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Abstract

Most machine learning systems for binary classification are trained using algorithms that

maximize the accuracy and assume that false positives and false negatives are equally bad.

However, in many applications, these two types of errors may have very different costs. For

instance, in medical screening applications, falsely determining that a patient is healthy is

much more serious than falsely determining that she has a certain medical condition. In

this work, we consider the problem of controlling the false positive rate on Support Vector

Machines, since its traditional formulation does not offer such assurance. To solve this

problem, we define a feature space sensitive area, where the probability of having false

positives is higher, and use a second classifier (k-Nearest Neighbors) in this area to better

filter errors and improve the decision-making process. We compare the proposed solution

to other state-of-the-art methods for low false positive classification using 33 standard

datasets in the literature. The solution we propose shows better performance in the vast

majority of the cases using the standard Neyman-Pearson measure.
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Resumo

A maioria dos sistemas de aprendizado de máquina para classificação binária é treinado

usando algoritmos que maximizam a acurácia e assume que falsos positivos e falsos neg-

ativos são igualmente ruins. Entretanto, em muitas aplicações, estes dois tipos de erro

podem ter custos bem diferentes. Por exemplo, em aplicações de triagem médica, de-

terminar erroneamente que um paciente é saudável é muito mais sério que determinar

erroneamente que ele tem uma certa condição médica. Neste trabalho, nós abordamos

o problema de controlar a taxa de falsos positivos em Máquinas de Vetores de Suporte

(SVMs), uma vez que sua formulação tradicional não provê garantias desse tipo. Para

resolver esse problema, definimos uma área senśıvel no espaço de caracteŕısticas onde a

probabilidade de falsos positivos é mais alta e usamos um segundo classificador (k-vizinhos

mais próximos) nesta área para melhor filtrar os erros e melhorar o processo de tomada de

decisão. Nós comparamos a solução proposta com outros métodos do estado da arte para

classificação com baixa taxa de falsos positivos usando 33 conjuntos de dados comuns na

literatura. A solução proposta mostra melhor performance na grande maioria dos casos

usando a métrica padrão de Neyman-Pearson.
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Chapter 1

Introduction

One of the pilars of science is the experimentation and collection of data about the world.

This raw data must be manipulated and understood in order to extract information, i.e.

make it useful for us. One way to do this is through the use of theoretical a priori models,

which are usually built manually, without data analysis.

Besides theoretical a priori models, the data can also be analyzed with statistical

methods so that an experimental model can be generated. Machine learning, which has

been widely used in several problems from different areas, including biology, computer

science, medicine, and many others, can provide useful statistical methods. This is pos-

sible because machine learning algorithms are able to learn patterns from data, in order

to try to predict future observations.

There are several kinds of machine learning algorithms. Some of them are supervised

learning, unsupervised learning and reinforcement learning. This work is focused on

supervised learning algorithms, more specifically in classification problems.

1.1 Classification

In a classification problem, the task is to find a classification function which is capable

of correctly distinguishing new samples. In a typical classification setting, we are given

a sample of training vectors x1, . . . ,xn ∈ Rd, each belonging to one of a set of classes,

indicated by the respective labels y1, . . . , yn ∈ {1, . . . ,m}. The aim of a classifier is then

to find a function f : Rd → {1, . . . ,m} that accurately predicts the label when presented

with a new sample [31].

For instance, consider a binary classification problem, that is, a classification problem

wherem = 2. In Figure 1.1 we have two sets of points in a space of two dimensions (d = 2)

and a classification function that correctly separates the samples. In that particular

example, the problem is linearly separable, so we could solve it just by adjusting a straight-

1



1.2. Classification with a false positive constraint 2

line between the samples. Thus, in this case the binary classifier could simply be defined

by the straight-line equation, f(x) = sgn(�w,x� + b = 0), where w ∈ Rd is a vector of

coefficients and b is a parameter that indicates the offset of w with respect to the origin.

The problem then boils down to finding the line that better separates the samples, that

is, the best (w, b).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x
2

�w,x�+ b = 0

y = 1

y = −1

Figure 1.1: A two-dimensional data with positive (red) and negative (blue) samples.

Sometimes the classifier may need to separate the data through a non-linear decision

boundary. This usually happens when the data is not linearly separable, but, even when

it is, a non-linear decision boundary could be a better model to the data. However,

in supervised learning algorithms, complex non-linear decision boundaries could cause a

problem called overfitting [15], that occurs when the model describes noise instead of

the underlying relationship of the data. The reason is that the training data usually

has some noise, and too complex models will able to perfectly separate the training data

and carry the noise with it. To avoid this problem most classifiers try to adjust simpler

decision boundaries that “should be more generalizable”. Figure 1.2 ilustrates this, where

some points were incorrectly classified in order to define a simpler and more generalizable

decision boundary.

1.2 Classification with a false positive constraint

Most machine learning systems are trained using algorithms that maximize accuracy and

assume that false positives and false negatives are equally bad. However, there are several

applications that are sensitive to false positives, such as spam filtering, face recognition,

and computer-aided diagnosis. In these applications, the errors from one class are much
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Figure 1.2: A non-linear decision boundary adjusted to a binary problem.

more costly than errors from the other class, and keeping the false positive rate under the

maximal tolerance is usually a concern prior to achieve high classification accuracy.

In a spam filtering system, for example, incorrectly classifying a good mail as spam is

much worse than misclassifying a few pieces of spam [41]. In computer-based diagnosis,

especially if the automated system is being used for triage of patients, falsely determining

that a case is normal is much more serious than falsely determining that the case is

abnormal. If a case is flagged as abnormal, usually a more costly diagnostics will be

applied to the case, but a case flagged as normal will not be further investigated. Thus a

case falsely determined as normal will remain wrongly determined, whereas a case falsely

determined as abnormal will be further examined, which eventually would determine it

as indeed normal.

We will call the situation of wrongly flagging a case as normal (which has higher cost)

as a false positive1, which is also called in the literature as a false alarm. Formally, for

a given classifier f and a new sample xi ∈ R
d where d is the feature space dimensionality,

its class is denoted by yi while f(xi) denotes the predicted class of xi by f . A false positive

is a point xi such that f(xi) = +1, but yi = −1. A false negative is a point xj such that

f(xj) = −1, but yj = +1. The false positive rate of the classifier f is then:

FP(f) =
|{xi | xi is a false positive}|

{xi | yi = −1}|
(1.1)

Similarly, the false negative rate FN(f) is the ratio of the number of false negatives divided

by the number of positive cases.

1This is potentially confusing because the medical literature treats the normal case as negative and
thus in the medical literature one would like to limit the false negative to a very low value. We will follow
the computer science literature that prefers to call the costly mistake as false positive.
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Although there are many real problems in which the false positive rate must be con-

trolled, the primary goal of most classifiers is to achieve high classification accuracy.

Support Vector Machines (SVM) is a good example of that. It is a powerful algorithm

for binary classification, known for its ability to handle high dimensional data efficiently.

It has been widely used in many applications providing state-of-the-art accuracy to many

classification problems. However, the traditional support vector classifier formulation pe-

nalizes errors in both classes equally, and offers no assurance regarding the false positive

rate. Thus, in problems such as spam filtering, for which a false positive rate constraint

must be complied, the traditional SVM can be useless.

Observing the aforementioned limitations, some extensions to SVM have been pro-

posed in order to make it able to control errors in an asymmetric form. The most com-

mon techniques for that are the Bias-Shifting (BS) [10, 11, 17, 40] and the Cost-Sensitive

SVM (CS-SVM) [10, 11, 34, 18, 25]. While the former tries to control the false alarms

by shifting the SVM’s decision boundary toward the sensitive class (positive in our case),

the latter tries to adjust cost parameters (slack variables) from the SVM’s formulation

in order to make misclassifications from the sensitive class more costly than in the other

class. The CS-SVM offers state-of-the-art results on the problem of low false positive

classification, and several studies have been made in this direction. However, it can be

very inefficient on larger datasets and finding these cost parameters may be impracticable

on problems for which a lot of data is required, specially in the dawning age of big data.

The BS, on the other hand, gives results that are close to the CS-SVM and is as efficient

as the traditional SVM.

Although some researchers have considered solutions for the low false positive problem

that are not based on SVMs [5, 38, 39] (more papers referenced in the related work section),

SVM-based solutions have demonstrated to be more effective in many situations and are

the focus of this work.

In this work, we propose the Risk Area SVM (RASVM), a novel method to efficiently

solve the low false positive classification problem. It is an extension of the traditional

support vector machine classifier which is able to control the false positive rate, given a

user-specified maximum allowed threshold. The RASVM selects a sensitive region close

to the SVM’s decision boundary with a high incidence of false positives. Within that

region, which we call risk area, the decision to classify a sample as positive is based on

inspecting its k-nearest neighbors (k-NN) and a new data point will be only classified as

positive if all its k-nearest neighbors are also positive.

The idea of combining k-NN within a region around the SVM’s decision boundary in

order to control false positives was first introduced in [1] to solve a problem of automatic

triage. This work extends upon and further explores those ideas to build a more robust

and generalized method for controlling false positives. The requirement of keeping the
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false positive rate bounded below a certain level while minimizing the false negative rate

is also called the Neyman-Pearson classification paradigm [33, 32]. The requirement can

also be stated as of maximizing the accuracy (correct predictions), while keeping the false

positive rate bounded. Thus, given a user specified threshold α, our objective is to:

minimize
f

FN(f),

subject to FP(f) ≤ α.
(1.2)

1.3 Objectives

In this dissertation, we present new methods for controlling the false positive rate on

SVM. Our goal is to extend the traditional support vector classifier, making it able to

control the false positive rate, given a user-specified threshold.

Our main objectives are to:

• study the existing methods for controlling false positives on SVM;

• develop new methods for controlling false positives on SVM;

• implement the state-of-the-art methods;

• compare our methods with the ones on the literature.

1.4 Outline of this dissertation

This text is organized as follows: In Chapter 2, we briefly review SVMs, introducing the

C-SVM, the 2C-SVM, and the ν-SVM. In Chapter 3, we discuss alternatives to SVM

based on the Neyman-Pearson classification. In Chapter 4, we describe our method and

its variations. In Chapter 5, we describe the experiment settings common to all methods

evaluated herein. In Chapter 6, we compare our results against the results of state-of-the-

art methods. Finally, we conclude on Chapter 7 with a discussion and some directions

for future research.



Chapter 2

Support Vector Machines

In machine learning, Support Vector Machines (SVM) are among the most effective meth-

ods for binary classification [31], and was originally developed by Cortes and Vapnik [8].

The idea is to find the maximum-margin hyperplane (w, b) in a high-dimensional space

H that accurately separates the positive instances from the negative ones. This concept

is motivated by the statistical learning theory [37], which says that the probabilistic test

error is minimized when the margin is maximized.

Figure 2.1 illustrates an example, where there are multiple hyperplanes that separates

the positive from the negative class. The SVM, however, chooses the maximum-margin

hyperplane, which is shown in Figure 2.1 (c). Filled figures represent training data and

striped figures the support vectors. Positive data represent circles while squares denote

the negative data points.

x1

x2

(a) Separating hyperplane.

x1

x2

(b) Separating hyperplane.

x1

x2b
�w�

2
�w�

(c) Maximum-margin hyperplane.

