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Abstract

Geographical information is often enclosed in digital objects (like documents, images,

and videos) and its use to support the implementation of different services is of great

interest. For example, the implementation of map-based browser services and geographic

searches may take advantage of geographic locations associated with digital objects. The

implementation of such services, however, demands the use of geocoded data collections.

This work investigates the combination of textual and visual content to geocode digital

objects and proposes a rank aggregation framework for multimodal geocoding. Textual

and visual information associated with videos and images are used to define ranked lists.

These lists are later combined, and the new resulting ranked list is used to define appro-

priate locations. An architecture that implements the proposed framework is designed in

such a way that specific modules for each modality (e.g., textual and visual) can be devel-

oped and evolved independently. Another component is a data fusion module responsible

for seamlessly combining the ranked lists defined for each modality. Another contribution

of this work is related to the proposal of a new effectiveness evaluation measure named

Weighted Average Score (WAS). The proposed measure is based on distance scores that

are combined to assess how effective a designed/tested approach is, considering its overall

geocoding results for a given test dataset.

We validate the proposed framework in two contexts: the MediaEval 2012 Placing

Task, whose objective is to automatically assign geographical coordinates to videos; and

the task of geocoding photos of buildings from Virginia Tech (VT), USA. In the context

of the Placing Task, obtained results show how our multimodal approach improves the

geocoding results when compared to methods that rely on a single modality (either tex-

tual or visual descriptors). We also show that the proposed multimodal approach yields

comparable results to the best submissions to the Placing Task in 2012 using no additional

information besides the available development/training data. In the context of the task of

geocoding VT building photos, experiments demonstrate that some of the evaluated local

descriptors yield effective results. The descriptor selection criteria and their combination

improved the results when the knowledge base used has the same characteristics of the

test set.
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Resumo

Informação geográfica é usualmente encontrada em objetos digitais (como documentos,

imagens e v́ıdeos), sendo de grande interesse utilizá-la na implementação de diferentes

serviços. Por exemplo, serviços de navegação baseados em mapas e buscas geográficas

podem se beneficiar das localizações geográficas associadas a objetos digitais. A imple-

mentação destes serviços, no entanto, demanda o uso de coleções de dados geocodificados.

Este trabalho estuda a combinação de conteúdo textual e visual para geocodificar obje-

tos digitais e propõe um arcabouço de agregação de listas para geocodificação multimodal.

A informação textual e visual de v́ıdeos e imagens é usada para definir listas ordenadas.

Em seguida, elas são combinadas e a nova lista ordenada resultante é usada para definir

a localização geográfica de v́ıdeos e imagens. Uma arquitetura que implementa essa pro-

posta foi projetada de modo que módulos espećıficos para cada modalidade (e.g., textual

ou visual) possam ser aperfeiçoados independentemente. Outro componente é o módulo

de fusão responsável pela combinação das listas ordenadas definidas por cada modali-

dade. Outra contribuição deste trabalho é a proposta de uma nova medida de avaliação

da efetividade de métodos de geocodificação chamada Weighted Average Score (WAS).

Ela é baseada em ponderações de distâncias que permitem avaliar a efetividade de uma

abordagem, considerando todos os resultados de geocodificação das amostras de teste.

O arcabouço proposto foi validado em dois contextos: desafio Placing Task da inicia-

tiva MediaEval 2012, que consiste em atribuir, automaticamente, coordenadas geográficas

a v́ıdeos; e geocodificação de fotos de prédios da Virginia Tech (VT), EUA. No contexto

do desafio Placing Task, os resultados mostram como nossa abordagem melhora a geo-

codificação em comparação a métodos que apenas contam com uma modalidade (sejam

descritores textuais ou visuais). Nós mostramos ainda que a proposta multimodal produ-

ziu resultados comparáveis às melhores submissões que também não usavam informações

adicionais além daquelas disponibilizadas na base de treinamento. Em relação à geo-

codificação das fotos de prédios da VT, os experimentos demostraram que alguns dos

descritores visuais locais produziram resultados efetivos. A seleção desses descritores e

sua combinação melhoraram esses resultados quando a base de conhecimento tinha as

mesmas caracteŕısticas da base de teste.
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Fiorilli Gusson Roscitto.

I also acknowledge the financial support provided by CAPES for my abroad doctoral

internship (Sandwich Doctorate scholarship 1385-10-0) at Virginia Tech (VT), USA, and

for work presentation in conferences. It enabled further opportunities and collaborations

that go beyond the academic sense of those words.

I am thankful to Dr. Edward A. Fox for his advice and time besides accepting me

as Ph.D intern student for one year internship in his research lab, the Digital Library

Research Library (DLRL) at VT. In DLRL, I was so warmly welcomed that I felt as

xiii



part of that family. I was introduced to great people who taught me many multicultural

and technical subjects that I can relate to forever. Not to mention many opportunities

to grow, learn, collaborate, and make friends. I have enjoyed my time there to learn,

hang around, or work with people like Dr. Fox himself, Dr. Eric Hallerman, Dr. Andrea

L. Kavanaugh, Dr. Steven D. Sheetz, Dr. Donald Shoemaker, Travis Whalen, Venkat

Srinivasan, Seungwon Yang, Sung Hee Park, Sunshin Lee, Spencer J. Lee, Eric Fouh,

Susie Marion, Lubna Shihadeh, Jonathan Leidig, Monika Akbar, and Uma Murthy.

As a result of one of many opportunities provided by Dr. Fox at VT, we thank its

University Relations (UniRel) for providing access to some of the photographs used in one

of our works. Additionally, we would like to thank the Center for Geospatial Information

Technology (CGIT) at VT and the GIS Management for VT campus facilities for providing

access to the campus building database.

In this doctoral journey, I got to know some Brazilians in Blacksburg as Cristiane and

Regis Kopper and Luiza Abruzzi, who have turned into our best friends in US. Regis and

Cris have even picked us up at the airport without knowing who my husband and I were

when we first arrived there. Not to mention the reunion there with Dr. João Setubal and

his wife Silvia, who I have met before in Campinas.

I appreciate very much all the collaborations built in these years and so many shared

works in co-authored papers. In most of these submissions, there were online or on-site

meetings for last minutes (hours) reviews and wrapping up before the final deadlines.

Despite the tiredness, there were some fun and sense of accomplishment in each of these

paper/result submissions. Looking forward to more collaborations.

In closing, I would like to express my appreciation to my family and friends support.

Specially, from the bottom of my heart, I am deeply thankful to my husband Zanoni Dias,

who has always supported me and my doctoral studies besides being so understanding

and patient with my weekends and nights sold “a million times” to meet many deadlines.

Surely those nights included holidays and the eves of our marriage (and honeymoon),

Christmas, and New Year, just to name a few.

xiv



“The profoundest distances are never

geographical.”

- John Fowles

xv





Contents

Abstract ix

Resumo xi

Acknowledgements xiii

Epigraph xv

1 Introduction 1

1.1 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Map-based Browsing Services . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The CTRnet Digital Library . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Challenges & Objectives . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Hypothesis & Research Questions . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basic Concepts & Related Work 11

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Raster & Vector Data . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Spatial Relationships and Queries . . . . . . . . . . . . . . . . . . . 14

2.1.3 Geographic Information Retrieval . . . . . . . . . . . . . . . . . . . 16

2.1.4 Multimedia Retrieval of Geographic Information . . . . . . . . . . . 30

2.1.5 Geographic Information and Digital Libraries . . . . . . . . . . . . 33

2.2 Multimodal Video Geocoding Task . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A Rank Aggregation Framework for Multimodal Geocoding 41

3.1 Proposed Framework for Multimodal Geocoding . . . . . . . . . . . . . . . 41

3.1.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvii





3.1.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Weighted Average Score (WAS) . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Framework Validation 53

4.1 Video Geocoding at MediaEval 2012 . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Architecture Implementation . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 MediaEval 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Domain-specific Image Geocoding: Virginia Tech Building Photos Case . . 78

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.5 Feature Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusions 93

5.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Published Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xix





List of Tables

3.1 WAS(a) vs. Accumulative Count. . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 WAS(b) vs. Accumulative Count. . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 WAS(c) vs. Accumulative Count. . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Image representations evaluated. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 The best visual match for each query image and its geocoding result. . . . 83

xxi





List of Figures

1.1 Google Maps Search for a point of interest (POI) near by Institute of

Computing at University of Campinas (UNICAMP). . . . . . . . . . . . . 3

1.2 Panoramio’s browsing service for photos from UNICAMP and its vicinity. . 4

1.3 CTRnet Collections on Google Maps. . . . . . . . . . . . . . . . . . . . . . 5

1.4 Emergency task force helping the injured in Norris Hall on VT’s April 16th

shooting tragedy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Example of results for the query with the photo picturing emergency task

force at Norris Hall (VT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Cutaway view of Earth: P is located at latitude φ◦N and longitude λ◦E. . 12

2.2 Longitude and latitude concepts. . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Difference between vector and raster data. . . . . . . . . . . . . . . . . . . 14

2.4 Examples of topographic relationship: disjoint, touch, overlap, in (inside),

and cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Google Search result for neighbors of Campinas, Brazil. . . . . . . . . . . . 17

2.6 Campinas neighborhood and cities within 50 km. . . . . . . . . . . . . . . 18

2.7 Architecture of a GIR system. . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Geoparsing example: place names recognized in this extract of Wikipedia’s

page about Campinas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 True and false references in geoparsing [53]. . . . . . . . . . . . . . . . . . 25

2.10 A partial hierarchical geographic concepts: Lisboa and Santa Catarina

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Example from Google Maps with a point of interest (POI) selected and

search for something nearby enabled. . . . . . . . . . . . . . . . . . . . . . 28

2.12 Example of results returned by Google Place search. . . . . . . . . . . . . . 29

3.1 Proposed architecture for video multimodal geocoding. . . . . . . . . . . . 43

3.2 The curve of score(i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Geocoding result distribution in various precision radii for method a and b. 50

3.4 Geocoding result distribution in various precision radii for methods b and c. 51

xxiii





4.1 Heat map of the distribution of the videos in training set. . . . . . . . . . . 59

4.2 Heat map of the distribution of the videos in test set. . . . . . . . . . . . . 59

4.3 Stacked bars showing the isolated performances of each method in the

development set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Stacked bars showing the isolated performances of each method in the test

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Error bars of WAS(m) measure for isolated methods. . . . . . . . . . . . . 65

4.6 Correlation values for each pair of methods evaluated in the development set. 66

4.7 Correlation (distance) × average WAS for each pair OKPa vs. other meth-

ods evaluated in the development set. . . . . . . . . . . . . . . . . . . . . . 67

4.8 Results of rank aggregation methods evaluated using WAS(m) and their

standard error (SE) interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Stacked histograms showing the performances, in the development set, of

the best methods for each modality and their fusion. . . . . . . . . . . . . 69

4.10 Stacked histograms showing the performances, in the test set, of the best

methods for each modality and their fusion in the test set. . . . . . . . . . 70

4.11 WAS(m) general score and standard error (SE) interval: fusion and indi-

vidual textual descriptors results in the development set (a) and test set

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 WAS(m) general score and standard error interval: fusion and individual

visual descriptors results in the development set (a) and test set (b). . . . . 71

4.13 Geocoding results for conventional textual and user-related properties . . . 73

4.14 Correlogram in the development set for conventional text (OKPa, OKPk,

DICEa, and DICEk), user-related (TfIdUH, OKPuh, and DiceUH) fea-

tures, and two best visual features (Ce5000s and HMP). . . . . . . . . . . 74

4.15 WAS(m) general score and standard error interval: fusion results for three

different geocoding strategies (Ftex, FTxVis, and TxVisUL) . . . . . . . . 75

4.16 Only-visual submission: correctly geocoded test videos for different preci-

sion levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.17 Overall best submission to the Placing Task 2012, considering correctly

geocoded test videos within different precision radii. . . . . . . . . . . . . . 76

4.18 Effectiveness performance for different precision levels (no additional re-

sources used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.19 Spatial distribution of photos used as training set. . . . . . . . . . . . . . . 80

4.20 Spatial distribution of photos used as test set. . . . . . . . . . . . . . . . . 80

4.21 Correctly predicted test photos. . . . . . . . . . . . . . . . . . . . . . . . . 82

4.22 Correlation among evaluated descriptors in the training set. . . . . . . . . 85

4.23 Correctly predicted training photos. . . . . . . . . . . . . . . . . . . . . . . 85

xxv





4.24 Boundary of Blacksburg (VA). . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.25 WAS scores and confidence intervals for single results in the training set. . 87

4.26 Correlation × mean WAS score between S.SIFT.1k and other descriptors

in the training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.27 WAS scores and its confidence intervals for fusion results in the training set. 89

4.28 WAS scores and its confidence intervals for single results in the test set. . . 89

4.29 Correlation in the test set. Upper panel shows the dispersion graph for

each pair of methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.30 Correlation × mean WAS scores between S.SIFT.1k and other descriptors

in the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.31 SSift1k × other WAS scores and its confidence interval for fusion results in

test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xxvii





Chapter 1

Introduction

Since geographic information is involved in people’s daily lives, there is a great amount

of data about geographical entities on the Web. This information is also often found in

digital objects (e.g., documents, images, and videos) of several digital libraries (DLs).

The process of associating a geographic location with photos, videos, and documents is

called geocoding. When a digital object is geocoded, it is related to some place on Earth,

and therefore it can be browsed on a map. That opens new opportunities for establishing

new relations based on geographic location.

The development of spatially-aware services (e.g., search and browse), on the other

hand, demands that digital objects be geocoded or geotagged, i.e., the location of digital

objects in terms of their latitude and longitude needs to be defined in advance. Geocoding

is a common expression used in the Geographic Information Retrieval (GIR) community.

Other existing designations like geotagging and georeferencing usually appear in the mul-

timedia domain [89]. In the Geographic Information System (GIS), georeferencing is a

term largely used to refer to a given location where something exists, in a physical space,

in terms of a coordinate system (i.e., latitude and longitude).

This work tackles the task of geocoding digital objects. The main motivation for

geocoding them is to empower new services with spatial reasoning, such as those that

exploit intrinsic relations that exist among geographic entities and are encoded or repre-

sented in/by different modalities.

