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Abstract

The frequent growth of visual data, either by countless available monitoring video cam-

eras or the popularization of mobile devices that allow each person to create, edit, and

share their own images and videos have contributed enormously to the so-called “big-data

revolution”. This shear amount of visual data gives rise to a Pandora box of new visual

classification problems never imagined before. Image and video classification tasks have

been inserted in different and complex applications and the use of machine learning-based

solutions has become the most popular approach to several applications. Notwithstanding,

there is no silver bullet that solves all the problems, i.e., it is not possible to characterize

all images of different domains with the same description method nor is it possible to use

the same learning method to achieve good results in any kind of application. In this the-

sis, we aim at proposing a framework for classifier selection and fusion. Our method seeks

to combine image characterization and learning methods by means of a meta-learning

approach responsible for assessing which methods contribute more towards the solution

of a given problem. The framework uses three different strategies of classifier selection

which pinpoints the less correlated, yet effective, classifiers through a series of diversity

measure analysis. The experiments show that the proposed approaches yield comparable

results to well-known algorithms from the literature on many different applications but

using less learning and description methods as well as not incurring in the curse of dimen-

sionality and normalization problems common to some fusion techniques. Furthermore,

our approach is able to achieve effective classification results using very reduced training

sets.
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Resumo

O crescente aumento de dados visuais, seja pelo uso de inúmeras câmeras de v́ıdeo moni-

toramento dispońıveis ou pela popularização de dispositivos móveis que permitem pessoas

criar, editar e compartilhar suas próprias imagens/v́ıdeos, tem contribúıdo enormemente

para a chamada “big data revolution.”Esta grande quantidade de dados visuais dá ori-

gem a uma caixa de Pandora de novos problemas de classificação visuais nunca antes

imaginados. Tarefas de classificação de imagens e v́ıdeos foram inseridos em diferentes e

complexas aplicações e o uso de soluções baseadas em aprendizagem de máquina tornou-

se mais popular para diversas aplicações. Entretanto, por outro lado, não existe uma

“bala de prata”que resolva todos os problemas, ou seja, não é posśıvel caracterizar to-

das as imagens de diferentes domı́nios com o mesmo método de descrição e nem utilizar

o mesmo método de aprendizagem para alcançar bons resultados em qualquer tipo de

aplicação. Nesta tese, propomos um arcabouço para seleção e fusão de classificadores.

Nosso arcabouço busca combinar métodos de caracterização de imagem e aprendizagem

por meio de uma abordagem de meta-aprendizagem que avalia quais deles contribuem

melhor para solução de um determinado problema. O arcabouço utiliza três diferentes

estratégias de seleção de classificadores para apontar o menos correlacionados e eficazes,

por meio de análises de medidas de diversidade. Os experimentos mostram que as abor-

dagens propostas produzem resultados comparáveis aos famosos métodos da literatura

para diferentes aplicações, utilizando menos classificadores e não sofrendo com problemas

que afetam outras técnicas como a maldição da dimensionalidade e normalização. Além

disso, a nossa abordagem é capaz de alcançar resultados eficazes de classificação usando

conjuntos de treinamento muito reduzidos.
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Epigraph

“The more I see of the World, the more

I find out the extent of my ignorance.”

Just paraphrasing Socrates...

Eṕıgrafe

“Quanto mais conheço o Mundo, mais

vejo o tamanho da minha ignorância.”

Apenas parafraseando Socrates...
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Chapter 1

Introduction

1.1 Motivation

The ever growing presence of sensors in our daily lives led us to the so called big-data

revolution and within this shear amount of data, visual data is of particular interest.

Citing a recent The New York Times article [11], “The philosophy of data,” surely the

rising philosophy of the day is data-ism in which everyone wants to take advantage of data

as it is the holy grail of contemporaneity. But, amidst such a massive amount of data,

the question is how to process such data to actually come out with useful conclusions?

Visual data is of particular interest in this revolution. The explosion of visual data

makes us face many new challenges unthinkable two decades ago. Image and video classi-

fication tasks have been inserted in different and complex applications (e.g., data catego-

rization in search, biometric recognition, and document indexing through visual content,

object recognition, etc.) and the use of machine learning-based solutions has become the

most popular approach to several applications. However, there is no silver bullet that

solves all the problems which means that it is not possible to characterize all images of

different domains with the same description method nor is it possible to use the same

learning method to achieve good results in any kind of application (“No Free Lunch”

theorems) [111]. Depending on the extraction and learning methods used might create

different classifiers that provide complementary information.

One common strategy that has been used to take advantage of these complementary

information and improve classification results is the Multiple Classifier Systems (MCS).

In MCS, the diversity of classifiers is an essential factor to reach better effectiveness

results [61,95]. Diversity measures assess the degree of agreement/disagreement between

classifiers and might identify potential classifiers for fusion. In this sense, Kuncheva and

Whitaker [62] studied different diversity measures as well as discussed their impacts on

the final accuracy of ensemble systems.
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2 Chapter 1. Introduction

Different works have been using diversity measures to select appropriate high-

performance classifiers, but the challenge of finding the optimal number of classifiers

for a target task has not been properly addressed yet. In general, the proposed solutions

rely on the a priori use of ad hoc strategies for selecting classifiers, followed by the eval-

uation of their effectiveness results during training. Searching by the optimal number of

classifiers, however, makes the selection process more expensive.

Currently, some of the most important challenges in MCS involve:

• choosing the best diversity measure to be used;

• combining different available measures for classifier selection in an ensemble system;

• finding out whether or not the existing measures describe the “real” diversity within

the ensemble systems [12,20].

Typically, works in the literature have adopted a single diversity measure or combined

different measures using simple strategies (e.g., based on average of the measures scores

[26, 112]). However, the aforementioned methods might not take full advantage of the

different opinions provided by all of the available diversity measures. Moreover, another

persistent problem in MCS approaches is how to combine different and non-correlated

extraction and learning methods automatically.

In the literature, many works have been proposed to try sorting out problems cited

previously as for example, the well-known AdaBoost [38] and Bagging [8] approaches.

AdaBoost and Bagging ensemble approaches (see Section 2.3) have been used in several

works in the literature due to their good results achieved in diverse applications. How-

ever, previous work has also shown their limitations in terms of efficiency, normalization,

overfitting, and feature dimensionality problems. In [108], for example, training time has

been a concern when more features were used to train an AdaBoost algorithm for face

localization. The same problem has been reported in [72], which trained an AdaBoost

algorithm for tracking indoor soccer players using videos. In [57, 97, 98], the authors dis-

cuss about another problem: the sensitivity of the classical AdaBoost algorithm to noisy

datasets. They have proposed different solutions to reduce the overfitting effect caused in

those cases. In [89, 90], the authors discuss the problems of feature normalization in the

context of combining classifiers. More detail about tracking down fusion and classification

problems can be found in [28].

The combination of multiple feature vectors defined by different image descriptors

in AdaBoost and Bagging approaches is usually based on their concatenation (feature

binding). Usually, when performing feature binding of different nature/domain, normal-

ization techniques should be applied to standardize all feature values in the same range.

For example, BIC feature vectors [96] have values in the range 0 − 9, while LAS feature
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vectors [103] have values in the range 0− 1. If we combine BIC and LAS features into a

single feature vector, the BIC values might dominate. In fact, the normalization problem

has been a great and difficult challenge for the machine learning community [90].

Another common problem faced when features are concatenated refers to the “curse

of dimensionality” [109]. The curse of dimensionality problem is related to the fact that

the dimension of the feature space increases in such a way that the available training

instances become indistinguishable and not enough for allowing the definition of a good

decision hyperplane [4].

1.2 Objective and Contributions

In this work, we seek an alternative to AdaBoost and Bagging ensembles. Our objective

is to propose a stacking framework, able to perform automatic fusion of different visual

properties and learning methods in existence in the literature for different multimedia

recognition tasks.

In principle, the proposed framework has no concern about normalization issues nor

has it with regard to feature dimensionality problems. The method assesses several de-

scriptors and learning methods performing fusion in a final stage (late fusion) using a

low-dimension feature vector and simple (fast) classifiers. Furthermore, the framework

uses independent classifiers, being amenable for parallelization through Graphics Pro-

cessing Unit (GPU), cluster architectures, or threads. Another difference of the proposed

method, when compared to AdaBoost and Bagging techniques, is that the proposed frame-

work seeks greater diversity between the simple classifiers being able to choose only the

ones that effectively contribute to the solution of the classification problem of interest.

Diversity may be obtained in different ways such as using:

1. different learning methods and the same training set;

2. the same learning method and different training samples;

3. different methods using different types of classifier outcomes during the combination;

4. predictions as new attributes to train some learning method (meta-learning).

In this work, we use two out of four ways (1 and 4). We also use different visual

properties (color, texture, and shape) to each of the learning methods chosen to be sim-

ple classifiers. We follow the concept that two instances of the same class have similar

classification outputs for the same set of classifiers [54].

In this regard, in this thesis, we investigate the combination of several learning meth-

ods and image descriptors aiming at creating more effective classifiers. We propose a
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framework for automatically combining the most discriminative classifiers using the sup-

port vector machine (SVM) technique, as well as exploring the use of diversity measures

to select the less-correlated, yet effective, classifiers in three different selection strategies.

We have performed experiments that demonstrate that the proposed framework for clas-

sifier fusion yields comparable results to the traditional fusion approaches but using less

learning and description methods as well as not incurring in the curse of dimensionality

problems, which are common to some fusion techniques. Another major advantage of the

proposed method is that it yields good classification results using small training exam-

ples being more robust to the small sample size problem common in many classification

techniques [4].

Our research hypothesis is that

appropriate classifier selection approaches can take advantage of classifier

diversity to improve the accuracy performance of multiple classifier systems.

The thesis contributions are:

• a framework for classifier selection and fusion through a meta-learning approach

using Support Vector Machines techniques [31];

• a new classifier selection approach based on diversity measures consensus [32,33];

• a new classifier selection approach based on Kendall correlation analysis [34]; and

• a new classifier selection approach based on rank aggregation techniques [35].

1.3 Thesis Organization

We organized the remainder of this thesis in five chapters. Chapter 2 presents related

work and background concepts necessary for the understanding of this thesis. Chap-

ter 3 describes the steps of the proposed framework for classifier fusion and three different

strategies for selecting the most appropriate classifiers based on diversity measures. Chap-

ter 4 shows the experimental protocol we devised to validate our work, while Chapter 5

discusses the results. Finally, Chapter 6 concludes the thesis and points out future re-

search directions.



Chapter 2

Related Work and Background

This chapter is organized to five sections and aims to present related work and background

concepts which are essential for a self-contained understanding of this thesis. Section 2.1

presents related work on image categorization and information fusion. Section 2.1 presents

the fusion schemes used in our experiments. Section 2.2 describes each simple classifier

used in the proposed framework. Section 2.3 comments on two well-known ensemble tech-

niques that served as the baseline in the conducted experiments. Section 2.4 presents the

diversity concept and five different diversity measures that have been employed in the clas-

sifier selection process. Section 2.5 presents the image descriptors used to extract visual

properties from target datasets. Finally, Section 2.6 presents five different applications

that have been considered in the validation of our proposed framework.

2.1 Image Categorization and Information Fusion

The importance and difficulty of visual data categorization have been discussed in several

studies in the literature. In [65], large-scale classification has been addressed using 1.2

million images divided into 1,000 classes. In [19], experiments on classification with more

than 10,000 image classes have been performed and allowed several observations about

dataset scale, category density, and image hierarchy. Also, the study described in [114]

addresses the scene categorization task, a fundamental problem in computer vision in a

large dataset comprising 899 categories and 130,519 images. In [44], the authors performed

experiments using a dataset with more than 500 classes and 500,000 images.

Image categorization is present in different areas of applications (e.g., medicine, re-

mote sensing, and security) and likely the most popular approach towards the solution

of the image classification problem consists in the use of machine learning methods. In

medicine, Antonie et al. [1] have used learning methods for tumor detection/classification

in digital mammography. In [100], a learning method was used for automatic medical

5
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diagnosis based on parasite microscopy images. Also, the work presented in [58] has

shown that it is possible to automate white blood cell (WBC) image classification and

segmentation tasks. Machine learning is also extensively used in remote sensing appli-

cations to automate mapping and land cover inventories. It is applied, for instance, for

crop recognition [22, 31] and classification of urban areas [22, 117]. Security issues such

as face, iris, and fingerprinting recognition usually apply machine learning techniques to

deal with specific challenges (e.g., large amount of data, large number of classes, and high

dimensionality) [47,94].

Dealing with such complex problems by using just one image characterization method

(also known as feature descriptor) may produce ineffective results, demanding new solu-

tions. In that scenario, information fusion may become mandatory, since different features

may provide different, but complementary, information about the target data. Nakamura

et al. [74] have defined information fusion as the combination of different sources to

achieve improved information (cost, quality, or relevance). Furthermore, according to

Ross et al. [92], information fusion may be performed in four levels: sensor, feature, rank,

and decision.

Sensor or pixel level is the early stage of feature extraction, in which raw data are

used to compose other richer data. This strategy has been widely used in fingerprint

identification in which multiple fingerprint images are combined to compose a fingerprint

image with more information, as in a mosaicing scheme [113].

Feature level fusion or early fusion is a strategy to handle coded data into a feature

vector through some kind of description algorithm. This fusion can be as simple as a

binding of different visual properties (e.g., color, texture, and shape) or more complex

when using artificial intelligence (e.g., evolutionary algorithms [104] and support vector

machine [4]). Therefore, several works have been proposed in the literature for feature

fusion with good results. In [30, 69, 88], several evolutionary-based techniques (genetic

programming, particle swarm optimization, and harmony search) were used to seek an

optimum similarity function that combines different visual properties (e.g., color, texture,

and shape) in image classification tasks. Also some works have used machine learning

methods to complement feature fusion. For example, [40,48] used multiple kernel learning

(MKL) and LPBoost methods to optimize the weights in SVM function in object recog-

nition applications. In [37], the authors have proposed a new logistic regression-based

fusion method (LRFF) that explores a set of diverse and complementary visual words

(color, shape, and texture) for image classification problems.

Rank level fusion is a technique that tries to combine different ranked lists of possible

candidates sorted in decreasing order of confidence. In biometric systems, the idea is to

create a consensus between different ranks finding the best match to new data [46]. In

Content-based Image Retrieval (CBIR) systems, rank-level fusion can be used to combine



2.1. Image Categorization and Information Fusion 7

ranked lists from different kinds of image descriptors (e.g., color and texture) and then

produce a final rank or rank aggregation [82].