Figure 2.1: Examples of two possible separating hyperplanes and the maximum-margin
hyperplane used in SVM.
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2.1. Maximum-margin hyperplane linear classifier 7

2.1 Maximum-margin hyperplane linear classifier

Let x1, . . . ,xn ∈ Rd denote a sample of training vectors, each belonging to one of two

classes, indicated by the respective labels y1, . . . , yn ∈ {+1,−1}. To find the maximum-

margin hyperplane we need to select (w, b) such that it corretly separates the positive

from the negative class, and the shortest distance between the hyperplane and its closest

point xi is maximum. We have then the following problem:

max
γ,w,b

γ = min
i=1,...,n

γi

subject to yi(�xi,w�+ b) ≥ γ, for i = 1, . . . , n,

||w|| = 1,

(2.1)

where γi is the distance between (w, b) and xi. This is a non-convex problem, and is

difficult to be solved numerically. However, it can be shown that the parameters of

the maximum-margin hyperplane could be derived by solving the folowing optimization

problem:

min
w,b

1

2
||w||2

subject to yi(�xi,w�+ b) ≥ 1, for i = 1, . . . , n,

(2.2)

which is a quadratic programming (QP) minimization problem, easier to be solved nu-

merically.

When the data is not linearly separable, it will be difficult to find a solution to the

optimization problem shown in Equation 2.2. This problem is usually solved by adding

slack variables, so as to still find a maximum-margin hyperplane, even if a few training

points have to be misclassified. This concept of relaxing the hard margin constraint is

known as soft margin. We can do that by maximizing the margin while softly penalizing

points that lie on the wrong side of the decision boundary. Hence, we now have the

following minimization problem:

min
w,b,ξ

1

2
�w�2 + C

n
�

i=1

ξi

subject to yi(�xi,w�+ b) ≥ 1− ξi, for i = 1, . . . , n

ξi ≥ 0,

(2.3)

where ξi with i = 1, . . . , n, are the slack variables, C ≥ 0 is a parameter that balances the

amount of slack (misclassifications) and the size of the margin, and b is a parameter that

indicates the offset of w with respect to the origin.

Figure 2.2 ilustrates an example where the use of soft margins allowed SVM to define

a more generalizable decision boundary.
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(b)

Figure 2.2: The undesirable decision boundary (with small margin) in (a) becomes more
generalizable in (b) by allowing the point i to be misclassified.

2.2 Non-linear decision boundaries

With the formulation in Equation 2.3, we are now able to find the maximum-margin

hyperplane even if the data is not linear separable. However, often the nature of the

data is such that it is not desirable to separate them with a linear decision boundary.

Figure 2.3 ilustrates an example of a two-dimensional data that was mapped onto three

dimensions, and was able to be separated by a linear decision boundary.

2.2.1 The C-SVM primal

Usually, SVMs implicitly maps the input data onto a high-dimensional feature space H, so

that it can be better separated by an hyperplane. We then need to rewrite the formulation

in Equation 2.3 with such mapping. Now we have the problem:

min
w,b,ξ

1

2
�w�2 + C

n
�

i=1

ξi

subject to yi(�Ψ(xi),w�+ b) ≥ 1− ξi, for i = 1, . . . , n,

ξi ≥ 0, for i = 1, . . . , n,

(2.4)
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(a) A two-dimensional data with positive (black)
and negative (white) samples.

(b) The same data after mapping into a three-
dimensional input space.

Figure 2.3: The circular decision boundary in (a) becomes a linear decision boundary in
(b). Figure reprinted from [26].

where Ψ : Rd → H is the transformation that maps x onto a high-dimensional feature

space. The above formulation is known as C-support vector classification (C-SVC) [4, 8],

and is the standard formulation of SVM.

2.2.2 The C-SVM dual

In practice, due to the possible high dimensionality of the vector w, it is usually trans-

formed into its dual form and solved:

min
α

1

2
α

TQα− eTα

subject to yT
α = 0,

0 ≤ αi ≤ C, for i = 1, . . . , n,

(2.5)

where e = [1, . . . , 1]T is a vector of all ones, Q is an m by m positive semidefinite matrix,

with Qij = yiyj�Ψ(xi),Ψ(xj)�. Now the transformation Ψ could be implicitly defined by a

kernel function, such that �Ψ(xi),Ψ(xj)� = K(xi,xj). There are specialized algorithms for

quickly solving these dual optimization problems that arises on SVM. The most common

is the Sequential Minimization Optimization (SMO) algorithm, which was proposed by

Platt et al. [24].
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The kernel trick. This idea of implicitly mapping the data through a kernel function

is known as the kernel trick. There are many different kernels available for SVM, being

the Gaussian (RBF) kernel the recommended one when we have no prior knowledge on

how to represent the data under analysis. The RBF kernel maps the input data onto a

Hilbert space of infinite dimensions and is given as follows:

K(xi,xj) = exp
�

−γ�xi − xj�
2
�

(2.6)

The support vector classifier. After solving the problem in Equation 2.5, we recover

w and b by using the primal-dual relationship. Finally, the support vector classifier is

given by

fw,b(x) = sgn(�w,Ψ(x)�+ b). (2.7)



Chapter 3

Related Work

There are many practical applications that require the classifier to produce a very low

false positive rate. Therefore, several studies have been conducted to develop classifiers

in this sense, which include techniques based on Näıve Bayes [29, 2], boosting [6, 38,

22], data compression [5], neural networks [42], ensemble learning [20], and cascade of

classifiers [39, 41].

Since the SVM’s standard formulation (C-SVM) penalizes errors in both classes equally,

it does not offer assurance regarding the false positive rate. This (and other) limitations

led to the emergence of many different formulations, each of them generally focused on a

particular problem. The most common SVM formulation for the low false positive learning

is the 2C-SVM, proposed by Osuna et al. [23]. It is basically an extension of the C-SVM

formulation in which we can define different costs to the positive and negative classes by

adjusting the parameters C+ and C−. Let I+ = {i | yi = +1} and I− = {i | yi = −1}.

The 2C-SVM has its primal formulation

min
w,b,ξ

1

2
�w�2 + C+

�

i∈I+

ξi + C−

�

i∈I
−

ξi

subject to yi(�Ψ(xi),w�+ b) ≥ 1− ξi, for i = 1, . . . , n,

ξi ≥ 0, for i = 1, . . . , n,

(3.1)

and the Lagrangian dual,

min
α

1

2
α

TQα− eTα

subject to yT
α = 0,

0 ≤ αi ≤ C+, for i ∈ I+,

0 ≤ αi ≤ C−, for i ∈ I−,

(3.2)

11
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where the cost parameters C+ and C− are usually defined through a third parameter

γ ∈ [0, 1], so that C+ = γ and C− = (1− γ) [11].

Those formulations in which it is possible to adjust the costs of the slacks on the SVM

formulation are known as Cost-Sensitive SVM (CS-SVM). With proper adjustment in its

cost parameters, the CS-SVM is able to consider misclassifications in the positive class

more costly than in the negative class, therefore forcing the decision boundary to avoid

false positives. This idea is illustrated in Figure 3.1, where the 2C-SVM on (b) was able

to avoid the false positive denoted by i on (a), despite bringing in a new false negative,

denoted by j. Filled figures represent training data and striped figures the support vectors.

Positive data represent circles while squares denote the negative data points.

x1

x2

i
ξi

b
�w�

2
�w�

(a) C-SVM decision boundary

x1

x2

jξj

(b) 2C-SVM decision boundary

Figure 3.1: The effect of the 2C-SVM formulation on the low false positive classification
problem, in comparison to the standard C-SVM.

CS-SVMs have been used in many recent studies to solve problems on low false positive

classification for supervised [10, 11] and semi-supervised [18, 25] learning. It usually offers

state-of-the-art results on the problem of low false positive classification, and several

studies have been conducted in this direction. However, this approach can be very time

consuming when dealing with larger datasets so that properly adjusting the parameters

C+ and C− may be impracticable on problems for which a lot of data is required.

Another common method for controlling the false positive rate on SVMs by is known as

Bias-Shifting (BS), and was proposed by Shawe-Taylor and Karakoulas [16]. It is a simple

method, which shifts the decision boundary toward the sensitive class by simply adjusting
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the threshold parameter b. This idea was motivated after Shawe-Taylor [35] showed that

the distance of a data point to the decision boundary is related to its probability of

misclassification. The BS technique is usually optimized by selecting the threshold t that

minimizes FN(f) while ensuring that FP(f) ≤ α (on the training data), where α is the

user-specified maximum allowed false positive rate parameter. After finding t, a testing

instance will be predicted as positive when �w,Ψ(x)� + b ≥ t. This method is simple

and very efficient. However, it frequently results in classifiers for which the false positive

rate significantly exceeds α in the test data. Some researchers have gone even further and

successfully applied BS ideas to open-set classification problems [28, 12, 9]. Figure 3.2

ilustrates the BS technique, where the decision boundary is shifted by t on (b) to solve

the false positive that existed in (a).

x1

x2b
�w�

2
�w�

(a) SVM classifier

x1

x2

t

(b) SVM classifier with BS technique

Figure 3.2: The effect of the BS technique with an SVM classifier on the low false positive
classification problem.

A Cost-Sensitive extension was also proposed to the ν-SVM, which is another SVM

formulation proposed by Schölkopf et al. [30]. It has been showed that the ν-SVM is equiv-

alent to the traditional C-SVM [7] formulation. This Cost-Sensitive extension is known

as 2ν-SVM, and it has been also demonstrated to be equivalent to the 2C-SVM [11]. Dav-

enport et al. [10, 11] adopted the 2ν-SVM on low false positive classification problems,

and provided a careful characterization of the 2ν-SVM parameter space, as well as error

estimation approaches based on smoothing that improves the accuracy of cross-validation

techniques. In addition, they proposed coordinate descent strategies for parameter selec-
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tion that offer significant gains in the 2ν-SVM training time.

Another SVM formulation for the low false positive problem was proposed by Wu et

al. [40], which is called Asymmetric Support Vector Machines (ASVM). Their approach

tries to provide a better description of the positive class by considering a higher confidence

area among the positive training samples. Figure 3.3 shows a logical view of ASVM, where

two margins are maximized — the core-margin (i.e., ρ/||w||) and the traditional class-

margin (i.e., γ/||w||), as in SVM.

x1

x2

ξ

�w�

ρ

�w�

γ

�w�

Figure 3.3: A logical view of ASVM. Two margins, the core-margin (ρ/||w||) and class-
margin (γ/||w||), are maximized simultaneously to allow classifying the negative class and
the core of the positive class. Figure adapted from [40].



