
Gabriel Ferreira Teles Gomes

“Indirect Branch Emulation Techniques in Virtual

Machines”

“Técnicas para Emulação de Saltos Indiretos em

Máquinas Virtuais”

CAMPINAS

2014

i

ii

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Indirect Branch Emulation Techniques in Virtual

Machines

Gabriel Ferreira Teles Gomes1

July 07, 2014

Examiner Board/Banca Examinadora:

• Prof. Dr. Edson Borin (Supervisor)

• Prof. Dr. Sandro Rigo

IC - UNICAMP

• Prof. Dr. Anderson Faustino da Silva

DIN - UEM

• Prof. Dr. Luiz Fernando Bittencourt

IC - UNICAMP

• Prof. Dr. Fernando Magno Quintão Pereira

DCC - UFMG

1Financial support: CNPq (143517/2011-2) 2011–2012 / FAPESP (2011/16468-6) 2012–2013

vii

Abstract

Dynamic binary translation is an emulation technique commonly employed in the im-

plementation of virtual machines. One of the main sources of overhead that hinder the

applicability of dynamic binary translators is that caused by the emulation of indirect

branch instructions. This master thesis describes several techniques that try to improve

the performance and efficiency of indirect branch emulation in efficient virtual machines.

DynamoRIO is one of such machines and it implements features used by several of those

techniques. In this master thesis, we present current implementations of DynamoRIO,

modify its code to include two new techniques (Inline Caching and IBTC) and compare

it with other techniques described in the literature.

ix

Resumo

Tradução dinâmica de binários é uma técnica de emulação comumente utilizada na im-

plementação de máquinas virtuais. Neste contexto, a emulação de saltos indiretos é uma

das principais fontes de perda de eficiência, o que atrapalha a aplicabilidade de tradutores

dinâmicos de binários. Essa dissertação descreve diversas técnicas que tentam melhorar

o desempenho e a eficiência da emulação de saltos indiretos em máquinas virtuais efi-

cientes. O DynamoRIO é uma máquina virtual que se enquadra nessa categoria e que

utiliza características de diversas dessas técnicas. Nessa dissertação, nós apresentamos

a implementação atual do DynamoRIO, modificamos seu código para incluir duas novas

técnicas de emulação de saltos indiretos (Inline Caching e IBTC) e as comparamos com

outras técnicas descritas na literatura.

xi

Contents

Abstract ix

Resumo xi

1 Introduction 1

1.1 Philosophical Approach . 1

1.2 Technical Approach . 1

1.3 Dynamic Binary Translation Commons . 2

1.4 Same-ISA Process Virtual Machines . 3

2 An Overview of the DynamoRIO Infrastructure 4

2.1 The Emulation Manager . 4

2.2 Fragment Lookup . 5

2.3 Translation . 5

2.4 Patching . 6

2.5 Dispatch . 7

2.6 Fragment optimization . 7

3 A Detailed View of DynamoRIO 4.1 9

3.1 Hash Tables . 9

3.2 Fragment Lookup . 10

3.3 Translation . 11

3.4 Patching . 12

3.5 Emission . 12

3.6 Indirect Branch Lookup Routines . 13

4 Software Techniques for Indirect Branch Emulation 15

4.1 Indirect Branches in Static Translators . 15

4.2 Inline Caching . 15

4.3 Speculative Chaining . 16

xiii

4.4 Code expansion . 17

4.5 Indirect Branch Translation Cache . 17

4.6 Sieve . 18

4.7 Fast Returns . 19

4.8 Shadow Stack . 19

4.9 Return Cache . 20

4.10 Indirect Branches in DynamoRIO . 21

5 Implementation of the techniques 23

5.1 Inline Caching . 24

5.2 IBTC . 25

6 Related Work 28

7 Methodology and Results 36

8 Conclusion 43

Bibliography 45

Bibliography . 48

xv

List of Tables

2.1 Breakdown of the slowdown over native execution 8

4.1 Indirect branch emulation techniques . 22

7.1 Hit rates for the IBTC technique . 40

xvii

List of Figures

2.1 Dispatcher: the central hub of DynamoRIO 5

2.2 Fragment translation routines . 6

2.3 Schematic view of DynamoRIO . 7

3.1 Simulation of the open addressing collision mechanism 10

3.2 Internal fragment lookup routine . 11

3.3 Fragment emission loop snippet . 13

3.4 Shared Indirect Branch Lookup Routine 14

4.1 Inline Caching . 16

4.2 Speculative Chaining . 17

4.3 The Sieve . 19

4.4 Fast Returns . 20

5.1 API usage example . 24

5.2 Inline Caching implementation . 25

5.3 IBTC implementation . 27

7.1 Native execution and emulation with DynamoRIO 37

7.2 IBTC and Inline Caching . 38

7.3 Vanilla, Inline Caching, and IBTC . 39

7.4 Hit path removed from IBTC . 41

7.5 Basic blocks and Traces . 42

xix

Chapter 1

Introduction

1.1 Philosophical Approach

Software is the basis of modern society. It comes in many flavors: free or proprietary,

in the form of binaries or source code, simply compiled or optimized, with or without

graphical interfaces, interactive or autonomous. In any case, modern society depends on

it for more efficient management of resources and relations, faster communication and the

advance of science, just to name a few.

These are some of the aspects that make humanity free, as they allow us to control

nature to a certain extent, overcome great distances in less or no time, and create our own

version of what we call World. But the very technology that makes us free, also enslaves

us, because the software that supports all these activities can only run on the hardware

that it has been developed or compiled to.

Fortunately, our freedom is not entirely lost. Virtual machines are our allies in this

battle against the evils of hardware dependency. With virtual machines, programs can

run on computers that they have not been developed to. And although this ability usually

penalizes efficiency, we can employ software techniques to improve it and achieve near-

native execution performance.

1.2 Technical Approach

The key concept behind virtual machines is the act of emulation and the principal methods

used in it are interpretation and dynamic binary translation (DBT). Whether a virtual

machine should employ one or the other as emulation technique is a question of purpose.

As a matter of fact, some virtual machines employ both methods.

1

1.3. Dynamic Binary Translation Commons 2

Interpreters are simpler, more portable, and typically less efficient than dynamic binary

translators [34]. In interpretation, instructions in a program are emulated one at a time, in

a cycle that mimics the behavior of an actual hardware (i.e. instruction fetch, decode, and

execution, all in software). On the other hand, in dynamic binary translation, instructions

are analyzed and translated in chunks, then kept in memory – the “code cache” – for future

re-execution, possibly speeding up the execution.

However, DBT systems can only garner better efficiency when the execution frequency

of the translated code is high enough (i.e. the code is “hot”) to amortize the initial costs

of translation, which are higher than that of interpretation. And even if the translated

code is indeed hot, other factors contribute to the loss of emulation performance. One of

the greatest sources of overhead is the emulation of indirect branches.

Several techniques have been proposed to improve the emulation efficiency of indi-

rect branches. In his Ph.D. thesis [8], Derek Bruening presents the virtual machine Dy-

namoRIO and analyzes the impact on emulation efficiency caused by these techniques.

In this master thesis we present the current implementation of DynamoRIO, we provide

details about the way it emulates indirect branches, and we compare it to other techniques

described in the literature.

1.3 Dynamic Binary Translation Commons

Virtual machines based on DBT translate instructions from the emulated application

(“guest”) in bundles. Possible choices for bundling include dynamic basic blocks, traces,

and superblocks. We collectively refer to them as “fragments”. Dynamic basic blocks are

sequences of instructions that have a single entry-point and end in a single control transfer,

such as branches and calls. Superblocks expand this definition by allowing multiple exit-

points. Traces relax the constraints even further and allow both multiple entries and

exits.

Whichever units of processing a DBT employs, the translator parses the guest code

into fragments, translates, and saves them to the code cache. The complexity of the

actual process of translation depends on the architectures and operating systems of the

guest and the host and on their differences. However, all translators share the fact that

control transfer instructions must be patched in order to keep control within the virtual

machine.

As translated fragments are written to the code cache, the virtual machine transfers

control to them so that they can be executed. Since exits have been previously patched,

control always returns to the emulation manager. The emulation manager is the core of

the virtual machine. It is responsible for switching execution between already translated

fragments, fetching new chunks of guest code, and for translations per se.

1.4. Same-ISA Process Virtual Machines 3

Because guest code is discovered dynamically, fragments are stored in the code cache

in an order that does not reflect the organization of fragments in the guest code. Thus, the

emulation manager is responsible for keeping track of the locations of translated fragments

and of the correspondences between them and the guest code. A map table provides

this functionality and is implemented with hash tables in most virtual machines [34].

Whenever a fragment returns control to the emulation manager, it indicates the next

address that would be executed should the program be running natively. The emulation

manager then searches the map table for an existing translation and then decides if a new

translation must be created or if an existing one may be used to continue execution.

1.4 Same-ISA Process Virtual Machines

User-level programs depend basically on two interfaces to execute: part of the instruction-

set (ISA) and operating system calls. Process virtual machines provide these interfaces

to programs. Potentially, the interfaces presented to the guest application are different

than that used by the virtual machine itself, for instance, an emulator may run on top

of an x86 computer with Windows and present the ARM ISA with Android for mobile

application development.

But sometimes the purpose of a virtual machine is not to provide different interfaces

for the execution of programs, but to optimize and provide introspection for the execution.

DynamoRIO is one of such virtual machines developed for the x86 architecture. There

are two available versions of DynamoRIO, one for the Windows operating system and

other for Linux. In this master thesis we will use DynamoRIO to evaluate the efficiency

of indirect branch emulation techniques.

Our objective is to determine which indirect branch emulation technique, or combi-

nation of techniques, provides the best emulation performance for the SPEC CPU2006

benchmark suite. This master thesis is organized as follows: Chapters 2 and 3 present

the DynamoRIO infrastructure. Chapter 4 describes the functionality of several indirect

branch emulation techniques, then Chapter 5 describes how we implemented some of the

techniques in the code of DynamoRIO. Chapter 6 presents the related work. Finally,

Chapter 7 presents the experimental results and Chapter 8 concludes the master thesis.

Chapter 2

An Overview of the DynamoRIO

Infrastructure

DynamoRIO is a process virtual machine designed for the x86 architecture and is capa-

ble of emulating applications both on Windows and Linux. It employs dynamic binary

translation, rather than interpretation, as its emulation technique. Unlike other dynamic

binary translators (DBT), DynamoRIO spends little time translating from source to tar-

get architecture, since it is a same-ISA virtual machine. As a matter of fact, DynamoRIO

copies and pastes most of the code that it reaches. As usual, translated code is kept in

the code cache for future re-execution.

2.1 The Emulation Manager

The central hub of control flow in DynamoRIO is the “dispatcher”. It is reached at the

beginning of the execution and at every time that control leaves the code cache. Its main

loop is responsible for looking up if the current fragment of code that must be executed

has already been translated, or if it still needs to be. A couple of helper routines perform

this task, and if they fail to locate a fragment, they translate a new one. In either case, the

dispatcher then transfers control to the translated fragment in the code cache. No further

code is reachable in the dispatcher, and it will only be invoked again in the event of a

code cache exit. Figure 2.1 presents a simplified version of the dispatcher, in which the

fragment lookup, translation, and control transfer routines are located. It also contains a

routine that monitors the execution frequency of each fragment of code.

