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Department of Statistics, Applied Mathematics and Computing - UNESP

• Prof. Dr. Luiz Fernando Bittencourt

Institute of Computing - UNICAMP

• Prof. Dr. Edmundo Roberto Mauro Madeira - Substitute

Institute of Computing - UNICAMP

• Prof. Dr. Bruno de Carvalho Albertini - Substitute

Polytechnic School - USP

1Financial support: CAPES scholarship 03/2012 - 01/2013 and FAPESP scholarship (process
2012/17278-9) 02/2013 - 02/2014

vii





Abstract

The pursuit of parallelism has always been an important goal in the design of computer

systems, driven mainly by the constant interest in reducing program execution time. Par-

allel programming is an active research area, which has grown in interest due to the

emergence of multicore architectures. On the other hand, harnessing the large comput-

ing and storage capabilities of the cloud and its desirable flexibility and scaling features

offers a number of interesting opportunities to address some relevant research problems

in scientific computing. Unfortunately, in many cases the implementation of applications

on the cloud demands specific knowledge of parallel programming interfaces and APIs,

which may become a burden when programming complex applications. To overcome such

limitations, in this work we propose OpenMR, an execution model based on the syntax

and principles of the OpenMP API which eases the task of programming distributed sys-

tems (i.e. local clusters or remote cloud). Specifically, this work addresses the problem

of performing loop parallelization, using OpenMR, in a distributed environment, through

the mapping of loop iterations to MapReduce nodes. By doing so, the cloud program-

ming interface becomes the programming language itself, freeing the developer from the

task of worrying about the details of distributing workload and data. To assess the va-

lidity of the proposal, we modified benchmarks from the SPEC OMP2012 suite to fit

the proposed model, developed other I/O-bound toy benchmarks and executed them in

two settings: (a) a computer cluster locally available through a standard LAN; and (b)

clusters remotely available through the Amazon AWS services. We compare the results

to the execution using OpenMP in an SMP architecture and show that the proposed

parallelization technique is feasible and demonstrates good scalability.
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Resumo

A busca por paralelismo sempre foi um importante objetivo no projeto de sistemas com-

putacionais, conduzida principalmente pelo constante interesse na redução de tempos de

execução de aplicações. Programação paralela é uma área de pesquisa ativa, na qual o

interesse tem crescido devido à emergência de arquiteturas multicore. Por outro lado,

aproveitar as grandes capacidades de computação e armazenamento da nuvem e suas

caracteŕısticas desejáveis de flexibilidade e escalabilidade oferece várias oportunidades

interessantes para abordar problemas de pesquisa relevantes em computação cient́ıfica.

Infelizmente, em muitos casos a implementação de aplicações na nuvem demanda conhe-

cimento espećıfico de interfaces de programação paralela e APIs, o que pode se tornar

um fardo na programação de aplicações complexas. Para superar tais limitações, neste

trabalho propomos OpenMR, um modelo de execução baseado na sintaxe e nos prinćıpios

da API OpenMP que facilita a tarefa de programar sistemas distribúıdos (isto é, clusters

locais ou a nuvem remota). Especificamente, este trabalho aborda o problema de executar

a paralelização de laços, usando OpenMR, em um ambiente distribúıdo, através do ma-

peamento de iterações do laço para nós MapReduce. Assim, a interface de programação

para a nuvem se torna a própria linguagem, livrando o desenvolvedor da tarefa de se

preocupar com detalhes da distribuição de cargas de trabalho e dados. Para avaliar a

validade da proposta, modificamos benchmarks da suite SPEC OMP2012 para se encai-

xarem no modelo proposto, desenvolvemos outros toy benchmarks que são I/O-bound e

executamo-os em duas configurações: (a) um cluster de computadores dispońıvel local-

mente através de uma LAN padrão; e (b) clusters dispońıveis remotamente através dos

serviços Amazon AWS. Comparamos os resultados com a execução utilizando OpenMP

em uma arquitetura SMP e mostramos que a técnica de paralelização proposta é fact́ıvel

e demonstra boa escalabilidade.
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Chapter 1

Introduction

The exploitation of parallelism has always been a critical factor in the pursuit of increas-

ingly better execution performance. That is because we always wanted to take advantage

of the available hardware in its fullness and sometimes barriers forced the exploration of

new forms of parallelism.

1.1 Motivation

Throughout the years, different levels of parallelism have been implemented based on

different levels of granularity of the computation. Some of the solutions were developed

to be totally transparent to the user/programmer, specially the ones which only use

hardware mechanisms like Instruction-Level Parallelism (ILP): ILP is achieved exclusively

by hardware mechanisms implemented in the microarchitecture and enhanced by code

optimizations implemented in the compiler.

Parallelism has also been explored in the form of multicore CPUs that feature effec-

tively replicated pipelines and allow for distribution of processes and threads of a system,

relieving the workload from what otherwise would be just a uniprocessor. The existence

of co-processors and accelerators, like Graphics Processing Units (GPUs), also represents

a widely explored form of parallelism, often through the so-called data-level parallelism.

A recent form of parallelism currently in evidence is the execution of parallel programs

in distributed-memory systems. This comprises systems in which: 1) a processing machine

can be viewed as a CPU-memory pair, where the memory associated to the CPU is directly

accessible by that CPU only and no other, and 2) multiple machines communicate through

an interconnect network to cooperatively solve parallel programs. Such systems are often

called computer clusters and are normally composed of multiple commodity machines,

each one commonly denominated a node, that communicate with each other by means of

a common Local Area Network (LAN).

1



1.2. Research Goal 2

The growing availability of such clusters is specially important because of the advent

of cloud computing. The cloud, as it is referred to, is a general concept that describes

various kinds of services offered through real-time communication networks such as the

Internet, often thought as clusters with a large amount of cooperating computers and/or

storage. The denomination “cloud” clearly refers to the sense of abstraction that comes

along with it, as it is common for the user not to be aware of the technical details that

permeate such services.

However, still today it might be difficult to harness the computational potential of

the cloud, since it is clear that a lot of knowledge and effort is required to implement

the solution of even simple problems in this paradigm. Not only the developer needs to

master the programming models, knowing how to rewrite code to deal with communication

among nodes and treating I/O, implementing fault tolerance and workload balancing,

but also spend time setting up the cloud environment, optimizing the cluster and its

communication with the storage, and so on.

1.2 Research Goal

The discussion above leads us to the following question:

Is it possible to simplify the utilization of the resources available in the cloud in

such a way that programmers can parallelize software with little effort, reusing

most of the initial solutions developed in a local machine?

In this context, the goal of this dissertation is to propose a new execution model, an

extension to the familiar OpenMP API, to enable the usage of highly-parallel, distributed

processing in remote clusters of machines. Therefore we propose OpenMR, a framework

for cloud programming based on OpenMP and MapReduce, which additionally provides

desirable features such as fault tolerance and workload balancing.

OpenMR is evaluated through the implementation of equivalent versions of appli-

cations from the SPEC OMP2012 benchmark suite [42] and through toy benchmarks

designed to represent some applications with simple mathematical computation, simulat-

ing the target code for a compiler implementing OpenMR. We ran our experiments on

different data communication scenarios and evaluated the resulting performance and data

communication overheads.

1.3 Contributions

The main contributions of this work are the following:
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• A novel execution model for parallel programming with distributed processing in

the cloud which extends the functionality of OpenMP to the cloud;

• A methodology for the mapping between loop iterations in a sequential programming

language to a MapReduce execution model in the could;

• The proposal of constructs to abstract the storage of data in the cloud, bringing

the cloud one step closer to be a part of a fully-integrated, cloud-aware stack of

compute capabilities. This aspect is presented as one of the possible future works

related to this project.

This document is organized as follows: chapter 2 covers background concepts on which

this work was based and compares this proposal to other similar and related works, chapter

3 elaborates on the main aspect of this work, the proposal of an execution model desgined

to provide easy usage of the cloud, chapter 4 shows the experimental setup and results

obtained from the assessment of such a model, and chapter 5 draws conclusions about

the contributions of this work and points out possibilities for future continuation of this

specific line of research.



Chapter 2

Background

This chapter defines and details some of the most important background concepts related

to this work.

2.1 Parallel Computing

In Computer Science, parallelism is the execution of multiple computations simultane-

ously, in parallel, taking advantage of redundant hardware. It is one of the most important

fields of study in this area, given that it comprises various hardware/software techniques

which aim at improving performance. The basic principle of parallel computing is that

large problems often exhibit the possibility of being split into different smaller chunks,

which might be executed concurrently, thus saving much of the original execution time.

Research and development of solutions for parallel computing are not a recent trend.

Regarding the different kinds of parallelism found on computer architectures, a simple

way to categorize such systems was proposed by Flynn in 1966 [23, 24], in what later

became known as Flynn’s Taxonomy. Back then, the so-called parallel systems have been

divided based on the instruction and data streams. The categories were:

• Single Instruction Single Data (SISD): basically the uniprocessor as we know it,

executing a single instruction at a time, over a a single data stream;

• Single Instruction Multiple Data (SIMD): different sets of data being processed by

multiple processors in parallel, exploring data-level parallelism. May be extended to

Single Program Multiple Data (SPMD), in cases where parallel processors execute

a single program but at potentially independent points;

• Multiple Instruction Single Data (MISD): very uncommon architecture, almost no

commercial processor exhibiting this characteristic has ever been developed [31],

4
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because very few applications fit such a model;

• Multiple Instruction Multiple Data (MIMD): each processor fetches its own instruc-

tion and data streams, exploiting thread-level parallelism.

Today, most computer systems are hybrids of these categories, in the sense that most

can execute, and/or possess co-processors which are capable of executing, code from more

than one of them. Still, because of its simplicity, this taxonomy remains as a basic

paradigm for parallel computing.

Another seminal work on parallel computing is what we call Amdahl’s Law [2], which

is an analysis on the limits of computation in general. In his work, Amdahl shows that the

theoretical peak of speedup when parallelizing an application is determined by the portion

of the application which is parallelized. For instance, if only 50% of the application execu-

tion is to be parallelized, even if the parallel portion could theoretically be executed in no

time (i.e. time tending to zero), the remaining 50% would still be executed sequentially

and therefore a maximum speedup of 2x would be achieved. Latecomers would translate

the literal description of Amdahl’s argument as follows:

Speedup =
1

rs + rp

n

where rs +rp = 1, rp represents the portion of the program to be parallelized, rs represents

the portion of the program to remain sequential and n represents the number of processors

in which the parallel portion will be executed.

Since early machines, different ways of exploiting the potential of parallelism have

been reported. One of the first forms of parallelism was at bit level, since increasing the

number of bits of the data words effectively reduced the number of instructions necessary

to perform certain arithmetic operations on data which did not fit inside words of a narrow

datapath [13]. Soon, microarchitectures began to explore ILP, by implementing mecha-

nisms to issue and execute multiple instructions at a time, out of program order, taking

advantage of redundant execution units. That was the case for the so-called Tomasulo

algorithm [59].

Since then, parallelism has evolved to many forms but for many years it was mainly

employed in highly-expensive, high-end machines aiming at supercomputing. However,

years ago, due to physical restrictions, transistor frequency scaling methodologies (e.g.

