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Abstract

Robust local descriptors usually consist of high dimensional feature vectors to describe

distinctive characteristics of images. The high dimensionality of a feature vector incurs

into considerable costs in terms of computational time and storage requirements, which

affects the performance of several tasks that employ feature vectors, such as matching,

image retrieval, and classification. To address these problems, it is possible to apply

some dimensionality reduction techniques by building a projection matrix, which explains

adequately the importance of the data in other basis. This dissertation aims at applying

linear dimensionality reduction to SIFT and SURF descriptors. Its main objective is

to demonstrate that, even risking to decrease the accuracy of the feature vectors, the

dimensionality reduction can result in a satisfactory trade-off between computational time

and storage. We perform the linear dimensionality reduction through Random Projections

(RP), Independent Component Analysis (ICA), Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), and Partial Least Squares (PLS) in order to create

lower dimensional feature vectors. This work evaluates such reduced feature vectors in

a matching application, as well as their distinctiveness in an image retrieval application.

The computational time and memory usage are then measured by comparing the original

and the reduced feature vectors.
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Resumo

Descritores locais robustos normalmente compõem-se de vetores de caracteŕısticas de alta

dimensionalidade para descrever atributos discriminativos em imagens. A alta dimensio-

nalidade de um vetor de caracteŕısticas implica custos consideráveis em termos de tempo

computacional e requisitos de armazenamento afetando o desempenho de várias tarefas

que utilizam descritores de caracteŕısticas, tais como correspondência, recuperação e clas-

sificação de imagens. Para resolver esses problemas, pode-se aplicar algumas técnicas

de redução de dimensionalidade, essencialmente construindo-se uma matriz de projeção

que explique adequadamente a importancia dos dados em outras bases. Esta dissertação

visa aplicar técnicas de redução linear de dimensionalidade aos descritores SIFT e SURF.

Seu principal objetivo é demonstrar que, mesmo com o risco de diminuir a precisão dos

vetores de carateŕısticas, a redução de dimensionalidade pode resultar em um equiĺıbrio

adequado entre tempo computacional e recursos de armazenamento. A redução linear de

dimensionalidade é realizada por meio de técnicas como projeções aleatórias (RP), análise

de componentes principais (PCA), análise linear discriminante (LDA) e mı́nimos quadra-

dos parciais (PLS), a fim de criar vetores de caracteŕısticas de menor dimensão. Este

trabalho avalia os vetores de caracteŕısticas reduzidos em aplicações de correspondência

e de recuperação de imagens. O tempo computacional e o uso de memória são medidos

por comparações entre os vetores de caracteŕısticas originais e reduzidos.
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Chapter 1

Introduction

This chapter describes the problem addressed in this work, the main objectives and con-

tributions, as well as the structure of the dissertation.

1.1 Motivation

Feature descriptors are frequently used to support the analysis of data content, since they

contain information to reliably identify objects or classes of objects present in some data,

which are images in our case. For this reason, descriptors are fundamental in applications

such as image retrieval, image matching, object recognition, tracking, among others.

Descriptors can be global or local. The former type describes an image as a whole,

whereas the latter describes, separately, different parts of the image.

Local feature descriptors are employed in the task of describing images [26, 39] by

representing numerous characteristics such as color, texture and shape. Many of these

local features represent simple concepts and might be inadequate to describe an image

when employed individually. Therefore, robust local features group several simple local

features or may even build some feature description based on the neighborhood of an

interest point. In terms of quality, the more distinctive and invariant the interest points

are, the more accurate the processes that use them will become. Consequently, as a large

amount of characteristics could be joined to better describe an image, higher dimensional

feature vectors are obtained as the result.

Local descriptors usually generate robust local feature descriptions by performing two

stages. The first one is called keypoint detection, which performs some processes to find

points in the images that are considered to be more distinctive. The second stage is

called feature description, in which a set of data is generated in order to represent some

important features such as orientation, color, shape, texture or illumination.

Several feature descriptors have been developed over the last decades [46]. Among

1



1.2. Objectives and Contributions 2

the most remarkable state-of-the-art descriptors, we can stand out SIFT (Scale Invariant

Feature Transform), developed by Lowe [21] in 1999, and SURF (Speeded Up Robust

Features), developed by Bay et al. [3] in 2006. The main advantages of the SURF de-

scriptor lie on the fact that it detects less keypoints and describes them with half of the

dimensions that SIFT uses to describe its keypoints (i.e., 64 dimensions). However, the

SIFT feature descriptor is still better to represent some transformations and distortions

as rotation, scaling and blurred images [17].

Although the above mentioned descriptors have demonstrated to achieve good results,

their dimensionality is still large. Considering applications where millions of images are

involved, or even less than millions but high resolution images, each image will be rep-

resented by hundred or thousands of descriptors each one with several dimensions. This

last situation allows us to see that the amount of information generated by the descriptors

needs to be carefully reduced, otherwise, it will incur on costly machine processes.

It is straightforward to recognize two aspects to be solved, which are the quantity of

keypoints and the descriptor dimensionality. The issue related to the number of keypoints

can be addressed by using a bag-of-feature approach [7] since it preserves the feature vector

individual influences while adding generalization, as each visual word represents a set of

similar features. On the other hand, to deal with the descriptors high dimensionality, it is

possible to use some dimensionality reduction techniques, such as Principal Component

Analysis (PCA) [16] or Linear Discriminant Analysis (LDA) [2], which compute projection

matrices by using different mathematical models to explain the data.

Dimensionality reductors are broadly used in such cases, where they usually take into

consideration some important information to construct the projection matrices which can

maintain the distinctiveness of the original feature vectors. This is, vectors integrating the

projection matrices are computed by weighting aspects such as covariance or correlation

between the classes and variables, which is expected to conduct any data projected onto a

projection matrix to a better reduced description. This is the main reason that motivates

us to apply reduction techniques through the task of reducing feature vectors.

In the literature, the PCA technique has already been used in [18] to reduce 3042-

dimensional feature vectors to 32 dimensions. Computing reduced feature vectors through

linear dimensionality reduction techniques proved to be a suitable approach for reducing

the consumption of computational resources while maintaining or even achieving better

performance than the original feature vectors.

1.2 Objectives and Contributions

The main objective of this work is to demonstrate that the reduction of the amount of

information generated by SIFT and SURF feature vectors through bag-of-features and
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dimensionality reduction techniques are suitable for image analysis applications.

Some contributions arising from this work include the usage of less disk memory for

applications that demand reading and storing high amounts of descriptor information, im-

provement in terms of computational time to process lower dimensional feature vectors, as

well as achievement of better performance when the dimensionality reduction techniques

can remove redundancy or noise from the data.

1.3 Text Organization

This dissertation is organized as follows.

Chapter 2 briefly describes some concepts related to this work, such as SIFT and

SURF image descriptors, linear dimensionality reduction techniques and bag-of-feature

techniques.

Chapter 3 compares the performance of both SIFT and SURF descriptors against their

reduced versions. The reduced descriptors are projected onto a matrix of eigenvectors

trained with the PCA technique [41]. This comparison is evaluated by means of two

applications, image matching, and image retrieval.

Chapter 4 extends the work described in Chapter 3 by applying other dimensionality

reduction techniques and conducting experiments over large datasets for image matching

and retrieval purposes [42].

Chapter 5 presents an image retrieval application addressed by SIFT and SURF de-

scriptors reduced through LDA, where the reduced number of keypoints are modeled by

a single bag-of-feature representation [40].

Finally, Chapter 6 concludes the dissertation with final remarks and directions for

future work.



Chapter 2

Background

This chapter briefly describes some concepts related to the topic investigated in this work,

such as local feature descriptors, linear dimensionality reduction techniques, and bag-of-

features, for image analysis and computer vision areas.

One important issue is to measure features or characteristics of objects present in

the images. These characteristics can be based on attributes such as intensity, color or

texture. An example of local characteristic is a pattern of a certain image region that

differs from its immediate neighborhood.

Local characteristics are broadly used in object recognition applications, such as in

scene classification, texture analysis, image retrieval and video mining, which evidence

the importance of obtaining distinctive local characteristics. Such local characteristics

can be classified according to the description of the image that they provide [39]:

• repeatability: relates two images from the same object viewed from different view-

points;

• distinctiveness / informativeness: presents a significant variation in contrast with

the intensity patterns underlying of the detected characteristic;

• locality: describes part of the image to reduce the likelihood of occlusion;

• quantity: extracts enough characteristics to properly describe an image, even if the

image is small;

• accuracy: finds features with precise positions, even if there are variations and

deformations;

• efficiency: extract features in a manner that can be used in time-critical applications.

4



2.1. Feature Descriptors 5

Ideally, a local feature must be robust to noise presence or lighting changes and in-

variant with respect to affine transformations. In several situations, local characteristics,

individually, are not enough to describe an image, such that the combination of features

becomes necessary. Therefore, a set of local characteristics must be selected properly so

they can efficiently represent an image, taking into consideration the application to be

performed. However, when several characteristics are joined, it occurs a trade-off between

accuracy and time consumption.

2.1 Feature Descriptors

Several feature descriptors for image analysis have been proposed in the literature. In

the following sections, two important descriptors for detection of keypoints in images are

described.

2.1.1 Scale Invariant Feature Transformation

Scale Invariant Feature Transformation (SIFT), as explained in [22], is a technique for

object description that uses characteristics invariant to scaling, translation, and rota-

tion, and partially invariant to changes of lighting. This method allows a robust object

recognition, even in partially occluded images. The SIFT method consists of four main

steps:

1. detection of scale-space extrema: this stage detects candidates, to be taken as key-

points, at several octaves and scales (Figure 2.1), by performing a Difference-of-

Gaussian (DoG) function (Figure 2.2). One octave groups several copies of the

image within the same size, then each octave represents a different resolution for

the image. Scale is varied in each octave, from image to image, by smoothing each

image with a different Gaussian kernel.

2. localization of keypoints: a detected candidate is selected according to a measure of

desired stability (Figure 2.3).

3. assignment of orientation: one or more gradient orientations are assigned according

to the keypoint neighborhood (Figure 2.4). Furthermore, this feature processing

is invariant to scaling, translation, and orientation, since such characteristic is the

basis of the feature construction.