4

2.2. Fragment Lookup 5

1 vo id dispatch (dcontext_t * dcontext) {

2 fragment_t * targetf ;

3 targetf = fragment_lookup_fine_and_coarse (dcontext , ...)

4 do {

5 i f (targetf != NULL) {

6 targetf = monitor_cache_enter (dcontext , targetf);

7 break ;

8 }

9 i f (targetf == NULL)

10 targetf = build_basic_block_fragment (dcontext , ...);

11 } wh i l e (true);

12 dispatch_enter_fcache (dcontext , targetf)

13 ASSERT_NOT_REACHED ();

14 }

Figure 2.1: Dispatcher: the central hub of DynamoRIO

2.2 Fragment Lookup

Upon entry, the dispatcher calls fragment_lookup_fine_and_coarse, the lookup routine.

In DynamoRIO, information about every fragment that has ever been translated is kept in

central hash tables. Each entry in a table is composed of a guest and a translated address,

which form a pair of corresponding targets for control transfer instructions. The guest

address is used as input to the hashing function and as tag. When a match occurs, the

lookup routine returns the address of the corresponding translated fragment. Otherwise,

it returns an invalid address indicating that the fragment of code has never been reached

and that a new translation must be created for it.

2.3 Translation

Whenever the dispatcher is unable to find a translation for some piece of code, it starts

the creation of a new one. The function build_basic_block_fragment accomplishes this

action, as shown in Figure 2.1. The creation of the new translation begins with the partial

decoding of the instructions in the guest application and ends whenever a control transfer

instruction is reached. Since x86 has variable-length instructions, the decoding consists

of determining its opcodes and lengths. No further information, such as operands, needs

to be decoded. Only the raw bits are stored in the internal structures of DynamoRIO.

Every decoded instruction is then added to a linked list that represents the fragment

of code being translated. Even the last instruction – the control transfer – goes into the

list without patching. Figure 2.2 summarizes all the steps involved in the creation of

2.4. Patching 6

1 build_bb_ilist (dcontext_t *dcontext , build_bb_t *bb) {

2 wh i l e (true) {

3 i f (check_for_stopping_point (dcontext , bb))

4 break ;

5 i f (bb -> full_decode) {

6 bb -> cur_pc = decode (dcontext , bb ->cur_pc , bb ->instr);

7 instrlist_append (bb ->ilist , exit_instr);

8 } e l s e

9 bb -> cur_pc = decode_cti (dcontext , bb ->cur_pc , bb ->instr);

10 }

11 i f (!bb -> full_decode) {

12 non_cti = instr_create (dcontext);

13 instr_set_raw_bits (non_cti , non_cti_start_pc , ..);

14 instrlist_append (bb ->ilist , non_cti);

15 }

16 bb -> exit_target = get_ibl_routine (dcontext , ...);

17 instr_t * exit_instr = INSTR_CREATE_jmp (dcontext , bb -> exit_target));

18 instr_set_our_mangling (exit_instr , true);

19 instrlist_append (bb ->ilist , exit_instr);

20 client_process_bb (dcontext , bb);

21 mangle_bb_ilist (dcontext , bb)

22 }

Figure 2.2: Fragment translation routines. The translation of guest code happens in
several phases. This segment of code presents the decoding of instructions from the guest
into the intermediate representation.

a new fragment, apart from the last two instructions, which pertain to the patching of

control transfer instructions.

2.4 Patching

Patching happens potentially several times. First, the list is delivered to clients registered

through the API of DynamoRIO (register_bb_event and register_trace_event) to

handle the event of a fragment creation. There may be zero or more clients registered to

handle these events. After every registered client is given a chance to observe and modify

the instruction list, DynamoRIO calls its own patching routine, mangle_bb_ilist.

The mangling of control transfer instructions guarantees that the guest code is never

executed. For direct branches, DynamoRIO uses the block chaining technique [34], which

modifies all the targets of the branches, so that they always transfer control to translated

fragments of code in the code cache, or back to the emulation manager. Indirect branches,

on the other hand, have unlimited number of targets and may not be patched with the

block chaining technique. There are several types of such indirect control transfer, such as

2.5. Dispatch 7

context switch

BASIC BLOCK CACHE
non-control-flow

instructions
indirect branch

lookup

TRACE CACHE
non-control-flow

instructions
indirect branch
stays on trace?

dispatch

basic block builder trace selectorSTART

Figure 2.3: Schematic view of DynamoRIO

register-indirect branches, returns, and indirect calls. For each of them, DynamoRIO uses

customized routines to determine where control must be transferred to. These routines

are actually very similar to each other, in the sense that they receive a guest application

address and, in order to convert it to a code cache address, they access a hash table of

addresses correspondences.

2.5 Dispatch

Whether a new fragment had to be created, or had been found by the lookup routine, the

dispatcher transfers control to it. Potentially, control will reach the dispatcher again, but

as a new call. This process repeats until there is no more need to exit the code cache (for

instance, if the guest program enters an infinite loop) or until the emulation is terminated.

Figure 2.3 presents a schematic view of the components in DynamoRIO. It graphically

delineates the border between the code cache and the emulator. The components above

the gray block pertain to the DynamoRIO code base, whereas those below, pertain to

code emitted into the code cache.

2.6 Fragment optimization

Initially, DynamoRIO translates dynamic basic blocks. However, it also monitors the

execution of each block in order to identify regions of “hot-code” and further optimize

them. Optimization is achieved with the creation of larger segments of code, known as

2.6. Fragment optimization 8

System type crafty vpr
Basic emulation 300.0x 300.0x
+ basic block cache 26.1x 26.0x
+ link direct branches 5.1x 3.0x
+ link indirect branches 2.0x 1.2x
+ traces 1.7x 1.1x

Table 2.1: Breakdown of the slowdown over native execution

superblocks in the literature, but referred to as traces in the parlance of the DynamoRIO

community.

The trace building mechanism in DynamoRIO starts by marking certain basic blocks

as potential trace heads. Each of them receives a counter that is incremented upon each

execution of that block. When a threshold is reached, that block and every subsequent

block executed is added to the new trace, until an end-of-trace condition is reached [10].

Table 2.1 [10] depicts how the code caching, control transfer optimizations and trace

formation reduces the overhead of DynamoRIO emulation. When none of them are used,

the slowdown over native execution reaches a factor of several hundred. The use of a

fragment cache reduces the slowdown significantly. The linking of fragments and the use

of traces bring the execution times close to native execution.

Chapter 3

A Detailed View of DynamoRIO 4.1

DynamoRIO is a currently active open-source project, and still receives several contribu-

tions from its community of developers. In our project, we used DynamoRIO version 4.1,

which was the current version, by the time of the writing of this Thesis. This chapter

details the indirect branch handling mechanisms present in such version.

3.1 Hash Tables

As stated in Section 2.2, DynamoRIO maintains the correspondences between guest and

host addresses in hash tables. Shared hash tables keep track of the fragments shared

among threads in the emulated application, whereas private tables keep track of private

translations for each thread. Initially, every entry in the hash tables is empty. This means

that the composing fields tag_fragment and start_pc_fragment are set to NULL_TAG (0)

and to HASHLOOKUP_NULL_START_PC, respectively. The emulation manager fills the entries

with newly created fragments. But as it translates more fragments, the table starts to fill

up and entries start to collide. In order to avoid excessive collisions or capacity issues,

DynamoRIO doubles the size of the table, whenever the occupation rate reaches a defined

threshold.

Collisions are handled with the open addressing technique, i.e. colliding elements are

stored in the hash table itself, not in a linked-list. The insertion of an element in the

table begins with the generation of an index with a hash function. Afterwards, the table

is probed to check if that entry is empty or if it has already been occupied. If it is indeed

empty, the new element is simply added to the table, otherwise the index is successively

increased, until an empty slot is found. The increment function verifies if the successive

addresses do not overlap the boundaries of the table, and wrap-around if they do.

Figure 3.1 illustrates the insertion of a sequence of elements that cause a collision and

a wrap-around. Let the hash index be the modulo operation between the tag and the

9

3.2. Fragment Lookup 10

tag data

0: 0 0

1: 0 0

6: 0 0

7: 0 0

8: 0 1

..
. insert tags 10, 46, 86, and 6

tag data

0: 10 1st

1: 6 4th

6: 46 2nd

7: 86 3rd

8: 0 1

..
.

sentinel

Figure 3.1: Simulation of the open addressing collision mechanism

constant number 10, and let the order of insertion of elements be 10, 46, 86, and 6. The

first and second insertions do not cause collisions, as they are mapped to the previously

empty slots 0 and 6, respectively. The third and fourth insertions do cause collisions. The

open addressing technique walks through the collision chain and inserts the items in the

first empty slots that it finds, i.e. slot 7 and, after wrapping around the end of the table,

slot 1.

3.2 Fragment Lookup

In DynamoRIO, fragments may be either formed as dynamic basic blocks, or as the struc-

tures described as superblocks in Section 1.3. However, the developers of DynamoRIO

refer to the superblocks as traces. In order to avoid misunderstandings, we will use their

terminology throughout this master thesis. Separate hash tables are used to avoid un-

necessary collisions. Moreover, fragments might be private to a single thread, or shared

among them all. Therefore, the fragment lookup routine must search for the fragments in

all hash tables, according to the following precedence: private traces, private basic blocks,

shared traces, and, finally, shared basic blocks.

The process of looking up a fragment in the hash tables is straightforward. Figure 3.2

presents its code as it appears in DynamoRIO, with only few simplifications to make it

more clear. The code begins by applying the hash function and fetching an entry from

the table, in lines 7 and 8. If the tags match, the routine returns immediately. Otherwise

it walks through the collision chain until the tags match or until it finds an empty entry,

because empty entries indicate that the chain has ended.

Whether a hit occurs or not, a fragment_t structure is always returned. The calling

routine – i.e. the dispatcher – analyzes the returned object. An empty entry indicates

3.3. Translation 11

1 s t a t i c fragment_t

2 hashtable_fragment_lookup (dcontext_t *dcontext , ptr_uint_t tag ,

3 fragment_table_t * htable) {

4 fragment_t fe;

5 uint hindex ;

6

7 hindex = HASH_FUNCTION (tag , htable);

8 fe = htable ->table[hindex];

9 wh i l e (! ENTRY_IS_EMPTY (fe)) {

10 i f (tag == fe.tag)

11 r e t u r n fe;

12 hindex = WRAP_AROUND (hindex + 1, htable);

13 fe = htable ->table[hindex];

14 }

15 r e t u r n fe;

16 }

Figure 3.2: Internal fragment lookup routine. This code is located in the template file
hashtablex.h. We simplified it by removing code used for debug and statistics, and by
replacing template names properly.

that the lookup routine failed to find a translation, thus the dispatcher must start the

creation of a new one. Non-empty entries provide the dispatcher with the host address of

the translated fragment.

3.3 Translation

The translation of fragments happens in several phases: first, instructions are decoded

from the guest code, converted to an intermediate representation (IR), and stored in

instruction lists; afterwards, the instructions are patched by registered clients and by

DynamoRIO itself; finally, the patched instructions are emitted into the code cache. We

shall cover all but the patching of instructions in this section.

