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Abstract

Image datasets have grown large with the fast advances and varieties of the imaging

technologies, demanding urgent solutions for information processing, organization, and

retrieval. Processing here aims to annotate the image by assigning to it a label that

represents its semantic content. Annotation is crucial for the effective organization and

retrieval of the information related to the images. However, manual annotation is unfea-

sible in large datasets and successful automatic annotation by a pattern classifier strongly

depends on the quality of a much smaller training set. Active learning techniques have

been proposed to select those representative training samples from the large dataset with

a label suggestion, which can be either confirmed or corrected by the expert. Neverthe-

less, these techniques very often ignore the need for interactive response times during the

active learning process. Therefore, this PhD thesis presents active learning methods that

can reduce and/or organize the large dataset such that sample selection does not require

to reprocess it entirely at every learning iteration. Moreover, it can be interrupted as

soon as a desired number of samples from the reduced and organized dataset is identi-

fied. These methods show an increasing progress, first with data reduction only, and then

with subsequent organization of the reduced dataset. However, the thesis also addresses

a real problem — the diagnosis of parasites — in which the existence of a diverse class

(i.e., the impurity class), with much larger size and samples that are similar to some

types of parasites, makes data reduction considerably less effective. The problem is fi-

nally circumvented with a different type of data organization, which still allows interactive

response times and yields a better and robust active learning approach for the diagnosis

of parasites. The methods have been extensively assessed with different types of unsu-

pervised and supervised classifiers using datasets from distinct applications and baseline

approaches that rely on random sample selection and/or reprocess the entire dataset at

each learning iteration. Finally, the thesis demonstrates that further improvements are

obtained with semi-supervised learning.
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Resumo

Conjuntos de imagens têm crescido consideravelmente com o rápido avanço de inúmeras

tecnologias de imagens, demandando soluções urgentes para o processamento, organização

e recuperação da informação. O processamento, neste caso, objetiva anotar uma dada

imagem atribuindo-na um rótulo que representa seu conteúdo semântico. A anotação é

crucial para a organizaçao e recuperação efetiva da informação relacionada às imagens.

No entanto, a anotação manual é inviável em grandes conjuntos de dados. Além disso, a

anotação automática bem sucedida por um classificador de padrões depende fortemente

da qualidade de um conjunto de treinamento reduzido. Técnicas de aprendizado ativo têm

sido propostas para selecionar, a partir de um grande conjunto, amostras de treinamento

representativas, com uma sugestão de rótulo que pode ser confirmado ou corrigido pelo

especialista. Apesar disso, essas técnicas muitas vezes ignoram a necessidade de tempos

de resposta interativos durante o processo de aprendizado ativo. Portanto, esta tese de

doutorado apresenta métodos de aprendizado ativo que podem reduzir e/ou organizar um

grande conjunto de dados, tal que a fase de seleção não requer reprocessá-lo inteiramente

a cada iteração do aprendizado. Além disso, tal seleção pode ser interrompida quando

o número de amostras desejadas, a partir do conjunto de dados reduzido e organizado,

é identificado. Os métodos propostos mostram um progresso cada vez maior, primeiro

apenas com a redução de dados, e em seguida com a subsequente organização do conjunto

reduzido. Esta tese também aborda um problema real — o diagnóstico de parasitos —

em que a existência de uma classe diversa (isto é, uma classe de impureza), com tamanho

muito maior e amostras que são similares a alguns tipos de parasitos, torna a redução de

dados consideravelmente menos eficaz. Este problema é finalmente contornado com um

tipo de organização de dados diferente, que ainda permite tempos de resposta interativos

e produz uma abordagem de aprendizado ativo melhor e robusta para o diagnóstico de

parasitos. Os métodos desenvolvidos foram extensivamente avaliados com diferentes tipos

de classificadores supervisionados e não-supervisionados utilizando conjunto de dados a

partir de aplicações distintas e abordagens baselines que baseiam-se em seleção aleatória

de amostras e/ou reprocessamento de todo o conjunto de dados a cada iteração do apren-

dizado. Por fim, esta tese demonstra que outras melhorias são obtidas com o aprendizado

semi-supervisionado.
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Chapter 1

Introduction

Due to the advances in data acquisition and storage technologies, datasets from multiple

modalities (e.g. medical, remote sensing, multimedia applications, among others) have

grown at a very fast pace and they are commonly available to support research, education,

entertainment, and several other activities. Attempts to the development of effective and

efficient ways of handling and analyzing real-world applications are becoming increasingly

widespread, yet they still face a number of practical challenges.

Annotation is the most effective way to organize the data and retrieve the desired

information. However, the labor-intensive and time-consuming process of annotating

data is a serious bottleneck in many pattern recognition applications when handling large

datasets. Manually annotating such increasing volume of data becomes humanly infeasible

and highly susceptible to errors. Moreover, successfully automatic annotation by a pattern

classifier strongly depends on the quality of a much smaller training set.

The human knowledge is indispensable for the success of the learning phase and user’s

time and effort are precious resources. Can the user annotate a minimum number of

samples and the classifier label the remaining ones with high accuracy? Active learning

techniques have been investigated to answer this question. These techniques aim to iden-

tify the most representative samples for manual annotation in a few classifier learning

iterations. At each iteration, the classifier selects samples from the dataset and suggests

their labels to the user, who can accept/correct labels to the next iteration.

However, these techniques very often ignore the need for interactive response times

during the active learning process. They usually adopt a common strategy, which requires

at each learning iteration: classification of the entire dataset, reorganization of all samples

according to some (sorting) criterion, and selection of the most informative ones to train

the classifier. For a large dataset, it is impractical to process it entirely at every iteration.

Therefore, despite these efforts in active learning, there are important issues that

remain open. The questions are: how many samples are needed for the learning process?

1



1.1. Overview of the Contributions 2

what are the most representatives samples? Can they be selected in an efficient manner?

Given these issues, this PhD thesis presents active learning methods which can attain

a significant reduction in the size of the learning set by applying an a priori process of

identification and organization of a small relevant subset. Furthermore, the concomitant

classification and selection processes enable the classification of a very small number of

samples, while selecting the informative ones.

This thesis also addresses a real problem related to the diagnosis of intestinal para-

sites. The existence of a diverse class (i.e., the impurity class), being higher in number

and also similar to some species of parasites, represents the major challenge and makes

data reduction considerably less effective. This problem is circumvented with a different

method that previously organizes the data and then properly balances the selection of

diverse and uncertain samples. The method still allows interactive response times and

yields a better and robust active learning approach for the diagnosis of parasites.

The proposed methods here have been extensively evaluated using different types of

unsupervised and supervised classifiers, datasets from distinct applications and baseline

learning approaches. Finally, the thesis demonstrates that further improvements are ob-

tained with semi-supervised learning strategy.

Taking into account all the proposals, an overview of the main contributions of this

thesis is presented in the following section.

1.1 Overview of the Contributions

Figure 1.1 illustrates an overview of the proposed active learning framework, highlighting

the elements that compose our paradigm jointly with the developed learning strategies.

The image acquisition and feature descriptor extraction processes were not the focus of

this doctoral research. From the non-annotated dataset, we proposed the active learning

paradigm in order to select, more efficiently and effectively, a small number of the most

useful samples for training a classifier. Analysis and organization strategies developed

here, as far as we know, are unique in the sense that they perform data organization

only once (in a unsupervised preprocessing phase). Previous data organization avoids to

reprocess the large dataset at each learning iteration.

In general, the organization strategy adopted here analyzes the distribution of all

non-annotated samples in the feature space to organize them. This data organization is

based on graph clustering followed by sorting of the samples according to some criterion.

Our methods generally follow the idea of selecting cluster roots, aiming to select samples

from all classes faster. Then it is able to select the most diverse (difficult) samples

for classification, because, after the first iteration, the classifier also participates of the

sampling choice by a selection strategy.
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Analysis and
Organization Strategies

Image
Databases

Non-Annotated
Dataset

iteration?1st
is
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no
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classify

no

yes

selection

Non-Annotated
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Active Semi-Supervised Learning

Supervised Learning Cycle

Unsupervised Preprocessing

Descriptor
Extraction

classification

Annotated Samples

Figure 1.1: Pipeline of the proposed active learning framework.

At the first iteration, the roots of the clusters are displayed to the expert, who anno-

tates their labels. These annotated samples constitute the training set of the first classifier

instance. During the learning process, one sample (at a time) on the ordered set is labeled

by the current classifier, and the sample is selected if it receives the label that satisfies

the given selection criterion. It is important to emphasize that the classifier does not

label all samples in the dataset. Both phases, classification and selection, are performed

alternately until a desired number of samples per iteration be reached.

The actively selected samples along with expert-verified labels are then added to the

training set. This process is iterative such that after each iteration of expert feedback

the classifier is retrained. Since the selected samples are automatically labeled by the

current classifier, the expert only has to verify the assigned classes and annotate the

misclassified ones. As the classifier improves at each iteration, the number of samples

incorrectly classified is considerably reduced. In this way, the expert’s time and effort are

also significantly reduced. Upon sensing that an acceptable accuracy has been reached1,

the expert can direct the final classifier to label the remaining of the dataset. In our

1The system can run cross validation using the labeled samples to indicate the learning status of the
classifier at each iteration.
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experiments, we considered that an expert would be satisfied whenever the mean accuracy

on the training set remains stable along iterations or reaches a sufficiently high level for

a given application.

In the proposed framework, non-annotated samples can also be included in the training

set to design a more effective classifier by active semi-supervised learning.

Summing up, the main contributions of this work are:

• Proposal of a novel learning paradigm that is computationally and iteratively effi-

cient, as it avoids to process the entire dataset at each learning iteration, afford-

ing interactive response time and verification of a considerably smaller part of the

dataset, so allowing its application to large datasets;

• Development of new active learning strategies associated with the aforementioned

paradigm which select the most useful (most diverse and most uncertain) samples

for the learning process, quickly providing high classification accuracy, identification

of samples from all classes and decrease of the human effort;

• Evaluation of the proposed active learning strategies with different clustering and

classification techniques, as well as with baseline learning strategies and using

datasets from different application domains, of different sizes, and with feature

spaces of various dimensions and classes;

• Investigation and development of a promising active learning methodology toward

the fully automation of the enteroparasitosis diagnosis via image analysis, which

can significantly advance the area of clinical parasitology;

• Evaluation and validation of the developed methodology by an experienced expert

in parasitology using a realistic scenario for this application, indicating that our

solution is effective and suitable for laboratory routine. It is important to highlight

that considering the low sensitivity rates from the traditional diagnosis procedure,

based on visual analysis (48.3% up to 75.9%) [40], we may conclude that our solution

is very relevant for the area of clinical parasitology;

• Specification of fast and accurate approach that combines active learning and semi-

supervised learning strategies based on optimum-path forest classifiers, identifying

and selecting samples from all classes more quickly while decreasing the propagated

errors on the unlabeled set and keeping user interaction to a minimum.

This thesis is organized as a follows: Section 2 summarizes the main works and con-

cepts in the field of image annotation and active learning presented in the literature.
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Furthermore, we briefly discuss previous works that are required for an adequate under-

standing related to (supervised, unsupervised and semi-supervised) learning by optimum-

path forest. Section 3 details the active learning paradigm as well as the strategies pro-

posed. Section 4 discusses the experiments and the accomplished results. Finally, Section

5 presents the conclusions and some directions for future works.



Chapter 2

Background

This Chapter summarizes the main works and concepts in the field of image annotation

and active learning, as well as briefly discuss background materials and previous works

that are required for an adequate understanding.

2.1 Image Annotation and Active Learning

Image annotation is a process by which labels are associated with images, either manually,

automatically or semi-automatically [91, 12, 103, 58]. The manual annotation approach

presents some drawbacks such as being time consuming and laborious. Hence, the new

trend towards automatic image annotation seems promising [42, 67, 65, 102, 31, 29, 54, 8].

The main idea of automatic image annotation techniques is to learn semantic concept

models from labeled image samples, and use the concept models to label new images

automatically. Once images are annotated with semantic labels, they can be retrieved

by keyword. Assuming that low level features are extracted from image content and

semantic labels are collected from image samples, conventional classification methods can

be trained to map the features to the semantic labels. Once trained, the classifier can

be used to annotate new image samples. Many works [102] explore the label annotation

using classifiers, such as Bayesian [53, 8, 47], Support Vector Machines (SVM) [74, 39],

Artificial Neural Network (ANN) [27, 73], k-Nearest Neighbor (k-NN) [90, 46], Decision

Tree (DT) [55, 99, 97] and Optimum-Path Forest (OPF) [18, 17].

Despite the efforts in automatic image annotation, their success usually depend on

a suitable image pre-processing and on a small training set, which is feasible for expert

annotation. Such pre-processing should involve the design of discriminative features for

a given problem, by exploring the prior knowledge about the problem and/or feature

selection [78, 4] and deep learning techniques [28, 75, 104, 98, 2].

