Experiment’s Data Sets

Data set Labeled points Dimensions Classes

g241c 1500 241 2

g241n 1500 241 2

Digit1 1500 241 2

COIL 1500 241 2

BCI 400 117 2

Tiny Images 60000 384 10

Madelon 4400 500 2

6.2 Performance Evaluation Methodology and Criteria

In order to measure fairly the performance of our proposed algorithms in terms of well done

classification, we are going to use an accuracy measure at different proportions of labeled data.

Accuracy is a traditional performance metric in machine learning [13]. In binary classification,

accuracy is the ratio of correctly classified data-points over all the data-points in the problem.

Table 6.2: Confusion matrix for a binary classification problem

Class + Class -

Class +
True False

Positives Negatives

Class -
False True

Positives Negatives

Given a confusion matrix for binary classification (see table 6.2) with a positive class (+)

and a negative class (-), the accuracy would be given by Equation 6.1, where TP are the True

Positives, TN the True Negatives, FP the False Positives and FN the False Negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)
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From each data set we sampled five times, different labeled data, and then we propagate

to all the data set the corresponding labels. We get for different label proportions 5 accuracy

results, then we get the mean and the standard deviation for each label proportion and we plot

the behavior of each algorithm as the labeled data proportion increases (labeled data proportion

× accuracy). The idea is that the accuracy should increase as the labeled data increases, but at

some point it will significantly stop increasing at the same rate. Behaviors like relative good

classification with little labeled data and not as good with more labeled data, are acceptable, as

these algorithms mean to work well in such conditions.

Also we test different combinations of graph construction algorithms with graph regulariza-

tion algorithms, and get the result from each situation, as we explain below.

The implementation of the graph construction algorithms (from sections 3.2 and 4) and

regularization algorithms (from sections 3.3, 3.4 and 5) were done using Python with the

Numpy/Scipy API. The tests were done by using the RECOD laboratory’s computer cluster

from the Institute of Computing of the State University of Campinas, each cluster with different

number of processors (from 8 to 24) and different amounts of memory (from 12 to 48 gigabytes).

6.3 Graph Construction’s Performance Results

In order to validate our graph construction approach for semi-supervised learning with graphs,

we compare our method with the other graph constructions algorithms: full graphs, ǫ-graphs,

and k-graphs; using different graph regularization algorithms: the harmonic function regular-

izer (section 3.3.1), the Krylov approximated regularizer (section 3.4.1) and the eigenvectors of

the smooth operator of the graph Laplacian regularizer (section 3.4.3).

For each regularization method, there can be a different graph construction method with

different hyper parameters that optimize its performance. In order to discover it there has to be

done performance tests or an analytical study of the data set properties. The literature points out

that in theory it is better to work with fully connected graphs but there are cases when sparse

graphs outperform complete connected graphs, it depends on the problem domain. Also as the

GNG-graph build a graph with lesser vertices than data-points, it should at best get the same

accuracy as the graph construction methods that have same number of vertices and data-points,

but saving memory resources.
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We choose image content classification problem for our evaluation: we want to classify a

set of images by a concept (for example all the images with dogs in the foreground) from a little

subset of labeled images with this concept. For this purpose we compare the graph construction-

regularization combinations in different input data set size instances of the Tiny Images with

CIFAR 10 data set.

The 32 × 32 pixel images of the Tiny Images data set, were described using the GIST de-

scriptor of 384 dimensions. Each data point was projected on a 64 dimensional space using

principal component analysis. This projection maintains 81.3 % of the original data’s variance.

We have three groups of experiments, in all of them the number of known positive labeled

data-points (labels from the CIFAR-10 label set) where the same as the known negative labeled

data-points. The first group of experiments were made with just 1000 data-points, the second

group was made with 4000 data-points and the third with 8000, each group with 5% to 50%

of labeled data. We did a grid search in order to discover the hyper parameters of the GNG

construction algorithm (in more detail) and the other algorithms. For the GNG algorithm the

grid search was done for the following hyper parameters: pr (the maximum number of vertices

that the GNG can have), ea (the stopping accepted error), ef (the stopping error factor) and λ

(the number of iterations needed to insert a new vertex).

As we compare the graph regularization performance with different graph construction ap-

proaches, it is necessary to know how each regularization method behaves with each graph con-

struction method by itself. In order to accomplish this, we show the charts in Figures 6.2, 6.3

and 6.4, each one for each of the tested regularizers. In Figure 6.2 we show the performance in

terms of accuracy (with 0 as decision threshold, being -1 the negative labels and 1 the positive

ones) of the Harmonic regularizer with the different graph construction methods, at a progres-

sive amount of labeled data (from 5% to 50%). The four graph methods were very tied with

the Harmonic regularizer, but the best performance was obtained by the ǫ-graph ( ǫ = 0.8 ).

As can be seen by this the GNG graph construction algorithm can obtain comparable results

to the traditional graph construction algorithms (in some cases even wining) but saving mem-

ory, because it induces a new graph with fewer vertices, in this case was induced a graph with

0.9(l + u) vertices ( pr = 0.9 ) with a graph mapping index of 0.89, a GNG growing rate λ = 5,

acceptance index error of 0.5 and error factor of 2.
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Figure 6.2: Experiment’s results from the harmonic regularizer with 1000 data-points (percent-

age of labeled data vs accuracy).

The results from the Krylov regularizer with 1000 data-points can be seen in Figure 6.3, they

are very similar to the Harmonic regularizer results. All the four graph construction methods

were also tied, and the best result was obtained again by the ǫ-graph with ǫ = 0.8, the experi-

ments with the Krylov method were done with 100 iterations for the MINRES algorithm [27].
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Figure 6.3: Experiment’s results from the Krylov regularizer with 1000 data-points (percentage

of labeled data vs accuracy).