Finally, the fourth approach for fusion is known as decision-level fusion or late fu-

sion. Here, the averaging model can be considered the simplest and most popular way of

combining classifiers, among which there are the majority and weighted voting methods

widely used in works involving neural networks [3, 43, 84].

Amidst the different fusion methods, in [75], Tumer et al. have discussed the concept of

ensemble systems. The basic idea of an ensemble system is to use a set of weak classifiers,

usually of the same type, to obtain a powerful classifier. An ensemble system can be

dependent or independent [91]. On one hand, dependent ensembles are those which

use the output of a classifier to build the next classifier, taking advantage of previous

experience and applying it in the next iterations (e.g., AdaBoost [38, 93]). On the other

hand, the independent ensembles are those that combine different outputs of independent

classifiers in the final stage of classification such as Bagging [8] and Random Forest [9]

techniques. In addition, there are stacking systems that were introduced by Wolpert [110]

and use the output of different learning methods as a basis to teach a new learning method

and thus generate a new classification model (meta-learning) [29,54].

Fusion Schemes

This section presents three fusion schemes (early, late, and hybrid), which we have used

in our experiments.

Early Fusion

Early fusion, also known as feature-level fusion, refers to the fusion process that takes

place before learning. Figure 2.1-(a) shows an example of the early fusion process from

the feature extraction stage to the final classification stage. Given a remote sensing

image (RSI), it first performs feature extraction with different image descriptors. Then it

combines the different feature vectors in a single and augmented feature vector through

feature binding (concatenation).

Late Fusion

Late fusion or decision-level fusion refers to the fusion process that takes place after the

learning step (e.g., AdaBoost [93] and Bagging [8]). Figure 2.1-(b) shows an example of

the late fusion process. Given a remote sensing image (RSI), if first uses different learning

techniques obtaining the individual classification results. Then it combines the different

decisions somehow (e.g., majority voting).
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Hybrid Fusion

Refers to the fusion processes involving characteristics of both early and late fusion pro-

cesses. Figure 2.1-(c) shows a hybrid fusion scheme.

(a) Early Fusion. (b) Late Fusion.

(c) Hybrid Fusion.

Figure 2.1: Three different fusion schemes for remote sensing image classification.

2.2 Learning Methods

This section presents six simple learning techniques which have been combined by our

meta-learning framework.

Decision Tree (DT)

Decision tree is one of the learning techniques most intuitive that exists in the literature.

It presents a simple and easy way to understand the classification process [66].

DT is composed of three kinds of nodes: root, internal, and leaf or terminal. A root

node is the initial node that has zero or more outgoing edges (square in Figure 2.2).

Internal nodes are those that contain attributes (circles in Figure 2.2). Finally, leaf nodes

are the ones at the end of branches and define a class (triangles in Figure 2.2) of a given

input sample.





10 Chapter 2. Related Work and Background

k-nearest neighbors (kNN)

The k-nearest neighbor classifier is a technique based on the closest training examples in

the feature space [39]. Equation 2.3 illustrates an adjustment of kNN defined for x.

kNN(x) =
∑

xi∈Nk(x)

yi (2.3)

where Nk(x) is the k-nearest neighbors from x in the training set, and yi is a distance

value among x and the current neighbor xi (e.g., Euclidean distance). One common way

to perform classification tasks might be deciding by majority voting of nearest neighbor.

Figure 2.3 illustrates an example of classification using kNN.

Figure 2.3: (a) Samples of two classes (square and circle) in the features space. (b) Given
a new object, its k = 5 nearest neighbors will define its class. In this case, the green point
is labeled by the blue class.

Näıve Bayes (NB)

Näıve Bayes is a simple probabilistic technique based on Bayes theorem to the problem

of pattern classification. This technique assumes that the probability of each relevant

attribute aj is known and independent.

Equations 2.4 and 2.5 show the Bayes’ formula, where P (ci) is the prior probability of

the class ci and p(aj|ci) is a class-conditional probability densities function, p(aj) is the

probability density function for aj given that the state of nature is ci [27].

P (ci|aj) =
p(aj|ci)× P (ci)

p(aj)
(2.4)

p(aj) =
k

∑

i=1

p(aj|ci)P (ci) (2.5)

Equation 2.6 shows an informal Bayes’ formula from the Equation 2.4.

Posterior =
likelihood× prior

evidence
(2.6)
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Näıve Bayes Tree (NBT)

Näıve Bayes Tree is a hybrid technique that induces a decision tree and Näıve bayes

classifier. This technique has almost the same properties than decision trees (DT) with

the additional Näıve Bayes (NB) classifier in the leaves for better deciding the class to

which an input belongs. According to [59], NBT retains clean understanding of the

techniques DT and NB and achieves better results in large databases.

Support Vector Machines (SVM)

Support Vector Machine is a machine learning method introduced in [6]. The goal is to

construct an optimum hyperplane or set of hyperplanes, which can be used to separate

an n-dimensional feature space. The hyperplane is calculated such that it maximizes the

margin between two classes (the standard SVM is a two-class classifier). The margin

can be seen as the minimum distance of one point of one class to the other. It can be

interpreted as a separation measure between two classes and represents the separability

degree between them (quality measure of classification). The points on borders between

the classes are called support vectors. When it is not possible to find a linear separator

for the classes, the data are mapped on-the-fly onto higher dimensional spaces through a

non-linear mapping using the kernel trick [16]. The important detail here is that SVMs

can efficiently perform non-linear classification. The reason for choosing SVM in this work

is that by using the kernel, SVMs gain flexibility in the choice of the form of the threshold

separating the classes of interest, which do not need to be linear and even do not need to

have the same functional form for all data. Also, SVMs deliver a unique solution, since

the optimality problem is convex.

Figure 2.4 illustrates the use of SVM to separate two classes. More details about this

technique can be found in [6].

Figure 2.4: The SVM classifier builds a maximum margin decision hyperplane to separate
two classes (squares and circles). Filled squares and circle are support vectors.
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We use SVMs to combine multiple classifiers in our fusion framework (see Chapter 3).

2.3 Ensemble Techniques

This section introduces the widely used ensemble techniques from the literature: Ad-

aBoost (BOOST) and Bagging (BAGG). Both techniques are used as baselines in our

experimental protocol.

AdaBoost (BOOST)

The AdaBoost algorithm was proposed by Schapire [93] and is also an ensemble technique.

It constructs an ensemble system (strong classifier) by repetitive evaluation of weak clas-

sifiers1 in a series of rounds (r = 1, . . . , R). In this section, we briefly describe the binary

AdaBoost (algorithm AdaBoost.M1) proposed in [93] and implemented on Weka2 data

mining library. The multiclass AdaBoost [38] is a variation of this strategy.

Let T be the training set with m instances T = (( ~x1, y1), . . . , ( ~xm, ym)), let ~xi be a

feature vector associated with instance (image) i from some space X and ~yi ∈ Y is the

class label associated with ~xi. The strategy consists in keeping a set of weights Wr(~xi)

over R, where r is the current round. These weights can be interpreted as a measure of the

difficulty level to classify each training sample. At the beginning, all the samples have the

same weight (W1(i) = 1
m
∀i), but in each round, the weights of the misclassified samples

are increased. Thus, in subsequent rounds the weak classifiers are forced to classify the

harder samples.

For each round, the algorithm selects the best weak classifier or hypothesis hr(~xi) and

computes a coefficient αr that indicates the degree of importance of hr(~xi) in the final

strong classifier or final hypothesis:

αr =
ǫr

1− ǫr

(2.7)

The classification error ǫr of a classifier hr is given by:

hr : ǫr =
∑

i:hr( ~xi) 6=yi

Wr(~xi) (2.8)

In the Weka implementation, the weak classifier is trained and selected based on the

error on the training set T . The weights Wr+1 are computed for set T based on the current

1A weak classifier is one that produces classification results slightly better than chance.
2http://www.cs.waikato.ac.nz/˜ml/weka (As of May 2014).
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weights Wr:

Wr+1(~xi) =
Wr(~xi)

Zr

×

{

αr if hr(~xi) = yi

1 otherwise
(2.9)

where Zr is a normalization constant.

At the end of R rounds, the strong classifier fboost(~x) is given by a linear combination

of R weak classifiers hr(~xi) and its coefficient αr:

fboost(~x) = arg max
y∈Y

∑

r:hr(~x)=y

log
1

αr

. (2.10)

Figure 2.5 illustrates the training steps of the AdaBoost approach.

Figure 2.5: Initially, weight each training example equally. (a) Weak Classifier 1 is applied;
(b) Weights are increased; (c) Weak Classifier 2 is applied; (d) Weights are increased;
(e) Weak Classifier 3 is applied; (f) Final classifier is a linear combination of all weak
classifiers.

Bootstrap Aggregation (BAGG)

Bootstrap aggregation (Bagging) approach is an ensemble technique which aims at eval-

uating the predictions on an image collection (bootstrap samples) [8]. Formally, let T be

an initial training set which is divided into B equal parts or subsets Zi, i = 1, 2, ..., B [39].

Each subset is used for training B weak classifiers. After training, each weak classifier

obtains a model αi that will be used in the classification step. Given a new instance (test-

ing image), each model αi is used to determine its class. The class that will be assigned

to a testing image is defined by the majority voting between the B weak classifiers [4].

For each image represented by a feature vector ~x, a prediction ~f i(~x) from each classifier

is obtained and the result is calculated:

fbag(~x) =
1

B

B
∑

i=1

~f i(x) (2.11)

Figure 2.6 illustrates the training and the classification steps of the Bagging approach.
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Figure 2.6: Training and classification steps using a Bagging approach.

2.4 Diversity Measures

Diversity is the degree of agreement/disagreement between involved classifiers pointing

out the most interesting ones to be further used in a combination scheme. To achieve

this diversity score or quantitative value inside ensemble systems, diversity measures have

been used. In [61, 62], Kuncheva et al. presented several measures to assess diversity,

considering pairs of classifiers.

Let M be a matrix containing the relationship between a pair of classifiers with per-

centage of concordance. Table 2.1 shows a relationship matrix M with percentage of

hit and miss for two exemplifying classifiers ci and cj. The value a is the percentage of

regions that both classifiers ci and cj classified correctly in a validation set. Values b and

c are the percentage of regions that cj hit and ci missed and vice-versa. The value d is

the percentage of regions that both classifiers missed.

Table 2.1: Relationship matrix M between two classifiers ci and cj.

Hit ci Miss ci

Hit cj a b

Miss cj c d

In our experiments, we have used Double-Fault Measure (DFM), Q-Statistic

(QSTAT ), Interrater Agreement k (IA), Correlation Coefficient ρ (COR), and Disagree-

ment Measure (DM). Those measures are defined as follows.
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COR(ci, cj) =
ad− bc

√

(a + b)(c + d)(a + c)(b + d)
, (2.12)

DFM(ci, cj) = d, (2.13)

DM(ci, cj) =
b + c

a + b + c + d
. (2.14)

QSTAT (ci, cj) =
ad− bc

ad + bc
, (2.15)

IA(ci, cj) =
2(ac− bd)

(a + b)(c + d) + (a + c)(b + d)
, (2.16)

The diversity is greater if the measures Double-Fault Measure, Q-Statistic, Interrater

Agreement k, and Correlation Coefficient p are lower among pairs of classifiers ci and

cj. In the case of the Disagreement Measure, the greater the measure, the greater the

diversity [61, 62]. Ranges of COR, QSTAT , and IA are in [−1, 1] while DFM and DM

are in [0, 1].

Figure 2.7 depicts a toy example of computed diversity measures associated with pairs

of classifiers. In Figure 2.7(a), the first row shows the ground truth (GT) data (oracle

response for each testing example) and the three additional rows show the output of

three different classifiers (C1, C2, and C3). The columns are instances that have been

predicted by the classifiers. Red outputs denote misclassifications. Figure 2.7(b) shows

the relationship between all possible combinations of pairs of classifiers, a total of three

(C1 ×C2, C1 ×C3, and C2 ×C3). In addition, the figure also presents the score values of

two diversity measures (DFM and QSTAT) for each pair of classifier. Figure 2.7(c) shows

the ranked lists, one for each diversity measure. Notice that according to both lists, the

best pair of classifiers to be combined is C1 and C2. However, it is not always possible to

come up with a single solution for the best set of classifiers to combine and conflicts may

be possible as can be seen in the second and third positions in this example highlighted

in red in Figure 2.7(c)). This shows that the measures may generate different lists. This

issue is also of interest and is discussed in more details in Section 3.2.2.
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(a) Ground-truth (GT) and classifiers outcomes (b) Diversity measures calculated

(c) Ranked lists

Figure 2.7: Example of ranked lists for two different diversity measures used in our work.

2.5 Image Descriptors

As we stated in Chapter 1, there is no silver bullet to solve all image classification problems

with just one machine learning classifier or even with just one image characterization

technique. To choose the most appropriate descriptors is also a difficult task.

This is where this work’s contribution shines. Our framework can consider a di-

verse set of classifiers and descriptors and point out the most interesting ones to solve

a problem. In this sense, here we have used several image descriptors comprising color-,

texture-, and shape-based methods. The used color descriptors include Color Autocor-

relogram (ACC) [50], Border/Interior Pixel Classification (BIC) [96], Color Coherence

Vector (CCV) [78], Global Color Histogram (GCH) [101], and Local Color Histogram

(LCH) [101]. The used texture descriptors include Local Activity Spectrum (LAS) [103],

Quantized Compound Change Histogram (QCCH) [49], Statistical Analysis of Structural

Information (SASI) [13], Steerable Pyramid Decomposition (SID) [116], and Unser [106].

The used shape descriptors include Edge Orientation Autocorrelogram (EOAC) [68], and

Spherical Pyramid-Technique (SPYTEC) [63].

The criteria for choosing the image descriptors, for each dataset, are based on extensive

experiments performed in [18, 24, 83] pointing out some of the most interesting image

descriptors in the current computer vision literature.
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Color Autocorrelogram (ACC)

The role of this descriptor is to map the spatial information of colors by pixel correlations

at different distances. It computes the probability of finding in the image two pixels with

color C at distance d from each other. For each distance d, m probabilities are computed,

where m represents the number of colors in the quantized space. The implemented version

quantized the color space into 64 bins and considered 4 distance values (1, 3, 5, and 7) [50].