In conventional supervised learning, the algorithm passively accepts randomly selected

6
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Figure 2.1: Pipeline of the traditional active learning paradigm.

samples from a given dataset to be manually labeled and used to train the classifier. As

the dataset grows, an intelligent selection of a reasonably small training set can save con-

siderable human effort and time on manual annotation besides providing a more effective

classifier automatically annotating the remaining or future samples.

Active learning can accomplish both goals. Active learning is an iterative supervised

learning that actively query the expert (or some other information source) for labels and

which the learner participates of its learning process, choosing its learning samples at each

iteration. Theoretical results show that it can significantly reduce the number of required

training samples as compared to random selection for achieving similar classification ac-

curacy [3, 20]. Active learning techniques can determine which non-annotated samples

would be the most informative (i.e., improve the classifier the most) if they are annotated

and used as training samples, so allowing to reach higher accuracies with fewer training

labels annotated/corrected by the expert.

The idea of using active learning to assist in image annotation has received a lot

of research attention [56, 85, 18, 76, 46, 49, 100, 89, 95, 94]. Figure 1 illustrates the

complete pipeline of operations for data classification (unsupervised and/or supervised),

organization, and selection, that are repeated at each iteration in the previous approaches.

The first two are optional, but most recent methods seem to adopt them. At each iteration

cycle, the expert is asked to annotate/correct a non-annotated/classified sample set chosen

by the selector. As the samples are annotated/corrected by the expert, they are included

in the training set to re-train the classifier for the next cycle. The entire learning set is
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labeled by the current classifier, organized and finally a subset is selected and presented

to the expert. The selector consists of three modules (classification, organization and

selection) that are dependent on each other.

Besides the aforementioned inefficiency, most of the existing research on the traditional

active learning approaches have focused on binary classification [93, 34, 38, 30]. Relatively

few works have been devoted for multi-class active learning and these are typically based

on ensemble or committee classifiers [76, 35, 62, 19, 60] or extensions of predominantly

binary active learning methods to the multi-class scenario [50, 46].

Our work emphasizes four important mechanisms for active learning: reduction, or-

ganization, classification, and selection. Reduction is based on the analysis and disposal

of data with no re-evaluation. As far as we know, our approach is unique in this aspect.

Organization aims at prioritization for the selection of the highest priority samples, but

this decision should be supported by the current instance of the classifier and take into ac-

count some pruning criterion. Another difference from previous works is that our method

performs classification after organization.

A common approach for selecting data in active learning is to choose the most un-

certain samples [57, 9, 15, 14, 92], which are the closest to the classification boundary.

This simple and intuitive criterion (closest-to-boundary) performs well in some applica-

tions [49, 51]. However, some works indicate that better performance can be achieved by

taking into account prior knowledge on data distribution. In these cases, clustering tech-

niques have been incorporated into active learning [56, 66, 7, 64, 101, 86]. The clustering

information is useful for active learning, since representative samples located at the center

of the clusters are more likely to cover all classes and are good candidates to be selected

first, for the manual annotation process. Furthermore, samples in the same cluster are

likely to have the same label. This assumption could be used to accelerate active learning

by reducing the number of annotated samples from a given cluster.

Although some of the aforementioned methods [101, 86, 64, 30, 13, 52] use clustering

(unsupervised classification) for sample selection, they neither reduce the dataset based

on clustering nor organize the reduced samples just once (a priori). They can be unified

as depicted in Figure 2.1, with no data reduction, by reclassifying and/or reorganizing

the entire dataset for sample selection at each learning iteration.

Therefore, despite these efforts in active learning, there are important questions that

remain open. Namely, in an a priori setting, how to choose the best reduced set from a

large learning set? How to organize this reduced set? This work presents a solution to

these questions.



2.2. Learning by Optimum-Path Forest 9

2.2 Learning by Optimum-Path Forest

In this Section, we present a methodology for learning based on optimum-path forest

(OPF), which has been successfully applied to image processing and analysis problems

[68, 45, 6, 77, 18], besides it was used in this work. Essentially, this methodology ex-

tends a previous approach, called Image Foresting Transform [32], for the design of image

processing operators from the image domain to the feature space.

The main OPF algorithm is essentially a Dijkstra’s algorithm based on multiple sources

and more general path-value functions. In the OPF methodology, the training set is mod-

eled as a graph, whose nodes are the samples and arcs connect nodes according to a given

adjacency relation. To any given path on this graph (either a single sample or a sequence

of distinct samples) we assign a cost given by a connectivity (path-value) function (e.g.,

the maximum/minimum arc weight along the path). The minimization (maximization)

of a path-value map results in an optimum-path forest rooted at representative samples

of classes/clusters (called prototypes). One way to view this construction process is to

think that the prototypes compete among themselves for the remaining samples. The

samples in the same class/cluster of a prototype (nodes of its optimum-path tree) will be

those more closely connected to that prototype than to any other. When a new sample

is processed, the method estimates, in an incremental way, which prototype would offer

the optimum-path to this new sample, as though it were part of the training set, and the

class/cluster of that prototype is assigned to the new sample.

In the OPF methodology class/clusters may present arbitrary shapes and have some

degree of overlapping, and there is no need to use parametric models. This methodol-

ogy provides effective supervised, unsupervised and semi-supervised learning techniques,

which are described in the following Sections 2.2.1-2.2.3.

2.2.1 Supervised Learning

Given a training set with samples with distinct classes, it is desirable to design a pattern

classifier which can assign the true class label to any new sample. Each sample is rep-

resented by a set of features and a distance function measures their dissimilarity in the

feature space. The training samples are then interpreted as the nodes of a graph, whose

arcs are defined by a given adjacency relation and weighted by the distance function. It

is assumed that samples from the same class are connected by a path of nearby samples.

Therefore, the degree of connectedness for any given path is measured by a connectivity

function, which exploits the distances along the path.

In the supervised learning by OPF, the true label of the training samples is known and

so it is exploited to identify key samples (prototypes) in each class. Optimum-paths are

computed from the prototypes to each training sample, such that each prototype becomes
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Figure 2.2: Pipeline of the supervised learning by OPF. (a) Complete weighted graph for a
simple training set. (b) Resulting optimum-path forest for fmax and two given prototypes
(circled nodes). The entries (x, y) over the nodes are, respectively, the cost and the label
of the samples. The directed arcs indicate the predecessor nodes in the optimum path.
(c) Test sample (gray triangle) and its connections (dashed lines) with the training nodes.
(d) The optimum path from the most strongly connected prototype, its classification cost
0.4, and label 2 are assigned to the test sample. The test sample is classified in the class
square, although its nearest training sample is from the class circle.

the root of an optimum-path tree composed of its most strongly connected samples. The

labels of these samples are assumed to be the same as their root. The label assignment

is based on optimum connectivity with respect to a set of prototypes rather than based

on local distance decisions, as is the case in k-nearest neighbor approaches [36, 79] (See

Figure 2.2). In this work, we applied the OPF classifier using a complete graph (implicit

representation) and the maximum arc weight along a path as the connectivity function.

The prototypes are chosen as samples that share an arc between distinct classes in a

minimum-spanning tree of the training set.

The supervised OPF classifier has as advantage a very low computational training

cost [63], given that it does not have to optimize parameters. Papa et al. [70] showed

that its training phase can be considerably faster than the training phases of SVMs and

ANNs, with accuracies better than or equivalent to the ones obtained by these approaches.

This OPF classifier has been widely used in several applications, such as remote sensing,

emotion recognition through speech processing, automatic vowel classification, biomet-

rics, petroleum well drilling monitoring, medical image segmentation, and robust object

tracking [72, 44, 71, 11, 69, 41, 61]. Considerable improvements have been continuously

presented to make this OPF classifier more efficient for large datasets [68, 45].

2.2.2 Unsupervised Learning

In the unsupervised learning, we do not know the class label of the training samples.

Therefore, in the data clustering, we expect that each cluster contains only samples of

the same class and some other information about the application is needed to complete

classification. The fundamental problem in data clustering is to identify natural groups
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in the unlabeled training set. Natural groups are characterized by high concentrations of

samples in the feature space, which form the domes of the probability density function

(pdf). These domes can be detected and separated by defining the “influence zones” of

their maxima. However, there are different ways to define these influence zones.

Clustering by Optimum-Path Forest (OPF) consists of identifying high concentrations

of samples which can characterize relevant clusters for a specific application. This is a

non-parametric approach which estimates the number of natural groups in a dataset

as the number of maxima of its probability density function (pdf). Each maximum of

the pdf will define a cluster as an optimum-path tree rooted at that maximum. The

training forest becomes a classifier that can assign to any new sample the label of its

most strongly connected root. It can handle plateaux of maximum, by electing a single

root (one prototype per maximum), some overlapping among clusters, and groups with

arbitrary shapes (Figure 2.3). The OPF clustering does not assume any shape for the

clusters, as is assumed by k-means and k-medoids.

In the unsupervised learning algorithm by OPF, an unlabeled training set is interpreted

as a graph whose nodes are samples and each node is connected with its k-closest neighbors

in the feature space to form directed arcs. The basic idea is then to specify an adjacency

relation and a path-value function, compute prototypes and reduce the problem into

an optimum-path forest computation in the underlying graph. The pdf value at each

node is estimated from the distance between adjacent samples, and a connectivity (path-

value) function is designed such that the maximization of a connectivity map defines

an optimum-path forest rooted at the maxima of the pdf. In this forest, each cluster

is one optimum-path tree rooted at one maximum (root). Each root defines a cluster

by conquering the most strongly connected samples according to a path-value function.

The clusters are found by ordered label propagation from each maximum, as opposed to

the mean-shift algorithm [10] which searches for the closest maximum by following the

direction of the gradient of the pdf — a strategy that does not guarantee the assignment

of a single label per maximum, and presents problems on the plateaus of the pdf.

According to [77], a suitable pdf ρ(s) can be obtained as node weights of the k-NN

graph. The pdf estimation is reduced to the choice of a suitable scale k for data clustering,

which requires multiple applications of the algorithm for different values of k in order to

select the best clustering result as the one that produces a minimum normalized cut in the

k-NN graph. The best k for pdf estimation is found by optimization, but its search interval

[1, kmax] may produce different numbers of groups. The parameter kmax represents an

observation scale for the dataset. If kmax is too high, it means that we are looking at the

dataset from infinity and so, the result will be a single cluster. Higher values of k tend to

produce a smaller number of clusters by merging the closest ones. As we approximate the

dataset (reducing the value of kmax), the number of clusters increases up to some high
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Figure 2.3: Example of the unsupervised learning by OPF. Circles represent the pdf’s
maxima, i.e. samples with higher density values, defining clusters as optimum-path trees
rooted at each maximum.

number for kmax = 1. Still, the number of possible solution is low, because the method

produces an identical number of clusters for several values of kmax. This shows the

robustness of the method in finding natural groups in the dataset for distinct observation

scales. In this work, we chose kmax so as to obtain a number of groups higher than the

number of classes known. In our experiments, we use the optimization approach described

in [77] with an additional constraint that k ≥ 2c, where c is the number of classes. This

takes into account that one class may be represented by more than one cluster. Note that,

we do not use any knowledge on the classes of samples, but we assume that we know how

many classes are present in the dataset.

For large datasets, [6] suggests that the k-NN graph (and pdf estimation) be obtained

from a subset of random samples from the entire learning set (i.e., a much smaller un-

supervised training set). After optimum-path forest computation (training), the cluster

labels can be efficiently propagated to the remaining samples by using adjacency radii

computed for each training sample. This OPF methodology has already been success-

fully used for large datasets with about 1.5 million voxels when classifying gray-matter,

white-matter, and cerebral spinal fluid in magnetic resonance images of the brain [6].

2.2.3 Semi-Supervised Learning

Semi-supervised learning (SSL) has become an increasingly popular learning approach,

given that we have the limited availability of labeled data in contrast to an unbounded

number of unlabeled ones. SSL targets the usual situation where labeled data are scarce

and unlabeled data are abundant. The semi-supervised approach based on the Optimum-
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Path Forest (OPF) methodology [1] has also been successful, overcoming traditional semi-

supervised methods, such as Transductive Support Vector Machines (TSVM) [48], Uni-

verSVM [16] and SemiL [105, 43].

In the semi-supervised OPF learning [1], the prototypes are selected from each class

among the labeled training samples by using the same strategy as the supervised OPF [68].

Subsequently, all training samples are interpreted as a complete graph and each sample is

assigned to the optimum-path tree of its most closely connected prototype. Therefore, the

class of a prototype is propagated to all training samples (labeled or unlabeled) in its tree.

Since the training set is then entirely labeled, the supervised OPF training algorithm is

executed on it in order to select more and/or better prototypes. The resulting optimum-

path forest is expected to generalize better than a forest created from only the initial

labeled subset.

