
Lehilton Lelis Chaves Pedrosa

“Approximation Algorithms for Facility Location

Problems and Other Supply Chain Problems”

“Algoritmos de Aproximação para Problemas de

Alocação de Instalações e Outros Problemas de

Cadeia de Fornecimento”

CAMPINAS

2014

i

ii

University of Campinas Universidade Estadual de Campinas

Institute of Computing Instituto de Computação

Lehilton Lelis Chaves Pedrosa

“Approximation Algorithms for Facility Location

Problems and Other Supply Chain Problems”

Supervisor/Orientador : Prof. Dr. Flávio Keidi Miyazawa

Co-Supervisor/Coorientador : Prof. Dr. Maxim Sviridenko

“Algoritmos de Aproximação para Problemas de

Alocação de Instalações e Outros Problemas de

Cadeia de Fornecimento”

Doctorate Thesis presented to the Post

Graduate Program of the Institute of Com-

puting of the University of Campinas to

obtain a Doctor degree in Computer Sci-

ence.

Tese de Doutorado apresentada ao Programa de

Pós-Graduação em Ciência da Computação do

Instituto de Computação da Universidade Es-

tadual de Campinas para obtenção do título de

Doutor em Ciência da Computação.

This volume corresponds to the fi-

nal version of the Thesis defended

by Lehilton Lelis Chaves Pedrosa,

under the supervision of Prof. Dr.

Flávio Keidi Miyazawa.

Este exemplar corresponde à versão fi-

nal da Tese defendida por Lehilton Le-

lis Chaves Pedrosa, sob orientação de

Prof. Dr. Flávio Keidi Miyazawa.

Supervisor’s signature / Assinatura do Orientador

CAMPINAS

2014

iii

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Approximation Algorithms for Facility Location

Problems and Other Supply Chain Problems

Lehilton Lelis Chaves Pedrosa1

July 4, 2014

Board of Examiners/Banca Examinadora:

• Prof. Dr. Flávio Keidi Miyazawa (Supervisor/Orientador)

• Prof. Dr. Jayme Luiz Szwarcfiter
COPPE - UFRJ

• Prof. Dr. Luciana Salete Buriol
Institute of Informatics - UFRGS

• Prof. Dr. Cristina Gomes Fernandes
Department of Computer Science - USP

• Prof. Dr. Luis Augusto Angelotti Meira
Faculty of Technology - UNICAMP

• Prof. Dr. Eduardo Candido Xavier (Substitute/Suplente)
Institute of Computing - UNICAMP

• Prof. Dr. Orlando Lee (Substitute/Suplente)
Institute of Computing - UNICAMP

• Prof. Dr. Yoshiko Wakabayashi (Substitute/Suplente)
Department of Computer Science - USP

1Financial support: CAPES (2010); FAPESP, grant number 2010/20710-4 (2011-2014).

vii

Abstract

This thesis gives approximation algorithms for a series of NP-hard supply chain problems,
that range from the packing, the distribution, and the inventory management of items,
to the design of the supply network. Several novel techniques are employed in these
approximations, and many of them may be extended to di�erent problems.

In the Metric Facility Location Problem (FLP), given sets of clients and facilities in
a metric space, the objective is to open a subset of facilities, such that the cost to open
facilities, and the cost to connect each client to an open facility is minimum. This work
considers the case when the distance function is the square of a metric, which is suitable for
many applications that do not satisfy the metric assumption. A lower bound of 2.04 on the
approximation factor is given, and it is shown that an LP-rounding algorithm matches
this factor. More interestingly, a new technique to obtain factor-revealing programs is
presented, and it is used to analyze primal-dual algorithms, giving tight factors under a
squared metric, or improving known factors under a metric. Also, it is shown that the
Continuous FLP (ConFL), when a facility location is any point of the Euclidean space,
may be reduced to the FLP by using the so called center sets. Center sets for the L–

2 -norm
are given, and thus approximations for ConFL with this norm are derived, for – Ø 1. As
a by-product, a PTAS for k-medians with the L–

2 -norm is obtained.
The Production and Distribution Problem (PDP) is the problem of minimizing order-

ing, transportation and inventory costs of a supply chain formed by a set of warehouses
and retailers over a finite time horizon. This is a common generalization of the FLP,
and the Joint Replenishment Problem (JRP), and allows the coordination of network
design and inventory management decisions, thus leading to significant economy. A 2.77-
approximation for the PDP is given under the assumption that holding and distribution
cost functions satisfy a natural extension of the triangle inequality. Other generalizations
of the JRP are also considered, such as the One-Warehouse Multiple-Retailer Problem
(OWMR), for which a 5-approximation is given in the case that warehouse and retailer
inventory costs are independent. Under this assumption, no approximation algorithm was
known previously.

Finally, there are given APTAS’s for the circle bin packing, and the circle strip packing.

ix

Resumo

Esta tese apresenta algoritmos de aproximação para uma série de problemas NP-difíceis
que surgem nas várias etapas de uma cadeia de fornecimento e vão desde o empacotamento,
a distribuição e a gerência de estoque até o projeto da rede de abastecimento. Várias novas
técnicas são apresentadas, das quais muitas podem ser estendidas a problemas diferentes.

No Problema de Alocação de Instalações Métrico (FLP), são dados conjuntos de clien-
tes e instalações em um espaço métrico e o objetivo é alocar um subconjunto de instalações
de modo que o custo de alocação e o custo de conexão de cada cliente a uma instalação
seja mínimo. Este trabalho considera o caso em que a função de distância é o quadrado
de uma métrica, que é adequado para várias aplicações que não pressupõe uma métrica.
Obtém-se um limite inferior para aproximação de 2,04 e demonstra-se que um algoritmo
baseado em arredondamento alcança esse valor. Um resultado mais significativo é uma
nova técnica para obter programas reveladores de fator, que é utilizada para analisar
algoritmos primais-duais, provendo fatores justos no caso da métrica ao quadrado, ou me-
lhorando fatores conhecidos no caso métrico. Além disso, mostra-se que o FLP Contínuo
(ConFL), variante em que um local de instalação é qualquer ponto do espaço euclidiano,
pode ser reduzido ao FLP usando os chamados conjuntos de centros. Obtêm-se conjuntos
de centros para a norma L–

2 e, daí, aproximações para o ConFL para – Ø 1. Como um
subproduto, obtém-se um PTAS para o problema das k-medianas nessa norma.

O Problema de Produção e Distribuição (PDP) tem como objetivo minimizar os cus-
tos de pedido, transporte e inventário de uma cadeia de fornecimento formada por ar-
mazéns e lojas durante um período determinado. Esse problema generaliza o FLP e o
Problema de Reposição Conjunta (JRP) e permite a coordenação das decisões de projeto
de rede e gerenciamento de estoque, conduzindo a uma economia significativa. Provê-se
uma 2,77-aproximação quando os custos de armazenamento e distribuição satisfizerem a
uma extensão natural da desigualdade triangular. Outras variantes do JRP também são
consideradas, como o Problema Um-Armazém Múltiplas-Lojas, para o qual é dada uma
5-aproximação quando os custos de estoque dos armazéns e das lojas forem independentes.
Sob essa hipótese, não se conhecia nenhuma aproximação anteriormente.

Finalmente, são apresentados APTASs para problemas de empacotamento de círculos.

xi

Acknowledgements

I’d like to thank my supervisor Flávio Miyazawa, my
co-supervisor Maxim Sviridenko, the co-authors Cristina Fernandes,
Luis Meira, Rafael Schouery, and Yoshiko Wakabayashi, and all the
other uncountable friends with whom I’ve spent some time during
these joyful four years.

Thanks!

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

1 Introduction 1

1.1 Approximation algorithms and thesis overview 2
1.2 Definitions and main techniques . 4

1.2.1 Approximation algorithms . 4
1.2.2 Linear programming techniques . 5
1.2.3 Description of the main problems 6
1.2.4 Variants and common assumptions 7

1.3 Results and thesis organization . 8

2 Upper Bound Factor-Revealing Programs 13

2.1 Literature review . 15
2.2 Inapproximability threshold for the SMFLP 18
2.3 Upper bound factor-revealing programs . 19

2.3.1 An example: a first analysis . 23
2.3.2 General technique: an improved analysis 26

2.4 Further applications of UPFRP’s . 32
2.4.1 Analysis of improved greedy . 32
2.4.2 Combining with scaling and greedy augmentation 37

2.5 Experimental results . 39
2.6 An optimal approximation algorithm . 41

2.6.1 The Facility Location Problem with relaxed metrics 44

3 The Continuous Facility Location Problem 49

3.1 Literature review . 50

xv

3.2 Definitions . 54
3.3 Approximations for ConFL . 55

3.3.1 A discretization lemma . 56
3.3.2 Euclidean and squared Euclidean ConFL 58
3.3.3 Discrete squared metric k-medians 59

3.4 Continuous FLP with powers of Euclidean distances 61

4 Supply Chain Problems 69

4.1 Literature review . 70
4.2 The Production and Distribution Problem 72

4.2.1 Holding and transportation costs model 73
4.2.2 A linear programming relaxation 74
4.2.3 Complete solutions and filtering . 75

4.3 Approximation for the Metric PDP . 77
4.3.1 Clustering . 77
4.3.2 Balancing using extra orders . 79
4.3.3 Balancing using filtering . 81
4.3.4 Combining di�erent algorithms . 84

4.4 The PDP with retailer ordering costs . 85
4.4.1 Complete solutions . 86
4.4.2 Preprocessing . 87
4.4.3 Filtering and clustering . 89

4.5 A primal-dual algorithm for OWMR . 92
4.5.1 Holding cost model . 94
4.5.2 Primal-dual algorithm . 95
4.5.3 Analysis . 99

4.6 The Multilevel Joint Replenishment Problem 104

5 Circle Packing Problems 109

5.1 Literature review . 110
5.2 Packing of circles through algebraic quantifier elimination 111
5.3 Approximate bin packing of large circles 112
5.4 An asymptotic PTAS for circle packing into rectangular bins 116

6 Concluding remarks 127

Bibliography 131

xvii

List of Tables

2.1 Approximation factors for the MFLP . 17
2.2 Solutions of the factor-revealing programs for Algorithm A1 40
2.3 Solutions of the factor-revealing programs for Algorithm A2 40
2.4 Solutions of connection factor-revealing programs for Algorithm A2, and

factors for Algorithm A3 . 40

3.1 Algorithms for k-means . 53

xix

List of Figures

2.1 Experimental results . 39
2.2 Intersections of approximation and inapproximability curves 46

3.1 Center set example . 55
3.2 Definitions of Lemma 3.3 ([11]) . 62
3.3 Approximation for the L–

2 -ConFLP . 66

4.1 Mixed holding and transportation costs metric 74
4.2 Possible configuration for Lemma 4.2 . 79
4.3 Shared neighborhood in retailer q over time 89

5.1 Partitioning of circles . 118
5.2 Recursive packing . 118
5.3 Circles that intersect grid lines . 121

xxi

Chapter 1

Introduction

Approximation algorithms have fascinated an ever-greater community of researchers work-
ing on optimization and theory of computing. Whereas the so called NP-hard problems
cannot be e�ciently solved under the largely believed assumption that P ”= NP, the ap-
proximation algorithms provide a compromise between the accuracy of a solution, and the
time used to compute it. The challenge of both practitioners and theorists is to obtain a
solution as close as possible to the optimum, while maintaining the running time small.
The study of approximation algorithms helps not only unveiling which problems can be
solved e�ciently, but also how well they can be solved.

In optimization problems, the objective is to minimize or maximize the value of a given
function. In these situations, one has to distinguish between a feasible solution, that is
any element of the function domain, from an optimal solution, that is a feasible solution
with maximum or minimum value. For example, one might be interested in finding a path
between two locations with minimum length, or selling items to several clients according
to the distribution that maximizes the profit. While the best solution may be di�cult to
find, an acceptable solution can be easily obtained in many cases. The trade-o� between
the solution quality and the algorithm’s running time is normally reflected on the ratio
between the values of generated and optimal solutions. For an approximation algorithm,
this ratio has a proven bound, and the running time is always polynomial.

Many optimization problems appear in the decision-making process of industries of
several areas. In location problems, one looks for placing facilities in certain locations so as
to minimize some defined client allocation cost function. For instance, a telecommunica-
tion company may wish to place concentrator nodes in a given network, or a supermarket
network may need to locate a set of warehouses to serve its retailers. In the inventory
management, the problems aim at minimizing the ordering and stock holding costs. In
packing problems, one needs to arrange several items in available recipients minimizing
the consumed resources. Although in di�erent applications one deals with several kinds

1

2 Chapter 1. Introduction

of objects, it is common to define similar problems using simpler abstract models. For
example, both the communication and retailer networks are modeled as graphs. Algo-
rithms for these models can be analyzed formally, and then applied to practical scenarios
without or with minor modifications.

This thesis investigates several optimization problems that appear in the management
of an organization’s supply chain and related activities. It comprises numerous tasks that
extend from the configuration of a supply chain network, up to the packing, transporta-
tion, and inventory control of goods. This work is oriented from a theoretical point of
view, and the objective is invariably obtaining approximation algorithms for the studied
problems in their abstract forms. Several novel techniques are developed for these, as well
as for many of their variants.

1.1 Approximation algorithms and thesis overview

An optimization problem is the task to find the best solution among a well-defined set
of feasible solutions. This set of solutions is the domain of an associated real-valued
function, that is called the objective function. Here, the best solution may refer either
to one with minimum value among all solutions, or to one with maximum value. In the
continuous optimization theory, the domain is a subset of the Euclidean space, and is
normally defined by a set of inequalities and equalities. In combinatorial optimization,
the domain is a discrete set. Typically, the domain is not defined explicitly, but defined as
the set of elements in a finite enumerable set that satisfies some easily testable properties.
However, the naive idea of evaluating the objective function for each element of the domain
to find the optimal value is impractical, even for relatively moderated instances.

Several important optimization problems are NP-hard. This means that, under the
hypothesis that P ”= NP, there are no e�cient algorithms that compute the optimal
value. The idea of an e�cient algorithm is subjective, so, in this work, it is defined as
an algorithm that runs in polynomial time. Although having a polynomial running time
is not a guarantee of being practical, running in superpolynomial time is certainly an
indication of a slow algorithm. This is reasonable, since in most cases one is interested
in the asymptotic analysis, that defines the behavior of the algorithm when it is fed
with large instances. Such notion of e�ciency is standard, and has been used since the
1960’s [49].

The di�culty of solving large instances of a hard problem leads one to look for alter-
natives to ine�cient exact algorithms. There are several options, such as using heuristics,
or restricting the problem. In these cases, it is common to give up an optimal solution
for a non-optimal acceptable solution. The concept of solution quality may vary with
the problem, yet, in most cases, a good solution is one whose value is close to the op-

1.1. Approximation algorithms and thesis overview 3

timum. An algorithm that runs in polynomial time, and that produces a solution with
value guaranteed to be close to the optimal value is called an approximation algorithm.

The values of generated and optimal solutions can be compared either by their di�er-
ence, or by their ratio. The measure used for most problems is the so called approximation
factor, that is a bound on the value of the generated solution divided by the value of an op-
timal solution for any given instance. Therefore, an algorithm with approximation factor
one is an exact algorithm, and the closer to one is the factor, the better is the algorithm.
For some optimization problems, even the task to obtain an approximation algorithm
whose factor is within a given bound is NP-hard. In this case, such a bound is said to be
an approximation lower bound for a minimization problem, or an approximation upper
bound for a maximization problem. On the other hand, an approximation algorithm gives
an approximation upper bound for a minimization problem, or an approximation lower
bound for a maximization problem.

Various problems have a rich history of approximation algorithms, such as the classical
Metric Facility Location Problem, the k-means clustering, the packing of rectangular
items, and many others. Several other important problems have just few or no works
that give guarantees on the approximation factor, as is the case of some production and
distribution problems in the inventory management, and the packing of non-rectangular
items. Even for widely studied problems, there is a lengthy list of relevant variants
that are underexplored from the perspective of approximation algorithms. Examples of
variants are the Facility Location Problem with relaxed metric distance functions, and
the clustering problem with penalty per cluster. This thesis aims at addressing this gap,
by providing approximation algorithms for many of these problems

There is a variety of techniques used to obtain approximation algorithms, that are
based on local search, linear programming, semidefinite programming, etc. Similar prob-
lems, or problems with similar combinatorial structures, can usually be tackled by the
same or by comparable techniques. Most of this work is devoted to the study of approxi-
mation algorithms based on linear programming techniques, such as rounding of fractional
solutions, and the primal-dual method. This approach is used, for example, on the Fa-
cility Location Problem, and on the inventory management problems. In the case of the
considered clustering and packing problems, the used techniques are essentially specific
to their geometrical nature.

This work spans over several topics of the supply chain management and related litera-
ture. For the class of location problems, the Facility Location Problem with squared metric
distance functions, and a clustering problem called Continuous Facility Location Prob-
lem are studied. For the class of inventory management problems, the One-Warehouse
Multiple-Retailer Problem with independent warehouse holding costs, and the integrated
problem of production and distribution, that is a generalization of the Facility Location

4 Chapter 1. Introduction

Problem and the Joint Replenishment Problem, are studied. Additionally, the problems
of packing circles into unit square bins, or into an unbounded unit width strip are consid-
ered. Approximation algorithms are given for problems in each of the investigated areas,
by reviewing and applying known methods, while giving new insights, and developing new
techniques.

Although this work views problems purely as abstract models, they have a wide range
of applications. The Facility Location Problem appears in network projects, such as the
installation of cache and routers [63, 92], or in data clustering and server replication [4, 63,
77, 117]. Other clustering problems, such as k-means, have diverse applications in image
compression, distribution of resources, cellular biology, etc. [48]. Non-metric versions of
classical problems are often considered, such as the variant of the Traveling Salesman
Problem whose distance function is the Euclidean distance raised to some exponent, that
finds application in the power attribution of wireless networks [56], or the version whose
distance satisfies some relaxed triangle inequality [20]. The Joint Replenishment Problem
appears in the inventory management of many multi-product environments [81].

1.2 Definitions and main techniques

In this section, approximation algorithms and related concepts are defined formally. Also,
the techniques used in this thesis, and the main considered problems are described.

1.2.1 Approximation algorithms

Consider a minimization problem, and a corresponding algorithm A. For a given problem
instance I, the value of the solution obtained by the algorithm when it is applied to I is
denoted by A(I). Also, the value of an optimal solution for I is denoted by OPT(I). The
approximation ratio or approximation factor of A is defined as

RA := supI {A(I)/OPT(I)} ,

where I ranges over the complete set of instances. If A runs in polynomial time on the size
of every instance, then it is called an approximation algorithm with factor RA. In many
cases, obtaining a bound on the approximation ratio is easier than computing the ratio
itself. For a given number –, an approximation algorithm A is called an –-approximation

if – is not smaller than RA. Similarly, the asymptotic approximation ratio of A is defined
as

RŒ
A := lim suphæŒ supI {A(I)/OPT(I) : OPT(I) = h} ,

and A is called an asymptotic approximation algorithm with factor RŒ
A if it runs in

polynomial time on the size of I.

1.2. Definitions and main techniques 5

A family of algorithms {AÁ} with parameter Á for a given minimization problem is
called a polynomial-time approximation scheme (PTAS) if, for every Á > 0, AÁ is a
(1 + Á)-approximation. Analogously, a family of algorithms {AÁ} is called an asymptotic
polynomial-time approximation scheme (APTAS) if, for every Á > 0, AÁ is an asymptotic
(1+Á)-approximation. Also, an e�cient polynomial-time approximation scheme (EPTAS)
is a PTAS whose running time is bounded by a polynomial on the size of the input, and
the exponent of such polynomial does not depend on Á.

A randomized algorithm is an algorithm A that, in addition to the instance I, receives
as input a random sequence of bits. In such algorithms, the decisions are taken according
to probability distributions, and therefore the value of the generated solution is itself a
random variable. In this setting, one is not interested in bounding the value of the worse
case solution, but in the expected value of the generated solution. For a given number –,
a polynomial-time algorithm A is a randomized –-approximation if E[A(I)] Æ – OPT(I)

for every instance I, where E[A(I)] is the expected value of the generated solution.

1.2.2 Linear programming techniques

An integer linear program (ILP) is the task to minimize or maximize a linear function of
integer variables that are constrained by a set of linear inequalities. In a mixed integer
linear program (MILP), some of the variables are allowed to assume non-integer values.
A common technique to solve combinatorial optimization problems is encoding them as
ILP’s or MILP’s, and then using standard techniques, such as the branch-and-bound and
branch-and-cut algorithms. Classical NP-hard problems, as the knapsack problem, can
be easily formulated as ILP’s, and thus solving ILP’s in general is also NP-hard. Indeed,
for many problems, solving the ILP directly is only possible for very small instances. For
example, it has been shown that branch-and-bound algorithms must almost surely explore
a superpolynomial number of nodes to obtain optimal solutions for k-medians [2].

Although it is impractical to solve ILP formulations directly, they are useful to obtain
and analyze approximation algorithms. Often, one considers a linear programming (LP)
relaxation of an ILP or of an MILP, which is obtained by relaxing the corresponding
integrality constraints. The optimal value of this relaxation provides a bound on the
value of the original problem, so that the value of a solution generated by the algorithm
can be compared to the optimal value. There are standard techniques that take advantage
of the relaxations. Among such methods are the primal-dual method, that considers the
dual problem of the relaxation, and the LP-rounding technique, that solves the relaxation,
and rounds the fractional solution to obtain an integer feasible solution.

The primal-dual method uses the dual problem of the relaxed linear program to obtain
a bound on the optimal value, while generating a solution to the original problem. In such

6 Chapter 1. Introduction

algorithms, the costs of the obtained solution are associated with variables of a feasible
dual solution. By the weak duality theorem, the value of such solution is a bound on the
optimal value of the relaxation. A classical example is given by Jain and Vazirani [76],
who use the primal-dual technique to obtain an approximation algorithm for the Metric
Facility Location Problem. The technique has also been used in a long sequence of works
for several problems [17, 58, 59, 74, 90, 118, 119, 132].

A particular class of primal-dual algorithms uses the dual-fitting technique. In such
algorithms, one constructs an infeasible dual solution with value that matches the cost
of the generated integral solution. To obtain a feasible dual solution, each dual variable
is scaled by a certain number, so that obtaining an approximation factor reduces to
calculating such a number. Dual fitting has been used to obtain approximation algorithms
for the Facility Location Problem, whose analysis employs the so called families of factor-
revealing linear programs [72].

The set of techniques that transform the solution of a linear programming relaxation
into a feasible integer solution is commonly referred to as LP-rounding. Many of these
techniques are applied to formulations whose integer variables are binary, that is, the
goal is to round a fraction either to zero, or to one. Di�erent approaches are used to
achieve this goal, such as rounding up variables depending whether they are larger than
a specified value. LP-rounding is also used in combination with randomized algorithms,
in which fractional values are interpreted as probabilities. This technique has been used
to obtain approximation algorithms for several problems, such as the Facility Location
Problem [37], and the Joint Replenishment Problem [91].

1.2.3 Description of the main problems

The major problems investigated in this thesis have varied objectives, and may be grouped
in three main sets: location and clustering problems, that include the Facility Location
Problem, and the Continuous k-medians; inventory management problems, that include
the Joint Replenishment Problem; and packing problems, that include the Circle Bin
Packing. These problems are described in the following.

In the Facility Location Problem (FLP), one is given a set of facility locations, and a
set of clients. Installing a facility at some location i incurs a fixed opening cost fi, and
assigning a client j to a facility at location i incurs a connection cost cij. The objective is to
install a subset of facilities so that the total opening and connection costs are minimized.
In the Continuous k-medians, one is given a set of points in the d-dimensional Euclidean
space, and an integer k Ø 1. The objective is to find a set of k points in the space,
that are called centers, while minimizing the sum of the distance from each point to
its closest center. Traditionally, the considered distance is the Euclidean distance, but

1.2. Definitions and main techniques 7

other symmetric real-valued binary functions over the space may also be used. A widely
considered particular case is the so called k-means, that uses the square of the Euclidean
distance.

In the Joint Replenishment Problem (JRP), there are N kinds of items, that may be
demanded in each of T periods. For each period t, the number dit represents the quantity
of items of kind i that are requested. This demand must be served by the currently held
stock of this item, that is initially empty. Replenishing the stock of item i is done by
ordering items to the warehouse, and each such order incurs a constant nonnegative cost
Ki, independent of the quantity requested. Also, for every period a retailer places an
order, a fixed setup joint ordering cost K0 is charged, that is independent of the number
of ordered items. For each unit of item i ordered at time s and delivered at a later
period t, there is a nonnegative cost hist for holding the unit in the stock. The objective
is to minimize the total ordering and holding costs, while satisfying all demands.

In the Circle Bin Packing, one is given a list of circles, and an unlimited number of
unit squares, that are called bins. A circle is said to be packed if it is fully contained in
one bin, and does not intersect any other circle. The objective of the problem is to pack
all circles using the minimum number of bins. In the Circle Strip Packing, there is only
one recipient of unit width and unbounded height, and the objective is to pack all circles
using the strip of minimum height.

1.2.4 Variants and common assumptions

Many problems receive, as input, functions that represent some associated service cost.
For example, in the FLP, the distance function corresponds to the cost to connect a
client to a given facility. In the JRP, the holding cost function defines how much it will
cost holding one unit of an item in the stock during a given period. Depending on the
assumptions made on these functions, the corresponding problems become more or less
general. As a consequence, their approximability is also a�ected by the hypotheses over
the service cost. In the following, premises on the distance and holding cost functions
commonly assumed in the literature are described.

Distance functions. Given a set of elements, the distance function is the measure that
represents the dissimilarity between any two given elements, and may represent a physical
distance, a time interval, etc. The FLP cannot be approximated by a constant factor with
general distance functions, unless P = NP. Therefore, this problem is commonly studied
under the assumption that the underling distance function is metric. A distance function c

for the FLP is a metric if it satisfies the triangle inequality, that is, for every clients j

and jÕ, and facilities i and iÕ, it holds cij Æ cijÕ + ciÕjÕ + ciÕj.

8 Chapter 1. Introduction

Although assuming the triangle inequality is reasonable in many cases, such as when
costs correspond to physical distances, there are cases for which such restrictions cannot
be made. Since the general case does not have good approximations, a natural alternative
is to relax the triangle inequality in a controlled way. One possibility is using the so called
· -relaxed triangle inequality, which means that, for any clients j and jÕ, and facilities i

and iÕ, it holds cij Æ ·(cijÕ + ciÕjÕ + ciÕj). Another way of relaxing the triangle inequality is
considering the distance function that is the square of a metric, that is specially useful in
problems whose set of elements are points of the Euclidean space, such as in the k-means.
A squared metric distance function satisfies the 3-relaxed triangle inequality.

Holding cost functions. In the JRP, the holding cost function may have one of several
structures. The classical literature considers the additive holding cost, when for each
time step t and item i, there is a fixed cost for holding one unit of item, hit, and the total
holding cost to keep one unit from time step r to time step s is given by the sum of partial
holding costs, hirs =

qs
t=r hit. More general models consider holding cost functions under

the assumption that hist is monotonically non-increasing in s for some fixed t. Another
studied variant is the so called JRP with deadlines, that is the particular case in which
the holding cost function is either zero or infinity, or, equivalently, in which each demand
must be satisfied in a given time interval.

In the generalization of the JRP called the One-Warehouse Multiple-Retailer Problem
(OWMR), the items may be held in the warehouse before being transported to a retailer.
In this problem, the holding cost is given by a function hit

rs that corresponds to the value
of holding one unit of item i in the warehouse from time r to time s, and then holding the
item in the retailer from time s to time t. This problem has been studied with additive
holding cost functions, or with a more general monotonic holding structure. Specifically,
there is an approximation algorithm for the case in which, for each item i, and fixed
times r and t, the function hit

rs is either non-increasing or non-decreasing in r.

1.3 Results and thesis organization

This thesis gives approximation algorithms for a broad list of problems, and is organized
so that closely related problems are considered in the same chapter. The techniques used
for a set of problems may vary significantly from those of others, and thus each chapter
is made as self-contained as possible. While general notions have been given in this
introduction, definitions and motivations that are specific to each problem are deferred
to the corresponding chapters. In particular, in each chapter, a special section gives a
literature synopses of the main problems being studied, and shows how the corresponding
approximation algorithms have improved upon the previous works.

1.3. Results and thesis organization 9

In Chapter 2, we address a variant of the FLP in which the considered distance
function is the square of a metric. Although the Metric FLP is part of the combinatorial
optimization folklore, and is widely studied from the approximation algorithms point of
view, few works consider the case with more relaxed restrictions on the distance function.
The square of a metric is an intermediate class of distance functions, that is not as
restrictive as requiring the triangle inequality, but does not allow too general functions,
for which there would be no constant approximations. As expected, this variant is harder
to approximate, since, as we show in Chapter 2, it cannot be approximated by a factor
smaller that 2.04, unless P = NP. This lower bound is a counterpart of the lower bound
of 1.463 for the metric case [62].

To obtain approximation algorithms, we have taken the natural way, that is analyzing
the existing algorithms for the Metric FLP, when they are applied to more relaxed distance
functions. Algorithms based on LP-rounding and primal-dual techniques are analyzed.
We verify that, for the squared metric variant, the algorithm of Chudak and Shmoys [38]
has the best possible approximation factor, as it matches the lower bound of 2.04. This is
a surprising result, since it extends in spirit the analysis made by Byrka and Aardal [28]
for the metric case, for which this algorithm is only a 1.575-approximation, and thus does
not match the corresponding lower bound of 1.463.

Perhaps more important is the study of the primal-dual algorithms of Jain et al. [72],
that, although achieve slightly worse approximation factors, are very e�cient when com-
pared to the LP-rounding approach. These algorithms use the dual fitting technique, and
are analyzed by the so called factor-revealing LP’s. Solving one of such LP’s with the aid
of a computer gives a bound on the approximation factor for instances of a given size.
The approximation factor, on the other hand, must be hand calculated by tedious proofs,
that depend on guessing general dual solutions for the factor-revealing linear programs.
Using the same approach for the squared metric case proved to be a very tough task,
since the corresponding factor-revealing programs are not linear. Instead, we introduce
a di�erent approach. The main result of this chapter is a novel technique to derive a
family of upper bound factor-revealing programs (UPFRP), which can be solved by a
computer to give a bound on the approximation factor directly. Obtaining an UPFRP is
mostly straightforward, and does not require guessing a dual solution. By using UPFRP’s,
tight approximation factors for the primal-dual algorithms under the squared metric are
obtained, and the factors for the metric case are improved in some cases.

Also, other generalizations of the FLP are studied, such as the variant in which the
distance function satisfies the · -relaxed triangle inequality. This chapter contains joint
work with Cristina G. Fernandes, Luis A. A. Meira, and Flávio K. Miyazawa. An extended
abstract was presented at APPROX 2012 [53], and a full version article has been submitted
for publication.

10 Chapter 1. Introduction

In Chapter 3, we address the Continuous FLP. The objective is to partition a set of
points of the Euclidean space, while minimizing the cost to connect each point to its cluster
center given by some known distance function. Di�erently from the Continuous k-medians
problem, for which the number of clusters is limited by k, in the Continuous FLP, the
number of clusters is controlled by a fixed opening cost. We show that this problem
can be reduced to the corresponding discrete version of the FLP. Indeed, we obtain
an (– + Á)-approximation for the Continuous FLP from an –-approximation for the FLP
whose clients and facilities are finite sets of points of the space. This reduction depends on
the existence of the so called center sets for a given distance function. Informally, a center
set is a small set of candidate centers including one point that is a (1 + Á)-approximated
solution for the corresponding 1-median problem.

Combining center sets previously used for the Continuous k-medians with known ap-
proximation algorithms for the FLP, it is possible to obtain approximations for the Contin-
uous FLP with several distance functions. For the Euclidean distance, an approximation
scheme is given by combining the center sets used by Kumar et al. [86] for k-medians,
and the approximation scheme by Arora et al. [7] for the Euclidean FLP. For the squared
Euclidean distance, the center sets given by Inaba et al. [71] are used in combination with
the 2.04-approximation presented in Chapter 2, thus obtaining a (2.04+Á)-approximation
for ConFL with this distance.

Also, we show how to obtain center sets when the considered distance function is the
Euclidean norm raised to some power –, for – Ø 1. By noticing that this function satisfies
the 3–≠1-relaxed triangle inequality, and using results from Chapter 2, we also derive
approximations for the Continuous FLP in this case. As a by-product, by combining the
obtained center sets with the framework of Kumar et al. [86], we obtain an approximation
scheme for the Continuous k-medians problem with L–

2 -norm. This chapter contains joint
work with Luis A. A. Meira, and Flávio K. Miyazawa, and a paper containing these results
has been submitted for publication.

In Chapter 4, a series of supply chain problems is examined. First, we study a common
generalization of the FLP and the JRP, here called the Production and Distribution
Problem (PDP). This problem is considered, for example, by Pochet and Wolsey [116].
Unlike the JRP, for which the distribution network is fixed, or the FLP, that ignores the
decisions of inventory management, in the PDP, transportation and holding costs must
be minimized in an integrated manner. We present the first approximation algorithms for
this problem under a natural assumption that combines metric distances, and monotonic
holding costs. A 2.77-approximation based on LP-rounding is given. This algorithm
is extended to the case with retailer ordering costs and additive holding cost functions,
for which a 5-approximation is given. This chapter contains joint work with Maxim
Sviridenko, and an extended abstract was presented at LATIN 2014 [115].

1.3. Results and thesis organization 11

Also, we consider the OWMR with a more general holding cost structure than that con-
sidered in the previous known approximation, which is the LP-rounding 1.8-approximation
by Levi et al. [91]. In their algorithm, they assume that the holding cost function satis-
fies certain monotonicity properties. Namely, they assume that the cost of holding one
unit of item either decreases, or increases as the fraction of time that the item is held on
the warehouse increases. For many applications, this is an unnatural assumption, since
it implies that the warehouse holding cost is dependent on the retailer holding cost. In
this chapter, we present a 5-approximation for OWMR with independent warehouse and
retailers holding costs under natural monotonicity and subadditivity assumptions. This
algorithm is based on a novel primal-dual technique that extends the wave mechanism
used for the JRP [90], and answers positively an open question left by Levi et al. [91],
that asks whether the primal-dual approach could be extended to work with OWMR.

Further, we study the Multilevel JRP, for which the supply chain can be any tree,
opposed to the standard version, whose supply chain comprises of one warehouse and
several retailers. We observe that the Multilevel JRP is equivalent to the Assembly
Problem, that admits a 2-approximation via the primal-dual method [90].

In Chapter 5, circle packing problems are studied. We consider the Circle Bin Packing
Problem, whose objective is to pack a set of circles into the minimum number of unit
square bins, and the Circle Strip Packing, whose objective is to pack a set of circles into a
unit width strip of minimum length. Previously, such problems have been tackled mostly
by means of heuristics, and other models. This chapter presents the first approximation
algorithms. Indeed, we give an APTAS for the bin packing problem with resource aug-
mentation in one dimension, when one side of the bin has length 1+“, for some arbitrarily
small “ > 0. As a corollary, we also obtain an APTAS for the Circle Strip Packing Prob-
lem. This chapter contains joint work with Flávio K. Miyazawa, Rafael C. S. Schouery,
Maxim Sviridenko, and Yoshiko Wakabayashi, and an extended abstract will be presented
at ESA 2014 [111].

Chapter 6 summarizes the obtained results, discusses extensions, and lists problems
that remain open.

Chapter 2

Upper Bound Factor-Revealing

Programs Applied to Facility

Location Problems

We consider a generalization of the Metric Facility Location Problem (MFLP), when the
distance function is the square of a metric, that is named the Squared Metric Facility
Location Problem (SMFLP). A deep investigation on this problem is undertaken, and we
give approximations, as well as hardness results. The main result of this chapter, however,
is new technique to systematically bound factor-revealing programs [72], that are used in
the analysis of primal-dual algorithms. Previously, such programs were bounded through
very long proofs, that depended on non-straightforward guessing steps. Applying the
same strategy to the SMFLP proved impractical, and thus we developed a new and
simpler alternative, which is presented in this chapter.

Problem’s definition. Consider finite sets C and F representing clients and facilities,
respectively. For each facility i and client j, let cij be a nonnegative number representing
the cost to connect i to j. Additionally, let fi be a nonnegative number representing
the cost to open facility i. The objective of the Facility Location Problem (FLP) is
finding a subset of facilities F Õ such that

q

iœF Õ fi +
q

jœC miniœF Õ cij is minimum. We
consider instances whose connection cost function c is the square of a metric. Specifically,
a function c is a squared metric, if for all facilities i and iÕ and clients j and jÕ it holds

Ô
cij Æ Ô

cijÕ +
Ô

ciÕjÕ +
Ô

ciÕj.

The Squared Metric Facility Location Problem is the particular case of the FLP that only
considers instances that satisfy this inequality.

13

14 Chapter 2. Upper Bound Factor-Revealing Programs

Notice that any metric is also a squared metric, thus any approximation for the SMFLP
is also an approximation for the MFLP, and the inapproximability results for the MFLP
are also valid for the SMFLP. In general, the FLP is naturally formulated as a mixed
integer linear programming. In the next program, a binary variable yi indicates whether a
given facility i is open, and variable xij indicates whether client j is connected to facility i.

minimize
q

i yifi +
q

iœF

q

jœC cijxij

subject to
q

iœF xij = 1 j œ C,

xij Æ yi i œ F, j œ C,

xij Ø 0 i œ F, j œ C,

yi œ {0, 1} i œ F.

(2.1)

By replacing each constraint yi œ {0, 1} by constraint yi Ø 0, for each facility i,
one may obtain the so called linear programming relaxation. The dual program of this
relaxation is given below.

maximize
q

jœC –j

subject to –j Æ cij + —ij i œ F, j œ C,
q

jœC —ij Æ fi i œ F,

–j, —ij Ø 0 i œ F, j œ C.

(2.2)

Motivations. Although there are several algorithms for the MFLP in the literature,
few works consider the SMFLP. Nevertheless, one may try to solve an instance of the
SMFLP using algorithms designed for the metric case. Since these algorithms and their
analyses are based on the assumption of the triangle inequality, it is reasonable to expect
that they generate good solutions also for squared metric instances. However, there is
no trivial way to derive an approximation factor from the MFLP to the SMFLP, so each
algorithm must be reanalyzed individually. Several techniques have been used to obtain
approximations for the FLP, such as local search [84], LP-rounding [38], and primal-dual
approach [72, 76, 104].

The original analysis of some primal-dual algorithms is based on the so called factor-

revealing linear programs [72, 104]. The value of a computer calculated optimal solution
for any such program is a lower bound on the approximation factor. An upper bound,
however, is obtained analytically by bounding the value of every factor-revealing pro-
gram. Here, a technique to obtain a family of upper bound factor-revealing programs is
introduced, so that the upper bound on the approximation factor is also given by solv-
ing a single factor-revealing program. For the SMFLP, these programs have nonlinear
constraints with square roots. Since such inequalities are convex, obtaining upper bound
factor-revealing programs can also be done in this case.

2.1. Literature review 15

Summary of results. There are two main contributions in this chapter. First, an
important generalization of the MFLP is deeply studied. Approximation factors for the
SMFLP are derived by reanalyzing known algorithms for FLP when applied to squared
metric instances. We show that the primal-dual algorithms of Jain et al. [72], and of Mah-
dian et al. [104], and the LP-rounding algorithm of Chudak and Shmoys [38], that have
approximation factor 1.861, 1.61, 1.52, and 1.575 for the MFLP, achieve ratios of 2.87,
2.43, 2.17, and 2.04 for the SMFLP, respectively. The last approximation factor is the
best possible, as we show an inapproximability limit of 2.04 for the SMFLP, that extends
the hardness result of 1.463 for the metric case by Guha and Khuller [62]. Second, and
more importantly, we present a new technique to systematically bound factor-revealing
programs. This technique is used in the dual-fitting analysis of the primal-dual algorithms
for both the SMFLP and the MFLP.

In Section 2.1, the literature on the FLP and related problems is reviewed. In Sec-
tion 2.2, we give a lower bound on the approximation of the SMFLP. The upper bound
factor-revealing programs are introduced in Section 2.3, that analyzes the first algorithm
of Jain et al. [72], and are further used in Section 2.4, that analyzes the second algo-
rithm of Jain et al. [72], and the algorithm of Mahdian [104]. Experimental results of
the obtained UPFRP’s are given in Section 2.5. Finally, in Section 2.6, we show that the
algorithm of Chudak and Shmoys [38] has the best possible approximation factor for the
SMFLP, unless P = NP.

2.1 Literature review

Facility location problems have been studied since the 1960’s [12, 85, 105, 125, 126].
Several heuristics and exact algorithms have been proposed, such as Erlenkotter’s algo-
rithm [50], that combines a dual heuristic in a branch and bound strategy. Approxima-
tions have appeared in the 1980’s, and became object of extensive study over the years.
Hochbaum [70] presented an O(log(n))-approximation. This factor is best possible for
general distance functions, since in this case the set cover can be reduced to the FLP, so
it is unlikely to exist a better factor [51, 112]. The research has focused on the metric
variant of the FLP, when the distance function satisfies the triangle inequality. For this
version, Guha and Khuller [62] proved that no approximation has factor better than 1.463,
unless NP ™ DTIME[nO(log log n)]. Sviridenko strengthened this result, by showing that
this lower bound holds unless P ”= NP (see [131]).

One of the first constant approximations for the Metric FLP is a 3.16-approximation,
given by Shmoys et al. [122] in 1997. In 1998, Guha and Khuller [61] obtained a factor of
2.408, and showed that the problem is MaxSNP-hard. Also, Chudak and Shmoys [36] gave
a 1.736-approximation for the Metric FLP, and Byrka et al. [29] reviewed this analysis

16 Chapter 2. Upper Bound Factor-Revealing Programs

to obtain 1.575-approximation. Koropolu et al. [84] showed that a simple local search is
a (5 + Á)-approximation. In 1999, Charikar and Guha [33] gave a simple greedy method
obtaining a 1.853-approximation, and showed an approximation with 1.728 factor using
a rounding procedure.

In 2001, Jain and Vazirani [76] obtained a 3-approximation for the Metric FLP based
on a primal-dual technique. Yet in 2001, Mahdian et al. [101] gave a 1.861-approximation.
In 2002, Sviridenko [127] obtained factor 1.582, and Jain et al. [73] showed a greedy
primal-dual algorithm with 1.61 approximation factor. Mahdian et al. [103] gave a 1.52,
combining the 1.61-approximation with a greedy augmentation technique. Although near
to the approximability limit, this algorithm did not close the gap, as showed by Byrka and
Aardal [27], who presented instances for which the algorithm of Mahdian et al. obtained
an approximation factor of at least 1.494.