Chapter 4

Risk Area SVM

In this chapter, we present the Risk Area SVM (RASVM), an extension of the traditional

support vector machine classifier that incorporates the ability to control the false positive

rate to a user-specified maximum threshold. We start discussing about how misclassifi-

cations generally occur on SVMs, and how we can use this notion to develop classifiers

that are robust to false positives. After that, we show how the RASVM classifies the

points inside the sensitive region of the SVM’s feature space (we call it the risk area),

that is, a region with higher probability of having misclassifications. Next, we describe

how the RASVM selects the risk area. Finally, we introduce a solution for making the

classification inside the risk area much faster.

4.1 Motivation

Our approach is mainly motivated by the weaknesses of the state-of-the-art methods for

controlling false positives on SVMs. Table 4.1 ranks these methods on important aspects

of the low false positive learning problem: (1) false positive control; (2) true positive rate;

(3) insensitivity to unbalance; (4) efficiency. We also include on this table our method.

As we can see, when compared to the state-of-the-art methods, our solution have superior

performance on controlling false positives and good TP rate, insensitivity to unbalance,

and efficiency.

To build a classifier that is more robust to false positives, we based on two facts that

generally occur on SVMs. Below, we will describe these notions and show how we could

explore them.

It is known that, in a support vector classifier, we can only have a high confidence in

the classification of a point if it is far from the SVM’s decision boundary [21, 36]. In other

words, the further away a point is from the hyperplane, more confidence we have in its

classification. We can derive this notion to another important observation: the majority

15
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FP control TP rate Unbalance Efficiency

BS 3 4 2 1

CS-SVM 2 3 3 3

ASVM 4 1 1 4

RASVM 1 2 2 2

Table 4.1: Advantages and disadvantages of the state-of-the-art methods for controlling
false positives on SVMs.

of misclassifications are usually close to the decision boundary (around the hyperplane).

This is a well-known fact from SVM, and is even the primary motivation behind the BS

technique — shifting the hyperplane towards the positive class should solve most of the

false positives. Such shifting, however, will not only solve false positives. Instead, it will

classify as negative all the points that are below the shifted decision boundary. This

solution therefore often results in a significant reduction of the true positive rate.

As shown in Chapter 2, the SVM finds the maximum-margin hyperplane that better

separates the positive from the negative class. So, it is always a linear decision boundary.

In order to get non-linear boundaries, SVMs use the notion of kernels to implicitly map

the input data onto a high dimensional feature space. This allows SVM to solve the

original problem through a linear decision boundary in the augmented space, and when

returning to the original space, this solution could be a non-linear decision boundary. This

notion is illustrated in Figure 2.3. However, the data could still not be linearly separable

in this higher-dimensional space, and thereof comes the notion of soft margin, to allow

some training points to be misclassified. This concept of relaxing the hard margin is also

useful to define decision boundaries that are more generalizable for new classifications.

For the low false positive classification, these misclassified training points (known as

slacks) can give us valuable information regarding the regions of the SVM’s feature space

where we cannot trust in the classification of a data point as positive. Classifying as

positive a testing point that is near to misclassified training points can be risky, and

should be avoided when the goal is to achieve a low false positive rate. This is ilustrated

in Figure 4.1, in which a training point (highlighted with a red circle) was misclassified

in order to define a more generalizable decision boundary.

These ideas are the basis of the Risk Area SVM. First, our approach is focused on the

region around the hyperplane, since it should have a higher incidence of false positives;

we call this region the risk area, and we will show next how we select it. After that, we

use a second classifier in order to carefully classify testing points inside the risk area. As

we will show below, this second classifier will consider the misclassified training points
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Figure 4.1: Training point misclassified by the SVM (soft margin).

from the SVM classifier in order to avoid false positives.

4.2 The Risk Area SVM classifier

The Risk Area SVM (RASVM) is an extension of the traditional support vector machine

classifier that incorporates the ability to control the false positive rate to a user-specified

maximum threshold. It is grounded on two presuppositions: (1) most misclassified points

on SVMs are close to the decision boundary; (2) these misclassified training points define

sensitive areas, so that classifying a testing point as positive in these regions should be

avoided. Thus within a region close to the decision boundary of an SVM, and given that

our problem is to limit the false positives, one should be very careful in determining a new

data point in this area as positive. We call this region around the decision boundary as

risk area, and the decision to classify a data point in this area as positive will only be made

if all of its k-nearest neighbors (for a fixed k) within a training set are also positive. If

the data point is outside the risk area, then the usual SVM rule for classification applies

and the data will be classified according to the side of the decision boundary it lays.

Despite making use of the fact described in (1), unlike the BS technique, RASVM does

not necessarily classify all the samples that are close to the decision boundary as negative.

It also makes use of the fact described on (2) to carefully classify the points inside the

risk area.
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Section 4.3 discusses different ways of defining the risk area. For the moment, assume

that it is a symmetrical area around the decision boundary. Figure 4.2 depicts an example

of classification in RASVM, assuming that k = 2, that is, a test sample will be classified

as positive if its two closest training data points are also positive. Filled figures represent

training data, unfilled figures the testing data, and striped figures the support vectors.

Positive data represent circles while squares denote the negative data points. The risk

area is the red-colored region.

x1

x2
1

�w�

R
isk

A
rea

Figure 4.2: An example of the RASVM, with the risk area. In this case, we have k = 2.
The five testing points inside the risk area have their classes defined by the class of its
2-nearest neighbors.

Formally, the classification of an RASVM is performed in two steps. Let x1, . . . ,xn ∈

R
d denote the training set of data, z a new data point that must be classified, and R

denote the risk area. If z is outside R, its class is defined by the SVM’s decision boundary:

f(z) =

�

+1 if Ψ(z) + b > 0

−1 otherwise.

If z is within the risk area R, it will be classified as positive only if all its k-nearest

neighbors are all positive:

f(z) =

�

+1 if ∀xj ∈ Nk(z) f(xj) = +1,

−1 otherwise.

where Nk(z) is the neighborhood of z defined by the k closest points xi in the training

set [14]. Note that in the SRA and OSSRA forms (the variations from which δ > 0), the
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SVM’s hyperplane is also shifted by δ together with the risk area. So, for every point

that is outside R, the ones above the shifted hyperplane are classified as positive, and the

remaining as negative.

Closeness implies a metric. So, to get the closest points to z, we consider the Euclidean

distance in the feature space H. The Euclidean distance between two points p and q is

defined as follows:

dist(p,q) = �p,q� =
�

(p− q) · (p− q). (4.1)

which is equivalent to:

dist(p,q) =

�

�p�2 + �q�2 − 2p · q =
�

(p · q) + (q · q)− 2(p · q). (4.2)

Thereby, since we are using the RBF as kernel, we could replace the dot products on

Euquation 4.2 with that kernel to compute the distances between every pair of points in

H.

Definition 4.2.1. Given a testing point z ∈ R and the training points xi, i = 1, . . . , n,

the Euclidean distance dist(z,xi) between z and xi in the feature space H is defined by

dist(z,xi) =
�

K(z, z) +K(xi,xi)− 2K(z,xi) (4.3)

where K is defined by Equation 2.6.

4.3 Definition of the Risk Area

The risk area is a region that is shaped around the SVM’s decision boundary in order

to outline the samples that will be classified by a second classifier instead of the decision

boundary. The general form of the risk area is given as follows:

Definition 4.3.1. A testing point xi belongs to the risk area when

β− ≤ d(xi)− δ ≤ β+, (4.4)

where δ is the offset of the risk area with respect to the original SVM’s hyperplane, β− and

β+ are the width of the risk area above and below the shifted hyperplane, respectively,

and d(·) is the oriented (signed) Euclidean distance between xi and the hyperplane in the

feature space H, which is given by:

d(xi) =
wT

Ψ(xi) + b

�w�
. (4.5)
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Figure 4.3: The parameters of the risk area. The positive samples are represented by
circles and the negative samples by squares. The samples that are classified as positive
by the RASVM are highlighted in green while those that are classified as negative are in
blue.

Figure 4.3 shows the parameters of the risk area. In this case, δ is greater than zero,

making the risk area to be defined around the shifted hyperplane.

Although always located around the hyperplane, we consider different ways of selecting

the risk area. The simplest case is just called Risk Area (RA), in which we select the risk

area as the region that is distant to the hyperplane at most β. An alternative to this is

the One Sided Risk Area (OSRA), in which the risk area is defined in the same way as in

the RA form, but only for the region above the hyperplane.

A more sophisticated way of selecting the risk area is the Shifted Risk Area (SRA).

In this case, we first shift the SVM’s decision hyperplane toward the positive class by

some threshold δ. Then, we select the risk area as the region that is distant to the shifted

hyperplane at most β. Finally, an alternative to the SRA form is the One Sided Shifted

Risk Area (OSSRA), in which we define the risk area the same way as in the SRA form,

but only for the region above the shifted hyperplane. Table 4.2 shows how the parameters

β+, β−, and δ are set in each case. The parameters β+ and β− are always set to −β, +β,

or zero. The parameter δ is always set to t or zero.

Note that in the RA form, the second classifier will be applied both above and below

the SVM’s hyperplane. The intuition behind this is that, besides trying to fix the false

positives that could be above the hyperplane, we can also fix some false negatives that are
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Table 4.2: How the parameters β+, β−, and δ are set in each form of the Risk Area SVM.
The parameter t is the same as the obtained in the BS.

β− β+ δ

RA Risk Area −β +β 0
OSRA One Sided Risk Area 0 +β 0
SRA Shifted Risk Area −β +β t
OSSRA One Sided Shifted Risk Area 0 +β t

under the hyperplane and increase the true positive rate. In the OSRA form, we restrict

the method to just try to solve the false positives that could be above the hyperplane.

Figure 4.4 illustrates how the risk area is bounded on the RA and OSRA forms.

x1

x2

β+
β
−

(a)

x1

x2

β+

(b)

Figure 4.4: Examples of risk areas in (a) RA and (b) OSRA forms.

On the SRA and OSSRA forms, besides defining β, we need to set the offset δ. In

this work, we use the threshold given by the Bias-Shifting (BS) method, optimized by the

Neyman-Pearson score [32]. Figure 4.5 illustrates how the risk area is bounded on the

SRA and OSSRA forms.

4.4 Optimization of RASVM Parameters

The RASVM has, in its general form, five hyperparameters:

• the C and γ of the standard SVM model (with RBF kernel)
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Figure 4.5: Examples of risk areas in (a) SRA and (b) OSSRA forms.

• the shift δ

• the width of the risk area β

• and the k for the k-NN unanimity voting

These hyperparameters are selected by the following procedures:

• First, C and γ are selected in a grid-search fashion, using a 5-fold validation (on the

training set) and selecting for the pair of values with higher mean accuracy over the

evaluation sets.

• Second, δ is optimized by moving the hyperplane toward the sensitive class, until

finding the position that maximizes the NP-score (see Section 5.1 for the definition

and rationale of the NP-score). For the RA and OSRA, δ = 0.

• Finally, β and k are selected also through grid-search using a 5-fold protocol on the

training set which also optimizes the NP-score [32].

4.5 Speeding Up the Classification inside the Risk

Area

A potential advantage of the k-NN classifier is that it requires no training step [14].