A loop performs the decoding of instructions from guest code into the IR. In each

iteration, the loop checks if the fragment must be terminated, or if it can grow further.

Several conditions are verified and force the decoding to stop, such as when too many

instructions have been added to the list, or when a control transfer or invalid instruction

is reached.

The intermediate representation of instructions in DynamoRIO comprises several levels

of codification [10]. Level 0 stores the minimum amount of information. As a matter of

fact, it stores only the raw bits of a sequence of instructions. Level 1 includes information

3.4. Patching 12

about the boundaries between instructions, whereas Level 2 includes both opcode and

eflags information. Operands are only decoded in Levels 3 and 4.

When DynamoRIO decodes instructions from the guest code, it tries to keep the

amount of decoded information to a minimum. Non-control-flow instructions are stored

as a single strip of raw bits (Level 0) in the list. On the other hand, control trans-

fer instructions are decoded up to Level 3, and appended as a single entry in the list.

This behavior can be modified, through the use of the flag full_decode, so that every

instruction is fully decoded (see Figure 2.2).

3.4 Patching

When DynamoRIO finishes the decoding of the fragment, it calls registered clients, so

that they have an opportunity to observe and modify the instruction list. Afterwards,

DynamoRIO applies its own patching routine to the list. As a matter of fact, in this

step DynamoRIO cares only about control transfer instructions. Direct and indirect calls,

far and indirect jumps, system calls, interruptions, and returns, each have a specialized

mangling function. These functions are named in a systematic manner, by adding the

prefix mangle_ to the type of instruction that it patches. For instance, interruptions are

mangled by mangle_interrupt.

When mangling system calls and interruptions, DynamoRIO only checks if their type is

supported. If it is not, DynamoRIO simply removes them and uses a basic interpretation

scheme. Direct calls are converted into a push of the return address. Indirect transfer

of control – i.e. returns, indirect calls, and indirect jumps per se – are removed and

have their target address stored in the register %ecx. This address will be used by the

appropriate routine described in Section 3.6.

3.5 Emission

During code emission, DynamoRIO iterates over the instructions in the instruction list

and emits them to the code cache, as executable code. Figure 3.3 presents the function

set_linkstub_fields, which performs the loop. For every instruction in the list, it

calls instr_encode, which actually writes the executable bytes to the code cache. The

function returns a pointer to the memory address where subsequent emissions should be

placed on.

3.6. Indirect Branch Lookup Routines 13

1 cache_pc set_linkstub_fields (* dcontext , *fragment , *ilist , ..) {

2 cache_pc pc;

3 instr_t *inst;

4

5 pc = FCACHE_ENTRY_PC (fragment);

6 f o r (inst = first(ilist); inst; inst = next(inst))

7 i f (instr_ok_to_emit (inst))

8 pc = instr_encode (dcontext , inst , pc);

9 r e t u r n pc;

10 }

Figure 3.3: Fragment emission loop snippet. Features the function instr_encode, which
is the function that actually writes the executable bytes to the code cache.

3.6 Indirect Branch Lookup Routines

So far, we have presented parts of the code in DynamoRIO that are written in the C lan-

guage. They are responsible for translation, interpretation, code emission, dispatch, and

fragment lookup. However, fragment lookup is critical to the execution performance [8],

thus it has an alternate implementation in DynamoRIO. Instead of invoking the dis-

patcher, the runtime places fast, specialized, lookup routines inside the code cache, en-

abling fragments to directly transfer control to other fragments even when emulating

indirect branches.

Figure 3.4 shows the assembly code of the optimized address translation routine for

indirect jump emulation. This code is responsible for iterating over the hash tables de-

scribed in Section 3.1. In label L0, the hash index is calculated, based on the target

address received through register %ecx. Block L1 checks if the target address matches

the contents of the hash table. If it does, a translation has been found, and the code in

label L2 restores the machine state and transfer the execution control to the translated

fragment. Otherwise, the algorithm iterates over the collision chain until it finds a trans-

lation, or until the chain is over. Block L3 checks for the end of the chain, whereas block

L5 checks if the hash table itself has ended. Blocks L4 and L6 increment the pointer to the

hash table entry and loop around. Blocks L7, L8, L9, L10, L11, and L12 prepare a return

to the dispatcher, because they are reached when a translation is not in the hash table.

Disabling the indirect branch lookup routine and forcing the control to be transferred

back to the dispatcher can be done in runtime, through the use of the runtime switch,

-no_ibl_link.

3.6. Indirect Branch Lookup Routines 14

1 L0:

2 movabs %eax ,%gs:0x0

3 lahf

4 seto %al

5 mov %ebx ,%gs:0x8

6 mov %ecx ,% ebx

7 and %gs:0x48 ,% ecx

8 add %ecx ,% ecx

9 add %ecx ,% ecx

10 add %ecx ,% ecx

11 add %ecx ,% ecx

12 add %gs:0x50 ,% ecx

13 L1:

14 cmp %ebx ,(% ecx)

15 jne <L3 >

16 L2:

17 mov %edi ,%gs:0 x58

18 mov %gs:0x20 ,% edi

19 mov 0x390 (% edi),% edi

20 mov 0x3d0 (% edi),% edi

21 incl 0xf0 (% edi)

22 mov %gs:0x58 ,% edi

23 mov %gs:0x8 ,% ebx

24 jmpq *0x8(% ecx)

25 L3:

26 cmpq $0x0 ,(% ecx)

27 je <L5 >

28 L4:

29 mov %edi ,%gs:0 x58

30 mov %gs:0x20 ,% edi

31 mov 0x390 (% edi),% edi

32 mov 0x3d0 (% edi),% edi

33 incl 0xf8 (% edi)

34 mov %gs:0x58 ,% edi

35 lea 0x10 (% ecx),% ecx

36 jmpq <L1 >

37 L5:

38 cmpq $0x1 ,0x8(% ecx)

39 jne <L8 >

40 L6:

41 mov %edi ,%gs:0 x58

42 mov %gs:0x20 ,% edi

43 mov 0x390 (% edi),% edi

44 mov 0x3d0 (% edi),% edi

45 incl 0x100 (% edi)

46 mov %gs:0x58 ,% edi

47 mov %gs:0x50 ,% ecx

48 jmpq <L1 >

49 L7:

50 mov %ebx ,%gs:0x8

51 mov (% ecx),% ebx

52 L8:

53 mov %ebx ,% ecx

54 mov %edi ,%gs:0 x58

55 mov %gs:0x20 ,% edi

56 mov 0x390 (% edi),% edi

57 mov 0x3d0 (% edi),% edi

58 incl 0xfc (% edi)

59 mov %gs:0x58 ,% edi

60 mov %gs:0x8 ,% ebx

61 add $0x7f ,%al

62 sahf

63 movabs %gs:0x0 ,% eax

64 L9:

65 mov %edi ,%gs:0 x18

66 mov %gs:0x20 ,% edi

67 mov %eax ,0 x38 (% edi)

68 mov %ecx ,0 x2d8 (% edi)

69 movabs $0x71311bd0 ,% eax

70 mov 0x38 (% edi),% ecx

71 mov %ecx ,%gs:0x0

72 mov %gs:0x10 ,% ecx

73 mov %gs:0x18 ,% edi

74 jmpq <out of range >

75 L10:

76 mov %edi ,%gs:0 x58

77 movabs %eax ,%gs:0x0

78 lahf

79 seto %al

80 mov %gs:0x20 ,% edi

81 mov 0x390 (% edi),% edi

82 mov 0x3d0 (% edi),% edi

83 incl 0x108 (% edi)

84 add $0x7f ,%al

85 sahf

86 movabs %gs:0x0 ,% eax

87 mov %gs:0x58 ,% edi

88 jmpq <L9 >

89 L11:

90 jmpq <L0 >

91 L12:

92 jmpq <L10 >

93 nop

94 nop

95 nop

96 nop

Figure 3.4: Shared Indirect Branch Lookup Routine code as emitted to the code cache.

Chapter 4

Software Techniques for Indirect

Branch Emulation

On lowly optimized virtual machines, fragments of translated code always return to the

emulation manager when they reach their ends. They do not try to translate any guest

address into a host address from within the code cache, instead they rely on the emulation

manager. On the one hand, this is the simplest mechanism to handle address translation,

on the other hand, it is also the slowest. Highly optimized dynamic binary translators

implement more advanced techniques of indirect branch emulation. The next sections

describe these techniques.

4.1 Indirect Branches in Static Translators

Virtual machines based on static binary translation, such as VEST and MXR [33], rely

on runtime support to translate indirect branch targets. During the static translation,

indirect jumps are converted into calls to the interpreter. These virtual machines continue

emulation using interpretation, until they reach a point in the program, for which there

is a known translation. Then, they transfer control back to the translations, avoiding the

low performance associated with interpretation. This process repeats indefinitely.

4.2 Inline Caching

The Inline Caching technique, also known as Indirect Branch Inlining [21], or Software

Indirect Jump Prediction [34] replaces any indirect jump instruction with a sequence

of tests that compare the target address of the jump with previously known targets –

for which a translation already exists in the code cache. When a hit occurs, control is

15

4.3. Speculative Chaining 16

1 mov ecx , <target > ; copy target to ecx

2 cmp ecx , <prediction 1> ; compare ecx with a predicted target

3 j e <translation 1> ; jump to the equivalent translation

4 cmp ecx , <prediction 2> ; compare ecx with another predicted target

5 j e <translation 2> ; jump to the equivalent translation

6 jmp <emulation manager > ; return to the emulation manager

Figure 4.1: Inline Caching

transferred to the equivalent translated fragment. Only when every test fail, control is

delivered to the emulation manager. Figure 4.1 illustrates the technique. The amount of

comparisons in the sequence varies across implementations.

Typically, the most frequent targets are inlined, thus the virtual machine must rely on

a profiling mechanism. The profiling phase might happen while code is being interpreted,

such as in virtual machines that use both interpretation and translation, or it might

happen after translation. In the later case, the already translated fragment needs to be

patched when the profiling threshold is reached.

Several authors [10,12,21,36] compare this technique to the Inline Caching mechanism

developed for the object-oriented language Smalltalk-80. In object-oriented languages it

is not always possible to determine, at compile time, to which class an object belongs,

neither which implementation of a method it should call. Deustch [15] describes how

Inline Caching finds the correct address of the implementation of a method in a class,

during runtime.

4.3 Speculative Chaining

The Speculative Chaining technique has few differences when compared to the Inline

Caching (Section 4.2). During translation, every indirect branch is simply converted into

an unconditional jump to the translated fragment of a known target of that branch. Since

it jumps speculatively, i.e. to a destination that is not guaranteed to be the correct one,

the target fragment must assert that the speculation holds. The verification is performed

by a comparison between the target address and a constant stored as immediate in the

code. Figure 4.2 illustrates the process.

This behavior is similar to the branch predictor in modern computer architectures,

in the sense that it tries to guess the destination address, before asserting that it is

correct. Branch predictors take advantage of this eager behavior by being able to fetch

code from the instruction memory earlier, whereas the Speculative Chaining technique

removes indirect jumps from the code, potentially rendering it better guessable by the

branch predictor in the underlying hardware.