Charikar and Guha [33] investigated approximation algorithms using a bi-criteria ap-
proximation. In this way, an algorithm for the FLP is a (⁄f , ⁄c)-approximation if the
obtained solution has total cost of at most ⁄fF ú +⁄cC

ú, where F ú and Cú denote, respec-
tively, the opening cost and the connection cost of an optimal solution. Jain et al. [73]
observed that ⁄c < 1 + 2e≠⁄f , unless NP ™ DTIME[nO(log log n)], what can be represented
by an inapproximability curve. The result may be strengthened by the same arguments of
Sviridenko (see [131]). In 2007, Byrka [26] presented the first algorithm that touches the
inapproximability curve defined by Jain et al., by combining the LP-rounding algorithm
of Chudak and Shmoys [38], that is a (1.6774, 1.3738)-approximation, with a primal-dual
algorithm of Jain et al. [73], that is a (1.11, 1.7764)-approximation, thus obtaining a 1.5-
approximation for the Metric FLP.

Actually, Byrka et al. [28] showed that the algorithm of Chudak and Shmoys [38] is
an approximation with bi-factor (“, max{1 + 2e≠“, e≠γ+e≠1

1≠ 1
γ

}), for some parameter “ Ø 1.

Byrka et al. [29] suggested that a random distribution on the choice of “ could be used
to improve the 1.5-approximation, in opposition to the use of a fixed value “ = 1.6774.
In 2011, Li [93] used a zero-sum game, and answered this conjecture positively, by pre-
senting an explicit distribution for “, and obtaining a 1.488-approximation for the Metric
FLP, that is the best approximation currently known. In Table 2.1, a summary of the
approximations for the FLP is presented.

Non-metric distance functions and related works. Many problems are studied under
the assumption of an underling metric. Non-metric instances have also been considered
in the literature. For example, in k-means, the distance function is defined as the squared
Euclidean distance between two given points in the space. This kind of distance func-
tion is considered by Jain and Vazirani [76, pp. 292–293], and their approach implies
a 9-approximation the SMFLP. To our knowledge, this is the best previously known

2.1. Literature review 17

Factor Reference year Technique

O(log n) Hochbaum [70] 1982 greedy augmentation
5 + ε Koropulo et al. [84] 1998 local search
3.16 Shmoys et al. [122] 1997 LP-rounding

3 Jain and Vazirani [76] 2001 primal-dual
2.47 Guha and Khuller [62] 1998 LP-rounding + greedy augmentation
1.853 Charikar and Guha [33] 1999 primal-dual + greedy augmentation
1.736 Chudak [36] 1998 LP-rounding
1.728 Charikar and Guha [33] 1999 LP-rounding + primal-dual + greedy

augmentation
1.861 Mahdian et al. [101] 2001 primal-dual
1.61 Jain et al. [73] 2002 primal-dual
1.582 Sviridenko [127] 2002 LP-rounding
1.575 Byrka et al. [29] 2010 primal-dual + greedy augmentation
1.52 Mahdian et al. [103] 2002 primal-dual + greedy augmentation
1.5 Byrka [26] 2007 LP-rounding + primal-dual

1.488 Li [93] 2011 LP-rounding + primal-dual

Table 2.1: Approximation factors for the MFLP

approximation factor for this problem. The choice of squared metrics discourages exces-
sive distances in the solution. This e�ect is important in several applications, such as in
k-means and in classification problems. Other kinds of distances are also considered. For
instance, Charikar et al. [34] discussed that their algorithms for k-medians could also be
analyzed under distance functions that obey the relaxed triangle inequality. Motivated
by the power attribution in wireless networks, de Berg et al. [46] considered the TSP for
the case that the distance between two given points is the Euclidean distance raised to
some power –, and showed a 5-approximation for – = 2.

Mahdian and Yan [102] introduced the strongly factor-revealing linear programs. A
factor-revealing program is similar to a strongly factor-revealing program, however the
techniques involved in obtaining such programs are di�erent. To obtain a strongly factor-
revealing linear program, one projects a solution of an arbitrarily large linear program
into a linear program with a constant number of variables, and guesses how to adjust
the restrictions to obtain a feasible solution. In our approach, we define a candidate
dual solution for a program with a fixed number of variables, and obtain an UPFRP
directly in the form of a minimization program using only straightforward calculations.
For the case of the SMFLP, calculating the dual upper bound program is easier and more
straightforward than projecting the solutions on the primal. Also, we have considered
the case of the MFLP, for which the obtained lower and upper bound factor-revealing
programs converge.

18 Chapter 2. Upper Bound Factor-Revealing Programs

2.2 Inapproximability threshold for the SMFLP

As discussed above, there is no (“f , “c)-approximation for the MFLP, with “c < 1+2e≠“f ,
unless P = NP. By adapting the results of Guha and Khuller [62], one can obtain
analogous lower bounds for the SMFLP, as in the following theorem.

Theorem 2.1. Let “f and “c be positive constants with “c < 1 + 8e≠“f . If there is a

(“f , “c)-approximation for the SMFLP, then P = NP. In particular, let – ¥ 2.04011 be

the solution of the equation “ = 1 + 8e≠“, then there is no –Õ-approximation with –Õ < –

for the SMFLP unless P = NP.

Proof. For simplicity, here we adapt the proof of Guha and Khuller [62] to show that
the lower bound holds unless NP ™ DTIME[nO(log log n)]. If we follow the lines of Sviri-
denko, the condition is changed to unless P = NP (see the lecture notes of Vygen [131,
Section 4.4]).

Assume A is a (“f , “c)-approximation for the SMFLP with “c < 1 + 8e≠“f . Let
J = (U , S) be an instance of the Set Cover, with U being a set of elements, S a collection
of subsets of U and n = |U|. We will derive a (dÕ log n)-approximation algorithm for the
Set Cover problem, for some dÕ < 1. Also, let k be the optimal value of J for the Set
Cover. If k is not known, then one can run the algorithm for k = 1, . . . , n, and output
the best solution found.

The algorithm will find a solution for J by iteratively solving a sequence of instances of
the SMFLP of the form I(j) = (C(j), F, c, f (j)), where F = S and the initial set C(1) = U .
For each element xj œ Si, set cij = 1, and for each xj ”œ Si, set cij = 9. Note that such c is
a squared metric. Let nj = |C(j)|. In the jth instance, every facility cost is f (j) = “

nj

k
, for

some positive “ to be fixed later. For each j, let S(j) denote the solution for I(j) produced
by Algorithm A and let C(j+1) be the elements of C(j) not covered by any set in S(j). This
process stops when C(j+1) = ÿ and yields the solution S(1) fi · · · fi S(j) for J .

Observe that an optimal solution for J is a solution for each I(j) with total facility
cost k f (j) and connection cost one for each of the nj clients. Therefore, S(j) has cost
at most “fkf (j) + “cnj = (“f“ + “c)nj, because f (j) = “

nj

k
. Let —j = |S(j)|/k and dj

be such that djnj is the number of elements covered in iteration j, that is, the number
of elements of C(j) in the union of the sets in S(j). Then the total facility cost of S(j)

is —jkf (j) = —j“ nj. Moreover, djnj clients are connected with cost one and the other
nj ≠ djnj = (1 ≠ dj)nj clients are connected with cost nine. Hence the total cost of S(j) is
—j“nj +djnj +9(1≠dj)nj = (—j“ +9≠8dj)nj. We conclude that “f“ +“c Ø —j“ +9≠8dj.

So we have that “c Ø (—j ≠ “f)“ + 9 ≠ 8dj.
Let d < 1 be such that 1 + 8e≠“f /d > “c. Suppose, for the sake of contradiction, that

dj Æ 1 ≠ e≠—j/d for some j. Then

“c Ø (—j ≠ “f)“ + 9 ≠ 8(1 ≠ e≠—j/d).

2.3. Upper bound factor-revealing programs 19

Considering “f , “ and d fixed, the minimum value of the right hand side is achieved when
—j = d log 8

d “
. Substituting —j above, we get

“c Ø (d log
8

d “
≠ “f)“ + 1 + d “.

Considering d and “f fixed, we choose the value of “ that maximizes the right hand side,
that is, “ = 8

d
e≠

γf
d . Replacing in the inequality, we obtain “c Ø 1 + 8 e≠

γf
d > “c, a

contradiction. So dj > 1 ≠ e≠—j/d for every j, for this d < 1.

Now, we may simply follow the lines of Guha and Khuller [62], one can prove that the
algorithm described above for the Set Cover is a (dÕ log n)-approximation for some dÕ < 1.
This implies that NP ™ DTIME[nO(log log n)].

2.3 Upper bound factor-revealing programs

We analyze the algorithms of Jain et al. [72] using a new systematic factor-revealing
technique. For each algorithm, Jain et al. [72] analysis uses a family of factor-revealing
LP’s parameterized by some k. The optimal value zk of the corresponding LP in the
family is such that supkØ1 zk is the approximation factor of the algorithm. Thus each
value zk is a lower bound on the approximation factor and one has to analytically upper
bound supkØ1 zk to obtain an approximation factor. This is a nontrivial analysis, since
it is done by guessing a general suboptimal dual solution for the LP, usually inspired by
numerically obtained dual LP solutions for small values of k.

In this section, we show how to derive a family of upper bound factor-revealing programs

(UPFRP) parameterized by some t, so that, for any given t, the optimal value xt of one
such program is an upper bound on supkØ1 zk. Obtaining an UPFRP and solving it using
a computer is much simpler and more straightforward than using an analytical proof to
obtain the approximation factor, since this does not include a guessing step and a manual
verification of the feasibility of the solution. Additionally, as a property of the UPFRP’s,
we may tighten the obtained factor by solving the LP for larger values of t. In fact, in
some cases (see Theorem 2.2 below), the lower and upper bound factor-revealing programs
converge, that is, supkØ1 zk = inftØ1 xt.

We use an UPFRP to show that, when applied to the SMFLP instances, the first
algorithm of Jain et al. [72], denoted by A1, is a 2.87-approximation. For the sake of
completeness, the algorithm is described in the following.

20 Chapter 2. Upper Bound Factor-Revealing Programs

Algorithm A1 (C, F, c, f) [72]

1. Set U := C, meaning that every facility starts unopened, and every client un-
connected. Each client j has some budget –j, initially 0, and, at every moment,
the budget that an unconnected client j o�ers to some unopened facility i equals
to max(–j ≠ cij, 0).

2. While U ”= ÿ, the budget of each unconnected client is increased continuously
until one of the following events occur:

(a) For some unconnected client j and some open facility i, –j = cij. In this
case, connect client j to facility i an remove j from U .

(b) For some unopened facility i,
q

jœU max(–j ≠ cij, 0) = fi. In this case, open
facility i and, for every unconnected client j with –j Ø cij, connect j to i

and remove j from U .

The analysis presented by Jain et al. [72] uses the dual fitting method. That is, their
algorithms produce not only a solution for the MFLP, but also a vector – = (–1, . . . , –|C|)

such that the value of the solution produced is equal to
q

j –j. Moreover, for the first
algorithm, following the dual fitting method, Jain et al. [72] proved that the vector –/1.861

is a feasible solution for the dual linear program presented as (3) in [72], concluding that
the algorithm is a 1.861-approximation for the MFLP. To present a similar analysis for
the SMFLP, we use the same definitions and follow the steps of Jain et al. analysis. We
start by adapting Lemma 3.2 from [72] for a squared metric.

Lemma 2.1. For every facility i, clients j and jÕ, and vector – obtained by the first

algorithm of Jain et al. [72] given an instance of the SMFLP,
Ô

–j Æ Ô
–jÕ +

Ô
cijÕ +

Ô
cij.

Proof. If –j Æ –jÕ , the inequality obviously holds. So assume –j > –jÕ . Let iÕ be the
facility to which the algorithm connects client jÕ. Thus –jÕ Ø ciÕjÕ and facility iÕ is open at
time –jÕ < –j. If –j > ciÕj, then client j would have connected to facility iÕ at some time
t Æ max(–jÕ , ciÕj) < –j, and –j would have stopped growing then, a contradiction. Hence
–j Æ ciÕj. Furthermore, by the squared metric constraint, Ô

ciÕj Æ Ô
ciÕjÕ +

Ô
cijÕ +

Ô
cij.

Therefore Ô
–j Æ Ô

–jÕ +
Ô

cijÕ +
Ô

cij.

A facility i is said to be “-overtight for some positive “ if, at the end of the algorithm,

ÿ

j

max
1–j

“
≠ cij, 0

2

Æ fi. (2.3)

2.3. Upper bound factor-revealing programs 21

Observe that, if every facility is “-overtight, then the vector –/“ is a feasible solution for
the dual linear program presented as (3) in [72]. Jain et al. proved that, for the MFLP,
every facility is 1.861-overtight. We want to find a “ for the SMFLP, as close to one as
possible, for which every facility is “-overtight.

Fix a facility i. Let us assume without loss of generality that –j Ø “ cij only for
the first k clients. Following the lines of Jain et al. [72], we want to obtain the so
called (lower bound) factor-revealing program. We define a set of variables f , dj, and
–j, corresponding to facility cost fi, distance cij, and client contribution –j. Then, we
capture the intrinsic properties of the algorithm using constraints over these variables.
We assume without loss of generality that –1 Æ · · · Æ –k. Also, we use Lemma 3.3
from [72], that states that the total contribution o�ered to a facility at any time is at
most its cost, that is,

qk
l=j max(–j ≠dl, 0) Æ f . Additionally, we have the inequalities from

Lemma 2.1. Subject to all of these constraints, we want to find the minimum “ such that
the facility is “-overtight. In terms of the defined variables, we want the maximum ratio
qk

j=1 –j/(f +
qk

j=1 dj). We obtain the following lower bound factor-revealing program:

zA1
k = max

qk

j=1
–j

f+
qk

j=1
dj

s.t. –j Æ –j+1 1 Æ j < k,
Ô

–j Æ Ô
–l +

Ò

dj +
Ô

dl 1 Æ j, l Æ k,
qk

l=j max(–j ≠ dl, 0) Æ f 1 Æ j Æ k,

–j, dj, f Ø 0 1 Æ j Æ k.

(2.4)

The next lemma has an analogous statement to that of Lemma 3.4 in [72], but it refers
to program (2.4). Since the proof is the same, we omit it.

Lemma 2.2. Let “ = supkØ1 zA1
k . Every facility is “-overtight.

Therefore supkØ1 zA1
k is an upper bound on the approximation factor of the algorithm

for the SMFLP. A slight modification of the example presented in Theorem 3.5 of [72]
shows that this upper bound is tight (take cij = (

Ô
di +

Ò

dj +
Ô

–i)
2 if k Ø i ”= j).

Although the constraints coming from Lemma 2.1 are defined by square roots, they
are convex. This is shown in the following.

Lemma 2.3. Let A, B, C, and D be nonnegative numbers. Then
Ô

A Æ
Ô

B +
Ô

C +
Ô

D

if and only if A Æ (1 + — + 1
“
)B + (1 + “ + 1

”
)C + (1 + ” + 1

—
)D for every positive numbers

—, “, and ”. In particular, if
Ô

A Æ
Ô

B +
Ô

C +
Ô

D, then A Æ 3B + 3C + 3D.

Proof. First, suppose
Ô

A Æ
Ô

B +
Ô

C +
Ô

D. Since (
Ô

—B ≠
Ò

D/—)2 Ø 0, we have that

2
Ô

BD Æ —B + D/—. Similarly, we obtain 2
Ô

CB Æ “C + B/“ and 2
Ô

DC Æ ”D + C/”.

22 Chapter 2. Upper Bound Factor-Revealing Programs

Therefore, if
Ô

A Æ
Ô

B +
Ô

C +
Ô

D, then

A Æ (
Ô

B +
Ô

C +
Ô

D)2

= B + C + D + 2
Ô

BD + 2
Ô

CB + 2
Ô

DC

Æ B + C + D + —B + D/— + “C + B/“ + ”D + C/”

= (1 + — +
1

“
)B + (1 + “ +

1

”
)C + (1 + ” +

1

—
)D.

Choosing — = “ = ” = 1, we obtain A Æ 3B + 3C + 3D.
Now suppose

Ô
A >

Ô
B +

Ô
C +

Ô
D. Let d > 0 be such that A = B + C + D +

2
Ô

BD + 2
Ô

CB + 2
Ô

DC + d. Then, A > (1 + — + 1
“
)B + (1 + “ + 1

”
)C + (1 + ” + 1

—
)D is

equivalent to (— + 1
“
)B + (“ + 1

”
)C + (” + 1

—
)D < 2

Ô
BD + 2

Ô
CB + 2

Ô
DC + d. We will

analyze the cases in which none, one, two or all numbers B, C and D are zero. Let › and
›Õ be positive numbers such that › + ›Õ < 1.

Case 1: B, C, D > 0. Let — =
Ò

D
B

, “ =
Ò

B
C

and ” =
Ò

C
D

. Then (— + 1
“
)B + (“ +

1
”
)C + (” + 1

—
)D = 2

Ô
BD + 2

Ô
CB + 2

Ô
DC < 2

Ô
BD + 2

Ô
CB + 2

Ô
DC + d.

Case 2: B = 0 and C, D > 0. Let — = D
›d

, “ = ›Õd
C

and ” =
Ò

C
D

. Then (— + 1
“
)B +

(“ + 1
”
)C + (” + 1

—
)D = 2

Ô
DC + (› + ›Õ)d < 2

Ô
BD + 2

Ô
CB + 2

Ô
DC + d.

Case 3: B, C = 0 and D > 0. Let — = D
›d

, “ = 1 and ” = ›Õd
D

. Then (— + 1
“
)B + (“ +

1
”
)C + (” + 1

—
)D = (› + ›Õ)d < 2

Ô
BD + 2

Ô
CB + 2

Ô
DC + d.

Case 4: B, C, D = 0. Let — = 1, “ = 1 and ” = 1. Then (— + 1
“
)B + (“ + 1

”
)C + (” +

1
—
)D = 0 < 2

Ô
BD + 2

Ô
CB + 2

Ô
DC + d.

From Lemmas 2.3 and 2.1, we can derive the following.

Lemma 2.4. Given an instance of the SMFLP, for every facility i, clients j and jÕ, the

vector – produced by the first algorithm of Jain et al. [72] is such that, for every positive

—, “, and ”,

–j Æ (1 + — +
1

“
)–jÕ + (1 + “ +

1

”
)cijÕ + (1 + ” +

1

—
)cij.

Observe that the proof of the Lemma 2.3 is constructive in the sense that, if the given
inequality with square roots is not satisfied, then it shows how to determine a linear
inequality that is not satisfied. Therefore, the convexity of the constraints of Lemma 2.1
means that program (2.4) can be solved by linear programming packages.

2.3. Upper bound factor-revealing programs 23

2.3.1 An example: a first analysis

Our first step is to relax (2.4) into a linear program. For that, we adjust the objective
function as in [72], and we approximate the inequalities with square roots using inequalities
given by Lemma 2.4. For simplicity, here we will use only the inequalities corresponding to
— = “ = ” = 1. With this, we will prove that supkØ1 zA1

k is not greater than 3.236. Later,
we will improve the obtained result by using a whole set of inequalities from Lemma 2.4,
and using a more standard factor-revealing analysis for the SMFLP. The relaxed lower
factor-revealing linear program is:

ẇk = max
qk

j=1 –j

s.t. f +
qk

j=1 dj Æ 1

–j Æ –j+1 1 Æ j < k

–j Æ 3–l + 3dj + 3dl 1 Æ j, l Æ k

xjl Ø –j ≠ dl 1 Æ j Æ l Æ k
qk

l=j xjl Æ f 1 Æ j Æ k

–j, dj, f, xjl Ø 0 1 Æ j Æ l Æ k.

(2.5)

As (2.5) is a relaxation of (2.4), we have that zA1
k Æ ẇk and thus an upper bound

on supkØ1 ẇk is also an upper bound on supkØ1 zA1
k . Solving linear program (2.5) using

CPLEX for k = 540, we obtain the next lemma.

Lemma 2.5. supkØ1 ẇk Ø 3.220.

To obtain an upper bound on their factor-revealing linear program, Jain et al. [72]
presented a general dual solution of a relaxed version of the lower bound factor-revealing
linear program. This solution is deduced from computational experiments and empirical
results for small values of k. In their analysis, they guessed step functions over the
indices of a set of dual variables, and used a long verification to show that the value of
such solution was not greater than 1.861. For the squared metric case, if we use step
functions for the dual variables, the bound on the factor would be as bad as 3.625. One
can improve the obtained factor to 3.512 by guessing a piecewise function whose pieces
are either constants or hyperboles.

Instead of looking for a good general dual solution, we use an alternative analysis
and derive a linear minimization program from (2.5) whose feasible solutions are upper
bounds on supkØ1 ẇk. Afterwards, we give an upper bound on the approximation factor
by presenting a feasible solution for this program of value less than 3.236.

The idea is to determine a conical combination of the inequalities of (2.5) that imply
inequality (2.3) for a “ as small as possible. The linear minimization program will help
us to choose the coe�cients of such conical combination.

24 Chapter 2. Upper Bound Factor-Revealing Programs

First, rewrite the third inequality of program (2.5), so that the right-hand side is zero.
For each j and l, we multiply the corresponding inequality by Ïjl. Denote by A the sum
of all these inequalities, that is,

k
ÿ

j=1

k
ÿ

l=1

Ïjl(–j ≠ 3–l ≠ 3dl ≠ 3dj) Æ 0.

The fourth and fifth inequalities of program (2.5) can be relaxed to the set of inequal-
ities

ql
i=j(–j ≠ di) Æ f , one for each l such that j Æ l Æ k. For each j and l, we multiply

the corresponding inequality by ◊jl and denote by B the inequality resulting of summing
them up, that is,

k
ÿ

j=1

k
ÿ

l=j

◊jl

ÿl

i=j
(–j ≠ di) Æ

Q

a

k
ÿ

j=1

k
ÿ

l=j

◊jl

R

b f.

The coe�cients of –j in A and B are, respectively,

coe�A[–j] =
k

ÿ

l=1

(Ïjl ≠ 3Ïlj) and coe�B[–j] =
k

ÿ

l=j

(l ≠ j + 1)◊jl,

and the coe�cients of ≠dj in A and B are, respectively,

coe�A[≠dj] =
k

ÿ

l=1

3(Ïjl + Ïlj) and coe�B[≠dj] =
j

ÿ

i=1

k
ÿ

l=j

◊il.

Now, we sum inequalities A and B and obtain a new inequality C:

k
ÿ

j=1

coe�C [–j] –j ≠
k

ÿ

j=1

coe�C [≠dj] dj Æ coe�C [f] f. (2.6)

We want to find values for “, ◊jl, and Ïjl so that the corresponding coe�cients of C

are such that inequality (2.6) implies that

k
ÿ

j=1

–j ≠ “
k

ÿ

j=1

dj Æ “f. (2.7)

Moreover, we want “ as small as possible. To obtain inequality (2.7) from inequality (2.6),
it is enough that, for each j, coe�cient coe�C [–j] Ø 1, coe�C [≠dj] Æ “, and coe�C [f] Æ “.
Hence, this can be expressed by the following linear program.

yk = min “

s.t. coe�C [–j] Ø 1 1 Æ j Æ k

coe�C [≠dj] Æ “ 1 Æ j Æ k

coe�C [f] Æ “

Ïjl Ø 0 1 Æ j, l Æ k

◊jl Ø 0 1 Æ j Æ l Æ k.

(2.8)

2.3. Upper bound factor-revealing programs 25

The interested reader may observe that program (2.8) is the dual of a relaxed version
of the lower bound factor-revealing linear program (2.5). Therefore, its optimal value is
an upper bound on the optimal value of (2.5), that is, ẇk Æ yk for every k.

Lemma 2.6. supkØ1 ẇk Æ 3.236.

Proof. We start by observing that supkØ1 ẇk does not decrease if we restrict attention to
values of k that are multiples of a fixed positive integer t. Indeed, for an arbitrary positive
integer p, by making t replicas of a solution of (2.5) for k = p, and scaling the variables
by 1/t, we obtain a solution of (2.5) for k = pt, that is, we deduce that ẇp Æ ẇpt. So we
may assume that k has the form k = pt with p and t positive integers, and our goal is to
prove that ẇk Æ 3.236.

We will use program (2.8) to obtain a tight upper bound on ẇk. The size of this
program however depends on k, which can be arbitrarily large. So we will use a scaling
argument to create another linear minimization program with a fixed number (depending
only on t) of variables, and obtain a feasible solution for program (2.8) from a solution
for this smaller program. Then, we will show that the value of the generated solution
for (2.8) is bounded by the value of the small solution.

Consider variables “Õ œ R+, ÏÕ
jl œ R+ for 1 Æ j, l Æ t, and ◊Õ

jl œ R+ for 1 Æ j Æ l Æ t.
For simplicity of notation, we introduce the hat operator as follows: for an integer n,
define n̂ := Án

p
Ë. We will obtain a candidate solution for program (2.8) by taking

Ïjl =
ÏÕ

ĵ l̂

p
, ◊jl =

◊Õ
ĵ l̂

p2
, and “ = “Õ. (2.9)

Let us calculate each coe�cient of C (inequality (2.6)) for this solution.

coe�C [–j] =
k

ÿ

l=1

(Ïjl ≠ 3Ïlj) +
k

ÿ

l=j

(l ≠ j + 1)◊jl

=
k

ÿ

l=1

(
ÏÕ

ĵ l̂

p
≠ 3

ÏÕ
l̂ĵ

p
) +

k
ÿ

l=j

(l ≠ j + 1)
◊Õ

ĵ l̂

p2

Ø
pt

ÿ

l=1

(
ÏÕ

ĵ l̂

p
≠ 3

ÏÕ
l̂ĵ

p
) +

pt
ÿ

l=p ĵ+1

(l ≠ p ĵ)
◊Õ

ĵ l̂

p2

=
t

ÿ

lÕ=1

p(
ÏÕ

ĵlÕ

p
≠ 3

ÏÕ
lÕĵ

p
) +

t
ÿ

lÕ=ĵ+1

◊Õ
ĵlÕ

p2

p≠1
ÿ

i=0

(p lÕ ≠ i ≠ p ĵ)

=
t

ÿ

lÕ=1

(ÏÕ
ĵlÕ ≠ 3ÏÕ

lÕĵ) +
t

ÿ

lÕ=ĵ+1

◊Õ
ĵlÕ

p2
(p2 lÕ ≠ p(p ≠ 1)

2
≠ p2 ĵ)

Ø
t

ÿ

lÕ=1

(ÏÕ
ĵlÕ

≠ 3ÏÕ
lÕĵ

) +
t

ÿ

lÕ=ĵ+1

(lÕ ≠ ĵ ≠ 1

2
)◊Õ

ĵlÕ
.

26 Chapter 2. Upper Bound Factor-Revealing Programs

coe�C [≠dj] =
k

ÿ

l=1

3(Ïjl + Ïlj) +
j

ÿ

i=1

k
ÿ

l=j

◊il

=
pt

ÿ

l=1

3(
ÏÕ

ĵ l̂

p
+

ÏÕ
l̂ĵ

p
) +

j
ÿ

i=1

pt
ÿ

l=j

◊Õ
îl̂

p2

Æ
t

ÿ

lÕ=1

p · 3(
ÏÕ

ĵlÕ

p
+

ÏÕ
lÕĵ

p
) +

ĵ
ÿ

iÕ=1

p ·
t

ÿ

lÕ=ĵ

p ·
◊Õ

iÕlÕ

p2

=
t

ÿ

lÕ=1

3(ÏÕ
ĵlÕ + ÏÕ

lÕĵ) +
ĵ

ÿ

iÕ=1

t
ÿ

lÕ=ĵ

◊Õ
iÕlÕ .

coe�C [f] =
k

ÿ

j=1

k
ÿ

l=j

◊jl =
pt

ÿ

j=1

pt
ÿ

l=j

◊Õ
ĵ l̂

p2
Æ

t
ÿ

jÕ=1

p ·
t

ÿ

lÕ=ĵ

p ·
◊Õ

jÕlÕ

p2
=

t
ÿ

jÕ=1

t
ÿ

lÕ=ĵ

◊Õ
jÕlÕ .

Now, we want to find the minimum value of “Õ and values for ÏÕ
jl and ◊Õ

jl such that
the candidate solution for program (2.8) is feasible. We may define the following linear
program, that is the upper bound factor-revealing program.

ẋt = min “Õ

s.t.
qt

l=1(Ï
Õ
jl ≠ 3ÏÕ

lj) +
qt

l=j+1(l ≠ j ≠ 1
2
)◊jl Ø 1 1 Æ j Æ t

qt
l=1 3(ÏÕ

jl + ÏÕ
lj) +

qj
i=1

qt
l=j ◊Õ

il Æ “Õ 1 Æ j Æ t
qt

j=1

qt
l=j ◊Õ

jl Æ “Õ

ÏÕ
jl Ø 0 1 Æ j, l Æ t

◊Õ
jl Ø 0 1 Æ j Æ l Æ t.

(2.10)

Consider an optimal solution for program (2.10) given by variable ◊Õ, and vectors ÏÕ,
“Õ, and the corresponding generated solution for program (2.8), given by variable “, and
vectors ◊, Ï. Replacing “, ◊, Ï in (2.6), we obtain

qk
j=1 –j ≠ “

qk
j=1 dj Æ “f , and thus

ẇk =
qk

j=1 –j Æ “ (
qk

j=1 dj + f) Æ “. Since “ = “Õ = ẋt, we conclude that ẇk Æ ẋt, and
that holds for every positive integer k.

Using CPLEX to solve program (2.10), we obtained ẋ800 ¥ 3.23586 < 3.236, and this
concludes the proof of Lemma 2.6.

2.3.2 General technique: an improved analysis

In Lemma 2.6, we obtained the minimization program (2.10) from a conical combination
of constraints from program (2.5) that bounds the approximation factor. This process is

2.3. Upper bound factor-revealing programs 27

similar to obtaining the dual and using a scaling argument. Indeed, we propose a general
systematic way to obtain an UPFRP.

Consider the dual program of a traditional maximization factor-revealing linear pro-
gram for some k. Take k in the form k = pt, for a fixed t. We want to create a minimization
program that mimics the dual, but depends only on t and bounds the dual optimal value
for every k. The idea is to constrain the variables of the small program to obtain a feasible
solution for the dual program. To obtain a linear program independent of k, we scale the
variables by p. For the sake of notation, the variables of the UPFRP will be called block

variables, and they will be decorated with the prime symbol. The strategy to obtain an
UPFRP may be summarized as follows:

1. obtain the dual P (k) of the lower bound factor-revealing linear program;

2. consider a block variable xÕ
i for variables x(i≠1)p+1, . . . , x(i≠1)p+p of P (k);

3. identify each variable xi with the block variable xÕ
Ái/pË scaled by p;

4. replace variables of P (k) by corresponding block variables, canceling factors p.

Denote the resulting program by P Õ(t). If P Õ(t) depends only on t, both in number of
variables and constraints, then any feasible solution of P Õ(t) is an upper bound on the
solution of P (pt) for every p. Also, if it is the case that the value of P (k) is not greater
than the value of P (kt), for every t, then a solution of P Õ(t) for any t is also a bound
on the approximation factor. Therefore, we call P Õ(t) an upper bound factor-revealing

program.

Although program (2.4) is nonlinear, we can still use the presented strategy. If the
nonlinear constraint is convex, we can approximate it by using a set of linear inequalities,
and calculate the dual normally. In order to derive a better upper bound factor-revealing
linear program, this time we will use a whole set of linear inequalities. Consider m tuples
(—i, “i, ”i) of positive real numbers and Bi = 1 + —i + 1

“i
, Ci = 1 + “i + 1

”i
, Di = 1 + ”i + 1

—i

for 1 Æ i Æ m. Using Lemma 2.4, we insert inequalities corresponding to the given tuples,
replacing the nonlinear constraint, and obtain that zA1

k Æ wA1
k , where wA1

k is given by

wA1
k = max

qk
j=1 –j

s.t. f +
qk

j=1 dj Æ 1

–j Æ –j+1 1 Æ j < k

–j Æ Bi–l + Cidj + Didl 1 Æ j, l Æ k, 1 Æ i Æ m,

xjl Ø –j ≠ dl 1 Æ j Æ l Æ k
qk

l=j xjl Æ f 1 Æ j Æ k

–j, dj, f, xjl Ø 0 1 Æ j Æ l Æ k.

(2.11)

28 Chapter 2. Upper Bound Factor-Revealing Programs

The following lemma gives a lower bound on the approximation factor of the algorithm
for the SMFLP using a cutting plane insertion strategy.

Lemma 2.7. supkØ1 zA1
k Ø 2.86.

Proof. Although program (2.4) contains nonlinear constraints, we may use linear program
packages to solve it. We start by solving program (2.11) with a fixed number of inequali-
ties. Then, we employ a cutting plane insertion strategy: if the obtained solution violates
some inequality with square roots of (2.4), we derive a cutting plane using Lemma 2.4,
and resolve the linear program with this additional constraint. Using CPLEX with the
cutting plane strategy, we obtained zA1

700 ¥ 2.86099 > 2.86.

Now, we can bound the approximation factor of the algorithm using an UPFRP.

Lemma 2.8. supkØ1 zA1
k Æ 2.87.

Proof. It is easy to see that, for program (2.11), as in the proof of Lemma 2.6, we can
restrict attention to values of k that are multiples of a fixed positive integer t, that is,
zA1

k Æ wA1
kt , for every positive integer t. So we assume that k has the form k = pt, with p

and t positive integers. The dual of the linear program (2.11) is

wA1
k = min “

s.t. aj ≠ aj≠1 +
m
q

i=1

k
q

l=1
cjli ≠

m
q

i=1
Bi

k
q

l=1
clji +

k
q

l=j
ejl Ø 1 1 Æ j Æ k,

m
q

i=1
Ci

k
q

l=1
cjli +

m
q

i=1
Di

k
q

l=1
clji +

j
q

l=1
elj Æ “ 1 Æ j Æ k,

k
q

j=1
hj Æ “

ejl Æ hj 1 Æ j Æ l Æ k,

a0 = ak = 0, aj, hj, ejl, cjli, “ Ø 0
1 Æ j, l Æ k,

1 Æ i Æ m.

(2.12)

We can derive the UPFRP. We would like to define variables as in equation (2.9). Just
using a scale factor is not su�cient to preserve the variables aj in program (2.12). The vari-
ables aj correspond to the ordering restrictions of primal variables –j in program (2.11),
and computational experiments have indicated that removing such restrictions does not
change the optimal value significantly, for large values of k. So, we could just set aj = 0

for all j. However, we want to preserve such restrictions, as they will shortly be needed to
prove Lemma 2.10. To do this, we can simply interpolate the variables of the UPFRP to
obtain the variables of the lower bound program. Again, we group sets of variables based
on their indices. For that, we denote the group of a variable of index n as n̂. We define

2.3. Upper bound factor-revealing programs 29

n̂ := Án
p
Ë and consider block variables “Õ, aÕ

j, cÕ
jli, eÕ

jli, hÕ
j. We obtain a candidate solution

for program (2.12) by defining

“ = “Õ, aj = paÕ
ĵ

≠ (p ĵ ≠ j)(aÕ
ĵ

≠ aÕ
ĵ≠1

), cjli =
cÕ

ĵ l̂i

p
, ejl =

eÕ
ĵ l̂

p
, and hj =

hÕ
ĵ

p
. (2.13)

In the following, we will use definition (2.13) to obtain a candidate solution for
program (2.12) from a small set of block variables. Then, for each constraint of pro-
gram (2.12), we obtain the expression formed by the non-constant terms, and calculate
it as a function of the considered variables. Notice that there is an expression for each
primal variable of program (2.11). These expressions are analogous to the primal variables
coe�cients used in Lemma 2.6, thus, for each primal variable x, we say that this is the
coefficient expression for x, and we will denote it by coe�[x].

Now we create the minimization UPFRP. The objective value is obtained by apply-
ing definition (2.13) to the objective value of program (2.12). Then, for each group of
coe�cient expressions that has the same value, we include a constraint in the upper
bound program that bounds the expression by the independent term. Notice that each
UPFRP constraint may correspond to an arbitrarily large number of constraints of the
factor-revealing linear program. In the following, we calculate and bound each coe�cient
expression.

First notice that aj ≠aj≠1 = aÕ
ĵ
≠aÕ

ĵ≠1
. To see this, it is enough to use definition (2.13)

and consider the cases ĵ = \(j ≠ 1), and ĵ = \(j ≠ 1) + 1. Now we have:

coe�[–j] = aj ≠ aj≠1 +
m

ÿ

i=1

k
ÿ

l=1

cjli ≠
m

ÿ

i=1

Bi

k
ÿ

l=1

clji +
k

ÿ

l=j

ejl

= aÕ
ĵ

≠ aÕ
ĵ≠1

+
m

ÿ

i=1

pt
ÿ

l=1

cÕ
ĵ l̂i

p
≠

m
ÿ

i=1

Bi

pt
ÿ

l=1

cÕ
l̂ĵi

p
+

pt
ÿ

l=j

eÕ
ĵ l̂

p

Ø aÕ
ĵ

≠ aÕ
ĵ≠1

+
m

ÿ

i=1

t
ÿ

lÕ=1

p
cÕ

ĵlÕi

p
≠

m
ÿ

i=1

Bi

t
ÿ

lÕ=1

p
cÕ

lÕĵi

p
+

t
ÿ

lÕ=ĵ+1

p
eÕ

ĵlÕ

p

= aÕ
ĵ

≠ aÕ
ĵ≠1

+
m

ÿ

i=1

t
ÿ

lÕ=1

cÕ
ĵlÕi

≠
m

ÿ

i=1

Bi

t
ÿ

lÕ=1

cÕ
lÕĵi

+
t

ÿ

lÕ=ĵ+1

eÕ
ĵlÕ

Ø 1.

coe�[f] = “ ≠
k

ÿ

j=1

hj = “Õ ≠
pt

ÿ

j=1

hÕ
ĵ

p
= “Õ ≠

t
ÿ

jÕ=1

p
hÕ

jÕ

p
= “Õ ≠

t
ÿ

jÕ=1

hÕ
jÕ Ø 0.

coe�[xjl] = hj ≠ ejl =
hÕ

ĵ

p
≠

eÕ
ĵ l̂

p
Ø 0.

30 Chapter 2. Upper Bound Factor-Revealing Programs

coe�[dj] = “ ≠
m

ÿ

i=1

Ci

k
ÿ

l=1

cjli ≠
m

ÿ

i=1

Di

k
ÿ

l=1

clji ≠
j

ÿ

l=1

ejl

= “Õ ≠
m

ÿ

i=1

Ci

pt
ÿ

l=1

cÕ
ĵ l̂i

p
≠

m
ÿ

i=1

Di

pt
ÿ

l=1

cÕ
l̂ĵi

p
≠

j
ÿ

l=1

eÕ
ĵ l̂

p

Ø “Õ ≠
m

ÿ

i=1

Ci

t
ÿ

lÕ=1

p
cÕ

ĵlÕi

p
≠

m
ÿ

i=1

Di

t
ÿ

lÕ=1

p
cÕ

lÕĵi

p
≠

ĵ
ÿ

lÕ=1

p
eÕ

ĵlÕ

p

= “Õ ≠
m

ÿ

i=1

Ci

t
ÿ

lÕ=1

cÕ
ĵlÕi

≠
m

ÿ

i=1

Di

t
ÿ

lÕ=1

cÕ
lÕĵi

≠
ĵ

ÿ

lÕ=1

eÕ
ĵlÕ

Ø 0.

We notice that, for each primal variable, the constraint for its coe�cient expression is
equivalent to the constraint of any other primal variable in the same group. For example,
for any pair –j and –l such that ĵ = l̂, we need to add only one constraint to the UPFRP;
therefore, we need only t constraints for this kind of primal variable. We remark that the
constraint obtained for coe�[xjl] does not depend on p. Conjoining di�erent constraints,
and fixing variables aÕ

1 and aÕ
t to zero, we obtain:

xA1
t = min “

max aj ≠ aj≠1 +
m
q

i=1

t
q

l=1
cjli ≠

m
q

i=1
Bi

t
q

l=1
clji +

t
q

l=j+1
ejl Ø 1 1 Æ j Æ t,

m
q

i=1
Ci

t
q

l=1
cjli +

m
q

i=1
Di

t
q

l=1
clji +

j
q

l=1
elj Æ “ 1 Æ j Æ t,

t
q

j=1
hj Æ “

ejl Æ hj 1 Æ j Æ l Æ t,

a0 = at = 0, aj, hj, ejl, cjli Ø 0
1 Æ j, l Æ t,

1 Æ i Æ m.

Now, we want to use Lemma 2.4 and choose a set of tuples (—, “, ”) so that the squared
metric is minimally relaxed. To accommodate the premises of Lemma 2.4, we solve the
dual of the UPFRP, and use the same strategy of Lemma 2.7. The dual is:

xA1
t = max

qt
j=1 –j

s.t. f +
qt

j=1 dj Æ 1

–j Æ –j+1 1 Æ j < t

–j Æ Bi–l + Cidj + Didl 1 Æ j, l Æ t, 1 Æ i Æ m,

xjl Ø –j ≠ dl 1 Æ j < l Æ t
qt

l=j xjl Æ f 1 Æ j Æ t

–j, dj, f, xjl Ø 0 1 Æ j Æ l Æ t.

(2.14)

Using the cutting plane strategy with CPLEX, we obtain xA1
700 ¥ 2.8697 < 2.87.

2.3. Upper bound factor-revealing programs 31

If we apply this analysis for the metric case, we obtain an UPFRP similar to pro-
gram (2.14). The only di�erence is that, for the metric case, there are no coe�cients Bl,
Cl, and Dl. We use this modified linear program to tighten the approximation factor for
the metric case.

Lemma 2.9. For the MFLP, the approximation factor of A1 [72] is between 1.814 and

1.816.

Proof. Let ẑA1
k be the optimal value of the lower bound factor-revealing program (5) in [72].

The corresponding UPFRP is:

x̂A1
t = max

qt
j=1 –j

s.t. f +
qt

j=1 dj Æ 1

–j Æ –j+1 1 Æ j < t

–j Æ –l + dj + dl 1 Æ j, l Æ t

xjl Ø –j ≠ dl 1 Æ j < l Æ t
qt

l=j xjl Æ f 1 Æ j Æ t

–j, dj, f, xjl Ø 0 1 Æ j Æ l Æ t.

(2.15)

Numerical computations using CPLEX show that ẑA1
1000 ¥ 1.81412 > 1.814, and that

x̂A1
1000 ¥ 1.81584 < 1.816.

We notice that the only di�erence between the upper and lower bound factor-revealing
programs is that the UPFRP does not contain the restrictions –j ≠ dj Æ xjj for all j. We
explore the similarity between these programs to bound the gap between their optimal
values. The following lemma is valid for both the metric and squared metric cases.

Lemma 2.10. Let zA1
k be the optimal value of the lower bound factor-revealing pro-

gram (2.11) (program (5) in [72]) and let (α, d, x, f) be an optimal solution for pro-

gram (2.14) (respectively program (2.15)) with cost value xA1
k . If Á = maxj{–j ≠ dj}, then

zA1
k Ø 1

1+Á
xA1

k .

Proof. First, notice that we may assume xjj = 0, for every j without loss of generality.
Let f Õ = f + Á and xÕ be such that xÕ

jl = xjl if j ”= l, and xÕ
jj = max{0, –j ≠ dj} Ø 0 = xjj.