Figure 2.4 shows the pipeline of the semi-supervised learning by OPF. By computing

a MST in the complete graph, we obtain a connected acyclic graph, whose nodes are

all labeled samples of the learning set and the arcs are undirected and weighted by the

distances between adjacent samples (Figure 2.4a). By removing the arcs between different

labels, their adjacent samples becomes prototypes (Figure 2.4b). An optimum-path forest

rooted at the prototypes is computed. Then each sample should be assigned to the

optimum-path tree of its most closely connected prototype. Figure 2.4c illustrates an

optimum-path forest, an unlabeled sample (diamond), and its possible connections with

all samples in the training graph. The entries (x, y) over the nodes are, respectively,

the cost and the label of the samples. Figure 2.4d shows the label propagation to the

unlabeled sample from its most closely connected prototype. After the semi-supervised

training, for each test sample (represented by the triangle in Figure 2.4e) is analized its

possible connections with all samples in the training graph and it is defined an optimum

path to the most closely connected prototype (Figure 2.4f). Figures 2.4g and 2.4h highlight

one of the advantages of the semi-supervised approach. After the supervised training (i.e.

without consider unlabeled samples), a test sample is classified in the class circle, although

its nearest training sample is from the class square.

In [1], the authors assumed that the labeled samples in the training set are good

enough to correctly assign the classes of most unlabeled samples in the training set, so

they were randomly selected. In our research, we also exploit the combination of active and

semi-supervised learning (Section 3.4) in order to select the most representative labeled

samples, which will have an impact on decreasing propagated errors on the unlabeled

samples, as well as on the construction of more robust classifiers (See Section 4.3.5).
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Figure 2.4: Pipeline of the semi-supervised learning by OPF.



Chapter 3

Proposed Paradigm

In this Chapter, we present an effective and efficient data reduction and organization

paradigm for active learning, which enables the reduction and/or organization of the

learning set a priori (only once).

3.1 Data Reduction and Organization Paradigm

We propose DROP - a Data Reduction and Organization Paradigm [82] - for active

learning, in order to select, more efficiently and effectively, a small number of the most

representative samples for training a classifier. The learning process aims to present for

annotation samples from all classes at the first learning iteration and the most informative

(most difficult) samples for classification at the subsequent iterations. In the proposed

paradigm, the learning set is reduced into a subset with those relevant samples. The

reduced learning set is also organized in pairs of samples such that, among the most

difficult ones, the possibility to select sample pairs from distinct classes for annotation

will be higher than pairs from the same class.

The major difference and advantage presented by the proposed paradigm (Figure 3.1)

is that all non-annotated learning samples in the dataset undergo a reduction and/or

organization process only once, unlike traditional active learning methods (as Figure 2.1).

DROP analyzes the distribution of all learning samples in the feature space a priori, as

preprocessing. Subsequently, during the learning process, a subset of previously arranged

samples is selected at each iteration, without the need to classify and re-arrange all sam-

ples on the dataset. Thus, the selection process becomes faster, especially considering

large datasets, since the improvement of the classifier at each iteration does not require

rearranging all samples. Moreover, a remarkably faster selection process is completed by

the choice of a small subset of samples and the classification of only these.

The learning process relies on the knowledge of both expert and classifier, at each

15
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Figure 3.1: Pipeline of the proposed active learning paradigm.

iteration. The classifier actively participates of its learning process by classifying and

supporting the choice of the most relevant samples. After this choice, once classified, these

samples are displayed to the expert for confirmation of the labels assigned by the current

classifier. As the classifier improves throughout the iteration, the expert is required to

correct fewer misclassified samples. The expert’s time and effort are increasingly lessened.

Samples with confirmed/corrected labels are incorporated into the training set and a

new classifier instance is generated. Upon sensing that an acceptable accuracy has been

reached, the expert can direct the final classifier to annotate the remaining of the dataset.

We considered that a expert would be satisfied whenever the measured accuracy remained

stable or reached a sufficiently high level for a given application.

DROP being a paradigm, can be applied using different strategies for reduction, or-

ganization and selection processes. Figure 3.1 illustrates the execution pipeline of this

active learning paradigm, highlighting its main processes which will be explained in the

next sections.

3.2 Reduction Strategy

The reduction strategy adopted here aims to prevent the expert from having to annotate

a large (and usually wasteful) number of training samples. It can prevent poor selection

of samples (i.e. irrelevant selection) from a large learning set, depending on how well the

reduced set represents the entire dataset, as well as on its size.
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All learning methods will gradually improve when more expert annotations and more

learning iterations are allowed. The reduction strategy becomes very important in a pro-

cess where a goal is to limit the number of iterations to as few as possible. It is well known

that on an actual field environment, a large number of learning iterations is tiresome and

furthers human error in the annotation process which, consequently, affects the quality

of the classifier. In this context, selecting samples that speed up the improvement of the

classifier through the iterations becomes critical.

The reduction process is based on the analysis and disposal of data with no re-

evaluation. It refines the larger learning set, by applying an a priori sharp identification

process, downsizing it into a small subset with essentially the most informative samples.

By reducing the learning dataset to a smaller and more informative set, the proposed

strategy minimizes the number of learning iterations as well as the experts’ time and

effort, while decreasing the possibility of misannotation that could occur due to fatigue,

in a longer annotation process.

As it was mentioned, any method can be incorporated into the proposed paradigm

in order to reduce the learning set and later to organize the reduced one. In the next

Section, we present an effective reduction method through data clustering [81].

3.2.1 Reduction by Clustering

A good training set must represent the distribution of the classes in the feature space

while being as small as possible, given that efficiency and effectiveness of classification

will depend on both factors. However, it is very difficult to determine which samples are

the best to train a classifier or even how many of them we must use to obtain good results,

since any information about the classes, ideal size, and composition of the training set is

unknown prior to annotation.

The distribution of the samples in the feature space can be obtained from their prob-

ability density function (pdf). The domes of the pdf can represent clusters of samples

that are more likely to belong to a same class. Therefore, data clustering based on a

suitable pdf estimation can surrogate the distribution of the classes in the feature space

in the case of unlabeled datasets. The maxima of this pdf should represent samples from

all classes while its valleys should contain samples from distinct classes that are the most

difficult for classification. This leads us to a natural strategy for data reduction, which

must estimate a suitable pdf, separate the domes into clusters, and select the maxima

and samples between clusters to compose a reduced dataset for active learning. Figure

3.2 illustrates an example of the pipeline of the proposed reduction strategy [81].

Let Z2 denote an unlabeled learning dataset, such that for every sample s ∈ Z2 there

is a feature vector ~v(s). For s, t ∈ Z2, let d(s, t) denote the distance between s and t
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Figure 3.2: An example of pipeline of the proposed reduction strategy.

Algorithm 1: Data Reduction Strategy

input : A non-annotated learning dataset Z2 and a k-NN relation A.
output: A reduced learning set Z ′

2 and a root set R

1 Compute clusters of Z2 using the adjacency relation A;
2 R ← cluster roots;
3 Z ′

2 ← nil;
4 for each s ∈ Z2 do
5 for each t ∈ A(s) do
6 if s.clusterid 6= t.clusterid then
7 Z ′

2 ← Z
′

2 ∪ edge (s, t);
8 break;

9 end

10 end

11 end

in the feature space (e.g., d(s, t) = ||~v(t) − ~v(s)||). The pair (Z2,A) will denote a k-NN

graph. That is, a k-NN relation A is defined over Z2 × Z2 such that a sample t ∈ Z2 is

said to be adjacent to a sample s ∈ Z2, if t is a k-nearest neighbor of s according to the

distance function d.

Algorithm 1 presents the data reduction strategy. From the clustering of Z2 using

a k-NN relation A (Line 1), we obtain the root set R (Line 2) as well as the boundary

sample set Z ′

2 (Lines 4–11). The clustering method assigns cluster-ids to the samples,

and a sample s ∈ Z2 is a boundary sample if there exists at least one adjacent sample

t ∈ A(s) whose cluster-id is different from that of s. Hence, (s, t) is a boundary edge

between different clusters if the sample t is one of the k-nearest neighbors of the sample s

and s.clusterid 6= t.clusterid. The roots in R should increase the possibility of selecting
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Figure 3.3: A possible clustering result by OPF (bigger dots indicate maxima of the
pdf): a class with two groups, groups with distinct shapes, imbalanced classes with some
overlapping, and a class that does not contribute to the boundary set.

samples from all classes and the boundary sample set Z ′

2 should contain the most difficult

samples for classification.

For large datasets, [6] suggests that the k-NN graph (and pdf estimation) be obtained

from a subset of random samples from Z2 (i.e., a much smaller unsupervised training set).

After optimum-path forest computation (training), the cluster labels can be efficiently

propagated to the remaining samples in Z2 by using adjacency radii computed for each

training sample. Since the adjacency relation A is only defined for training samples, the

reduced boundary sample set Z ′

2 can be obtained based on the mean adjacency radius ω

of the training samples. Samples s and t will belong to Z ′

2 if d(s, t) ≤ ω and s.clusterid 6=

t.clusterid.

While data reduction, as preprocessing operation, is one of the key contributions of

this work for achieving interactive response times to the expert’s label corrections during

active learning in large datasets, it should be clear why and in what conditions the reduced

data will retain the most relevant samples for selection during active learning. The 2D

plot in Figure 3.3 clarifies this issue by illustrating the pros and cons of our method in a

general situation that includes: classes with multiple groups, groups with distinct shapes,

a reasonable unbalanced number of samples per class, a reasonable overlapping between

classes, and also classes that do not contribute to the boundary set between groups.

Given that data reduction is performed by grouping, the choice of the clustering

method is paramount. Figure 3.3 shows, for example, a possible result for the OPF

clustering algorithm. This approach is similar to the popular mean-shift method [10]:

they solve clustering by grouping samples from the same dome of a joint probability den-

sity function (pdf), without assuming any type of group shape or even the number of
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groups. Their difference is in the respective algorithms. Mean-shift cannot guarantee one

group (representative sample) per dome of the pdf, when the maximum of the dome is

a plateau, because the algorithm searches the closest maximum, independently for each

sample. On the other hand, the OPF clustering algorithm estimates a tree root at each

maximum, assigns to each root a distinct label, and propagates their group labels to the

remaining samples as a wavefront downwards from the domes. In this way, the wavefronts

of distinct labels meet at the valleys (actually, this can be seen as a dual of a watershed

transform on the pdf manifold). This label propagation process creates one optimum-path

tree (group), rooted at a maximum, per dome of the pdf.

By selecting group representative samples at the first iteration, the method is assum-

ing that those representatives will cover all classes. The clustering parameters can usually

be tuned for a given application to guarantee that this happens. By creating a reduced

set with samples in the boundary between groups, the method assumes that this set will

include those in the boundary between classes, which are the most difficult for classifica-

tion and usually the most relevant for active learning. The concept of boundary between

clusters depends on a pre-defined neighborhood between samples. One can adjust the

neighborhood parameter to make the boundary larger, if necessary. Classes that do not

create boundary samples are also assumed to be separated from the others based only

on their representatives. However, one can propose a simple variant that selects more

samples around those representatives, in the first iteration, if necessary. Therefore, the

performance of the method might degrade when those premises are not fully satisfied

(See Section 3.3.3). However, it has worked well for different applications with suitable

features. Moreover, the data reduction strategy can perform a significant downsizing of

the learning set (over fifty percent in our experiments).

It is important to highlight that different clustering methods (such as OPF, k-means,

k-medoids or mean-shift) could certainly be used in the data reduction process. We

evaluated our strategy using OPF and k-means clustering methods (see Section 4.3). The

OPF clustering does not assume any shape for the clusters, as is assumed by k-means

and k-medoids. The k-means algorithm [59] finds k clusters by the sum of the distance

from the data samples to the nearest representative. In order to cover all/most classes

as the centers of the groups, we define the value of k as 2c. The boundary sample set is

comprised of samples whose the closest counterpart falls lies on a different cluster. A first

instantiation (Cluster-OPF-Rand) of the reduction strategy was developed to illustrate

its effectiveness. It is based on the OPF methodology, while relying on clustering and

classification for the learning process. In this particular instantiation, the organization of

the reduced set occurs in a randomized fashion (see Section 4.3.1). Other instantiations

were developed, encompassing different ways to organize the reduced set (Sections 3.3.1

and 3.3.2).



3.3. Organization and Selection Strategies 21

3.3 Organization and Selection Strategies

An effective and efficient organization strategy is essential to speed up the selection of the

most useful samples for improving the classifier. We propose organization strategies that

allows to achieve high accuracy quickly, further improving its efficiency.

The proposed paradigm DROP also enables the organization process to occur a pri-

ori. By organizing those samples only once (in a preprocessing process), the selection

of samples becomes quite fast. Moreover, by interlacing the choice of samples and their

classification into a joint process, the selection strategy decreases the number of samples

that require expert annotation, while choosing the most relevant ones. In addition, clas-

sification does not occur for all samples in the database but to a small set of samples.

Therefore, we can safely claim that our proposal is a powerful approach to handle mas-

sive datasets, since it does not require the classification and reorganization of the entire

dataset at each iteration, unlike traditional approaches.

3.3.1 Decreasing Boundary Edges (DBE)

After applying our boundary reduction strategy, which performs a significant downsizing

(by up to fifty percent in our experiments) of the learning set, it is important to organize

the remaining samples in a prioritized fashion, so that the most relevant ones are more

readily available for selection.

