
Davi Colli Tozoni

“Solving the Art Gallery Problem: A Practical and

Robust Method for Optimal Point Guard

Positioning”

“Resolução do Problema da Galeria de Arte: Um

Método Prático e Robusto para o Posicionamento

Ótimo de Guardas-Ponto”

CAMPINAS

2014

i

ii

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Solving the Art Gallery Problem: A Practical and

Robust Method for Optimal Point Guard Positioning

Davi Colli Tozoni1

July 25, 2014

Examiner Board/Banca Examinadora:

• Prof. Dr. Cid Carvalho de Souza (Supervisor/Orientador)

• Prof. Dr. Pedro Jussieu de Rezende (Co-Supervisor/Co-Orientador)

• Prof. Dr. Luiz Henrique de Figueiredo

Instituto Nacional de Matemática Pura e Aplicada - IMPA

• Prof. Dr. Fábio Luiz Usberti

Instituto de Computação - UNICAMP

• Prof. Dr. Carlos Eduardo Ferreira

Instituto de Matemática e Estat́ıstica - USP (Substitute/Suplente)

• Prof. Dr. Orlando Lee

Instituto de Computação - UNICAMP (Substitute/Suplente)

1Financial support: CNPq scholarship (process 146025/2012-1) 2012 and FAPESP scholarship (pro-
cesses 2012/18384-7 and 2013/13534-3) 2013–2014

vii

Abstract

In this dissertation, we present our research on the Art Gallery Problem (AGP), one of

the most investigated problems in Computational Geometry. The AGP, which is a known

NP-hard problem, consists in finding the minimum number of guards sufficient to ensure

the visibility coverage of an art gallery represented as a polygon. In the version of the

problem treated in this work, usually called Art Gallery Problem with Point Guards, the

guards can be placed anywhere in the polygon and the objective is to cover the whole

region, which may or not have holes.

We studied how to apply Computational Geometry concepts and algorithms as well

as Integer Programming techniques in order to solve the AGP to optimality. This work

culminated in the creation of a new algorithm for the AGP, whose idea is to iteratively

generate upper and lower bounds for the problem through the resolution of discretized

versions of the AGP, which are reduced to instances of the Set Cover Problem.

The algorithm was implemented and tested on more than 2800 instances of different

sizes and classes of polygons. The technique was able to solve in minutes more than

90% of all instances considered, including polygons with thousands of vertices, greatly

increasing the set of instances for which exact solutions are known. To the best of our

knowledge, in spite of the extensive study of the AGP in the last four decades, no other

algorithm has shown the ability to solve the AGP as effectively as the one described here.

ix

Resumo

Nesta dissertação, apresentamos nossa pesquisa sobre o Problema da Galeria de Arte

(AGP), um dos problemas mais estudados em Geometria Computacional. O AGP, que

é um problema NP-dif́ıcil, consiste em encontrar o número mı́nimo de guardas suficiente

para garantir a cobertura visual de uma galeria de arte representada por um poĺıgono. Na

versão do problema tratada neste trabalho, usualmente chamada de Problema da Galeria

de Arte com Guardas-Ponto, os guardas podem ser posicionados em qualquer lugar do

poĺıgono e o objetivo é cobrir toda a região, que pode ou não conter buracos.

Nós estudamos como aplicar conceitos e algoritmos de Geometria Computacional, bem

como Técnicas de Programação Inteira, com a finalidade de resolver o AGP de forma

exata. Este trabalho culminou na criação de um novo algoritmo para o AGP, cuja ideia

é gerar, de forma iterativa, limitantes superiores e inferiores para o problema através da

resolução de versões discretizadas do AGP, que são reduzidas a instâncias do Problema

de Cobertura de Conjuntos.

O algoritmo foi implementado e testado em mais de 2800 instâncias, de diferentes

tamanhos e classes. A técnica foi capaz de resolver, em minutos, mais de 90% de todas

as instâncias consideradas, incluindo poĺıgonos com milhares de vértices, e ampliou em

muito o conjunto de casos para os quais são conhecidas soluções exatas. Até onde sabemos,

apesar do extensivo estudo do AGP nas últimas quatro décadas, nenhum outro algoritmo

demonstrou a capacidade de resolver o AGP de forma tão eficaz como a técnica aqui

descrita.

xi

Acknowledgements

Firstly, I want to thank my advisors, Professors Cid and Rezende, for all the help during

my Master’s Degree. Their hard work and commitment to research and teaching will cer-

tainly be an example for all my life. Thank you for the weekly meetings, the conversations

and for this great learning opportunity.

A special thanks also goes to my parents, who always supported me in my studies,

taught me the importance of committing myself to the maximum in each and every activity

and always cared about giving the best conditions so that I could achieve my goals.

I also want to thank all other professors of the Institute of Computing at UNICAMP,

who taught me a lot during undergraduate and graduate school. In particular, I thank

Professor Arnaldo, my Scientific Initiation advisor, for introducing me to research. More-

over, I thank Professor Christiane that, in addition to supervising my teaching internship

(PED), made me like the teaching profession even more and became a great friend and

motivator.

Furthermore, I would like to thank the research group at TUBS for earnestly welcoming

me during my research internship in Germany and for the partnership developed during

this project. I thank Professor Alexander Kröller, my internship supervisor, Professor

Sándor Fekete, head of the Algorithms Group, my friends Michael Hemmer and Stephan

Friedrichs and the entire staff of the Algorithms Group at TUBS.

I couldn’t forget to say thank you to all my colleagues from LOCo (Laboratory of Op-

timization and Combinatorics) that were by my side during much of this work. The coffee

breaks, conversations and moments of laugh were surely very important. In addition, I

thank my family, all my friends and especially my girlfriend Thamiris for their support.

Finally, I thank the University of Campinas for being my second home since I was 17

years old and the research funding agencies FAPESP and CNPq for the financial support

of my research.

xiii

Agradecimentos

Primeiramente, gostaria de agradecer aos meus orientadores, Professores Cid e Rezende,

por toda ajuda durante o peŕıodo de mestrado. O trabalho sério e o comprometimento

deles com a pesquisa e com o ensino com certeza me servirão de exemplo por toda a

vida. Obrigado pelas reuniões semanais, pelas conversas e por esta grande oportunidade

de aprendizado.

Um agradecimento especial vai também para os meus pais, que sempre me apoiaram

muito nos estudos, me ensinaram a importância de se dedicar ao máximo em toda e

qualquer atividade e sempre se preocuparam em dar as melhores condições para que eu

conseguisse atingir os meus objetivos.

Agradeço também a todos os demais professores do Instituto de Computação da Uni-

camp, que muito me ensinaram durante a graduação e a pós graduação. Em especial,

agradeço ao Professor Arnaldo, orientador de minha Iniciação Cient́ıfica, por ter me in-

troduzido ao universo da pesquisa e agradeço também à Professora Christiane que, além

de supervisionar o meu estágio docente (PED), me fez gostar ainda mais do trabalho de

um professor e se tornou uma grande amiga e incentivadora.

Gostaria de agradecer ao grupo de pesquisa da TUBS pela ótima recepção que tive

durante o meu estágio de pesquisa na Alemanha e pela parceria desenvolvida neste projeto.

Agradeço ao Professor Alexander Kröller, supervisor de meu estágio, ao Professor Sándor

Fekete, chefe do grupo de algoritmos, aos amigos Michael Hemmer e Stephan Friedrichs

e também aos demais funcionários do grupo de algoritmos da TUBS.

Não poderia esquecer de dizer obrigado a todos os colegas do LOCo (Laboratório

de Otimização Combinatória) que estiveram ao meu lado durante grande parte deste

trabalho. Os cafés, as conversas e as risadas com certeza foram muito importantes. Além

disso, agradeço aos meus familiares, aos colegas do curso de Computação na Unicamp,

demais amigos e principalmente à minha namorada Thamiris por todo o apoio.

Finalmente, agradeço à Unicamp por ter se tornado a minha segunda casa desde os

17 anos de idade e às entidades de fomento FAPESP e CNPq pelo suporte financeiro de

meus estudos.

xv

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

Agradecimentos xv

1 Introduction 1

1.1 The Problem . 2

1.2 Related Work . 3

1.3 Our Contribution . 7

1.4 Text Organization . 8

2 Preliminaries 9

2.1 Computational Geometry . 9

2.2 Integer Programming . 14

2.3 The Art Gallery Problem . 16

2.4 Basic Theorems . 18

3 An Algorithm for the AGP 21

3.1 Sketch of the Algorithm . 21

3.2 Solving the AGPW . 22

3.3 Solving the AGPFC . 23

3.4 Solving the AGPWFC (SCP) . 25

3.5 Witness Management . 28

3.6 Guard Candidate Management . 32

3.7 Resulting Algorithm . 34

xvii

4 Implementation and Computational Results 39

4.1 Implementation . 39

4.1.1 I1: Implementation for the first paper [34] 40

4.1.2 I2: Implementation for the second paper [33] 41

4.1.3 I3: Implementation for the third paper [17] 43

4.2 Computational Environment . 44

4.3 Instances . 44

4.3.1 Simple . 45

4.3.2 Orthogonal . 45

4.3.3 Simple-simple . 45

4.3.4 Ortho-ortho . 46

4.3.5 von Koch . 46

4.3.6 Spike . 47

4.4 Results and Analysis . 47

4.4.1 General Results . 50

4.4.2 Witness Management . 56

4.4.3 Guard Candidate Management . 62

4.4.4 SCP Resolution . 62

4.5 Comparison With Other Techniques . 67

4.5.1 Comparison with Bottino et al.’s technique [10] 67

4.5.2 Comparison with Kröller et al.’s technique [26] 69

5 Conclusions 75

Bibliography 77

xix

List of Tables

4.1 Summary of instances . 49

4.2 Optimality Rates of I1, I2 and I3 in environment M2. 51

4.3 Average Time of I1, I2 and I3 in environment M2. 52

4.4 Optimality rate, average cardinality of optimal guard sets, average number

of iterations and average time spent results with E(I3,M2). 53

4.5 Percentage of executions with I3 in M2 within different optimality gaps. . . 57

4.6 Average number of iterations (main loop) until an optimal solution is found

for each initial discretization strategy with E(I1,M1). 58

4.7 Average running time until an optimal solution is found for each initial

discretization strategy with E(I1,M1). 59

4.8 Optimality rate and average time results for CV and CP discretization

strategies with E(I3, M2). 61

4.9 Optimality rate and average time results for CG and BG guard candidate

selection strategies with E(I3, M2). 63

4.10 Optimality rate and average time results when using or not the Lagrangian

Heuristic to help cplex with E(I3, M2). 68

4.11 Comparison between the method of Bottino et al. [10] and I2. 69

4.12 Optimality Rate of our implementations and AGP Solvers from [26] in

environment M2. 71

xxi

List of Figures

1.1 Satellite photo of UNICAMP. 3

1.2 Representation of UNICAMP Campus (top); an optimal guard positioning

(bottom). 4

1.3 Timeline including the major recent algorithmic achievements for the AGP. 5

2.1 Simple polygons (left); non-simple polygons (right). 10

2.2 Polygons with holes. 10

2.3 Convex (purple) and reflex (blue) vertices. 11

2.4 Two points visible (green) and two other that are not visible (red) to each

other (left); the visibility polygon of a point (right). 11

2.5 The arrangement induced by a finite set S of points (left); the set S and

its covered (light green) and uncovered (white) regions (right). 12

2.6 The arrangement induced by S with the light (blue) (left); and shadow

(red) AVPs (right). 13

2.7 A point (left) and an edge (right) (both represented in magenta) which are,

at the same time, light and shadow AVPs. 13

2.8 An illustration of the four different variants of the Art Gallery Problem:

(a) AGP; (b) AGPFC; (c) AGPW; (d) AGPWFC. 17

3.1 Algorithm 2: (a) AGPW(D); (b) The light AVPs of Arr(D); (c) The

guard candidate set; (d) An optimal solution G ⊆ VL(D) for AGPW(D). . 24

3.2 Algorithm 3: A sequence of AGPWFC(D,C) instances is generated until

a viable solution for the AGP is obtained. 26

3.3 Examples of AGPWFC instances where the column reduction procedure

was applied, showing the removed guard candidates (gray) and the remain-

ing ones (blue). 28

3.4 Examples of AGPWFC instances where the row reduction procedure was

applied, showing the removed witnesses (gray) and the remaining ones

(red). 28

xxiii

3.5 Examples of the initial set D when using each one of the following dis-

cretization strategies: (a) All-Vertices (AV); (b) Convex-Vertices (CV); (c)

Chwa-Points (CP); (d) Chwa-Extended (CE). 30

3.6 Solution of an AGPWFC instance (left); New witnesses chosen (violet) for

the next iteration of the AGPFC algorithm (right). 31

3.7 Solution of an AGPW instance (left); New witnesses chosen (violet) for the

next iteration of the AGP algorithm (right). 32

3.8 Examples of the guard candidate set C when using each of the following dis-

cretizations: Boundary-Guards (BG) (left); Center-Guards (CG) (right);

. 33

3.9 AGPW instance where it is not possible to find an optimal solution using

only interior points of faces that are light AVPs as guard candidates. . . . 33

3.10 Solving the AGPW (lower bound): (a) An orthogonal polygon; (b)

the initial witness set D (Convex-Vertices); (c) the arrangement Arr(D)

and the light AVPs; (d) the guard candidate set C; (e) witnesses and

guard candidates forming an instance of AGPWFC(D,C); (f) the solution

to AGPW(D). 36

3.11 Solving the AGPFC (upper bound): Iterations of AGPFC(C) res-

olution. (a,c,e) Updated witness set Df ; (b,d,f) the optimal solution to

AGPWFC(Df , VL(D) ∪ V); (f) a viable solution to the AGP. 37

3.12 Solving the AGPW (lower bound): (a) The new witness set D; (b) the

arrangement Arr(D) and the light AVPs; (c) the guard candidate set C; (d)

witnesses and guard candidates forming an instance of AGPWFC(D,C);

(e) the solution to AGPW(D); (f) region not covered by current AGPW

solution. 38

4.1 Example of the fraction simplification procedure where an initial witness

(red) placed in the interior of an uncovered region is turned into another

with a much smaller representation (violet). 41

4.2 Levels of edges based on the modified von Koch curve. 47

4.3 Examples of instances from different classes. (a) Simple; (b) Orthogonal;

(c) Simple-simple; (d) Ortho-ortho; (e) von Koch; (f) Spike. 48

4.4 Average time spent in each of the major tasks of the technique when solving

simple polygons of 1000 vertices. 54

4.5 Run time information of E(I3,M2) for polygons of 1000 vertices. 55

4.6 Percentage of time used in ILP resolution with each of our three implemen-

tations in M2, when solving simple polygons with 1000 vertices. 64

xxv

4.7 Comparison of average run time with E(I2, M1) when using Lagrangian

Heuristic or only xpress on simple (top) and orthogonal (bottom) polygons. 65

4.8 Comparison of average run time with E(I2, M1) when using Lagrangian

Heuristic or only glpk on simple (top) and orthogonal (bottom) polygons. 66

4.9 Performance comparison between I3 and BS3 in M2 when solving the fol-

lowing classes: (a) Simple; (b) Orthogonal; (c) Simple-simple; (d) Ortho-

ortho; (e) von Koch; (f) Spike. Here, only fully solved instances are con-

sidered. 72

xxvii

Chapter 1

Introduction

Computational Geometry (CG) is the field of Computer Science and Discrete Mathematics

dedicated to study the computational aspects of geometric problems, which involves,

among other things, the design and analysis of algorithms. Many of the problems treated

in CG are also optimization problems and, for some of these, there are known polynomial

algorithms.