4. description of keypoints: for each keypoint neighborhood, the obtained gradients are

transformed into an 8-bin histogram representation, which will allow the invariance

to high levels of changes or distortions (Figure 2.5).
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Typically, a large number of points of interest can be extracted from images, which

can lead to robustness in the description of small objects. The points of interest are

detected in a wide range of scales. Points of interest on small scales can be used to detect

small or partially occluded objects, whereas points of interest on larger scales allow good

performance for images subject to noise. The technique is efficient, such that thousands

of points of interest can be extracted from an image with relatively low computational

cost [22].

2.1.2 Speeded Up Robust Features

The Speeded Up Robust Feature (SURF) algorithm also detects and describes keypoints

in an image. Inspired partially over SIFT, it aims at achieving lower computational time

while maintaining a similar accuracy [3]. SURF performs similar or even better than the

SIFT algorithm with respect to repeatability, distinctiveness and robustness, and can also

be calculated more efficiently. In part, this is achieved by the use of integral images that

allows the application of efficient convolutions, as well as by taking advantage of the use

of a Hessian matrix on the detection stage, and a distribution-based descriptor. The main

procedures involved in SURF are:

1. creation of integral images [43]: the input of an integral image IΣ(p) at one point

p = (x, y) represents the sum of all the pixels in the input image I of a rectangular

region formed by the point p and the origin, IΣ(p) =
∑x

i=0

∑y
j=0 I(i, j). The com-

puted IΣ(p) allows to calculate the sum of the intensities over any rectangular area,

independently of its size, by performing only four additions (Figure 2.6).

Figure 2.6: Integral image (figure extracted from [45]).

2. representation of scale-space: a box filter is used to obtain an approximation of the

second order derivative of Gaussian (Figure 2.7). The initial box filter is 9×9 pixels

with σ = 1.2. The convolution between the image and the box filter will generate
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an initial scale layer, called as the s = 1.2 (directly related to the previous value:

σ = 1, 2). The following layers are obtained by filtering the image with gradually

larger masks, considering the discrete nature of the integral images and the specific

structure of box filters.

Figure 2.7: Approximation of the second order Gaussian by a 9 × 9 box filter (figure
extracted from [3]).

3. identification of keypoints using Fast-Hessian [25]: the keypoints are located by

applying non-maximum suppression over a neighborhood of 3 × 3 × 3 pixels (Fig-

ure 2.8). Afterwards, the maximum values for the Hessian matrix determinant are

interpolated through the method proposed by Brown et al. [5].

Figure 2.8: Non-maximum suppression to detect keypoints (figure extracted from [3]).
Left figure shows the 3 × 3 × 3 neighborhood of an interest point. Right figure shows
by several circles the detected interest points, each circle size denote the scale where the
interest point was detected.

4. construction of each keypoint descriptor:

(a) keypoint description: the application of the Haar wavelets [24] will generate

some x and y values for each keypoint. The wavelet responses are computed
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over x and y direction, with a Gaussian centered on the keypoint, in its de-

tected scale. This responses are then represented as vectors in a space where

the horizontal and vertical response strengths correspond to the abscissa and

ordinate axes.

(b) assignment of orientation: The sum of the wavelet responses in x and y, within

a sliding window (π
3
), will represent a new vector, which lends its orientation

to the interest point (Figure 2.9).

Figure 2.9: SURF descriptor orientation assignment (figure extracted from [45]).

(c) descriptor extraction: a square region is constructed around the keypoint, and

oriented in the direction previously assigned. The Haar wavelet responses de-

note the horizontal direction by dx and the vertical direction by dy. Therefore,

the response absolute value sum is also calculated in order to know the po-

larity and intensity changes. Thus, it creates a vector v of four dimensions to

describe its underlying structure, v = (Σdx, Σdy, Σ|dx|, Σ|dy|) (Figure 2.10).

2.2 Linear Dimensionality Reduction Techniques

Reduction of dimensionality is one of the most important tasks in multivariate analysis

and is especially critical for multivariate regressions [23]. Several of the independent

variables used in a regression show a high correlation, since those variables can measure

the same characteristics.

Some dimensionality reduction techniques that perform data transformation from high

dimensional spaces to lower dimensional spaces are presented in the following sections.
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Figure 2.10: SURF descriptor (figure extracted from [3]).

2.2.1 Random Projections

In linear dimensionality reduction the Random Projection (RP) technique [38] has proven

to be an efficient way to reduce data dimensionality [4]. This technique is based on the

Johnson and Lindenstrauss lemma [8, 15], which shows that the distances between points

in some space is nearly preserved if they are projected onto a randomly selected space. It

has also being applied to image and text data [4]. This states that any data matrix, X,

with n points in a ℜd space can be projected over a matrix of random vectors, R, in an

ℜp space, where d ≫ p, as shown in Equation 2.1.

An×p = Rn×d × Xd×p (2.1)

2.2.2 Independent Component Analysis

The Independent Component Analysis (ICA) [13] is a blind source separation technique.

This means that it estimates original source signals from several mixed signals, without

having important details such as the transmission channel characteristics. Therefore, this

technique is applied to find independent signals.

As it is explained in [28], we can think of some independent signals from several sources,

which could include noise. More precisely, there are N non-observable independent sig-

nals, si(t), i = 1, ..., N , such that each signal, si, is spammed by some fixed probability

distribution at some time t. Also, we have N signals, xi(t), corresponding to N sensors,

obtained by a mixture of the original independent signals. The sensors should be spa-

tially distributed in order to record different mixture of the sources, which means that

each sensor one unique signal will be stronger that the others. Therefore, Equation 2.2 is

modeled as

x(t) = As(t) (2.2)

where A is a mixing matrix, from which there is no known information. Therefore, the
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objective is to model the Equation 2.3

s(t) = Wx(t) (2.3)

where W is the un-mixing matrix (A−1). Estimating the un-mixing matrix will lead to

better approximation of the original signals.

In order to compute the un-mixing matrix, W , there are several methods available

in the literature. This includes second-order methods, such as PCA and Factor analysis,

and higher-order methods, such as Projection Pursuit, Redundancy Reduction, and Blind

Deconvolution [13]. In this work, we use the higher-order method based on the deflation

approach [9].

2.2.3 Principal Component Analysis

The Principal Component Analysis (PCA) [31] is a technique for dimensionality reduction

recommended when there is a large number of numeric variables and it is needed to find

a set with fewer artificial variables, that are called the principal components, that have

the largest variance in the observed variables. The principal components can be used as

predictors or criterion variables in subsequent analyses.

Usually, when obtaining a dataset corresponding to a series of variables (that is pos-

sibly large), there can be some redundancy in the variables, so that some variables are

correlated, which means that they are measuring the same information. Due to such re-

dundancy, it is possible to reduce the number of observed variables to some small number

of principal components (the artificially created variables). In PCA, such components

correspond to those that are responsible for the largest variance in the dataset.

The objective of PCA is to convert a set of highly correlated variables into a set

of independent variables. This is obtained using linear transformations, and possibly

reducing the number of variables. The main steps in PCA are described as follows [11].

Consider a data sample vector x as

x = (x1, ..., xn)T (2.4)

and such that the average sample vector is given by the expectation

µx = E{x} (2.5)

and the corresponding covariance matrix is

Cx = E{(x − µx)(x − µx)T } (2.6)
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By definition, the covariance matrix is symmetric and allows obtaining an orthogonal

basis by finding its eigenvalues, denoted by ei, and the corresponding eigenvectors, denoted

by λi. That is, we have

Cxei = λiei, i = 1, ..., n (2.7)

Assuming that the eigenvectors are distinct, they can be obtained by the characteristic

equation

|Cx − λI| = 0 (2.8)

where I is the identity matrix of the same order as Cx, and |.| denotes the matrix deter-

minant.

After obtaining the eigenvalues and eigenvectors, it is obtained the matrix A that

contains all the eigenvectors, in decreasing order of eigenvalues. Applying the equation

y = A(x − µx) (2.9)

it is possible to obtain a new point y, in an orthogonal coordinate system defined by the

eigenvectors. The components of vector y are the coordinates in such an orthogonal basis.

Also, to recover the original data sample x from y, it is possible to use the transformation

x = AT y + µx (2.10)

This is possible since the orthogonality of A implies that A−1 = AT . Thus, the

original vector x was projected on the axis of the new basis and recovered by using a

linear combination of this coordinate system.

It is possible to represent the original dataset in terms of just a few eigenvectors

(they correspond to some coordinates in the orthogonal basis). It is denoted by AK , the

orthogonal matrix obtained from the first K eigenvectors from the matrix A, then leads

to the following transformations

y = AK(x − µx) (2.11)

and

x = AT
Ky + µx (2.12)

These transformations allow us to reduce the dimensionality of the original large rep-

resentation and to recover the original sample with a minor information loss.
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2.2.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised technique that aims at reducing the

dimensionality of a data set considering different types of indicated classes. According

to [2], the criteria used to reduce the data representation in LDA is the maximization

of the ratio of the between-class variance and the within-class variance to guarantee the

maximum data separability. To obtain this objective, the LDA algorithm calculates two

matrices that measure the between and within variances.

The first matrix is called the between-class scatter matrix (Sb) and is defined by

Sb =
c

∑

i=1

pi × ((µi − µT )(µi − µT )T ) (2.13)

where pi and µi are the respectively a priori probability and the average corresponding

to class i, The a priori probabilities can be given by the number of elements in each class

divided by the total number of elements. The total average, denoted by µT , is defined by

µT =
c

∑

i=1

pi × µi. (2.14)

The second matrix is the within-class scatter matrix (Sw) and is defined by

Sw =
c

∑

i=1

pi × ((xi − µi)(xi − µi)
T ) (2.15)

where xi is the data matrix of i.

In Equation 2.15, the covariance matrix of each class is multiplied by its corresponding

a priori probability, that is given in advance, and the accumulated sum gives the between-

class scatter matrix.