We propose a Decreasing Boundary Edges (DBE) organization strategy [83], in order

to effectively arrange the samples of the reduced set. Figure 3.4 illustrates the prepro-

cessing (a priori reduction and organization) performed by DBE strategy. DBE organizes

the reduced set based on the decreasing weight order of its boundary edges. The idea of

prioritizing the largest edges formed by boundary samples is due to those samples being,

more likely than not, of different classes.

This data organization leads to a considerable reduction of classification errors in

the first iterations. It amounts to a major advantage of our strategy, since it requires

very few iterations in the learning process to attain high accuracy. Moreover, once the

learning set has been pre-arranged, unlike in the traditional methods, DBE does not

require classification and reorganization of all non-annotated samples in the dataset at

each iteration. For this reason, the selection strategy turns out to be very fast even for

large datasets.

The selection strategy consists of choosing the samples (training set) that will be used

to train the classifier throughout the iterations. In the first learning iteration, we display

to the expert the roots of the clusters computed in the boundary reduction process, who

annotates their labels. These annotated samples constitute the training set of the first

instance of the classifier. During the learning cycle, the samples in the ordered list of
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Figure 3.4: An example of pipeline of the preprocessing (a priori reduction and organiza-
tion) performed by DBE strategy. The samples wrapped by a dashed line (roots) comprise
the initial learning set. The numbered circles indicate the edges sorted in a decreasing
weight order to be selected at each iteration.

edges of the reduced set are labeled by the current classifier and the samples on edges

that receive different labels are selected. These two processes, classification and selection,

are performed alternately until the number of samples (2c) to be displayed to the expert

at each iteration is reached. Note that, this approach does not require the classification

of all samples in the dataset, at each iteration.

Furthermore, since the selected samples are labeled by the current classifier, as the

user verifies the assigned classes, he is only required to annotate the misclassified ones. In

this way, the expert’s time and effort are significantly reduced. As the classifier improves

at each iteration, the number of samples incorrectly classified is increasingly reduced.

After the labels are confirmed/corrected by the expert, the newly annotated samples are

incorporated into the training set and a new classifier instance is generated.

Upon sensing that an acceptable accuracy has been reached, the expert can direct

the final classifier to annotate the remaining of the dataset. In our experiments, we

considered that an expert would be satisfied whenever the measured accuracy remained

stable or reached a sufficiently high level for a given application.

Algorithm 2 shows DBE organization and selection strategies. After the preprocessing

performed by graph clustering in the reduction process (Section 3.2.1), we obtain sets R

and Z ′

2, comprised of the root of each cluster and boundary edges, respectively. The

initial training set Z1 consists of the roots that form the set R (Line 1). An ordered list

L is created with the edges from Z ′

2 in decreasing order of weights (Line 2). In Line 3, the

expert annotates the classes of the roots in Z1. The loop on Lines 4–9 encompasses the

processes of (re-)training and selection. At each iteration, c−1 edges from L are analyzed,

where c is the number of classes. As edges are considered, their samples are labeled by

the current classifier and the ones with distinct classes are selected to be displayed to
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Algorithm 2: Organization and Selection Strategies - DBE

input : The reduced learning set Z ′

2
, the root set R and the number of classes c

output : Trained classifier
auxiliaries: An annotated training set Z1, a sorted list L of boundary edges and a

boundary sample set Z ′

1

1 Z1 ← R;
2 L ← edges from Z ′

2 in decreasing order of weights;
3 Expert annotates the class of each root in Z1;
4 while expert is not satisfied do
5 (Re-)train the classifier with Z1;
6 Z ′

1 ← 2 · (c− 1) new samples classified into distinct classes, following the order
given by L;

7 Expert accepts/corrects classes of samples in Z ′

1;
8 Z1 ← Z1 ∪ Z

′

1;

9 end

the expert. In this way, the growth of the training set is controlled since only the most

beneficial samples are retained. The learning cycle is repeated until the expert is pleased

with the success rate on the selected set.

Note that different classifiers may be considered in the classification and selection

processes. We evaluated DBE strategy using OPF classifiers (See Section 4.3.2).

3.3.2 Minimum Spanning Tree Boundary Edges (MST-BE)

We also propose a Minimum-Spanning Tree Boundary Edges (MST-BE) organization

strategy [82]. The MST-BE strategy presents a better organization way, selecting the

more relevant samples than by DBE one. Figure 3.5 illustrates the preprocessing (a priori

reduction and organization) performed by MST-BE strategy.

In order to increase the possibility to select boundary samples from distinct classes in

Z ′

2, the method interprets this set as a complete graph weighted by the distance d(s, t)

between samples in the feature space, computes a Minimum Spanning Tree (MST) on it,

and organizes the MST edges by the decreasing weight order. The organization of the

boundary set in decreasing order of distance between samples on its MST assumes that

samples from the same class are usually the closest ones, and hence, they will be placed

at the end of the resulting (organized) sample list, increasing the possibility of selecting

samples from distinct classes sooner. Given that boundary edges with lower weights are

more likely to be in the same class, MST-BE allows us to prioritize samples connected by

edges with higher weights and classified in distinct classes during the selection strategy
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Figure 3.5: An example of pipeline of the preprocessing (a priori reduction and organi-
zation) performed by MST-BE strategy. The samples wrapped by a dashed line (roots)
comprise the initial learning set. The numbered circles indicate the edges sorted in a
decreasing weight order to be selected at each iteration.

for expert annotation/verification.

Therefore, this strategy increases the probability of the most informative samples

being selected earlier and allows a more efficient and effective training of the classifier,

leading to a considerable reduction in classifier errors in a few iterations. This amounts

to a major advantage of our strategy, given that it provides better accuracies with less

expert involvement in the learning process. Moreover, by reducing and organizing the

samples previously, the selection of samples becomes quite fast.

Algorithm 3 shows MST-BE organization and selection strategies. After the prepro-

cessing, performed by the clustering in the reduction process (Section 3.2), we obtain sets

R and Z ′

2, comprised of the root of each cluster and boundary edges, respectively. The

initial training set Z1 consists of the roots that form the set R (Line 1). The samples

in Z ′

2 are ranked in order of importance by computing an MST (Line 2) and creating an

ordered list L with the edges in decreasing order of weights (Line 3). In the first learning

iteration, the roots of the clusters in Z1 are displayed to the expert, who annotates their

labels (Line 4). During the learning cycle (loop on Lines 5–10) occurs the processes of

(re-)training and selection. At each iteration, c − 1 edges from L are analyzed, where

c is the number of classes. As edges are considered, their samples are labeled by the

current classifier and the ones that receive different labels are selected to be displayed to

the expert. The classification and selection processes are performed alternately until the

desired number of samples (2c) to be displayed to the expert at each iteration is reached.

Different classifiers may also be considered in the classification and selection processes.

We evaluated our paradigm using SVM and OPF classifiers (see Section 4.3.3).
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Algorithm 3: Organization and Selection Strategies - MST-BE

input : The reduced learning set Z ′

2
, the root set R and the number of classes c

output : Trained classifier
auxiliaries: An annotated training set Z1, a sorted list L of MST edges and a

boundary sample set Z ′

1

1 Z1 ← R;
2 Compute a MST of Z ′

2;
3 L ← edges from MST in decreasing order of weights;
4 User annotates classes of roots in Z1;
5 while user is not satisfied do
6 (Re-)train the classifier with Z1;
7 Z ′

1 ← 2 · (c− 1) new samples classified into distinct classes, following the order
given by L;

8 User accepts/corrects classes of samples in Z ′

1;
9 Z1 ← Z1 ∪ Z

′

1;

10 end

3.3.3 Root Distance Based Sampling (RDS)

In laboratory routine, the diagnosis of intestinal parasites currently relies on the visual

analysis of fecal samples using optical microscopy. This form of analysis is often com-

promised by the presence of fecal impurities, incorrect human procedures, and lack of

human knowledge. Usually, visual diagnosis takes several minutes of a specialist per slide

[37] - an exhaustive process whose abbreviation may seriously compromise the quality of

the diagnosis. We have developed an automated system for this application, which can

considerably improve the diagnosis sensibility and reliability [87, 88].

In our system, each lab exam produces about 2,700 images of 4M pixels each for

analysis, and each image may contain from tens to thousands of objects to be labeled

either as an impurity or as some species of parasite among the 15 most common ones

in Brazil. This image acquisition process can quickly generate a large dataset, becoming

unfeasible for full manual annotation. Given that random sampling is not usually the

best alternative [3, 20], this problem calls for an active learning method that can select a

reasonably small training set consisting of the most useful samples for expert verification

(manual annotation first, and, subsequently, label correction or confirmation) for a few

learning iterations. The resulting pattern classifier should then be able to correctly label

the remaining and future ensuing samples.

Active learning is also desirable for re-evaluation and improvement of the system’s

performance, which can benefit from the growth of the dataset, after some number of
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new exams. During active learning, the classifier actively participates in its own learning

process by suggesting labels for expert supervision at each iteration. However, in a real

problem of diagnosis of parasites, impurities are exceptionally abundant, form several

groups in the feature space, and are quite similar to some species of parasites (see Figure

4.4b), resulting in a major challenge for existing methods in the literature.

In this context, under a scenario with the presence of the fecal impurity class, the

proposed strategies with a reduction process (i.e. Cluster-OPF-Rand, DBE and MST-BE

strategies) showed to be considerably less effective. The data reduction can discard crucial

samples to the learning process. In this case, it is important to be careful because some

parasite species and/or impurities can be out of the cluster border (See Figure 3.6).

Therefore, we also searched for a more robust solution in the presence of a diverse

class (such as impurities in the diagnosis of parasites), which previously organizes the

data but without discarding any of them. We propose a new active learning strategy,

called Root Distance-Based Sampling (RDS) [84] that pre-organizes the data and then

properly balances the selection of diverse and uncertain samples for training. As men-

tioned, our strategy follows the idea of uncertainty and diversity sampling [5, 33], aiming

to select samples from all classes faster (diversity) and, at the same time, the most difficult

samples (uncertainty) for classification. Moreover, after the first iteration, the classifier

also participates of the sampling choice in the selection process.

In our strategy, data organization is based on clustering, followed by the sorting of the

samples within each group based on their distance to their representative (root) sample

in the group (Figure 3.7). In the first iteration, the expert labels the root samples used

to train the first instance of the classifier. In the subsequent iterations, the current

classifier selects samples from each group according to the corresponding ordered list so

long as their classification does not match the class of the corresponding root. When

this condition is not satisfied, RDS selects uncertain samples in their decreasing distance

to the cluster’s root. This strategy allows us to explore data diversity by covering all

classes faster and, at the same time to select uncertain samples, which are more useful for

training the classifier for the succeeding iteration. Differently from most active learning

approaches, our strategy avoids reprocessing the large dataset at each learning iteration,

enabling the halting of sample selection after a desired number of samples per iteration

and so providing interactive response time.

The organization strategy is represented by Algorithm 4. From the clustering of Z2

(Line 1), we obtain the root set R (Line 2), as well as sets Ci of samples from each cluster

i, i = 1, 2, . . . , nc, where nc is the number of clusters. For each cluster set Ci, we compute

the distance d(ri, q) between its root ri and each sample q in Ci (Lines 3–7). As output,

we obtain organized learning sets Li, which are composed of samples in increasing order

of these (Line 8).
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(a) (b)

(c) (d)

Figure 3.6: An example of pipeline of the preprocessing (a priori reduction and organiza-
tion) performed by MST-BE strategy on the diagnosis of intestinal parasites. (a) under a
scenario without the presence of the fecal impurity class. (b) cluster roots and boundary
between distinct cluster samples that form the reduced learning set. (c) under a scenario
with the presence of the fecal impurity class. (d) samples (cluster roots and boundary
between distinct cluster samples) from the reduced learning set do not correspond to the
boundary between different class samples. This reduced set includes too many needless
impurities, besides it does not contain crucial (impurity) samples which were discarded
in the reduction process.

During the learning cycle, one sample at a time on each ordered set Li is labeled by

the current classifier, and becomes selected if it receives a different label than the one of

root ri from Ci. Note that, the classifier does not label all the samples in the dataset.

Both phases, classification and selection, are performed alternately until the number of

samples to be displayed to the expert at each iteration is reached. If there are no more
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(a) (b)

Figure 3.7: An example of pipeline of the preprocessing (a priori organization) performed
by RDS strategy. (a) selection of samples of each cluster (in each ordered list), i.e.
selection of samples closer to the roots and whose labels are distinct from those of the
roots, and samples in the decreasing distant order from their roots. (b) The most uncertain
samples and samples with greater diversity selected by RDS strategy.

Algorithm 4: Organization Strategy

input : A non-annotated learning dataset Z2.
output : Organized learning sets Li and a root set R.
auxiliaries: Sets Ci with samples of the cluster i = 1, 2, . . . , nc and the number nc

of clusters.