In Figure 6.4 are shown the results from the eigenvectors of the smooth operator regularizer

with 0.3(|V |) eigenvectors (p = 0.3, see Algorithm 3, this number is fixed and was chosen be-

cause it is desired to use at most a third of all eigenvectors. Remember that more eigenvectors

optimize the results but do not save computational cost ). In this case the results were different

from those with the Harmonic regularizer and the Krylov regularizer. In these experiments the

k-graph construction clearly outperforms the other three graph construction methods. But the

GNG-graph reach comparable results on average, getting better results than the Full-graph and

ǫ-graph in most cases. That was because, as the graph induced by the GNG graph construction

algorithm is smaller (|V | < l + u), and the induced graph has similar spectral decomposition

as the graph instances with l + u vertices (pointing out the right data mapping that was ac-

complished by the GNG graph construction algorithm); but the new graph Laplacian of the

GNG-graph has fewer representative eigenvectors with smaller eigenvalues to work with, so the

proportion p is more meaningful.



6.3. Graph Construction’s Performance Results 65

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
c
c
u
r
a
c
y

Labeled data proportion

Smooth Operator Regularizer

Full graph
k-graph (k=3)

 ε-graph (ε=0.8)
GNG-graph

Figure 6.4: Experiment’s results from the smooth operator regularizer with 1000 data-points

(percentage of labeled data vs accuracy).

The detailed results of the most meaningful experiments are in tables 6.3, 6.4, 6.5, 6.6, 6.7

and 6.8 for 1000 (10% to 30% and 40% to 50%), 4000 (10% to 30% and 40% to 50%) and

8000 (10% to 30% and 40% to 50%) data-points respectively. For 8000 data-points there were

induced graphs with maximum 0.8(l +u) vertices and an error factor of 1 in order to save space

and get a faster convergence of the algorithm, and by this the accuracy was less, compared to

the cases where were induced graphs with 0.9(l + u) vertices. The behavior is very similar

in all instances, but as the input size increases the accuracy decreases in all the construction-

regularization combinations.

The GNG graph construction algorithm has a complexity of O((l + u)|V |I) where I is

the number of executed iterations (by executed iterations we refer to each time the Igm index

is evaluated). Most of the implementations of the other graph construction algorithms have a

complexity of O((l + u)2), so if |V |I < (l + u) the GNG construction algorithm would be
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faster, because it would have a better best case, but its worst case (when |V |I > (l + u)) could

be much more expensive than O((l + u)2) if the algorithm does not converge fast or there were

created too many neurons too soon and few of them are removed in the process. It can be guar-

anteed to always get a best case by setting as input parameters I (by setting the parameter it of

Algorithm 7 as I) and |V | (setting pr, in order to |V | = pr|P | ), so they will be initialized with

values that enforce |V |I < (l + u). But if they are too small they will have a drawback in graph

mapping correctness and hence classification accuracy. In order to solve these issues there have

to be set appropriate values for the hyper parameters of the algorithm, and these values could

vary for each data set.

From the final results of the experiments, it can be shown that the Growing Neural Gas (with

stopping criteria) graph construction algorithm reduces the space and the regularization com-

plexity with no drawbacks in terms of classification accuracy (as it induced a smaller graph),

and as long as the stopping criteria works, it also reduces the required space in the graph con-

struction step. Also in order to optimize the graph mapping index, |V | has to be very close to

l+u, but not close enough to make the GNG graph construction useless in terms of space saving.

Although the main problem with GNG construction algorithm is all the hyper parameters it

has to deal with, mainly λ, the acceptance index error ea and the error factor ef . As we try to

make the construction as fast as possible and with the better graph mapping index; λ has to be

small (in this case we chose a small value as 5 for λ ), by this the GNG leaves small room for

adaptation, depending on l + u; the acceptance index error should not be too small and the error

factor should not be large, by this way the GNG would stop quickly with a suitable number

of vertices, which would not be greater than the proportion pr (we used 0.9 and 0.8) of l + u

specified as hyper-parameter of the algorithm. As the proportion of maximum allowed vertices

is lesser, depending on the topology of the data, the performance of the transductive classifica-

tion could decrease, but more memory would be saved in the process; so it has to be choose a

equilibrium between saved space and desired performance.
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Table 6.3: Accuracy results from the 1000 data-points group (10%, 20% and 30% of labeled

data).

Graph Construction Graph Regularization
Labeled Data Proportion

10% 20% 30%

Full Graph

Harmonic 0.559±0.011 0.604±0.007 0.653±0.005

Krylov 0.558±0.010 0.604±0.008 0.653±0.005

Smooth Op. 0.548±0.009 0.594±0.013 0.643±0.034

k-Graph (k = 2)

Harmonic 0.548±0.006 0.618±0.011 0.663±0.011

Krylov 0.548±0.006 0.617±0.011 0.662±0.012

Smooth Op. 0.550±0.007 0.604±0.013 0.645±0.023

k-Graph (k = 3)

Harmonic 0.560±0.009 0.601±0.012 0.672±0.006

Krylov 0.561±0.009 0.601±0.011 0.672±0.006

Smooth Op. 0.552±0.007 0.611±0.008 0.646±0.023

k-Graph (k = 5)

Harmonic 0.562±0.018 0.604±0.014 0.661±0.009

Krylov 0.562±0.017 0.603±0.014 0.661±0.009

Smooth Op. 0.564±0.011 0.599±0.015 0.644±0.018

k-Graph (k = 10)