4.4. Code expansion 17

...
jmp

predicted target

0x04000

0x04440

Guest code

...
mov ecx, <target>
jmp <translation>

cmp ecx, 0x04440
jne <manager>
...

Translated code

Figure 4.2: Speculative Chaining

4.4 Code expansion

Daisy [18] is a virtual machine based on binary translation that uses a unique technique

to emulate indirect branches. For each byte in the guest application, Daisy reserves N

bytes in memory to hold its translation. For instance, when N = 4 and a guest fragment

is composed of 12 bytes, the translation of that fragment will have 48 bytes available

to be fitted in. In order to convert a guest address into a host address, Daisy can use

Equation 4.1, where n is the target address of the jump, N is the expansion constant and

V LIW_BASE is a pointer to the beginning of the code cache. The ability to calculate

the translation address with a formula avoids all the overhead associated with address

lookups and the maintenance of map tables.

Address = n ∗ N + V LIW_BASE (4.1)

To the extent of our knowledge, no other virtual machine used code expansion. As

a matter of fact, even Daisy abandoned this idea in 2001 [17], on behalf of the more

conventional code cache organizations.

4.5 Indirect Branch Translation Cache

In the Indirect Branch Translation Cache (IBTC) technique, every fragment that ends

with an indirect jump is equipped with a small hash table of mappings between guest

4.6. Sieve 18

and host addresses. It is a cache of the global map table and holds only the particular

addresses that have been accessed by the indirect jump in the fragment. This arguably

reduces the collision rate of the hashing function, possibly leading to faster execution

times. Moreover, the hash table, though small, may also handle collisions. Whether it

uses linked-lists, open-addressing, or other collision handling mechanisms, depends on

implementation choices.

The indirect jumps themselves are converted into segments of code that compare

the target of the jump with the guest address in the table. When they match, control

is transferred to the equivalent host address. Otherwise, the collision chain is iterated

over until a match occurs or until the end of the chain is reached. Only when all the

comparisons fail, the IBTC technique gives up and falls back to the emulation manager.

Since the IBTC is a cache with limited size, indirect jumps with sufficient targets might

hit the maximum capacity of the table. When that happens, and control is transferred

back to the emulation manager, a translation might still exist for the target fragment.

Thus, the dispatcher searches the global map table. Only when the global search fails,

the dispatcher starts the translation of a new fragment.

4.6 Sieve

The Sieve can be thought of as a technique that uses instructions, rather than data

memory, to store the mappings of guest to host addresses. During translation, indirect

branch instructions are converted into jumps to chains of sieve buckets, which are tiny

segments of code responsible for comparing the target address of the indirect jump with

constants stored as immediate in the buckets themselves. When the addresses match,

execution control is transferred to the equivalent translated fragment, which have its host

address stored also as immediate in the code of the buckets.

Sieve buckets are arranged in chains, dynamically allocated as linked-lists. When the

address comparison in a bucket fails, the next bucket receives the control of the execution.

This process continues until a translation is found, or until the end of the chain is reached.

As usual, when the later happens, control is transferred to the emulation manager so that

it decides whether a translation already exists but could not be found by the technique,

or whether a new translation must be created.

The virtual machine maintains several sieve chains, which are selected by the result of

a hash function between the guest address and a predefined mask. Figure 4.3 illustrates

the process and structures related to the Sieve. This behavior is similar to the hash

tables used by IBTC and by the central map tables of DynamoRIO. The differences

reside in the facts that: the Sieve handles collisions with linked-lists, rather than with

open-addressing; it stores data as code; and it converts indirect jumps into direct branches,

4.7. Fast Returns 19

mov ecx, ebx
xor ecx, <mask>
add ecx, <table>
jmp ecx

hash function

jmp <manager>

jmp <sieve chain>

jmp <manager>

jmp <manager>

jmp <manager>

hash table

cmp ebx, <prediction 1>
je <translation 1>
jmp <bucket 2>

sieve bucket 1

cmp ebx, <prediction 2>
je <translation 2>
jmp <manager>

sieve bucket 2

...
cmp ebx, <target>
jmp <hash>

translation 1

...
cmp ebx, <target>
jmp <hash>

translation 2

manager

Figure 4.3: The Sieve

potentially rendering it easier for the branch predictor, on the underlying hardware, to

guess correctly.

4.7 Fast Returns

The Fast Returns technique handles the specific case of the emulation of return instruc-

tions. Typically, return instructions transfer the execution control to the address previ-

ously saved by the corresponding call instruction. This is a guest address, so the return

instruction cannot jump directly, instead it should translate and jump to a host address,

in the code cache. With Fast Returns, call instructions are modified so that they store the

address of the translation, i.e. a host address, instead of the guest address. This allows

of return instructions to be left untouched, during translation. Figure 4.4 illustrates the

technique.

This mechanism benefits performance, because it removes the necessity of an address

lookup. But it poses an issue to the emulation of the program, because it changes the

contents of the guest program memory and might modify the behavior of the execution,

thus violating transparency, and potentially leading to wrong results.

4.8 Shadow Stack

The Shadow Stack technique handles the emulation of return instructions, while still

maintaining transparency. During translation, call instructions are converted into seg-

ments of code that push the guest return address into the program stack, and also push

4.9. Return Cache 20

L1:

L2:

foo:

call foo

...

ret

Guest code

L1’:

L2’:

foo’:

push L2

jmp foo’
...

...

mov eax, ebp-4

<target resolution>

jmp <target>

Simple translation

L1’:

L2’:

foo’:

push L2’

jmp foo’
...

...

ret

Fast Returns

Figure 4.4: Fast Returns

the same guest address along with the host address of the corresponding translation, into

an alternative stack – the Shadow Stack. Since these steps do not touch data from the

application, this technique maintains transparency, avoiding errors in the execution of the

program.

On the other hand, return instructions cannot be left untouched. They are converted

into segments of code that pop an entry from the Shadow Stack, verify if the target

of the return instruction and the entry obtained from the stack match, and jump to the

corresponding translation when they do. When the addresses do not match, the emulation

falls back to the emulation manager, or to other indirect branch emulation technique.

Hazelwood and Klauser [20] describe the same technique, but name it differently, as

software RAS. Hiser et al. [21] also give an alias to the technique, RATS, for Return

Address Translation Stack.

4.9 Return Cache

The Return Cache technique maintains a hash table of recently used return targets, in

order to exploit the regularity of return instructions. During translation, call instructions

are converted into segments of code that store, into the hash table, the host address of

the return target, i.e. the address of a translation in the code cache. Afterwards they

jump to the translated body of the function. Return instructions are also modified so

that they jump to a host address loaded from the hash table, unconsidered of the validity

of the translation.

The hash table is indexed by a function of the call target, rather than of the return

target. Thus, multiple call points to the same function update the same entry with their

4.10. Indirect Branches in DynamoRIO 21

corresponding return site addresses. Return instructions in the function access the same

single entry in the hash table.

Since the return address of a function can change between the call and the return,

such as in recursive calls and in some glibc functions, a validation code is added to the

return site. The validation code compares the guest address obtained during execution

against a constant stored as immediate. The constant represents the guest address that

should have been taken if no changes to the return address had occurred. If the addresses

match, execution may continue, otherwise, a backup mechanism must be used. Usually,

this means falling back to the emulation manager.

4.10 Indirect Branches in DynamoRIO

Bruening showed in his PhD thesis, that DynamoRIO spends only 4.5% of the time in rou-

tines related to the translation of guest to host addresses. In order to do so, DynamoRIO

uses optimized lookup routines to translate the target guest address of indirect jumps into

host addresses in the code cache. During the translation of a fragment, indirect jumps are

converted into segments of code that store the target address of the jump into the register

ecx, then transfer control to the appropriate lookup routine. Section 3.6 describes how

the optimized routines look a target up in the mapping tables. They convert the target

address into a hash index, check for a match, and iterate over the collision chain when

the check misses. When a hit occurs, the routines transfer the execution control to the

target fragment in the code cache. Otherwise, they fall back to the dispatcher.

Each type of indirect branch, i.e. returns, indirect calls, and register-indirect jumps,

have a specialized routine. So do each type of fragment, i.e. basic blocks and traces, and

each level of thread-awareness, i.e. shared and private. Thus, there are several lookup

routines. However, these routines only differ in the fact that each of them searches in a

distinct hash table.

The IBTC is similar to this technique in two aspects. First, they use hash tables to

store the mappings of addresses. Second, they can handle index collisions in the hash

function. On the other hand, they differ in two aspects. First, the lookup routines of

DynamoRIO are shared among indirect branches, thus leading to less code being emitted

to the code cache, whereas in the IBTC, the translation of each fragment has its own in-

lined address resolution code. Second, the IBTC allocates extra memory for each indirect

branch, whereas in DynamoRIO, a single table is shared by several fragments.

The potential advantage of the IBTC technique is that collisions might be less frequent,

due to the fact that each indirect branch has its own hash table, and provided that the

tables are large enough to keep the collision rate low, though they may be smaller than

the global table. This potentially leads to better performance, since hits in the lookup

4.10. Indirect Branches in DynamoRIO 22

Technique Virtual Machine Class
Emulation Manager VEST, MXR, Shade, FX!32,

UQDBT, Bintrans, QEMU
Generic

Inline Caching Daisy, Dynamo Generic
Speculative Chaining Embra, Walkabout Generic
Code expansion Daisy Generic
IBTC Strata, Pin Generic
Sieve HDTrans, Pin Generic
Fast Returns Strata Return-specific
Shadow Stack FX!32, Pin Return-specific
Return Cache HDTrans Return-specific
DynamoRIO’s DynamoRIO Generic

Table 4.1: Indirect branch emulation techniques, their use throughout the literature,
and their classification. A generic technique is capable of handling any type of indirect
branch, whereas return-specific techniques may only be used in the emulation of return
instructions

routines happen faster. On the other hand, DynamoRIO consumes less memory, which

might also lead to better performance, since it produces less pressure in the processor

cache. Chapter 7 analyzes these trends.

Table 4.1 summarizes the techniques described in this chapter and correlates them to

the virtual machines presented in Chapter 6.

Chapter 5

Implementation of the techniques

Section 3.4 presents the points where code patching happens. Clients may register them-

selves to receive the opportunity to modify the code on the event of fragment creation.

When they do, DynamoRIO calls the registered routines before applying its own patches.

Ideally, we would insert our indirect branch emulation techniques using a client, but we

need access to functions from the DynamoRIO code base that are only accessible from

within DynamoRIO itself. Therefore, we apply our modifications right after the clients

return. The API of DynamoRIO provides a rich set of functions to ease code modification.

Five types of functions are particularly useful for our implementation:

Instruction decoding functions (instr_get_target and instr_get_src) ease the

parsing of jump targets. Both return the first operand of a jump instruction, which is its

target.

Instruction creation macros enable the creation of new instructions from scratch.

They receive the machine state as a parameter, followed by the list of desired operands.

For instance, the macro INSTR_CREATE_add creates a new add instruction.

Operand creation macros facilitate the creation of operand structures. These are

particularly useful, because they obviate the need to know details about immediate

and memory pointer representation on the x86 architecture. For instance, the macro

OPND_CREATE_INTPTR automatically determines how many bits are required to represent

an immediate.