On the other hand, there are many CG problems that are in the NP-hard class.

Traditionally, researchers have dealt with geometric NP-hard problems mainly using ap-

proximation algorithms. This type of approach remains widely employed to this day, as

seen in recently published works by Mitchell [29] on Watchman Routes and Bartal and

Gottlieb [4] on the Euclidean Traveling Salesman Problem (ETSP). Moreover, when the

objective is to solve problems in a practical manner, heuristics are also often applied. As

an example, a recent work by Laahover proposes a randomized Delaunay triangulation

heuristic for the Euclidean Steiner Tree Problem [27], one of the most studied problems

in the field.

Finally, it is also possible, although much less frequently, to find in the literature exact

methods for NP-hard optimization problems arising in CG. The lack of studies on exact

approaches leave unanswered the question of how difficult it is to actually solve these

problems (to optimality) in practice. The employment of exact techniques in other areas,

such as in Operations Research (OR), has already achieved proven success, which can be

seen in the resolution of well known OR problems, such as the Traveling Salesman Problem

(TSP) and the Vehicle Routing Problem (VRP). In these cases, experiments showed the

possibility of solving instances of very large size in a reasonable amount of time (see [3]

and [20]). To achieve these outcomes, the use of Integer Linear Programming (ILP)

techniques was of great importance. The performance breakthrough obtained by ILP

solvers in recent years has enabled effective and efficient solutions to NP-hard problems.

1

2 Chapter 1. Introduction

1.1 The Problem

In 1973, Victor Klee proposed a new geometric puzzle, which basically consisted in an-

swering how many guards would be sufficient to ensure that an art gallery (represented

by a polygon) be fully guarded, assuming that a guard’s field of view covers 360 degrees

as well as an unbounded distance limited only by the walls of the gallery. This question

became known as the Art Gallery Problem (AGP) and, in the course of time, turned

into one of the most investigated problems in computational geometry. The breadth of

this research can be perceived from the many important works that appeared, including

O’Rourke’s classical book [30], a recent text by Ghosh on visibility algorithms [22] and

surveys by Shermer in 1992 [31] and Urrutia in 2000 [35].

It is easy to see that by varying the concept of visibility, changing what constitutes a

coverage or even by pre-defining a discrete set of guard candidates, we are led to a number

of variations of the AGP. In the original problem, often called the Art Gallery Problem

with Point Guards, the objective is to completely cover the interior of the input gallery

using guards that may be positioned anywhere in the polygon, which is why they are

also referred to as point guards. Meanwhile, in the Art Gallery Problem with Fixed Guard

Candidates (AGPFC), a viable solution consists of a set guards that guarantee surveillance

of the entire polygon while having their placement restricted to a finite number of pre-

defined potential positions in the polygon. If only guards on vertices (vertex guards) are

allowed, we have the AGP variant known as the Art Gallery Problem with Vertex Guards

(AGPV). In contrast, consider the Art Gallery Problem with Witnesses (AGPW) that asks

for a set of guards able to observe merely a given finite set of points inside the polygon,

while guard placement may be unrestricted.

In order to illustrate the original AGP, consider the campus of the University of Camp-

inas (UNICAMP), shown in Figure 1.1. Imagining the streets of the university as the

interior of a polygon, we are led to the representation of the campus presented in the top

picture of Figure 1.2.

Now, suppose that the president of the university needs to prepare an edict for a public

bidding in which cameras will be purchased to guard the streets of the campus and, for

this purpose, wants to know the smallest sufficient number of cameras to be acquired. In

this situation, assuming that cameras can be positioned anywhere on the streets, what

would the smallest number of cameras be and where should they be placed to completely

cover this area (polygon)? In Figure 1.2, an optimal solution using 57 cameras is shown

for this case.

Besides the natural application just described, the study and resolution of the AGP and

its variations may also be of value in other areas. Consider, for instance, an application

where one seeks to place the smallest number of nodes forming a sensor network that

1.2. Related Work 5

ods. Figure 1.3 shows a timeline of the major recent algorithmic achievements for the

problem.

Figure 1.3: Timeline including the major recent algorithmic achievements for the AGP.

As shown in Figure 1.3, Ghosh, in 1987 [21] (and in a revised version in 2010 [23]),

proposed a log n-approximation algorithm for the AGP with vertex or edge guards. The

idea, also exploited in more recent works for exact algorithms, was to reduce the AGP

to the Set Cover Problem (SCP) and to apply an already known approximation for the

SCP. Further approximation results are found in Eidenbenz’s work [18], which describes

algorithms designed for several variations of terrain guarding problems.

On the other hand, in 2007, Amit et al. [2] presented a series of heuristic techniques

for the AGP based on greedy strategies and methods that employ polygon partition.

According to the authors, some of these algorithms, specially the greedy ones, achieved

good results for a large set of instances and, in many cases, optimal solutions. Basically,

the idea of the greedy heuristics was to iteratively select new guards based on some cost

ranking, which changes over the iterations.

In Figure 1.3, it is possible to see two major contributions by Bottino and Laurentini

of the last few years [9, 10]. The first one, from 2008 [9], consisted in an algorithm for

the Edge Covering Problem (EC), a variant of the AGP where the objective is to cover

only the walls of an art gallery, being unnecessary to watch the whole interior. The

6 Chapter 1. Introduction

method proposed obtains viable solutions for EC by solving instances of the Integer Edge

Covering Problem (IEC), a similar version with one additional restriction that any edge

of the polygon must be entirely seen by one of the guards selected. At the end of each

iteration of the EC resolution, the cardinality of the current guard set is compared to a

lower bound and if the gap equals zero, the solution is returned as optimal.

The most recent work by these authors on this subject was published in 2011 [10] and

contains a heuristic for the original AGP. The idea was to adapt the solution produced

by the EC solver [9] so it can also be viable for the AGP. The algorithm achieved good

results and was compared with Amit et al.’s approach in [10]. From the comparison, it

was shown that the method by Bottino and Laurentini usually behaves better.

Recently, however, the search for algorithms that are able to find provably optimal

solutions for specific formulations has intensified. In this line, we highlight the work by

Couto et al. on the AGPV, where only vertex guards are allowed. Their first work, from

2007 [15], presented an exact algorithm for solving orthogonal polygons, which was then

extended in 2009 [13, 14] to treat all classes of hole-free polygons. The iterative technique

developed was guaranteed to converge to an optimal solution and, while the maximum

number of iterations was proven to be polynomial in the number of vertices in the worst

case, actual convergence happened after just a few iterations. The first interesting insight

was to show that the infinite points of the polygon to be watched could be discretized

into a finite set of points, called witnesses. The AGPV, having a finite set of potential

locations for guards and a finite number of witnesses to be covered, can be reduced to a

sequence of SCP instances that are solved to optimality using an Integer Programming

solver. These instances start off with a small subset of witnesses and additional witnesses

are included whenever the previous solution is not viable for the original instance. An

alternative approach consisted of including all pre-determined witnesses into a single SCP

instance and solving the problem to exactness in a single iteration. In fact, in [14], a clever

reduction of the witness set is also presented, which makes this alternative approach much

more timewise competitive. The algorithm for the AGPV was tested on more than ten

thousand polygons of various classes and, for up to 2500 vertices, optimal solutions were

attained in just a few minutes of computing time.

In 2013, we applied the technique of Couto et al. [14] as a tool in a new algorithm for

the AGP with Point Guards, where guards can be positioned anywhere in the polygon.

Our new algorithm, published in [34] and in [33], initially discretizes the polygon into a

witness set and then iteratively searches for new lower bounds, through the resolution

of AGPW instances, and new upper bounds, by solving the AGPFC. Both AGPW and

AGPFC instances can be reduced to the SCP, as will be described in Chapter 3, which

makes it possible to formulate the instances as ILPs and solve them using an ILP solver,

like xpress, cplex or glpk. At the end of each iteration of the algorithm, the current

1.3. Our Contribution 7

lower and upper bounds are compared and the gap between them is verified. If it is zero,

an optimal solution was found and the program halts. Otherwise, the initial discretization

is updated and the whole process starts over. The technique was tested on more than two

thousand instances from different classes and optimal solutions were obtained for a great

majority of them.

Another technique that used similar strategies in the search for exact solutions for the

AGP appears in the work by Kröller et al., first published in [5] (see also [26]). In this

technique, the authors also sought to reach optimal solutions for the AGP by discretizing

the infinitely many possibilities for witnesses and guard candidates into finite sets, solving

discretized versions of the problem, which can be reduced to SCP instances as mentioned

above. In their first work [5], the main idea was to solve, at each iteration, the linear

relaxation of the primal and dual formulations of an SCP instance, producing upper and

lower bounds for the original problem. This method adds new witnesses and guards

at each iteration, until convergence is achieved or a maximum time frame is exceeded.

Although converging on some instances, the method was unable to find integer optimal

solutions in the majority of cases.

In 2012, the same authors modified the initial algorithm, aiming at a better optimality

rate. In this work, a group of new restrictions (facets) of the discretized AGP (or SCP, for

that matter) was included in the dual formulation, in order to improve the lower bound

computed. Moreover, the new technique employed IP heuristics to find viable solutions for

the AGP and, consequently, better upper bound values. The resulting algorithm, which

was presented in [19], was tested and obtained better results than the previous version.

Finally, last year, the authors of [34, 33] along with those of [5, 19] worked together

to produce a Survey paper focused on algorithms for the AGP [17]. In this joint work, we

presented optimized versions of the previous implementations and were able to test and

compare them also with older techniques. We discuss the major results obtained in this

survey in Section 4.5.2.

This brief summary of the state of the art on algorithms for the AGP sets the stage

for describing the contributions that this dissertation brings forth.

1.3 Our Contribution

In this dissertation, we detail a new robust method for solving the Art Gallery Prob-

lem with Point Guards. Our new algorithm, which had already been presented in the

papers [34, 33], iteratively solves discretized versions of the AGP (AGPW and AGPFC)

making use of ILP solvers to quickly obtain new lower and upper bounds for the problem,

until an optimal solution is found or a timeout is reached.

The technique was tested in different opportunities and, as seen in Section 4.4, it

8 Chapter 1. Introduction

lead to good results. In total, 2880 publicly available instances with sizes reaching 5000

vertices were tested and the method achieved an optimality rate of more than 90%, which

means a significant improvement over all previously published techniques.

Furthermore, due to the success of our implementation, we have recently released a

free source version of our code in the project website [16]. This action is a milestone in

the quest for practical solvers for the AGP, since, to our knowledge, it is the first time

that an implementation with verified efficiency is made publicly available. Hopefully, this

will be a catalyst in the search for new techniques to the problem and an incentive for

other experimentation projects.

1.4 Text Organization

This dissertation is organized as follows. The concepts, definitions and theorems neces-

sary to understand the algorithm to be described are presented in the next chapter. In

Chapter 3, the technique we developed is explained in detail. Chapter 4 focus on how the

algorithm was implemented, on the environment and instances used for testing and also

on the most significant results obtained, including a comparison with other state of art

techniques. Finally, some conclusions are presented in Chapter 5, as well as some ideas

for future research on the Art Gallery Problem.

Chapter 2

Preliminaries

Before digging into the algorithm and its particulars, it is necessary to fully understand

some important concepts, being they in the computational geometry field or part of

combinatorial optimization. In the next sections, the background related to the Art

Gallery Problem and our solver is explained.

2.1 Computational Geometry

The objective of the AGP is to watch over an art gallery, which may be represented as

a simple polygon or as a polygon with holes. A simple polygon consists of straight, non-

intersecting line segments that are joined pair-wise to form a closed path. The set of

vertices V contains all points where consecutive segments are joined. Figure 2.1 displays

examples of simple and non-simple polygons. On the other hand, a polygon with holes Ph

can be described using a simple polygon Pb as the outer boundary and a set of m disjoint

simple polygons H1, H2, ..., Hm totally contained inside Pb as the holes. In this case, Ph

consists in the set Pb −
⋃m

i=1
Hi. Two examples of polygons with holes are displayed in

Figure 2.2. In addition to these general types, some polygons may receive special names

due to other characteristics. It is the case of the so called orthogonal polygons, which are

simple polygons where all edges are parallel to the x-axis or y-axis (see the bottom left

polygon in Figure 2.1 for an example).

A vertex in a polygon can also receive a special name depending on the angle between

its two incident edges with the interior of the polygon. If this angle is less than 180◦,

than the vertex is called convex. Otherwise, it is a reflex vertex. Figure 2.3 presents some

examples. Note that, in the case of a hole Hi, the convex vertices of Hi are actually reflex

in relation to the entire polygon Ph. Obviously, the reverse is also true for reflex vertices.

In the AGP, we say that a position is surveilled (watched, guarded or covered) by a

guard g if this position is visible to g. The concept of visibility can be described as follows:

9

14 Chapter 2. Preliminaries

find any complexity results in literature. However, as we have O(|S| · |P |) visibility edges

in the polygon, in the worst case, considering that all of them intersect, we will have a

final complexity of O(|S|2 · |P |2).

2.2 Integer Programming

Recall that in Section 1.2 we reported that Ghosh’s approximation technique [21] employs

a reduction of a discrete version of the AGP to the Set Cover Problem (SCP). A similar

reduction is also used in the method developed in this Master’s project. Therefore, it

is important to know the best ways to solve an SCP instance, since the performance of

the technique chosen to accomplish this task can have a great influence in the overall

performance of our AGP solver.

