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Abstract

Human action recognition in videos is an expanding area of knowledge. There is a wide

range of possible applications, including user interface, surveillance, smart homes and

health monitoring. Most of them require real time responses, however, there is a trade-off

between processing time and effectiveness of the recognition, where effectiveness comprises

accuracy and robustness in a number of situations. Two main contributions are presented

in this work. The first one is a method for obtaining relevant motion information from

videos, even by making use of poorly extracted foreground, by joining a temporal win-

dow of shapes. The second one is a simple and fast descriptor, based on silhouettes or,

generically, on motion shapes, that achieves state-of-the-art accuracy in real time. It is

built from the relative positions of interest points chosen as extreme points on the mo-

tion shapes. The method is evaluated on three public data sets and the experimental

results are compared against others from the literature. Some data sets have manually

segmented silhouettes available, allowing us to analyze each contribution separately. In

all cases, the features are extracted at high frame rates, greater than required to a real

time application.

ix





Resumo

Reconhecimento de ações humanas em v́ıdeos é uma área de conhecimento em expansão.

Há uma vasta gama de posśıveis aplicações, incluindo interface de usuários, vigilância,

casas inteligentes e monitoramento de saúde. A maioria delas requer respostas em tempo

real. No entanto, há um equiĺıbrio entre tempo de processamento e eficácia do reconheci-

mento, sendo que eficácia compreende acurácia e robustez em múltiplas situações. Duas

contribuições são apresentadas neste trabalho. A primeira é um método de obtenção de

informação relevante de movimento em v́ıdeos, mesmo usando uma subtração de fundo

simples, por meio da união de uma janela deslizante de figuras. A segunda é um descri-

tor simples e rápido, baseado em silhuetas ou, genericamente, em figuras de movimento,

que alcança o estado da arte na acurácia em tempo real. Ele é constrúıdo a partir das

posições relativas de pontos de interesse escolhidos como pontos extremos nas figuras de

movimento. O método foi avaliado em três bases de dados públicas e os resultados expe-

rimentais são comparados com outros da literatura. Algumas bases possuem dispońıveis

silhuetas segmentadas manualmente, permitindo a análise de cada contribuição separada-

mente. Em todos os casos, as caracteŕısticas foram extráıdas em altas taxas de quadros

por segundo, mais que o necessário para ser aplicado em tempo real.
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Chapter 1

Introduction

1.1 Motivation

Human action recognition has a wide range of applications and can be used for tasks such

as intelligent surveillance, human-computer interface, smart homes, health monitoring,

and augmented reality. Through the images obtained by common cameras, the computer

is able to perceive some pre-trained actions that people perform and react to it accordingly.

The development of digital technology made way to the progress in the area of action

recognition. Cameras have been developed with smaller physical dimensions, as well as

higher resolution and frame rates. Images acquired by cameras have been recorded in

larger quantity, due to the increase of storage capacity of the digital media (Sasse 2010).

The range of devices capable of quickly processing images has also grown; applications are

made not only for traditional computers, but also to smartphones, cars and video games,

mobile and consoles.

Current researches in surveillance, in general, focus on the development of intelligent

surveillance systems that aim at interpreting human activity, instead of using a passive

monitoring system, which is the most commonly employed technology (Jacques Junior

et al. 2010). Intelligent systems allow the reduction of the necessity of monitoring opera-

tors and can help the analysis of images and videos. Nevertheless, intelligent monitoring

systems should be capable of automatically extracting complex information of the ob-

served scene and classify its main events – actions or activities. Automated human action

recognition is fundamental in surveillance tasks since human beings are susceptible to

failure under stress and repetitive conditions. Moreover, camera recordings are often just

stored, without being watched or verified anyhow, except in case of casualties.

Home automation often includes lighting control, temperature control, locking of doors

and gates, and fire safety. For example, an intelligent system, capable of identifying

actions, may be able to detect if a person is reading under appropriate lighting. It may

1



1.2. Objectives and Contributions 2

be used for improving health or increasing quality of life. For elderly and disabled people,

fall detection can produce an alert in case of emergency.

Action recognition in human-computer interface is also in growth. It is increasingly

used in many contexts. One growing trend is to operate devices using hand and eye

gestures; besides practicality, it is used to interface people with disabilities. Another

trend, which has a large money turnover, is to control video games using body movements.

These devices, however, have well defined scopes and they often include 3D cameras or

infrared sensors.

One of the main challenges related to this problem is the computational time required

to process video frames and extract features, which often makes it impossible to apply

action recognition in real life situations. The achievement of the required processing speed

is strongly related to loss of effectiveness in the classification.

1.2 Objectives and Contributions

Two contributions are given in this work. The first one is a shape-based pose descriptor.

It is computed from the borders of silhouettes or, more generically, shapes representing

the movement on a scene. It is fast to compute, since it is built by the position of

discriminative sampled points, and has low dimensionality, which means that classification

machines should work fast with it.

A great disadvantage of using silhouettes for action recognition is their calculation.

Very often, foreground detection methods return broken and noisy shapes. This is where

the second contribution lies: a strategy for making better use of poorly extracted silhou-

ettes to build the descriptor, called Cumulative Motion Shapes (CMS). Due to the faulty

nature of the foreground, the concept of silhouette is extended to shapes, in a generic

manner. Broken shape components are reattached to form a meaningful shape, more

suitable for description.

The proposed action recognition method is evaluated on three widely used public data

sets – Weizmann, KTH and MuHAVi –, which have different actions, with different com-

plexities. Experimental results demonstrates state-of-the-art accuracy in small processing

time. The descriptor is applied directly, without aggregating other techniques to the clas-

sification, which could improve the quality of the solution. The program runs with frame

rates higher than necessary to be real time.
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1.3 Organization

The text is organized as follows. Basic concepts for the full understanding of this dis-

sertation are explained in Chapter 2. An overview of recent related work is included in

Chapter 3, explaining the main adopted strategies and methods that implement them,

and comparing their results. The proposed methodology, including the segmentation, fil-

tering and detection of reference point stages, the construction of the descriptor, and the

classification process are explained in Chapter 4. The experimental results obtained by

applying the method to three public data sets are presented and discussed in Chapter 5.

Chapter 6 concludes the dissertation and includes some directions for future work.



Chapter 2

Basic Concepts

This section introduces some relevant basic concepts for a better comprehension of the

subjects discussed in this dissertation. Discussions are made on the parts of video streams,

in Section 2.1; definition of action and the difference from activity, in Section 2.2; seg-

mentation of movement, in Section 2.3; tracking of movement, in Section 2.4; metrics for

method validation, in Section 2.5; as well as real time applicability on a video processing

program, in Section 2.6.

2.1 Video

A digital video is an ordered set of images with same dimensions. Each of these images

is called a frame. The frequency at which an imaging device captures or exhibits frames

is known as frame rate, or frames per second (FPS). These frames can be grouped into

shots, which are contiguous subsets of frames that represent continuous actions in time.

A video scene consists of a sequence of semantically correlated shots (Lin & Zhang

2000). Figure 2.1 illustrates such structure. The location in which the actions happen,

with all the objects and actors, is referred to as scenery. Frequently, a video, as a whole

or only a relevant part, is called a frame sequence or a video sequence.

2.2 Actions

The terms “actions” and “activities” are not always clearly defined in the literature. “Ac-

tion” means a simple pattern of human movement – such as walking or taking steps,

waving hands and collapsing – and can afterwards be used to infer an “activity”, which

corresponds to a complex task that involves the identification of several actions, interac-

tion between individuals and interactions with objects on the scene (Turaga et al. 2008).

4
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are complex and, often, need specialized equipment.

2.4 Movement Tracking

After segmenting a moving object in a scene, a correspondence with moving objects in

previous frames is performed to identify them as a single entity and apply classification

methods correspondingly. This is important in sequences where there are multiple moving

objects.

Hu et al. (2004) characterize the tracking methods in four categories: based on re-

gions, active contour, characteristics, and models. These methods are briefly described as

follows.

Methods in the first category use regional characteristics, which many times subdivide

objects. In McKenna et al. (2000), for example, people and, later, groups of people

are tracked by grouping regions through geometric characteristics. These methods are

ineffective when there is occlusion and return little information about the movement.

Active contour model tracks objects using shape representations, which are updated

in each video frame. These algorithms describe objects in a simpler and effective way,

reducing, therefore, computational cost. However, these techniques return only object

contour information, such that it is difficult to obtain their pose and orientation. Another

problem is the high sensibility to tracking initialization.

Characteristic-based methods recognize and track objects by extracting elements that

describe them and compare between frames. These algorithms can be used in real time

applications and can track multiple objects simultaneously. However, they present serious

disadvantages: low object recognition rate due to perspective distortion, low tolerance to

obstructions, and difficulty in obtaining pose and orientation information.

The methods in the forth category use models obtained by previous information about

the shape and flexibility of the tracked objects, where modeling tools or computer vision

techniques are used to obtain this knowledge. These algorithms have some advantages:

they usually are robust due to employ prior information about the objects; they are

tolerant to occlusions; other types of information can be combined to shape, such as

structure and articulation; it is easy to estimate the three-dimensional position of the

objects through camera calibration; they are robust to high variation in the orientation

of the objects.

A widely used tracking technique, independently of the aforementioned classification,

is the Kalman filter (Kalman 1960). It is a recursive method that operates in linear data

filtering. The Kalman filter estimates the next stage on a discrete temporization process

from the current stage and previously collected information. The technique stores in

memory only the current stage and some previous information, so that it is not necessary
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to store previous frames for a video application. These characteristics make such technique

very useful for movement tracking.

2.5 Validation

Most of the methods available in the literature validate the results through leave-one-

out cross validation (LOO-CV) scheme. This cross validation separates one instance for

testing and use all the others for training, doing it for every instance of the data set.