1 Ci, i = 1, 2, . . . , nc,← Compute clusters of Z2;
2 R ← cluster roots;
3 for each ri ∈ R, i = 1, 2, . . . , nc do
4 for each q ∈ Ci do
5 Compute d(ri, q)
6 end

7 end
8 Li ← Organize samples in Ci, i = 1, 2, . . . , nc by their increasing order of distance

to ri.

samples from Li whose label is different from the label of ri, we continue with the sampling

criterion of uncertain samples, selecting samples from Li in decreasing order of distance

from ri (i.e., the ones closer to the boundary between clusters are selected first).

Since the selected samples are automatically labeled by the current classifier, the ex-

pert just has to verify the assigned classes and annotate the misclassified ones. After the
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Algorithm 5: Selection Strategy

input : Organized learning sets Li, i = 1, 2, . . . , nc, and the root set R
output : Trained classifier
auxiliaries: An annotated training set Z1 and a sample set Z ′

1

1 Z1 ← R;
2 Expert annotates classes of roots in Z1;
3 while expert is not satisfied do
4 (Re-)train the classifier with Z1;
5 Z ′

1 ← new samples classified into distinct classes, following the order given by
Li, i = 1, 2, . . . , nc, or samples in the decreasing distant order from the root ri;

6 Expert accepts/corrects classes of samples in Z ′

1;
7 Z1 ← Z1 ∪ Z

′

1;

8 end

labels are confirmed/corrected by the expert, the newly annotated samples are incorpo-

rated into the training set and a new classifier instance is generated. As the classifier

improves at each iteration, the number of samples incorrectly classified is increasingly

reduced. In this way, the expert’s time and effort are also significantly diminished.

Algorithm 5 shows the selection strategy. After the pre-processing performed by the

clustering method (Section 2.2.2) in the organization process, we obtain sets R and Li,

comprised of the root of each cluster and ordered samples from each cluster Ci, respectively.

The initial training set Z1 consists of the roots that form the set R (Line 1). In Line 2,

the expert annotates the classes of the roots in Z1. The loop in Lines 3–8 encompasses

the processes of (re-)training and selection. At each iteration of the loop, a new classifier

is trained using the current training set Z1, and the samples Z ′

1 are selected, according

to the selection strategy described above, to be displayed to the expert.

The growth of the training set is controlled since only the most beneficial samples are

retained. Selecting samples of each cluster (in each ordered list Li), allows us to obtain

samples with greater diversity. On the other hand, the selection of samples closer to the

roots and whose labels are distinct from those of the roots, and samples in the decreasing

distant order from their roots, allows us to obtain the most uncertain samples for the

classifier.

3.4 Active Semi-Supervised Learning Strategy (ASSL)

Given the limited availability of labeled samples in contrast to an unbounded number of

unlabeled ones, semi-supervised learning (SSL) has become an increasingly popular learn-

ing approach. However, most of researches in this area typically assumes that the labeled
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set is given and fixed. Recent applications involving very large amounts of unlabeled sam-

ples would certainly benefit from a combination of active learning and semi-supervised

learning strategies, as this would allow for the identification and labeling of a small number

of better representative samples. Despite some efforts in active semi-supervised learning,

their success depends on an approach suitable to be applied to real large datasets.

We introduce a strategy, called Active Semi-Supervised Learning (ASSL) [80]. ASSL

is a novel integration of semi-supervised learning (proposed by [1] and described in Section

2.2.3) and a priori-reduction and organization criteria (proposed by [82]) for active learn-

ing. It differs from standard active learning in which all samples in the database have to

be classified and/or reorganized at each learning iteration. In the ASSL, the learning set

is substantially reduced and the organization of samples takes place only once. The ac-

tive learning strategy used here (and presented in Section 3.3.2) reduces the possibility of

selecting an irrelevant sample from a large learning set, since a well chosen size reduction

process and an a priori ordering allow essentially good informative samples.

Figure 3.8 illustrates an example of pipeline performed by ASSL strategy. In the semi-

supervised learning, the training set Z1 is composed of labeled and unlabeled samples. The

labeled samples will be selected from the reduced set, root (R) and boundary (Z ′

2) sets,

which are initially labeled by the clustering strategy. Later, those selected samples will

have their labels verified/corrected by the expert. The unlabeled samples will be selected

from Z ′′

2 comprised of the remaining samples from Z2\R∪Z ′

2. In the first learning iteration,

the roots of the clusters computed during the data reduction process are displayed to the

expert, who annotates their labels. These annotated samples, constitute the first labeled

set. The unlabeled set is selected in a randomized way with twice as many elements as

the labeled set. The union of these sets constitute the training set for the first instance

of the semi-supervised classifier.

During the learning cycle, the samples in the ordered list of edges of the MST are

labeled by the current classifier and the samples on edges that receive different labels are

selected. These two phases, classification and selection, are performed alternately until

the number of labeled samples to be displayed to the expert at each iteration is reached.

It does not require the classification of all samples in the dataset, at each iteration.

Furthermore, since the selected samples are automatically labeled by the current classifier,

as the expert verifies the assigned classes, he is only required to annotate the misclassified

ones. In this way, the expert’s time and effort are significantly reduced. As the classifier

improves at each iteration, the number of samples incorrectly classified is increasingly

reduced. After the labels are confirmed/corrected by the expert, the newly annotated

samples as well as the randomly chosen unlabeled ones are incorporated into the training

set and a new classifier instance is generated. Upon perceiving that an acceptable accuracy

has been reached, the expert can direct the final classifier to annotate what remains of the
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Figure 3.8: An example of pipeline performed by ASSL strategy.

dataset. In our experiments, we considered that an expert would be satisfied whenever

the measured accuracy remained stable or reached a sufficiently high level for a given

application.

Algorithm 6 shows ASSL active semi-supervised learning strategy. After the prepro-

cessing carried out by the clustering method, in the reduction process (Section 3.2.1), we

obtain sets R and Z ′

2, comprised of the root of each cluster and boundary edges, respec-

tively. The initial labeled set Z ′

1 consists of the roots that form the set R (Line 1). In

Line 2, the expert annotates the classes of the roots in Z1. The initial unlabeled set Z ′′

1

consists of randomized samples from the remaining unlabeled sample set Z ′′

2 (Lines 3–4).

In Line 5, we obtain the first training set Z1 formed by the labeled Z ′

1 and unlabeled Z ′′

1

sets. The loop on Lines 6–13 encompasses the processes of (re-)training and selection.

At each iteration, edges from Z ′

2 are analyzed. As edges are considered, their samples

are labeled by the current semi-supervised classifier and the ones with distinct classes

are selected to be displayed to the expert. In this way, the growth of the training set is
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Algorithm 6: Active Semi-Supervised Learning Strategy - ASSL

input : A learning dataset Z2, the boundary set Z ′

2 ⊂ Z2 of sorted MST
edges, the root set R ⊂ Z2 and the number of classes c

output : Trained semi-supervised classifier
auxiliaries: The unlabeled set Z ′′

2 , the training set Z1, the selected labeled
boundary set Z ′

1, and the selected unlabeled set Z ′′

1

1 Z ′

1 ← R;
2 Expert annotates classes of roots in Z ′

1;
3 Z ′′

2 ← Z2\R ∪ Z
′

2;
4 Z ′′

1 ← (2 · |Z ′

1|) random samples from Z ′′

2 ;
5 Z1 ← Z

′

1 ∪ Z
′′

1 ;
6 while user is not satisfied do
7 (Re-)train the semi-supervised classifier with Z1;
8 Z ′

1 ← new samples classified into distinct classes, following the order given by
Z ′

2;
9 Expert accepts/corrects classes of samples in Z ′

1;
10 Z ′′

1 ← (2 · |Z ′

1|) random samples from Z ′′

2 ;
11 Z1 ← Z1 ∪ Z

′

1 ∪ Z
′′

1 .

12 end

controlled since only the most beneficial labeled samples are retained and their labels are

propagated to the unlabeled samples. The learning cycle is repeated until the expert is

pleased with the success rate on the selected set.

A first instantiation (ASSL-OPF) of the active semi-supervised learning strategy was

developed to illustrate its effectiveness. It is based on the OPF methodology, while relying

on clustering and classification for the learning process. In this particular instantiation,

we used the active learning strategy MST-BE (proposed by [82] and presented in Section

3.3.2), as well as the semi-supervised learning strategy OPFSemi (proposed by [1] and

described in Section 2.2.3). Other instantiations can be developed, encompassing different

active learning methods and/or semi-supervised learning ones.



Chapter 4

Experiments and Results

In this Chapter, we describe the scenarios (Section 4.1), datasets (Section 4.2) and results

(Section 4.3) used in the experiments.

4.1 Scenarios

Since our paradigm aims at selecting a suitable set of samples to constitute the training

set used throughout the iterations, an appropriate measure of quality was required. To

achieve this goal, we compared the performance of each method (measuring the accuracy

on an unseen test set and the number of annotated samples during the learning process).

We also considered the computational time for selecting the most representative sam-

ples throughout the learning, as well as the time gain for classification on the reduced

learning set. For the active semi-supervised learning, we also presented the percentage of

propagated errors on the unlabeled set, as well as the number of known classes.

The proposed paradigm was evaluated against two baseline learning methods: Al-SVM

[95], which selects samples from the entire learning set at each iteration using an SVM

classifier, and the Rand method, in which samples are randomly selected from the entire

learning set. As one might expect, the wider choice of samples here does not necessarily

yield gains over the results of the proposed methods due to the benefits of clustering.

We show that our paradigm is effective in lessening the expert’s effort in data an-

notation in order to produce an accurate classifier. To demonstrate the effectiveness of

the proposed paradigm using different clustering techniques, we performed comparisons

using the OPF and kmeans algorithms for the reduction process. The kmeans algorithm

is well known and widely used. See [59] for a detailed implementation. The kmeans al-

gorithm finds k representatives r1,...,rk of the learning set, so as to minimize the sum of

the distance from the data samples to the nearest representative. Choosing the number

k of clusters is a general problem for all clustering algorithms, and a variety of more or

33



4.2. Datasets 34

less successful methods have been devised for this problem. In this work, in order to

obtain representative samples that cover all/most classes, we define the value of k as 2c,

where c is the number of classes. While kmeans requires specification, OPF can estimate

the number of clusters (higher than 2c). Other clustering techniques could potentially be

employed in the organization process as well.

Similarly, alternative supervised classifiers may be considered in the classification and

selection processes. We compared the performance of our paradigm using SVM and OPF

classifiers, due to the extensive use of the former, and the considerable advantages (such

as speed, simplicity, being multi-class, parameter independence) over SVMs offered by

the latter [68] when handling large datasets. In order to facilitate the comparison among

the methods, when applicable, they were labeled as a triple, consisting of the cluster-

ing method, active learning method, and classification method, separated by an under-

score character. The methods were denoted as kmeans method OPF, OPF method OPF,

kmeans method SVM, OPF method SVM, and Al-SVM.

To attain unbiased analysis, we considered the size of the selected set of each iteration

as being the same for all approaches. For sample selection, we established the number

of samples per iteration as 2 times the number of classes. The results reported in the

Section 4.3 were compiled from the average of experiments run 10 times, with randomly

generated sets of samples for the learning and test sets, for accuracy measures. For all

datasets used, we chose 80% of the available samples for learning and 20% for testing.

4.2 Datasets

The experiments were conducted on real-world datasets from very diverse domains. The

first four (Faces, Statlog, Pendigits and Covtype) datasets are public. The last two

(Cowhide and Parasites) ones are proprietary and were obtained from real applications.

Table 4.1 presents details (number of samples, attributes, and classes) of the datasets

used in the experiments.

• Faces: this dataset, obtained from University of Notre Dame [23], was originally

designed to study the effect of time on face recognition. The images were acquired

in several sessions weekly with the participation of distinct individuals. In these

sessions, different expressions (neutral, smiling, sad) were captured. Figure 4.1

displays samples from this dataset.

• Statlog: this is the Landsat Satellite dataset obtained from the UCI Machine Learn-

ing Repository [26], which consists of the multi-spectral values of pixels in 3x3 neigh-

borhoods in a satellite image and the classification associated with the central pixel

in each neighborhood;
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Table 4.1: Number of samples, attributes and classes of the datasets

Dataset Samples Attributes Classes

Faces 1,864 162 54
Statlog 2,310 19 7

Pendigits 10,992 16 10
Covtype 581,012 54 7
Cowhide 1,690 160 5
Parasites 1,660 262 15

Figure 4.1: Examples of images from the Faces dataset.

• Pendigits: this is the Pen-Based Recognition of Handwritten Digit dataset obtained

from the UCI Machine Learning Repository [25], that consists of 10,992 samples in

16 dimensions, distributed in 10 classes corresponding to the digits [0...9]. The 16

dimensions are drawn by re-sampling from handwritten digits. This digits database

was built from a collection of 250 samples from 44 writers.

• Covtype: this is the Covertype dataset obtained from the UCI Machine Learning

Repository [21], that consists of 581,012 samples, 7 classes, and 54 features. This is

a very heterogeneous set (see Table 4.2).