Border/Interior Pixel Classification (BIC)

BIC has been successful in many applications [21,45,70,99]. The first step of the feature

vector extraction process relies on the classification of image pixels into border or inte-

rior ones. When a pixel has the same spectral value in the quantized space as its four

neighbors (the ones which are above, below, on the right, and on the left), it is classified

as interior. Otherwise, the pixel is classified as border. Two histograms are computed

after the classification: one for the interior pixels and another for the border ones. Both

histograms are merged to compose the feature vector. The implemented version quantized

the color space into 64 bins [96].

Color Coherence Vector (CCV)

This descriptor uses an extraction algorithm that classifies the image pixels as “coherent”

or “incoherent” pixels. This classification takes into consideration whether the pixel be-

longs or not to a region with similar colors, that is, coherent regions. Two color histograms

are computed after quantization: one for coherent pixels and another for incoherent ones.

Both histograms are merged to compose the feature vector. In our experiments, the color

space was quantized into 64 bins [78].

Global Color Histogram (GCH)

GCH is one of the most commonly used descriptors. It uses an extraction algorithm which

quantizes the color space in a uniform way and it scans the image computing the number

of pixels belonging to each bin. The size of the feature vector depends on the quantization

used. In the present work, the color space was split into 64 bins, thus, the feature vector

has 64 values [101].

Local Color Histogram (LCH)

LCH is an extension of GCH descriptor, which makes the concatenation of color his-

tograms (GCH) of 64 bins, obtained from an image divided by a grid 4× 4. The imple-
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mented version has a feature vector with 1,024 dimensions [101].

Local Activity Spectrum (LAS)

LAS descriptor captures textures spatial activity in four different directions separately:

horizontal, vertical, diagonal, and anti-diagonal. The four activity measures are computed

for a pixel (i, j) by considering the values of neighboring in the four directions. The

values obtained are used to compute a histogram that is called local activity spectrum.

Each component gi is quantized independently. In our experiments, each component was

non-uniformly quantized into 4 bins, leading to a histogram with 256 bins [103].

Quantized Compound Change Histogram (QCCH)

QCCH uses the relation between pixels and their neighbors to encode texture informa-

tion. This descriptor generates a representation invariant to rotation and translation. Its

extraction algorithm scans the image with a square window. For each position in the

image, the average gray value of the window is computed. Four variation rates are then

computed by taking into consideration the average gray values in four directions: horizon-

tal, vertical, diagonal, and anti-diagonal directions. The average of these four variations

is calculated for each window position, they are grouped into 40 bins and a histogram of

these values is computed [49].

Statistical Analysis of Structural Information (SASI)

SASI descriptor encodes texture properties based on structural properties from textures

image. Feature extraction algorithm scans an image with different windows resolutions

and orientations. The used implementation has three different windows sizes (3× 3, 5× 5

and 7× 7 pixels) and used four directions (0◦, 45◦, 90◦, and 135◦). SASI encodes spectral

information from each window in different direction by calculating auto-correlation values.

The final vector is composed of 64 values [13].

Edge Orientation Autocorrelogram(EOAC)

EOAC is a shape descriptor. We chose this descriptor because it does not depend on

segmentation to extract features. Its strategy is to classify the image edges according

to two aspects: the edge orientation and the correlation between neighbor edges. The

first step is to compute the image gradient from the input image. Then, the algorithm

computes an edge orientation auto-correlogram. The feature vector is composed of the

values from this auto-correlogram. In this implementation, we use angle quantization in



2.6. Applications 19

72 segments of 5◦ degrees each one; four distance values (1, 3, 5, and 7); the Sobel operator

to compute the image gradient; and a gradient threshold equal to 25, as suggested in [68].

The final vector is comprised by 288 values.

Spherical Pyramid-Technique (SPYTEC)

Spytech descriptor handles images in gray scales and extracts edges information of the

image through Discrete Wavelet Transform (DWT) and Sobel. Normalized coefficients

of DWT with greater magnitude are stored resulting in a feature vector with 16 dimen-

sions [63].

Steerable Pyramid Decomposition (SID)

SID descriptor employs a set of filters sensitive to different scales and orientations to

process the image. The image is first decomposed into two sub-bands using a high-

pass and a low-pass filter. After that, the low-pass sub-band is decomposed recursively

into K sub-bands by band-pass filters and into one sub-band by a low-pass filter. Various

directional information about each scale is captured by each recursive step. The mean and

standard deviation of each sub-band are used as feature values. To obtain the invariance

to scale and orientation, circular shifts in the feature vector are applied. The implemented

version uses two scales and four orientations, which gives a final feature vector with 16

values [116].

Unser

Unser descriptor is based on co-occurrence matrices, still one of the most widely used

descriptors to encode texture in remote sensing applications. Its extraction algorithm

computes a histogram of sums Hsum and a histogram of differences Hdif . The histogram of

sums is incremented considering the sum, while the histogram of differences is incremented

by taking into account the difference between the values of two neighbor pixels. As well

as gray level co-occurrence matrices, measures such as energy, contrast, and entropy can

be extracted from the histograms. In our experiments, eight different measures were

extracted from histograms and four angles were used (0◦, 45◦, 90◦, and 135◦). The final

feature vector is composed of 32 values [106].

2.6 Applications

This section describes applications considered in the validation of the proposed ap-

proaches.
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2.6.1 Object Recognition

One of the major challenges in computer vision and machine learning is object recognition

task [36]. This task involves several challenges such as variation of visual properties (e.g.,

shapes, colors, and textures), different vantage points (e.g., front, side or back), in many

places (e.g., indoor or outdoor) and sizes. Objects might be partially clogged and are

semantically dependent.

To address this application, we adopted the Caltech101 dataset [36] in this thesis.

Challenges of using this dataset are based on large number of classes (101) and images

(9,145). Furthermore, the number of images per class varies from 40 to 800 (unbalanced

classes). Figure 2.8 shows some images of the Caltech101 dataset.

Figure 2.8: Accordion class from the Caltech101 dataset.

2.6.2 Produce Recognition

Fruit and vegetable recognition is a recurrent task in supermarkets [5, 89]. One common

application is concerned with the definition of the price of a produce, given its identi-

fication. This is a challenging problem as it deals with both different species of fruits

and vegetables (e.g., apple, orange, potatoes) and many varieties of a single produce

species (for example, Golden Delicious, Akane, Gala, and Fuji are different varieties of

apples) [89].

Usually, existing recognition approaches are not automatic and demand long-term and

laborious previous training sessions. One attempt to address that problem concerns with

the use of barcodes that are assigned to packages of fruits/vegetables. A drawback of

this solution relies on the lack of freedom on choosing the produce of interest. Another

solution consists in using booklets containing photos of fruits/vegetables that are browsed

to properly determine their price. That solution, however, poses new challenges related

to the memorization and the subjectivity in the recognition process.

To address this application, we adopted the supermarket produce dataset used [89] in

this thesis. Challenges of using this dataset are based on different pose, the number of

elements within an image, and illumination that represent a more realistic scenario.

The dataset comprises 15 different categories: Plum (264), Agata Potato (201), Asterix

Potato (182), Cashew (210), Onion (75), Orange (103), Taiti Lime (106), Kiwi (171),
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Fuji Apple (212), Granny-Smith Apple (155), Watermelon (192), Honeydew Melon (145),

Nectarine (247), Williams Pear (159), and Diamond Peach (211); totalizing 2633 images.

The number of images per category varies from 75 to 247 images (unbalanced classes).

Figure 2.9 shows some images of the supermarket produce dataset used.

Figure 2.9: Four different images from the Supermarket Produce dataset.

2.6.3 Remote Sensing Image Recognition

New challenges and opportunities in Remote Sensing Image (RSI) classification have

emerged due to the recent advances in sensor technologies [2]. The increasing availability

of spectral, temporal, and spatial resolution imagery produces a large amount of data and

enables deeper and more detailed image analysis for different applications [64,85,105,115].

In this scenario, novel machine learning and image processing strategies are demanded to

handle those huge and complex image sets and convert them into more useful information.

In crop recognition applications, for example, different factors can influence in the

spectral response of the crops as kind of region (e.g., mountainous or flat), age of tree

(e.g., younger or older) and even used spacing between plants. In mountainous regions,

the spectral patterns tend to be affected by the topographical differences and interference

generated by shadows. In seasonal crops, there are different growing stages of crops which

result in another difficult challenge in terms of classification. In this case, each stage might

has a different spectral pattern, but all of them represent the same culture or class.

To address this application, we adopted two remote sensing images (Coffee and Urban)

that have been used in different works in our research group [21–23,25].

Coffee Dataset

In this work, we consider 4, 885 regions (1, 006 coffee and 3, 879 non-coffee) created via

the method for multi-scale segmentation proposed by Guigues et al. [41], which separated

into regions a SPOT satellite image of 1, 000× 1, 000 pixels (Figure 2.10-(a)). The SPOT

satellite image corresponds to the Monte Santo de Minas county, in the State of Minas

Gerais, Brazil, a traditional place of coffee cultivation. The region where this image was

captured is mountainous. Therefore, the spectral patterns tend to be affected by the
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topographical differences and interference generated by the shadows. Another problem is

that coffee is not a seasonal crop. Thus, in the same area, there may be crops of different

ages. Concerning classification aspects, we have several completely different patterns

representing the same class while some of these patterns are much closer to other classes.

To evaluate the accuracy, we use a ground truth that indicates all coffee regions in the

image. As the experiments were performed with region level image and the ground truth

(Figure 2.10-(b)) is in pixel level, it was necessary to define a rule to label each region:

if more than 80% of a region contain pixels of coffee, that region was labeled as “coffee”;

otherwise it is a non-coffee region. Figure 2.10 (a) illustrates the Coffee image, while

Figure 2.10 (b) indicates the coffee crop in the Coffee image.

Urban Dataset

This dataset is a Quickbird scene taken in 2003 from Campinas region, Brazil. This scene

is composed of 1 million pixels (1, 000×1, 000) with spatial resolution equal to 0.62 meters.

It is composed of three bands that correspond to the visible spectrum (red, green, and

blue). We have empirically created the ground truth based on our knowledge about the

region. We considered as urban the places which correspond to residential, commercial,

or industrial regions. Highways, roads, native vegetation, crops, and rural buildings are

considered non-urban areas. The experimental protocol is the same of the Coffee dataset

and 5, 362 regions (1, 698 urban and 3, 664 non-urban) have been created. Figure 2.10-(c)

illustrates the Urban image, while Figure 2.10-(d) indicates the urban areas in the Urban

image.

(a) (b) (c) (d)

Figure 2.10: Coffee data with (a) original RSI and (b) ground truth that indicates the
regions that correspond to coffee crop. Urban data with (c) original RSI and (d) ground
truth that indicates the regions that correspond to urban areas. In (b) and (d), white
and black regions are coffee/non-coffee crops and uban/non-urban area, respectively.
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2.6.4 Natural Scene Classification

Natural scene classification is not a trivial task due to the high dependence on semantics

employed by users. A problem present in images of natural scene datasets is multi-labels

instance, which a target object can belongs to different classes. For example, the classes

“Ocean” and “River” can have the same target object “water” in both classes and resulting

in a major challenge for machine learning techniques [7].

To address this application, we adopted the FreeFoto dataset extracted from a larger

website FreeFoto.com composed of 171 sections and 3, 542 categories totalizing 129, 559

images. The FreeFoto dataset used in this thesis is the same previously used in other work

in the literature [69], and comprises 3, 462 scene images and 9 categories. The number

of images per class varies from 70 to 854. Figure 2.11 shows some images of the Freefoto

dataset.

Figure 2.11: Five different images from the Freefoto dataset.





Chapter 3

Classifier Selection and Fusion

Framework

Given a visual classification problem, we have a set of characterization or description

techniques (descriptors) and a set of learning methods that will be used to learn patterns

from available instances for training in order to classify new and unseen instances.

Once we train all necessary classifiers along with different image descriptors, the

learned knowledge undergoes a selection process of the most relevant learning methods

and descriptors to be combined by another learning method (meta-learning approach)

aiming at selecting the most discriminative methods as well as boosting the classification

performance at test time by selecting less, but more effective classifiers.

The classifiers (herein one classifier is a tuple learning/descriptor) are selected in a se-

lection process that uses diversity measures calculated at training time to show the degree

of agreement/disagreement between involved classifiers pointing out the most interesting

ones to be further used in a combination scheme.

This chapter presents our framework for classifier selection and fusion. Sections 3.1,

3.2, and 3.3 present a formal description of our framework for classifier fusion and three

selection approaches along with examples when necessary. Finally, Section 3.4 presents

several advantages and some research directions that might be explored in future work.

3.1 Formalization of Selection and Fusion Framework

Let L be any set of learning methods (e.g., Decision Tree, Näıve Bayes, and kNN) and F

be a set of image descriptors (e.g., Color Histogram). Suppose that classifiers are created

by combining each available learning method with each image descriptor. For example,

three classifiers could be created by combining the learning methods Decision Tree, Näıve

Bayes, and kNN with the Color Histogram descriptor. Let C be the set of classifiers

25
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created by that combination, where |C| = |L| × |F|.

Let S be a set of images, where the class of si ∈ S (1 < i ≤ |S|) is known. The set S

is used to construct both the training (T ) and validation (V ) sets, where T ∪ V = S and

T ∩ V = ∅. As we consider a supervised learning scenario, the actual classes for training

and validation data points are known a priori.

Initially, all classifiers cj ∈ C (1 < j ≤ |C|) are trained on the elements of the set T .

Next, the outcome of each classifier on the validation set V is computed and stored into

a matrix MV , where |MV | = |V | × |C| and |V | is the number of image in a validation set

V . The actual classes of training and validation data points are known a priori.

In the following, MV is used as input to select a set C∗ ⊂ C of classifiers that are

good candidates to be combined. In our approach, diversity measures are employed to

determine C∗ (see Section 3.2). Note that a new matrix M∗
V ⊂ MV is created by using

the selected classifiers in C∗.

Given a new image I, we use each classifier ck ∈ C
∗ (1 < k ≤ |C∗|) to determine the

class of I, producing k outcomes. The k outcomes are used as input of a fusion technique

(e.g., majority voting and SVM) that takes the final decision regarding the definition of

the class of I. In the case of a fusion technique that requires prior training (e.g., SVM),

M∗
V is used.

Figure 3.1 illustrates the proposed framework for combining classifiers.

3.2 Classifier Selection Approaches based on Diver-

sity Measures

In this section, we present three different classifier selection approaches that have been

proposed in this work [33–35]. In Section 3.2.1, we describe a selection and fusion

framework, which uses a consensus approach to combining five different diversity measures

to select classifiers [33]. In Section 3.2.2, we introduce a novel strategy for selecting

classifiers to be combined based on the correlation of different diversity measures [34].