The correct classification rate (CCR) is computed by Equation 2.1. Another less often

used option is the leave-part-out cross validation (LPO-CV) scheme, in which the data

set is divided into n parts. For each part, Pi, it is separated from the rest to be used

for testing, and all the others are used for training. A CCR is computed for each part,

similarly to the previous method, and the overall CCR is calculated through their mean,

as shown in Equations 2.2 and 2.3.

CCR =
correct classified instances

total number of instances
(2.1)

CCRPi
=

correct classified instances in the part i

total number of instances in the part i
(2.2)

CCR =
1

n

n∑

i=1

CCRPi
(2.3)

A particular case of LPO-CV is when the parts are chosen as the group of sequences

of each actor. This is called leave-one-actor-out cross validation (LOAO-CV) scheme.

Commonly, action recognition methods need only a small shot of the video or even a

single frame, therefore allowing to extract several instances from each video sequence. In

this case, instances of the same video may not be tested against each other. Therefore,

whenever an instance is tested, all the instances from the same video must be excluded

from the training set. This is frequently referred to as leave-one-sequence-out cross vali-

dation (LOSO-CV) scheme. The results of this validation are called segment-level correct

classification rate (SEG-CCR). In this context, the results of the original type of cross

validation are called sequence-level correct classification rate (SEQ-CCR).

For comparability with the literature, all experiments related in this work use the

leave-one-out cross validation scheme.
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2.6 Real Time Applicability

Specifically, in the context of videos, an application can be considered to work in real time

if the output frame rate is at least as high as the input frame rate. Video frame rates

may vary: NTSC television’s is 23.976 FPS, PAL television’s is 25 FPS, and movies’ is

24 FPS.

In practice, the minimum frame rate depends on the application. Frame rendering to

exhibit a film or a show on a screen requires the aforementioned frequencies. There is no

standard for user interfacing, however, users may be very sensitive to delay, so they may

be unhappy with low rates. Analysis of a surveillance scene, on the other hand, may not

need to be so fast – people will not move fast enough to pass unseen at a frame rate as

low as, for example, 10 FPS, which corresponds to 0.1 seconds per frame.

Processing time depends on the computer employed to run the program and the size

of the input data. Hence, in this dissertation, the size of the data and the specifications

of the computer where the method runs are described in the discussion of the results –

Chapter 5. The bound used as reference is 25 FPS (40 milliseconds per frame), as it

matches the frame rate of all the three data sets used for the tests and is an upper bound

for most video standards.



Chapter 3

Related Work

There are several strategies for addressing the action recognition problem. Each approach

has advantages and drawbacks, or it is better suitable for a specific type of application.

In this chapter, the described approaches are classified into three categories: appearance-

based, in Section 3.1, shape-based, in Section 3.2, and other approaches, in Section 3.3.

Additionally, an accuracy analysis of the described methods is included in Section 3.4.

3.1 Appearance-Based Methods

Methods described in this section use appearance information for action recognition. Of-

ten, temporal or spatial information are added to the descriptor in order to enhance

effectiveness. They work by extracting local information around a set of spatio-temporal

interest points (STIP), commonly representing corners in the 3D motion volume. Descrip-

tors are usually constructed by extracting cuboids, which are the small volumes around

the STIPs – their neighborhood.

Methods such as Laptev’s 3D extension of Harris operator (Laptev 2005), Dollár’s

method (Dollár et al. 2005), Scale-Invariant Feature Transform (SIFT) (Lowe 1999), and

Speeded-Up Robust Features (SURF) (Herbert et al. 2008) perform both stages. The

next step of these approaches is clustering the descriptors in appearance classes, or vo-

cabularies, and building histograms, usually called Bag-of-Words (BoW) or Bag-of-Visual-

Words (BoVW). The most commonly used clustering algorithm is K-means (Hartigan &

Wong 1979).

In the work by Ryoo & Aggarwal (2009), STIPs are extracted by using the method

of Dollár et al. (2005) and clustered into a dictionary. To include geometric informa-

tion, pairwise spatio-temporal relationships are formed, such as near, far, before, after,

during. After that, two three-dimensional histograms are assembled: one with temporal

relationships, and the other with spatial relationships, where two dimensions correspond

9
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to characteristic groups and one to their relationships. A correspondence kernel measures

the similarities between two histograms making an intersection to count how many points

the histograms have in common. The system decides whether the testing video contains

an activity or not by measuring the similarities between the video and other training

videos containing the activities. Next, for each video of the group, the intersection of the

temporal relationship histograms is made, and each pair of characteristics of the result

votes for the instants of beginning and end of the action.

Three experiments were conducted on two datasets, KTH and a their own data set,

that includes interactions. The first experiment is applied to the first dataset – the method

achieved 93.8% accuracy with leave-one-out cross validation. The second experiment

tests the ability of the system to detect if an action occurs in a small, segmented, shot

of video. Fifty segments were randomly chosen from the second data set, containing

simple actions, and twenty segments in which no action happens. A receiver operating

characteristic (ROC) curve shows the false positive rates. The third experiment tested

the action recognition on the second data set, which contains 6 actions and includes

interaction between actors. The obtained accuracy was 70.8%, but the result was not

compared with other works of the literature.

In the work by Sun et al. (2009), local and holistic descriptors are joined before

clustering and classification. Two local descriptors were used: SIFT 2D in the frame

differences and SIFT 3D, an adaptation of the regular SIFT to a 3D volume. The holistic

descriptors were also two: Zernike moments (Khotanzad & Hong 1990) in every frame

and Zernike moments in the motion energy images (MEI). The MEI is the image that

aggregates difference information in a sequence of frames. Descriptors are concatenated

and clustered to create a dictionary.

The experiments were conducted on two public data sets, Weizmann and KTH with a

leave-one-out cross validation setup. K-means is used to build a Bag-of-Word represen-

tation. Experiments were performed to determine the optimum number of words to each

descriptor. SVM (Cortes & Vapnik 1995) classifier was tested with two kernels: polyno-

mial and RBF (radial basis function). Combinations two-by-two of the descriptors were

made to evaluate their efficiency, however, in the end, all descriptors were fused. The

final accuracy rates are 94% on KTH and 97.8% on Weizmann. No processing time was

reported, but each of the descriptors are time-consuming, leading us to believe that the

fusion of the four descriptors was very slow.

Ta et al. (2010) developed a method that forms pairwise groupings in spatio-temporal

information (PairWise Features - PWF). The interest points and spatio-temporal features

are extracted using Dollár’s method (Dollár et al. 2005). Two interest points are united in

a PWF if they are close spatially and temporally. Local appearance information of both

STIPs are concatenated to form the PWF appearance descriptor, and a geometric vector
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from the first point to the second one forms the geometrical descriptor. The clustering and

BoW processes is applied to each descriptor, forming two histograms per action sequence.

The two histograms are combined by concatenation into one feature vector. SVM is used

to classify the actions.

For testing purposes, the authors established arbitrary spatial and temporal threshold

distances to form the PWFs. Arbitrary dictionary sizes were also established for each

data set. Because the method is very time-consuming, the number of features is limited

to 1500; this is done by measuring the product of the response functions of both STIPs

that formed each PWF. The accuracy rate obtained for the KTH data set was 93.0%,

and, for Weizmann, 94.5%. Even limiting the quantity of PWFs, the method was very

time consuming.

Wu et al. (2010) developed a hierarchical action recognition framework. The first level

recognizes poses, or coarse level actions, such as standing, sitting and lying. This is done

mainly by using the aspect of the bounding box by three-dimensional estimation. Actions

are refined by combining the BoW strategy to the location in which the action happens;

for example, the action reading may happen in the living room or in the study room,

and is done while sitting. Their definition for the possible combinations are perhaps too

simple (it does not consider that a person can read while lying). Finally, three strategies

are proposed to allow multiview: 1) best view - chooses the view with more STIPs in

the time interval; 2) combined view - concatenates the histograms of all views in a single

descriptor; and 3) mixed view - a single BoW is acquired by using information of all views

together.

Four experiments are conducted on a multiview data set presented in the paper. Three

correspond to each of the multiview strategies. Best view achieved the best accuracy, while

mixed view, the worst. The last experiment trains actions in one camera and tests with

another in order to evaluate the transferability of the strategies. Since combined view,

by definition, cannot be applied to a single camera, it was excluded from this test. The

accuracy of the mixed view strategy was much greater than best view, showing that it is

more generic, allowing the training from one environment to be used in the other.

Bregonzio et al. (2012) used the global distribution information of interest points to

acquire geometrical information of the action, where actions are represented as clouds of

interest points (CoP) accumulated at different temporal scales. A new STIP detection

method is also proposed. Interest points are accumulated over time at different time

scales to form multiple clouds. Features are computed from the clouds – which generate

geometrical description – and are fused to the, more conventional, appearance descriptor

based on BoW by using multiple kernel learning (MKL).

Tests were made using LOAO-CV on Weizmann and KTH datasets. First, the pro-

posed CoP representation is tested against BoW: the proposed method itself enhanced the
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accuracy in 6-7%. Second, the combination of the descriptors is tested by using concate-

nation and MKL. Concatenation achieved worse results than just the CoP descriptors,

while MKL had results 1-2% better than the single descriptor. Third, the interest point

detection was tested against (Laptev 2005) and (Dollár et al. 2005). The proposed interest

point detection outperformed both with the proposed representation. Other tests were

performed to tune the parameters, but the authors did not compare the method with the

state-of-the-art. The average time for feature extraction on Weizmann was 12.8s (more

than five times the average length of the videos) and 64.92s for KTH (more than three

times the average length of the videos).

Zhang & Tao (2012) used a different learning approach. Described in (Wiskott &

Sejnowski 2002), slow feature analysis (SFA) produces slow varying outputs from fast

varying inputs. According to the authors, a similar process happens in the human brain.

Cuboids are extracted from randomly chosen points over movement silhouette. To improve

temporal information on cuboids, they are reformatted, so that they are transformed in

a sequence of three frames, as in a sliding window. Since such transformation increases

dimensionality, PCA (Pearson 1901) was then applied.