However, because all the work is done at run-time, it can have poor run-time performance
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in larger training sets [3]. If a new data falls within the risk area, a näıve implementation

would have to scan all of the training set to determine the closest k neighbors. Even if one

uses more efficient data structures to organize the data (like metric trees [27]) to speed

up the search, one still has to “remember” all the training data.

If the assumption behind the RASVM is correct, that misclassifications happen close

to the decision boundary, then possibly only the training data close to the boundary could

be used to determine the k-NN. If one is willing to use an SVM classifier, one will have to

“remember” all the training set that are support vectors for the decisions boundary, i.e.,

the training data that holds the margins of the decision boundary or are on the wrong

side of the margin and thus contribute to the slack variables ξi in Equation 2.4.

Therefore, the faster variant of RASVM, which we call RASVM-SV (after “support

vector”) only looks to the k neighbors among the support vectors of the SVM classifier.

The idea is that the number of support vectors in SVM is usually much smaller than the

size of the training set. Besides making the classification on the risk area faster (because

less training points will be tested to select the k-nearest neighbors), the memory needed

by the RASVM-SV would be similar to the one needed by the SVM itself.



Chapter 5

Evaluation Methodology

This chapter discusses the methodology for comparing the proposed methods RASVM

and RASVM-SV to other techniques in the literature: BS, ASVM, and cs-SVM.

5.1 Performance Measure

To compare the performance of two different classifiers under the Neyman-Pearson cri-

terium, we will use the Neyman-Pearson score (NP-score) proposed by Scott [32], which

is defined as:
1

α
max{FP(f)− α, 0}+ FN(f), (5.1)

where α is the maximum FP allowed.

The NP-score is a weighted sum of errors, thus the lower the better. It penalizes heavily

FP exceeding α, since it is multiplied by 1/α. However, if the FP is only very slightly over

α, it may still define a useful classifier if the FN is sufficiently small. Finally, if FP is below

α the NP-score is the FN rate. Scott [32] shows that this measure satisfies some intuitive

understanding of how to combine the requirements of a Neyman-Pearson classification

problem. For instance, it should not discard altogether a classifier that disrespects the

false positive constraint. Instead, the NP-score applies a penalty to classifiers that violates

α. This penalty depends on the value of α and becomes more rigorous as α gets closer

to zero, i.e., if the classifier violates α by 0.1 its penalty is bigger than when it violates

alpha by 0.01.

5.2 Datasets

In order to evaluate our approach in different scenarios under different conditions, we

performed experiments on several binary datasets, from different sources and sizes. For

24
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this, we selected some of the datasets published in the LIBSVM [19] website, since it

contains many datasets that are commonly used in literature for binary classification. We

separated them into two groups, according to their size: small, and large. These datasets

are summarized on Tables 5.1, and 5.2.

Table 5.1: Group of small datasets used in our experiments. Size is the amount of data
in the dataset, Pos and Neg refer to the proportion of positive and negative examples,
respectively, and d is the number of features on the dataset.

Dataset Size %Pos %Neg d

australian 690 44.5 55.5 14
breast-cancer 683 35.0 65.0 10
colon-cancer 62 35.5 64.5 2,000
diabetes 768 65.1 34.9 8
duke.breast-cancer 44 52.3 47.7 7,129
fourclass 862 35.6 64.4 2
german.numer 1,000 30.0 70.0 24
heart 270 44.4 55.6 13
ionosphere 351 64.1 35.9 34
leukemia 72 65.3 34.7 7,129
liver-disorders 345 42.0 58.0 6
mushrooms 8,124 48.2 51.8 112
sonar 208 46.6 53.4 60
splice 3,175 51.9 48.1 60
svmguide1 7,089 56.4 43.6 4
svmguide3 1,284 26.2 73.8 21

5.3 Experimental Setup

To evaluate the performance of the classifiers in the group of small datasets we used

the 5×2 cross-validation protocol [13]. This approach consists in five replications of the

standard 2-fold cross-validation protocol. It means that, in each replication, the dataset

is randomly partitioned into two subsets S1 and S2 roughly of the same size. We then

train the classifier on S1 and test on S2, followed by training on S2 and testing on S1.

As discussed in [13], the 5×2 cross-validation provides a more precise estimation of the

variance of the error (or in this case the NP-score) for different samples of the data in

the dataset, and should be preferred to the more common method of using k-fold cross

validation to measure and compare the quality of classifiers. One of the reasons for this is

that the 5×2 cross-validation has fewer samples shared between the training subsets than
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Table 5.2: Group of large datasets used in our experiments. Train and Test are the
amount of data in the dataset, Pos and Neg refer to the proportion of positive and
negative examples, respectively, and d is the number of features on the dataset.

Dataset Train Test %Pos %Neg d

a1a 1,605 30,956 24.1 75.9 123
a2a 2,265 30,296 24.1 75.9 123
a3a 3,185 29,376 24.1 75.9 123
a4a 4,781 27,780 24.1 75.9 123
a5a 6,414 26,147 24.1 75.9 123
a6a 11,220 21,341 24.1 75.9 123
a7a 16,100 16,461 24.1 75.9 123
a8a 22,696 9,865 24.1 75.9 123
news20.bin 15,996 4,000 50.0 50.0 1,355,191
w1a 2,477 47,272 3.00 97.0 300
w2a 3,470 46,279 3.00 97.0 300
w3a 4,912 44,837 3.00 97.0 300
w4a 7,366 42,383 3.00 97.0 300
w5a 9,888 39,861 3.00 97.0 300

the standard k-fold cross-validation. In the k-fold, the fraction of samples that is shared

between two training subsets is given by (1−2/k). If we have k = 10, 80% of the training

data is shared between each pair of training subsets. As for the 5×2 cross-validation,

the expected number of samples shared between two training subsets is only 50%. The

5×2 cross-validation protocol results in 10 measures of classification quality, in this case

NP-score for each algorithm. To compare two algorithms, X and Y we compare the set of

10 measures times the number of datasets from one algorithm with the other, in different

forms: we show the boxplot of each set of measures and also report the mean and standard

deviation of the set of measures. In addition, we use the Wilcoxon signed rank test to

verify if the differences between two sets of measures are statistically significant. The test

is paired because the same split between train and test subsets is used for all algorithms.

For the group of large datasets, we opted to use the already existing (suggested)

training and test splits provided in their documentation [19]. In addition, 5×2 validation

protocol in such cases proved to be unfeasible due to the large amount of time required

to perform the 10 steps of training. In this case, we have only one measure per algorithm

for each dataset. We still perform the Wilcoxon paired test but there are less pairs of

values and thus the p-values of the comparison are expected to be higher.



5.4. Comparisons 27

5.4 Comparisons

In our previous experiments (see Appendix A), we discovered that the OSSRA form of

RASVM performed better on average than the other three versions, both regarding NP-

score and FP rates. For simplicity, in this work, we only list the results for the RASVM

and RASVM-SV with the risk area in the OSSRA form, and we will call them as OSSRA

and OSSRA-SV, respectively. But the practitioner must be aware that for a particular

dataset, one of the other three versions may achieve better results. Below, we summarize

the procedures we used to compare OSSRA and OSSRA-SV to other techniques in the

literature: BS, ASVM, and CS-SVM.

1. Comparison with BS. The BS strategy has three hyperparameters C, γ and t.

We selected them by following the first two steps of the procedure described in

Section 4.4.

2. Comparison with ASVM. ASVM has three hyperparameters µ, τ , and q [40],

and we followed the procedure described in [40] to select them: µ and q are selected

first through a grid-search, followed by a linear search on τ . We then select the

combination (µ, q, and τ) that minimizes the NP-score, since this is the measure

we are using to evaluate each method.

3. Comparison with CS-SVM. To compare the proposed methods with CS-SVM

we used the same experimental procedure described in [10]: 100 permutations of

the data, each one with a random split of 70% of the data for training and 30%

for test. Then, we follow the three-step procedure described in Section 4.4 for each

permutation, and average the results. We compare the obtained results with the

ones reported in [10].



Chapter 6

Experiments and Results

In this chapter, we compare OSSRA and OSSRA-SV with other techniques in the liter-

ature: BS, ASVM, and CS-SVM. As we mentioned in Section 4.3, the OSSRA methods

performed better and we only consider this form in this section to compare RASVM and

RASVM-SV with the other strategies. In addition, for a clean presentation, we opted

for showing results just in terms of NP-scores, false positives and true positives in this

section. For other RASVM results as well as additional metrics to the ones reported in

this chapter, please refer to Appendices A and B, respectively.

6.1 Comparison with BS and ASVM

We start comparing OSSRA and OSSRA-SV with BS and ASVM [40] strategies. Table 6.1

shows the NP-scores achieved for the group of small datasets when α = 0.10 and α = 0.01.

We can see that both OSSRA and OSSRA-SV achieved the best (lower) result on most

cases — 13 and 12 datasets (out of 16) when α = 0.1 and α = 0.01, respectively. BS

achieved similar results on 10 cases (six with α = 0.1 and four with α = 0.01), while

ASVM was better on seven cases (three with α = 0.1 and four with α = 0.01).

Table 6.2 shows the p-values of the Wilcoxon signed-rank paired test on the NP-

scores of the BS and ASVM strategies when compared with the OSSRA and OSSRA-SV.

Thus, for the values of α equal to 0.10 and 0.01 both OSSRA and OSSRA-SV have

statistically signiticantly lower scores than BS and ASVM for the group of small datasets.

For α = 0.05, only the OSSRA has statistically significant lower scores.

Figures 6.1, 6.2, and 6.3 compare the results of ASVM, BS, OSSRA, and OSSRA-SV

through a boxplot of NP-scores, TP, and FP, respectively, for the group of small datasets.

The red boxes represent the results of α = 0.10, the green boxes the results of α = 0.05,

and the yellow boxes the results of α = 0.01. We can see that both OSSRA and OSSRA-

SV achieved lower median values of NP-scores and FP than ASVM and BS for all values

28
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Table 6.1: Neyman-Pearson scores of BS, OSSRA, and OSSRA-SV for the group of small
datasets.