Different from previous contributions, in Section 3.2.3, we introduce a new strategy for

guiding the selection of classifiers based on the combination/fusion of multiple diversity

and evaluation measures, using rank aggregation approach [35].

The three proposed selecting and combination approaches are general enough to be

used in a diverse set of problems in the literature.

3.2.1 Selection based on Consensus

Consider the previously defined C (set of classifiers) and MV (a matrix such that

|MV | = |V | × |C|), containing the outcomes of all C classifiers from the validation set
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V .

Let D be a set of diversity measures. Each diversity measure dℓ ∈ D is used to compute

the agreement and disagreement between two classifiers ci, cj ∈ C, considering all possible

combinations of classifiers (arrow (a) in Figure 3.2).

Let Rdℓ
= {(ci, cj), scoredℓ

(ci, cj), acc(ci), acc(cj)} be a ranked list of pairs of classifiers

defined by the score of the diversity measure dℓ and the accuracy values of each classifier

(ci and cj) computed from the validation set.

Let R = {Rd1
,Rd2

. . .Rd|D|
} be the set of ranked lists defined for each available

diversity measure. This process is illustrated by arrow (b). Let Rt be a set of ranked

lists, where each ranked list contains the top t pairs of classifiers (t pairs of classifiers

that are good candidates to be combined) – arrow (c), and H be a histogram that counts

the number of occurrences of a classifier in all ranked lists of Rt – arrow (d). Finally,

the most frequent classifiers in H, whose accuracy is greater that a given threshold T ,

are combined by a fusion approach – arrow (e). T is a threshold defined in terms of the

average accuracy among all classifiers using validation set V .

The top t value has been found through empirical search. From now on, all the

experiments reported in this thesis consider t = 100 in selection approaches. Perhaps an

additional and deeper study upon top values t might be conducted in future work.

Figure 3.2 illustrates the adopted five-step approach for selecting classifiers based on

diversity measures.

Figure 3.2: The five steps for classifier selection are: (a) Computation of diversity mea-
sures from the validation matrix MV ; (b) Ranking of pairs of classifiers by their diversity
measure scores; (c) Selection of the top t = 100 ranked pairs of classifiers; (d) Com-
putation of a histogram H that counts the number of occurrences of each classifier; (e)
Selection the most appropriate classifiers |C∗| based on their occurrence in H and on a
defined threshold T .

Algorithm 1 outlines the proposed steps for selecting classifiers, by taking into account

diversity measures. Lines 1-10 refer to the use of diversity measures for defining ranked

lists containing pairs of classifiers (arrows (a) and (b) of Figure 3.2). Next, the top-ranked

pairs of classifiers are selected in Line 11 (arrow (c)) and the number of occurrences of each

classifier is determined in Lines 12-20 (arrow (d)). Finally, the most suitable classifiers to

be used in the fusion step are defined in Line 21 (arrow (e)).
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Algorithm 1 Selection of classifiers based on diversity measure consensus
Input: set D of diversity measures, set C of classifiers, and the outcomes of classifiers on vali-

dation set V encoded in MV .

1: R ← ∅
2: for each dℓ ∈ D do
3: Rdl

← ∅
4: for each pair (ci, cj) ∈ C × C do
5: scoredl

(ci, cj)← dl(ci, cj)
6: Rdl

← Rdl
∪ {((ci, cj), scoredl

(ci, cj))}
7: end for
8: Sort Rdl

with regard to scoredl

9: R ← R∪Rdl

10: end for
11: Rt ← select the top t ranked pairs of classifiers for each ranked list in R
12: for each cj ∈ C do
13: H(cj)← 0
14: end for
15: for each dℓ ∈ D do
16: for each ((ci, cj), scoredl

(ci, cj)) ∈ Rt
dℓ

do
17: H(ci)++

18: H(cj)++

19: end for
20: end for
21: C∗ ← {ci ∈ C, such as |C∗| = h and ∀cj ∈ C \ C

∗, H(ci) > H(cj), Accuracy(cj) >

T , Accuracy(ci) > T }

3.2.2 Selection based on Kendall Correlation

In this section, we expand upon previous work in the literature [33] and introduce a new

strategy for guiding the selection of classifiers based on the opinion of multiple selected

diversity measures.

We propose to use multiple diversity measures to determine which classifiers should

be combined. Our hypothesis is that by exploring complementary information provided

by different diversity measures, more appropriate classifiers are selected to be combined.

Recall from Section 2.4 that a diversity measure indicates the agreement of pairs

of classifiers. In that sense, different diversity measures would rank pairs of classifiers

differently. Therefore, we propose to explore different strategies to select classifiers based

on correlation scores among ranked lists of pairs of classifiers. Ranked lists are defined by

different diversity measures.
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Defining ranked lists of pairs of classifiers

As mentioned before, let C be the set of classifiers created by the combination of learning

methods and image descriptors. Let P = {p1, p2, . . . , p|C×C|} be a set of all possible pairs

of classifiers, i.e., pl = (ci, cj), where (ci, cj) ∈ C × C.

Let D = {d1, d2, . . . , d|D|} be a set of diversity measures, such that each diversity

measure dk ∈ D defines a distance function ρ : P → R, where R denotes real numbers.

Equations described in Section 2.4 that define different criteria for implementing the

function ρ. Consider ρ(pl) ≥ 0 for all pl ∈ P and ρ(pl) = 0, with pl = (ci, cj), if ci = cj.

The distance ρ(pl) among all pairs of classifiers pl = (ci, cj) ∈ C × C can be computed to

obtain a |C| × |C| distance matrix A.

Given a diversity measure dk ∈ D, we can compute a ranked list Rdl
by taking

into account the distance matrix A. The ranked list Rdl
={p1, p2, . . . , p|C×C|} (where

pl = (ci, cj) is a pair of classifiers) can be defined as a permutation of the collection P ,

such that, if pl is ranked at lower positions than pm, i.e., pl is ranked before pm, then ρ(pl)

< ρ(pm). In this way, pairs of classifiers are ranked according to their agreement score

defined in terms of a diversity measure.

Measuring the correlation of ranked lists

We propose to exploit the correlation of ranked lists of pairs of classifiers to select the more

appropriate ones to be combined. In this thesis, we use the Kendall tau rank correlation

coefficient (τ) [56] to measure the degree of concordance between two different ranked

lists of the same set of observed samples. We will use only the term ‘Kendall’ for Kendall

tau rank, thus avoiding possible confusion with ‘tau’ index (evaluation measure).

The Kendall correlation τ(Rdi
,Rdj

) between two ranked lists Rdi
and Rdj

is defined

in terms of the number of concordant pairs NC in Rdi
and Rdj

, the number of discordant

pairs ND, and the number of positions n in the ranked lists.

Equation 3.1 defines the Kendall correlation:

τ(Rdi
,Rdj

) =
NC −ND
1
2
n(n− 1)

, (3.1)

Notice that n positions in the ranked list, results in
(

n

2

)

= 1
2
n(n − 1) pairs of items

among them. For each pair of items in the lists (Rdi
,Rdj

), NC = NC + 1 if the pair is

ranked in the same order in both lists; otherwise, ND = ND + 1.

Figure 3.3 shows an example to illustrate the use of the Kendall correlation. In this

example, we consider four classifiers c1, c2, c3, and c4 whose agreement is measured by

means of three diversity measures (d1, d2, and d3). Each diversity measure defines three

ranked lists (Rd1
, Rd2

, and Rd3
). We highlight in red the differences of Rd2

, and Rd3
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when compared to Rd1
. Note that, in Rd2

, just two pairs of classifiers are inverted. Pairs

of classifiers in Rd3
, in turn, are ranked in the inverse order, when compared to Rd1

.

Figure 3.3 also shows in the table on the right side, the τ correlation scores among

the three ranked lists. The correlation coefficient value τ(Rd1
,Rd2

), as expected, is high,

which means that ranked listsRd1
andRd2

have high degree of concordance. However, the

correlation between ranked lists Rd1
and Rd3

is low (−1.0 stands for the lowest possible

correlation score).

Figure 3.3: Example of three computed ranked lists (Rd1
, Rd2

, and Rd3
) and Kendall

scores between them. Both ranked lists (R) and Kendall are computed by using the
validation matrix MV (see Section 3.2).

Using the Kendall correlation measures for Selecting Classifiers

We propose a novel strategy, named Kendall classifier selection (KCS), to define appro-

priate classifiers to be used in the classification framework presented in [33]. KCS makes

use of the degree of agreement of different diversity measures. This agreement is mea-

sured in terms of the Kendall correlation among ranked lists of classifiers, as presented in

Section 3.2.2.

Let dH1
and dH2

be the diversity measures with the highest correlation scores, which

are defined by the Kendall correlation. Let RdH1
and RdH2

be the ranked lists of pairs

of classifies defined by dH1
and dH2

, respectively. KCS defines the top-ranked pairs of

classifiers in RdH1
and RdH2

as the most appropriate ones to be used in the classification

framework presented in [33].

We also tested in our experiments selected classifiers defined in terms of the lowest

correlated diversity measures (dL1
and dL2

). In this case, we use classifiers defined in the

top-ranked positions of RdL1
and RdL2

.

Figure 3.4 summarizes in six steps the new approach for selecting classifiers based on

Kendall correlation. It is important to highlight that all steps regarding the selection

of classifiers for fusion are performed during the training phase of the decision-making

framework. Using a validation set separated during training allows us to evaluate different
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descriptors and learning techniques, assess their outcomes when classifying the validation

examples, and properly selecting, by means of the proposed Kendall-based methodology,

the most suitable classifiers for deployment during testing.

Figure 3.4: The six steps for new classifier selection are: (a) Compute diversity measures
from the validation matrix MV ; (b) Sort R lists by diversity measure scores; (c) Compute
Kendall correlation coefficients among all ranked lists of classifiers R; (d) Select RdH1

and RdH2
or RdL1

and RdL2
ranked lists to be used in the next step; (e) Rt lists with

top t = 100; (f) Compute a histogram H that counts the number of occurrences of each
classifier; (g) Select the most appropriate classifiers |C∗| based on their occurrence in H
and a defined threshold T .

Algorithm 2 outlines the proposed steps for selecting classifiers, by taking into account

diversity measures selected through Kendall correlation. Lines 1-12 refer to the use of

diversity measures for defining ranked lists containing pairs of classifiers (arrows (a) and

(b) of Figure 3.4). Lines 13-15 refer to the calculation of correlation coefficients as well

as the selection of the most and less correlated diversity measures (arrow (c)). Next,

the top-ranked pairs of classifiers are selected in Line 16 (arrow (d)) and the number of

occurrences of each classifier is determined in Lines 17-25 (arrow (e)). Finally, the most

suitable classifiers to be used in the fusion step are defined in Line 26 (arrow (f)).

3.2.3 Selection based on Rank Aggregation

We propose to use multiple diversity and evaluation measures (Kappa, Tau, and accuracy)

to determine which classifiers should be combined to improve the classification results in

a given problem. Recall that a classifier in this work is the tuple composed of a learning

technique and an image descriptor. Our hypothesis is that by exploring complementary

information provided by different measures, more appropriate classifiers can be selected

to be combined.

As previously discussed in Section 2.4, a diversity measure indicates the agreement of

pairs of classifiers. Different diversity measures would rank pairs of classifiers differently.

In many situations, rank aggregation methods have been used as a way of obtaining a

consensus ranking when multiple ranked lists are computed by different approaches.
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Algorithm 2 Selection of classifiers based on Kendall correlation
Input: set D of diversity measures, set C of classifiers, and the outcomes of classifiers on vali-

dation set V encoded in MV .

1: R ← ∅
2: Raux ← ∅
3: Daux ← ∅
4: for each dℓ ∈ D do
5: Rdl

← ∅
6: for each pair (ci, cj) ∈ C × C do
7: scoredl

(ci, cj)← dl(ci, cj)
8: Rdl

← Rdl
∪ {((ci, cj), scoredl

(ci, cj))}
9: end for

10: Sort Rdl
with regard to scoredl

11: Raux ← Raux ∪Rdl

12: end for
13: Compute Kendall correlation coefficients from set Raux

14: R ← select the ranked lists RdH1
, RdH2

, RdL1
, and RdL2

∈ Raux

15: Daux ← select the diversity measures dH1
, dH2

, dL1
, and dL2

∈ D
16: Rt ← select the top t ranked pairs of classifiers for each ranked list in R
17: for each cj ∈ C do
18: H(cj)← 0
19: end for
20: for each dℓ ∈ Daux do
21: for each ((ci, cj), scoredl

(ci, cj)) ∈ Rt
dℓ

do
22: H(ci)++

23: H(cj)++

24: end for
25: end for
26: C∗ ← {ci ∈ C, such as |C∗| = h and ∀cj ∈ C \ C

∗, H(ci) > H(cj), Accuracy(cj) >

T , Accuracy(ci) > T }

Rank aggregation has also been treated as the task of combining different ranked lists

(or scores) in order to obtain a single, and more accurate, ranked list. For classification

tasks, the combination with the lowest error occurs when the classifiers being combined

are non-correlated (high diversity) and yields high accuracy rate [17].

In our approach, each considered measure (both diversity and evaluation measures)

produces a ranked list of pairs of classifiers. A rank aggregation method combines all

ranked lists, producing a single combined ranked list, which is used to identify pairs of

classifiers with good classification performance and high diversity. In the next section, we

formally define the proposed rank aggregation approach.
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Combination of Diversity Measures

Let Rdl
= {(ci, cj), scoredl

(ci, cj)} be a ranked list of pairs of classifiers defined by the

score of the diversity measure dl ∈ D of pairs of classifiers (ci, cj). Consider that low

values of scoredl
(ci, cj) indicate high diversity between the pair (ci, cj), and therefore, the

most suitable pairs of classifiers to be combined are at the top positions of ranked list Rdl
.

The case of diversity measure for which high score values indicate high diversity, we use

the inverse of this measure (e.g., 1
DM

, where DM stands for the Disagreement Measure

defined in Equation 2.14).

Let Rd = {Rd1
,Rd2

. . .Rd|D|
} be the set of ranked lists defined for each available

diversity measure. Our objective is to compute a ranked list Rc that combines all ranked

lists Rdl
∈ R. We use a multiplication approach [81] for combining the scores of different

diversity measures on a single score as follows:

scoredc
(ci, cj) =

|D|
∏

l=1

(1 + scoredl
(ci, cj)) (3.2)

The ranked list combining the diversity measures is defined as Rdc
= {(ci, cj),

scoredc
(ci, cj)}. This ranked list is defined according to the diversity scores.