Harmonic 0.564±0.009 0.596±0.014 0.652±0.009

Krylov 0.563±0.009 0.596±0.014 0.652±0.009

Smooth Op. 0.565±0.015 0.601±0.010 0.637±0.013

ǫ-Graph (ǫ = 0.1)

Harmonic 0.550±0.000 0.600±0.000 0.650±0.000

Krylov 0.550±0.000 0.600±0.000 0.650±0.000

Smooth Op. 0.500±0.000 0.500±0.000 0.500±0.000

ǫ-Graph (ǫ = 0.5)

Harmonic 0.549±0.014 0.597±0.010 0.656±0.012

Krylov 0.549±0.014 0.597±0.010 0.656±0.012

Smooth Op. 0.530±0.012 0.548±0.006 0.569±0.019

ǫ-Graph (ǫ = 1.0)

Harmonic 0.551±0.001 0.606±0.008 0.652±0.005

Krylov 0.551±0.001 0.606±0.008 0.652±0.005

Smooth Op. 0.543±0.009 0.596±0.010 0.636±0.019

GNG Graph (λ = 5)

Harmonic 0.552±0.012 0.605±0.015 0.652±0.014

Krylov 0.552±0.012 0.605±0.015 0.652±0.014

Smooth Op. 0.563±0.015 0.598±0.009 0.653±0.014

GNG Graph (λ = 10)

Harmonic 0.561±0.022 0.587±0.022 0.629±0.026

Krylov 0.561±0.022 0.588±0.022 0.629±0.026

Smooth Op. 0.551±0.015 0.587±0.011 0.604±0.022
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Table 6.4: Accuracy results from the 1000 data-points group (40% and 50% of labeled data).

Graph Construction Graph Regularization
Labeled Data Proportion

40% 50%

Full Graph

Harmonic 0.704±0.006 0.753±0.008

Krylov 0.703±0.004 0.752±0.008

Smooth Op. 0.664±0.034 0.680±0.031

k-Graph (k = 2)

Harmonic 0.711±0.003 0.757±0.010

Krylov 0.711±0.003 0.756±0.011

Smooth Op. 0.678±0.038 0.694±0.035

k-Graph (k = 3)

Harmonic 0.728±0.013 0.758±0.005

Krylov 0.727±0.013 0.758±0.005

Smooth Op. 0.690±0.030 0.707±0.035

k-Graph (k = 5)

Harmonic 0.722±0.006 0.764±0.007

Krylov 0.723±0.006 0.764±0.007

Smooth Op. 0.684±0.032 0.692±0.034

k-Graph (k = 10)

Harmonic 0.705±0.009 0.750±0.005

Krylov 0.705±0.009 0.750±0.005

Smooth Op. 0.684±0.026 0.702±0.033

ǫ-Graph (ǫ = 0.1)

Harmonic 0.700±0.000 0.750±0.000

Krylov 0.700±0.000 0.750±0.000

Smooth Op. 0.500±0.000 0.500±0.000

ǫ-Graph (ǫ = 0.5)

Harmonic 0.701±0.010 0.740±0.007

Krylov 0.701±0.010 0.740±0.007

Smooth Op. 0.567±0.029 0.570±0.030

ǫ-Graph (ǫ = 1.0)

Harmonic 0.705±0.004 0.756±0.007

Krylov 0.705±0.004 0.756±0.007

Smooth Op. 0.669±0.039 0.677±0.035

GNG Graph (λ = 5)

Harmonic 0.684±0.013 0.732±0.007

Krylov 0.683±0.013 0.732±0.007

Smooth Op. 0.667±0.018 0.684±0.015

GNG Graph (λ = 10)

Harmonic 0.661±0.024 0.701±0.009

Krylov 0.660±0.024 0.700±0.009

Smooth Op. 0.635±0.029 0.648±0.011
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Table 6.5: Accuracy results from the 4000 data-points group (10%, 20% and 30% of labeled

data).

Graph Construction Graph Regularization
Labeled Data Proportion

10% 20% 30%

Full Graph

Harmonic 0.549±0.001 0.601±0.003 0.653±0.004

Krylov 0.549±0.001 0.601±0.003 0.652±0.004

Smooth Op. 0.557±0.008 0.605±0.009 0.645±0.017

k-Graph (k = 2)

Harmonic 0.556±0.005 0.603±0.006 0.655±0.001

Krylov 0.556±0.005 0.602±0.006 0.655±0.001

Smooth Op. 0.557±0.005 0.601±0.008 0.641±0.021

k-Graph (k = 3)

Harmonic 0.554±0.007 0.601±0.005 0.659±0.004

Krylov 0.554±0.007 0.601±0.005 0.659±0.004

Smooth Op. 0.553±0.003 0.603±0.008 0.643±0.021

k-Graph (k = 5)

Harmonic 0.552±0.005 0.607±0.005 0.657±0.004

Krylov 0.551±0.005 0.606±0.005 0.657±0.004

Smooth Op. 0.556±0.005 0.604±0.011 0.643±0.021

k-Graph (k = 10)

Harmonic 0.561±0.005 0.610±0.007 0.656±0.003

Krylov 0.561±0.005 0.610±0.008 0.656±0.003

Smooth Op. 0.565±0.009 0.607±0.008 0.647±0.014

ǫ-Graph (ǫ = 0.1)

Harmonic 0.550±0.000 0.600±0.000 0.650±0.000

Krylov 0.550±0.000 0.600±0.000 0.650±0.000

Smooth Op. 0.500±0.000 0.500±0.000 0.500±0.000

ǫ-Graph (ǫ = 0.5)