Instruction list handling functions make it easy to iterate over the instruction lists

that DynamoRIO uses to form basic blocks and traces. They provide methods to get the

first and last instruction in a list, to append instructions and to remove them.

23

5.1. Inline Caching 24

1 instr_t *instr;

2 opnd_t target ;

3 opnd_t immed;

4

5 instr = instrlist_get_last (ilist);

6 target = instr_get_target (instr);

7 immed = OPND_CREATE_INTPTR (1);

8 dr_insert_clean_call (ilist , instr , routine , 2, target , immed);

Figure 5.1: API usage example.

Clean calls enable the use of code written in C while still executing code from within

the code cache. They prepare the calls by saving the processor context and loading a

new stack pointer. Afterwards they call the desired routines, and upon return, restore

the processor context.

Figure 5.1 shows an example of the use of the API routines. In it, we parse the target

of an instruction, create an immediate operand, and insert a clean call to a routine in C.

The implement of each emulation technique uses these functions and macros, and they

are contained in a single pair of code (.c) and header (.h) files. As a matter of fact, they

are all implemented in the same function, and selected through the use of preprocessor

conditionals. In this project, we evaluate two indirect branch emulation techniques: Inline

Caching and IBTC.

5.1 Inline Caching

The Inline Caching technique, described in Section 4.2, has two implementation parame-

ters: the amount of tests inlined in the code and whether translation happens before or

after the profiling of targets. In this project, we set the number of tests to one and trans-

lation to happen before profiling. As a matter of fact, since DynamoRIO never interprets

guest code, translation must happen before profiling.

Keeping the amount of tests to its minimum has one major advantage: the reduced

time spent in profiling when compared to multiple tests. Bala et al. [3] reduce the effort

applied to profiling with a scheme referred to as MRET (most recently executed tail)

that works as follows. Each loop head in the program is classified as a profiling point

and receives a counter. Every time that point is executed, the counter is incremented.

When a threshold is reached, the current state of the program is said to be hot, i.e.

frequently executed. The key concept behind the idea, is that when a path becomes hot,

it is statistically likely that the previous and next iterations were and will be hot, as well.

5.2. IBTC 25

1 init:

2 <save state (6 intructions)>

3 mov %ebx , % e d i

4 cmp %ebx , (GUEST_SLOT)

5 j ne profile

6 hit:

7 <restore state instructions (6 instructions)>

8 jmp (HOST_SLOT)

9 profile :

10 cmp (COUNTER), $THRESHOLD

11 j a stop

12 j b continue

13 c a l l update ; clean call to update , a function in C.

14 continue :

15 i n c (COUNTER)

16 mov (LAST), %ebx

17 stop:

18 <restore state (6 instruction) and fall back >

Figure 5.2: Inline Caching. Assembly code generated by the translation of a jump in-
struction. The original jump used register %edi as operand. The clean call is actually
composed of 43 instruction, apart from the C routine itself.

We extend this concept to our implementation, by adding a counter to the translation

of each indirect jump. Once the counter reaches a threshold, we use the last seen target

of the jump as a hot target, and we update the Inline Cache with the guest and host

pair of addresses. Figure 5.2 shows the assembly code generated by the translation of an

indirect jump.

5.2 IBTC

The IBTC technique, described in Section 4.5, consists of several hash tables, one for

each fragment, and of code that searches and updates these tables. The size of the table,

as well as the method used to handle collisions in the hash function, are implementation

dependent. As a matter of fact, collision handling is optional.

In our implementation, we set the cache size to 32 slots, and we handle collisions with

the open-addressing technique [14], in exactly the same way that DynamoRIO does with

its global hash tables of mappings, as described in Section 3.1.

Figure 5.3 shows the assembly code generated by the translation of an indirect jump

with the IBTC technique. In label init, the target of the jump is loaded into the registers

ebx and ecx. Afterwards, the hash index is calculated, based on the target address.

Finally, the IBTC table base is added to the hash index and stored into register ecx. Label

5.2. IBTC 26

retry checks if the jump target matches the current entry in the table, then transfers

control accordingly. When a hit occurs, the virtual machine state is restore and control

is transferred to the translation of the targeted fragment, which is stored in 0x4(%ecx),

i.e., the next word in the hash table. When a miss occurs, the code in label miss checks

if the chain is over, and falls back if it is. Otherwise, it must iterate over the collision

chain. Label used increments the table pointer and loops back to the label retry. Label

unused checks if the table itself is over, by checking if the entry is the sentinel, in which

case it also loops back to the beginning of the table and retries.

5.2. IBTC 27

1 init:

2 <save state (6 intructions)>

3 mov %ebx , % e d i

4 mov %ecx , %ebx

5 and %ecx , $MASK

6 s h l %ecx , 3

7 add %ecx , $TABLE_BASE

8 retry:

9 cmp %ebx , (% ecx)

10 j ne miss

11 hit:

12 mov %ebx , 0x4(% ecx)

13 mov %ecx , $HOST_SLOT

14 mov (% ecx), %ebx

15 <restore state instructions (6 instructions)>

16 jmp (HOST_SLOT)

17 miss:

18 cmp (% ecx), $0

19 j e unused

20 used:

21 add %ecx , $8

22 jmp retry

23 unused :

24 cmp 0x4(% ecx), $1

25 j ne fallback

26 sentinel :

27 mov %ecx , $TABLE_BASE

28 jmp retry

29 fallback :

30 c a l l update ; clean call to update , a function in C.

31 <restore state (6 instruction) and fall back >

Figure 5.3: IBTC. Assembly code generated by the translation of a jump instruction. The
original jump used register %edi as operand. The clean call is actually composed of 43
instructions, apart from the C routine itself.

Chapter 6

Related Work

Sites et al. [33] describe VEST and MXR, static binary translators that rely on runtime

support for the resolution of indirect branch targets. When an indirect jump is reached

during the execution of the translated code, a lookup is performed in the static table

of address mappings. If the address is found, control is directly transferred to the cor-

responding host target, which has been previously and statically translated. Otherwise,

the emulation continues using the interpretation technique, until it reaches a point in the

guest code to which a translation is known. The mechanisms used by the address lookup

are not clearly described in the paper.

Cmelik and Keppel [13] present Shade, a virtual machine for code translation and

introspection. It allows the user to monitor the execution of selected types of instructions,

and to select the level of detail the monitoring should be performed. Shade employs

dynamic binary translation to emulate guest code, and uses basic blocks, rather than

traces or superblocks, as its unity of translation. To each basic block, Shade adds a

prologue and an epilogue. The prologue is responsible for code introspection, whereas the

epilogue, for the chaining of basic blocks ended with direct branches. However, indirect

jumps always transfer control back to the emulation manager.

Bedichek [5,6] presents Talisman, a system virtual machine that uses interpretation as

its emulation technique. The main goal of Talisman is to model the memory management

unit (MMU) of processors, thus it keeps track of memory pages, as well as it handles the

conversion from virtual to physical addresses. Talisman pre-decodes pages, thus when a

control transfer instruction is emulated, the target address must be monitored in order

to determine whether the jump stays on the same page, or if it crosses pages boundaries.

When a direct jump stays on the same page, it is said to be an on-page branch. During

pre-decoding, on-page direct branches have their target address converted into a decoded

target. Off-page direct branches, on the other hand, does not receive similar treatment,

because Talisman must also verify if the targeted page is present in memory. Since the

28

29

target of indirect jumps in unknown during pre-decoding, they are treated as off-page

branches. Talisman keeps a target address cache for faster resolution of off-page branch

targets, which is flushed whenever a modification happens to the page tables.

Witchel and Rosenblum [39] present Embra, the first system virtual machine to em-

ploy dynamic binary translation. The authors observed that return instructions were

responsible for a large fraction of the total register-indirect branch count, and that the

register values were often the same, across executions. Thus, Embra uses the Speculative

Chaining technique, which chains blocks ended with indirect jumps as if they ended with

unconditional direct branches. Since the chaining is based on speculation, a validation

code is added to the target block which determines if the speculation was correct. If it

fails, the emulation manager of Embra receives the control of the execution for correct

address resolution.

Ebcioğlu and Altman present Daisy, a dynamic binary translator capable of translating

from several architectures to a VLIW machine. It is a system virtual machine that

efficiently handles interruptions. In its first version [18], the basic unity of translation was

a virtual memory page, which was translated into a region of memory four times larger

than the source. This allows of the use of the Code Expansion technique, described in

Section 4.4. Nonetheless, in 2001, the authors presented the new version of Daisy [17],

which replaced the page as unity of translation with the more conventional basic block.

Moreover, the new version abandoned the concept of Code Expansion and adopted the

Inline Caching technique with multiple, update-able, comparison tiers.

FX!32 [11, 22] is a binary translator that incrementally converts x86 binaries into

Alpha code. On the first time that an application is executed, FX!32 uses only the

interpretation technique. Meanwhile, it monitors the execution and generates profiling

logs. When the application is terminated, a resident process of FX!32 reads the log file,

which contains the addresses of executed basic blocks, and translates these blocks into

native Alpha code. This method does not guarantee that the entire code of the emulated

application is covered by translation, but it reduces the amount of code that must be

interpreted in future executions. Even though the targets of indirect branches do get

profiled and translated, FX!32 does not employ advanced techniques for regular register-

indirect branch target resolution, and always falls back to the emulation manager. On the

other hand, return instructions do have a special target resolution technique based on the

fact that procedure calls on the x86 and Alpha architectures behave in orthogonal ways.

Call instructions are converted into segments of code that push the return address onto

the program stack, in exactly the same way that the x86 hardware does, then jump to the

translated routine using the native call of the Alpha architecture. On Alpha computers,

the call instruction saves the return address into the ra register, which can then be used

by the return instruction. However, some applications modify the return address of a

30

procedure call, but the modification is only visible on the program stack and not in

the ra register. In order to avoid corrupted execution, FX!32 uses the Shadow Stack

technique.

Ung and Cifuentes [37] describe UQDBT, a framework for the generation of dynamic

binary translators. Its main goal is to ease the implementation of translators for diverse

architectures, through the provision of an architecture description language. UQDBT

does not use any special technique for indirect branch emulation, thus always falling back

to the emulation manager.

Bala et al. [3] present Dynamo, a dynamic binary translator that uses traces as its

basic translation unit. Traces enable the removal of return instructions, because a trace

may span the whole body of the function all the way until the return site. In Dynamo,

the target of indirect jumps are resolved by the Inline Caching technique. Additionally,

Dynamo maintains a cache of the global table of mappings, which it consults whenever

the Inline Caching fails. When both methods fail, the control of the execution is returned

to the emulation manager, which performs a full address lookup.

Bruening et al. [9] present a framework for dynamic binary optimization of Windows

applications. Through the use of a set of dynamic-link libraries (DLL), it takes control

of an application and optimizes traces of frequently executed code. Since it translates

between identical guest and host architectures, the actual process of translation consists

merely of the copy and paste of the instructions in a trace. Control transfer instructions

are an exception to this trend and must be patched in order to keep the control of the

emulation within the virtual machine. The framework uses the Speculative Chaining

technique to speed up the emulation of indirect branches. However, when it fails, control is

not immediately transferred to the emulation manager, because the framework maintains,

as well as Dynamo, a cache of the global table of address mappings, which it may use to

resolve the translation from guest to host addresses.