In addition to the original unsupervised SFA, three other models were proposed: su-

pervised SFA, which learns the features for each class separately, creating misleading

information because of similar cuboids in different classes; discriminative SFA, in which

discriminative dictionaries and functions are created to make intraclass information vary

slowly and interclass information vary quickly; and spatial discriminative SFA, that con-

siders the spatial location of the cuboids to infer about the body parts. Accumulated

squared derivatives are computed from the outputs to measure the fitting degree from

cuboids to the slow feature functions. Linear multi-class SVM is used for the classifica-

tion.

A number of conditions were experimented. The first experiment served to determine

how SFA would be applied and which kind of data would be used as input – some of the

conditions tested were whether local or holistic features would be used, how to choose

STIPs and how to reduce dimensionality. It determined some specificities described above.

The second served to tune the slow feature functions and to determine the effectiveness of

each aforementioned variations of SFA were more meaningful. Discriminative and spatial

discriminative SFA seem to carry finer information. The other four experiments validated

the method on four public data sets. The method achieved state-of-the-art accuracy

on KTH, low CCR on Weizmann, overcame all the works presented by the authors on

UT-Interaction. Authors compared results only between their method and BoW.

Onofri & Soda (2012) claims that using a whole video to recognize an action is not as

effective as using small non overlapping portions of the video. The work extracts features

of the portions by using the MoSIFT method (Chen & Hauptmann 2009) – which selects
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only the SIFT points of portions with high optical flow values, according to a threshold

– and constructs a BoVW; afterwards, information bottleneck (IB) (Tishby et al. 1999)

is applied to reduce dimensionality and further enhance CCR. Classification is done and

multiple subsequence combination (MSC) is applied by building a matrix containing the

probabilities of each class for each subsequence. Then, four criteria are applied on the

probabilities of each class; average, maximum, minimum and product; and the class with

the best output is selected.

The method was tested against using the whole sequence for the classification; MSC

obtained improvements of 1.2%, 1.4% and 9.1% on KTH, UCF Sport and YouTube data

sets, respectively. The quantity and length of the subsequences were also tuned, conclud-

ing that, for subsequences of size n and video of size N , the best number of subsequences

to extract from each video is ⌊N/n⌋. The optimum value of n varies according to the set

tested; smaller values of n can reduce CCR, however, can speed up the method. Thus,

parameters can be tuned in terms of speed or accuracy.

3.2 Shape-Based Methods

The nature of the shapes can be very distinctive, for instance, human silhouettes, move-

ment shapes, relative positions of body parts or pose estimation (through models or even

appearance descriptors, as long as they are used for shape description). Such approaches

frequently use movement segmentation to obtain the silhouette or to narrow down other

searches. Common ways to describe a shape are through functions such as 2D Radon

transform (Deans 2007) and shape signatures extracted from a centroid, frequently gener-

ated by applying distance functions to each border point in a radial scheme or by dividing

the polar space in bins. Thus, these methods are often fragile to the conditions that hinder

the motion segmentation, such as luminosity variations, and are not robust to occlusions.

On the other hand, they usually result in simpler, yet meaningful, descriptors, which may

allow faster execution.

The work described in Singh et al. (2010) uses silhouettes for action recognition. A

minimum size to fit all silhouettes over time is computed, a new space-time volume is built

with the computed size and the time span of the original sequence, and the figures are

resized so that the bounding boxes correspond to the whole image, on the new volume.

The frames are divided into a grid, generating subvolumes. A mean-power spectrum is

calculated from the frequency spectrum of each pixel in the bins; this way, each subvolume

has its own descriptor vector. All vectors are concatenated to build a final descriptor.

Their work introduced the MuHAVi (Multiview Human Action Videos) data set and

created the baseline for future tests on it. Three cross reference methods were executed:

leave-one-out, leave-one-actor-out and leave-one-camera-out.
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Frequently, human beings are able to identify an action without seeing the sequence of

movement; just the pose often reveals the action a person is doing. The approach in Raja

et al. (2011) tries to build a method with such ability, manually annotating a small set

of frames, and leaving the program to annotate the rest. In each frame, the position

of each body part – head, hands and feet – is located with respect to a bounding box.

A description of the pose is made by maximizing an energy function, which takes into

consideration pose elements and the action performed. A graph is constructed by linking

each labeled image to its nearest unlabeled neighbors based on a distance measure. Then,

unlabeled images are linked to their nearest neighbors, labeled or unlabeled. Images are

then labeled by optimizing the global energy of the graph.

Experiments were conducted on KTH data set. Since the method classifies and labels

single frames, the accuracy rates are computed by the number of correctly classified frames

divided by the total number of frames, instead of using the number of videos. Four exper-

iments were conducted, gradually inserting parts of the method into the testing. The first

three experiments produced low recognition rates, and the last one 86.6% accuracy, which

is still low, compared to the state-of-the-art. The method is only partially supervised and

some key poses are annotated, which means that training of a new set is very laboring.

Hsieh et al. (2011) presented a silhouette-based method, which represents the shape by

histograms. The silhouette is extracted by adaptive background subtraction and mapped

into three polar coordinate systems. The first circle includes the whole silhouette, the

second, only the top part, which includes arms and head, and the third, only the bottom

part, which includes legs. The polar systems are partitioned into several bins, both in the

radii and angle coordinates. Silhouette histograms are computed by counting the number

of pixels in each bin. The histograms are then concatenated to build the final descriptor

of the pose.

For the evaluation of the method, the Weizmann data set videos are divided into

several shots of 10 frames each, and with 5 overlapping frames in adjacent shots. The 93

videos of the data set are divided into a total of 961 shots. Leave-one-out cross validation

is used over the segmented shots and nearest neighbor classifier (Cover & Hart 1967) is

used. To improve both computational efficiency and accuracy, PCA is applied to the

samples before testing. The final achieved recognition rate is 98.3%.

Cheema et al. (2011) developed a method that uses weighted key poses to recognize

actions in videos. Pose representation is obtained by a normalized distance function

over the sampled contour points. Key poses are computed for each action by K-means

clustering, and weights are assigned to each one according to its ambiguity, by counting

its occurrence in other classes. In case of a sequence with multiple frames, a weighted

voting scheme is used. In case of a single image, a simple key pose matching is done.

Experimental results on MuHAVi-MAS and Weizmann data sets showed lower accuracy
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compared to the state-of-the-art, however, the method runs in real time.

The work of Karthikeyan et al. (2011) describes silhouettes by 2D Radon transform

and its velocity. For each signature, eigen mode and multiset partial least squares mode

(to make the system multiview) are computed, resulting in four vectors of 180 dimensions

for each camera view. They are concatenated to form the final description. Probabilistic

subspace similarity learning (Moghaddam 2002) was adopted, aiming at performing intra-

class and inter-class learning. Experiments were conducted with LOAO-CV on the original

MuHAVi data set. The achieved accuracy is one of the best in the literature, however, no

processing time was reported.

Chaaraoui et al. (2013) developed a silhouette-based method that works in real time.

It is based on the principle that a few poses over time are enough to identify actions. A

representation of the pose in a given frame is given by a normalized distance signal from

all the pixels in the border of the shape to a centroid, calculated as the center of mass

of the shape. All the poses are clustered, and key poses are defined by the centers of

the clusters. To make the method temporal invariant, Dynamic Time Warping (DTW) is

used as distance metric, and the classification is done by nearest-neighbor classifier. To

enable multiview, descriptors from multiple cameras are concatenated and treated as one;

however, a simple concatenation makes the method work only for the actors are always

facing the same direction with respect to the cameras, fact that is not explained by the

authors.

Three data sets were used in the experiments. The first, Weizmann, has manually

annotated silhouettes available, which were used on the tests. The method ran at 70

FPS, and the accuracy rate on this set was lower than many other works, as expected for

a real time application. On the second, MuHAVi, the easier, manually annotated, subsets

were used. The method ran at 45 FPS and produced state-of-the-art accuracy. On the

last data set, IXMAS, background subtraction was used to obtain the silhouettes. This

is a multiview set, in which the actors were free to choose the direction they face in the

action. Although the actors did not explain the aforementioned direction problem, the

method performed well, achieving good accuracy at 26 FPS.

The work described by Guo et al. (2013) uses shape information to address the prob-

lem of action recognition. An empirical estimate of the covariance matrix is computed

over the features extracted from a video sample. The log-covariance matrix is calculated

by reconstructing the matrix using the logarithms of its eigenvalues. Two classification

approaches are considered; the first one is a nearest-neighbor classification using two Rie-

mannian matrix distance metrics; the other one uses sparse linear approximation (SLA)

applied to log-covariance matrices using the locations of large non-zero coefficients in the

sparse linear approximation to determine the label of the testing sample.

Two strategies are adopted to obtain the feature vectors to be applied in the aforemen-
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tioned covariance framework; one is based on silhouettes, whereas the other on optical

flow. The first is called silhouette tunnel shapes. They are constructed by the three-

dimensional concatenation of the silhouettes in each frame. Then, an overcomplete set

of descriptors is built by computing a set of distances from each point of the tunnel to

its boundaries in various directions, resulting in 13-dimensional features. The second is

essentially similar: optical flow is computed on the video and, for each pixel belonging

to a moving object, a set of optical flow based descriptors is computed, including time

derivatives and physical measurements, resulting in 12-dimensional features.

The method was evaluated on four data sets: Weizmann, KTH, UT-Tower and

YouTube. The tests were conducted using NN and SLA for classification, combined with

the feature extraction options – silhouette, available for Weizmann and UT-Tower, and

optical flow, in all data sets – with a total of two or four tests on each data set. Each

sequence is divided into shots of 8 and 20 frames, with 4 overlapping frames in adjacent

shots. On these shots, LOO-CV is used to obtain the SEG-CCR, a voting scheme was

built to obtain a classification of the entire video sequence; LPO-CV is also used to be

able to compare with other works. The tests showed superior performance of the SLA

classifier in most of the tests. The silhouette approach was superior to optical flow by

7-10% on Weizmann data set and 10% on UT-Tower.

