
Eduardo de Paula Miranda

“Linked biology — from phenotypes towards

phylogenetic trees.”

“Conectando dados biológicos — dos fenótipos às

árvores filogenéticas.”

CAMPINAS

2013

i

ii

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Linked biology — from phenotypes towards

phylogenetic trees.

Eduardo de Paula Miranda1

November 22, 2013

Examiner Board/Banca Examinadora:

• Prof. Dr. André Santanchè (Supervisor/Orientador)

• Prof.a Dr.a Claudia Maria Bauzer Medeiros

Institute of Computing – UNICAMP

• Prof. Dr. Jorge Alberto Prado de Campos

Universidade Salvador – UNIFACS

• Prof. Dr. Ricardo da Silva Torres

Institute of Computing – UNICAMP (Substitute/Suplente)

• Dr.a Carla Geovana do Nascimento Macário

CNPTIA – EMBRAPA (Substitute/Suplente)

1Financial support: CNPq scholarship (process 138197) 2011–2013

vii

Abstract

A large number of studies in biology, including those involving phylogenetic trees recon-

struction, result in the production of a huge amount of data – e.g., phenotype descriptions,

morphological data matrices, phylogenetic trees, etc. Biologists increasingly face a chal-

lenge and opportunity of effectively discovering useful knowledge crossing and comparing

several pieces of information, not always linked and integrated. In this work, we are in-

terested in a specific biology context, in which biologists apply computational tools to

build and share digital descriptions of living beings. We propose a process that departs

from fragmentary data sources, which we map to graphs, towards a full integration of

descriptions through ontologies. Graph databases mediate this evolvement process. They

are less schema dependent and, since an ontology is also a graph, the mapping process

from the initial graph towards an ontology becomes a sequence of graph transformations.

Our motivation stems from the idea that transforming phenotypical descriptions in a net-

work of relationships and looking for links among related elements will enhance the ability

of solving more complex problems supported by machines. This work details the design

principles behind our process and two practical implementations as proof of concept.

ix

Resumo

Um grande número de estudos em biologia, incluindo os que envolvem a reconstrução de

árvores filogenéticas, resultam na produção de uma enorme quantidade de dados – por

exemplo, descrições fenot́ıpicas, matrizes de dados morfológicos, árvores filogenéticas, etc.

Biólogos enfrentam cada vez mais o desafio e a oportunidade de efetivamente descobrir

conhecimento a partir do cruzamento e comparação de vários conjuntos de dados, nem

sempre conectados e integrados. Neste trabalho, estamos interessados em um contexto

espećıfico da biologia em que biólogos aplicam ferramentas computacionais para construir

e compartilhar descrições digitais dos seres vivos. Nós propomos um processo que parte

de fontes de dados fragmentadas, que nós mapeamos para grafos, em direção a uma plena

integração das descrições através de ontologias. Os bancos de dados de grafos intermediam

o processo de evolução. Eles são menos dependentes de esquema e, uma vez que ontologias

também são grafos, o processo de mapeamento do grafo inicial para uma ontologia torna-

se uma sequência de transformações no grafo. Nossa motivação parte da ideia de que a

conversão de descrições fenot́ıpicas em uma rede de relações e a busca de conexões entre

elementos relacionados irá aumentar a capacidade de resolver problemas mais complexos

suportados por computadores. Este trabalho detalha os prinćıpios de concepção por trás

do nosso processo e duas implementações práticas como prova de conceito.

xi

Acknowledgements

First and foremost, I would like to thank my parents, Elizabeth and José, who taught me

the value of hard work and education and for the support and dedication throughout my

life. My sisters, Mayara and Patŕıcia for their warmth over the years and for encouraging

me to pursue my dreams. I also need to thank Patŕıcia for helping me to overcome my

writing weakness and for correcting my papers. My grandparents, Carlos and Delizete for

their wisdom and faith in me. My aunts, Elizete and Simone, my uncles Elizeu and Grei

and my cousins, Nı́colas and Thais for their continuous encouragement. My girlfriend,

Ana Carolina for her support, encouragement and for being part of this journey, even

when being at a distance. You experienced all of the ups and downs of my research

and I would like to thank you all for the tolerance of my occasional bad moods and

general crankiness. Thank you for continuously improving my humor during some of my

most stressful moments. Thank you for being even happier than I am with every single

achievement. Without you, I may never have gotten where I am today and I am who I

am because of you. I would like to express my sincere thanks to my advisor professor

André Santanchè for your patient guidance, insight, and most importantly, the friendship

during this research. I would like to sincerely thank Kieran Murphy for sacrificing his

time correcting my work and providing precious comments. I need to thank Anäıs Grand

and Régine Vignes Lebbe for the great experience and creative ideas while we are working

together. Next, I need to thank all the people who create such a good atmosphere in the

lab, Alessandra, Bruno, Celso, Daniel, Ivelize, Ivo, Jaqueline, João, Joana, Jordi, Lucas,

Matheus and Renato. Thank you all for interesting discussions, friendship and good

laughs. I need to further thank all my friends at the Institute of Computing, particularly

At́ılio Gomes, Carlos Trujillo, Daniel Moraes and Raphael Rosa who took the time to

share their knowledge during evenings and weekends of studying. I would also like to

thank all the members of staff at Institute of Computing.

Finally, I would like to thank the financial support from Brazilian agencies: CNPq

(grant 138197/2011-3), the Microsoft Research FAPESP Virtual Institute (NavScales

project), CNPq (MuZOO Project and PRONEX-FAPESP), INCT in Web Science(CNPq

557.128/2009-9) and CAPES, as well as individual grants from CNPq.

xiii

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals and Contributions . 2

1.3 Dissertation Structure . 3

2 Unifying Phenotypes to Support Semantic Descriptions 5

2.1 Introduction . 5

2.2 Related Work . 7

2.3 Common Denominator . 8

2.4 From XML Structures to Graphs . 12

2.5 Practical Experiment of Unifying Phenotypes 14

2.6 Conclusion . 16

3 Linked biology — from phenotypes towards phylogenetic trees 19

3.1 Introduction . 19

3.2 Foundations and Related Work . 20

3.2.1 Building Phylogenetic Trees . 21

3.2.2 Standards for Phenotype Description 21

3.2.3 Phylogenetic Trees and the 3ia Method 23

3.3 Three Layer Method and System Architecture 24

3.4 Unified Graph data model . 25

3.5 Link Discovery . 27

3.5.1 Similarity Index . 29

3.5.2 Practical Implementation of the Similarity Measure 30

xv

3.6 Conclusion . 31

4 Linked biology technical aspects – linking phenotypes and phylogenetic

trees 33

4.1 Introduction . 33

4.2 Basic concepts . 34

4.2.1 Standards for Phenotype Description 34

4.2.2 Life Science Identifiers (LSIDs) . 36

4.2.3 The proposed graph data model . 37

4.3 System Architecture and Implementation Details 38

4.3.1 SDD Parser . 38

4.3.2 Tree Output . 40

4.3.3 Global Names Resolver (GNR) . 41

4.3.4 Graph Importer . 42

4.3.5 Graph Database . 43

4.3.6 Similarity Index . 46

Practical Implementation of the Similarity Measure 47

4.3.7 Tracing the Evolutionary History 49

4.4 Conclusion . 52

5 Conclusions and Extensions 55

5.1 Contributions . 55

Bibliography 57

A Demonstration 63

A.1 SDDParser.py . 63

A.2 TeeOutput.py . 70

A.3 GlobalNamesResolver.py . 76

A.4 GNRResultObject.py . 80

A.5 ITISServices.py . 82

A.6 CoLServices.py . 84

A.7 GraphImporter.py . 88

A.8 SimilarityIndex.py . 99

A.9 TraceEvolutionaryHistory.py . 102

xvii

List of Figures

2.1 Three layers method diagram. 7

2.2 Character-by-taxon matrix . 9

2.3 Fragment of SDD Schema with Instances 1 9

2.4 Symbols and semantic used in the diagrams 10

2.5 Formats for representing phylogenetic data 11

2.6 Property graph model to represents phenotype descriptions. 13

2.7 Varanus knowledge base . 15

2.8 Graph Diagram . 16

3.1 Fragment of SDD Schema with Instances 23

3.2 Three layer method diagram . 25

3.3 General System Architecture. 26

3.4 Property Graph Model . 28

3.5 Practical Scenario . 29

3.6 Practical Implementation . 32

4.1 Fragment of SDD Schema with Instances 35

4.2 Property Graph Model . 38

4.3 Retained Tree Example . 41

4.4 Real Example . 43

4.5 Practical Implementation . 48

4.6 Bottom Up Aggregation . 50

4.7 Top Down Refining . 51

4.8 Evolved Traits Visualization . 52

xix

List of Abbreviations

3ia Three-item analysis

APN Australian Plant Name Index

C,CS Characters – Character-states

CoL Catalogue of Life

EAV Entity – Attribute – Value

EoL Encyclopedia of Life

EQ Entity – Quality

GNR Gobal Names Resolver

HTU Hypothetical Taxonomic Unit

IPNI International Plant Names Index

ITIS Integrated Taxonomic Information System

LBS Lateral Branching System

LSID Life Science Identifiers

MIAPA Minimum Information About a Phylogenetic Analysis

NCBI National Center for Biotechnology Information

OMG Object Management Group

OTU Operational Taxonomic Unit

PATO Phenotype and Trait Ontology

SDD Structure Descriptive Data

TAO Teleost Anatomy Ontology

TDWG Biodiversity Information Standards

TU Taxonomic Units

uBio Universal Biological Indexer and Organizer

xxi

Chapter 1

Introduction

1.1 Motivation

There are large collections of biological data scattered in various resources that are, most

of the time, produced as independent entities and are not linked. Potential links in these

data sources can be discovered crossing and comparing pieces of information, as they

hold implicit semantics that could enhance the ability of solving more complex problems

supported by machines.

The focus of this research are phenotype descriptions and their application in phy-

logenetic trees, which are resources widely used in a variety of biological studies. A

phenotype is a set of observable physical and behavioral characteristics of an individual,

resulting from the interaction of its genotype (genetic makeup) with the environment. In

this context, recent approaches enrich these descriptions via ontology annotations, using

the Entity-Quality (EQ) formalism. EQ is a representation [6] which associates ontology

entity terms (E) – e.g., bone or vertebra from the Teleost Anatomy Ontology (TAO) –

with quality terms (Q) – e.g., triangular, horizontal or smooth shape from the Phenotype

and Trait Ontology (PATO) [18].

Ontologies have gained wide acceptance in biology due to their ability to represent

knowledge and also the advantage of querying and reasoning information [23]. Further-

more, semantic web standards allow unique identification of ontology concepts, facilitating

interoperability across databases [7, 30]. Several tools have emerged to support annota-

tion of biological phenotypes using ontologies, e.g., Phenex (http://phenoscape.org/wiki/

Phenex) and Phenote (http://www.phenote.org/), both curation tools designed for anno-

tation of phenotype characters with ontology concepts, using the EQ formalism [6].

Dahdul et al. [18] developed a workflow for curation of phenotypic characters from

systematic studies. This workflow extracts phenotype characters from a large collection

of phylogenetic studies – that have been documented in natural language using a semi-

1

2 Chapter 1. Introduction

structured format – and converts them into EQ representations. This process has limited

scalability due to the curation process, which is very time-consuming and was executed

manually by trained domain experts.

If, on one hand, to represent and integrate phenotype descriptions through the EQ

formalism using ontologies appears to be the most promising approach to be adopted, on

the other hand, it is not a straightforward task when we depart from existing non EQ

resources.

The challenge in this work is to establish a model to represent a common denomina-

tor among phenotypical description standards, which will support findings in the latent

semantics implicit in the relations. These semantics can guide the interaction between

textual descriptions and ontologies. Our approach remodels semi-structured descriptions

to a graph abstraction, in which the data can be integrated more easily. Graph trans-

formations are applied for the transition from a semi-structured data representation to a

more formalized representation through ontologies.

1.2 Goals and Contributions

The main goal of this research is to design and implement a linked biology approach to

automatically connect and combine data from independent semi-structured resources of

phenotype descriptions and/or phylogenetic trees, exploiting their latent semantics. We

propose a graph data model that plays a crucial role, since it is the basis of our linking

discovery and combination process.

The main contributions of the present work are:

• A graph data model able to represent essential data from phylogenetic

trees and phenotype descriptions, which: (i) is the basis to exploit the latent

semantics resulting from the interconnection of penotype characters; (ii) provides

the ground work for the transition from a semi-structured data representation to a

more formalized representation through ontologies. The unified model enables to

discover and to make explicit the latent semantics through links among previously

unconnected information. Its ability of integrating knowledge around taxonomic

units will enable, for instance, to generate new research questions, to gain insights

and to confront evolutionary hypotheses.

• The design of an approach and implementation of a prototype to transform

phenotype descriptions and phylogenetic trees – represented as semi-structured doc-

uments – into graph representations with the essential information for link discovery

and ontology transformation.

1.3. Dissertation Structure 3

An heuristic similarity measure that computes the similarity degree be-

tween two morphological character descriptions, which will represent how close re-

lated they are.

An algorithm to trace changes in traits of phylogenetic trees. This

algorithm was built on top of our proposed graph data model. It searches in a given

tree for traits (characters) that might be “responsible” for a tree branching.

A visual tool prototype to analyze phenotype taxonomic units, their charac-

ters and the correlation among them.

1.3 Dissertation Structure

The structure of this dissertation is a compilation of two research papers and a technical

report, namely:

• Chapter 2: Unifying Phenotypes to Support Semantic Descriptions, presented to the

VI Brazilian Conference on Ontological Research (Ontobras 2013), which was held

in Belo Horizonte, Brazil.

• Chapter 3: Linked biology — from phenotypes towards phylogenetic trees, still to

be submitted.

• Chapter 4: Linked biology technical aspects – linking phenotypes and phylogenetic

trees, technical report to be submitted.

Each paper/report is presented in a chapter, following an evolutionary perspective

of this research. Chapter 2 presents our initial approach, in which we propose a graph

data model focused in phenotype descriptions, based in a comparative analysis of four

standards related to this kind of description. A practical implementation, built on top of

the graph, exploited existing biology phenotype descriptions and their latent semantics

to discover links and integrate descriptions.

Chapter 3 presents an enhanced graph data model that links phylogenetic trees to

phenotype descriptions. Our first proposed graph data model (Chapter 2) was based on

the Entity – Attribute – Value (EAV) representation. While, in the second enhanced

graph data model (Chapter 3) we made an important modification in order to make

the graph more easily analyzed by a researcher. This chapter also presents a practical

implementation, in which we introduce a heuristic that computes the similarity degree

between two morphological character descriptions; it aims at supporting biologists in

perceiving correlations.

4 Chapter 1. Introduction

Chapter 4 summarizes the main functionalities of the system and presents an algorithm

to trace the phylogenetic history of trait changes. Chapter 5 presents the conclusions of

this dissertation and future work. Appendix A shows details of the system architecture

and implementation, in order to document the functionalities and operational features of

the system.

Chapter 2

Unifying Phenotypes to Support

Semantic Descriptions

2.1 Introduction

Bioinformatics is the science of integrating, managing, mining and interpreting infor-

mation from biological data [22]. In the life science field, there are a large number of

distributed biological datasets freely available and ready to use. However, this wealth of

information has hardly been tapped even today due its distributed nature, heterogene-

ity and complex data types and representation [39]. In this scenario, their combination

and interconnection are barely feasible [42]. A massive amount of relevant information is

hidden in the potential connection of unrelated files.

In this work we are interested in a specific biology context, in which biologists apply

computational tools to build and share digital descriptions of living beings as phenotypes.

These descriptions are a fundamental starting point for several biology tasks, like living

beings identification and tools for phylogenetic tree analysis. Even though the last gen-

eration of these tools is based on open standards (e.g., XML), the descriptions are still

based on textual sentences in natural language [6].

Semantic integration in this context is one of the main challenges. Besides ontologies

to support phenotype description, there are tools to annotate descriptions by associating

ontology concepts to textual descriptions [6]. This distinction between description and

their annotations based on ontologies does not consider that descriptions can conversely

contribute to ontology expansion and revision. The challenge in this work is to establish

a model to represent a common denominator among phenotipical description standards,

which will support findings in the latent semantics implicit in relations in a strategy

inspired by folksonomies. These semantics can guide the interaction between textual

descriptions and ontologies.

5

6 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

In a previous work [2], we showed that the latent semantics presented in tags and their

correlations, as a product of an organic work collectively produced by a community on

the web (the folksonomies), can be exploited to expand and review ontologies. While the

model behind folksonomies is based on the correlation of three elements – tags, resources

and users – descriptions in the biological context present a more complex and specialized

structures. Co-occurrence is a strong principle we considered to extract latent semantics.

The main idea is that the set of tags put together in a given resource can provide a “con-

text” to interpret each tag. Consider a tag cell, which can have a distinct interpretation

according to the context. The co-occurrence with the tags cytoplasm or organelle will

put it in the biology context. Moreover, the compilation of data concerning the occur-

rence and co-occurrence of millions of tags can support the analysis of similarity among

terms – see more details in [2]. We consider that we can apply an equivalent technique

to put terms of phenotype descriptions in a context, to improve their interpretation and

correlation.