Recall the separability criterion of LDA is

max
(

Sb

Sw

)

(2.16)

Thus, for a given transformation matrix W , the LDA objective function is defined as

J(W ) =
|W tSbW |
|W tSwW | (2.17)

where the within-class scatter matrix, Sw, and the transformation matrix, W , must obey

the restrictions |Sw| 6= 0, so that Sw has an inverse matrix, and W T W = I, that validates

that W is orthogonal.
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The objective function maximum, Wmax, satisfies

d

dW
J(Wmax) = 0 (2.18)

from where we get

(W T
maxSwWmax)2SbWmax − (W T

maxSbWmax)2SwWmax = 0. (2.19)

Dividing the last expression by W T
maxSwWmax

2SbWmax − W T
maxSbWmax

W T
maxSwWmax

2SwWmax = 0 (2.20)

and making λ = W T
maxSbWmax

W T
maxSwWmax

, it follows that

Sb

Sw

Wmax = λWmax (2.21)

This means that the matrix Wmax that maximizes the ratio of the scatter matrices

represents the set of eigenvectors of matrix Sb/Sw.

2.2.5 Partial Least Squares

Partial Least Squares (PLS), developed by Wold et al. [44], is a technique that generalizes

and combines the features of PCA and multiple regression [32]. The goal is to predict a

variable Y from another variable X, and describe their common structure.

When Y is a vector and X is a complete ordering, it is possible to predict Y through

commonly used multiple regression. However, when the number of predictors is large

compared to the number of observed variables, X becomes susceptible to singularities,

and the regression approach is no longer viable.

The technique consists in finding components of X that are relevant to Y . Specifically,

the regression performed by PLS searches for a set of components that forms a simulta-

neous decomposition of X and Y with the constraint that such components “explain” as

best as possible the covariance between X and Y . This is summarized as

X = TP T + E

Y = UQT + F
(2.22)

Equations (2.22) contain blocks of variables X and Y , where X is an n × N matrix, Y

is an n × M matrix. Also, T and U are matrices of sizes N × p and M × p, respectively,
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that contain p components; P and Q are matrices of sizes N × p and M × p, respectively,

that represent eigenvectors; E and F are residual matrices.

The maximum covariance between vectors w e c is computed as Equations (2.23)

and (2.24) to estimate the projection vectors that maximize the covariance of X and Y .

Vectors t and u are the obtained components with reduced dimensionality.

[cov(t, u)]2 = [cov(Xw, Y c)]2 = max
|r|=|s|=1

[cov(Xr, Y s)]2 (2.23)

t = Xw u = Y c (2.24)

Finally, in each iteration of PLS, the matrices X and Y are recovered according to an

obtained projection. In the next iteration, to obtain a new component, it is performed

the so called deflation of X and Y , that is, subtracting the components from each data

matrix the components that were already explained by previous obtained projections. The

deflation process is described by Equation (2.25). The method stops when the norm of

some component t shrinks beyond a given threshold, so that the matrix T cannot further

explain the data set X. The deflation is more formally stated as

X = X − tpT and Y = Y − uqT (2.25)

where the matrix T is the concatenation of the obtained vectors t.

The classical form of the PLS algorithm is based on the NIPALS (Nonlinear Interval

Partial Least Squares) algorithm [29], that is briefly described as follows:

Algorithm 1 – NIPALS Algorithm

Input: Data matrix (X); label matrix (Y ); score vector (u); score vector (t); threshold

(thr)

Output: Projection matrix (T ), projection matrix (U)

1. While X and Y are not completely deflated

2. While |t| > thr

3. w = XT u/(uT u)

4. ||w|| → 1

5. t = Xw

6. ||c|| → 1

7. u = Y c

8. c = Y T t/(tT t)

9. Deflat X and Y matrices

10. Add t → T

11. Add u → U
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• Input: In order to perform the NIPALS algorithm, there must exist the X data

matrix, with its respective Y label matrix; also, the u and t score vectors must be

randomly predefined; and a threshold to stop searching for better correlated data

must be set.

1. Line 1: Perform lines 2 to 9 while matrix X and Y are not completely deflated.

2. Line 2: Continue searching for more correlated data while the magnitude of the t

score vector is greater than the selected threshold.

3. Lines 3-5: Project X onto u to find the corresponding weight vector w. Normalize

w to the unit length. Project X onto w to find the new t score vector.

4. Lines 6-8: Project Y onto t to find the corresponding weight vector c. Normalize

c to the unit length. Project Y onto c to find the new u score vector.

5. Lines 9: Deflat X and Y matrices.

6. Lines 10-11: Add the recent obtained score vectors, t and u, to the projection

matrices T and U .

• Output: The projection matrix T will be used to reduce dimensionality from new

X matrices.

2.3 SIFT Compressions

In this section, two techniques are presented for optimizing the SIFT description process

by reducing the feature vector dimensionality.

2.3.1 PCA-SIFT

PCA-SIFT is a technique, proposed by Ke and Sukthankar [18], that combines the SIFT

algorithm and the PCA linear dimensionality reduction technique. This method is based

on the construction and evaluation of local feature representations by using the SIFT

detected keypoints, however, using a 3042-dimensional feature vector that is then reduced

using a projection matrix built with PCA. The algorithm works as follows:

1. a 41 × 41 window, centered at each keypoint, is extracted at a given scale. This

window must satisfy the following properties:

• it is centered at a local maximum;
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• it is rotated so the gradient dominant orientation will be aligned with the

vertical axis;

• it only contains information of the appropriate scale to its keypoint.

2. the input vector, of size 2 × 39 × 39 = 3042, is normalized to the unit magnitude,

in order to minimize the effects of the illumination change;

3. during an off-line stage, the PCA technique is applied to the input vector to reduce

its dimensionality.

Their results showed that PCA-SIFT was faster than the original SIFT descriptor due

to its lower dimensional size.

2.3.2 KPB-SIFT

Gangqiang et al. [47] proposed a variation of SIFT using kernel projection techniques.

The kernel function used is the Walsh-Hadamard, which was chosen due to its good

performance at the feature discrimination and computational efficiency.

In order to obtain KPB-SIFT keypoints and descriptions we must perform the follow-

ing steps:

1. the interest points are detected by the scale invariant feature detection, which consist

on three sub-steps:

(a) select the points that represent a peak (more contrast) at a determined scale-

space;

(b) localize the selected points;

(c) assign the respective orientation to each point.

2. the orientation gradient patches are built by:

(a) obtaining the corresponding patches to each detected keypoint;

(b) rotating each local patch to be vertically aligned to its dominant gradient

orientation;

(c) resizing the patches to 32 × 32 pixels;

(d) computing the gradient norms, per each patch, for 4 directions (0, π
4
, π

2
, 3π

4
).

3. the final descriptor is the result of joining the reduced versions of the 4 gradient

norms directions onto the Walsh-Hadamard kernel, obtaining:
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(a) two groups of 12 dimensions for the vertical and horizontal gradient norms,

and

(b) two groups of 6 dimensions for the diagonal gradient norms.

The KPB-SIFT algorithm generates 36-dimensional descriptors that improves the per-

formance in image processing applications in terms of speed and scalability. Furthermore,

KPB-SIFT does not require an off-line phase as PCA-SIFT. However, the results have

showed that this method is advantageous only for applications where features can be

represented by small descriptors and do not require high computational load.

2.4 Bag-of-Features

The Bag-of-Feature (BoF) model is inspired on the Bag-of-Word (BoW) concept [36,

37]. This model enables the creation of an image global feature build over its own local

features. It characterizes the distribution of feature vectors present in the image using a

histogram, that is, a sparse vector of occurrence counts of local image features. The BoF

representation preserves local descriptors individual influence and adds generalization by

grouping features from the same nature.

To represent an image through bag-of-features(Figure 2.11), a set of keypoints must

initially be detected. After feature detection, various local patches are used to represent

the image as numerical vectors. Examples of descriptors that could be used are SIFT [21]

and SURF [3], as described above. Another step to represent images using bag-of-features

is the codebook (dictionary) generation, where a codeword is considered as a representa-

tive of similar patches. A common technique for generating the codebook is to apply the

k-means clustering over all the vectors, such that the codewords are defined as the centers

of the clusters. The codebook size corresponds to the number of clusters. Then, each

patch in the image is mapped to a specific codeword and the image can be represented

by the histogram of the codewords.

In order to apply the BoF model, we must perform two separated stages. The first

one builds the vocabulary, whereas the second stage builds a BoF representation for a

given image. There are several ways to perform these stages, nevertheless the following

steps describe the process as it is performed in Chapter 5:

1. Building the vocabulary:

(a) Local features extraction: a dense sampling scheme is used to obtain points

distributed in a dense grid over each image in our training dataset. This dense

sampling approach allows to describe equally distributed points in an image,





Chapter 3

Dimensionality Reduction Through

PCA over SIFT and SURF

Descriptors

Preamble

One of the constant challenges in image analysis is to improve the process

for obtaining distinctive object characteristics. Feature descriptors usually

demand high dimensionality to adequately represent the objects of interest.

The higher the dimensionality, the greater the consumption of resources such

as memory space and computational time. Scale-Invariant Feature Transform

(SIFT) and Speeded Up Robust Features (SURF) present algorithms that,

besides of detecting interest points accurately, extract well suited feature

descriptors. The problem with these feature descriptors is their high dimen-

sionality. There have been several works attempting to confront the curse of

dimensionality over some of the developed descriptors. In this work, we ap-

ply Principal Component Analysis (PCA) to reduce SIFT and SURF feature

vectors in order to perform the task of having an accurate low-dimensional

feature vector. We evaluate such low-dimensional feature vectors in a match-

ing application, as well as their distinctiveness in image retrieval. Finally, the

required resources in computational time and memory space to process the

original descriptors are compared to those resources consumed by the new

low-dimensional descriptors.

21
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Even more important, the Inria Graffiti Dataset contains, for every group of images,

different projective transformations, expressed in 3 × 3 matrices. These matrices allow us

to generate the ground-truth by mapping any point from the first image in a group into

any other image in the same group.