The SCP is one of the most famous combinatorial problems. Given a set of elements

U , called Universe, and a set A containing subsets of U , the SCP asks for the minimum

number of sets from A whose union equals U . As proved by Karp in 1972, the Set Cover

Problem is NP-complete [25], which means that obtaining an algorithm with polynomial

worst-case complexity is not possible, unless P = NP. Nevertheless, in practice, a good

option for solving an SCP instance is to model the problem as an Integer Linear Program

(ILP), even though the cost of solving a general ILP is theoretically exponential. Today,

several ILP solvers are capable of finding optimal solutions for large SCP instances, with

thousands of variables and constraints, in just a few seconds or minutes. Below the classic

ILP model for the SCP is given.

min
∑

s∈A

xs

s.t.
∑

s∈A

e∈s

xs ≥ 1, ∀e ∈ U

xs ∈ {0, 1}, ∀s ∈ A

In the model, the variable xs has value 1 if the set s is chosen to be part of the resulting

collection of subsets and 0 otherwise. The objective is to minimize the sum of variables

xs, which actually means to minimize the number of sets selected from A. Finally, the

set of constraints presented in the model ensures that, for every element e ∈ U , at least

one of subsets containing e is chosen, which gives rise to a viable solution.

Although ILP solvers are normally a good choice for solving SCP instances, there

are cases where their use may not be so efficient. In these situations, a technique that

can take advantage of particular characteristics of the problem can behave better and be

used to improve the ILP solver’s performance. In our AGP solver, we implemented some

techniques with this purpose.

2.2. Integer Programming 15

One well tested method to find good viable solutions for SCP instances and that

was implemented in this project is a Lagrangian Heuristic. The heuristic implemented

is based on the work by Beasley [6], which, among other results, presents a Lagrangian

Relaxation for the SCP. The idea of the relaxation is to move all coverage constraints

into the objective function and use penalties ue (for each constraint), the Lagrangian

Multipliers (LM), resulting in the following Lagrangian Primal Problem (LPP):

z(u) = min
∑

s∈A

xs +
∑

e∈U

ue



1−
∑

s∈A

e∈s

xs





xs ∈ {0, 1},∀s ∈ A

After this step, the LPP (with no actual constraints) can be solved by inspection. It

is well-known that the optimum of this problem gives a lower bound for the original SCP

instance. The new quest is to find the values for the LM (the ue variables) that maximize

this lower bound. The optimization problem of finding the best Lagrangian Multipliers

is called the Lagrangian Dual Problem (LDP):

Z = max z(u)

ue ≥ 0, ∀e ∈ U.

A classical approach to tackle the LDP is to apply the subgradient method (c.f., [6]),

an algorithm in which the LM values are updated iteratively using a subgradient of the

objective function. This way, at each iteration, a new LPP instance is solved and, based on

this result, we apply a primal heuristic, which attempts to find a good viable solution for

the original SCP instance. The primal heuristic consists in a greedy procedure that uses

the Lagrangian costs obtained during the last LPP resolution to define which candidates

will be selected to join the new viable solution (see [6] for more details). In summary,

at each iteration, a new lower bound for the SCP is obtained from the LPP resolution

and a new upper bound is obtained by the primal heuristic. In practice, the subgradient

method is stopped when either a proven optimal solution is found or a maximum number

of iterations has been reached.

Apart from the techniques employed to find viable solutions for the SCP, others can be

used to simplify the problem, before an actual solver is used. For example, after a problem

is reduced to an ILP instance, it is possible to search for redundant variables or constraints

and remove them from the original matrix. This type of operation can normally be done

quickly and may greatly minimize the size of the initial instance, probably improving the

performance of the ILP solver. In Section 3.4, we show how this can be done in the case

of the AGP.

16 Chapter 2. Preliminaries

2.3 The Art Gallery Problem

After discussing important geometric and combinatorial concepts, it is now possible to

discuss the AGP in a more formal way.

In a geometric setting, the AGP can be restated as the problem of determining a

smallest set of points G ⊂ P such that ∪
g∈G

Vis(g) equals P . This leads to a reduction

from the AGP to the SCP, in which the points in P are the elements to be covered (set

U) and the visibility polygons of the points in P are the sets used for covering (which

compose the collection A). Accordingly, we can use this reduction to construct an ILP

formulation for the AGP:

min
∑

c∈P

xc

s.t.
∑

c∈P

w∈Vis(c)

xc ≥ 1, ∀w ∈ P

xc ∈ {0, 1}, ∀c ∈ P

However, for non-trivial cases, this formulation has an infinite number of constraints and

an infinite number of variables, rendering it of no practical benefit. A natural idea that

arises is to make at least one of these quantities finite. By fixing only the guard candidates

to be a finite set, we obtain the so-called Art Gallery Problem With Fixed Guard Candi-

dates (AGPFC). On the other hand, by restricting solely the witness set to a finite set, we

end up with the special AGP variant known as the Art Gallery Problem With Witnesses

(AGPW). In principle, in the first case, we are still left with an infinite number of con-

straints while, in the second case, we still have an infinite number of variables. However,

in order to have a tractable SCP instance, one should have both the witness and the guard

candidate sets of finite size. The AGP variant that fulfills this property is named the Art

Gallery Problem with Witnesses and Fixed Guard Candidates (AGPWFC). Examples of

these three versions of the AGP are shown in Figure 2.8. Therein, the witnesses and the

guard candidates are identified by the symbols “×” and “⊗”, respectively. Darker guard

candidates refer to guards present in an optimal solution of the corresponding problem

and, when appropriate, have their visibility polygons also depicted.

To assist in the description of the algorithm in the next chapter, we introduce here

some other useful notations. Let D and C be finite witness and guard candidate sets,

respectively. We denote the AGPW, AGPFC and AGPWFC problems defined for the

sets C and D by AGPW(D), AGPFC(C) and AGPWFC(D, C), respectively. The SCP

18 Chapter 2. Preliminaries

model associated to AGPWFC(D, C) is then

min
∑

c∈C

xc,

s.t.
∑

c∈C

w∈Vis(c)

xc ≥ 1, ∀w ∈ D,

xc ∈ {0, 1}, ∀c ∈ C.

2.4 Basic Theorems

To close this chapter, we briefly introduce the theorems that form the basis of our algo-

rithmic solution, which will be fully explained in Chapter 3. The following theoretical

results allow us to apply reductions of the AGPFC and the AGPW to the AGPWFC

(SCP) and also guarantee its usage to find correct bounds for the original AGP. It is

noteworthy that Theorems 2.2, 2.3 and 2.4 are actually adaptations of results presented

in the work of Couto et al. [14], where the specific problem called AGPV (AGPFC(V))

was treated.

Theorem 2.1. Let D be a finite subset of points in P . Then, there exists an optimal

solution for AGPW(D) in which every guard belongs to a light AVP of Arr(D).

Proof. Let G be an optimal (cardinality-wise) set of guards that covers all points in D.

Suppose there is a guard g in G whose containing face f in Arr(D) is not a light AVP. This

means that f is not maximal with respect to the order relation ≺ (see Section 2.1). In

other words, there exists a face f ′ of Arr(D) that shares an edge with f such that f ≺ f ′,

i.e., a point in f ′ sees more points of D than one in f does. An inductive argument suffices

to show that this process eventually reaches a light AVP (maximal w.r.t. ≺) wherein lies

a point that sees at least as much of D as g does, i.e., g may be replaced by a guard that

lies on a light AVP. The Theorem then follows, by induction, on the number of guards of

G.

Theorem 2.2. Let C be a finite subset of points in P . Consider the set D composed of

a point of each AVP of Arr(C). Then, G ⊆ C guards D if and only if G is a guard set

for P .

Proof. The necessity part is trivial since D ⊂ P , therefore, we focus on the proof of

sufficiency. By the construction process of Arr(C), all interior points of a given AVP

Ai are visible to the same set Si ∈ C. Otherwise, there would be an edge of Arr(C)

separating two different points in Ai, which is obviously not possible. Consequently, if a

set G guards one interior point of Ai, G directly covers the entire AVP. Thus, since the

2.4. Basic Theorems 19

union of all faces of Arr(C) equals P , G can watch over the whole polygon by simply

covering one interior point within each AVP.

Theorem 2.3. Let C be a finite subset of points in P . Consider the set D composed of a

point of each shadow AVP of Arr(C). Then, G ⊆ C guards D if and only if G is a guard

set for P .

Proof. The necessity part is trivial since D ⊂ P , therefore, we focus on the proof of

sufficiency. Suppose G ⊂ C guards D, but not P . Thus, there exist regions of P that

are not covered by any of the points of G. Let R be a maximal connected region not

covered by G. Note that R is the union of (disjoint) AVPs. To prove that at least one

of those AVPs is of type shadow, notice that the entire region R is not seen by any point

in G whose proper visibility edges spawn R. If R is an AVP, it is by definition a shadow

AVP. Otherwise, there is a candidate ci ∈ C which has a proper visibility edge eci that

intersects and partitions R in two other regions. One of these regions matches the side of

eci visible from ci while the opposite one does not. Hence, through an inductive argument,

by successively partitioning R, at least one shadow AVP is bound to be contained in R

and therefore uncovered. This contradicts the hypothesis since G guards D, which is

comprised of interior points of all shadow AVPs.

Theorem 2.4. Let D and C be two finite subsets of P , so that C fully covers P . Assume

that G(D, C) is an optimal solution for AGPWFC(D, C). If G(D, C) also covers P , then

G(D, C) is an optimal solution for AGPFC(C).

Proof. Assume that G(D, C) covers P , but it is not an optimal solution for AGPFC(C).

Then, there exists G′ ⊆ C with |G′| < |G(D, C)| such that G′ is a feasible solution

for AGPFC(C), i.e., G′ covers P . This implies that G′ is also a feasible solution for

AGPWFC(D, C), contradicting the fact that G(D, C) is optimal for this problem.

Chapter 3

An Algorithm for the AGP

In this chapter, we employ the concepts and theorems presented in Chapter 2 to explain,

in details, our technique for solving the original AGP. Initially, we present a simplified and

shortened version of the algorithm and discuss the main idea proposed. After this, we dig

into the most important steps of the technique, thoroughly showing how the computation

occurs.

3.1 Sketch of the Algorithm

The core idea of our algorithm consists in computing increasing lower bounds and decreas-

ing upper bounds for the AGP until a proven optimal solution is found or a pre-established

maximum time limit is exceeded. The procedure for obtaining these bounds involves the

resolution of discretized versions of the AGP. To find a new lower bound, an AGPW

instance is solved, while in the upper bound case, an AGPFC instance in which the guard

candidate set covers the polygon is worked out. One important fact to remember is that

an optimal solution for such an instance of AGPFC is also viable for AGP, since the

AGPFC asks for a solution that guards the entire polygon. Consequently, reducing the

gap between bounds to zero means reaching an optimal solution for the original AGP.

In Algorithm 1, we summarize how our technique works. After initializing the witness

and guard candidate sets, the algorithm enters its main loop (lines 4 to 10). At each

iteration, new lower and upper bounds are computed and, if optimality has not been

proved, the witness and guard candidate sets are updated in line 8. Later we will see how

this can be done in a way that the optimality gap decreases monotonically through the

iterations. It is also worth noticing that, as we do not have a proof of convergence for the

algorithm, the parameter MAXTIME is used to limit its running time.

In the following two sections, the procedures for solving AGPW (line 5) and AGPFC

(6) instances are described in details. Subsequently, Section 3.4 describes the resolution

21

22 Chapter 3. An Algorithm for the AGP

Algorithm 1 AGP (Sketch)

1: Set UB← |V | and LB← 0
2: Select the initial witness set D
3: Select the initial guard candidate set C ⊇ V
4: while (UB 6= LB) and (MAXTIME not reached) do
5: Solve AGPW(D), set Gw ← optimal solution of AGPW(D) and

LB← max{LB, |Gw|}
6: Solve AGPFC(C), set Gf ← optimal solution of AGPFC(C) and

UB← min{UB, |Gf |}
7: if (UB 6= LB) then
8: Update D and C
9: end if

10: end while
11: return Gf

method for AGPWFC instances through ILP techniques. As said in the previous chapter,

both the AGPW and the AGPFC can be cast as an AGPWFC, justifying why we focus

on the latter. In Section 3.5, we present how the management of the witness set is done

and, in the following section, we discuss the selection of guard candidates. Section 3.7

gathers all the algorithmic information presented previously and describes the complete

algorithm for the AGP. Finally, we illustrate the step by step of the algorithm with an

example, where a polygon from our benchmark instances is resolved to optimality in a

few iterations.

3.2 Solving the AGPW

The resolution of an AGPW on D allows for the discovery of a new lower bound for the

AGP, since fully covering P requires at least as many guards as the minimum sufficient to

cover the points in D ⊂ P . However, despite being a simplification of the original AGP

problem, we are still dealing with an infinite number of potential guard positions, which

does not allow for a direct reduction to the set cover problem. Thus, our approach is

based on discretizing the guard candidate set, creating an AGPWFC instance from our

original AGPW. To do this, we apply Theorem 2.1, presented in Section 2.4.

From Theorem 2.1, one concludes that there exists an optimal solution for AGPW(D)

in which all the guards are in Light AVPs of the arrangement induced by D. Besides,

as every vertex of an AVP can see at least the same set of witnesses observed by the

points inside it, we can state that there is an optimal solution G where each point in G

belongs to the set VL(D) of all vertices from the light AVPs of Arr(D) (see in Figure 3.9

3.3. Solving the AGPFC 23

an example where a vertex of a Light AVP can see more witnesses than the points inside

it). Therefore, an optimal solution for AGPW(D) can be obtained simply by solving

AGPWFC(D, VL(D)), as illustrated in the example of Figure 3.1. As seen before, the

latter problem can be modeled as an ILP, where the numbers of constraints and of variables

are polynomial in |D|. This follows, as mentioned in Section 2.1, from the fact that the

number of AVPs (and vertices) in Arr(D) is bounded by a polynomial in |D| and |P |.

Algorithm 2 shows a pseudo-code of the AGPW resolution method.

Algorithm 2 AGPW(D)

1: Arr(D)← construct the arrangement from the visibility polygons of the points in D
2: VL(D)← identify the vertices of the light AVPs of Arr(D)
3: C ← VL(D)
4: Solve AGPWFC(D, C): set Gw ← optimal solution of AGPWFC(D, C)
5: return Gw

As will be shown in Section 3.6, the guard candidate set used in the implemented

algorithm for the AGP is not actually equal to VL(D). The final set C includes additional

points and, depending on the discretization strategy used, may employ points from CL(D),

which are located in the interior of light faces, instead of the ones in VL(D).

3.3 Solving the AGPFC

As we now know how to generate dual bounds for the AGP, the next task is to com-

pute good upper bounds for the problem. A possible way to achieve this is through the

resolution of an AGPFC instance in which the guard candidate set is known to cover

the polygon. Under this condition, an AGPFC solution is always viable for the original

problem.