• Cowhide: this is a proprietary dataset [22] obtained from a real application for the

classification of defects in cowhide. The main reason for selecting samples of cowhide

defects is the great complexity of their evaluation, especially in areas close to the

vicinity of different defects; in addition, it is a dataset of current use. Five types of

regions of interest in the Wet-Blue1 processing stage were selected, namely, scabies,

ticks, hot-iron, cut, and regions without defect (Figure 4.2).

• Parasites: this is a proprietary dataset [24] composed of images of parasites, provided

by a research laboratory at the University of Campinas, where fecal parasitological

examination is performed for diagnosis of enteroparasitoses present in humans. A

particularity of this set is that each class contains a different number of images

1Wet-Blue leather is an intermediate stage between untanned and finished leather.
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motorized microscope with digital camera to acquire images from the slides; and computer

methods for microscope and camera control, image segmentation, feature extraction, and

sample recognition. We used this system to automatically acquire images from microscopy

slides and form three datasets. The first dataset (d1) containing 1,944 parasites (without

impurities) as segmented by the system and carefully labeled by an experienced expert

in parasitology. The second dataset (d2) with 5,948 samples, containing 1,944 parasites

and 4,004 impurities. The third dataset (d3) consists of 141,059 unlabeled samples. In

this case, however, we used different versions of the stool processing technique, the classes

are unbalanced, not all classes are present, and the proportion between impurities and

parasites is much higher. Indeed, the third dataset better reflects the circumstances in a

laboratory routine.

The fecal samples were obtained from several regions of the state of São Paulo: uni-

versity hospitals at the University of Campinas (UNICAMP) and at the São Paulo State

University (UNESP), as well as the Ouro Verde Hospital, and were processed in our

laboratory at the Institute of Computing, UNICAMP.

The parasites are from the 15 most common species in Brazil (see Figure 4.4a): As-

caris lumbricoides eggs, Enterobius vermicularis eggs, Ancylostomatidae eggs, Trichuris

trichiura eggs, Hymenolepis nana eggs, Hymenolepis diminuta eggs, Taenia spp. eggs,

Schistosoma mansoni eggs, Strongyloides stercoralis larvae, Entamoeba histolytica/E.dispar

cysts, Giardia duodenalis cysts, Entamoeba coli cysts, Endolimax nana cysts, Iodameba

bütschlii cysts, and Blastocystis hominis cysts. The impurities constitute the greatest

challenge, being higher in number, diverse, and also often similar to some species of

parasites (see Figure 4.4b).

4.3 Results

This Section discusses the results of the experiments performed on the aforementioned

datasets for each proposed strategy.

4.3.1 Cluster-OPF-Rand Method

A first instantiation, Cluster-OPF-Rand, of the reduction strategy was developed in order

to illustrate its effectiveness. Cluster-OPF-Rand is based on the Optimum-Path Forest

(OPF) methodology, while relying on clustering and classification for the learning pro-

cesses. For evaluation, we developed a baseline approach (OPF-Rand) using the OPF

classifier and random selection of training samples from the entire dataset. At each learn-

ing iteration, the same member of random samples is selected from the entire dataset for

OPF-Rand, and from the reduced dataset, for the Cluster-OPF-Rand. This number of
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Table 4.3: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand
on the Faces dataset.

Faces Accuracy (%) Total Annotated Images (%)
Iteration Cluster-OPF-Rand OPF-Rand Cluster-OPF-Rand OPF-Rand

1 94.85 85.11 6.51 6.51
2 97.27 94.21 7.59 8.51
3 98.06 97.35 8.11 9.40
4 98.57 98.35 8.41 9.78
5 98.85 98.78 8.68 9.98

Table 4.4: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand
on the Parasites dataset.

Parasites Accuracy (%) Total Annotated Images (%)
Iteration Cluster-OPF-Rand OPF-Rand Cluster-OPF-Rand OPF-Rand

1 92.68 79.44 1.98 1.98
2 94.12 88.50 2.54 2.66
3 94.94 91.60 2.91 3.06
4 95.30 92.67 3.12 3.29
5 95.21 93.64 3.36 3.54

In summary, Cluster-OPF-Rand enables to achieve the desired results, by using the

knowledge of both expert and classifier, at each learning iteration, along with the reduction

strategy developed. Experiments with datasets from distinct applications showed that

Cluster-OPF-Rand attains higher accuracy sooner than those presented by the baseline

OPF-Rand and random selection of training samples from the entire dataset. By reducing

the learning dataset to a smaller and more representative set, Cluster-OPF-Rand also

minimizes the number of learning iterations as well as the annotation effort.

Using the Faces dataset (Table 4.3), both methods achieve similar accuracies and both

can be improved with more expert annotations and more learning iterations. However,

Cluster-OPF-Rand allows the learning process to stop earlier in comparison with OPF-

Rand. Furthermore, it is important to highlight that, out of 1,469 samples only 132.94

(about 9.05%) had to be annotated for the proposed method to achieve accuracy above

99%, in its last (9th) iteration using all samples on the reduced set. These results are

similar to those for the remaining datasets (Tables 4.4 and 4.5). This shows that our

method can outperform OPF-Rand in effectiveness.

Considering the Parasites dataset (Table 4.4), in the first iteration, Cluster-OPF-Rand

achieves accuracies above 92% with less than 2% of the learning samples annotated by
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Table 4.5: Accuracies and total annotated images for Cluster-OPF-Rand and OPF-Rand
on the Pendigits dataset.

Pendigits Accuracy (%) Total Annotated Images (%)
Iteration Cluster-OPF-Rand OPF-Rand Cluster-OPF-Rand OPF-Rand

1 88.80 70.36 0.13 0.13
2 90.96 82.97 0.22 0.25
3 91.99 87.49 0.29 0.30
4 92.89 89.72 0.35 0.35
5 93.70 91.25 0.40 0.40

the expert, while the randomized method OPF-Rand reaches similar accuracies only from

the fourth iteration on and requiring the expert to annotate more than 3% of the learning

samples. Furthermore, out of 1,323 samples only 77.7 (about 5.87%) had to be annotated

for Cluster-OPF-Rand to achieve an accuracy above 97%, in its last (25th) iteration using

all samples in the reduced set.

For the Pendigits dataset (Table 4.5), our method obtains high accuracies in all learn-

ing iterations. In the first one, it presents an accuracy of 88.80%. In the remaining

iterations, the accuracies tend to increase continuously, reaching over 99%. Furthermore,

out of 8,791 samples only 79.9 (about 0.90%) had to be annotated for the proposed method

to achieve accuracy above 97% in the 30th iteration. In a practical situation, an expert

would be very pleased at this point, mainly considering that the randomized method

(OPF-Rand) learning process consists of 440 iterations, when using all available learning

samples.

Figure 4.5a-b illustrates the mean accuracies and the number of samples annotated by

the expert at each iteration for each dataset using Cluster-OPF-Rand, respectively. We

used logarithmic scales, due to the size of these datasets. Our method requires a greater

effort by the expert in the first few iterations, since the selected samples are the most

difficult to classify. However, looking at the end of the learning process, one can observe

that the proposed method demands less effort from the expert, who annotates much fewer

samples after some iterations (reaching almost no annotations at all).

The reduction strategy becomes very important in a process where a goal is to limit

the number of iterations to as few as possible. In this context, selecting samples that

speed up the improvement of the classifier through the iterations becomes critical. The

more difficult to classify the selected samples in the current iteration are, the more useful

they are to improve the classifier for the next iteration. Therefore, the selection of hard to

classify samples coupled with the early knowledge of all classes allow for higher accuracy

sooner.
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Figure 4.6: Comparison for DBE strategy on the Faces dataset. (a) Mean accuracy of
the methods on unseen test sets. (b) Annotated images, as a percentage of the displayed
samples, in each iteration.

considered in the classification and selection processes of the learning process. We chose

OPF-based classification since it offers considerable advantages and has been used very

successfully for different applications [68].

To compare the effectiveness of each method, we considered the accuracy measured

(on an unseen test set obtained from each dataset) throughout the learning iterations as

well as the percentage of annotated images in each iteration. Figures 4.6 and 4.7 show

these results for the datasets Faces and Parasites, respectively.

Both DBE methods started off with a better performance than the Rand method,

for all datasets analyzed. Moreover, the DBE ones achieved high accuracies earlier (see

Figures 4.6a and 4.7a). To reach the same accuracies, the Rand method required more

learning iterations than the DBE ones. Regarding the number of annotated images, the

DBE methods required more effort from the expert in the beginning, but after a few

iterations DBE did not involve much work (see Figures 4.6b and 4.7b).

Considering the Faces dataset, as early as on the third iteration, DBE reached accu-

racies above 98% using both OPF and kmeans clustering, while the randomized method

required two extra iterations to achieve similar accuracies. One could safely assume that

an expert would be pleased at this point, in any practical situation. One can also ob-

serve that under DBE methods, from the first iteration onward, the number of images

annotated by the expert decreased drastically, reaching 0% by the end of their learning

cycle. The Rand method required more interactions with the expert for the annotation

of mislabeled samples for a large number of iterations, namely, up until its 14th and last

iteration. See Figure 4.6b. The reason for this behavior is the absence of any strategy for

reduction or prioritization of samples and simply the reliance on randomness, on a large

dataset. Regarding the DBE methods, using OPF and kmeans clustering in the reduction
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Figure 4.7: Comparison for DBE strategy on the Parasites dataset. (a) Mean accuracy of
the methods on unseen test sets. (b) Annotated images, as a percentage of the displayed
samples, in each iteration.

process, the OPF-DBE reaches better performance (more quickly) than the kmeans-DBE.

Moreover, out of 1,469 learning samples, only about 10% had to be annotated by the ex-

pert for OPF-DBE (Table 4.6) in order to achieve an accuracy above 99%, on its last

iteration after processing all samples in the reduced dataset.

Overall, these results are similar to those observed for the Parasites dataset (Fig-

ure 4.7). While DBE methods behave with a broadly superior performance, for the Rand

method the learning process is fairly slow in reaching equally high accuracies and requires

more iterations. This shows that the proposed strategy outperforms Rand in effective-

ness. On the 10th iteration, DBE methods reach accuracies above 97%, while Rand can

achieve similar accuracies only after the 26th iteration. It is worth noting that while the

reduction strategy can decrease by up to fifty percent the number of samples available

for learning (dropping the number of required iterations from 45 to 23 for OPF-DBE and

from 45 to 26 for kmeans-DBE, see Figure 4.7b), the reduced set is comprised mostly

of relevant samples since accuracies are high and the number of images annotated using

DBE methods are smaller than with Rand. OPF-DBE reached an accuracy above 98%,

with the annotation of only 6.99% of the available 1,323 samples by its last iteration.

See Table 4.6. However, the Rand method required interactions with the expert (and

annotations) until its last (45th) learning iteration (Figure 4.7b).

Observe that the annotation of a smaller number of samples was not always achieved

by DBE strategy since, in the first few iterations (Figure 4.7b), it selects more difficult

samples to be classified. It is important to highlight that the harder to classify the selected

samples are the more useful they will be to improve the classifier for the next iteration.

Selecting images that speed up the improvement of the classifier throughout the iterations

is essential. DBE enables one to obtain a better classifier with a very small number of
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Table 4.6: Total size of the learning set |Z2|, total number of annotated images, accuracies
(in percentage) and computational time gains on two datasets for OPF-DBE.

datasets |Z2| annotated accuracy time gain
Faces 1,469 10.08% 99.42% 9.85×

Parasites 1,323 6.99% 98.24% 14.63×

iterations and interactions due to the reduction, organization and selection strategies.

This is particularly useful in a process where a goal is to limit the number of iterations

to as few as possible.

Note that all methods will gradually improve when more expert annotations and more

learning iterations are allowed. However, DBE enables the learning process to stop earlier

in comparison with the randomized method. It is well known that on an actual field

environment, a large number of learning iterations is tiresome and furthers human errors

in the annotation process which, consequently, affects the quality of the classifier. In our

experiments, we discarded the possibility of misannotations by the expert, which, by the

way, would increase the number of images annotated by the expert on the Rand method,

due to its intensive interaction through many late learning iterations.

Let us present evidence that both proposed strategies inherent to DBE have specific

and complementary roles. The reduction strategy through clustering improves the knowl-

edge of samples from most/all classes ever since the first iteration, as well as refines the

larger learning set by decreasing it into a smaller relevant set. Observe on all graphs

(Figures 4.6a and 4.7a), that the first iteration of DBE provides higher accuracies than

Rand. Therefore, the roots of the clusters caused a very positive impact on the perfor-

mance of the first classifier. As consequence, it improves selection of new samples and the

performance gain of DBE over Rand continues along the subsequent iterations.

The organization strategy of prioritizing samples based on sorting criteria enables

the choice of more useful samples from the reduced set and consequently the classifier

learns more quickly. The growth of accuracy being faster for DBE than for Rand shows

the benefits of the proposed sorting strategy. Hence, the reduction and sorting strategy

allows for a better selection from a small relevant subset.