To validate a match, we have two relevant interest points: p in the first image and q in

the second image. We used the transformation matrix provided in the dataset to map p

in the second image, obtaining p′. Then, p and q are considered a correct match if p′ and

q are sufficiently close in space and scale. As mentioned in [18], two points are close in

space if the distance between them is less than σ pixels, where σ is the standard deviation

to generate the used scale. Two points are close in scale if their scales are within
√

2 of

each other.

3.1.3 Descriptor Matching

The descriptor matching process is detailed as follows: given two sets of feature vectors,

A and B, with their respective interest point locations, for each feature vector in A, we

compute the Euclidean distance, denoted as DE, to each feature vector in B. Then, for

each pair of feature vectors in A and B, if their DE is smaller than an estimated threshold,

we consider to have a match between the respective interest points.

There are different strategies to consider a corresponding interest point. SIFT works

better with the nearest neighbor distance ratio strategy (refereed to as NNDR) and PCA-

SIFT works better with the nearest neighbor strategy (refereed to as NN). The NN strat-

egy selects the corresponding interest points which present the smallest Euclidean distance

under the threshold value. On the other hand, the NNDR strategy considers to have a

match when the distance ratio between the two smallest Euclidean distances is under a

given threshold. If the mentioned statement is true, then it selects the corresponding

interest point with smaller Euclidean distance. Both strategies are being used on the

matching process.

3.1.4 Evaluation Metrics

To evaluate the matching performance, we use recall vs. 1-precision, as recommended

in [1]. Recall (Equation 3.1) measures the ratio between the number of correct matches

retrieved over the total of commit matches. As we can achieve a 100% of recall by

returning a set with all possible matches, we notice that the recall measure is not enough;

therefore, it is also calculated the imprecision (1-precision). The precision (Equation 3.2)

measures the ratio between the quantity of correct retrieved matches over the number

of retrieved matches, and the imprecision (Equation 3.3) measures the ratio between the

number of false retrieved matches over the total number of retrieved matches. So, if we
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retrieved every possible matches, it would result in a high imprecision.

Recall =
Correct matches retrieved

Total of correct matches
(3.1)

Precision =
Correct matches retrieved

Total of matches retrieved
(3.2)

1-Precision =
Incorrect matches retrieved

Total of matches retrieved
(3.3)

In order to obtain the recall vs. 1-precision curve, the metrics are computed for various

thresholds. Starting with a small value where the retrieved matches will be zero or almost

zero, and incrementing it the value to a larger threshold where every interest point in the

image base (first image of the group) is matched to one in the corresponding image.

3.2 Results

We execute SIFT and SURF algorithms over every group of images contained in the

Inria Dataset and evaluate their matching performance. To obtain reduced descriptors,

we project the descriptors of the SIFT and SURF interest points onto the trained kernel

PCA.

3.2.1 Comparing SIFT, SURF and PCA-SIFT Reduced Dimen-

sionality Descriptors

This first experiment compares SIFT, PCA-SIFT (note that the PCA-SIFT descriptor is

the one of 3042 dimensions), and the Reduced-SIFT descriptor. We evaluate the men-

tioned descriptors when their dimensionality is reduced to 12, 20, 32, 36, 46 and 64 di-

mensions. In the same manner, we evaluate the SURF descriptor and the Reduced-SURF

descriptor, this latter also reduced to 12, 20, 32, 36, 46 and 64 dimensions.

The recall vs 1-precision curves of the reduced descriptors, which achieved a perfor-

mance similar to the original descriptors, are shown in Figures 3.2 and 3.3. Each curve

shows one of the transformations contained in the Inria Dataset and indicates the number

of dimensions reduced with PCA. The NN and NNDR abbreviations next to each method

name identify the strategy used to generate the presented curve.

Figures 3.2(a) and (h) show that Reduced-SIFT and the PCA-SIFT descriptors achiev-

ing similar responses to the original SIFT descriptor by using only 32 dimensions. Fig-

ures 3.2(b-g) show that Reduced-SIFT achieves a similar response to the original SIFT

descriptor by using only 36 and 64 dimensions, outperforming again the PCA-SIFT de-
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Figure 3.2: SIFT and Reduced-SIFT descriptors matching performance using the Inria
Dataset transformations. Each pair of figures (from (a) to (h)) presents the descriptor
performance over different groups of images presenting distortions/transformations over
distinctive edges or repeated textures.
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Figure 3.3: SURF and Reduced-SURF descriptors matching performance using the Inria
Dataset transformations. Each pair of figures (from (a) to (h)) presents the descriptor
performance over different groups of images presenting distortions/transformations over
distinctive edges or repeated textures.
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scriptor recall. Meanwhile, Figures 3.3(b-g) show that Reduced-SURF descriptor achieves

almost the same result as the SURF descriptor by using 32 dimensions.
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Figure 3.4: Performance achieved by Reduced-SIFT and Reduced-SURF at different di-
mensions.

Figure 3.4 show the matching performance over different dimensions. On the right of

the figure is the Reduced-SIFT descriptor, on the left is the Reduced-SURF descriptor.

This reduced descriptors achieve good performances using 32 dimensions. Then, it is

recommended to use 32 dimensions if we desire to maintain almost the same performance

as the original descriptors.

3.2.2 Image Retrieval Application

We evaluated an image retrieval application using the dataset provided by Ke and Suk-

thankar [18]. This dataset consists of thirty images divided into 10 groups of three images

each, so each image has two corresponding images. For each image, we perform the match-

ing with all the others and obtain a ranking of the three images with best correspondence.

Each ranking is scored according to the number of corresponding images it contains:

two points if both corresponding images appear in the ranking, one point if only one

corresponding image appears; and zero points, otherwise. This means that we will have

a maximum of 60 points if, for every image, the two corresponding images are returned

in the ranking.

We evaluated the percentage of image retrieval for the SIFT, PCA-SIFT and Reduced-

SIFT descriptors using different number of dimensions. We applied both matching strate-

gies and used the threshold that obtained the best results.

Results are shown in Tables 3.1 to 3.4 reporting the descriptor, number of dimensions,

threshold used to obtain the image retrieval value, percentage of the threshold (where the

maximum threshold is represented by 100%, which also means a high imprecision), and

the percentage of image retrieval calculated as the sum of all obtained scores divided by

60 (the maximum score to obtain).
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Tables 3.1 and 3.2 compare SIFT, PCA-SIFT and Reduced-SIFT descriptors. The

first table uses the nearest neighbor (NN) strategy and shows that PCA-SIFT descrip-

tor outperforms the SIFT descriptor by using 32 dimensions, while the Reduced-SIFT

descriptor provides a result equal or better than the SIFT descriptor by using 20, 32

and 36 dimensions. The second table uses the nearest neighbor distance ratio (NNDR)

strategy and shows that PCA-SIFT descriptor achieves a better performance than the

Reduced-SIFT descriptor. It is important to notice that the PCA-SIFT and Reduced-

SIFT descriptors achieve a better result than the SIFT descriptor with a lower threshold

percentage in the majority of the cases. In some cases, as shown in table 3.1 for reduced

SIFT to 32 and 36 dimensions, reducing dimensions can even achieve better results, we

assume this occurs because of some noise that was suppressed by using less dimensions.

Table 3.1: Image retrieval performed with SIFT, PCA-SIFT and Reduced-SIFT (Nearest
Neighbor Strategy)

Descriptor Dimensions Threshold Percentage Retrieval
SIFT 128 250 45% 68%
PCA-SIFT 12 1500 13% 48%
PCA-SIFT 20 2500 17% 58%
PCA-SIFT 32 3500 24% 70%
PCA-SIFT 36 4000 25% 67%
Reduced-SIFT 12 75 23% 57%
Reduced-SIFT 20 125 33% 68%
Reduced-SIFT 32 150 33% 70%
Reduced-SIFT 36 150 33% 70%

Table 3.2: Image retrieval performed with SIFT, PCA-SIFT and Reduced-SIFT (Nearest
Neighbor Distance Ratio Strategy)

Descriptor Dimensions Threshold Percentage Retrieval
SIFT 128 0.80 80% 65%
PCA-SIFT 12 0.60 60% 57%
PCA-SIFT 20 0.80 80% 69%
PCA-SIFT 32 0.80 80% 75%
PCA-SIFT 36 0.80 80% 77%
Reduced-SIFT 12 0.80 80% 57%
Reduced-SIFT 20 0.90 90% 67%
Reduced-SIFT 32 0.70 70% 67%
Reduced-SIFT 36 0.80 80% 70%

Tables 3.3 and 3.4 show a comparison between SURF and Reduced-SURF descriptors.

The first one uses the NN strategy and shows Reduced-SURF descriptor (20-dimensional
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feature vector) with a threshold percentage of 40% achieving similar response to the SURF

descriptor with 70% image retrieval for a threshold percentage of 41%. The second one

uses the NNDR strategy, where the Reduced-SURF descriptor (36-dimensional feature

vector) achieves similar response to the SURF descriptor with 77%. Both responses were

achieved for a threshold percentage of 80%. As all the descriptions are in different spaces,

it is not possible to compare the threshold values. For this reason, we show a percentage

coming from a normalized value using the 0 as the minimum threshold and x as the

maximum, where x represents the smallest threshold capable to retrieve every point.

Table 3.3: Image retrieval performed with SURF and Reduced-SURF (Nearest Neighbor
Strategy)

Descriptor Dimensions Threshold Percentage Retrieval
SURF 64 0.35 41% 70%
Reduced-SURF 12 0.20 31% 65%
Reduced-SURF 20 0.30 40% 68%
Reduced-SURF 32 0.30 38% 65%
Reduced-SURF 36 0.40 50% 67%

Table 3.4: Image retrieval performed with SURF and Reduced-SURF (Nearest Neighbor
Distance Ratio Strategy)

Descriptor Dimensions Threshold Percentage Retrieval
SURF 64 0.80 80% 78%
Reduced-SURF 12 0.70 70% 58%
Reduced-SURF 20 0.80 80% 63%
Reduced-SURF 32 0.80 80% 73%
Reduced-SURF 36 0.80 80% 77%

3.2.3 Comparing Computational Time and Memory Space

In order to perform this experiment, we used a computer with an Intel Core i7-2670QM

CPU with 2.20GHz and 8 Gbytes of RAM.