Chaaraoui & Flórez-Revuelta (2013) developed a feature subset selection method,

which separates the relevant parts of the feature vector and excludes subsets that add

redundancy or noise to the feature. The descriptor is built by dividing the polar space

into radial bins and summarizing the points of each one. The feature vector is formed

by the summarization value of each bin. Classification is done by clustering the poses

with K-means, obtaining the key poses. Each video is represented by the sequences of

key poses and the comparison between videos is done with DTW. A genetic algorithm is

employed to determine which of the bins will be used in the classification; the individuals

are binary vectors indicating if each bin will be used and the fitness value is the success

rate of the classification using the selected bins.

The method was tested on MuHAVi dataset against the same classification method,

but without bin summarization and subset feature selection. Bin summarization pro-

vided a considerable increase in the accuracy and the full method increased it even more,

achieving 100% on MuHAVi-8. Besides the improvements in accuracy, the dimensionality

of the data was reduced up to 47%, indicating that noisy and redundant data have been

removed. An advantage of the method is that the dimensionality is reduced before feature

extraction, differently from PCA that further needs a matrix multiplication. The method

is very fast, running at 96 FPS.
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3.3 Other Approaches

The work by Wang et al. (2009) implements a real time intelligent surveillance system,

robust to horizontal and vertical camera movement (panning and tilting). The movement

segmentation is carried out with optical flow. The resulting objects are split in a grid, and

a histogram of optical flow is calculated in each block by dividing the directions into eight

bins. A set of statistical values is calculated over each bin and the descriptor is built by

the concatenation of all values. In addition to these features, shape and trajectory are also

employed. All the variables are used separately as weak descriptors. The system learns

the action from every frame, so that each frame of the test videos also has a response. The

output for the entire video is generated by a voting scheme. The authors also contributed

with the CASIA data set of surveillance scenes.

The introduced CASIA data set is split in half to obtain the training and the testing

sets; grid size varies from two to five. The best recognition rate was achieved with the

highest grid size, 92.5%. For the Weizmann data set, a Gaussian noise was inserted to

test against detection noise. Leave-one-out cross validation was used on this set, for the

sake of comparison with other works, and 93.3% accuracy rate was achieved. Finally, the

system was tested in viewpoint changes and showed robustness in variations of at most

30 degrees. In all cases, the method worked in real time.

Junejo & Aghbari (2012) developed a method that used trajectory of reference points of

actors for action recognition. A method called symbolic aggregate approximation (SAX)

is introduced to transform trajectory time-series into symbolic representation. This way,

distances between trajectories are approximated to the distance between their represen-

tations. Velocity, acceleration and curvature information is added to the descriptor to

enrich the classification. Nearest-neighbor classifier is applied on the samples.

Experiments were conducted using 13 body joint reference points. The additional de-

scriptors, velocity, acceleration and curvature, are also validated. The results on MoCAP

data set showed that the best average CCR is obtained by appending only curvature

information to the descriptor, with results comparable to the state-of-the-art. For Weiz-

mann data set, the best setup was obtained only through trajectory information, however,

achieving results inferior to the state-of-the-art. Although the accuracy of CCR was not

satisfactory, the computational time of the method is low. However, the joint tracking is

not completely automated; complete automation of this task may be slow and susceptible

to errors.

Ji et al. (2013) developed a method based on deep learning. Convolutional neural

networks – which are commonly applied to still images, building high-level descriptors

from low-level ones by using several layers – are extended to the three-dimensional space,

so that temporal information is not lost, considering movement information in consecutive
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frames. Prior to the convolutions, five channels of information are obtained by applying

filters that, for each frame, it obtains the gray values of the features, x and y directions of

gradient and optical flow. Convolutional neural networks and subsampling filters are then

applied alternately on a sequence of seven frames; these operations transform the video

volume into a feature vector. Since actions may take more than seven frames to occur,

and the usage of more frames may be problematic, global information about the action is

passed to the last neural network layer. The features used for the global descriptors are

Bag-of-Words constructed from SIFT descriptors, computed over raw gray images and

motion edge history images (MEHI) (Yang et al. 2009).

To test the method in the TRECVID real surveillance data set, where there are several

people moving in the scenery, a method for detecting people was applied to segment the

cubes containing each person. Experiments were conducted by comparing the presented

3D CNN with the original, 2D, CNN and other state-of-the-art works; their work achieved

a 7-10% increase in performance over 2D CNN and around 3% over a state-of-the-art

approach. To test the method in the KTH data set, the people detection is replaced by

background subtraction, since there is only one actor in the scene and it is simpler to

apply it. Sixteen random actors were selected for the training, where the other nine were

used on the tests. The comparisons performed on the previous data set are not carried

out on the second one, but the overall results of the proposed method are lower than the

state-of-the-art.

The works by Moghaddam & Piccardi (2010) and Moghaddam & Piccardi (2013)

contribute to enhance the classifier, independently of the features extracted. The initial-

ization of training parameters of hidden Markov models (Baum & Petrie 1966) is crucial

to find optimal parameters in short processing time. The method itself for obtaining the

descriptors is not the main issue, since the focus is on the classifier, which can be trained

with data from any kind of descriptor. Moghaddam & Piccardi (2010) measure accuracy

by comparing the initialization obtained through the method against random centers and

their average. Moghaddam & Piccardi (2013) conducted tests with three types of descrip-

tion: silhouette projection histogram, silhouette sectorial extreme points and STIP-BoW.

The authors did not test shape-based methods on the same conditions as appearance-

based methods, however, showed that sectorial extreme points achieved better accuracy

than projection histogram.

3.4 Summary of State-of-the-Art Results

This section summarizes the results obtained with methods available in the literature.

Details related to the data sets will be presented in Chapter 5. Experiments were not

reproduced, since most source codes are not available.
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Tables 3.1 and 3.2 show the accuracy rates obtained with the methods described in the

previous section. The methods are organized chronologically in both tables. Table 3.1

shows results for KTH and Weizmann data sets. The accuracy rates are not always

decreasing along the years, since the methods can address other issues than accuracy,

such as reduction of processing time, invariance with respect to certain parameters, and

reduction of dependencies.

Method Data Set

KTH Weizmann

Ryoo & Aggarwal (2009) 93.8 -
Sun et al. (2009) 94.0 97.8
Wang et al. (2009) - 93.3
Ta et al. (2010) 93.0 94.5
Raja et al. (2011) 86.6 -
Hsieh et al. (2011) - 98.3
Cheema et al. (2011) - 91.6
Bregonzio et al. (2012) 94.3 96.7
Junejo & Aghbari (2012) - 88.6
Zhang & Tao (2012) 93.5 93.9
Onofri & Soda (2012) 97.0 -
Chaaraoui et al. (2013) - 90.3
Ji et al. (2013) 90.2 -
Guo et al. (2013) 98.5 100
Moghaddam & Piccardi (2013) - 96.8
Alcântara et al. (2013) - 94.6
Alcântara et al. (2014) 90.1 96.8

Table 3.1: Comparison of correct prediction rates (in percentage) for KTH and Weizmann
data sets.

Table 3.2 shows results for the MuHAVi data sets. Additionally to the original set –

with long and complex actions – there are two subsets consisting of manually annotated

silhouettes for some primitive (simple) actions. The subsets are obviously much easier to

classify. The works either use the original set or the segmented subsets. This indicate

that the silhouette based methods are not effective on foreground extracted automatically,

while appearance based methods cannot extract information using shapes solely.

It is noticeable that the methods that work in real time have achieved smaller correct

recognition rates than most of the others. The real-time methods, amongst the ones

presented in this chapter are Wang et al. (2009), Cheema et al. (2011), Junejo & Aghbari

(2012), Alcântara et al. (2013) and Chaaraoui et al. (2013).



3.4. Summary of State-of-the-Art Results 20

Method Data Set

MuHAVi MuHAVi8 MuHAVi14

Wu et al. (2010) 69.2† - -
Singh et al. (2010) - 82.4 97.8
Moghaddam & Piccardi (2010) 80.4 - -
Karthikeyan et al. (2011) 88.2 - -
Cheema et al. (2011) - 95.6 86.0
Moghaddam & Piccardi (2013) 92.0 - -
Chaaraoui et al. (2013) - 97.1 91.2
Chaaraoui & Flórez-Revuelta (2013) - 100 98.5
Alcântara et al. (2014) 89.1 100 94.1

†Experiments conducted by (Karthikeyan et al. 2011).

Table 3.2: Comparison of correct prediction rates (in percentage) for MuHAVi and its
manually annotated sub-datasets, MuHAVi14 and MuHAVi8.
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acceptable time. We refer to them as motion shapes since errors are acceptable. Figure 4.2

illustrates this: if a person moves only their arms, the only movement segmented would

be the shape of an arm.

(a) Original image (b) Extracted silhouette

Figure 4.2: Example of foreground segmentation in a video in which a person moves only
her arms.

Background subtraction described in the work by Kaewtrakulpong & Bowden (2001)

is used for the foreground segmentation. This is an adaptive method that learns the back-

ground using multiple Gaussian mixture models in each pixel, estimated with expectation-

maximization algorithms. Some heuristics are used to detect and exclude shadows. This

is not a key point in this work, since its main contribution is the strategy of combining

silhouettes and the construction of the descriptor.

The extracted foreground is subject to noise, missegmentation and disconnections.

Therefore, in step (c), morphological operations (Pedrini & Schwartz 2007) are applied

to remove it. Firstly, morphological closing is applied, with a 3 × 3 structuring element,

to join fragmented shapes. Then, an area opening is used to remove small, noisy, objects,

usually due to small changes in the background and lighting. In experimental tests, any

component with a number of pixels smaller than 1/360 of the total image area could

be interpreted as noise or useless information, such that these regions are considered

background components. Finally, a morphological reconstruction is used to reattach dis-

connected parts around the remaining components, recovering some fragments subtracted

in the previous step. Some frames with outlier values are discarded also in step (c); a

frame is considered outlier when the bounding box shows little movement, no movement

at all, or when part of the shape is outside the frame.