BOA is a VLIW architecture designed for the emulation of PowerPC code at high clock

frequencies [2,19]. The work has been inspired by the Daisy project [18], however its main

goal was to maximize the operating frequency of the VLIW, rather than the instructions

per cycle (IPC) count. BOA employs both interpretation and dynamic binary translation.

During interpretation, it collects profiling information, which it uses to detect frequently

executed portions of the guest application. In BOA, the basic translation unit is a trace

that may span indirect branches by following its most frequently executed target.

Scott et al. [29–32] present Strata, a framework for the generation of dynamic binary

translators. Throughout its development, the authors introduced two novel techniques for

the emulation of indirect branches. The IBTC technique, described in Section 4.5, can be

used for the emulation of any type of indirect branch. Nevertheless, the authors developed

Fast Returns, a technique specialized in the emulation of return instructions. Fast Returns

31

violates the concept of emulation transparency by replacing the guest return address of a

call instruction, with its corresponding translated address. This mechanism yields better

execution performance, but it does not work if the return address gets modified during

the procedure call. The authors argue that this is a violation of the SPARC ABI.

Patel and Lumetta [26] present rePLay, a hardware framework for dynamic binary

optimization of x86 applications. Its hardware can natively execute x86 instructions, and

it does so by forming long sequences of successively executed basic blocks, referred to

as frames. The formation of a frame is preceded by a profiling phase, which counts the

number of times that the targets of direct branches, indirect jumps, or return instructions

are taken. Once a threshold is reached, the selected basic blocks are grouped into a frame

and optimized. Additionally, control transfer instructions are converted into assertions

that verify if the execution stays within the frame, and abort it otherwise. rePLay relies

on speculative hardware in order to be able to recover a precise architectural state when

aborting the execution of a frame. It also features profiling hardware that stores the

execution count of both taken and not-taken path of direct branches. Indirect branches

and return instructions are also monitored, however only the most recently executed target

is stored by the profiling hardware. Thereby, direct and indirect branches are optimized

in a similar way, and since rePLay can natively execute x86 instructions, the resolution

of the target of indirect branches can be done trivially.

Probst [28] describes Bintrans, a dynamic binary translator generator based on an ar-

chitecture description language also developed by the author. The basic unit of translation

in Bintrans is a basic block, and it does not feature any special indirect branch emulation

technique, falling back to the emulation manager when it encounters such control transfer

instructions.

Cifuentes et al. [12] present Walkabout, a framework for the generation of dynamic

binary translators based on an architecture description language. Walkabout generated

translators initially emulate instructions using interpretation and profiling, until they

determine that some portion of the guest application is hot. Afterwards, they form traces

and optimize them for future re-execution. Indirect branches are emulated with the

Speculative Chaining technique.

Bruening et al. [10] present DynamoRIO, a dynamic binary optimization and intro-

spection system, based on Dynamo [3]. Both systems form traces for code optimization

and use the Inline Caching technique to resolve the target of indirect branches. However,

Dynamo inlines a single address comparison per branch, whereas DynamoRIO inlines

multiple comparison tiers. Furthermore, DynamoRIO features a target profiling mech-

anism that is able to update the comparison data, thus increasing the effectiveness of

the technique. In his Ph.D. thesis [8], Bruening discusses the use of the Shadow Stack

mechanism for the emulation of return instructions, but he discards it since it does not

32

provide better execution performance when compared to treating returns as generic in-

direct jumps. Finally, DynamoRIO implements the indirect branch emulation technique

based on central tables of mappings described in Section 3.6. It consists of small lookup

routines that perform an address lookup in the global tables from within the code cache,

and that may be either inlined for each indirect branch or shared among them all. Dy-

namoRIO is a currently active open-source project that received modifications in the last

ten years. A more recent version of it is described in Chapter 3.

Baraz et al. [4] describe IA-32 EL (Execution Layer), a dynamic binary translator that

applies distinct levels of optimization to distinct portions of the guest code and that never

relies on interpretation to detect hot regions. Initially, IA-32 EL treats every basic block

from the guest code as cold, i.e. not frequently executed, thus keeping the optimization

effort to its minimum. Besides, it inlines profiling code into each translation, in order to

monitor the execution frequency. Once IA-32 EL detects hot code, it forms fragments

longer than basic blocks and re-translates them with a higher optimization effort. The

authors state that the targets of indirect branches are resolved with a fast lookup in a

table of mappings, however they do not present details about the lookup, nor about the

profiling mechanisms.

Kumar et al. [24] present an upgrade to Strata [30] based on compile-time profil-

ing. Before the actual execution of the application, training inputs are used, in order

to generate profiling information. Afterwards, when actually emulating the application,

the profiling data is used, thus reducing the overhead related to runtime profiling. When

translating basic blocks, the system already knows, based on the profiling data, one target

of an eventual indirect jump, which it may then follow to form a trace. However, since

the target of the jump may vary during execution, the translator adds a segment of code

that verifies if the current and predicted targets are the same, similarly to the Speculative

Chaining technique.

Bellard [7] describes Qemu, a system virtual machine capable of emulating several

architectures. Qemu employs dynamic binary translation as its emulation technique and

it first converts fragments of code from the guest application into an intermediate repre-

sentation. Afterwards, it converts them into native code. The author states that adding

a new architecture to Qemu is similar to adding a new architecture to the GCC compiler.

The basic unit of translation in Qemu is a basic block and fragments ended with direct

branches may be chained. However, whenever the MMU emulator modifies the page ta-

ble, Qemu flushes all the chaining between basic blocks. The resolution of indirect branch

targets, although not addressed in the paper, always rely on the emulation manager, as

we could identify by code inspection.

Sridhar et al. [35,36] describe HDTrans, a dynamic binary translator that is performance-

efficient, although it does not employ any code optimization technique. One of the reasons

33

for its efficiency is the introduction of two novel indirect branch emulation techniques: the

Sieve, for register-indirect jumps, and the Return Cache for return instructions (see Sec-

tion 4.6 and Section 4.9).

Luk et al. [25] present Pin, a dynamic binary translator tuned for code instrumentation.

Pin employs two mechanisms for indirect branch emulation. First, the code generated by

the translation of a jump instruction iterates over small segments of code, similar to the

buckets in the Sieve technique (see Section 4.6). However the bucket chains are local

to each indirect jump, whereas in the original Sieve technique, the chains are global and

indexed by a hash function. When the bucket chains fail to find an address correspondence,

control is transferred to a routine that looks the target up in local tables, similar to the

IBTC.

Hazelwood and Klauser [20] describe the implementation of the ARM version of

Pin [25], and also discuss the resource shortage faced by developers of translators for

embedded systems, mostly due to memory constraints. Pin uses the IBTC technique for

the emulation of regular indirect branches and the Shadow Stack for return instructions.

However, the ARM architecture does not feature regular call and return instructions. In-

stead it provides a branch-and-link instruction that stores the return address in a link

register and requires returns to be implemented with regular register-indirect jump in-

structions. In order to enable the use of the Shadow Stack, Pin assumes that every indirect

jump might be a return and have them pop an entry from the Shadow Stack, even though

this could remove entries that would be useful later.

Wang et al. [38] present StarDBT, a dynamic binary translator tuned for the emulation

of home and business applications, such as Office Suites and Web Browsers. The authors

used the metrics wall time and duty cycle to characterize the response time of the emulated

applications, since long delays are easily noticed by the users. Since it translates between

similar architectures, namely IA-32 and Intel64, the translation effort may be reduced

to operations as simple as decoding and copying instructions. However, control transfers

must be patched. The emulation manager maintains a global table of guest to host address

translations, as well as a cache of the table. Indirect branches are converted into segments

of inline code that search this table for a correspondence and jump to it when a match

occurs, or fall back to the emulator, otherwise.

Dhanasekaran and Hazelwood [16] present a modification to the Inline Caching tech-

nique, which exploits the temporal locality of indirect branches targets. The authors

argue that for the benchmarks in the SPEC CPU2006 suite, whenever an indirect jump

target is executed, there is a 74% probability that the next execution of that same jump

will target the same address. Their algorithm consists of an update scheme that keeps

the most recently used (MRU) target of an indirect jump in the first position of the com-

34

parison chain of the Inline Cache. The results indicate an improvement in the hit rate of

the first comparison, for all benchmarks.

Payer and Gross [27] describe an adaptive scheme that tries to dynamically select the

best technique for each indirect branch in the emulated application. The scheme adds a

counter per indirect branch, which keeps track of the number of mispredictions caused

by the Inline Caching technique. When this number becomes higher than a threshold,

the Inline Cache is replaced with a hash table lookup. The authors also present a novel

technique, the Shadow Jump Table. In this technique, for the subset of the indirect jumps

that look as if they use a jump table (e.g. jump *addr(, %reg, 4)), a new jump table is

constructed that contains only the addresses of translated fragments. The indirect jumps

themselves are then converted into segments of code that check for the boundaries of the

table and use the new jump table as base.

Jia et al. [23] present SPIRE, an indirect branch emulation technique that completely

removes the translations from guest to host addresses, through the reuse of guest code

space. Indirect branches are left untouched and transfer control to the untranslated

guest code, however the SPIRE technique avoids the execution of such untranslated code

with a page-protection and an instruction-protection mechanism. Initially, every memory

page that holds guest code is marked as not-executable, thus triggering a software trap

whenever control is transferred to it. When that happens, SPIRE calculates the translated

address of the target and inserts a trampoline to it. In order to protect the rest of the

page, SPIRE populates the entire page, apart from the recently installed trampoline, with

software traps (e.g. INT3 instructions on the x86 platform).

Hiser et al. [21] present a detailed analysis of several indirect branch emulation tech-

niques. The authors conclude that no technique is absolutely better than the other, and

that the selection of the best technique is highly dependent on the underlying host archi-

tecture. They analyze the techniques IBTC, Sieve, Inline Caching, Shadow Stack, Return

Cache, and Fast Returns. We summarize their findings for each technique in the following

paragraphs.

Regarding return-specific techniques, i.e. techniques that are specialized in the emula-

tion of return instructions, the authors discovered that the Fast Returns technique always

outperforms the Shadow Stack and the Return Cache. Moreover, Fast Returns introduces

no overhead when compared to native execution. However, it does violate transparency,

as we described in Section 4.7. The remaining return-specific techniques provide poorer

performance results, but do not present the transparency issues that could lead to wrong

emulation results.

For the Sieve technique, the authors concluded that the only parameter that affects

performance is the number of Sieve Buckets available for emulation. They also show that

35

for the UltraSPARC architecture the optimal number of buckets is 1K, whereas for the

Pentium 4 Xeon and AMD Opteron architectures, this number is 16K.

Their analyzes of the Inline Caching technique revealed that an exact optimal number

of inlined targets does not exist, nevertheless, inlining 0 to 3 targets provides the best

performance results. Moreover, the authors discovered that profiling the targets of each

indirect jump before inlining, provides better results than naively inlining the first seen

targets. They also observed that for register-indirect jumps, profiling 30 executions is the

most beneficial option, whereas for indirect calls, inlining the first two targets provides

the best results.