Evaluation Measure Combination

Let E be a set of evaluation measures. Each evaluation measure eℓ ∈ E is used to

compute the evaluation of a classifier ci ∈ C, based on the validation set. Let eℓ(ci) be the

evaluation measure for the classifier ci, an evaluation score for a pair of classifiers can be

computed as follows:

scoreeℓ
(ci, cj) = (1 + eℓ(ci))× (1 + eℓ(cj)) (3.3)

Similarly to diversity measures, we can define a ranked list of pair of classifiers ac-

cording to each diversity measures. Let Reℓ
= {(ci, cj), scoreeℓ

(ci, cj)} be a ranked list

of pairs of classifiers defined by the score of the evaluation measure eℓ ∈ E of pairs of

classifiers (ci, cj), where high values of scoreeℓ
(ci, cj) indicate that the pair of classifiers

(ci, cj) is well evaluated.

Let Re = {Re1
,Re2

. . .Re|E|
} be the set of ranked lists defined for each available

evaluation measure. We aim at computing a single ranked list Re which combines all

ranked lists Rdl
∈ R. A multiplication approach similar to the one used for diversity

measures is also used for combining evaluation measures. However, as the ranked lists are

sorted in ascending order, we multiply the inverse of evaluation scores as follows:

scoreec
(ci, cj) =

|E|
∏

l=1

1

scoreeℓ
(ci, cj)

(3.4)
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The ranked list combining all evaluation measures is defined as Rec
= {(ci, cj),

scoreec
(ci, cj)}, and is computed using the scoreec

score.

Final Ranking of Pairs of Classifiers

As previously stated, our objective is to compute a ranked list that sorts pairs of classifiers

with high diversity and high evaluation at top positions. In this way, we compute a final

ranked list combining scores of diversity and evaluation measures, as follows:

scorec(ci, cj) = scoreec
(ci, cj)× scoredc

(ci, cj) (3.5)

The final ranked list computed by the rank aggregation approach is defined according

to these scores, as Rc = {(ci, cj), scorec(ci, cj)}.

Figure 3.5 summarizes the new six-step approach for selecting classifiers based on rank

aggregation.

Figure 3.5: The six steps of the new classifier selection are: (a) Compute diversity mea-
sures from the validation matrix MV ; (b) Sort R lists according to scores of diversity
measures; (c) Compute rank aggregation using all ranked lists of classifiers (R) and eval-
uation measures (E); (d) Create a single list Rt

c, which list has the top t = 100; (e)
Compute a histogram H that counts the number of occurrences of each classifier; (f)
Select the most appropriate classifiers |C∗| that satisfy a defined threshold T .

Algorithm 3 outlines the proposed steps for selecting classifiers through rank aggre-

gation approaches. Lines 1-10 refer to the use of diversity measures for defining ranked

lists containing pairs of classifiers (arrows (a) and (b) of Figure 3.5). Line 11 refers to

the use of rank aggregation approaches that combine different diversity and evaluation

measures to create a final ranked list (arrow (c)). Next, the top-ranked pairs of classifiers

are selected in Line 12 (arrow (d)) and the number of occurrences of each classifier is

determined in Lines 13-19 (arrow (e)). Finally, the most suitable classifiers to be used in

the fusion step are defined in Line 20 (arrow (f)).

Figure 3.6 illustrates the use of the proposed rank aggregation approach. In this

example, we consider four classifiers c1, c2, c3, and c4 whose agreement is measured by

means of three diversity measures (d1, d2, and d3). Each diversity measure defines three
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Algorithm 3 Selection of classifiers based on rank aggregation approaches
Input: set C of classifiers, set D of diversity measures, set E of evaluation measures, and the

outcomes of classifiers on validation set V encoded in MV .

1: R ← ∅
2: for each dℓ ∈ D do
3: Rdl

← ∅
4: for each pair (ci, cj) ∈ C × C do
5: scoredl

(ci, cj)← dl(ci, cj)
6: Rdl

← Rdl
∪ {((ci, cj), scoredl

(ci, cj))}
7: end for
8: Sort Rdl

with regard to scoredl

9: R ← R∪Rdl

10: end for
11: Rc ← Create ranked list through rank aggregation approach using R and E

12: Rt
c ← select the top t ranked pairs of classifiers from ranked list Rc

13: for each cj ∈ C do
14: H(cj)← 0
15: end for
16: for each ((ci, cj), scoredl

(ci, cj)) ∈ Rt
c do

17: H(ci)++

18: H(cj)++

19: end for
20: C∗ ← {ci ∈ C, such as |C∗| = h and ∀cj ∈ C \ C

∗, H(ci) > H(cj), Accuracy(cj) >

T , Accuracy(ci) > T }

ranked lists (Rd1
, Rd2

, and Rd3
). Furthermore, we consider three evaluation measures

(accuracy, kappa, and tau indices) for each classifier whose measures have been computed

from validation set (V ).

3.3 Meta-learning Approach

Originally proposed by Wolpert [110], meta-learning approach or also called stacked gen-

eralization (stacking) is a approach that uses different classifier outcomes (e.g., labels and

scores) as input to other learning method (meta learner). Generally, stacking approaches

have a more representation of solutions space than no single learning method might learn

effectively. Since there is no good simple learning method which achieves good results for

any task (No free lunch theorem).

In stacking systems, there is a premisse that instances are considered similar if they

are correctly/incorrectly classified to the same class by the same set of classifiers [54].

Figure 3.7 shows an example of matrix MV , with three different instances I1, I2, and
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3.4 Cost-effectiveness Analysis

Our framework may be considered as a highly-parallelizable approach, because there are

several steps that could be optimized and which are not addressed in this thesis.

We use a set of independent classifiers, which can be used in different processes/threads

in a computer cluster environment or GPU to later form the MV matrix. The same

approach can be used when testing a new image (I). The selection process itself has

low cost to be calculated, once diversity measures use only the MV matrix previously

computed for this purpose (Figure 3.2). Once this process has been paralleled, to find an

optimal set of classifiers (C∗) for a target problem involves only a few set of operations

involving lists as described in the previous section. Finally, the classifier fusion process

is dependent on the learning method used, but there are some learning methods in the

literature that also use parallelism, as LibSVM library [14].

Our framework can be considered a flexible approach given that it can use different

descriptors, set of classifiers and even fusion techniques. Also, techniques such as Ad-

aBoost and Bagging may be used as complementary techniques to our framework in the

classifier fusion process. That said, we believe this work opens several research possibili-

ties for researchers to explore innovative ways for combining learning methods as well as

for exploring more efficient ways of performing such fusion.
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Experimental Methodology

In this section, we present the experimental methodology adopted in each experiment of

this thesis.

4.1 Datasets

In this thesis, we perform experiments on five different datasets, which are related to five

different real applications: the Caltech101 dataset has been used in object recognition

problems (Section 2.6.1); the Fruits dataset has been used in produce recognition tasks

(Section 2.6.2); Two Remote Sensing Image (RSI) datasets are related to two different real

tasks (Section 2.6.3): the Coffee dataset has been used for coffee crop recognition tasks;

the Urban dataset has been used for urban recognition. Finally, the Freefoto dataset has

been used for natural scene classification (Section 2.6.4).

Table 4.1 shows the datasets used in each experiment performed in this thesis.

Table 4.1: Five datasets used in this thesis.
Experiment

Dataset
Caltech Coffee Freefoto Fruits Urban

Framework for Classifier Fusion (Section 5.1) X X X X
Correlation Analysis between Diversity Measures (Section 5.2) X X X X X
Classifier Selection Approaches (Section 5.3) X X

4.2 Image Descriptors

Table 4.2, 4.3, and 4.4 present the color, texture, and shape descriptors that were used

in our experiments. Given the classification problem, the objective is to use the most

complementary features as possible and rely on an effective combination technique.

39
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Table 4.2: Four datasets and seven image descriptors used in our experiments.
Framework for Classifier Fusion (Section 5.1)

Type Descriptor
Dataset

Caltech Coffee Freefoto Fruits

Color

ACC [50] X X X X
BIC [96] X X X X
CCV [78] X X X X
GCH [101] X X X X

Texture

LAS [103] X X X
QCCH [49] X X X X
SID [116] X
UNSER [106] X

Shape EOAC [68] X X X

Table 4.3: Five datasets and six image descriptors used in these experiments.
Correlation Analysis between Diversity Measures (Section 5.2)

Type Descriptor
Dataset

Caltech Coffee Freefoto Fruits Urban

Color
BIC [96] X X X X X
CCV [78] X X X X X
GCH [101] X X X X X

Texture

LAS [103] X X X
QCCH [49] X X X X X
SID [116] X X
UNSER [106] X X

Shape EOAC [68] X X X

Table 4.4: Two datasets and six image descriptors used in these experiments.
Classifier Selection Approaches (Section 5.3)

Type Descriptor
Dataset

Coffee Urban

Color
BIC [96] X X
CCV [78] X X
GCH [101] X X

Texture
QCCH [49] X X
SID [116] X X
UNSER [106] X X
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In the experiments with remote sensing images (Coffee and Urban), we have used a

different set of bands. Agricultural specialists usually perform analysis of agricultural

targets by exploiting vegetation indices, such as NDVI [73]. With those indices, it is

possible to estimate production and differentiate some objects in the surface. Thus, in this

work, the feature extraction algorithms are performed mainly on the bands corresponding

to Red (R), Green (G) and Near-Infrared (NI). These bands are the most interesting for

agricultural targets since are the basis for the computation of the main vegetation indices.

4.3 Learning Methods and Baselines

Choosing the most appropriate learning method is also a non-trivial problem. Therefore,

our approach evaluates possible candidates and selects the most appropriate ones. In this

context, we have used seven learning methods in our framework: Decision Tree (DT),

Näıve Bayes (NB), Näıve Bayes Tree (NBT), Simple Logistic (SL), k-Nearest Neighbors

(kNN), using k = 1, k = 3, and k = 5. Such methods are simple and fast, being suitable

to be combined in a real-time recognition system. In this sense, a support vector machine

was avoided here due to its known slow training time. Even though SVMs have sub linear

time for testing, in a multi-class scenario, it would need several binary SVMs to perform

the multi-class classification as reported in [4, 79].

The proposed framework aims at automatically finding suitable combinations of clas-

sifiers formed by descriptors and learning methods. We have used the implementation of

those learning methods available in the WEKA (version 3-6-2) data mining library. All

learning methods were used with default parameters which means we did not optimize

them whatsoever.

As baselines in this work, we considered all of the seven learning methods and

eight different ensemble approaches: BAGG-DEFAULT, BAGG-36, BAGG-49, BOOST-

DEFAULT, BOOST-36, BOOST-49, MV-36, and MV-49. BOOST-DEFAULT, BOOST-

36, and BOOST-36 implement one multi-class Adaboost approach, but they are different

depending on the number of iterations in their algorithm. BOOST-DEFAULT uses default

parameters, while BOOST-36 and BOOST-49 employ 36 and 49 iterations for tunning the

learning parameters, respectively. BAGG-36 and BAGG-49 in turn, relies on the Bagging

approach with 36 and 49 classifiers, respectively. The number after a baseline name (e.g.,

36 as in MV-36) refers to the number of classifiers that are considered.
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Table 4.5: Learning methods used in our experiments with their default parameters.
Type Learning Method Acronym

Simple

weka.classifiers.trees.J48 -C 0.25 -M 2 DT
weka.classifiers.lazy.IBk -K 1 kNN1
weka.classifiers.lazy.IBk -K 3 kNN3
weka.classifiers.lazy.IBk -K 5 kNN5
weka.classifiers.bayes.NaiveBayes NB
weka.classifiers.trees.NBTree NBT
weka.classifiers.functions.SimpleLogistic SL

Ensemble

weka.classifiers.meta.AdaBoostM1 -I 10 BOOST-DEFAULT
weka.classifiers.meta.AdaBoostM1 -I 36 BOOST-36
weka.classifiers.meta.AdaBoostM1 -I 49 BOOST-49
weka.classifiers.meta.Bagging -I 10 BAGG-DEFAULT
weka.classifiers.meta.Bagging -I 36 BAGG-36
weka.classifiers.meta.Bagging -I 49 BAGG-49

Table 4.6: Simple learning methods combined by our meta-learning technique for each
experiment.

Experiment
Learning Method

DT kNN1 kNN3 kNN5 NB NBT SL
Framework for Classifier Fusion (Section 5.1) X X X X X X X
Correlation Analysis between Diversity Measures (Section 5.2) X X X X X X
Classifier Selection Approaches (Section 5.3) X X X X X X



4.4. Evaluation Measures 43

4.4 Evaluation Measures

To report the effectiveness of each method, in all of our experiments, we have used evalua-

tion measures based on the confusion matrix: Accuracy, Kappa [10], and Tau [67] indices.

Given a confusion matrix as Table 4.7 shows, the measures can be calculated according

to Equations 4.1–4.6.

Table 4.7: Confusion Matrix. TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively.

Predicted
Class A Class B

Real
Class A TP FP
Class B FN TN

Total = TP + FP + FN + TN. (4.1)

pe =
((TP + FP )× (TP + FN)) + ((FN + TN)× (FP + TN))

Total2
(4.2)

pr =
((TP + FP )× TP ) + ((FN + TN)× TN)

Total2
(4.3)

Accuracy =
TP + TN

Total
(4.4)

Kappa =
accuracy − pe

1− pe
(4.5)

Tau =
accuracy − pr

1− pr
(4.6)

4.5 Validation Protocol

We use the k-fold cross-validation protocol. According to this protocol, given a dataset

comprising several examples, we randomly separate it into k subsets, with no repetition.

A subset is chosen as testing set, and the remaining k − 1 subsets are used for training

a learning method. The cross-validation process is repeated k times (called rounds) and

each subset is used only once as test set. The final result (the accuracy in classification

tasks) from this process is the arithmetic mean of all rounds. In our experiments, we

considered a 5-fold cross-validation protocol in which, in each round, we use three folds
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for training the classifiers, one for validating the classifiers and for calculating diversity

measures, training convergence, etc, and one as the actual testing set. At each round, we

switch the training, validation, and test sets.