Dataset α BS ASVM OSSRA OSSRA-SV

australian .10 0.49 ±0.3 0.90 ±0.2 0.41±0.2 0.42 ±0.2
.01 2.59 ±1.9 15.4 ±4.7 1.58 ±1.1 1.23±0.9

breast-cancer .10 0.05 ±0.0 0.01±0.0 0.05 ±0.0 0.05 ±0.0
.01 1.39 ±1.6 1.31 ±1.5 0.73±0.7 0.75 ±0.6

colon-cancer .10 0.51 ±0.3 3.11 ±3.3 0.45±0.3 0.45±0.3
.01 7.13±6.4 37.8 ±35 7.13±6.4 7.13±6.4

diabetes .10 0.64 ±0.2 0.68 ±0.2 0.60 ±0.2 0.58±0.1
.01 2.59 ±1.7 1.42±1.0 1.82 ±1.1 1.78 ±1.1

duke .10 1.81 ±1.9 1.00±0.2 1.81 ±1.9 1.81 ±1.9
.01 23.7 ±21 7.66±18 23.7 ±21 23.7 ±21

fourclass .10 0.00±0.0 1.84 ±0.2 0.00±0.0 0.00±0.0
.01 0.00±0.0 24.1 ±1.7 0.00±0.0 0.00±0.0

german.numer .10 0.82 ±0.2 1.33 ±0.4 0.79±0.2 0.80 ±0.2
.01 3.05 ±3.6 13.9 ±7.7 2.37 ±3.4 2.08±3.5

heart .10 0.51 ±0.3 0.93 ±0.4 0.39 ±0.2 0.34±0.1
.01 2.76 ±2.8 11.9 ±7.3 1.99±2.0 2.25 ±2.0

ionosphere .10 0.40 ±0.6 0.60 ±0.3 0.23±0.5 0.23±0.5
.01 4.21 ±3.1 1.21±0.8 4.21 ±3.1 4.21 ±3.1

leu .10 1.53 ±1.3 0.92±0.2 1.53 ±1.3 1.53 ±1.3
.01 21.6 ±17 2.42±5.0 21.6 ±17 21.6 ±17

liver-disorders .10 0.91 ±0.4 1.09 ±0.3 0.84±0.3 0.85 ±0.2
.01 4.81 ±5.0 10.3 ±3.5 3.47 ±4.4 3.28±4.0

mushrooms .10 0.00±0.0 0.18 ±0.0 0.00±0.0 0.00±0.0
.01 0.00±0.0 0.67 ±0.4 0.00±0.0 0.00±0.0

sonar .10 0.58±0.7 2.28 ±2.4 0.58±0.7 0.58±0.7
.01 10.6±8.6 18.8 ±30 10.6±8.6 10.6±8.6

splice .10 0.59±0.3 1.32 ±0.4 0.59±0.3 0.59±0.3
.01 13.1 ±3.0 17.9 ±7.8 13.1±3.0 13.1±3.0

svmguide1 .10 0.03±0.0 0.25 ±0.1 0.03±0.0 0.03±0.0
.01 0.76 ±0.9 0.89 ±0.5 0.23±0.2 0.26 ±0.2

svmguide3 .10 0.57±0.1 1.26 ±0.5 0.57±0.1 0.57±0.1
.01 3.43 ±1.5 12.7 ±6.7 3.10±1.5 3.16 ±1.4







6.2. Comparison with CS-SVM 32

6.2 Comparison with CS-SVM

This section compares the obtained results with the Cost-Sensitive methods proposed by

Davenport et al. [10]. They consider the Cost-Sensitive 2ν-SVM formulation, with four

different approaches for selecting the parameters ν+ and ν−: grid search (GS), windowed

grid search (WGS), coordinate descent (CD), and windowed coordinate descent (WCD).

Table 6.3 compares the OSSRA and OSSRA-SV with their methods, using the results

reported in [10]. We can see that both OSSRA and OSSRA-SV achieved lower FP on

all the cases. Comparing the NP-score, OSSRA and OSSRA-SV achieves lower (better)

results on three out of the four datasets that we considered in our tests.

6.3 Experiments on Large Datasets

This section shows the experiments considering the larger datasets. In these cases, we

trained and tested just following the the training/test partitions proposed in [19].

Table 6.5 shows the average NP-scores achieved by ASVM, BS, OSSRA, and OSSRA-

SV on the 14 large datasets that we considered in our experiments1. Note how both

OSSRA and OSSRA-SV achieves the lowest scores on almost all the cases (all the 14

datasets with α = 0.1 and 13 with α = 0.01), followed by BS which obtains a similar

result in 16 cases (11 with α = 0.1 and five with α = 0.01). The ASVM obtained worse

results in almost all the cases when compared with BS, OSSRA, or OSSRA-SV, except

for the news20.bin dataset with α = 0.01.

Table 6.4 shows the p-values of the Wilcoxon signed-rank paired test on the NP-scores

of the BS and ASVM strategies when compared with the OSSRA and OSSRA-SV. For

the values of α equal to 0.05 and 0.01 both OSSRA and OSSRA-SV have statistically

significant lower scores than BS and ASVM for the group of large datasets.

6.4 Experiments with Unbalanced Data

An important feature for any classifier is the insensitivity to unbalance data. It is very

common to have problems wherein the acquisition of samples from one of the classes is

much more costly than in the other class, thereby resulting in unbalanced data. In this

section we compare the ability of RASVM for controlling false positives on balanced and

unbalanced data with the C-SVM, BS, and ASVM methods.

The experiments below have been made on the small group of datasets. For each

dataset in this small group, we randomly generated 9 splits of data, ranging from 10%

1We could not evaluate the CS-SVM methods proposed by Davenport et al. [10] on those datasets,
since they were not considered in their tests.
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Table 6.3: Neyman-Pearson scores of OSSRA, OSSRA-SV, and the CS-SVM methods
proposed by Davenport et al. [10].

Dataset Classifier FP FN NP

ida.banana OSSRA .058 ±.01 .142 ±.02 0.142
OSSRA-SV .058 ±.01 .142 ±.02 0.142

GS .114 ±.03 .120 ±.02 0.260
WGS .104 ±.02 .124 ±.02 0.164
CD .104 ±.02 .125 ±.02 0.165
WCD .106 ±.03 .124 ±.02 0.184

ida.breast OSSRA .056 ±.05 .793 ±.10 0.793
OSSRA-SV .056 ±.05 .794 ±.10 0.794

GS .156 ±.09 .668 ±.10 1.228
WGS .112 ±.06 .689 ±.10 0.809
CD .114 ±.06 .683 ±.10 0.823
WCD .119 ±.06 .678 ±.10 0.868

heart OSSRA .090 ±.05 .275 ±.09 0.275
OSSRA-SV .091 ±.05 .274 ±.08 0.274

GS .124 ±.06 .219 ±.07 0.459
WGS .113 ±.05 .231 ±.07 0.361
CD .106 ±.05 .230 ±.06 0.290
WCD .110 ±.05 .231 ±.06 0.331

ida.thyroid OSSRA .023 ±.02 .087 ±.08 0.087
OSSRA-SV .023 ±.02 .087 ±.08 0.087

GS .098 ±.09 .064 ±.09 0.064
WGS .087 ±.06 .032 ±.05 0.032
CD .084 ±.06 .039 ±.05 0.039
WCD .093 ±.06 .032 ±.05 0.032
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Table 6.4: Wilcoxon signed-rank test p-values on the NP-scores of OSSRA and OSSRA-SV
with BS and ASVM, on the group of large datasets.

α OSSRA OSSRA-SV

BS 0.10 0.181 0.181
0.05 0.014 0.014
0.01 0.014 0.014

ASVM 0.10 0.000 0.000
0.05 0.000 0.000
0.01 0.000 0.000

to 90% of positives samples. We then followed the procedure described in Section 4.4 for

each split and computed their corresponding NP-scores. Figures 6.4, 6.5, and 6.6 shows

the NP-score achieved by each method on these splits for the values of α equal to 0.1, 0.05,

and 0.01, respectively. The results showed are the average NP-score obtained from the

datasets that we considered (group of small datasets). We could see that the NP-score

of the A-SVM is the less sensitive to unbalanced data, since its variation between the

splits is not large. The standard C-SVM, as expected, showed a very larger increase in

the NP-score when the ratio positive samples is greater than 40%. This occurs because,

when there are few negative samples, the C-SVM gives more importance to the positive

class, thus increasing the ratio of incorrect classifications in the negative class. The BS

and RASVM showed good results both with balanced and unbalanced data, but their

NP-score significantly increases when the ratio of positive samples is greater than 70%.

6.5 Speed Improvement with RASVM-SV

As we mentioned in Section 4.5, the classification inside the risk area can be slow on large

datasets. Given this issue, we consider the RASVM-SV, which can provide significant

gains in speed.

We selected six datasets that we used in our experiments and measured the time spent

by OSSRA and OSSRA-SV methods to optimize the parameters k and β and to classify

all the testing data. All the experiments were executed on an Ubuntu machine with an

8-core Intel R� Xeon R� processor, and 16Gb of RAM. We compare the results on Table 6.6,

with the number of training points (Train), the number of support vectors (SVs), and

the training time. We can see that the gains in speed with the OSSRA-SV was very

significant, up to five times faster than the OSSRA.
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Table 6.5: Neyman-Pearson scores of BS, OSSRA, and OSSRA-SV for the group of large
datasets.

Dataset α BS ASVM OSSRA OSSRA-SV

a1a .10 0.585 4.763 0.513 0.515
.01 1.754 56.38 0.983 1.065

a2a .10 1.228 3.410 0.965 0.964
.01 1.746 41.82 1.523 1.462

a3a .10 0.403 9.000 0.403 0.403
.01 1.219 99.00 0.953 0.831

a4a .10 0.407 2.343 0.407 0.407
.01 1.170 30.76 0.859 0.843

a5a .10 0.410 2.014 0.410 0.410
.01 0.963 27.19 0.803 0.831

a6a .10 0.426 2.015 0.426 0.426
.01 1.203 27.08 0.957 0.811

a7a .10 0.353 2.001 0.347 0.333
.01 0.863 27.00 0.772 0.779

a8a .10 0.391 1.845 0.391 0.391
.01 1.183 25.30 0.937 0.883

news20.binary .10 0.027 0.991 0.027 0.027
.01 2.778 0.998 2.778 2.778

w1a .10 0.571 2.165 0.571 0.571
.01 0.571 23.10 0.571 0.571

w2a .10 0.449 4.414 0.449 0.449
.01 0.449 48.04 0.449 0.449

w3a .10 0.440 3.781 0.440 0.440
.01 0.440 41.00 0.440 0.440

w4a .10 0.437 3.797 0.437 0.437
.01 0.437 41.22 0.437 0.437

w5a .10 0.371 3.742 0.371 0.371
.01 0.371 40.52 0.371 0.371







Chapter 7

Conclusions

Controlling false positives is paramount in several machine learning problems varying from

simple spam filtering to more complex computer-aided diagnosis solution. In this work,

we have proposed a new method for controlling false alarms for one of the most powerful

classifier to date: the Support Vector Machine.

Our approach was mainly based on two pressupositions: (1) most misclassified points

on SVMs are close to the decision boundary; (2) these misclassified training points define

sensitive areas, so that classifying a testing point as positive in these regions should be

avoided in the context of low false positive classification. It is based on selecting a risk

area around the SVM’s decision hyperplane in order to outline the samples that will be

classified through a second classifier later on. We discussed four variations for selecting the

risk area, and evaluated the two best ones against state-of-the-art methods for controlling

false positives.

In line with the SVM literature [14] which states that the most important decisions are

always around the SVM boundary, the idea of further refining the results by imposing a

unanimity decision-making process with a second layer classifier showed to be very effec-

tive. Indeed, one can further explore smoother decisions using a majority voting scheme

rather than unanimous scheme therefore favoring either false positive or false negative

controlling. The additional observation that the support vectors are enough to perform

such second layer analysis is also very interesting leading to the proposition of a solution

for increasing the RASVM and its OSSRA (One Sided Risk Area) variation performance

on large datasets with a speed up to 5 times the one of the original formulation. With

these two solutions (risk area analysis using only a pre-specific set of support vector

points), we offer an effective and efficient methodology for controlling false positives on a

variety of problems involving machine learning.