In contrast to what was discussed regarding the AGPW, we now have a finite number

of guard candidates and an infinite number of points to be covered. Therefore, a direct

resolution method using a reduction to an SCP is not possible. To circumvent this,

our algorithm discretizes the original AGPFC instance, relying on what Theorem 2.4

establishes. Theorem 2.4 shows that an optimal solution for the AGPFC may be obtained

through the resolution of an AGPWFC instance, provided it fully covers P . Whenever

an optimal solution for the simplified version (AGPWFC) leaves uncovered regions in

P , additional work is required. To guarantee that we attain an optimal solution for the

AGPFC, we will employ here a technique designed by Couto et al. [14] to solve the AGPV,

a special case of the AGPFC where C = V , but which may be used to handle the general

case without significant changes.

3.4. Solving the AGPWFC (SCP) 25

Initially, consider that we have a finite witness set D. Using the guard candidate set

C, we can create and solve the AGPWFC(D,C) instance. If the solution fully covers the

polygon, we have satisfied the hypothesis of Theorem 2.4 and, consequently, we have an

optimal solution for the AGPFC. Otherwise, there are regions of the polygon that remain

uncovered. We now update the witness set, adding new points within the uncovered

regions, denoted CU(G), and repeat the process.

As demonstrated in [14] by Couto et al., the iterative method for solving the AGPFC

converges in polynomial time. To clarify this point, consider Theorem 2.2 and its proof.

This theorem states that constructing D by choosing only one point within each AVP of

Arr(C) is enough to ensure the whole coverage of P . As the number of AVPs is polynomial

(see Section 2.1) and we iteratively construct D by choosing witnesses in the interior of

uncovered AVPs of Arr(C), it is straightforward that the number of iterations is bounded

by the polynomial complexity of Arr(C). Although the convergence time for AGPFC is

theoretically guided by this complexity, Couto et al. showed throw extensive experiments

that, in practice, the number of necessary iterations is much lower. Moreover, it can even

be argued that it suffices to select one point from each shadow AVP of the arrangement

induced by C (see Theorem 2.3). Figure 3.2 shows how the algorithm for the AGPFC

iteratively adds new witnesses in different AVPs until the polygon is fully covered.

A pseudo-code for the algorithm employed to solve the AGPFC is shown in Algo-

rithm 3.

Algorithm 3 AGPFC(C)

1: Df ← initial witness set
2: repeat
3: Solve AGPWFC(Df , C): set Gf ← optimal solution
4: if Gf does not fully cover P then
5: Df ← Df ∪ CU(Gf)
6: end if
7: until Gf fully covers P
8: return Gf

3.4 Solving the AGPWFC (SCP)

Having reduced the AGPW and the AGPFC into AGPWFC instances in order to obtain

the desired bounds, the objective becomes solving the latter efficiently. Since AGPWFC(D,

C) can be easily reduced to an SCP, where the witnesses in D are the elements to be cov-

ered and the visibility polygons of the guard candidates in C are the subsets considered,

we will make use of the ILP formulation for SCP presented in Section 2.2.

3.4. Solving the AGPWFC (SCP) 27

A simple and straightforward approach would be to directly use an ILP solver, such as

xpress, cplex or glpk, since even large instances of the (NP-hard) SCP can be solved

quite efficiently by many modern integer programming solvers. However, as observed in

our experiments, some AGP instances can generate significantly complex and very large

SCP instances, rendering the solvers less efficient. For this reason, some known techniques

were implemented to improve the solvers’ running time. Among these, the most effective

consisted in the reduction on the number of constraints and variables in the initial model.

The method used for reducing constraints and variables is based on containment re-

lationships between columns (guard candidates) and between rows (witnesses) of the

Boolean constraint matrix corresponding to the ILP model of the SCP instance.

Firstly, we search for and discard redundant guard candidates (columns). A guard

candidate gr is redundant if there is another candidate that covers the same witness set

as gr. For this step, we divide all guard candidates into groups, according to the light

AVP they belong to. Guard candidates from the same AVP are then tested pairwisely for

redundancy, and, when one is found, the corresponding column (variable) is removed from

the original matrix (ILP). Here there is a considerable advantage when solving AGPW

instances. Recall that when lower bounds are computed, the witness set D remains fixed

while the guard candidates are points (possibly vertices) of the light AVPs of Arr(D).

In this case, there is usually a great number of points from a given light AVP that

covers the same subset of witnesses. Actually, despite degenerate cases, all but one of the

corresponding variables are redundant in the SCP instance, i.e., we are left with a single

candidate from each light AVP. This considerably reduces the size of the guard candidate

set.

Figure 3.3 shows three examples where the guard set is reduced employing the pro-

cedure just described. In the picture on the left, only one candidate from the light AVP

remains represented in the ILP matrix. The second picture displays the special case

where one candidate (in the intersection of three light AVPs) remains necessary. In the

last example, despite the fact that the remaining two candidates watch the same wit-

nesses, our implementation maintains both of them in the final set because the method

employed analyzes each AVP separately, not testing candidates from different faces of the

arrangement.

After the removal of columns, we also test each pair of rows in search for removable

ones. We say that a row represents an easy witness w whenever the set of guard candidates

that see w properly contains the whole set of candidates that are visible to some other

witness. Figure 3.4 illustrates the removal of easy witnesses.

It is important to notice that the test for redundant candidates (columns) and easy

witnesses (rows) can be performed simply by using very fast bit string operations.

Besides conducting matrix reduction, our algorithm also uses an initial Lagrangian

3.5. Witness Management 29

Algorithm 4 AGPWFC(D,C)

1: M ← Boolean matrix of the SCP model constructed using D and C
2: R← matrix obtained from M after applying the reduction procedure
3: Set I ← SCP instance associated to R
4: Solve I using LH
5: Set LBSCP ← best lower bound found for I by the subgradient method
6: Set Gv ← best viable solution found for I by the primal heuristic
7: Gs ← Gv

8: if |Gs| 6= LBSCP then {LH was not able to prove optimality}
9: Solve I using an ILP solver with the primal bound Gv

10: Set Gs ← optimal solution found for the ILP model
11: end if
12: return Gs

all the initialization alternatives that were considered since our first work [34] and, after

this, we discuss how the set D is updated.

The first initialization choice, called All-Vertices (AV), consists in using all vertices of

the polygon as witnesses, i.e., D = V . Besides the easy construction of this set, it was

confirmed in tests that the coverage of such points is usually a good start for covering the

whole polygon.

In an attempt to begin with a smaller number of witnesses, we also considered initial-

izing D with only the convex vertices of P . This strategy is referred to as the Convex-

Vertices (CV) initialization. The reason for reducing the initial witness set lies on the fact

that a smaller set D is likely to lead to a lower number of visibility polygon calculations,

to a less complex visibility arrangement and, consequently, to a simpler SCP model. In

addition, we decided to choose only convex vertices because the reflex ones are usually

more exposed due to its wider visibility angle.

The third alternative is based on a work by Chwa et al. [12]. In this paper, a polygon P

is defined to be witnessable when there exists a finite witness set W ⊂ P with the property

that any set of guards that covers W must also cover the entire polygon. The authors also

present an algorithm that computes a minimum witness set for a polygon whenever it is

witnessable. The method for constructing this minimum witness set consists in placing

a witness in the interior of every reflex-reflex edge of P and on the convex vertices of

every convex-reflex edge. The terms convex and reflex here refer to the interior angles at

a vertex or at the endpoints of an edge. Based on these selection criteria, we devised our

third discretization method, called Chwa-Points (CP), which assembles the initial witness

set for our algorithm from the midpoints of all reflex-reflex edges and all convex vertices

from convex-reflex edges.

It follows from the results in [12] that, when the Chwa-Points discretization is used

34 Chapter 3. An Algorithm for the AGP

3.7 Resulting Algorithm

Once each of the main steps of the algorithm is understood, we are able to describe how

these parts fit together to comprise the complete algorithm. Algorithm 5 sums up how

the process as a whole works.

Algorithm 5 AGP(P)

1: D ← initial witness set {see Section 3.5}
2: Set LB← 0, UB← n and G∗ ← V
3: loop
4: Solve AGPW(D): set Gw ← optimal solution and zw ← |Gw| {see Section 3.2}
5: if Gw is a coverage of P then
6: return Gw

7: end if
8: LB← max{LB, zw}
9: if LB = UB then

10: return G∗

11: end if
12: C ← VL(D) ∪ V (or CL(D) ∪ V) {see Section 3.6}
13: U ← CU(Gw) {one additional point per uncovered region}
14: Df ← D ∪ U
15: Solve AGPFC(C), using Df : set Gf ← optimal solution and

zf ← |Gf | {see Section 3.3}
16: UB← min{UB, zf} and, if UB = zf then set G∗ ← Gf

17: if LB = UB then
18: return Gf

19: end if
20: D ← D ∪ U ∪M {see Section 3.5}
21: end loop

It is important to notice that the set of guard candidates used in the AGPW resolu-

tion is actually the set C from the AGPFC(C) instance solved on Line 15. This means

that the AGPW resolution is actually the first iteration of the AGPFC algorithm (Algo-

rithm 3). Thus, all information obtained during the solution of AGPW(D) can be reused

for AGPFC(C), which improves the performance of the implementation.

Another relevant aspect of this algorithm is that information on bounds may be used

throughout the iterations in order to skip unnecessary steps. For instance, if an upper

bound UB was found in a previous iteration and a new AGPFC instance is being solved,

whose current solution is not lower than UB, then we may stop the AGPFC resolution

before obtaining an optimal solution since the upper bound can not be improved.

3.7. Resulting Algorithm 35

Figures 3.10, 3.11 and 3.12 illustrate the execution of the AGP algorithm on an or-

thogonal polygon. Note that, even though the final solution of Figure 3.12 was not feasible

for the AGP (due to the uncovered region in picture (f)), it was able to raise the lower

bound to 7, proving that the solution found in Figure 3.11 is actually optimal.

Chapter 4

Implementation and Computational

Results

The algorithm described in the last chapter was implemented, enabling us to measure

its quality. In this chapter, we explain how the implementation was done and how the

experiments were conducted. Following this, we show a summary and an analysis of our

results, including a comparison with other state-of-the-art techniques.

4.1 Implementation

Our implementation of the algorithm presented in Chapter 3 went through several changes

since its first release. Such modifications, which included the employment of new routines,

data structures and decisions, substantially improved the performance of our software. In

this dissertation, we highlight the three versions that were the most widely tested and

whose results were part of papers we submitted for publication. An analysis of these

versions is important to show different stages of the project and how the implementation

has matured.

Our first version was completed in late 2012 and was reported on a conference pa-

per [34]. Shortly after that, in the first half of 2013, a second version was produced and

described in our full paper [33]. The third (and latest) version was developed during a

two-month internship in which I visited the Technische Universität Braunschweig (TUBS),

in Germany, under the supervision of Professor Dr. Alexander Kröller. During this visit,

I collaborated with researchers from the Algorithms Group (ALG) headed by Professor

Dr. Sándor P. Fekete. Their contributions to the research on the AGP include [5, 26, 19]

(see Section 1.2 for a brief description). Our new implementation is described in a survey

on algorithms for Art Gallery Problems submitted for publication in 2013 [17], as a joint

work between researchers from UNICAMP and TUBS. In the subsections that follow, we

39

40 Chapter 4. Implementation and Computational Results

describe each of these three implementations.

4.1.1 I1: Implementation for the first paper [34]

Our implementation tested for paper [34], here called I1, was straightforward, effective

and reliable, even though the code was not deeply investigated for possible optimizations.

The major drawback of I1 was that it was not capable of solving the AGP on polygons

with holes. Despite this, it was tested in a great variety of polygon classes, where we were

able to prove its robustness.

This version, as well as the subsequent two, was coded in the C++ programming lan-

guage and used the Computational Geometry Algorithms Library (cgal) [11] to benefit

from visibility operations, arrangement constructions and other geometric tasks. In addi-

tion, I1 employed the xpress Optimization Suite [36] library to solve the integer programs

that model the AGPWFC (SCP) instances, as discussed in Section 3.4.

Since the algorithm is iterative, some care was necessary to avoid recomputation of

certain types of structures, especially those related to the cgal library, which normally

have considerable computational cost. This situation happens, for example, when com-

puting visibility polygons of witnesses or candidates. Firstly, notice that, besides being

important for computing the arrangement and verifying the coverage of P , in our code,

visibility polygons are also employed in the construction process of the ILP matrix to

test visibility between guard candidates and witnesses. This task is performed by execut-

ing point location routines from cgal to verify if a given witness is (or not) inside the

visibility polygon of a guard candidate. Knowing this, to be able to properly construct

the ILP matrix, our technique needs to obtain the visibility polygons of all current guard

candidates. However, during the iterations, the set C of guard candidates is variable and

not necessarily incremental, changing according to Arr(D). This means that points may

be removed from C and then, in a future iteration, be included again. Thus, to avoid

recomputing visibility polygons, a hash table containing those already calculated was im-

plemented. Furthermore, as this table also stores visibility data of witnesses, our code

could take advantage of cases where points belong, at the same time, to sets D and C.

Another situation where the management of computed structures is of great impor-

tance is in the arrangement construction. Recall that our algorithm computes optimal

solutions for the AGPW using a guard candidate selection procedure based on Arr(D). At

each iteration of our algorithm, this arrangement must be updated following the changes

in the witness set D (see Section 3.5). Since D is affected only by the addition of new

witnesses, in order to obtain the current arrangement, our code just needs to compute the

overlay between the previous and the one induced solely by the new witnesses. This idea

saves a lot of time because it avoids the reconstruction of the whole arrangement, which

42 Chapter 4. Implementation and Computational Results

the performance of the solver and leading to a second version I2, which was reported

in [33]. Some of the most effective changes consisted in:

1. cutting short the AGPFC procedure (Algorithm 3) whenever the general upper

bound found for the AGP had the same cardinality as the current AGPWFC solu-

tion, allowing it to skip to the next iteration of Algorithm 5;

2. reversing the point of view of visibility testing from the perspective of the guards to

that of the witnesses (fewer in number, in our approach), avoiding the computation

of many visibility polygons and reusing those already required for setting up the

arrangement. Notice that the ILP matrix construction remained the same and

changed little on how the algorithm works;

3. caching visibility information based on pairs of points already tested, reducing the

number of point location operations. To achieve this, we implemented a new hash

table where the key corresponds to a pair of points and the value is true if the

two points are visible to each other and false otherwise. As a result, in cases of

recomputation, a simple table search became enough to verify visibility between

pairs of points, instead of being necessary to repeat a point location operation

between a visibility polygon and a point;

4. removing redundant lines and columns from the original SCP matrix (see Section 3.4

for details);

5. applying Lagrangian Heuristic to find viable solutions for SCP instances, helping

the ILP solver to find optimal solutions faster (see Section 3.4 for details);

6. reusing information from previous iterations. For instance, if a lower bound LB for

the AGP instance has been established, Algorithm 2 can be halted when solving a

new AGPW(D) instance as soon as a primal solution with cardinality LB is found

for the corresponding SCP instance in line 4 (for instance, using the Lagrangian

Heuristic). This follows from the fact that LB was obtained by solving an AGPW(S)

instance, for some S ⊂ D. Another interesting situation happens when solving an

AGPWFC instance inside the iterative algorithm for the AGPFC (Algorithm 3).