Observe that (α, d, x
Õ, f

Õ) has objective value xA1
k and is a feasible solution for the lower

bound factor-revealing program (2.11), except that it might violate the first restriction
of program (2.11) (program (5) in [72], respectively). Indeed, it might be the case that
1 < f Õ +

qk
j=1 dj Æ 1 + Á. Now, it is enough to multiply each variable by 1

1+Á
, and obtain

a feasible solution.

From the last lemma, one can see that the upper and lower bound factor-revealing
programs yield very close values, as long as the error term Á = maxj{–j ≠ dj} is small.

32 Chapter 2. Upper Bound Factor-Revealing Programs

Experimentally, we know that the error term decreases as the number of variables k

increases, and thus it is reasonable to expect that the value of both factor-revealing
programs become very close as k tends to infinity. Indeed, for the metric case, it is easy
to show that this error vanishes as k goes to infinity and, therefore, the upper bound
and the lower bound factor-revealing programs converge to the same value, as k goes to
infinity.

Theorem 2.2. Let ẑA1
k be as in program (5) in [72] and let x̂A1

k be as in program (2.15).
Then supkØ1 ẑA1

k = infkØ1 x̂A1
k .

Proof. First notice that, for any dual solution of program (2.15) with parameter k, we
may obtain a feasible solution for the same dual program with parameter 2k with same
value, by simply duplicating the variables of the original solution, in a way similar to def-
inition (2.13). Therefore, since the dual is a minimization program, we may assume
that k is arbitrarily large. Consider an optimal solution of program (2.15). We have that
–j ≠dj Æ –l +dl, for every j and l. Let j be such that Á = –j ≠dj is maximum and add up
these inequalities for all l. We get kÁ = k(–j ≠dj) =

qk
l=1(–j ≠dj) Æ qk

l=1(–l +dl) Æ x̂A1
k +

1 Æ 1.816+1. From Lemmas 2.9 and 2.10, we get that x̂A1
k Ø ẑA1

k Ø 1
1+Á

x̂A1
k Ø 1

1+2.816/k
x̂A1

k .
Taking the limit as k goes to infinity, we get that supkØ1 ẑA1

k = infkØ1 x̂A1
k .

It would be nice to bound the values of the variables of program (2.14), as this would
su�ce to show that the factor-revealing programs also converge for the squared metric
case. Since the coe�cients of the squared triangle inequality involved in program (2.14)
are all greater than one, we cannot use the same approach as in Theorem 2.2. Although
experiments suggest that the value of variable –k in an optimal solution decreases as
k increases, it does not seem trivial to determine whether –k vanishes when k goes to
infinity.

2.4 Further applications of UPFRP’s

2.4.1 Analysis of improved greedy

We analyze the second algorithm of Jain et al. [72] for the squared metric case. The
algorithm is essentially the same as Algorithm A1, but each connected client keeps con-
tributing to unopened facilities. The contribution of a connected client j to an unopened
facility i is the budget that the client would save if facility i were opened. The algorithm,
that is denoted by A2, is described in the following.

2.4. Further applications of UPFRP’s 33

Algorithm A2 (C, F, c, f) [72]

1. Set U := C, meaning that every facility starts unopened, and every client un-
connected. Each client j has some budget –j, initially 0. At every moment, for
each unopened facility i, if client j is unconnected, then j o�ers max(–j ≠ cij, 0)

to i, and, if client j is connected to facility iÕ, then j o�ers max(ciÕj ≠ cij, 0) to i.

2. While U ”= ÿ, the budget of each unconnected client is increased continuously
until one of the following events occur:

(a) For some unconnected client j and some open facility i, –j = cij. In this
case, connect client j to facility i and remove j from U .

(b) For some unopened facility i, the total o�er i receives from the clients equals
the cost fi of opening i. In this case, open facility i, connect to i each client
j with a positive o�er to i, and remove each connected client from U .

For the metric case, the approximation factor is 1.61. With a completely analogous
reasoning, we obtain the corresponding factor-revealing program (2.16). The variables
are the same as in program (2.4). The new variable rjl corresponds to the budget –j if
client j is connected at the same time as client l, or corresponds to the distance from j

to the facility to which j is connected just before l is connected.

zA2
k = max

qk

j=1
–j

f+
qk

j=1
dj

s.t. –j Æ –j+1 1 Æ j < k

rjl Ø rj,l+1 1 Æ j < l < k
Ô

–l Æ Ô
rjl +

Ô
dl +

Ò

dj 1 Æ j < l Æ k
l≠1
q

j=1
max(rjl ≠ dj, 0) +

k
q

j=l
max(–l ≠ dj, 0) Æ f 1 Æ l Æ k

–j, dj, f, rj,l Ø 0 1 Æ j Æ l Æ k.

(2.16)

We repeat the previous analysis to give lower and upper bounds on the approximation
factor of the second algorithm for the SMFLP.

Lemma 2.11. 2.415 Æ supkØ1 zA2
k Æ 2.425.

Proof. Consider tuples (—i, “i, ”i) œ Rú
+

3 and Bi = 1+—i+
1
“i

, Ci = 1+“i+
1
”i

, Di = 1+”i+
1
—i

for 1 Æ i Æ m. Using Lemma 2.3, we insert inequalities corresponding to these tuples,

34 Chapter 2. Upper Bound Factor-Revealing Programs

replacing the nonlinear constraint, and obtain zA2
k Æ wA2

k , where wA2
k is given by

wA2
k = max

qk
j=1 –j

s.t. f +
qk

j=1 dj Æ 1

–j Æ –j+1 1 Æ j < k

rjl Ø rj,l+1 1 Æ j < l < k

–l Æ Birjl + Cidl + Didj 1 Æ j < l Æ k, 1 Æ i Æ m

rjl ≠ dj Æ xjl 1 Æ j < l Æ k

–l ≠ dj Æ xjl 1 Æ l Æ j Æ k
qk

j=1 xjl Æ f 1 Æ l Æ k

–j, dj, f, rjl Ø 0 1 Æ j Æ l Æ k

xjl Ø 0 1 Æ j, l Æ k.

(2.17)

Now, we calculate the dual of program (2.17) to derive the UPFRP. After that, we
calculate its dual program (2.21), in order to use Lemma 2.3, and solve the UPFRP
inserting cutting planes. We proceed the same way as done in Lemma 2.8. With similar
arguments, we may see that zA2

k Æ zA2
kt , for any t, and we assume that k has the form

k = pt, for some integer t. The dual of linear program (2.17) is given in the following.

wA2
k = min “

s.t. al ≠ al≠1 +
m
q

i=1

l≠1
q

j=1
cjli +

k
q

j=l
ejl Ø 1 1 Æ l Æ k

“ ≠
m
q

i=1
Ci

l≠1
q

j=1
cjli ≠

m
q

i=1
Di

k
q

j=l+1
clji ≠

k
q

j=1
elj Ø 0 1 Æ l Æ k

“ ≠
k

q

l=1
hl Ø 0

bj,l≠1 ≠ bjl + ejl ≠
m
q

i=1
Bicjli Ø 0 1 Æ j < l Æ k

hl ≠ ejl Ø 0 1 Æ j, l Æ k

a0 = ak = bll = blk = 0 1 Æ l Æ k

al, hl, ejl Ø 0 1 Æ l, j Æ k

bjl, cjli, “ Ø 0
1 Æ j < l Æ k

1 Æ i Æ m.

(2.18)

Now, we may derive the UPFRP. Let n̂ = Án
p
Ë and consider block variables “Õ, aÕ

l, bÕ
jl,

cÕ
jli, eÕ

jl, and hÕ
l. We obtain a candidate solution for program (2.18) by defining:

“ = “Õ, al = p aÕ
l̂
≠ (p l̂ ≠ l)(aÕ

l̂
≠ aÕ

l̂≠1
), bjl = bÕ

ĵ,l̂
≠ p l̂≠l

p
(bÕ

ĵ l̂
≠ bÕ

ĵ,l̂≠1
),

cjll =
cÕ

ĵl̂l

p
, ejl =

eÕ

ĵl̂

p
, and hl =

hÕ

l̂

p
.

(2.19)

2.4. Further applications of UPFRP’s 35

In the following, we apply definition (2.19) and calculate each coe�cient expression
for program (2.18). Again, notice that al ≠ al≠1 = aÕ

l̂
≠ aÕ

l̂≠1
, and that bj,l≠1 ≠ bjl =

(bÕ
ĵ,l̂≠1

≠ bÕ
ĵ l̂

)/p. Also, fix variables cÕ
lli at zero.

coe�[–l] = al ≠ al≠1 +
m

ÿ

i=1

l≠1
ÿ

j=1

cjli +
k

ÿ

j=l

ejl

= aÕ
l̂
≠ aÕ

l̂≠1
+

m
ÿ

i=1

l≠1
ÿ

j=1

cÕ
ĵ l̂i

p
+

pt
ÿ

j=l

eÕ
ĵ l̂

p

Ø aÕ
l̂
≠ aÕ

l̂≠1
+

m
ÿ

i=1

l̂≠1
ÿ

jÕ=1

p
cÕ

jÕ l̂i

p
+

t
ÿ

jÕ=l̂+1

p
eÕ

jÕ l̂

p

= aÕ
l̂
≠ aÕ

l̂≠1
+

m
ÿ

i=1

l̂≠1
ÿ

jÕ=1

cÕ
jÕ l̂i

+
t

ÿ

jÕ=l̂+1

eÕ
jÕ l̂

Ø 1.

coe�[dl] = “ ≠
m

ÿ

i=1

l≠1
ÿ

j=1

Cicjli ≠
m

ÿ

i=1

k
ÿ

j=l+1

Diclji ≠
k

ÿ

j=1

elj

= “Õ ≠
m

ÿ

i=1

Ci

l≠1
ÿ

j=1

cÕ
ĵ l̂i

p
≠

m
ÿ

i=1

Di

k
ÿ

j=l+1

cÕ
l̂ĵi

p
≠

k
ÿ

j=1

eÕ
l̂ĵ

p

Ø “Õ ≠
m

ÿ

i=1

Ci

l̂
ÿ

jÕ=1

p
cÕ

jÕ l̂i

p
≠

m
ÿ

i=1

Di

t
ÿ

jÕ=l̂

p
cÕ

l̂jÕ,i

p
≠

t
ÿ

jÕ=1

p
eÕ

l̂jÕ

p

= “Õ ≠
m

ÿ

i=1

Ci

l̂≠1
ÿ

jÕ=1

cÕ
jÕ l̂i

≠
m

ÿ

i=1

Di

t
ÿ

jÕ=l̂+1

cÕ
l̂jÕi

≠
t

ÿ

jÕ=1

eÕ
l̂jÕ Ø 0.

coe�[f] = “ ≠
k

ÿ

l=1

hl = “Õ ≠
k

ÿ

l=1

hÕ
l̂

p
= “Õ ≠

t
ÿ

lÕ=1

p ·
hÕ

lÕ

p
= “Õ ≠

t
ÿ

lÕ=1

hÕ
lÕ Ø 0.

coe�[rj,l] = bj,l≠1 ≠ bjl + ejl ≠
m

ÿ

i=1

Bi cjli =
bÕ

ĵ,l̂≠1
≠ bÕ

ĵ l̂

p
+

eÕ
ĵ l̂

p
≠

m
ÿ

i=1

Bi

cÕ
ĵ l̂i

p
Ø 0.

coe�[xjl] = hl ≠ ej,l =
hÕ

l̂

p
≠

eÕ
ĵ l̂

p
Ø 0.

36 Chapter 2. Upper Bound Factor-Revealing Programs

Conjoining all constraints, the obtained UPFRP is:

xA2
t = min “

s.t. al ≠ al≠1 +
m
q

i=1

l≠1
q

j=1
cjli +

t
q

j=l+1
ejl Ø 1 1 Æ l Æ t

“ ≠
m
q

i=1
Ci

l≠1
q

j=1
cjli ≠

m
q

i=1
Di

t
q

j=l+1
clji ≠

t
q

j=1
elj Ø 0 1 Æ l Æ t

“ ≠
t

q

l=1
hl Ø 0

bj,l≠1 ≠ bjl + ejl ≠
m
q

i=1
Bicjli Ø 0 1 Æ j < l Æ t

hl ≠ ejl Ø 0 1 Æ j, l Æ t

a0 = at = bll = blt = 0 1 Æ l Æ t

al, hl, ejl Ø 0 1 Æ l, j Æ t

bjl, cjli Ø 0
1 Æ j < l Æ k

1 Æ i Æ m.

(2.20)

Finally, calculating the dual of program (2.20), we obtain program (2.21).

xA2
t = max

qt
j=1 –j

s.t. f +
qt

j=1 dj Æ 1

–j Æ –j+1 1 Æ j < t

rjl Ø rj,l+1 1 Æ j < l < t

–l Æ Birjl + Cidl + Didj 1 Æ j < l Æ t, 1 Æ i Æ m

rjl ≠ dj Æ xjl 1 Æ j < l Æ t

–l ≠ dj Æ xjl 1 Æ l < j Æ t
qt

j=1 xjl Æ f 1 Æ l Æ t

–j, dj, f, rjl Ø 0 1 Æ j Æ l Æ t

xjl Ø 0 1 Æ j, l Æ t.

(2.21)

Notice that we can replace the forth set of constraints in program (2.21) by constraints
with square roots, if we consider an infinite set of tuples (—i, “i, ”i), obtaining an equiva-
lent nonlinear program. This program is exactly program (2.16), except that the fourth
constraint is replaced with

l≠1
ÿ

j=1

max(rjl ≠ dj, 0) +
k

ÿ

j=l+1

max(–l ≠ dj, 0) Æ f.

Let xA2
k be the optimal value of such a program. With CPLEX we get that zA2

500 ¥
2.41565 > 2.415, and that xA2

500 ¥ 2.42473 < 2.425.

Solving the UPFRP obtained for the MFLP for k = 500, we may show that the
approximation factor of A2 [72] is 1.602. The lower bound factor-revealing program and

2.4. Further applications of UPFRP’s 37

the maximization UPFRP are essentially the same, except that, in the lower bound factor-
revealing program, the second summation of the fourth constraint contain terms of the
kind max(–l≠dl, 0), that are not present in the UPFRP. Therefore, Lemma 2.10 also holds
for such programs. For the metric case, using a similar analysis to that of Theorem 2.2,
one can show that the lower and the upper bound factor-revealing programs converge.

Theorem 2.3. Let ẑA2
k be as in program (25) in [72] and let x̂A2

k be the optimal value

of the corresponding UPFRP obtained by removing the terms of the kind max(–l ≠ dl, 0)

from the fourth restriction. Then supkØ1 zA2
k = infkØ1 xA2

k .

Proof. Recall that program (25) in [72] is similar to (2.16), but does not contain the
square roots. Consider a solution of the UPFRP, for a su�ciently large k. Without loss of
generality, we assume f +

qk
j=1 dj = 1. For a fixed l, the constraint

ql≠1
j=1 max(rjl ≠dj, 0)+

qk
j=l+1 max(–l ≠ dj, 0) Æ f implies that

ql≠1
j=1 rjl Æ f +

ql≠1
j=1 dj Æ 1. We consider two

cases. First, suppose l Æ k/2, then, (k/2)·max(–l≠dl, 0) Æ k/2–l Æ qk
j=1 –j Æ 1.62. Now,

suppose l > k/2, then, summing the constraint –l ≠ dl Æ rjl + dj for j = 1, . . . , l ≠ 1, then
(k/2≠1)·max(–l≠dl, 0) Æ ql≠1

j=1(rjl+dj) Æ 1+1. In either case, Á = maxl{–l≠dl} vanishes
as k tends to infinity. The theorem follows by arguments similar to Theorem 2.2.

2.4.2 Combining with scaling and greedy augmentation

Algorithm A2 can be analyzed as a bi-factor approximation algorithm. The analysis
uses a factor-revealing linear program, and is similar to the previous analysis. Mah-
dian et al. [104] observed that, due to the asymmetry between the approximation guar-
antee for the opened facilities cost and the connections cost, Algorithm A2 may be used
to open facilities that are very economical. This gives rise to a two-phase algorithm,
denoted here by A3(”), based on scaling the cost of facilities by a constant ” Ø 1, and on
the greedy augmentation technique introduced by Guha and Khuller [61]. The first phase
opens the most economical facilities, and the second phase greedily

Algorithm A3(”) (C, F, c, f) [104]

1. Scaling:
(a) Scale the facility costs by a factor ”.
(b) Run Algorithm A2 on the scaled instance.

2. Greedy augmentation:
While there are facilities that, if open, reduce the total cost:
(a) Compute the gain gi of opening each unopened facility i.
(b) Open a facility i that maximizes the ratio gi

fi
.

38 Chapter 2. Upper Bound Factor-Revealing Programs

In [104], a factor-revealing linear program is used to analyze Algorithm A3(”) with
a somewhat di�erent, but equivalent, greedy augmentation procedure. This was used
to balance a bi-factor from Algorithm A2 for the MFLP. As noticed by Byrka and
Aardal [28], this analysis is not restricted to Algorithm A2, and applies to any bi-factor
approximation for the FLP. Therefore, since it does not depend on the cost function
being a metric, we can use it to balance a bi-factor approximation for the squared metric
case. This result is precisely stated as follows.

Lemma 2.12 ([104]). Consider a (“f , “c)-approximation for the FLP. Then, for every

” Ø 1, Algorithm A3(”) is a (“f + log ” + Á, 1 + “c≠1
”

)-approximation for the FLP, for

Á > 0.

For the metric case, it has been shown that Algorithm A2 is a (1.11, 1.78)-approxi-
mation. This and Lemma 2.12 give a 1.52-approximation for the MFLP. For the SMFLP,
we present an analysis based on an UPFRP. Using straightforward calculations, we may
obtain the following:

Lemma 2.13. Let “f Ø 1 be a fixed value and let “c = xA2c
k , where

xA2c
k = max

qk

j=1
–j≠“f f

qk

j=1
dj

s.t. –l Æ –l+1 1 Æ l < k

rjl Ø rj,l+1 1 Æ j < l < k
Ô

–l Æ Ô
rjl +

Ô
dl +

Ò

dj 1 Æ j < l Æ k
l≠1
q

j=1
max(rjl ≠ dj, 0) +

k
q

j=l+1
max(–l ≠ dj, 0) Æ f 1 Æ l Æ k

–j, dj, f, rjl Ø 0 1 Æ j Æ l Æ k.

(2.22)

Then, if “c < Œ, Algorithm A2 is a (“f , “c)-approximation for the SMFLP.

The only di�erence between program (2.22) and the corresponding lower bound factor-
revealing program is the extra term max(–l ≠ dl, 0) in the lower bound program, which is
not in the fourth constraint of program (2.22). Again, having a bound for this term that
vanishes as k goes to infinity would be su�cient to show convergence of the upper and
lower bound factor-revealing programs.

We observe that program (2.22) is unbounded for values of “f close to one. This
happens also for the corresponding lower bound factor-revealing program. This is in
contrast to the factor-revealing programs obtained for the metric case, for which we know
that Algorithm A2 is a (1, 2)-approximation. In this case, the lower bound program is
always bounded, but the upper bound program is unbounded for “f = 1, or for values
close to one. It would be interesting to strengthen this UPFRP, so that it could also be
used in the analysis also for “f = 1.

2.5. Experimental results 39

Theorem 2.4. Algorithm A3 is a 2.17-approximation for the SMFLP.

Proof. Consider program (2.22) for “f = 1.45. Numerical computations using CPLEX
show that xA2c

300 ¥ 3.40339 < 3.4034. From Lemma 2.13, we know that Algorithm A2 is
a (1.45, 3.4034)-approximation for the SMFLP. Now, by letting ” = 2.0543, and using
Lemma 2.12, we obtain that Algorithm A3 is a (2.169 . . . , 2.169 . . .)-approximation for
the SMFLP.

2.5 Experimental results

In this section, we summarize the results obtained with CPLEX for the analysis of algo-
rithms A1, A2, and A3. In Table 2.2, we present the computational results using CPLEX
for the lower bound in the column labeled zA1

k and the upper bound in the column labeled
xA1

k on the approximation factor of Algorithm A1. In Table 2.3, we present lower and
upper bounds on the approximation factor of Algorithm A2, that correspond to columns
labeled zA2

k and xA2
k , respectively. In Table 2.4, we present computational results for pro-

gram (2.16) when “f = 1.45, and the approximation factor obtained from Lemma 2.12.
We set ” as the value given by the solution of equation “f + log ” = 1 + “c≠1

”
, that is,

” = eW0((“c≠1)e
γf ≠1

)≠(“f ≠1), where W0 stands for the Lambert W-function. Figure 2.1a
shows the trade-o� between connection and facility costs approximation guarantees for
the Algorithm A2 and the inapproximability curve given by Jain et al. [73], and Fig-
ure 2.1b shows the trend of obtained factor for Algorithm A3 as we vary the value of “f ,
when k = 50.

 1

 2

 3

 4

 5

 6

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Facility factor

Trade-off between facility and connection factors

Connection factor
Inapproximability limit

(a) Trade-off between connection and fa-
cility approximation factors

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Facility factor

Balancing using scaling and greedy-augmentation

Best factor at 1.45

Balanced factor

(b) Trend of the obtained balanced
approximation factors

Figure 2.1: Experimental results

40 Chapter 2. Upper Bound Factor-Revealing Programs

k zA1
k xA1

k

10 2.57261 3.18162
20 2.71704 3.01717
50 2.80540 2.92579

100 2.83534 2.89553
200 2.85034 2.88046
300 2.85532 2.87543
400 2.85782 2.87292
500 2.85930 2.87142
600 2.86029 2.87041
700 2.86099 2.86970

Table 2.2: Solutions of the factor-revealing programs for Algorithm A1

k zA2
k xA2

k

10 2.20702 2.65131
20 2.30987 2.53301
50 2.37551 2.46544

100 2.39773 2.44278
200 2.40894 2.43150
300 2.41267 2.42775
400 2.41453 2.42586
500 2.41565 2.42473

Table 2.3: Solutions of the factor-revealing programs for Algorithm A2

k xA2c
k best ” factor

10 4.02931 2.33433 2.29772
20 3.64790 2.16561 2.22270
50 3.48465 2.09159 2.18792

100 3.43524 2.06895 2.17704
200 3.41127 2.05793 2.17170
300 3.40339 2.05430 2.16993

Table 2.4: Solutions of connection factor-revealing programs for Algorithm A2, and factors
for Algorithm A3

2.6. An optimal approximation algorithm 41

2.6 An optimal approximation algorithm

Byrka and Aardal [28] gave a 1.5-approximation for the MFLP, by combining the approx-
imation of Jain et al. [73], and a new analysis of the algorithm of Chudak and Shmoys [38],
that is based on the rounding of a fraction solution of program (2.1). The algorithm of
Chudak and Shmoys, denoted by CS(“), receives parameter “ > 1, and applies the filter-
ing technique [97] to balance between opening and connection costs. Byrka showed that it
achieves the optimal bi-factor approximation (“, 1 + 2e≠“) for “ Ø 1.6774. We show that
CS(“), when applied to the SMFLP, touches its optimal bi-factor approximation curve
(“, 1+8e≠“) for “ Ø “0 ¥ 2.00492. Since the solution of “ = 1+8e≠“ is – = 2.04011 > “0,
we obtain an (–, –)-approximation for the SMFLP, and thus CS(–), solely used, is an
optimal approximation for the SMFLP.

Algorithm CS(“) may be summarized as follows. First, a solution (xú, yú) of pro-
gram (2.1) is obtained. Then, the fractional opening variables yú

i are scaled by a factor
“ Ø 1, yi = “ yú

i , and variables xij are defined so that client j is served entirely by its
closest facilities, obtaining a new solution (x, y). We may assume that this solution is
complete, i.e. for every client j and facility i, if xij > 0, then xij = yi, and that for every
i, yi Æ 1, since, in either case, we can split facility i, and obtain an equivalent instance
with these properties. Finally, a clustering of some of the facilities is obtained according
to a given criterion, and a probabilistic rounding procedure is used to obtain the final
solution. For a detailed description of the algorithm, see [28] (also [29]).

A facility i with xij > 0 is called a close facility of client j, and the set of such facilities
is denoted by Cj. Similarly, a facility i with xij = 0 but xú

ij > 0 is called a distant facility

of j, and the set of such facilities is denoted by Dj. Let Fj = Cj fi Dj. The analysis of
CS(“) uses the notion of average distance between a client j œ C and a subset of facilities

F Õ ™ F such that
q

iœF Õ yi > 0, defined as d(j, F Õ) =
q

iœF Õ cij ·yi
q

iœF Õ yi
. For a client j, we also

use some definitions from [29]: the average connection cost, dj = d(j, Fj); the average
distance from close facilities, d

(c)
j = d(j, Cj); the average distance from distant facilities,

d
(d)
j = d(j, Dj); the maximum distance from close facilities, d

(max)
j = maxiœCj

cij; and the

irregularity parameter flj, defined as flj = (dj ≠ d
(c)
j)/dj if dj > 0, and flj = 0 otherwise.

With these definitions, we can describe the clustering of the facilities. In each iter-
ation, greedily select a client j, called the cluster center, such that the sum d

(c)
j +d

(max)
j

is minimum, and build a cluster formed by j and its close facilities Cj. Remove j and
every other client jÕ such that Cj fl CjÕ is not empty, and repeat this process until every
client is removed. The set of facilities opened by CS(“) is given by the following rounding
procedure: for each cluster center j, open one facility i from Cj with probability xij = yi,
and, for each unclustered facility i, open it independently with probability yi. Each client
is connected to its closest opened facility.

42 Chapter 2. Upper Bound Factor-Revealing Programs

The following lemma of Byrka and Aardal [28] is used to bound the expected connec-
tion cost between a client and the closest facility from a set of facilities.

Lemma 2.14 ([28]). Consider a random vector y œ {0, 1}|F | produced by Algorithm

CS(“), a subset A ™ F of facilities such that
q

iœA ȳi > 0, and a client j œ C. Then, the

following holds:

E

C

min
iœA,yi=1

cij |
ÿ

iœA

yi Ø 1

D

Æ d(j, A).

For a given client j, if one facility in Cj or Dj is opened, then Lemma 2.14 states
that the expected connection cost is bounded by d

(c)
j and d

(d)
j , respectively. If no facility

in Cj fi Dj = Fj is opened, then client j can always be connected to one of the close
facilities CjÕ of the associated cluster center jÕ, with expected connection cost d(j, CjÕ \Fj).
Byrka and Aardal [28] showed that, for the MFLP, when “ < 2, this cost is at most
d

(d)
j + d

(max)
jÕ + d

(c)
jÕ . Since for the SMFLP we need “ > 2, we will use an improved version

of this lemma by Li [94]. The adapted lemma for the squared metric is given in the
following. The proof is the same, except that we use the squared metric property, instead
of the triangle inequality.

Lemma 2.15. Let j be a client and jÕ be the associated cluster center. If Cj fl CjÕ ”= ÿ,

and CjÕ \ Fj ”= ÿ, then we get

d(j, CjÕ \ Fj) Æ 3 ·
1

(2 ≠ “)d
(max)
j + (“ ≠ 1)d

(d)
j + d

(max)
jÕ + d

(c)
jÕ

2

.

Proof. Let djjÕ = minlœF (clj + cljÕ), that is, the minimum connection cost of a path of
length two from j to jÕ.1 Fix a facility l such that clj + cljÕ = djjÕ . For each facility i in
CjÕ \Fj, we say that a path (j, l, jÕ, i) is the center-path to i. The cost of such center-path to
i is defined as djjÕ +cijÕ . Notice that, using the squared metric property, cij Æ 3(djjÕ +cijÕ),
and therefore

d(j, CjÕ \ Fj) =

q

iœCjÕ \Fj
cij · yi

q

iœCjÕ \Fj
yi

Æ
q

iœCjÕ \Fj
3(djjÕ + cijÕ) · yi

q

iœCjÕ \Fj
yi

= 3 · (djjÕ + d(jÕ, CjÕ \ Fj)).

That is, d(j, CjÕ \ Fj) is at most three times the average center-path cost. Following the
lines of Li [94, Lemma 12] we know that djjÕ +d(jÕ, CjÕ \Fj) Æ (2≠“)d

(max)
j +(“ ≠1)d

(d)
j +

d
(max)
jÕ + d

(c)
jÕ . Therefore, the lemma holds.

1In [94], the connection cost c is extended to a distance between j and jÕ, and the triangle inequality
is then used to bound this distance with the connection cost of any path of length two. Here, we make
a more explicit definition to avoid confusion, since the squared metric property is not sufficient for this
purpose.

2.6. An optimal approximation algorithm 43

The next lemma follows from Lemma 2.15, and is straightforward.

Lemma 2.16. d(j, CjÕ \ Fj) Æ 3
1

“dj + (3 ≠ “)d
(max)
j

2

.

Now, we can bound the expected facility and connection cost of a solution generated
by CS(“). The next theorem is an adapted version of Theorem 2.5 from [29].

Theorem 2.5. For 3 Ø “ Ø 1, Algorithm CS(“) produces a solution (x, y) for the integer

program corresponding to (2.1) with expected facility and connection costs

E[yifi] = “ · F ú
i , and E

5

min
iœF,yi=1

cij

6

Æ max

Y

]

[

1 + 8e≠“,
5e≠“ + e≠1

1 ≠ 1
“

Z

^

\

· Cú
j ,

where F ú
i = yú

i fi and Cú
j =

q

iœF xú
ijcij.

Proof. The expected cost of facility i is E[yifi] = yifi = “ · yú
i fi = “ · F ú

i .
If j is a cluster center, one of its close facilities is open, then the expected connection

cost is d
(c)
j Æ dj = Cú

j . We may assume that j is not a cluster center. Let pc be the
probability that the closest facility to j is in Cj, and pd the probability that it is in Dj.
If neither case occurs, then, with probability ps = 1 ≠ pc ≠ pd, the closest facility is in
CjÕ \ Fj, where jÕ is the cluster center associated with j. From the definitions, we have
that d

(c)
j = (1 ≠ flj)dj, d

(d)
j = (1 + flj

“≠1
)dj, and flj Æ 1. Also, from [28], we know that

ps Æ e≠“ and pc Ø 1 ≠ e≠1. Combining these facts with Lemmas 2.14 and 2.16, and using
d

(max)
j Æ d

(d)
j , we obtain

E
5

min
iœF,yi=1

cij

6

Æ pc · d
(c)
j + pd · d

(d)
j + ps · 3

1

“dj + (3 ≠ “)d
(d)
j

2

=

A

(pc + pd + 9ps) +
(pc + pd + 9ps) ≠ (pc + 3ps)“

“ ≠ 1
flj

B

dj

=

A

(1 + 8ps) +
(1 + 8ps) ≠ (pc + 3ps)“

“ ≠ 1
flj

B

dj

=

Q

a(1 + 8ps)(1 ≠ flj) +
5ps + 1 ≠ pc

1 ≠ 1
“

flj

R

b dj

Æ
Q

a(1 + 8e≠“)(1 ≠ flj) +
5e≠“ + e≠1

1 ≠ 1
“

flj

R

b dj

Æ max

Y

]

[

1 + 8e≠“,
5e≠“ + e≠1

1 ≠ 1
“

Z

^

\

· Cú
j .

Let “0 be the solution of equation
Q

a

5e≠“ + e≠1

1 ≠ 1
“

R

b =
1

1 + 8e≠“
2

.

44 Chapter 2. Upper Bound Factor-Revealing Programs

For “, with 3 Ø “ Ø “0 ¥ 2.00492, the maximum connection cost factor is 1 + 8e≠“,
so CS(“) touches the inapproximability curve (“, 1 + 8e≠“) of Theorems 2.1. Therefore,
the approximation factor is the best possible for the SMFLP, unless P = NP. The next
theorem follows immediately.

Theorem 2.6. Let – ¥ 2.04011 be the solution of the equation “ = 1+8e≠“. Then CS(–)

is an –-approximation for the SMFLP and the approximation factor is the best possible

unless P = NP.

2.6.1 The Facility Location Problem with relaxed metrics

We notice that the analysis of Subsection 2.3.1, and that of Lemma 2.15 apply to a more
general case of the FLP when the connection cost function satisfies cij Æ 3(cijÕ +ciÕjÕ +ciÕj)

for all facilities i and iÕ, and clients j and jÕ. We say that a connection cost function c for
the FLP satisfies a · -relaxed triangle inequality if cij Æ · ·(cijÕ +ciÕjÕ +ciÕj), for all i, iÕ œ F ,
and j, jÕ œ C. Also, we say that the subset of the FLP that contains only instances that
satisfy the · -relaxed triangle inequality is the · -relaxed FLP.

The following generalizes Theorems 2.1 to obtain a lower bound on the approximation
factor for the · -relaxed FLP.

Theorem 2.7. Let “f and “c be positive constants with “c < 1 + (3· ≠ 1)e≠“f . If there is

a (“f , “c)-approximation for the · -relaxed FLP, then P = NP.

Proof sketch. We use the same reduction to set cover as in Theorem 2.1, but associate
elements and sets not connected directly with cost 3· (note that this connection cost
function satisfies the · -relaxed triangle inequality). The proof remains the same, except
that terms 9 become 3· , and coe�cients 8 become 3· ≠ 1.

To obtain approximations for this variant, we extend Theorem 2.5. First, we need the
following result, that is completely analogous to Lemma 2.16.

Lemma 2.17. d(j, CjÕ \ Fj) Æ · ·
1

“dj + (3 ≠ “)d
(max)
j

2

.

Now, we can obtain approximation for the · -relaxed FLP.

Theorem 2.8. For every “ Ø 1, the algorithm CS(“) obtain a bi-factor approximation

of
1

“, max
Ó

1 + (3· ≠ 1)e≠“, (2·≠1)e≠γ+e≠1

1≠“≠1 , ((“≠1)·≠1)e≠γ+e≠1

1≠“≠1

Ô2

for the · -relaxed FLP.

Proof. The proof adapts the proof of Theorem 2.5, but we use Lemma 2.17, instead of
Lemma 2.16. First, we consider “ Æ 3, and use d

(max)
j Æ d

(d)
j , so we obtain

2.6. An optimal approximation algorithm 45

E
5

min
iœF,yi=1

cij

6

Æ pc · d
(c)
j + pd · d

(d)
j + ps · ·

1

“dj + (3 ≠ “)d
(d)
j

2

=

A

(pc + pd + 3·ps) +
(pc + pd + 3·ps) ≠ (pc + ·ps)

“ ≠ 1
flj

B

dj

=

A

(1 + (3· ≠ 1)ps) +
(1 + (3· ≠ 1)ps) ≠ (pc + ·ps)“

“ ≠ 1
flj

B

dj

=

Q

a(1 + (3· ≠ 1)ps)(1 ≠ flj) +
(2· ≠ 1)ps + 1 ≠ pc

1 ≠ 1
“

flj

R

b dj

Æ
Q

a(1 + (3· ≠ 1)e≠“)(1 ≠ flj) +
(2· ≠ 1)e≠“ + e≠1

1 ≠ 1
“

flj

R

b dj

Æ max

Y

]

[

1 + (3· ≠ 1)e≠“,
(2· ≠ 1)e≠“ + e≠1

1 ≠ 1
“

Z

^

\

· Cú
j .

Now, we consider “ > 3, and use d
(max)
j Ø d

(c)
j . Analogously, we obtain

E
5

min
iœF,yi=1

cij

6

Æ pc · d
(c)
j + pd · d

(d)
j + ps · ·

1

“dj + (3 ≠ “)d
(c)
j

2

Æ max

Y

]

[

1 + (3· ≠ 1)e≠“,
((“ ≠ 1)· ≠ 1)e≠“ + e≠1

1 ≠ 1
“

Z

^

\

· Cú
j .

Let –(·) be the solution of equation “ = 1 + (3· ≠ 1)e≠“. We will verify that for
· in the interval (2.62, 31.02), Theorem 2.8 implies a (–(·), –(·))-approximation for the
· -relaxed FLP, and thus, for this interval, the algorithm CS(–(·)) has the best possible
approximation, unless P = NP. Let —(·) be the solution of equation “ = (2·≠1)e≠γ+e≠1

1≠“≠1

(considering “ Æ 3), and ”(·) be the solution of equation “ = ((“≠1)·≠1)e≠γ+e≠1

1≠“≠1 (considering
“ > 3). First notice that for a fixed · we obtain a balance in the bi-factor of the
Theorem 2.8 at the at the “ value that is maximum among –(·), —(·), ”(·). It is not hard
to show that all –(·), —(·) are ”(·) are increasing continuous functions, and that each
pair intersects at a single point (see Figure 2.2).

From Theorem 2.8, we know that max{–(·), —(·), ”(·)} is an approximation for
the · -relaxed FLP. Also, Theorem 2.7 states that there is no approximation better
than –(·) for the · -relaxed FLP, unless P = NP. Solving numerically the equations
–(·) = —(·) and –(·) = ”(·), we obtain that –(·) is maximum over the three functions
for · œ (2.62, 31.02), and so for this interval, the LP-rounding algorithm has the best
approximation factor.

46 Chapter 2. Upper Bound Factor-Revealing Programs

10 20 30 40 50

2.0

2.5

3.0

3.5

4.0

∆

Β

Α

Figure 2.2: Intersections of approximation and inapproximability curves

We say that the FLP with a metric raised to – (M–FLP), is the variant of the FLP
that considers instances such that the connection cost function is the –th power of a given
metric. We may use the following known fact to derive approximations for the M–FLP
using approximations for · -relaxed FLP’s.

Lemma 2.18. Let A, B, C, and D be nonnegative numbers such that A Æ B + C + D,

and let – Ø 1, then A– Æ 3–≠1(B– + C– + D–).

This implies that the connection cost function that is the –th power of a metric satisfies
the 3–≠1-relaxed triangle inequality, and therefore the M–FLP is a particular case of the
3–≠1-relaxed FLP.

Chapter remarks

The majority of the literature on the FLP considers the metric case. While the assumption
of the triangle inequality is natural for many applications, for other applications, more
relaxed distance functions are necessary, and so the di�culty of approximating the FLP
in these cases remained open. This work addressed this gap, by studying several relaxed
distance functions for the FLP. As expected, it was shown that, for the particular case
that the distance is the square of a metric, it is NP-hard to obtain an approximation
factor better than 2.04, while the corresponding known hardness result for the metric
case gives a lower bound of 1.463 [62]. It might be surprising, therefore, that the LP-
rounding algorithm of Chudak and Shmoys [38] has the best possible factor under the
squared metric, while for the metric case the gap between the best known approximation,
with factor of 1.488 [94], and the known approximation lower bound of 1.463 is still open.

For the analyzed primal-dual algorithms [72], the obtained results for the squared met-
ric were more consistent with the results known for the metric case, since the algorithms
with best factors for the squared metric case are also the algorithms with best factors

2.6. An optimal approximation algorithm 47

for the metric case. These factors were originally obtained by using the so called factor-
revealing programs. Since the non-linear behavior of the non-metric restriction turned
such factor-revealing programs much more complex, repeating the analysis employed in
the metric case became impractical. Thus, the upper bound factor-revealing programs
were introduced, as an alternative to obtain the approximation factor. It is worth notic-
ing that, although the independently obtained strongly factor-reveling programs [102] are
similar, in the sense that the approximation factor is given by solving an LP directly, we
presented a more systematic approach, that avoids guessing steps, and it indeed proved
easier in the analysis of the algorithms for the FLP.

Chapter 3

The Continuous Facility Location

Problem

Meira and Miyazawa [108] introduced a variant of the Facility Location Problem (FLP),
that is called the Continuous Facility Location Problem (ConFL). In this problem, a
facility can be opened at any point of the Euclidean space, while, in the traditional
Euclidean FLP, one can only open facilities at points of a given finite set of locations.
This is a problem with clustering applications, and is closely related to k-medians and
k-means problems. We consider continuous versions of both the Euclidean FLP, and the
Squared Euclidean FLP, when the cost to connect a client to a facility is given by the
Euclidean distance, and the squared Euclidean distance, respectively.

The ConFL may be interpreted as a penalty clustering problem. In this way, the
problem is to find a partition of the clients in any number of clusters with a fixed cost
per cluster, whereas the k-medians and k-means problems aim to find a partition of the
set of clients in at most k parts. Therefore, ConFL may be used as an alternative to
k-clustering problems when the number of clusters is not known, but there is an estimate
for the cost of a cluster. Notice that solving k-medians and k-means to the optimality for
each value of k is su�cient to solve ConFL under the L2 and L2

2 norms, respectively.

Problem’s definition. In the ConFL problem, one is given a set of points C of the
d-dimensional space, and a positive number f . A facility may be opened in any point of
the space at cost f , and a client j is connected to a facility i at cost c(i, j). The goal is
to open a set of facilities F Õ that minimizes

|F Õ|f +
q

jœC miniœF Õ c(i, j).

The ConFL with distance µ is denoted by µ-ConFLP, so that L2-ConFLP and L2
2-ConFLP

are the variants of ConFL with Euclidean and squared Euclidean distances, respectively.

49

50 Chapter 3. The Continuous Facility Location Problem

Summary of results. We reduce the ConFL to the corresponding discrete version of
the FLP, by using the so called center sets, which are discrete sets points that approximate
the centers in a continuous optimal solution. This leads to approximations for ConFL
problems, provided that there exists an e�cient procedure to obtain these center sets, and
approximation algorithms for the corresponding discrete facility location problems. Using
this reduction, we obtain approximations with factors 1.488+Á and 2.04+Á for the L2 and
L2

2 norms, for the case in which the dimension is part of input, and a PTAS for the case of
L2-norm and fixed dimension. Solving the L2-ConFLP and the L2

2-ConFLP by using the
corresponding discrete k-clustering problems cannot improve these factors, since there is
a lower bound on the approximation factor of 1.735 for the Metric k-medians [73], and
we show that there is no approximation with factor better than 3.943 for the k-medians
problem with squared metric. Moreover, we obtain center sets for the more general
L–

2 -norm, that are used to give approximation algorithms for the corresponding ConFL
problems, for any – Ø 1. Using such center sets, we also obtain a PTAS for the k-clustering
problems with L–

2 norms, for fixed k.

In Section 3.1, related works are reviewed. In Section 3.2, a generalized version of the
FLP is described, and additional definitions are given. In Section 3.3, we show how to
reduce ConFL to its corresponding discrete version, and give approximations for the case
of L2 and L2

2 dissimilarity measures. In Section 3.4, a procedure to obtain center sets for
the distance L–

2 is described, and approximations for the L–
2 -ConFLP are obtained.

3.1 Literature review

A few works give approximations for the ConFL. Meira and Miyazawa [108] presented a
(1.861+Á)-approximation for the L2-ConFLP, and a (9+Á)-approximation for L2

2-ConFLP,
and Czumaj et al. [43] presented an approximation scheme for the special case of the
ConFL problem for the L2 distance function in the plane. For the discrete Euclidean
FLP, when the set of facility locations is finite, and the connection cost is the Euclidean
distance, there is an approximation scheme by Arora et al. [7], who extended previous
approximation schemes for the TSP and other problems [5, 6]. For the variant whose
connection cost is the square of the Euclidean distance, the work of Jain and Vazirani [76]
implies a 9-approximation, and the best known factor is a 2.04-approximation for the
more general Squared Metric FLP, presented in Chapter 2,

Other clustering problems have been largely investigated. Several algorithms and tech-
niques have been proposed for k-means and k-medians (for both discrete and continuous
versions). In particular, some algorithms make use of center sets to obtain approximation
schemes. These works are summarized in the following.