Dennardian Scaling [19]) started to face problems (such as leakage and physical under-

voltage limits) which turned it impossible for manufacturers to continue the development

of processors with increasingly higher clock rates [58, 60]. Later, it also led to further

barriers like the power wall [35, 50] and the utilization wall, or dark silicon [22, 58, 60].
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This, in turn, led to the creation of chips with replicated processing cores. One of the

main consequences of this shift in the architectural trends was that parallel programming

turned into one of the most important computing paradigms.

Today, different types of parallelism have been developed based of hardware and/or

software techniques. Data-level parallelism is one of them. Several programming models

regard data-level parallelism, such as OpenCL and NVIDIA’s CUDA, which take ad-

vantage of massively-parallel accelerators (namely, GPUs) to perform SIMD operations.

Distributed processing in computer clusters (the cloud included) is another case in which

not only SIMD, but also MIMD processing may be performed.

Unfortunately, many of the parallelization techniques in software demand specific

knowledge and technical understanding from the programmer/user, not to mention the

effort and time consumption associated to the tasks of writing parallel code in those cases.

That is why there are solutions like OpenMP, which intends to abstract implementation

details of a parallelization technique in order to turn it possible to write parallel code

with little programming effort.

2.2 MPI

Message-Passing Interface (MPI) is an Application Programming Interface (API), coupled

with protocol and semantics specifications [29]. It lists function calls which enable pro-

grammers to write parallel programs in a distributed-memory processing paradigm [48],

using a message-passing paradigm. With MPI, programs run in different hosts (CPUs),

each one associated to its own memory, and communicate with each other through mes-

sages sent over an interconnection network, such as a LAN. Usually, developers write MPI

programs in order to have multiple systems to cooperate in a computer cluster to solve a

problem.

MPI is the de-facto standard for distributed processing. Actual distributed-memory

supercomputers often run such programs [53, 56], because of its scalability and perfor-

mance rates.

For the average developer, however, programming with MPI can become a problem.

The API was thought to give the developer complete control over implementation de-

tails of the communication mechanisms, thus bringing much complexity to the process of

developing a distributed application. The execution of an application with MPI usually

involves steps [48] like initizalizing/destructing MPI resources and using functions to send

and receive the messages among processing nodes (MPI Send and MPI Receive), which

need to be specifically thought to occur coordinately and with matching parameters (like

message size and source/destination). Additionally, the programmer must consider using

features like collective communication constructs (broadcast, reduction) and data distri-
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bution schemes (scatter, gather). Finally, the developer must deal with all different MPI

data types, parallel logic and still some desirable features as fault-tolerance and workload

balancing are not provided at all, requiring lots of effort to be implemented.

2.3 OpenMP

OpenMP (short for Open MultiProcessing) is also an API composed of a set of compiler

directives and runtime library routines to perform parallel calculations on shared-memory

multiprocessors (SMP) [11]. OpenMP superseded the attempts for establishing a stan-

dard called ANSI X3H5 [51] for distributed-memory message-passing systems, which had

scalability problems [15] and soon proved itself much inferior to OpenMP.

OpenMP was designed and published as a set of specifications which serve as guide-

lines for the development of compliant compilers. These specifications are discussed and

reviewed by a board composed of members from many of the most important companies

on High Performance Computing (HPC) in the world.

The main motivation behind the creation of OpenMP was to bring parallelism to

commodity-level applications. It was targeted to developers who wanted to quickly par-

allelize existing code [11], supporting a broad range of applications. Today, all the most

important C/C++ and Fortran compilers (the languages OpenMP supports) have their

OpenMP implementations, like GCC, Intel’s and, more recently, LLVM/Clang [4].

For a better understanding on how OpenMP works, we show below the basic syntax

of OpenMP’s API [3, 7, 36, 38, 48] and code samples.

In C/C++, all OpenMP constructs are #pragma directives, except for the library func-

tions which provide information about the number and IDs of threads. These directives

implement a very important feature: if a specific compiler does not support OpenMP,

they are automatically ignored by the C preprocessor and the code compiles and executes

sequentially, exactly like if OpenMP clauses were not even present. This, in turn, con-

siderably simplifies the task of parallelizing an existing piece of code, requiring from the

programmer only the placement of certain annotations in the right places in the code.

2.3.1 parallel Region Construct

The parallel region is the fundamental OpenMP construct, as exemplified in figure

2.1. It defines a region of code which will be executed by multiple threads in potentially

multiple processing cores. The compiler will translate this construct into calls to functions

of the runtime library which will take care of thread creation and manipulation, splitting

data accordingly and effectively extracting parallelism from the original piece of code.
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#pragma omp parallel
{

printf(“Hello\n”);
}

Figure 2.1: OpenMP’s parallel construct sample

The OpenMP runtime offers the chance to manually determine the number of threads

created by the parallel region. This can be done through specific clauses that may

be included in the #pragma directive or by setting that number through a function call

or environment variable. When unspecified, the runtime creates a number of threads

equivalent to the number of CPUs (that includes individual cores) in the system. Thus,

the code in figure 2.1 (which does not state the number of threads) would yield the

following output when run on a four-core SMP:

Hello
Hello
Hello
Hello

Figure 2.2: Output after executing the code from figure 2.1, on a four-core SMP

The output in figure 2.2 is just a simple example; in reality, a program in which

multiple threads compete for the same resource may cause race conditions that affect the

output (this problem may be solved by using synchronization mechanisms). In C/C++,

printf is thread-safe, which means that its data structures and resources are guaranteed

to be safely executed by multiple threads at a time.

2.3.2 Work-sharing Constructs

Work-sharing constructs are the OpenMP way to distribute the execution of the associ-

ated parallel region among the threads that encounter these constructs [3], assigning

individual work to each one of them. OpenMP defines the following work-sharing con-

structs:

• for (C/C++) / do (Fortran): shares loop iterations across the threads of the region.

Every thread that encounters this construct becomes responsible for processing a

fraction of the original loop trip count, in a type of data-level parallelism. This may

be seen as a form of SPMD parallelism;
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• sections: breaks the work into separate, discrete sections which are each executed

by a thread;

• single: determines that a piece of code should be executed by only one thread in the

team; useful when dealing with code which is not thread safe (like I/O operations);

• workshare (Fortran only): divides the work into separate units, each of which is

executed only once.

The task construct, defined since version 3.0 of OpenMP’s specification document

[3], is not explicitly treated as a work-sharing construct but may be considered one. It

defines a task (based on the the piece of code it comprises and its data) to be executed

immediately by any of the available threads or deferred for later execution.

The for/do, sections and workshare constructs are eligible for condensed use with

the parallel construct, as a convenience.

Figure 2.3 is an example of a for work-sharing construct. In this case, the contents of

the array b[] are doubled and assigned to the array a[]. The OpenMP construct splits

the loop between the threads, each of which will be responsible for executing a portion of

the N interations (clearly exploiting a form of data-level parallelism, since every thread

will execute the same operations over a different set of data).

#pragma omp parallel for private(i)
for(i = 0; i < N; i++)
{
    a[i] = 2*b[i];
}

Figure 2.3: OpenMP’s for construct sample

2.3.3 Data Sharing

Since OpenMP executes on an SMP machine, all threads running the same parallel region

will have access to the data that they are processing. Nonetheless, in most cases, a portion

of the data will need to be copied for each thread to use its own private copy. The code in

figure 2.3 is an example. In that case, the loop will be split among threads and each thread

will need its own version of the variable i. If that would not occur, the execution of the

loop would face data race conditions which eventually could affect the correctness of the

program and its outcome. Therefore, OpenMP provides a set of clauses to complement

its directives with information about data sharing. Some of them are:
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• shared: all threads share the specified variables. Great for input variables, as read-

ing them concurrently causes no harm. Writing on them may cause race conditions;

• private: each thread has its private copy of the specified variable. Useful for data

that are updated by each individual thread, like the induction variables of a loop;

• default: specifies the default behavior of data sharing. If a variable was not de-

clared in other data-sharing clauses, it will be implicitly declared as determined by

the default clause. If no default clause is present, the default behavior is to have

all undeclared variables as shared.

• firstprivate: the variable is private and the current value of the shared version

is copied to the private version as the threads enter the constructs;

• lastprivate: likewise, but causes the original variable to be updated when the

threads finish executing the construct;

• reduction: like lastprivate, but applying a certain operation to all the private

versions, causing a reduction to a single copy.

2.3.4 Synchronization Constructs

In many cases, the threads compete for resources which must be coordinately used in

order for the correctness of the program to be assured. That is the case, for instance, of

threads which print output to the screen or need to update the value of a shared variable.

Such situations create race conditions. To address these situations, OpenMP offers ways

to synchronize the execution of threads through synchronization constructs. Some of

OpenMP’s most important synchronization constructs are:

• critical: treats the associated structured block as a critical section, allowing only

a single thread to execute that part of the code a time;

• barrier: when reached by a thread, this construct suspends its execution until all

other threads complete execution until that same point;

• taskwait: the same as a barrier, but regarding task constructs;

• flush: makes the temporary view of memory of a thread consistent with mem-

ory, enforcing an order on the memory operations. May explicitly list variables or

implicitly do the memory operations to all variables in the scope.
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2.3.5 Runtime Library Functions

The OpenMP Specification reference describes yet another feature of OpenMP, runtime

library functions which offer information about the execution environment and useful

utilities. These functions are divided in three categories:

• Execution environment routines: functions that provide and manipulate information

about threads. Examples: omp set num threads and omp get num threads, which

retrieve and set the number of threads executing, omp get thread num, which pro-

vides the ID associated to a specific thread and omp set dynamic, which enables or

disables the dynamic adjustment of the number of threads;

• Lock routines: functions that can be used for synchronization. The locks are rep-

resented by OpenMP lock variables. Examples: omp init lock, omp destroy lock

and omp set lock;

• Timing routines: functions to implement a wall clock timer. There are two of them:

omp get wtime and omp get wtick.

In this work, we associate the programming model of OpenMP to SPMD processing in

the cloud, taking the model of the for / do work-sharing construct to its logical extension.

2.4 MapReduce

MapReduce [17] is a framework for distributed processing based on concepts from func-

tional programming. It aims at providing programming support to address problems in

the area commonly called Big Data, in which sets of data in the order of petabytes, which

could not fit the memory of a single processing node, are to be processed in a distributed-

memory context. In the last few years, MapReduce has been widely used to achieve

interesting results in HPC. For instance, genome indexing, protein alignment, genotype

calling and many other biological applications are well suited for MapReduce [37, 40].

Another example is the work of Deligiannis et al., in which diagnoses of heart diseases

through the analysis of medical records are performed with MapReduce [18]. Machine

learning algorithms also suit MapReduce’s model well and may be used for computer vi-

sion, compiler optimizations and other applications [27, 57]. Also, many large companies

have utilized MapReduce to solve their business problems at affordable costs [12].

The computation in MapReduce is based on the concepts of Map and Reduce functions,

therefore its name. These functions are written by the developer and perform the actual

computation in the job.
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Conceptually, in functional languages, the map function applies an operation over a

set of data, individually [12]. This might be seen as follows:

map({1, 2, 3, 4}, (×2)) → {2, 4, 6, 8}

In the context of MapReduce, analogously, Map is a function that takes as input a

key/value pair, perform some sort of calculation over it, and produces an intermediate

output, which is composed of one or more pertinent key/pair values [17].

The concept of reduction in functional languages, in turn, regards to applying an

operation to all the input data iteratively. Then:

reduce({1, 2, 3, 4}, (×)) → {24}

In MapReduce, the Reduce function takes as input a list of key/pair values with the

same key and performs some more operations on it, typically outputting a single value or

a single key/value pair as result.