The present paper addresses this problem in exploiting existing biology assets related

to phenotypic descriptions, and the latent semantics resulting from their interconnection,

to support their development towards a richer semantical representation, as part of ontolo-

gies. It implies promoting relations among concepts to first class citizens. Accordingly,

we designed a three layered method illustrated in Figure 2.1, in which graph databases

intermediate this evolvement process from fragmentary data sources to accomplish full

integration descriptions as ontologies.

Our approach remodels semi-structured descriptions to a graph abstraction, in which

the data can be integrated more easily. Graph transformations are applied for the tran-

sition from a semi-structured data representation to a more formalized representation

through ontologies. As we will further explain, this graph representation will also support

an analytical tool to compare data across studies, wherein it will help evolutionary biolo-

gists to answer evolutionary questions. This paper presents a work in progress concerning

the first step of this method, focusing in the integration of data from the semi-structured

data layer and their transition to the graph data abstraction layer. Our proposed graph-

based model is derived from a comparative analysis among four standards related to

phenotype description, plus a practical experiment.

This paper is organized as follows: Section 2.2 summarizes the related work; Sec-

tion 2.3 presents the comparative analysis which subsidizes our minimal common denom-

inator model; Section 2.4 presents out graph-based model; Section 2.5 shows a practical

experiment of unifying phenotypes; Section 2.6 presents concluding remarks.

8 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

[18] developed a workflow for curation of phenotypic characters extracted from sci-

entific publications. It is important to note the limitations of this curation process,

considering that it is very time-consuming since it is manually carried out by domain

experts.

2.3 Common Denominator

There is a wide variety of representation formats for phenotype description, adopted by

information systems and open standards, which represent differently the same informa-

tion. In this section, we analyze four of them – Xper2, SDD, Nexus and NeXML – looking

for a minimal common denominator, which is the foundation for our graph-based model,

to be used to link related information.

SDD, Nexus and NeXML are widely adopted open standards further detailed. Xper2

(http://lis-upmc.snv.jussieu.fr/lis/) is a management system adopted by the systema-

tist community, for the storing, editing and analyzing of phenotype descriptive data.

It focuses mainly on taxonomic descriptions, allowing creation, sharing and comparison

of identification keys [47, 48]. Xper2 was developed in the Laboratoire Informatique &

Systématique of the University Pierre et Marie Curie and this work is part of a bigger

project in collaboration with this lab. Therefore, Xper2 was adopted for our practical

experiments.

In order to illustrate our analysis, let us consider a practical case, in which a biologist

is building a phenotype description of monitor lizards (genus Varanus). The process starts

with the biologist collecting observations of lizards, organized as characters and character

states (C, CS). [41] defined character as “a feature of organisms that can be evaluated

as a variable with two or more mutually exclusive and ordered states”. The observations

involved the species Varanus albiguralis and Varanus brevicauda. The final result is the

character-by-taxon matrix illustrated in Figure 2.2.

In order to transform these observations to digital records and generalize them –

e.g., devising general characters and states observed in a genre of monitor lizards – the

biologist will use a tool like Xper2. Phenotypes descriptions can be stored in the Xper2

native format or can be exported to the SDD open format. The Structure Descriptive

Data (SDD) (http://wiki.tdwg.org/SDD) is a platform and application-independent XML-

based standard developed by the Biodiversity Information Standards (historic acronym:

TDWG) for recording and exchanging descriptions of biological and biodiversity data of

any type [26]. SDD is adopted by several other phenotype description tools – e.g., Lucid

Central (http://www.lucidcentral.org) and Linnaeus II (http://www.eti.uva.nl/).

We further introduce some key elements of the SDD format, which are recurrent in

the formats confronted in this section. A SDD description comprises, in a single file, a

12 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

objects with ontology concepts, supports citations and annotations [49]. In order to

accomplish full compatibility and interoperability among different environments, NeXML

defines a formalized XSD grammar and enables semantic annotations of any element in a

NeXML document, which goes towards to a “Minimum Information About a Phylogenetic

Analysis” (MIAPA) standard.

These comparative diagrams show that even if the structures are arranged differently,

they address the same key elements. All formats organize data in accordance with the

(C,CS) data model that, in practice, is an entity-attribute-value (EAV) model, in which

entities are OTUs, attributes are characters and values are character-states [49]. Nexus

and NeXML formats define a matrix, in which OTUs are listed in rows, characters are

columns and the cells contain a numeric code for a specific character-state (see Figure 2.2).

Although Xper2 and SDD do not define a matrix, both formats have a similar structure

to describe OTUs with their (C, CS) records.

2.4 From XML Structures to Graphs

The next step in our Three Tier Method is designing a graph model. In a previous work [2],

we have compared several approaches to capture latent relations+semantics among tags

produced collaboratively. Graph models to represent and analyze data were a common

denominator. The role of the graph is not to reflect all details of the original model. The

central challenge is how to abstract key elements, for which we are looking for potential

relations to be discovered. It is a movement from the latent semantics to an explicit

semantics expressed as links.

On one hand, we devised in the previous section the common denominator we are

looking for: OTUs, character and character states. On the other hand, a second important

ingredient is devising what is our target in ontologies. As mentioned in Section 2.2, a

predominant ontology model for phenotype descriptions is the Entity-Quality (EQ) [6].

An Entity refers to the “part” of the OTU being described, which is related to one or

more Qualities. In a comparison with the (C, CS) approach, a Character comprises an

Entity plus the Quality involved in the description in a single textual sentence. A State is a

complementary part of the Quality. Even though it is not a trivial task to split Characters

into their components of Entity and Quality, a first step will be linking disperse elements

referring to the same semantic concept.

Departing from the key elements identified in the previous section, we can devise the

following linking discovery challenges:

• Which OTUs in the graph refer to the same real world OTU (link OTU-OTU)?

• Which characters can be applied to each OTU (link OTU-character)?

14 Chapter 2. Unifying Phenotypes to Support Semantic Descriptions

2.5 Practical Experiment of Unifying Phenotypes

We have implemented an automatic process to ingest SDD files into a graph database, in

order to show the linking possibilities raised by our model. In our experiments, we use

the Neo4j (http://www.neo4j.org/), an open-source graph database. Our data integration

processing flow is divided into the main stages: preprocessing, data ingestion, data linkage.

One of the problems faced in bioinformatics is related to the identification of objects

within and across repositories [38]. More precisely, an object may refer to a taxon, gene,

anatomical feature, phenotypic description, geographical location etc. Uniquely identify-

ing those objects is undoubtedly a key point for the success of our proposed solution.

In order to address this issue, some organizations – e.g., Universal Biological In-

dexer and Organizer (uBio), Integrated Taxonomic Information System (ITIS), Cata-

logue of Life (CoL), The International Plant Names Index (IPNI), National Center for

Biotechnology Information (NCBI) etc. – incorporated into their projects the Life Sci-

ence Identifiers (LSIDs), which was proposed by the Object Management Group (OMG)

(http://www.omg.org/). LSID is a persistent, location-independent resource identifier,

whose purpose is to uniquely identify biological resources [16]. The persistent property

refers to the fact that LSID identifiers are unique, can be assigned to only one object

forever and they never expire. The location-independent property specifies that each au-

thority locally creates LSIDs and they are the responsible to guaranteeing the uniqueness

of LSIDs.

We applied LSIDs to unify OTUs in the graph referring to the same real world ob-

ject. In order to find a valid LSID, we adopted the Global Names Resolver (GNR) web

service (http://resolver.globalnames.org/) that executes exact or fuzzy matching against

canonical forms of scientific names in 170 distinct data sources. The Canonical form (cf)

is the simplest, most complete and unambiguous form of a name. The Canonical form of

scientific names consists of the genus and species – when applied – with no authorship,

rank, nomenclatural annotation or subgenus.

Our system used three of the six types of matching offered by the GNR resolver: (i)

exact matching; (ii) exact matching of canonical forms – this process reduce a given name

to its canonical form and checks it with an exact match; (iii) fuzzy matching of canonical

forms – uses a modified version of the TaxaMatch algorithm [43] and it intends to work

around misspellings errors. It does a fuzzy match of the canonical form of a given name –

even with mistakes – against spellings considered correct. The GNR resolver reports the

matching quality (“confidence score”) for each match.

The matching module of the system is still a work in progress, but we already have ob-

tained some relevant results to show the viability of our approach. From the LIS knowledge

base we collected 7 distinct morphological descriptions: genus Varanus; species Varanus

2.5. Practical Experiment of Unifying Phenotypes 15

gouldii, Varanus timorensis, Varanus auffenbergi and Varanus scalaris; species groups

Varanus indicus, Varanus prasinus, Varanus salvator ; and Autralian spiny-tailed monitor

lizards. Through Xper2 those morphological descriptions were exported to the SDD for-

mat and imported into the graph database, with no preprocessing. Figure 2.7(a) shows

an overview of the resulting graph without labels. We can note the disconnectedness of

the graph (7-partite graph). On the other hand, Figure 2.7(b) shows the same knowledge

after employing the LSID unification. The graphs became connected. Before applying

the LSID unification the graph had 74 distinct taxonomic units (TUs). After performing

the LSID unification its total reduced to 44 TUs, i.e., 30 taxonomic units (40%) were

recurring and were integrated in a single node.

(a) Graph 7-partite (b) Connected graph

Figure 2.7: Varanus knowledge base

The next step is to link equivalent characters of the same OTU, enabling integration

of states of the same character. In the present stage of this research we apply a simple

matching algorithm. One example of our preliminary results is presented in the diagram of

Figure 2.8. As can be seen, our algorithm was able to unify all “nuchal scales” characters,

by defining the same type to the edges. Moreover, we unified and congregated the possible

states observed for this character across different description files.

2.6. Conclusion 17

Our representation in a graph database is aligned with the RDF [32] graph-based

representation, which will be the next step to achieve the third layer. The challenge will

be to map labels of character/character-states in RDF properties/values. The unification

of characters and states, as shown on this preliminary work, is a first and high relevant

step for this mapping. Since several ontologies related to phenotype descriptions are in

OWL, the relations discovered in our graph can subsidize a better matching of labels

and concepts in OWL ontologies by confronting relations. For example, to enhance the

match of a character label (in the graph database) with an OWL property, it is possible

to consider the states allowed by the character, confronting them with the property range

(values allowed by the property).

There are several possible ways to extend this work. One possible way is to incor-

porate morphological descriptions stored in other knowledge bases, e.g., MorphoBank

(http://morphobank.org/) or Dryad (http://datadryad.org/). Another direction is to in-

vestigate correlations between State nodes and ontology terms.

Chapter 3

Linked biology — from phenotypes

towards phylogenetic trees

3.1 Introduction

Traditionally, evolutionary biologists organize and classify the extant and extinct organ-

isms around the classical Tree of Life model. This model is an abstract form of repre-

sentation of hypotheses about evolutionary relationships where all taxa (i.e. groups of

organisms) are related according to the characteristics they share. This representation is

called a phylogenetic tree. Besides relationships among taxa, a phylogenetic tree provides

hypotheses about the homology (i.e. sameness) of entities (organs, anatomical features

etc.). In this model, taxa are the leaves of the tree and the internal nodes are common

ancestors, or hypothetical taxa from which the leaves are differentiated. For instance,

given the taxa Human, Horse and Frog, a tree can indicate that Human and Horse are

more closely related than they are with Frog. The node grouping Human and Horse is a

taxon called Mammalia. The characteristics shared by all mammals (i.e. taxa connected

to the Mammalia node) are the presence of hairs and of mammary glands, among others.

Biologists usually work in their own domain of expertise. This domain is centered on

the studied taxonomic group and also depends on the source of data: some taxonomists use

molecular data, others use morphological data, or behavioural, ecological, physiological

data etc. Each phylogenetic tree that is published is a particular view.

In spite of several initiatives to publish open data (e.g., Scratchpads, Dryad, EU-

BrazilOpenBio and TreeBASE) and to combine phylogenetic trees (e.g., Open Tree of

Life), there is still a high amount of latent knowledge hidden in potentially linkable data,

which are fragmented in several heterogeneous datasources. In this paper, we focus on

the interconnection of phylogenetic information with the observations and descriptions

of living (extant and extinct) beings, aiming at comparing this phylogenetic information

19

20 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

(such as homology hypotheses, characters and trees), related to its source, that is namely

the observations and descriptions of taxa.

This heterogeneous multitude of resources can be seen as a dataspace [21], where

pieces of data maintain unexploited potential links. This work addresses this problem in

a specific scenario. We gather together in a graph database data coming from distinct

sources, containing phenotype descriptions and phylogenetic trees. This graph subsidizes

links discovery, aimed at supporting biologists in the analysis and comparison of phylo-

genetic information (such as homology hypotheses, characters and trees) of hypothetical

phylogenetic trees. The graph model was designed to afford publication on the Web in

a Linked Data approach. Moreover, in a previous work [2], we showed that the latent

semantics of data resulting from an organic work, collectively produced by a community

on the Web, can be exploited to expand and review ontologies. Linking data in graphs is

a first step towards ontologies.

This paper is organized as follows: Section 3.2 summarizes the foundations and related

work; Section 3.3 presents our three layer method and the architecture of our system;

Section 3.4 presents our graph-based model; Section 3.5 shows a practical implementation

and our approach to discover links based on similarity; Section 3.6 presents concluding

remarks.

3.2 Foundations and Related Work

Several initiatives aim at facilitating the interchange of scientific data. Dryad (http://

datadryad.org/) is an online repository to share files associated with published research

papers. In the biodiversity domain, the EDIT Platform for Cybertaxonomy (http://wp5.e-

taxonomy.eu/) and the Scratchpads (http://scratchpads.eu/) are two types of platform to

store and publish more or less structured data. The EUBrazilOpenBio project (http://www.

eubrazilopenbio.eu/) is developing “an open-access platform from the federation and in-

tegration of existing European and Brazilian infrastructures and resources” for the biodi-

versity scientific community. The BioVel project is a Biodiversity Virtual e-Laboratory. It

stores both data and workflows, allowing to process data from cross-disciplinary sources.

Phylogenetic trees and related data (e.g., data matrices) published in research papers can

be gathered and stored in the online repository TreeBASE (http://treebase.org/). The

Open Tree of Life project (http://opentreeoflife.org/), still under development, intends to

produce the first-draft of a complete tree that will combine existing smaller trees with

phylogenetic and taxonomic knowledge of every taxa [50].

3.2. Foundations and Related Work 21

3.2.1 Building Phylogenetic Trees

In order to build taxonomic classifications (such as phylogenetic trees), biologists gather

information about taxa of their interest and structure this information upon the character

/ character-state (C,CS) formalism. Under this formalism, a character is a statement

about an entity (e.g. an organ, an anatomical feature, a part of the organism etc.). This

entity is described under a particular property that can take multiple values. For instance,

the statement “shape of the leaf” is a character in which the entity is the “leaf” and the

property is the “shape”. The values (i.e. character-states) that the shape can take might

be, for example, “elongated”, “bilobed”, “trilobed” among others. This information is

usually organized in data matrices [52], in which operational taxonomic units (OTUs)

are listed in rows, characters are columns and the cells contain a numeric code for a

specific character-state.

Some biologists use unordered character-states to apply phylogenetic analysis, whereas

others prefer to relate the character-states prior to the analysis. In the latter case, the

character-states can be related following some punctual order, or hierarchy. These re-

lationships represent hypotheses about homology of the described entities [10, 35]. For

instance, “trilobed” and “bilobed” leaves can be hypothesized to be homologous as “lobed

leaves”, i.e. they are the same despite their variety of form. In other words, “trilobed”

and “bilobed” leaves are more closely related than they are to “elongated” leaves. The

relationship among entities (here, leaves) can be extended among taxa: all taxa bearing

lobed leaves (either “trilobed” or “bilobed”) are more closely related than they are to taxa

with other leaf shapes such as elongated leaves. Each character defined in the context of

a phylogenetic study relies on a distinct homology hypothesis. Different hypotheses can

yield conflictual relationships among taxa. In the context of morpho-anatomical studies,

phylogenetic methods aim to minimize this conflict based on the parsimony criterion. The

method of maximum parsimony can be applied to unordered and ordered character-states

[51, 46, 10]. For hierarchical characters, the method based on three-item statements (i.e.

elementary hierarchies including three taxa) is applied. This is called three-item analysis

(3ia) [36]. Other methods are available – such as Bayesian or Maximum likelihood anal-

yses (based on probabilities) – and can be applied to molecular characters. The output

of a phylogenetic analysis is one or several phylogenetic tree(s).

3.2.2 Standards for Phenotype Description

There is a wide variety of representation formats for phenotype description adopted by in-

formation systems and open standards, which represent differently the same information.

In [34] we analyze four of them – Xper2, SDD, Nexus and NeXML – looking for a com-

mon denominator which is the foundation for our graph-based model. SDD, Nexus and

22 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

NeXML are widely adopted open standards. Xper2 (http://lis-upmc.snv.jussieu.fr/lis/)

is a management system adopted by the systematist community, for the storing, editing

and analyzing of phenotype descriptive data. It focuses mainly on taxonomic descrip-

tions, allowing creation, sharing and comparison of identification keys [47, 48]. Xper2

was developed in the Laboratoire Informatique & Systématique of the University Pierre

et Marie Curie and this work is part of a bigger project in collaboration with this lab.

Therefore, Xper2 was adopted for our practical implementation.