3.1. Literature review 51

The k-means problem. One of the first algorithms for the k-means problem is a local
search heuristic proposed by Lloyd for Pulse Code Modulation (PCM) in 1957, although
this technique was only published in 1982 [98]. The term k-means is commonly used
to refer to both the problem and Lloyd’s method, and was used for the first time by
MacQueens [99] in 1967. In 2008, Dasgupta [44] showed that k-means is NP-hard for the
particular case where k = 2, and d is part of the input. The same result was obtained
independently by Aloise et al. [3]. In 2009, Mahajan et al. [100] showed that the planar
k-means is NP-hard, that is, k-means is also NP-hard for the particular case where d = 2,
and k is part of the input.

Despite the popularity of Lloyd’s algorithm, due to its relative simplicity, and good
performance in practice, it does not give any guarantee on the approximation factor,
nor on its running time. Indeed, there are examples for which Lloyd’s algorithm can
return arbitrarily bad solutions. Some works have analyzed this method, and some of its
variations, considering both the algorithm running time [8, 67], and the quality of the
returned solution [9, 114].

In 2005, Har-Peled and Sadri [67] analyzed the running time of k-means method, and
gave instances for the unidimensional case with k = 2 for which this algorithm runs for
at least Ω(n) iterations. They also considered the running time of Lloyd’s algorithms as a
function of the point spread ∆, which is defined as the ratio between the largest and the
smallest distance between two given points. Later, Artur and Vassilvitskii [8] showed that,
even for randomly selected initial centers, the running time is superpolynomial with high
probability. Also, they showed that, if the dimension of the points is not much smaller
than the total number of points, that is, if d = Ω(n/ log n), then the k-means method
runs in polynomial time with high probability.

In 2006, Ostrovsky et al. [114] showed that, ensuring that initial centers are selected
properly, a randomized variation of Lloyd’s algorithm has bounded approximation factor.
In 2007, Arthur and Vassilvitskii [9] revisited the importance of the good selection of initial
centers, and showed that a variation of Lloyd’s algorithm, that selects initial centers
probabilistically according to the inverse distance from a point to current centers, has
expected approximation factor of O(log k).

In 1993, Hasegawa et al. [68] presented one of the first algorithms with bounded
approximation factor. They noticed that the set of input points that are closest to the
centers of an optimal clustering gives a Voronoi partition with cost of at most twice the
optimal value. By enumerating all Voronoi partitions of the n points in k parts, they
gave a 2-approximation for k-means with running time O(nk+1). In 1994, Inaba et al. [71]
showed that the optimal partition for k-means is obtained from a set of Voronoi diagrams
of size O(nO(kd)). Therefore, they solved k-means exactly in time O(nkd+1) enumerating
such partitions. This is polynomial for the particular case in which k and d are fixed.

52 Chapter 3. The Continuous Facility Location Problem

Several approximation schemes have been proposed, both for the case of low dimen-
sion [66, 71, 106], and for the case of high dimension [35, 52, 54, 86]. In 1994, In-
aba et al. [71] presented a (1 + Á)-approximation for the 2-means problem with running
time O(nÁ≠d). In 2000, Matouöek [106] obtained (1 + Á)-approximations for the case of
constant d, or constant k, with running times O(n log n) and O(n logk n), respectively.
In 2003, Fernandez de La Vega et al. [54] showed an approximation scheme for constant
k, with time complexity O(n3k), that is independent of the dimension.

In 2004, Har-Peled and Mazumdar [66] showed that small subsets that are denominated
coresets, can be used to obtain good approximations for clustering problems. They used
coresets to obtain approximation schemes for k-means and k-medians problems. In the
same year, Kumar et al. [86] showed an approximation scheme for constant k, with linear
running time O(nd). Their algorithm is relatively simple, and is based on small random
samples of points.

When both d and k are considered part of the instance, Kanungo et al. [78] used a local
search to give a (9+Á)-approximation for the discrete version of k-means, when one is given
a discrete set of candidate centers C. To obtain a solution to the (continuous) k-means,
one may simply use an Á-approximate centroid set as the set of candidate centers. The
size of this centroid set may have exponential dependency on d [106], or may be chosen
independently of d [71]. Jain and Vazirani [76] gave a 108-approximation using a primal-
dual algorithm for the (discrete) Squared Euclidean FLP, using a binary search over the
cost of opening a facility, and using a rounding algorithm to obtain exactly k facilities.
Meira and Miyazawa [108] showed how such algorithm could be used to directly solve the
L2

2-ConFLP when d is fixed, improving the approximation factor to 54 + Á.
Table 3.1 summarizes the algorithms described for k-means.

The k-medians problem. The continuous k-medians is analogous to k-means, but uses
Euclidean distance as the connection cost function. There are polynomial-time approx-
imation schemes for the case in which k and d are fixed [7, 66, 83], and for the case in
which d is part of the input, but k is fixed [11, 35, 86]. When k is part of the input and
d Ø Ω(log n), it is NP-hard to obtain a PTAS to k-medians [64]. In the discrete version
of k-medians, the set of clients and centers are vertices of a graph, and the connection
cost between two clients is given by the edge weight. The special case whose graph is a
tree can be solved in polynomial time [79]. In 1999, Charikar et al. [33] obtained a 6.77-
approximation for the Metric k-medians, when the distance function is a metric. Using
the so called Lagrangian Multiplier Preserver algorithms for the FLP, Jain e Vazirani [76]
obtained a 6-approximation for the Metric k-medians, and Jain et al. [73] obtained a
4-approximation. Arya et al. [10] gave a local search (3 + Á)-approximation, and the best
approximation factor currently known is 1 +

Ô
3 + Á by Li and Svensson [95].

3.1. Literature review 53

Factor Reference year Notes

- Lloyd [98] 1982 O(nO(k)) amortized time [8]
2 Hasegawa et al. [68] 1993 Voronoi partitions, O(nk+1) time
1 Inaba et al. [71] 1994 Voronoi partitions, O(nkd+1) time

1 + ε Inaba et al. [71] 1994 O(nε
≠d) time for k = 2

1 + ε Matoušek [106] 2000 O(nε
≠2k2d logk n) time

108 Jain and Vazirani [76] 2001 primal-dual
9 + ε Kanungo et al. [78] 2002 local search

1 + ε Fernandez de La Vega et al. [54] 2003 O(nO(k/Á2)) time

1 + ε Har-Peled and Mazumdar [66] 2004 O(n + kk+2
ε

≠(2d+1)k logk+1 n logk 1
Á
) time

1 + ε Kumar et al. [86] 2004 O(2(k
ε

)O(1)
dn) time for small k

O(log k) Arthur and Vassilvitskii [9] 2007 variant of Lloyd’s algorithm
54 + ε Meira and Miyazawa [108] 2008 primal-dual

Table 3.1: Algorithms for k-means

Center sets. To obtain approximation schemes for k-means, Matouöek [106] used the
notion of approximate centroid sets. The idea is to obtain a set of candidate centers con-
taining a subset of k elements that is an approximate solution for k-means, and deviates by
at most an Á fraction of the optimum. The term centroid set comes from the fact that, for
k-means, the optimal center of a cluster is given by the centroid of its points. Analogous
sets are used for other k-clustering problems, and thus they are called generically center

sets in this work. For k-means, there are center sets with size O(nÁ≠d log(1/Á)), given
by Matouöek [106], and with size O(kÁ≠2d log n log 1/Á), given by Har-Peled and Muzum-
dar [66]. Approximate center sets of size independent of n and with O(k3Á≠(2d+2) log 1/Á)

elements were given by Har-Peled and Kushal [65]. Also, center sets of size independent of
d with O(n1/Á) elements are implicitly given by Inaba et al. [71]. For k-medians, there are
Á-approximate center sets with size O(k2Á≠2d log2 n) by Har-Peled and Muzumdar [66].
Kumar et al. [86, 87] gave center sets with size O(2(1/Á)O(1)

) independent of d with constant
probability, which implies center sets for k-medians of size O(n(1/Á)O(1)

).
Kumar et al. [86, 87] formalized the existence of a random sampling procedure for

certain k-clustering problems, and used a superset sampling algorithm to obtain linear
approximation algorithms for k-means and k-medians. The idea is that, for certain clus-
tering problems, one may obtain, with constant probability, a center set for a given set
of points using only a constant sized subset of these points. Ackermann et al. [1] ex-
tended the algorithm of Kumar et al., using a combinatorial analysis, and avoiding the
need of the triangle inequality, therefore obtaining linear approximation schemes for k-
clustering problems with di�erent distance functions, such as Kullback-Leibler divergence
and Mahalanobis distances.

54 Chapter 3. The Continuous Facility Location Problem

3.2 Definitions

The following definition generalizes the continuous and the discrete facility location prob-
lems, using arbitrary distance functions. Also, this generalizes other versions of the FLP,
such as the soft-capacitated, and the concave cost facility location problems.

Definition 3.1. In the Generalized FLP, we are given a finite set C of clients, and a

(possibly infinite) set F of facilities. We are given a dissimilarity measure c : F ◊C æ R+,

and a facility opening cost function f : F ◊ N æ R+. The cost to serve a given client

j œ C using a facility i is given by c(i, j), and the cost to open a facility i œ F if it serves

r clients is f(i, r). We require that f(i, 0) = 0 for each facility i œ F . We want to obtain

a function „ : C æ F that associates each client to a certain facility. The objective is

to minimize the sum of opening and connection costs,
q

iœF f(i, r(i)) +
q

jœC c(„(j), j),

where r(i) = |{j : „(j) = i}|.

We say that a facility location problem is discrete if F is finite. In this case, we assume
an oracle distance function c. If F is not finite, then we assume that the distance function
may be calculated in constant computational time. For example, irrational distances
c(i, j) can be truncated at some precision.

We consider a generalization of k-means and k-medians, which we denote by (L–
2 , k)-

clustering, where – Ø 1. In this problem, we are given a set P of n points in Rd, and want
to find a set K ™ Rd of k cluster centers, such that the sum of the – power of Euclidean
distance from every point to its nearest center is minimized. Using this notation, the
k-means problem corresponds to the (L2

2, k)-clustering, and the k-medians problem to the
(L2, k)-clustering.

Usually, the notion of centers is associated to a k-clustering problem. We say that a
center of a point set C µ Rd, denoted by center(C), is a point i œ Rd such that

q

jœC c(i, j)

is minimum. An approximate center set for a k-clustering problem, with respect to a
dissimilarity measure c, is defined below. In the following, we represent the total cost to
connect a set of clients C to a center set K ™ F as c(K, C) =

q

jœC miniœK c(i, j).

Definition 3.2. A (k, Á)-approximate center set for a set of clients C is a set S ™ F

which contains a subset K ™ S of size |K| = k such that c(K, C) Æ (1 + Á)c(K Õ, C), for

every K Õ µ F , with |K Õ| = k. In other words, the set S contains a center set whose cost

deviates by an Á fraction of the optimal value.

The problem to find a (1, Á)-approximate center set of a set C ™ Rd is the most basic
clustering problem, since k = 1. Kumar et al. [86] showed that it is possible to obtain,
with constant probability, (1, Á)-center sets from a constant sized subset of clients. Their
main idea is that, to solve a k-clustering problem, one could obtain an approximate center

56 Chapter 3. The Continuous Facility Location Problem

lemma that reduces the Generalized FLP to the corresponding discrete version. The
idea is to use a random sampling procedure, and transform an instance with an infinite
set of facility locations into an instance with bounded number of location, and with
approximate optimal value. In Subsection 3.3.2, we use this lemma to give approximations
for the L2-ConFLP and the L2

2-ConFLP, respectively. In Subsection 3.3.3 we show that
a natural and straightforward way to solve the L2

2-ConFLP — solving the corresponding
k-clustering problem with squared metric — cannot improve the approximation obtained
in Subsection 3.3.2.

3.3.1 A discretization lemma

Kumar et al. [86] use a random sampling procedure to obtain approximate centers of
one optimal cluster, and use this information to obtain an algorithm for k-medians, by
removing one cluster at a time, and recursively solving the remaining subproblem. The
algorithm is linear in the number of points, but is exponential in k. One way to solve
facility location problems with uniform facility cost would be solving the corresponding
k-clustering problem for each possible number of open facilities, k. Since, in the FLP, the
number of open facilities is not known a priori, it is not possible to obtain an approxima-
tion using the approach of Kumar et al. Instead, we use a random sampling procedure to
obtain approximate centers for all optimal clusters at once, and solve the reduced problem
using known combinatorial algorithms.

Since each multisample has a constant size, we may enumerate all of them in poly-
nomial time. By joining the center sets obtained for each multisample, we ensure that
at least one point that is near to each optimal cluster center is known. The following
lemma shows that if there is a random sampling procedure set for a given infinite FLP,
then we may readily reduce it to the corresponding discrete version. This reduction is
approximation preserving, except for an Á error. We assume that in such infinite versions
of the FLP, every facility has the same opening cost.

Lemma 3.1. Consider an instance of the Generalized FLP such that for any pair j, l œ F ,

we have f(j, r) = f(l, r) for every integer r Ø 0. Suppose that there exists a random

sampling procedure for the set of clients C, facilities F , and dissimilarity measure c.

Also, suppose that there exists a —-approximation for the corresponding discrete version

of the problem. Then, there exists a (— + Á)-approximation for every Á > 0.

Proof. Define ÁÕ = Á
—
, and let ⁄ÁÕ and core(·) be as in Definition 3.3. Construct the set

of all multisamples of size at most ⁄ÁÕ , R = C⁄
εÕ . That is, one element in R is a tuple

(c1, . . . , c⁄
εÕ

) of points in C. Then, obtain

F =
€

RœR

core(R),

3.3. Approximations for ConFL 57

by applying the random sampling procedure to each set R. Notice that there are n⁄
εÕ

distinct multisamples, where n = |C|, and that the size of each core(R) is polynomial
in the size of R, |R| = ⁄ÁÕ . Consider the instance of the discrete FLP given by facilities
F , clients C, and facility and connection cost functions f and c, respectively. We show
that an approximate solution for instance {F , C, f, c} is also an appropriate solution for
instance {F, C, f, c}.

Let Sc = {c1, . . . , ct} ™ F be the set of open facilities in an optimal solution of the
original FLP instance, with solution cost OPTc. Let Pi be the set of clients served by ci,
for 1 Æ i Æ t. Also, let Sd = {cÕ

1, . . . , cÕ
l} ™ F be the set of open facilities in an optimal

solution of the discrete problem with solution cost OPTd. Similarly, let P Õ
i be the set of

clients served by cÕ
i, for 1 Æ i Æ l.

First, we notice that, for any center ci in Sc, there is a point cÕÕ
i in set F that is

close to ci. Indeed, consider the set Pi of clients assigned to ci in solution Sc. Also,
let R be a random multisample of Pi of size ⁄ÁÕ . Using Definition 3.3, by instantiating
Q = Pi, we obtain that with constant probability there exists at least one c œ core(R)

such that c({c}, Pi) Æ (1 + ÁÕ)opt1(Pi) = c({ci}, Pi). Since the algorithm considers all
such multisamples, there must be some R such that, for some cÕÕ

i œ core(R) ™ F , we have
c({cÕÕ

i }, Pi) Æ (1 + ÁÕ)c({ci}, Pi).

Now consider the solution „ (not necessarily optimal) for the discrete instance that
opens facilities S„ = {cÕÕ

1, . . . , cÕÕ
t }, and that assigns center „(j) = cÕÕ

i for every j œ Pi, and
1 Æ i Æ t. From the optimality of solution Sd, we obtain

OPTd = c(Sd, C) +
l

ÿ

i=1

f(cÕ
i, |P Õ

i |)

Æ c(S„, C) +
t

ÿ

i=1

f(cÕÕ
i , |Pi|)

=
t

ÿ

i=1

c(S„, Pi) +
t

ÿ

i=1

f(ci, |Pi|)

Æ
t

ÿ

i=1

c(cÕÕ
i , Pi) +

t
ÿ

i=1

f(ci, |Pi|)

Æ
t

ÿ

i=1

(1 + ÁÕ)c(ci, Pi) +
t

ÿ

i=1

f(ci, |Pi|)

Æ (1 + ÁÕ)OPTc.

Finally, using the —-approximation for the discrete FLP, we obtain a solution for the
ConFL with value SOL, such that SOL Æ —OPTd Æ —(1 + ÁÕ)OPTc = (— + Á)OPTc.

58 Chapter 3. The Continuous Facility Location Problem

3.3.2 Euclidean and squared Euclidean ConFL

The ConFL is the particular case of the generalized facility location in which the set of
clients C is a subset of the space Rd, for an integer dimension d, and a facility is any
point of the continuous space Rd. We assume that the dissimilarity measure is a function
c : Rd ◊ Rd æ R+, computed in time that depends only on d. The costs to open any
two facilities in Rd to serve a number r of clients are the same, that is, for any j, l œ Rd,
f(j, r) = f(l, r) for every integer r Ø 0. This gives some flexibility on the cost of a cluster.
For example, the cost can be either constant, or proportional to the number of elements.

The ConFL can be used for clustering points. In such applications, the considered
dissimilarity measure is usually either the Euclidean distance, or the squared Euclidean
distance. Meira and Miyazawa [108] considered the case in which the cost to open a
facility is fixed, and may be interpreted as a penalty for each created cluster. More
precisely, they considered the particular cases of ConFL in which f(i, r) = f for every
i œ F and r > 0, and the dissimilarity measure is either the L2-norm, or the squared
L2-norm. These variants are denoted here by L2-ConFLP and L2

2-ConFLP, respectively.
To obtain approximation algorithms for the ConFL problem, we need random sampling

procedures for the corresponding k-clustering problems as stated in Lemma 3.1. For
k-means, Inaba et al. [71] showed that the centroid of a uniformly (uniformly sampled)
random multiset of P with m points is a (1, 1

”m
)-approximate centroid with probability

at least 1 ≠ ” for any ” > 0. For k-medians, Kumar et al. [86] showed that a random
multisample of size O((1

Á
)O(1)) may be used to obtain an Á-approximate center set of size

O(2(1/Á)O(1)
) with constant probability. This satisfies the premises of a random sampling

procedure for both the L2 and L2
2 versions of ConFL.

Now, we may obtain approximations for ConFL using the best known approximations
for the discrete versions of Euclidean FLP and Squared Euclidean FLP. For the Euclidean
FLP, the best algorithm is a PTAS of Arora et al. [7]. We notice, however, that this
algorithm assumes that d is a small constant, since it is exponential in d. For the case
that d is part of the input, we use the best algorithm for the Metric FLP, that is a 1.488-
approximation by Li [93]. For the Squared Euclidean FLP, we use the best algorithm for
Squared Metric FLP, that the 2.04-approximation obtained in Chapter 2.

Theorem 3.1. There is a PTAS for the L2-ConFLP for fixed dimension d, and there is

a (1.488 + Á)-approximation for arbitrary d. Also, there is a (2.04 + Á)-approximation for

the L2
2-ConFLP for every Á > 0.

One may also consider the PTAS’s for k-medians to derive approximation schemes
for the L2-ConFLP. For this, it would be necessary to run the k-medians algorithm for
each k œ {1, . . . , n}. In this approach, one must use an algorithm with time that is
polynomial on k. Kolliopoulos and Rao [83], and Har-Peled and Muzumdar [66] present

3.3. Approximations for ConFL 59

approximation schemes for k-medians, all for fixed d. Such results lead to alternative
approximation schemes to L2-ConFLP for fixed d.

It is also natural to solve L2
2-ConFLP running k-means for each k œ {1, . . . , n}. The

approximation schemes for k-means whose running time is polynomial in d have exponen-
tial dependency on k, according to a result in [64]. So, the running time of this approach
leads to exponential time algorithms. If a PTAS is not aimed, then it is possible to use
k-means algorithms with worse approximation guarantees. One possibility is to solve the
more general k-clustering problem that satisfies a squared metric, that we call the Squared

Metric k-medians. This problem is discussed in the next subsection, and it is shown that
the 2.04-approximation for the L2

2-ConFLP cannot be improved using this approach.

3.3.3 Discrete squared metric k-medians

The k-medians problem aims at finding a k-clustering of a set of points C, that minimizes
the overall sum of the Euclidean distance from points to the center of each cluster. That
is, in k-medians, a facility is any point of the continuous space. An often considered
variant is the discrete k-medians, where the sets of clients and facilities are given by a
weighted bipartite graph, and the distance function is given by the edge weights. The
most studied problem is the so called Metric k-medians, for which the distance function
satisfies the triangle inequality. We consider another variant of the discrete k-medians,
when the square root of the distance function satisfies the triangle inequality, that is, the
distance function is a squared metric. Formally the Squared Metric k-medians problem is
a particular case of the discrete k-medians in which, for all facilities i and iÕ, and clients j

and jÕ, we have
Ò

c(i, j) Æ
Ò

c(i, jÕ) +
Ò

c(iÕ, jÕ) +
Ò

c(iÕ, j). This kind of distance function
is a relaxation of a metric, and was considered in [53].

The Squared Metric k-medians can be thought as the discrete version of k-means. In
fact, if we use center sets, we can even solve k-means using algorithms for the Squared
Metric k-medians, as discussed before, and thus also solve the L2

2-ConFLP. One advantage
of considering this discrete version is that, since the distance function is given by an
oracle, the algorithm running time has no dependency on the dimension d. While there
are approximation schemes for k-means, the algorithms of Jain and Vazirani [76], based on
LP relaxations, and Kanungo et al. [78], based on local search, have large approximation
factors of 1081 and 9 + Á, respectively. However, these algorithms consider both d and k

as part of the instance. In fact, we can use them to solve the more general Squared Metric
k-medians problem, and obtain 54 and (9 + Á)-approximation algorithms, respectively.

1Jain and Vazirani only consider as candidate centers the points of the instance. Using better ap-
proximate center sets, as those of Inaba et al. [71], one can readily improve this factor to obtain a
(54 + ε)-approximation.

60 Chapter 3. The Continuous Facility Location Problem

The 54-approximation of Jain and Vazirani is based on the Lagrangian relaxation of
k-medians, that corresponds to the FLP with uniform facility cost. The algorithm is
based on the idea of guessing (by a binary search) an appropriate value for this cost
and approximately solving the FLP so that only k facilities are open. If the binary
search is successful, the algorithm yields a 9-approximation for the squared k-medians.
Since, finding (in polynomial time) such a facility cost is not always possible, there is an
additional rounding step, that multiplies the approximation factor by an extra factor. For
the squared metric instances, Jain and Vazirani gave a preliminary analysis with factor
6, using a relaxed triangle inequality, and thus obtained factor 9 ◊ 6.

The Metric k-medians is related to the Metric FLP, and, analogously, the Squared
Metric k-medians is related to the Squared Metric FLP. There is a known lower bound of
1.463 for Metric FLP [61], and 1+2/e ¥ 1.73 [73] for the Metric k-medians. Similarly, the
Squared Metric FLP has a lower bound of 2.04 [53]. For the Squared Metric k-medians,
it is straightforward to extend these results, and obtain the following theorem. For the
sake of completeness, we include a proof sketch.

Theorem 3.2. There is no (1+8/e≠Á ¥ 3.943)-approximation algorithm for the Squared

Metric k-medians for any Á > 0, unless P = NP.

Proof sketch. First, notice that the statement of Theorem 2.1 also applies to the particular
version of the Squared Metric FLP, so that all facilities have the same cost (it is enough
to notice that in the proof of Theorem 2.1, all facilities of a given instance have the same
cost).

The key observation is that an –-approximation for the Squared Metric k-medians
implies a (1, –)-approximation for the Squared Metric FLP with uniform facility cost f :
given an instance of the FLP, create an instance of k-medians with the same set of clients
and set of facilities, for each k = 1, . . . , m, where m is the total number of facilities; solve
each such instance using the –-approximation, and return the solution with smallest
connection cost. This solution is also a solution for the original FLP.

For some k, let OPTk be the value of an optimal solution for the k-medians instance,
and let SOL be the value of the returned solution for the facility location. Also, let
FOPT, and COPT be the facility and connection costs of an optimal solution for the facility
location. Clearly, if such solution opens kÕ facilities, then FOPT = kÕf , and OPTkÕ = COPT.
We derive that SOL Æ kÕf + – OPTkÕ = FOPT + – COPT. Therefore, the reduction is a
(1, –)-approximation for the FLP with uniform facility cost.

The theorem follows from the modified Theorem 2.1 (for the Squared Metric FLP with
uniform facility cost), using “f = 1.

This theorem implies that it is unlike that an algorithm for the Squared Metric

3.4. Continuous FLP with powers of Euclidean distances 61

k-medians can be used to improve the (2.04 + Á)-approximation for the L2
2-ConFLP ob-

tained using an algorithm for the discrete Squared Metric FLP.

3.4 Continuous FLP with powers of Euclidean dis-

tances

We also consider a generalization of the Euclidean and squared Euclidean ConFL when
the considered dissimilarity measure is the –-th power of the Euclidean distance for some
– Ø 1. The considered problem is the L–

2 -ConFLP, which is the particular case of ConFL
such that f(i, r) = f , where f Ø 0 is a given constant, for every i œ F and r > 0, and
the dissimilarity measure L–

2 is the –-th power of the Euclidean distance. That is, for two
points pi, pj œ Rd,

L–
2 (pi, pj) = Îpi ≠ pjÎ– =

Q

a

ˆ

ı

ı

Ù

d
ÿ

t=1

(pit ≠ pjt)2

R

b

–

.

When – = 1, L–
2 is the Euclidean distance. For this case, Kumar et al. [87] proposed

a random sampling procedure extending the result of Bādoiu et al. [11]. For – = 2,
the function L–

2 is the widely used L2
2 norm, and Inaba et al. [71] proposed a random

sampling procedure for this distance function. For a general –, we do not know whether
it is possible to obtain a constant sized (1, Á)-center set from a random multisample with
high probability, and thus we do not give a random sampling procedure. However, we
may extend the results of Bādoiu et al. [11] and Kumar et al. [87] to obtain a (1, Á)-
center set of polynomial size to the L–

2 dissimilarity measure. This is su�cient to derive
approximations for L–

2 -ConFLP from approximations for the discrete case.
We start with an auxiliary lemma, that gives a rough bound on the generalized bino-

mial. For the sake of completeness, we include a proof.

Lemma 3.2. Let 0 < x < 1
2

and – Ø 1. It holds (1 + x)– Æ 1 + 2x––.

Proof.

(1 + x)– = 1 +
Œ

ÿ

k=1

A

–

k

B

xk Æ 1 + ––
Œ

ÿ

k=1

xk Æ 1 + ––x
Œ

ÿ

k=0

1

2

k

= 1 + 2x––,

where the first inequality is valid because
1

–

k

2

Æ ––.

The following lemma extends Theorem 3.2 of Bādoiu et al. [11]. The proof is the same,
except that for the L–

2 we may not assume triangle inequality, so we have to be careful
when considering an alternative center candidate.

62 Chapter 3. The Continuous Facility Location Problem

yp

xp
p

`i

copt

ci

Hi

l

Ui

Figure 3.2: Definitions of Lemma 3.3 ([11])

In the following, consider a set of points P of size n, let copt be an optimal center of
the corresponding 1-median problem, OPT =

q

pœP ||p ≠ copt||
– be the cost of an optimal

solution, and T be such that T – = 1
n
OPT. The value 1

n
OPT is the average cost of

connecting clients to the optimal center. Also, define MÁ = Á1/Á2– · log1≠Á2/1024 Á2/2Ë for
some Á > 0. We say that the flat span of a subset of points X µ Rd, denoted by span(X),
is the a�ne subspace spanned by points of X.

Lemma 3.3. Let 1/2 > Á > 0, and let X be a random sample of points (uniformly drawn)

from P of size MÁ. Then, with constant probability, (i) the projection x of copt on the flat

span of X is a (1 + 4Á)–-approximate 1-median for P , and (ii) X contains a point y such

that ||y ≠ copt|| Æ 2T .

Proof. Let — = Á/16. We will randomly sample a set of points s1, . . . , su. For each i,
let Fi be the flat span of the first i sampled points s1, . . . , si, let ci be the projection
of copt on Fi, and let di = ||copt ≠ ci|| be the (Euclidean) distance from the optimal
center copt to the flat span Fi. Denote by ¸i the line that pass through copt and ci, and
define Ui =

Ó

x œ Rd | fi/2 ≠ — Æ ∠coptcix Æ fi/2 + —
Ô

as the complement of the cone of
angle fi ≠ — emanating from ci and axis ¸i. Let Qi = P \ Ui be the set of clients in such
cone. Also, denote by Hi the (d≠1)-dimensional hyperplane orthogonal to ¸i and passing
through ci (see Figure 3.2).

Now, we partition the sampled points in rounds. The first round is finished when a
point si such that ||si ≠ copt|| Æ 2T is sampled. By Markov inequality, P (||si ≠ copt|| Ø
2T) = P (||si ≠ copt||

– Ø (2T)–) Æ (1
n
OPT)/(2T)– Æ 1/2. Therefore, this event occurs

with probability at least 1/2. Suppose that the sample si has just finished a round, then
the next round is finished when one of three cases happen:

Case (a): The distance from copt to Fi is di Æ Á2T .

We divide P in two parts, P1 = {x œ P | ||x≠copt|| Æ ÁT}, and P2 = P \P1. If p œ P1,
then ||p≠ci|| Æ (Á+Á2)T , and if p œ P2, then ||p≠ci|| Æ ||p≠copt||+Á2T Æ (1+Á)||p≠copt||.

3.4. Continuous FLP with powers of Euclidean distances 63

We calculate the cost of using ci as a center.

ÿ

pœP

||p ≠ ci||
– =

ÿ

pœP1

||p ≠ ci||
– +

ÿ

pœP2

||p ≠ ci||
–

Æ (Á + Á2)–
ÿ

pœP1

T – + (1 + Á)–
ÿ

pœP2

||p ≠ copt||
–

Æ (Á + Á2)–
ÿ

pœP

T – + (1 + Á)–
ÿ

pœP

||p ≠ copt||
–

Æ (1 + Á + Á + Á2)–
ÿ

pœP

||p ≠ copt||
–

Æ (1 + 3Á)–
ÿ

pœP

||p ≠ copt||
–.

The third inequality follows since both sums are lower bounds on the optimal value. In
this case, we are done.

Case (b): The number of points in Qi is at most Á2–n.
We divide P in three parts, P1 = P fl Ui, P2 = {p œ Qi | ||p ≠ copt|| Æ 1

Á
T}, and P3 =

Qi \P2. Consider a point p œ P1, let xp be the distance of p to the line ¸i, and let yp be the
distance between p and Hi. We have yp Æ xp tan — Æ xp

sin —

cos —
Æ 4—xp Æ Áxp

4
Æ Á

4
||p ≠ copt||,

since — < 1/16. So we obtain ||p≠ci|| Æ xp+yp Æ (1+2 Á
4
)||p≠copt||. Now, consider p œ Qi,

and recall ||ci ≠ copt|| Æ 2T . If p œ P2, then ||p ≠ ci|| Æ ||ci ≠ copt|| + ||p ≠ copt|| Æ (2 + 1
Á
)T ,

and if p œ P3, then ||p≠ci|| Æ ||p≠copt||+2T Æ ||p≠copt||+2Á||p≠copt|| = (1+2Á)||p≠copt||.
We calculate the cost of using ci as a center.

ÿ

pœP

||p ≠ ci||
– =

ÿ

pœP1

||p ≠ ci||
– +

ÿ

pœP2

||p ≠ ci||
– +

ÿ

pœP3

||p ≠ ci||
–

Æ (1 +
Á

2
)–

ÿ

pœP1

||p ≠ copt||
– + (2 +

1

Á
)–

ÿ

pœP2

T – + (1 + 2Á)–
ÿ

pœP3

||p ≠ copt||
–

Æ (1 +
Á

2
)–

ÿ

pœP1

||p ≠ copt||
– + (2 +

1

Á
)–Á2–nT – + (1 + 2Á)–

ÿ

pœP3

||p ≠ copt||
–

= (1 +
Á

2
)–

ÿ

pœP1

||p ≠ copt||
– + (2Á2 + Á)–

ÿ

pœP

||p ≠ copt||
–

+ (1 + 2Á)–
ÿ

pœP3

||p ≠ copt||
–

Æ (1 + 2Á)–
ÿ

pœP

||p ≠ copt||
– + (2Á2 + Á)–

ÿ

pœP

||p ≠ copt||
–

Æ (1 + 2Á + 2Á2 + Á)–
ÿ

pœP

||p ≠ copt||
–

Æ (1 + 4Á)–
ÿ

pœP

||p ≠ copt||
–.

64 Chapter 3. The Continuous Facility Location Problem

We are done also in this case.

Case (c): There is at least Á2–n points in Qi, and di Ø Á2T .
The new round continues until a random sample point sj œ Qi is picked. Let l be the

line segment connecting ci to sj, then l must be in Fj. Also, the angle between l and ¸i

is smaller than fi/2 ≠ —, so dj = dist(Fj, copt) Æ dist(l, copt) Æ sin(fi/2 ≠ —)||copt ≠ ci|| =

cos(—)di Æ (1≠—2/4)di, where dist(X, p) = minxœX ||x≠p|| for some X ™ Rd. This means
that, in this case, the distance from the optimal center copt and the flat span of successive
rounds shrinks by a factor of (1 ≠ —2/4). Since the probability of sampling a point in Qi

is at least Á2–, the expected number of samples in this round is at most 1/Á2–.

For the first round we have di Æ ||si ≠copt|| Æ 2T , and we stop sampling as soon as the
distance from copt to the flat span is smaller than Á2T . Therefore the maximum number
of rounds finished by Case (c) is bounded by log1≠—2/4(Á

2T)/(2T), and the expected total
number of sampled points is at most MÁ = Á1/Á2– · log1≠—2/4 Á2/2Ë. The lemma follows
from Markov inequality.

The next lemma obtains a center set from the flat span obtained from Lemma 3.3,
assuming that bounds on T are known. This uses the construction of Kumar et al. [87]
and Bādoiu et al. [11].

Lemma 3.4. Let 1/4 > Á > 0, and let X be a random sample of points from P of size MÁ.

Suppose that we know numbers a, b such that a Æ T Æ b. Then, we can construct a set Y

of O(2(1/Á)O(1)
log(b/a)) points that, with constant probability, is a (1, 16Á––)-center set of

P. Further, it takes O(2(1/Á)O(1)
log(b/a)d) time to construct Y from X.

Proof. First, notice that

MÁ = Á1/Á2– log1≠Á2/1024 Á2/2Ë
= O(1/Á2– log(Á/2) / log(1 ≠ Á2/1024))

= O(1/Á2– log(2/Á) / log(1 ≠ Á2/1024)≠1))

= O(1/Á2– log(2/Á) / Á2/1024))

= O(1/Á2+2– log 1/Á),

where the penultimate equality is valid since log(1 ≠ x)≠1 Ø x, by Taylor expansion.
We construct exponential grids Gp(t) for each point p œ X, and for each t = 2i,

with i in the range [Âlog aÊ, Álog bË]. The grid Gp(t) has side length l = Á2t/(4|X|) in
span(X), and is centered at p. The candidate set Y is the union of vertices of every Gp(t),
that are at distance at most 4t from p. The number of considered points in each such
a grid Gp(t) is at most (8t/l)|X| = O(2(1/Á)O(1)

), so the total number of points in Y is
O(|X| · log(b/a) · 2(1/Á)O(1)

) = O(2(1/Á)O(1)
log(b/a)).

3.4. Continuous FLP with powers of Euclidean distances 65

The statements of Lemma 3.3 hold with constant probability, so assume they are
true. Let x and y be as in Lemma 3.3. Since x is the projection of copt in span(X) and
y œ span(X), we have ||copt ≠ x|| Æ ||copt ≠ y|| Æ 2T . By the triangle inequality, we have
||y ≠x|| Æ 4T . Let t = 2i be such that t/2 Æ T Æ t, then ||y ≠x|| Æ 4t. Now, let p œ Gy(t)

be a grid vertex closest to x such that ||p ≠ y|| Æ 4t. The distance between p and x is
||p ≠ x|| Æ |X|l Æ Á2t/2 Æ Á2T .

We divide P in two parts, P1 = {z œ P | ||z ≠ x|| Æ ÁT}, and P2 = P \ P1. If z œ P1,
then ||z ≠ p|| Æ 2ÁT , and if z œ P2, then ||z ≠ p|| Æ ||z ≠ x|| + Á2T Æ (1 + Á)||z ≠ x||. We
calculate the cost of using p as a center.

ÿ

zœP

||z ≠ p||– =
ÿ

zœP1

||z ≠ p||– +
ÿ

zœP2

||z ≠ p||–

Æ (2Á)–
ÿ

zœP1

T – + (1 + Á)–
ÿ

zœP2

||z ≠ x||–

Æ (2Á)–OPT + (1 + Á)–(1 + 4Á)–OPT

Æ (1 + 8Á)–OPT

Æ (1 + 16Á––)OPT,

where the second inequality follows from Lemma 3.3, and the last inequality from Lemma 3.2.
Since we must have considered Gy(t) when constructing Y , we are done.

The following gives logarithmic sized center sets for k-medians with L–
2 dissimilarity

measure.

Lemma 3.5. Let 1/4 > Á > 0, and let X be a random sample of O(1/Á2+2– log 1/Á) points

from P . Then, we can construct a set Y of O(2(1/Á)O(1) log n) points that, with constant

probability, is a (1, 16Á––)-center set of P . Further, it takes O(2(1/Á)O(1)
log n d + nd) time

to construct Y from X.

Proof. Denote by D the diameter of P , and let r, s œ P be such that D = ||r ≠ s||. Fix a
point p œ P . Find the point q œ P such that the distance ||p≠q|| is maximum, and denote
by d this distance. Then, we have D Æ ||p≠r||+||p≠s|| Æ 2d. Clearly 2d is an upper bound
for T . For the lower bound, we know that nT – = OPT Ø max{||p≠ copt||

–, ||q ≠ copt||
–} Ø

(d/2)–. Therefore, we can instantiate Lemma 3.4 with a = d/(2n1/–) and b = 2d.

The center set constructed using this lemma is not of constant size, and so does not
guarantee the existence of a random sampling procedure for k-medians with L–

2 distance
function. Therefore, it does not satisfy the requirements for the Kumar et al. [87] algo-
rithm, that is used to obtain a linear-time approximation scheme for k-medians. If we use
this center set with their algorithm, however, we obtain an approximation scheme for the
L–

2 k-clustering.

66 Chapter 3. The Continuous Facility Location Problem

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3 3.5 4 4.5 5

Value of alpha

Approximation factor

Figure 3.3: Approximation for the L–
2 -ConFLP

Corollary 3.1. For any Á > 0 and for a constant k, there is a (1 + Á)-approximation for

the L–
2 k-clustering. This algorithm runs in O(2(k/Á)O(1)

dn logk n)-time.

For the L–
2 -ConFLP, we may use Lemma 3.5 instead of a random sampling procedure,

in the same way done in Lemma 3.1. Although the obtained center set does not have a
constant size, it is obtained from a constant sized random sample. Therefore, we still may
enumerate all such samples and obtain a discrete set of candidate centers in polynomial
time. We use this to derive an approximation for the L–

2 -ConFLP from an approximation
for the corresponding discrete case. Since the proof is analogous to that of Lemma 3.1,
we omit it.

Theorem 3.3. Suppose that there exists a —-approximation for the discrete L–
2 FLP.

Then, there exists a (— + Á)-approximation L–
2 -ConFLP for every Á > 0.

Now we use approximations for the M–FLP, that is a variant of the Metric FLP,
such that the distance function is the –-th power of a metric. The discrete L–

2 FLP is
therefore a particular case of the M–FLP. The following theorem is derived directly from
Theorem 3.3, and from results of Subsection 2.6.1. Figure 3.3 shows the approximation
factor obtained using this theorem for – between 1 and 5.

Theorem 3.4. There are constant approximations for the L–
2 -ConFLP, for every – Ø 1.

In particular, for – Æ 5, the approximation factor is not greater than 5.

3.4. Continuous FLP with powers of Euclidean distances 67

Chapter remarks

In the k-clustering problems, one has an estimate k on the number of clusters of a given set
of points of the Euclidean space. Another possibility is considering an estimate f on the
cost to create each cluster, if an optimal number of clusters is not known. This problem
corresponds to the FLP whose set of locations is the complete Euclidean space, and thus
is called the Continuous FLP (ConFL). Meira and Miyazawa [108] showed how to apply
primal-dual algorithms for the FLP in the continuous set of facilities, leading to constant
approximations for ConFL. This chapter showed that, to obtain an approximation for
ConFL, it is enough to obtain an approximation for the corresponding discrete Euclidean
version of the problem, provided the existence of approximate center sets for the specific
dissimilarity measure used. We provide approximate center sets for the case that the
distance function is the Euclidean distance raised to some power – Ø 1, that is, the L–

2 -
norm. Therefore, we improve the results of Meira and Miyazawa, by giving a PTAS for
– = 1, and constant approximations for every – > 1. The approximate center sets were
introduced in the context of k-medians and k-means, that correspond to the k-clustering
problems with L–

2 -norm for – = 1 and – = 2, respectively. Kumar et al. [87] showed
how to derive PTAS’s for k-clustering problems from approximate center sets for a given
distance function, and thus we also give the first PTAS for the k-clustering problem with
L–

2 -norm, for general – Ø 1.

Chapter 4

Supply Chain Problems

This chapter considers several generalizations of the Joint Replenishment Problem (JRP),
either by considering more general settings, or more relaxed assumptions. First, we intro-
duce a generalization of the Facility Location Problem (FLP), called the Production and
Distribution Problem (PDP), which is the problem of minimizing ordering, distribution
and inventory holding costs of a supply chain formed by a set of warehouses and retail-
ers. Each retailer can face a demand in each time of a discretized planning horizon that
must be satisfied by the items currently held in the inventory, and that were previously
ordered and transported from any of the warehouses. The objective is to determine an
inventory replenishment policy for each retailer, minimizing the overall cost of stock and
transportation. These costs are balanced by a fixed ordering setup cost that depends on
the warehouse, but is independent of the time or of the number of items produced.

Next, the One-Warehouse Multiple-Retailer Problem (OWMR) is considered. As in
the JRP, the objective is to determine an inventory replenishment policy of a set of
retailers, that may place orders to a single retailer. In this problem, however, items may
be held in the warehouse before being transported to a retailer. We consider the case
that holding cost functions of retailers and warehouse may be independent. Finally, we
consider the Multilevel JRP, for which the supply chain is given by a tree with a special
root node. For example, a supply chain may be comprised of retailers, warehouses, and a
producer. Each leaf of the tree can face demands over time. In this problem, a non-root
node may place an order at a given time only if each element in the path from this node
to the root also places an order at the same time.