After extraction of foreground and application of morphological operations, the cumu-

lative motion shapes (CMS) are computed. This is the second contribution, mentioned in

Section 1.2. A sliding window is passed on the temporal dimension of the video volume.

In each position, the union of all the motion shapes is made, resulting on the CMS that

represents the window. The CMS for the k-th frame of a video sequence is given by





4.2. Shape Postprocessing 24

4.2 Shape Postprocessing

This module, corresponding to Figure 4.1, step (b), aims at excluding noisy shapes. Noise

can be due to a wide range of phenomena and it is very difficult to deal with it. Some noise

types can be filtered in the first step of the process (before or during background sub-

traction) and some defects caused by the remaining noise are treated with morphological

operations, shown in Section 4.1. However, this often results in meaningless information;

therefore, among the resulting frames, the faulty images are discarded. A frame is consid-

ered faulty when the bounding box shows little movement, no movement at all, or when

part of the shape is outside the frame – this may result in partial information. Since the

system does not know how much of the shape is excluded, any indication that the shape

is partially outside the frame is enough to discard it, as faulty.

The step starts by computing the bounding box of the motion shape contained in the

image. It is defined as the smallest rectangle, with its sides parallel to the axis, that

contains the entire shape. Heuristics are used to decide which frames carry meaningful

information and which frames are noisy based on the size of the bounding box. The

frames discarded are those that:

• there are no bounding boxes: no information available; it happens if there is no one

in the scene or if the actors are not moving.

• the bounding boxes are too small: a threshold t is defined; the bounding boxes with

width or height smaller than t are discarded.

• the bounding boxes touches the border of the frame: this usually indicates that only

a part of the person is visible; partial information would undermine the training.

4.3 Detection of Interest Points

To acquire the interest points (step (c) in Figure 4.1), extreme points are selected on the

CMS. In order to find them, key points are equally distributed along the bounding box

sides, as represented in Figure 4.4(a). Then, for each key point, the nearest point of the

CMS is selected as an interest point, as shown in Figure 4.4(b). The number of key points

can be parameterized, however, it is the same over all video streams used in the training

and testing processes.

The four corners of the bounding box are denoted as ca, cb, cc and cd. The k-th

subdivision (pk) between two adjacent corners, cx and cy, is represented in Equation 4.2,

where D is the number of bounding box subdivisions on the edge between the two corners.
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descriptor vector is built by concatenating the x and y coordinates; clockwise, starting

from top-left. The process is illustrated in Figure 4.5.

-1 1

1

-1

Px

Py

Figure 4.5: Construction of the descriptor from the normalized coordinates of the interest
points.

Every frame of the video results in one CMS, except the first frames, before the window

is filled, and in the case of discards. Several CMS can result from one action sequence,

hence this step ends with multiple descriptors for each input video. Therefore, multiple

vectors are passed forward to the classification machine, described in Section 4.5. There

is no precedence order between distinct CMS from the same video stream.

Extracting multiple samples from a same sequence helps learning actions starting from

any part of its period – for example, a walking action may start with two feet together or

after a step has already been taken.

4.5 Classification

Several descriptors are extracted from each video sequence. When the classification ma-

chine is trained, each training video sequence contributes with multiple independent in-

stances. This is represented in Figure 4.1, step (e), as multi-training.

Similarly, when a prediction is made, multiple descriptors are computed from the test

video sequence. Each one is used to a distinct prediction, and each one contributes as a

vote to the final output. The final verdict of the system is the majority in the votes. The

creation of the descriptor is the same both for training and testing.



4.5. Classification 27

Initially, all the frames can be used by the classifier, but this could cause redundancies.

Instead, N equally spaced samples are selected, where N is parameterized. Experiments

related to this stage are shown in Chapter 5.



Chapter 5

Experimental Results

In this chapter, the proposed methodology is tested on three human action public data

sets. The data sets used are Weizmann (described in Section 5.1), KTH (described in

Section 5.2) and MuHAVi (described in Section 5.3).

The parameters of the method are chosen from a grid search scheme and its accuracy

is shown through accuracy curves. In each curve, one value is varied, while the other

elements of the grid are fixed to the best value. Each data set has its own particularities,

which will be discussed in the respective sections. Some sets have manually annotated

silhouettes, so the impact and efficiency of an automatic silhouette extraction can be

observed. Thus, inferences can be made from the results to determine the effectiveness of

the proposed method.

The number of bounding box key points, as described in Section 4.3, was arbitrarily

set to 16 in each vertical side of the box, and 8, in each horizontal side. More points were

picked in the vertical dimension because the shape of a person standing up is elongated

in this direction. This sums up to 48 interest points over the cumulative motion shapes

(CMS). Each point results in two dimensions in the shape descriptor – the x and the y

dimensions of the normalized coordinates – resulting in a 96 dimensional vector.

Additionally, Principal Component Analysis (PCA) (Jolliffe 2002) is applied to the

final descriptor, aiming at speeding up the classifier and enhancing its accuracy. A total

of three parameters is required for the system: number of PCA dimensions, number of

frames united to build the CMS – referred to as CMS number – and number of samples

extracted from the videos. Moreover, there are parameters used for the classification

algorithms.

All the experiments were performed by using the proposed multi-training in K-Nearest

Neighbor (K-NN) and multi-class Support Vector Machines (SVM) using Radial Basis

Function (RBF) kernel. Using K-NN as a classification machine adds one parameter

to the list, the number K of neighbors, whereas using SVM as the classification machine

28
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adds two parameters to the list, the soft margin parameter cost and the influence distance

parameter γ. In all tests, γ was set to 1/8d, where d is the number of dimensions in the

feature vector after applying PCA.

Classification time through K-NN is more sensitive to the number of training samples,

whereas, for the (multi-class) SVM, the classification time is more sensitive to the number

of trained classes. Hence, the number of training samples extracted from each sequence

may vary depending on the classifier.

All the measured times were found by taking the average of 5 runs. The computer

used in the experiments was an i7 3.5 GHz with no parallelism mechanism implemented.

The feature extraction was coded in C++ programming language with OpenCV library.

The classification code was written separately in R package through the machine learning

libraries e1071 and kernlab. Time is measured separately for the extraction of features

and classification since they are independent processes and can be combined in different

ways. Extraction of features involves all the processes starting from reading the video to

the construction of the final descriptor – Figures 4.1(a) to (d).

5.1 Weizmann Data Set

Weizmann (Blank et al. 2005) is an action data set consisting of 10 classes: run, walk,

skip, jumping-jack (or shortly jack), jump forward on two legs (or jump), jump in place

on two legs (or pjump), gallop sideways (or side), wave-two-hands (or wave2), wave one

hand (or wave1), and bend. Each action class is performed by 9 actors once, except for

one referred to as Lena, who performs the actions skip, run and walk twice each, resulting

in 93 videos.

The frames were captured at 25 FPS (frames per second), size of 180 × 144 pixels. All

the actions occur in the same static background. Figure 5.1 shows some examples from

the set.

The Weizmann data set has a total of 5,701 frames, 228.04 seconds at 25 FPS. The

extraction of the features from the frames took a time of 4.85 seconds – average of 1,175.95

FPS, less than 1 millisecond per frame. Best accuracy rates and classification times are

shown in Table 5.1.

SVM K-NN

Accuracy rate (%) 97.85 97.85
Classification time (ms) 3 3

Table 5.1: Accuracy rates (in percentage) and classification time (in milliseconds) for
Weizmann data set.
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(a) Walk (b) Jack (c) Run

Figure 5.1: Examples extracted from the Weizmann public data set.

Since the data set videos are very short, the background subtractor does not have

enough frames to learn the background model. Hence, in this set, the foreground is

extracted by using frame difference.

5.1.1 K-NN

The parameters for the best accuracy, shown in Table 5.1, are presented in Table 5.2.

Based on these values, accuracies varying K, PCA dimensions, CMS number, and number

of samples are shown in Figures 5.2(a) to (d), respectively.

Parameter Value

K 2
PCA dimensions 20
CMS number 4
Number of samples 15

Table 5.2: Best parameters for Weizmann data set using K-NN classifier.

The confusion matrix is given in Table 5.3. It can be seen that all confusions are

related to the action side, misclassified from similar classes, jump and skip.
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bend jack jump pjump run side skip walk wave1 wave2
bend 1 0 0 0 0 0 0 0 0 0
jack 0 1 0 0 0 0 0 0 0 0

jump 0 0 0.89 0 0 0.11 0 0 0 0
pjump 0 0 0 1 0 0 0 0 0 0

run 0 0 0 0 1 0 0 0 0 0
side 0 0 0 0 0 1 0 0 0 0
skip 0 0 0 0 0 0.1 0.9 0 0 0
walk 0 0 0 0 0 0 0 1 0 0

wave1 0 0 0 0 0 0 0 0 1 0
wave2 0 0 0 0 0 0 0 0 0 1

Table 5.3: Confusion matrix of the K-NN results for the Weizmann data set.
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Figure 5.2: Accuracy curves of Weizmann K-NN tests varying parameter (a) K; (b) PCA
dimensions; (c) CMS number; (d) number of samples.
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5.1.2 SVM

The parameters for the best accuracy, shown in Table 5.1, are presented in Table 5.4.

Based on these values, accuracies varying cost, PCA dimensions, CMS number, and num-

ber of samples are shown in Figures 5.3(a) to (d), respectively. The confusion matrix is

given in Table 5.5.

This is the only case in which the best CMS number is one. This means that the

original shapes are used, and that using CMS made the accuracy lower. In all other test

setups, this number are higher than one.