In order to transform phenotype observations to digital records and generalize them

– e.g., devising general characters and states observed in a genus of monitor lizards – the

biologist may use a tool as Xper2. Phenotype descriptions can be stored in the Xper2

native format or can be exported to the SDD open format. The Structured Descriptive

Data (SDD) (http://wiki.tdwg.org/SDD) is a platform and application-independent XML-

based standard developed by the Biodiversity Information Standards (historic acronym:

TDWG) for recording and exchanging descriptions of biological and biodiversity data of

any type [26]. SDD is adopted by several other phenotype description tools – e.g., Lucid

Central (http://www.lucidcentral.org) and Linnaeus II (http://www.eti.uva.nl/).

We further introduce some key elements of the SDD format, which are recurrent in the

formats confronted in [34]. A SDD description comprises, in a single file, a domain schema

and its instances. Figure 3.1 shows a diagram with a fragment of a SDD file containing

the description of a varanus lizard. A (C,CS) description in SDD has two main blocks:

(i) defines the characters involved and their possible states – Figure 3.1 top; (ii) describes

an Operational Taxonomic Unit (OTU) using the characters defined in (i) – Figure 3.1

bottom. OTU is a biology term which refers to a given taxon at the rank adopted to the

study – e.g., a specimen, a species, a genus etc.

<CategoricalCharacter>s and their <States> (shown in Figure 3.1 top) are primi-

tives to describe an OTU [26]. Each <CategoricalCharacter> has its <Representation>

– comprising a label and a description as plain texts – and a set of <StateDefinition>

elements with their possible states. <CategoricalCharacter> and <StateDefinition> el-

ements defined here will be referred throughout the XML document by their ids. The

<CodedDescription> (Figure 3.1 bottom) links the described OTU to States of each

<CategoricalCharacter>. It has two essential items: (i) the described OTU, where its

name and description are listed in natural language under <Representation>; (ii) a set of

character and values (<Categorical> and <State>), which address the characters defined

in the previous section through the ref attribute. It is possible and usual to attribute mul-

tiple character-states for a given OTU (i.e. in case of polymorphism). A first integration,

problem observed here is that each character or OTU described does not have a global

unique identification among documents. Therefore, the description can only be used by

the document where it was declared and it is not possible to guarantee the equivalence of

24 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

artefactual resolution rate (i.e. amount of incorrect relationships).

Williams and Ebach [52] pointed out that the data matrix have limitations to represent

the relationship among character-states accordingly. Williams and Ebach [52] mentioned

the BPA method (Brooks Parsimony Analysis [11, 12, 13]) that promotes a different

structurisation of data within a matrix, in order to represent branchings. Each column

of a BPA matrix is a node, each row is a taxon. The values entered in the cell are the

absence/presence of a taxon at a given node. However, Ebach et al. [20] showed that

incorrect relationships can be reconstructed from a BPA matrix that is given as input

for phylogenetic programs. As a consequence, a BPA matrix is not optimal to represent

relationships among character-states. Other researchers order their character-states and

represent the relationship among character-states as unrooted trees or as cyclic graphs

using step matrices. In every case, the character-states are entered in a matrix. The

three-item analysis (3ia) is the only phylogenetic method that does not rely on a matrix

representation. Characters are represented directly as rooted trees, i.e. the relationship

among character-states is the inclusion. This representation presents the advantage to

distinguish missing data from inapplicable data [53], since the taxa with missing data

are truly absent from the characters. This distinction is not implemented in phylogenetic

programs that rely on matrices, since every matrix cell has to be filled and programs do

not distinguish between the symbols “?” (missing) and “NA” (non applicable). Zaragüeta

et al. [14] suggested to enhance a character matrix with an additional row, providing the

hierarchy of states for every character column. Such enhanced matrices can be imported

in the 3ia program LisBeth.

The present work follows the same approach proposed in [52] and forsake the use of

data matrices, since the hierarchical representation has proven to be relevant [25, 53].

As we will detail in Section 3.4, this hierarchical representation is not only aligned with

our unifying graph model, but also takes advantage of the richer relations compared to

matrices.

3.3 Three Layer Method and System Architecture

Figure 3.2 illustrates our three layer method, which is the major goal of this project. In

this method, a graph database mediates the evolvement process from fragmentary data

sources to accomplish full integration descriptions as ontologies. Our approach remodels

sources from the dataspace to a graph representation, in which the data can be unified and

linked, subsidizing the discovery of latent knowledge, which raises from the relations. The

graph model was designed to be published on the Web in a Linked Data approach. Graph

transformations will be applied for the transition from representations in the dataspace

to a more formalized representation through ontologies. This work focuses in the graph

3.5. Link Discovery 27

of relationship types in the same graph [45]. For example: relationships may either

represent membership in a social group (family membership) or professional relationships

(employer-worker relationship) simultaneously in the same network.

Figure 3.4 shows our graph data model. The tables below the nodes/edges represent

their types and metadata. We mapped the SDD format to the graph model as follows:

OTUs are entities (e.g., “Varanus prasinus”) and, therefore, were mapped to nodes. A

future target of this project is to enrich our model by associating identifiable entities

to ontology concepts. One may consider to map Characters and Characters-States to

key/value pairs, to be related to OTU nodes. However, we decided to map Characters

to nodes, in order to unify in the same node equivalent characters observed in several

OTUs and, in a future work, to relate the unified characters with ontologies. Finally, the

Character-state makes a semantic bridge (relationship) between OTUs and Characters.

Thus, a statement like “Varanus gouldi ventral pattern is randomly scattered dark spots”

is represented in our model as Varanus gouldi (node) → randomly scattered dark spots

(edge) → ventral pattern (node). This part of the model, is a common denominator of

phenotype descriptions, conceived in our previous work [34].

Our model comprises, in a single place, phenotype descriptions and phylogenetic trees.

For this reason a new node called HTU (Hypothetical Taxonomic Unit) is present in

it. HTUs are internal nodes in phylogenetic trees that represent an inferred ancestral

organism. HTUs are hypothetical common ancestors of OTU nodes and, therefore, can

only be connected to themselves (HTU → HTU) or to OTUs (HTU → OTU). For the

sake of modeling simplicity, only the TreeEdge relationship is allowed between HTU →

HTU and HTU → OTU.

3.5 Link Discovery

In order to illustrate the possibilities raised by the unification and linking of data of

phenotype descriptions with phylogenetic trees, we present a practical implementation

executed in our system, which involves the linking discovery among characters. Most of

existing literature related to morphological character description is expressed in textual

form, which are sometimes not consistent among authors. In general, researchers tend to

reuse characters already published in the literature, in large part to make their descriptions

comparable with other taxa. However, textual descriptions convey little semantics of the

character, which prevents the correct understanding of authors’ meaning. The analysis

of graphs combining phenotype and phylogenetic data enable us to discover links among

characters and their respective states even when they are part of descriptions developed

independently.

In order to illustrate our analysis, consider a practical scenario – illustrated in Figure

30 Chapter 3. Linked biology — from phenotypes towards phylogenetic trees

Let f : E(G) → Υ be a labeling function, where Υ is a set of labels, and f(e) ∈ Υ is

the label of edge e ∈ E(G). We define the following sets:

LC1
= {e | e = f((vi, C1)) ∈ Υ and (vi, C1) ∈ E(G) and vi ∈ V (G)} (3.4)

LC2
= {e | e = f((vi, C2)) ∈ Υ and (vi, C2) ∈ E(G) and vi ∈ V (G)} (3.5)

S2 =
|LC1

∩ LC2
|

max{|LC1
|, |LC2

|}
(3.6)

Similarity Index(Si) = 0.25 ∗ S1 + 0.75 ∗ S2 (3.7)

S1 defines a rate of common OTU vertexes with edges for two given characters C1

and C2. The S1 result lies between 0 (no common OTUs) and 1 (all OTUs are common).

NC1
is the subset of incoming adjacent vertexes of C1 and NC2

is the subset of incoming

adjacent vertexes of C2. Incoming adjacent vertexes of both C1 and C2 are always OTU

vertexes, as shown in Figure 3.4. S2 defines a rate of common labels of the incoming

edges (character-states) for the characters C1 and C2. The S2 result also lies between 0

(no common character-states) and 1 (all character states are common). LC1
and LC2

are

the subset of incoming adjacent edge labels (character-states) of C1 and C2 respectively.

It is important to note that the character labels of C1 and C2 are not being taken

into account in the Si formula. This intends to avoid weighting in favor of two identical

textual characters that do not have the same meaning, and to avoid weighting against two

textual characters that are identical but do not have the same meaning. In practice, this

will make the solution independent of the label and applicable for both presented scenarios

(same label but different meanings and different labels and same meaning). Additionally,

the symmetric property of equality is satisfied.

3.5.2 Practical Implementation of the Similarity Measure

In order to present our Similarity Index (Si) working on top of the proposed graph data

model (see Section 3.4), consider two studies of distinct authors. Author 1 worked with

the fossils: Denglongia, Equisetum, Pseudosporochnus, Archeopteris, Ibyka, Iridopteris,

Ophioglossum and Polypodium, describing them in terms of “Cauline cladotaxy”, “Pro-

toxylem position within the cauline stele”, “Development of the LBS”, “Organotaxy of the

LBS”, “Presence of planated parts within the LBS”, “Extent of the planation”, “Xylem

configuration in the rachis”, “Xylem configuration in the leaflets” and “Branchiness”.

Author 2 described three fossils also analyzed by author 1: Equisetum, Ophioglossum

and Polypodium; plus described the fossils Marattia, Botryopteris, Psalixochlaena and

Cyathea. Author 2 described the fossils adopting four terms for characters equivalent to

author 1: “Cauline cladotaxy”, “Protoxylem position within the cauline stele”, “Xylem

3.6. Conclusion 31

configuration in the rachis”, “Xylem configuration in the leaflets” ; plus other character

terms: “Development of the foliar organ”, “Phyllotaxy”, “Planation” and “Branchiness of

the leaf”.

All of these data were managed in the Xper2 tool, first exported to the SDD format

and then imported to the graph. A software script was designed to calculate the Si for

all characters taken two by two. Figure 3.6 shows a screenshot of a visual tool still under

development that creates an edge between each 2 characters with Si greater or equal than

0.5. This is a simple but powerful visualization tool to present the similarity measure that

could play a pivotal role in supporting biologists to understand and detect correlation be-

tween characters. Indeed, Figure 3.6 shows a graph clique among the characters “Cauline

cladotaxy”, “Organotaxy of the LBS” and “Phyllotaxy”. All three characters refer to the

insertion mode of an organ on a bearer structure: “Cauline cladotaxy”means the insertion

mode of the stem ramifications on the main stem, “Organotaxy of the LBS” means the

insertion mode of the LBS on the main axis, and “Phyllotaxy” means the insertion mode

of the leaf on the main stem. All three characters share the same set of character-states,

and even if they do not refer to the same entities (i.e. stem versus LBS versus leaf) and

cannot be substituted for one another, they share a part of their meaning. Knowing that

they are similar to some extent can encourage the biologist to suggest identical relation-

ships among character-states for the foliar (or LBS) character and the cauline character,

for the sake of consistency.

3.6 Conclusion

Linking together descriptive data around the dynamic Tree of Life model is a complex

task because, although there are a lot of data available, these data are represented in

many standards not often interconnectable. In this respect, the present paper explores

this problem linking and coupling phylogenetic trees and phenotype descriptions through

a graph database model. Our unified model enabled us to discover and make explicit

the potential semantics raised by linking previously unconnected information. Our repre-

sentation in a graph database is aligned with a RDF graph-based representation, which

will be the next step to achieve the third layer. The challenge will be to map labels of

character/character-states in RDF properties/values. The unification of characters and

states, as shown on this preliminary work, is a first and high relevant step for this map-

ping. Since several ontologies related to phenotype descriptions are in OWL, the relations

discovered in our graph can subsidize a better matching of labels and concepts in OWL

ontologies by confronting relations. For example, to enhance the match of a character

label (in the graph database) with an OWL property (a character being an OWL prop-

erty), it is possible to consider the states allowed by the character, confronting them with

Chapter 4

Linked biology technical aspects –

linking phenotypes and phylogenetic

trees

4.1 Introduction

In 1859 Charles Darwin published On the Origin of Species which is considered the foun-

dation of evolutionary biology. In his book, Darwin set forth the theory of evolution and

natural selection. It argues that all life is related and has descended from a common

ancestor. The Tree of Life is a metaphor to describe the relationships between living and

extinct organisms through their common ancestors. More precisely, it is an abstract form

to represent hypotheses about evolutionary relationships, in which all species that have

ever existed are taken together with relationships among them, describing their evolu-

tionary lineages. In this abstract representation, the taxa are the leaves of the tree and

the internal nodes are common ancestors, or hypothetical taxa.

This huge and complex tree is split into smaller branches, which are investigated

separately and then incorporated into the tree. Evolutionary biologists normally work

in relatively small chunks of the tree, analyzing a very specific subset of species. A

fundamental challenge in this scenario is the creation of a complete evolutionary Tree of

Life [39], assembling genomic and morphological data so as to congregate the phylogenetic

relationships among all known living or extinct organisms [15, 19, 33]. The integration

of these data may contribute to better understand how a morphological trait became

organized and evolved over time [29], how organisms interact and how life on Earth came

to be.

The main goal of this research is to design and implement a linked biology approach to

automatically connect and combine data from independent semi-structured resources of

33

34Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

phenotype descriptions and/or phylogenetic trees, exploiting their latent semantics. We

propose a graph data model that plays a crucial role, since it is the basis of our linking

discovery and combination process. It contributes assisting biologists in the exploration of

existing biology assets related to phenotype descriptions and their latent semantics. The

present work details algorithms, implementation aspects and the database model related

to our research.

The text is organized as follows. Section 4.2 synthesizes basic concepts necessary for

understanding the text. Section 4.3 discusses implementation details of our system and

presents some results. Section 4.4 presents concluding remarks. In the Appendix the

source code is provided with comments explaining its functionalities.

4.2 Basic concepts

In this section, we highlight basic concepts adopted in this text. Subsection 4.2.1 intro-

duces some key elements of XML formats for phenotype description. Subsection 4.2.2 we

details the Life Science Identifier which is one of the solutions for data interconnection.

Subsection 4.2.3 presents an overview of our proposed graph model.

4.2.1 Standards for Phenotype Description

There is a wide variety of representation formats for phenotype descriptions adopted by in-

formation systems and open standards, which represent differently the same information.

In [34] we analyze four of them – Xper2, SDD, Nexus and NeXML – looking for a com-

mon denominator which is the foundation for our graph-based model. SDD, Nexus and

NeXML are widely adopted open standards. Xper2 (http://lis-upmc.snv.jussieu.fr/lis/)

is a management system adopted by the systematist community, for storing, editing and

analyzing phenotype descriptive data. It focuses mainly on taxonomic descriptions, allow-

ing creation, sharing and comparison of identification keys [47, 48]. Xper2 was developed

in the Laboratoire Informatique & Systématique of the University Pierre et Marie Curie

and this work is part of a bigger project in collaboration with this lab. Therefore, Xper2

was adopted for our practical implementation.

In order to transform phenotype observations into digital records and generalize them

– e.g., devising general characters and states observed in a genus of monitor lizards – the

biologist may use a tool as Xper2. Phenotype descriptions can be stored in the Xper2

native format or can be exported to the SDD open format. The Structured Descriptive

Data (SDD) (http://wiki.tdwg.org/SDD) is a platform and application-independent XML-

based standard developed by the Biodiversity Information Standards (historic acronym:

TDWG) for recording and exchanging descriptions of biological and biodiversity data of

36Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

problem observed here is that each character or OTU described does not have a global

unique identification among documents. Therefore, the description can only be used by

the document where it was declared and it is not possible to guarantee the equivalence of

two or more <CategoricalCharacters>.

4.2.2 Life Science Identifiers (LSIDs)

One of the problems faced in life science is related to the identification of objects within

and across repositories [38]. More precisely, an object may refer to a taxon, gene, anatom-

ical feature, phenotypic description, geographical location etc. Integrating data from dif-

ferent sources is not straightforward and uniquely identifying these objects is undoubtedly

a key point for the success of our proposed solution.

During the 18th century, Carolus Linnaeus introduced the binomial nomenclature for

naming species that is the basis of modern classification [24]. This system basically

concatenates 2 Latim words, where the first part identifies the species genera and the

second one the species itself. The binomial nomenclature has been used for the last 250

years [24] and the biological information related to organisms is historically annotated by

species names. Hence, the binomial name would appear to be a logical candidate to index

information available about species. However, misspelling problems are often encountered

[1, 43], moreover, taxonomic names are not unique identifiers [27, 40] because scientists

may use (i) similar names to different species (homonyms) or (ii) multiple names for the

same specie (synonyms) [38, 9].

Furthermore, each organization has its own means of defining a key, which makes

the problem even harder to solve. For example, the species Aotus ericoides has the id

11479744 on the Catalogue of Life (CoL), id 42472 on the Australian Plant Name Index

(APN), id 643314 on the Encyclopedia of Life (EoL), id 129761-3 on the The International

Plant Names Index (IPNI), id 700844 on the Universal Biological Indexer and Organizer

(uBio) etc.