In Section 4.1, related works are reviewed. In Section 4.2, the PDP is described. In
Section 4.3, we present an approximation for the PDP, and in Section 4.4 we extend the
previous algorithm to the variant of the PDP with retailer ordering costs. In Section 4.5,
we present a primal-dual approximation for OWMR. In Section 4.6, we note that the
Multilevel JRP may be reduced to the Multistage Assembly Problem.

69

70 Chapter 4. Supply Chain Problems

4.1 Literature review

The JRP has a 2-approximation based on a primal-dual approach by Levi et al. [90]. In this
algorithm, the dual variables are increased according to the so called “wave mechanism”,
rather than uniformly as in traditional algorithms. For the more general OWMR problem,
when items can be held in the warehouse, there is a 1.8-approximation through LP-
rounding, based on a new random shift procedure introduced by Levi et al. [91]. They
considered the particular case in which the holding cost either decreases, or increases as
the fraction of time that the item is held on the warehouse increases. The best known
approximation algorithm for the JRP has performance guarantee 1.791 [22]. For the
special case that holding costs are either zero or infinity, also known as the JRP with
deadlines, there is a randomized 1.574-approximation [21]. An on-line variant of the JRP
has been considered by Buchbinder et al. [25], who gave a deterministic 3-competitive
algorithm, and showed a lower bound of 2.64 on the competitiveness.

There is an e�cient approximation scheme (EPTAS) for the JRP with stationary
demands and linear holding costs, and a PTAS for the JRP with non-stationary demands,
but with soft capacitated single item orders, where each retailer order has a capacity,
but several retailer orders at the same time are permitted [113]. The similar multistage
assembly problem, that considers the problem of assembling items according to a bill of
material, and paying echelon holding costs has a 2-approximation based on the primal-
dual approach by Levi et al. [90]. They also showed how to solve in polynomial time
the particular case of the JRP with only one retailer, called the single-item lot-sizing
problem. A capacitated version of the multi-item lot-sizing problem has been considered
by Levi et al. [89], when there is a hard capacity on the total number of items ordered.
They showed that this problem is strongly NP-hard, and gave a 2-approximation based
on the rounding of an LP relaxation that is similar to that of the FLP.

Integrated supply chain management. The literature on integrated supply chain prob-
lems has considered several design and inventory problems, with di�erent network struc-
tures, objective functions, and constraints. Reviews on integrated supply chain are given
by Shen [120] and Melo et al. [109]. Depending on the considered model, a retailer must
be assigned to a unique supplier [96, 120, 130], or it may be assigned to di�erent sup-
pliers at di�erent times [24, 116]. Several approaches have been used to deal with these
problems, such as Lagrangian relaxation [45], column generation [121, 130], and meta-
heuristics [24, 32]. Pochet and Wosley [116, Section 13.4] have discussed valid inequalities
for a mixed integer linear programming formulation of a generalized version of the PDP.
In their problem, they also considered warehouse stocks, production capacity, and trans-
portation cost depending on time.

4.1. Literature review 71

Approximation algorithms have been proposed for few problems with integrated costs,
such as the Warehouse-Retailer Network Design Problem (WRND) [96, 130], and the
Stochastic Transportation-Inventory Network Design Problem (STIND) [96, 123]. In the
WRND, one is given a set of warehouses, and a set of retailers. Each retailer faces a
constant-rate demand for items, and can be served by one of the warehouses. All the
warehouses are served by a single external supplier. The sets of warehouses, retailers, and
supplier form a metric space. The objective is to partition the retailers, and associate
each partition to a warehouse, such that the overall partition cost is minimized over the
infinite time horizon. The cost of each partition includes three components: the yearly
operational cost of the warehouse; the annual transportation cost from the supplier to the
warehouse, and from the warehouse to the retailer; and the two-echelon inventory cost of
the system formed by the warehouse and associated retailers. The STIND is similar to
the WRND, but the demand of each retailer is uncertain, with some known mean and
variance, and the warehouses should keep some safety stock levels. In this problem, the
inventory cost is given by two concave functions: the storage and material handling cost,
and the safety stock inventory cost.

Both WRND and STIND admit set covering formulations, and therefore approxima-
tions with logarithmic factors, based on the primal-dual greedy algorithm, can be readily
obtained. Li et al. [96] gave a 1.861-approximation for the WRND, based on the greedy
primal-dual algorithm by Jain et al. [72], for the case that warehouse holding costs are
greater than retailer holding costs, and a 3-approximation based on primal-dual tech-
niques for the case in which all the warehouse holding costs are identical. For the STIND,
a primal-dual 3-approximation algorithm was also designed by Li et al. [96]. Compared
to the WRND and the STIND, the time horizon of the PDP is discretized and finite, and
for each time step, each retailer has a known demand. This contrasts to the STIND, for
which the demand is uncertain, and to the WRND, for which the demand rate is constant.
Also, in the setting of PDP, a retailer is not bonded to a single warehouse, but can choose
to order from di�erent warehouses, depending on which is more economical at each time.

The particular case of the PDP with only one time step corresponds to the FLP, that
is extensively discussed at Chapter 2. Also, the variant of the PDP with a setup cost
for each retailer order is a generalization of the JRP. In general, one can obtain a log(n)-
approximation for the PDP, where n is the number of demands, by encoding the problem
as an exponential minimum set cover problem, and modifying the log(n)-approximation
for the FLP by Hochbaum [70]. This factor can also be obtained by a primal-dual greedy
algorithm, and using a factor-revealing based analysis [101]. When the transportation
cost function is arbitrary, set cover can be reduced to FLP, so it is unlikely to exist a
better factor [51, 112]. Also, set cover would still be encoded by the PDP if the holding
cost is dependent on the warehouses, even if transportation costs were zero.

72 Chapter 4. Supply Chain Problems

4.2 The Production and Distribution Problem

Traditionally, network design, distribution and inventory replenishment decisions are
made separately. In the location theory, the literature focuses on the strategic deci-
sions of network design, such as where to place facilities and how to assign one facility to
each client. On the other hand, in the inventory theory, a static network design is usually
assumed. Such a static network design has defined assignments between facilities and
clients, and the decisions are concentrated on determining replenishment policies for the
inventory. However, the lack of coordination between inventory and shipment costs when
determining the network design leads to sub-optimality [120]. In this section, rather than
assuming a previously defined distribution network design, we consider a pre-established
set of locations, and allow a dynamic distribution design that integrates the decisions
of shipment, ordering and inventory replenishment policies. For instance, one retailer’s
stock can be replenished by di�erent warehouses at di�erent times.

Problem’s definition. In the PDP, one is given a set of warehouses P , and a set of
retailers Q. Each retailer q may face a demand for dqt œ Z+ units of item in each time t of
a discretized planning horizon with steps {1, . . . , T}. Each demand can only be satisfied
with items that are currently in the stock of the corresponding retailer, i.e., we have a
make-to-stock scenario. The stock is initially empty, and may be replenished by placing
orders to any warehouse. There is no stock at warehouse facilities, so every time s that a
warehouse p receives an order, the demanded items are produced at a setup cost kp, that is
independent of the number of items produced, or the number of retailers participating in
the order. Once the items have been produced, each unit is transported to the requesting
retailer q at a cost cpq. We assume that the transportation time is negligible, so each
unit of item is held in the stock of retailer q from the time s it was produced until the
time t it was delivered. The holding cost incurred for this item is hqst. The objective is
to minimize the overall sum of ordering, distribution, and holding costs.

Summary of results. We study the PDP under a natural assumption that the trans-
portation and holding cost functions satisfy a generalization of the triangle inequality.
The intuition for this assumption is that in many applications it is cheaper to transport
one item from the warehouse to the retailer of destination directly, rather than using
other retailers as storage midpoints. The main contribution of this chapter is a 2.77-
approximation for the PDP. Our algorithm is based on the randomized rounding of the
natural LP relaxation, and uses clustering of demand points, in the spirit of the FLP
algorithms of Sviridenko [127] and Chudak and Shmoys [38], but has to carefully select
the order to be placed for each cluster, due to the additional temporal restriction. This

4.2. The Production and Distribution Problem 73

extra step leads to a worse approximation factor for the service cost, when compared
to the standard FLP. To balance the ratios for ordering and service costs, we use two
di�erent approaches. In the first approach, we place two orders for each cluster. This
results in high ordering cost, but reduces significantly the expected service cost. In the
second approach, we use the filtering technique parameterized by some – to obtain the
opposite imbalance on the approximation guarantee. Combining the two approaches is
done by the use of a probability distribution over the choice of parameter –, or the use
of the first approach.

4.2.1 Holding and transportation costs model

For the PDP, the cost incurred to serve a demand point is the combination of two di�erent
contributions: the cost to transport one item from a warehouse facility to a given retailer,
and the cost to keep one item in the inventory of a retailer until it is delivered. We refer
to the sum of distribution and holding costs as the service cost of this demand point. In
the following, we describe assumptions on these cost functions.

For most inventory problems considered in the literature, the holding cost is modeled
on a per unit and per time step basis, that is, in traditional inventory models a nonnegative
cost hqt is incurred to hold one unit of item from time step t to time step t+1 in the stock
of retailer q. For the PDP, the holding cost is modeled by the more general function hqst.
We assume that this holding cost function is monotone, that is, the holding cost can only
decrease if the period that an item is kept in the stock is shortened. This is formalized in
the next assumption.

Assumption 4.1. [Monotonicity] Fix a retailer q. Let s, sÕ, t, tÕ be time steps such that

s Æ t and sÕ Æ tÕ. If [s, t] ™ [sÕ, tÕ], then hqst Æ hqsÕtÕ.

For location problems, such as the FLP and k-medians, it is common to make the
assumption that facilities and clients are in a metric space, that is, the distance between
facilities and clients is a symmetric function that satisfies the triangle inequality. Indeed, if
no restrictions on the distance function are made, then the FLP is hard to approximate by
a factor better than O(log n). For many distribution problems, however, the assumption
of triangle inequality can be made without loss of generality. The reason is that one can
create a modified instance where the new distance function is defined by the lengths of the
shortest paths in the original graph. This new instance satisfies the triangle inequality,
and a solution of non-greater cost for the original problem can be obtained from a solution
to this new instance by rerouting direct routes through shortest paths in the graph. We
define an analogous notion for the PDP.

74 Chapter 4. Supply Chain Problems

q0

p

p0

s s0

s0s
q

t

(a) Rerouting

qt

ps p0s0

q0t0

(b) Triangle inequality

Figure 4.1: Mixed holding and transportation costs metric

Assumption 4.2. [Generalized Triangle Inequality] For all retailers q and qÕ, ware-

houses p and pÕ, and time steps s, sÕ and t such that s Æ sÕ Æ t, it holds:

cpq + hqst Æ cpqÕ + hqÕssÕ + cpÕqÕ + cpÕq + hqsÕt.

This assumption states that the cost to transport one item from the warehouse p

directly to the retailer q, and holding it in q until the delivery time t is cheaper than the
following alternative route: transporting the item from the warehouse p to the retailer qÕ,
holding it from time s to time sÕ, then transporting it again from retailer qÕ to retailer q

through warehouse pÕ, and holding it until time t. This alternative route is depicted in
Figure 4.1a. This inequality can also be interpreted in the following way: the cost to serve
demand point (q, t) directly by order (p, s) is not greater than the overall cost to serve
demand (q, t) by order (pÕ, sÕ) and some demand (qÕ, tÕ) by orders (p, s) and (pÕ, sÕ). Since
this inequality resembles the triangle inequality, as illustrated in Figure 4.1b, we say that
a pair of holding and transportation costs that satisfies Assumption 4.2 forms a metric
service cost for the PDP.

4.2.2 A linear programming relaxation

The PDP has a natural formulation as a mixed integer linear program (MILP). This is
analogous to that of facility location problems, where a client is a demand point, and a
facility is a warehouse order. The di�erence between the FLP and the PDP formulations
is that, in the PDP, a demand point can only be served by orders placed before its arrival
time, whilst, in the FLP, a client point can be served by any facility. In the following, let
D ™ Q ◊ [T] be the set of all positive demand points. Also, let P = P ◊ [T] be the set of
all potential warehouse orders, and for each t œ [T], let Pt = P ◊ [t] be the set of potential
warehouse orders that can serve a demand point at time t. Variable xqt

ps indicates that
demand (q, t) is served by warehouse order (p, s), and variable yps indicates whether the

4.2. The Production and Distribution Problem 75

order (p, s) is placed. The MILP is given in the following.

minimize
q

(p,s)œP yps kp +
q

(q,t)œD

q

(p,s)œPt
xqt

ps dqt(hqst + cpq)

subject to
q

(p,s)œPt
xqt

ps Ø 1 (q, t) œ D

xqt
ps Æ yps (q, t) œ D, (p, s) œ Pt

xqt
ps Ø 0 (q, t) œ D, (p, s) œ Pt

yps œ {0, 1} (p, s) œ P

(4.1)

A linear relaxation can be obtained by replacing the integrality constraints yps œ {0, 1}

by constraints yps Ø 0, for each (p, s) œ P . The dual program corresponding to the
relaxation is given in the following.

maximize
q

(q,t)œD bqt

subject to bqt Æ dqt(hqst + cpq) + zqt
ps (q, t) œ D, (p, s) œ Pt

q

(q,t)œD:tØs zqt
ps Æ kp (p, s) œ P

zqt
ps, bqt Ø 0 (q, t) œ D, (p, s) œ P

(4.2)

Consider any feasible solution (x, y) of program (4.1). We define the service set of a
demand j = (q, t), denoted by Sj, as the set of all orders (p, s) œ Pt such that xqt

ps > 0.
Also, the service window of demand j is the time interval [min(p,s)œSj

s, t]. The fractional
service cost of demand j is Sj = Cj + Hj, where

Cj =
q

(p,s)œSj
xqt

ps dqtcpq and Hj =
q

(p,s)œSj
xqt

ps dqthqst

are the fractional distribution cost, and the fractional holding cost of j, respectively. Also,
the total cost of the solution is divided between the ordering cost K =

q

(p,s)œP yps kp, and
the service cost S = C + H, where

C =
q

jœD Cj and H =
q

jœD Hj

are the total distribution cost, and the total holding cost, respectively. We represent an
optimal solution of the LP by (xú, yú), and define Kú, Sú, Cú, Hú, Sú

j , Cú
j , Hú

j accordingly.

4.2.3 Complete solutions and filtering

In the following, we describe the notion of complete solutions for the PDP, which are
commonly used in the FLP literature [38]. Then, we describe how to apply filtering [97]
to modify a fractional solution of the LP. This technique has been used in many algorithms
for the FLP [28, 127], and for the Multilevel FLP [30].

76 Chapter 4. Supply Chain Problems

Complete solutions. In a complete solution, each demand point is fully served by
the most economical orders. This is formalized as following: for a fixed demand point
j = (q, t), consider a permutation fij of warehouse orders in Pt such that the elements are
listed in non-decreasing order of service cost, that is, if fij = ((p1, s1), . . . , (pk, sk)), where
k = |Pt|, then cp1q + hqs1t Æ · · · Æ cpkq + hqskt. Assume that for each demand point j,
permutation fij is unique, by breaking ties arbitrarily, but in a fixed way (two elements
appear in the same order in all permutations in which they tie). A solution (x, y) of the
LP is said to be complete if for every demand point (q, t) there is an index l, such that
xqt

pisi
= ypisi

if i Æ l, and xqt
pisi

= 0 if i > l.
Any feasible solution can be transformed into a complete solution of no greater cost.

Indeed, let (x, y) be a feasible solution of the LP. We create a new solution (x̄, ȳ), such
that ȳ = y, and x̄ is given by serving each demand point j = (q, t) greedily by the orders
in the permutation fij. More precisely, for each (q, t) œ D, let l be minimum such that
ql

i=1 ypisi
Ø 1. Since (x, y) is feasible, we know that there is such an l. Now, we define

x̄qt
pisi

= ypisi
for each i Æ l, and x̄qt

pisi
= 0 for each i > l. We assume without loss of

generality that (x̄, ȳ) is complete, that is,
ql

i=1 ypisi
= 1. In the case that the solution is

not complete, we can always replace pl by two warehouses pÕ
l and pÕÕ

l at the same location,
and split its fractional ordering yplsl

between pÕ
l and pÕÕ

l , such that ypÕ

l
sl

= 1 ≠ ql≠1
i=1 ypisi

,
and ypÕÕ

l
sl

= yplsl
≠ ypÕ

l
sl

. Repeating this for each demand point, we obtain an equivalent
instance with a corresponding complete solution (the arguments are completely analogous
to Lemma 1 of Sviridenko [127]).

Filtering. The idea of filtering is that, if (x, y) is a complete solution, then for each
demand j = (q, t) we can consider only the subset of orders in Sj that is the most
economical. This subset is formed by the orders in the minimal prefix of permutation fij

that serves an – fraction of the demand. Formally, given a parameter – œ (0, 1], let l be
the minimal index such that

ql
i=1 ypisi

Ø –. The –-neighborhood of a demand point j is
the set Nj(–) = {(pi, si) : i Æ l}. The radius Rj(–) of this neighborhood is the maximum
cost paid to serve j by an order in Nj(–), that is,

Rj(–) = max(p,s)œNj(–) dqt(cpq + hqst).

Intuitively, if we increase the value of some fractional order variables yst in the LP
solution, then the average service cost of a demand should decrease. Indeed, given a
solution (x, y), the filtering technique consists of scaling up the y variables by 1/– for
some – œ (0, 1], then defining x such that each demand is fully satisfied by orders in its
–-neighborhood. We obtain a complete solution (x̄, ȳ) (by splitting warehouse fractional
ordering if necessary). For a demand j = (q, t), we denote the average service cost by

Wj(–) =
q

(p̂,ŝ)œNj(–) x̄qt
p̂ŝ dqt(cp̂q + hqŝt).

4.3. Approximation for the Metric PDP 77

4.3 Approximation for the Metric PDP

4.3.1 Clustering

Many algorithms for the Metric FLP are based on a clustering technique. In such algo-
rithms, we are given an optimal solution for the LP relaxation, and construct the support
graph corresponding to this solution, that is, the bipartite graph that contains an edge for
each pair of client and facility such that the client is fractionally served by the facility in
the LP solution. In the support graph, two clients are called neighbors if they are adjacent
to a common facility. A partition of the clients is then obtained, such that any client in a
given cluster is neighbor to a leading client, that is called the cluster center. It is required
that no two cluster centers are neighbors. The algorithms for the FLP use the following
greedy procedure: while not all clients are clustered, choose a cluster center with a certain
greedy criterion, and create a new cluster with this center and all its neighbors. Di�erent
greedy criteria lead to di�erent algorithms and analyses.

We use a clustering algorithm for the PDP. However, in the PDP, we are not aiming to
locate facilities to be opened, rather, the warehouses are already established, and we want
to select the set of time steps at which we place orders for each warehouse. Therefore,
we can think of an order formed by a pair of warehouse and time step as a single facility.
Analogously, each demand can be thought of as a single client, that is willing to be
connected to this “facility”. We can then construct the corresponding support graph, and
proceed to the clustering algorithm, in a way similar to facility location algorithms.

Formally, the support graph G is the bipartite graph such that the vertices are formed
by the disjoint union P fi D, and there is an edge between order (p, s) œ P and demand
(q, t) œ D if (p, s) œ Sj. Notice that, contrary to the case of the FLP, where a non-center
client could always be indirectly connected to any facility that served the cluster center,
for the PDP, it can happen that a non-center demand (q, t) cannot be served by an order
adjacent to its cluster center (qÕ, tÕ). This happens when demand (q, t) arrives before
(qÕ, tÕ), that is t < tÕ, and cluster center (qÕ, tÕ) is adjacent to some order (p, s) with s > t.
To guarantee that every demand in a cluster is served, we place orders at the beginning
of the cluster center’s service window.

We will use the following clustering algorithm for the PDP.

Algorithm 4.1 (Clustering algorithm)

We are given a complete solution (x, y) for the LP relaxation, and an ordered list
of demand points L. The algorithm returns a set F Õ of placed orders, and a clustering
C of L.

78 Chapter 4. Supply Chain Problems

1. Construct the support graph G.

2. While there are unclustered demands points:

(a) Create cluster D with the next unclustered element jÕ in L as center.

(b) Add all unclustered demand points that are neighbors of jÕ to D.

(c) Add D to clustering C.

3. For each cluster D with center jÕ:

(a) Choose one order (p̄, s̄) œ SjÕ with probability yp̄s̄.

(b) Let sÕ = min(p̂,ŝ)œSjÕ
ŝ, and pÕ = p̄.

(c) Add (pÕ, sÕ) to set F Õ.

Di�erent choices of the list L lead to algorithms with di�erent approximation guar-
antees. In Subsection 4.3.2, list L will be the set of demands in increasing order of
(Cú

jÕ + 2bú
jÕ)/djÕ , where bú

jÕ corresponds to an optimal solution of (4.2) and in Subsec-
tion 4.3.3 the demands will be chosen (using filtering) by order of (WjÕ(–) + 2RjÕ(–))/djÕ ,
for some parameter –.

Suppose that we run Algorithm 4.1 for an optimal LP solution (xú, yú), and some
arbitrary list L. Let KF Õ =

q

(p,s)œF Õ kp be the total cost of the orders in the set F Õ. The
next lemmas calculates the expected value of KF Õ , and the expected cost to serve one unit
of a demand point.

Lemma 4.1. Let KF Õ be the ordering cost Algorithm 4.1, then E[KF Õ] Æ Kú.

Proof. For a cluster D œ C, let jD be its cluster center, and (pD, sD) be the order included
in F Õ at step 3(c) of the algorithm. We obtain

E[KF Õ] = E[
ÿ

(p,s)œF Õ

kp] = E[
ÿ

DœC

kpD
]

=
ÿ

DœC

ÿ

(p,s)œSjD

yú
ps kp

Æ
ÿ

(p,s)œP

yú
ps kp = Kú,

where the inequality follows from the fact that the sets SjD
are disjoint.

In the following, we bound the expected cost to serve one demand point by the order
placed for its corresponding cluster.

4.3. Approximation for the Metric PDP 79

p0

q
q0

Sj0

p
Sj

(a) In space

j0

t0s0

j

s̄

ts

(b) In time

Figure 4.2: Possible configuration for Lemma 4.2

Lemma 4.2. Let j = (q, t) be a demand point, and jÕ = (qÕ, tÕ) be the corresponding

cluster center. Then, E
Ë

min(p,s)œF Õ(cpq + hqst)
È

Æ (Cú
jÕ + 2bú

jÕ)/djÕ + bú
j/dj.

Proof. Let (pÕ, sÕ) be the order placed by Algorithm 4.1 at step 3(c) corresponding to
cluster center jÕ, and (p̄, s̄) be the order drawn in step 3(a). It is enough to bound the
expected cost to serve one unit of j by order (pÕ, sÕ).

Since jÕ is the cluster center corresponding to j, we know that there is an order
(p, s) œ Sj fl SjÕ . Thus sÕ Æ s, since s is in the service window of jÕ and sÕ is the minimum
time step in this service window. Also, we get s Æ t, because demand j is fractionally
served by (p, s). Similarly, demand jÕ is fractionally served by (p, s), so s Æ tÕ (see
Figure 4.2). Using Assumption 4.2, we obtain

cpÕq + hqsÕt Æ cpÕqÕ + hqÕsÕs + cpqÕ + cpq + hqst

Æ cpÕqÕ + hqÕsÕtÕ + cpqÕ + cpq + hqst,

where the last inequality follows from Assumption 4.1 and the fact that s Æ tÕ. Since
(p, s) œ Sj, we obtain xqt

ps > 0. By complementary slackness, it follows that bú
j = dj(hqst +

cpq) + zqt
ps, and thus hqst + cpq Æ bú

j/dj. Similarly, we also get hqÕsÕtÕ Æ bú
jÕ/djÕ , and cpqÕ Æ

bú
jÕ/djÕ . Finally, the expected value of cpÕqÕ is

E[cpÕqÕ] = E[cp̄qÕ] =
q

(p̂,ŝ)œSjÕ
yú

p̂ŝ cp̂qÕ =
q

(p̂,ŝ)œSjÕ
xúqÕtÕ

p̂ŝ cp̂qÕ = Cú
jÕ/djÕ ,

where the third equality holds because the solution is complete. Adding up all terms, we
obtain the desired statement.

4.3.2 Balancing using extra orders

Lemmas 4.1 and 4.2 give bounds to the ordering and service costs of the solution yielded
by Algorithm 4.1. One can observe the imbalance between the low value of ordering cost
and the high value of the service cost. Indeed, Lemma 4.2 bounds the demand service
cost in the worst case, when a demand point is served through its cluster center. For the
FLP, the algorithms of Sviridenko [127] and Chudak and Shmoys [38] would first try to

80 Chapter 4. Supply Chain Problems

connect a client to its close facilities. In fact, they would open the unclustered facilities
after the clustering phase, so that facilities in service sets are opened independently, or
with negative correlation, with probability equal to the fractional opening. This implies
that there is, with constant probability, an open close facility.

For the PDP, however, this approach cannot be applied directly. The reason is that
the orders placed for each cluster are moved to earlier times, and thus serving demand
points by the corresponding orders would incur an extra holding cost, that is potentially
unbounded. Instead, for the PDP, we place an extra set of orders, in their original time
positions. This increases the total ordering cost, but such increase is compensated by the
decrease of the service cost.

Next algorithm uses the clustering algorithm and places an extra set of warehouse
orders in their original time steps.

Algorithm 4.2 (Balancing algorithm)

We are given an instance of the PDP. The algorithm returns a solution for this
instance, formed by a set of orders F Õ fi F ÕÕ.

1. Solve the LP relaxation, and obtain solution (xú, yú) and bú.

2. Make the solution complete, splitting fractional ordering if necessary.

3. Run Algorithm 4.1 using (xú, yú), and L as the set of demand points jÕ in in-
creasing order of (Cú

jÕ + 2bú
jÕ)/djÕ . Obtain a set of orders F Õ.

4. For each (p, s) œ P, add order (p, s) to set F ÕÕ with probability yú
ps.

5. Place an order for each element of F Õ fi F ÕÕ.

6. Serve each demand point (q, t) by the order (p, s) that minimizes cpq + hqst.

The following lemma bounds the expected service cost of the cheapest placed order
in a subset A of P , conditioned to the event that there is one placed order in A. Since
versions of this lemma have appeared in several LP rounding algorithms for the FLP (for
instance, see Lemma 4.2 of Byrka and Aardal [28]), we omit the proof.

Lemma 4.3. If A be a set of orders such that
q

(p,s)œA yú
ps > 0, then

E

C

min
(p,s)œAflF ÕÕ

(cpq + hqst)

-

-

-

-

-

A fl F ÕÕ ”= ÿ
D

Æ
q

(p,s)œA yú
ps (cpq + hqst)

q

(p,s)œA yú
ps

.

Now, we may bound the cost of the solution produced by Algorithm 4.2.

4.3. Approximation for the Metric PDP 81

Theorem 4.1. The balancing algorithm produces a solution for the PDP with expected

cost at most (2 + 3
e
) Kú + (1 + 3

e
) Cú + (1 + 2

e
) Hú.

Proof. Let KF ÕÕ be the cost of orders in F ÕÕ. We obtain

E[KF ÕÕ] = E[
q

(p,s)œF ÕÕ kp] =
q

(p,s)œP yú
pskp = Kú.

Consider a demand point j = (q, t). We calculate the service cost cj to serve j by
a placed order in F Õ fi F ÕÕ if we used the following, suboptimal, algorithm: if Sj fl F ÕÕ

is not empty, then we serve j by the closest order in Sj fl F ÕÕ, otherwise we serve it
indirectly through its cluster center jÕ. Let pc be the probability that Sj fl F ÕÕ ”= ÿ. We

have pc = 1 ≠ r

(p,s)œSj
(1 ≠ yú

ps) Ø 1 ≠ e
≠

q

(p,s)œSj
yú

ps = 1 ≠ e≠1. Now, combining with
Lemmas 4.2 and 4.3, we obtain

E[cj] Æ pc
q

(p,s)œSj
yú

ps dj(cpq + hqst) + (1 ≠ pc) dj((C
ú
jÕ + 2bú

jÕ)/djÕ + bú
j/dj)

Æ pc (Cú
j + Hú

j) + (1 ≠ pc) dj((C
ú
j + 2bú

j)/dj + bú
j/dj)

Æ (1 ≠ e≠1)(Cú
j + Hú

j) + e≠1(Cú
j + 3bú

j),

where the second inequality follows since jÕ was chosen as cluster center, thus (Cú
jÕ +

2bú
jÕ)/djÕ Æ (Cú

j + 2bú
j)/dj, and the last inequality follows since, by complementary slack-

ness, Cú
j + Hú

j Æ Cú
j + 3bú

j , and pc Ø 1 ≠ e≠1. Finally, we get

E[KF Õ] + E[KF ÕÕ] +
q

jœD E[cj]

Æ Kú + Kú +
q

jœD

1

(1 ≠ e≠1)(Cú
j + Hú

j) + e≠1(Cú
j + 3bú

j)
2

= Kú + Kú + (1 ≠ e≠1)(Cú + Hú) + e≠1(Cú + 3(Kú + Cú + Hú))

= (2 +
3

e
) Kú + (1 +

3

e
) Cú + (1 +

2

e
) Hú.

In particular, Theorem 4.1 implies that there is a randomized approximation for the
PDP with factor 2 + 3/e ¥ 3.10.

4.3.3 Balancing using filtering

Other way to fix the imbalance between the production and the service cost is using the
filtering technique: the fractional ordering yps is scaled by a factor 1/–, for some – œ (0, 1].
Notice that yps can become larger than 1; in this case, a copy of the warehouse p is made,
and the fractional ordering yps is split in the filtering step. Intuitively, placing “more
times” each warehouse order should increase the probability of a client being served by a
cheap order.

82 Chapter 4. Supply Chain Problems

Algorithm 4.3 (Filtering algorithm)

Given an instance of the PDP and a parameter – œ (0, 1], the algorithm returns a
solution for this instance, formed by warehouses orders F Õ.

1. Solve the LP relaxation and obtain solution (xú, yú).

2. Scale up the ordering variables yú by 1/–. Change variables xú, and obtain a
complete solution (x̄, ȳ), splitting orders if necessary.

3. Run Algorithm 4.1 with solution (x̄, ȳ), passing as list L the set of demand points
jÕ in increasing order of (WjÕ(–) + 2RjÕ(–))/dj, and obtain set F Õ.

4. Serve each demand point (q, t) by the order (p, s) that minimizes hqst + cpq.

The following lemmas are similar to Lemmas 4.1 and 4.2. Recall that Rj(–) is the
maximum service cost in the –-neighborhood of demand j, and Wj(–) is the average
service cost in this neighborhood.

Lemma 4.4. Let KF Õ be the ordering cost of Algorithm 4.3, then E[KF Õ] Æ 1/– Kú.

Proof. Similar to Lemma 4.1, but we use ȳps, instead of yú
ps.

Lemma 4.5. Let j = (q, t) be a demand point, and let jÕ = (qÕ, tÕ) be the cluster center

corresponding to j. Then, E
Ë

min(p,s)œF Õ(cpq + hqst)
È

Æ (WjÕ(–)+2RjÕ(–))/djÕ +Rj(–)/dj.

Proof. Let (pÕ, sÕ) be the order placed for jÕ, and (p, s) be the common order in NjÕ(–) and
Nj(–). Similarly to Lemma 4.2, we can obtain cpÕq + hqsÕt Æ cpÕqÕ + hqÕsÕtÕ + cpqÕ + cpq + hqst.

Since (p, s) œ Nj(–), we get hqst + cpq Æ Rj(–)/dj. Also, there is a p̂ such that (p̂, sÕ) œ
NjÕ(–), and (p, s) œ NjÕ(–), we get hqÕsÕtÕ Æ RjÕ(–)/djÕ , and cpqÕ Æ RjÕ(–)/djÕ . Finally, we
bound the expected value of cpÕqÕ . We have

E[cpÕqÕ] =
q

(p̂,ŝ)œNjÕ (–) ȳp̂ŝ cp̂qÕ =
q

(p̂,ŝ)œNjÕ (–) x̄qÕtÕ

p̂ŝ cp̂qÕ Æ WjÕ(–)/djÕ .

The first equality is true since the service set of jÕ is NjÕ(–), and the second inequality
comes from the fact that (x̄, ȳ) is complete. The inequality is due the definition of WjÕ(–).
Now, we sum all terms, and obtain the lemma.

Lemma 4.6. If j = (q, t), then E
Ë

min(p,s)œF Õ dj(cpq + hqst)
È

Æ Wj(–) + 3Rj(–).

Proof. By Lemma 4.5, and then by the order of list L in Algorithm 4.3,

E

C

min
(p,s)œF Õ

(cpq + hqst)

D

Æ (WjÕ(–) + 2RjÕ(–))/djÕ + Rj(–)/dj

Æ (Wj(–) + 3Rj(–))/dj.

4.3. Approximation for the Metric PDP 83

Lemma 4.4 shows that the approximation factor of the filtering algorithm for the
ordering cost depends only on the parameter –. On the other hand, as it can be seen
in Lemma 4.6, the service cost depends on the neighborhood radius function of each
demand point j. Such dependency may be characterized by the summation of such radius
functions, as in the following definition.

Definition 4.1. Given an instance of the PDP, and an optimal solution (xú, yú) of (4.1),
the characteristic function r : [0, 1] æ Z+ is r(–) =

q

jœD Rj(–)/Sú.

Remark 4.1. The characteristic function r(–) satisfies
s 1

0 r(t)dt = 1.

Proof. Notice that for each demand j, Rj is a piece-wise constant function. We have
⁄ 1

0
r(t)dt = (1/Sú)

ÿ

(q,t)œD

⁄ 1

0
Rqt(t)dt

= (1/Sú)
ÿ

(q,t)œD

ÿ

(p,s)œSqt

xúqt
ps dqt(hqst + cpq)

= (1/Sú)
ÿ

(q,t)œD

ÿ

(p,s)œPt

xúqt
ps dqt(hqst + cpq) = (1/Sú)Sú = 1.

The expected service cost of can be bounded in a more concise way than in Lemma 4.6.

Corollary 4.1. The expected service cost of Algorithm 4.3 is ((1/–)
s –

0 r(t)dt + 3r(–)) Sú.

Proof. From Lemma 4.6, we obtain

E

S

U

ÿ

(q,t)œD

min
(p,s)œF Õ

dqt(cpq + hqst)

T

V

Æ
ÿ

(q,t)œD

(Wqt(–) + 3Rqt(–))

=
ÿ

(q,t)œD

Q

a

Q

a

ÿ

(p̂,ŝ)œNqt(–)

x̄qt
p̂ŝ dqt(hqŝt + cp̂q)

R

b + 3Rqt(–)

R

b

=
ÿ

(q,t)œD

Q

a

Q

a

ÿ

(p̂,ŝ)œNqt(–)

(1/–)xúqt
p̂ŝ dqt(hqŝt + cp̂q)

R

b + 3Rqt(–)

R

b

=
ÿ

(q,t)œD

3

(1/–)
⁄ –

0
Rqt(t)dt + 3Rqt(–)

4

= (1/–)
⁄ –

0

ÿ

(q,t)œD

Rqt(t)dt + 3
ÿ

(q,t)œD

Rqt(–)

=
3

(1/–)
⁄ –

0
r(t)dt + 3r(–)

4

Sú.

The second equality holds because we can assume without loss of generality that (x̄, ȳ) and
(xú, yú) are complete. The third equality holds because Rqt(–) is piece-wise constant.

84 Chapter 4. Supply Chain Problems

4.3.4 Combining different algorithms

Algorithm 4.2 is a bi-factor approximation algorithm, that achieves factor 2 + 3/e for
the ordering cost, and factor 1 + 3/e for the service cost (i.e., holding and transportation
costs). Similarly, for each value of parameter –, Algorithm 4.3 is a bi-factor approximation
with factors 1/– and (1/–)

s –
0 r(t)dt + 3r(–) for ordering and service costs, respectively.

To combine the two algorithms, we use the following strategy: with a given proba-
bility ”, we run Algorithm 4.2, and with probability 1 ≠ ” we run Algorithm 4.3 with
parameter – drawn from a probability density function f : (0, 1] æ R+. A similar ap-
proach has been done in the algorithm by Li [93], for the FLP. Let SOL be the cost
corresponding to solution produced by this algorithm, thus

E[SOL] Æ (A2) ” +
1

s 1
0 A3(–)f(–)d–

2

(1 ≠ ”), (4.3)

where A2 = (2 + 3
e
)Kú + (1 + 3

e
)Sú is the expected cost of the solution produced by

Algorithm 4.2, and A3(–) = 1/– Kú + ((1/–)
s –

0 r(t)dt + 3r(–)) Sú is the expected cost of
the solution produced by Algorithm 4.3 when it is run with parameter –.

For simplicity, we let g(–) = (1 ≠ ”)f(–), so that ” +
s 1

0 g(–)d– = 1. We may
rewrite (4.3) as E[SOL] Æ —(”, g)Kú + “(”, g, r)Sú, where —(”, g) and “(”, g, r) are the
obtained approximation factors for ordering and service costs of the combining algorithm,
respectively. We obtain

—(”, g) = (2 +
3

e
)” +

⁄ 1

0

1

–
g(–)d–, (4.4)

“(”, g, r) = (1 +
3

e
)” +

⁄ 1

0

3

(1/–)
⁄ –

0
r(t)dt + 3r(–)

4

g(–)d–. (4.5)

We define g(–) and ” as follows, where –0 œ (0, 1], and c > 0 are constants to be
defined later:

g(–) =

Y

]

[

0 – < –0

c –
1
3 – Ø –0

and ” = 1 ≠
⁄ 1

0
g(–)d–. (4.6)

Substituting g(–) (notice that g(–) is non-zero only for – œ [–0, 1]), we can simplify the
integral in (4.5) by using integration by parts:

⁄ 1

0

3

(1/–)
⁄ –

0
r(t)dt + 3r(–)

4

g(–)d– =
⁄ 1

–0

⁄ –

0
r(t)dt c–≠ 2

3 d– +
⁄ 1

–0

3r(–)c–
1
3 d–

=
3⁄ –

0
r(t)dt

4

· 3c–
1
3

-

-

-

-

1

–0

≠
⁄ 1

–0

3c–
1
3 r(–)d– +

⁄ 1

–0

3r(–)c–
1
3 d– = 3c

⁄ –

0
r(t)dt · –

1
3

-

-

-

-

1

–0

,

4.4. The PDP with retailer ordering costs 85

Now, we obtain calculating the definite integrals that

—(”, g) = (2 +
3

e
)” + 3c(1

1
3 ≠ –

1
3
0), (4.7)

“(”, g, r) = (1 +
3

e
)” + 3c

5⁄ 1

0
r(t)dt · 1

1
3 ≠

⁄ –0

0
r(t)dt · –

1
3
0

6

Æ (1 +
3

e
)” + 3c, (4.8)

where the inequality comes from Remark 4.1, and the fact that r(t) is nonnegative. Notice
that the last expression bounds “(”, g, r), and does not depend on r, so it is independent
of the input instance. By appropriately choosing c and –0, we are ready to give an
approximation factor for the combining algorithm.

Theorem 4.2. There exists a pair (”, g) such that, for any characteristic function r, we

obtain that max{—(”, g), “(”, g, r)} Æ 2.77.

Proof. Equating (4.7) and (4.8), and substituting ” from (4.6), we can obtain c as a
function of –0, and get

c =
4/3

1 + 4–
1/3

0 ≠ –
4/3

0

.

Replacing this in (4.7), we thus obtain

“(”, g, r) Æ —(”, g) =
4

1

1 + –
1/3

0 (1 + 3/e)
2

1 + 4–
1/3

0 ≠ –
4/3

0

.

Choosing –0 = 0.23947, we get c ¥ 0.399771, and —(”, g) ¥ 2.76602 < 2.77.

4.4 The PDP with retailer ordering costs

In this section, we consider a variant of the PDP that includes a possibly non-zero cost kq

for each time the retailer q places an order. This captures the situation when there is a
setup cost associated with an order at a retailer. In addition to Assumption 4.2, we also
assume traditional holding costs.

Assumption 4.3. For each retailer q, there are nonnegative numbers hqi, for i = 1, . . . , T ,

such that for each s, t, it holds hqst =
qt

i=s hqi.

A minor modification of the program (4.1) can formulate the PDP with retailer order-
ing cost. For the sake of clarity, we give the complete formulation here. In the following,

86 Chapter 4. Supply Chain Problems

let Q = Q ◊ [T] be the set of all potential retailer orders.

minimize
ÿ

(p,s)œP

yps kp +
ÿ

(q,s)œQ

yqs kq +
ÿ

(q,t)œD

ÿ

(p,s)œPt

xqt
ps dqt(hqst + cpq)

subject to
ÿ

(p,s)œPt

xqt
ps Ø 1 (q, t) œ D

xqt
ps Æ yps (q, t) œ D, (p, s) œ Pt

q

pœP xqt
ps Æ yqs (q, t) œ D, s œ [t]

xqt
ps Ø 0 (q, t) œ D, (p, s) œ Pt

yps, yqs œ {0, 1} (q, t) œ D, (p, s) œ P, (q, s) œ Q

(4.9)

A linear relaxation can be obtained by replacing the integrality constraints by con-
straints yps Ø 0 and yqs Ø 0 for all (p, s) œ P and (q, s) œ Q. Besides the set of placed
warehouse orders, a solution to (4.9) also includes the sets of orders placed for each re-
tailer. Notice that a solution for (4.1) induces a solution for (4.9) such that a retailer
order (q, s) is placed if a warehouse order (p, s) serves a demand point (q, t). Therefore,
one may consider using Algorithm 4.1 to solve the PDP with retailer ordering costs, by
returning such induced solution. However, the incurred cost to place a retailer order for
each demand is potentially unbounded. This suggests that, to use Algorithm 4.1, we need
to preprocess the input, so that each retailer order can serve a group of demand points. In
Subsection 4.4.1, we review the notion of complete solutions considering retailer orders,
in Subsection 4.4.2, we describe the preprocessing procedure, and, in Subsection 4.4.3, we
give the modified clustering and filtering algorithm for the PDP with retailer orders.

4.4.1 Complete solutions

The notion of complete solutions for the PDP with non-zero retailer ordering costs is
slightly di�erent from the basic notion of complete solutions described in Subsection 4.2.3.
Unlikely the case of program (4.1), in an optimal fractional solution of program (4.9), a
demand point is not necessarily served by the cheapest warehouses orders. The reason is
that the total fractional warehouse ordering in a given time step can be strictly greater
than the fractional retailer ordering in this time. We extend the notion of complete
solutions in the following.