Parameter Value

Cost 1000
PCA dimensions 18
CMS number 1
Number of samples 19

Table 5.4: Best parameters for Weizmann data set using SVM classifier.

bend jack jump pjump run side skip walk wave1 wave2
bend 1 0 0 0 0 0 0 0 0 0
jack 0 1 0 0 0 0 0 0 0 0

jump 0 0 1 0 0 0 0 0 0 0
pjump 0 0 0 0.89 0 0.11 0 0 0 0

run 0 0 0 0 1 0 0 0 0 0
side 0 0 0 0 0 1 0 0 0 0
skip 0 0 0 0 0.1 0 0.9 0 0 0
walk 0 0 0 0 0 0 0 1 0 0

wave1 0 0 0 0 0 0 0 0 1 0
wave2 0 0 0 0 0 0 0 0 0 1

Table 5.5: Confusion matrix of the SVM results for the Weizmann data set.

5.1.3 Manually Annotated Silhouettes

The foreground masks are also available for all the videos, corresponding to manually

annotated silhouettes (MAS). Figure 5.4 shows some examples. Experiments were made

using the masks as the shapes, skipping the first two steps of the methodology – Fig-

ures 4.1(a) and (b).

This experiment serves to evaluate the effectiveness of the skipped steps. The masks

represent the entire silhouette of the human actor, therefore, there are differences from
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Figure 5.3: Accuracy curves of Weizmann SVM tests varying parameter (a) cost; (b) PCA
dimensions; (c) CMS number; (d) number of samples.

the shapes extracted by the method described in this dissertation – if the person moves

only his/her arms, the segmentation process extracts the shape of the moving arms solely,

while in the manual segmentation, it would be the entire person.
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(a) Bend (b) Side (c) Walk

Figure 5.4: Examples extracted from the Weizmann MAS public data set.

K-NN

The results for the manually segmented silhouettes were as good as the results for the

original set. This indicates that the poor quality of the automatic foreground segmentation

do not worsen the results. The best result achieved 97.85% accuracy, just the same as the

best result for the original set.

Table 5.6 shows the used parameters – very similar to Table 5.2, for the original set.

Based on these values, accuracies varying K, PCA dimensions, CMS number, and number

of samples are shown in Figures 5.5(a) to (d), respectively.

Parameter Value

K 2
PCA dimensions 12
CMS number 4
Number of samples 17

Table 5.6: Best parameters for Weizmann MAS data set using K-NN classifier.

Table 5.7 shows the confusion matrix. Two misclassifications occurred: the first was

between pjump and jack; both involve jumping in place. The second was between waving

one arm and waving two arms, which are very similar actions.
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bend jack jump pjump run side skip walk wave1 wave2
bend 1 0 0 0 0 0 0 0 0 0
jack 0 1 0 0 0 0 0 0 0 0

jump 0 0 1 0 0 0 0 0 0 0
pjump 0 0.11 0 0.89 0 0 0 0 0 0

run 0 0 0 0 1 0 0 0 0 0
side 0 0 0 0 0 1 0 0 0 0
skip 0 0 0 0 0 0 1 0 0 0
walk 0 0 0 0 0 0 0 1 0 0

wave1 0 0 0 0 0 0 0 0 0.89 0.11
wave2 0 0 0 0 0 0 0 0 0 1

Table 5.7: Confusion matrix of the K-NN results for the manually annotated Weizmann
data set.
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Figure 5.5: Accuracy curves of Weizmann MAS K-NN tests varying parameter (a) K; (b)
PCA dimensions; (c) CMS number; (d) number of samples.
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SVM

The results for the manually segmented silhouettes were slightly worse than the results

for the original set. The best result achieved 95.70% accuracy, against 97.85% for the

original set. This indicates that the effect shown in Figure 4.2 may be beneficial to the

description, since the moving parts receive much more emphasis when all the interest

points are extracted from them.

Table 5.8 shows the parameters used – very similar to Table 5.4, for the original

set. Based on these values, accuracies varying cost, PCA dimensions, CMS number, and

number of samples are shown in Figures 5.6(a) to (d), respectively.

Parameter Value

Cost 1000
PCA dimensions 17
CMS number 6
Number of samples 16

Table 5.8: Best parameters for Weizmann MAS data set using SVM classifier.

Table 5.9 shows the confusion matrix. Most of the confusion happened between the

actions jump and skip. The actions are similar, as both show the displacement of a person

by doing jump-like movements.

bend jack jump pjump run side skip walk wave1 wave2
bend 1 0 0 0 0 0 0 0 0 0
jack 0 1 0 0 0 0 0 0 0 0

jump 0 0 0.89 0 0 0 0.11 0 0 0
pjump 0 0 0 1 0 0 0 0 0 0

run 0 0 0 0 1 0 0 0 0 0
side 0 0 0 0 0 0.89 0.11 0 0 0
skip 0 0 0.1 0 0 0 0.9 0 0 0
walk 0 0 0 0 0 0 0 1 0 0

wave1 0 0 0 0 0 0 0 0 0.89 0.11
wave2 0 0 0 0 0 0 0 0 0 1

Table 5.9: Confusion matrix of the SVM results for the manually annotated Weizmann
data set.
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Figure 5.6: Accuracy curves of Weizmann MAS SVM tests varying parameter (a) cost;
(b) PCA dimensions; (c) CMS number; (d) number of samples.
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5.2 KTH Data Set

KTH (Schuldt et al. 2004) is an action data set consisting of 6 classes: walk, jog, run,

boxing, hand wave and hand clap. Each action is performed by 25 actors in 4 different

scenes, except for the action hand clap, in which one actor performs it in only 3 scenes,

resulting in 599 videos.

The frames were captured at 25 FPS, size of 160×120 pixels. Most videos have strong

camera movement – zooming, panning and tilting. Camera movements are serious threats

for descriptors based on silhouettes or motion shapes, making this data set a challenge

for the method. Example frames of the set are shown in Figure 5.7.

(a) Boxing (b) Jog (c) Walk

Figure 5.7: Examples extracted from the KTH public data set.

The KTH data set has a total of 289,715 frames, 11375.32 seconds at 25 FPS. The

extraction of the features from the frames took a total time of 1347.38 seconds – average

of 215.02 FPS, less than 5 milliseconds per frame. The CMS are constructed using 12

frames and the number of samples extracted for each sequence is 40. Accuracy rates and

classification times are shown in Table 5.10.

SVM K-NN

Classification time (ms) 43 23
Accuracy rate (%) 90.28 88.78

Table 5.10: Accuracy rates (in percentage) and classification time (in milliseconds) for
KTH data set.

5.2.1 K-NN

The parameters for the best accuracy, shown in Table 5.10, are presented in Table 5.11.

Based on these values, accuracies varying K, PCA dimensions, CMS number, and number

of samples are shown in Figures 5.8(a) to (d), respectively. The confusion matrix is given

in Table 5.12.
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Parameter Value

K 6
PCA dimensions 14
CMS number 12
Number of samples 40

Table 5.11: Optimum parameters for Weizmann data set using K-NN classifier.

boxing clap wave jog run walk
boxing 0.94 0.01 0.02 0 0 0.03

clap 0.02 0.88 0.09 0 0 0.01
wave 0.01 0.02 0.96 0.01 0 0

jog 0 0 0.01 0.84 0.06 0.09
run 0 0.01 0 0.21 0.77 0.01

walk 0.01 0.02 0 0.02 0.1 0.94

Table 5.12: Confusion matrix of the K-NN results for the KTH data set.
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Figure 5.8: Accuracy curves of KTH K-NN tests varying parameter (a) K; (b) PCA
dimensions; (c) CMS number; (d) number of samples.
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5.2.2 SVM

The computational time for training and predicting on an SVM machine is much higher

than KNN. For a data set the size of KTH, this difference is evidenced; hence, the grid

search is made only for two parameters. The CMS number and number of CMS samples

used are the same as the best results in KTH: 12 and 40, respectively. The parameters

for the best accuracy, shown in Table 5.10, are presented in Table 5.13. Based on these

values, accuracies varying cost and PCA dimensions are shown in Figures 5.9(a) and (b),

respectively. The confusion matrix is given in Table 5.14.

Parameter Value

Cost 100,000
PCA dimensions 30

Table 5.13: Best parameters for KTH data set using SVM classifier.

boxing clap wave jog run walk
boxing 0.95 0.02 0.02 0 0 0.01

clap 0.01 0.95 0.04 0 0 0.01
wave 0.01 0.03 0.96 0 0 0

jog 0 0.01 0 0.87 0.09 0.02
run 0 0.04 0.01 0.15 0.79 0.01

walk 0.01 0 0 0.04 0.06 0.89

Table 5.14: Confusion matrix of the SVM results for the KTH data set.

5.3 MuHAVi Data Set

MuHAVi (Singh et al. 2010) (Multicamera Human Action Video Data) is a multiview data

set consisting of 17 classes: climb ladder, craw on knees, draw graffiti, drunk walk, jump

over fence, jump over gap, kick, look in car, pick up and throw object, pull heavy object,

punch, run stop, shot gun collapse, smash object, walk and fall, walk and turn back, and

wave arms. Each action is performed by 7 actors, resulting in 119 videos. Many of the

videos contain noise movement: people setting up the stage before the action happen and

people visibly moving behind the stage – all labeled with the same ground truth of the

rest of the video.

This is the most realistic data set, regarding the actions. All the classes are at least

related to criminal or suspect behavior (at least in some countries, in the case of drunk
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Figure 5.9: Accuracy curves of KTH SVM tests varying parameter (a) cost; (b) PCA
dimensions.

walk). The actions occur in a complex, closed scenario, with 8 cameras surrounding it.

Since this work does not focus on multi viewing, only one camera is used, camera 4, which

captures the action from the side. The frames were captured at 25 FPS, size of 720 × 576

pixels. Example frames of the set are shown in Figure 5.10.

The data set has a subset of manually annotated sequences (MuHAVi-MAS), in which

the frames are binary images of the silhouette locations. It is divided into 14 primitive

actions: collapse left, collapse right, guard to kick, guard to punch, kick right, punch

right, run left to right, run right to left, stand up left, stand up right, turn back left, turn

back right, walk left to right, and walk right to left.