Table 3.5 was obtained from running the description process over all possible images

in an interval of time of about ten minutes. As SURF performed faster, it achieved

the higher quantity of described keypoints, which is represented by the value of 100%.

The Reduced-SURF could not perform better since it executes the SURF algorithm and

then projects the kernel PCA; even though, Reduced-SURF achieved among 90% of the

keypoints described by SURF. As PCA-SIFT executes all the SIFT algorithm (detection

and description) in our experiments, it was slower than it could be.
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Table 3.5: Interest point description process for about ten minutes
Descriptor Dimensions Files Keypoints

SURF 64 3560 1168200
SIFT 128 972 760668
PCA-SIFT 36 463 348724
Reduced-SURF 12 3285 1077466
Reduced-SURF 20 3285 1077479
Reduced-SURF 32 3230 1061001
Reduced-SURF 36 3238 1063347

Table 3.6 was also obtained from running the description and the matching process

over all possible images in an interval of time of about ten minutes. At this time, the

Reduced-SURF performed better because of its low-dimensional vectors. Results for SIFT

and PCA-SIFT descriptors are not reported due to their slow execution time.

Table 3.6: Interest point description and matching processed for about ten minutes
Descriptor Dimensions Files Keypoints

Reduced-SURF 12 3075.6 1012460.5
Reduced-SURF 20 3022.5 994357.6
Reduced-SURF 32 2958.5 974094.2
Reduced-SURF 36 2898.2 954022.2
SURF 64 2870.1 944186.3

Table 3.7 evaluates the matching time spent for each feature vector size. It is also

interesting to note the gain of space used by the reduced descriptor. Experiments were

executed over 10000 images with approximately 3 million interest points.

Table 3.7: Running time for interest point matching
Descriptor Dimensions Time Space

Reduced-SURF 12 134.0s 532 MB
Reduced-SURF 20 158.7s 778 MB
Reduced-SURF 32 185.8s 1.1 GB
Reduced-SURF 36 201.3s 1.3 GB
SURF 64 247.6s 2.2 GB

3.3 Discussion

This work demonstrated that the Reduced-SIFT and Reduced-SURF can be applied as

their low dimensional feature vectors still present similar behavior as the original descrip-
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tors.

As reducing the feature vectors involves an extra computational time, it is needed

to maintain a performance similar to the original descriptor. The reduction should be

moderated so that at least 20 or 32-dimensional feature vectors could be used.

The gain of the reduced descriptors is better manifested when the detected interest

points are not discarded fast, for instance, in video tracking application. However, when

the descriptors are used repeatedly, as in image retrieval applications, the matching would

be the dominant process, which represents an advantage to our reduced descriptor.



Chapter 4

Linear Dimensionality Reduction

Applied to SIFT and SURF Feature

Descriptors

Preamble

Robust local descriptors usually consist of high dimensional feature vectors

to describe distinctive characteristics of images. The high dimensionality of

a feature vector incurs into considerable costs in terms of computational time

and storage. It also results in the curse of dimensionality, which affects the

performance of several tasks that use such feature vectors, such as matching,

retrieval and classification of images. To address these problems, it is possi-

ble to employ some dimensionality reduction techniques, leading frequently

to information loss and, consequently, accuracy reduction. This work aims at

applying linear dimensionality reduction to the SIFT and SURF descriptors.

The objective is to demonstrate that even risking to decrease the accuracy

of the feature vectors, it results in a satisfactory trade-off between compu-

tational time and storage requirements. We perform linear dimensionality

reduction through Random Projections (RP), Principal Component Analy-

sis (PCA), Linear Discriminant Analysis (LDA) and Partial Least Squares

(PLS) in order to create lower dimensional feature vectors. These new re-

duced descriptors lead us to less computational time and memory storage

requirements, even improving accuracy in some cases. We evaluate such re-

duced feature vectors in a matching application, as well as their distinctive-

ness in image retrieval. Finally, we assess the computational time and storage

requirements by comparing the original and the reduced feature vectors.

32
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4.1.1 Learning the Projection Matrices

An off-line computation is performed in this stage. This is due to the expensive computa-

tional costs demanded by the linear reduction techniques to calculate a projection matrix.

Furthermore, there is no need to re-compute the projection matrices as the considered

applications area performed.

In order to learn a projection matrix, the dimensionality reduction technique receives

a set of feature vectors grouped into a matrix, referred to as training matrix. This

training matrix is denoted as Xn×d, where n represents the number of feature vectors

and d represents the dimension of each feature vector. After applying the dimensionality

reduction, a projection matrix is obtained, denoted as Kd×p (with p < d). Then, it is

possible to reduce a m-dimensional feature vector to at most n dimensions. To reduce

feature vectors to lower dimensions, it is unnecessary to recompute the projection matrix,

only performing a projection of its descriptors to the projection matrix as

T l×p = M l×d × Kd×p (4.1)

resulting in the low dimension matrix T .

Projection Matrix in the Matching Task

A set of randomly selected images, collected from the Mirflickr-1M Dataset [27], was used

to extract 40, 000 feature vectors to compose the training matrix for PCA.

The training matrix for LDA and PLS techniques differs from the PCA matrix in

the fact that every feature vector has one more dimension, assuming a value of 1 if it

corresponds to an interest point that was detected within the default threshold or 0,

otherwise. These arbitrarily selected values allow PLS and LDA techniques to distinguish

the difference between both types of interest point descriptor by giving different weights

to their related projections.

Projection Matrix in the Image Retrieval Task

The feature vectors of the first seventy-five images from each class were computed to

compound the training matrix for PCA. For the LDA and PLS techniques, it is needed to

add the identifier of the corresponding class to each feature vector in the training matrix.

4.1.2 Feature Vector Matching

In order to perform the matching process, two sets of feature vectors, A and B, are

necessary with their respective interest point locations. The Euclidean distance, denoted
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as DE, is computed from each feature vector in A to each feature vector in B. Then, for

each pair of feature vectors in A and B, if their DE is smaller than an estimated threshold,

we consider to have a match between the respective interest points.

In this work, we employ two different approaches to evaluating a corresponding in-

terest point: the nearest neighbor (NN) strategy and the the nearest neighbor distance

ratio (NNDR) strategy. The NN strategy selects the corresponding interest points which

present the smallest Euclidean distance under the set threshold. On the other hand, the

NNDR strategy considers to have a match when the distance ratio between the two small-

est Euclidean distances is under the set threshold. If the mentioned statement is true,

then it selects the corresponding interest point with smaller Euclidean distance.

The feature vector matching stage is applied in both matching and image retrieval

tasks.

4.2 Experiments and Results

Experiments conducted on two tasks, matching and image retrieval, were proposed to

validate the following statement (the data set considered and the evaluation metrics are

described in Sections 4.2.1 and 4.2.2). SIFT and SURF feature vectors, when reduced to

lower dimensions, can maintain or even improve a similar accuracy as they would achieve

in the original space (results shown in Sections 4.2.3 and 4.2.4). An additional experiment

to measure the computational time and storage usage was performed to compare the

consumption of these resources when using the original and the reduced feature vectors

(results shown in Section 4.2.5).

4.2.1 Datasets and Ground Truth

Two datasets were selected to perform matching and image retrieval experiments.

Matching Task For matching experiments, we used the Inria Graffiti Dataset [14].

This dataset contains 8 groups of images (6 images per group). Each group of images is

subject to different geometric and photometric transformations such as rotation, scaling,

blurring, warping, illumination variance, and JPEG compression. The first three sets of

transformed images have two inner subsets, one of them contains images with distinctive

edge boundaries, the other one contains repeated textures of different forms.

Every group of images, in the Inria Graffiti Dataset, contains five 3 × 3 homography

matrices. Each of these homography matrices represents a projective transformation from

the first image to one of the other five images, which allows us to map any point from the

first image to any other image belonging to its group. Therefore, to validate a match, it
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is necessary to have two interest points: p in the first image and q in any other image,

denoted by i, belonging to the same group. The homography matrix related to the image

1 (base image) to the image i allows to map p into i, obtaining p′. Then, p and q

are considered a correct match if p′ and q are sufficiently close in space and scale. As

mentioned in [18], two points are close in space if the distance between them is less than

σ pixels, where σ is the standard deviation to generate the used scale. Two points are

close in scale if their scales are within
√

2 of each other.

Image Retrieval Task For image retrieval experiments, we employed the TU Darm-

stadt Dataset [20]. This dataset contains 300 images divided into three categories: cars,

motorbikes and cows, where each one contains 100 images.

4.2.2 Evaluation Metrics

This subsection presents the metrics employed to measure results, matching and image

retrieval experiments, to better understand the results obtained through the experiments.

Matching Task To evaluate the matching performance, we use recall vs. 1-precision

curves, as recommended in [1]. Recall (Equation 4.2) represents the measure of the

ratio between the number of correct matches retrieved over the total of matches that are

expected to be retrieved. It is important to notice that a recall of 100% would be achieved

if a set with all possible matches is returned, so if the recall measure is presented alone,

it loses its relevance. Therefore, since the precision measure means the ratio between the

number of correct matches retrieved over the total of matches retrieved, the 1-precision

value is also considered to know when the recall represents some good result. These two

measures are defined as

Recall =
True Positives

True Positives + False Negatives
(4.2)

1-Precision =
False Positives

True Positives + False Positives
(4.3)

Image Retrieval Task As there is still a remaining of 25 images per class from the

TU dataset and saved to be used in the testing stage, we mixed them into the set and

compute for each image a rank list of the top corresponding 24 images. The ranking list

can also be performed for different threshold values. Finally, from all these lists we found

the best threshold to perform our experiments.

Precision =
True Positives

True Positives + False Positives
(4.4)



4.2. Experiments and Results 37

4.2.3 Image Matching Task

In this experiment, SIFT and SURF feature vectors are compared to their respective re-

duced feature vectors by using the recall vs 1-precision curves. The original feature vectors

were projected onto the projection matrices built with RP, PCA, LDA and PLS methods.

It is important to notice that the sequence composed of dimension reduction with PCA

and feature extraction with SIFT, tested in this work (referred to as PCA+SIFT), is not

the same as the approach called PCA-SIFT proposed in [18].