Harmonic 0.547±0.008 0.602±0.005 0.650±0.007

Krylov 0.548±0.008 0.602±0.005 0.650±0.007

Smooth Op. 0.516±0.004 0.534±0.002 0.546±0.003

ǫ-Graph (ǫ = 1.0)

Harmonic 0.550±0.003 0.599±0.001 0.648±0.002

Krylov 0.551±0.003 0.599±0.001 0.648±0.002

Smooth Op. 0.554±0.003 0.597±0.007 0.638±0.016

GNG Graph (λ = 5)

Harmonic 0.559±0.010 0.594±0.012 0.647±0.012

Krylov 0.559±0.010 0.594±0.012 0.646±0.012

Smooth Op. 0.559±0.012 0.586±0.007 0.643±0.011

GNG Graph (λ = 10)

Harmonic 0.552±0.020 0.590±0.020 0.625±0.023

Krylov 0.552±0.020 0.590±0.020 0.625±0.023

Smooth Op. 0.555±0.012 0.587±0.009 0.621±0.019
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Table 6.6: Accuracy results from the 4000 data-points group (40% and 50% of labeled data).

Graph Construction Graph Regularization
Labeled Data Proportion

40% 50%

Full Graph

Harmonic 0.700±0.004 0.748±0.003

Krylov 0.700±0.005 0.748±0.003

Smooth Op. 0.667±0.022 0.687±0.028

k-Graph (k = 2)

Harmonic 0.707±0.003 0.755±0.003

Krylov 0.707±0.003 0.754±0.003

Smooth Op. 0.662±0.024 0.680±0.026

k-Graph (k = 3)

Harmonic 0.705±0.003 0.759±0.004

Krylov 0.705±0.003 0.759±0.004

Smooth Op. 0.668±0.027 0.682±0.030

k-Graph (k = 5)

Harmonic 0.703±0.001 0.753±0.003

Krylov 0.703±0.001 0.753±0.003

Smooth Op. 0.671±0.031 0.680±0.030

k-Graph (k = 10)

Harmonic 0.706±0.002 0.759±0.002

Krylov 0.706±0.002 0.759±0.002

Smooth Op. 0.671±0.028 0.687±0.033

ǫ-Graph (ǫ = 0.1)

Harmonic 0.700±0.000 0.750±0.000

Krylov 0.700±0.000 0.750±0.000

Smooth Op. 0.500±0.000 0.500±0.000

ǫ-Graph (ǫ = 0.5)

Harmonic 0.698±0.004 0.752±0.002

Krylov 0.699±0.004 0.752±0.002

Smooth Op. 0.561±0.007 0.578±0.013

ǫ-Graph (ǫ = 1.0)

Harmonic 0.699±0.003 0.746±0.002

Krylov 0.699±0.003 0.746±0.002

Smooth Op. 0.668±0.024 0.681±0.025

GNG Graph (λ = 5)

Harmonic 0.676±0.010 0.727±0.005

Krylov 0.676±0.010 0.727±0.005

Smooth Op. 0.659±0.016 0.674±0.012

GNG Graph (λ = 10)

Harmonic 0.647±0.021 0.678±0.007

Krylov 0.648±0.021 0.679±0.007

Smooth Op. 0.605±0.027 0.626±0.009
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Table 6.7: Accuracy results from the 8000 data-points group (10%, 20% and 30% of labeled

data).

Graph Construction Graph Regularization
Labeled Data Proportion

10% 20% 30%

Full Graph

Harmonic 0.550±0.001 0.599±0.001 0.647±0.003

Krylov 0.550±0.001 0.599±0.001 0.647±0.003

Smooth Op. 0.551±0.001 0.599±0.003 0.642±0.003

k-Graph (k = 2)

Harmonic 0.551±0.003 0.599±0.005 0.653±0.002

Krylov 0.551±0.003 0.599±0.005 0.653±0.002

Smooth Op. 0.545±0.005 0.599±0.004 0.651±0.005

k-Graph (k = 3)

Harmonic 0.550±0.002 0.598±0.001 0.650±0.001

Krylov 0.550±0.002 0.598±0.001 0.650±0.001

Smooth Op. 0.549±0.003 0.595±0.003 0.653±0.004

k-Graph (k = 5)

Harmonic 0.549±0.005 0.600±0.001 0.650±0.001

Krylov 0.549±0.005 0.600±0.001 0.650±0.001

Smooth Op. 0.553±0.003 0.591±0.005 0.646±0.005

k-Graph (k = 10)

Harmonic 0.546±0.002 0.593±0.002 0.645±0.001

Krylov 0.546±0.002 0.593±0.002 0.645±0.001

Smooth Op. 0.548±0.002 0.600±0.005 0.642±0.005

ǫ-Graph (ǫ = 0.1)

Harmonic 0.550±0.000 0.600±0.000 0.650±0.000

Krylov 0.550±0.000 0.600±0.000 0.650±0.000

Smooth Op. 0.500±0.000 0.500±0.000 0.500±0.000

ǫ-Graph (ǫ = 0.5)

Harmonic 0.549±0.003 0.594±0.004 0.649±0.003

Krylov 0.548±0.001 0.595±0.005 0.649±0.003

Smooth Op. 0.522±0.003 0.539±0.003 0.581±0.024

ǫ-Graph (ǫ = 1.0)

Harmonic 0.549±0.001 0.599±0.001 0.646±0.002

Krylov 0.549±0.001 0.599±0.001 0.646±0.002

Smooth Op. 0.548±0.002 0.597±0.001 0.652±0.003

GNG Graph (λ = 5)

Harmonic 0.538±0.010 0.590±0.015 0.637±0.010

Krylov 0.538±0.010 0.590±0.015 0.637±0.010

Smooth Op. 0.546±0.015 0.592±0.010 0.621±0.010

GNG Graph (λ = 10)

Harmonic 0.541±0.010 0.590±0.010 0.631±0.015

Krylov 0.541±0.010 0.590±0.010 0.631±0.015

Smooth Op. 0.547±0.010 0.588±0.009 0.611±0.013
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Table 6.8: Accuracy results from the 8000 data-points group (40% and 50% of labeled data).