This work proposes a multimodal approach to geocode digital objects. In this work

“multi” refers to “more than one” and “modal” to mode, modality or type of data (visual,

textual, audio, etc). In Oxford Dictionaries, “mode” is a noun defined as “a way or

manner in which something occurs or is experienced, expressed, or done” [92]. Hence, we

define “multimodal approach for geocoding digital object” as a method that takes into

account multiple types of data (or ways it is expressed) that define or are related to a

digital object in order to geocode it.
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2 Chapter 1. Introduction

This chapter presents in Section 1.1 the scenarios that motivate this work. In Sec-

tion 1.2, we present the research challenges and the objectives of this work. In Section 1.3,

in turn, we discuss the hypotheses and the main research questions addressed. Finally,

Section 1.4 highlights our main contributions, while Section 1.5 outlines the organization

of this work.

1.1 Motivating Scenarios

In this section, we present some scenarios related to the use of geographic information

in complex information systems. The first scenario refers to the implementation of map-

based browsing services in digital libraries (Section 1.1.1). The second one refers to the

use of locations associated with images in a particular digital library (Section 1.1.2).

1.1.1 Map-based Browsing Services

Nowadays, there are many devices with a GPS unit embedded, such as cellphones and

cameras, that associate location tags with photos and other published content like Twitter

updates, Facebook posts, and other posts in social medias. On the Web, tools like Google

Maps1 and Google Earth2 are very popular, and partially meet the needs of Web users

for geospatial information. By using these tools, users can, for example, find an address

on a map, look for directions from one place to another, find nearby points of interest

(e.g., restaurants, coffee shops, museums) as pictured in Figure 1.1, and list the nearby

streets. Other common queries usually desired by users include finding documents, videos,

and photos that refer to a certain location’s vicinity. Additionally, large collections of

digital objects can be browsed based on the location to which they are related, as shown

in Figure 1.2.3

A possible usage scenario involves a user looking for information related to a certain

place on Earth. To meet this user’s need, for example, a digital library (DL), map, or

location-based services can provide a browsing service showing the world map on which

that user can locate objects of interest found in specific locations. Interaction mechanisms

based on map navigation (e.g., zoom and pan) and definition of regions of interest could be

employed. At different levels of zoom, diverse information could be shown. For example,

at a country level, people could visualize country boundaries, and a list of digital objects

found within that region could be shown on a map. As a user zooms in to take a closer

look at the map, more detailed information or different summaries could be exhibited

1http://maps.google.com/ (as of Dec. 2013).
2http://www.google.com/earth/ (as of Dec. 2013).
3http://www.panoramio.com/ (as of Dec. 2013).









6 Chapter 1. Introduction

Figure 1.4: Emergency task force helping the injured in Norris Hall on VT’s April 16th
shooting tragedy (by Alan Kim/The Roanoke Times).

modal in fact reduce the matter to a textual geocoding problem. In the work proposed

in [96], for example, other modalities/medias, such as sound/speech, are converted into

textual transcripts that are used in text-based geocoding methods.

One problem commonly found on approaches based on textual information relies on

the lack of objectivity and completeness, in the sense that the understanding of the visual

content of a multimedia object may change according to the experience and perception of

each subject. Other challenges include lexical and geographical ambiguities in recognizing

place names [75], such as different spelling of the name of a city or country (e.g. Peking

and Beijing), indirect references to a place or region (e.g., the Andes), imprecise boundary

definitions, and points of interest that remind particular places (e.g., York Properties,

Paris Hotel), or places named after a person (e.g., Roosevelt in the state of Utah, USA).

In this scenario, a promising alternative is to use the image/video visual content. The

objective is to explore these image/video properties (such as texture, color, and movement)

as alternative and complementary cues for geocoding. Furthermore, having multiple (and

usually complementary) sources of information for multimedia geocoding also opens the

opportunity of using existing fusion approaches to combine them.

There are initiatives in the literature that have proposed some methods to handle

the video geocoding problem by exploiting multiple modalities [63, 122] as reviewed in

Section 2.2. In these methods, however, the geocoding process consists in the use of ad

hoc methods (usually one per modality) that are used in a sequential manner to define

the location of videos. In these methods, each modality works as a filter that refines the

results of previous steps or as a fallback system.

This work aims to investigate the combination of textual and visual content to geocode

digital objects, and proposes a flexible multimodal framework for this purpose, so that

specific modules for each modality (e.g., textual and visual) can be developed and evolved
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developed for each modality (textual and visual) to geocode digital objects. Those contri-

butions are derived from works in the multimedia information retrieval (MIR) and GIR

communities. The GIR area deals with the challenges of geoparsing and geocoding textual

documents, while MIR handles landscape recognition and scene understanding challenges,

using image/video visual content properties.

These hypotheses are associated with the following research questions:

• Does combining visual and textual descriptors enhance geocoding results? A study

should be carried out to verify if and when the fusion of various evidences improve

the results when compared to geocoding methods that exploit one single modality.

• Which is the role of each feature descriptor (textual and visual) in the geocoding

process? Which modality impacts the geocoding results the most? In this context,

we deal with textual and visual descriptors, and we need to determine how to choose

the more appropriate ones to be used in the fusion approach.

• How do we identify references to places in images or textual documents? Which

approaches are appropriate to describe images and textual documents?

• How to combine geocoding results based on visual and textual descriptions? Which

fusion strategy is more appropriate for the problem?

• How to define an infrastructure for geocoding based on multimodal descriptions?

In this case, we are interested in identifying the components that should compose a

multimodal framework that geocodes digital objects. Which contextual information

could be used? Which components or tools should be implemented or adapted in

order to be used in the geocoding framework?

• How could geocoding strategies be evaluated? Which measures would be appropriate

to assess the quality of results provided by geocoding methods?

1.4 Contributions

This work provides contributions in different areas, such as geographic and multimedia in-

formation retrieval, as well as digital libraries. In order to enable spatially-aware searching

and browsing services, this work is focused on proposing a novel framework for geocoding

digital objects that combines different modalities. Although we validate the proposed

framework by implementing the geocoding process using textual and visual features of

digital objects, we believe that this framework is generic and flexible enough to be ex-

tended in order to consider a variety of modalities and implementation strategies, being

possibly useful for different applications.
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The main contributions of this work are:

• a proposal of a rank aggregation framework for multimodal geocoding of digital

objects. It comprises specific modules for each modality (e.g., textual and visual)

that can be developed and evolved independently;

• definition of a data fusion module responsible for seamlessly combining ranked lists

produced by different modalities;

• partial implementation of the proposed framework using state-of-the-art approaches

in the implementation of its components;

• validation of the proposal in the Placing Task at MediaEval benchmark showing the

individual performance of textual and visual descriptors, as well as the geocoding

results related to the use of fusion approaches;

• validation of the proposed framework in the task of geocoding Virginia Tech (VT)

buildings, aiming to enable geo-searching and geo-browsing services related to the

VT April 16th collection;

• a new effective evaluation measure to assess the performance of geocoding ap-

proaches based on their geocoding results.

1.5 Text Organization

In Chapter 2, we present fundamental concepts related to geographic information; an

overview and existing research challenges in the geographic information retrieval area; re-

lated work on multimodal retrieval of geographic information; and some initiatives related

to the use of geographic information in digital libraries.

Next, in Chapter 3 our proposed framework for geocoding using multimodal descrip-

tions is described and formalized. We also outline its implementation. Finally, we describe

a novel effectiveness measure to evaluate geocoding results.

In Chapter 4, we describe experiments carried out in the context of the Placing Task

at MediaEval 2012 to validate our proposal for multimodal geocoding. We also describe

experiments aiming to geocode photos of VT buildings.

Finally, we conclude this work in Chapter 5, with a summary of our main contributions.

We also present possible extensions that could be conducted following some of the main

research venues opened by this work.





Chapter 2

Basic Concepts & Related Work

Geographic information is characterized by the existence of an attribute that is related

to a localization on Earth, for example a geographic coordinate, or a relationship to some

other object whose geographic location is known. It might be a fully complete address

(street name, number, and postal code) or even a single reference such as “LaGuardia

Airport,” which also implicitly relates to the name of the city in which it is located (New

York).

An example of a query that most existing Information Retrieval systems do not support

is: “Which are the webpages of the cities that are neighbors of Blacksburg?” The reason

is that spatial operators usually are supported by spatial databases, and those are not

integrated with Web search systems. This kind of problem is tackled in the Geographic

Information Retrieval (GIR) area, which improves upon information retrieval (IR) by

adding the handling of geographic information found in Web documents and queries.

In this chapter, we survey the GIR area. Some of the concepts are related to geospatial

(or geographic) information. Others are related to multimodal retrieval, as it integrates

with geographic information. A key challenge is recognizing places based on image or

video content [49, 62, 72, 89]. Therefore, we also discuss existing initiatives for multimodal

geocoding.

This chapter is organized as follows: in Section 2.1 introductory concepts about geo-

graphic information (data format and spatial relations and queries) are explained, followed

by a presentation about geographic information retrieval, and discussion on different as-

pects related to the multimedia retrieval of geographical information and its use in digital

libraries; in Section 2.2, related works focused on video geocoding task using multimodal

information are summarized; Section 2.3 finalizes this chapter with an overview of the

data fusion area and its related works useful for this work.

11
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for example, JPG, PNG, BMP, GeoTIFF (which embeds geo location in a special

tag), etc.

Vector data represents geographic objects like rivers, city boundaries, and houses as

basic geometric forms of lines, polygons, and points. As we have seen previously,

geographic objects have coordinates (such as latitude and longitude) that associate

them with a location on Earth. A point is defined by a coordinate, a line by two

coordinates, and a polygon by three or more. Examples of popular vector format

files are SVG, DXF, and shapefiles (SHP).

Examples of these two data formats are shown in Figure 2.3.

by Wegmann via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Raster vector tikz.png [CC-BY-SA-3.0
(http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)] (as of Jan. 2014).

Figure 2.3: Difference between vector and raster data.

Some current database management systems (DBMSs) support storing geographic

vector data and provide special operators and functions to query them, e.g., MySQL and

PostgreSQL (with PostGIS extension).

2.1.2 Spatial Relationships and Queries

Spatial relationships refer to relative positions between objects in space and they can be

classified as [9]:

Topological: this kind of relationship indicates connections between objects such as

adjacent to, containing, or is contained, but it does not include measurement or

direction. Egenhofer [32] classifies the topological relationships between two dimen-

sional objects as: disjoint, meet, overlap, covers, contains, equal, covered by, and





16 Chapter 2. Basic Concepts & Related Work

include the shortest path between two points in a network and even a more compli-

cated query like “What is the fastest path from Blacksburg to Washington, D.C.?”,

which involves distinct variables such as distance, direction, and even time;

Multimedia, when a query requires a variety of information types (e.g., text, image,

and geographic), e.g., “In which rivers can we find fishes similar to a given picture,

and that are from the darter family?”

2.1.3 Geographic Information Retrieval

Geographical Information Retrieval (GIR) is an area concerned with challenges such as

recognizing, querying, retrieving, and indexing geographical information. It combines re-

search in databases, human-computer interaction (HCI), geographic information systems

(GIS), indexing, information retrieval (IR), and georeferenced information browsing [74],

as well as visualization of information on maps. According to Jones & Purves [55],

GIR aims to improve information retrieval centered on geographic information in non-

structured documents such as those found in the Web.

Two important concepts of this area are geoparsing and geocoding. Geoparsing is

a process of recognizing references with locations inside documents, while ignoring false

references (e.g., a place name that is also the name of an organization or person), while

geocoding is a process of associating a document with some specific latitude and longitude

based on locations recognized by geoparsing [53, 55]. Thus, geocoding consists in mapping

a document to a location on Earth. For example, based on where its content refers to, we

can assign a latitude and longitude to a document, so later a user can retrieve it based on

geographical queries (e.g.,“Give me all documents that refer to parks in the Blacksburg

vicinity.”).

In the following, we discuss the importance of handling geographic information on the

Web, and present a typical GIR architecture. This architecture will serve as a baseline to

discuss the main concepts related to GIR – geoparsing and geocoding – as well as existing

research challenges.

Geographic Information on the Web

As was introduced earlier, traditional search services are based on keyword matching and

do not consider that keywords might represent geographical entities which are spatially

related to each other. Yet, even though these relationships have not been explicitly used

in a query, they are potentially relevant to users [54].

For example, typing “cities which are neighbors of Campinas” in Brazil into Google

search will return webpages with the typed in terms (Figure 2.5). However, that query en-
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• using prior knowledge to associate a city with a region;

• visiting previously known websites (e.g., Wikipedia). From these webpages, users

could find nearby cities, or the distance between cities. In this case, users go first

to Wikipedia to find the city of interest and then create a list of candidate cities;

• submitting other words to the search tool in order to return the list of cities. This

is the case in which the user first searches using the phrase “Curitiba metropolitan

cities” to get the list of cities in the Curitiba metropolitan area, thus resolving the

part of the query that refers to neighborhood of Curitiba;

• using a map service to locate/find a city used as reference, visually inspecting a

map, and manually creating a list of cities that satisfy the target geographical

relationship. An example involves going first to a mapping tool like Google Earth

or Google Maps, finding the city of interest (e.g., Curitiba), and then by visually

picking the neighboring cities.

Finally, the second step involves searching for each city listed in the first step by:

• submitting the city name as keyword to the search tool to find the webpage of that

specific city;

• reaching the city page by using a previously known URL naming pattern (e.g., the

URL of the home page of a city in Brazil is formed by www.<city name>.<acronym>.

gov.br, where <city name> is the city name and <acronym> is the acronym of its

state, so for Curitiba, a city in the state of Paraná (PR), its URL is

http://www.curitiba.pr.gov.br.

There were some cases where a user just relied on map tools, like Google Earth, that

show the cities and their amenities and points of interest (POIs) (e.g., hotels and subway

stations) on a map to answer the question posed by the task (e.g., “Barcelona’s hotels

that are near subway stations”). In fact, using these tools, the geographic relationship is

resolved by the user, who infers and inspects it visually on the map. Therefore there is

no automatic list; in this case the user is in charge of building the list manually.

Incorporating geographic relationships in Web searches is not supported yet; as seen

in this study, they are mostly processed by the user first. This could be explained by their

inherent complexity, which is worsened by their imprecision and subjectivity. Thus, some

geo-related concepts like near or south might depend on the user’s search context [56, 134].

For some specific objects (e.g., hotels and city names) and relationships, when geo-

graphic terms (e.g., near) can be found on some webpages, the use of current search tools

is quite straightforward, as is illustrated by queries like: “webpages of Barcelona’s hotels
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which are near to subway stations.” Such success is explained by those objects’ search

popularity [51, 56, 114]; webpages that contain those keywords thus can be retrieved by

popular keyword-based search tools.