The recall vs 1-precision comparison curves are shown in Figures 4.2, 4.3, 4.4 and 4.5.

Figures 4.2 and 4.4 show plots for every transformation, represented in the Inria Dataset,

using the NN strategy, whereas Figures 4.3 and 4.5 show plots for every transformation

using the NNDR strategy. In addition, each plot presents the lower dimensional feature

vector that achieved an accuracy similar to its respective original feature vector. SIFT

feature vectors were reduced to 12, 20, 32, 36, 46 and 64 dimensions, whereas SURF

feature vectors were reduced to 12, 20, 32 and 36 dimensions.

Figures 4.2 and 4.3 show that PCA+SIFT achieved similar results to the original

SIFT descriptor using only 32, 36 and 64 dimensions. This means that the PCA+SIFT

descriptor can achieve a high accuracy even when the feature vector is reduced to 25 to

50% of its original size.

Figures 4.4 and 4.5 also show that PCA+SURF achieved similar responses to the

original SURF descriptor using 20 and 32 dimensions. This means that the PCA+SURF

descriptor can achieve a high accuracy even when the feature vector is reduced to 31.25

to 50% of its original size.

For both descriptors, the PCA method performed better. Figures 4.6 and 4.7 compare

SIFT and SURF performance to their corresponding PCA+SIFT and PCA+SURF using

different dimensions. It is shown that PCA+SIFT achieves a similar accuracy to SIFT at

32 dimensions, as well as PCA+SURF achieves a similar accuracy at 20 dimensions.

4.2.4 Image Retrieval Task

Image retrieval experiments were conduced to demonstrate that the reduced feature vec-

tors can perform as well or even better than the original feature vectors.

This experiment differs from the one presented in [41] because of the nature of the data

set used. The data set used in [41] considered 30 images separated into 10 groups, where

each group contained the same object viewed from a different angle. On the other hand,

the TU Darmstadt data set contains 300 images separated into 3 groups, and normally

each group presents different objects. Such difference leads to a lower retrieval precision.

The SIFT and SURF feature vectors were reduced to a set of 2, 4, 8, 12, 20, 32, 36,

46, 64 dimensions and 2, 4, 8, 12, 20, 32, 36 dimensions, respectively.
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Figure 4.2: SIFT Feature Vectors and corresponding Reduced Feature Vector comparison
using the NN strategy

Each table presented in this subsection contains the following fields: descriptor, which

refers to the original descriptor or a reduced descriptor; dimensions indicating the number
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Figure 4.3: SIFT Feature Vectors and corresponding Reduced Feature Vector comparison
using the NNDR strategy

of dimensions used by each descriptor; threshold, which indicates the value where the best

retrieval was obtained; percentage, which indicates the position in the interval where the
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Figure 4.4: SURF Feature Vectors and corresponding Reduced Feature Vector comparison
using the NN strategy

current threshold is suitable; the retrieval indicating the percentage of correct images

retrieved over the total of images retrieved.



4.2. Experiments and Results 41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
re

c
a
ll

1 - precision

Group: BlurredEdges (Strategy: NNDR)

SURF
PCA+SURF 20

RP+SURF 20
PLS+SURF 20
LDA+SURF 20

(a) Blurred Edges - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: BlurredTexture (Strategy: NNDR)

SURF
PCA+SURF 32

RP+SURF 32
PLS+SURF 32
LDA+SURF 32

(b) Blurred Texture - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: ScaledEdges (Strategy: NNDR)

SURF
PCA+SURF 32

RP+SURF 32
PLS+SURF 32
LDA+SURF 32

(c) Scaled Edges - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: ScaledTexture (Strategy: NNDR)

SURF
PCA+SURF 32

RP+SURF 32
PLS+SURF 32
LDA+SURF 32

(d) Scaled Texture - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: ViewpointEdges (Strategy: NNDR)

SURF
PCA+SURF 32

RP+SURF 32
PLS+SURF 32
LDA+SURF 32

(e) Viewpoint Edges - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: ViewpointTexture (Strategy: NNDR)

SURF
PCA+SURF 32

RP+SURF 32
PLS+SURF 32
LDA+SURF 32

(f) Viewpoint Texture - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: Illumination (Strategy: NNDR)

SURF
PCA+SURF 32

RP+SURF 32
PLS+SURF 32
LDA+SURF 32

(g) Illumination - NNDR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

1 - precision

Group: JPEGCompression (Strategy: NNDR)

SURF
PCA+SURF 20

RP+SURF 20
PLS+SURF 20
LDA+SURF 20

(h) JPEG Compression - NNDR

Figure 4.5: SURF Feature Vectors and corresponding Reduced Feature Vector comparison
using the NNDR strategy

It is important to observe that the percentage reveals the tolerance of the current

threshold. A high percentage means a high threshold tolerance, which leads to a higher
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Figure 4.6: Performance achieved by PCA+SIFT with both strategies at different dimen-
sions

SIFT Feature Vectors and corresponding Reduced Feature Vector comparison
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Figure 4.7: Performance achieved by PCA+SURF with both strategies at different di-
mensions

imprecision.

Figure 4.8 presents a comparison between the retrieval results computed for SIFT fea-

ture vectors and every reduced feature vector computed. It can be seen that the features

reduced by using the PCA projection matrix outperformed all others. Table 4.1 focuses

on the 32-dimensional feature vector results since it achieved a retrieval value close to the

achieved by the original descriptor. Furthermore, as PCA technique demonstrated to per-

form better, Table 4.2 presents in detail the retrieval values achieved by the PCA+SIFT

descriptor with different feature dimensions. It can be seen that, between 12 and 36 di-
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Figure 4.8: SIFT - Retrieval Comparisons (Str: NN).

Table 4.1: Reduced-SIFT - Retrieval Comparisons (Str: NN).
Descriptor Dims. Thr. Perc. Retrieval
SIFT 128 100.00 16.67% 57.81%
RP+SIFT 32 50.00 16.67% 57.60%
PCA+SIFT 32 75.00 15.00% 59.20%
LDA+SIFT 32 4.00 33.33% 49.12%
PLS+SIFT 32 0.01 33.33% 53.39%

Table 4.2: Retrieval Comparison between Dimensions (Str: NN).
Descriptor Dims. Thr. Perc. Retrieval
SIFT 128 100.0 16.67% 57.18%
PCA+SIFT 2 50.0 25.00% 42.56%
PCA+SIFT 4 75.0 25.00% 44.21%
PCA+SIFT 8 25.0 7.14% 52.16%
PCA+SIFT 12 50.0 13.33% 57.33%
PCA+SIFT 20 50.0 11.11% 56.00%
PCA+SIFT 32 75.0 15.00% 59.20%
PCA+SIFT 36 75.0 15.00% 58.51%
PCA+SIFT 46 75.0 14.29% 56.69%
PCA+SIFT 64 100.0 18.18% 57.23%

mensions, the retrieval response is usually higher and more precise than considering the

original descriptor.

Figure 4.9 shows a comparison between the retrieval results achieved with the NNDR

strategy for SIFT feature vectors and every reduced feature vector. In this case, the
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features projected onto the LDA projection matrix and onto PLS projection matrix out-

performed the other reduced features. We believe this is due to the classification ability.
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Figure 4.9: SIFT - Retrieval Comparisons (Str: NNDR).

Table 4.3: Reduced-SIFT - Retrieval Comparisons (Str: NNDR).
Descriptor Dims. Thr. Perc. Retrieval
SIFT 128 0.525 52.50% 58.24%
RP+SIFT 36 0.525 52.50% 57.49%
PCA+SIFT 36 0.475 47.50% 57.76%
LDA+SIFT 36 0.600 60.00% 59.20%
PLS+SIFT 36 0.525 52.50% 58.72%

Table 4.4: Retrieval Comparison between Dimensions (Str: NNDR).
Descriptor Dims. Thr. Perc. Retrieval
SIFT 128 0.525 52.50% 58.24%
LDA+SIFT 2 0.850 85.00% 37.92%
LDA+SIFT 4 0.700 70.00% 40.53%
LDA+SIFT 8 0.325 32.50% 50.08%
LDA+SIFT 12 0.425 42.50% 54.99%
LDA+SIFT 20 0.550 55.00% 56.85%
LDA+SIFT 32 0.600 60.00% 59.52%
LDA+SIFT 36 0.600 60.00% 59.20%
LDA+SIFT 46 0.600 60.00% 59.73%
LDA+SIFT 64 0.650 65.00% 59.89%
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Table 4.3 focuses on the 36 dimensional feature vector achieving better retrieval

than the original feature vector. Table 4.4 presents the retrieval values achieved by the

LDA+SIFT descriptor for different dimensions. It can be seen that, between 32 and 64

dimensions, the retrieval response is higher than the original descriptor, however, the

precision is lower.

Figure 4.10 shows the NN strategy obtaining better results than the NNDR strategy.

In this experiment, the PCA reduced feature vectors achieved a better performance, being

reduced to 18.75% of the original size. Table 4.5 shows that the other reduced descriptors

achieved close results to the original feature vector for 12 dimensions. Table 4.6 presents

the retrieval values achieved by the PCA+SURF descriptor for different dimensions. It

can be seen that, between 12 and 36 dimensions, the retrieval and precision responses are

higher than considering the original descriptor.
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Figure 4.10: SURF - Retrieval Comparisons (Str: NN).