Chapter 5

Experimental Results

This chapter presents and discusses experimental results. Section 5.1 presents the ex-

periments that we performed to evaluate the robustness of our fusion framework with

no selection process. Section 5.2 discusses a correlation analysis between five diversity

measures for different datasets. Section 5.3 presents a comparative study between the

three classifier selection strategies proposed in this thesis for two different remote sensing

image dataset.

5.1 Framework for Classifier Fusion

This section discusses the results regarding the effectiveness and efficiency of the pro-

posed framework using four different datasets (Caltech, Coffee, Freefoto, and Fruits). In

Section 5.1.1, we present an effectiveness comparison between our proposed framework

and different baselines of the literature. In Section 5.1.2, we also show tests of statistical

significance and confidence interval for all involved techniques. Finally, in Section 5.1.3,

we show the behavioral analysis of our proposed framework and other techniques in a

small training set scenario.

5.1.1 Effectiveness Analysis

In these experiments, five fusion techniques were compared: our approach using

SVM (FSVM-KERNEL-49) considering |C| = 49, two AdaBoost approaches (BOOST-

DEFAULT and BOOST-49), Bagging (BAGG-49), and Majority Voting (MV-49).

Recall that using |C| = 49 means that all available classifiers (7 learning methods ×

7 image descriptors) are employed in the fusion process. KERNEL can be two different

SVM kernels: PK stands for the polynomial kernel while NORM stands for the normalized

45
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polynomial kernel. Furthermore, we have included the best single classifier (no fusion)

between all tested learning methods.

Table 5.1 presents the results obtained for each fusion technique and the best single

classifier using four datasets and considering three different evaluation measures (Accu-

racy, Kappa, and Tau). Notice that BOOST and BAGG techniques show up with the

suffix ALL, which means the concatenation of the feature vectors produced by the seven

different image descriptors considered. Thus BAGG-49-ALL and BOOST-49-ALL tech-

niques refer to the use of 49 iterations and seven image descriptors.

Table 5.1: Classification effectiveness of the proposed framework and baselines, with their
respective standard deviations.

Datasets Techniques
Measures

Accuracy Kappa TAU

Caltech

FSVM-PK-49 47.05%±1.77 0.45±0.02 0.46±0.02
BOOST-49-ALL 46.90%±0.63 0.45±0.01 0.46±0.01
BAGG-49-ALL 43.01%±1.38 0.41±0.01 0.42±0.01
SVM-PK-LAS 41.30%±0.41 0.39±0.00 0.40±0.00
MV-49 41.02%±0.46 0.38±0.00 0.40±0.00
BOOST-DEFAULT-ALL 39.92%±0.57 0.38±0.01 0.39±0.01

Coffee

BOOST-49-ALL 89.66%±0.84 0.65±0.02 0.72±0.01
FSVM-NORM-49 89.31%±0.91 0.63±0.01 0.71±0.01
BAGG-49-ALL 88.84%±1.10 0.61±0.04 0.69±0.02
MV-49 88.50%±1.34 0.59±0.04 0.68±0.03
BOOST-DEFAULT-ALL 88.29%±0.78 0.62±0.02 0.69±0.01
kNN-5-BIC 87.29%±1.03 0.59±0.03 0.67±0.02

Freefoto

FSVM-PK-49 94.22%±0.92 0.93±0.01 0.93±0.01
BOOST-49-ALL 93.82%±0.87 0.93±0.01 0.93±0.01
BOOST-DEFAULT-ALL 91.71%±0.60 0.90±0.01 0.90±0.01
MV-49 91.39%±0.99 0.90±0.01 0.90±0.01
kNN-1-BIC 90.24%±0.73 0.88±0.01 0.89±0.01
BAGG-49-ALL 88.76%±1.45 0.87±0.02 0.87±0.02

Fruits

FSVM-PK-49 99.09%±0.66 0.99±0.01 0.99±0.01
MV-49 98.18%±1.11 0.98±0.01 0.98±0.01
BOOST-49-ALL 97.65%±1.01 0.97±0.01 0.97±0.01
SVM-PK-BIC 96.13%±1.79 0.96±0.02 0.96±0.02
BOOST-DEFAULT-ALL 95.82%±1.22 0.95±0.01 0.96±0.01
BAGG-49-ALL 90.35%±2.42 0.90±0.03 0.90±0.03

In these experiments, our fusion approach (FSVM-KERNEL-49), which uses meta-

learning on the outputs of all available classifiers yielded a slightly better classification

result considering the three evaluation measures, when compared to other techniques in

any tested datasets.
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Important to note that BOOST and BAGG techniques use a fusion hybrid (feature and

decision level fusion) to achieve similar results to our framework that uses only decision

level fusion. For a better visualization, Figure 5.1 depicts all results sorted by classification

accuracy. Next section, additional experiments show that FSVM-KERNEL-49 has no

statistical difference between the best baseline in each dataset used (see Table 5.2 in

Section 5.1.2).
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Figure 5.1: The best results using different learning methods in the Caltech, Coffee,
Freefoto, and Fruits datasets.

5.1.2 Tests of Statistical Significance

Paired t-test has been performed to verify the statistical significance of the results. We

calculated the confidence intervals for the differences among paired means of each class

from the datasets, then we have compared our approach against the best baselines for

each dataset. In these tests, if the p-value is less than 0.05 (confidence of 95%) there is a
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significant difference between a pair of classifiers.

Table 5.2 shows a statistical comparison of our approach against each one of the

best baselines, both using 49 classifiers. This comparison shows that there is significant

difference among our approach and other baselines only for the Fruits dataset (FSVM-

PK-49 × MV-49). In this test, our approach is statistically better than MV-49 using

Fruits dataset.

Table 5.2: Significance tests for FSVM-KERNEL-|C∗|, where |C∗| is the number of clas-
sifiers used by SVM in each test.

Datasets Pair of Classifiers
t-test Significant

p-value Difference
Caltech FSVM-PK-49 × BOOST-49-ALL 0.0606 -
Coffee FSVM-NORM-49 × BAGG-49-ALL 0.3330 -

Freefoto FSVM-PK-49 × BOOST-49-ALL 0.3798 -
Fruits FSVM-PK-49 × MV-49 0.0164 Yes

In other three datasets (Caltech, Coffee, and Freefoto), the p-value scores have been

greater than 0.05 and nothing might be said. Therefore, we also computed the confidence

intervals related to the results of all techniques. Figure 5.2 shows a comparison between

involved techniques.

Notice that in the experiments with Caltech and Freefoto datasets, our framework (late

fusion) achives similar results to BOOST-49-ALL (hybrid fusion). Importantly to say that

hybrid fusion techniques might suffer from two major problems of machine learning area

which our approach does not apply such as “curse of dimensionality” and normalization

feature.

5.1.3 Training Set Size Impact

This section shows a behavioral study among the classifiers compared in Table 5.1 using

reduced training sets. In our experiments, we conducted a study considering five different

sizes for the training set (T ): 8%, 16%, 33%, 67%, 100%, which represents 5%, 10%, 20%,

40% and 60% of the entire datasets, respectively. These subsets have been selected from

original training set. We use again the 5-fold cross-validation protocol previously adopted

in our experiments.

Figure 5.3 shows the results for all four datasets (Caltech, Coffee, Freefoto, and Fruits)

used in our work. The x-axis represents the number of images in the training set and the

y-axis represents the average accuracy in the testing set.

Figure 5.3(a) shows experiments using the Caltech dataset. The FSVM-PK-49 ap-

proach using a subset of 8% of training set achieves 39.52% of accuracy. In the same

training set, BOOST-49-ALL yields 32.33%, which means that our approaches have a



5.1. Framework for Classifier Fusion 49

 36

 38

 40

 42

 44

 46

 48

 50

FSVM
−PK−49

BO
O
ST−49−ALL

BAG
G
−49−ALL

SVM
−PK−LAS

M
V−49

BO
O
ST−D

EFAU
LT−ALL

A
c
c
u

ra
c
y
 (

%
)

Techniques

Caltech

 80

 82

 84

 86

 88

 90

 92

 94

FSVM
−N

O
R
M

−49

BO
O
ST−49−ALL

BAG
G
−49−ALL

M
V−49

BO
O
ST−D

EFAU
LT−ALL

KN
N
−5−BIC

A
c
c
u

ra
c
y
 (

%
)

Techniques

Coffee

 86

 88

 90

 92

 94

 96

 98

 100

FSVM
−PK−49

BO
O
ST−49−ALL

BO
O
ST−D

EFAU
LT−ALL

M
V−49

KN
N
−1−BIC

BAG
G
−49−ALL

A
c
c
u

ra
c
y
 (

%
)

Techniques

Freefoto

 86

 88

 90

 92

 94

 96

 98

 100

FSVM
−PK−49

M
V−49

BO
O
ST−49−ALL

SVM
−PK−BIC

BO
O
ST−D

EFAU
LT−ALL

BAG
G
−49−ALL

A
c
c
u

ra
c
y
 (

%
)

Techniques

Fruits

Figure 5.2: Confidence intervals for all techniques compared in Table 5.1.

gain of more than 19% compared to the best baseline. In the subset 16%, our approaches

are still better and achieve accuracy results of 40.67% (FSVM-PK-49) against 37.24% of

the BOOST-49-ALL. That represents a gain of more than 7% in classification accuracy.

From the subset 33% to 100%, the best baseline yields similar performance to our ap-

proach. In summary, we can see that the proposed approach are able to learn from small

training sets.

Figure 5.3(b) shows experiments using the Coffee dataset. In these experiments, we

could note that there is no difference among our approach and the baselines. This phe-

nomenon is observed only on this dataset that is a binary dataset (two classes). We

hypothesize that characteristics of each dataset (e.g., number of image and/or classes)

might be relevant factors for the baselines, including simple classifiers.

Figure 5.3(c) shows experiments using the Freefoto dataset. In these experiments,

the results of the FSVM-PK-49 approach results are similar to those observed in the
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Figure 5.3: Accuracy scores of all classifiers using training sets with different sizes.

experiments using the Caltech dataset. The FSVM-PK-49 approach using a subset of 8%

of training set achieves 85.73% of accuracy. In the same training set, BOOST-49-ALL

achieves 80.76%, which means that the FSVM-PK-49 approach produces gains of 6.15

percentage, when compared to the best baseline (BOOST-49-ALL).

Figure 5.3(d) shows experiments using the Fruits dataset. We can notice the same

behavior observed for the Caltech dataset, in which the our approach yields better results

than the best baseline (MV-49) using reduced training set sizes. The FSVM-PK-49 ap-

proach using 8% of the training set achieves 96.54% of accuracy. Using the same training

set, MV-49 achieves a testing result of 79.42% classification accuracy. Therefore, FSVM-

PK-49 is 13.12 percentage points more accurate than MV-49. Similar behavior can be

observed for the subset 16%. In this case, the proposed methods achieve accuracy results

of 97.46% (FSVM-PK-49) against 92.71% of the MV-49.
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5.2 Correlation Analysis between Diversity Mea-

sures

This section shows that the use of different diversity measures may potentially improve

the quality of selected classifiers. We exemplify this fact by performing a correlation

analysis among the ranked lists defined by diversity measures. We use the well-known

Kendall tau [56] measure in this analysis.

Table 5.3 shows the Kendall tau correlation scores for all of diversity measures de-

scribed in Section 2.4 for five different datasets (Caltech, Coffee, Freefoto, Fruits, and

Urban).

As we can observe, the measures COR, DM, and QSTAT have high correlation co-

efficients between them for all five datasets used. The same behaviour does not show

up with the lowest correlation coefficient. In experiments with the Caltech dataset, the

measures DFM and IA have the lowest correlation coefficient, 0.03, which is a high value

if comparable to the lowest correlation coefficients in other three datasets. This means

that all measures have many similar opinions between them.

Performed experiments with Coffee and Urban datasets show that the measure IA

has the lowest correlation coefficients for all other measures and datasets analyzed which

means it is a very good candidate to be considered when selecting diversity measures. In

experiments with Freefoto and Fruits datasets, the measure DFM has the lowest corre-

lation coefficients. Notice that none of the used measures is highly non-correlated with

each other. This means that, although they are different diversity measures, all of them

have an agreement degree about which classifiers should be combined.

5.3 Classifier Selection Approaches

In this section, we aim at comparing the performance of the three selection approaches on

the framework of selection and fusion with respect to the best baselines of the literature.

This performance evaluation considers both effectiveness and efficiency aspects. Effec-

tiveness analysis is based on accuracy, kappa, and tau results in the Coffee and Urban

datasets. Efficiency analysis, in turn, is based on the number of classifiers on the frame-

work to achieve the same effectiveness results than the best baselines. In Section 5.3.1,

we present effectiveness comparison between three classifier selection strategies. Once

found the best selection strategy, in Section 5.3.2, we present more details of the selection

process. In Section 5.3.3, we maintained the same selection strategy to compare different

kinds of fusion technique (early, late, and hybrid). Finally, in Section 5.3.4, we discuss

tests of statistical significance for all late fusion techniques.
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Table 5.3: Kendall tau between five diversity measures using four different datasets. In
blue, highest correlation coefficients and in red, lowest correlation coefficients.

Caltech
Diversity Measures COR DFM DM IA QSTAT

COR 1.00 0.11 0.83 0.26 0.98
DFM - 1.00 0.08 0.03 0.11
DM - - 1.00 0.26 0.85
IA - - - 1.00 0.27

QSTAT - - - - 1.00

Coffee
Diversity Measures COR DFM DM IA QSTAT

COR 1.00 0.05 0.87 -0.17 0.95
DFM - 1.00 0.05 -0.16 0.06
DM - - 1.00 -0.17 0.88
IA - - - 1.00 -0.18

QSTAT - - - - 1.00

Freefoto
Diversity Measures COR DFM DM IA QSTAT

COR 1.00 -0.09 0.66 0.18 0.89
DFM - 1.00 -0.06 -0.03 -0.10
DM - - 1.00 0.14 0.68
IA - - - 1.00 0.18

QSTAT - - - - 1.00

Fruits
Diversity Measures COR DFM DM IA QSTAT

COR 1.00 0.00 0.42 0.15 0.78
DFM - 1.00 0.01 -0.02 -0.01
DM - - 1.00 0.10 0.46
IA - - - 1.00 0.17

QSTAT - - - - 1.00

Urban
Diversity Measures COR DFM DM IA QSTAT

COR 1.00 -0.04 0.88 -0.07 0.96
DFM - 1.00 -0.05 0.03 -0.04
DM - - 1.00 -0.07 0.89
IA - - - 1.00 -0.08

QSTAT - - - - 1.00

5.3.1 Behavioral Analysis

This section shows four different analysis on the behavior of diversity measures in the

classifier selection process using the framework proposed in [33], introduced in Section 3.1.