Since, in this procedure, witnesses are added and never removed, we can guarantee

that the solution of the previous AGPWFC instance is a lower bound for the next

instance.

As seen later in Section 4.4.1, I2 represented a great improvement in performance when

compared to I1. In [33], polygons with up to 2500 vertices were tested and solved to

optimality in a matter of minutes.

4.1. Implementation 43

I2 is currently freely available in the website of our project [16], to be used by the

scientific community. However, as the ILP solver employed in I1 (xpress) is a proprietary

software, we included in I2 the possibility of using a free solver to facilitate further tests

and comparisons of our techniques with new algorithms. The free package of choice was

the glpk (GNU Linear Programming Kit) [24], a set of routines written in the ANSI C

programming language and organized in the form of a callable library. Although switching

to a non-commercial solver is expected to lead to some degradation in performance, it

remains a handy means for benchmarking future research on the subject.

4.1.3 I3: Implementation for the third paper [17]

In the second half of 2013, I was invited by Professors Alexander Kröller and Sándor

Fekete to study for two months at TUBS and assist in experimenting and writing a

Survey on AGP algorithms. During this period, I took the opportunity to make changes

in the code of I2 and improve the previous solver, giving rise to I3. In this context,

the future visibility package of cgal, developed during the Google Summer of Code of

2013 under the supervision of Dr. Michael Hemmer, which is also part of the research

group of TUBS, was used in our implementation. Moreover, after learning more about the

different kernels of cgal, which defines how coordinates and structures are constructed

and represented, the previous Cartesian kernel was replaced by the lazy-exact kernel. The

lazy-exact kernel guarantees the viability of the AGP solutions obtained, but, whenever

possible, avoids the computation with exact arithmetic, which saves time. To implement

the improvements described in this paragraph, we benefited from the help by researchers

from TUBS, who have vast knowledge and a long experience with the cgal library.

Besides the changes on the geometric side, some other ideas were implemented. One

of those was to postpone the computation of an upper bound (solving the AGPFC) to

the time that a good lower bound and, consequently, a “good” set of guard candidates is

obtained. This way, it is expected that the number of AGPFC instances solved during

the execution is severely reduced, which also decreases the overall running time.

Furthermore, the hash table created in I2, with the results of visibility between pairs

of points already tested, was modified (see Item 3 of the list of improvements presented

in Section 4.1.2). In this new version, the key of the hash table is a guard candidate

g and the associated value is a vector containing the visibility test result (true or false)

between g and the t first witnesses included in D, where t is the size of D in the last

iteration that g was a candidate. This new storage mode was only possible because, as

explained before, a witness is never removed from D, making it easy to maintain an index

to each one of them. As a result, a drastic decrease was observed in the number of hash

operations executed during the construction of the ILP matrix.

44 Chapter 4. Implementation and Computational Results

Other features implemented in I3 included the possibility of using cplex as an ILP

solver option and the creation of the guard discretization strategy called Center-Guards

(CG), where a smaller number of candidates is initially chosen (see Section 3.6).

The implemented optimizations contributed to a more robust code, as it is possible to

see in Section 4.4.1. For an illustration, I3 is now able to solve simple polygons with up

to 5000 vertices in less than 20 minutes, while I2 had difficulty in solving polygons half

that size.

4.2 Computational Environment

As shown in the previous section, three versions of our algorithm were developed dur-

ing this Master’s project. The first two of them, I1 and I2, were experimented for our

conference [34] and full [33] papers, respectively. The tests were conducted in the Lab-

oratory of Optimization and Combinatorics (LOCo) at UNICAMP. All the experiments

were performed on standard PCs featuring an Intel R© CoreTM i7-2600 at 3.4 GHz, 8 GB of

RAM and running GNU/Linux 3.2.0, where the solvers were linked with versions 3.9 of

cgal, 7.0 of xpress and 4.52 of glpk. To achieve accurate time measurements, all tests

were run in isolation, i.e., no other process was being executed concomitantly. Lastly,

each process was given a time limit of 60 minutes, after which, the instance was con-

sidered unsolved and the program was terminated. To facilitate mentioning this set of

configurations and characteristics throughout this chapter, we refer to this environment

as M1.

On the other hand, for the experiments performed while writing the survey on algo-

rithms for the AGP [17], the computational environment of the Algorithms Group (ALG)

at TUBS was the one chosen. For this survey, all of our three implementations (I1, I2 and

I3) were tested. This time, the programs ran on PCs with an Intel R© CoreTM i7-3770 at

3.4 GHz and 16 GB of RAM. The operating system was a GNU/Linux distribution with

kernel version 3.11.0. and the AGP solvers were now linked with releases 4.0 of cgal,

12.5 of cplex and again 7.0 of xpress. As in M1, all tests were done in isolation, but

now each execution had a run time limit of only 20 minutes. The environment described

in this paragraph is called M2.

4.3 Instances

A specific implementation may have different levels of difficulty in solving a polygon

depending on its own characteristics or even on the input’s particulars. Based on this,

we sought to test our technique with an extended experimentation testbed, from various

4.3. Instances 45

sources, comprised of polygons of multiple classes and sizes, in order to be able to stress

the algorithm’s robustness. In total, more than 2800 instances were collected.

Below we present a detailed description of the 6 classes of polygons employed in our

experimentation.

4.3.1 Simple

This class refers to random simple polygons (without holes). In our experiments, simple

instances were selected from two sources: Couto et al. [14] and Bottino et al. [10].

Those from Couto et al. were generated by a special purpose procedure available

in cgal. Essentially, this procedure starts by distributing the vertices of the polygon

uniformly in a given rectangle and applies the method of elimination of self-intersections

using 2-opt moves. In total, we experimented 630 instances from this source, with polygons

ranging from 20 to 5000 vertices. For each existing size, 30 instances were considered.

In contrast, the instances obtained from Bottino et al. are based on the Delaunay

triangulation of a set of points randomly distributed in a square region. From this source,

we tested all the 250 polygons available, which contain between 30 and 60 vertices. In

addition, except for 170 polygons of 30 vertices used for preliminary tests in [10], all other

instances are subdivided by size in groups of 20 polygons each.

4.3.2 Orthogonal

This class comprises random polygons generated respecting the property that all edges

are parallel to the x-axis or y-axis. Once again, the works of Couto et al. [14] and Bottino

et al. [10] were used as sources.

In both works, the instances were generated devoid of collinear edges on an n2 × n2

unit square grid, in accordance to the method described in [32]. The difference between

them lies in the code employed for generating the polygons and in the size range used.

Bottino et al. resorted to a code supplied by the authors of [32] and produced 80 polygons

with sizes 30, 40, 50 and 60 (20 polygons per size). Meanwhile, Couto et al. developed

their own program and generated 630 polygons from 20 to 5000 vertices, 30 for each size.

4.3.3 Simple-simple

The simple-simple class comprises the instances where the boundary and all the holes are

simple polygons generated with the method by Couto et al. described in Section 4.3.1.

Two similar implementations were employed to produce these instances. In the first

one, denoted here GB, the process works as follows: after creating the outer boundary

for a random simple polygon with holes, consider that we are left with v vertices to be

46 Chapter 4. Implementation and Computational Results

distributed among h holes. After generating a random uniform partition of v into h parts,

we iteratively generate the h holes in the following way. At each iteration, we randomly

select a point in the interior of the polygon around which we center an isothetic square

entirely contained inside the polygon. This square is then stretched in each of the four

orthogonal directions, chosen in random order, by λD where λ is a stretch factor randomly

picked from the interval [0.25, 0.75] and D is the maximum elongation within the polygon

in that direction. A hole is then created, within this placeholder rectangle, having its

number of vertices chosen from one of the unused parts of the previously mentioned

random partition of v. Here, for an instance with a total of n vertices, n/4 of them were

assigned to the outer boundary and 3n/4 of them distributed among n/10 holes. The

range [100, 500], with step size 100, was used for the number of vertices of the polygons

and a total of 30 polygons of each size were produced.

On the other hand, in the second technique, denoted GD, a maximal placeholder

rectangle is constructed at each iteration so that the chosen random interior point c is

one of its vertices. After this, the algorithm randomly selects a new hole size and generates

a simple polygon to be inserted in the randomly stretched placeholder. One peculiarity of

this generator is that two holes are allowed to intersect, in which case, they merge into a

single hole. Similarly to the previous generator, for an instance with a total of n vertices,

the outer boundary has roughly n/4 of them, while the remainder are distributed among

the resulting n/10 holes. With GD, 30 instances were created for each of the following

sizes: 200, 500, 1000, 2000 and 5000.

4.3.4 Ortho-ortho

This class refers to instances where boundary and holes are product of the orthogonal

generator developed by Couto et al. (see Section 4.3.2). To populate this class, we used

GD technique, already employed in the generation of simple-simple polygons. This time,

a total of 240 instances were generated and equally divided in 8 different sizes, ranging

from 100 to 5000 vertices.

4.3.5 von Koch

This class of polygons was created in Couto et al.’s work [14] based on a modified version

of the von Koch curve. The fractal is generated, starting with a square, by iteratively

replacing randomly chosen edges as shown in Figure 4.2, where ār = s̄t = ūb and s̄r =

t̄u = 3/4ār. The operation is repeated until the number of vertices of the polygon reaches

the desired size. In our experiments, we tested a total of 540 von Koch instances, from

20 to 5000 vertices. For each size considered, 30 instances were collected.

4.4. Results and Analysis 49

Class Source Sizes experimented
Instances Number of
per size instances

Simple

From [10]
30 170 170

(preliminary)
From [10] 30, 40, 50, 60 20 80

From [14]

20, 40, 60, 80,

30 630
100, 200, 300, 400, 500,
600, 700, 800, 900, 1000,
1250, 1500, 1750, 2000,

2250, 2500, 5000

Orthogonal

From [10] 30, 40, 50, 60 20 80

From [14]

20, 40, 60, 80,

30 630
100, 200, 300, 400, 500,
600, 700, 800, 900, 1000,
1250, 1500, 1750, 2000,

2250, 2500, 5000

Simple-simple
From [33] (GB) 100, 200, 300, 400, 500 30 150

From [33] (GD)
200, 500, 1000,

30 150
2000, 5000

Ortho-ortho From [33]
100, 200, 300, 400, 500

30 240
1000, 2000, 5000

von Koch
From [14]

20, 40, 60, 80,

30 540
100, 200, 300, 400, 500,
600, 700, 800, 900, 1000,
1250, 1500, 2000, 5000

Spike From [26]
60, 100, 200, 500,

30 210
1000, 2000, 5000

Total 2880

Table 4.1: Summary of instances

50 Chapter 4. Implementation and Computational Results

were performed with implementation Ix in environment My. Not all experimental con-

figurations E(Ix, My) were tested with the same groups of instances and only a small

portion of the data collected is actually displayed in this dissertation.

4.4.1 General Results

As said before, our method was examined in three opportunities [34, 33, 17]. In [34], for

example, E(I1, M1) was tested and, for every one of the 1440 hole-free polygons (with

hundreds of vertices) from various classes gathered from the literature, optimal solutions

were attained in just a few minutes of computing time. In our second paper [33], a great

improvement was seen in the algorithm implementation (I2), which proved being capable

of solving polygons with more than 2000 vertices. In this opportunity, 2440 instances

were tested with E(I2, M1), including polygons with holes, and I2 achieved an optimality

rate of more than 98%. Just to clarify, the optimality rate here means the percentage of

instances from the total in which the optimality gap equaled zero and, therefore, a proven

optimal solution was obtained.

Finally, in the AGP Survey [17], I1, I2 and a new version I3 were experimented on 900

instances in environment M2. The joint experimentation provided a direct comparison and

verification of the improvement occurred during the Master’s project. In this occasion,

I3 showed to be very successful, being able to optimally solve 768 polygons, including

instances with 5000 vertices, in runs of less than 20 minutes. Table 4.2 displays the

optimality rates achieved by I1, I2 and I3.

The results in Table 4.2 evince two big steps in our headway. From I1 to I2, besides

a considerable improvement in the optimality rate, we became able to solve polygons

with holes, greatly increasing the range of treatable classes. Subsequently, from I2 to I3,

a remarkable performance improvement was conquered, as evidenced by the resolution

of polygons of 5000 vertices. These polygons have twice the size of the previous largest

instances already treated by AGP solvers, fact achieved by I2 in [33].

In order to confirm this analysis, we collected information about the time necessary

to find optimal solutions. Table 4.3 shows the average time needed to solve simple,

orthogonal and von Koch polygons, considering only instances where optimal solutions

were found by all three implementations. From this table, one can see that the average

time of I2 can be about 5 times smaller than I1, as verified in results of von Koch polygons

with 500 vertices. The difference is even greater when analyzing I2 against I3, which is

capable of solving, on average, orthogonal polygons of size 1000 almost 22 times faster than

I2. But which of the implementation upgrades (presented in Section 4.1.3) is responsible

for this great improvement? To help answering this question, Figure 4.4 brings the time

spent by the last two implementations in each of the major tasks of our algorithm, when

4.4. Results and Analysis 51

Class Source n

Optimality Rate (%)
I1 I2 I3

Simple From [14]

200 100.00 100.00 100.00
500 100.00 100.00 100.00
1000 96.67 100.00 100.00
2000 6.67 50.00 100.00
5000 0.00 0.00 100.00

Orthogonal From [14]

200 100.00 100.00 96.67
500 100.00 96.67 93.33
1000 100.00 100.00 100.00
2000 70.00 90.00 100.00
5000 0.00 0.00 93.33

Simple-simple From [17] (GD)

200 - 100.00 100.00
500 - 83.33 100.00
1000 - 0.00 100.00
2000 - 0.00 46.67
5000 - 0.00 0.00

Ortho-ortho From [33]

200 - 96.67 100.00
500 - 83.33 100.00
1000 - 3.33 96.67
2000 - 0.00 33.33
5000 - 0.00 0.00

von Koch From [14]

200 100.00 100.00 100.00
500 96.67 100.00 100.00
1000 46.67 100.00 100.00
2000 0.00 0.00 100.00
5000 0.00 0.00 0.00

Spike From [26]

200 - 100.00 100.00
500 - 100.00 100.00
1000 - 96.67 100.00
2000 - 96.67 100.00
5000 - 0.00 100.00

Table 4.2: Optimality Rates of I1, I2 and I3 in environment M2.