The ideal Web search tool for geographic queries should be able to process the geo-

graphical relationships and retrieve all the relevant results on the Web that match the

users’ intention expressed by their query. This kind of query is common in a GIS (ge-

ographical information system) which works with structured data. Hence, there is need

for investigation of strategies to integrate these technologies, so that Web queries that

include this kind of feature can be easily processed, without undue user frustration or

effort. One perspective is that geocoding webpages can help, but the challenge is how to

do that in light of the volume of data on the Web and the high level of ambiguity common

in such queries.

GIR Architecture

As shown in Figure 2.7, a GIR system can be divided into three layers: presentation,

processing, and data.

The main modules for each layer are presented next.

Presentation Layer

Query Input, Result Presentation, and Feedback Presentation. These

modules deal with HCI aspects: query input by the user, presentation

of results returned by the system, and user feedback about the results.

They forward data to lower-level modules aiming at improving obtained

results.

Processing Layer

Geoparsing is a module responsible for recognizing references to geographic

entities in a digital object and for disambiguating them based on their

content, geo-ontologies [115], and semantic databases;

Geocoding is a module that takes care of associating appropriate geographic

coordinates with a digital object, which can be one or more geographic

points or even a geographic region;

Query Processing is responsible for interpreting and processing the input

query; besides, it handles subsequent interactions aiming to refine results;





22 Chapter 2. Basic Concepts & Related Work

name and its variants, that place’s location, and its category (populated

place, school, farm, hotel, lake, etc.). An example of a gazetteer is Geon-

ames.1 A thesaurus is a list of structured and defined terms formally

organized and with concept relations clearly drawn [13], which is what

distinguishes thesauri from gazetteers. For example, the Getty Thesaurus

of Geographic Names2 organizes places/location based on their spatial re-

lation and administrative area, gives their geographic coordinates and all

other names a place has, and supports places with similar names assisted

by ontologies [126];

Spatial Database: in addition to what a regular database management sys-

tem (DBMS) offers, a spatial database also stores and provides spatial

operations and queries over stored geographic objects. These objects can

be stored using points, lines, or polygons in a given coordinate system.

Spatial indexes are built to later speed up spatial/geographic queries

(Section 2.1.2). Examples of geographic objects that can be stored are:

shapes representing boundaries of a state, city, or country; other shapes

representing a specific area on Earth.

Geoparsing & Geocoding

Items in a collection can be associated with one or more regions on Earth, i.e., we can

determine their footprint [41]. Jones [53, 54] defines geocoding as the act of associating

a footprint with a geographic reference. Recognizing geographic references inside a docu-

ment is called geoparsing, as we introduced previously. Additionally, Jones [53] defines

geotagging as a composition of geoparsing and geocoding process.

In GIR, a collection of documents that refer directly or indirectly to a place needs to

have their footprint identified and thus be indexed spatially. That is, documents should

be geoparsed and then geocoded.

Geoparsing should be able to identify and disambiguate a place name appearing in

a document and rule out false references to it. It can be seen as a particular case of

name entity recognition (NER), which identifies expressions in text and classifies them

as person, event, organization, etc. [5]. In fact, NER is one of the techniques used in

geoparsing.

There are some challenges involved in recognizing place references and associating

them with their coordinates [75, 126], such as:

• Homonyms for places and persons: For example, London is city name in UK,

1http://www.geonames.org/ (as of Dec. 2013).
2http://www.getty.edu/research/tools/vocabularies/tgn/ (as of Dec. 2013).
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Canada, and the USA. Additionally, Luis Eduardo Magalhães is a Brazilian politi-

cian who also has an airport, square, and city named after him. These examples

are called geo/geo and geo/non-geo ambiguities, respectively [4];

• Descriptive place names change according to the historical context, culture, and

customs that are in place, when a textual form is produced. For example, locating

“North of the Russian capital” on a map would be difficult because the location of

the capital of Russia has changed several times;

• Names of places change over time. For example, St. Petersburg, once Russia’s

capital, was called Petrograd (1914-1924) and Leningrad (1924 - 1991);

• Geographic boundaries change over time. For example, Germany had different

boundaries over its history;

• Boundaries cannot always be clearly defined, for example in a conflict zone (e.g.,

Syrian-Turkish territory dispute);

• Names assigned to regions can refer to an area, rather than a well defined place,

e.g., Southern California, or the Andes (in South America);

• Different names may refer to the same geographic entity, whether by error, language

variations, or the legal existence of more than one valid way of writing it. For

example, both Peking and Beijing refer to the capital of China, and Deutschland is

commonly used to refer to Germany;

• Ambiguities arise due to different ways of describing a place, e.g., pseudonyms or

expressions used in a specific context. For example, Saint Petersburg is called Piter

by locals, while New York City is also referred to as the Big Apple. In Brazil the

city of São José do Rio Preto, in São Paulo state, sometimes is called Rio Preto by

locals, but, in another Brazilian state (Minas Gerais), Rio Preto is the official name

of a different city;

• Names of famous buildings can lend their names to states; thus, New York is some-

times called the Empire State, after that tall building in NYC;

• Indirect references, such as to a road, like the Blue Ridge Parkway, may bring to

mind both a region and event, e.g., due to a scenic drive in southwest Virginia and

northwest North Carolina;

• Imprecise references such as “100 km from Blacksburg” can refer to some point

within 95 and 110 km. In another example, “South of Campinas” might include not

just south, but also southeast and southwest locations.
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with a given document. This often requires the disambiguation of locations [5]. As was

illustrated above, often the same name is used for different geographic locations (referent

ambiguity), or the same location is described by different names (reference ambiguity).

The geographic knowledge required for this task is provided by a geo-ontology, sup-

porting structuring, representation, and storage. It includes all suitable data types: place

name, place type (city, state, country, etc.), footprint, relation (e.g., containment, adja-

cency) to other place names, population, historic names and dates, activities, etc. Given

a set of geoparsed names, the geocoding process finds the corresponding matches in the

geo-ontology. Then, based on related information, a decision can be made regarding a

location to contribute, along with a document footprint: keeping, merging, creating, or

discarding. Related information could specify how two extracted locations in a document

are spatially associated with each other: are they close to each other? Another type of

related information refers to the definition of their closest common ancestral node (e.g.,

state, county, or country).

Consider an example borrowed from Batista et al. [5], where a document (D) is geop-

arsed, yielding the result: Lisboa and Santa Catarina. Then, the first step of geocoding,

checking the geo-ontology, yields these results (also highlighted in a partial hierarchical

geographic concepts depicted in Figure 2.10):

(i) Lisboa is a municipality;

(ii) Lisboa is somewhere in the municipality of Monção;

(iii) Santa Catarina is a civil parish in the Lisboa municipality;

(iv) Santa Catarina is a street in the Porto municipality;

(v) Santa Catarina is a state in Brazil.

Note that the version of Santa Catarina that appears as a state in Brazil (v) was

ruled out, for example, because there were no exact matches for both Lisboa and Santa

Catarina.

Analyzing the results of the example above, the closest spatial relation is (i) and (iii)

as depicted in Figure 2.10. In fact, there is a direct relation between (iii) and (i). Hence,

the geocoding can result in associating the footprint of (iii) to that document, if the aim

is to capture the most specific scope.

However, sometimes in a digital library (DL), one might want to associate more than

one footprint, in order to represent geographic concepts, for example associating it to the

footprint of (i) or even broader scope like Portugal; this would ensure that the various

possible scopes of a document are captured (geographic signature) [5].
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the most used geo-words and how they are reused by users was studied by Sanderson and

Han [114].

Data Layer Considering the Internet itself as a big data repository, it is challenging to

create and index automatically a geographic knowledge base from what is available on the

Web [54, 110]. That involves dealing with inconsistent data and also demands to identify

and geocode data found in webpages [1, 2, 8, 10, 18].

The data layer includes collections of target documents, as well as supporting struc-

tures such as ontologies, thesauri, and geospatial databases, to assist with spatial opera-

tions and queries (as discussed earlier). Further research is needed regarding how to build

and use such structures and repositories.

In the case of this work, we are tackling a problem in the processing layer. More

specifically, we address the problem of geocoding digital objects. This work considers

it as a single process that integrates the activity of recognizing place in digital objects

(geoparsing) with that of associating them with some place on Earth or with some specific

coordinates (latitude and longitude). Moreover, we are interested in geocoding using

textual and visual information enclosed in digital objects. Next, we provide an overview

regarding the multimedia retrieval of geographic information.

2.1.4 Multimedia Retrieval of Geographic Information

The discussion above of GIR focused on text geocoding and geoparsing. We also ar-

gued that only after documents are geoparsed and geocoded can they be placed on a

map or queried by geographic location. However, in DLs digital objects go beyond text

documents, e.g., they include images and videos.

It is increasing the number of devices connected with GPS and camera, such as smart-

phones, that embed location data in picture and video metadata, along with other data

such as date, time, and camera details. Therefore, it is useful to combine CBIR (content-

based image retrieval), multimedia, and GIR techniques in DLs.

Geotagging photos and videos is possible not only when you take or record them from

a device with GPS, but it also is enabled by applications and services such as Flickr3

and Panoramio.4 In addition to supporting annotation, they allow users to organize and

manually assign locations, using a map interface or geographically relevant keywords [89].

Accordingly, the amount of geotagged photos and videos is growing rapidly. For example,

in Flickr, there were about 4.7 million geotagged items in 2010 [89], but this number

increased to more than 165 million geotagged items by November 2, 2011.

3http://www.flickr.com/ (as of Dec. 2013).
4http://www.panoramio.com/ (as of Dec. 2013).
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Geocoding approaches based on visual clues are proposed in the context of landmark

recognition, as well as for non-landmark images [89]. Usually, those approaches are mod-

eled as image classification or content-based image retrieval (CBIR) problems. Those

approaches often take advantage of a huge collection of geotagged images that is used as

a knowledge base [49]. In [89], the multimedia retrieval for geographic information is used

in the following context:

Semantic multimedia understanding encompasses social and cultural semantics, as

well as annotation, organization, and retrieval of events, scenes, or objects. For

example, white colors associated with a photo of somewhere in the NE of USA

during winter indicates snow. Similarly, if a photo depicts people cheering and their

location is related to a baseball field, then it may indicate a photo of a baseball

game;

Geolocation and landmark recognition aim to determine the location of an image,

video, or series of images. In this case, collections of geotagged images are used

as training and matching data to help predict the location of unknown images.

Landmark images recognition can be seen as detection of somewhat unique objects

in unknown images, which are similar to images in a collection of geotagged images.

Here matched images’ geolocation will aid in the prediction of the location of a given

unknown image;

Media visualization can aid the use of collections and landmarks, camera viewing di-

rections, travel trajectories and routes, and photos in large collections (that can be

browsed for tourism in 3D fashion);

Recommendation for location-based services or products can help with planning

vacations and identifying attractions based on users’ locations and interests. This

category of applications can be divided further into: real-time recommendation,

recommendation inference via geotagged images (considering spatial and temporal

patterns), travelogues, and GPS trajectories;

Social network applications: Luo et al. [89] cite works that use tweets or Flickr up-

loads to discover time and location information related to an event. Users are seen

as social sensors; their reports can document the spread of the consequences of an

event (such as a flu epidemic or the movement of a typhoon). Therefore, it is im-

portant to predict the location of Flickr users. One strategy is based on their social

connections’ public locations, since users tend to communicate more with closer

friends;
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Mapping applications can use geocoded photos to produce different kinds of maps, for

example, on land use (park, green area, under/super developed area).

As explained above, landmark image recognition is based on detecting unique objects

in images and matching them against a knowledge base (collection of geotagged images).

This is called landmark recognition with feature point matching, as interest points from

a test image are matched to interest points in one or more training set images [89].

However, interest point matching in urban areas is difficult, since some structures (e.g.,

windows) may repeat frequently. Example of this kind of approach is described in [107],

which performs matching of local descriptors to find similar regions within images of a

dataset of buildings. Therefore, although they are not explicitly geocoding images, their

approaches could be used for that purpose. The approach presented in [107] works with

buildings from the University of Oxford.5 After describing images with a scheme based on

a visual vocabulary (quantized local features), a matching strategy is performed between

a given query image and images from the dataset. Their approach is robust to deal with

changes in illumination, viewpoint, scale, and rotation.

In non-landmark location recognition, image exact match on a training dataset may

not occur or may not be reliable. For example, Hays and Efros [49] find a probability

distribution of images over the globe and base their strategy on that information, as

well as on a dataset of over 6 million geotagged images (their knowledge base) from all

over the world. Unknown images are described by selected image descriptors (e.g., color

histograms, GIST) and compared to the big knowledge base. The top k most similar

returned geotagged images are used to estimate the location of a given unknown image.

Although this strategy will not be precise most of the time in finding an exact location,

it will indicate roughly where an image was captured. For 16% of the time, their method

correctly predicted an image location within 200 km. Extensions of this approach rely

solely on the text tags associated with the images [70, 119], or apply Hays and Efros’

method to the visual content of images and to their associated user tags [44].

Gallagher et al. [44], besides using a collection of over a million geotagged photographs,

also built location probability maps of user tags over the globe to study the picture-taking

and tagging behaviors of thousands of users. Applying the local tag probability maps

and image matching of Hays and Efros [49], Gallagher et al. showed that their method

yielded improvements over pure visual content-based methods. Kalantidis et al. [57]

propose geotagging non-landmark images using a big geotagged and clustered dataset as

knowledge base.

Similar strategies have been employed in Placing Task at MediaEval,6 a benchmarking

initiative to evaluate a “new algorithm for multimedia access and retrieval”, which is a

5http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/ (as of Dec. 2013).
6http://www.multimediaeval.org/ (as of Dec. 2013).
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spin-off of VideoCLEF. We will detail the Placing Task in Section 2.2.

2.1.5 Geographic Information and Digital Libraries

The first large Digital Library (DL) project interested in explicitly using geographic in-

formation was ADEPT – Alexandria Digital Earth ProtoType, focused on geocoding DL

objects by taking into account textual metadata. It came from the Alexandria Digital

Library (ADL), which is a project led by University of California (Santa Barbara, USA)

from 1995 to 2004. It is a distributed digital library comprising of a collection of geo-refer-

enced material that could be searched [40, 52]. Its search was focused on its digital library

contents. The spatial operators supported in searching this distributed digital library are:

“contains item area,” “overlaps,” “encompasses/contained by,” and “exclude/outside.”

Many DL initiatives may take advantage of existing geocoding methods. One example

is the CTRnet DL [129], as presented in Section 1. As we discussed, in order to provide

a map-base browsing or geographical searching services in a DL, its collections must be

geocoded. In Section 4.2, a case study that builds the basis to geocode VT’s photos [86]

will be presented.