Graph Construction Graph Regularization
Labeled Data Proportion

40% 50%

Full Graph

Harmonic 0.698±0.002 0.749±0.001

Krylov 0.698±0.002 0.749±0.001

Smooth Op. 0.677±0.004 0.688±0.004

k-Graph (k = 2)

Harmonic 0.698±0.003 0.749±0.002

Krylov 0.698±0.003 0.749±0.002

Smooth Op. 0.673±0.004 0.690±0.001

k-Graph (k = 3)

Harmonic 0.702±0.001 0.750±0.001

Krylov 0.702±0.001 0.750±0.001

Smooth Op. 0.678±0.004 0.689±0.002

k-Graph (k = 5)

Harmonic 0.700±0.002 0.751±0.001

Krylov 0.700±0.002 0.751±0.001

Smooth Op. 0.685±0.010 0.698±0.008

k-Graph (k = 10)

Harmonic 0.699±0.004 0.747±0.002

Krylov 0.699±0.004 0.747±0.002

Smooth Op. 0.681±0.008 0.697±0.011

ǫ-Graph (ǫ = 0.1)

Harmonic 0.700±0.000 0.750±0.000

Krylov 0.700±0.000 0.750±0.000

Smooth Op. 0.500±0.000 0.500±0.000

ǫ-Graph (ǫ = 0.5)

Harmonic 0.699±0.001 0.744±0.003

Krylov 0.699±0.001 0.748±0.004

Smooth Op. 0.576±0.004 0.592±0.003

ǫ-Graph (ǫ = 1.0)

Harmonic 0.700±0.001 0.748±0.001

Krylov 0.700±0.001 0.748±0.001

Smooth Op. 0.685±0.002 0.696±0.003

GNG Graph (λ = 5)

Harmonic 0.670±0.013 0.699±0.007

Krylov 0.670±0.013 0.700±0.008

Smooth Op. 0.649±0.015 0.648±0.015

GNG Graph (λ = 10)

Harmonic 0.654±0.012 0.656±0.009

Krylov 0.644±0.020 0.656±0.009

Smooth Op. 0.615±0.015 0.602±0.022
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6.4 Regularization Performance Results

In order to validate the proposed regularization method, we compared our algorithm to the

related methods presented in sections 3.3 and 3.4, in terms of accuracy (using confidence inter-

vals) at different labeled data proportions of the data set size. That is, we test the accuracy of

our method against the others using 1%, 5%, 10%, 15%, 20%, 30% and 50% of labeled data in

the training (regularization) step, sampled 5 different times for each percentage.

For running the tests, we work with the k-graph construction approach for our experiments,

with k = 5 and k = 10, so as to have sparse matrices to work with. All data sets (see section

6.1), but the BCI, where projected using PCA into a lower dimensional space. The Tiny Images

data set was projected maintaining 81% of the data’s variance into a 64 dimensional space. The

other data sets were projected maintaining 90% of the data’s variance. So the g241c data-points

were reduced to 193 dimensions, the g241n to 191 dimensions, Digit1 to 96, COIL to 14 and

Madelon to 229 dimensions.

Table 6.9: 1% Accuracy results with 5-graph

Data Sets
Regularization Methods

HAR (%) KRY (%) SMO (%) EIF (%) NYS (%) FIR (%)

g241c 50.0±3.1 50.5±0.0 50.1±2.5 50.0±0.8 52.1±1.0 51.1±0.8

g241n 50.0±1.4 50.5±0.1 50.5±0.7 50.3±0.7 50.2±1.4 50.9±0.8

Digit1 94.6±3.2 62.4±4.5 96.3±1.5 60.6±1.8 51.2±0.9 96.8±1.2

COIL 50.5±0.6 50.5±0.1 51.1±0.6 60.7±3.8 51.5±1.4 51.4±1.4

BCI 52.3±0.6 50.7±0.4 51.2±0.8 53.0±2.9 50.5±0.0 53.6±1.8

Tiny Images 50.4±0.3 50.7±0.6 51.5±1.2 51.1±1.6 50.4±0.6 52.6±0.5

Madelon 50.5±0.0 50.5±0.0 50.0±0.0 54.4±2.9 50.7±1.1 50.0±0.0

The hyper parameters used in the tests were: for the eigenfunction approach, 100 approxi-

mated eigenfunctions, for the smooth operator were used 90% of the eigenvectors, in the Nys-

trom method was 30 as sampling ratio and for the Krylov method was used 30 iterations. For

our method, a grid search was done with different filter sizes and filter application times, there

were done tests with 2, 3, 4, 5, 10, 15, 20 and 25 as filter size, and it was applied 5, 10, 15 and
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20 times, for each test instance. The tables and figures shown the results for the best cases. The

accuracy results obtained for the different data sets experiments for 1%, 5% , 15% and 50% of

labeled data with a 5-graph are shown in tables 6.9, 6.10, 6.11 and 6.12 respectively.