Table 4.5: Reduced-SURF - Retrieval Comparisons (Str: NN).
Descriptor Dims. Thr. Perc. Retrieval
SURF 64 0.425 38.64% 54.13%
RP+SURF 12 0.075 14.29% 52.85%
PCA+SURF 12 0.200 22.22% 54.29%
LDA+SURF 12 1.000 11.76% 49.33%
PLS+SURF 12 0.005 11.76% 52.00%

Finally, Figure 4.11 shows a comparison between the retrieval results computed with

the NNDR strategy for SURF feature vectors and each reduced feature vector. Once

again, the PCA reduced features obtained superior results. Table 4.7 focuses on the 32
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Table 4.6: Retrieval Comparison between Dimensions (Str: NN).
Descriptor Dims. Thr. Perc. Retrieval
SURF 64 0.425 38.64% 54.13%
PCA+SURF 2 0.100 18.18% 41.28%
PCA+SURF 4 0.050 71.43% 42.29%
PCA+SURF 8 0.150 18.75% 51.73%
PCA+SURF 12 0.200 22.22% 54.29%
PCA+SURF 20 0.300 31.58% 54.72%
PCA+SURF 32 0.350 33.33% 54.03%
PCA+SURF 36 0.400 38.10% 54.45%

Table 4.7: Reduced-SURF - Retrieval Comparisons (Str: NNDR).
Descriptor Dims. Thr. Perc. Retrieval
SURF 64 0.650 65.00% 50.56%
RP+SURF 32 0.575 57.50% 50.45%
PCA+SURF 32 0.625 62.50% 50.99%
LDA+SURF 32 0.575 57.50% 48.32%
PLS+SURF 32 0.625 62.50% 50.35%

dimensional feature vectors reduced with the PCA projection matrix, achieving better

results than the original feature vector. The PLS reduced feature vector retrieval is close

to the original feature vector retrieval. Table 4.8 presents the retrieval values achieved by

the PCA+SURF descriptor for different dimensions, where features reduced to 32 and 36

dimensions obtained higher accuracy while having a lower imprecision than the original

feature.
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Figure 4.11: SURF - Retrieval Comparisons (Str: NNDR).
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Table 4.8: Retrieval Comparison between Dimensions (Str: NNDR).
Descriptor Dims. Thr. Perc. Retrieval
SURF 64 0.650 65.00% 50.56%
PCA+SURF 2 0.225 22.50% 38.83%
PCA+SURF 4 0.875 87.50% 40.96%
PCA+SURF 8 0.700 70.00% 45.92%
PCA+SURF 12 0.500 50.00% 47.57%
PCA+SURF 20 0.575 57.50% 49.33%
PCA+SURF 32 0.625 62.50% 50.99%
PCA+SURF 36 0.625 62.50% 50.72%

4.2.5 Memory Storage and Computational Time

To perform this experiment, we randomly selected 10, 000 images from the Mirflickr-1M

Dataset. Computational time and memory storage required to compute these processes

can be seen in the following figures and tables presented in this subsection. We used an

Intel Core i7-2670QM CPU computer with 2.20 GHz and 8 Gbytes of RAM.

Tables 4.9 and 4.10 show the space required to store 10, 000 image descriptors using

an average of 804 and 325 keypoints per SIFT and SURF description per image, respec-

tively. On the other hand, Figures 4.12 and 4.13 present a comparison to better observe

the benefits, in terms of space required, of using reduced feature vectors. As it can be

observed, the descriptor storage is proportional to their dimensions. The most distinctive

PCA+SIFT with 36-dimensions and PCA+SURF with 32 dimensions use approximately

one third of the memory required by their respective original SIFT and SURF descriptors.
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Figure 4.12: SIFT Descriptors - Storage Comparison.
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Figure 4.13: SURF Descriptors - Storage Comparison.

Tables 4.11 and 4.12 show the computational time, in minutes, consumed to finally

perform the matching process. First, the description stage is performed. Then, SIFT and

SURF original feature vectors are ready to start the matching process, while the reduction

stage is still needed in order to obtain the reduced feature vectors. Once the reduction

stage is performed, every reduced descriptor is ready to be matched.

Table 4.9: SIFT descriptor storage.
Descriptor Dims. Storage

SIFT 128 1004.09 MB
Reduced-SIFT 12 115.01 MB
Reduced-SIFT 20 173.33 MB
Reduced-SIFT 32 268.30 MB
Reduced-SIFT 36 298.96 MB
Reduced-SIFT 46 375.60 MB
Reduced-SIFT 64 513.56 MB

Table 4.10: SURF descriptor storage.
Descriptor Dims. Storage

SURF 64 219.07 MB
Reduced-SURF 12 53.85 MB
Reduced-SURF 20 77.95 MB
Reduced-SURF 32 114.35 MB
Reduced-SURF 36 126.43 MB
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Figure 4.15: SURF - Time for matching comparison.

Table 4.11: SIFT - Time to perform Matching.
Time in minutes

Descriptor Dims. Desc. Reduc. Matching
SIFT 128 120.99 0.00 621.90
Reduced-SIFT 12 120.99 7.49 84.80
Reduced-SIFT 20 120.99 8.77 129.10
Reduced-SIFT 32 120.99 10.89 201.30
Reduced-SIFT 36 120.99 11.65 224.50
Reduced-SIFT 46 120.99 13.40 279.60
Reduced-SIFT 64 120.99 16.62 394.90
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Table 4.12: SURF - Time to perform Matching.
Time in minutes

Descriptor Dims. Desc. Reduc. Matching
SURF 64 36.26 0.00 47.93
Reduced-SURF 12 36.26 2.84 3.11
Reduced-SURF 20 36.26 3.36 9.57
Reduced-SURF 32 36.26 4.08 20.54
Reduced-SURF 36 36.26 4.22 24.00

Description and reduction stages are computed once, which is not supposed to occur

with the matching stage. In these experiments, the first two stages were computed over

the selected 10, 000 images, but only 10 images (with the average number of keypoints)

were selected to be matched against all the others. Note that performing an all-vs-all

matching leads to a dominating time on matching, where description and reduction times

would be hardly perceived, and the gap between matching times for feature vectors and

reduced feature vectors would increase significantly.

Finally, it is important to note that memory storage and computational time require-

ments for the SIFT descriptor are not proportional to the SURF requirements, since both

descriptors can detect different number of interest points to describe a same image.

4.3 Discussion

This work shows experimental evidences regarding the viability of reducing feature vec-

tors, up to 90% of their original sizes, while maintaining or even improving the accuracy

and precision achieved by their original feature vectors.

Feature vectors reduced by the projection matrix PCA performed better in the major-

ity of the cases. This can be due to the fact that it takes into consideration the relation

between features. Therefore, the PCA technique is suitable for applications where there

is no need for classification.

The Random Projection technique can construct a projection matrix faster than the

other techniques since it does not take any data into consideration. However, this feature

is not interesting for this work since it pre-computes the projection matrices due to its

fixed training set.

We believe that LDA and PLS techniques can perform even better than PCA for

applications where it is important to identify several classes. As it was demonstrated

through the image retrieval experiments, with SIFT descriptors and the NNDR strategy,

LDA and PLS yielded superior results. Additional tests with more classes are intended

to be performed as future work to prove our premise.
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The storage required for a reduced feature vector is far lower than the required for an

original feature vector. This represents a significant advantage in using the reduced set

of features.

The extra computational time spent in reducing the feature vectors is well paid off

when the application demands exhaustive work with the described reduced feature vectors,

such as in image retrieval and classification tasks.



Chapter 5

Dimensionality Reduction Through

LDA and Bag-of-Features Applied to

Image Retrieval

Preamble

Content-based image retrieval applications represent a relevant task in com-

puter vision field. Many researches have been conducted to improve the re-

trieval process by means of discriminative descriptors, such as Scale-Invariant

Feature Transform (SIFT) and Speeded Up Robust Features (SURF), which

describe high dimensional feature vectors. Problems involving high dimen-

sional feature vectors usually require high computational time to process the

data, high storage requirements to keep relevant information, and may suffer

with low accuracy depending on the noise contained in the data. Most of the

solutions addressing these problems propose a trade-off between accuracy,

time and storage or even impose restrictions on the action of the application

by compromising the distinctiveness of the feature descriptors. In this paper,

we propose to apply linear dimensionality reduction kernels to reduce the

dimensions of SIFT and SURF feature vectors and employ bag-of-features

to create global features to maintain or even enhance the accuracy of the

retrieval, while spending less storage and computational time requirements.

The experiments compare the results achieved by the reduced feature vec-

tors to the results obtained by the original features, demonstrating to gain

in accuracy while reducing computational time and storage.

52





5.1. Methodology 54

Then, a dimensionality reduction technique (such as PCA, ICA, RP, PLS or LDA) is

applied to the 250 images that are used to learn the projection kernel. If the projection

kernel is learned with PLS or LDA, then each feature vector is associated with the im-

age class identifier. Once the projection kernel is already computed, the feature vectors

corresponding to the remaining 500 images are projected onto the kernel to obtain the

reduced feature vectors. The reduced feature vectors of the 500 images are used to create

the bag-of-features to obtain the dictionary through the k-means algorithm.

5.1.2 Testing Stage

Two elements are needed to perform the testing stage: the projection kernel and the

bag-of-features.

The feature vectors for the 250 images belonging to this phase are densely detected

and computed. Then, these features are projected onto the projection kernel to produce

the 250 files of reduced feature vectors. After that, a histogram of n bins is created to

have a global descriptor for each image, where n refers to the number of key features in

the bag-of-features. Each bin is initialized with 0. To fill this histogram, it is calculated

the Euclidean distance between each reduced feature vector and the key features in the

bag-of-features.

A reduced feature vector belongs to some key feature when its Euclidean distance

is the smallest one, then the bin corresponding to this key feature is increased by one.

Subsequently, the histogram is normalized to one. This histogram will represent a unique

feature vector describing one image. Finally, the number of similar images can be effi-

ciently computed between these global descriptors.

5.1.3 Evaluation Metrics

During the testing stage, the histograms indicating the number of reduced feature vectors

belonging to each key feature are computed for every image in the test group (25 images

from each of the ten Corel Dataset groups). Then, each histogram is compared to the

other 249 histograms, and a ranking of the first 24 images with histograms with maximum

similarity measure is maintained, given by Equation (5.1), where Hx and Hy represent two

histograms, n denotes the number of key features, kHx

i and k
Hy

i represent the respective

number contained by the i-th bin of their histograms.

sm(Hx, Hy) =
n

∑

i=1

min(kHx

i , k
Hy

i ) (5.1)

The retrieved precision value is given by Equation (5.2). An image belonging to the
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class A will achieve 100% of retrieved precision if its top 24 matched images are composed

of only images belonging to its class

Retrieved Precision =
Correct Retrieved Images

Total Images to Retrieve
(5.2)

5.2 Experimental Results

To validate our methodology, experiments with an image retrieval application over the

Corel Dataset [6] are conducted. This data set is composed of 10 groups of images,

each one containing one hundred images. Dense SIFT and Dense SURF algorithms are

executed to describe each image in the data set. After that, dimensionality reduction is

applied to the descriptors.