Consider a solution (x, y) of the relaxation of (4.9). For each retailer q, we consider
the permutation p1, . . . , p|P | of warehouses P in non-decreasing order of distance from
retailer q, that is, cp1q Æ · · · Æ cp|P |q. Also, for a given time step s, let l be the minimum
index such that

ql
i=1 ypis Ø yqs. If there is no such l, then we can decrease the value yqs

and maintain feasibility. We assume that
ql

i=1 ypis = yqs, since otherwise we could make

4.4. The PDP with retailer ordering costs 87

copies of warehouse pl, and split its fractional warehouse ordering, obtaining an equivalent
solution for which this is true (this is similar to the process described in Subsection 4.2.3).
Now we may define a new variable ypiqs, for each q and s, as follows:

ypiqs =

Y

]

[

ypis i Æ l,

0 i > l.

Intuitively, a demand point (q, t) will only be served by the warehouse orders (p, s) for
which ypqs = yps, since it cannot be fractionally served by more than a fraction yqs at time
s. Therefore, for each retailer q, we only need to consider the warehouse orders (p, s) such
that ypqs > 0, so we will concentrate on the set Pqt = {(p, s) œ Pt : ypqs > 0}.

Now, for a given demand j = (q, t), consider a permutation of Pqt in non-decreasing
order of service cost, fij = ((p1, s1), . . . , (pk, sk)), where k = |Pqt|. A fractional solution
(x, y) of (4.9) is said to be complete if for every demand point (q, t) there is an index l,
such that xqt

pisi
= ypisi

if i Æ l, and xqt
pisi

= 0 if i > l. Here again we can always transform
any feasible solution into a complete solution by making copies of warehouses and splitting
fractional warehouse ordering, as done in Subsection 4.2.3.

For a given parameter – œ (0, 1], we also define the –-neighborhood set, its radius,
and its average service cost, Nj(–), Rj(–), and Wj(–), respectively, as in Subsection 4.2.3,
but considering set Pqt, instead of Pt.

4.4.2 Preprocessing

To bound the retailer ordering cost, we will use a preprocessing phase, that performs
a grouping of demand points. The idea is to group demand points in each retailer,
so that each group shares a positive fraction of the retailer ordering cost. After this
pre-clustering step, we choose a representative demand point for each group, and run
Algorithm 4.1 using only representative demand points. After the clustering algorithm is
run, each representative demand point is served by one place warehouse order. Finally,
we place a retailer order for each representative demand point, at the same time of its
associated warehouse order. Since each representative demand point “owns” a share of the
LP fractional retailer ordering cost, the cost of such placed retailer orders can be bounded.
Non-representative demand points are served indirectly through their representatives, and
thus no additional retailer orders are necessary.

The grouping algorithm is inspired by the random shift points procedure, that is used in
the approximation for the OWMR problem by Levi et al. [91]. The shift point procedure
places a retailer order at the so called shift points. Two shift points are away from each
other by a time interval such that the total fractional retailer ordering in it adds up to a
constant fraction – œ (0, 1]. Next, the grouping algorithm is described precisely.

88 Chapter 4. Supply Chain Problems

Algorithm 4.4 (Grouping algorithm)

We are given as input the LP solution (x, y) and a value – œ (0, 1]. The output
of this procedure is a partition Gq of demand points for each retailer q. Each such
group G œ Gq is associated with a representative demand point, namely rG. The set of
representative demand points is R =

t

qœQ Rq, where Rq is the set of all representatives
of retailer q.

For each retailer q, we consider the interval (0,
qT

t=1 yqt], that corresponds to the
total sum of fractional retailer ordering, and, for each time s œ [T], we consider the
associated subinterval Yqs = (

qs≠1
t=1 yqt,

qs
t=1 yqt]. Let also V be the largest integer

multiple of – that is not greater than
qT

t=1 yqt, that is, V = Â1/–
qT

t=1 yqtÊ. Then we
consider the set of points Sq = {–, 2–, . . . , V –}. Notice that these points are contained
in the interval (0,

qT
t=1 yqt], and thus each point x œ Sq is contained in exactly one

subinterval Yqm, for some time m = 1, . . . , T . For each l = 1, . . . , V , let ml be the
unique index such that l– œ Yqml

. For simplicity, we also let mV +1 = T + 1. We will
create a cluster containing all demand points that are between two consecutive index
points ml and ml+1. Formally, for each l = 1, . . . , V , we define Gl = {(q, tÕ) œ D :

ml Æ tÕ < ml+1}, and add Gl to Gq if Gl is not empty. We let the representative rG of
a group G œ Gq be the demand point (q, t) œ G with minimum t.

The grouping algorithm associates to each group G a share – of the fractional retailer
ordering cost. Since we will place at most one retailer order per cluster, the total ordering
cost is bounded by a factor of the LP ordering cost. However, this preprocessing step
requires that all demand points j œ G are served by the same order, that is, the order
chosen for the group representative. The intuition is that the orders that are cheap for the
group representative rG should also be cheap for a demand point j in the same group G.
This is formalized by the following lemma. Recall that Nj(–) is the –-neighborhood of a
demand point j.

Lemma 4.7. Let — Æ 1 ≠ –, and G be a group obtained by Algorithm 4.4. If j = (q, t) is

a demand point in G, and jÕ = (q, tÕ) is the representative of G, then NjÕ(—) ™ Nj(– +—).

Proof. Let j = (q, t) and jÕ = (q, tÕ). Since j, jÕ œ G, and jÕ is the representative of G,
we know that tÕ Æ t. Let fijÕ = (p1, s1), . . . , (pk, sk), where k = |PqtÕ|, be a permutation of
orders PqtÕ in non-decreasing order of the service cost of jÕ.

Let S1 = Nj(– + —) \ PqtÕ be the set of orders in neighborhood of j that cannot serve
demand point jÕ, and S2 = Nj(– + —) \ S1 be the complementary set (see Figure 4.3).
We get

q

(p,s)œS1
ypqs Æ q

sœ(tÕ,t]

q

pœP ypqs Æ q

sœ(tÕ,t] yqs Æ –, where the last inequality
holds since demand points j and jÕ are in the same group G. By definition, we have that

4.4. The PDP with retailer ordering costs 89

t
0

t

Nj(α)

S2 S1

Nj0(β)

Nj(α + β)

Figure 4.3: Shared neighborhood in retailer q over time

q

(p,s)œNj(–+—) ypqs =
q

(p,s)œS1
ypqs+

q

(p,s)œS2
ypqs Ø –+—. It follows that

q

(p,s)œS2
ypqs Ø —.

Since S2 is a subset of PqtÕ (and thus of fijÕ), it follows that j is served by a fraction of
at least — of orders in fijÕ . In the following, we show that these orders correspond to the
first orders of permutation fijÕ .

First notice that Assumption 4.3 implies that fijÕ is also ordered in non-decreasing order
of service cost of demand j. Indeed, for each pair of indices i, iÕ, such that 1 Æ i < iÕ Æ k,
we have

cpiq + hqsit = cpiq + hqsitÕ + hq,tÕ+1,t

Æ cpiÕ q + hqsiÕ tÕ + hq,tÕ+1,t

= cpiÕ q + hqsiÕ t.

Since S2 corresponds to the orders of PqtÕ with smallest service cost of j, we know that S2

must be the first orders of fijÕ , that is, S2 = {(p1, s1),, (pm, sm)}, for some m Æ k.
Finally, we obtain — Æ q

(p,s)œS2
ypqs =

qm
i=1 ypiqsi

. From the definition, we have
NjÕ(—) = {(p1, s1), . . . , (pl, sl)}, where l Æ k is minimum index such that

ql
i=1 ypiqsi

Ø —.
So, by the minimality of l, we must have m Ø l, and thus NjÕ(—) ™ S2 ™ Nj(– + —).

4.4.3 Filtering and clustering

Lemma 4.7 shows that the —-neighborhood of a representative demand point is contained
in the (–+—)-neighborhood of a non-representative demand point in the same group. The
algorithmic consequence of this lemma is that, if the representative demand point jÕ of a
group G is served by some order with service cost bounded by a constant factor of RjÕ(—),
then a demand point j œ G can be served by the same order, with service cost bounded
by a factor of Rj(– + —). To guarantee that each representative jÕ is served paying at
most a factor of RjÕ(—), a filtering step will be used, and then the clustering algorithm
is used to serve representative demand points. Notice that using filtering is a necessary
step of the algorithm, since we must have — strictly less than 1 to use Lemma 4.7.

The complete algorithm is detailed in the following.

90 Chapter 4. Supply Chain Problems

Algorithm 4.5 (Filtering and clustering algorithm)

Given an instance of the PDP, the algorithm returns a solution formed by ware-
houses orders F Õ, and retailer orders E =

t

qœQ Eq, where Eq is the set of orders placed
for retailer q.

1. Solve the LP relaxation and obtain solution (xú, yú).

2. Run Algorithm 4.4, and obtain the set of representatives R.

3. Scale up the ordering variables y by 1/— and change variables x to obtain a
complete solution (x̄, ȳ), splitting fractional warehouses ordering if necessary.

4. Run Algorithm 4.1 over the set of representatives R, passing as list L the set of
representatives jÕ in order of (WjÕ(—) + 2RjÕ(—))/djÕ . Obtain a set of warehouse
orders F Õ, and a clustering C of representative demand points.

5. Place a warehouse order for each element of F Õ.

6. For each cluster C œ C, and for each representative demand (q, t) œ C:

• Let (p, s) be the warehouse order placed for cluster C.

• Add retailer order (q, s) to Eq.

7. Serve each demand point (q, t) œ D by an order (p, s) œ F Õ such that (q, s) œ Eq

that minimizes the sum hqst + cpq.

Let KF Õ =
q

(p,s)œF Õ kp be the cost of warehouse orders in F Õ, and KE =
q

qœQ |Eq| · kq

be the cost of retailer orders in E. Let Kú and Eú be the warehouse and retailer ordering
costs in the LP solution, respectively. The next lemma calculates the expected ordering
cost.

Lemma 4.8. E[KF Õ] Æ 1/— Kú and KE Æ 1/– Eú.

Proof. For each retailer q, we have |Eq| Æ |Rq|, since each retailer order corresponds to
a representative demand point. Each representative demand point in Rq corresponds to
one shift point in Sq in Algorithm 4.4, so |Eq| Æ |Sq| = Â1/–

qT
t=1 yqtÊ. It follows that

KE Æ q

qœQ |Eq| · kq Æ q

qœQ 1/–
qT

t=1 yqtkq = 1/– Eú.
Now let K̄ be the cost of warehouse ordering by the scaled solution obtained in step 3

of Algorithm 4.5, so K̄ = 1/— Kú. Using the same arguments of Lemma 4.1, we obtain
E[KF Õ] Æ K̄ = 1/— Kú.

4.4. The PDP with retailer ordering costs 91

Now we bound the service cost of a demand point. Recall that Sú
j is the fractional

service cost of j in the solution (xú, yú), and Rj(– + —) is the maximum service cost of j

in the (– + —)-neighborhood of j.

Lemma 4.9. Let j = (q, t) be a demand point. Then, the expected service cost is such

that E
Ë

min(p,s)œF Õ:(q,s)œEq dj(cpq + hqst)
È

Æ 1/— Sú
j + 3Rj(– + —).

Proof. Let jÕ = (q, tÕ) be the representative demand point of group G that contains de-
mand point j, and let jÕÕ = (qÕÕ, tÕÕ) be the cluster center corresponding to representative jÕ.

Now let (pÕ, sÕ) œ F Õ be the warehouse order placed by the clustering algorithm for
cluster center jÕÕ. By step 6 of Algorithm 4.5, there is a retailer order (q, sÕ) œ Eq placed
to satisfy representative demand point jÕ. We have sÕ Æ tÕ Æ t, so demand point j can be
served by the order (pÕ, sÕ). Therefore, it is enough to bound the cost of serving demand
j by this order.

Since jÕ and jÕÕ are neighbors in the support graph, there exists a common (p, s) in the
service sets of jÕ and jÕÕ. Using Assumption 4.2, we obtain

cpÕq + hqsÕt Æ cpÕqÕÕ + hqÕÕsÕs + cpqÕÕ + cpq + hqst

Æ cpÕqÕÕ + hqÕÕsÕtÕÕ + cpqÕÕ + cpq + hqst,

where the last inequality follows by the monotonicity of h. Since (pÕ, sÕ) œ NjÕÕ(—), we
get hqÕÕsÕtÕÕ Æ RjÕÕ(—)/djÕÕ . Similarly, we also get cpqÕÕ Æ RjÕÕ(—)/djÕÕ . As (p, s) œ NjÕ(—),
by Lemma 4.7, we obtain (p, s) œ Nj(– + —), and thus cpq + hqst Æ Rj(– + —)/dj. The
expected value of cpÕqÕÕ is

E[cpÕqÕÕ] =
ÿ

(p̂,ŝ)œN̄jÕÕ (—)

ȳp̂qŝ cp̂qÕÕ =
ÿ

(p̂,ŝ)œN̄jÕÕ (—)

x̄qÕÕtÕÕ

p̂ŝ cp̂qÕÕ Æ WjÕÕ(—)/djÕÕ ,

where the last equality comes from the fact that (x̄, ȳ) is complete. Adding up, and using
the fact that jÕ is a cluster center, we obtain

E[cpÕq + hqsÕt] Æ WjÕÕ(—)/djÕÕ + 2RjÕÕ(—)/djÕÕ + Rj(— + –)/dj

Æ WjÕ(—)/djÕ + 2RjÕ(—)/djÕ + Rj(— + –)/dj. (4.10)

Using Lemma 4.7 and tÕ Æ t, we can bound the first term of (4.10) as

WjÕ(—)/djÕ =
1

q

(p̂,ŝ)œNjÕ (—) ȳp̂qŝ djÕ(cp̂q + hqŝtÕ)
2

/djÕ

Æ q

(p̂,ŝ)œNj(–+—) ȳp̂qŝ (cp̂q + hqŝt)

=
q

(p̂,ŝ)œNj(–+—) 1/— xúqt
p̂ŝ (cp̂q + hqŝt)

Æ 1/—
q

(p̂,ŝ)œPt
xúqt

p̂ŝ (cp̂q + hqŝt)

Æ 1/— Sú
j /dj,

92 Chapter 4. Supply Chain Problems

where the second equality comes from the fact that solutions (x̄, ȳ) and (xú, yú) are com-
plete. Similarly, we can bound the second term,

2RjÕ(—)/djÕ = 2

A

max
(p̂,ŝ)œNjÕ (—)

djÕ(cp̂q + hqstÕ)

B

/djÕ

Æ 2 max
(p̂,ŝ)œNj(–+—)

(cp̂q + hqst)

= 2Rj(– + —)/dj.

Summing all terms, we obtain the lemma.

Theorem 4.3. There is a randomized 5-approximation for the PDP with retailer ordering

costs.

Proof. We set – = — = 1/2 and run Algorithm 4.5. Since – + — Æ 1, for each demand
point j, Nj(— +–) ™ Sj, then, by complementary slackness, we get Rj(— +–) Æ bú

j , where
bú

j is the dual variable corresponding to j in the optimal solution. Lemmas 4.8 and 4.9
imply that the expected solution cost SOL is

E[SOL] Æ 1/— Kú + 1/– Eú +
q

jœD(1/— Sú
j + 3Rj(— + –))

Æ 2 Kú + 2 Eú +
q

jœD(2 Sú
j + 3bú

j)

= 2 Kú + 2 Eú + 2 Sú + 3(Kú + Eú + Sú)

= 5 (Kú + Eú + Sú).

4.5 A primal-dual algorithm for OWMR

The 1.8-approximation for OWMR by Levi et al. [91] assumes that each retailer satisfies
one strict monotonicity property. Namely, they assume that each retailer is either a J-

retailer, or a W -retailer. In a J-retailer, if the time that an item leaves the warehouse
is delayed, so that the interval it is held in the warehouse stock is extended, then the
total holding cost incurred by this item in the warehouse and in the retailer may only
increase. In the opposite direction, in a W -retailer, the holding cost incurred by an
item may only decrease if the delivery is delayed. These restrictions create a dependency
between warehouse and retailer holding costs that is unnatural for many applications.
Stau�er et al. [124] considered a slightly more relaxed holding cost structure, but also
with dependent warehouse and retailer costs. In this section, it is considered a more
general holding cost structure, that separates the holding cost incurred by warehouse and
retailers. We present an approximation algorithm based on the primal-dual approach,
that was not known before.

4.5. A primal-dual algorithm for OWMR 93

Problem’s definition. In the OWMR problem there is one warehouse, indexed by
number zero, and N retailer locations, that are indexed by integers 1, . . . , N . Each re-
tailer i faces a demand of dit units over a finite planning horizon with T time steps, and
such demand may be satisfied only with items that are currently in the retailer inventory.
For a pair (i, t), let r, s be such that r Æ s Æ t. If one unit of item is ordered at time r in
the warehouse, transported to the retailer i at time s, and delivered at time t, then there
is an incurred holding cost hit

rs. Every time that the warehouse receives an order, there is
a setup ordering cost K0, that is independent of the number of ordered items. Similarly,
every time that a retailer receives the items from the warehouse, there is a setup ordering
cost Ki, that is independent of the number of items. The objective is to satisfy all demand
points, minimizing the overall holding and ordering costs.

The OWMR problem admits a natural integer linear program formulation, with vari-
ables yis that indicate whether there is an order to location i at time s, and variables xit

rs

that indicate whether demand point (i, t) is satisfied by an item ordered at time r at
the warehouse, and transported to the retailer at time s. The relaxation of such integer
program is given below. For simplicity, here it is assumed that demands are binary, that
is, for each pair (i, t), dit = 0, or dit = 1. This is without loss of generality, since one can
scale the holding cost function otherwise.

minimize
T

ÿ

r=1

y0rK0 +
N

ÿ

i=1

T
ÿ

s=1

yisKi +
N

ÿ

i=1

T
ÿ

s=1

ÿ

r,s:rÆsÆt

xit
rsh

it
rs

subject to
q

r,s:rÆsÆt xit
rs = 1 i œ [N], t œ [T], dit > 0

q

r:rÆs xit
rs Æ yis i œ [N], t œ [T], s œ [t]

q

s:rÆsÆt xit
rs Æ y0r i œ [N], t œ [T], r œ [t]

xit
rs, yir Ø 0 i œ [0, N], r œ [T], s œ [r, T], t œ [s, T]

The dual program is given next.

maximize
N

ÿ

i=1

T
ÿ

s=1

bit

subject to bit Æ hit
rs + lit

s + zit
r i œ [N], t œ [T], r œ [t], s œ [r, t]

qT
t=s lit

s Æ Ki i œ [N], s œ [T]
qN

i=1

qT
t=r zit

r Æ K0 r œ [T]

lit
s , zit

r Ø 0 i œ [N], r œ [T], s œ [T], t œ [s, T]

94 Chapter 4. Supply Chain Problems

4.5.1 Holding cost model

Consider a demand point (i, t) (for item i at time t). We say that this demand is served
by the pair of orders Ár, sÊ if the items that serve such demand were first ordered at time
r by the warehouse, later ordered at time s by the retailer, and finally delivered at time t

to the client. Each such item has been held in the warehouse inventory during the period
[r, s), and in the retailer inventory during the period [s, t]. Let hit

rs be the total cost of
holding one unit of demand (i, t) served by the pair Ár, sÊ. We define the unit holding cost
function as hit

rs = f it
rs +git

s , where f it
rs is the cost of holding this unit at the warehouse, and

git
s is the cost of holding this unit at the retailer. The following properties are assumed:

1. If r = s, then f it
rs = 0. This means that the warehouse holding cost is zero if the

item was not held in the warehouse inventory.

2. If [r, s] ™ [rÕ, sÕ], then f it
rs Æ f it

rÕsÕ . This means that storing an item in the warehouse
inventory at an earlier time rÕ, or removing it at a later time sÕ cannot decrease the
cost.

3. If s < sÕ, then git
s Ø git

sÕ . This means that storing an item in the retailer inventory
at a later time sÕ cannot increase the cost.

4. Each demand point (i, t) has one of the following properties:

• For every r, s, sÕ, such that r Æ s < sÕ Æ t, we have hit
rs Æ hit

rsÕ . That is, hit
rs

is monotonically non-decreasing in s. This means that for demand point (i, t)

and a fixed warehouse order r, it is always more economical to hold the items
in the retailer inventory, rather than in the warehouse inventory. In this case,
we say that (i, t) is a J-demand.

• For every r, s, sÕ, such that r Æ s < sÕ Æ t, we have hit
rs Ø hit

rsÕ . That is, hit
rs

is monotonically non-increasing in s. This means that for demand point (i, t)

and a fixed warehouse order r, it is always more economical to hold the items
in the warehouse inventory, rather than in the retailer inventory. In this case,
we say that (i, t) is a W -demand.

• For every r1, r2, r3, such that r1 Æ r2 Æ r3 Æ t, we have f it
r1r3

Æ f it
r1r2

+ f it
r2r3

.
That is, f it

rs is subadditive with respect to time intervals [r1, r2) and [r2, r3).
This means that removing an item from the warehouse inventory, and putting
it back immediately after cannot decrease the holding cost. In this case, we
say that (i, t) is an S-demand.

4.5. A primal-dual algorithm for OWMR 95

We notice that the holding cost model studied by Levi et al. [91] is a particular case of
the holding cost defined above. In their setting, they assume that each retailer contains
either only W -demands, or only J-demands. Notice that, although property 2 is not
explicitly assumed in [91], this property is implied by their monotonicity assumptions
combined with the monge-property for W -demands. Di�erently from J or W -demands,
being an S-demands is a property of function f it only. This allows to model more general
problems in which the warehouse and retailer holding cost functions are independent.

4.5.2 Primal-dual algorithm

We propose a primal-dual algorithm for the OWMR problem. The algorithm is inspired
on the primal-dual framework of Levi et al. [90], based on a “wave” dual ascent algorithm.
Rather than increasing dual variables uniformly, they increase the dual variables using
the growing rate of the retailer holding cost of each demand, starting with the latest
demands, and moving back to the first. However, for the case of OWMR, items can be
held in the warehouse inventory, so the wave does not preserve some essential properties
in the analysis in [90]. For OWMR, we use a new dual ascent algorithm, and a more
complex pruning phase. Namely, we use the following two-phase algorithm: in the first
phase, we generalize the wave algorithm to deal with more complex holding cost models,
and, in the second phase, we prune warehouse and retailer orders separately.

We summarize the algorithm below, and describe each step in the following subsec-
tions.

1. Run the dual ascent algorithm, and temporarily open warehouse and retailer orders;

2. Prune orders and open permanent orders:

(a) Permanently open warehouse orders;

(b) Permanently open retailer orders:

i. Place the first round of retailer orders;

ii. Fix unsatisfied demands with additional retailer orders;

3. Connect demands.

Dual ascent algorithm

We use the following dual ascent mechanism. We consider a wave starts at time T and,
as time passes, moves backward in time continuously, until it reaches time 0. Initially, all
dual variables start with value zero, and all demand points are unconnected (unsatisfied).
We say that a retailer order (i, s) is paid if

qT
t=s lit

s = Ki. Denote the current position of

96 Chapter 4. Supply Chain Problems

the wave by · . For each moment · and item i, let Pi(·) be the set of time steps s such
that the retailer order (i, s) is paid at time · . At each moment · , we set the budget bit of
each unconnected demand point (i, t) to be

bit Ω min {git
· } fi {f it

s· + git
s + lit

s |s œ Pi(·)}. (4.11)

Notice that git
· is only defined for integer values of · . If · is not integer, we define git

·

by linearly interpolating git
Â·Ê and git

Á·Ë. Similarly, for any integer s, such that · Æ s Æ t, we
define f it

·s by linearly interpolating f it
Â·Ês and f it

Á·Ës. Also, we define git
0 = Œ, and f it

0s = Œ,
for every demand point (i, t) and s Æ t.

As the wave moves, we place temporary retailer and warehouse orders. The sets of
temporarily open warehouse orders is denoted by R, and temporarily open retailer orders
is denoted by Si for each i. Initially, sets R and Si contain no orders. Whenever a demand
point is satisfied by a temporarily open pair of retailer and warehouse orders, we freeze
its budget and connect such demand to this pair.

The algorithm starts at time · = T that is decreased continuously until · = 0. While
the time passes, some of the following conditions may be satisfied, and the corresponding
events are triggered. The events are processed in the order that they happen.

Event 1 For some demand (i, t), such that lit
s has not started increasing, it holds bit = git

s :

• start increasing lit
s at the same rate of bit.

Event 2 For some retailer order (i, s), that is not marked as paid, it holds
qT

t=s lit
s = Ki:

• mark order (i, s) as paid,

• add s do Si,

• set open(i, s) = · ,

• for each t Ø s, stop increasing lit
s .

Event 3 For some demand (i, t), and retailer order (i, s), such that (i, s) is paid and zit
r

has not started increasing, it holds bit = git
s + f it

rs + lit
s for some r Æ s:

• if warehouse order at time r is temporarily open,

– connect demand point (i, t) to the pair of orders Ár, sÊ,

– set freeze(i, t) = · ;

• else (if warehouse order r is not temporarily open),

– start increasing zit
r at the same rate of bit.

4.5. A primal-dual algorithm for OWMR 97

Event 4 For some warehouse order (0, r) that is not temporarily open, it holds that
qN

i=1

qT
t=r zit

r = K0:

• open warehouse order (0, r),

• add r to R,

• set open(0, r) = · ,

• for each demand point (i, t) such that for some s, variable zit
rs have already

started increasing:

– connect demand point (i, t) to the pair of orders Ár, sÊ,

– set freeze(i, t) = · .

Intuitively, we give the following interpretation to this dual ascent mechanism. Ini-
tially, all pairs of orders are o�ered for free to each demand point, so each demand can be
served by its nearest order, and thus pays zero for the holding cost. As the wave moves,
we remove gradually (and fractionally) the free pair Á·, ·Ê of orders at position · , from
the right to the left, until no order is o�ered at all. This means that, if a demand point
(i, t) wants to be connected to a pair of free orders at time · , then it must increase its
budget to at least git

· . However, it might happen that some retailer order s Ø · is already
paid by some group of demand points. In this case, a demand point can also be connected
to the free warehouse order at · through retailer order s. If the demand chooses to be
satisfied by this path, it has to increase it budget to at least the holding cost of pair Á·, sÊ,
that is f it

·s + git
s , plus its contribution towards opening retailer order s, that is lit

s .

Pruning phase

The shadow of a given order (i, s) is the interval [open(i, s), s]. For any two warehouse
orders in R with intersecting shadows, there is some demand point that contributes to
both orders. Therefore, we want to open a subset of permanent warehouse orders RÕ, with
no intersecting shadows. This is accomplished by a pruning procedure. However, two joint
orders with intersecting shadows may include distinct retailer orders, and thus dropping
one of such orders may leave demand points unsatisfied. For the JRP, the algorithm of
Levi et al. [90] simply moved any retailer order (i, s) from the dropped joint order to
the position of the earliest permanent warehouse order that was placed in the shadow of
(i, s). This strategy for fixing unsatisfied demand points does not work for W -retailers,
since, contrary to the case of the JRP, W -retailer orders and warehouse orders are not
necessarily synchronized, and thus it may happen that no warehouse order is placed in
the retailer shadow.

98 Chapter 4. Supply Chain Problems

In our algorithm, we open permanent warehouse orders and retailer orders in two
steps. First, we permanently open only warehouse orders, and ignore the retailers, using
a simple greedy algorithm to open orders with non-intersecting shadows. This guarantees
that each demand point contributes to at most one warehouse order. Then we open the
orders of each retailer using a two-round procedure. In the first round, we permanently
open retailer orders with non-intersecting shadows, so that a demand point does not use
the same budget to contribute to several orders. When this first round finishes, each
demand whose budget is larger than the holding cost of some permanently open pair of
orders is considered satisfied. In the second round, we make sure that any remaining
demand is satisfied. This is done by greedily placing a retailer order for some unsatisfied
demand. By carefully selecting the next unsatisfied demand point, we guarantee that
each demand pays for at most two retailer orders opened in the second round.

(a) Opening permanent warehouse orders:

Let R = {r1, . . . , rk}, with r1 < r2 < · · · < rk, be the set of all time steps at which a
warehouse order was temporarily open. We will return a set RÕ of permanent warehouse
orders. At each moment we keep the last time rÕ at which we placed a permanent ware-
house order. Then we iterate over every r œ R, in increasing order of time, and add r

to RÕ if the shadow of r does not intersect the shadow of any order included previously.
More precisely, we run the following steps:

1. Set rÕ Ω 0, and RÕ Ω ÿ.

2. For each r Ω r1, . . . , rk, if open(0, r) > rÕ, then

• set rÕ Ω r, and

• update RÕ Ω RÕ fi {r}.

(b) i. First round of retailer orders:

For each retailer i, we open a first round of retailer orders using the same algorithm
used for opening warehouse orders. That is, let Si = {s1, . . . , sk}, with s1 < s2 < · · · < sk,
be the set of all time steps at which retailer i has placed temporary orders. We obtain
a set S Õ

i of permanent retailer orders, by greedily iterating over s œ Si, in order of time,
and adding non-intersecting retailer orders to S Õ

i.

Before going to the second round, we introduce some notation. For any demand
(i, t), let left(i, t) be the minimum time ‡ such that bit = git

‡ . Notice that ‡ may be
fractional (and git used in the dual ascent algorithm). Intuitively, left(i, t) is the leftmost
retailer order by which demand (i, t) may be served paying at most its budget. Also,
a demand (i, t) is said to be currently satisfied if there is a permanently open pair of

4.5. A primal-dual algorithm for OWMR 99

order Ár, rÊ such that hit
rr Æ bit, or if there is no open warehouse order r œ RÕ such that

r œ [left(i, t), t].

(b) ii. Fixing unsatisfied demands:

For each retailer i, we open a second round of retailer orders S ÕÕ
i to fix unsatisfied

demands. We fix unsatisfied demands greedily. Let (i, t) be the demand point with
largest left(i, t). Since (i, t) is unsatisfied, we know that there is at least one permanently
open warehouse order at r œ RÕ such that r œ [left(i, t), t]. Let rÕ be the least such
time. We include a retailer order rÕ in S ÕÕ

i . In this case, we say that demand (i, t) is the
initiator of order (i, rÕ). Notice that after permanently opening the retailer order (i, rÕ),
the demand at time t, as well as any unsatisfied demand at time tÕ with tÕ Ø rÕ, will
become satisfied. We repeat this process until all demand points become satisfied. More
precisely, for each retailer i we execute the following steps:

1. Set S ÕÕ
i Ω ÿ.

2. While there are unsatisfied demand points in retailer i:

(a) let (i, t) be an unsatisfied demand point with largest left(i, t),

(b) let rÕ Ω min [left(i, t), t] fl RÕ,

(c) update S ÕÕ
i Ω S ÕÕ

i fi {rÕ}.

Connecting demand points

At the last phase of the algorithm, each demand point (i, t) is simply connected to one
pair of orders Ár, sÊ such that r œ RÕ, s œ S Õ fi S ÕÕ, and r Æ s Æ t. If there are many pairs
that satisfy these properties, we choose the ordering pair with minimum hit

rs.

4.5.3 Analysis

By the construction of the dual ascent algorithm, the set of variables (b, l, z) is a feasible
solution to the dual problem. The incurred costs of the generated solution correspond
to the cost of holding items for each demand and the cost of placing permanently open
orders: the warehouse orders in RÕ, the first round of retailer orders in S Õ

i for each i, and
the second round of retailer orders in S ÕÕ

i for each i. We use the following charging scheme:
for each demand point (i, t) and rÕ œ RÕ, zit

rÕ is the contribution of (i, t) towards opening
warehouse order rÕ. Similarly, for each sÕ œ S Õ

i, lit
sÕ is the contributions for retailer order sÕ.

For retailer orders in S ÕÕ
i , we use a more complex charging scheme. For a given retailer

order (i, sÕÕ), with sÕÕ œ S ÕÕ
i , let (i, t̂) be the corresponding initiator. Since demand (i, t̂)

was connected by the dual ascent algorithm, there must exist at least one order in Si to

100 Chapter 4. Supply Chain Problems

which (i, t̂) can connect. Let ŝ be one such order with the largest opening time, that is,
an order that was first paid by the dual ascent algorithm. To pay for the order sÕÕ, we will
use the same budget used to pay for retailer order ŝ. Notice that here we must use that
fact that all retailer orders of item i have the same cost. To denote the order ŝ of which
the contribution will be used to pay sÕÕ, we define Ni(s

ÕÕ) = ŝ. The contribution of a given
demand (i, t) towards sÕÕ is thus lit

ŝ . Finally, each demand point pays for the holding cost
of its own items.

First, we give an auxiliary lemma.

Lemma 4.10. For any demand point (i, t), there exists a paid retailer order (i, s), s œ Si,

such that left(i, t) Æ open(i, s), and s Æ t.

Proof. Let · = freeze(i, t), and ‡ = left(i, t). Since demand (i, t) has been connected,
we know that there exists a retailer order s œ Si such that ‡ Æ s and · Æ open(i, s).
Let s̄ be the retailer order s œ Si such that ‡ Æ s with maximum open(i, s̄). For the sake
of contradiction, suppose that open(i, s̄) < ‡.

Consider the state of the dual ascent algorithm at the time · Õ = open(i, s̄), just before
any event is processed, and let b be the budget of (i, t) at such moment. At this moment,
we know that s̄ ”œ Si. Also, the demand (i, t) is connected to the free order · Õ through
some order sÕ. Since · Õ < ‡, we obtain git

· Õ > git
‡ = bit Ø b. It follows that sÕ must be

already paid, that is, sÕ œ Si, and so open(i, sÕ) > · Õ. But since bit Ø b Ø git
sÕ , we have

‡ Æ sÕ. This is a contraction to the maximality of s̄, and the lemma follows.

In the following lemmas we bound the contribution of a given demand to each incurred
cost of the solution. Each contribution of a demand point (i, t) is bounded by a factor
of its budget bit, so the total contribution is a factor of the dual solution value, and the
approximation follows by the weak duality theorem.

Lemma 4.11. The contribution of demand (i, t) towards opening warehouse orders in RÕ

is at most bit.

Proof. Let r œ R be a warehouse order to which (i, t) gives a positive contribution, that
is, zit

r > 0. Since zit
r > 0, there is a paid retailer order s at time · = freeze(i, t) such that

bit > git
s +f it

rs+lit
s by Event 3 of the dual ascent algorithm. Since s is already paid at time · ,

we have s Ø open(i, s) Ø · . Thus we get s œ Pi(·), and therefore bit Æ git
s + f it

·s + lit
s , so

f it
·s > f it

rs, and, by the monotonicity of f it, this implies that r Ø · .
Let rÕ œ RÕ be the largest warehouse order time such that zit

rÕ > 0. We claim that
open(i, rÕ) Æ freeze(i, t). Indeed, if at time open(i, rÕ), demand (i, t) is not connected
yet, then it would be connected at this point. It follows from the algorithm to open
permanent warehouse orders that RÕ fl [freeze(i, t), rÕ) ™ RÕ fl [open(i, rÕ), rÕ) = ÿ. Since

4.5. A primal-dual algorithm for OWMR 101

demand (i, t) does not contribute to warehouse orders rÕÕ œ RÕ with rÕÕ < freeze(i, t), it
follows that (i, t) can only contribute to one warehouse order, namely rÕ.

Lemma 4.12. The contribution of demand (i, t) towards opening retailer orders in S Õ
i is

at most bit.

Proof. Let s1, . . . , sk œ S Õ
i, with s1 < · · · < sk, be the retailer order times to which demand

(i, t) gives a positive contribution, that is, for which lit
sj

> 0 for each j = 1, . . . , k. It follows
from the algorithm to open the first round of retailer orders that the shadows of the retailer
orders do not intersect, that is, for each j = 2, . . . , k, we have sj≠1 < open(i, sj).

Let ·j be the time at which order (i, sj) was paid, that is, ·j = open(i, sj), and let
bit

·j
be the budget of demand point (i, t) at this moment. By equation (4.11), bit

·j
Æ git

·j
.

Therefore, the contribution of (i, t) to some retailer order (i, sj) is lit
sj

Æ bit
·j

≠git
sj

Æ git
·j

≠git
sj

.
For any j Ø 2, we have git

·j
Æ git

sj≠1
, since sj≠1 < open(i, sj) = ·j, and thus lit

sj
Æ git

sj≠1
≠git

sj
.

For j = 1, trivially lit
s1

Æ bit ≠ git
s1

. Adding up all contributions, we obtain

k
ÿ

j=1

lit
s1

Æ bit ≠ git
s1

+
k

ÿ

j=2

(git
sj≠1

≠ git
sj

) Æ bit.

In the next lemma, and afterwards, we use the following definition.

Definition 4.2. We say that a demand point (i, t) is served by a twin ordering pair if

there is an ordering pair Ár, rÊ that is permanently open such that left(i, t) Æ r Æ t.

Lemma 4.13. The contribution of demand (i, t) towards opening retailer orders in S ÕÕ
i is:

• at most 2bit, if (i, t) is served by a twin ordering pair, or

• at most bit, if (i, t) is not served by a twin ordering pair.

Proof. Let s1, . . . , sk œ S ÕÕ
i , with s1 < · · · < sk, be the retailer order times to which

demand (i, t) gives a positive contribution, that is, for which lit
ŝj

> 0, where ŝj = Ni(sj),
for each j = 1, . . . , k. Also, for each j = 1, . . . , k, let (i, tj) be the initiator of retailer
order (i, sj), and let ·j = left(i, tj).

Recall that, for every retailer order s œ S ÕÕ
i , there is a warehouse order s œ RÕ. It

follows from the algorithm to fix unsatisfied demands that there is no permanently open
warehouse order in the interval [·j, sj), for any j, that is, [·j, sj) fl RÕ = ÿ.

We claim that tj≠1 < sj for any j = 2, . . . , k. Let j > 1. We have sj≠1 œ RÕ, but
[·j, sj) fl RÕ = ÿ, thus sj≠1 < ·j, since otherwise we would get sj≠1 Ø sj. It follows that
·j≠1 < ·j. This implies that demand point (i, tj) was picked before demand point (i, tj≠1)

by the algorithm. Consider the execution state of the algorithm just after (i, tj≠1) was
picked (at step 2(a)). At this moment, we must have sj œ S ÕÕ

i , since (i, tj) was picked at a

102 Chapter 4. Supply Chain Problems

previous iteration. Therefore, at this moment the ordering pair Ásj, sjÊ was permanently
open, and thus any demand point (i, tÕ) with tÕ Ø sj should be satisfied. Since (i, tj≠1)

was picked, it was unsatisfied at this moment, and thus tj≠1 < sj.
By definition, ŝj is the retailer order s œ Si such that ·j Æ s Æ tj with the largest

open(i, s). By Lemma 4.10, we know that there is at least one such s such that ·j Æ
open(i, s), and thus ·j Æ open(i, ŝj). Let j > 2. Recall that tj≠2 < sj≠1, and sj≠1 < ·j.
Hence open(i, ŝj≠2) Æ ŝj≠2 Æ tj≠2 < sj≠1 < ·j Æ open(i, ŝj) Æ ŝj. We conclude that the
shadows of any two retailer orders (i, ŝj1) and (i, ŝj2) with j1 and j2 odd do not intersect,
that is, [open(i, ŝj1), ŝj1]fl[open(i, ŝj2), ŝj2] = ÿ. Using the same arguments of Lemma 4.12,
we conclude that the total contribution of demand point (i, t) towards opening retailer
orders with odd indices is at most bit. Analogously, the total contribution of demand
point (i, t) towards opening retailer orders with even indices is at most bit.

If (i, t) is served by a twin ordering pair, then we are done. So, from now on, assume
that this is not the case. Therefore, there is no open warehouse order r œ RÕ such that
r œ [left(i, t), t]. We claim that k Æ 1, and thus the lemma will follow. For the sake of
contradiction, suppose that k > 1. Since sk œ RÕ, and sk Æ t, we obtain sk < left(i, t),
otherwise we would get [left(i, t), t] fl RÕ ”= ÿ. But then ŝk≠1 Æ tk≠1 < sk < left(i, t).
However, since (i, t) contributes to ŝk≠1, we know that bit > git

ŝk≠1
, and thus left(i, t) <

ŝk≠1. This is a contradiction, and we are done also in this case.

Lemma 4.14. Suppose that demand (i, t) is not served by a twin ordering pair. Then the

holding cost of demand (i, t) is at most 2bit.

Proof. Let · = freeze(i, t) and ‡ = left(i, t).
We claim that there is an open warehouse order rÕ œ RÕ, such that · Æ rÕ Æ t. Let

r œ R be the warehouse order to which (i, t) was connected, such that r Æ t. Clearly,
open(0, r) Ø · , since the warehouse order was already open when (i, t) was connected. If
r œ RÕ, then the claim holds. Otherwise, r was not permanently open by the algorithm,
and thus there must exist some rÕ œ RÕ fl [open(0, r), r]. Then · Æ open(0, r) Æ rÕ Æ r Æ t,
and the claim holds also in this case.

Since (i, t) is not served by a twin ordering pair, then there is no permanently open
warehouse order in the interval [‡, t], that is, [‡, t] fl RÕ = ÿ (recall Definition 4.2). It
follows that git

rÕ > git
‡ = bit, and thus rÕ < ‡. At the freezing time · , we know that demand

point (i, t) is connected to the “free” warehouse order · through some order s. That is,
there exists s œ Si, such that s Æ t, and bit = f it

·s + git
s + lit

s . Since bit Ø git
s , we know that

‡ Æ s,
We claim that (i, t) is not a J-demand. By the monotonicity of git, we have hit

·· =

git
· Ø git

rÕ > git
‡ = bit Ø hit

·s. Since · Æ rÕ < ‡ Æ s, we conclude that (i, t) cannot be a
J-demand. Therefore, (i, t) is either a W -demand, or an S-demand. We analyze each
case separately.

4.5. A primal-dual algorithm for OWMR 103

First, assume that (i, t) a W -demand. By Lemma 4.10, we know that there is a paid
retailer order s̄ œ Si such that ‡ Æ open(i, s̄) and s̄ Æ t. Therefore, there must exist a
permanently open order in the first round of retailer, sÕ œ S Õ

i, such that sÕ œ [open(i, s̄), s̄],
and thus, ‡ Æ sÕ Æ t. We will bound the cost of connecting demand point (i, t) to the
ordering pair ÁrÕ, sÕÊ, as the actual holding cost paid by (i, t) cannot be greater than this
cost. We consider two subcases: s Æ sÕ, or s > sÕ. If s Æ sÕ, then hit

rÕsÕ Æ hit
rÕs = f it

rÕs + git
s Æ

f it
·s + git

s Æ bit, where the first inequality is true because (i, t) is W -demand. If s > sÕ,
then hit

rÕsÕ = f it
rÕsÕ + git

sÕ Æ f it
rÕs + git

‡ Æ 2bit. Therefore, we obtain hit
rÕsÕ Æ 2bit, and the lemma

follows in this case.
From now on, we assume that (i, t) is an S-demand. Again, we know that there is an

open order in the first round of retailer in [open(i, s), s]. Let sÕ œ S Õ
i be the largest such

order. If ‡ Æ sÕ, then hit
rÕsÕ = f it

rÕsÕ + git
sÕ Æ f it

rÕs + git
‡ Æ 2bit, and we are done. So, we assume

that ‡ > sÕ.
Consider the state of the dual ascent algorithm at time sÕ, just before any event is

processed, and let b be the budget of demand (i, t) at this moment. Clearly, we have
b Æ bit, because sÕ Æ open(i, s) Æ · . Since sÕ < ‡, we get b Æ bit = git

‡ < git
sÕ . We conclude

that at the time · Õ = sÕ, the demand point (i, t) was connected to the “free” warehouse
order · Õ through some paid retailer order. That is, there exists s̄ œ Si such that s̄ Æ t and
b = f it

sÕs̄ + git
s̄ + lit

s̄ . Since s̄ was already paid at time sÕ, we get open(i, s̄) > sÕ. Once again,
there must exist an open retailer order s̄Õ œ S Õ

i fl [open(i, s̄), s̄]. Since (sÕ, s] fl S Õ
i = ÿ, we

conclude that s < s̄Õ Æ s̄.
Now we bound the holding cost of serving demand (i, t) by the ordering pair ÁrÕ, s̄ÕÊ.