2.2 Multimodal Video Geocoding Task

The most common solutions for geocoding multimedia material rely on textual informa-

tion [72, 89]. Recently, however, more attention has been given to methods that use

image/video content in the geocoding process.

Research on video geocoding has been done for the Placing Task from 2010 to 2012.

This task was launched in 2010, along with other tasks [72] at MediaEval – a benchmark-

ing initiative to evaluate new algorithms for multimedia access and retrieval (a spin-off

of VideoCLEF). The Placing Task aims to automatically assign latitude and longitude

coordinates to each of the provided test videos.

Participants in the Placing Task at MedialEval were allowed to use image/video meta-

data, audio and visual features, as well as external resources, depending on the run sub-

mitted. There was one mandatory run in which only visual features could be used to

accomplish the task. The organizers of this task released a set of geotagged Flickr videos

and images along with their metadata, such as title, tags, and descriptions provided by

the owner of that resource, comments of her/his friends, users’ contact lists, and other

uploaded resources in Flickr. Evaluation was based on the distance to the ground truth ge-

ographic coordinate point, in a series of widening circles: 1 km, 10 km, 100 km, 1,000 km,

and 10,000 km. Thus, an estimated location is counted as correct at a particular quality

level if it lies within a given circle radius.
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The approaches for video geocoding submitted to the Placing Task at MediaEval 2010,

2011, and 2012 can be basically divided into methods based on textual information and

those based on visual information. In this work, we are interested primarily in methods

for combining different modalities of video data to improve the video geocoding results.

Therefore we will tend to focus on the multimodal methods or those that use only visual

features for the task.

Placing Task 2010 and 2011

In 2010, the Placing Task data set was divided into 5091 videos for training (with the

same additional Flickr photos) and 5125 videos for testing.

There were three main approaches [72]: (a) geoparsing and geocoding texts extracted

from metadata assisted by a gazetteer such as GeoNames;7 (b) propagation of the georef-

erence of a similar video in the development database to the test video; and (c) dividing

the training set into geographical regions determined by clustering or a fixed-size grid and

later employing a model to assign items to each group. The model estimation was based

on metadata text data and visual clues. The best result in 2010 for this task was accom-

plished by VanLaere et al. [70] by only using metadata for images and videos, combining

approaches (b) and (c): first a language model identified the most likely area of the video

and then the most similar resources from the training set gave the predicted coordinates.

The only group in 2010 that made use of visual features besides the textual data

was Kelm et al. [62]. They reported that combining visual and textual results can yield

better results than just relying on one of the modalities of information (just text or visual

content).

Kelm et al. also presented a hierarchical approach to geocode videos automatically

based on both textual and visual information [61]. The proposed method can be divided

into the following steps: (1) geographic boundaries are extracted based on Natural Lan-

guage Processing (NLP) for toponym recognition, and are filtered by Geonames – and

Wikipedia-based filters; (2) a textual region model based on a document classification

method, which selects regions with higher probability of being assigned, is employed; (3)

a visual model based on the similarity of all frames of a video with regard to training

set (videos and photos) mean feature vectors of regions is used. The results are then

combined based on their rank sum and, finally, the most similar videos from training data

contained in selected regions are determined and their coordinates (latitude, longitude)

are assigned to the test video. In summary, a geographical boundary extraction reduces

the number of possible regions in a first stage. Then the textual model returns the log-

likelihoods of the remaining regions based on the tags of each test video. Next, the visual

7http://www.geonames.org (as of Dec. 2013).
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model returns the similarities considering the feature vectors of the region model and the

test video. Their approach is based on different and well-defined stages with fusion done

on rank level using the rank sum algorithm.

In Placing Task 2011, its data release included 10,216 geotagged videos, along with

their extracted keyframes and corresponding pre-extracted low-level visual features, and

metadata for 3,185,258 CC-licensed “Flickr photos uniformly sampled from all parts of

the world” [113]. Test data comprised of 5,347 videos with its related metadata (without

latitude and longitude information).

Although a minimum of one run that uses only audio/visual features was required,

most of the participants focused on modeling and solving the problem based on text

metadata associated with available videos.

In 2011, six groups submitted their results, but only four of them submitted for a

run in which only visual features are used to predict the location of test videos: ICSI

team [22], WISTUD team [47], UGENT team [70], and UNICAMP team [77]. However,

most of them considered visual features as a backup predicting approach for the cases in

which no tags or textual description associated with a test video are available. Text-based

video geocoding still yields better results than the visual-based ones, being UGENT the

best results when considering the run in which they were allowed to use additional crawled

data.

Choi et al. [22] (ICSI team) used the top-three results of searches based on textual

metadata as anchor points for an 1-NN search using visual features match (GIST). Each

test video (its temporal mid-point frame) is compared to the whole development set

(photos and video frames) that is within 1 km radius from those anchor point. They also

considered acoustic clues in the video geocoding process when matches of textual- and

visual-based results were too low.

Using the 2011 database, Kelm et al. [64] extended their previous work [61] introducing

a spatial segmentation at different hierarchy levels with a probabilistic model to determine

the most likely location at these levels. The world map was iteratively divided into

segments of different sizes and those spatial segments for each level were used as classes

for their probabilistic model. They used additional external resources like GeoNames and

Wikipedia for toponym detection when generating hierarchical segments (e.g., national

borders detection). They combined modality in a sequential mode: first used text for

geo-predicting, then in case of absence of metadata the visual approach is applied.

Placing Task 2012

In 2012, the best results were accomplished by CEALIST group [109] using textual data

and additional external data. Their approach combines a language model that divides the

Earth into cells of approximately 1 km2; and a user model based on tagging probability,
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which exploits users’ past geotagging behavior. To construct the user model, this team

downloaded 3,000 geotagged metadata per user for training purposes. The visual-only

submission of the CEALIST team is based on the bag-of-words model with the SURF

descriptor. A bag is associated with video frames and are later used to execute 50-NN

video searches with the aim of performing spatial clustering within 5 km [109].

The IRISA team [121, 122] approach is based on tag analysis with a fallback system

that relies on user information (upload history, social info like friend and his current/prior

location, home town). For the run based on visual properties, the team used their proposed

descriptors, which are based on SIFT and VLAD. Those descriptors are used to index

training videos using product quantization. The final step of the proposed geocoding

approach relies on performing a NN-search on the created index aiming at generating

a list of candidate videos. That list is then used to define a list of coordinates, whose

medoid lat/long is assigned to the test video [121]. They used the visual content as one

of the last resources to be used to geocode a video in their sequential pipeline.

Extending their approach proposed in the previous year, the Ghent and Cardiff team

(Ghent) [71] relied on clustering tags found in photos of the training set. Additional

information was crawled and used in the geocoding process. Later, test videos are classified

into the most probable cluster according to χ2 feature selection. As 2012’s test dataset

had a shortage of tags, they used other information (title, description) to treat as tags

when they are not found. They used as fall back system the default location (either user

home location or center of London). Their visual-only solution relied on extracting SIFT

features from photos of both training and test set. SIFT feature vectors associated with

frames are then compared to find the most similar training photos. The results where

textual and visual features were used to geocode did not improve the results of their

approach that relies on videos’ metadata.

The ICSI team [21] proposed an approach based on a graph model created by using

textual tags to infer the location of a given test video. For 1 km precision level, the

proposed graph model was not able to outperform the results obtained by their previous

year’s approach [22] combined with gazetteers. For other precision levels, however, its

graph model yields better results. The visual-only submission of this team was based on

GIST features.

The TUD team [88] presented a exploratory study only using visual features associ-

ated with regions defined by partitioning the Earth based on different external resources,

such as climate and bioma data. Their best results (visual) were those in which the world

was divided into regions based on bioma data over which the training photos were dis-

tributed and then clustered into subregions. They used the visual features provided by

the organizers of the Placing Task 2012 [112].

In 2012, Kelm et al. represented the TUB team [63]. They tackled the geocoding
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task as a classification problem that considers different hierarchies or spatial segments as

explained in [64] and discussed previously in Section 2.2. Their visual-only approach uses

visual features extracted from 3.2 million images and from video keyframes of develop-

ment/training set. Based on their spatial segmentation in different levels, a k-d tree is

built iteratively for distinct image descriptors and segmentation level. The most similar

spatial segment is determined by traversing the created k-d tree, using the Euclidean

norm [63]. Their best result was accomplished using additional resources.

In our work, we do not use any additional or external resources (e.g., gazetteers, more

crawling, etc) and barely use the ≈3.2M Flickr image data set. We apply a late fusion

approach to combine video features. A rank aggregation method combines scores gener-

ated by various features (from different modalities, e.g., text and visual). Therefore, the

features are homogeneously and seamlessly combined, representing an important advan-

tage of our approach. Additionally, other new features can be easily added to the fusion

step and this approach opens new research opportunities related to the development and

use of rank fusion methods in video geocoding tasks. We will present our approach and

analyze its results for this task in Section 4.1.

2.3 Data Fusion

In multimedia retrieval tasks, an accurate information fusion of the different modalities

is essential for the system’s overall effectiveness performance [68]. The main reasoning

behind information fusion systems is based on the conjecture [69] that, by combining

features, it is possible to achieve a more precise representation of the data being analyzed.

Given the wide range of applications, information fusion has established itself as an

independent research area over the last decades [68]. Most of the approaches fall in three

broad categories: early fusion, late fusion, and transmedia fusion. The early fusion ap-

proach consists in representing multimedia objects in a single feature space. On the other

hand, late fusion and transmedia fusion strategies consider each feature independently.

Late fusion techniques usually merge the similarity information encoded by a single modal-

ity using aggregation functions. In transmedia approaches, one of the modalities is used

to obtain relevant objects and later the retrieval system uses the other available modalities

to improve the effectiveness of results [24].

A common approach used for information fusion in multimedia retrieval systems

is the application of rank aggregation methods. Rank aggregation methods combine

scores/rankings generated by different features (from distinct modalities) to obtain a more

accurate one. In many situations, rank aggregation has been seen as a way for obtaining

a consensus ranking when multiple ranked lists are provided for a set of objects.

Different modalities, or even sets of descriptors of a same modality (e.g., color descrip-
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tor), may produce different rankings (or similarity scores). Thus, these distinct views of

same data may provide different but complementary information about the multimedia

objects. The best combinations occur when all systems being combined have good effec-

tiveness performance, although it is possible to get improvements when only one of the

systems is effective. This is supported by the statement that the combinations with the

lowest error rate are those whose inputs are independent and non-correlated [27].

More formally, rank aggregation can be seen as the task of finding a permutation that

minimizes the Kendall-tau distance to the input rankings. The Kendall-tau distance can

be defined as the number of pairwise disagreement about their order in two ranked lists, or

“the sum over all input rankings of the number of pairs of elements that are in a different

order in the input ranking than in the output ranking. If the input rankings are permu-

tations, this problem is known as the Kemeny rank aggregation problem” [116]. Rank

aggregation methods have been exploited for a large number of multimedia applications,

since there has been an explosion of such type of digital content in the last years [24].

The strategies that have been used in rank aggregation consider mainly two informa-

tion of a item in a ranked list: (i) the scores computed for it and; (ii) the position (or

rank) assigned to it. CombSum and CombMNZ algorithms [39], for example, consider the

sum of the normalized relevance scores computed by various systems to compute a new

relevance score. On the other hand, the Borda count method [25] uses rank information

in voting procedures. Rank scores are assigned linearly to documents in ranked lists ac-

cording to their positions and are summed directly. Although very simple and presenting

linear complexity, these approaches have been used as baselines for many works along

decades.

Another traditional approach to the analysis of rank aggregation resides in the Con-

dorcet criterion. The Condorcet voting algorithm defines that the winner of the election

is the candidate that beats or ties with every other candidate in pairwise comparisons.

In other words, given a distance between two ranked lists as the number of pairs whose

elements are ranked reversely, then the Condorcet’s result is the one that minimizes the

total distance [30].

Additional common approach is based on Markov Chain where items are represented

in the various lists as nodes in a graph. The transition probabilities from node to node is

defined by the relative rankings of the items in the various lists. The aggregate rankings

are computed by a stationary distribution on the Markov Chain, by determining which

nodes would be visited more often in a random walk on the graph [118].

Taking as a starting point the traditional initial methods, many variations have been

proposed and the rank aggregation approaches have remained in constant evolution. Al-

though still conserving the unsupervised strategy, initial rank aggregation approaches

have evolved to more sophisticated algorithms [30, 67, 93]. At the same time, however,
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even simple new approaches have been proposed with good effectiveness results [26]. Re-

ciprocal Rank Fusion (RRF) [26], for example, is a simple method for combining the

document rankings from multiple IR systems. RRF sorts the documents according to a

näıve scoring formula and the reasoning behind it is that while highly ranked documents

are more important, the importance of lower-ranked ones does not vanish.

In this work, we use an unsupervised score-based rank aggregation approach for com-

bining ranked lists defined by features of different modalities to improve geocoding result

(Section 4.1.1). It is inspired by works that successfully combined textual and visual ev-

idences to improve multimedia retrieval [24, 133]. To the best of our knowledge, the use

of rank aggregation methods in video/image geocoding tasks has not been investigated in

the literature yet.





Chapter 3

A Rank Aggregation Framework for

Multimodal Geocoding

This chapter presents the proposed multimodal framework for digital object geocoding in

Section 3.1, and a new evaluation measure for assessing the quality of results provided by

geocoding approaches in Section 3.2.

3.1 Proposed Framework for Multimodal Geocoding

Section 3.1.1 formalizes the geocoding process, while Section 3.1.2 presents the archi-

tecture which has been implemented to validate the proposed framework, followed by

implementation aspects of the framework (Section 3.1.3). For the sake of improving our

descriptions, we assume the task of geocoding video collections, without loss of generality.

Note, however, that any kind of digital objects could be geocoded using the proposed

framework.

In the following subsections, we use as an example a collection whose videos are

associated with textual descriptions, along with their visual features. Another assumption

is that two collections are available, following the denominations used in the Placing Task

of MediaEval: the development set – that might be referred to as training set – whose

purpose is to work as a knowledge base that contains ground-truth latitude and longitude

coordinates that can be used to guide the geocoding process; and the test set, on which

the algorithms are evaluated.

3.1.1 Formalization

Let Cdev={v1, v2, . . . , v|Cdev |} be a video collection named development set, such that each

video vi ∈ Cdev has its location, (xvi
, yvi

), defined. Let Ctest={v1, v2, . . . , v|Ctest|} be a video

41
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collection named test set, such that the location (xvq
, yvq

) of vq ∈ Ctest is unknown.