For the IBTC technique, the authors show that inlining the lookup code into each

fragment or calling a shared lookup routine provides similar results. They also show

that handling collisions in the hash table with a replacement strategy, i.e. replacing

old entries with newer ones, yields better hit rates on subsequent queries, but does not

benefit performance. Finally, the authors compare the distributed approach of having

an individual cache with a centralized approach, where all the fragments share the same

hash table, and conclude that a shared table with inlined lookup code provides the best

results.

To achieve such results, Hiser et al. extended the Strata framework to include all

the above mentioned indirect branch emulation techniques. Strata would have been an

invaluable resource to our project, however, we learned that it is not Open Source anymore

and is owned by Zephyr Software LLC.

From the other virtual machines presented in Table 4.1, DynamoRIO, QEMU, and

HDTrans were still good options, because their source code is indeed available and they

run on x86 machines. The remaining virtual machines are either proprietary software or

designed for other architectures.

The disadvantage of QEMU lies on the fact that it adds more overhead to the emulation

than HDTrans and DynamoRIO do, thus potentially hindering our ability to evaluate the

gains provided by the indirect branch emulation techniques. The disadvantage of HDTrans

over QEMU and DynamoRIO lies on the facts that it does not have a currently active

community of developers and our efforts to make it work failed. Therefore, we decide to

use DynamoRIO. In our work, we analyze the IBTC and Inline Caching techniques and

compare them to the unique indirect branch emulation technique used in DynamoRIO.

Chapter 7

Methodology and Results

In this project we used SPEC CPU2006 [1] to evaluate DynamoRIO and the techniques

Inline Caching and IBTC. SPEC CPU2006 is a benchmark suite composed of compute-

intensive applications. It is designed to stress the system’s processor, memory subsystem,

and compiler. The applications in the suite are classified as integer or floating-point inten-

sive. Finally, the suite provides automated scripts to compile and execute the benchmarks.

In this project we use the integer subset and the automated scripts.

For each of the experiments described in Chapter 7, we prepare the environment for

the execution of the benchmarks by isolating the machine from the network, setting the

processor power states to maximum performance, and clearing eventual zombie processes.

Then, we invoke the automated scripts from SPEC CPU2006, which run each application

three times, with the reference input.

After the experiments are run, we collect the data produced by the automated scripts,

which automatically select which of the three iterations should be reported. The authors

of SPEC advocate that the median value of several runs is the most statistically repre-

sentative of the true central index of dispersion in computer science experiments [1]. We

abide to their recommendation.

All the experiments are run in a single machine, featuring a pair of Intel E5645 proces-

sors at 2.4 GHz, 32 GiB’s of RAM, and a 64-bits Ubuntu LTS 10.04 operating system. We

compile both SPEC and DynamoRIO with the GNU/GCC compiler, in its 4.4.3 version,

using the -O2 optimization flag.

The remainder of this chapter describes how we evaluate the techniques described in

Chapter 5, and DynamoRIO itself. We also present our experiments and their results, as

well as our analysis of the obtained results.

Figure 7.1 shows the overhead caused by emulation with DynamoRIO 4.1, in its vanilla

version, i.e. without modifications. DynamoRIO can be thought of as a Dynamic Binary

Optimizer, since it does not translate code between different architectures. Regardless,

36

37

40
1.
bz

ip
2

42
9.
m

cf

44
5.
go

bm
k

45
6.
hm

m
er

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
1.
om

ne
tp

p

47
3.
as

ta
r

48
3.
xa

la
nc

bm
k

400

600

800

1,000

1,200
R

u
n
n
in

g
ti

m
e

(s
)

Native Vanilla

Figure 7.1: Native execution and emulation with the vanilla version of DynamoRIO.

it adds overhead to the execution of all but one of the integer benchmarks in the SPEC

CPU2006 suite, due to indirect branches and eflag changes handling [10]. We set this

version of DynamoRIO as our baseline.

Initially, we compare the execution performance of the techniques IBTC and Inline

Caching. We do so by implementing them in the DynamoRIO framework and analyzing

the execution times of the benchmarks. We implemented two versions of the IBTC tech-

nique: in the first, the address lookup is performed inside a function written in C, whereas

in the second, it is implemented using the helper functions described in Chapter 5, thus

emitting code directly into the code cache. The later approach should benefit from the

fact that it does not need to prepare the execution of the C code, which involves saving

and restoring the context, as well as loading a safe and transparent stack pointer.

Figure 7.2 shows that the C version of the IBTC penalizes performance, when com-

pared to the version which emits code directly into the code cache, on four benchmarks:

hmmer, h264ref, omnetpp, and xalancbmk. It also shows that the Inline Caching technique

provides better results than the IBTC for the same benchmarks. Finally, it shows that for

the other benchmarks the resulting running times do not differ as much. We know that

the overhead in the C version is caused by the additional steps related to the save and

restore of the processor state, because nothing else has changed between the two versions

of the IBTC. But we cannot conclude anything about the differences between the IBTC

38

40
1.
bz

ip
2

42
9.
m

cf

44
5.
go

bm
k

45
6.
hm

m
er

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
1.
om

ne
tp

p

47
3.
as

ta
r

48
3.
xa

la
nc

bm
k

1,000

2,000

R
u
n
n
in

g
ti

m
e

(s
)

Inline Caching IBTC in the code cache IBTC in C

Figure 7.2: Emulation of indirect branches with the Inline Caching and IBTC techniques.
The Inline Caching implementation emits code directly into the code cache. One version
of the IBTC is also implemented that way, but it also has a version that calls functions
written in C.

and the Inline Caching versions. Before we make such conclusions, we shall examine how

the techniques Inline Caching and IBTC behave compared to the base implementation of

DynamoRIO, i.e. the vanilla version. Since the C version of the IBTC introduces higher

overhead, we discard it from our subsequent experiments.

Since DynamoRIO also implements its own indirect branch target resolution technique,

we compare its base implementation with the addition of the IBTC and Inline Cache

techniques. Surprisingly, the addition of the two never benefit performance. As a matter

of fact, they introduce overheads of up to 530%, as shown in Figure 7.3. We argue that the

addition of the Inline Cache and IBTC techniques to the DynamoRIO code base can be

thought of as an overlaying of techniques. Thus, they might interfere with other parts of

DynamoRIO, such as the hotness prediction algorithms, rather than just with its indirect

branch emulation technique.

Our first conjecture about the source of the overhead was that the caching of entries

in the local storage of the IBTC technique was not sufficiently large to hold the several

targets that an indirect jump might have, and that this could lead to the poor performance

results. In order to remove this uncertainty, we measured the hit rate of the techniques,

finding results as high as 99.99% and as low as 91.54%. Table 7.1 shows the hit rates and

39

40
1.
bz

ip
2

42
9.
m

cf

44
5.
go

bm
k

45
6.
hm

m
er

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
1.
om

ne
tp

p

47
3.
as

ta
r

48
3.
xa

la
nc

bm
k

1,000

2,000

R
u
n
n
in

g
ti

m
e

(s
)

Vanilla Inline Caching IBTC

Figure 7.3: Running times of the overlaying of the Inline Caching and IBTC techniques
to DynamoRIO.

the total number of executed indirect jumps. The lowest hit rate, for libquantum, happens

due to the reduced number of total indirect jumps executed, since the first execution of

each jump always misses. Therefore, the lack of space in the IBTC tables does not cause

low hit rates.

Still uncertain about the causes of the poor performance, we modified our implementa-

tion in order to determine if the lookup code was the sole responsible for the surprisingly

high overhead in the benchmarks hmmer, h264ref, omnetpp, and xalancbmk. The mod-

ification consists of removing the hit path of the IBTC technique, i.e. we still look the

guest target address up in the local caches, but we never follow the corresponding host

address. Even if a hit occurs, we fall back to DynamoRIO, as if we had not found the

target. Figure 7.4 shows that the running times of the four benchmarks were reduced

after this modification, which indicates that something else, other than the cache lookup

and update times, is also hindering performance.

Regardless, not following the hit path did not remove all the overhead from the emu-

lation, although it did remove the largest part of it. This means that the time spent in

the address lookup and in the table update is not negligible. Table 7.1 shows the absolute

number of indirect jumps executed by the benchmarks. Unsurprisingly, the benchmarks

40

Benchmark Misses Hits Hit rate (%)
401.bzip2 3287 5265054 99.93
429.mcf 133 1807573 99.99
445.gobmk 4717 13672112 99.96
456.hmmer 2165 719647704 99.99
462.libquantum 47 509 91.54
464.h264ref 6268 151560350 99.99
471.omnetpp 9350 3527523910 99.99
473.astar 1490 11007350 99.98
483.xalancbmk 9854 2800900967 99.99

Table 7.1: Hit rates for the IBTC technique

hmmer, omnetpp, and xalancbmk are the benchmarks with the highest count of indirect

jumps.

We based our second conjecture about the source of the overhead on the ability that

DynamoRIO has to translate code either as basic blocks or as traces. Section 3.2 describes

how DynamoRIO forms fragments of code from the guest application. First, it forms

basic blocks, which have a single entry-point and a single exit-point. Afterwards, when

it determines that a basic block is hot, it starts to form optimized traces, which are

collections of sequential basic blocks. We formulated that since we store references to

basic blocks in the local storage of the IBTC and Inline Caching techniques, we will never

jump to the optimized translations. DynamoRIO, on the other hand, actively updates its

global tables of mappings on the event of trace creation, thus benefiting from the more

optimized code.

There are two modifications to the IBTC and Inline Caching techniques that may pre-

vent them from using these unoptimized fragments. First, on the event of trace creation,

we could examine all the local caches, and replace old references to basic blocks with

references to newly created traces. Second, we could store only traces in the local caches.

The first approach diverts from the concept behind the IBTC and the Inline Caching.

These techniques act passively towards the event of basic block and trace creation, i.e.

they only update each local storage when the corresponding indirect jump is executed, and

only when a hit does not occur. The second approach, on the other hand, does not alter

the behavior of the techniques. In any case, our implementation of both aproaches shows

that they also do not provide performance enhancements over the base implementation

of DynamoRIO. Figure 7.5 shows that denying the insertion of basic blocks references in

our IBTC tables does reduce the overhead introduced by our implementation, but it does

41

40
1.
bz

ip
2

42
9.
m

cf

44
5.
go

bm
k

45
6.
hm

m
er

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
1.
om

ne
tp

p

47
3.
as

ta
r

48
3.
xa

la
nc

bm
k

1,000

2,000

R
u
n
n
in

g
ti

m
e

(s
)

Vanilla IBTC IBTC without hit path

Figure 7.4: Hit path removed from IBTC.

not yet fully explain the loss of performance when compared to the base implementation

of DynamoRIO.

Finally, we observe how overlaying DynamoRIO with the IBTC and the Inline Caching

techniques modifies the creation of traces. When we jump to the basic blocks pointed to

by the hit path of either the IBTC or the Inline Caching, we modify the addresses that get

selected as trace heads, as described in Section 2.6. This means that our implementation

of the Inline Caching and IBTC techniques has a side-effect on the hotness prediction

algorithms of DynamoRIO, which is fundamental to the performance of DynamoRIO [8].