Although the OPF classifier is many times faster than other popular methods, such

as SVM and ANN-MLP, the classification time on Z ′

2 amounted to about 1/10 and 1/15

of the classification time on Z2 for the Faces and Parasites datasets, respectively. This

gives us an idea of the efficiency gain of OPF-DBE with respect to other active learning

approaches that re-classify the entire Z2 at each iteration of the learning process. Table

4.6 presents this gain, as well as mean accuracies, total annotated images and the total

size of the learning set Z2 on each dataset for OPF-DBE.
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4.3.3 MST-BE Method

In this Section, we evaluated the proposed strategy (MST-BE) using the traditional ran-

dom selection process as baseline. To demonstrate the effectiveness of the proposed

strategy using different clustering techniques, we performed comparisons using OPF and

kmeans algorithms for the reduction process. We denoted the MST-BE methods as OPF-

MST and kmeans-MST. In this work, we also compared the performance of our strategy

using SVM and OPF classifiers. The MST-BE methods were denoted as MST-OPF and

MST-SVM. To compare the effectiveness of each method, we considered the accuracy

measured (on an unseen test set obtained from each dataset) throughout the learning

iterations as well as the percentage of annotated images in each iteration.

Figures 4.8, 4.9 and 4.10 show the results using OPF-MST, kmeans-MST and Rand

for the datasets Faces, Parasites and Pendigits, respectively. As previously mentioned,

alternative supervised classifiers may be considered in the classification and selection

processes. Initially, all results have been generated by using the OPF classifier, since

it has demonstrated considerable advantages in effectiveness and efficiency. Both MST-

BE methods (OPF-MST and kmeans-MST) started off with a better performance than

the Rand method, for all datasets analyzed. Moreover, the MST-BE ones achieved high

accuracies earlier (see Figures 4.8a, 4.9a and 4.10a). To reach the same accuracies, the

Rand method required more learning iterations than the MST-BE ones. Regarding the

number of annotated images, the MST-BE methods required more effort from the expert

in the beginning, but after a few iterations MST-BE did not involve much work (see

Figures 4.8b, 4.9b and 4.10b).

Considering the Faces dataset, as early as on the third iteration, MST-BE reached

accuracies above 99% using both OPF and kmeans clustering, while the randomized

method required five extra iterations to achieve similar accuracies. One can also observe

that under MST-BE methods, from the first iteration onward, the number of images

annotated by the expert decreased drastically, reaching 0% by the end of their learning

cycle. The Rand method required more interactions with the expert for the annotation

of mislabeled samples for a large number of iterations, namely, up until its 14th and last

iteration (see Figure 4.8b). The reason for this behavior is the absence of any strategy

for reduction or prioritization of samples and simply the reliance on randomness, on a

large dataset. Regarding the MST-BE methods, using OPF and kmeans clustering in

the reduction process, the OPF-MST reaches better performance (more quickly) than

the kmeans-MST. Moreover, out of 1,469 learning samples, only about 10.50% had to

be annotated by the expert for OPF-MST (Table 4.7) in order to achieve an accuracy

above 99%, on its last (8th) iteration after processing all samples in the reduced dataset.

Furthermore, OPF-MST presented a speed up of about 9.31 times in classification time

over the traditional method where the entire learning set is classified at each iteration.
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Figure 4.8: Comparison for MST-BE strategy using the OPF classifier on the Faces
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.
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Figure 4.9: Comparison for MST-BE strategy using the OPF classifier on the Parasites
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.

Overall, these results are similar to those observed for the Parasites and Pendigits

datasets (Figures 4.9 and 4.10). While MST-BE methods behave with a broadly superior

performance, for the Rand method the learning process is fairly slow in reaching equally

high accuracies and requires more iterations. This shows that the proposed strategies

outperform Rand in effectiveness.

Using the Parasites datasets, on the 6th iteration, OPF-MST reaches accuracy above

97%, while kmeans-MST and Rand can achieve similar accuracies only after the 7th and

26th iteration, respectively. It is worth noting that while the reduction strategy can
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Table 4.7: Total size of the learning set Z2, total number of annotated images, mean
accuracies ± standard deviations and computational time gains on three datasets for
OPF-MST using the OPF classifier.

datasets |Z2| annotated accuracy ± std time gain
Faces 1,469 10.08% 99.42% ± 0.29 9.31

Parasites 1,323 6.99% 98.24% ± 0.62 10.35
Pendigits 8,791 4.21% 99.42% ± 0.04 9.40
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Figure 4.10: Comparison for MST-BE strategy using the OPF classifier on the Pendigits
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.

decrease by up to fifty percent the number of samples available for learning (dropping the

number of required iterations from 45 to 23 for OPF-MST and from 45 to 26 for kmeans-

MST, see Figure 4.9b), the reduced set is comprised mostly of relevant samples since

accuracies are high and the expert’s effort in data annotation using MST-BE methods is

smaller than with Rand. OPF-MST reached an accuracy above 98%, with the annotation

of only 8.91% of the available 1,323 samples by its last (23th) iteration (see Table 4.7).

However, the Rand method required interactions with the expert (and annotations) until

its last (45th) learning iteration (Figure 4.9b). In regard to computational time, OPF-

MST was 10.35 times faster than the traditional method where all samples in the learning

set are classified at each iteration.

With the Pendigits dataset (Figure 4.10), out of 8,791 samples only about 4% had to be

annotated for the OPF-MST to achieve accuracy above 99%. Regarding to computational

time, OPF-MST was about 9.40 times faster than the traditional method where the entire

learning set is classified at each iteration.
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Figure 4.11: Comparison for MST-BE strategy using the OPF clustering on the Faces
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.

Observe that the annotation of a smaller number of samples was not always achieved

by MST-BE methods since, in the first few iterations (Figures 4.8b-4.10b), it selects more

difficult samples to be classified. It is also important to highlight that the harder to

classify the selected samples are, the more useful they will be to improve the classifier

for the next iteration. Requiring a greater effort from the expert in the beginning of

the learning process is a small price to pay and corresponds to any expert’s expectation.

The experts are willing to spend extra effort interacting in the first few iterations to

make the learning faster. It is important to emphasize that, in the proposed paradigm,

the expert’s time and effort are reduced to none after just a few iterations. From the

expert’s point of view, the expectation of annotating misclassified samples after many

iterations is tiresome and induces the perception of non-convergence, as it occurs with

the randomized method. Moreover, it is well known that on an actual field environment,

due to the expert’s fatigue, errors may be introduced in the annotation process, which,

consequently, affects the quality of the classifier. In our experiments, we discarded the

possibility of misannotations by the expert, which, by the way, would increase the number

of images annotated on the Rand method.

To verify the effectiveness of the proposed paradigm using different classifiers, we also

performed comparisons between MST-BE and Rand methods using SVM-based classifi-

cation. Figures 4.11, 4.12 and 4.13 present the graphs for MST-SVM and Rand-SVM

using the Faces, Parasites and Pendigits datasets, respectively. In this case, the OPF-

based clustering was used in the reduction process, due to the best results presented over

the kmeans clustering. In addition to achieving higher accuracies sooner (Figures 4.11a,

4.12a and 4.13a), MST-SVM requires fewer learning iterations than those presented by
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Figure 4.12: Comparison for MST-BE strategy using the OPF clustering on the Parasites
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.
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Figure 4.13: Comparison for MST-BE strategy using the OPF clustering on the Pendigits
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.

Rand-SVM. In MST-SVM, after a few iterations, the expert no longer needs to correct

the label of any sample (see Figures 4.11b, 4.12b and 4.13b). As we can see (Table 4.8),

the MST-BE methods using both OPF and SVM classifiers obtained similar accuracies.

However, when we compared their classification time on the reduced learning set Z ′

2, OPF

classifier presents a gain of 8.30, 3.81 and 5.52 times for Faces, Parasites and Pendigits,

respectively.

In order to demonstrate the applicability and effectiveness of the proposed method

in a practical situation (with thousand of samples), we also performed experiments with
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Table 4.8: Mean accuracies ± standard deviations in the third iteration evaluated on
three datasets for MST-BE using OPF clustering in the reduction process and OPF and
SVM classifiers in the classification process.

datasets OPF SVM
Faces 98.35% ± 0.44 99.11% ± 0.59

Parasites 93.66% ± 0.64 94.31% ± 0.74
Pendigits 92.13% ± 0.81 91.31% ± 1.40
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Figure 4.14: Comparison for MST-BE strategy using the OPF classifier on the Covtype
dataset. (a) Mean accuracy of the methods on unseen test sets. (b) Annotated images,
as a percentage of the displayed samples, in each iteration.

the Covtype dataset (Figure 4.14), a larger and more challenging dataset, given its size

and high heterogeneity, i.e., its great variability in the number of samples in each class

(see Table 4.2). Hence, for this dataset, we present only the results using the faster

technique (OPF) for both reduction and classification processes. The results were similar

to those observed previously. It is worth noting that the proposed reduction strategy

performed a significant downsizing of the learning set (over ninety percent). Moreover,

out of 464,807 samples only less than 1% had to be annotated for the OPF-MST to achieve

accuracy above 75%. Notice that all methods will gradually improve when more expert

annotations and more learning iterations are allowed. Selecting images that speed up the

improvement of the classifier throughout the iterations is essential. MST-BE enables one

to obtain a better classifier with a very small number of iterations and interactions due to

the reduction, organization and selection strategies. This is particularly useful in a process

where a goal is to limit the number of learning iterations to as few as possible. Regarding to

computational time, OPF-MST was about 24.68 times faster than the traditional method
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where the entire learning set is classified at each iteration.

4.3.4 RDS Method

In this Section, initially, we present a comparison between the proposed methods (Cluster-

OPF-Rand, DBE, and MST-BE). To compare the effectiveness of each method, we consid-

ered the accuracy measured (on an unseen test set obtained from the dataset) throughout

the learning iterations as well as the percentage of annotated images in each iteration,

using the first (d1) dataset (described in Section 4.2.1) without impurities. Figure 4.15

shows that these methods were advances throughout this research towards an automatic

classification of human intestinal parasites.

Therefore, RDS was validated against two state-of-the-art methods and evaluated with

distinct clustering and classification techniques. Its version with both techniques based on

optimum-path forest presented the best result. We have also evaluated this best method

in a realistic scenario, which better reflects the situation in laboratory routine, using a

dataset with over 140,000 unlabeled samples with unbalanced classes, not all classes, and

a lot of impurities. In this case, the expert participated of the active learning process

which involved label verification of only a small portion of the dataset.

We used the first dataset (d1) to compare the RDS’s performance (accuracy on an

unseen test set) against two baseline active learning methods: Al-SVM [95], which selects

samples from the entire learning set at each iteration using an SVM classifier, and the

most competitive one, MST-BE [82], which also uses clustering to reduce and organize

the learning set a priori, and interrupts sample selection when the classifier detects the

desired number of samples per iteration. We also compared RDS with a random method

in which samples were randomly selected from the entire dataset. For clustering, we

evaluated the OPF and kmeans techniques. For classification, in the selection process, we

used the SVM and OPF classifiers.

In order to facilitate the comparison among methods, when applicable, they

were labeled as a triple, consisting of the clustering method, active learning

method, and classification method, separated by an underscore character. The

methods were denoted as Kmeans RDS OPF, OPF RDS OPF, Kmeans RDS SVM,

OPF RDS SVM, Kmeans MST-BE OPF, OPF MST-BE OPF, Kmeans MST-BE SVM,

OPF MST-BE SVM, and Al-SVM.

For sample selection, we established the number of samples per iteration as 2 times

the number of classes. First, we evaluated the methods using two versions of the labeled

dataset, with and without impurities. This is important to evaluate the robustness of the

methods with respect to the presence of such diverse class. The unlabeled dataset with

141,059 samples was used only to validate the best method by the parasitology specialist.
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Table 4.10: Mean accuracies ± standard deviations of the methods on the Parasites
dataset (d2) with impurities for the 10th iteration.

OPF OPF Kmeans Kmeans OPF OPF Kmeans Kmeans

methods MST-BE MST-BE MST-BE MST-BE RDS RDS RDS RDS Al- Rand

OPF SVM OPF SVM OPF SVM OPF SVM SVM OPF

accs 89.18% 85.96% 83.19% 81.40% 91.58% 90.27% 87.86% 84.90% 77.93% 74.07%
std dev 1.18± 1.72± 1.51± 1.83± 0.90± 1.79± 1.50± 1.53± 1.61± 2.10±

clustering and classification methods, while MST-BE required over ten extra iterations to

achieve similar accuracies. For the Al-SVM method, the learning process was fairly slow in

reaching equally high accuracies, and required over fifty iterations. Moreover, considering

only the classification times on the reduced learning set of the proposed method, rather

than on the entire learning set of the traditional methods, RDS provided efficiency gains

of 13 times on the tested datasets.

Comparing RDS method with its variant classification methods, we can say that the

OPF and SVM classifiers presented different performance. OPF classifier showed a more

stable behavior. Besides, its learning times in the classification and selection processes

are up to 5 times shorter than SVM learning times. Moreover, if the training set grows

large (e.g., 7,000 samples), the response time is considerably affected, due to the time to

retrain the OPF classifier, but it is still interactive time. Given that the training time

for SVM is much higher due to its parameter optimization, the response time would be

impractical. Therefore, the importance of investigating fast training algorithms for the

existing classifiers is paramount.