In general, the logical definition for the Map and Reduce functions in the context of

MapReduce is as follows:

map(k1, v1) → list(k2, v2)

reduce(k2, list(v2)) → list(k3, v3)

The most used implementation for MapReduce is currently Apache Hadoop [25, 62].

2.4.1 Workflow Overview

Using the above defined concepts, MapReduce executes distributed workloads as follows

[12, 17, 62]:

• The MapReduce framework starts running the job by designating the Map role to

processors and assigning a set of key/value pairs to each one of them;

• The Map function starts execution. It performs its calculation exactly once for each

�k1, v1� key/value pair and generates its corresponding output;

• The MapReduce framework designates the Reduce role to available slots and per-

forms the shuffle phase. In this step, the framework sorts all Map outputs per key

and redirects all key/pair values with the same key to the same processor running

the Reduce function;
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• The Reduce function starts executing. It performs its calculation exactly once for

each �k2, list(v2)� set of key/pair values;

• The MapReduce framework gathers the output of all Reduce functions and sorts

the contents of each one per key. The sorted output of the Reduce functions is the

output of the job.

2.4.2 The Word Count Example

The most traditional example of execution of a MapReduce job is the Word Count pro-

gram. Its purpose is to count the occurences of each particular word in an input text.

This section describes how it works and figure 2.4 illustrates the execution flow.

For the execution of the example, the following text will be considered as the input of

the job:

This is an example of MapReduce job

This program is called Word Count

Word Count is a MapReduce job example

Following the steps previously discussed, consider a 3-mapper, 1-reducer MapReduce

cluster setup. In this case, the input is split between the three nodes executing the Map

function and each of them gets approximately a balanced one third of the total input.

In Word Count, the purpose of the Map function is to generate key/value pairs count-

ing the occurences of each word of text. Therefore, for each word W , a key/value pair

�W, 1� is generated.

The output of all mappers is then subject to the shuffle phase, in which the MapReduce

framework sorts and groups the generated key/value pairs (all intermediate pairs with the

same key are grouped). Then, the pairs with the same key (in this case, each different

word is a key) are all redirected to the same Reduce node, which in this program will sum

up all values for the same word and compute the final count of each word from the input.

In this example, as we assumed only one Reduce node would be available, the Reduce

step is simplified to a single box in the figure.

2.4.3 Distributed File Systems

MapReduce is built upon the availability of Distributed File Systems (DFSs). Such file

systems enable distributed storage and bring many advantages to the execution of MapRe-

duce jobs. Different MapReduce framework implementations normally present their own

DFSs, like Google and its Google File System (GFS) [28] or Apache Hadoop and its

Hadoop Distributed File System (HDFS) [62].
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Figure 2.4: The execution of the Word Count example

DFSs are file systems designed to be able to store very large files in commodity storage

hardware with the possibility of streaming access through block-designed access patterns.

Files are stored in blocks of typically 64MB, distributed among nodes and/or replicated

for high availability and low access latency, coupled with strong reliability.

With the utilization of DFSs in the job workflow, MapReduce offers the benefits of

locality. Since network may be considered a scarce, low performance resource, MapReduce

tries to minimize the communication overhead by allocating as much computation as

possible near to the locations where data is already available.
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2.4.4 Advanced Features

MapReduce offers the possibility for the developer to determine some specific additional

steps in the job workflow by means of the Partition function. By using it, the programmer

is able to implement a custom logic on how the Map outputs should be split and redirected

to the Reduce nodes. The Partition function determines the ID of the desired Reduce

node based on the key, and that is specially useful for database sharding purposes. Other

additional steps of interest are provided, such as the Combiner function, which associates

different values of different pairs with the same key in a Map node, in order to optimize

communication latency of exceedingly repetitive intermediate keys.

MapReduce also enables fault tolerance. Distributed systems unfortunately inherently

suffer from high chances of hardware failure, which translates into the adage “failures will

occur”. For instance, say a cluster has ten thousand machines and assume that the Mean

Time Between Failures (MTBF) indicator of a hypothetical super reliable machine is

thirty years [16]. Therefore, on average, one of such machines will run uninterruptedly for

thirty years before a fatal failure occurs, but on the other hand, if ten thousand machines

execute concurrently, one must be prepared to face failures on a daily basis. Failures

may include power supply shortages, network unavailability and defective components.

Because of that, MapReduce was thought to dynamically relocate tasks and resources

in case of failure. The master node basically pings the worker nodes periodically and

queries about the status of the current tasks, and if a worker node fails to reply to that

ping timely, the master node considers its task as failed. Therefore, that particular task

becomes available for relocation to any other available node. At any time the faulty

machine recovers from failure, it becomes idle again for new tasks to be allocated. On

the other hand, failures may also occur at the master node. That kind of failure can

be recovered by periodically checkpointing the progress of the master node, and in case

it fails, a copy of its state can be recovered from the last checkpointed state. Even if

MapReduce recovers from such a failure state, though, situations like this are not likely

to occur, since there is always a single master node in the cluster and the MTBF for a

single machine is usually sufficiently high to be ignored.

Frameworks still may offer features that may be useful for progress tracking and perfor-

mance analysis, such as real-time HTTP services that provide information on the progress

of jobs and status of the cluster and counters that enable deep analysis of performance

bottlenecks.

This work integrates MapReduce to a proposed programming model for distributed-

memory SIMD processing, in order to harness its advantages like fault tolerance and

workload balancing, while avoiding any need to implement those features.
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2.5 Related Work

Plenty of research effort has been concentrated into the field of cloud computing, demon-

strating that it has become a very interesting paradigm for parallel computing. There are

various lines of research regarding parallel, distributed processing, MapReduce and cloud

computing applications and optimizations. The following is a brief description of works

which somehow relate to OpenMR, our proposed model.

2.5.1 MapReduce Applications

MapReduce is an attractive framework for distributed processing, therefore its applica-

tion areas are widely investigated. Recent works have demonstrated, for instance, that

MapReduce’s model is well suited for machine learning algorithms. Ganjisaffar et al.

[27] showed that the tuning of machine learning parameters can be done in parallel with

MapReduce jobs, while Tartara and Reghizzi [57] showed that parallel training runs for

speedup of machine learning in compilers naturally fit MapReduce’s model.

MapReduce is applied not only inside Computer Science but also in other areas of

knowledge such as Chemistry and Biology. Examples of such usage of MapReduce are

the works of Leo et al. [37] and Menon et al. [40], which both deal with genome analyses

performed in a distributed manner with MapReduce. The former involves the investiga-

tion of genetic causes for phenotypical expressions through the highly parallel processing

of genetic variants in large batches, while the latter involves the alignment of sequences of

various types of biological data, such as proteins, DNA or variations between individuals.

There are interesting MapReduce applications even in fields such as health care, which is

the case of the work of Deligiannis et al. [18]. That work uses the MapReduce framework

to analyze extensive medical records in search for parameters which may correlate with

heart disease conditions for faster and better diagnosis.

2.5.2 MapReduce Framework Optimizations

As previously mentioned, MapReduce has become a very interesting framework for par-

allel, high-performance computing. Therefore, it has also naturally attracted researchers

who seek to analyze its characteristics, such as performance and reliability, and propose

optimizations and enhancements to the model.

An example of such a work is the work of Cardosa et al. [6], that analyzes the behavior

of globally, highly distributed MapReduce clusters with respect to different workloads and

output aggregations and provides recommendations for cluster setup configurations in

order to better harness widely distributed resources. The works of Bressoud/Kozuch, Jin

et al. and Zheng [5, 32, 67] analyze, investigate and model MapReduce’s fault tolerance
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system, which is based on checkpointing. Those works propose, for instance, techniques

such as task and data redundancy in situations when failure rate is high. The impacts of

data locality and scheduling fairness are investigated by Guo et al. [30], which propose

algorithms for yielding optimal data locality and to balance the tradeoffs of locality and

scheduling fairness. Chen et al. [9] use a tiling strategy to split the chunks of data in order

to achieve better performance rates of MapReduce applications on multicore platforms.

Cho et al. [10] propose task preemption for MapReduce to support jobs with priorities

and hard real-time constraints.

2.5.3 Data Movement/Distribution in the Cloud

Since MapReduce is primarily aimed at Big Data, data movement and distribution in the

cloud are critical issues which may hinder the effectiveness of cloud applications. Our

results demonstrate that OpenMR’s performance depends heavily on the remote data

availability and/or on data movement/distribution. Therefore, works in this field try

to address these issues. Abu-Libdeh et al. [1], for instance, propose the striping and

replication of data, common RAID techniques, in the context of cloud storage. These

techniques intend to address service outages and improve overall performance through

the higher availability of data. Wang et al. [61] investigated the effects of replicated

data distribution in distributed database join queries and propose algorithms to improve

the performance in such cases. Yu et al. [66], in turn, address the security and data

confidentiality of cloud storage, overcoming the computation overhead inherent to an

ordinary key-based criptography and providing scalable secure storage for fine-grained

data.

2.5.4 Parallel Programming Models

In recent years, researchers have proposed the extension of parallel programming models

to turn it easier and simpler for the developer to write parallel code and take advantage

of available parallel hardware, in various granularities. Such works are the ones which

relate to OpenMR the most, and are listed below.

OpenACC

One example is OpenACC [47], an API with specifications very similar to those of

OpenMP that aims at parallelizing code on available accelerators, or co-processors, in

particular GPUs. Just like OpenMP, it was created and is maintained by a commitee com-

posed by members from some of the most important companies and universities/research

centers on HPC in the world.
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OpenACC was first published in 2012 and is composed by C/C++ and Fortran direc-

tives, very similar to those of OpenMP but which enable code parallelization not only in

the CPU but also in GPUs, by exploiting their large potential of data-level parallelism in

a massively parallel type of hardware.

Until the establishment of such a standard, there were only two significant pro-

gramming interfaces that enabled the usage of GPUs for general-purpose programming

(GPGPU), namely OpenCL and CUDA. CUDA [46] is a proprietary programming model

for NVIDIA’s GPUs. By means of an extension of the C language (other languages are

also supported through wrappers), CUDA enables the development of code specific to

the GPU architecture. Such code is written as C functions called kernels that are asyn-

chronously triggered by the CPU for execution on the GPU. OpenCL [33], in turn, is an

open standard maintained by a consortium called The Khronos Group. It is a more general

framework for general-purpose computation in various types of co-processors/accelerators,

such as GPUs, Digital Signal Processors (DSPs) and others. OpenCL is also based on a

specific programming model which encompasses plenty of implementation details and con-

ventions, such as its execution and memory models, which must be very well understood

by the developer.

Based on that, the purpose of OpenACC is to facilitate the task of implementing code

to be parallelized in those kinds of accelerators. Through OpenMP-like annotations to

the code, OpenACC generates code that manages the acceleration of programs in the

available devices. OpenACC compilers usually translate regions of code annotated with

OpenACC directives to CUDA or OpenCL code [55], with no need for the developer to

write specific code to any of the two platforms.

OpenACC may be thought as an extension to OpenMP, expanding the processing to

co-processors in something that may be called a finer-grained level of SIMD parallelism.

The three standards (CUDA, OpenCL and OpenACC), though, have been developed to

suit specific types of parallel applications which in general exhibit great potential for

data-level parallelism of simple arithmetic operations.