The objective of the geocoding process is to assign a proper location to videos vq ∈ Ctest

given the known locations available in the development set, i.e., the development set is

used as a knowledge base. Our solution to this problem exploits a multimodal video

retrieval paradigm in which the location of a test video is determined according to its

similarity distance to videos in the development set.

Let D = {D1, D2, . . . , D|D|} be a set of video descriptors, such that each video descrip-

tor Dk ∈ D defines a distance function ρ : Ctest ×Cdev → R, where R denotes real numbers.

Consider ρ(x, y) ≥ 0 for all (x, y) and ρ(x, y) = 0, if x = y. The distance ρ(vq, vi) among

all videos vq ∈ Ctest, vi ∈ Cdev can be computed to obtain a |Ctest| × |Cdev| distance matrix

A.

The proposed framework is multimodal if we assume that video descriptors used in D

define distance functions that exploit different modalities (e.g., visual properties, textual

descriptions). Examples of various video descriptors are presented in Section 4.1.1.

Given a query video vq ∈ Ctest, we can compute a ranked list Rq in response to the

query by taking into account the distance matrix A. The ranked list Rq={v1, v2, . . . ,

v|Cdev |} can be defined as a permutation of the collection Cdev, such that, if vi is ranked

at lower positions than vj, i.e., vi is ranked before vj, then ρ(vq, vi) < ρ(vq, vj). In this

way, videos of the development set are ranked according to their similarity distance to

the query video vq. Note that the proposed formalism can be easily extended to deal with

actual similarity scores as they can be defined in terms of distance functions.

We can also take each video descriptor Dk ∈ D, in order to obtain a set Rvq
=

{R1, R2, . . . , R|D|} of ranked lists for the query video vq.

The geocoding function G : R → R
2 is used to define the location of a query video vq,

given its ranked lists Rvq
:

(xvq
, yvq

) = G(Rvq
). (3.1)

The implementation of G requires the use of an appropriate rank aggregation method

to combine the ranked lists defined in Rvq
, as well as an strategy to define a location

given the final ranked list. The rank aggregation methods evaluated in our experiments

are presented in Section 4.1.1. The assigned location, in turn, is defined, in our current

implementation, in terms of the top-ranked video vi ∈ Cdev in the final ranked list.

3.1.2 Framework Architecture

The proposed architecture for video multimodal geocoding combines the video visual and

textual descriptions, defined in terms of descriptors. It is composed of the following

modules (Figure 3.1):
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The idea is that the better the results provided by the individual module, the better

should be the final combined results.

Note that the databases represented in the figure are the knowledge base. The one in

the content-based geocoding module is derived from a development/training set or from

somewhere else. Thus, it is another possible point of customization for this architecture.

In the following section, we present how each module of the proposed architecture has

been implemented. The current implementation does not consider the use of ontologies,

thesauri, or gazetteers. That is left for future work.

3.1.3 Implementation Aspects

In this work, the modules of the proposed architecture were implemented based on existing

content-based and textual information retrieval methods. In fact, the architecture can

handle as many different modalities as desired. The final result is a combination of the

results from each modality, which are treated by a data fusion module that takes advantage

of rank aggregation methods.

Algorithm 1: Multimodal geocoding framework

Input: Cdev = {v1, v2, ..., v|Cdev|}: video collection in development set,
Ctest = {v1, v2, ..., v|Ctest|}: video collection to be geocoded in test set, and
D = {D1, D2, . . . , D|D|}: a set of video descriptors.

Output: GeocodingResult as a list of (xvq
, yvq

) for vq ∈ Ctest.

1 begin
2 Initialize R;
3 R = ProduceRankedList(Cdev, Ctest, D);
4 GeocodingResult = G(R, Ctest, Cdev);
5 return GeocodingResult;

6 end

A possible deployment of our proposed framework is outlined in Algorithm 1 and the

details of the main functions used there are presented in Algorithms 2 and 3. The notation

used follows the naming convention defined in Section 3.1.1.

As shown in Algorithm 1, the proposed implementation calls two main components.

First, function ProduceRankedList (Line 3 of Algorithm 1) is called to process the input

videos in order to produce, for each test video, a set of lists, each one ranked according

to the similarity of the query video to those in the development set (knowledge base) as

detailed in Algorithm 2. Then function G (called in Line 4) deals with the geocoding itself

by combining the resulting set of ranked lists produced previously.
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Algorithm 2: ProduceRankedList

1 ProduceRankedList(Cdev, Ctest, D)

Input: Cdev, Ctest, and D as defined for the Input in Algorithm 1.
Output: a set of ranked lists, one for each test item vq ∈ Ctest and each descriptor

Dk ∈ D.
2 begin
3 Initialize R;
4 foreach vq ∈ Ctest do
5 Initialize Rvq

;
6 foreach Dk ∈ D do

// generate the ranked list for a given vq according to

which feature the descriptor Dk describes (feature vector

and distance function)

7 Rvq
[Dk] = RankList(vq, Dk, Cdev);

8 end foreach
9 R[vq] = Rvq

;

10 end foreach
11 return R;

12 end

As we can observe in Algorithm 2, the ProduceRankedList receives as input the

knowledge base (development set), the test set to be geocoded, and the set of descriptors

to be used. For each item in test set (Line 4 of Algorithm 2), and then for each descriptor

(Line 6) a ranked list will be produced. Based on each input descriptor, function RankList

(Line 7) will calculate the similarity between the test item and all items in the knowledge

base, ranking them according to their similarity scores. In the end, this will return (Line 9)

a set of ranked lists (one set for each descriptor) for each item in test set. In conclusion,

the key for this component is to exploit the list of descriptors, in which the ranked list

production will rely on.

In Algorithm 3, we can observe that function G basically iterates through each test

item, taking its corresponding set of ranked lists and calls two functions: FusionList

(Line 5 of Algorithm 3), which is in charge of combining them, and geocodeFromRank

(Line 6), which takes as input the resulting list from previous function to estimate the

location for the test item handled.

Function G is defined in Algorithm 3 as we implemented it for the validation of the

framework (described in Chapter 4). In this particular case, as detailed in Algorithm 4,

we consider that a test item is the same location – provided by the getLocation function

(Line 4) – of the top ranked (most similar) item from the development set. This video

is obtained by calling function getBestRankID (Line 3). Note that different strategies
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Algorithm 3: Geocoding function G

1 G ( R, Cdev, Ctest)
Input: Set of RankedList R, being one for each descriptor ∈ D and Cdev and Ctest

as defined for the Input of Algorithm 1.
Output: Geocoding result as a list of (xvq

, yvq
) for each vq ∈ Ctest.

2 begin
3 Inicialize GeocodingResult;
4 foreach vq ∈ Ctest do
5 NewRankedListvq

= FusionList(R[vq]);
6 (xve

, yve
) = geocodeFromRank(NewRankedListvq

, Cdev);
7 GeocodingResult[vq] = (xve

, yve
);

8 end foreach
9 return GeocodingResult;

10 end

may be employed to define the location of a test video, given existing ranked lists. In

terms of implementation, developers could replace either/both getBestRankID or/and

getLocation functions. For example, instead of taking the best ranked item to estimate

the test video coordinates, one could devise other approaches based on the top-k best

ranked items.

Another point of modification relies on the use of different implementations of the

FusionList function (Line 5 in Algorithm 3). In Chapter 4, three different fusion ap-

proaches, defined according to the equations described in Section 4.1.1, were tested.

Algorithm 4: Function geocodeFromRank

1 geocodeFromRank(RankedListvq
, Cdev)

Input: Ranked list RankedListvq
for a query video vq and Cdev as defined for the

Input in Algorithm 1.
Output: coord=(xvi

, yvi
): predicted coordinate.

2 begin
3 vi=RankedListvq

.getBestRankID ();
4 coord=Cdev.getLocation (vi);
5 return coord;

6 end
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3.2 Weighted Average Score (WAS): a Novel Evalu-

ation Measure for Geocoding Tasks

Two evaluation criteria are considered in our experiments. The first one is the most

commonly used method to assess the effectiveness of the results submitted to the Placing

Task (Section 4.1.2). The second evaluation measure is defined in this section and is one

of our contributions in this work. It has never been used to evaluate video geocoding

methods before.

Besides the way each approach is evaluated by MediaEval 2012, in this work we propose

a new scoring method whose goal is to assess the overall performance of the method based

on those geographic distances. The Weighted Average Score (WAS) gives higher weights

to the predictions with higher precision.

In other words, instead of a table with accumulative count, we propose a score between

0 and 1 to indicate an overall expected precision level for a geocoding method being

evaluated. This proposed score follows the principles of utility theory [33, 37]. According

to utility theory, there is a utility function (a user’s preference function) that assigns a

utility value (the gained value from a user’s perspective) for each item. These values vary

from item to item. The item can be a book, a product, or a video, as in our case. In

general, we assume the utility of a relevant video decreases with its ranking order. More

formally, given a utility function U(x), and two positions x1, x2, with x1 < x2, according

to this assumption, we expect the following condition to hold: U(x1) > U(x2). There

are many possible functions that can be used to model this utility function satisfying the

order-preserving condition given above.

Given a test set Ctest, let d(i) be the geographic distance between the predicted location

and the ground truth location of the video i ∈ Ctest.

The proposed score for the result of a given test query i is defined as follows:

score(i) = 1 −
log(1 + d(i))

log(1 + Rmax)
, (3.2)

where Rmax is the maximum distance between any two points on the Earth’s surface. The

length of the half of Earth’s circumference at the Equator is 20,027.5 km, thus we assume

Rmax = 20, 027.5. The log function is used to reduce the impact of different distances

observed in the interval d(i) ∈ [0, Rmax]. Observe that score(i) ranges from 0 to 1, where

1 indicates a perfect estimation (d(i) = 0); and 0, an incorrect prediction (d(i) = Rmax).

The other score values give a sense of how good was the location estimation with regard

to the ground truth when it is closer to 0 or to 1. The curve showing the behavior of this

function is presented in Figure 3.2.

Let R be a ranked list of i ∈ Ctest ordered by score(i) and let vi be the item at
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Table 3.1: WAS(a) vs. Accumulative Count.

WAS(a) = 0.625888
Precision
Levels
(km)

Average
Dis-
tance
(km)

Average
score(i)

Accum.
count

≤ 1 0.50 0.959066 30
≤ 10 5.00 0.819113 50
≤ 100 50.00 0.603063 65
≤ 1000 500.00 0.372403 80
≤ 10000 5000.00 0.140127 100

Table 3.2: WAS(b) vs. Accumulative Count.

WAS(b) = 0.640495
Precision
Levels
(km)

Average
Dis-
tance
(km)

Average
score(i)

Accum.
count

≤ 1 0.50 0.959066 25
≤ 10 5.00 0.819113 60
≤ 100 50.00 0.603063 65
≤ 1000 500.00 0.372403 80
≤ 10000 5000.00 0.140127 100

Table 3.3: WAS(c) vs. Accumulative Count.

WAS(c) = 0.659540
Precision
Levels
(km)

Average
Dis-
tance
(km)

Average
score(i)

Accum.
count

≤ 1 0.50 0.959066 25
≤ 10 2.50 0.873527 60
≤ 100 50.00 0.603063 65
≤ 1000 500.00 0.372403 80
≤ 10000 5000.00 0.140127 100

score(i) for the results within that radius/distance.

In order to support the discussions about the examples given by the tables, Figure 3.3

and Figure 3.4 depict some possible distributions of geocoding result (in widening radius)

for some hypothetical test queries with the same ground truth (G). These distributions

exemplify valid scenarios for the results shown in Tables 3.1, 3.2, and 3.3, besides following

the same proportions of points in each precision radius as is exhibited in the tables.

Tables 3.1 and 3.2 show two methods whose results differ in terms of the number of

correctly geocoded test queries within 1 km and 10 km radii. If one cares only about

results in 1 km, surely one would consider the method a as the best one because of its

higher count in that precision level. Nonetheless, for 10 km, the method b is better for

the same reason, while for 100 km radius they are both tied with the same amount of

geocoded items in that precision level. In this case, the WAS will indicate that the results

from method b are better due to: (i) the count difference between them in 1 km is smaller

than the 10 km radius, (ii) the disagreement in term of score(i) for items in 1 km or









Chapter 4

Framework Validation

In this chapter, we present some implementation aspects and discuss results related to the

use of the proposed architecture in two geocoding tasks: the Placing Task at MediaEval

2012 and the geocoding of VT Buildings photos.

4.1 Video Geocoding at MediaEval 2012

The aim of conducted experiments is to evaluate the proposed framework for multimodal

geocoding in the context of the Placing Task at MediaEval 2012, which is dedicated to

the problem of video geocoding. Next section describes this task, as well as the datasets

used in the experiments. In the following subsections, we present our strategies to address

the proposed task and discuss obtained results.

4.1.1 Architecture Implementation

This section describes the components of the proposed architecture that are considered

in our experiments.

Text Retrieval & GIR

For processing available textual information of videos, we propose the use of (1) Ge-

ographic Information Retrieval (GIR) techniques to recognize and associate a location

with digital objects based on their textual content; and (2) Information Retrieval (IR)

classical matching functions to retrieve similar digital objects.

In the context of the Placing Task, we exploit the following metadata associated with

videos: title, description, and keywords. In our current implementation, text processing is

53
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based on classical IR text matching using the vector space model and traditional similar-

ity functions [90]: cosine, bag-of-words (normalized documents terms intersection), dice,

okapi, and tf-idf-sum.

Let C be a collection with j distinct t terms of index tj. According to the vector space

model, a document di is represented as a vector: di = (wi1, wi2, . . . , wit), where wij is the

weight of the term tj in the document di. The term weights for a document are often

calculated as the tf × idf value, where tf is term frequency and idf is inverse document

frequency of the term in the collection. The idf value is calculated as log(N/nt), where

N is the number of documents in the collection and nt is the number of documents that

have at least one occurrence of the term tj.