We get hit
rÕs̄Õ = f it

rÕs̄Õ + git
s̄Õ Æ f it

· s̄ + git
s Æ f it

sÕs̄ + f it
·sÕ + git

s Æ f it
sÕs̄ + f it

·s + git
s Æ b + bit Æ 2bit,

where the second inequality follows from the fact that (i, t) is an S-demand.

Lemmas 4.13 and 4.14 imply the following corollary.

Corollary 4.2. The contribution of demand (i, t) towards opening retailer orders in S ÕÕ
i

plus the holding cost of demand (i, t) is at most 3bit.

Proof. If (i, t) is not served by a twin ordering pair, the lemma follows directly from
Lemmas 4.13 and 4.14. If (i, t) is served by a twin ordering pair Ár, rÊ, then we know that
hit

rr = git
r Æ bit, since otherwise demand (i, t) would be unsatisfied, and so the corollary

follows from Lemma 4.13.

The following theorem is now immediate.

Theorem 4.4. The primal-dual algorithm in Subsection 4.5.2 is a 5-approximation for

the OWMR with independent retailer-warehouse holding costs

104 Chapter 4. Supply Chain Problems

4.6 The Multilevel Joint Replenishment Problem

This section notices that the Multilevel JRP, when the supply chain is comprised of a
rooted tree, can be reduced to the Multistage Assembly Problem, and thus admits a
2-approximation by Levi et al. [90].

Problem’s definition. In the Multilevel JRP, one is given a tree, rooted at a special
vertex p, called the producer. A leaf i in this tree is called a retailer, and an intermediate
vertex is called a warehouse. We consider a discretized time interval [1, T] and, in each
time step t œ [1, T], a retailer i may demand an amount dit of items in stock. Each such
pair (i, t) is a demand point, and can be satisfied only if the retailer i has placed an order
to the parent node at some time s, with s Æ t. We assume that only retailer nodes can
keep items in stock, so, every time a non-retailer node receives an order for a certain
amount of items, it must place an order of the same amount to its parent node if it is a
warehouse, or it must produce this amount of items if it is the producer. In other words,
a retailer i can only place an order at time s if all vertices in the tree path (p, . . . , i) have
also placed orders at time s. The placement of an order by vertex v incurs a setup cost
Kv. Also, if a demand point (i, t) is satisfied by a retailer order placed at time s, then
the incurred cost of keeping such dit items in stock is Hist. The objective is to minimize
the overall ordering and holding costs.

The Multilevel JRP can be stated as an integer linear programming formulation, whose
variable yvs indicates whether node v places an order at time s, and variable xist indicates
whether demand point (i, t) is served at time s. Next, the parent node of a non-root vertex
v is denoted by fi(v), and the unique path from p to some retailer i is P (i) = (p, . . . , i).
Also the set of all positive demand points is D, and the set of all nodes is V .

minimize
ÿ

vœV

ÿ

sœ[T]

yvsKv +
ÿ

(i,t)œD

ÿ

sœ[t]

xistHist

subject to
q

sœ[t] xist = 1 (i, t) œ D

xist Æ yvs (i, t) œ D, s œ [t], v œ P (i)

xist œ {0, 1} (i, t) œ D, s œ [t]

yvs œ {0, 1} v œ V, s œ [T]

(4.12)

In the Multistage Assembly Problem with Echelon Holding Costs, one is given a rooted
tree, whose nodes correspond to items, and the root is a special item denoted by p. It is
considered a discretized time interval [1, T] and, at each time step t œ [1, T], item p faces
an external demand of dt units. Each unit of item i is assembled using one unit of each of
its predecessors (each predecessor of an item corresponds to one child node in the tree).
Therefore, an order for n units of item i incurs a demand of n units of each predecessor

4.6. The Multilevel Joint Replenishment Problem 105

j, and any demand must be satisfied by the inventory currently held for j. Assembling
any amount of items of any item i incurs a setup cost Ki. Any external demand of dt

units of item p is also a demand of dt units of item i, for each i. Satisfying demand dt

using dt units of items i assembled at time s incurs an “echelon” holding cost of Hist. The
objective is to minimize the overall ordering and holding costs.

The echelon inventory level of an item i is the total number of units of i in the system,
including units that are assembled into other items and the inventory of that item. The
echelon holding cost hist is the cost of storing one unit of item i, either in the inventory
of item i, or in the inventory of other items that were assembled using this unit, from the
time s that this unit was ordered to the time t it was delivered. Therefore, Hist = dt · hist.
Using echelon holding cost allows one to decompose the holding cost on a per-item basis,
as used in the integer linear programming formulation due to Levi et al. [90].

The following formulation assumes nested and zero inventory ordering (ZIO) policies.
In a nested policy, item i only places an order at a time s if all successors of i also place
orders at time s. In a ZIO policy, an order is placed for an item only when its inventory
is empty. These assumptions can be made without loss of generality, since it is known
that there are optimal policies that satisfy both properties [42].

minimize
ÿ

iœV

ÿ

sœ[T]

yisKi +
ÿ

iœV

ÿ

tœ[T]

ÿ

sœ[t]

xistHist

subject to
q

sœ[t] xist = 1 i œ V, t œ [T]

xist Æ yvs i œ V, t œ [T], s œ [t], v œ P (i)

xist œ {0, 1} i œ V, t œ [T], s œ [t]

yis œ {0, 1} i œ V, s œ [t]

(4.13)

Observation 4.1. The Multilevel JRP can be reduced to the assembly problem with ech-

elon holding costs. An –-approximation for the assembly problem implies an (– + Á)-

approximation for the Multilevel JRP, for every Á > 0.

Proof. Let l = Á–≠1
Á

Ë. Consider an instance I1 of the Multilevel JRP. We will transform
this instance into another instance of the Multilevel JRP I2, such that for every item i

and every time step t, we have dit = 1. Let D1 be the set of demand points of I1. For each
pair formed by item i œ V and time t œ [T] such that (i, t) ”œ D1, we create a (dummy)
demand point (i, t), by defining dit = 1 and hist = 0, for every s = 1, . . . , t. Then, for
every demand point (i, t) œ D1, we scale the unit holding cost by dit, and redefine the
amount of demand to dit = 1. Notice that these operations do not change the value of
Hixt = dithist. Now we add l ≠ 1 copies of each demand point (i, t), and redefine the total
number of time steps to T Õ = lT : for each i œ V , t œ [T], and j = 1, . . . , l ≠ 1, we add a
new demand point for item i at time tÕ = jT + t, by making ditÕ = 1, with holding cost

106 Chapter 4. Supply Chain Problems

defined by:

histÕ =

Y

_

_

_

]

_

_

_

[

0 (i, t) ”œ D1,

Œ (i, t) œ D1 and s Æ jT,

hi,s≠jT,t (i, t) œ D1 and s > jT.

Finally, we add an extra time step t = 0, and corresponding demand points (i, 0) with
di0 = 1 for every i. For each demand (i, t), the cost of being served by an order at
time s = 0 is hi0t = Œ if (i, t) is in D1, or if (i, t) is a copy of a demand point in D1,
and hi0t = 0 otherwise. This finishes the construction of I2. Observe that an optimal
solution O1 of I1 induces a solution for I2 with cost l ·cost(O1)+

q

vœV Kv, and an optimal
solution O2 of I2 induces a solution for I1 with cost (cost(O2) ≠ q

vœV Kv)/l, so we have
cost(O2) = l · cost(O1) +

q

vœV Kv.
Now, we use the reduction from the JRP by Levi et al. [90], but for the multilevel case.

We create an instance I3 of the assembly problem from I2, such that every node v œ V is
an item, with ordering cost Kv, and node p is facing external demand dt = 1 at each time
step. What is missing to complete instance I3 is defining the echelon holding costs. For
each leaf node i, we use the holding cost function of I2, and for other (dummy) items v,
define the holding cost to be zero. Since we can restrict solutions of I3 to nested policies,
then any solution of I3 induces a solution of I2 with the same cost, and vice-versa. The
former claim is formalized in the following, the later is analogous.

We construct a solution S2 for I2 from a solution S3 for I3, with the same set of orders
and using ZIO policies for satisfying demands. Without loss of generality, we assume
that S3 is nested and uses ZIO policies, since otherwise we could modify S3 without
increasing the cost [42]. Therefore, for every order placed at a given node v at time s,
there is one order at its parent node fi(v) at the same time s, that is, if order (v, s) œ S3,
then order (fi(v), s) œ S3. Also, since d0 = 1, for every v œ V , (v, 0) œ S3, and so
(v, 0) œ S2. This means that there is a joint order in S2 including all items at time t = 0,
and so every demand can be satisfied. We conclude that S2 is feasible. Now we calculate
the cost of S2. Clearly, the ordering cost of S2 is the same as that of S3. Also, the holding
cost of S2 is equal to the echelon holding cost of S3 corresponding to leaf items. To see
this, recall that each demand for item i at time t in the Multilevel JRP corresponds to
one unit demand for item i at time t of the assembly problem, and both demands are
satisfied by the same orders, namely, the latest order (i, s) with s Æ t. As the echelon
holding cost of dummy items is zero, there are no other incurred costs in S3. Therefore,
cost(S3) = cost(S2).

To complete the proof, it is enough to observe that given an –-approximated solution
S2 for I2, we obtain a solution S1 for I1 such that cost(S1) = (cost(S2) ≠ q

vœV Kv)/l Æ
(– · cost(O2) ≠ q

vœV Kv)/l = – · cost(O1) + (– ≠ 1)/l
q

vœV Kv Æ (– + Á) · cost(O1).

4.6. The Multilevel Joint Replenishment Problem 107

Chapter remarks

Despite considering integrated decisions on distribution and inventory control may lead to
significant economy, few works have considered such problems under the approximation
algorithms perspective. This chapter introduced the Production and Distribution Problem
(PDP), that aims at optimizing ordering, distribution and inventory holding costs in an
integrated manner. A variant of the PDP has already been considered by Pochet and
Wosley [116], that studied valid inequalities to strengthen integer linear programming
formulations of the problem. Here, we consider a di�erent formulation, that resembles
those of the FLP and of the JRP, so that we are able to obtain an approximation algorithm,
using some ideas already applied in algorithms for these problems. This leads to a 2.77-
approximation for the version without retailer ordering costs, and a 5-approximation for
the version with retailer ordering costs. The PDP was studied under natural assumptions
that combine monotonically increasing holding costs, and metric distance functions.

Other considered supply chain problem is the OWMR with a more natural holding
cost structure, for which no constant approximation was known previously. We gave a
5-approximation based on a based on a novel primal-dual technique. This contribution
is two-folded since it provides a primal-dual algorithm for the OWMR, that was an open
question [91], and it improves the wave mechanism introduced by Levi et al. [90], giving
an example of a primal-dual technique that increases the dual variable using a more
sophisticated processes.

Moreover, we noted that an important subclass of the Submodular JRP can be reduced
to the Multistage Assembly Problem, and thus admits a constant approximation.

Chapter 5

Circle Packing Problems

This chapter presents approximation algorithms for circle packing problems. In the Circle
Bin Packing Problem, the objective is to pack a set of circles into the minimum number
of unit squares, and in the Circle Strip Packing Problem, the objective is to pack a set of
circles into a strip of unit width and minimum height.

Problem’s definition. In the Circle Bin Packing Problem, one is given a set of circles
C = {C1, . . . , Cn}, such that each circle Ci œ C has radius ri, with 0 Æ ri Æ 1/2. A packing
of a subset of circles S ™ C into a bin is an arrangement of S, such that the center of each
circle Ci œ S is associated to coordinates xi, yi, with ri Æ xi, yi Æ 1≠ri, and no two circles
intersect, that is, it holds (xi ≠ xj)

2 + (yi ≠ yj)
2 Ø (ri + rj)

2 for every pair Ci, Cj œ S. The
objective is to find a packing of all circles using the minimum number of bins.

In the Circle Strip Packing Problem, given a set of circles C, a packing of C into a
strip of height H is an arrangement of circles such that the center of each circle Ci œ C is
associated to coordinates xi, yi, with ri Æ xi Æ 1 ≠ ri, ri Æ yi Æ H ≠ ri, and no two circles
intersect. The objective is to find a packing of the circles into a strip of minimum height.

Summary of results. We give APTAS’s for both the Circle Bin Packing, and the
Circle Strip Packing. The bin packing problem is considered with resource augmentation
in one dimension, that is, we use bins of unit width and height 1 + “, for some arbitrarily
small “ > 0. These are the first approximations for these problems. As is common in
the literature of packing problems, we distinguish between “large” and “small” items.
However, this distinction is dynamic, so that one item may be considered small in one
iteration, but large in another. Two main novel ideas di�er from the approaches for
rectangle packing: first, instead of packing large items using combinatorial brute force
algorithms, the packing of large circles is reduced to the problem of solving a semi-
algebraic system, what is done with the aid of standard quantifier elimination algorithms

109

110 Chapter 5. Circle Packing Problems

from algebra; second, to pack small items, the free space of previous packings is cut in
smaller bins, and the algorithm for large items is used recursively.

In Section 5.1, we review works on packing of circles and rectangles. In Section 5.2,
we discuss how to decide whether a set of n circles can all be packed in a rectangular bin
using algebraic quantifier elimination. In Section 5.3, an approximation algorithm for the
packing of “large” circles is given. In Section 5.4, we present APTAS’s for the Circle Bin
Packing Problem, and for the Circle Strip Packing Problem.

5.1 Literature review

Packing problems have a large number of applications, such as packaging of boxes in
containers, or cutting of material. For the special case that the items are equal circles,
applications include, for example, obtaining a maximal coverage of radio towers in a
geographical region [128]. In the literature of approximation algorithms, the majority
of the works considers the packing of simple d-dimensional items, such as squares and
cubes, into larger recipients, such as rectangular bins and strips. Most of these works are
interested in the asymptotic approximation ratio. The packing problems involving circles
are mostly considered through heuristics, and numerical methods.

Demaine et al. [47] proved that it is NP-hard to decide whether a set of circles can
be packed into a unit square, or into an equilateral triangle. Therefore, the Circle Bin
Packing Problem and the Circle Strip Packing Problem are also NP-hard. The problem
of finding the densest packing of equal circles into a square has been largely investigated
using many di�erent optimization methods, such as continuous and nonlinear systems,
and discrete methods [23]. For an extensive book on this and related problems, and
corresponding used methods, see [128]. The case of non-equal circles is considered in [57],
that uses heuristics, such as genetic algorithm, to pack circles in a rectangular container.
The Circle Strip Packing has been considered using many approaches, such as branch-
and-bound procedures, metaheuristics, etc. For a broad list of algorithms for the Circle
Strip Packing, and related circle packing problems, see [69] and references therein.

For the problem of packing rectangles into rectangular bins, there is a sequence of
algorithms [13, 31, 39] that leads to a (1.525 + Á)-approximation by Bansal et al. [13].
Recently, Bansal and Khan gave a 1.405-approximation [16]. For the bin packing of
d-dimensional cubes, Kohayakawa et al. [82] gave an asymptotic approximation ratio of
2≠(2/3)d, later improved to an APTAS by Bansal et al. [14]. For a survey on bin packing,
see [40]. The best bound for rectangle strip packing problem is an APTAS by Kenyon
and Rémila [80]. For the 3-dimensional case, the first specialized algorithm for cubes has
asymptotic bound of 2.361 [110], and the best result is an APTAS due to Bansal et al. [15].

5.2. Packing of circles through algebraic quantifier elimination 111

5.2 Packing of circles through algebraic quantifier

elimination

In this section, we consider the following circle packing decision problem. We are given
numbers h, w œ Q+, and a set of n circles C = {C1, . . . , Cn}, where circle Ci has radius
ri, with 2ri Æ min{w, h}, 1 Æ i Æ n. The objective is to decide whether the circles can be
packed in a bin of size w ◊ h (of width w and height h). In the case of a positive answer,
a realization of the packing should also be returned. More precisely, for each circle Ci,
1 Æ i Æ n, we want to find a point (xi, yi) œ R2

+ that represents the center of Ci in a
rectangle whose bottom-left and top-right corners correspond to points (0, 0) and (w, h),
respectively.

The circle packing decision problem can be equivalently formulated as deciding if there
are real numbers xi, yi œ R+, 1 Æ i Æ n, that satisfy the constraints

(xi ≠ xj)
2 + (yi ≠ yj)

2 Ø (ri + rj)
2 for 1 Æ i < j Æ n, (5.1)

ri Æ xi Æ w ≠ ri for 1 Æ i Æ n, and (5.2)

ri Æ yi Æ h ≠ ri for 1 Æ i Æ n. (5.3)

Satisfying the set of constraints (5.1) guarantees that no two circles intersect, and satisfy-
ing the sets of constraints (5.2) and (5.3) means that each circle has to be packed entirely
in the bin that expands from the origin (0, 0) to the point (w, h).

We observe that the set of 2n-dimensional real points that satisfy (5.1)-(5.3) is a semi-
algebraic set in the field of the real numbers. Thus, the circle packing decision problem
corresponds to deciding whether this semi-algebraic set is empty. We also can rewrite
the constraints in (5.1)-(5.3) as fi(x1, y1, . . . , xn, yn) Ø 0, for 1 Æ i Æ s, where s is the
total number of constraints, and fi œ Q[x1, y1, . . . , xn, yn] is a polynomial with rational
coe�cients. Then, the circle packing problem is equivalent to deciding the truth of the
formula

(÷x1)(÷y1) . . . (÷xn)(÷yn)
s

fi

i=0

fi(x1, y1, . . . , xn, yn) Ø 0. (5.4)

We can use any algorithm for the more general quantifier elimination problem to
decide this formula. There are several algorithms for this problem, such as the algorithm
of Tarski-Seidenberg Theorem [129], that is not elementary recursive, or the Cylindrical
Decomposition Algorithm [41], that is doubly exponential in the number of variables.
Since the formula corresponding to the circle packing problem contains only one block of
variables (of existential quantifiers), we can use faster algorithms for the corresponding
algebraic existential problem, such as the algorithms of Grigor’ev and Vorobjov [60], or of
Basu et al. [19]. For an extensive book on algorithms for real algebraic geometry, see [18].

112 Chapter 5. Circle Packing Problems

Sampling points of the solution. Any of the algorithms above receiving formula (5.4)
as input will return “true” if, and only if, there is some arrangement of circles C in a
bin of size w ◊ h. When the answer is “true”, we are also interested in a realization of
such packing. The algorithms in [19, 60] are based on critical points, that is, they also
return a finite set of points that meets every semi-algebraic connected component of the
semi-algebraic set. Therefore, a realization of the packing can be obtained by choosing
one of such points (that is a point that corresponds to a connected component where all
polynomials fi, 1 Æ i Æ s, are nonnegative).

Typically, the sample points are represented by a tuple (f(x), g0(x), . . . , gk(x)) of k +2

univariate polynomials with coe�cients in Q, where k is the number of variables, and the
value of the ith variable is gi(x)/g0(x) evaluated at a real root of f(x) = 0. Since a point
in a semi-algebraic set could potentially be irrational, we use the algorithm of Grigor’ev
and Vorobjov [60], for which we have g0(x) = 1, and thus an approximate rational solution
of arbitrary precision can be readily obtained. In particular, the algorithm given in [60]
implies the following result.

Theorem 5.1. Let f1, . . . , fs œ Q[x1, y1, . . . , xn, yn] be polynomials with coefficients of bit-

size at most m, and maximum degree 2. There is an algorithm that decides the truth of

formula (5.4), with running time mO(1)sO(n2). In the case of affirmative answer, then the

algorithm also returns polynomials f, g1, h1, . . . , gn, hn œ Q[x] with coefficients of bit-size

at most mO(1)sO(n), and maximum degree sO(n), such that for a root x of f(x) = 0, the

attribution x1 = g1(x), y1 = h1(x), . . . , xn = gn(x), yn = hn(x) is a realization of (5.4).
Moreover, for any rational – > 0, we can obtain xÕ

1, yÕ
1, . . . , xÕ

nyÕ
n œ Q, such that |xÕ

i ≠xi| Æ
– and |yÕ

i ≠ yi| Æ –, 1 Æ i Æ n, with running time (log(1/–)m)O(1)sO(n2).

5.3 Approximate bin packing of large circles

In this section, we consider the particular case of Circle Bin Packing when the minimum
radius of a circle is at least a constant. For this case, the maximum number of circles that
fit in a bin is constant, so we can use the algorithm of Theorem 5.1 to decide whether a
given set of circles can be packed in a bin in constant time.

Since Theorem 5.1 only gives us rational solutions that are close to real packings,
we start with the next definition to deal with approximate circle bin packings. In the
following, we denote by dist(p, q) the Euclidean distance between two points p, q in the
bi-dimensional space.

Definition 5.1. Let w, h œ Q+ be positive numbers, and let C = {C1, . . . , Cn} be a set

of circles, such that each circle Ci, 1 Æ i Æ n, has radius ri œ Q+, and 2ri Æ min{w, h}.

For a given rational Á Ø 0, we say that a set of points P = {p1, . . . , pn}, with pi = (xi, yi),

5.3. Approximate bin packing of large circles 113

1 Æ i Æ n, is an Á-packing of C into a rectangular bin of width w and height h, if the

following hold:

dist(pi, pj) Ø ri + rj ≠ Á Ø 0 for 1 Æ i < j Æ n,

ri ≠ Á Æ xi Æ w ≠ ri + Á for 1 Æ i Æ n, and

ri ≠ Á Æ yi Æ h ≠ ri + Á for 1 Æ i Æ n.

We adopt the following strategy to fix the possible intersections of an approximate bin
packing. For any two circles that intersect, the one with largest y-coordinate is lifted by
an appropriate distance, as defined next.

Lemma 5.1. Let r1, r2, h, Á be positive numbers such that Áh Æ r1 + r2 Æ h, and

p1 = (x1, y1), p2 = (x2, y2) be points in the bi-dimensional space. If there hold y1 Ø y2,

dist(p1, p2) Ø r1 + r2 ≠ Áh, and pÕ
1 = (x1, y1 +

Ô
2Áh), then dist(pÕ

1, p2) Ø r1 + r2.

Proof. By direct calculation,

dist(pÕ
1, p2) =

Ò

(x1 ≠ x2)2 + (y1 +
Ô

2Áh ≠ y2)2

=
Ò

(x1 ≠ x2)2 + (y1 ≠ y2)2 + 2
Ô

2Áh(y1 ≠ y2) + 2Áh2

=
Ò

dist(p1, p2)2 + 2
Ô

2Áh(y1 ≠ y2) + 2Áh2

Ø
Ò

(r1 + r2 ≠ Áh)2 + 2Áh2

=
Ò

(r1 + r2)2 ≠ 2Áh(r1 + r2) + Á2h2 + 2Áh2

Ø r1 + r2,

where the last inequality follows since r1 + r2 Æ h.

To transform an Á-packing into a packing in a bin of augmented height, we shift all
circles that intersect the left and right borders, and iteratively lift each circle, fixing
possible intersections. This is formalized in the following.

Lemma 5.2. Given a set of circles C = {C1, . . . , Cn}, such that each circle Ci, 1 Æ i Æ n,

has radius ri œ Q+, and 2ri Æ min{w, h}, and a corresponding (Áh)-packing of C in a bin

of width w and height h for some Á œ (0, 1], we can find a packing of C in a bin of width w

and height (1 + n
Ô

6Á)h in linear time.

Proof. For 1 Æ i Æ n, let pi = (xi, yi) be the center of circle Ci corresponding to the (Áh)-
packing. We start by modifying the given (Áh)-packing to obtain a (3Áh)-packing in a bin
of width w and height h + 2Áh, with the additional property that no circle intersects a
border of such rectangular bin. For each 1 Æ i Æ n, let pÕ

i = (xÕ
i, yÕ

i) be the center of circle

114 Chapter 5. Circle Packing Problems

Ci in the modified packing. The y-coordinate is defined as yÕ
i = yi+Á, and the x-coordinate

is defined as: xÕ
i = xi if Ci does not intersect the left or right border; xÕ

i = ri if Ci intersects
the left border; and xÕ

i = w ≠ ri if Ci intersected the right border (notice that Ci cannot
intersect both the left and the right borders, since 2ri Æ w). Clearly, the definition of the
centers guarantees that no circle intersects any border of the augmented bin. To see that
the set of points pÕ

i is a (3Áh)-packing, just note that any two circles Ci, Cj are lifted by the
same distance, so by the triangle inequality dist(pÕ

i, pÕ
j) Ø dist(pi, pj)≠2Áh Ø ri +rj ≠3Áh.

Now, we transform the (3Áh)-packing into a packing in a bin of width w and height
h + 2Áh + (n ≠ 1)

Ô
6Áh Æ (1 + n

Ô
6Á)h. We can assume, without loss of generality, that

circles C1, . . . , Cn are ordered in non-decreasing order of the y-coordinate of their centers
pÕ

i. For every circle Ci, 1 Æ i Æ n, define its new center as pÕÕ
i = (xÕ

i, yÕ
i + (i ≠ 1)

Ô
6Áh).

Notice that the y-coordinate of the last circle is increased by (n ≠ 1)
Ô

6Áh, and thus no
circle intersects any of the borders. Now, we show that no two circles Ci and Cj, with
1 Æ j < i Æ n, intersect, then the lemma will follow:

dist(pÕÕ
i , pÕÕ

j) = dist((xÕ
i, yÕ

i + (i ≠ 1)
Ô

6Áh), (xÕ
j, yÕ

j + (j ≠ 1)
Ô

6Áh))

= dist((xÕ
i, yÕ

i + (i ≠ j)
Ô

6Áh), (xÕ
j, yÕ

j))

Ø dist((xÕ
i, yÕ

i +
Ô

6Áh), (xÕ
j, yÕ

j)) Ø ri + rj,

where the last inequality follows from Lemma 5.1, and since we had a (3Áh)-packing.

Definition 5.2. Let w, h œ Q+ be positive numbers, and let C = {C1, . . . , Cn} be a set of

circles, such that each circle Ci, 1 Æ i Æ n, has radius ri œ Q+, and 2ri Æ min{w, h}. We

denote by OPTw◊h(C) the minimum number of rectangular bins of width w and height h

that are necessary to pack C.

Now, we obtain an approximation algorithm for the bin packing of large circles. That
is, assuming that the minimum radius of a circle, ”, is at least a given constant. First,
Lemma 5.3 consider the special case that the number of di�erent radii is bounded, and
obtain a bin packing using at most the optimal number of bins, OPT(C). Then, Theo-
rem 5.2 reduces the general case to the case of bounded number of radii, and obtain a
bin packing using at most an additional Á fraction of OPT(C). The ideas of the following
results are similar to those obtained for the rectangle bin packing [55]. In the following,
we will denote the area of the circle of radius r by Area(r).

Lemma 5.3. Let w, h œ Q+ be positive numbers, and let C = {C1, . . . , Cn} be a set of

circles, such that each circle Ci, 1 Æ i Æ n, has radius ri œ Q+, and 2ri Æ min{w, h}.

Also, let K = |{r1, . . . , rn}| be the number of distinct radii, and let ” = min1ÆiÆn ri be

the minimum radius. For any given “ œ (0, 1], we can obtain a packing of C in at most

OPTw◊h(C) rectangular bins of width w and height (1 + “)h.

5.3. Approximate bin packing of large circles 115

The running time is O(n + (log n)O(1)(MK)O(MK) + (log(1/“))O(1)(M2)O(M2)MK), for

M = Áwh/Area(”)Ë.

Proof. Notice that a bin of width w and height h can contain at most M = Áwh/Area(”)Ë
circles of C. Consider an ordering of distinct radii r̄1, . . . , r̄K . We say that a vector of
nonnegative integers c = (c1, . . . , cK), with

qK
i=1 ci Æ M , is a configuration, and that ci,

1 Æ i Æ K, is the number of circles with radius r̄i of c. A configuration c is said to be
feasible if there is a packing in a bin of width w and height h containing all circles of c.

Let Á = “2/(6M2), and let – = Áh/4. We enumerate each of the (at most MK)
configurations c, and use the algorithm of Theorem 5.1 to decide whether c is feasible.
For each feasible configuration c, we also obtain an approximate packing, such that each
circle of c has rational center pÕ at distance at most 2– of the center p in the packing
realization. Therefore, for any two circles, with centers p1 and p2 in the packing realization,
and approximate rational centers pÕ

1 and pÕ
2, we have dist(p1, p2) ≠ dist(pÕ

1, pÕ
2) Æ 4– = Áh.

This means that the obtained approximate packing is an (Áh)-packing of circles in c. For
each feasible packing, we use Lemma 5.2, and obtain a packing of the circles of c in a
rectangular bin of width w and height (1+M

Ô
6Á)h = (1+“)h. Let X be the set of feasible

configurations, and let ni, 1 Æ i Æ K, denote the number of circles in C with radius r̄i.
Solving the following integer program, we obtain a bin packing of size OPTw◊h(C) that
contains xc bins of configuration c for each c œ X .

minimize
q

cœX xc

subject to
q

cœX cixc Ø ni, 1 Æ i Æ K

xc œ Z+ c œ X

The integer program has at most MK variables, and bit-size O(KMK log(n)), and
thus can be solved in time O((log n)O(1)(MK)O(MK)) by Lenstra’s algorithm [88]. The
time to determine if each of the at most MK configurations is feasible using Theorem 5.1
is O((log(1/–))O(1)(M2)O(M2)) = O((log(1/“))O(1)(M2)O(M2)). Summing up all terms, we
obtain the claimed running time.

Theorem 5.2. Let w, h œ Q+ be positive numbers, and let C = {C1, . . . , Cn} be a set of

circles, such that each circle Ci, 1 Æ i Æ n, has radius ri œ Q+, and 2ri Æ min{w, h}.

Also, let ” = min1ÆiÆn ri be the minimum radius. For any given Á, “ œ (0, 1], there is an

algorithm that packs C into at most (1 + Á)OPTw◊h(C) rectangular bins of width w and

height (1 + “)h.

The running time of the algorithm is bounded by O(n log n + (log n)O(1)(MK)O(MK) +

(log(1/“))O(1)(M2)O(M2)MK), where M = Áwh/Area(”)Ë, and K = Á2/(ÁArea(”))Ë.

Proof. If n Æ K, then we use the algorithm of Lemma 5.3 on instance C, and obtain a
packing of C in at most OPTw◊h(C) rectangular bins of width w and height (1 + “)h. If
n > K, then we let Q = ÂÁnArea(”)Ê > 1, and execute the following steps:

116 Chapter 5. Circle Packing Problems

1. sort the circles in non-increasing order of radius;

2. partition C in groups of up to Q consecutive circles greedily;

3. create an instance C Õ by changing the radius of each circle in C to the smallest radius
of its group;

4. use the algorithm of Lemma 5.3 to find a packing of C Õ.

We have obtained a packing P Õ of C Õ of size OPTw◊h(C Õ) into rectangular bins of width w

and height (1 + “)h. Notice that, with exception of circles in the first group, every
circle in C can be mapped to a circle in C Õ of non-smaller radius, thus we can obtain a
packing for C with the following steps: pack each circle in the first group in a new bin;
for every other circle, pack at the position of the mapped circle in P Õ. Thus, we have
obtained a packing of C that uses at most OPTw◊h(C Õ) + Q Æ OPTw◊h(C) + ÁnArea(”) Æ
(1 + Á)OPTw◊h(C) bins.

If n Æ K, then clearly the number of di�erent radii in C is at most K, otherwise the
number of di�erent radii in C Õ is at most Á n

Q
Ë = Á n

ÂÁnArea(”)Ê
Ë Æ Á 2n

ÁnArea(”)
Ë = K. In either

case, the running time due to algorithm of Lemma 5.3 is O(n + (log n)O(1)(MK)O(MK) +

(log(1/“))O(1)(M2)O(M2)MK).

5.4 An asymptotic PTAS for circle packing into rect-

angular bins

In this section, we consider the bin packing problem of circles of any size. The main idea
works as follows. First, we will use the algorithm from Section 5.3 and obtain a packing
of “large” circles into bins of the original dimensions. Then, we consider bins with a small
fraction of the original size, and solve the problem of packing the “small” circles in such
bins recursively. To obtain a solution of the original problem, we place each obtained
small bin into the free space of the packing obtained for large circles. The key idea is
that, if the dimensions of the small bins are much smaller than the large circles, then the
waste of space in the packing for the large circles is proportional to a fraction of the area
of the large circles. Moreover, if the size of such small bin is also much larger than the
small circles, then restricting the packing of small circles to small bins does not increase
much the cost of a solution.

In the following, if B is a circle or rectangle, then we denote by Area(B) the area of
B. Also, if D is a set, then Area(D) =

q

BœD Area(B). We formalize the packing steps
in Algorithm 5.1. An informal description is given thereafter.

5.4. An asymptotic PTAS for circle packing into rectangular bins 117

Algorithm 5.1. Circle Bin Packing Algorithm

Consider the parameters r and “, such that r is a positive integer multiple of 3, and “

a number in (0, 1]. The algorithm receives a set of circles C = {C1, . . . , Cn}, and numbers
w, h, such that w Æ h, and hr/w is an integer. Moreover, each circle Ci, 1 Æ i Æ n, has
radius ri œ Q+, with 2ri Æ w. The algorithm returns a packing of C into a set of bins of
width w and height (1 + “)h.

1. Let Á = 1/r;

2. For every integer i Ø 0, define Gi = {Cj œ C : Á2iw Ø 2rj > Á2(i+1)w};

3. For each 0 Æ j < r, define Hj = {C œ Gi : i © j (mod r)};

4. Find an integer t such that Area(Ht) Æ ÁArea(C);

5. Place each circle of Ht into its bounding box, and pack them in separate bins of
width w and height (1 + “)h using NFDH strategy [107];

6. For every integer j Ø 0, define Sj = {C œ Gi : t + (j ≠ 1)r + 1 Æ i Æ t + jr ≠ 1};

7. Define w0 = w, h0 = h and wj = hj = Á2(t+(j≠1)r)+1w for every j Ø 1;

8. Let F0 = ÿ;

9. For every j Ø 0:

(a) Use the algorithm of Theorem 5.2 to obtain a packing of circles Sj into bins of
width wj and height (1 + “)hj. Let Pj be the set of such bins;

(b) Let Aj be a set of max{|Pj| ≠ |Fj|, 0} new empty bins of width wj and height
(1 + “)hj;

(c) Place each bin of Pj over one distinct bin of Fj fi Aj;

(d) Set Fj+1 = ÿ, and Uj = ÿ; (Uj is used only in the analysis)

(e) For each bin B of Fj fi Aj:

• Let V be the set of bins corresponding to the cells of the grid with cells of
width wj+1 and height (1 + “)hj+1 over B;

• Add to Fj+1 all bins in V that do not intersect any circle of Sj.

• Add to Uj all bins in V that intersect a circle of Sj.

(f) If all circles are packed, go to step 10.

10. Place the bins A0, A1, . . . into the minimum number of bins of width w and height
(1 + “)h.

Notice that if hr/w is not integer, then after the first iteration of the algorithm, we
could round up the height h0 of the bins in P0 to next integer multiple of w/r. Since the
obtained solution has the property that all circles Sj are completely packed in a bin of the

5.4. An asymptotic PTAS for circle packing into rectangular bins 119

iteration. The algorithm finishes when all circles are considered, and the created bins
A0, A1, . . . are combined into bins of original size.

Consider a bin B of width wB and height hB. Given w and h, we say that B divides

w◊h if either wB = w, and hB = h, or wB = hB = Á2(t+(j≠1)r)+1w for some j Ø 1. If D is a
set of bins, then we say that D divides w◊h if every B œ D divides w◊h. In what follows,
we assume that we have run Algorithm 5.1, giving as input positive numbers w, h œ Q+,
with w Æ h, a set of circles C = {C1, . . . , Cn}, such that each circle Ci, 1 Æ i Æ n, has
radius ri œ Q+, and 2ri Æ min{w, h}, and parameters r œ Z+, “ œ (0, 1].

Definition 5.3. Let j Ø 0. If B is a bin that divides w ◊ (1 + “)h, then we denote by

Grj(B) the set of bins in the grid with cells of width wj and height (1+“)hj over B. Also,

if D is a set of bins that divides w ◊ (1 + “)h, then Grj(D) = fiBœDGrj(B). Similarly, if

BÕ is a bin that divides w ◊ h, then we denote by GrÕ
j(B

Õ) the set of bins in the grid with

cells of width wj and height hj over BÕ, and, if DÕ is a set of bins that divides w ◊ h, then

GrÕ
j(D

Õ) = fiBÕœDÕGrÕ
j(B

Õ).

Definition 5.4. Let B be a rectangle or circle. We denote by Ar(B) = Area(B)/((1 +

“)wh) the proportional area of B over bins of width w and height (1+“)h, and by ArÕ(B) =

Area(B)/(wh) the proportional area of A over bins of width w and height h. Also, if D

is a set of rectangles or circles, then Ar(D) =
q

BœD Ar(B), and ArÕ(D) =
q

BœD ArÕ(B).

Step (9) of Algorithm 5.1 does not generate bins of width w and height (1 + “)h.
Rather, it creates a collection of sets A0, A1, . . . that divide w ◊ (1 + “)h. However, since
each created bin has dimensions that are obtained by multiplying a power of 1/r times
the original dimensions, they can easily be combined in a set of bins of width w and height
(1 + “)h using almost the same area. This is made precise in the following remark.

Remark 5.1. If there is a packing of C into a set of bins D that divides w ◊ (1 + “)h,

then there is a packing of C in ÁAr(D)Ë bins of width w and height (1 + “)h. Analogously,

if there is a packing of C into a set of bins DÕ that divides w ◊ h, then there is a packing

of C in ÁArÕ(DÕ)Ë bins of width w and height h.

For some j, the area of Uj is not fully used, since there might be cells of Uj that
partially intersect circles of Sj. This waste is bounded by the following lemmas.

Lemma 5.4. Let Ci œ Sj be a circle packed in a bin B that divides w ◊ (1 + “)h, and

let D ™ Grj+1(B) be the subset of bins in the grid that intersect circle Ci, but are not

contained in Ci, then Ar(D) Æ 16ÁArÕ(Ci).

Proof. Each B œ D has width wj+1 = Á2(t+jr)+1w, and height hj+1 = (1 + “)Á2(t+jr)+1w.
Also, since Ci œ Sj, then 2ri Ø Á2(t+jr)w. Consider the circles C+ and C≠, centered at the

120 Chapter 5. Circle Packing Problems

same position as Ci, and with radii r+ = ri + wj+1 + hj+1, and r≠ = ri ≠ wj+1 ≠ hj+1.
Notice that every B œ D is contained in C+ \ C≠. We obtain

Area(D) Æ Area(C+) ≠ Area(C≠) = fi(r2
+ ≠ r2

≠)

Æ
1

(1 + 2Á + (1 + “)2Á)2 ≠ (1 ≠ 2Á ≠ (1 + “)2Á)2
2

fir2
i

Æ (1 + “)16ÁArea(Ci).

Therefore, Ar(D) = Area(D)/((1 + “)wh) Æ (16ÁArea(Ci))/(wh) = 16ÁArÕ(Ci).

Similarly, one obtain.

Lemma 5.5. Let C œ Sj be a circle packed in a bin B that divides w ◊ h, and let

D ™ GrÕ
j+1(B) be the subset of bins in the grid that intersect circle C, but are not contained

in C. Then ArÕ(D) Æ 16ÁArÕ(C).

The following lemma shows that requiring that each set of circles Sj be packed into
bins of size wj ◊ hj does not increase much the solution cost. This fact is central to the
algorithm, since it allows iteratively packing sets Sj’s.

Lemma 5.6. There is a packing of C \ Ht into a set of bins D that divides w ◊ h with

ArÕ(D) Æ (1 + 28Á)OPTw◊h(C), such that for every j Ø 0, there is a packing of Sj into a

set of bins P Õ
j ™ GrÕ

j(D).

Proof. We transform an optimal packing Opt of C into a packing D with the desired
properties. The idea is moving circles of Sj that intersect lines of the grid of size wj ◊ hj

to free bins that respect the grid. The next algorithm keeps the invariant that, at the
start of iteration j Ø 1, the set Rj contains free space to pack all such intersecting circles.
Steps (3a)-(3c) move intersecting circles to bins of Rj, and steps (3d)-(3f) make sure that
there are enough free bins in Rj+1 respecting the grid of size wj+1 ◊ hj+1.

1. Let R1 be a set of 12Á(wh)/(w1h1)|Opt| new bins of width w1 and height h1;

2. Let D0 = Opt fi R1;

3. For each j Ø 1:

(a) Let Lj = ÿ;

(b) For each bin B œ GrÕ
j(Opt):

i. Let W be the set of circles in Sj that intersect the boundary of B;

ii. Let V be a set of 4 new bins (2 of width 3Áwj and height hj, and 2 of
width wj and height 3Áhj) placed over the boundary of B, so that each
circle in W is contained in one bin of V (see Figure 5.3);

iii. For each cell BÕ œ GrÕ
j+1(V), let „(BÕ) be the cell of GrÕ

j+1(Opt) under BÕ;

122 Chapter 5. Circle Packing Problems

in step (3(b)iii), B and BÕ must intersect the same region of a circle in Sj. Since each
such circle is contained in exactly one rectangle of Lj, it follows that, indeed, B = BÕ.
Then Area(Rj+1) = Area(Lj). Therefore Area(Rj) = Area(R1) for every j Ø 1.

Now, we show that, at the end of iteration j Ø 0, the following claims hold:
1. Dj is a packing of C;

2. for each ¸ = 0, . . . , j, there is a packing of S¸ into a set P Õ
¸ ™ GrÕ

¸(Dj) of bins of
width w¸ and height h¸;

3. the bins in Rj+1 ™ Grj+1(Dj) do not intersect any circle of C.

By induction on j. For j = 0, the claims are clear. So let j Ø 1, and assume that the
claims are true for j ≠ 1.

Proof of claim 1: Clearly, Lj is a packing of the circles that were removed from the
original packing Dj≠1. Since r is a multiple of 3, the step (3c) is well defined, and thus
we can place rectangles of Lj over bins of Rj. After step (3c), we have a bin packing of
C, since by the induction hypothesis, at the beginning of iteration j, the set Rj did not
intersect any circle. This shows claim 1.