In order to address this issue, some organizations – e.g., Universal Biological In-

dexer and Organizer (uBio), Integrated Taxonomic Information System (ITIS), Cata-

logue of Life (CoL), The International Plant Names Index (IPNI), National Center for

Biotechnology Information (NCBI) etc. – incorporated into their projects the concept

of Life Science Identifiers (LSIDs), proposed by the Object Management Group (OMG)

(http://www.omg.org/). LSID is a persistent, location-independent resource identifier,

whose purpose is to uniquely identify biological resources [16]. The persistent property

refers to the fact that LSID identifiers are unique, can be assigned to only one object

forever and they never expire. The location-independent property specifies that each au-

thority locally creates LSIDs and they are the responsible to guaranteeing the uniqueness

4.2. Basic concepts 37

of LSIDs.

4.2.3 The proposed graph data model

In this section we will present an overview of our proposed graph model. From the

numerous graph data models proposed – see [3, 4, 44] for more details – the property graph

model was adopted in the present work. In a property graph, nodes and relationships can

maintain extra metadata as a set of key/value pairs. Moreover, relationships are typed,

enabling to create multi-relational networks with heterogeneous sets of edges. Different

from single-relational networks, in which edges are of the same type, multi-relational

networks are more appropriate to represent complex domain models, due to the variety

of relationship types in the same graph [45]. For example: relationships may either

represent membership in a social group (family membership) or professional relationships

(employer-worker relationship) simultaneously in the same network.

Figure 4.2 shows our graph data model. The tables below the nodes/edges represent

their types and metadata. We mapped the SDD format to the graph model as follows:

OTUs are entities (e.g., “Varanus prasinus”) and, therefore, were mapped to nodes. A

future target of this project is to enrich our model by associating identifiable entities

to ontology concepts. One may consider to map Characters and Characters States to

key/value pairs, to be related to OTU nodes. However, we decided to map Characters

to nodes, in order to unify in the same node equivalent characters observed in several

OTUs and, in a future work, to relate the unified characters with ontologies. Finally, the

Character-state makes a semantic bridge (relationship) between OTUs and Characters.

Thus, a statement like “Varanus gouldi ventral pattern is randomly scattered dark spots”

is represented in our model as Varanus gouldi (node) → randomly scattered dark spots

(edge) → ventral pattern (node).

Our model comprises, in a single place, phenotype descriptions and phylogenetic trees.

For this reason a new node called HTU (Hypothetical Taxonomic Unit) is present in this

model. HTUs are internal nodes in phylogenetic trees that represent an inferred ancestral

organism. HTUs are hypothetical common ancestors of OTUs nodes and, therefore, can

only be connected to themselves (HTU → HTU) or to OTUs (HTU → OTU). For the

sake of modeling simplicity, only the TreeEdge relationship is allowed between HTU →

HTU and HTU → OTU. Finally, there is also a character-state relationship between HTU

nodes and character nodes that are strictly created by some algorithms.

4.3. System Architecture and Implementation Details 39

CategoricalCharacter, Categorical and CodedDescription – were processed to produce our

graph.

Listing 4.1: Varanus.sdd.xml

1 <Characters>

2 . . .

3 <CategoricalCharacter id="c6">

4 <Representation>

5 <Label>n o s t r i l s ’ form</Label>

6 <Detail>Monitors ’ n o s t r i l s mayhave d i f f e r e n t forms .& l t ; br&

gt ; Look at the head in s i d e view or do r s a l view in

order to appre c i a t e t h i s c h a r a c t e r i s t i c .</Detail>

7 <MediaObject r e f="m40"/>

8 </Representation>

9 <States>

10 <StateDefinition id="s12">

11 <Representation>

12 <Label>we l l round</Label>

13 <Detail>N o s t r i l s look l i k e a qu i t e p e r f e c t c i r c l e .</

Detail>

14 </Representation>

15 </StateDefinition>

16 <StateDefinition id="s13">

17 <Representation>

18 <Label>ova l or s p l i t −l i k e</Label>

19 <Detail>N o s t r i l s are not p e r f e c t l y round : they are ova l

or they pre sent a s p l i t −l i k e form .</Detail>

20 </Representation>

21 </StateDefinition>

22 </States>

23 </CategoricalCharacter>

24 . . .

25 </Characters>

26 . . .

27 <CodedDescriptions>

28 <CodedDescription id="D1">

29 <Representation>

30 <Label>V. a l b i g u r a l i s</Label>

31 <Detail>White−throated monitor&l t ; br> ;& l t ; br> ;

40Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

D i s t r i b u t i o n : A f r i ca (West and South) .& l t ; br> ;& l t ; br&

gt ; CITES : appendix I I .</Detail>

32 <MediaObject r e f="m1"/>

33 </Representation>

34 <SummaryData>

35 . . .

36 <Categorical r e f="c6">

37 <State r e f="s13"/>

38 </Categorical>

39 . . .

40 </SummaryData>

41 </CodedDescription>

42 </CodedDescriptions>

4.3.2 Tree Output

The present work also draws upon phylogenetic trees generated from LisBeth (http://lis-

upmc.snv.jussieu.fr/lis/). LisBeth is a cladistics software for phylogenetics and biogeog-

raphy [5] that implements the three-item analysis (3ia) method of phylogenetic inference

[37]. It minimizes the conflictual relationships within a set of characters, or maximizes

the compatible relationships so as to reconstruct one or several optimal tree(s). We im-

plemented a TreeOutput class, which abstracts the functions of interacting with LisBeth

output files (for implementation details see Appendix A.2). Listing 4.2 displays two frag-

ments of a LisBeth output file, focusing in the elements processed in this work, i.e. taxons

with their ids and the retained tree – newick tree which is a way to represent a tree in

computer-readable form, using parentheses and commas. The TreeOutput main function

combines the retained tree with the taxon names, retrieved in previous steps, and returns

a root node to a tree that represents the retained tree. In this new tree, the internal nodes

are renamed to HTU and the leaf nodes to its respective taxon names (see Figure 4.3).

42Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

Our system used three of the six types of matching offered by the GNR resolver: (i)

exact matching; (ii) exact matching of canonical forms – this process reduces a given name

to its canonical form and checks it for an exact match; (iii) fuzzy matching of canonical

forms – uses a modified version of the TaxaMatch algorithm [43] and intends to work

around misspellings errors. It does a fuzzy match of the canonical form of a given name

– even with mistakes – against spellings considered correct. The GNR resolver reports

the matching quality (“confidence score”) for each match. The other three remaining

matching types are: (iv) exact matching of specific parts of names, (v) fuzzy matching of

specific parts of names and (vi) exact matching of genus part of names. They were not

adopted because we focused in complete names in their canonical form.

Our algorithm extracts all plain text taxon entities present in the SDD file and, for

each one, it uses the GNR to transform the taxon name to its canonical form. Only those

taxons with confidence score above of 0.988 are considered. After that, the algorithm

makes use of the GNR resolver to search for its LSID (for implementation details see

Appendix A.3) – only exact matches are considered. The GNR results have the output

field ”local id” which, in the case of uBio, is the LSID. Moreover, we prioritized the uBio

LSID, since it indexes and organizes until now more than 11 million names. But there

are cases in which the GNR resolver does not retrieve any result from the uBio. In these

cases, the algorithm makes use of the Integrated Taxonomic Information System (ITIS)

web services (http://www.usgovxml.com/DataService.aspx?ds=ITIS), in order to obtain

the LSID (for implementation details see Appendix A.5). ITIS is a reliable taxonomic base

for species, with more than 740 thousand common names and scientific names indexed. If

none of the services return a valid LSID, we also implemented a class to interact with the

CoL web service (http://www.catalogueoflife.org/col/webservice), attempting to obtain a

valid LSID (for implementation details see Appendix A.6).

4.3.4 Graph Importer

Graph Importer is an object class written in Python that is responsible for coupling

the phylogenetic trees and phenotype descriptions into the graph database. The insertion

process follows the sequence: (1) Starts parsing the SDD XML file and the LisBeth output

file – see Listing 4.1 and 4.2 respectively. (2) Creates a taxon node for each taxon present in

the SDD file – see Figure 4.1 bottom, tag <Representation>. In this process, it searches for

a valid LSID for each taxon node, using the GNR web service, ITIS web service or CoL web

service. If the LSID is not found, it creates a taxon node without LSID. (3) Joins the taxon

nodes to the tree structure, extracted from the LisBeth output file. (4) A node is created

for each character in the SDD file – see Figure 4.1 top, tag <Representation>. (5) The

taxon nodes are linked to the character nodes by their character-states – see Figure 4.1 top,

44Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

Cypher queries used in the system.

1 getNodeByLSID (LSID) :

2 // Returns a node f o r the supp l i ed LSID .

3 START n=node (∗)

4 WHERE n . lsid = ’LSID’

5 RETURN n

6

7 getOutgoingAdjacentNodes (GivenNode) :

8 // Returns a l l nodes to which the g iven node po in t s to .

9 START n=node (GivenNode . id)

10 MATCH (n)−−>(c)

11 RETURN DISTINCT c

12

13 getIncomingAdjacentNodes (GivenNode) :

14 // Returns a l l nodes that po in t s to the g iven node .

15 START n=node (GivenNode . id)

16 MATCH (c)−−>(n)

17 RETURN DISTINCT c

18

19 getIncomingAdjacentRelationships (GivenNode) :

20 // Returns a l l r e l a t i o n s h i p s incoming to a given node .

21 START n=node (GivenNode . id)

22 MATCH () −[r]−>(n)

23 RETURN r

24

25 getIncomingAdjacentNodesWithRelationshipInBetween (GivenNode ,

GivenRelationship) :

26 // Returns a l l nodes , ordered by t h e i r l abe l , that po in t s to

a g iven node with a given r e l a t i o n s h i p in between .

27 START n=node (GivenNode . id)

28 MATCH (c) − [: GivenRelationship . label]−>(n)

29 RETURN c

30 ORDER BY c . label

31

32 getOutgoingRelationships (GivenNode) :

33 // Returns a l l r e l a t i o n s h i p s outgoing from a given node .

34 START n=node (GivenNode . id)

4.3. System Architecture and Implementation Details 45

35 MATCH (n) −[r]−>()

36 RETURN r

37

38 getDistinctRelationshipsInBetween (GivenNodeA , GivenNodeB) :

39 // Returns a l l d i s t i n c t r e l a t i o n s h i p s that e x i s t s between

nodes A and B.

40 START a=node (GivenNodeA . id) , b=node (GivenNodeB . id)

41 MATCH (a) −[r]−(b)

42 WITH COLLECT (DISTINCT TYPE (r)) as rels

43 RETURN rels

44

45 getDescriptionNodesOfATree (TreeRoot)

46 // Returns a l l d i s t i n c t d e s c r i p t i o n nodes id , cha rac t e r or

character −s t a t e s depending on the schema , that are

conected to a given t r e e .

47 START root=node (TreeRoot . id)

48 MATCH (root) −[∗..] − >(d)

49 WHERE d . type = ’description’

50 RETURN DISTINCT ID (d)

51

52 deleteNodeRelationshipsExceptLabel (GivenNode ,

RelationshipLabel) :

53 // De l e t e s a l l node r e l a t i o n s h i p s except f o r a g iven

r e l a t i o n s h i p l a b e l .

54 START n=node (GivenNode . id)

55 MATCH n−[r]−>()

56 WHERE NOT (r . label = ’RelationshipLabel’) AND NOT (r . type =

’TreeEdge’)

57 DELETE r

58

59 deleteRelationshipsTypeFromNode (GivenNode , RelationshipType

) :

60 // De l e t e s a l l node r e l a t i o n s h i p s o f a g iven type .

61 START n=node (GivenNode . id)

62 MATCH n−[r]−>()

63 WHERE r . type = ’RelationshipType’

64 DELETE r

46Chapter 4. Linked biology technical aspects – linking phenotypes and phylogenetic trees

4.3.6 Similarity Index

We are proposing a heuristic similarity measure that computes the similarity degree be-

tween two morphological character descriptions. This measure will represent how closely

related they are. The similarity index (Si) is based on 2 weighted aspects. 25% of the

index is calculated based on the taxa being described, i.e. it analyzes if two given charac-

ters (C1 and C2) describe the same taxa. The other 75% are based on the meaning of the

character-states. It checks if the state labels being used are the same. This heuristic is

still a work in progress. The weights assigned to parts of the index are configurable and

their values were calibrated based on observations.

Let G = (V (G), E(G)) be a directed graph with vertex-set V (G) = {v1, ..., vn} and

edge-set E(G) = {e1, ..., em} ⊂ {(vi, vj)|vi, vj ∈ V (G)}. Let C1, C2 ∈ V (G) be two

distinct vertices of G. We define the following sets:

NC1
= {vi ∈ V (G) | (vi, C1) ∈ E(G)} (4.1)

NC2
= {vi ∈ V (G) | (vi, C2) ∈ E(G)} (4.2)

S1 =
|NC1

∩ NC2
|

max{|NC1
|, |NC2

|}
(4.3)

Let f : E(G) → Υ be a labeling function, where Υ is a set of labels, and f(e) ∈ Υ is

the label of edge e ∈ E(G). We define the following sets:

LC1
= {e | e = f((vi, C1)) ∈ Υ and (vi, C1) ∈ E(G) and vi ∈ V (G)} (4.4)

LC2
= {e | e = f((vi, C2)) ∈ Υ and (vi, C2) ∈ E(G) and vi ∈ V (G)} (4.5)

S2 =
|LC1

∩ LC2
|

max{|LC1
|, |LC2

|}
(4.6)

Similarity Index(Si) = 0.25 ∗ S1 + 0.75 ∗ S2 (4.7)

S1 defines a rate of common OTU vertices with edges for two given characters C1 and

C2. The S1 result lies between 0 (no common OTUs) and 1 (all OTUs are common).

NC1
is the subset of incoming adjacent vertexes of C1 and NC2

is the subset of incoming

adjacent vertexes of C2. Incoming adjacent vertexes of both C1 and C2 are always OTU

vertexes, as shown in Figure 4.2. S2 defines a rate of common labels of the incoming

edges (character-states) for the characters C1 and C2. The S2 result also lies between 0

(no common character-states) and 1 (all character states are common). LC1
and LC2

are

the subset of incoming adjacent edge labels (character-states) of C1 and C2 respectively.

It is important to note that the character labels of C1 and C2 are not being taken

into account in the Si formula. This intends to avoid weighting in favor of two identical

4.3. System Architecture and Implementation Details 47

textual characters that do not have the same meaning, and to avoid weighting against two

textual characters that are identical but do not have the same meaning. In practice, this

will make the solution independent of the label and applicable for both presented scenarios

(same label but different meanings and different labels and same meaning). Additionally,

the symmetric property of equality is satisfied.

Practical Implementation of the Similarity Measure

Our system is able to draw a chart as illustrated in Figure 4.5, whose algorithm is inspired

by the hierarchical edge bundling example (http://mbostock.github.io/d3 /talk/20111116/

bundle.html) of D3.js (http://d3js.org/) library. D3.js is a JavaScript library for manipu-

lating documents and it has a wide variety of powerful visualization components. In the

case of the hierarchical edge bundling example, it is necessary to provide only a “name”

for each node and, inside a related “imports” sentence, the node name to where an edge

must be created to. Listing 4.3 shows the JSON file that encodes the data used to generate

Figure 4.5 (for implementation details see Appendix A.8).

Listing 4.3: RealExample.json

1 [

2 {”name” : ”root . Cauline cladotaxy” , ”imports” : [”root . Cauline

cladotaxy” , ”root . Phyllotaxy”] } ,

3 {”name” : ”root . Protoxylem position within the cauline stele”

, ”imports” : [”root . Protoxylem position within the cauline

stele”] } ,

4 {”name” : ”root . Organotaxy of the LBS” , ”imports” : [”root .

Cauline cladotaxy” , ”root . Phyllotaxy”] } ,

5 {”name” : ”root . Xylem configuration in the leaflets” , ”

imports” : [] } ,

6 {”name” : ”root . Planation” , ”imports” : [] } ,

7 {”name” : ”root . Development of the foliar organ” , ”imports” :

[] } ,

8 {”name” : ”root . Phyllotaxy” , ”imports” : [] } ,

9 {”name” : ”root . Xylem configuration in the rachis” , ”imports”

: [] } ,

10 {”name” : ”root . Cauline cladotaxy” , ”imports” : [] } ,

11 {”name” : ”root . Protoxylem position within the cauline stele”

, ”imports” : [] } ,

12 {”name” : ”root . Xylem configuration in the rachis” , ”imports”

: [] } ,

4.3. System Architecture and Implementation Details 49

4.3.7 Tracing the Evolutionary History

The TraceEvolutionaryHistory class abstracts an important algorithm that traces a phy-

logenetic history of traits changes (for implementation details see Appendix A.9). This

algorithm was built on top of our graph data model. It searches in a given tree for traits

(characters) that might be the “responsible” for a tree branching, in which branching is

considered as any division from a particular ancestor. For example, Figure 4.4 has two

Hypothetical Taxonomic Units (HTU), in which the least nested one after the root has

the Pseudosporochnus node and another HTU node as children. A typical question that

motivated us to create such an algorithm was: What differentiates Pseudosporochnus from

the other nodes?

The algorithm is divided into two recursive methods that are invoked in sequence. The

first one BottomUpAggregation starts from a given point in the tree and goes down until

it reaches Operational Taxonomic Unit (OTU) nodes. At this point, the method retrieves

all outgoing relationships from the OTU node and starts going back towards the root.