SnuCL

SnuCL [34] was developed at the Seoul National University and is a framework for het-

erogeneous CPU/GPU clusters that extends the semantics of OpenCL to distributed-

memory, heterogeneous environments. It is similar to OpenMR to some extent, since

it represents an abstraction with which a developer writes code to execute remotely. It

implements a runtime that allows for the development of accelerator-enabled code similar

OpenCL code. It executes in distributed, heterogeneous clusters as if the accelerators were

present in the local host. The researchers responsible for SnuCL argue that this extension

to the OpenCL model naturally fits into the accelerator-programming semantic.
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The SnuCL-enabled compiler is responsible to perform code transformations which

characterize the distributed execution of SnuCL programs. Still, SnuCL code is very

similar to OpenCL code (representing little advancements toward ease of programming)

and SnuCL depends on the availability of accelerator-enabled computer clusters.

SnuCL does not require the explicit utilization of external communication APIs such as

the MPI library, but the complexity of developing applications with an interface so similar

to OpenCL’s remains. In fact, the SnuCL proposal removes the complexity of integrating

OpenCL applications which were thought to execute in a local context to a remote,

distributed environment, but the developer still needs to master specific programming

conventions and execution models. That is, in fact, one of the main motivations behind

OpenACC, which actually maps directive-annotated code to OpenCL-equivalent code, in

a manner much closer to OpenMR than SnuCL’s. Additionally, the runtime proposed

alongside SnuCL does not provide highly desirable features such as fault tolerance and

workload balancing (essential in such an environment which is highly prone to hardware

failures), features which are pre-existent in MapReduce and automatically harnessed by

OpenMR.

PGAS Languages

Partitioned Global Address Space (PGAS) is a parallel programming model that abstracts

a global memory address space among threads/processes while providing data locality

features, providing means of defining shared and local variables and supporting the ex-

ecution of applications in both shared-memory and distributed-memory architectures.

This model is implemented by several programming languages, such as Unified Parallel

C (UPC) [21, 41], Coarray Fortran [45], X10 [8] and Titanium [65].

Such languages are mostly derived from versions of popular languages such as C, Java

and Fortran. Their premise is that the languages they are based on are not well suited for

non-uniform data access across nodes of a distributed system [8]. Although the original

languages may support shared memory parallel execution, attempts have been made to

provide support for a distributed shared memory architecture. Such an approach is clearly

very difficult to scale, since the latency involved in the access of remote data is prohibitive,

thus such attempts have been unsuccessful [52].

PGAS languages usually provide constructs such as data locality keywords and runtime

functions which enable the distributed parallelization of sections of the code. That is the

case, for instance, of UPC, which is based on the C language. It provides keywords

for the declaration of shared and local variables, alongside parallelization functions and

constructs such as the THREADS and MYTHREAD native variables. Because of that,

although being adequate for various levels of code parallelization, such languages have

not prospered, since basically all of them represent different programming paradigms
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and require specific programming skills to some extent. Also, it is usually easy for the

programmer to write inefficient code, by acessing data in another machine which was not

supposed to be accessed and causing large overheads. It is interesting to notice that even

though the concepts behind PGAS have been proposed back in the early/mid-90’s, the

same period corresponding to the beginning of MPI, the message-passage paradigm was

the one which was widely adopted as the de-facto standard for distributed processing.

Still, PGAS languages do support parallelization of various levels of distributed par-

allelism. Specifically, the works Paudel/Amaral [49] and Mehta [39] use the suite of

Cowichan problems [63] (which are a set of problems created to analyze the usability of

parallel programming solutions) to determine the types of parallelism that UPC and X10

support, and find that most Cowichan problems can be subject to parallelization with

such languages.

However, even though OpenMR’s model currently supports a narrower range of par-

allel problems (DOALL loops), the amount of problems which can be parallelized us-

ing OpenMR is still very large (specially among scientific applications). Besides that,

OpenMR thrives because of its ease of programming and similarity to the well-known

OpenMP API. Additionally, no PGAS language has native, automatic support to fea-

tures such as fault-tolerance, which are present in OpenMR/MapReduce (although very

recent works have started to address issues related to that [14, 64]).

Elastic OpenMP

Elastic OpenMP [26] is a mechanism proposed to provide elasticity to OpenMP appli-

cations. Elasticity refers to the system’s ability to adapt to workload changes, during

runtime, by provisioning or deprovisioning resources. Such mechanism implements an

elasticity middleware which communicates with the cloud infrastructure and allows for

the utilization of resources for the execution of OpenMP applications in the cloud. The

elasticity provided is vertical, which means that for a pre-determined number of running

machines, it is possible to increase or decrease the amount of processing cores during

runtime (thus saving energy, for instance).

OpenMR, on the other hand, is built upon MapReduce, which means that elasticity

solutions for MapReduce are also available for our model. For instance, the experiments

conducted during this work, described in chapter 4, used the Amazon EMR services,

which provide horizontal elasticity. Horizontal elasticity means that not only the resources

within the available machines are manageable, but also new machines can be instantiated

(or deactivated) during the execution of an application, providing extra computing power

on-the-fly. This is particularly interesting because the use of Infrastructure as a Service

(IaaS) clouds is usually charged based on the amount of machines and time per machine

used, so if the developer/user needs more computing power at a particular moment, more
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machines can be instantiated for a short period of time only.

Elastic OpenMP, like the previously discussed programming models, does not support

fault tolerance, while OpenMR/MapReduce does. Also, its programmability is not as

simple as the original OpenMP, since the elasticity feature is not provided automatically

and the developer needs to implement the elasticity logic (the programming model is

extended).

Table 2.1 summarizes the characteristics of each of the discussed works and allows

their comparison to OpenMR.

Based on Target Elasticity
Fault

tolerance
Program-
mability

OpenACC
OpenCL,
CUDA

Local
Accelerators

— — +++

SnuCL OpenCL
Cloud

accelerators
No No -/+

PGAS —
Cloud
CPUs

No No -/+

Elastic
OpenMP

OpenMP
Cloud
CPUs

Yes
(vertical)

No +

OpenMR
OpenMP,

MapReduce
Cloud
CPUs

Yes
(horizontal)

Yes +++

Table 2.1: Comparison of the discussed parallel programming models



Chapter 3

The OpenMR Execution Model

This chapter proposes an execution model that, based on the syntax of OpenMP and using

the MapReduce framework provided by Hadoop, allows the programmer to harness the

compute capabilities of a full-sized cluster, in a manner that involves the simple addition

of annotations to the code. We call it OpenMR (short for Open MapReduce).

3.1 The Concept

As previously discussed, OpenMP helps the programmer in the task of converting se-

quential code to parallel code that executes across multiple cores in an SMP context

by transparently implementing data sharing among cores and thread creation, destruc-

tion and synchronization. In this case, the compiler’s job is to reduce the complexity

of handling these issues, which include the use of libraries such as Pthreads and their

synchronization constructs and the need to take care of race conditions and other forms

of problems that parallelism can bring.

OpenMR is an extension of OpenMP which reproduces that train of thought, but

within another context. Instead of only parallelizing pieces of code across multiple cores

in a single machine, it parallelizes loop iterations across multiple machines while trans-

parently providing desirable features like fault-tolerance, efficient data distribution and

workload balancing through heterogeneous commodity machines.

One of the most important features of OpenMP is undoubtedly the parallelization of

for/do loops. It does so by splitting the trip count of the loop across the threads, so

that each core executes the same piece of code over a fraction of the possible values for

the basic induction variable of the loop. In the example shown in figure 3.1, a for loop

with an original trip count of ten thousand iterations is parallelized among twenty threads

using OpenMP, assigning to each of them a particular subset of the trip count, i.e. five

hundred iterations.

22
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#pragma omp parallel for private(i)
for(i = 0; i < 10000; i++)
{
    a[i] = 2*a[i];
}

for(i = 0; i < 500; i++)
{
    a[i] = 2*a[i];
}

for(i = 500; i < 1000; i++)
{
    a[i] = 2*a[i];
}

for(i = 9500; i < 10000; i++)
{
    a[i] = 2*a[i];
}

...

Figure 3.1: OpenMP’s trip count parallelization

In OpenMR, the parallelization of for loops also plays an important role. Figure 3.2

shows how this happens in the proposed execution model. By using constructs which

are very similar to those from OpenMP, the programmer tells the compiler to prepare

a MapReduce job which, when executed, will yield the same results expected from the

original sequential piece of code. The goal is to have the sequential code to execute

normally until an OpenMR region is reached, then trigger the job in a remote cluster, get

the results back when they are ready and resume execution.

Serial program (C, C++...)

.

.

.
#pragma omp mapreduce for
for(i = 0; ...)
{

// loop body
}

.

.

.

Triggers MR job

The cloud

Computation result

Figure 3.2: OpenMR’s execution model

The flow of a MapReduce job generated by OpenMR is based on the mapping between

iterations and processing nodes. Figure 3.3 is an example of how it works in a small

instance. The job takes as input a single file, which at first is created by OpenMR itself

during runtime before the execution of the parallel region. The file consists of one line of

text per iteration, each of which containing the number of the iteration and the current
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values of all the variables to be used used during that specific iteration. Each node of the

MapReduce cluster running the Map function (henceforth denominated “mapper nodes”)

will receive one or more of those lines. Then, for each line, a mapper node will parse

the variable values, store them and execute one of the iterations of the original loop.

Combined, the mapper nodes will have executed the whole loop by the end of the job.

Each mapper node will output a key-value pair with the iteration number and the final

values of the pertinent variables, as computed during the job, and those values will be

retrieved by the local machine which triggered the job.

Map

Map

0 10
1 7
2 2
3 5

4 1
5 8
6 12
7 6

0 20
1 14
2 4
3 10

4 2
5 16
6 24
7 12

i a[i]

Input

i 2*a[i]

Output

#pragma omp mapreduce for input(a[])
for(i = 0; i < 16; i++)
{

a[i] = 2*a[i];
}

Original serial program (C, C++...)

Map

Map

8 4
9 8
10 2
11 5

12 7
13 7
14 21
15 17

8 8
9 16
10 4
11 10

12 14
13 14
14 42
15 34

Figure 3.3: Mapping between iterations and executing nodes, for a four-node setup

If a reduction clause has been declared in the #pragma directive, a reduction phase
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will be included in the MapReduce job. The node(s) running the Reduce function (hence-

forth the “reducer(s)”) will take care of reducing the Map results to the variable(s) in the

clause.

Due to its distributed nature (that means no communication among threads via shared

memory), OpenMR requires the loop to be DOALL. As we can virtually assume that

each machine deals with its own data set, data produced by a certain machine will not

be available to any of the others during processing.

3.2 The Syntax

We propose a couple of directives based on OpenMP, designed to extend the functionalities

of the existing API.

3.2.1 The mapreduce Construct

The mapreduce construct is the distributed equivalent to OpenMP’s parallel construct.

Figure 3.4 is an example of usage of that keyword. It defines a region of code which should

be parallelized in the cloud by the compiler. During compile time, that region of code

will be replaced by constructs that prepare and trigger the MapReduce job and retrieve

its output, as will be discussed in section 3.3.

#pragma omp mapreduce for
for(i = 0; i < N; i++)
{

// loop body
}

Figure 3.4: The mapreduce construct

The mapreduce construct was initially thought to work only with for/do loops, there-

fore all of our examples will feature this type of work-sharing construct. We will discuss

more about the other OpenMP’s work-sharing situations (sections, task) later. Adi-

tionally, we propose a special case of use of the mapreduce construct, alongside the data

keyword (subsection 3.2.3).