This research also goes in the direction of recent efforts in the machine learning com-

munity tackling the problem of open set recognition [12, 28]. Recognition problems,
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differently from classification, consider only a fixed set of known classes for training while

the testing can face a myriad of unseen examples from either previously trained classes but

also from untrained ones. For instance, a biometric system trained with 100 people must

reject all other identities not in the gallery of 100 people while in operation. In this new

scenario, techniques such as the ones we propose in this work can play a major role since

it will protect the classes seen during training while avoiding unknown samples which

would be classified as false positives by a traditional classifier. In this context, a whole

new research branch opens for exploring RASVM-based methods for openset recognition

problems.

Finally, a possible drawback of our approach to be addressed in the future is the need

for tuning the hyparameter β through a grid-search along with k. Since β only defines

the size of the risk area, it may be possible to optimize it in an independent manner and

make the RASVM optimization much faster. Further research is also needed in order to

evaluate other classification methods for the samples on the risk area.
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Appendix A

Additional Results

In this appendix, we compare all the RASVM and RASVM-SV methods to other tech-

niques in the literature: BS and ASVM.

A.1 Comparison of RASVM with BS and ASVM

Tables A.1, A.2, and A.3 show the NP-scores achieved for the group of small datasets for

the values of α equal to 0.10, 0.05, and 0.01, respectively. We can see that the RASVM

methods achieved the best scores more often than BS and ASVM (OSSRA for α = 0.1,

RA for α = 0.05, and RA/SRA for α = 0.01).

Table A.4 shows the p-values of the Wilcoxon signed-rank paired test on the NP-scores

of the BS and ASVM strategies when compared to the RASVM methods. Thus, for the

values of α equal to 0.05, and 0.01, all the RASVM methods have statistically significant

lower scores than BS and ASVM for the group of small datasets. For α = 0.10, only

OSSRA has statistically significant lower scores when compared to BS and ASVM.

Figure A.1 summarizes those results through a boxplot of NP-scores. The red boxes

represent the results of α = 0.10, the green boxes the results of α = 0.05, and the yellow

boxes the results of α = 0.01. We can see that RASVM achieved lower median values of

NP-scores than BS and ASVM for all values of α (SRA/OSSRA for α = 0.1, OSSRA for

α = 0.05, and RA for α = 0.01).

A.2 Comparison of RASVM-SV with BS and ASVM

Tables A.5, A.6, and A.7 show the NP-scores achieved for the group of small datasets for

the values of α equal to 0.10, 0.05, and 0.01, respectively. We can see that the RASVM-SV

methods also achieved the best scores more often than BS and ASVM (OSSRA-SV for
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Table A.2: NP-scores of BS, ASVM, and RASVM for the small datasets (α = 0.05).

Dataset BS ASVM RA OSRA SRA OSSRA

australian 0.76 ±0.5 2.44 ±0.8 0.63±0.4 0.63±0.3 0.66 ±0.5 0.70 ±0.4
breast-cancer 0.05±0.0 0.14 ±0.2 0.05±0.0 0.05±0.0 0.05±0.0 0.05±0.0
colon-cancer 1.55 ±1.0 6.96 ±6.7 1.28 ±1.0 1.18±1.0 1.18±1.0 1.20 ±1.0
diabetes 0.97 ±0.4 0.99 ±0.4 0.86 ±0.5 0.86 ±0.5 0.86 ±0.4 0.81±0.3
duke 4.24 ±4.0 2.06±3.2 4.24 ±4.0 4.24 ±4.0 4.24 ±4.0 4.24 ±4.0
fourclass 0.00±0.0 4.33 ±0.3 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
german.numer 1.53 ±0.6 2.73 ±1.2 1.19 ±0.5 1.14±0.5 1.23 ±0.5 1.14±0.4
heart 0.96 ±0.6 2.22 ±1.1 0.54±0.2 0.72 ±0.5 0.67 ±0.4 0.69 ±0.3
ionosphere 0.99 ±1.1 0.42±0.0 0.93 ±1.2 1.02 ±1.1 0.92 ±1.2 0.97 ±1.1
leu 3.77 ±3.1 1.09±0.7 3.77 ±3.1 3.77 ±3.1 3.77 ±3.1 3.77 ±3.1
liver-disorders 1.69 ±0.9 1.97 ±0.7 1.42±0.9 1.43 ±0.9 1.55 ±0.9 1.51 ±0.9
mushrooms 0.00±0.0 0.20 ±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
sonar 1.50±1.7 5.44 ±6.3 1.50±1.7 1.50±1.7 1.50±1.7 1.50±1.7
splice 2.02±0.6 3.17 ±1.2 2.02±0.6 2.02±0.6 2.02±0.6 2.02±0.6
svmguide1 0.11±0.1 0.29 ±0.0 0.11±0.1 0.12 ±0.1 0.11±0.1 0.12 ±0.1
svmguide3 0.64±0.1 2.43 ±1.3 0.66 ±0.1 0.66 ±0.1 0.65 ±0.1 0.64±0.1

α = 0.1, OSSRA-SV for α = 0.05, and SRA-SV/OSSRA-SV for α = 0.01).

Table A.8 shows the p-values of the Wilcoxon signed-rank paired test on the NP-

scores of the BS and ASVM strategies when compared to the RASVM-SV methods.

Thus, for the values of α equal to 0.05, and 0.01, all the RASVM-SV methods have

statistically significant lower scores than BS and ASVM for the group of small datasets.

For α = 0.10, only OSSRA-SV has statistically significant lower scores when compared

to BS and ASVM.

Figure A.2 summarizes those results through a boxplot of NP-scores. We can see that

RASVM-SV achieved lower median values of NP-scores than BS and ASVM for all values

of α (OSSRA-SV for α = 0.1, OSSRA-SV for α = 0.05, and RA-SV for α = 0.01).
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Table A.3: NP-scores of BS, ASVM, and RASVM for the small datasets (α = 0.01).

Dataset BS ASVM RA OSRA SRA OSSRA

australian 2.59 ±1.9 15.4 ±4.7 1.65 ±1.2 1.65 ±1.2 1.70 ±1.0 1.58±1.1
breast-cancer 1.39 ±1.6 1.31 ±1.5 0.71 ±0.6 0.75 ±0.7 0.69±0.6 0.73 ±0.7
colon-cancer 7.13±6.4 37.8 ±35 8.88 ±5.7 8.38 ±5.9 7.13±6.4 7.13±6.4
diabetes 2.59 ±1.7 1.42±1.0 2.13 ±2.2 2.13 ±2.2 2.14 ±1.7 1.82 ±1.1
duke 23.7 ±21 7.66±18 23.7 ±21 23.7 ±21 23.7 ±21 23.7 ±21
fourclass 0.00±0.0 24.1 ±1.7 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
german.numer 3.05 ±3.6 13.9 ±7.7 2.26±3.3 2.28 ±3.4 2.35 ±3.3 2.37 ±3.4
heart 2.76 ±2.8 11.9 ±7.3 2.14 ±1.9 2.66 ±2.6 2.44 ±1.9 1.99±2.0
ionosphere 4.21 ±3.1 1.21±0.8 4.38 ±2.9 5.24 ±2.5 4.87 ±2.9 4.21 ±3.1
leu 21.6 ±17 2.42±5.0 21.6 ±17 21.6 ±17 21.6 ±17 21.6 ±17
liver-disorders 4.81 ±5.0 10.3 ±3.5 2.80±3.1 3.18 ±3.1 3.26 ±3.2 3.47 ±4.4
mushrooms 0.00±0.0 0.67 ±0.4 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
sonar 10.6±8.6 18.8 ±30 10.6±8.6 10.6±8.6 10.6±8.6 10.6±8.6
splice 13.1 ±3.0 17.9 ±7.8 12.6±3.8 12.6±3.8 13.1 ±3.0 13.1 ±3.0
svmguide1 0.76 ±0.9 0.89 ±0.5 0.20±0.1 0.21 ±0.1 0.20±0.1 0.23 ±0.2
svmguide3 3.43 ±1.5 12.7 ±6.7 3.36 ±1.7 3.32 ±1.5 3.06±1.4 3.10 ±1.5

Table A.4: Wilcoxon signed-rank test p-values on the NP-scores of RASVM methods with
BS and ASVM, on the group of small datasets.

α RA OSRA SRA OSSRA

BS 0.10 0.165 0.309 0.188 0.001
0.05 0.000 0.001 0.000 0.000
0.01 0.002 0.005 0.001 0.000

ASVM 0.10 0.000 0.000 0.000 0.000
0.05 0.000 0.000 0.000 0.000
0.01 0.000 0.000 0.000 0.000
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Table A.5: NP-scores of BS, ASVM, and RASVM-SV for the small datasets (α = 0.1).

Dataset BS ASVM RA-SV OSRA-SV SRA-SV OSSRA-SV

australian 0.49 ±0.3 0.90 ±0.2 0.46 ±0.3 0.46 ±0.3 0.42±0.2 0.42±0.2
breast-cancer 0.05 ±0.0 0.01±0.0 0.04 ±0.0 0.04 ±0.0 0.05 ±0.0 0.05 ±0.0
colon-cancer 0.51 ±0.3 3.11 ±3.3 0.50 ±0.4 0.45±0.3 0.50 ±0.4 0.45±0.3
diabetes 0.64 ±0.2 0.68 ±0.2 0.68 ±0.1 0.71 ±0.1 0.72 ±0.1 0.58±0.1
duke 1.81 ±1.9 1.00±0.2 1.81 ±1.9 1.81 ±1.9 1.81 ±1.9 1.81 ±1.9
fourclass 0.00±0.0 1.84 ±0.2 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
german.numer 0.82 ±0.2 1.33 ±0.4 0.84 ±0.2 0.80±0.2 0.81 ±0.2 0.80±0.2
heart 0.51 ±0.3 0.93 ±0.4 0.44 ±0.2 0.49 ±0.2 0.36 ±0.1 0.34±0.1
ionosphere 0.40 ±0.6 0.60 ±0.3 0.23±0.5 0.23±0.5 0.23±0.5 0.23±0.5
leu 1.53 ±1.3 0.92±0.2 1.53 ±1.3 1.53 ±1.3 1.53 ±1.3 1.53 ±1.3
liver-disorders 0.91 ±0.4 1.09 ±0.3 0.94 ±0.3 0.94 ±0.3 0.87 ±0.3 0.85±0.2
mushrooms 0.00±0.0 0.18 ±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
sonar 0.58±0.7 2.28 ±2.4 0.58±0.7 0.58±0.7 0.58±0.7 0.58±0.7
splice 0.59±0.3 1.32 ±0.4 0.59±0.3 0.59±0.3 0.59±0.3 0.59±0.3
svmguide1 0.03±0.0 0.25 ±0.1 0.03±0.0 0.03±0.0 0.03±0.0 0.03±0.0
svmguide3 0.57 ±0.1 1.26 ±0.5 0.56±0.1 0.57 ±0.1 0.57 ±0.1 0.57 ±0.1

Table A.6: NP-scores of BS, ASVM, and RASVM-SV for the small datasets (α = 0.05).