Table 6.10: 5% Accuracy results with 5-graph

Data Sets
Regularization Methods

HAR (%) KRY (%) SMO (%) EIF (%) NYS (%) FIR (%)

g241c 52.1±1.2 52.5±0.0 52.5±8.0 51.7±1.2 52.1±1.6 53.0±1.2

g241n 54.0±1.3 52.4±0.1 52.0±1.9 52.7±1.2 52.1±1.5 51.0±0.6

Digit1 96.9±1.1 96.5±1.4 97.0±1.1 74.4±1.8 52.7±1.4 97.0±1.0

COIL 50.9±1.4 52.5±0.0 50.3±0.7 73.9±1.1 52.0±1.5 50.1±0.2

BCI 52.5±3.3 52.8±0.6 51.8±2.7 50.4±2.2 53.3±2.3 54.4±1.2

Tiny Images 53.9±1.5 54.0±1.6 54.2±1.2 53.4±1.0 51.9±1.1 55.1±0.7

Madelon 52.5±0.0 52.5±0.0 50.0±0.0 55.1±1.0 52.3±0.8 50.1±0.1

Table 6.11: 15% Accuracy results with 5-graph

Data Sets
Regularization Methods

HAR (%) KRY (%) SMO (%) EIF (%) NYS (%) FIR (%)

g241c 57.5±0.3 57.5±0.0 52.9±2.0 56.5±0.5 60.4±1.0 56.9±1.3

g241n 57.5±1.1 57.5±0.1 52.7±2.0 54.9±0.8 55.5±1.4 53.9±0.3

Digit1 98.1±0.3 98.0±0.4 98.3±0.2 86.6±0.6 57.2±1.5 97.3±0.8

COIL 57.1±0.7 57.7±0.0 53.6±9.4 82.9±0.3 56.4±1.1 53.5±0.1

BCI 56.5±1.7 57.5±0.5 58.5±1.8 56.8±2.3 56.0±1.2 57.3±1.4

Tiny Images 57.5±0.7 57.5±0.7 55.5±0.9 57.1±0.5 57.2±0.5 58.1±1.3

Madelon 57.5±0.0 57.5±0.0 53.2±0.1 54.5±0.1 57.2±0.1 54.0±0.0



6.4. Regularization Performance Results 75

Table 6.12: 50% Accuracy results with 5-graph.

Data Sets
Regularization Methods

HAR (%) KRY (%) SMO (%) EIF (%) NYS (%) FIR (%)

g241c 75.0±0.4 75.0±0.0 70.5±2.1 60.6±0.4 76.9±1.0 70.3±1.5

g241n 75.4±1.0 75.0±0.1 71.2±2.2 59.7±0.9 74.7±1.3 68.5±0.3

Digit1 99.0±0.3 99.0±0.2 98.9±0.3 93.9±0.8 74.8±1.3 98.7±0.2

COIL 74.0±0.8 75.3±0.0 60.6±9.6 84.3±0.3 74.8±1.2 69.6±0.2

BCI 77.3±1.9 75.3±0.4 74.4±1.9 74.0±2.5 74.6±1.1 73.0±1.5

Tiny Images 76.3±0.6 76.3±0.6 74.9±0.8 62.2±0.7 75.9±0.5 72.3±0.8

Madelon 75.0±0.0 75.0±0.0 70.0±0.1 62.8±0.1 75.0±0.2 70.0±0.1

The optimum hyper parameters of the algorithm (the filter size and the number of times the

filter is applied) vary from problem to problem; the better results in most cases were obtained

with a filter of size 5 and applied 5 times. The experimental results show that it is not always

good to apply the filter too many times. The filter should be applied as many times as the

longest path between a labeled vertex to an unlabeled vertex. The learned filter coefficients are

highly-dependent on the data set, a characteristic related to the similarity between two labeled

vertices of different classes.

The behavior of the algorithms for each data set at different labeled data proportion can be

seen in Figure 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10; from there we can see that our method usually

behaves better than the others when the labeled data proportion is in the low range of 1–5%,

making it appropriate for situations when there is very few labeled data, such a semi-supervised

ideal situation. The 10-graph’s tests had very similar results to the 5-graph’s test with no impor-

tant differences.
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Figure 6.5: Results from the 5-graph experiments (1% to 15% of labeled data) from g241c.
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Figure 6.6: Results from the 5-graph experiments (1% to 15% of labeled data) from g241n.
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Figure 6.7: Results from the 5-graph experiments (1% to 15% of labeled data) from Digit1.
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Figure 6.8: Results from the 5-graph experiments (1% to 15% of labeled data) from COIL.
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Figure 6.9: Results from the 5-graph experiments (1% to 15% of labeled data) from BCI.
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Figure 6.10: Results from the 5-graph experiments (1% to 15% of labeled data) from Tiny

Images with CIFAR-10.
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Figure 6.11: Results from the 5-graph experiments (1% to 15% of labeled data) from Madelon.

The algorithm’s computational performance will depend of how many times the filter has

to be applied. As the results have shown, it is not good to apply more than the largest path be-

tween a labeled vertex and an unlabeled vertex. The complexity should not increase in order to

have better results. Empirically compared to the other methods, it computes at almost the same

time than the Krylov and Smooth Operator regularizers, faster than the Harmonic and Nystrom

method, and slower than the Eigenfunctions method (when not calculating the Laplacian ex-

plicitly).