3.2.2 The input/output Clauses

When defining an OpenMR region, the programmer will be able to use the computational

potential of the cloud on his/her behalf without having to write specific code in another
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language or paradigm. However, the person will still have to keep in mind that not all

data manipulations during the execution of that region will remain as a side effect. In fact,

the programmer will need to use the input/output clauses to specify which variables will

be taken as input and as output of the processed region. Figure 3.5 shows an example, in

which the contents of the array b[] are passed to the mapper nodes as input data and the

contents of the array a[] are retrieved by the local machine when the remote processing

is done.

#pragma omp mapreduce for input(b[]) output(a[])
for(i = 0; i < N; i++)
{

a[i] = b[i] + 1;
}

Figure 3.5: The input/output clauses

With the use of the input clause, the programmer informs to the compiler that those

specific variables are live-ins to the region. Thus, they will need to be provided to every

executing node, namely through each line of the input file.

The output clause, in turn, specifies which variables are subject to be retrieved by the

end of the processing. Without it, no variables are locally updated after the execution of

the mapreduce region and we can assume the job worked strictly as data generator for a

possible subsequent job.

The following subsection discusses the data manipulation constructs of OpenMR.

3.2.3 The data construct

The programmer might not want to send the input data to the job at runtime, but rather

use data already available remotely. For this reason, OpenMR proposes a construct called

data. Figure 3.6 shows examples of the usage of data. With this directive, we want to let

the programmer tell the compiler that the data which will be used by the MapReduce job

are previously available in the remote cluster, avoiding the performance degradation of

sending big data chunks through a potentially highly inefficient communication network.

In figure 3.6 below, three array declarations are used to assign code to the cloud. In the

first declaration, every iteration potentially uses the whole array a[]. The second one is

intended to be used as an optimization to the problem of data distribution, something like

MPI’s scatter function. In this case, each mapper node will expect to receive 1/nodes

elements from the matrix b[][], effectively scattering the rows of the matrix. The latter
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#pragma omp mapreduce data
int a[10000];

#pragma omp mapreduce data
int b[10000:nodes][10000];

#pragma omp mapreduce data
int c[10000:nodes][10000:nodes];

Figure 3.6: Examples of the data construct

example is like the previous one, but it scatters the contents of the matrix c[][] on a

block basis.

These novel variable declarations may also be seen as hints to the compiler, so that the

declared variables will not be a part of the input file generated by the local machine which

is sent to the remote cluster. They can also be seen as an abstraction to opening a file

in a remote/distributed file system, thus changing our perspective on remote processing

from a totally different paradigm to just a matter of granularity.

In many cases, the use of the data construct is the key to achieve high speedups in

OpenMR, since the data communication overhead is dismissed.

3.3 Preparing the MapReduce Job

The compiler is responsible for generating the Map and Reduce functions, which will

allow for the execution of an OpenMR job. As previously stated, the machines executing

the Map function will each execute a subset of the iterations of the original loop and the

machines executing the Reduce function will take care of an optional reduction phase.

The MapReduce framework used in this dissertation is Apache Hadoop [25, 62].

Hadoop is written in Java, and the ordinary method for creating a Hadoop job is by

writing both Map and Reduce functions as Java classes. As we are dealing with procedu-

ral languages like C, it is logical that using the same language to write the functions would

be much more practical, not to mention how easier it would be to implement OpenMR in

a real compiler in the future. Thus, the adopted solution was Hadoop Streaming. Stream-

ing is a Java class included in the standard Hadoop distribution which allows for using

scripts and/or binaries written in virtually any programming language as the Map and

Reduce functions. It is simply a matter of writing a program that reads input data from

the stdin stream and writes pertinent output (key-value pairs) to the stdout stream.

Hadoop Streaming is said to add overhead to the flow of a MapReduce job, but it has
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been shown that it may compensate the added overhead, depending on the nature of the

processing [20]. For problems that require intensive data manipulation, the performance

degradation is clear, mostly due to the data transportation through Linux pipes. However,

for computational intensive jobs which deal with little input/output, Hadoop Streaming

may even yield results comparable to those achieved by MPI implementations of the same

problem. That is because the programmer is able to write the functions in a much more

optimized language, and input/output are proportionally insignificant. Fortunately, that

is the case of problems that suit OpenMR best.

That said, we will explain OpenMR’s parallelization strategy by looking at figure 3.7,

which shows the several pieces of code that replace an OpenMR region:

1. The creation of the input file to the MapReduce job, which contains multiple lines

of text with all the data required for the OpenMR region to be executed remotely,

and a call to the library function omr push input(), which sends the input data

via SFTP to the remote cluster (which may or may not be present, given the data

construct discussed in section 3.2.3). In figure 3.8, this piece of code is indicated as

number 1;

2. Library function call (omr trigger and wait()) to trigger the job in the cluster via

SSH and perform a (sychronous) busy waiting by constantly querying the job status

until it has succeeded. In figure 3.8, this piece of code is indicated as number 2;

3. Library function call (omr retrieve output()) to retrieve the job output via SFTP

and associated piece of code to parse the output and store the new variable val-

ues, before the program continues normal local execution (also may or may not be

present, given the data construct discussed in section 3.2.3). In figure 3.8, this piece

of code is indicated as number 3.

When compiled, the binary file to be run locally will be equivalent to the code in

Figure 3.8.

To create the Map function, the compiler has to extract the loop body exactly as it is

(except for the reduction commands, which need to be changed to a simple assignment)

and inline it into another loop, which takes one line of input, parses the variables in it

and executes one single iteration from the original loop, while there is input. Figure 3.9

is the corresponding Map function to the example from figure 3.7. The mapper function

also needs to output its processing, through simple print instructions. In fact, it needs

to output every last assignment to the variables listed in the output clause. The output

is formatted to key-value pairs, in which the separation between key and value is done

by a tab character and the separation between pairs is done by a newline character. If

a reduction phase is present, every Map output will have the same key, since all of them
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int main()
{
    int sum, a[N], i;
    // Initialization of a[] and sum

    #pragma omp mapreduce for input(a[]) \
        output(sum) reduction(+:sum)
    for(i = 0; i < N; i++)
    {
        sum += 2*a[i];
    }
}

Figure 3.7: Example of OpenMR code before compilation

int main()
{
    int sum, a[N], i;
    // Initialization of a[] and sum

    for(i = 0; i < N; i++)
    {
        file_write(omr_input, i);
        file_write(omr_input, a[i]);
        file_write(omr_input, “\n”);
    }
    omr_push_input();

    omr_trigger_and_wait();

    omr_retrieve_output();
    sum += file_read(omr_output);
}

1

2

3

Figure 3.8: Example of OpenMR code after compilation (pseudocode)

will have to be redirected to the same reducer node. Otherwise, each mapper outputs its

own key, which will be its iteration ID.

The Reduce function is quite similar. Figure 3.10 is an example, also relative to the

code of figure 3.7. While there is input, a reducer node will read the individual results

of mapper nodes from stdin and do the specified reduction operation. After reducing all

the input records to a variable, it outputs the result and the MapReduce job is finished.
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int main()
{
    int sum, a[N], i;

    sum = 0;

    while(buffer = getLine())
    {
        i = getToken(buffer);
        a[i] = getToken(buffer);

        // The actual loop body:
        sum = 2*a[i];

        // Print output
        printf(“0\t%d\n”, sum);
    }
}

Figure 3.9: Example of Map function (pseudocode)

Generating the Map and Reduce functions is one of the tasks of OpenMR during

compile time. Besides that, it is still a task of OpenMR to send these binaries to the

remote cluster before execution, so that all nodes have local access to the functions.

It is important to emphasize that this example works strictly as an explanation of

how the OpenMR region is translated into a MapReduce job. One may notice that it

may not be worth using OpenMR to parallelize such a simple loop, since all the overhead

involving the making of the input file, performing a job and getting back the results is

clearly much higher than the actual local processing. However, in the case of much larger,

longer-lasting loops and/or loops which are executed over huge amounts of data, OpenMR

attains very interesting results, as demonstrated in chapter 4.

It is also important to notice that OpenMR’s Map functions maintain total compat-

ibility with nested OpenMP parallel regions. If, for instance, an OpenMR piece of

code presents a nested OpenMP parallel construct, it will be kept as-is and the mapper

nodes will each execute their nested version of the parallel code. This possibility may

be interesting when a pre-existing piece of OpenMP code is transposed into an OpenMR

application, avoiding the need to modify the nested parallelism. However, in most cases

when an OpenMR application executes inside a totally busy cluster (preferrably using

100% of Map/Reduce slots), such nested parallelism will not likely attain higher perfor-

mance gains. Still, in some cases covered in chapter 4, the data distribution might result
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int main()
{
    int sum, a[N], i;

    sum = 0;

    while(buffer = getLine())
    {
        // Waste key and get value
        getToken(buffer);
        tmp = getToken(buffer);

        sum += tmp;
    }

    // Print output
    printf(“%d\n”, sum);
}

Figure 3.10: Example of Reduce function (pseudocode)

in cluster underutilization. In those cases, nested parallelism with OpenMP may be useful

to fill idle processing slots.

3.4 Applications

The example from figures 3.7 through 3.10 is simple enough to didactically explain the

mechanism of obtainment of all components necessary to a MapReduce job. However,

that specific loop is clearly too simple for OpenMR to be worth it. It would be necessary

a huge amount of data (previously available in the cloud) and a proportionally compatible

amount of processing nodes to have the parallelism to outperform the local processing of

such a simple loop.

Since not all applications are structured in a way that could harness OpenMR, the

following is a brief discussion on which kinds of code are more likely to achieve better

performance rates in the cloud.

First of all, the parallelized loops must be DOALL, since there is no communication

between processing nodes.

Second, the OpenMP-based loop should not contain explicit synchronization con-

structs. These constructs, such as barrier, are not yet modeled into OpenMR. Still,

in some cases, the translation to loops without these constructs is possible.
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With that in mind, potential OpenMR applications may be split in two categories:

the ones which demonstrate a profile of high computation over a small set of data, i.e.

compute-bound applications, and the ones which compute over a huge set of data, i.e. I/O-

bound applications. Although this is not a strict rule, because there may be other types

of applications which may take advantage of cloud execution when there are insufficient

local resources, those are the most relevant classes of applications for OpenMR under

normal conditions.

For compute-bound applications, the longer a mapper node keeps processing during a

single iteration and the smaller the input data set for that iteration, the better. This is

because we want to avoid the overheads imposed by communication and data manipulation

and achieve the highest computation/communication ratio as possible. The execution

time of the application, when running locally, should also compensate the time it takes

for OpenMR to start and finish running. Even if the application has a high ratio between

computation and I/O, it may execute fast enough locally to make the computation in

the cloud undesirable. Specific examples (SPEC OMP2012 benchmarks) are discussed

in chapter 4, in which the benchmarks used to do performance evaluation are explained.

Also, for that type of applications, the loop which is subject to parallelization must have

a high trip count, which will account for how much parallelism the execution can achieve,

since each iteration will be mapped to a mapper node. Eventually this will become a

trade-off, because as the number of iterations grows, so might the data replication and

the communication overhead.