There are 68 sequences, divided unevenly among its classes. It is usually called

MuHAVi14 in the literature. The actions were annotated from cameras 3 and 4; in

this case, again, only camera 4 is used.

This subset, however, has some classes that are essentially the same, but vary in

direction – for example, run left to right and run right to left. Another subset was built,

rearranging these classes together, forming another subset with 8 classes: collapse, guard,

kick right, punch right, run, stand up, turn back, and walk. This rearrangement is usually

called MuHAVi8 in the literature.

The MuHAVi has a total of 134,085 frames, 5,368.16 seconds at 25 FPS. The extraction

of the features from the frames demanded a total time of 2,850.29 seconds – average of

47.04 FPS, 21.26 milliseconds per frame.
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(a) Jump over fence, camera 3 (b) Look in car, camera 4

(c) Wave arms

Figure 5.10: Examples extracted from the MuHAVi public data set.

(a) Kick right (b) Run left to right (c) Stand up left

Figure 5.11: Examples extracted from the Manually annotated silhouettes subset of
MuHAVi data set.

Since MuHAVi8 and MuHAVi14 have the same video sequences, but in different

classes, their feature extraction computational time results are the same. The entire

subdata sets have 3,969 frames, 158.76 seconds at 25 FPS. The total extraction of the
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features from the frames demanded an average time of 19.54 seconds – average of 203.12

FPS, less than 5 milliseconds per frame. The classification times differ depending on the

machine, since the data sets have different numbers of classes.

Accuracy and computational times for classification are shown in Table 5.15.

Accuracy (%) Time (ms)

Data Set SVM K-NN SVM K-NN

MuHAVi 90.76 91.60 259 6
MuHAVi14 94.12 95.59 48 1
MuHAVi8 100 100 14 1

Table 5.15: Accuracy rates (in percentage) and classification time (in milliseconds) for
MuHAVi data set.

5.3.1 Complete set

The following results correspond to the MuHAVi data set for both K-NN and SVM clas-

sifiers.

K-NN

The parameters for the best accuracy, shown in Table 5.15, are presented in Table 5.16.

Based on these values, accuracies varying K, PCA dimensions, CMS number, and number

of samples are shown in Figures 5.12(a) to (d), respectively.

Parameter Value

K 1
PCA dimensions 24
CMS number 40
Number of samples 55

Table 5.16: Optimum parameters for MuHAVi data set using K-NN classifier.

The confusion matrix is given in Table 5.17, with the action codes specified in Ta-

ble 5.18.

The optimal number of shapes accumulated to build the CMS is higher than the other

data sets, since the actions in MuHAVi are more complex and need much more time

to take place. Therefore, the actions require many frames to characterize them. For

instance, the climb ladder action consists of a person walking towards a ladder, climbing

it up, down, and then walking away from it.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 .86 0 0 0 0 0 0 0 0 0 .14 0 0
6 0 0 0 0 0 .71 0 0 0 .14 0 0 0 0 0 .14 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 .14 0 .71 0 .14 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 .86 0 0 0 0 0 .14 0
11 0 0 0 0 0 0 .14 0 .29 0 .57 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
17 0 0 0 0 0 0 0 .14 0 0 0 0 0 0 0 0 .86

Table 5.17: Confusion matrix of the K-NN results for the MuHAVi data set.

Code Action class Code Action class

1 Climb ladder 10 Pull heavy object
2 Craw on knees 11 Punch
3 Draw graffiti 12 Run stop
4 Drunk walk 13 Shot gun collapse
5 Jump over fence 14 Smash object
6 Jump over gap 15 Walk and fall
7 Kick 16 Walk and turn back
8 Look in car 17 Wave arms
9 Pick up and throw object

Table 5.18: Action codes for MuHAVi confusion matrices.



5.3. MuHAVi Data Set 48

0 5 10 15 20 25 30

7
5

8
0

8
5

9
0

K
A

c
c
u
ra

c
y
 (

%
)

(a)

10 20 30 40 50

8
2

8
6

9
0

Number of PCA dimensions used

A
c
c
u

ra
c
y
 (

%
)

(b)

35 40 45

8
4

8
8

9
2

Number of shapes in the CMS

A
c
c
u
ra

c
y
 (

%
)

(c)

35 40 45 50 55 60 65

8
0

8
4

8
8

9
2

Number of samples used

A
c
c
u
ra

c
y
 (

%
)

(d)

Figure 5.12: Accuracy curves of MuHAVi K-NN tests varying parameter (a) K; (b) PCA
dimensions; (c) CMS number; (d) number of samples.
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SVM

The parameters for the best accuracy, shown in Table 5.15, are presented in Table 5.19.

Based on these values, accuracies varying cost, PCA dimensions, CMS number, and num-

ber of samples are shown in Figures 5.13(a) to (d), respectively.

Parameter Value

Cost 100
PCA dimensions 30
CMS number 48
Number of samples 45

Table 5.19: Optimum parameters for MuHAVi data set using SVM classifier.

The confusion matrix is given in Table 5.20, with the action codes specified in Ta-

ble 5.21.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 .71 0 0 0 0 0 0 0 .14 0 0 0 .14 0
5 0 0 0 0 .86 .14 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 .71 0 0 0 0 0 0 0 0 0 .29 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
9 0 0 .14 0 0 .14 0 0 .57 0 .14 0 0 0 0 0 0

10 0 0 0 0 0 .14 0 0 0 .86 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 .14 0 .86 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
17 0 0 0 0 0 0 0 0 0 0 0 0 .14 0 0 0 .86

Table 5.20: Confusion matrix of the SVM results for the MuHAVi data set.

5.3.2 MuHAVi14

The following results correspond to the MuHAVi14 data set for both K-NN and SVM

classifiers.
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Code Action class Code Action class

1 Climb ladder 10 Pull heavy object
2 Craw on knees 11 Punch
3 Draw graffiti 12 Run stop
4 Drunk walk 13 Shot gun collapse
5 Jump over fence 14 Smash object
6 Jump over gap 15 Walk and fall
7 Kick 16 Walk and turn back
8 Look in car 17 Wave arms
9 Pick up and throw object

Table 5.21: Action codes for MuHAVi confusion matrices.

K-NN

The parameters for the best accuracy, shown in Table 5.15, are presented in Table 5.22.

Based on these values, accuracies varying K, PCA dimensions, CMS number, and number

of samples are shown in Figures 5.14(a) to (d), respectively.

Parameter Value

K 3
PCA dimensions 15
CMS number 5
Number of samples 12

Table 5.22: Optimum parameters for MuHAVi14 data set using K-NN classifier.

The confusion matrix is given in Table 5.23, with the action codes specified in Ta-

ble 5.24.

The manually annotated subsets consist of shorter sequences, with simpler actions.

Therefore, their actions are better described by CMS constructed by fewer frames. More-

over, since the segmentation was done manually, the CMS loses their restoration impor-

tance.
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Figure 5.13: Accuracy curves of MuHAVi SVM tests varying parameter (a) cost; (b) PCA
dimensions; (c) CMS number; (d) number of samples.
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Figure 5.14: Accuracy curves of MuHAVi14 K-NN tests varying parameter (a) K; (b)
PCA dimensions; (c) CMS number; (d) number of samples.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 .875 .125 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 .5 .5 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.23: Confusion matrix of the K-NN results for the MuHAVi14 data set.

Code Action class Code Action class

1 Collapse left 8 Run right to left
2 Collapse right 9 Stand up left
3 Guard to kick 10 Stand up right
4 Guard to punch 11 Turn back left
5 Kick right 12 Turn back right
6 Punch right 13 Walk left to right
7 Run left to right 14 Walk right to left

Table 5.24: Action codes for MuHAVi14 confusion matrices.
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SVM

The parameters for the best accuracy, shown in Table 5.15, are presented in Table 5.25.

Based on these values, accuracies varying cost, PCA dimensions, CMS number, and num-

ber of samples are shown in Figures 5.15(a) to (d), respectively.

Parameter Value

Cost 100
PCA dimensions 18
CMS number 6
Number of samples 12

Table 5.25: Optimum parameters for MuHAVi data set using SVM classifier.

The confusion matrix is given in Table 5.26, with the action codes specified in Ta-

ble 5.27.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 .75 0 .25 0 0 0 0 0 0 0 0 0 0
3 0 0 .875 .125 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0
9 .5 0 0 0 .5 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.26: Confusion matrix of the SVM results for the MuHAVi14 data set.
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Code Action class Code Action class

1 Collapse left 8 Run right to left
2 Collapse right 9 Stand up left
3 Guard to kick 10 Stand up right
4 Guard to punch 11 Turn back left
5 Kick right 12 Turn back right
6 Punch right 13 Walk left to right
7 Run left to right 14 Walk right to left

Table 5.27: Action codes for MuHAVi14 confusion matrices.
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Figure 5.15: Accuracy curves of MuHAVi14 SVM tests varying parameter (a) cost; (b)
PCA dimensions; (c) CMS number; (d) number of samples.
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5.3.3 MuHAVi8

The following results correspond to the MuHAVi8 data set for both K-NN and SVM

classifiers.

K-NN

The parameters for the best accuracy, shown in Table 5.15, are presented in Table 5.28.

Based on these values, accuracies varying K, PCA dimensions, CMS number, and number

of samples are shown in Figures 5.16(a) to (d), respectively.

Parameter Value

K 1
PCA dimensions 12
CMS number 3
Number of samples 10

Table 5.28: Optimum parameters for MuHAVi8 data set using K-NN classifier.

SVM

The parameters for the best accuracy, shown in Table 5.15, are presented in Table 5.29.

Based on these values, accuracies varying cost, PCA dimensions, CMS number, and num-

ber of samples are shown in Figures 5.17(a) to (d), respectively.