6.5 Cost Evaluation and Discussion

Taking the execution time in each individual test as a reliable measure of cost is not viable,

because of the large variation of execution time from each test instance, even when the same

exact parameters and algorithms were tested, the execution time varies. All of that happens be-

cause, as the test were done in independent computer cluster, the work balance of each cluster

at each time was something that can not be controlled. Table 6.13, 6.14, 6.16 and 6.17 show

the regularizers’ running time in seconds for 1% (g241c, g241n, Digit1 and COIL data sets),

1% (BCI, Tiny Images and Madelon data sets), 50% (g241c, g241n, Digit1 and COIL data sets)

and 50% (BCI, Tiny Images and Madelon data sets) of labeled data respectively in a k-graph



80 Chapter 6. Experiments and Results

with k = 5 (mean and standard deviation for each case). Note that the Eigenfunctions regu-

larizer, has a significantly greater running time, because it does not need to build a graph, and

the other regularizers’ running times are not taking into account the graph construction running

time. Table 6.15 shows the graph construction running times for a k-graph with k = 5, so the

real time for all the tranductive learning would be the graph construction running time plus the

regularization running time, except for the Eigenfunction regularizer (EIF). Tables 6.13, 6.14,

6.15, 6.16 and 6.17 show very uncorrelated numbers with large standard deviations, in many

cases the standard deviations are very similar to the means. And because of this, the analysis of

the running times does not give us trustful information.

Table 6.13: Regularization running times (in seconds) for 1% of labeled data in a k-graph

(k = 5) from g241c, g241n, Digit1 and COIL data sets.

Regularizer g241c g241n Digit1 COIL

FIR 170.48±37.01 304.08±88.53 88.65±60.65 23.40±7.67

HAR 141.82±90.33 99.47±46.9 47.22±45.42 55.08±35.35

KRY 143.59±97.84 119.82±41.65 145.89±116.24 67.39±24.95

NYS 874.35±187.92 868.32±152.91 548.86±474.67 1319.13±1186.29

SMO 239.07±60.31 130.72±25.3 90.44±91.22 67.41±30.26

EIF 3684.44±234.03 4771.73±607.37 414.38±305.18 6209.14±2041.5

Table 6.14: Regularization running times (in seconds) for 1% of labeled data in a k-graph

(k = 5) from BCI, Tiny Images and Madelon data sets.

Regularizer BCI Tiny Images Madelon

FIR 11.36±5.22 3135.79±1599.5 516.48±116.18

HAR 1.33±0.45 2819.27±1644.26 851.66±120.6

KRY 3.16±1.02 4995.26±2976.47 965.63±77.96

NYS 16.97±4.95 9581.66±3071.68 823.35±642.49

SMO 1.70±0.25 8941.82±5002.93 966.73±40.43

EIF 97.54±31.24 4641.78±1667.85 17299.11±1277.16
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Table 6.15: Graph construction running times (in seconds) for a k-graph (k = 5).

g241c g241n Digit1 COIL BCI Tiny Images Madelon

4161.56±43.8 4132.85±35.88 2612.37±176.23 6278.57±183.25 126.19±38.06 119079.13±25.02 26274.57±23.72

Table 6.16: Regularization running time (in seconds) for 50% of labeled data in a k-graph

(k = 5) from g241c, g241n, Digit1 and COIL data sets.

Regularizer g241c g241n Digit1 COIL

FIR 99.49±8.47 140.25±15.94 58.49±40.96 16.06±4.7

HAR 79.01±46.76 50.54±29.91 33.02±10.95 78.23±21.91

KRY 92.43±47.33 37.03±7.98 39.09±8.03 74.27±17.52

NYS 287.75±43.59 675.75±230.44 1918.04±743.22 1249.46±1218.09

SMO 140.14±32.08 84.58±6.05 67.63±12.61 93.32±27.43

EIF 3404.07±154.59 4040.13±387.43 1206.1±1091.97 114.29±104.17

Table 6.17: Regularization running time (in seconds) for 50% of labeled data in a k-graph

(k = 5) from BCI, Tiny Images and Madelon data sets.

Regularizer BCI Tiny Images Madelon

FIR 11.35±6.85 2717.87±340.17 180.28±21.28

HAR 21.23±1.45 2735.04±1573.17 425.69±334.24

KRY 3.95±2.14 1673.74±1351.67 470.06±396.75

NYS 14.22±12.58 6333.82±1647.48 3117.89±1547.97

SMO 3.04±1.6 2490.96±2223.06 521.97±412.94

EIF 114.15±39.41 3460.58±617.27 17068.18±2087.26

Complexities vary depending of which numeric algorithms are used to make the calcula-

tions, and are highly hyper-parameter dependent. Memory usage depends highly of the graph

construction step, but not entirely. For this reason we decided to analyze both the delay of the

algorithms and the memory usage by discussing which expensive steps of graph based semi-

supervised learning they do (see section 3.4).
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We consider that a specific regularization algorithm does an expensive step, depending of

the following rules for each case:

• Whole Graph Memory Storage. The algorithm does this step just if they use a matrix

of size n × n (being n the number of data-points, or a number very close to it, like u) that

represent the graph (similarity matrix, adjacent matrix) loaded in memory.

• Explicit Graph Construction. If the algorithm requires by all means to process a graph

built in the previous step.

• Graph Laplacian Calculation. If the algorithms needs to calculate the graph Laplacian

from an n × n similarity matrix.

• Matrix Multiplication. If the algorithm multiplies two matrices of size n × n, it does

this step.

• Matrix Inversion. If the algorithm invert a matrix of size n × n.

• Matrix Spectral Decomposition. If the algorithm needs to get the eigenvalues and eigen-

vectors of an n × n matrix.

Table 6.18: Expensive Steps Analysis for Regularization Methods.

Expensive Steps HAR KRY NYS SMO EIF FIR

Whole Graph Memory Storage X X X X - X

Explicit Graph Construction X X X X - X

Graph Laplacian Calculation X X - X - X

Matrix Multiplication X - X X - -

Matrix Inversion X - - - - -

Matrix Spectral Decomposition - - - X - -
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Table 6.19: Expensive Steps Analysis for Regularization Methods using GNG-graphs.