I/O-bound applications, on the other hand, exhibit a much more profitable poten-

tial for OpenMR. Since a huge set of data is to be processed, it is reasonable to assume

that the data will not fit the memory of a local machine, thus it will have to be fetched

from the disk in a timely manner. This, in turn, will become a bottleneck. Therefore,

despite being called I/O-bound, these are not usual memory-bound applications (I/O,

in this case, indicates secondary storage). Even if the loop is OpenMP-parallelized, the

performance of the application will be bound to the storage access rate, thus serializing

the application. However, the distributed nature of MapReduce storage grants OpenMR

applications the possibility to fetch data and move computation distributedly. This, in

practice, translates into nearly linear speedups, given data previously available in the

cloud. To enable distribution of OpenMR data in the cloud prior to the actual execu-

tion, we discuss the creation of specific constructs in chapter 5. Examples of I/O-bound

OpenMR applications are discussed in chapter 4. Another huge advantage of paralleliz-

ing I/O-bound applications into the cloud with OpenMR is that the annotation-based

code parallelization allows for code verification on a small data subset and then, with

the addition of simple directives, unleash the processing of a much larger data set in the

cloud.



Chapter 4

Methodology/Experimental Results

This chapter describes the methods used to assess the feasibility of OpenMR and shows

the experimental results which support the ideas behind it.

4.1 Compiler Infrastructure

OpenMR’s goal is to allow for the easy usage of the cloud’s computational potential

through OpenMP-like directives. Thus, a fully-implemented compiler support to OpenMR

is required to enable the automatic and transparent implementation of its features.

Since OpenMR extends the functionalities of OpenMP, a solid compiler implementa-

tion of OpenMP is needed for the development of OpenMR. GNU Compiler Collection

(GCC), one of the most important open-source compilers, has its own implementation of

the OpenMP specifications, through its libgomp library. Moreover, in 2013, support to

the OpenMP 3.1 specifications in the Clang/LLVM compiler has been announced and is

currently under development.

The support for OpenMR in a compiler such as GCC or Clang/LLVM was not imple-

mented in this project; we rather suggest that as a future work. In this work, however,

the implementation of OpenMR in a real compiler has been investigated. To the date of

this work, GCC was the only open-source compiler supporting OpenMP and therefore it

was the compiler of choice for the analysis.

The compilation process in GCC is illustrated in figure 4.1. The front end parses

input code from various languages, generating the corresponding Abstract Syntax Trees

(ASTs). Then, the AST is converted to GENERIC, a language-independent form of

syntax trees, which is then subject to the process of gimplification, the conversion from

GENERIC to GIMPLE. GIMPLE is the in-memory Intermediate Representation (IR)

used by GCC’s middle end optimization techniques on the code through dozens of tree

optimizer passes. After the optimization passes, GCC obtains code in Register Transfer

33
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Language (RTL), a LISP-inspired representation very close to assembly code but still

architecture-independent. This RTL code is the input for the back end of the compiler,

which will execute the actual code generation for the specified architecture.

C 
trees

C to 
GENERIC

C++ 
trees

C++ to 
GENERIC

Java 
trees

Java to 
GENERIC

GENERIC Gimplify

FRONT END

MIDDLE END

GIMPLE
Tree SSA 

Optimizer
RTL

BACK END

RTL 
Optimizer

Code 
Generator

Object 
code

Figure 4.1: The compilation flow in GCC (adapted from [44])

In GCC, OpenMP handling is done during various stages of the compilation process.

The C/C++ and Fortran front ends take care of parsing the #pragma omp directives,

annotating the GIMPLE IR with information about the paralellization constructs. The

middle end, in turn, is responsible for actually handling them during the optimization

passes. These passes reorganize the content of parallel regions in subfunctions, handle the
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data according to the data sharing clauses and insert calls to libgomp, the library that

manages the creation and manipulation of threads.

The rearrangement of the code of a parallel region is as follows:

#pragma omp parallel

{

body;

}

becomes, after the appropriate transformations,

void subfunction (void *data)

{

use data;

body;

}

setup data;

GOMP_parallel_start (subfunction, &data, num_threads);

subfunction (&data);

GOMP_parallel_end ();

void GOMP_parallel_start (void (*fn)(void *), void *data,

unsigned num_threads)

In other words, OpenMP extracts the body of a parallel region and creates a sub-

function which is executed as a callback to the function of libgomp, which in turn is

responsible for the creation of the team of threads that will perform the computation.

One interesting fact about the way GCC does this transformation is that the function

outlining is performed without generating debug information for the data structures used

in the process, thus turning it difficult to debug the execution of parallel code.

This outlining of OpenMP code is particularly interesting for this project, given that

it is very close to the way OpenMR proposes to manipulate code, as described in figures

3.8 through 3.10. In OpenMR’s case, outlining is the main technique used in the creation

of the Map and Reduce functions, since the actual loop body is inlined in the code for the

Map function and the reduction operations are also extracted from the original loop into

the Reduce code, in case a reduction clause has been defined. Also, the original loop is

removed from the sequential code and library function calls are inserted with the purpose

of triggering the remote job and retrieving the result, just like what OpenMP does with

respect to the creation of threads and what we may abstract as the firing of tasks in a

parallel context.
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4.2 Benchmarks

This investigation on the compilation process of OpenMP confirmed the structure of the

code that should be generated by the compiler in a possible implementation of OpenMR.

Then, with that in mind, experiments were made to assess the performance of OpenMR.

The experiments performed during this work were based on manually modifying paral-

lel computing benchmarks, in order to transpose the OpenMP code into our new execution

model, writing code that is equivalent to the one that the compiler would generate in a

transparent fashion.

The compute-bound benchmarks used were those from the SPEC OMP2012 suite.

This was the benchmark suite of choice because it presents various types of scientific

applications that have already been parallelized with OpenMP, therefore those applica-

tions might exhibit potential to be parallelized with the directives of OpenMR. Table 4.1

presents a description of some characteristics of all applications composing the benchmark

suite, including the languages in which the programs are written, the memory size used

by the applications’ data and the area of knowledge the applications are associated with.

Code Memory (MB) Language Area

350.md 5 Fortran Molecular Dynamics
351.bwaves 22,800 F77 Computational Fluid Dynamics

352.nab 618 C Molecular Modeling
357.bt331 11,188 Fortran Computational Fluid Dynamics

358.botsalgn 156 C Sequence Alignment
359.botsspar 7,179 C LU Factorization

360.ilbdc 16,482 Fortran Lattice Boltzmann
362.fma3d 5,205 F90 Finite Element Method
363.swim 6,490 Fortran Finite Difference

367.imagick 1,733 C Image Processing
370.mgrid331 13,972 Fortran Multi-Grid Solver
371.applu331 14,884 Fortran PDE/SSOR
372.smithwa 177 C Optimal Pattern Matching
376.kdtree 119 C++ Sorting and Searching

Table 4.1: Description of the benchmarks in the SPEC OMP2012 suite (adapted from
[42])

In the experiments, the focus was on the transcription of the C/C++ applications to

the OpenMR code structure. This approach was used both because the author had little

familiarity with the Fortran language and because even though the Fortran applications

were briefly analysed, most of them demonstrated little potential for performance gains
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with the constructs desgined so far for OpenMR. The reason for that, though, is obviously

not the language in which the applications were written. That is actually a particularity

of the applications, since Fortran is still today one of the most important languages for

scientific HPC.

From the set of analysed benchmarks [42], two of them were selected and implemented

with OpenMR, namely:

• 358.botsalgn: protein sequence alignment application. A set of protein sequences is

read from input file and each sequence is compared against each other using the My-

ers and Miller algorithm [43]. The SPEC implementation of this program presents

two nested for loops which basically perform the whole computation. The outer

one is parallelized with a parallel for work-sharing construct, while the inner

one runs sequentially in each of the threads of the team, triggering individual tasks

that execute one comparison each. The utilization of tasks is aimed at the solution

of possible imbalance inside an SMP context, but it makes less sense in a coarser-

grained context like the cloud. That is because the purpose of tasks it that they can

be relocated among threads during execution, something that is difficult to do in

such an environment. With certain manipulation, the application can be modified

to remove the tasks and turn the structure of the code adequate to OpenMR. By

doing so, the workload balancing strategy may be modified, but 1) the semantics

of the code remains unaltered and 2) workload balancing is performed, even if in

a different granularity, by the MapReduce framework. In a first investigation, this

was one of the applications which seemed to fit better the OpenMR model, since it

demonstrated a profile of high computation over a small set of data.

• 372.smithwa: pattern matching, somehow similar to the problem of 358.botsalgn.

This application is a parallel implementation of a sequence alignment routine for

Matlab. The sequences processed in this application, contrary to the ones in

358.botsalgn, are generated randomly. There are two of them which are compared,

with six embedded, pre-determined pieces of sub-sequences for correctness verifi-

cation. The code is structured in three function denominated Kernels 1, 2A and

2B. In Kernel 1, each OpenMP thread processes a subset of the two sequences with

the Smith-Waterman algorithm [54] and builds its individual list of best alignments

along with their ending points. In Kernel 2A, threads sweep each of the previ-

ous outputs from end to start listing best alignments, starting and ending points

and codon sequences. In Kernel 2B, the outputs are merged and displayed. The

largest portion of execution time, by far, is associated with Kernel 1, in which

the heavy computation is actually performed. That function was parallelized with

OpenMR. To do that, though, some manipulation had to be performed with the
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code. Originally, the parallelization was achieved by launching a parallel region

with a dynamic number of threads (typically defined by the runtime as the number

of cores in the host), each of which would be responsible for processing a subset

of the input data. This dynamic division of the data space had to be modified to

a static one, since OpenMR maps iterations to processing nodes and an explicit

iteration count must be defined. Thus, with this modification, OpenMR is able to

replicate and/or distribute data accordingly through nodes, in a potentially dynamic

number of processing cores. This, in turn, has led to what may represent a problem:

there are cases in which there is a trade-off between the amount of parallelization

and the replication of data/the performance penalty for data communication. That

happens because of exceedingly replicated data, which may be necessary among

many processing nodes.

There were still four other SPEC benchmarks which did not exhibit potential for

parallelization with the current constructs of OpenMR, namely:

• 352.nab: molecular dynamics application. Performs heavy, floating-point calcula-

tions. Not a DOALL loop. In an SMP context, inside each individual step, work

may be individually parallelized with OpenMP, but the overhead involved in launch-

ing a MapReduce job for each operation (data communication included) would be

prohibitive.

• 359.botsspar: LU matrix factorization over sparse matrices. There is a lot of imbal-

ance in this problem, due to the sparseness of the matrix, which has been solved in

the OpenMP implementation by the use of tasks. As discussed about the previous

application, the manipulation of the constructs to remove the tasks from the code

would be possible, except for the fact that two taskwait directives are present,

imposing explicit synchronization between loop iterations. This, coupled with the

serial execution of the outer loop, demonstrates that the loop is not DOALL, fact

that was proved by experimentation.

• 367.imagick: Image Magick, an open-source image processing suite. Processes a

large variety of image formats, applying dozens of different filters and effects to

images, but the operations depend on a strict serialization. Additionally, this appli-

cation presents a lot of complex data structures which would require an extended

strategy on how to serialize complex data.

• 376.kdtree: k-dimensional tree generation and searching. A k-d tree is a space par-

titioning data structure, which may be seen as an expansion of binary trees. The

search is performed through recursive functions, that are currently not well suited
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for the constructs of OpenMR, since each call for them would trigger a MapRe-

duce job. The dependencies between iterations are another limiting factor for this

application, since a recursive search procedure depends on the data space division

of the previous function call, thus precluding the parallelization of programs in a

distributed-memory context, with no communication among processing nodes.