52 Chapter 4. Implementation and Computational Results

Class Source n

Average Time (sec)
I1 I2 I3

Simple From [14]
200 7.31 3.63 0.75
500 67.81 32.82 2.96
1000 358.97 158.73 9.18

Orthogonal From [14]
200 4.10 2.72 0.37
500 30.06 19.61 1.49
1000 189.41 111.40 5.22

von Koch From [14]
200 11.12 3.54 1.20
500 158.53 31.88 7.80
1000 767.01 186.49 52.81

Table 4.3: Average Time of I1, I2 and I3 in environment M2.

dealing with simple polygons of 1000 vertices.

In the chart from Figure 4.4, it is easy to see that I3 has advantage in all of the

verified stages, but mainly in three of them. From the visibility computation results, it

was possible to prove the high quality of the new algorithm employed to execute this

specific task, which will be part of future versions of cgal. On the other hand, the

enhancement in the ILP procedure can be credited possibly to the use of cplex instead

of xpress but specially to the tactic designed to reduce the number of AGPFC resolutions

to fewer iterations. Finally, the impressive difference verified in the Matrix setup time

must be assigned to the new hash table with visibility information (see Section 4.1.3 for

details), which greatly reduced the number of table searches.

After reviewing the evolution of our implementation, let us focus on the overall be-

havior of our algorithm on instances from all available classes. To perform this analysis,

we display Table 4.4, which has information obtained with E(I3, M2). In this table, we

can find results of optimality rate, average number of guards in optimal solutions, aver-

age number of iterations required to achieve convergence and average time spent for each

subgroup of polygons.

Clearly, some classes of polygons seem easier than others: orthogonal polygons tend

to take less time than simple or von Koch polygons. The latter are clearly the hardest

ones: within the average time taken to solve a von Koch instance of 1000 vertices, we

were able to solve simple polygons of double that size. In the same vein, except for spike

polygons, it is evident that polygons with holes are at least an order of magnitude harder

than their hole-free counterpart.

Besides using average time information as a measurement of the difficulty in solving

different groups of instances, we can also analyze performance in a broader manner using

a boxplot chart, as presented in Figure 4.5. The chart provides run time information on

polygons of 1000 vertices when using E(I3,M2). One can see that, in addition to usually

4.4. Results and Analysis 53

Class Source n
Optimality Guards Iterations Time (s)
Rate (%)

Simple From [14]

200 100.00 25.97 3.83 0.75
500 100.00 63.20 4.60 2.96
1000 100.00 126.57 5.57 9.95
2000 100.00 249.23 7.33 48.29
5000 100.00 624.37 9.13 538.26

Orthogonal From [14]

200 96.67 28.90 4.00 0.37
500 93.33 73.54 5.00 1.51
1000 100.00 147.90 5.73 5.22
2000 100.00 296.37 7.10 21.18
5000 93.33 743.39 7.71 123.07

Simple-simple From [33] (GD)

200 100.00 24.90 5.07 6.58
500 100.00 59.13 6.53 61.37
1000 100.00 118.20 8.53 373.15
2000 46.67 234.43 8.86 1133.13
5000 - - - -

Ortho-ortho From [33]

200 100.00 24.97 5.90 9.37
500 100.00 62.17 8.10 101.29
1000 96.67 127.14 9.79 402.61
2000 33.33 259.20 10.50 1182.93
5000 - - - -

von Koch From [14]

200 100.00 14.00 2.97 1.20
500 100.00 32.23 2.83 7.99
1000 100.00 56.80 3.03 59.19
2000 100.00 122.37 4.07 329.33
5000 - - - -

Spike From [26]

200 100.00 6.87 2.03 0.47
500 100.00 9.77 2.10 2.03
1000 100.00 11.97 2.13 22.20
2000 100.00 15.07 2.07 14.93
5000 100.00 30.00 2.03 32.85

Table 4.4: Optimality rate, average cardinality of optimal guard sets, average number of
iterations and average time spent results with E(I3,M2).

54 Chapter 4. Implementation and Computational Results

Figure 4.4: Average time spent in each of the major tasks of the technique when solving
simple polygons of 1000 vertices.

having longer average time results (see Table 4.4), the resolution of simple-simple and

ortho-ortho polygons also presents a larger time variance in comparison to other classes.

As an example, while there is an ortho-ortho polygon of 1000 vertices that can be solved

in about 50 seconds, there is another from the same group which practically requires

the full 20 minutes available to achieve a zero optimality gap. In contrast, when solving

simple and orthogonal instances, there is a small time range and, as a consequence, the

average is closer to the median and also to the quartiles.

Other interesting conclusions can be drawn by analyzing Table 4.4. See that the

number of guards in the optimal solutions seems to grow linearly with the size of the

polygons. This somehow suggests that the generators worked well and were consistent,

keeping the same relative complexity in instances regardless of their sizes. Also surprising

is the sublinear growth of the number of iterations required to achieve optimal solutions.

In the case of simple polygons, while the size increased 25 times (200 to 5000), the number

of iterations less than tripled (3.83 to 9.13). This information attests to the quality of the

algorithm, independently of its implementation, showing that it can quickly converge to

optimal solutions.

In addition, we must highlight the special behavior of the algorithm when solving spike

56 Chapter 4. Implementation and Computational Results

varies from 0 to 4. In case d = 0, we again have the percentage of proven optimal solutions

obtained by I3 in M2. As for the case of d = 1, for example, in addition to considering

all instances with proven optimal solutions, we also included those whose final number of

guards was only one unit above the lower bound computed.

To simplify our analysis of Table 4.5, cases where the value in column d is higher than

in column d − 1 are marked in bold. We see that changes according to d happen in 3

different types of polygon: orthogonal, simple-simple and ortho-ortho. In the specific case

of the orthogonal class, our method obtained solutions with gap less than or equal to 1

for all instances. Meanwhile, for simple-simple and ortho-ortho instances, we observe a

gradual improvement when the optimality gap is continuously relaxed (up to d = 4).

Finally, it is worth mentioning that d = 4 actually corresponds to the maximum

optimality gap found in our experiments if we consider only instances where there was

enough time for computing at least one viable solution (and one upper bound). This set of

data suggests that our method for discovering viable guard sets is able to achieve results

quite close to the optimum of the AGP. At the same time, the large amount of instances

with no upper bound obtained within 20 minutes also indicates that implementation I3

takes too much time to find such solutions, which can be partially attributed to our

decision to postpone the AGPFC resolution and, consequently, the computation of upper

bounds (see Section 4.1.3).

4.4.2 Witness Management

As explained in Section 3.5, four different discretization strategies were developed to

construct the initial witness set D. In our first paper [34], all four strategies were tested

with E(I1, M1) and results revealed significant changes in performance depending on the

option adopted. In Tables 4.6 and 4.7, the average number of iterations and time spent

(respectively) are displayed.

Table 4.6 reports some relevant information. Among them, we can see that, for the

Simple and Orthogonal classes, CP usually needs a lower number of iterations to find

optimal solutions than other discretization options. The quality of CP was somewhat

expected, since it corresponds to a placement of witnesses that ensures the whole coverage

of a witnessable polygon (see Section 3.5). However, an unforeseen fact is that CP was

even able to achieve better iteration results than CE, which constructs a superset of

the one initially produced by CP. On the opposite side, CV, which chooses only convex

vertices of P , obtained, in most cases, the worst results. When considering solely von

Koch polygons, a lot changes and AV becomes the option that needs less iterations.

If we consider now the average time results displayed in Table 4.7, we are led to

new conclusions. As expected, CP remains with the best results when treating simple

4.4. Results and Analysis 57

Class Source n

Percentage of instances with
optimality gap less than or equal to

0 1 2 3 4

Simple From [14]

200 100.00 100.00 100.00 100.00 100.00
500 100.00 100.00 100.00 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00
2000 100.00 100.00 100.00 100.00 100.00
5000 100.00 100.00 100.00 100.00 100.00

Orthogonal From [14]

200 96.67 100.00 100.00 100.00 100.00
500 93.33 100.00 100.00 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00
2000 100.00 100.00 100.00 100.00 100.00
5000 93.33 100.00 100.00 100.00 100.00

Simple-simple From [17] (GD)

200 100.00 100.00 100.00 100.00 100.00
500 100.00 100.00 100.00 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00
2000 46.67 60.00 70.00 76.67 80.00
5000 0.00 0.00 0.00 0.00 0.00

Ortho-ortho From [33]

200 100.00 100.00 100.00 100.00 100.00
500 100.00 100.00 100.00 100.00 100.00
1000 96.67 100.00 100.00 100.00 100.00
2000 33.33 50.00 83.33 86.67 86.67
5000 0.00 0.00 0.00 0.00 0.00

von Koch From [14]

200 100.00 100.00 100.00 100.00 100.00
500 100.00 100.00 100.00 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00
2000 100.00 100.00 100.00 100.00 100.00
5000 0.00 0.00 0.00 0.00 0.00

Spike From [26]

200 100.00 100.00 100.00 100.00 100.00
500 100.00 100.00 100.00 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00
2000 100.00 100.00 100.00 100.00 100.00
5000 100.00 100.00 100.00 100.00 100.00

Table 4.5: Percentage of executions with I3 in M2 within different optimality gaps.

58 Chapter 4. Implementation and Computational Results

Class Source n

Iterations
AV CV CP CE

Simple

From [10]

30 1.50 1.55 1.45 1.50
40 1.25 1.40 1.15 1.10
50 1.45 1.70 1.55 1.35
60 1.55 1.80 1.20 1.40

From [14]

100 2.53 2.63 1.80 1.87
200 2.83 3.10 2.47 2.50
500 3.83 3.93 3.97 3.80
1000 4.70 4.67 4.47 4.57

Orthogonal

From [10]

30 1.38 1.38 1.14 1.10
40 1.50 1.75 1.45 1.35
50 1.55 1.65 1.45 1.45
60 1.80 1.90 1.40 1.55

From [14]

100 2.80 2.57 2.37 2.33
200 3.33 3.30 2.93 2.97
500 4.50 4.37 3.73 3.80
1000 5.40 5.87 5.00 5.43

von Koch From [14]
100 1.57 1.70 1.60 1.77
200 2.13 2.13 2.33 2.00
500 2.03 2.20 2.43 2.13

Table 4.6: Average number of iterations (main loop) until an optimal solution is found
for each initial discretization strategy with E(I1,M1).

4.4. Results and Analysis 59

Class Source n

Time (sec)
AV CV CP CE

Simple

From [10]

30 0.22 0.17 0.19 0.22
40 0.32 0.25 0.23 0.29
50 0.61 0.43 0.42 0.58
60 0.91 0.79 0.54 0.84

From [14]

100 3.03 2.29 1.72 2.12
200 11.84 9.04 7.09 9.88
500 114.51 78.62 65.64 103.60
1000 926.39 554.24 408.71 718.93

Orthogonal

From [10]

30 0.14 0.12 0.12 0.13
40 0.21 0.18 0.17 0.20
50 0.28 0.26 0.23 0.28
60 0.41 0.35 0.30 0.38

From [14]

100 1.34 1.09 0.95 1.17
200 5.99 4.99 3.95 4.86
500 68.01 41.31 30.85 42.46
1000 297.50 233.82 155.00 235.35

von Koch From [14]
100 2.26 1.44 1.62 2.60
200 30.90 17.21 25.32 32.86
500 1064.08 256.77 595.89 1639.80

Table 4.7: Average running time until an optimal solution is found for each initial dis-
cretization strategy with E(I1,M1).

60 Chapter 4. Implementation and Computational Results

and orthogonal polygons, but, in contrast to Table 4.6, the CV strategy is the second

best, despite it obtained some of the worst results in number of iterations. Even more

impressive are the outcomes relative to von Koch polygons. In this case, even though

AV has the lowest number of iterations, CV was the one with the best results, with a

significant advantage over CP, the second best option.

From this analysis, we conclude that, despite being important, the number of iterations

is not necessarily the decisive factor in the final performance of the method. The CV

strategy was not able to achieve good iteration results, but it was usually the first or

second best option in run time. The fact that CV also creates a set D of quality but

with smaller size than the other options, reduces the number of visibility polygons to

be calculated, the arrangement complexity, the number of point location operations and,

not least, the complexity of SCP instances generated. All this consequences have a deep

impact in the performance of the program and permits CV to compete with CP. This

situation is better visualized in von Koch polygons, where the arrangements are usually

more complex and require more computational time from geometric tasks.

In more recent experiments, performed for the survey [17], CV and CP were again

put to the test. This time, we analyzed the performance of I3 instead of I1, what gave

us the possibility of experimenting on polygons with holes. The results, displayed in

Table 4.8, proved once again that no strategy can be the best in all cases. While CP

has now obtained the best results solving ortho-ortho and simple-simple polygons, CV

showed a great advantage when dealing with von Koch and spike classes. In the special

case of spike polygons, the average time of CV was orders of magnitude smaller than its

competitor’s. As for testing with simple and orthogonal instances, the dispute seemed

more equal, with a slight advantage in optimality rate for CV, which is apparently able

to scale better.

These new performance results allow us to reach to some conclusions. From them, it

can be argued that using only convex vertices as initial witnesses works better with our

third implementation I3 than with I1. A possible reason for this is that I3 employed a

new mode to decide whether to solve or not an AGPFC instance at a given iteration. In

I3, we only solve an AGPFC instance if the resolution of the current AGPW was unable

to improve the previous lower bound for the AGP (see more in Section 4.1.3). This idea

avoids the computation of unnecessary AGPFCs, which are very common when using

smaller witness sets, as proposed by CV.