This framework is denoted as FSVM-NORM-|C∗|, where NORM denotes the normalized

polynomial SVM kernel used in our experiments and |C∗| is number of simple classifiers

that will be combined by the SVM-based meta-learning technique.
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Tables 5.4 and 5.5 show the average kappa indices for all performed experiments with

the Coffee and Urban datasets. The columns refer to the number of classifiers |C∗|, which

have values range from 5 to 36, where 5 is the lowest number of classifiers selected and

36 is the total amount of possible classifiers that can be selected (six image descriptors

and six learning methods result in 36 different simple classifiers). The rows denote the

classification effectiveness measured in terms of the kappa index.

In these experiments, we compare four selection strategies: SINGLE, ‘ALL’, ‘Kendall’,

and Rank Aggregation. SINGLE refers to the selection process use only one diversity

measure. ‘ALL’ refers to the Consensus strategy described in Section 3.2.1, which uses

all the five diversity measures in the selection process. ‘Kendall’, in turn, refers to the

Kendall strategy described in Section 3.2.2, which uses the two less correlated diversity

measures (in the case, IA and QSTAT ) in the selection process. These diversity measures

were defined according to an a priori correlation analysis (see Table 5.3). Finally, Rank

Aggregation refers to the use of the rank aggregation strategy described in Section 3.2.3.

In these experiments, we consider different configurations of the rank aggregation

approaches:

1. Eff-Acc+Kappa+Tau div-ALL approach: This configuration uses three different

evaluation measures (accuracy, kappa, and tau) and five diversity measures (ALL).

2. Eff-Acc+Kappa div-IA+QSTAT approach: This configuration uses two different

evaluation measures (accuracy and kappa) and two diversity measures (IA and

QSTAT ).

3. Eff-Acc+Kappa+Tau div-DFM+IA+QSTAT approach: This configuration uses

three evaluation measures (accuracy, kappa, and tau) and three diversity measures

(DFM , IA, and QSTAT ).

4. Eff-Kappa div-ALL approach: This configuration uses a single evaluation measure

(kappa) and five diversity measures (ALL).

5. Eff-Kappa div-DFM+IA+QSTAT approach: This configuration uses one evalu-

ation measure (kappa) and three diversity measures (DFM , IA, and QSTAT ).

DFM , IA, and QSTAST were chosen due to their good results in previous exper-

iments reported in Table 5.3.

In the Table 5.4, we can observe effectiveness results for each kind of selection approach

(SINGLE, ALL, Kendall, and Rank Aggregation). The best Kappa indices for each

number of classifiers (|C∗|) defined in the selection process are presented in bold. Moreover,

we highlight in blue the number minimum of classifier that each approach needs to achieve

similar result than the FSVM-NORM-|C∗| using all classifiers (|C∗| = 36). SINGLE and
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ALL approaches need to use |C∗| = 15 classifiers. Kendall approach achieves similar

result using |C∗| = 10 classifiers. Finally, rank aggregation approach with configuration

Eff-Kappa div-ALL is able to yield very effective results with only |C∗| = 5 classifiers.

Similar effectiveness performance were observed for the methods in the Urban dataset

(Table 5.5). In this dataset, ALL and Kendall yield different results from those observed

for the Coffee dataset. ALL starts with better results than DFM for |C∗| ∈ {5, . . . , 20}

and has the same good results observed for the COR, QSTAT , and DM -based methods.

Kendall has not obtained the best results for almost all |C∗| values, except for |C∗| = {15}.

In the experiments with the Urban dataset, we also observe that there is no large

difference among the results of all SINGLE approaches. Perhaps this high correlation

might be the cause of the poor performance of the Kendall approaches. Furthermore,

we can observe the good results of IA and QSTAT which need |C∗| = 10 classifiers to

achieve similar results than FSVM-NORM-36. ALL approach needs to use |C∗| = 15

classifiers, Kendall approach needs |C∗| = 10 classifiers, and rank aggregation approach

with configuration Eff-Kappa div-DFM+IA+QSTAT needs only |C∗| = 5 classifiers.

Notice that there is no selection approach that achieves the best results for any num-

ber of classifiers. However, the majority of good results (in bold, Tables 5.4, 5.5) have

been achieved for different configurations of our approach based on rank aggregation. In

summary, the investigation of optimal combinations of diversity measures has showed to

be a promising research venue and rank aggregation approaches showed to be a good

solution to address this problem.

5.3.2 Fine-grained Analysis of the Selection Process

In this section, a more detailed analysis of the best classifier selection approach is per-

formed in the previous Section 5.3.1. Rank aggregation approaches using the late fusion

described in Section 3.1 achieved better results with |C∗| = 5 classifiers. Eff-Kappa div-

ALL and Eff-Kappa div-DFM+IA+QSTAT , which are associated with the results high-

lighted in blue in Tables 5.4 and 5.5, have been considered for the Coffee and Urban

datasets, respectively.

Figures 5.4 and 5.5 show the histograms H created in the selection process, while

Figures 5.6 and 5.7 show the accuracy performances of all simple/non-complex classifiers

using the validation set V . We highlight in green bars the 5 classifiers that have been

selected by our rank aggregation approaches.

Notice in Figures 5.4 and 5.5 that, although NB classifier has achieved the highest

frequency, our selection approach does not choose any NB classifier as candidate for

fusion (green bars). This is due to our policy of also considering the individual accuracy

performance of classifiers in the selection process. As the accuracy performance of NB
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Table 5.4: Kappa indices computed for all diversity measures using the 5-fold cross-validation protocol for different
number of classifiers (|C∗|) in the Coffee dataset. Similar effectiveness performances were observed for other evaluation
measures (accuracy and Tau index).

Coffee

Approaches Diversity Measures
Number of Classifiers |C∗|

5 10 15 20 25 30 36

SINGLE

COR 0.515 0.562 0.597 0.610 0.618 0.624

0.628
DFM 0.490 0.540 0.610 0.620 0.620 0.630
DM 0.507 0.549 0.577 0.611 0.622 0.622
IA 0.557 0.579 0.601 0.606 0.607 0.613

QSTAT 0.515 0.562 0.597 0.610 0.618 0.624

Consensus ALL [33] 0.472 0.553 0.592 0.610 0.628 0.623 0.628

Kendall
IA+QSTAT (lowest) [34] 0.560 0.590 0.594 0.615 0.618 0.617

0.628
COR+QSTAT (highest) [34] 0.497 0.529 0.551 0.610 0.609 0.609

Rank Aggregation [35]

Eff-Acc+Kappa+Tau div-ALL 0.553 0.614 0.616 0.624 0.628 0.622

0.628
Eff-Acc+Kappa+Tau div-DFM+IA+QSTAT 0.580 0.582 0.619 0.615 0.626 0.620

Eff-Kappa div-ALL 0.586 0.589 0.597 0.604 0.634 0.617
Eff-Kappa div-DFM+IA+QSTAT 0.551 0.584 0.596 0.620 0.629 0.625
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Table 5.5: Kappa indices computed for all diversity measures using the 5-fold cross-validation protocol for different
number of classifiers (|C∗|) in the Urban dataset. Similar effectiveness performances were observed for other evaluation
measures (accuracy and Tau index).

Urban

Approaches Diversity Measures
Number of Classifiers |C∗|

5 10 15 20 25 30 36

SINGLE

COR 0.575 0.595 0.595 0.597 0.607 0.606

0.612
DFM 0.527 0.550 0.572 0.604 0.604 0.607
DM 0.558 0.581 0.593 0.603 0.608 0.608
IA 0.588 0.596 0.601 0.604 0.603 0.605

QSTAT 0.573 0.596 0.595 0.597 0.607 0.606

Consensus ALL [33] 0.564 0.570 0.594 0.604 0.609 0.606 0.612

Kendall
IA+QSTAT (lowest) [34] 0.566 0.592 0.604 0.600 0.605 0.604

0.612
COR+QSTAT (highest) [34] 0.575 0.595 0.595 0.597 0.607 0.606

Rank Aggregation [35]

Eff-Acc+Kappa+Tau Div-DFM+IA+QSTAT 0.591 0.600 0.597 0.600 0.612 0.614

0.612
Eff-Acc+Kappa div-IA+QSTAT 0.579 0.600 0.593 0.600 0.611 0.614

Eff-Kappa div-ALL 0.581 0.588 0.600 0.607 0.612 0.610
Eff-Kappa div-DFM+IA+QSTAT 0.593 0.592 0.602 0.605 0.610 0.609
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is below than the employed threshold values (blue line, 79.88% in the Coffee dataset and

70.97% in the Urban dataset), this classifier is not selected.

Selected classifiers for the Coffee dataset are kNN1-BIC, kNN3-BIC, kNN5-BIC,

kNN1-QCCH, and kNN1-UNSER. For the Urban dataset, our approach selects NBT-

BIC, DT-CCV, NBT-CCV, kNN3-CCV, and kNN5-CCV. In experiment with the Coffee

dataset, three selected classifiers use the BIC descriptor, while in the Urban dataset, four

classifiers use CCV descriptor. We can observe, therefore, a huge impact of using BIC

and CCV image descriptors for the Coffee and Urban dataset, respectively.
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Figure 5.4: Histograms related to the occurrence of classifiers in the selection process for
the Coffee dataset.

5.3.3 Effectiveness Analysis considering Early, Late, and Hybrid

Fusion

In this section, we evaluate three fusion schemes: Early, Late, and Hybrid.

For the early fusion techniques, we consider the concatenation of the feature vectors

produced by the six different image descriptors adopted in this work. These classifiers

show up with the suffix ALL on the front (DT-ALL, NB-ALL, NBT-ALL, kNN1-ALL,

kNN3-ALL, and kNN5-ALL).

We consider seven Late fusion techniques: the meta-learning approach that uses SVM

and all 36 simple available classifiers (FSVM-NORM-36), the same meta-learning ap-
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Figure 5.7: Average accuracy performances of all non-complex classifiers used in our
experiments for the Urban dataset. The blue line defines the employed threshold (T )
values, as described in Section 3.2.

proach considering fewer classifiers (FSVM-NORM-5) which effectively selects the most

promising simple classifiers using the new rank aggregation approach (methods with re-

sults in red in Tables 5.4 and 5.5), AdaBoost (BOOST-SIMPLE-5 and BOOST-SIMPLE-

36), Bagging (BAGG-SIMPLE-36 and BAGG-SIMPLE-5), and Majority Voting (MV-36).

BOOST and BAGG are multi-class AdaBoost that bootstrap aggregating techniques from

the WEKA library (our implementation considers the use of 5 and 36 classifiers). MV-36

is a majority voting technique that uses the same simple/non-complex classifiers used by

FSVM-NORM-36, but with a different late fusion technique. FSVM-NORM uses SVM

as a meta-learning approach for discovering patterns between simple/non-complex classi-

fier outcomes, while majority voting (MV) finds only a consensus between those simple

classifiers.

As hybrid fusion, we mixed early and late fusion and then created seven other new

techniques. In our meta-learning approach, we added the six early fusion techniques

to the 36 existing simple classifiers. In total now, we have 42 classifiers to select and

combine (FSVM-NORM-42 and FSVM-NORM-ALL-5). Notice that, in this case, FSVM-

NORM-ALL-5 selects 5 classifiers out of the 42 available classifiers. Other evaluated

hybrid fusion techniques include the combination with AdaBoost- and Bagging-based

early fusion strategies: BOOST-ALL-5, BOOST-ALL-36, BAGG-ALL-36, and BAGG-
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ALL-5. Finally, we consider a majority voting technique that uses 42 classifiers in the

combination process (MV-42).

Table 5.6 presents achieved results for each fusion techniques, considering three differ-

ent evaluation measures (Accuracy, Kappa, and Tau) in the two used datasets (Coffee and

Urban). Recall that early and hybrid fusion techniques named with the suffix ‘ALL’ refer

to the concatenation of the feature vectors produced by the six different image descriptors

considered. NORM denotes the normalized polynomial SVM kernel used in our experi-

ments and SIMPLE means that the late fusion technique uses a single image descriptor.

Two different image descriptors, BIC and CCV, have been chosen for SIMPLE in the

Coffee and Urban datasets, respectively.

In general, the early fusion techniques (e.g., NB-ALL and kNN1-ALL) yield good

results. These methods rely on the concatenation of different features vectors, and there-

fore their use with features of different domains may lead to two big challenges: curse of

dimensionality and normalization problems.

Regarding the late fusion approaches (e.g., BOOST-SIMPLE-5 and BAGG-SIMPLE-

36 ), the best results of the baselines were defined through an exhaustive and compu-

tationally expensive search involving all simple image descriptors. Our FSVM-NORM-5

approach, in turn, achieves similar results to all baselines selecting with fewer simple

classifiers. Notice that our approach does not test all possible combinations of classifiers.

Similar conclusions can be raised for the results related to hybrid fusion techniques.

Note for example, that the proposed fusion scheme is among the best methods. This

method, however, does not present the drawbacks observed for the other fusion approaches

(e.g., curse of dimensionality and expensive search of appropriate descriptors).

5.3.4 Statistical Test of Significance (t-test)

In this section, we perform statistical tests to verify if the results obtained by the proposed

fusion approach differ from those observed for the baselines. T-tests have been performed

to verify the statistical significance of the results, which are presented in Table 5.6. In

these tests, if the p − value is less than 0.05 (confidence of 95%) there is a significant

difference between a pair of classifiers.

Table 5.7 shows a statistical comparison of our new rank aggregation approach (FSVM-

NORM-5) with baselines. Our approach uses fewer classifiers that are selected using the

methodology described in Section 3.2.3. The results considered in the tests refer to the

best selection process using a late fusion technique: Eff-Kappa div-ALL for the Coffee

dataset (see results in red in Table 5.4) and Eff-Kappa div-DFM+IA+QSTAT for the

Urban dataset (see Table 5.5). As it can be observed, the proposed method is better than

three baselines in the Coffee dataset and better than two baselines in the Urban dataset.
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Table 5.6: Classification effectiveness of different classifier fusion techniques, with their respective standard deviations.
In red are rank aggregation approach, which achieves better results.