The textual similarity functions that we used in our framework is the versions cited

and implemented by Calumby et al. [16] for cosine, bow, okapi, dice, and tf-idf-sum, which

are defined next as presented in [15, p. 4 & p. 37].

cosine(d1, d2) =

∑t
i=1 w1i × w2i

√

∑t
i=1 w2

1i ×
∑t

i=1 w2
2i

, (4.1)

where wij is the document as previously defined. Equation 4.1 basically calculates the

cosine between the vectors of each document. The closer the cosine is to 1, the more

similar the documents are.

bow(d1, d2) =
|{d1}

⋂

{d2}|

|d1 + d2|
, (4.2)

where {di} is the set of terms that occur in the document di. This is a simple measure of

the percentage of common words between two documents.

dice(c, d) =
2 × |c ∩ d|

|c| + |d|
(4.3)

The dice equation measures the similarity of a document d with regard to a query c

based on the number of common terms in relation to the total of terms in both document

and query.

okapi(d1, d2) =
∑

t∈d1
⋂

d2

3 + tfd2

0.5 + 1.5 × sized2

sizemed
+ tfd2

× log
N − df + 0.5

df + 0.5
× tfd1,

(4.4)

where tf is the term frequency in the document, df is the term frequency in the collection,

N is the number of documents in the collection, sizedi is the size of document i, and

sizemed is the average document size in the collection.
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Given a query c with n terms ti, the tf-idf-sum is given by the sum of the tf-idf values

for each query term in relation to the document d of the collection.

tf -idf -sum(c, d) =
n

∑

i

tf(ti, d) × idf(ti) (4.5)

Visual Information Retrieval

To encode video visual properties, we have used two main approaches. One is based

on video frames and does not consider transitions between them, which is called bag-of-

scenes [105]. The other approach specifically encodes motion information by using the

histogram of motion patterns [3].

Bag-of-Scenes (BoS)

One of our approaches to encode video visual properties is based on a dictionary of

scenes [105]. The main motivation for using the bag-of-scene model is that video frames

can be considered as a set of pictures from places. Pictures may contain important

information regarding place location. Therefore, if we have a dictionary of pictures from

places (scenes), we can associate each video frame with the most similar pictures in the

dictionary. The final video representation will then be a place activation vector making

it representative for the geocoding task.

An important advantage of the bag-of-scene model is that the dictionary is composed of

visual words carrying more semantic information than the traditional dictionaries based

on local descriptions. In the dictionary of scenes, each visual word is associated with

pictures of a place [105]. A consequence of this property is that the bag-of-scenes feature

space has one dimension for each semantic concept, making it easier to detect the presence

or absence of the concept in the video feature vector.

The process of creating a dictionary of scenes is similar to the one used to create a

dictionary of local descriptions. The main difference is that the feature vectors represent

the whole images and not local patches. Practically speaking, instead of quantizing SIFT

space, we quantize the bag-of-words space, for example. Thus, each visual word is an

image feature vector and not a local patch feature vector.

After creating the dictionary of scenes, the steps to represent a video are the same

employed when a dictionary of local descriptions is used to represent an image. In the

former, a video is a set of frames. In the latter, an image is a set of local patches.

Therefore, we use the popular approaches, like hard and soft assignment [125], to assign

a video frame to the scenes in the dictionary. Next, we apply pooling strategies, like

average and max pooling [12], to summarize the assignments and create the video feature
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vector, which is called the bag-of-scenes. Thus, comparisons between two bags-of-scenes

are performed using the Euclidean distance function.

In [105], the bag-of-scene model is evaluated considering two possibilities to create

the dictionary. One uses the video frames of the training set as scenes (BoF) and the

other uses an external image dataset (BoS). The results for both representations are very

similar. We refer the reader to [105] for details concerning the evaluation of different

parameters in the bag-of-scene model, like the dictionary size, the coding, and pooling

strategies, as well as the use of different low-level descriptors to represent each video

frame.

Histogram of Motion Patterns (HMP)

Besides encoding visual properties using a dictionary of scenes from places of interest, we

also adopted a simple and fast algorithm to compare video sequences, described in [3]. It

consists of three main steps: (1) partial decoding; (2) feature extraction; and (3) signature

generation.

For each frame of an input video, motion features are extracted from the video stream.

For that, 2 × 2 ordinal matrices are obtained by ranking the intensity values of the four

luminance (Y) blocks of each macroblock. This strategy is employed for computing both

the spatial feature of the 4-blocks of a macroblock and the temporal feature of correspond-

ing blocks in three frames (previous, current, and next). Each possible combination of

the ordinal measures is treated as an individual pattern of 16-bits (i.e., 2-bits for each ele-

ment of the ordinal matrices). Finally, the spatio-temporal pattern of all the macroblocks

of the video sequence are accumulated to form a normalized histogram. For a detailed

discussion of this procedure, refer to [3].

The comparison of histograms can be performed by any vectorial distance function like

Manhattan (L1) or Euclidean (L2) distances. In this work, we compare video sequences

by using histogram intersection, which is defined as

d(HV1 , HV2) =

∑

i min(Hi
V1

, Hi
V2

)
∑

i Hi
V1

,

where HV1 and HV2 are the histograms extracted from the videos V1 and V2, respectively,

processing their i video sequences. This function returns a real value ranging from 0, for

situations in which those histograms are not similar at all, to 1 when they are identical.

Data Fusion

The data fusion module aims at combining the similarity scores of different modalities,

producing a more accurate one. Given a query video (whose location is unknown), it
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is compared with all those of the knowledge dataset (training set), considering different

features associated with different modalities. Each feature, in turn, produces a different

score. The goal of the data fusion module is to combine the scores produced by features of

different modalities in order to produce a more effective score. In this work, we evaluated

three rank aggregation methods in the video geocoding task.

The first one is based on a multiplication of scores, initially proposed in [103] for

multimodal image retrieval. The method was evaluated in several image retrieval tasks

related to the combination of image descriptors and combination of visual and textual de-

scriptors. That experimental evaluation considered fifteen visual descriptors (considering

shape, color, and texture descriptors) and six textual descriptors with good results.

Let vq be a query video that is compared to another video vi in the dataset. Let

sim(vq, vi) be a function defined in the interval [0, 1] that computes a similarity score

between the videos vq and vi , where 1 denotes a perfect similarity. Let S = {sim1, sim2,

. . . , simm} be a set of m similarity functions defined for the different features considered.

The new aggregated score sima is computed by multiplying individual feature scores as

follows:

sima(vq, vi) =
m

√

∏m
k=1(simk(vq, vi) + 1)

m
(4.6)

By multiplying the different similarity scores, high scores obtained by one feature

are propagated to the others, leading to high aggregated values. The reasoning behind

the multiplication approach is inspired by the Näıve Bayes classifiers [100, 103, 132].

In a general way, Näıve Bayes classifiers work based on the probability of an instance

being of a class, given a set of features and assuming conditional independence among

features. In a simplified manner, that classifier assumes that the presence of a particular

feature of a class is unrelated to the presence (or absence) of any other feature. Under

the independence assumption, the probabilities of each feature being of a given class are

multiplied. In this case, as an analogy, the proposed multiplication approach can be

seen as the computation of the probability of videos vq and vi to be similar, considering

independent features.

We also evaluated the traditional Borda [130] approach and the recently proposed

Reciprocal Rank Fusion (RRF) [26]. Both methods consider the rank information, i.e.,

the positions of images in ranked lists produced by different descriptors.

Let D={D1, D2, . . . , Dm} be a set of descriptors and let a vq be a query video. For

each descriptor Dj ∈ D we can compute a different ranked list τq,Dj
for the video query

vq. A given video vi is ranked at different positions (defined by τq,Dj
(i)) according to each

descriptor Dj ∈ D. The objective is to use these different rank data to compute a new

distance between video vq and vi.
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The Borda [130] method considers directly the rank information for computing the

new distance FBorda(q, i) between video vq and vi. Specifically, the distance is scored by

the number of videos that are not ranked higher than it in the different ranked lists [66].

The new distance can be computed as follows:

FBorda(q, i) =
m

∑

j=0

τq,Dj
(i). (4.7)

The Reciprocal Rank Fusion also uses the rank information for computing a similarity

score between video vq and vi. The scores are computed according to a näıve scoring

formula:

FReciprocal(q, i) =
m

∑

j=0

1

k + τq,Dj
(i)

, (4.8)

where k is a constant. In our implementation we used k = 60, as suggested by the original

paper.

4.1.2 MediaEval 2012

This section introduces the Placing Task in the MediaEval 2012 initiative.

Datasets

The datasets provided by the MediaEval 2012 organizers for the Placing Task are com-

posed of a development and a test set [112]. The development set contains 15,563 videos

and 3,185,258 CC-licensed images from Flickr.1 All of them are accompanied by their

latitude and longitude information, as well as title, tags, and descriptions provided by the

owner of that resource, comments of her/his friends, users’ contact lists and home loca-

tion, and other uploaded resources on Flickr. Videos are provided with their extracted

keyframes and corresponding pre-extracted low-level visual features, and metadata. More

than 3 million images available are from all parts of the world. Also, pre-extracted low-

level visual features of each image are available. The test set comprises 4,182 videos,

their keyframes with extracted visual features, and related metadata (without geographic

location). The distribution around the world of the videos in the training set and test set

are shown in the heat maps in Figures 4.1 and 4.2, respectively. Those heat maps were

generated using the tool provided by sethoscope.net2 and we used its option that employs

1http://www.flickr.com/ (as of Dec. 2013).
2http://www.sethoscope.net/heatmap/(as of Dec. 2013).
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tiles in toner design, provided by Stamen Design, under CC BY 3.0, and background tiles

data from OpenStreetMap,3 under CC BY SA.

Figure 4.1: Heat map of the distribution of the videos in training set.

Figure 4.2: Heat map of the distribution of the videos in test set.

The keyframes were extracted by the organizers in 4-seconds intervals from videos

and saved as individual JPEG-format images. The following visual feature descriptors for

3http://www.openstreetmap.org/(as of Dec. 2013).
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keyframes and photos were extracted and provided: Color and Edge Directivity Descriptor

(CEDD), Gabor Texture, Fuzzy Color and Texture Histogram (FCTH), Color Histogram,

Scalable Color, Auto Color Correlogram, Tamura Texture, Edge Histogram, and Color

Layout. Based on our preliminary experiment, the CEDD descriptor yielded the best

results, therefore the visual feature BoS and BoF was based on CEDD descriptor.

Participants in the Placing Task at MediaEval 2012 were allowed to use image/video

metadata, audio and visual features, as well as external resources, depending on the run

submitted. At least one run should use only audio/visual features.

The experiment reported here concerns the implementation of the proposed architec-

ture by integrating independent work in information retrieval (textual), content-based

image and video retrieval (visual), and rank aggregation as summarized in Sections 4.1.1,

4.1.1, and 4.1.1.

Our team used only resources provided by the Placing Task 2012 organizers and we did

not make use of any external resources like gazetteers, Wikipedia, or additional crawling.

Thus it is fair to compare these results with other teams’ equivalent results, which we will

highlight later.

In fact, the image collection was only used by the visual feature BoS to sample images

for its dictionary of bag-of-scene. Besides that, all the other methods relied only on the

15,563 videos (development set) as their geo-profile database.

Placing Task Evaluation Criteria

According to the evaluation criterion defined in the Placing Task 2012, the effectiveness

of a method is based on the great circle distance (Haversine) of the estimated geographic

coordinate of a video to its corresponding ground truth location, in a series of widening

circles of radius (in km): 1, 10, 100, 1000, and 10000. Thus, an estimated location is

counted as correct if it is within a particular circle. In other words, we measure the

quality or precision level of correct predictions within a given circle radius.

The results are often reported using a table with an accumulative count of correctly

assigned videos at each precision level. This table shows a given method’s behavior

at different precision levels, for example, in which radius level an evaluated method is

able to perform with satisfactory performance. However, when comparing methods, the

participants of the Placing Task usually prefer to emphasize the results of smaller circle

radii. In that case, we are more interested in determining as accurately as possible the

location of a video. More details about Placing Task at MediaEval 2012 are given in the

working notes of the organizers [112].
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4.1.3 Experimental Setup

Our method to geocode a test query video is composed of three steps: text processing,

visual content processing, and data fusion. We used 15,563 videos from the development

set (training set) released by organizers of the Placing Task as geo-profiles to which each

test video is compared.

In order to assess our proposed framework, we first evaluate our results using only

one modality of a video content (textual or visual). In this phase, different (textual and

visual) descriptors are used, so the descriptor yielding better results can be used in the

information fusion module.

The visual processing module encodes visual content properties of each provided video.

Next, the distances between each video in the test set and all videos in the training set

are computed. Finally, for each test video, a ranked list of training videos is produced.

The text processing module works similarly, except for the feature extraction step, which

is based on video textual metadata. In summary, each module produces ranked lists of

videos that are then processed by the information fusion module.

In our geocoding scheme, we consider that the query video will receive the lat/long of

the top-ranked (most similar) training video.

We also report the results for the development set, that is, we perform experiments

considering videos of the development set as query videos. In this case, given that the

query video always is the best match to itself (thus it will be the first in this list), we

use the second video of available ranked lists to define the final location. We can see it

as leave-one-out cross-validation [46, sec. 7.10.1, p. 242], in which each time a different

video in the training set is left out and used as a query against the remaining videos in

that set.

Regarding the implementation, for textual processing, we set up a Solr4 server, then

we used Python Solr API5 to index (with stemmer and tokenizer) and generate the cor-

responding term vectors. Later, they were accessed using a Java program, applying the

corresponding version of Apache Lucene Core,6 to calculate the textual similarities de-

scribed in Section 4.1.1. The other modules and algorithms were implemented using C,

shell scripts, and Python. Finally, the result analyses and evaluations are generated both

in R and Python.

4http://lucene.apache.org/solr/ (as of Dec. 2013).
5https://github.com/tow/sunburnt (as of Dec. 2013).
6http://lucene.apache.org/core/ (as of Dec. 2013).
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4.1.4 Results

In this section, we present the results of our experiments. First, we present the results

when using a single modality to describe the videos in both development and test sets.

These results provide insights about the most suitable descriptors for the geocoding task.

Then we perform some correlation analysis on the results for the methods used, showing

their potential for combination, bearing in mind that low correlated good results are more

likely to produce a good combined result. Finally, we present the results considering the

combination of the distinct methods.

Single modality results

We have performed experiments in the development and test sets using each modality

(text and visual) in isolation from the other. The objective of this experiment is to

determine which descriptor/approach is appropriate for video geocoding.

For textual data, we applied similarity functions as described in Section 4.1.1 over

metadata associated with available videos: title, description, and keywords.

Notice that a deeper analysis of the bag-of-scenes (BoS) and the histogram of mo-

tion patterns (HMP) approaches are presented in [105] and in [77], respectively. In our

experiments, we have used their best parameters.

For the bag-of-scenes method, we performed experiments with dictionaries of 50, 500,

and 5000 scenes. Additionally, we considered two different inputs for creating scene dic-

tionaries: the Flickr photo collection and the frames of videos of the development set. We

named BoS50
CEDD, BoS500

CEDD, and BoS5000
CEDD for bag-of-scenes with dictionaries based on

Flickr photos, and BoF50
CEDD, BoF500

CEDD, and BoF5000
CEDD for those with dictionaries based

on frames of videos from development set.