Additionally, a set of toy benchmarks has been implemented to assess the perfor-

mance gains of relatively simple, increasingly complex loop bodies. These benchmarks

exhibit regular mathematical operations and are I/O-bound applications, which take full

advantage of MapReduce’s distributed processing. The applications were:

• Vector add: application which sums two arrays of integer numbers. The value of

each position of array A is summed to the value of the corresponding position in

array B. The local execution of the benchmark reads the input data from the disk

and processes the two arrays through a simple, DOALL for loop. The distributed

execution assumes the use of OpenMR’s data construct and processes, in each

mapper node, fixed-size arrays which are previously stored remotely and which

collectively sum up a much larger amount of data.

• Inner product: given two arrays of integer numbers, calculates the inner product.

This is done through the pairwise multiplication of elements of both arrays (similar

to the previous application) and a final reduction step, which sums all partial results

to a single accumulator. The local and distributed execution perform just like in

the previous application, with an extra step of reduction which is performed in a

single reducer node.

• Matrix-vector multiplication: multiplies a matrix by a vector, or in other words, a

bi-dimensional matrix by a single-column matrix. This application exhibits another

particular case: the local version executes the operation over a single set of matrix

and vector, while the previously-adjusted input data for the distributed job holds a

set of data for each mapper node to process. That means that the OpenMR code

performs the exact same operations over a single set of data inside each thread, and

the whole job processes multiple, distributed sets.

• Matrix-matrix multiplication: very similar to the previous application, now process-

ing sets of full-sized, bi-dimensional matrices.

4.3 Experimental Setup

Three contexts were represented in the performance measurements. The first one was the

local, parallel execution with OpenMP. This context has been used in order to compare
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the performance gains of the distributed processing to the local processing in an SMP. It

will be henceforth referred to as our baseline or execution in a local machine. The next

one was the benchmark execution in a computer cluster locally available (i.e. in the same

LAN), which will be referred to as local cluster. The third one was the actual execution

in the cloud, in a remotely available cluster. It will be referred to as Amazon EMR, as

remote cluster or simply as cloud execution.

The baseline benchmarks were executed in a machine with three Intel Xeon X7560

CPUs, each one with eight cores, and 64 GB of RAM. In this 24-core machine, the

OpenMP benchmarks were executed with growing amounts of threads, from 1 to 48.

For all OpenMR benchmarks, the required SSH/SFTP communication (remote execu-

tion of shell commands and file transfers) was implemented with the libssh API, therefore

this library is a prerequiste to OpenMR. Likewise, all benchmarks were executed using

Apache Hadoop as the MapReduce framework.

For the experiments with a local cluster, the benchmarks were executed from a machine

with an Intel i5/Sandy Bridge processor with two cores and 4 GB of RAM and the

OpenMR’s distributed processing was performed in a heterogeneous cluster composed of

five machines with CPUs ranging from Intel Core 2 Quads to Xeon X7560s with eight

cores each and memory ranging from 4 to 64 GB. The five machines, together, had 56

processing cores. All machines executed Linux/Ubuntu 10.04.3 64-bit or 12.04 64-bit.

Also, all machines were connected to the same subnet with regular Gigabit Ethernet.

The Hadoop framework executed in this cluster was version 1.1.1.

For the cloud experiments, the benchmarks were triggered from the same machine

used for the baseline and the distributed processing was performed using the Amazon

Web Services (AWS). These are services provided by Amazon which enable the usage of

their cloud computation and/or storage. The user creates an account and then is able

to instantiate remote clusters in various locations on the planet with custom amounts of

machines, paying for the time the machines were used. There are various different types

of AWS services, among which the Simple Storage Service (S3), Elastic Compute Cloud

(EC2) and Elastic MapReduce (EMR) were used in this work.

S3 is Amazon’s cloud storage service. Users may upload and download data to the

cloud, being charged for specific network transaction scenarios. The download and upload

of files can be performed both through AWS’s web console and through certain provided

command-line tools, denominated Command-Line Interface (CLI).

EC2 is the service with which users can allocate machines in Amazon’s clusters. The

user specifies amounts of machines with different characteristics/compute capabilities and

EC2 allocates idle machines and instantiates virtual machines in them, giving the user

control to execute applications in the cloud. The access to EC2 instances is performed

both through the web console and through SSH connections. There are various tiers of
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EC2 instances, each one with different costs per hour. Basically, Amazon offers machines

of the current generation, at relatively higher costs, and machines of the previous gener-

ation, at more affordable prices. Besides that, in the same generation of machines, there

are types which are aimed at more intensive computation jobs, with better CPUs and

components like SSD storage, others which aim at storage, having larger hard drive ca-

pacities, others which have GPUs, and so on. In this work, all EC2 instances were of the

type c1.medium, except for the Hadoop master node, which was always a m1.small (this

is because the task tracker node, which manages the slave nodes and assigns the tasks,

does not need to be powerful, as it does not perform the actual computation of the job).

The c1.medium instances are the medium-tier, compute optimized type of machines, at

the price of US$ 0.20/hour each. The m1.small ones are smaller instances with more

balanced components (e.g. without SSD storage), at the price of US$ 0.08/hour each.

Cost data are as of January, 2014.

EMR is Amazon’s MapReduce service. With it, the user is able to instantiate EC2

machines which come with a pre-configured, running Hadoop framework. EMR clusters

use Amazon’s own modified Hadoop distribution. EMR clusters also exhibit the possibility

to be resized in real time, during job execution (i.e. in the case there are exceeding or not

sufficient processing slots).

The EC2 machines accessible to the remote user are instantiated virtual machines, thus

Amazon describes the processing capacities of each instance type in terms of virtual CPUs

(vCPUs), not in terms of actual CPUs. A vCPU is a CPU core allocated for the virtual

machine. The c1.medium instance type, used in this work, has 1.7 GiB of memory, 2

vCPUs and 350 GB of local instance storage. The two vCPUs basically translate into two

Map/Reduce slots per instance. The m1.small instance type, also used in this work, has

1.7 GiB of memory, 1 vCPU and 160 GB of local instance storage. No further details on

the machines’ specifications is given, except that both c1.medium and m1.small instance

types are based on the Intel Xeon family of processors.

There is a standard limit on the utilization of Amazon EC2 instances, which is 20

machines. In this work, the limit has been raised to 235 (234 c1.medium processing nodes

with 2 vCPUs each, totalling 468 simultaneous threads + 1 m1.small master node to

track the tasks among slaves), which was a sufficiently high number of machines that we

were granted by the Amazon support service and which still was reasonably affordable to

simultaneously instantiate.
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4.4 Results

4.4.1 SPEC Benchmarks

Baseline

Figure 4.2 shows the execution times for the local processing with OpenMP of the two

SPEC benchmarks which were implemented with OpenMR. The benchmarks have been

executed multiple times, with an increasing number of threads. The number of threads

doubles with each increment, clearly showing a tendency to decrease the execution times

by approximately half. The benchmarks were executed on 24-core machine, thus justifying

the estagnation of execution times perceived between 24 and 48 threads (the CPUs support

execution of two simultaneous threads per core, but since SPEC OMP2012’s benchmarks

are compute-bound applications, demonstrating little I/O, they take no advantage from

thread-level parallelism).

Figure 4.2: Execution times of SPEC benchmarks with OpenMP

358.botsalgn + Amazon EMR

The pattern of figure 4.2 was also noticed when the benchmarks were executed in the cloud

scenario using OpenMR. The execution of 358.botsalgn in Amazon EMR was profiled as

displayed by figure 4.3. In this case, a remote cluster was deployed on demand with a few
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processing nodes and then gradually resized, doubling the number of available threads each

time. It has also been assumed that the input data was previously available remotely. It is

interesting to notice that the pattern from the previous case was successfully reproduced,

as expected. Here, as we double the number of cores to process the benchmark, the

execution time reduces accordingly. It only does not reproduce the exact same behavior

of the previous context because there is plenty of associated overhead which represents a

fixed portion of the time. The execution with 468 threads achieved the lowest execution

time, 217 seconds, while the best execution time achieved by the baseline scenario using

OpenMP was 1336 seconds, with 24 threads. That represents a speedup of 1336/217 =

6.15x. Chart 4.3b shows the speedups achieved with respect to the baseline scenario, with

various amounts of processing cores.

Figure 4.4, in turn, shows additional analyses performed over the same benchmark.

In this case, we consider not only the processing times, but also the overhead implied in

generating the input data and sending them to the remote cluster. As the network over-

head is variable and depends much on the available infrastructure, we performed sample

executions considering those steps separately, isolating the tasks of input data generation

and communication. Each step has been executed three times and we considered the

average execution time for each of these steps. Chart 4.4a shows that the best execution

time including data generation and communication (2139 seconds) was better than the

execution of the local OpenMP version with 8 threads (4008 seconds), even though the ac-

tual processing time was equivalent to only less than 10% of the total. Actually, it almost

outperformed the local execution with 16 threads (2002 seconds). That demonstrates that

OpenMR’s distributed processing may achieve better results than local execution even in

cases where the data are not previously available in the cloud. Just like in the previous

experiment, chart 4.4b shows the speedups achieved by total execution times with respect

to the baseline scenario.
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(a) Absolute execution times

(b) Speedups relative to the OpenMP local execution

Figure 4.3: Execution of 358.botsalgn with OpenMR and Amazon EMR
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(a) Absolute execution times

(b) Speedups relative to the OpenMP local execution

Figure 4.4: Execution of 358.botsalgn with OpenMR and Amazon EMR + additional
overheads
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372.smithwa + Amazon EMR

The execution of 372.smithwa was also performed in the cloud. Figure 4.5 shows the

results. This experiment also considered the data as previously available remotely and its

execution followed the same procedures as the previous one. The lowest execution time

for this benchmark was 557 seconds, while the best OpenMP time, with 24 threads, was

1430 seconds. That represents a speedup of 1430/557 = 2.56x. Chart 4.5b shows the

speedups achieved with respect to the OpenMP local execution, with various amounts of

processing cores.

The improvement pattern from the other experiments could also be noticed in this one,

even though in a less prominently fashion. This is mainly because all overhead associated

to the deployment of a MapReduce job in Amazon EMR is doubled, since the execution

of the benchmark consists of two program runs, thus executing the OpenMR region twice.

It is interesting to notice that 372.smithwa does not exhibit a fixed number of threads,

but instead partitions the input data among the available threads. Therefore, additional

experiments were performed not considering the data previously available remotely, but

instead measuring the tradeoff which involves the action of splitting the execution among

more threads but having to replicate more data and send them through the network. The

results are displayed by figure 4.6.

In this case, chart 4.6a shows that there is an important tradeoff to be considered with

respect to distributed processing, since it displays the proportion of each step related to

the total execution time. The execution of the benchmark with only 32 threads takes

much less time to generate the input data and send them through the network than

the execution with more threads, and that was expected. The performance gain of the

execution with 468 threads, when compared to the execution with 128 or 256 threads,

does not compensate the bigger time spent on data generation and communication, thus

totalling a performance loss. Notice that the 256-thread case (1210 seconds) outperforms

even the best OpenMP case (1430 seconds), reiterating that even when data are not

available remotely, OpenMR might be a good option. Chart 4.6b shows the speedups

achieved by this benchmark and its additional overheads with respect to the OpenMP

local execution.
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(a) Absolute execution times

(b) Speedups related to the OpenMP local execution

Figure 4.5: Execution of 372.smithwa with OpenMR and Amazon EMR
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(a) Absolute execution times

(b) Speedups related to the OpenMP local execution

Figure 4.6: Execution of 372.smithwa with OpenMR and Amazon EMR + additional
overheads
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Local cluster scenario

The SPEC 358.botsalgn and 372.smithwa benchmarks have also been assessed in a locally

available cluster. Experiments with the various logical thread counts and data distribution

have been executed. The results are displayed in figure 4.7. The figure displays the differ-

ent measurements of execution time for the different steps on the different combinations.