Expensive Steps GNG+HAR GNG+KRY GNG+SMO GNG+NYS GNG+FIR

Whole Graph Memory Storage - - - - -

Explicit Graph Construction X X X X X

Graph Laplacian Calculation X X X - X

Matrix Multiplication X - X X -

Matrix Inversion X - - - -

Matrix Spectral Decomposition - - X - -

Table 6.18 shows which regularization methods do each expensive step. The only studied

method that does not do any of the expensive steps is the Eigenfunctions of the Graph Laplacian

Regularizer (EIF) (see section 3.4.4), mainly because it does not need the graph explicitly. The

two methods that do more expensivve steps are the Harmonic Regularizer (HAR) (section 3.3.1)

and the Smooth Operator of the Graph Laplacian Regularizer (SMO) (section 3.4.3), both do

5 of the six expensive steps, but the SMO regularizer does a matrix spectral decomposition

in order to get the eigenvectors with smallest eigenvalues in order to avoid a matrix inversion

implying that the inversion is more expensive than the spectral decomposition. Our proposed

method (FIR) does three expensive steps, as do the Krylov Regularizer (KRY) (section 3.4.1)

and the Nystrom + Isomap Regularizer (NYS) (section 3.4.2), but the NYS regularizer has to

calculate the distance within the graph of each vertex to all the other ones, making it certainly

more expensive than the KRY and FIR regularizers. The KRY regularizer as the FIR regularizer

are very tied in terms of costs, the KRY regularizer has to do a matrix × vector multiplication

and a least square minimization in each iteration, while the FIR regularizer needs more than one

matrix × vector multiplication each time the filter is applied, depending of the filter order; also

it has to make a matrix inversion of a small matrix one time. Using the GNG graph construction

approach, there would be no need to have the whole graph in memory (see Table 6.19), making

each regularization method lighter, but affecting their performance (section 6.3).





Chapter 7

Conclusions

In this work, we studied graph based semi-supervised learning for classification, focusing our

attention in fast computation algorithms. We proposed two algorithms in order to save memory,

processing time and computational cost; all of that without significantly affecting the perfor-

mance.

The first proposed algorithm is a graph construction algorithm, we call the graph built by it

as GNG-graph, because we used a modified instance of an unsupervised neural network called

Growing Neural Gas (GNG). This algorithm has as main contribution the saving in memory

storage space, because it represents a data set of say n data-points with a graph of m vertices,

being m < n, that is, the regularization step calculations can be done with significantly smaller

matrices (for example 50% to 90% of the number of data-points), reducing the processing time,

complexity and memory usage in later regularization stages. Moreover from the nature of this

algorithm the number of edges would be even lesser than other sparse graphs, leading to more

sparse matrices. The two big trade offs of this method are:

• The number of hyper parameters, most of the parameters do not have a great impact in

the performance (ex: all the constants used in the vertices’ error calculation and in the

neuron movements calculation) or are very intuitive (ex: maximum number of neurons),

but some of then can meaningfully affect the performance (ex: the error rate, the error

factor and the growing rate), and are not very intuitive to set, and varies from set to set.

The general idea is to have smaller graphs, so by this the error rate should not be to small

and the error factor should be not to big; the big problem is given by the growing rate,

this should be set as a not too small fraction of the whole data set, in order to get a better

representation of the data, the growing factor should lead to a not too fast growing of the

neural network.

• The processing time when the graph reaches a large size, when m is too close to n. In

85
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early iterations the GNG graph construction algorithm works very fast, because it has few

neurons to work with; but as this number increases its behavior is even slower than the

k-graph and ǫ-graph, because of the KNN search and the neurons data update in each

iteration. In order to deal with this problem, the maximum number of neurons and the

growing rate should be set in order to not build a large graph too soon.

Generally the GNG-graph build fair representative graph with fewer neurons. The perfor-

mance is not as good as with other traditional graphs, with the majority of tested regularizers, but

it improves the performance of the Smooth Operator regularizer. It saves considerable memory,

but as the graph grows the execution time increases; smaller graphs do not represent properly

the data sets, but they save more space and their construction execution time is considerable less.

The second proposed algorithm is a regularization algorithm based in the repeated appli-

cation of a FIR filter over the graph. This is done by using the graph Laplacian and a set of

coefficients. The coefficients are determined by solving a minimization problem based in a

regularization scheme for semi-supervised learning. This method has as main contribution the

novel approach based in graph signal processing and its fast nature. It avoids matrix multipli-

cation, inversion and decomposition for all matrices of size n × n (ex: Similarity matrix and

Graph Laplacian). But it also presents some trade offs:

• The number of times that the filter has to be applied is crucial for the performance of

the algorithm. This number should be close to the maximum path between an unlabeled

vertex to a labeled one, calculating this path would be very expensive, so we can only

make some guests in order to set it. On the other hand, as more times it is applied it will

affect the execution time, but also if it is applied more times than it should be it will affect

the performance.

• The method works really well when there is really small quantities of labeled data, in

most cases it performs better than the other methods no matter how the data properties

are. But as the labeled data proportion rises, its performance falls below some of the other

methods. This property of the algorithm is very important because it goes along with the

semi-supervised learning condition for classification.

In general the algorithm performance as well as the others (only beating them with very few

labeled data). The execution time is similar to the others, with the exception of the Eigenfunc-

tion approach, which does not use a graph construction algorithm. Its most expensive part is the

coefficient discovery stage, provided that the FIR filter is not applied too many times.
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