We tried to tackle this issue with the use of the runtime options, disable_traces and

no_indirect_stub. However, the first option caused errors in most of the benchmarks,

whereas the second did not alter the results. We also tried to solve the issue by removing

from our caches the same fragments that DynamoRIO removes from theirs while building

traces. Several points in the code base of DynamoRIO perform fragment removal. We

inserted callbacks to our code in all of them, but this did not modify the performance

of the execution. Our last option would be to fully understand the hotness prediction

algorithms of DynamoRIO, and modify our techniques in order to take advantage from

it. Unfortunately, we could not follow this line of work, due to time constraints.

Our experiments helped reveal how two parts of the DynamoRIO code base (indirect

branch emulation and hotness prediction algorithms), that are apparently independent,

42

40
1.
bz

ip
2

42
9.
m

cf

44
5.
go

bm
k

45
6.
hm

m
er

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
1.
om

ne
tp

p

47
3.
as

ta
r

48
3.
xa

la
nc

bm
k

1,000

2,000

R
u
n
n
in

g
ti

m
e

(s
)

Vanilla IBTC (BBs and traces) IBTC (only traces)

Figure 7.5: Reduced overhead obtained by denying the insertion of Basic Blocks (BBs)
into the IBTC caches.

interfere with each other. We have shown how the indirect branch emulation technique em-

ployed by DynamoRIO correlates with the techniques described in the literature. Finally,

our experiments have enabled a deeper understanding of the code base of DynamoRIO.

Chapter 8

Conclusion

In this master thesis, we evaluate DynamoRIO and the indirect branch emulation tech-

niques Inline Caching and IBTC. DynamoRIO is a same-ISA process virtual machine that

employs dynamic binary translation as its emulation technique. In order to provide opti-

mized, near-native, execution performance, it features hotness prediction algorithms, as

well as two levels of translation complexity (basic blocks and optimized traces), and op-

timized techniques to transfer control between fragments without leaving the code cache.

We have experimented with register-indirect control transfers emulation techniques,

and observed that the built-in technique of DynamoRIO presents a major difference when

compared to the techniques Inline Caching and IBTC. The later techniques maintain

the mapping of guest to host addresses in small caches, individual to each indirect jump

location, whereas, DynamoRIO maintains global tables of mappings.

Initially, we thought that the distributed nature of the Inline Caching and IBTC caches

could benefit the performance of the indirect jumps emulation, because collisions in the

local hash tables would be less frequent than with shared global tables, thus leading to

faster hit times. But DynamoRIO solves this potential issue by increasing the size of its

global tables, whenever they reach a defined occupation threshold.

Moreover, since DynamoRIO translates code in two levels of complexity, it should

update the mapping tables whenever it switches between basic blocks and traces. The

centralized nature of the global tables of DynamoRIO is better suited for this task, because

it reduces the effort required by updates. When a basic block is converted into a trace,

DynamoRIO must search and update an entry only in its global mapping tables.

On the other hand, in the techniques Inline Caching and IBTC, a full update would

require searches in every table, which are as many as the total number of indirect jumps

executed by the guest application. Moreover, the Inline Caching and IBTC techniques

were primarily developed for dynamic binary translators with a single level of transla-

tion complexity. Hence, they are expected to act passively towards the translation of

43

44

fragments, and only actively update their entries on the event of the execution of the

indirect branch. We modified the IBTC technique by denying basic blocks in its local

caches, which did improve the execution performance, but still did not beat the built-in

technique of DynamoRIO.

Finally, our implementation of the Inline Caching and IBTC techniques produced an

undesired side-effect on the hotness prediction algorithms of DynamoRIO. By directly

jumping to the targeted basic blocks of indirect jumps, they modify the portions of the

guest application that are selected as trace heads, leading to poorer performance results.

Nonetheless, this master thesis have qualitatively described how DynamoRIO solves

potential issues posed by the emulation of indirect branches. It provides an up-to-date

documentation of a recent version of the framework, as well as it describes how the tech-

niques employed by DynamoRIO correlate with that described in the literature, rendering

it easier for future development of the research.

Bibliography

[1] SPEC: Standard Performance Evaluation Corporation.

http://spec.org.

[2] Erik Altman, Michael Gschwind, Sumedh Sathaye, Stephen Kosonocky, Arthur

Bright, Jason Fritts, Paul Ledak, Craig Agricola, and Zachary Filan. BOA: the

architecture of a binary translation processor. Technical report, IBM Research, 2000.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent

dynamic optimization system. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2000.

[4] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun

Wang, and Yigal Zemach. IA-32 Execution Layer: a two-phase dynamic translator

designed to support IA-32 applications on Itanium-based systems. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture, 2003.

[5] Robert Bedichek. Some efficient architecture simulation techniques. In Proceedings

of the USENIX Technical Conference, 1990.

[6] Robert C. Bedichek. Talisman: fast and accurate multicomputer simulation. In

Proceedings of the ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, 1995.

[7] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of

the USENIX Annual Technical Conference, 2005.

[8] Derek Bruening. Efficient, transparent, and comprehensive runtime code manipula-

tion. PhD thesis, Massachusetts Institute of Technology, 2004.

[9] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and imple-

mentation of a dynamic optimization framework for Windows. In Proceedings of the

ACM Workshop on Feedback-Directed and Dynamic Optimization, 2000.

45

BIBLIOGRAPHY 46

[10] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for

adaptive dynamic optimization. In Proceedings of the International Symposium on

Code Generation and Optimization, 2003.

[11] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony

Tye, S. Bharadwaj Yadavalli, and John Yates. FX!32: a profile-directed binary

translator. IEEE Micro, 1998.

[12] Cristina Cifuentes, Brian Lewis, and David Ung. Walkabout: a retargetable dy-

namic binary translation framework. In Proceedings of the IEEE Workshop on Binary

Translation, 2002.

[13] Bob Cmelik and David Keppel. Shade: a fast instruction-set simulator for execution

profiling. In Proceedings of the ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, 1994.

[14] Thomas Cormen, Clifford Stein, Ronald Rivest, and Charles Leiserson. Introduction

to Algorithms. McGraw-Hill Higher Education, 2001.

[15] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the Smalltalk-

80 system. In Proceedings of the ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, 1984.

[16] Balaji Dhanasekaran and Kim Hazelwood. Improving indirect branch translation in

dynamic binary translators. In Proceedings of the ASPLOS Workshop on Runtime

Environments, Systems, Layering, and Virtualized Environments, 2011.

[17] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. Dynamic

binary translation and optimization. IEEE Transactions on Computers, 2001.

[18] Kemal Ebcioğlu and Erik R. Altman. DAISY: dynamic compilation for 100% archi-

tectural compatibility. In Proceedings of the ACM IEEE International Symposium

on Computer Architecture, 1997.

[19] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul Ledak, and David Ap-

penzeller. Dynamic and transparent binary translation. Computer, 2000.

[20] Kim Hazelwood and Artur Klauser. A dynamic binary instrumentation engine for

the ARM architecture. In Proceedings of the International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, 2006.

BIBLIOGRAPHY 47

[21] Jason D. Hiser, Daniel W. Williams, Wei Hu, Jack W. Davidson, Jason Mars, and

Bruce R. Childers. Evaluating indirect branch handling mechanisms in software

dynamic translation systems. ACM Transactions on Architecture and Code Opti-

mization, 2011.

[22] Raymond J. Hookway and Mark A. Herdeg. DIGITAL FX!32: combining emulation

and binary translation. Digital Technical Journal, 1997.

[23] Ning Jia, Chun Yang, Jing Wang, Dong Tong, and Keyi Wang. SPIRE: Improv-

ing Dynamic Binary Translation through SPC-Indexed Indirect Branch Redirecting.

In Proceedings of the International Conference on Virtual Execution Environments,

2013.

[24] Naveen Kumar, Bruce R. Childers, Daniel Williams, Jack W. Davidson, and

Mary Lou Soffa. Compile-time planning for overhead reduction in software dynamic

translators. International Journal of Parallel Programming, 2005.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, 2005.

[26] Sanjay J. Patel and Steven S. Lumetta. rePLay: a hardware framework for dynamic

optimization. IEEE Transactions on Computers, 2001.

[27] Mathias Payer and Thomas R. Gross. Generating Low-Overhead Dynamic Binary

Translators. In Proceedings of the Annual Haifa Experimental Systems Conference,

2010.

[28] Mark Probst. Fast machine-adaptable dynamic binary translation. In Proceedings of

the IEEE Workshop on Binary Translation, 2001.

[29] Kevin Scott and Jack Davidson. Strata: a software dynamic translation infrastruc-

ture. Technical report, University of Virginia, 2001.

[30] Kevin Scott, Jack Davidson, and Kevin Skadron. Low-overhead software dynamic

translation. Technical report, University of Virginia, 2001.

[31] Kevin Scott, Naveen Kumar, Bruce R. Childers, Jack W. Davidson, and Mary Lou

Soffa. Overhead reduction techniques for software dynamic translation. In Proceed-

ings of the IEEE International Parallel and Distributed Processing Symposium, 2004.

BIBLIOGRAPHY 48

[32] Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce Childers, Jack Davidson, and

Mary Lou Soffa. Retargetable and reconfigurable software dynamic translation. In

Proceedings of the International Symposium on Code Generation and Optimization,

2003.

[33] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.

Robinson. Binary translation. Communications of the ACM, 1993.

[34] James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems

and Processors. Morgan Kaufmann, 2005.

[35] Swaroop Sridhar, Jonathan S. Shapiro, and Prashanth P. Bungale. HDTrans: a low-

overhead dynamic translator. ACM SIGARCH Computer Architecture News, 2007.

[36] Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, and Prashanth P. Bungale.

HDTrans: an open source, low-level dynamic instrumentation system. In Proceedings

of the International Conference on Virtual Execution Environments, 2006.

[37] David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary translation. In

Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation

and Optimization, 2000.

[38] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar Nair, Mauricio Breternitz, Zhi-

wei Ying, and Youfeng Wu. StarDBT: an efficient multi-platform dynamic binary

translation system. In Proceedings of the Conference on Advances in Computer Sys-

tems Architectures, 2007.

[39] Emmett Witchel and Mendel Rosenblum. Embra: fast and flexible machine simula-

tion. In Proceedings of the ACM SIGMETRICS International Conference on Mea-

surement and Modeling of Computer Systems, 1996.

	Abstract
	Resumo
	Introduction
	Philosophical Approach
	Technical Approach
	Dynamic Binary Translation Commons
	Same-ISA Process Virtual Machines

	An Overview of the DynamoRIO Infrastructure
	The Emulation Manager
	Fragment Lookup
	Translation
	Patching
	Dispatch
	Fragment optimization

	A Detailed View of DynamoRIO 4.1
	Hash Tables
	Fragment Lookup
	Translation
	Patching
	Emission
	Indirect Branch Lookup Routines

	Software Techniques for Indirect Branch Emulation
	Indirect Branches in Static Translators
	Inline Caching
	Speculative Chaining
	Code expansion
	Indirect Branch Translation Cache
	Sieve
	Fast Returns
	Shadow Stack
	Return Cache
	Indirect Branches in DynamoRIO

	Implementation of the techniques
	Inline Caching
	IBTC

	Related Work
	Methodology and Results
	Conclusion
	Bibliography
	Bibliography