While the method is traversing internal HTU nodes (currentHT U) from the leaves back

towards the root, it performs an union operation with the outgoing relationships of all

children nodes – one occurrence for each type of relationship – and then, for each type of

relationship of the resulting union, the method creates an edge departing from the current

HTU (currentHT U) towards the original ending point of the relationship. In the end, the

method returns all relationships outgoing from all nodes, including the intermediary HTU

nodes (currentHT U). Figure 4.6 shows the result of BottomUpAggregation method being

applied on the graph of Figure 4.4.

The second part of the algorithm is called TopDownRefining. This method is triggered

after the BottomUpAggregation method, going to the same starting node provided in the

BottomUpAggregation method. It starts from a given node (noden) traversing down the

three and, in every HTU it reaches, it subtracts the set of character-states that starts in

its children nodes (nodechildren) and points to a given character (nodecharacter), from the

set of character-states starting from itself (noden) pointing to the same character node

(nodecharacter).

For example, in Figure 4.6, consider the least nested node (node0), just after the root

and linked to the Webbing within the LBS character node (nodewebbingLBS). There are

two edges connecting the node0 and the nodewebbingLBS with values present and absent.

The present edge comes from the most nested part of the tree, composed of the nodes

Zygopteris, Marattia, Equisetum and Ophioglossum, nested by node 1 (node1) – see Figure

4.4. The absent comes from Pseudosporochnus node – see Figure 4.4.

When the algorithm reaches node0 it will subtracts the set of character-states (edges)

outgoing from Pseudosporochnus toward nodewebbingLBS from the set of outgoing character-

states (edges) outgoing from node0 toward nodewebbingLBS. This set subtraction will be

4.4. Conclusion 53

changes has been shown. Finally, Cypher database queries and the main classes and

methods of the system were provided with detailed comments for each method.

Chapter 5

Conclusions and Extensions

5.1 Contributions

This work is a starting point to understand and address the broader problem of integrat-

ing biological knowledge, in the context of phenotype description and phylogenetic tree

reconstruction, which are heterogeneous in model and representation. We argue that an

intermediate step between semi-structured data and ontologies, based on graph databases,

can be exploited to emphasize relations among data elements.

We proposed a graph data model to congregate phenotype descriptions and phyloge-

netic trees. This model is a central part of this work. On top of it, we presented two

approaches to progressively reflect the integration process via the graph structure. The

first approach integrates knowledge around taxonomic units, the second one suggests cor-

relations among characters. The correspondly algorithms have the potential to simplify

mappings to ontologies, as they support linking correlated terms.

The feasibility and potential of our approach were tested by practical implementations.

In the first implementation, we showed the integration around the taxonomic units, in

which states for a given character were unified across different description files. In the

second implementation, two distinct descriptions of fossils were inserted into the graph

and analyzed by the similarity measure proposed.

There are several extensions for this work including:

• The incorporation of morphological descriptions stored in other knowledge bases,

e.g., MorphoBank (http://morphobank.org/), TreeBASE (http://treebase.org/) or

Dryad (http://datadryad.org/). We consider that the integration with these bases

can enhance the algorithms to find correlations, providing better insights.

• Further investigations around the similarity measure. A possible extension would

be to consider the similarity among hierarchies of states.

55

56 Chapter 5. Conclusions and Extensions

• For the next stage of this project – which involves mapping the graph towards

ontologies – the analysis of correlations can be extended to the relation between

character nodes and ontology terms.

• This approach can be integrated with related work [2] concerning exploiting social

knowledge to enrich ontologies.

Bibliography

[1] Peter H Adler and Roger W Crosskey. World blackflies (diptera: Simuliidae): a

comprehensive revision of the taxonomic and geographical inventory [2013], 2013.

Accessed on July 08 2013.

[2] Hugo Alves and André Santanchè. Folksonomized Ontology and the 3E Steps Tech-

nique to Support Ontology Evolvement. Journal of Web Semantics, 18(1):19–30,

2013.

[3] R. Angles. A comparison of current graph database models. In Data Engineering

Workshops (ICDEW), 2012 IEEE 28th International Conference on, pages 171–177,

2012.

[4] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Com-

puting Surveys (CSUR), 40(1):1, 2008.

[5] René Zaragüeta Bagils, Visotheary Ung, Anäıs Grand, Régine Vignes-Lebbe,

Nathanaël Cao, and Jacques Ducasse. Lisbeth: New cladistics for phylogenetics

and biogeography. Comptes Rendus Palevol, 11(8):563 – 566, 2012.

[6] James P. Balhoff, Wasila M. Dahdul, Cartik R. Kothari, Hilmar Lapp, John G.

Lundberg, Paula Mabee, Peter E. Midford, Monte Westerfield, and Todd J. Vision.

Phenex: Ontological annotation of phenotypic diversity. PLoS ONE, 5(5):e10500, 05

2010.

[7] Jonathan BL Bard and Seung Y Rhee. Ontologies in biology: design, applications

and future challenges. Nature Reviews Genetics, 5(3):213–222, 2004.

[8] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,

323(5919):1297–1298, 2009.

[9] F.A. Bisby. The quiet revolution: biodiversity informatics and the internet. Science,

289(5488):2309–2312, 2000.

57

58 BIBLIOGRAPHY

[10] WJ Bock. Comparative morphology in systematics. Systematic biology, 411:441–448,

1969.

[11] Daniel R Brooks. Hennig’s parasitological method: A proposed solution. Systematic

Biology, 30(3):229–249, 1981.

[12] Daniel R Brooks. Historical ecology: a new approach to studying the evolution of

ecological associations. Annals of the Missouri Botanical Garden, pages 660–680,

1985.

[13] Daniel R. Brooks, Marco G. P. Van Veller, and Deborah A. McLennan. How to do

bpa, really. Journal of Biogeography, 28(3):345–358, 2001.

[14] Nathanaël Cao, R Zaragüeta Bagils, Régine Vignes-Lebbe, et al. Hierarchical repre-

sentation of hypotheses of homology. Geodiversitas, 29(1):5–15, 2007.

[15] Francesca D Ciccarelli, Tobias Doerks, Christian Von Mering, Christopher J Creevey,

Berend Snel, and Peer Bork. Toward automatic reconstruction of a highly resolved

tree of life. Science, 311(5765):1283–1287, 2006.

[16] T. Clark, S. Martin, and T. Liefeld. Globally distributed object identification for

biological knowledgebases. Briefings in bioinformatics, 5(1):59–70, 2004.

[17] Adèle Corvez, Véronique Barriel, and Jean-Yves Dubuisson. Diversity and evolution

of the megaphyll in euphyllophytes: Phylogenetic hypotheses and the problem of

foliar organ definition. Comptes Rendus Palevol, 11(6):403–418, 2012.

[18] Wasila M. Dahdul, James P. Balhoff, Jeffrey Engeman, Terry Grande, Eric J. Hilton,

Cartik Kothari, Hilmar Lapp, John G. Lundberg, Peter E. Midford, Todd J. Vi-

sion, Monte Westerfield, and Paula M. Mabee. Evolutionary characters, phenotypes

and ontologies: Curating data from the systematic biology literature. PLoS ONE,

5(5):e10708, 05 2010.

[19] Frédéric Delsuc, Henner Brinkmann, and Hervé Philippe. Phylogenomics and the

reconstruction of the tree of life. Nature Reviews Genetics, 6(5):361–375, 2005.

[20] Malte C Ebach, Christopher J Humphries, and David M Williams. Phylogenetic

biogeography deconstructed. Journal of Biogeography, 30(9):1285–1296, 2003.

[21] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces: a

new abstraction for information management. SIGMOD Rec., 34(4):27–33, December

2005.

BIBLIOGRAPHY 59

[22] Cynthia Gibas and Per Jambeck. Developing bioinformatics computer skills. O’Reilly

Media, Inc., 2001.

[23] Georgios Gkoutos, Eain Green, Ann-Marie Mallon, John Hancock, and Duncan

Davidson. Using ontologies to describe mouse phenotypes. Genome Biology, 6(1):R8,

2004.

[24] H.C.J. Godfray et al. Challenges for taxonomy. Nature, 417(6884):17–19, 2002.

[25] A Grand, LM Duque, Velez, A Corvez, and M Laurin. Data from: Phylogenetic

inference using discrete characters: performance of ordered and unordered parsimony

and of three-item statements. Biological Journal of the Linnean Society, 2013.

[26] Gregor Hagedorn. Structuring Descriptive Data of Organisms – Requirement Analysis

and Information Models. PhD thesis, Universität Bayreuth,Fakultät für Biologie,

Chemie und Geowissenschaften, 11 2007.

[27] J. Kennedy, R. Kukla, and T. Paterson. Scientific names are ambiguous as identi-

fiers for biological taxa: Their context and definition are required for accurate data

integration. In 2nd Intl. Workshop on Data Integration in the Life Sciences (DILS),

LNCS 3615, pages 80–95, July 2005.

[28] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, pages 233–246. ACM, 2002.

[29] Paula M Mabee. Integrating evolution and development: the need for bioinformatics

in evo-devo. BioScience, 56(4):301–309, 2006.

[30] Paula M Mabee, Michael Ashburner, Quentin Cronk, Georgios V Gkoutos, Melissa

Haendel, Erik Segerdell, Chris Mungall, and Monte Westerfield. Phenotype ontolo-

gies: the bridge between genomics and evolution. Trends in ecology & evolution,

22(7):345–350, 2007.

[31] David R. Maddison, David L. Swofford, and Wayne P. Maddison. Nexus: An ex-

tensible file format for systematic information. Systematic Biology, 46(4):590–621,

1997.

[32] F Manola and E Miller. RDF Primer – W3C Recommendation. Technical report,

W3C, 2004.

60 BIBLIOGRAPHY

[33] Mark A Miller, Wayne Pfeiffer, and Terri Schwartz. Creating the cipres science gate-

way for inference of large phylogenetic trees. In Gateway Computing Environments

Workshop (GCE), 2010, pages 1–8. IEEE, 2010.

[34] Eduardo Miranda and André Santanchè. Unifying phenotypes to support semantic

descriptions. In Proceedings of the 6th Seminar on Ontology Research in Brazil,

volume 1041, pages 154–165, 09 2013.

[35] Gareth Nelson. Homology and systematics. Homology: the hierarchical basis of

comparative biology, pages 101–149, 1994.

[36] Gareth Nelson and Norman I Platnick. Three-taxon statements: A more precise use

of parsimony? Cladistics, 7(4):351–366, 1991.

[37] Gareth Nelson and Norman I. Platnick. Three-taxon statements: A more precise use

of parsimony? Cladistics, 7(4):351–366, 1991.

[38] R.D.M. Page. Biodiversity informatics: the challenge of linking data and the role of

shared identifiers. Briefings in Bioinformatics, 9(5):345–354, 2008.

[39] Cynthia S Parr, Robert Guralnick, Nico Cellinese, and Roderic DM Page. Evolu-

tionary informatics: unifying knowledge about the diversity of life. Trends in ecology

& evolution, 27(2):94–103, 2012.

[40] D.J. Patterson, J. Cooper, PM Kirk, RL Pyle, and D.P. Remsen. Names are key to

the big new biology. Trends in ecology & evolution, 25(12):686–691, 2010.

[41] Richard A. Pimentcl and Rhonda Riggins. The nature of cladistic data. Cladistics,

3(3):201–209, 1987.

[42] Dennis Quan. Improving life sciences information retrieval using semantic web tech-

nology. Briefings in bioinformatics, 8(3):172–182, 2007.

[43] Tony Rees. Taxamatch, a ”fuzzy” matching algorithm for taxon names, and potential

applications in taxonomic databases. In Anna Weitzman and Lee Belbin, editors, Pro-

visional Abstracts of the 2008 Annual Conference of the Taxonomic Databases Work-

ing Group, Fremantle, Australia, 2008. Biodiversity Information Standards (TDWG)

and the Missouri Botanical Garden.

[44] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly Media,

Inc., 2013.

BIBLIOGRAPHY 61

[45] Marko A. Rodriguez and Joshua Shinavier. Exposing multi-relational networks to

single-relational network analysis algorithms. Journal of Informetrics, 4(1):29 – 41,

2010.

[46] Joseph B Slowinski. “unordered” versus “ordered” characters. Systematic Biology,

42(2):155–165, 1993.

[47] Visotheary Ung, Florian Causse, and Régine Vignes Lebbe. Xper2: managing de-

scriptive data from their collection to e-monographs. 2010.

[48] Visotheary Ung, Guillaume Dubus, René Zaragüeta-Bagils, and Régine Vignes-

Lebbe. Xper2: introducing e-taxonomy. Bioinformatics, 26(5):703–704, 2010.

[49] Rutger A Vos, James P Balhoff, Jason A Caravas, Mark T Holder, Hilmar Lapp,

Wayne P Maddison, Peter E Midford, Anurag Priyam, Jeet Sukumaran, Xuhua Xia,

et al. Nexml: rich, extensible, and verifiable representation of comparative data and

metadata. Systematic Biology, 61(4):675–689, 2012.

[50] Myrna E Watanabe. Assembling an online tree of life of two million species. Bio-

Science, 63(1):64, 2013.

[51] Mark Wilkinson. Ordered versus unordered characters. Cladistics, 8(4):375–385,

1992.

[52] David M Williams and Malte C Ebach. The data matrix. Geodiversitas, 28(3):409–

420, 2006.

[53] René Zaragüeta-Bagils and Estelle Bourdon. Three-item analysis: Hierarchical repre-

sentation and treatment of missing and inapplicable data. Comptes Rendus Palevol,

6(6):527–534, 2007.

Appendix A

Demonstration

In this section we present the source code of the system, according to the graph data

model presented in previous sections. The code is modularized in files and each file has a

class with methods, all with comments explaining their functionality.

A.1 SDDParser.py

1 import os , sys

2

3 from xml . dom import minidom

4 from collections import OrderedDict

5

6 from Representation import ∗

7 from StateDefinition import ∗

8 from CategoricalCharacter import ∗

9 from Categorical import ∗

10 from CodedDescription import ∗

11

12 class SDDParser :

13

14 def __init__ (self , SDDFile) :

15

16 self . CategoricalCharacters = self .

__parseCategoricalCharacter (SDDFile)

17 self . CodedDescriptions = self . __parseCodedDescription (

SDDFile)

63

64 Appendix A. Demonstration

18

19 def __parseRepresentation (self , Repr) :

20 ”””

21 Representat ion i s a p l a i n text l a b e l and d e s c r i p t i o n block

found i n s i d e Categor i ca lCharacte r , S t a t e D e f i n i t i o n and

CodedDescr ipt ion b locks .

22 Args : A XML Representat ion block and i t s content .

23 Returns : A SDD Representat ion ob j e c t .

24 ”””

25

26 label = ’’

27 detail = ’’

28

29 if Repr :

30

31 if 0 < Repr . getElementsByTagName (’Label’) . length :

32 label = Repr . getElementsByTagName (’Label’) [0] . childNodes

[0] . nodeValue . strip ()

33

34 if 0 < Repr . getElementsByTagName (’Detail’) . length :

35 detail = Repr . getElementsByTagName (’Detail’) [0] .

childNodes [0] . nodeValue . strip ()

36

37 return Representation (label , detail)

38

39

40 def __parseStateDefinitions (self , StateDefinitions) :

41 ”””

42 S t a t e D e f i n i t i o n has i t s own id and a Representat ion block .

I t i s d e f i n e i n s i d e the Categor i ca lCharac te r / Sta t e s

b lock in which the Sta t e s groups toge the r a l l p o s s i b l e

s t a t e s (S t a t e D e f i n i t i o n) observed at a g iven

Cat ego r i c a l Character .

43 Args : Al l XML S t a t e D e f i n i t i o n b locks o f a p a r t i c u l a r

Categor i ca lCharac te r / Sta t e s b lock .

44 Returns : A d i c t i o n a r y o f S t a t e D e f i n i t i o n ob j e c t .

45 ”””

46

A.1. SDDParser.py 65

47 # Dict ionary with a l l s t a t e d e f i n i t i o n nodes

48 SStateDefinitionsDictionary = {}

49

50 for State in StateDefinitions :

51

52 Id = State . getAttributeNode (’id’) . nodeValue

53

54 Repr = State . getElementsByTagName (’Representation’) [0]

55

56 Representation = self . __parseRepresentation (Repr)

57

58 # Add node to Dic t ionary

59 SStateDefinitionsDictionary [Id] = StateDefinition (Id ,

Representation)

60

61 return SStateDefinitionsDictionary

62

63

64 def __parseStates (self , States) :

65 ”””

66 State i s d e f i n e i n s i d e CodedDescr ipt ion /SummaryData/

Cat ego r i c a l and i t l i n k s a taxon Categor i ca lCharac te r

to i t s p o s s i b l e S ta t e s through the r e f parameters .

67 Args : Al l XML State b locks o f a p a r t i c u l a r

CodedDescr ipt ion /SummaryData/ Cat ego r i c a l b lock .

68 Returns : An array with S t a t e D e f i n i t i o n s r e f e r e n c e s .

69 ”””

70

71 # Array with r e f e r e n c e s to S t a t e D e f i n i t i o n s

72 StatesDictionary = []

73

74 for state in States :

75

76 ref = state . getAttributeNode (’ref’) . nodeValue

77 StatesDictionary . append (ref)

78

79 return StatesDictionary

80

66 Appendix A. Demonstration

81

82 def __parseSummaryData (self , Categoricals) :

83 ”””

84 Catego r i c a l i s a r e f e r e n c e to a Categor i ca lCharac te r

ob j e c t and i s composed by a l i s t o f r e f e r e n c e s to

p o s s i b l e s t a t e s that a g iven taxon can take .