The following sections compare the original and reduced feature descriptor in terms

of accuracy, computational time and storage requirements.

5.2.1 Precision Evaluation

This first experiment compares the retrieved precision achieved by SIFT and SURF de-

scriptors to the correspondent precision achieved by the reduced descriptors. PCA, PLS,

ICA, LDA and RP techniques are used to reduce the feature vectors to 6, 12, 20 and 32

dimensions. Furthermore, the generation of several bag-of-features, consisting of 50, 250,

500 and 1000 key features, is performed.

In Figure 5.2, it is shown that the performance obtained by executing the experiments

with SIFT (128 dimensions) and SURF (64 dimensions) and their respective 6 dimensional

reduced feature vectors. It is noticed that even performing with these few dimensions,

most of the reduced feature vectors achieved a similar precision in relation to the original

feature vector (with a difference of at most 4% and 6% from the original), and it is worth

mentioning that the feature vectors reduced with the LDA dimensionality reduction kernel

achieved even superior results than the original feature vectors.

We assume that these favorable results are achieved by every dimensionality reduction

kernel due to the fact that not only a small amount of information is removed from

the original vectors but also possible noise. Furthermore, PLS and LDA dimensionality

reduction techniques report better performance, which can be explained by their ability

of marking a feature vector as belonging to a specific class, which aids to better identify

the feature vectors of different classes while projecting them onto the kernel.

Figure 5.3 compares the precision retrieved by SIFT and SURF to their respective LDA

reduced feature vectors. It is important to notice that, in both cases, the 6 dimensional

reduced feature vectors produce superior results than any other reduced feature vector.
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Figure 5.2: Comparison between the original feature vectors and the 6 dimensional re-
duced feature vectors using bag-of-features of 50, 250, 500 and 1000 key features (a) SIFT
compared to RedSIFT-PCA, RedSIFT-PLS, RedSIFT-ICA, RedSIFT-LDA, RedSIFT-
RP; (b) SURF compared to RedSURF-PCA, RedSURF-PLS, RedSURF-ICA, RedSURF-
LDA, RedSURF-RP.
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Figure 5.3: Comparison between the original feature vectors and LDA reduced feature
vectors using 6, 12, 20 and 32 dimensions and bag-of-features of 50, 250, 500 and 1000 key
features (a) SIFT compared to RedSIFT-LDA; (b) SURF compared to RedSURF-LDA.

Finally, Figure 5.4 shows the retrieval precision obtained by each class in the Corel

Dataset by SIFT and SURF feature vectors compared to their respective LDA reduced

feature vectors using 6, 12, 20 and 32 dimensions and a bag-of-features composed of 500

key features, which corresponds to an appropriate balance between accuracy, computa-

tional time and storage. It is clear that LDA 6 dimensional features vectors present either

better results than their original feature vectors or approximately similar.
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Figure 5.4: Detailed comparison between the original feature vectors and LDA reduced
feature vectors using 6, 12, 20 and 32 dimensions and bag-of-features of 500 key features
(a) SIFT compared to RedSIFT-LDA; (b) SURF compared to RedSURF-LDA.

5.2.2 Computational Time Evaluation

There are four phases to compute the testing stage: extracting the feature vector; reducing

the original feature vector; computing the respective histogram (also called quantization

phase); and calculating the retrieved precision value. The first and the last phases are the

same for any feature vector or reduced feature vector, such that the reduction and quan-

tization phases are taken into consideration to compute the difference in computational

time.

The reduction phase, obviously, does not affect the SIFT or SURF descriptors; there-

fore, it does not represent an associated cost to them. However, as the quantization step

is directly affected by the number of dimensions of the feature vectors. Figure 5.5 illus-

trates a comparison between the process performed with the original feature vector and

its respective reduced feature vectors. clearly the time to compute the quantization phase

is dominated by the number of dimensions of the feature vector, then the time spent in

the reduction phase is totally remunerated by the time gained in the quantization phase.

5.2.3 Storage Evaluation

Content-based image retrieval applications usually store image descriptions to avoid com-

puting them every time. The actual features that need to be stored will be the image

histograms, however, if it is desired to change the bag-of-features to compute them, then

the feature vectors must also be stored.

Figure 5.6 shows the storage requirements needed to store a file corresponding to dense
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Figure 5.5: Computational time comparison (a) SIFT compared to RedSIFT-PCA,
RedSIFT-PLS, RedSIFT-ICA, RedSIFT-LDA, RedSIFT-RP; (b) SURF compared to
RedSURF-PCA, RedSURF-PLS, RedSURF-ICA, RedSURF-LDA, RedSURF-RP.

feature vectors compared to their respective reduced feature vectors using 6, 12, 20 and 32

dimensions. As the 6 dimensional feature vectors perform better than the original feature

vectors, it is important to notice that they represent 5.86% and 15.93% of storage size

required by the original SIFT and SURF descriptors, respectively.
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5.3 Discussion

Content-based image retrieval applications usually compute image feature vectors once

and employ them several times. Then, the reduction of feature vectors is desirable in terms

of computational time and storage requirements. Since LDA and PLS are able to identify a

feature vector as belonging to a particular class the performance they guarantee a better

performance. Nevertheless, PCA, ICA and RP techniques also present an acceptable

performance.

This work demonstrated the feasibility of reducing the dimensionality of descriptors,

such as SIFT and SURF, while maintain a similar accuracy or even improve it when

using less than 5% of the original feature vector dimensions. Computational time was not

reduced only during the phase of calculating the reduced feature vectors but also when

comparing the obtained histograms, as they represent an entire image through a unique

vector.



Chapter 6

Conclusions and Future Work

The reduction of dimensionality, applied to SIFT and SURF descriptors, has demonstrated

to maintain a similar distinctiveness while the new descriptions are even 10% of the size

of the original ones. However, it is important that the selection of the appropriate linear

dimensionality reduction technique occurs according to the required application.

In Chapter 3, the image matching experiments were developed with several training

matrices. Some of the training matrices were compounded of descriptors taken from

random images, from an image dataset that was not used in the test stage, and some other

training matrices were composed of images from the same dataset of the test images. The

use of these types of training matrices produced the same results, from which we deduce

that, for a specific application such as matching, where there is no need to differentiate

among classes, a matrix projection can be computed once and then used for several other

images (i.e., the training stage will be performed just once).

In Chapter 4, some new matching experiments were performed by applying other linear

dimensionality reduction techniques to the SIFT and SURF descriptors. The supervised

linear dimensionality reduction techniques, i.e., LDA e PLS, did not show to outperform

the results obtained by the PCA reduced descriptors. Therefore, we conclude that it

is not a determining factor to add distinctiveness to a compact representation in order

to discriminate descriptors in function of the most and least representative keypoints.

However, when the linear dimensionality reduction is used through an image processing

application involving different image classes, the supervised techniques can add more

distinctiveness to the reduced descriptors to the point of making them more accurate

even than the original descriptors.

In Chapter 5, the LDA supervised dimensionality reduction technique is employed in

an image retrieval application. The results show how it maintains a similar accuracy to

the original descriptors or even improve it. The bag-of-feature representation is used in

order to have only one signature descriptor per image and perform faster than the process.
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After the investigation carried out in this work, we conclude that just taking into

consideration projection matrices which contain vectors describing the largest possible

variations of the data, as done by PCA, is good enough to obtain representative reduced

feature vectors. However, when it is desired to take into consideration the class to which

an image belongs, as in image retrieval or classification applications, it is necessary to

think about alternative projection matrices that shall be constructed by considering some

relation and distinctiveness of the feature vectors from the different classes, as done by

the PLS and LDA supervised techniques.

The Random Projection did not produce satisfactory results in our experiments, which

can be explained because it does not take into consideration any information about the

data to be reduced. In the other hand, as the ICA method searches for unique independent

components over the given data, it did not produce better results compared to the other

techniques since its un-mixing matrix attempts to separate independent components from

sources that were not distributed, however, they are almost the same in these datasets.

In our experiments, the dimensionality reduction attains to reduce the computational

time by reducing the keypoints to a bag-of-feature representation as by reducing the

feature vector dimensions. As the only heavy processes, like creating a vocabulary or

the matrix projection, can be done offline they do not represent any obstacle. The final

stage, of reducing the dimensionality of a feature vector, is just represented by an internal

product between it and the projection matrix, which is not computational expensive in

terms of process and time, and leads to less disk storage usage.

As feature descriptors reduced by the PCA technique can maintain a similar accuracy

than the original descriptors and feature descriptors reduced by LDA or PLS techniques

add distinctiveness, a fusion of such techniques could improve the results when compared

to those applied separately, which is suggested as future work.

Another promising alternative is to experiment non-linear dimensionality reduction

techniques in our problem. There are several approaches investigated in the literature,

some of them based on traditional methods, such as kernel PCA [12, 33] and kernel

LDA [19, 30].
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[32] R. Rosipal and N. Krämer. Overview and Recent Advances in Partial Least

Squares. In Subspace, Latent Structure and Feature Selection Techniques, pages 34–

51. Springer Berlin / Heidelberg, 2006.

[33] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear Component Analysis as a

Kernel Eigenvalue Problem. Neural Computation, 10(5):1299–1319, July 1998.

[34] SIFT. Keypoint Orientation, 2011. http://www.aishack.in/2010/05/

sift-step-5-assigning-keypoint-orientation/.

[35] SIFT. Scale Images, 2011. http://www.aishack.in/2010/05/

sift-step-1-constructing-a-scale-space.

[36] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object

Matching in Videos. In International Conference on Computer Vision, volume 2,

pages 1470–1477, 2003.

[37] J. Sivic and A. Zisserman. Efficient Visual Search of Videos Cast as Text Retrieval.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4):591–605,

Apr. 2009.



REFERENCES 65
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