Figure 4.3 and Figure 4.4 show stacked bars associated with evaluated methods con-

sidering the development and test sets, respectively. Each rectangle in a stack represents

one radii in the set of widening circles (1, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000,

and 10000 km) traditionally used by the organizers to measure the performance of video

geocoding methods in the Placing Task. In those figures, the textual descriptors results

are colored in red, while visual results are in green. Darker colors mean smaller radii,

therefore, the larger the darker rectangles are, the more precise the evaluated method is.

For example, the first rectangle in the bottom of the stack refers to the 1 km radius. The

bars related to predictions that are more than 10,000 km from the ground truth location

are not shown.

In the development set (Figure 4.3), we can clearly see a better performance for text-

based approaches in relation to visual-based approaches. As we can observe, for those

methods, more video locations are predicted correctly in more precise (lower) radii. The
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Figure 4.3: Stacked bars showing the isolated performances of each method in the devel-
opment set.

Okapi distance function considering the title, description, and keywords associated with

a video (OKPa), or just using keywords (OKPk) yields the best results for 1 km preci-

sion, followed by Dice only using keywords (DICEk). Considering only the visual-based

approaches, HMP is slightly better than BoF5000
CEDD.

In the test set (Figure 4.4), OKPa is again the best method. For visual-based ap-

proaches, there are very small differences among the methods, but HMP is still slightly

better.

As expected, the results for the test set are worse than those observed for the develop-

ment set. Most of the text-based approaches are able to geocode into the 1 km widening

circle for about 50% of the videos of the development set. For the test set, however, none

of them are able to predict very accurately the correct locations. Less than 10% of the

videos are geocoded within the 1 km radius (first rectangle of each stack).

Figures 4.5a and 4.5b summarize the performance of evaluated methods, now using our

proposed score WAS(m) (Equation 3.3) for development and test sets, respectively. As

we can observe, the conclusions are similar to those drawn for Figure 4.3 and Figure 4.4:

Okapi (OKPa and/or OKPk) is the best text-based method followed by Dice (DICEk

and/or DICEa); while HMP is the best visual-based method followed by BoF 5000
CEDD and

BoS5000
CEDD.
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Figure 4.4: Stacked bars showing the isolated performances of each method in the test
set.

Correlation analysis

This section analyzes the correlation among different features and modalities. Our ob-

jective is to assess how those features co-vary with each other. In many situations, the

correlation analysis provides additional cues that are very useful to select methods to be

combined [108]. We have performed a correlation analysis to evaluate the most promis-

ing combinations for the text and visual-based methods. Figure 4.6 shows the correlation

graph (from R package corrgram) for the development set results. In this case, we consider

the distances between a predicted point and its ground truth, that is, we took into account

these distances for each query to analyze dependence (Pearson correlation coefficient) of

the result using different pair of descriptors.

This kind of plot, aka correlogram, is presented by Friendly [42] and shows the correla-

tion values for each pair of methods as a squared matrix. The darker the color, the higher

the correlation value. In the lower triangle, the correlation value is denoted by the inten-

sity of the cell color. In the upper triangle of this matrix, the correlation value is given

by the size of the painted area in the circles, as well as by their colors. The diagonal of

this matrix holds the name of the methods corresponding to each row and column. Thus

to get a sense of the correlation based on painted circles between, for example, BoF 5000
CEDD

versus all the others, we should look at the intersection of cells in the column where it sits
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Figure 4.5: Error bars of WAS(m) measure for isolated methods.

(e.g., last column) with the corresponding row for the others. Conversely, for OKPa (first

row) we should look at the intersection of the first row with the corresponding column for

each other descriptors.

The correlogram indicates higher correlation among the different textual descriptors,

because of the darker color in their cells and the bigger size of the painted area in corre-

sponding circles. The same behavior can be observed for the correlation scores among the

different visual descriptors. However, between the textual and visual descriptors, the cor-

relation is very low (the lightest colors and smallest painted areas in their corresponding

circle). As we stated before, the best combinations occur when the inputs are independent

and non-correlated [27]. Therefore, textual and visual-based methods are very suitable

for the combination.

As seen previously, the best geocoding result was yielded by OKPa, so we will analyze

the correlation value and the mean WAS of OKPa with each of the other descriptors as
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Figure 4.6: Correlation values for each pair of methods evaluated in the development set.

depicted in Figure 4.7. We can observe that the best mean WAS score (axis x) is for

OKPa and DICEa, followed by OKPa and OKPk. However, the correlation of the first

pair is also the highest one (0.6516) while for the second pair it sits in the middle (0.4723),

considering the textual pairs correlations (they range between 0.2162 and 0.6516, while

their means WAS range from 0.6125 to 0.7140). The combination of OKPa with other

visual descriptors results led to the lowest mean WAS concentrated between 0.4650 and

0.4963 (with HMP) and the lowest correlation ranging from 0.0687 to 0.1063.

In the coming section we discuss the results of multimodal combinations and the

reasoning behind the combination choices we made based on individual results of each

descriptor and their correlation.

Fusion results

The choice of the best textual and visual methods was made based on the correlation

analysis of the results of each descriptor. Promising results have been reported using

similar approaches [103].
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evaluated in the development set.

Since our work here is focused on data fusion, we will detail our submissions [78] to

Placing Task at MediaEval 2012 considering combined results for:

• only textual (Ftext) combines results from textual descriptors Okapi and Dice,

considering three implementations which yielded the best results (Figure 4.5a) and

that have low correlation: Okapi applied to three textual metadata fields (title, de-

scription, keywords) associated with a video (OKPa); Okapi applied to the keywords

field (OKPk), as well as Dice applied to the keywords (DICEk). These text-based

methods have the best scores and are not so highly correlated.

• only visual (Fvisual) combines results from the three best visual descriptors as

shown in Figure 4.5a: HMP, BoS5000
CEDD, and BoF 5000

CEDD.

• text & visual (FTxVis) combines two textual and two visual features: OKPa,

OKPk, HMP, and BoS5000
CEDD. For textual descriptors, the highest score are the

two versions of Okapi and Dice. Looking at the correlation of OKPa (best version)

with the other best text descriptors versions, DICEk and OKPk were tied with

the lowest correlation (Figure 4.6). Thus, OKPk was paired with OKPa due to its

higher score. Using the same reasoning for the visual descriptors, the best ones are

HMP, BoF 5000
CEDD, and BoS5000

CEDD with a similar correlation between HMP and the

last two. We chose BoS5000
CEDD because it is based on Flickr photos, which might be

a better match to complement HMP approach (based on videos).

In the next subsection, we evaluate the three rank aggregation methods considering

features defined by Ftext, Fvisual, and FTxVis.
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Evaluation of Rank Aggregation Methods

In order to choose among the three implemented fusion methods, we used our proposed

scoring system WAS to analyze the overall performance. Each of the fusion methods

was applied to combined text (Ftext), visual (Fvisual), and text and visual descriptors

(FTxVis).

In Figure 4.8, the WAS for each fusion method and their respective error intervals are

shown. In the graphic, the result for each fusion method is suffixed with “.M”, “.B”, or “.R”

to indicate that it was generated, respectively, by Multiplication, Borda, or Reciprocal

Rank Fusion (RRF) methods detailed in Section 4.1.1.
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Figure 4.8: Results of rank aggregation methods evaluated using WAS(m) and their
standard error (SE) interval.

As we can observe, the multiplication method (FTxVis.M, Ftext.M, and Fvisual.M)

yields statistically significant better result with 95% confidence when compared to the

other fusion method (no intersection in their confidence interval). Due to these results,

from now on we consider the use of the multiplication approach, when we refer to the

rank aggregation step of our geocoding framework.
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Combined versus Single Modality

Figures 4.9 and 4.10 show the stacked bars comparing the results yield by various methods,

for each widening circle used in the Placing Task evaluation, in development and test sets.

Those figures show the best methods of each modality (red bars for textual and green ones

for visual) used in the combination experiments, as well as the results of their combination

(blue bars). Both figures show that fusion methods yield better results than the use of

single descriptors (either visual or textual).
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Figure 4.9: Stacked histograms showing the performances, in the development set, of the
best methods for each modality and their fusion.

Figures 4.11a and 4.11b compare the results of the fusion method that combines tex-

tual descriptors with the results of a single feature using our proposed WAS(m) score,

considering both the development and the test sets. As it can be observed, the fusion

of textual descriptors (Ftext) is better (higher score) than the use of features in isola-

tion (OKPa, OKPk, and DICEk), in both development and test sets, with a statistical

significance of 95% confidence limit.

Figure 4.12a shows the results for the combination of visual features (Fvisual). It
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Figure 4.10: Stacked histograms showing the performances, in the test set, of the best
methods for each modality and their fusion in the test set.

shows that the combination of HMP, BoF 5000
CEDD(Ce5000f), and BoS5000

CEDD (Ce5000s) in

the development set improved significantly (95% confidence limits) over the best visual

individual result (HMP) in the development set (0.3323 against 0.2733). However for

the test set, no statistical difference is identified, as shown in Figure 4.12b (0.2845 over

0.2826).

The fusion taking account visual and textual features (FTxVis) also yields better

results than the use of a single modality (OKPa) as shown in Figure 4.11. Additionally,

the improvement of FTxVis over Ftext is more visible for the development set (0.7511

over 0.7388) than for the test set (0.4445 over 0.4292). However, in the training data

set, Fvisual and FTxVis results present statistically significant difference, as shown in

Figure 4.11a, while Figure 4.11b shows that in the test set their results do not. One of

the reasons might be due to the use of the same weight for combining textual and visual

features. In addition to this, there were more videos without textual data to help the

geocoding in test set than in training set.
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For the concatenation of title, description, and keywords, in development set, there

was no textual data in approximately 1% of its videos, whereas its was the case for about

7% of the videos in the test set. When considering the keywords alone, these percentages

increase: around 11% and 35% respectively.

Consider the case in which the textual approach provides a perfect estimation and the

visual method performs an incorrect prediction. Once the textual and visual features have

the same contribution in the final result, their combination may not improve the overall

performance of individual strategies. Therefore, there is room for improvements in the

fusion module, by incorporating new strategies for assigning different relevance weights to

each method being combined, for example. We will address this research venue in future

work.

In summary, we can see better results when combining methods of different modalities

or descriptors. The fusion of the three text methods (Ftext), as well as the fusion of visual

and textual descriptors (FTxVis) overcome the best single descriptor method (OKPa), as

shown in Figures 4.11a and 4.11b.

Incorporating User-Related Data

This section describes experiments to evaluate the impact of using user-related data. We

analyze different geocoding strategies based on combining our best selected visual and

textual features with ranked lists defined in terms of (U) just user names found in the

videos’ metadata, (UH) user names and the videos’ owner declared home location, and

(UHC) the concatenation of user names, home location, and comments related to each

video.

We treat the user-related data as another textual information. We used the textual

descriptors we described in Section 4.1.1 to index and process them. We also compare

our best single “conventional” textual results (DICEa, Dicek, OKPa, and OKPk) with

the different strategies to incorporate user information (U, UH, and UHC).

Figure 4.13 shows the results, for the training and test sets, in term of WAS scores and

confidence intervals. Notice that, in the training set (a), features based on user information

yields worse results when compared to the “conventional” textual features. The best

results for user-related features are observed for DiceUH (0.6819), OKPuh (0.6825), and

TfIdUH (0.6692), that is, the geocoding strategies that consider user names and owner

location (UH). For the test set (b), all the user-related features results are statistically

similar (there are intersections among their confidence limits), although worser scores

(WAS) were observed for the test set when compared with those for training set (a). This

is also true when comparing them to “conventional” textual features.

We also conducted correlation analysis in order to decide which methods for user-

related data should be used in the rank aggregation module, starting from their top three
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Figure 4.13: Geocoding results for ranked lists defined by conventional textual (using
OKPa, OKPk, DICEa, and DICEk similarity functions) and user-related properties (using
OKP, Dice, and TfIdf).

results. Figure 4.14 shows that user-related features are low (light color) correlated with

both conventional text and visual descriptors (HMP and Ce5000s), which indicates that

better results can be produced when combined. Regarding user-related feature, we used

as starting point the descriptor with higher WAS, which is OKPuh. Thus, we choose to

pair it with TfIdUH as OKPuh is lower correlated with this than with DiceUH.
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Figure 4.14: Correlogram in the development set for conventional text (OKPa, OKPk,
DICEa, and DICEk), user-related (TfIdUH, OKPuh, and DiceUH) features, and two best
visual features (Ce5000s and HMP).

Figure 4.15 shows the geocoding results of three different strategies: Ftex, which

considers the three best textual features; FTxVis, which uses the best two visual and

textual features; and finally TxVisUL, which combines the two best visual, textual and

user-related features. These results consider the use of the multiplicative rank aggrega-

tion method. As expected, the user-related features improves the geocoding results in

both development and test sets. Their results are significantly better than of the other

strategies, with 95% of confidence.

These outcomes support our hypothesis that fusing results of different modalities can

improve the final geocoding results.

Comparisons with other Video Geocoding Initiatives

This section compares the proposed geocoding method with the ones provided by other

participants of Placing Task 2012. We have not used WAS here as the evaluation measure,
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Figure 4.15: WAS(m) general score and standard error interval: fusion results for three
different geocoding strategies (Ftex, FTxVis, and TxVisUL) in the development set (a)
and test set (b).

since distance scores for each query video are not available for the geocoding methods

defined by other participants. The organizers of Placing Task compare primarily the

results reached within 1 km radius, although results in other precisions are shown as well.

First, we compare the submissions that only consider the use of visual content. As it

can be observed in Figure 4.16, our results are the best at 1 km precision (15.93%). Our

solution refers to the combination of our best visual descriptors results (Fvisual). Note

that other teams only achieve this level of accuracy for 1,000 km radius. In fact, even

at this radius, our method (UNICAMP) is still ahead, with 25.47% of test videos being

correctly geocoded.

Figure 4.17 presents the best-performance (external information allowed) of all par-

ticipants, at 1 km radius. Our results (UNICAMP) consider geocoding strategy based on

combining visual and textual descriptions, but without using any user-related data.
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4.2 Domain-specific Image Geocoding: Virginia Tech

Building Photos Case

As presented before, the Crisis, Tragedy, and Recovery network (CTRnet) project collects

news and online resources (web pages, public Twitter and Facebook posts) related to

natural disasters and man-made tragedies.

To support the creation of map-based browsing services building on photo content, the

first step is to be able to geocode images. For this, we need to evaluate image descriptors

in image geocoding tasks.