In general, the RDS method (using both OPF clustering and classifier) had the best

performance (achieving higher accuracies and decreasing the number of annotated images

earlier, as well as presenting shorter learning times) in the presence of impurities. There-

fore, we selected OPF RDS OPF method for evaluation by the specialist on the chosen

realistic dataset d3. Table 4.11 presents the total size of the learning set Z2, total anno-

tated images, mean accuracies with standard deviations and computation time in seconds

for selection and classification on each dataset for OPF RDS OPF.

In this case, an expert interface was developed to allow sample verification (manual

annotation first and subsequently label correction/confirmation) by a parasitologist (see

Figure 4.16). In order to fit the images of the returned samples in a single display for

verification, we set the system to select 24 samples per iteration. The expert could

also remove samples that did not have enough visual and morphological information to

indicate whether it was a parasite or an impurity. In addition, a 10-fold cross-validation

was calculated in the training set to predict the accuracy per iteration and guide the

expert when to stop the learning process. To evaluate the final accuracy, a random subset

of the remaining unlabeled samples was selected and automatically annotated by the final
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Table 4.11: Total size of the learning set Z2, total number of annotated images, mean
accuracies ± standard deviations and computational time in seconds for selection and
classification on three Parasites datasets for OPF RDS OPF.

datasets |Z2| annotated accuracy ± std time
d1 1,455 4.47% 96.99% ± 0.99 0.18
d2 4,458 2.94% 91.58% ± 0.90 0.27
d3 141,059 6.9% 88.00% 52.03

Figure 4.16: Expert interface of software used by the parasitologist to verify the label of
the selected samples.

classifier. These samples were evaluated by the expert, who indicated the classification

errors to compute the final accuracy.

Figure 4.17 shows the 10-fold cross-validation average accuracy and the percentage of

annotated images in each iteration. We can see that the predicted accuracy started high

and decreased when new species were detected by the expert, until it stabilized within a
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(a) (b)

Figure 4.18: Comparison for ASSL-OPF strategy on the Statlog dataset. (a) Mean ac-
curacy of the methods on unseen test sets. (b) Propagated errors, as a percentage of the
unlabeled samples selected.

(a) (b)

Figure 4.19: Comparison for ASSL-OPF strategy on the Faces dataset. (a) Mean accuracy
of the methods on unseen test sets. (b) Propagated errors, as a percentage of the unlabeled
samples selected.

Statlog, Faces, Pendigits, Cowhide and Parasites, respectively. As we can observe, the

ASSL-OPF approach had a better performance than the RSSL-OPF approach, for all

datasets analyzed. ASSL-OPF achieved high accuracies earlier (see Figures 4.18a, 4.19a,

4.20a, 4.21a and 4.22a). Moreover, the ASSL-OPF approach presented fewer propagated

errors on unlabeled samples (4.18b, 4.19b, 4.20b, 4.21b and 4.22b).

Considering the Statlog dataset, as early as on the second iteration, the ASSL-OPF

reached accuracies over 85%, while the randomized approach achieved similar accuracies

only on the sixth iteration (Figure 4.18a). Besides, the RSSL-OPF approach propagated

many more errors on the unlabeled set, namely, up to 40% of that set (see Figure 4.18b).

The reason for this behavior is the absence of any strategy for reduction or prioritization

of samples and simply the reliance on randomness, on a large dataset.
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(a) (b)

Figure 4.20: Comparison for ASSL-OPF strategy on the Pendigits dataset. (a) Mean
accuracy of the methods on unseen test sets. (b) Propagated errors, as a percentage of
the unlabeled samples selected.

(a) (b)

Figure 4.21: Comparison for ASSL-OPF strategy on the Cowhide dataset. (a) Mean
accuracy of the methods on unseen test sets. (b) Propagated errors, as a percentage of
the unlabeled samples selected.

Overall, these results are similar to those observed on the Faces, Pendigits, Cowhide

and Parasites datasets (Figures 4.19, 4.20, 4.21 and 4.22). While the ASSL-OPF approach

behave with a broadly superior performance, for the RSSL-OPF approach the learning

process is fairly slow in reaching equally high accuracies and requires more iterations to

identify samples from all classes (see Table 4.12). This shows that the proposed approach

outperform RSSL-OPF in effectiveness.

In order to appreciate the quality of the results obtained on each dataset by ASSL-

OPF, we also present the total number of samples annotated/corrected by the expert,

mean accuracies with standard deviations and computational time for selecting the most

representative samples at the end of the learning cycle (Table 4.13). This highlights the

superior efficacy and efficiency advantage of the ASSL-OPF on practical applications.
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(a) (b)

Figure 4.22: Comparison for ASSL-OPF strategy on the Parasites dataset. (a) Mean
accuracy of the methods on unseen test sets. (b) Propagated errors, as a percentage of
the unlabeled samples selected.

Table 4.12: Total number of known classes in the first three iterations for ASSL-OPF and
RSSL-OPF approaches.

Statlog Faces Pendigits Cowhide Parasites
Iteration ASSL- RSSL- ASSL- RSSL- ASSL- RSSL- ASSL- RSSL- ASSL- RSSL-

OPF OPF OPF OPF OPF OPF OPF OPF OPF OPF

1 7.30 7.30 54.00 46.80 10.00 8.67 5.00 4.10 14.80 12.00
2 8.00 8.00 54.00 53.00 10.00 9.83 5.00 4.90 15.00 14.40
3 8.00 8.00 54.00 53.80 10.00 10.00 5.00 5.00 15.00 14.80

Table 4.13: Total size of the learning set Z2, total number of annotated samples, mean ac-
curacies ± standard deviations and selection computational times (in minutes) for ASSL-
OPF.

datasets |Z2| annotated accuracy ± std time
Statlog 1,761 8.74% 90.79% ± 0.91 0.14
Faces 1,469 9.12% 99.26% ± 0.25 0.13

Pendigits 8,791 4.72% 98.76% ± 0.48 25.22
Cowhide 1,351 2.27% 99.66% ± 0.10 0.56
Parasites 1,455 6.45% 97.82% ± 1.69 0.85

Our approach increases the probability of the most representative samples being se-

lected earlier and allows for a more efficient and effective training of the classifiers, leading

to a considerable reduction in classifier errors after just a few iterations. This amounts

to a major advantage of our approach, since it requires very few iterations in the learning
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process to reach a high accuracy, while decreasing the propagated errors on the unlabeled

set. Moreover, unlike the traditional active learning approaches, once the learning set

has been organized, ASSL-OPF does not require classification and reorganization of all

samples in the dataset at each iteration. For this reason, the selection process turns out

to be very fast even for large datasets.



Chapter 5

Conclusions and Extensions

Advances in data acquisition and storage technologies have provided large datasets to

support research, technological development, entertainment, medical diagnosis, among

others. Annotation is the most effective way to organize data and retrieve the desired in-

formation. However, as the datasets grow large, manual annotation becomes impractical,

and despite the efforts in automatic annotation, their success usually depend on a much

smaller training set. Active learning strategies, aim to select a considerably lower number

of the most informative samples to train a pattern classifier with expert’s supervision.

However, the majority of them cannot cope with large datasets, once they fall in a single

paradigm which requires, at each learning iteration, the classification and/or organization

of the entire dataset.

This PhD research addressed these issues by proposing active learning methods that

are effective and efficient, in the number of iterations and response time for each itera-

tion. It presents a priori data reduction and organization strategies, as well as strategies

for selecting samples from the reduced and/or organized dataset. It describes a learning

framework gathering the paradigm and strategies proposed as well as enabling posterior

adoption and incorporation of new active learning methods. As far as we know, the pro-

posed paradigm differs from the existing approaches in the following aspects: it previously

organizes the data and then properly performs, both phases, classification and selection,

alternately until the number of samples to be displayed to the expert at each iteration is

reached. A priori data organization avoids to reprocess the large dataset at each iteration

while classification and selection of one sample (at a time) on the ordered set avoids to

label all the samples in the dataset, so providing interactive response time.

We also analyzed and developed new active learning strategies in order to select the

most informative samples for training classifiers more effectively and with minimal human

intervention, as well as apply them in different applications of pattern recognition. Our

active learning strategies iteratively seek to select the most informative samples based on

60
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the current knowledge of the classifier and on a priori reduction and/or organization of

samples. Basically, the data reduction and organization processes rely on graph clustering.

From the clustering, we gained valuable information, since representative samples located

at the center of the clusters (root samples) are more likely to cover all classes and are good

candidates to be selected first for manual annotation. Furthermore, samples in the same

cluster are likely to have the same label. This assumption could be used to accelerate

active learning by reducing the number of annotating samples from the same cluster.

The previous reduction process, presented in Section 3.2.1, was performed for some

of the proposed sorting strategies, such as: DBE, MST-BE and ASSL-OPF (presented in

Sections 3.3.1, 3.3.2 and 3.4, respectively). Cluster roots and boundary between distinct

clusters samples that form the reduced learning set, allow to select the most informa-

tive samples earlier for the training of the classifier. The MST-BE strategy presents a

better organization way, selecting the more difficult samples than by the DBE one. There-

fore, in a semi-supervised learning setting, the ASSL-OPF used MST-BE strategy. The

proposed strategies were extensively assessed with different types of unsupervised and su-

pervised classifiers using datasets from distinct applications, such as: image segmentation

[26], forest cover type [21], handwritten digits [25], faces [23], cowhide [22] and parasites

[24] recognition. The experiments performed on these datasets show that the proposed

approach requires only a few iterations to achieve high accuracy and with less expert

involvement than the baseline approaches.

In a real problem of diagnosis of parasites, under a scenario with the presence of a

diverse class (as the fecal impurity class), these strategies with a reduction process showed

considerably less effective. The data reduction can discard crucial samples to the learning

process. In this case, it is important to be careful because some parasite species and/or

impurities can be out of the cluster border. Therefore, we also searched for a more robust

solution, the RDS approach (presented in Section 3.3.3), which previously organizes the

data but without discarding any of them and then properly balance the selection of diverse

and uncertain samples for training. Selecting samples from the ordered list of each cluster,

give us a greater diversity. Selecting samples classified into a different class of their root’s

class, offered us the most difficult (most uncertain) samples for classification.

We validated our approach by an experienced expert in parasitology whithin a realistic

scenario concerning a laboratory routine. RDS provides high classification accuracy for

the automated diagnosis of parasites (much higher than in the traditional visual analysis,

which can reach from 48.3% up to 75.9%). Moreover, it is computationally and iteratively

efficient, providing interactive response times and requiring verification of a considerably

smaller part of the dataset. It is worth noting that the lack of human knowledge or the

exhaustive work can cause expert’s misannotation. The presence of label-noise has an

adverse effect on the performance of the classifier’s learning. The presented approach is
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not designed with label-noise in mind. This problem was avoided, because the expert

was very careful in reviewing his annotations. However, extensions related to label-noise

should be considered in future works.

Further, this developed approach was demonstrated to be useful in the context of

medicine, more specifically focusing on the diagnosis of intestinal parasites. It is important

to highlight that the presented approach is general enough to be further investigated and

adaptabled for other application domains, such as demonstrated by several examples,

which were presented, as well as for other ones with a diverse class (see future works).

There are many possible extensions to this PhD research. Examples of some of these

extensions are: (i) development of new ways to explore the reduction and organization of

data; (ii) application and/or adaptation of the proposed strategies in different research

areas, such as: computer networks, remote sensing, faces recognition, among others; (iii)

comparison of the proposed strategies with different pattern classifiers, clustering tech-

niques and state-of-the-art’s approaches using different application domains; (iv) use of

active learning strategies in the selection and fusion of pattern classifiers. We can select

the most informative training set for each classifier; (v) development of new methods

related to active semi-supervised learning (ASSL) approach. In the ASSL approach, in

general, the unlabeled set is randomly chosen. One possible extension is explore the re-

duction, organization and selection of the most representative samples to form (besides

the labeled set) the unlabeled set too; (vi) use of the RDS approach for other applica-

tions with a diverse class. Since RDS presents a general solution for active learning, we

believe that it can be successfully used for other applications with a diverse class such

as the impurity class; (vii) investigation of techniques to make the RDS method more

robust to possible expert’s mislabeling during active learning. One extension could be

consider multiple experts throughout the annotation process. Another one could be de-

velop a mechanism that identifies possible mislabeling according to the previous learning

iterations; (vii) application of our paradigm to Content-Based Image Retrieval (CBIR)

problems. Although our paradigm concentrates on pattern recognition problems, it can

be easily extended to CBIR problems. This extension to CBIR applications requires an

additional sorting of samples in the training set based on the knowledge of queries and

on relevant and irrelevant samples from previous iterations; (viii) use of active learning

in superpixel-based interactive classification of very high resolution images [96]; (ix) an-

other direction is towards active learning in multi-label problems, wherein each image can

belong to multiple categories simultaneously.
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