Proof of claim 2: Since, at the end of iteration, each circle of Sj that intersected a
line of the grid Grj(Dj≠1) is completely contained in a bin of Rj ™ Grj(Dj), we obtain
claim 2.

Proof of claim 3: If step (3(f)i) or step (3(f)iii) is run, then we add a free bin to Rj+1.
Thus, we only need to argue that whenever step (3(f)ii) is run, the bin „(B) does not
intersect any circle. Let C be the circle that contains B, so that at the beginning of the
iteration, „(B) was contained in C. Since C was moved to Lj, „(B) does not intersect
any circle when step (3(f)ii) is run. This completes the induction.

Finally, we may calculate the cost of the modified solution D. Let m be the number
of iterations of the algorithm. Notice that D is the disjoint union of Opt, R1, N1, . . . ,
Nm. We get

ArÕ(D) = ArÕ(Opt) + ArÕ(R1) +
qm

j=1 ArÕ(Nj)

Æ ArÕ(Opt) + 12Á(wh)|Opt|/(wh) +
qm

j=1 16ÁArÕ(Sj)

Æ ArÕ(Opt) + 12ÁArÕ(Opt) + 16ÁArÕ(C)

= (1 + 28Á)OPTw◊h(C),

where the first inequality comes from Lemma 5.5.

In addition to requiring that each set of circles Sj be packed into bins of the grid with
cells of width wj and height hj, we also require that the bins used to pack Sj+1, Sj+2, . . .

do not intersect circles of S1, . . . , Sj≠1. Again, this restriction only increases the cost of a
solution by a small fraction of the optimal value, as shown by the next lemma.

5.4. An asymptotic PTAS for circle packing into rectangular bins 123

Lemma 5.7. There is a packing of C \ Ht into a set of bins D that divides w ◊ h with

ArÕ(D) Æ (1+44Á)OPTw◊h(C), such that for every j Ø 0, there is a packing of Sj in a set

of bins P Õ
j ™ GrÕ

j(D). Moreover, if B œ P Õ
j, then B does not intersect any circle Ci œ S¸

for ¸ < j.

Proof. We start with a solution DÕ given by Lemma 5.6, and corresponding bin packings
P Õ

j for each j. Without loss of generality, we assume that for each B œ P Õ
j , there is a circle

Ci œ Sj packed in B, since otherwise we could simply remove B from P Õ
j . We execute the

following steps:

1. Let P ÕÕ
0 = P Õ

0, and D = DÕ;

2. For each j Ø 1:

(a) Let V ™ GrÕ
j(D) that intersect a circle Ci œ Sj≠1, but is not contained in Ci.

(b) Create a set V Õ of |V | new bins of width wj and height hj, and move the circles
in V to V Õ preserving the arrangement.

(c) Let P ÕÕ
j = P Õ

j fi V Õ, and add V Õ to D.

(d) If C \ Ht = S0 fi · · · fi Sj, stop.

Clearly the output of this procedure is a bin packing of C, and a simple induction
shows that at the end of iteration m, for every j Æ m, set P ÕÕ

j ™ GrÕ
j(D) is a bin packing

of Sj, and for every B œ P Õ
j , B does not intersect any circle Ci œ S¸ for ¸ < j. Using

Lemma 5.5, we obtain

ArÕ(D) Æ ArÕ(DÕ) +
q

jØ0 16ÁArÕ(Sj)

Æ (1 + 28Á)OPT(C) + 16ÁOPT(C)

= (1 + 44Á)OPT(C).

Now we are ready to calculate the cost of the solution generated by Algorithm 5.1.

Lemma 5.8. Algorithm 5.1 produces a packing of C into bins of width w and height

(1 + “)h using at most (1 + O(Á))OPTw◊h(C) + 2 bins.

Proof. Let D be the packing of C obtained from Lemma 5.7, and let sets P Õ
j , j Ø 0, be

the packings obtained for each Sj. Notice that for each j Ø 0, OPTwj◊hj
(Sj) Æ |P Õ

j|.
Recall that Algorithm 5.1 uses Theorem 5.2 to obtain a packing Pj of Sj with |Pj| Æ
(1+Á)OPTwj◊hj

(Sj) bins. Therefore, |Pj| Æ (1+Á)|P Õ
j|, and thus Ar(Pj) Æ (1+Á)ArÕ(P Õ

j).
First, we show that for every m Ø 0, we have Ar(Fm) =

qm≠1
j=0 Ar(Aj) ≠ qm≠1

j=0 Ar(Uj).

By induction on m. For m = 0, the claim is clear, so suppose that the claim is true for

124 Chapter 5. Circle Packing Problems

some m Ø 0. We have,

Ar(Fm+1) = Ar(Fm fi Am) ≠ Ar(Um)

= Ar(Fm) + Ar(Am) ≠ Ar(Um)

=
qm≠1

j=0 Ar(Aj) ≠ qm≠1
j=0 Ar(Uj) + Ar(Am) ≠ Ar(Um)

=
qm

j=0 Ar(Aj) ≠ qm
j=0 Ar(Uj).

Now, we show that for every m Ø 0, we have
qm

j=0 Ar(Aj) Æ (1 + Á)ArÕ(D) +

15Á
qm

j=0 ArÕ(Sj). Again, by induction on m. The case m = 0 is clear, so suppose that
this is true for m Ø 0. We consider two cases. If |Am+1| = 0, then by the induction
hypothesis we have

qm+1
j=0 Ar(Aj) =

qm
j=0 Ar(Aj)

Æ (1 + Á)ArÕ(D) + 15Á
qm

j=0 ArÕ(Sj)

Æ (1 + Á)ArÕ(D) + 15Á
qm+1

j=0 ArÕ(Sj).

If |Am+1| > 0, then we know that Ar(Am+1) + Ar(Fm+1) = Ar(Pm+1), so we get
qm+1

j=0 Ar(Aj) =
qm

j=0 Ar(Aj) + Ar(Am+1)

= (
qm

j=0 Ar(Uj) + Ar(Fm+1)) + (Ar(Pm+1) ≠ Ar(Fm+1))

Æ (1 + 16Á)
qm

j=0 ArÕ(Sj) + (1 + Á)ArÕ(P Õ
m+1)

= (1 + Á)(
qm

j=0 ArÕ(Sj) + ArÕ(P Õ
m+1)) + 15Á

qm
j=0 ArÕ(Sj)

Æ (1 + Á)ArÕ(D) + 15Á
qm+1

j=0 ArÕ(Sj).

The first inequality comes from Lemma 5.4, and the second inequality comes from the
fact that bins in P Õ

m+1 do not intersect circles in S1, . . . Sm.
It follows that the total area of bins used for circles in C \ Ht is

q

jØ0 Ar(Aj) Æ (1 + Á)ArÕ(D) + 15Á
q

jØ0 ArÕ(Sj)

Æ (1 + Á)(1 + 44Á)OPT(C) + 15ÁOPT(C)

Æ (1 + 105Á)OPT(C).

For the circles in Ht, we used the NFDH algorithm to pack the bounding boxes of the
circles, thus the density of the packing in each used bin of width w and height (1 + “)h,
with the exception of the last, is at least 1/4. Since each circle occupies a fraction of fi/4

of its bounding box, the total number of bins used for Ht is bounded by

Á4 · 4/fiAr(Ht)Ë Æ Á4 · 4/fiÁAr(C)Ë Æ Á16/fiÁOPT(C)Ë.

Therefore, noticing that the sets of bins A0, A1, . . . divide w ◊ (1+“)h, we obtain that
the total number of bins of width w and height (1 + “)h used to pack C is

Á(1 + 105Á)OPT(C)Ë + Á16/fiÁOPT(C)Ë Æ (1 + 111Á)OPT(C) + 2.

5.4. An asymptotic PTAS for circle packing into rectangular bins 125

Next, we show that the running time of Algorithm 5.1 is polynomial.

Lemma 5.9. Suppose h/w = (1/Á)O(1/Á). For any constants r and “, the running time

of Algorithm 5.1 is bounded by O(n2).

Proof. Notice that in an implementation of Algorithm 5.1, we only run step (9) for non
empty sets Sj. In each such iteration, we only need to account for the running time of
step (9a), and the running time to pack the bins of Pj in free space of current bins.

We consider the following alternative (equivalent) procedure for step (9a): scale each
the radius of each circle in Sj by 1/wj and obtain set S Õ

j; run algorithm of Theorem 5.2
with the scaled S Õ

j and bins of width 1 and height hj/wj Æ h/w, and obtain pack-
ing P Õ

j ; scale the obtained packing P Õ
j by wj, and obtain packing Pj. Let ” = Á2r≠1,

and notice that, for every j, each circle in S Õ
j has radius at least Á2(t+jr)w/(2wj) =

Á2(t+jr)w/(2Á2(t+(j≠1)r)+1w) = ”. Let K = Á2/(ÁArea(”))Ë = (1/Á)O(1/Á), and M =

Á(1 · h/w)/Area(”)Ë = (1/Á)O(1/Á). Therefore, from Theorem 5.2 we get that the total
running time of step (9a) is O(n(log n)O(1)), for constants r and “.

To pack a bin of Pj, j Ø 0, we need to find one element Grj(A0 fi · · · fi Aj≠1) that
is not in U0, . . . , Uj≠1, that is, finding a grid cell that does not intersect any circle of
S0 fi · · · fi Sj≠1. To verify whether a grid cell intersects a circle of S¸, 0 Æ ¸ Æ j ≠ 1, it
is enough to list the elements of U¸ that intersect the border of the circle. There are at
most (1/Á)O(1) such elements per circle, so at most n(1/Á)O(1) elements are listed to find
each free cell. Therefore, all bins can be packed in time O(n2(1/Á)O(1)).

Combining Lemmas 5.8 and 5.9, we obtain the following result.

Theorem 5.3. Let w, h œ Q+ be positive numbers, and let C = {C1, . . . , Cn} be a set of

circles, such that each circle Ci, 1 Æ i Æ n, has radius ri œ Q+, and 2ri Æ min{w, h}.

For any given constants Á, “ œ (0, 1], we can obtain a packing of C into at most (1 +

Á)OPTw◊h(C) + 2 rectangular bins of width w and height (1 + “)h. The algorithm runs in

time O(n2).

Proof. If h/w < 1/Á2, the theorem is immediate, so assume h/w Ø 1/Á2.
Consider an optimal solution Opt of bins of width w and height h. We will transform

this solution into a packing of bins of width w and height w/Á. First, split each bin of Opt

in sub-bins of width w and height w/Á. Then, remove all circles that intersect consecutive
sub-bins. The total area of removed circles is at most |Opt|(w·2w)Âh/(w/Á)Ê Æ |Opt|2whÁ.
Finally, place the removed circles into their bounding boxes and pack them into additional
bins of width w and height w/Á using NFDH strategy. Since each additional bin has
density of at least fi/16 (with exception of the last), the number of such bins is bounded
by Á(16/fi |Opt|2whÁ)/(w(w/Á))Ë. Therefore, we know that OPTw◊w/Á is bounded by
|Opt|Áh/(w/Á)Ë + Á(16/fi |Opt|2whÁ)/(w(w/Á))Ë Æ (1 + O(Á))|Opt|(h/w) Á + 2.

126 Chapter 5. Circle Packing Problems

Now, we use Lemma 5.8 and obtain a packing of C in bins of width w and height
(1 + “)w/Á of cost at most

(1 + O(Á))OPTw◊w/Á + 2 Æ (1 + O(Á))|Opt|(h/w) Á + 4.

By joining each group of Âh/(w/Á)Ê bins, we obtain a packing into bins of width w and
height (1 + “)h of cost at most

G

(1 + O(Á))|Opt|(h/w) Á + 4

Âh/(w/Á)Ê

H

Æ (1 + O(Á))|Opt| + 2,

where the inequality follows from the fact that h/w Ø 1/Á2, and assuming Á su�ciently
small. To complete the theorem, it is enough to notice that the running time is given by
Lemma 5.9.

It is now straightforward to extend this theorem to the Circle Strip Packing.

Theorem 5.4. Let C = {C1, . . . , Cn} be a set of circles, such that each circle Ci, 1 Æ i Æ
n, has radius ri œ Q+, and 2ri Æ 1. For any given constant Á œ (0, 1], we can obtain a

packing of C in a strip of unit width and height (1+Á)OPTS(C)+O(1/Á), where OPTS(C)

is the height of the minimum packing of C in a strip of unit width. The algorithm runs in

time O(n2).

Chapter remarks

While there are many works that give approximation algorithms for problems of packing
rectangular items in square bins or in a strip, the packing of circles is done mostly through
heuristics and other numerical methods. One obstacle to obtain good approximation
algorithms is the di�culty of bounding the unused free space between “large” circles.
This chapter presents a novel iterative packing algorithm to smartly use this free space,
leading to the first approximation algorithm for these natural circle packing problems.
Indeed, we give APTAS’s for the Circle Bin Packing and for the Circle Strip Packing.

Chapter 6

Concluding remarks

Though this work was led from the theoretical perspective, it tackled problems that rise
through all the decision-making process of a supply chain. These decisions may include,
for example, packing items for later transportation, coordinating to where and when to
place orders for the inventory replenishment, and deciding where to install facilities of a
distribution network. Obtaining approximation algorithms for these problems does not
only provide solutions with guaranteed quality, but also helps unveiling ideas that find
practical applications in the industry. This thesis presented approximation algorithms for
a broad list of problems that appear in many areas of a supply chain. Several techniques
are proposed, and for some of the considered problems, no constant-factor approximations
were known before. A listing of the obtained results follows.

– A lower bound on the approximation factor of 2.04 to the SMFLP is given, and it
is shown that a standard LP-rounding algorithm achieves this factor, and thus has
the best possible factor for this problem.

– The upper bound factor-revealing programs (UPFRP) are introduced. They allow
one to derive an approximation factor directly from a straightforwardly obtained
linear program, in opposition to long proofs that depend on guessing a general dual
solution for the lower bound factor-revealing programs.

– Using UPFRP’s, we showed that primal-dual algorithms that achieve factors 1.861,
1.61, 1.52, and 1.575 for the MFLP [72, 104], have factors 2.87, 2.43, 2.17, and 2.04

for the SMFLP. Also, we showed that the algorithm with factor 1.861 is, in fact, a
1.816-approximation for the MFLP, and this factor is very tight.

– More general facility location problems whose distance functions are either the power
of a metric, or satisfy other relaxed metrics, are studied. We give constant approx-
imations for these generalized problems.

127

128 Chapter 6. Concluding remarks

– The continuous version of the FLP, when facilities may be opened in any point of
the space, was reduced to the corresponding discrete problem, by using the so called
approximate center sets.

– Approximate center sets for the L–
2 -norm, for – Ø 1, are given. This distance

function corresponds to the Euclidean norm raised to a power –, and no approximate
center sets for this function were known previously. Using these center sets, and
other results from this thesis, constant approximations for ConFL with this norm
for – Ø 1 are given. For the particular case of – = 1, we obtain a PTAS. Also using
the center sets, we obtain a PTAS for the k-clustering problem with L–

2 -norm.

– A 2.77-approximation for the PDP based on a combination of diverse LP-rounding
techniques is given. This is the first approximation for a problem that integrates
transportation and inventory management problem with dynamic allocation of ware-
houses to retailers.

– A 5-approximation for the variant of the PDP with retailer ordering costs is given.
This algorithm combines the shift procedure used for the OWMR [91] with an
involved filtering technique.

– We considered the OWMR with independent retailer and warehouse holding costs,
and gave a 5-approximation based on a novel primal-dual approach, that extends
the wave mechanism used for the JRP [90]. This answers positively the question
whether OWMR admitted a primal-dual approximation [91], and gives the first
constant approximation for OWMR under this holding cost model.

– We notice that the Multilevel JRP may be reduced to the Multistage Assembly
Problem, thus obtaining a constant approximation for an important particular case
of the Submodular JRP, when the joint ordering cost is given by a submodular
set-function over the participating retailers.

– We give an APTAS for the circle bin packing problem with resource augmentation
in one-dimension, and an APTAS for the circle strip packing problem. These are the
first approximations for these problems, and are based on several innovative tech-
niques, such as iteratively distinguishing between large and small items, bounding
the wasted free space by a fraction of items’ area, and recursively packing items of
given sizes.

These results were obtained thanks to novel techniques that may impact other similar
problems, as well as di�erent variants. While for a few specific studied problems there
is little room for improvement, such as the Squared Metric FLP, for others, more tight

129

analysis and di�erent techniques may lead to improved results. Some algorithms may be
extended to tackle variants of the considered problems, or problems with similar combina-
torial structures. Next, we describe possible extensions of the results, and some problems
left open by this thesis.

– Although the upper factor-revealing programs introduced in Chapter 2 were used
to analyze primal-dual algorithms for the SMFLP, they are described as a generic
framework, and so may also be applied to other variants and problems analyzed
through factor-revealing programs.

– While there is a PTAS for the Euclidean FLP by Arora et al. [7], there are no
specialized algorithms for the Squared Euclidean FLP, and the best known factor
is 2.04 for the SMFLP. We left open whether the Squared Euclidean FLP has an
approximation factor better than 2.04.

– The approximate center sets used in Chapter 3 may also be used to reduce several
other variants of the FLP to their corresponding discrete versions, such as a contin-
uous version of the Soft Capacitated FLP, when each facility has a given capacity,
but several copies may be opened [75].

– While Chapter 4 gives a 2.77-approximation for the PDP, the only known lower
bound on the approximation factor is 1.463, implicitly obtained from the hardness
of the FLP. It is left to future work either improving the lower bound, or obtaining
tighter algorithms.

– Although logarithmic factors for the Submodular JRP can be readily obtained from
a set covering formulation, and there is a constant approximation for the particular
case of the Multilevel JRP, it is not known whether the general problem admits a
constant approximation.

– The novel techniques of Chapter 5 are not specific to circles, and may be extended
to other related problems. Indeed, an APTAS may also be given for the packing
of more general items, such as d-dimensional Lp-norm spheres, for p Ø 1. Packing
circles into bins of di�erent shapes can also be tackled, such as the packing circles
into circles.

– The problem of packing a set of large circles was reduced to solving a polynomial
system of inequalities. Although all coe�cients in such system are rational, there
may be solutions with irrational values. It is worth noticing that resource augmen-
tation is used due to the need of obtaining rational approximate solutions, and so
it is left open the question whether these polynomial systems always have rational
solutions.

Bibliography

[1] Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric
and non-metric distance measures. In Proceedings of the Nineteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 799–808, 2008.

[2] Sang Ahn, Colin Cooper, Gérard Cornuéjols, and Alan Frieze. Probabilistic Analysis
of a Relaxation for the k-Median Problem. Mathematics of Operations Research,
13(1):1–31, 1988.

[3] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

[4] Matthew Andrews and Lisa Zhang. The Access Network Design Problem. In Pro-

ceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science,
pages 40–49, 1998.

[5] Sanjeev Arora. Polynomial time approximation schemes for Euclidean TSP and
other geometric problems. In Proceedings of the 37th Annual IEEE Symposium on

Foundations of Computer Science, pages 2–11, 1996.

[6] Sanjeev Arora. Nearly linear time approximation schemes for Euclidean TSP and
other geometric problems. In Proceedings of the 38th Annual IEEE Symposium on

Foundations of Computer Science, pages 554–563, 1997.

[7] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for
Euclidean k-medians and related problems. In Proceedings of the Thirtieth Annual

ACM Symposium on Theory of Computing, pages 106–113, 1998.

[8] David Arthur and Sergei Vassilvitskii. Worst-case and Smoothed Analysis of the
ICP Algorithm, with an Application to the k-means Method. In Proceedings of the

47th Annual IEEE Symposium on Foundations of Computer Science, pages 153–164,
2006.

131

132 BIBLIOGRAPHY

[9] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seed-
ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1027–1035, 2007.

[10] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala,
and Vinayaka Pandit. Local search heuristic for k-median and facility location
problems. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory

of Computing, pages 21–29, 2001.

[11] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-
sets. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of

Computing, pages 250–257, 2002.

[12] M. L. Balinski. On finding integer solutions to linear programs. In Proceedings of

IBM Scientific Computing Symposium on Combinatorial Problems, pages 225–248,
1966.

[13] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A New Approximation
Method for Set Covering Problems, with Applications to Multidimensional Bin
Packing. SIAM Journal on Computing, 39(4):1256–1278, 2010.

[14] Nikhil Bansal, José R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin Packing
in Multiple Dimensions: Inapproximability Results and Approximation Schemes.
Mathematics of Operations Research, 31(1):31–49, 2006.

[15] Nikhil Bansal, Xin Han, Kazuo Iwama, Maxim Sviridenko, and Guochuan Zhang.
A Harmonic Algorithm for the 3D Strip Packing Problem. SIAM Journal on Com-

puting, 42(2):579–592, 2013.

[16] Nikhil Bansal and Arindam Khan. Improved Approximation Algorithm for Two-
Dimensional Bin Packing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 13–25, 2014.

[17] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for
the weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.

[18] Saugata Basu, Richard Pollack, and Marie-Françoise Coste-Roy. Algorithms in

Real Algebraic Geometry (Algorithms and Computation in Mathematics). Springer,
Secaucus, NJ, USA, 2006.

[19] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the Combinatorial and
Algebraic Complexity of Quantifier Elimination. Journal of the ACM, 43(6):1002–
1045, 1996.

BIBLIOGRAPHY 133

[20] Michael A. Bender and Chandra Chekuri. Performance guarantees for the TSP with
a parameterized triangle inequality . Information Processing Letters, 73(1–2):17–21,
2000.

[21] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Neil Dobbs, Tomasz Now-
icki, Maxim Sviridenko, Grzegorz Swirszcz, and Neal E. Young. Approximation
Algorithms for the Joint Replenishment Problem with Deadlines. In Automata,

Languages, and Programming, pages 135–147, 2013.

[22] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, £ukasz Jeø, Dorian Nogneng,
and Ji�í Sgall. Better Approximation Bounds for the Joint Replenishment Prob-
lem. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 42–54, 2014.

[23] Ernesto G. Birgin and Jan M. Gentil. New and improved results for packing iden-
tical unitary radius circles within triangles, rectangles and strips. Computers &

Operations Research, 37(7):1318–1327, 2010.

[24] Mourad Boudia and Christian Prins. A memetic algorithm with dynamic population
management for an integrated production–distribution problem. European Journal

of Operational Research, 195(3):703–715, 2009.

[25] Niv Buchbinder, Tracy Kimbrelt, Retsef Levi, Konstantin Makarychev, and Maxim
Sviridenko. Online make-to-order joint replenishment model: primal dual compet-
itive algorithms. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 952–961, 2008.

[26] Jaroslaw Byrka. An Optimal Bifactor Approximation Algorithm for the Metric
Uncapacitated Facility Location Problem. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, pages 29–43, 2007.

[27] Jaroslaw Byrka and Karen Aardal. The approximation gap for the metric facility
location problem is not yet closed. Operations Research Letters, 35(3):379–384,
2007.

[28] Jaroslaw Byrka and Karen Aardal. An Optimal Bifactor Approximation Algorithm
for the Metric Uncapacitated Facility Location Problem. SIAM Journal on Com-

puting, 39(6):2212–2231, 2010.

[29] Jaroslaw Byrka, MohammadReza Ghodsi, and Aravind Srinivasan. LP-rounding
algorithms for facility-location problems, 2010. Available at http://arxiv.org/

abs/1007.3611.

134 BIBLIOGRAPHY

[30] Jaroslaw Byrka and Bartosz Rybicki. Improved LP-Rounding Approximation Al-
gorithm for k-level Uncapacitated Facility Location. In Automata, Languages, and

Programming, pages 157–169, 2012.

[31] Alberto Caprara. Packing 2-dimensional bins in harmony. In Proceedings of the

43rd Annual IEEE Symposium on Foundations of Computer Science, pages 490–
499, 2002.

[32] Felix T. S. Chan, S. H. Chung, and Subhash Wadhwa. A hybrid genetic algorithm
for production and distribution. Omega, 33(4):345–355, 2005.

[33] Moses Charikar and Sudipto Guha. Improved Combinatorial Algorithms for the
Facility Location and k-Median Problems. In Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science, pages 378–388, 1999.

[34] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k-median problem. In Proceedings of the

Thirty-First Annual ACM Symposium on Theory of Computing, pages 1–10, 1999.

[35] Ke Chen. On k-Median clustering in high dimensions. In Proceedings of the Sev-

enteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1177–1185,
2006.

[36] Fabián A. Chudak. Improved Approximation Algorithms for Uncapacitated Facility
Location. In Integer Programming and Combinatorial Optimization, pages 180–194,
1998.

[37] Fabián A. Chudak and David B. Shmoys. Improved Approximation Algorithms
for a Capacitated Facility Location Problem. In Proceedings of the Tenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 875–876, 1999.

[38] Fabián A. Chudak and David B. Shmoys. Improved Approximation Algorithms
for the Uncapacitated Facility Location Problem. SIAM Journal on Computing,
33(1):1–25, 2004.

[39] F. Chung, M. Garey, and D. Johnson. On Packing Two-Dimensional Bins. SIAM

Journal on Algebraic Discrete Methods, 3(1):66–76, 1982.

[40] Edward G. Co�man Jr., János Csirik, Gábor Galambos, Silvano Martello, and
Daniele Vigo. Bin Packing Approximation Algorithms: Survey and Classification.
In Panos M. Pardalos, Ding-Zhu Du, and Ronald L. Graham, editors, Handbook of

Combinatorial Optimization, pages 455–531. Springer, 2013.

BIBLIOGRAPHY 135

[41] George E. Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decompostion. In Automata Theory and Formal Languages, pages 134–183,
1975.

[42] Wallace B. Crowston and Michael H. Wagner. Dynamic Lot Size Models for Multi-
Stage Assembly Systems. Management Science, 20(1):14–21, 1973.

[43] Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian
Sohler. (1+Á)-Approximation for Facility Location in Data Streams. In Proceedings

of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, page
1710, 2013.

[44] Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report CS2008-
0916, Department of Computer Science and Engineering, University of California,
2008.

[45] Mark S. Daskin, Collette R. Coullard, and Zuo-Jun Max Shen. An Inventory-
Location Model: Formulation, Solution Algorithm and Computational Results. An-

nals of Operations Research, 110(1-4):83–106, 2002.

[46] Mark de Berg, Fred van Nijnatten, Rene Sitters, Gerhard J. Woeginger, and Alexan-
der Wol�. The Traveling Salesman Problem Under Squared Euclidean Distances.
In Proceedings of the 27th International Symposium on Theoretical Aspects of Com-

puter Science, pages 239–250, 2010.

[47] Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang. Circle Packing for Origami
Design Is Hard. In Proceedings of the 5th International Conference on Origami in

Science, pages 609–626, 2010.

[48] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Review, 41(4):637–676, 1999.

[49] Jack Edmonds. Paths, trees, and flowers. Journal Canadien de Mathématiques,
17:449–467, 1965.

[50] Donald Erlenkotter. A Dual-Based Procedure for Uncapacitated Facility Location.
Operations Research, 26(6):992–1009, 1978.

[51] Uriel Feige. A threshold of ln n for approximating set cover (preliminary version).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-

puting, pages 314–318, 1996.

136 BIBLIOGRAPHY

[52] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means
clustering based on weak coresets. In Proceedings of the Twenty-Third Annual Sym-

posium on Computational Geometry, pages 11–18, 2007.

[53] Cristina G. Fernandes, Luis A. A. Meira, Flávio K. Miyazawa, and Lehilton L. C.
Pedrosa. A Systematic Approach to Bound Factor Revealing LPs and Its Applica-
tion to the Metric and Squared Metric Facility Location Problems. In Approxima-

tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 146–157, 2012.

[54] Wenceslas Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Ra-
bani. Approximation Schemes for Clustering Problems. In Proceedings of the Thirty-

Fifth Annual ACM Symposium on Theory of Computing, pages 50–58, 2003.

[55] Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved
within 1 + Á in linear time. Combinatorica, 1(4):349–355, 1981.

[56] Stefan Funke, Sören Laue, Rouven Naujoks, and Zvi Lotker. Power Assignment
Problems in Wireless Communication: Covering Points by Disks, Reaching few
Receivers Quickly, and Energy-E�cient Travelling Salesman Tours. In Distributed

Computing in Sensor Systems, pages 282–295, 2008.

[57] John A. George, Jennifer M. George, and Bruce W. Lamar. Packing di�erent-sized
circles into a rectangular container. European Journal of Operational Research,
84(3):693–712, 1995.

[58] Michel X. Goemans, Andrew V. Goldberg, Serge Plotkin, David B. Shmoys, Éva
Tardos, and David P. Williamson. Improved Approximation Algorithms for Network
Design Problems. In Proceedings of the Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 223–232, 1994.

[59] Michel X. Goemans and David P. Williamson. A General Approximation Technique
for Constrained Forest Problems. SIAM Journal on Computing, 24(2):296–317,
1995.

[60] D. Yu. Grigor’ev and Nikolaj N. Vorobjov Jr. Solving systems of polynomial in-
equalities in subexponential time. Journal of Symbolic Computation, 5(1–2):37–64,
1988.

[61] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location
algorithms. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 649–657, 1998.

BIBLIOGRAPHY 137

[62] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location
algorithms. Journal of Algorithms, 31(1):228–248, 1999.

[63] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement
and network design problems. In Proceedings of the 41st Annual IEEE Symposium

on Foundations of Computer Science, pages 603–612, 2000.

[64] Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of
geometric problems. In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 537–538, 2003.

[65] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means
clustering. In Proceedings of the Twenty-First Annual Symposium on Computational

geometry, pages 126–134, 2005.

[66] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory

of Computing, pages 291–300, 2004.

[67] Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? In Proceedings

of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 877–
885, 2005.

[68] Susumu Hasegawa, Hiroshi Imai, Mary Inaba, Naoki Katoh, and Jun Nakano. E�-
cient algorithms for variance-based k-clustering. In Proceedings of the First Pacific

Conference on Computer Graphics and Applications, pages 75–89, 1993.

[69] Mhand Hifi and Rym M’Hallah. A Literature Review on Circle and Sphere Packing
Problems: Models and Methodologies. Advances in Operations Research, 2009:1–22,
2009.

[70] Dorit S. Hochbaum. Approximation Algorithms for the Set Covering and Vertex
Cover Problems. SIAM Journal on Computing, 11(3):555–556, 1982.

[71] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi
diagrams and randomization to variance-based k-clustering (extended abstract). In
Proceedings of the Tenth Annual Symposium on Computational Geometry, pages
332–339, 1994.

[72] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V.
Vazirani. Greedy facility location algorithms analyzed using dual fitting with factor-
revealing LP. Journal of the ACM, 50(6):795–824, 2003.

138 BIBLIOGRAPHY

[73] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach
for facility location problems. In Proceedings of the Thiry-Fourth Annual ACM

Symposium on Theory of Computing, pages 731–740, 2002.

[74] Kamal Jain, Ion M�ndoiu, Vijay V. Vazirani, and David P. Williamson. A primal-
dual schema based approximation algorithm for the element connectivity problem.
In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 484–489, 1999.

[75] Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algorithms for metric
facility location and k-median problems. In Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science, pages 2–13, 1999.

[76] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility
location and k-Median problems using the primal-dual schema and Lagrangian re-
laxation. Journal of the ACM, 48(2):274–296, 2001.

[77] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia Zhang.
On the placement of Internet instrumentation. In Proceedings of the Nineteenth

Annual Joint Conference of the IEEE Computer and Communications Societies,
pages 295–304, 2000.

[78] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. In Proceedings of the Eighteenth Annual Symposium on Computational

Geometry, pages 10–18, 2002.

[79] O. Kariv and S. Hakimi. An Algorithmic Approach to Network Location Problems.
II: The p-Medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979.

[80] Claire Kenyon and Eric Rémila. A Near-Optimal Solution to a Two-Dimensional
Cutting Stock Problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[81] Moutaz Khouja and Suresh Goyal. A review of the joint replenishment problem
literature: 1989–2005. European Journal of Operational Research, 186(1):1–16, 2008.

[82] Yoshiharu Kohayakawa, Flávio K. Miyazawa, Prabhakar Raghavan, and Yoshiko
Wakabayashi. Multidimensional Cube Packing. Algorithmica, 40(3):173–187, 2004.

[83] Stavros G. Kolliopoulos and Satish Rao. A Nearly Linear-Time Approximation
Scheme for the Euclidean k-Median Problem. SIAM Journal on Computing,
37(3):757–782, 2007.

BIBLIOGRAPHY 139

[84] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of
a local search heuristic for facility location problems. In Proceedings of the Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1–10, 1998.

[85] Alfred A. Kuehn and Michael J. Hamburger. A Heuristic Program for Locating
Warehouses. Management Science, 9(4):643–666, 1963.

[86] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1 + Á)-
approximation algorithm for k-means clustering in any dimensions. In Proceedings

of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages
454–462, 2004.

[87] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time Approxima-
tion Schemes for Clustering Problems in Any Dimensions. Journal of the ACM,
57(2):5:1–5:32, 2010.

[88] H. W. Lenstra Jr. Integer Programming with a Fixed Number of Variables. Math-

ematics of Operations Research, 8(4):538–548, 1983.

[89] Retsef Levi, Andrea Lodi, and Maxim Sviridenko. Approximation Algorithms for
the Multi-item Capacitated Lot-Sizing Problem Via Flow-Cover Inequalities. In
Integer Programming and Combinatorial Optimization, pages 454–468, 2007.

[90] Retsef Levi, Robin O. Roundy, and David B. Shmoys. Primal-Dual Algorithms for
Deterministic Inventory Problems. Mathematics of Operations Research, 31(2):267–
284, 2006.

[91] Retsef Levi, Robin O. Roundy, David B. Shmoys, and Maxim Sviridenko. A
Constant Approximation Algorithm for the One-Warehouse Multiretailer Problem.
Management Science, 54(4):763–776, 2008.

[92] Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Deng, and Kazem Sohraby. On
the optimal placement of web proxies in the Internet. In Proceedings of INFOCOM

1999 Eighteenth Annual Joint Conference of the IEEE Computer and Communica-

tions Societies, pages 1282–1290, 1999.

[93] Shi Li. A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In Automata, Languages, and Programming, pages 77–88, 2011.

[94] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Information and Computation, 222:45–58, 2013.

140 BIBLIOGRAPHY

[95] Shi Li and Ola Svensson. Approximating K-median via Pseudo-approximation. In
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pages 901–910, 2013.

[96] Yu Li, Jia Shu, Xi Wang, Naihua Xiu, Dachuan Xu, and Jiawei Zhang. Approxima-
tion Algorithms for Integrated Distribution Network Design Problems. INFORMS

Journal on Computing, 25(3):572–584, 2013.

[97] Jyh-Han Lin and Je�rey Scott Vitter. Á-approximations with minimum packing con-
straint violation (extended abstract). In Proceedings of the Twenty-Fourth Annual

ACM Symposium on Theory of Computing, pages 771–782, 1992.

[98] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129–137, 1982.

[99] J. B. MacQueen. Some Methods for Classification and Analysis of MultiVariate
Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, pages 281–297, 1967.

[100] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The Planar k-
Means Problem is NP-Hard. In Algorithms and Computation, pages 274–285, 2009.

[101] Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani. A
Greedy Facility Location Algorithm Analyzed Using Dual Fitting. In Approxima-

tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 127–137, 2001.

[102] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Ar-
rivals: An Approach Based on Strongly Factor-revealing LPs. In Proceedings of

the Forty-Third Annual ACM Symposium on Theory of Computing, pages 597–606,
2011.

[103] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Improved Approximation Al-
gorithms for Metric Facility Location Problems. In Approximation Algorithms for

Combinatorial Optimization, pages 229–242, 2002.

[104] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation Algorithms for
Metric Facility Location Problems. SIAM Journal on Computing, 36(2):411–432,
2006.

[105] Alan S. Manne. Plant Location under Economies-of-Scale-Decentralization and
Computation. Management Science, 11(2):213–235, 1964.

BIBLIOGRAPHY 141

[106] Jirí Matouöek. On Approximate Geometric k -Clustering. Discrete & Computational

Geometry, 24(1):61–84, 2000.

[107] A. Meir and L. Moser. On packing of squares and cubes. Journal of Combinatorial

Theory, 5(2):126–134, 1968.

[108] Luis A. A. Meira and Flávio K. Miyazawa. A Continuous Facility Location Problem
and Its Application to a Clustering Problem. In Proceedings of the 2008 ACM

Symposium on Applied Computing, pages 1826–1831, 2008.

[109] M. Teresa Melo, Stefan Nickel, and Francisco Saldanha-da-Gama. Facility loca-
tion and supply chain management – A review. European Journal of Operational

Research, 196(2):401–412, 2009.

[110] Flávio K. Miyazawa and Yoshiko Wakabayashi. Approximation Algorithms for the
Orthogonal Z-Oriented Three-Dimensional Packing Problem. SIAM Journal on

Computing, 29(3):1008–1029, 2000.

[111] Flávio K. Miyazawa, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, Maxim Sviri-
denko, and Yoshiko Wakabayashi. Polynomial-Time Approximation Schemes for
Circle Packing Problems. In Algorithms, 2014. To appear.

[112] Dana Moshkovitz. The Projection Games Conjecture and the NP-Hardness of ln n-
Approximating Set-Cover. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, pages 276–287, 2012.

[113] Tim Nonner and Maxim Sviridenko. An E�cient Polynomial-Time Approxima-
tion Scheme for the Joint Replenishment Problem. In Integer Programming and

Combinatorial Optimization, pages 314–323, 2013.

[114] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The
E�ectiveness of Lloyd-Type Methods for the k-Means Problem. In Proceedings of the

47th Annual IEEE Symposium on Foundations of Computer Science, pages 165–176,
2006.

[115] Lehilton L. C. Pedrosa and Maxim Sviridenko. Integrated Supply Chain Manage-
ment via Randomized Rounding. In Theoretical Informatics, pages 562–573, 2014.

[116] Yves Pochet and Laurence A. Wolsey. Production planning by mixed integer pro-

gramming. Springer, New York, Berlin, 2006.

142 BIBLIOGRAPHY

[117] Lili Qiu, Venkata N. Padmanabhan, and Geo�rey M. Voelker. On the placement
of Web server replicas. In Proceedings of the Twentieth Annual Joint Conference of

the IEEE Computer and Communications Societies, pages 1587–1596, 2001.

[118] Sridhar Rajagopalan and Vijay V. Vazirani. On the bidirected cut relaxation for
the metric Steiner tree problem. In Proceedings of the Tenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 742–751, 1999.

[119] Ramamoorthi Ravi and David P. Williamson. An approximation algorithm for
minimum-cost vertex-connectivity problems. Algorithmica, 18(1):21–43, 1997.

[120] Zuo-Jun Max Shen. Integrated Stochastic Supply-Chain Design Models. Computing

in Science & Engineering, 9(2):50–59, 2007.

[121] Zuo-Jun Max Shen, Collette R. Coullard, and Mark S. Daskin. A Joint Location-
Inventory Model. Transportation Science, 37(1):40–55, 2003.

[122] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for
facility location problems (extended abstract). In Proceedings of the Twenty-Ninth

Annual ACM Symposium on Theory of Computing, pages 265–274, 1997.

[123] Jia Shu, Chung-Piaw Teo, and Zuo-Jun Max Shen. Stochastic Transportation-
Inventory Network Design Problem. Operations Research, 53(1):48–60, 2005.

[124] Gautier Stau�er, Guillaume Massonnet, Christophe Rapine, and Jean-Philippe
Gayon. A simple and fast 2-approximation algorithm for the one-warehouse multi-
retailers problem. In Proceedings of the Twenty-Second Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 67–79, 2011.

[125] John F. Stollsteimer. The effect of technical change and output expansion on the

optimum number, size and location of pear marketing facilities in a California pear

producing region. PhD thesis, University of California at Berkeley, Berkeley, Cali-
fornia, 1961.

[126] John F. Stollsteimer. A Working Model for Plant Numbers and Locations. Journal

of Farm Economics, 45(3):631–645, 1963.

[127] Maxim Sviridenko. An Improved Approximation Algorithm for the Metric Unca-
pacitated Facility Location Problem. In Integer Programming and Combinatorial

Optimization, pages 240–257, 2002.

[128] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. García.
New Approaches to Circle Packing in a Square. Springer, New York, 2007.

BIBLIOGRAPHY 143

[129] Alfred Tarski. A decision method for elementary algebra and geometry. University
of California Press, 1951. 2nd ed.

[130] Chung-Piaw Teo and Jia Shu. Warehouse-Retailer Network Design Problem. Op-

erations Research, 52(3):396–408, 2004.

[131] Jens Vygen. Approximation algorithms for facility location problems (Lecture
Notes). Technical Report 05950-OR, Research Institute for Discrete Mathematics,
University of Bonn, 2005.

[132] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani.
A primal-dual approximation algorithm for generalized Steiner network problems.
Combinatorica, 15(3):435–454, 1995.

	Abstract
	Resumo
	Acknowledgements
	1 Introduction
	1.1 Approximation algorithms and thesis overview
	1.2 Definitions and main techniques
	1.2.1 Approximation algorithms
	1.2.2 Linear programming techniques
	1.2.3 Description of the main problems
	1.2.4 Variants and common assumptions

	1.3 Results and thesis organization

	2 Upper Bound Factor-Revealing Programs
	2.1 Literature review
	2.2 Inapproximability threshold for the SMFLP
	2.3 Upper bound factor-revealing programs
	2.3.1 An example: a first analysis
	2.3.2 General technique: an improved analysis

	2.4 Further applications of UPFRP's
	2.4.1 Analysis of improved greedy
	2.4.2 Combining with scaling and greedy augmentation

	2.5 Experimental results
	2.6 An optimal approximation algorithm
	2.6.1 The Facility Location Problem with relaxed metrics

	3 The Continuous Facility Location Problem
	3.1 Literature review
	3.2 Definitions
	3.3 Approximations for ConFL
	3.3.1 A discretization lemma
	3.3.2 Euclidean and squared Euclidean ConFL
	3.3.3 Discrete squared metric k-medians

	3.4 Continuous FLP with powers of Euclidean distances

	4 Supply Chain Problems
	4.1 Literature review
	4.2 The Production and Distribution Problem
	4.2.1 Holding and transportation costs model
	4.2.2 A linear programming relaxation
	4.2.3 Complete solutions and filtering

	4.3 Approximation for the Metric PDP
	4.3.1 Clustering
	4.3.2 Balancing using extra orders
	4.3.3 Balancing using filtering
	4.3.4 Combining different algorithms

	4.4 The PDP with retailer ordering costs
	4.4.1 Complete solutions
	4.4.2 Preprocessing
	4.4.3 Filtering and clustering

	4.5 A primal-dual algorithm for OWMR
	4.5.1 Holding cost model
	4.5.2 Primal-dual algorithm
	4.5.3 Analysis

	4.6 The Multilevel Joint Replenishment Problem

	5 Circle Packing Problems
	5.1 Literature review
	5.2 Packing of circles through algebraic quantifier elimination
	5.3 Approximate bin packing of large circles
	5.4 An asymptotic PTAS for circle packing into rectangular bins

	6 Concluding remarks
	Bibliography