Parameter Value

Cost 100
PCA dimensions 22
CMS number 3
Number of samples 14

Table 5.29: Optimum parameters for MuHAVi data set using SVM classifier.
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Figure 5.16: Accuracy curves of MuHAVi8 K-NN tests varying parameter (a) cost; (b)
PCA dimensions; (c) CMS number; (d) number of samples.
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Figure 5.17: Accuracy curves of MuHAVi8 SVM tests varying parameter (a) cost; (b)
PCA dimensions; (c) CMS number; (d) number of samples.
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5.4 Discussion

This section briefly discusses the complexity analysis of the proposed method, the accuracy

results for each tested data set and the granularity adjustment.

5.4.1 Complexity Analysis

The complexity of the feature extraction method depends on each part of the method,

shown in Figure 4.1. In step (a), both the methods employed for background subtraction

and frame difference are linear in relation to the number of pixels in the image. For every

new frame, a new CMS is computed by uniting the whole temporal window, making the

complexity of this step defined by the number of pixels multiplied by the CMS number.

Step (b) includes sweeping the bounding box, so it is linear in relation to the size of the

bounding box. Step (c) also includes sweeping the bounding box, so it is also linear with

respect to the size of the bounding box. Step (d) is linear in relation to the number of

interest points adopted. The classification stage is considered apart, because it is not part

of this work contribution, such that any classifier could be used, making the overall time

variable.

At first, obtaining the descriptor from a video frame has complexity O(ns + b + i),

where s is the size of the frame, n is the the CMS number, b is the bounding box size,

and i is the number of interest points. However, i must be much smaller than b, (since

it is on its borders), which must be smaller than s. Therefore, the overall complexity is

O(ns).

5.4.2 Accuracy Results

The method showed state-of-the-art accuracy for all tested data sets. On Weizmann,

97.85% was achieved. The descriptor was computed in an average of 1.175 FPS, which is

less than one millisecond per frame. Most of the confusion is on the side and skip classes.

On the manually segmented subset, a loss of accuracy was observed when using the SVM

classifier. A possible reason is the effect explained in Section 4.1 and shown in Figure 4.2,

where poor segmentation may emphasize the most important region of movement. This is

confirmed from the confusion matrices, which show misclassification between waving one

hand and two hands, which did not exist on the original set. The distance between the

classes is shortened since the bounding boxes now comprise the whole body silhouette,

resulting in less relevance to the position of the arms.

On KTH data set, the best result was 90.28% accuracy. The descriptor was computed

at 215.02 FPS, which is less than five milliseconds per frame. The precision is a little

inferior to the most recent state-of-the-art because of the difficulties in the movement
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extraction in the set. From the confusion matrices, it can be seen that most of the confu-

sion happens in two groups. One is the group of actions that consist of hand movement

– clapping, waving hands and boxing. The other group, presenting more confusion, is

the group of actions that comprise the displacement movements – jogging, running and

walking. Most of the confusion happens between the actions run and jog. It is easy to

understand that, since the two actions are very similar to each other.

Despite the noise movement present in the original MuHAVi data set, the accuracy

achieved was 91.60%. This may be due to the multi training – instead of extracting one

descriptor per video, as often done – where the noise is trained with the class label, but

the classifier is often able to handle outliers. Since the set has the largest frames and

highest CMS number, it had the smallest frame rate: 47.04 FPS, or 21.26 milliseconds

per frame. The smallest frame rate achieved was a result of the combination of the largest

frame with the highest CMS number. The confusion matrices showed significant confusion

in the punch and pick up and throw object classes, both involving strong arm movement.

Other confusion occurrences were sparse.

The accuracy obtained was 95.59% for MuHAVi14 and 100% for MuHAVi8. These

results were expected since both data sets are very simple. The data sets consist of the

same videos, such that their run time were the same: 203.12 FPS, less than 5 milliseconds

per frame. In both SVM and K-NN, half of the confusion lies in the stand up left action.

In Table 5.26, there is confusion on the collapse left action, which presents essentially the

same movement, however, in inverse order. In Table 5.23, there is confusion on the stand

up right action, which is the same action, however, with a different direction.

Among the parameters varied in the grids, the CMS number indicates the size of

the temporal window that unites the silhouettes. The results, represented in the plot

images, showed that the CMS number adds relevant information to the shapes, resulting

in increase in accuracy. Most of the data sets had optimum values higher than one,

indicating that using CMS was better than not using it.

5.4.3 Granularity Adjustment

Granularity refers to the complexity of an action. Actions that occurs in a short time

span or being periodical are simple actions, having low granularity. Taking a step has

low granularity; walking is the periodical repetition of this action, hence it also has low

granularity. Jumping over a fence is a high granularity action, since it consists of more

complex and aperiodic movements that are done in more than one possible way and

requiring more time to take place.

Results have shown that the CMS number is able to adjust the granularity of the

actions. The MuHAVi data set has the highest granularity of the actions. The classes are
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more complex than just walking or moving limbs, since they are unions of these simple

movements (walking is part of most of them).

The CMS number was increased until it was able to describe the actions entirely. It

consisted of a granularity calibration. This ability indicates that the method is robust

with respect to the actions that can be learned.
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Conclusions and Future Work

Human action recognition is an open research area. There are many problems demand-

ing solutions and plenty of room for improvement in the already obtained results. Many

issues are concerned with the quality of the recognition, such as robustness to occlusions,

view angle variation, multi-view, and inter-camera displacement. Other trends are con-

cerned with real situation applicability, such as processing time, recognition of multiple

simultaneous agents, and functioning in continuous video streams.

Chapter 3 highlights the two most common strategies for obtaining information from

videos: the first is based on appearance descriptors extracted from the neighborhood of

selected interest points, such as developed by Laptev (2005) and Dollár et al. (2005); the

second builds descriptors from silhouettes extracted by foreground segmentation methods,

such as frame difference or background subtraction.

In this dissertation, human action recognition was investigated to search for its applica-

tions and solutions available. Two methods were proposed, approaching different stages

of the process. The first joins motion shapes – forming the CMS (Cumulative Motion

Shapes) – adding temporal information on static shapes and to correct possible defects

on extracted foreground. The second is a descriptor for the shapes; it is lightweight and

easily scalable to work with multiple action instances on a single video sequence, since it

is applied to each movement instance separately.

The interest point selection strategy picks extreme points with the objective of finding

body extremities and important articulations. Hands, elbows, feet, knees and head contain

the most distinguishable pose information. The extreme point strategy succeeds in finding

these regions without making use of expensive matching algorithms.

Actions can be performed by different actors and with distinct starts. Because of that,

correlating an order to CMS can be a complex task. Multi-training avoids such problem

by using each CMS independently in the training process and considering each one such

as a unique vote in the prediction judgment.

63
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The method was tested on three commonly used data sets and produced state-of-the-

art accuracy (Tables 3.1 and 3.2), even on KTH data set (Table 5.10), which contains

unrealistic camera movement. Experiments also demonstrated proper results on MuHAVi

(Table 5.15), which is a difficult data set, since some sequences contain people walking

around in the background or arranging the scenario and most videos include parts when

the actor performs actions different from the one labeled (mostly walking), increasing

inter-class similarities along the sequences. Finally, the method obtained high accuracy

rates for Weizmann data set (Table 5.1) with impressive speed rate.

The plots that present the change of accuracy varying the CMS number showed that, in

most of the cases, the optimum value is higher than one – value one means that the original

shapes are used – even for manually annotated silhouettes, with accuracy difference of up

to 20% (for MuHAVi14, Figure 5.15). This means that CMS adds positive information,

which results in enhancement in the classification using the proposed descriptor.

The best CMS numbers for MuHAVi data set are considerably higher than for other

data sets. This is because the granularity of its actions is very high. The classes are more

complex than just walking or moving limbs, they are unions of these simple movements;

walking is a part of most of them. Accumulating higher numbers of shapes allowed the

calibration of the granularity of the actions trained, indicating that the proposed method

is robust in relation to the actions that can be learned.

As a shape-based descriptor, it naturally requires the actions to be distinguishable

through shapes. Hence, it might be unsuitable for classification of, for example, mouse

behavior, as it appears on the data set of Dollár et al. (2005), or kissing, as in the

Hollywood data set (Laptev et al. 2008).

Some directions for future work include:

• the evaluation of the method in other data sets: the method can be validated on

actions of different nature. Testing the method in other sets allows us to have better

understanding of the effectiveness of the work. It is desirable to obtain results in

other data sets, such as Microsoft Research (MSR) action data set (Liu 2012), UCF

sports action data set (Rodriguez et al. 2008), and UCF50 Action Recognition data

set (Reddy & Shah 2013).

• extending the method to more complex scenarios: the process stages targeted in this

dissertation are the backbone of an action recognition system, however, there are

more challenges to the matter. One is the application of a system in continuous

videos. New problems appear, such as identification of when an actor stops doing

an action and starts doing another one. A desirable capability is the detection of

multiple simultaneous actors, which involves using effective tracking methods.
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• multicamera: it consists of using multiple cameras to identify actions. In a given

time, an actor may or may not be visible from more than one camera, so the system

must be able to identify these occurrences. Tracking and identification of people

are tools for the problem. This may even enable the system to be aware of what

trajectory a person is following.
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Alcântara, M. F., Moreira, T. P. & Pedrini, H. (2014). Real-time action recognition based

on cumulative motion shapes, Acoustics, Speech and Signal Processing (ICASSP),

Florence, Italy, pp. 2941–2945.

Barron, J. L., Fleet, D. J. & Beauchemin, S. S. (1994). Performance of Optical Flow

Techniques, International Journal of Computer Vision 12(1): 43–77.

Baum, L. E. & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of Finite

State Markov Chains, Annals of Mathematical Statistics 37: 1554–1563.

Blank, M., Gorelick, L., Shechtman, E., Irani, M. & Basri, R. (2005). Actions as

Space-Time Shapes, International Conference on Computer Vision, Beijing, China,

pp. 1395–1402.

Bregonzio, M., Xiang, T. & Gong, S. (2012). Fusing Appearance and Distribution Infor-

mation of Interest Points for Action Recognition, Pattern Recognition 45(3): 1220–

1234.
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