85 Args : Al l XML Catego r i c a l b locks o f a p a r t i c u l a r

CodedDescr ipt ion /SummaryData block .

86 Returns : A d i c t i o n a r y o f Cat ego r i c a l o b j e c t s .

87 ”””

88

89 # Dict ionary o f Cat ego r i c a l o b j e c t s

90 SummaryDataDictionary = {}

91

92 for c in Categoricals :

93

94 ref = c . getAttributeNode (’ref’) . nodeValue

95

96 s = c . getElementsByTagName (’State’)

97

98 States = self . __parseStates (s)

99

100 SummaryDataDictionary [ref] = Categorical (ref , States)

101

102 return SummaryDataDictionary

103

104

105 def __parseCategoricalCharacter (self , SDDFile) :

106 ”””

107 Categor i ca lCharac te r has i t s own id , a Representat ion

block and a Sta t e s b lock .

108 Args : A SDD f i l e name .

109 Returns : A d i c t i o n a r y with a l l Catego r i ca lCharac t e r s

o b j e c t s in the g iven f i l e .

110 ”””

111

112 CC = SDDFile . getElementsByTagName (’CategoricalCharacter’)

113

A.1. SDDParser.py 67

114 # Dict ionary with a l l Catego r i ca lCharac t e r s o b j e c t s

115 CategoricalCharacters = {}

116

117 for Character in CC :

118

119 Id = Character . getAttributeNode (’id’) . nodeValue

120

121 States = Character . getElementsByTagName (’StateDefinition’

)

122 Repr = Character . getElementsByTagName (’Representation’) [

0]

123

124 Representation = self . __parseRepresentation (Repr)

125 SStateDefinitionsDictionary = self .

__parseStateDefinitions (States)

126

127 CategoricalCharacters [Id] = CategoricalCharacter (Id ,

SStateDefinitionsDictionary , Representation)

128

129 return CategoricalCharacters

130

131

132 def __parseCodedDescription (self , SDDFile) :

133 ”””

134 CodedDescr ipt ion has i t s own id , a Representat ion block

and a SummaryData block .

135 Args : A SDD f i l e name .

136 Returns : A d i c t i o n a r y with a l l CodedDescr ipt ion o b j e c t s in

the g iven f i l e .

137 ”””

138

139 CD = SDDFile . getElementsByTagName (’CodedDescription’)

140

141 # Dict ionary with a l l CodedDescr ipt ions o b j e c t s

142 CodedDescriptions = {}

143

144 for Description in CD :

145

68 Appendix A. Demonstration

146 Id = Description . getAttributeNode (’id’) . nodeValue

147

148 SD = Description . getElementsByTagName (’Categorical’)

149 Repr = Description . getElementsByTagName (’Representation’)

[0]

150

151 Representation = self . __parseRepresentation (Repr)

152 SummaryDataDictionary = self . __parseSummaryData (SD)

153

154 CodedDescriptions [Id] = CodedDescription (Id ,

SummaryDataDictionary , Representation)

155

156 return CodedDescriptions

157

158

159 def getAllSates (self) :

160 ”””

161 Returns a d i c t i o n a r y o f a l l ’ S t a t e D e f i n i t i o n s ’ e lements .

162 ”””

163

164 States = {}

165

166 for key , CategoricalCharacter in self .

CategoricalCharacters . iteritems () :

167

168 States . update (CategoricalCharacter . States)

169

170 OrderedStates = OrderedDict (sorted (States . items ()))

171

172 return OrderedStates

173

174

175 def getAllTaxons (self) :

176 ”””

177 Returns a l i s t o f a l l taxons e lements .

178 ”””

179

180 Taxons = []

A.1. SDDParser.py 69

181

182 for key , CodedDescription in self . CodedDescriptions .

iteritems () :

183

184 Taxons . append (CodedDescription . Representation)

185

186 return Taxons

187

188

189 def getAllCharacters (self) :

190 ”””

191 Returns a d i c t i o n a r y o f a l l ’ Categor i ca lCharac te r ’

e lements .

192 ”””

193

194 Characters = {}

195

196 for key , CategoricalCharacter in self .

CategoricalCharacters . iteritems () :

197

198 Characters [CategoricalCharacter . id] = (

CategoricalCharacter . Representation)

199

200 OrderedCharacters = OrderedDict (sorted (Characters . items

()))

201

202 return OrderedCharacters

70 Appendix A. Demonstration

A.2 TeeOutput.py

1 import re

2 import shlex

3 import mmap

4 import sys

5

6 from TreeNode import ∗

7 from NodeTypes import ∗

8

9 class TreeOutput :

10

11 def __init__ (self , _TreeOutputFile) :

12

13 self . TreeOutputFile = _TreeOutputFile

14

15

16 def __parseNewickTree (self , NewickTree , parentNode) :

17 ”””

18 Newick t r e e format (New Hampshire t r e e format) i s a way o f

r ep r e s en t i ng t r e e s in computer−r eadab le form us ing

parenthese s and commas .

19 Args :

20 NewickTree : A NewickTree s t r i n g . For example : (((((((1 2

18) 22) 13) 3) 7) 30) (23 25))

21 parentNode : A node to where NewickTree t r e e w i l l be

attached to .

22 ”””

23

24 opened = False

25 substring = NewickTree

26

27 i = j = begin = end = 0

28

29 for c in NewickTree :

30

31 if c == ’(’ :

32 i += 1

A.2. TeeOutput.py 71

33

34 if not opened :

35 begin = j

36

37 opened = True

38

39 elif c == ’)’ :

40 i −= 1

41

42 if opened and i == 0 :

43 # (opened and i == 0) means that opening round bracket

’ (’ and the cor re spond ing c l o s i n g round bracket ’) ’

was found .

44 # I t w i l l r e c u r s i v e l y c a l l parseNewickTree with

bracket s content . Also , i t w i l l remove parenthese s

b lock and content from NewickTree .

45

46 opened = False

47

48 childrenWithBrackets = NewickTree [begin : j + 1]

49 childrenWithNoBrackets = NewickTree [begin + 1 : j]

50

51 child = TreeNode (None)

52 parentNode . appendChild (child)

53

54 self . __parseNewickTree (childrenWithNoBrackets , child)

55

56 substring = substring . replace (childrenWithBrackets , ""

)

57

58 j += 1

59

60 if "(" not in substring :

61 # When t h i s cond i t i on i s s a t i s f i e d , i t means that

sub s t r i ng w i l l only have l e a v e s nodes or i t i s empty .

62

63 my_splitter = shlex . shlex (substring , posix = True)

64 my_splitter . whitespace += ’,’

72 Appendix A. Demonstration

65 my_splitter . whitespace_split = True

66

67 for n in my_splitter :

68 parentNode . appendChild (TreeNode (n))

69

70

71 def getNewickTree (self) :

72 ”””

73 This method looks in to the f i l e in search o f the Newick

Tree and re tu rn s i t .

74 The proce s s i s p re t ty s t r a i gh t f o rwa rd :

75 1 . Set the f i l e ’ s cur r ent p o s i t i o n to the o occurence o f

’ Retained t r e e s ’

76 2 . Reads t h i s l i n e and d i s c a rd s i t

77 3 . Reads the next l i n e , which supposedly should conta in

the Newick Tree

78 4 . Get the Newick Tree

79 ”””

80

81 _file = open (self . TreeOutputFile)

82 memorymap = mmap . mmap (_file . fileno () , 0 , access = mmap .

ACCESS_READ)

83

84 RetainedTreesPosition = memorymap . find ("Retained trees")

85 memorymap . seek (RetainedTreesPosition)

86 memorymap . readline ()

87 FirstRetainedTreeLine = memorymap . readline ()

88 memorymap . close ()

89

90 # F i r s t occurence o f ’) ’

91 begin = FirstRetainedTreeLine . find (’(’)

92

93 # Last occurence o f ’ (’

94 end = FirstRetainedTreeLine . rfind (’)’)

95

96 NewickTree = FirstRetainedTreeLine [begin : end + 1]

97

98 return NewickTree

A.2. TeeOutput.py 73

99

100

101 def getTaxons (self) :

102 ”””

103 Get a l l taxons l i s t e d r i g h t be l low ’Taxa (# taxons) ’

i n s i d e −<D02>− block and return a l l those taxons .

104 ”””

105

106 _file = open (self . TreeOutputFile)

107 memorymap = mmap . mmap (_file . fileno () , 0 , access = mmap .

ACCESS_READ)

108

109 BlockBegin = memorymap . find ("<D02>")

110 BlockEnd = memorymap . find ("<F02>")

111

112 TaxaPosition = memorymap . find ("Taxa" , BlockBegin ,

BlockEnd)

113

114 memorymap . seek (TaxaPosition)

115 TaxaLine = memorymap . readline ()

116 TotalTaxa = int (re . search (re . escape (’(’) + "(.*?)" +

re . escape (’)’) , TaxaLine) . group (1))

117

118 TaxonsDictionary = {}

119

120 for i in range (TotalTaxa) :

121

122 line = memorymap . readline ()

123

124 index = line [1 : 21] . strip ()

125 taxon = line [22 :] . strip ()

126

127 TaxonsDictionary [index] = taxon

128

129 memorymap . close ()

130

131 return TaxonsDictionary

132

74 Appendix A. Demonstration

133

134 def __RenameTreeNodes (self , subTree , TaxonsDictionary) :

135

136 ”””

137 In a rooted phy logene t i c t ree , each node i s c a l l e d a

taxonomic un i t . I n t e r n a l nodes are g e n e r a l l y c a l l e d

hypo the t i c a l taxonomic un i t s (HTUs) as they cannot be

d i r e c t l y observed .

138 Args :

139 subTree : I s a branch o f the t r e e .

140 TaxonsDictionary : A l i s t o f taxons pre sent in the 3 i z

f i l e .

141 ”””

142

143 if subTree . nodes :

144

145 subTree . value = str (NodeTypes . HTU)

146

147 for n in subTree . nodes :

148 self . __RenameTreeNodes (n , TaxonsDictionary)

149

150 else :

151 subTree . value = TaxonsDictionary [subTree . value]

152

153

154 def getTaxonsTreeStructure (self) :

155 ”””

156 I t parse the NewickTree s t r i n g in to a t r e e s t r u c t u r e with

Hypothet i ca l Taxonomic Units as i n t e r n a l nodes and the

c o r r e c t Taxon name as the l e a v e s .

157 ”””

158

159 NewickTree = self . getNewickTree ()

160 TaxonsDictionary = self . getTaxons ()

161

162 root = TreeNode (None)

163 self . __parseNewickTree (NewickTree , root)

164

A.2. TeeOutput.py 75

165 self . __RenameTreeNodes (root , TaxonsDictionary)

166

167 return root

76 Appendix A. Demonstration

A.3 GlobalNamesResolver.py

1 from bs4 import BeautifulSoup

2 from GNRResultObject import ∗

3 import urllib2

4 from enumerator import ∗

5

6 class GlobalNamesResolver :

7

8 def __init__ (self) :

9 self . url = ’http://resolver.globalnames.org/name_resolvers

.xml?names=’

10

11 # Names Data Sources <http :// r e s o l v e r . globalnames . org /

data source s >

12 # ID Source

13 # 169 uBio NameBank

14 # 1 Catalogue o f L i f e

15 # 3 ITIS

16 self . DataSources = enum (CatalogueOfLife = 1 , ITIS = 3 ,

uBioNameBank = 169)

17

18 self . DataSourceIds = [self . DataSources . CatalogueOfLife ,

self . DataSources . ITIS , self . DataSources . uBioNameBank]

19

20

21 def getResultsObjects (self , ScientificName) :

22

23 ScientificName = ScientificName . replace (’ ’ , ’%20’)

24

25 url = self . url + ScientificName

26

27 if len (self . DataSourceIds) > 0 :

28 url = url + ’&data_source_ids=’

29

30 for _id in self . DataSourceIds :

31 url = url + str (_id) + ’|’

32

A.3. GlobalNamesResolver.py 77

33 try :

34 GNRServiceUrlResponse = urllib2 . urlopen (url) . read ()

35

36 except urllib2 . HTTPError , e :

37 print "HTTP error: %d" % e . code

38 except urllib2 . URLError , e :

39 print "Network error: %s" % e . reason . args [1]

40

41 SoupGNRResponse = BeautifulSoup (GNRServiceUrlResponse)

42

43 results = SoupGNRResponse . findAll (’result’)

44

45 GNRResultObjects = []

46

47 for result in results :

48

49 DataSourceId = result . find (’data-source -id’ , {’type’ :

’integer’})

50 DataSourceTitle = result . find (’data-source -title’)

51 gniUUID = result . find (’gni-uuid’)

52 NameString = result . find (’name-string’)

53 CanonicalForm = result . find (’canonical -form’)

54 TaxonId = result . find (’taxon-id’)

55 LocalId = result . find (’local-id’)

56 MatchType = result . find (’match-type’ , {’type’ : ’

integer’})

57 Prescore = result . find (’prescore’)

58 Score = result . find (’score’ , {’type’ : ’float’}

)

59

60 DataSourceId = DataSourceId . contents [0] if

DataSourceId else ""

61 DataSourceTitle = DataSourceTitle . contents [0] if

DataSourceTitle else ""

62 gniUUID = gniUUID . contents [0] if gniUUID

else ""

63 NameString = NameString . contents [0] if

NameString else ""

78 Appendix A. Demonstration

64 CanonicalForm = CanonicalForm . contents [0] if

CanonicalForm else ""

65 TaxonId = TaxonId . contents [0] if TaxonId

else ""

66 LocalId = LocalId . contents [0] if LocalId

else ""

67 MatchType = MatchType . contents [0] if

MatchType else ""

68 Prescore = Prescore . contents [0] if Prescore

else ""

69 Score = Score . contents [0] if Score

else ""

70

71 obj = GNRResultObject (DataSourceId , DataSourceTitle ,

gniUUID , NameString , CanonicalForm , TaxonId , LocalId ,

MatchType , Prescore , Score)

72

73 GNRResultObjects . append (obj)

74

75 return GNRResultObjects

76

77

78 def getCanonicalForm (self , ScientificName) :

79 ”””

80 Returns the canon i ca l forms o f a g iven s c i e n t i f i c name .

81 ”””

82

83 objects = self . getResultsObjects (ScientificName)

84

85 CanonicalForms = set ([])

86

87 for obj in objects :

88

89 match = int (obj . MatchType)

90

91 # 1 − Exact match

92 # 2 − Exact match by canon i ca l form

93 # 3 − Fuzzy match by canon i ca l form

A.3. GlobalNamesResolver.py 79

94 if match == 1 or match == 2 or match == 3 :

95

96 if 0 . 988 <= float (obj . MatchType) :

97

98 # Add canon i ca l form to the s e t

99 CanonicalForms = CanonicalForms | set ([obj .

CanonicalForm])

100

101 if 1 == len (CanonicalForms) :

102

103 return sorted (CanonicalForms) [0]

104

105 return None

106

107

108 def getLSIDFromCanonicalForm (self , CanonicalForm) :

109 ”””

110 Returns the LSID o f a g iven Canonical Form . Only uBio

NameBank LSID are r e t r i e v e d and s t i l l only i f a exact

match occur .

111 ”””

112

113 ResultsObjects = self . getResultsObjects (CanonicalForm)

114

115 for obj in ResultsObjects :

116

117 if int (obj . MatchType) == 1 :

118

119 if int (obj . DataSourceId) == self . DataSources .

uBioNameBank :

120

121 return obj . LocalId

122

123 return None

80 Appendix A. Demonstration

A.4 GNRResultObject.py

1 class GNRResultObject :

2

3 def __init__ (self , _DataSourceId , _DataSourceTitle , _gniUUID

, _NameString , _CanonicalForm , _TaxonId , _LocalId ,

_MatchType , _Prescore , _Score) :

4

5 # The id o f the data source where a name was found .

6 self . DataSourceId = _DataSourceId

7

8 # The data source t i t l e where a name was found .

9 self . DataSourceTitle = _DataSourceTitle

10

11 # An i d e n t i f i e r f o r the found name s t r i n g used in Global

Names .

12 self . gniUUID = _gniUUID

13

14 # The name s t r i n g found in t h i s data source .

15 self . NameString = _NameString

16

17 # A ” canon i ca l ” v e r s i on o f the name generated by the Global

Names par s e r

18 self . CanonicalForm = _CanonicalForm

19

20 # Tree path to the root i f a name s t r i n g was found with in a

data source c l a s s i f i c a t i o n .

21 # s e l f . C l a s s i f i c a t i o n P a t h

22

23 # s e l f . C la s s i f i ca t i onPathRanks

24

25 # Same t r e e path us ing taxon id s

26 # s e l f . C l a s s i f i c a t i o n P a t h I d s

27

28 # An i d e n t i f i e r supp l i ed in the source Darwin Core Archive

f o r the name s t r i n g record

29 self . TaxonId = _TaxonId

30

A.4. GNRResultObject.py 81

31 # Shows id l o c a l to the data source (i f provided by the

data source manager)

32 self . LocalId = _LocalId

33

34 # Expla ins how r e s o l v e r found the name . I f the r e s o l v e r

cannot f i nd names cor re spond ing to the e n t i r e quer i ed

name s t r i ng , i t s e q u e n t i a l l y removes te rmina l po r t i on s

o f the name s t r i n g u n t i l a match i s found .