Moreover, the great advantage in applying CV instead of CP to solve spike polygons

is probably due to the shape of the holes in these instances. As shown in Figure 4.3,

practically all vertices of holes are reflex, which implies in CP choosing a large number

of midpoints of edges as initial witnesses, normally unnecessary to the resolution of spike

polygons. For all these outcomes, the CV strategy is today considered the default option

4.4. Results and Analysis 61

Class Source n

Optimality
Time (sec)

Rate (%)
CV CP CV CP

Simple From [14]

200 100.00 100.00 0.75 0.62
500 100.00 100.00 2.96 2.68
1000 100.00 100.00 9.95 10.19
2000 100.00 100.00 48.29 51.92
5000 100.00 93.33 506.63 498.56

Orthogonal From [14]

200 96.67 96.67 0.37 0.34
500 93.33 93.33 1.51 1.36
1000 100.00 100.00 5.22 4.63
2000 100.00 100.00 21.18 18.48
5000 93.33 83.33 120.73 117.46

Simple-simple From [33] (GD)

200 100.00 100.00 6.58 4.50
500 100.00 100.00 61.37 42.21
1000 100.00 100.00 373.15 408.47
2000 46.67 46.67 1026.13 1019.32
5000 0.00 0.00 - -

Ortho-ortho From [33]

200 100.00 100.00 9.37 6.33
500 100.00 100.00 101.29 86.57
1000 96.67 96.67 402.61 275.14
2000 33.33 43.33 1083.98 930.56
5000 0.00 0.00 - -

von Koch From [14]

200 100.00 100.00 1.20 1.54
500 100.00 100.00 7.99 12.14
1000 100.00 100.00 59.19 88.06
2000 100.00 100.00 329.33 700.48
5000 0.00 0.00 - -

Spike From [26]

200 100.00 100.00 0.47 1.09
500 100.00 100.00 2.03 12.22
1000 100.00 100.00 22.20 183.15
2000 100.00 100.00 14.93 353.38
5000 100.00 33.33 26.03 947.73

Table 4.8: Optimality rate and average time results for CV and CP discretization strate-
gies with E(I3, M2).

62 Chapter 4. Implementation and Computational Results

for our implementation.

4.4.3 Guard Candidate Management

Recall that, in Section 3.6, we discussed about two different strategies for constructing the

guard candidate set C at each iteration of our algorithm. The first idea (BG), implemented

in I1, consists in choosing all vertices from Light AVPs (VL(D)) and from P , while the

second (CG), which was introduced in I3, constructs C by choosing one interior point

from each light AVP (CL(D)) and again all vertices of P . Table 4.9 shows results that

allow a performance comparison between the traditional method and the new one with

E(I3, M2).

Firstly, if we analyze solely the optimality rates displayed in Table 4.9, we can see

that CG achieved equal or better results than BG in 5 out of 6 classes of polygons. The

only exception occurred in Orthogonal polygons, where BG was clearly able to converge

better and obtained optimal solutions for all the 150 instances considered.

The superior quality of CG strategy over BG is again verified when considering the

run time data of the comparison table. Although both techniques achieved similar results

when solving smaller instances, CG was capable of scaling better and had a material

advantage in performance on the largest ones. The verified efficiency in solving larger

polygons was certainly one decisive factor for CG obtaining a better optimality rate.

The reason for the good results of CG is directly linked to the smaller guard candidate

set generated. This fact leads to a lower number of geometric operations and also to

smaller ILP models, which saves time. The encouraging outcomes obtained turned this

new approach into our default option for guard candidate discretization.

4.4.4 SCP Resolution

In the algorithm presented in Chapter 3, the resolution of SCP instances plays a very

important role. In the technique, each AGPW or AGPFC instance suffers a reduction to

the AGPWFC, which can be seen as a geometric interpretation of the SCP. Thus, reducing

the time needed to solve these instances directly results in improving the program as a

whole. Figure 4.6 illustrates the percentage of time spent solving ILPs with each of our

implementations in M2.

In I1, the task of solving SCPs was entrusted only to ILP solvers. However, in some

experiments, we observed complex cases where even modern solvers were having trouble

in finding optimal solutions. After this, in I2, techniques for reducing the ILP matrix

were implemented, along with a Lagrangian Heuristic (LH). This heuristic, based in a

work by Beasley on Lagrangian Relaxation [6] (see Section 2.2 for details), was used with

4.4. Results and Analysis 63

Class Source n

Optimality
Time (sec)

Rate (%)
CG BG CG BG

Simple From [14]

200 100.00 100.00 0.75 0.67
500 100.00 100.00 2.96 2.96
1000 100.00 100.00 9.95 11.10
2000 100.00 100.00 48.29 53.03
5000 100.00 93.33 504.63 633.12

Orthogonal From [14]

200 96.67 100.00 0.37 0.41
500 93.33 100.00 1.51 1.71
1000 100.00 100.00 5.22 5.66
2000 100.00 100.00 21.18 24.14
5000 93.33 100.00 123.07 144.45

Simple-simple From [33] (GD)

200 100.00 100.00 6.58 6.22
500 100.00 100.00 61.37 54.16
1000 100.00 96.67 285.47 285.35
2000 46.67 13.33 598.82 967.43
5000 0.00 0.00 - -

Ortho-ortho From [33]

200 100.00 100.00 9.37 8.23
500 100.00 100.00 101.29 88.42
1000 96.67 93.33 338.75 319.04
2000 33.33 6.67 729.23 841.84
5000 0.00 0.00 - -

von Koch From [14]

200 100.00 100.00 1.20 1.14
500 100.00 100.00 7.99 9.57
1000 100.00 100.00 59.19 76.49
2000 100.00 100.00 329.33 483.34
5000 0.00 0.00 - -

Spike From [26]

200 100.00 100.00 0.47 0.42
500 100.00 100.00 2.03 2.15
1000 100.00 100.00 22.20 22.04
2000 100.00 100.00 14.93 16.92
5000 100.00 100.00 32.85 47.00

Table 4.9: Optimality rate and average time results for CG and BG guard candidate
selection strategies with E(I3, M2).

64 Chapter 4. Implementation and Computational Results

Figure 4.6: Percentage of time used in ILP resolution with each of our three implemen-
tations in M2, when solving simple polygons with 1000 vertices.

the purpose of replacing the ILP solver or at least helping it by providing a good initial

viable solution.

To verify the heuristic contribution to implementation I2, a group of instances was

tested in M1 in two different modes, one employing the Lagrangian Heuristic and the other

without it. In addition, the same experiment was performed considering two different

solvers: xpress and glpk. The outcomes, recently published in [33], are summarized in

Figures 4.7 and 4.8.

In the charts, a clear difference is observed in the benefit provided by the LH, de-

pending on the ILP solver. From xpress results, we can see a considerable advantage

in performance when using the Lagrangian Heuristic on simple and orthogonal polygons.

However, when looking to results employing glpk, it is harder to visualize the same effect,

even though the version with LH won in 14 out of the 20 subgroups experimented. This

difference in behavior between ILP solvers is possibly due to the fact that xpress takes

more advantage from viable solutions provided by the LH than glpk.

Another important issue to consider here is that changing the way SCPs are solved

also implies that different solutions can be found for the same AGPWFC instance. When

this happens, distinct uncovered regions are produced, permanently affecting the future

decisions of the algorithm. In instances where this occurs, it is not unusual to see sig-

nificant differences in performance. Consider, for example, the polygon of 900 vertices

called “randsimple-900-4.pol”. For this instance, the resolution time using glpk plus LH

4.4. Results and Analysis 65

Figure 4.7: Comparison of average run time with E(I2, M1) when using Lagrangian
Heuristic or only xpress on simple (top) and orthogonal (bottom) polygons.

66 Chapter 4. Implementation and Computational Results

Figure 4.8: Comparison of average run time with E(I2, M1) when using Lagrangian
Heuristic or only glpk on simple (top) and orthogonal (bottom) polygons.

4.5. Comparison With Other Techniques 67

is 3260.54 seconds, while the time employing only glpk is 1559.54 seconds. However, the

average time found for the subgroup of simple polygons with 900 vertices is lower for the

version with LH (418.80 seconds against 452.29 seconds).

The same kind of experiment was repeated in the survey [17], using I3 with cplex.

This time, however, it was evidenced that the heuristic has difficulty to scale. As illus-

trated in Table 4.10, in the largest subgroups of each class, the heuristic was only capable

of (slightly) improving the performance on spike polygons, which, as discussed before,

are part of a very specific set of instances. The likely reason for this is the difficulty in

obtaining proven optimal solutions for SCP instances with thousands of variables and

constraints. In these situations, the time spent by the heuristic is considerably higher and

the solution found not good enough to help cplex.

As a final conclusion on the Lagrangian heuristic, we can argue that the advantage

of using it depends on the size and the class of the instance and also on the ILP solver

available to the user. However, since our objective is to solve instances increasingly larger

and in the shortest amount of time, the current default version of our technique does not

apply the LH.

4.5 Comparison With Other Techniques

In recent years, as discussed in Section 1.2, other algorithms were proposed for the AGP.

During this Master’s project, we compared our achievements with some of these tech-

niques. In this section, we first analyze the differences between Bottino et al.’s method [10]

and ours and then perform a complete comparison with the algorithm of Kröller et al. [26],

based on results obtained from the survey on algorithms for the AGP [17].

4.5.1 Comparison with Bottino et al.’s technique [10]

In 2011, Bottino and Laurentini proposed a heuristic for the original AGP [10], aiming to

produce good viable solutions with an efficient method. The technique was experimented

and obtained promising results, including some optimal solutions. In the paper, the

authors compared their technique with the one by Amit et al. [2] and claimed that their

method was able to achieve better results.

Upon learning about this work, we decided to try our I2 version with exactly the same

instances used by Bottino and Laurentini and compare our findings. The experiments were

done using all simple and orthogonal instances from Bottino et al., which vary between 30

and 60 vertices (see Section 4.3 for details). Table 4.11 summarizes the results, showing

two types of information: average number of guards and average run time.

In our tests, I2 was able to find proven optimal solutions for all instances, meaning that

68 Chapter 4. Implementation and Computational Results

Class Source n

Optimality
Time (sec)

Rate (%)
cplex +LH cplex +LH

Simple From [14]

200 100.00 100.00 0.75 0.60
500 100.00 100.00 2.96 2.66
1000 100.00 100.00 9.95 9.78
2000 100.00 100.00 48.29 59.75
5000 100.00 33.33 415.64 937.62

Orthogonal From [14]

200 96.67 96.67 0.37 0.32
500 93.33 93.33 1.51 1.45
1000 100.00 96.67 5.05 5.17
2000 100.00 100.00 21.18 30.26
5000 93.33 93.33 123.07 352.79

Simple-simple From [33] (GD)

200 100.00 100.00 6.58 5.81
500 100.00 100.00 61.37 57.00
1000 100.00 96.67 285.47 499.82
2000 46.67 6.67 820.79 1008.05
5000 0.00 0.00 - -

Ortho-ortho From [33]

200 100.00 100.00 9.37 14.69
500 100.00 100.00 101.29 146.37
1000 96.67 90.00 282.12 357.71
2000 33.33 0.00 - -
5000 0.00 0.00 - -

von Koch From [14]

200 100.00 100.00 1.20 1.03
500 100.00 100.00 7.99 6.51
1000 100.00 100.00 59.19 33.74
2000 100.00 100.00 329.33 356.94
5000 0.00 0.00 - -

Spike From [26]

200 100.00 100.00 0.47 0.41
500 100.00 100.00 2.03 1.73
1000 100.00 100.00 22.20 11.62
2000 100.00 100.00 14.93 11.51
5000 100.00 100.00 32.85 30.94

Table 4.10: Optimality rate and average time results when using or not the Lagrangian
Heuristic to help cplex with E(I3, M2).

4.5. Comparison With Other Techniques 69

Class n

Number of Guards Time (sec)
Method [10] I2 Method [10] I2

Simple

30 4.20 4.20 1.57 0.14
40 5.60 5.55 2.97 0.10
50 6.70 6.60 221.92 0.24
60 8.60 8.35 271.50 0.27

Orthogonal

30 4.60 4.52 1.08 0.04
40 6.10 6.00 9.30 0.07
50 7.80 7.70 6.41 0.12
60 9.30 9.10 81.95 0.16

Table 4.11: Comparison between the method of Bottino et al. [10] and I2.

the column with average number of guards found by our method actually contains optimal

values. Knowing this, we can conclude that the heuristic by Bottino and Laurentini was

able to find good solutions, but not always optimal. Except for simple polygons with 30

vertices, the heuristic did not manage to find the best possible solutions for all polygons

of a subgroup. Looking more carefully, we can notice a growing gap between the average

number of guards from both techniques as the size of the instances increases.

Besides comparing the quality of the solutions, it is also important to evaluate the

time needed to find them. To this end, Table 4.11 exhibits the computing times for

the two methods. It is important to notice though that the experiments were done in

different environments, which invalidates a direct comparison of performance between the

techniques. While our tests were conducted in environment M1, with machines featuring

an Intel R© CoreTM i7-2600 at 3.40 GHz and 8 GB of RAM, the researchers of [10] performed

their experiments on an Intel R© Core2
TM

processor at 2.66 GHz and with 2 GB of RAM.

Despite this, Table 4.11 shows that the average run time of our technique to compute

proven optimal solutions for the AGP is orders of magnitude smaller than the time used

by the heuristic. At least it seems safe to say that this large disparity in computing times

can not be entirely attributed to hardware and software differences.

4.5.2 Comparison with Kröller et al.’s technique [26]

In 2009, a group of researchers from Germany proposed a new technique based on linear

programming, called here BS1, to solve a fractional version of the AGP [5]. Over the

years, the idea has evolved and was modified, becoming a practical option for computing

high quality solutions to the original problem [19] (see Section 1.2 for a summary of the

technique). From these changes, two new implementations emerged, one in 2012, called

BS2, and the current one, named BS3. For this reason, we decided to compare their

techniques with ours. This was made possible thanks to my internship in TUBS, where

70 Chapter 4. Implementation and Computational Results

we worked in straight collaboration with the authors of [5, 19].

In the experiments performed during this internship, the three implementations from

UNICAMP (I1, I2 and I3) were tested along with three different versions of TUBS: BS1,

BS2 and BS3. These tests were conducted in environment M2 using 900 polygons from the

following classes: simple, orthogonal, von Koch, simple-simple, ortho-ortho and spike. It

is important to remember that, in M2, each instance was allowed to run for a maximum of

20 minutes and, after this, was considered unsolved. Table 4.12 summarizes the optimality

rate results obtained, where the columns are in chronological order of implementation.

Note that columns I1, I2 and I3 are just copies of the ones already displayed in Table 4.2

and are repeated here to facilitate our analysis.

From Table 4.12, it is clear that both lines of thought have improved over time. As

discussed in Section 4.4.1, our implementations became able to solve polygons with holes

and can now solve instances with up to 5000 vertices. On the other hand, those from

Kröller et al. managed to greatly improve the optimality rates. The initial version, which

tried to solve the AGP using only LP, got a small number of proven optimal solutions,

while the latest obtained more than 90% of optimality for hole-free polygons with 1000

vertices.