Dataset BS ASVM RA-SV OSRA-SV SRA-SV OSSRA-SV

australian 0.76 ±0.5 2.44 ±0.8 0.71±0.3 0.71±0.3 0.76 ±0.3 0.74 ±0.3
breast-cancer 0.05±0.0 0.14 ±0.2 0.06 ±0.0 0.05±0.0 0.06 ±0.0 0.05±0.0
colon-cancer 1.55 ±1.0 6.96 ±6.7 1.69 ±1.2 1.19 ±1.0 1.18±1.0 1.20 ±1.0
diabetes 0.97 ±0.4 0.99 ±0.4 0.82 ±0.2 0.90 ±0.2 0.88 ±0.2 0.74±0.2
duke 4.24 ±4.0 2.06±3.2 4.24 ±4.0 4.24 ±4.0 4.24 ±4.0 4.24 ±4.0
fourclass 0.00±0.0 4.33 ±0.3 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
german.numer 1.53 ±0.6 2.73 ±1.2 1.24 ±0.5 1.14 ±0.4 1.27 ±0.5 1.12±0.4
heart 0.96 ±0.6 2.22 ±1.1 0.53±0.2 0.63 ±0.4 0.79 ±0.4 0.67 ±0.2
ionosphere 0.99 ±1.1 0.42±0.0 0.89 ±1.2 0.89 ±1.2 0.89 ±1.2 0.90 ±1.2
leu 3.77 ±3.1 1.09±0.7 3.77 ±3.1 3.77 ±3.1 3.77 ±3.1 3.77 ±3.1
liver-disorders 1.69 ±0.9 1.97 ±0.7 1.47 ±0.9 1.42±0.8 1.51 ±0.9 1.50 ±0.9
mushrooms 0.00±0.0 0.20 ±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
sonar 1.50±1.7 5.44 ±6.3 1.50±1.7 1.50±1.7 1.50±1.7 1.50±1.7
splice 2.02±0.6 3.17 ±1.2 2.02±0.6 2.02±0.6 2.02±0.6 2.02±0.6
svmguide1 0.11±0.1 0.29 ±0.0 0.11±0.1 0.12 ±0.1 0.11±0.1 0.12 ±0.1
svmguide3 0.64±0.1 2.43 ±1.3 0.69 ±0.1 0.66 ±0.1 0.66 ±0.1 0.64±0.1
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Table A.7: NP-scores of BS, ASVM, and RASVM-SV for the small datasets (α = 0.01).

Dataset BS ASVM RA-SV OSRA-SV SRA-SV OSSRA-SV

australian 2.59 ±1.9 15.4 ±4.7 1.24 ±1.1 1.24 ±1.1 1.27 ±0.9 1.23±0.9
breast-cancer 1.39 ±1.6 1.31 ±1.5 0.78 ±0.6 0.77 ±0.6 0.72±0.6 0.75 ±0.6
colon-cancer 7.13±6.4 37.8 ±35 10.9 ±6.5 8.39 ±5.9 7.13±6.4 7.13±6.4
diabetes 2.59 ±1.7 1.42±1.0 1.74 ±0.8 1.86 ±1.5 2.03 ±1.4 1.78 ±1.1
duke 23.7 ±21 7.66±18 23.7 ±21 23.7 ±21 23.7 ±21 23.7 ±21
fourclass 0.00±0.0 24.1 ±1.7 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
german.numer 3.05 ±3.6 13.9 ±7.7 2.16 ±3.5 2.15 ±3.5 2.09 ±3.5 2.08±3.5
heart 2.76 ±2.8 11.9 ±7.3 2.19±1.9 2.32 ±1.9 2.27 ±1.8 2.25 ±2.0
ionosphere 4.21 ±3.1 1.21±0.8 4.26 ±3.1 4.45 ±2.9 4.44 ±2.9 4.21 ±3.1
leu 21.6 ±17 2.42±5.0 21.6 ±17 21.6 ±17 21.6 ±17 21.6 ±17
liver-disorders 4.81 ±5.0 10.3 ±3.5 2.70 ±2.6 2.38±2.7 2.85 ±2.5 3.28 ±4.0
mushrooms 0.00±0.0 0.67 ±0.4 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
sonar 10.6±8.6 18.8 ±30 10.6±8.6 10.6±8.6 10.6±8.6 10.6±8.6
splice 13.1 ±3.0 17.9 ±7.8 12.9 ±3.3 12.7±3.5 13.1 ±3.0 13.1 ±3.0
svmguide1 0.76 ±0.9 0.89 ±0.5 0.28 ±0.2 0.29 ±0.2 0.26±0.1 0.26±0.2
svmguide3 3.43 ±1.5 12.7 ±6.7 3.29 ±1.5 3.27 ±1.5 3.14±1.4 3.16 ±1.4

Table A.8: Wilcoxon signed-rank test p-values on the NP-scores of RASVM-SV methods
with BS and ASVM, on the group of small datasets.

α RA-SV OSRA-SV SRA-SV OSSRA-SV

BS 0.10 0.774 0.880 0.079 0.003
0.05 0.002 0.000 0.007 0.000
0.01 0.004 0.000 0.000 0.000

ASVM 0.10 0.000 0.000 0.000 0.000
0.05 0.000 0.000 0.000 0.000
0.01 0.000 0.000 0.000 0.000





Appendix B

Experiments with F1 score

In this appendix, we compare RASVM and RASVM-SV with BS and ASVM through the

F1 score (also known as F-Measure)1. In this case, the training optimization function

considers the F1 score instead of NP score when accounting for the max allowed α. The

F1 score is defined as:

2× tp

2× tp + fn + fp
, (B.1)

where tp, fn, and fp are the number of true positives, false negatives, and false positives,

respectively. To compare the strategies through the F1 score, as we mention above, we

also adopted this measure to select the hyperparameters of the strategies considered in

this appendix. The RASVM hyparameters are selected by the following procedures:

1. First, C and γ are selected in a grid-search fashion using a 5-fold validation and

selecting for the pair of values with higher mean accuracy over the evaluation sets.

2. Second, δ is optimized by moving the hyperplane toward the sensitive class, until

finding the position that maximizes the F1 score, subject to the FP ≤ α constraint2.

For the RA and OSRA, δ = 0.

3. Finally, β and k are selected also through grid-search using a 5-fold protocol on the

training set which also optimizes the F1 score, subject to the FP ≤ α constraint2.

The BS hyperparameters are selected by following the first two steps of the aforemen-

tioned procedure. To select the ASVM hyperparameters we also followed the procedure

described in [40]. We then select the combination (µ, q, and τ) that maximizes the F1

score, subject to the FP ≤ α constraint2.

1It would not be fair to compare the results obtained by Davenport et al. [10] in this section, since
they were not optimized for the F1 score.

2When any combination of the parameters respects α, the combination with the lowest FP is used.
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B.1 Comparison of RASVM with BS and ASVM

Tables B.1, B.2, and B.3 show the F1 scores achieved for the group of small datasets for

the values of α equal to 0.10, 0.05, and 0.01, respectively. The results that violates α by

a factor of two (somewhat unacceptable) are highlighted in red. For the three values of

α, RA and OSRA achieve the best F1 scores more often. However, the technique that

violates α by a factor of 2 less frequently is the OSSRA (only 4 cases — out of 48 —,

both of them with α = 0.01).

Table B.1: F1 scores of BS, ASVM, and RASVM for the small datasets (α = 0.1).

Dataset BS ASVM RA OSRA SRA OSSRA

australian 0.83±0.0 0.75 ±0.1 0.83±0.0 0.83±0.0 0.83±0.0 0.83±0.0
breast-cancer 0.93 ±0.1 0.95±0.0 0.95±0.0 0.95±0.0 0.93 ±0.1 0.93 ±0.1
colon-cancer 0.16 ±0.2 0.68 ±0.1 0.72±0.2 0.72±0.2 0.16 ±0.2 0.16 ±0.2
diabetes 0.77±0.0 0.56 ±0.0 0.70 ±0.0 0.70 ±0.0 0.70 ±0.0 0.72 ±0.0
duke 0.16 ±0.1 0.18 ±0.2 0.82±0.1 0.82±0.1 0.16 ±0.1 0.16 ±0.1
fourclass 0.97 ±0.0 0.62 ±0.0 1.00±0.0 1.00±0.0 0.97 ±0.0 0.97 ±0.0
german.numer 0.43 ±0.1 0.34 ±0.1 0.51±0.0 0.51±0.0 0.46 ±0.0 0.43 ±0.1
heart 0.78 ±0.0 0.72 ±0.1 0.79±0.0 0.78 ±0.0 0.78 ±0.0 0.78 ±0.0
ionosphere 0.88 ±0.1 0.74 ±0.0 0.95±0.0 0.95±0.0 0.88 ±0.1 0.88 ±0.1
leu 0.20 ±0.2 0.27 ±0.3 0.93±0.0 0.93±0.0 0.20 ±0.2 0.20 ±0.2
liver-disorders 0.55 ±0.1 0.20 ±0.1 0.57 ±0.1 0.58±0.1 0.55 ±0.1 0.55 ±0.1
mushrooms 0.96 ±0.0 0.88 ±0.0 1.00±0.0 1.00±0.0 0.96 ±0.0 0.96 ±0.0
sonar 0.42 ±0.3 0.20 ±0.3 0.81±0.0 0.81±0.0 0.42 ±0.3 0.42 ±0.3
splice 0.58 ±0.2 0.44 ±0.3 0.86±0.0 0.86±0.0 0.58 ±0.2 0.58 ±0.2
svmguide1 0.97±0.0 0.87 ±0.0 0.97±0.0 0.97±0.0 0.97±0.0 0.97±0.0
svmguide3 0.52±0.0 0.22 ±0.1 0.52±0.0 0.52±0.0 0.52±0.0 0.52±0.0

Table B.4 shows the p-values of the Wilcoxon signed-rank paired test on the F1 scores

of the BS and ASVM strategies when compared to the RASVM methods. Thus, for all

the values of α, only the RA and OSRA methods have statistically significant higher F1

scores than BS and ASVM for the group of small datasets.

Figure B.1 summarizes those results through a boxplot of F1 scores. We can see that

RASVM achieved higher median values of F1 scores than BS and ASVM for all values of

α (RA/OSRA for α = 0.1, RA/OSRA for α = 0.05, and RA for α = 0.01).
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Table B.3: F1 scores of BS, ASVM, and RASVM for the small datasets (α = 0.01).