35 # 1 − Exact match

36 # 2 − Exact match by canon i ca l form o f a name

37 # 3 − Fuzzy match by canon i ca l form

38 # 4 − P a r t i a l exact match by s p e c i e s part o f canon i ca l form

39 # 5 − P a r t i a l fuzzy match by s p e c i e s part o f canon i ca l form

40 # 6 − Exact match by genus part o f a canon i ca l form

41 self . MatchType = _MatchType

42

43 # Disp lays po in t s used to c a l c u l a t e the s co r e de l im i t ed by

’ | ’ −− ”Match po in t s | Author match po in t s | Context po in t s

” . Negative po in t s dec r ea s e the f i n a l r e s u l t .

44 self . Prescore = _Prescore

45

46 # A con f idence s co r e c a l c u l a t e d f o r the match .

47 # 0.5 means an uncer ta in r e s u l t that w i l l r e q u i r e

i n v e s t i g a t i o n .

48 # Resu l t s h igher than 0 .9 correspond to ’ good ’ matches .

49 # Resu l t s between 0 .5 and 0 .9 should be taken with caut ion .

50 # Resu l t s l e s s than 0 .5 are l i k e l y poor matches .

51 # The s co r i ng i s de s c r ibed in more d e t a i l s on http ://

r e s o l v e r . globalnames . org /about

52 self . Score = _Score

82 Appendix A. Demonstration

A.5 ITISServices.py

1 import suds

2

3 class ITISServices :

4

5 url = "http://www.itis.gov/ITISWebService.xml"

6 client = None

7

8 def __init__ (self) :

9 self . client = suds . client . Client (self . url)

10

11

12 def getTSNfromScientificName (self , ScientificName) :

13 ”””

14 Taxonomic S e r i a l Number (TSN) which i s the primary key f o r

the s c i e n t i f i c name . This method re tu rn s a TSN i f the

provided Sc i ent i f i cName i s found and None otherw i se .

15 ”””

16

17 self . client . service . searchByScientificName (ScientificName

)

18

19 ScientificNamesResponse = self . client . last_received () .

getChild ("soapenv:Envelope") . getChild ("soapenv:Body") .

getChild ("ns:searchByScientificNameResponse") . getChild ("

ns:return") . getChildren ("ax21:scientificNames")

20

21 for sn in ScientificNamesResponse :

22

23 tsn = sn . getChild ("ax21:tsn")

24

25 if tsn != None :

26 return tsn . getText ()

27

28 return None

29

30

A.5. ITISServices.py 83

31 def getLSIDfromTSN (self , tsn) :

32 ”””

33 Given a TSN t h i s method r e tu rn s a LSID i f found and None

otherw i s e .

34 ”””

35

36 self . client . service . getLSIDFromTSN (tsn)

37

38 LSID = self . client . last_received () . getChild ("soapenv:

Envelope") . getChild ("soapenv:Body") . getChild ("ns:

getLSIDFromTSNResponse") . getChild ("ns:return") . getText ()

39

40 if LSID :

41 return LSID

42

43 return None

84 Appendix A. Demonstration

A.6 CoLServices.py

1 from BeautifulSoup import BeautifulSoup

2 import urllib2

3

4 class CoLServices :

5 ”””

6 This c l a s s conta in s the main methods to i n t e r a c t with the

CoL web s e r v i c e .

7 ”””

8

9 def getCoLUrl (self , ScientificName) :

10 ”””

11 This method uses a XML scrap ing technique to get the URL

of the g iven S c i e n t i f i c Name from the webserv i ce

re sponse .

12 ”””

13

14 url = ’http://www.catalogueoflife.org/col/webservice?name=

’

15

16 ScientificName = ScientificName . replace (’ ’ , ’%20’)

17

18 try :

19 CoLWebServiceUrlResponse = urllib2 . urlopen (url +

ScientificName) . read ()

20 except urllib2 . HTTPError , e :

21 print "HTTP error: %d" % e . code

22 except urllib2 . URLError , e :

23 print "Network error: %s" % e . reason . args [1]

24

25 SoupCoLWebServiceResponse = BeautifulSoup (

CoLWebServiceUrlResponse)

26

27 tagresult = SoupCoLWebServiceResponse . findAll (’result’)

28

29 CoLUrl = tagresult [0] . find (’url’) . contents [0]

30

A.6. CoLServices.py 85

31 if CoLUrl :

32 return CoLUrl

33

34

35 def getCoLSpecieID (self , ScientificName) :

36 ”””

37 This method uses a XML scrap ing technique to get the ID o f

the g iven S c i e n t i f i c Name from the webserv i ce re sponse

.

38 ”””

39

40 url = ’http://www.catalogueoflife.org/testcol/webservice?

name=’

41

42 ScientificName = ScientificName . replace (’ ’ , ’%20’)

43

44 try :

45 CoLWebServiceUrlResponse = urllib2 . urlopen (url +

ScientificName) . read ()

46 except urllib2 . HTTPError , e :

47 print "HTTP error: %d" % e . code

48 except urllib2 . URLError , e :

49 print "Network error: %s" % e . reason . args [1]

50

51 SoupCoLWebServiceResponse = BeautifulSoup (

CoLWebServiceUrlResponse)

52

53 result = SoupCoLWebServiceResponse . find (’result’)

54

55 if result :

56 findID = result . find (’id’)

57

58 if findID :

59 SpecieID = findID . contents [0]

60

61 if SpecieID :

62 return SpecieID

63

86 Appendix A. Demonstration

64 return None

65

66

67 def getLSIDfromSpecieID (self , SpecieID) :

68 ”””

69 This method uses a HTML screen−s c rap ing technique to get

the LSID o f the g iven SpecieID .

70 ”””

71

72 url = ’http://www.catalogueoflife.org/testcol/details/

species/id/’

73

74 try :

75 SpecieDetailsCoLUrlResponse = urllib2 . urlopen (url +

SpecieID) . read ()

76 except urllib2 . HTTPError , e :

77 print "HTTP error: %d" % e . code

78 except urllib2 . URLError , e :

79 print "Network error: %s" % e . reason . args [1]

80

81 SoupSpecieDetailsCoLUrlResponse = BeautifulSoup (

SpecieDetailsCoLUrlResponse)

82

83 LSID = SoupSpecieDetailsCoLUrlResponse . find (’span’ , {’

class’ : ’lsid’}) . contents [0]

84

85 return LSID

86

87

88 def getLSIDfromSpecieUrl (self , SpecieUrl) :

89 ”””

90 This method uses a HTML screen−s c rap ing technique to get

the LSID o f the g iven Spec i eUr l .

91 ”””

92

93 try :

94 SpecieDetailsCoLUrlResponse = urllib2 . urlopen (SpecieUrl) .

read ()

A.6. CoLServices.py 87

95 except urllib2 . HTTPError , e :

96 print "HTTP error: %d" % e . code

97 except urllib2 . URLError , e :

98 print "Network error: %s" % e . reason . args [1]

99

100 SoupSpecieDetailsCoLUrlResponse = BeautifulSoup (

SpecieDetailsCoLUrlResponse)

101

102 LSID = SoupSpecieDetailsCoLUrlResponse . find (’span’ , {’

class’ : ’lsid’}) . contents [0]

103

104 return LSID

88 Appendix A. Demonstration

A.7 GraphImporter.py

1 from py2neo import rest , neo4j , cypher

2

3 from SDDParser import ∗

4 from TreeOutput import ∗

5 from GlobalNamesResolver import ∗

6 from GraphDB import ∗

7 from NodeTypes import ∗

8 from RelationshipTypes import ∗

9 from ITISServices import ∗

10 from CoLServices import ∗

11

12 class GraphImporter :

13

14 SDDFilename = None

15 TreeFilename = None

16

17 def __init__ (self , _SDDFilename , _TreeFilename ,

_IgnoreTreeFilename) :

18

19 self . SDDFilename = _SDDFilename

20 self . TreeFilename = _TreeFilename

21 self . IgnoreTreeFilename = _IgnoreTreeFilename

22

23

24 def __CreateTaxonsNodes (self , CodedDescriptions) :

25 ”””

26 Add to the Graph DB a l l taxons e lements as nodes . In case

the taxon node a l r eady e x i s t s , i t uses the node in

GraphDB rathe r than c r e a t e a new one .

27 Args : CodedDescr ipt ions : A l i s t o f a l l Coded Des c r i p t i on s

e lements .

28 Returns : A d i c t mapping keys to the cor re spond ing added

nodes . Each tup l e i s r ep r e s en ted as (Taxon Name , node)

where the f i r s t element o f the tup l e i s the taxon name

and the l a s t one i s the node i t s e l f .

29 Example :

A.7. GraphImporter.py 89

30 {u ’ Equisetum ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/

node /142 ’)] ,

31 u ’ Maratt ia ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node

/131 ’)] ,

32 u ’ Bot ryopte r i s ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/

node /222 ’)]}

33 ”””

34

35 gdb = GraphDB ()

36 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()

37

38 if GDBConn is not None :

39

40 # Dict ionary f o r a l l taxons nodes

41 TaxonsNodes = {}

42

43 GNR = GlobalNamesResolver ()

44 ITIS = ITISServices ()

45 CoL = CoLServices ()

46

47 for key , CodedDescription in CodedDescriptions . iteritems

() :

48

49 node = None

50

51 taxonName = CodedDescription . Representation . label

52 taxonNameCF = GNR . getCanonicalForm (taxonName)

53

54 lsid = GNR . getLSIDFromCanonicalForm (taxonNameCF)

55

56 if lsid == None :

57 tsn = ITIS . getTSNfromScientificName (taxonNameCF)

58 lsid = ITIS . getLSIDfromTSN (tsn)

59

60 if lsid == None :

61 SpecieID = CoL . getCoLSpecieID (taxonNameCF)

62 lsid = CoL . getLSIDfromSpecieID (SpecieID)

63

90 Appendix A. Demonstration

64 n = gdb . getNodeByLSID (lsid)

65

66 if n is None :

67

68 # Create taxon node

69 node = GDBConn . create ({ ’label’ : taxonNameCF ,

70 ’detail’ : CodedDescription . Representation .

detail ,

71 ’sourceId’ : CodedDescription . id ,

72 ’type’ : str (NodeTypes . OTU) ,

73 ’LSID’ : lsid })

74 else :

75 node = n

76

77 # Add node to Dic t ionary

78 TaxonsNodes [CodedDescription . Representation . label] =

node

79

80 return TaxonsNodes

81

82 else :

83 print msg

84 return None

85

86

87 def __CreateStateDefinitionNodes (self , StateDefinitions) :

88 ”””

89 Add to the Graph DB a l l s t a t e d e f i n i t i o n e lements as nodes

.

90 Args :

91 S t a t e D e f i n i t i o n s : A d i c t i on a r y o f a l l ’ S t a t e D e f i n i t i o n s ’

e lements .

92 Returns :A d i c t mapping keys to the cor re spond ing added

nodes . Each tup l e i s r ep r e s en ted as (Id , node) where

the f i r s t element o f the tuple , Id (For example : s54)

i s the SDD.XML S t a t e D e f i n i t i o n ID and the l a s t one i s

the node i t s e l f .

93 Example :

A.7. GraphImporter.py 91

94 {u ’ s54 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node /142 ’)

] ,

95 u ’ s43 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node /131 ’)

] ,

96 u ’ s46 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node /222 ’)

]}

97 ”””

98

99 gdb = GraphDB ()

100 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()

101

102 if GDBConn is not None :

103

104 # Dict ionary f o r a l l s t a t e d e f i n i t i o n nodes

105 StateDefinitionsNodes = {}

106

107 for key , State in StateDefinitions . iteritems () :

108

109 # Create s t a t e d e f i n i t i o n node

110 node = GDBConn . create ({ ’label’ : State . Representation .

label ,

111 ’detail’ : State . Representation . detail ,

112 ’sourceId’ : State . id ,

113 ’type’ : str (NodeTypes . description) })

114

115 # Add node to Dic t ionary

116 StateDefinitionsNodes [State . id] = node

117

118 return StateDefinitionsNodes

119

120 else :

121 print msg

122 return None

123

124

125 def __CreateCharacterNodes (self , Characters) :

126 ”””

127 Add to the Graph DB a l l cha r a c t e r s e lements as nodes .

92 Appendix A. Demonstration

128 Args :

129 Characters : A d i c t i o n a ry o f a l l ’ Characters ’ e lements .

130 Returns : A d i c t mapping keys to the cor re spond ing added

nodes . Each tup l e i s r ep r e s en ted as (Id , node) where

the f i r s t element o f the tuple , Id (For example : c19)

i s the SDD.XML Categor i ca lCharac te r ID and the l a s t one

i s the node i t s e l f .

131 Example :

132 {u ’ c19 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node /396 ’)

] ,

133 u ’ c18 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node /395 ’)

] ,

134 u ’ c5 ’ : [Node (’ http :// l o c a l h o s t :7474/ db/data/node /400 ’)

]}

135 ”””

136

137 gdb = GraphDB ()

138 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()

139

140 if GDBConn is not None :

141

142 # Dict ionary f o r a l l c ha r a c t e r s nodes

143 CharactersNodes = {}

144

145 for ID , Character in Characters . iteritems () :

146

147 # Create s t a t e d e f i n i t i o n node

148 node = GDBConn . create ({ ’label’ : Character . label ,

149 ’detail’ : Character . detail ,

150 ’sourceId’ : ID ,

151 ’type’ : str (NodeTypes . description) })

152

153 # Add node to Dic t ionary

154 CharactersNodes [ID] = node

155

156 return CharactersNodes

157

158 else :

A.7. GraphImporter.py 93

159 print msg

160 return None

161

162

163 def __JoinTaxonsNodesTreeStructureRecursion (self ,

TaxonsNodes , subTree , parentNode) :

164

165 gdb = GraphDB ()

166 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()

167

168 if GDBConn is not None :

169

170 if subTree . nodes :

171

172 # Create Hypothet i ca l Taxonomic Unit node

173 htuNode , = GDBConn . create ({ ’label’ : str (NodeTypes . HTU

) ,

174 ’type’ : str (NodeTypes . HTU) })

175

176 # Join Hypothet i ca l Taxonomic Unit node to i t s parent

node

177 parentNode . create_relationship_to (htuNode , str (

RelationshipTypes . TreeEdge) , { "type" : str (

RelationshipTypes . TreeEdge) })

178

179 for n in subTree . nodes :

180 self . __JoinTaxonsNodesTreeStructureRecursion (

TaxonsNodes , n , htuNode)

181

182 else :

183 # Get Taxonomic Unit (taxon name) a l r eady created ,

passed through TaxonsNodes d i c t i o n a ry

184 tuNode = TaxonsNodes [subTree . value] [0]

185

186 # Join Taxonomic Unit node to i t s parent node

187 parentNode . create_relationship_to (tuNode , str (

RelationshipTypes . TreeEdge) , { "type" : str (

RelationshipTypes . TreeEdge) })

94 Appendix A. Demonstration

188

189 else :

190 print msg

191 return None

192

193

194 def __JoinTaxonsNodesTreeStructure (self , TaxonsNodes , Tree

) :

195 ”””

196 Join taxons nodes with the Newick t r e e s t r u c t u r e .

197 ”””

198

199 gdb = GraphDB ()

200 GDBConn , msg = gdb . getPy2neoGraphDatabaseService ()

201

202 if GDBConn is not None :

203

204 self . __JoinTaxonsNodesTreeStructureRecursion (TaxonsNodes

, Tree , gdb . getRootNode ())

205

206 else :

207 print msg

208 return None

209

210

211 def ImportUsingTaxonCharacterStateSchema (self) :

212 ”””

213 Schema : Taxon(Node) −> Categor i ca lCharac te r (Edge) −>

S t a t e D e f i n i t i o n (Node)

214 ”””

215

216 # Parse the SDD−XML f i l e

217 SDDFile = minidom . parse (self . SDDFilename)

218

219 SDD = SDDParser (SDDFile)

220

221 CategoricalCharacters = SDD . CategoricalCharacters

222 CodedDescriptions = SDD . CodedDescriptions

A.7. GraphImporter.py 95

223

224 # Create Taxons nodes in the Graph DB

225 TaxonsNodes = self . __CreateTaxonsNodes (SDD .

CodedDescriptions)

226

227 # Join Taxons nodes in a t r e e s t r u c t u r e

228 treeOutput = TreeOutput (self . TreeFilename)

229 tree = treeOutput . getTaxonsTreeStructure ()

230 self . __JoinTaxonsNodesTreeStructure (TaxonsNodes , tree)

231

232 # Create State D e f i n i t i o n nodes in the Graph DB

233 StateDefinitionsNodes = self . __CreateStateDefinitionNodes (

SDD . getAllSates ())

234

235 for key , CodedDescription in CodedDescriptions . iteritems ()

:

236

237 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .

Otherwise does not proceed by c r e a t i n g the

r e l a t i o n s h i p

238 if CodedDescription . Representation . label in TaxonsNodes :

239

240 for key , SummaryData in CodedDescription . SummaryData .

iteritems () :

241

242 States = CategoricalCharacters [SummaryData . ref] . States

243

244 for StateRef in SummaryData . States :

245

246 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .

Otherwise does not proceed by c r e a t i n g the

r e l a t i o n s h i p

247 if StateRef in StateDefinitionsNodes :

248

249 taxonNode = TaxonsNodes [CodedDescription .

Representation . label] [0]

250 StateDefinitionsNode = StateDefinitionsNodes [

StateRef] [0]

96 Appendix A. Demonstration

251

252 CategoricalCharacter = CategoricalCharacters [

SummaryData . ref] . Representation

253 CategoricalCharacterDetail = CategoricalCharacter .

detail if CategoricalCharacter . detail else ""

254 relationshipType = CategoricalCharacter . label .

replace (’ ’ , ’_’)

255

256

257 # Join Taxon nodes to State D e f i n i t i o n node us ing

Categor i ca lCharac te r . l a b e l as r e l a t i o n s h i p

258 taxonNode . create_relationship_to (

StateDefinitionsNode , relationshipType , { "label

" : relationshipType ,

259 "type" : str (

RelationshipTypes . descriptor

) ,

260 "Detail" :

CategoricalCharacterDetail }

)

261

262

263 def ImportUsingTaxonStateCharacterSchema (self) :

264 ”””

265 Schema : Taxon (Node) −> S t a t e D e f i n i t i o n (Edge) −>

Categor i ca lCharac te r (Node)

266 ”””

267

268 # Parse the SDD−XML f i l e

269 SDDFile = minidom . parse (self . SDDFilename)

270

271 SDD = SDDParser (SDDFile)

272

273 CategoricalCharacters = SDD . CategoricalCharacters

274 CodedDescriptions = SDD . CodedDescriptions

275

276 # Create Taxons nodes in the Graph DB

A.7. GraphImporter.py 97

277 TaxonsNodes = self . __CreateTaxonsNodes (SDD .

CodedDescriptions)

278

279 # Join Taxons nodes in a t r e e s t r u c t u r e

280 treeOutput = TreeOutput (self . TreeFilename)

281 tree = treeOutput . getTaxonsTreeStructure ()

282 self . __JoinTaxonsNodesTreeStructure (TaxonsNodes , tree)

283

284 # Create Characters nodes in the Graph DB

285 CharactersNodes = self . __CreateCharacterNodes (SDD .

getAllCharacters ())

286

287 for key , CodedDescription in CodedDescriptions . iteritems ()

:

288

289 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .

Otherwise does not proceed by c r e a t i n g the

r e l a t i o n s h i p .

290 if CodedDescription . Representation . label in TaxonsNodes :

291

292 for key , SummaryData in CodedDescription . SummaryData .

iteritems () :

293

294 # Check i f the g iven key e x i s t s in the d i c t i o n a r y .

Otherwise does not proceed by c r e a t i n g the

r e l a t i o n s h i p .

295 if SummaryData . ref in CharactersNodes :

296

297 States = CategoricalCharacters [SummaryData . ref] .

States

298

299 for StateRef in SummaryData . States :

300

301 taxonNode = TaxonsNodes [CodedDescription .

Representation . label] [0]

302 CharacterNode = CharactersNodes [SummaryData . ref] [0]

303

304 StateDefinition = States [StateRef] . Representation

98 Appendix A. Demonstration

305 StateDefinitionDetail = StateDefinition . detail if

StateDefinition . detail else ""

306 relationshipType = StateDefinition . label . replace (’ ’

, ’_’)

307

308 # Join Taxon nodes to Cat ego r i c a l Character node

us ing S t a t e D e f i n i t i o n . l a b e l as r e l a t i o n s h i p

309 taxonNode . create_relationship_to (CharacterNode ,

relationshipType , { "label" : relationshipType ,

310 "type" : str (RelationshipTypes .

descriptor) ,

311 "Detail" : StateDefinitionDetail }

)

A.8. SimilarityIndex.py 99

A.8 SimilarityIndex.py

1 from __future__ import division

2 import codecs

3 from py2neo import rest , neo4j , cypher

4 from GraphDB import ∗

5 from NodeAndRelationshipTypes import ∗

6

7 class SimilarityIndex :

8

9 def CalculateIndex (self , gdb , n1 , n2) :

10

11 TAaux = gdb . getIncomingAdjacentNodes (n1)

12 TBaux = gdb . getIncomingAdjacentNodes (n2)

13

14 TA = []

15 for n in TAaux : TA . append (n [0])

16

17 TB = []

18 for n in TBaux : TB . append (n [0])

19

20 setTA = set (TA)

21 setTB = set (TB)

22

23 S1 = len (setTA & setTB) / max (len (setTA) , len (setTB

))

24

25 TE1aux = gdb . getIncomingAdjacentRelationships (n1)

26 TE2aux = gdb . getIncomingAdjacentRelationships (n2)

27

28 TE1 = []

29 for r in TE1aux : TE1 . append (r [0] ["label"])

30

31 TE2 = []

32 for r in TE2aux : TE2 . append (r [0] ["label"])

33

34 setTE1 = set (TE1)

35 setTE2 = set (TE2)

100 Appendix A. Demonstration

36

37 S2 = len (setTE1 & setTE2) / max (len (setTE1) , len (

setTE2))

38

39 SI = (0 . 25 ∗ S1 + 0 . 75 ∗ S2)

40

41 return SI

42

43

44 def CompareStudies (self , TreeRootStudyA , TreeRootStudyB ,

LowerBoundary , JSONFilename) :

45 ”””

46 I t c a l c u l a t e s the S i m i l a r i t y Index f o r a l l c ha r a c t e r s

between two s t u d i e s tak ing them two by two . Only SI

g r e a t e r or equal to LowerBoundary are exported in to the

g iven Json f i l e .

47 Args :

48 TreeRootStudyA : Study A t r e e root .

49 TreeRootStudyB : Study B t r e e root .

50 LowerBoundary : Lower Boundary cond i t i on .

51 JSONFilename : Filename where the JSON data should be saved .

52 ”””

53

54 gdb = GraphDB ()

55

56 rangeA = gdb . getDescriptionNodesOfATree (TreeRootStudyA)

57 rangeB = gdb . getDescriptionNodesOfATree (TreeRootStudyB)

58

59 Similarity = SimilarityIndex ()

60

61 JSON = "["

62

63 for i in rangeA :

64

65 ni = gdb . getNode (i)

66

67 JSON = JSON + "\n" + ’{’ + "\"name\": \"{0}\" , \"imports

\": [" . format ("root." + ni ["label"])

A.8. SimilarityIndex.py 101

68

69 imports = False

70

71 for j in rangeB :

72

73 nj = gdb . getNode (j)

74

75 SI = Similarity . CalculateIndex (gdb , ni , nj)

76

77 if LowerBoundary <= SI :

78 JSON = JSON + "\"{0}\", " . format ("root." + nj ["label"])

79 imports = True

80

81 if imports :

82 # Remove the l a s t comma

83 JSON = JSON [:−2]

84

85 JSON = JSON + "]},"

86

87 for j in rangeB :

88 nj = gdb . getNode (j)

89 JSON = JSON + "\n" + ’{’ + "\"name\": \"{0}\" , \"imports

\": []" . format ("root." + nj ["label"]) + ’},’

90

91 # Remove the l a s t comma

92 JSON = JSON [:−1]

93

94 JSON = JSON + "\n]"

95

96 text_file = open (JSONFilename , "w")

97 text_file . write (JSON)

98 text_file . close ()

102 Appendix A. Demonstration

A.9 TraceEvolutionaryHistory.py

1 import codecs

2

3 from py2neo import rest , neo4j , cypher

4 from GraphDB import ∗

5 from NodeAndRelationshipTypes import ∗

6

7 class TraceEvolutionaryHistory :

8

9 def BottomUpAggregation (self , gdb , node) :

10 ”””

11 This method s t a r t s from anywhere in the t r e e and goes down

u n t i l reach Operat iona l Taxonomic Unit (OTU) nodes .

When i t happens , the method b a s i c a l l y r e t r i e v e s a l l

outgoing r e l a t i o n s h i p s from the reached OTU node and

s t a r t going back toward the root . When the method i s

t r a v e r s i n g i n t e r n a l nodes (Hypothet i ca l Taxonomic Units

) from the l e a v e s back toward the root i t per forms an

union operat i on with a l l c h i l d r e n nodes outgoing

r e l a t i o n s h i p s − i . e . , r e l a t i o n s h i p s o f the same type

are ignored − and then f o r each r e l a t i o n s h i p in the

union the method c r e a t e s a r e l a t i o n s h i p o f the same

type changing the s t a r t i n g node to i t s e l f and the end

node remains the same . In the end , the method r e tu rn s

a l l r e l a t i o n s h i p s outgoing from the given node .

12 Returns : Outgoing r e l a t i o n s h i p s o f the g iven node . In case

the g iven node i s an OTU, i t r e tu rn s only the

character −s t a t e s r e l a t i o n s h i p s from the given node to

cha rac t e r nodes .

13 In case the g iven node i s an HTU, the method re tu rn s a l l

outgoing r e l a t i o n s h i p s r e s u l t e d from the union o f i t s

c h i l d r e n nodes outgoing r e l a t i o n s h i p s .

14 ”””

15

16 if node ["type"] != NodeTypes . OTU and node ["type"] !=

NodeTypes . description :

17

A.9. TraceEvolutionaryHistory.py 103

18 NeighborsNodes = gdb . getOutgoingAdjacentNodes (node)

19

20 relationships = []

21

22 for neighbor in NeighborsNodes :

23

24 rels = self . BottomUpAggregation (gdb , neighbor [0])

25

26 relationships . append (rels)

27

28 # At t h i s po int we have a l l c h i l d r e n nodes r e l a t i o n s h i p s .

In such a case , we can implement the f i r s t part o f

the a lgor i thm which i s dup l i c a t e a l l r e l a t i o n s h i p s (

union o f c h i l d r e n nodes r e l a t i o n s h i p s) in the g iven

node .

29

30 for rels in relationships :

31

32 if rels is not None :

33

34 for rel in rels :

35

36 if rel [0] ["type"] == str (RelationshipTypes .

descriptor) :

37

38 relType = rel [0] . type . encode (’ascii’ , ’ignore’)

39

40 startNode = node

41 endNode = rel [0] . end_node

42

43 # c r e a t i n g new r e l a t i o n s h i p s only where nece s sa ry

44 gdb . getPy2neoGraphDatabaseService () [0] .

get_or_create_relationships ((startNode , relType

, endNode , { "type" : str (RelationshipTypes .

descriptor) }))

45

46

47 return gdb . getOutgoingRelationships (node)

104 Appendix A. Demonstration

48

49

50 def TopDownRefining (self , gdb , node) :

51 ”””

52 This method e s s e n t i a l l y should be c a l l e d j u s t a f t e r the

BottomUpAggregation method pass ing the same s t a r t i n g

node provided in BottomUpAggregation method . I t s t a r t s

from the g iven node (gn) back down the t r e e and in

every HTU i t t r a v e r s e s i t compare the character −s t a t e s

s t a r t i n g from i t s e l f (gn) and po in t ing to a given

cha rac t e r (chaN) with every character −s t a t e s that

s t a r t s in i t s c h i l d r e n nodes (chiN) and po in t s to the

same charac t e r node (chaN) f o r a l l cha rac t e r nodes i t (

gn) po in t s to . In case the comparation r e s u l t i s not

empty − i . e . the s e t d i f f e r e n c e between the chatacter −

s t a t e s s t a r t i n g from the g iven node (gn) and the s e t o f

character −s t a t e s s t a r t i n g from the c h i l d r e n node (chiN

) i s not empty − i t c r e a t e s a edge c a l l e d ’ EvolvedTrait

’ from i t s e l f (gn) to the g iven cha rac t e r (chaN) .

53 ”””

54

55 if node ["type"] != NodeTypes . OTU and node ["type"] !=

NodeTypes . description :

56

57 NeighborNodes = gdb . getOutgoingAdjacentNodes (node)

58

59 tuNeighborNodes = []

60 descriptionNeighborNodes = []

61

62 for n in NeighborNodes :

63

64 if n [0] ["type"] == NodeTypes . HTU or n [0] ["type"] ==

NodeTypes . OTU :

65

66 tuNeighborNodes . append (n)

67

68 elif n [0] ["type"] == NodeTypes . description :

69

A.9. TraceEvolutionaryHistory.py 105

70 descriptionNeighborNodes . append (n)

71

72 for tu in tuNeighborNodes :

73

74 for desc in descriptionNeighborNodes :

75

76 # Set Semantics

77 # http ://www. itmaybeahack . com/book/python −2.6/html/p02/

p02c06 s e t s . html

78

79 nodeOutgoingRelationshipTypes = set (gdb .

getDistinctRelationshipsInBetween (node , desc [0])

)

80 descOutgoingRelationshipTypes = set (gdb .

getDistinctRelationshipsInBetween (tu [0] , desc [0])

)

81

82 # d i f f w i l l have e lements that e x i s t in

nodeOutgoingRelat ionshipTypes and does not e x i s t s in

descOutgoingRelat ionshipTypes

83 diff = nodeOutgoingRelationshipTypes −

descOutgoingRelationshipTypes

84

85 # Removes EvolvedTrait r e l a t i o n s h i p

86 Difference = diff − set ([str (RelationshipTypes .

EvolvedTrait)])

87

88 if 0 < len (Difference) :

89

90 # Creates a new type o f r e l a t i o n s h i p (EvolvedTrait)

which are the t r a i t s that changed from node to htu

91 startNode = node

92 endNode = desc [0]

93 relType = str (RelationshipTypes . EvolvedTrait)

94

95 gdb . getPy2neoGraphDatabaseService () [0] .

get_or_create_relationships ((startNode , relType ,

endNode , { "type" : relType }))

106 Appendix A. Demonstration

96

97

98 gdb . deleteRelationshipsTypeFromNode (node , str (

RelationshipTypes . descriptor))

99

100

101 for tu in tuNeighborNodes :

102 self . TopDownRefining (gdb , tu [0])

103

104

105 def __JSONencodingRecursion (self , gdb , node , TraitNodes ,

nesting) :

106 ”””

107 I t i s part o f the JSONencoding method .

108 Args :

109 node : Given node .

110 TraitNodes : I s the l i s t o f cha rac t e r nodes that node ’ s

parent has a ’ EvolvedTrait ’ edge po in t ing to .

111 ne s t i ng : I s the space (padding) on the l e f t .

112 Returns : JSON s t r i n g .

113 ”””

114

115 if node ["type"] != NodeTypes . OTU and node ["type"] !=

NodeTypes . description :

116

117 EvolvedTraitNodes = gdb .

getIncomingAdjacentNodesWithRelationshipInBetween (

node , str (RelationshipTypes . EvolvedTrait))

118

119 NeighborNodes = gdb .

getIncomingAdjacentNodesWithRelationshipInBetween (

node , str (RelationshipTypes . TreeEdge))

120

121 json = ’’

122 json = json + "\n" + ’ ’ . ljust (nesting) + "{"

123

124 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "\"{0}\"

: \"{1}\"," . format ("otu" , NodeTypes . OTU)

A.9. TraceEvolutionaryHistory.py 107

125 json = json + "\n" + ’ ’ . ljust (nesting) + "\"parents\"

: ["

126

127 for nn in NeighborNodes :

128

129 result = self . __JSONencodingRecursion (gdb , nn [0] ,

EvolvedTraitNodes , nesting + 2)

130

131 json = json + result + ","

132

133 # Remove the l a s t comma

134 json = json [:−1]

135

136 json = json + "\n" + ’ ’ . ljust (nesting) + "]"

137 json = json + "\n" + ’ ’ . ljust (nesting) + "}"

138

139 return json

140

141 elif node ["type"] == NodeTypes . OTU :

142

143 json = ’’

144 json = json + "\n" + ’ ’ . ljust (nesting) + "{"

145 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "\"{0}\"

: \"{1}\"," . format ("otu" , node ["label"])

146

147 i = 0

148 for trait in TraitNodes :

149

150 descriptions = gdb . getDistinctRelationshipsInBetween (

node , trait [0])

151

152 for desc in descriptions :

153

154 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "

\"{0}{1}\" : \"{2}\"," . format (RelationshipTypes .

descriptor , str (i) , trait [0] ["label"] . encode (’

ascii’ , ’ignore’))

108 Appendix A. Demonstration

155 json = json + "\n" + ’ ’ . ljust (nesting + 2) + "

\"{0}{1}\" : \"{2}\"," . format (NodeTypes . description

, str (i) , desc . encode (’ascii’ , ’ignore’) . replace ("_

" , " "))

156 i = i + 1

157

158 # Remove the l a s t comma

159 json = json [:−1]

160

161 json = json + "\n" + ’ ’ . ljust (nesting) + "}"

162

163 return json

164

165

166 def JSONencoding (self , JSONFilename , startNode) :

167 ”””

168 I t expor t s to a JSON format the t r e e s t r u c t u r e with a l l

cha r a c t e r s the a lgor i thm f l agg ed with ’ EvolvedTrait ’

edge .

169 Args :

170 JSONFilename : Filename where the JSON data should be

saved .

171 startNode : Node from where the data s t a r t being c o l l e c t e d

.

172

173 ”””

174

175 gdb = GraphDB ()

176

177 json = self . __JSONencodingRecursion (gdb , startNode , [] ,

0)

178

179 text_file = open (JSONFilename , "w")

180 text_file . write (json)

181 text_file . close ()