Fusion Techniques
Coffee Urban

Accuracy Kappa Tau Accuracy Kappa Tau

Early

NB-ALL 69.85%±1.63 0.36±0.03 0.45±0.03 57.91%±2.97 0.27±0.04 0.41±0.03
DT-ALL 85.06%±1.30 0.53±0.02 0.62±0.01 81.37%±0.49 0.57±0.02 0.64±0.01
NBT-ALL 85.16%±0.55 0.53±0.03 0.63±0.02 79.45%±0.75 0.53±0.02 0.62±0.01
kNN1-ALL 84.50%±1.29 0.53±0.03 0.62±0.02 79.11%±1.30 0.52±0.03 0.61±0.02
kNN3-ALL 86.88%±0.74 0.59±0.02 0.66±0.01 80.75%±0.89 0.55±0.01 0.64±0.01
kNN5-ALL 87.80%±0.87 0.61±0.03 0.68±0.02 81.91%±0.61 0.58±0.02 0.65±0.01

Late

FSVM-NORM-36 89.09%±1.16 0.63±0.02 0.70±0.02 83.76%±0.73 0.61±0.01 0.68±0.01
FSVM-NORM-5 87.62%±1.12 0.59±0.04 0.67±0.02 82.88%±0.91 0.59±0.02 0.67±0.01
BOOST-SIMPLE-5 84.59%±1.44 0.42±0.05 0.59±0.02 80.46%±0.80 0.48±0.04 0.61±0.02
BOOST-SIMPLE-36 84.56%±1.50 0.42±0.05 0.59±0.02 81.24%±0.85 0.53±0.04 0.63±0.02
BAGG-SIMPLE-5 86.71%±1.44 0.54±0.06 0.65±0.03 83.40%±0.96 0.60±0.02 0.67±0.02
BAGG-SIMPLE-36 87.41%±1.15 0.56±0.04 0.66±0.02 83.94%±0.68 0.61±0.01 0.68± 0.01
MV-36 89.09%±0.67 0.63±0.04 0.70±0.02 81.91%±1.15 0.58±0.03 0.65±0.02

Hybrid

FSVM-NORM-42 88.90%±1.15 0.63±0.03 0.70±0.02 84.71%±0.64 0.64±0.02 0.70±0.01
FSVM-NORM-ALL-5 88.13%±1.29 0.60±0.04 0.68±0.03 83.14%±0.96 0.59±0.02 0.67±0.01
BOOST-ALL-5 84.67%±1.42 0.42±0.04 0.59±0.02 80.83%±0.69 0.48±0.02 0.61±0.01
BOOST-ALL-36 85.85%±1.76 0.50±0.06 0.62±0.03 82.15%±0.66 0.56±0.02 0.65±0.01
BAGG-ALL-5 87.27%±0.89 0.57±0.03 0.66±0.02 84.32%±0.72 0.62±0.02 0.69±0.01
BAGG-ALL-36 88.33%±0.87 0.60±0.04 0.68±0.02 85.56%±0.80 0.65±0.03 0.71±0.02
MV-42 89.40%±0.50 0.64±0.02 0.71±0.01 83.07%±1.06 0.61±0.03 0.67±0.02
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Table 5.7: Significance tests comparing our approach with all baselines.

Pair of Techniques
Coffee Urban

p-value Significant p-value Significant
FSVM-NORM-5 × FSVM-NORM-36 0.0190 Yes 0.1422 -
FSVM-NORM-5 × BOOST-SIMPLE-5 0.0005 Yes 0.0015 Yes
FSVM-NORM-5 × BOOST-SIMPLE-36 0.0005 Yes 0.0560 -
FSVM-NORM-5 × BAGG-SIMPLE-5 0.2296 - 0.3446 -
FSVM-NORM-5 × BAGG-SIMPLE-36 0.6870 - 0.0192 Yes
FSVM-NORM-5 × MV-36 0.0934 - 0.1020 -
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Figure 5.8: Confidence intervals for all late fusion techniques compared in Table 5.6.

We also computed the confidence intervals related to the results of all late fusion

techniques. Figure 5.8 shows a comparison between all techniques. Notice that our

approach achieves similar results to those observed for almost all baselines compared, but

with fewer classifiers. The same behavior can be observed in the experiments involving

our hybrid fusion technique (FSVM-NORM-ALL-5) and corresponding baselines.

Effectiveness results between FSVM-NORM-ALL-5 and FSVM-NORM-5 show that

FSVM-NORM-ALL-5 achieves better results than FSVM-NORM-5. This fact indicates

the earlier techniques were selected among selected classifiers.
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Conclusions

6.1 Contributions

The increase in visual data, due to the large number of monitoring cameras and popu-

larization of mobile devices have contributed to the so-called “big-data revolution.” This

revolution sparked classification challenges in many areas of knowledge which have been

widely applied learning techniques to solve these challenges. As there is no single extrac-

tion and learning technique that achieves good results for any application domain, data

fusion approaches have been adopted.

This thesis presented a framework for selection and fusion of simple classifiers using di-

versity measures and meta-learning on top of classifier outcomes. Particularly in this work,

we have used the support vector machine (SVM) and majority voting (MV) techniques

but other learning methods could be used as well as Optimum-Path Forest (OPF), Bag-

ging (BAGG), and AdaBoost (BOOST). Moreover, we compared several different learn-

ing methods and image descriptors in four different classification problems (scene/object

classification and crop/produce recognition) showing that the proposed method is general

enough to be used in a diverse range of problems [33]. Another novelty of this thesis

relies on the use of diversity measures to determine which learning and image descriptor

methods are more suitable to be combined in a given classification problem. Thus, three

different strategies for classifier selection have been proposed.

The first selection strategy which uses a consensus approach of five different diversity

measures Double-Fault Measure (DFM), Q-Statistic (QSTAT ), Interrater Agreement k

(IA), Correlation Coefficient ρ (COR), and Disagreement Measure (DM) to select the

most complementary classifiers to be combined by a SVM technique through a meta-

learning approach. Furthermore, many experiments and four datasets in different appli-

cations have been performed [33].

The second novel selection strategy is based on the Kendall correlation among different

63



64 Chapter 6. Conclusions

diversity measures. These diversity measures were used to rank pairs of simples classifiers

and the agreement of ranked lists was employed to guide the classifier selection process.

In addition, we performed three different analysis with diversity measures in the classi-

fier selection process of the classifier selection and fusion framework. First, a correlation

analysis using Kendall score has showed to be possible that different diversity measures

have different opinions. In this experiment with remote sensing datasets, we have showed

that COR × QSTAT achieved the highest correlation coefficients, while IA × QSTAT ,

the lowest. High correlation coefficients mean that both diversity measures have similar

opinions about which classifiers might be selected. Low correlation coefficients in turn,

mean that both diversity measure have a certain degree of divergence about which clas-

sifiers to select. We also performed a behavioral analysis, based on which we showed

two forms for selecting classifiers: (1) Single, which used only one diversity measure in

the classifier selection process; (2) Kendall, which used two measures combined through

Kendall correlation coefficients. Finally, a comparison using the classifier accuracy has

been performed using the best classifier selection approach that we could find using Ta-

bles 5.4 and 5.5 by means of the use of diversity measures and the proposed methodology

based on Kendall. The IA + QSTAT approach has achieved the same results than all

baselines using fewer classifiers than the original approach (ALL). Statistical tests have

been performed to corroborate the claims [34].

The third novel strategy for selecting classifiers is based on a rank aggregation ap-

proach. This approach combines different diversity and evaluation measures to create a

final and unified list to guide the classifier selection process. In addition, we performed

two different analysis with diversity measures in the classifier selection process of a fu-

sion framework [33]. Obtained results demonstrate that the proposed fusion approach

yield comparable results to those observed for baselines. In our solution, however, fewer

classifiers are usually selected. Performed statistical tests confirm our claims [35].

The main home message of this work is that for solving complex problems such as the

ones involving different applications, we need to take advantage of different and comple-

mentary information regarding description and learning methods. However, choosing the

most appropriate methods for combining is not a trivial task. Previous work in the litera-

ture has proposed interesting forms for selecting and combining complementary methods

such as the ones based on diversity measures [33].

In this thesis, we go beyond previous efforts for combining classifiers and explore the

power of three different selection strategies (consensus, Kendall, and ranked list aggrega-

tion) and diversity measures. The proposed approaches allows for a much more efficient

combination of classifiers. For instance, with only five classification methods, the proposed

approach has the same statistical classification results of the works proposed in [33, 34]

when using 10 and 15 classifiers, respectively. Besides being more efficient while select-
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ing promising complementary classifiers, the proposed approach is not custom-tailored

for different applications, more specifically for remote sensing imagery. The approach is

general enough to be used within any classification problem dealing with complementary

features and classifiers. Thus, the hypothesis of this thesis has been confirmed.

The proposed framework overcomes the best used classifier and the well-known ma-

jority voting, Bagging, and AdaBoost fusion approaches. In fact, our framework is able to

combine classifiers more effectively than the baselines. Different from other approaches,

our method is able to select classifiers and also learn, indirectly, which descriptors (and

therefore visual properties) are more appropriate for the target application. To keep a

high recognition rate with the minimum computational effort, our classifier selection strat-

egy explores the use of diversity measures, which allow the combination of less correlated

and highly-effective classifiers. Furthermore, we also performed statistical tests aiming

at finding the lowest number of classifiers for a given problem which achieve the same

effectiveness while more efficiently than the best baselines for each dataset tested.

One might argue that using different classifiers and descriptors during training might

increase the training time substantially. Although this is partly true, we note that most

of fusion methods in the literature sacrifice part of the training while aiming at finding

more discriminative learning methods to be used during deployment (operation). With

respect to this, it is clear that our method brings an interesting property to the table

that is different from some methods in the literature in the sense it is highly flexible and

parallelizable. It is flexible in the sense it can use any set of descriptors or classifiers for

fusion. In addition, we can use any learning method in the late fusion after selecting

the best learners through diversity measure analysis. It is highly parallelizable since each

combination of descriptor and learning method can be used in a different thread or even

processor and even this task can also be divided by means of modern classifiers.

Another important advantage of the proposed method is that it considers each de-

scriptor and learning method independently, therefore, it does not incur in normalization

problems that result of direct combination of features (e.g., by means of concatenating

feature vectors). The concatenation also brings problems regarding dimensionality, which

is also not a problem for the proposed method. Moreover, as we showed in Section 5.1.3,

in most cases, our approach achieves statistically better results than all baselines us-

ing reduced training sets. This means that the proposed methods can compensate the

additional operations with diversity measures by requiring less training examples.

6.2 Future Work

This thesis has created opportunity for further investigations in relation to all the research

challenges presented. Figure 6.1 shows, in red, steps of the proposed framework that could
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be improved/extended in future work.

Figure 6.1: Steps/modules of the proposed framework that could be extended/improved
in future work.

Visualization Techniques

• Adding different visualization techniques, in the proposed framework, offering user

a better understanding of the achieved results, then guiding the for decision-making

process in real-world scenarios [52,55];

• Investigating visualization techniques, in the proposed framework, to guide machine

learning technique developers in the classifier selection process through user inter-

action. Users might to interact with the framework in the classifier learning step,

thus improving the classifier selection [76].

• Exploring visualization techniques to help identify novel classifier selection strate-

gies.

Feature Selection

• Exploring feature selection techniques to reduce descriptor dimension size through

filter and wrapper techniques. One possible strategy would be to use Principal

Components Analysis (PCA) [53], Independent Components Analysis (ICA) [51],

and Genetic Programming (GP) [60] approaches in this step.

Classifier Selection

• Implementing novel classifier selection strategies based on evolutionary algorithm

approaches (e.g., genetic programming [60] and genetic algorithm [71]).
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• Exploring re-ranking approaches to improve the classifier selection process [80–82].

Classifier Fusion

• Evaluating the proposed framework with classifier Optimum-Path Forest

(OPF) [77]. OPF is a classification method based on graph, in which instances

are represented as nodes of this graph and the edges are distance values calculated

between two instances.

• Exploring an approach based on association rules, Lazy Associative Classification

(LAC) [107], to combine simple classifiers.

Diversity Measures

• Investigating non-pairwise diversity measures (e.g., entropy and Kohavi-Wolpert

variance), which were not used in this thesis. Maybe they might to describe better

the real diversity inside the set of classifiers [61].

Applications

• Validating the proposed framework in other applications (e.g., phenology, spoofing

detection, biometric recognition, and metadata deduplication).

6.3 List of Publications

This thesis has generated publications directly and indirectly related to its content.

List of journal papers:

1. A Framework for Selection and Fusion of Pattern Classifiers in Multimedia Recog-

nition [33]. Faria, F. A. ; Santos, J. A. ; Rocha, A. ; Torres, R. da S. in the Pattern

Recognition Letters, 39:52-64, 2014. http://dx.doi.org/10.1016/j.patrec.2013.07.014

2. Rank Aggregation for Pattern Classifier Selection in Remote Sensing Images [35].

Faria, F. A. ; Pedronette, D. C. G. ; Santos, J. A. ; Rocha, A. ; Torres, R. da

S. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 7(4):1103-1115, 2014. http://dx.doi.org/10.1109/jstars.2014.2303813

List of conference papers:
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1. Evaluation of Time Series Distance Functions in the Task of Detecting Remote

Phenology Patterns [15]. Conti, J ; Faria, F. A. ; Almeida, J. ; Camolesi, L.

; Alberton, B. Morellato, L. ; Torres, R. da S. In: International Conference of

Pattern Recognition (ICPR), 2014. To appear.

2. Classifier Selection based on the Correlation of Diversity Measures: When Fewer is

More [34]. Faria, F. A. ; Santos, J. A. ; Sarkar, S. ; Rocha, A. ; Torres, R. da S.

In: Conference on Graphics, Patterns and Images (SIBGRAPI), pages 16-23, 2013.

http://dx.doi.org/10.1109/SIBGRAPI.2013.12

3. Automatic fusion of region-based classifiers for coffee crop recognition [31]. Faria,

F. A. ; Santos, J. A. ; Torres, R. da S. ; Rocha, A. ; Falcão, A. X. . In: IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), pages 2221-

2224, 2012. http://dx.doi.org/10.1109/IGARSS.2012.6351058

4. Automatic Classifier Fusion for Produce Recognition [32]. Faria, F. A. ; Santos, J.

A. ; Rocha, A. ; Torres, R. da S. In: Conference on Graphics, Patterns and Images

(SIBGRAPI), pages 252-259, 2012. http://dx.doi.org/10.1109/SIBGRAPI.2012.42

5. Descriptor Correlation Analysis for Remote Sensing Image Multi-Scale Classifica-
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P-H. ; Philipp-Foliguet, S. ; Falcão, A. X. In: International Conference on Pattern
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