As explained previously, 372.smithwa relies on a data set partitioning, given the number

of threads. Since the local cluster experiments have all been performed with a fixed num-

ber of processing cores (namely, 56), we kept the manual data replication and workload

partitioning amounts the same as in Amazon EMR. That means that 372.smithwa has

been executed multiple times with the various logical thread counts from the previous ex-

periments over the 56-core cluster. In this chart there has also been considered the step of

inserting the input data into the distributed file system (HDFS), step that did not occur

with the use of Amazon’s S3 service in the previous experiments. That is because HDFS

in this local cluster is a logical file system, not a real fully-distributed storage solution,

such as S3. The benchmarks axis is labeled with the number of the benchmarks plus the

number of logical threads in the cases that this applies.

Figure 4.7: Execution times of 358.botsalgn and 372.smithwa with OpenMR in a local
cluster, with 56 processing cores
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Figure 4.8 shows the speedups achieved by the SPEC benchmarks when executed in

a local cluster, relative to the execution times obtained by the local execution. Chart

4.8a shows the speedups considering the processing times only. Chart 4.8b, in turn, also

considers the additional data distribution overheads involved. The latter shows that all

executions exhibit similar speedup trends. That is because, disregarding communication

overheads, the processing speedups are almost linear, thus favoring the parallel execution

of the compute-bound applications. The former, meanwhile, shows that 358.botsalgn’s

speedups are interestingly closer to the ideal than 372.smithwa’s. Again, 372.smithwa

stays farther from the ideal speedups than 358.botsalgn because one execution of the

benchmark equals the execution of its OpenMR region twice, thus doubling the MapRe-

duce overhead. In this experiment, all executions have been performed in a local cluster

with a total of 56 processing cores.

In the local cluster scenario, it is interesting to notice that 358.botsalgn took complete

advantage of the 56 cores, while 372.smithwa did not. It happens that Hadoop performs

an analysis at the beginning of each job, through a non-overridable heuristic, which aims

to balance the workload among the slave nodes. This heuristic assumes that the Map and

Reduce functions have a finer granularity and execute in something like a minute or less

over a big set of various data, which is the normal behaviour of common MapReduce jobs.

However, the SPEC benchmarks are compute-bound and subvert that logic by implement-

ing Map functions that may last tens of minutes. In our experiments, as we dealt with no

data replication inside HDFS, we concluded that 372.smithwa’s cluster underutilization

happened because Hadoop calculated that it would be better if less machines executed

the job, so that there would not be as much communication to take the data to the nodes

that did not have them. It basically tries to reduce the impact of data communication

during runtime (one of MapReduce’s assumption is that it is easier to move computation

to where the data are present, not the opposite). In the case of 372.smithwa, only 48 cores

participated in the processing, because the data was not evenly distributed among the

nodes. This, unfortunately, diminished the performance. As we may notice, 358.botsalgn

has a fixed (and larger) number of finer-grained iterations, 3000, so it did not suffer from

this problem. The issue did not affect the experiments in Amazon AWS either, since the

data is stored in a service which is evenly distant from all nodes, not privileging any of

them and fully exploring the cluster’s capacity.
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(a) Considering processing times only

(b) Considering additional overheads

Figure 4.8: Speedups of 358.botsalgn and 372.smithwa with OpenMR in a local cluster,
relative to the varying amount of baseline’s threads
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4.4.2 Toy Benchmarks

Baseline

The toy benchmarks represent a different type of applications, which are I/O-bound. The

subversion of MapReduce’s logic as in the previous SPEC benchmarks does not apply to

them. Like the other benchmarks, they have also been executed in the cloud and in a

local machine. Figure 4.9 presents their execution times in a local machine with 2 cores.

These benchmarks process data sets ranging from ∼100 GB to ∼200 GB each. They

consist mostly of OpenMP loops which process data that are stored in the disk.

Figure 4.9: Execution times of toy benchmarks in a local, 4-core machine

Cloud execution

Since the data do not fit the main memory of the machine, the processing is bound by

the disk read rate, which becomes a bottleneck. This can be noticed when executing

the benchmarks locally without the OpenMP parallelization, because the execution times

remain roughly the same. That bottleneck diminishes the performace gain obtained by

OpenMP. This, in turn, represents the case of best potential for OpenMR, because the

distributed processing with MapReduce relies on an also distributed file system, which

drastically reduces the data access bottleneck. This way, every processing node can obtain
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its portion of data to process in parallel, effectively removing the serialization imposed by

the disk in a non-distributed execution.

Figures 4.10 and 4.11 display the analyses performed over the set of toy benchmarks.

Figure 4.10 shows that the performance gains follow the expected trend, being roughly

reduced by half everytime the number of available threads is doubled. Only processing

times are considered, since the nature of the benchmarks is to process previously available

data (thus not considering data generation or communication). The speedups achieved

with respect to the local execution are demonstrated by figure 4.11. The execution of inner

product was the one which attained the best results: with 468 threads, it was performed

in 124 seconds, representing a speedup of 11723/124 = 94.5x. That is a very high and

interesting rate, given that it was achieved by the execution with 468/4 = 117x more

processing cores.

Figure 4.10: Absolute execution times of toy benchmarks in Amazon EMR
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Figure 4.11: Speedups of toy benchmarks in Amazon EMR relative to local processing

The execution of benchmarks with OpenMR and Amazon EMR, when compared to

their local, OpenMP versions, has been demonstrated to perform well. The speedups,

however, kept a sub-optimal pattern. That relates to the overheads inherent to dis-

tributed/remote processing, including networking delays, data communication and the

MapReduce framework’s overhead. One clear example of this is 358.botsalgn, which ex-

ecuted locally (OpenMP) in 1336 seconds with 24 threads and remotely (OpenMR +

Amazon EMR) in 217 seconds with 468 threads. The speedup achieved in this case is

1336/217 = 6.15x. However, as there were 468/24 = 19.5x more threads executing, that

represents a 6.15/19.5 = 0.31x efficiency (speedup per thread added, the ideal is 1). This

rate is tightly coupled to the workload and the cluster infrastructure.

Experimentally, one may perceive a delay of 2+ minutes between the triggering of the

OpenMR job and the actual start of the execution in Amazon EMR. If that overhead was

to be disregarded, the speedup achieved would be much higher. This means that such

delay can be blamed for most of the loss of potential speedup. Say that, for instance, a

120 second overhead was imposed by that starting delay in Amazon EMR. That would

mean that the actual execution time was about 97 seconds, and the 1336/97 = 13.77x

speedup achieved would be much more significant than the original 6.15x. This, in turn,

would represent an efficiency of 13.77/19.5 = 0.7x.

This is particularly interesting because the experiments with a local cluster demon-
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strated to incur much less of that kind of overhead. The same benchmark, 358.botsalgn,

has been executed in 673 seconds. Given that only 56 threads were available, that repre-

sents a 1336/673 = 1.98x speedup, with 56/24 = 2.33x more threads than the baseline.

The efficiency is 1.98/2.33 = 0.85x, far better than the previous cases of 0.31x and 0.7x.

That shows that the locality of the cluster is very relevant with respect to performance

with OpenMR.

Also, these numbers are influenced by the workload. If the benchmark took signifi-

cantly longer to execute, the overhead would mean a significantly smaller portion of the

execution time, thus bringing the speedup curve closer to the optimal.
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Conclusions

This dissertation presents OpenMR, an extension to the OpenMP API which enables the

parallel, distributed execution of loops in the cloud with MapReduce through directive-

annotated code.

The feasibility of the proposed execution model has been assessed through the execu-

tion of SPEC OMP2012 benchmarks, which have been modified to represent OpenMR-

equivalent code that would be transparently generated by an OpenMR-enabled compiler,

and by toy benchmarks developed specifically to represent I/O-bound applications. The

benchmarks have been executed in three different computation contexts that have been

compared, namely: local execution with OpenMP, distributed execution in a local cluster

and distributed execution in remote clusters using Amazon AWS services. The experi-

mental results allowed an interesting analysis of the tradeoffs involved in workload and

data distribution and show that OpenMR achieves good performance and good scalability.

OpenMR includes the proposal of the data construct, which allows for the execution of

parallel code in the cloud with input data which is previously available remotely. OpenMR

may be seen as an abstraction layer which enables the developer to look to the cloud as

an additional layer in the computation stack, and the data construct may be seen as an

initial step towards the inclusion of the cloud also as an additional layer of the memory

hierarchy stack.

5.1 Future Work

The following is a highlight of related research topics which, to the best of our under-

standing, are promising and relevant to the near future.

• The data construct: despite having been proposed in this work and its existence

having been assumed during the execution of our experiments, the data construct

56
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presents many research problems that need to be solved before its implementation.

For instance, how could such a mechanism interact with the cloud infrastructure

of various vendors and with the OS? Is it even possible to implement a mechanism

which abstracts from the developer data input/output to/from the cloud? If so,

what are the tradeoffs and behaviors of such a mechanism?

• Further integration of the cloud to the computation/memory stack: as previously

stated, having the cloud to constitute a higher computation stack layer suggests the

use of a cloud-aware caching mechanism. Given that we are to look to the cloud as

a natural extension of the computing stack, one might wonder if there is some way

to have cache mechanisms to be aware of remote storage clouds and communicate

with them. How would such a mechanism behave? What are the tradeoffs? How

could a cloud-aware cache coherence protocol be defined?

• Automatic scattering of workloads among computation stack layers: considering the

stack which comprises the various levels of hardware in which computation may

take place (CPUs, GPUs/accelerators, the cloud and so on), is there some way to

automatically spread workloads across such layers, considering the availability of

resources and workload characteristics? Are there heuristics which can successfully

determine the potential gains of using various levels of parallelism granularity and

split the computation in chunks, accordingly? Also, how could such a mechanism

take advantage of heterogeneous cloud machines?

• OpenMR model optimizations. The movement of input data to the cloud currently

remains reasonably inefficient, because the replication of data among processing

nodes is not performed in Distributed File System level, but the data are sent to the

cloud previously replicated instead. This behavior was necessary to guarantee that

processing nodes could be provided with all necessary variables used during the loop.

Unfortunately, this incurred large network latencies which harmed the performance.

Is there some way to avoid this kind of expensive, superfluous overhead?

• Extension of OpenMR’s model: OpenMP’s synchronization constructs are a very im-

portant part of the API and are widely used by a number of applications. However,

that type of constructs does not naturally fit the MapReduce paradigm, prevent-

ing OpenMR to cover a large portion of preexistent OpenMP codes. If such con-

structs can be modeled with OpenMR, is it possible to have a one-to-one mapping of

OpenMP constructs to OpenMR constructs, i.e. to automatically map OpenMP ap-

plications to the cloud? As a result, applications such as the remaining benchmarks

from the SPEC OMP2012 suite could be eligible for cloud parallelization.
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