Dataset BS ASVM RA OSRA SRA OSSRA

australian 0.56 ±0.1 0.75±0.1 0.36 ±0.2 0.36 ±0.2 0.56±0.1 0.56±0.1
breast-cancer 0.87 ±0.1 0.90 ±0.0 0.93±0.0 0.93±0.0 0.89±0.1 0.87±0.1
colon-cancer 0.16 ±0.2 0.68 ±0.1 0.72±0.2 0.72±0.2 0.16±0.2 0.16±0.2
diabetes 0.43±0.1 0.30 ±0.1 0.38 ±0.1 0.38 ±0.1 0.40±0.1 0.38±0.1
duke 0.16 ±0.1 0.17 ±0.2 0.82±0.1 0.82±0.1 0.16±0.1 0.16±0.1
fourclass 0.97 ±0.0 0.62 ±0.0 1.00±0.0 1.00±0.0 0.97±0.0 0.97±0.0
german.numer 0.09 ±0.0 0.34±0.1 0.16 ±0.1 0.19 ±0.0 0.17±0.1 0.09±0.0
heart 0.49 ±0.1 0.71±0.1 0.52 ±0.1 0.53 ±0.1 0.56±0.1 0.49±0.1
ionosphere 0.88±0.1 0.56 ±0.1 0.75 ±0.3 0.79 ±0.2 0.70±0.2 0.72±0.2
leu 0.20 ±0.2 0.27 ±0.3 0.93±0.0 0.93±0.0 0.20±0.2 0.20±0.2
liver-disorders 0.18 ±0.1 0.16 ±0.1 0.27 ±0.1 0.31±0.1 0.28±0.1 0.18±0.1
mushrooms 0.96 ±0.0 0.87 ±0.1 1.00±0.0 1.00±0.0 0.96±0.0 0.96±0.0
sonar 0.39 ±0.2 0.20 ±0.3 0.78±0.1 0.78±0.1 0.40±0.3 0.39±0.2
splice 0.58 ±0.2 0.44 ±0.3 0.86±0.0 0.86±0.0 0.58±0.2 0.58±0.2
svmguide1 0.97±0.0 0.61 ±0.1 0.95 ±0.0 0.95 ±0.0 0.95±0.0 0.95±0.0
svmguide3 0.38 ±0.1 0.18 ±0.1 0.47 ±0.1 0.48±0.1 0.39±0.1 0.38±0.1

Table B.4: Wilcoxon signed-rank test p-values on the F1 scores of RASVM methods with
BS and ASVM, on the group of small datasets.

α RA OSRA SRA OSSRA

BS 0.10 0.000 0.000 0.049 0.001
0.05 0.000 0.000 0.883 0.001
0.01 0.000 0.000 0.057 0.000

ASVM 0.10 0.000 0.000 0.000 0.000
0.05 0.000 0.000 0.000 0.000
0.01 0.000 0.000 0.015 0.133
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B.2 Comparison of RASVM-SV with BS and ASVM

Tables B.5, B.6, and B.7 show the F1 scores achieved for the group of small datasets for

the values of α equal to 0.10, 0.05, and 0.01, respectively. The results that violates α by

a factor of two (somewhat unacceptable) are highlighted in red. For the three values of

α, RA-SV and OSRA-SV achieve the best F1 scores more often. However, the technique

that violate α by a factor of two less frequently is the OSSRA-SV (only two cases — out

of 48 —, both of them with α = 0.01).

Table B.5: F1 scores of BS, ASVM, and RASVM-SV for the small datasets (α = 0.1).

Dataset BS ASVM RA-SV OSRA-SV SRA-SV OSSRA-SV

australian 0.83±0.0 0.75 ±0.1 0.75 ±0.2 0.75 ±0.2 0.83±0.0 0.83±0.0
breast-cancer 0.93 ±0.1 0.95±0.0 0.95±0.0 0.95±0.0 0.93 ±0.1 0.93 ±0.1
colon-cancer 0.16 ±0.2 0.68 ±0.1 0.72±0.2 0.72±0.2 0.16 ±0.2 0.16 ±0.2
diabetes 0.77±0.0 0.56 ±0.0 0.35 ±0.3 0.45 ±0.2 0.53 ±0.2 0.62 ±0.1
duke 0.16 ±0.1 0.18 ±0.2 0.82±0.1 0.82±0.1 0.16 ±0.1 0.16 ±0.1
fourclass 0.97 ±0.0 0.62 ±0.0 1.00±0.0 1.00±0.0 0.97 ±0.0 0.97 ±0.0
german.numer 0.43 ±0.1 0.34 ±0.1 0.51±0.0 0.51±0.1 0.45 ±0.1 0.43 ±0.1
heart 0.78±0.0 0.72 ±0.1 0.78±0.0 0.78±0.0 0.78±0.0 0.78±0.0
ionosphere 0.88 ±0.1 0.74 ±0.0 0.95±0.0 0.95±0.0 0.88 ±0.1 0.88 ±0.1
leu 0.20 ±0.2 0.27 ±0.3 0.93±0.0 0.93±0.0 0.20 ±0.2 0.20 ±0.2
liver-disorders 0.55 ±0.1 0.20 ±0.1 0.58±0.1 0.57 ±0.0 0.55 ±0.0 0.54 ±0.0
mushrooms 0.96 ±0.0 0.88 ±0.0 1.00±0.0 1.00±0.0 0.96 ±0.0 0.96 ±0.0
sonar 0.42 ±0.3 0.20 ±0.3 0.81±0.0 0.81±0.0 0.42 ±0.3 0.42 ±0.3
splice 0.58 ±0.2 0.44 ±0.3 0.86±0.0 0.86±0.0 0.58 ±0.2 0.58 ±0.2
svmguide1 0.97±0.0 0.87 ±0.0 0.97±0.0 0.97±0.0 0.97±0.0 0.97±0.0
svmguide3 0.52 ±0.0 0.22 ±0.1 0.53±0.0 0.52 ±0.0 0.52 ±0.0 0.52 ±0.0

Table B.8 shows the p-values of the Wilcoxon signed-rank paired test on the F1 scores

of the BS and ASVM strategies when compared to the RASVM-SV methods. Thus, for

all the values of α, only the RA-SV and OSRA-SV methods have statistically significant

higher F1 scores than BS and ASVM for the group of small datasets.

Figure B.2 summarizes those results through a boxplot of F1 scores. We can see that

RASVM-SV achieved higher median values of F1 scores than BS and ASVM for all values

of α (RA-SV/OSRA-SV for α = 0.1, OSRA-SV for α = 0.05, and OSRA-SV for α = 0.01).
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Table B.6: F1 scores of BS, ASVM, and RASVM-SV for the small datasets (α = 0.05).

Dataset BS ASVM RA-SV OSRA-SV SRA-SV OSSRA-SV

australian 0.76±0.1 0.75 ±0.1 0.55 ±0.3 0.57 ±0.3 0.74 ±0.1 0.66 ±0.2
breast-cancer 0.93 ±0.1 0.95±0.0 0.95±0.0 0.95±0.0 0.93 ±0.1 0.93 ±0.1
colon-cancer 0.16 ±0.2 0.68 ±0.1 0.72±0.2 0.72±0.2 0.16 ±0.2 0.16 ±0.2
diabetes 0.70±0.0 0.36 ±0.1 0.20 ±0.2 0.27 ±0.2 0.38 ±0.2 0.36 ±0.3
duke 0.16 ±0.1 0.17 ±0.2 0.82±0.1 0.82±0.1 0.16 ±0.1 0.16 ±0.1
fourclass 0.97 ±0.0 0.62 ±0.0 1.00±0.0 1.00±0.0 0.97 ±0.0 0.97 ±0.0
german.numer 0.31 ±0.1 0.34 ±0.1 0.42 ±0.1 0.44±0.1 0.37 ±0.0 0.31 ±0.1
heart 0.73 ±0.1 0.71 ±0.1 0.73 ±0.1 0.73 ±0.1 0.74±0.0 0.73 ±0.1
ionosphere 0.88 ±0.1 0.74 ±0.0 0.95±0.0 0.95±0.0 0.88 ±0.1 0.88 ±0.1
leu 0.20 ±0.2 0.27 ±0.3 0.93±0.0 0.93±0.0 0.20 ±0.2 0.20 ±0.2
liver-disorders 0.44 ±0.1 0.16 ±0.1 0.41 ±0.1 0.46±0.1 0.44 ±0.1 0.44 ±0.1
mushrooms 0.96 ±0.0 0.88 ±0.0 1.00±0.0 1.00±0.0 0.96 ±0.0 0.96 ±0.0
sonar 0.42 ±0.3 0.20 ±0.3 0.80 ±0.1 0.81±0.0 0.41 ±0.3 0.42 ±0.3
splice 0.58 ±0.2 0.44 ±0.3 0.86±0.0 0.86±0.0 0.58 ±0.2 0.58 ±0.2
svmguide1 0.97±0.0 0.82 ±0.0 0.97±0.0 0.97±0.0 0.97±0.0 0.97±0.0
svmguide3 0.52 ±0.0 0.18 ±0.1 0.53±0.0 0.52 ±0.0 0.51 ±0.0 0.52 ±0.0

Table B.7: F1 scores of BS, ASVM, and RASVM-SV for the small datasets (α = 0.01).

Dataset BS ASVM RA-SV OSRA-SV SRA-SV OSSRA-SV

australian 0.56 ±0.1 0.75±0.1 0.19 ±0.1 0.18 ±0.1 0.35±0.2 0.34±0.2
breast-cancer 0.87 ±0.1 0.90±0.0 0.88 ±0.1 0.88 ±0.1 0.73±0.1 0.83±0.1
colon-cancer 0.16 ±0.2 0.68 ±0.1 0.72±0.2 0.72±0.2 0.16±0.2 0.16±0.2
diabetes 0.43±0.1 0.30 ±0.1 0.14 ±0.2 0.16 ±0.1 0.17±0.1 0.16±0.2
duke 0.16 ±0.1 0.17 ±0.2 0.82±0.1 0.82±0.1 0.16±0.1 0.16±0.1
fourclass 0.97 ±0.0 0.62 ±0.0 1.00±0.0 1.00±0.0 0.97±0.0 0.97±0.0
german.numer 0.09 ±0.0 0.34±0.1 0.07 ±0.0 0.11 ±0.1 0.14±0.1 0.08±0.0
heart 0.49 ±0.1 0.71±0.1 0.47 ±0.1 0.48 ±0.1 0.50±0.1 0.49±0.1
ionosphere 0.88±0.1 0.56 ±0.1 0.76 ±0.2 0.81 ±0.1 0.70±0.2 0.74±0.1
leu 0.20 ±0.2 0.27 ±0.3 0.93±0.0 0.93±0.0 0.20±0.2 0.20±0.2
liver-disorders 0.18 ±0.1 0.16 ±0.1 0.25 ±0.1 0.29±0.1 0.26±0.1 0.18±0.1
mushrooms 0.96 ±0.0 0.87 ±0.1 1.00±0.0 1.00±0.0 0.96±0.0 0.96±0.0
sonar 0.39 ±0.2 0.20 ±0.3 0.78±0.1 0.78±0.1 0.38±0.2 0.39±0.2
splice 0.58 ±0.2 0.44 ±0.3 0.86±0.0 0.86±0.0 0.58±0.2 0.58±0.2
svmguide1 0.97±0.0 0.61 ±0.1 0.85 ±0.1 0.88 ±0.1 0.90±0.0 0.92±0.0
svmguide3 0.38 ±0.1 0.18 ±0.1 0.48±0.1 0.48±0.1 0.41±0.1 0.35±0.1