Moreover, if we analyze all techniques at once, we can see what appears to be an

algorithms race, with the latest techniques overcoming the achievements of the previous

ones. Our first implementation, for example, was able to resolve a far greater number of

instances than TUBS’ first (BS1) and had a close dispute with their second version. After

this, our version I2, produced during the first semester of 2013, achieved great results in

optimality rate, surpassing those obtained by the German release of 2012 (BS2). I2 was

also capable of obtaining better optimality results than TUBS’ current implementation

(BS3) on instances of smaller size. However, when increasing the size to thousands of

vertices, BS3 was distinctly superior.

Finally, when comparing the optimality rate obtained by the current versions of both

research groups (I3 and BS3), one can conclude that I3 has a significant advantage, being

far more robust than its opponent. While I3 was able to obtain 100% optimality in 21

out of 30 subgroups, the version from TUBS only achieve this for 4 subgroups.

To get a deeper insight into the differences in behavior of the latest two techniques,

we also developed a running time comparison between them, using results of all polygon

classes. This comparison is shown in Figure 4.9. For a fairer analysis, the average times

in the charts only considered values of instances resolved by both I3 and BS3.

In Figure 4.9, it is easy to see that BS3 was faster in solving simple-simple, ortho-ortho

and von Koch polygons. On the other hand, I3 was more efficient with simple polygons

and meaningly better when dealing with orthogonal and spike instances. In the specific

case of the spike class, I3 was about 20 times faster than BS3 to solve the instances with

4.5. Comparison With Other Techniques 71

Class Source n

Optimality Rate (%)
BS1 BS2 I1 I2 BS3 I3

Simple From [14]

200 20.00 100.00 100.00 100.00 96.67 100.00
500 3.33 76.67 100.00 100.00 96.67 100.00
1000 0.00 70.00 96.67 100.00 90.00 100.00
2000 0.00 36.67 6.67 50.00 60.00 100.00
5000 0.00 0.00 0.00 0.00 26.67 100.00

Orthogonal From [14]

200 16.67 96.67 100.00 100.00 96.67 96.67
500 3.33 86.67 100.00 96.67 93.33 93.33
1000 0.00 70.00 100.00 100.00 86.67 100.00
2000 0.00 46.67 70.00 90.00 70.00 100.00
5000 0.00 0.00 0.00 0.00 40.00 93.33

Simple-simple
From [33]
(GD)

200 3.33 93.33 - 100.00 86.67 100.00
500 0.00 76.67 - 83.33 60.00 100.00
1000 0.00 3.33 - 0.00 13.33 100.00
2000 0.00 0.00 - 0.00 0.00 46.67
5000 0.00 0.00 - 0.00 0.00 0.00

Ortho-ortho From [33]

200 10.00 83.33 - 96.67 86.67 100.00
500 0.00 53.33 - 83.33 53.33 100.00
1000 0.00 16.67 - 3.33 16.67 96.67
2000 0.00 0.00 - 0.00 0.00 33.33
5000 0.00 0.00 - 0.00 0.00 0.00

von Koch From [14]

200 36.67 100.00 100.00 100.00 100.00 100.00
500 10.00 100.00 96.67 100.00 93.33 100.00
1000 0.00 100.00 46.67 100.00 96.67 100.00
2000 0.00 83.33 0.00 0.00 86.67 100.00
5000 0.00 0.00 0.00 0.00 0.00 0.00

Spike From [26]

200 70.00 100.00 - 100.00 96.67 100.00
500 60.00 100.00 - 100.00 100.00 100.00
1000 80.00 3.33 - 96.67 100.00 100.00
2000 83.33 0.00 - 96.67 100.00 100.00
5000 0.00 0.00 - 0.00 96.67 100.00

Table 4.12: Optimality Rate of our implementations and AGP Solvers from [26] in envi-
ronment M2.

4.5. Comparison With Other Techniques 73

5000 vertices.

Through all results presented, one can conclude that the methods from TUBS have

a natural difficulty in converging to a proven optimal solution and that this problem

can not be totally assigned to the code performance. While some positive results where

observed in run time, the optimality rate of BS3 was not able to follow it. For illustration,

BS3 needed an average time of 164.65 seconds to solve simple-simple polygons with 1000

vertices (26% percent less than I3), but the optimality rate for this subgroup was only

13.33%, far below the results using I3, when all 30 instances were solved within the

imposed time limit. In the case of our method, the evolution mostly occurred due to

optimizations on routines and changes in some internal decisions of the algorithm. It

seems that our technique, since its first release, tends to find the optimal solution in

almost all cases and the low optimality observed in larger instances is directly related to

the maximum run time imposed in the testing environment.

Chapter 5

Conclusions

In this dissertation, we studied applying ILP modeling to optimally solve the Art Gallery

Problem, an NP-hard problem in the Computational Geometry field. As a result, an

algorithm was designed that iteratively discretizes the original problem to find lower and

upper bounds while seeking an optimal solution for the AGP.

To allow its correct evaluation, our algorithm was coded and had its implementation

modified and optimized through time. In total, we experimented our technique on more

than 2800 instances from different sources and classes of polygons. Our methodology

proved capable of optimally solving polygons with up to 5000 vertices in less than 20

minutes each, something not imagined a few years ago.

In order to demonstrate the quality of our solution, we also compared our results

with those produced by other state-of-the-art techniques. These comparisons revealed a

significant advantage when using our technique, which proved to be far more effective,

faster and more robust than all the others. These results encouraged us to release an

implementation of our algorithm that does not require any proprietary software library

on the web page of our project [16]. By doing so, we expect to contribute to future

research on the topic, since it is now possible for new techniques to be directly tested and

compared to our software package.

Besides providing a robust code for solving the AGP, our work also lead to four papers

on the subject, two of which have already been published [7, 34] and two recently submit-

ted [33, 17]. Some of these studies provided a strong interaction with other researchers on

the topic, as was the case of the survey on algorithms for the AGP [17], produced in part-

nership with a group from TUBS, in Germany. This interaction was important for two

reasons: it introduced me to an internationally recognized research group and expanded

the relationships between researchers from UNICAMP and TUBS, enabling other future

joint works as well.

To conclude, despite the high quality results achieved by our technique, there is cur-

75

76 Chapter 5. Conclusions

rently no proof of the method’s convergence. It remains a future challenge to study ad-

ditional geometric properties that may assist in designing a strategy that leads to proven

convergence of the method. In addition, we hope that research on other variants of the

AGP can also benefit from the work done in this project.

Bibliography

[1] A. Aggarwal, S. K. Ghosh, and R. K. Shyamasundar. Computational complexity

of restricted polygon decompositions. In G. T. Toussaint, editor, Computational

Morphology, pages 1–11. North-Holland, 1988.

[2] Y. Amit, J. S. B. Mitchell, and E. Packer. Locating guards for visibility coverage of

polygons. In ALENEX, pages 1–15, New Orleans, Lousiana, January 2007. SIAM.

[3] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Sales-

man Problem: A Computational Study (Princeton Series in Applied Mathematics).

Princeton University Press, Princeton, NJ, USA, 2007.

[4] Y. Bartal and L.-A. Gottlieb. A linear time approximation scheme for euclidean tsp.

In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium

on, pages 698–706, Oct 2013.

[5] T. Baumgartner, S. P. Fekete, A. Kröller, and C. Schmidt. Exact solutions and

bounds for general art gallery problems. In Proceedings of the SIAM-ACM Workshop

on Algorithm Engineering and Experiments, ALENEX 2010, pages 11–22. SIAM,

2010.

[6] J. E. Beasley. Lagrangian relaxation. In C. R. Reeves, editor, Modern Heuristic

Techniques for Combinatorial Problems, pages 243–303. John Wiley & Sons, Inc.,

New York, NY, USA, 1993.

[7] D. Borrmann, P. J. de Rezende, C. C. de Souza, S. P. Fekete, S. Friedrichs, A. Kröller,

A. Nüchter, C. Schmidt, and D. C. Tozoni. Point guards and point clouds: solving

general art gallery problems. In Proceedings of the twenty-ninth annual symposium

on Computational geometry, SoCG ’13, pages 347–348, New York, NY, USA, 2013.

ACM.

[8] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in simple polygons.

Computational Geometry, 23(3):313–335, 2002.

77

78 BIBLIOGRAPHY

[9] A. Bottino and A. Laurentini. A nearly optimal sensor placement algorithm for

boundary coverage. Pattern Recognition, 41(11):3343–3355, 2008.

[10] A. Bottino and A. Laurentini. A nearly optimal algorithm for covering the interior

of an art gallery. Pattern Recognition, 44(5):1048–1056, 2011.

[11] CGAL. Computational Geometry Algorithms Library, 2012. www.cgal.org (last

access January 2012).

[12] K.-Y. Chwa, B.-C. Jo, C. Knauer, E. Moet, R. van Oostrum, and C.-S. Shin. Guard-

ing art galleries by guarding witnesses. Intern. Journal of Computational Geometry

And Applications, 16(02n03):205–226, 2006.

[13] M. C. Couto, P. J. de Rezende, and C. C. de Souza. An exact algorithm for an art

gallery problem. Technical Report IC-09-46, Institute of Computing, University of

Campinas, Nov. 2009.

[14] M. C. Couto, P. J. de Rezende, and C. C. de Souza. An exact algorithm for minimizing

vertex guards on art galleries. International Transactions in Operational Research,

18(4):425–448, 2011.

[15] M. C. Couto, C. C. de Souza, and P. J. de Rezende. An exact and efficient algorithm

for the orthogonal art gallery problem. In Proc. of the XX Brazilian Symp. on Comp.

Graphics and Image Processing, pages 87–94. IEEE Computer Society, 2007.

[16] P. J. de Rezende, C. C. de Souza, M. C. Couto, and D. C. Tozoni. The Art

Gallery Problem Project (AGPPROJ), 2013. www.ic.unicamp.br/∼cid/Problem-

instances/Art-Gallery.

[17] P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hemmer, A. Kröller, and D. C.

Tozoni. Engineering art galleries. 2014. Submitted.

[18] S. Eidenbenz. Approximation algorithms for terrain guarding. Inf. Process. Lett.,

82(2):99–105, 2002.

[19] S. P. Fekete, S. Friedrichs, A. Kröller, and C. Schmidt. Facets for art gallery problems.

In D.-Z. Du and G. Zhang, editors, Computing and Combinatorics, volume 7936 of

Lecture Notes in Computer Science, pages 208–220. Springer Berlin Heidelberg, June

2013.

[20] R. Fukasawa, H. Longo, J. Lysgaard, M. P. de Aragão, M. Reis, E. Uchoa, and

R. F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing

problem. Mathematical Programming, 106(3):491–511, 2006.

BIBLIOGRAPHY 79

[21] S. K. Ghosh. Approximation algorithms for art gallery problems. In Proc. Canadian

Inform. Process. Soc. Congress, pages 429–434, Mississauga, Ontario, Canada, 1987.

Canadian Information Processing Society.

[22] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New

York, 2007.

[23] S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete

Applied Mathematics, 158(6):718–722, 2010.

[24] GLPK. GNU Linear Programming Kit. GNU, 2013.

http://www.gnu.org/software/glpk/ (access December 2013).

[25] R. M. Karp. Reducibility among combinatorial problems. In R. Miller, J. Thatcher,

and J. Bohlinger, editors, Complexity of Computer Computations, The IBM Research

Symposia Series, pages 85–103. Springer US, 1972.

[26] A. Kröller, T. Baumgartner, S. P. Fekete, and C. Schmidt. Exact solutions and

bounds for general art gallery problems. J. Exp. Algorithmics, 17(1):2.3:2.1–2.3:2.23,

May 2012.

[27] J. Laarhoven and J. Ohlmann. A randomized Delaunay triangulation heuristic for

the euclidean Steiner tree problem in R
d. Journal of Heuristics, 17(4):353–372, 2011.

[28] D. T. Lee and A. Lin. Computational complexity of art gallery problems. Information

Theory, IEEE Transactions on, 32(2):276–282, March 1986.

[29] J. Mitchell. Approximating watchman routes. In Proceedings of the Twenty-Fourth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 844–855, 2013.

[30] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New

York, NY, 1987.

[31] T. C. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384–

1399, September 1992.

[32] A. P. Tomás and A. L. Bajuelos. Generating random orthogonal polygons. In Current

Topics in Artificial Intelligence, volume 3040 of LNCS, pages 364–373. Springer, 2004.

[33] D. C. Tozoni, P. J. de Rezende, and C. C. de Souza. A practical iterative algorithm

for the art gallery problem using integer linear programming. Optimization Online,

Oct. 2013. www.optimization-online.org/DB HTML/2013/11/4106.html.

80 BIBLIOGRAPHY

[34] D. C. Tozoni, P. J. de Rezende, and C. C. de Souza. The quest for optimal solutions

for the art gallery problem: A practical iterative algorithm. In V. Bonifaci, C. Deme-

trescu, and A. Marchetti-Spaccamela, editors, Proceedings of the 12th International

Symposium on Experimental Algorithms, SEA 2013, volume 7933 of Lecture Notes

in Computer Science, pages 320–336, Rome, Italy, 2013. Springer.

[35] J. Urrutia. Art gallery and illumination problems. In J. R. Sack and J. Urrutia,

editors, Handbook of Computational Geometry, pages 973–1027, Amsterdam, 2000.

Elsevier Science Publishers.

[36] XPRESS. Xpress Optimization Suite. FICO Solutions, 2009.

http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-

Suite.aspx (access January 2012).

	Abstract
	Resumo
	Acknowledgements
	Agradecimentos
	Introduction
	The Problem
	Related Work
	Our Contribution
	Text Organization

	Preliminaries
	Computational Geometry
	Integer Programming
	The Art Gallery Problem
	Basic Theorems

	An Algorithm for the AGP
	Sketch of the Algorithm
	Solving the AGPW
	Solving the AGPFC
	Solving the AGPWFC (SCP)
	Witness Management
	Guard Candidate Management
	Resulting Algorithm

	Implementation and Computational Results
	Implementation
	I1: Implementation for the first paper Tozoni2013
	I2: Implementation for the second paper Tozoni2013-2
	I3: Implementation for the third paper deRezende2014

	Computational Environment
	Instances
	Simple
	Orthogonal
	Simple-simple
	Ortho-ortho
	von Koch
	Spike

	Results and Analysis
	General Results
	Witness Management
	Guard Candidate Management
	SCP Resolution

	Comparison With Other Techniques
	Comparison with Bottino et al.'s technique Bottino2011
	Comparison with Kröller et al.'s technique Kroller2012

	Conclusions
	Bibliography