In [105], the authors explored a strategy based on global descriptors to tackle the

challenge of geocoding videos based only on visual features. In more recent studies [78, 84],

we combined visual and textual features for video geocoding. We would like to explore

similar approach in the context of Virginia Tech Building Photos.

The objective now is to investigate the most suitable image descriptors to be used to

geocode photos belonging to the collection related to the VT April 16 shooting event.

Later, geocoded photos could be used to create map-based photo browsing services.

The first insight to tackle the problem of geocoding photos about VT is to leverage

research to recognize buildings. Previous initiatives, such as [107], perform matching of

local descriptors to find similar regions within images of a set of buildings. Although they

are not explicitly geocoding images, their approaches could be used for that purpose.

They worked with buildings from the University of Oxford.7 After describing images with

a scheme based on a visual vocabulary (quantized local features), matching was done

between a given query image and images from the dataset. Performance was compared

for different vocabulary sizes, as well as vocabularies generated by diverse methods. Here

we will employ a similar strategy, with the aim of evaluating the performance of local

image description approaches in the task of geocoding building photos.

For this geocoding experiment, we need a data collection and the evaluation criteria

which will be described below.

4.2.1 Datasets

We use two datasets in our experiments. One is used as our visual knowledge base and will

be referred to as training data. The other includes the test data images whose locations

will be predicted by the proposed geocoding system.

Training dataset The training data is a subset of 4,852 photos from VT’s University

Relations (UniRel) Photo Library. Each photo has some metadata associated, such as

7http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/(as of Dec. 2013).
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keywords, caption describing the scene, date, camera model, and photographer’s name.

For our purpose, we filtered the photos by the content of keywords and caption fields.

As we were interested in the university buildings, we searched for photos whose meta-

data (keywords or caption) contains building and place names (e.g., Duck Pond). The

building/place names list was built up from both the VT site8 and the campus build-

ing database maintained by GIS staff for campus facilities. The resulting training set

contains photos of buildings or places with their location. Figure 4.19 shows the spatial

distribution of buildings whose photos are in the training set.

Test dataset The test dataset9 contains 565 photos of VT buildings. Most of them

were obtained from personal collections while some others were downloaded from the

VT website. The photos were obtained under different angle and light conditions. The

locations of these photos are shown in Figure 4.20. Note that the test set covers a smaller

area (near to the Drillfield in the campus center) when compared to the training set.

Figure 4.19 and Figure 4.20 were generated using a tool provided by sethoscope.net.10

We used the option that employs tiles, provided by Stamen Design, under CC BY 3.0.

Data was provided by OpenStreetMap, under CC BY SA.

Ground truth The ground truth for the images in the training and test data sets,

that is, the “correct” location for each of them, was inferred from the corresponding

building/place name associated with the photo. For the training photos, we used the

place/building name that appears in their metadata. For the test photos, we use the

name that we manually labeled each photo. The ground truth for these photos is based

on the latitude and longitude from the VT site, as well as on the result of processing

building names by Google’s geocoding service. However, if no matches were found by

the geocoding service or if disambiguation was needed, the place/building was manually

located and confirmed in Google Maps or Open Street Map using its name. Additionally,

some photos and some of the resulting geocoding locations were visually and manually

inspected to determine their final location and/or coordinates.

The tool we used in this process is geopy,11 a geocoding toolbox for Python that

accesses popular Web geocoding API services. Geopy also supports the computation of

geographic distance between two given lat/long points. We used this feature to evaluate

our geocoding results.

8http://www.vt.edu/about/buildings/ (as of Dec. 2013).
9http://www.recod.ic.unicamp.br/VTBuildings/(as of Dec. 2013).

10http://www.sethoscope.net/heatmap/(as of Dec. 2013).
11https://github.com/geopy/geopy#readme (as of Dec. 2013).
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Figure 4.19: Spatial distribution of photos
used as training set.

Figure 4.20: Spatial distribution of photos
used as test set.

4.2.2 Evaluation Criteria

The evaluation criterion used here is inspired by the evaluation procedure adopted in

the Placing Task at MediaEval [112]. The effectiveness of a method is based on the

geographic distance (great-circle distance) of the estimated geo-coordinates of a digital

object to its corresponding ground truth location, in a series of widening circles of radius.

An estimated point is counted as correct if it is within a particular circle size, that is, a

radius value or precision level.

In our case, we are interested in determining as accurately as possible the location

for a photo image. Furthermore, our area of interest is restricted to the Virginia Tech

campus, so our precision level should be in the range of meters. Taking into account that

the two farthest points of the town of Blacksburg (where VT is located) are about 10 km

apart, we can accept that two points on the VT campus should not be further apart than

5 km. The precision levels adopted are {1, 50, 100, . . . , 1000}, {1100, 1200, . . . , 2000},
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and {3000, 4000, 5000} meters.

4.2.3 Setup

First, the visual content properties of each provided image are encoded into feature vec-

tors, considering all evaluated descriptors. Then, the visual distances between the photos

in the test set and all photos in the training set are computed. Finally, for each test

photo, a ranked list of training photos is produced.

To represent each image, we used the bag-of-visual-words model [120]. In that model,

after extracting low-level features with local descriptors, we quantize the feature space in

order to obtain a visual dictionary (codebook) and then we represent each local description

according to the dictionary. For low-level feature extraction, we used: dense SIFT (6

pixels) [124], sparse SIFT (Harris-Laplace detector) [124], and sparse SURF (Fast-Hessian

detector) [6]. We randomly quantized the feature space [127], generating two dictionary

sizes: 1,000 and 10,000 visual words.

To compute the bag-of-word representation, we used soft assignment (σ=60 for SIFT

and σ=0.08 for SURF) [125] and two pooling methods: max pooling [12] and Word Spatial

Arrangement (WSA) [106]. WSA was used only over the sparse SIFT, while max pooling

was used for all low-level features. Table 4.1 lists the evaluated methods.

Table 4.1: Image representations evaluated.

Acronym Method
D.SIFT.1k dense SIFT, 1,000 words, soft assignment (σ=60), max pooling
D.SIFT.10k dense SIFT, 10,000 words, soft assignment (σ=60), max pooling
S.SIFT.1k sparse SIFT, 1,000 words, soft assignment (σ=60), max pooling
S.SIFT.10k sparse SIFT, 10,000 words, soft assignment (σ=60), max pooling
S.SURF.1k sparse SURF, 1,000 words, soft assignment (σ=0.08), max pooling
S.SURF.10k sparse SURF, 10,000 words, soft assignment (σ=0.08), max pooling
WSA.1k sparse SIFT, 1,000 words, soft assignment (σ=60), WSA
WSA.10k sparse SIFT, 10,000 words, soft assignment (σ=60), WSA

Geocoding Process The geocoding scheme adopted is based on performing K-nearest

neighbor (KNN) searches. In this study, the location of a test photo is defined based on

the geographic coordinates of the most similar image in the training set, i.e., is defined in

terms of the location of the 1-nearest neighbor (i.e., K = 1) of the test photo. The visual

distances between an input test image and all training images are computed. Training

images are then ranked in ascending order of their visual distance to the input test image,
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Table 4.2: The best visual match for each query image and its geocoding result. Values
below the photo thumbnail show the geographic distance (in meters) to the location of
query image.

Query
Building
Name

D.SIFT.1k D.SIFT.10k S.SIFT.1k S.SIFT.10k S.SURF.1k S.SURF.10k WSA.1k WSA.10k

Holtzman
Alumni
Center

M holtzman 828.68 677.83 521.63 1444.40 3097.05 1213.12 3097.05 3097.05

Major
Williams
Hall

M major-williams 344.41 344.41 261.14 878.87 344.41 293.99 874.65 874.65

Lane
Hall

P1080012 424.08 86.87 349.62 161.13 217.67 1231.06 238.44 238.44

Shultz
Hall

P1080060 577.29 73.81 341.67 927.37 273.69 1416.96 1134.17 255.78

Major
Williams
Hall

P1080175 102.50 102.50 874.65 878.87 1246.30 209.30 344.41 245.95

Davidson
Hall

P1080241 494.87 301.03 273.88 1019.67 252.30 2721.11 578.88 460.76

Squires
Student
Center

P1080509 314.82 516.54 2788.72 1077.80 2788.72 130.10 0.00 526.03

Torgersen
Bridge

P1080710 906.41 2801.90 74.33 1070.43 0.00 0.00 275.15 74.33

Newman
Library

P1080711 407.52 370.97 299.52 299.52 299.52 80.13 547.67 869.76

Pamplin
Hall

P1080371 127.52 212.48 483.67 127.52 127.52 501.05 253.25 403.00
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Consider, for example, the top-ranked image in the case of query P1080710 (picture

of the Torgersen Bridge). The S.SURF (1k and 10k) descriptor is able to match it to a

photo that only pictures a detail of that building, whereas WSA.10k and S.SIFT.1k match

that to a photo from the same building but under a different light (darker) condition.

However, as this photo was labeled as Torgersen Hall instead of Torgersen Bridge (part of

Torgersen Hall), its geographic distance was not zero. The query P1080012 (Lane Hall)

shows an example where S.SURF.10k performed very badly. D.SIFT.10k, on the other

hand, matched it to a photo of a building (Shanks Hall) that is close (86.87 m) to Lane

Hall, while S.SIFT.10k found the query similar to a picture of Torgersen Bridge (161.13 m

away) at night.

4.2.5 Feature Fusion

Training set Results and Discussions

In Section 4.1, we have shown that combining individual non-correlated descriptors may

improve geocoding results. A correlation analysis helped to evaluate the most promising

descriptors to be combined. In order to do that in this context, we will analyze the results

for each descriptor evaluated on the training set. For the training set, we will perform

experiments considering each image of the training set as a query photo. In this case,

given that the query photo always is the best match to itself (thus it will be the first in

this list), we use the second photo of available ranked lists to define the final location.

As it is stated in Section 4.1.3, this can be seen as leave-one-out cross-validation [46, sec.

7.10.1, p. 242], in which each time a different item in the training set is left out and used

as a query against the others in that set.

Figure 4.22 shows the correlation graph (corrgrams R package) for the results of the

training set. In this case, for each method and query image, its geocoding result is the

geographic distance between a predicted point and its ground truth. Thus, we studied

the correlation of these results for the evaluated methods. As we can observe, the lowest

correlations are among S.SIFT.1k and the others, which is indicated by the lightest colors

in the first column and the smallest painted area in circles in the first line.

Figure 4.23 shows the geocoding results of evaluated descriptors on the training set.

We can observe that WSA.10k and S.SIFT.1k yield the best performance, followed by

WSA.1k and D.SIFT.10k at 200 km. On the other hand, S.SIFT.1k is less correlated

with other descriptors (see Figure 4.22), which suggests that its combination with other

descriptors may improve the geocoding results.

Comparing the geocoding results on both test and training sets, we found some sur-

prising results. S.SURF.10k, for example, yields the worst results in the training set, but

performs very well on the test set compared to the other methods. One possible explana-
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Figure 4.25: WAS scores and confidence intervals for single results in the training set.

WSA.1k (also tied), followed by D.SIFT.1k, S.SURF.1k, S.SIFT.10k, and S.SURF.10k.

As we can observe, this order of the best results (and ties) is exactly the same for the

curve of accumulated count (higher to lower) at 200 m, which is consistent with the results

shown in Figure 4.23.

As observed early in Figure 4.22, S.SIFT.1k has the least correlated results with respect

to the other’s results. It has also yielded the best geocoding results in the training set.

Thus, S.SIFT.1k is a good candidate for being combined with other descriptors. Our

hypothesis is that the use of the pair of descriptors with the highest mean WAS and the

lowest correlation will potentially improve the geocoding result.

Figure 4.26 shows the correlation versus mean WAS for pairs of descriptors in the

training set. In this figure, one of the descriptors is S.SIFT.1k. This (Pearson) cor-

relation is computed based on the geographic distance of estimated location from the

ground truth for each “test image” in the training set. The mean WAS is computed by
W AS(S.SIF T.1k)+W AS(X)

2
, where X is one of the other descriptors. As seen in this plot,

the lowest correlation is for S.SIFT.1k and D.SIFT.1k, the latter being the third best

mean WAS. We also observe that the correlation of S.SIFT.1k and each of the remaining

descriptors are almost the same, but with different mean WAS.

Figure 4.27 shows the WAS results, in the training set, for the combination involving

pairs of descriptors and one for the fusion of three descriptors: S.SIFT.1k, D.SIFT.1k

(least correlated), and WAS.10k (best mean WAS). The last item in the figure presents

the best result considering a descriptor alone to serve as baseline. Note that we used
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Figure 4.26: Correlation × mean WAS score between S.SIFT.1k and other descriptors in
the training set.

the rank aggregation method defined in Equation 4.6. In the graph, we use a different

(shorten) notation for naming the descriptors: SiS1 stands for S.SIFT.1K, D1 stands

for the D.SIFT.1k, D10 stands for D.SIFT.10k, S10 stands for S.SIFT.10k, Surf1 stands

for S.SURF.1k, Surf10 stands for S.SURF.10k, WSA1 stands for WSA.1k, and WSA10

stands for WSA.10k. For example, SiS1.WSA10 refers to the fusion result combining

S.SIFT.1K and WSA.10k. As we can observe, the WAS resulting from the combination

of two descriptors is close to the mean of their individual WAS. The highest result is

yielded by the SiS1.WSA10 combination. Although this result is not significantly better

than those observed for other combinations, such as SiS1.WSA1, SiS1.D1, and SiS1.D10,

they are significantly better than the best single result (S.SIFT.1K). Note also that the

fusion of three descriptors (SiS1.WSA10.D1) did significantly improve the result (0.7882)

over those fusion pairs.

Test set Results and Discussion

In this section, we present and discuss data fusion results for the test set. In Figure 4.21

we presented the geocoding results for evaluated methods considering different precision

levels in accumulative count of correctly assigned test images. The result exhibited in

Figure 4.28 use the WAS score. As stated before, S.SURF.10k yielded the worst result for

the training set, but the best in the test set. In fact, we can see that the other methods had

lowered their results in the test set whereas S.SURF.10k maintained its performance with
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Figure 4.27: WAS scores and its confidence intervals for fusion results in the training set.

WAS score around 0.4 in both data sets. Additionally, we should note that S.SURF.10k

is not statistically better than D.SIFT.1K, S.SIFT.1K, and WSA.10k.

95% confidence limits

W
A

S
 s

c
o
re

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S.S
IF

T.
1k

D
.S

IF
T.
1k

D
.S

IF
T.
10

k

S.S
IF

T.
10

k

S.S
U
R
F.
1k

S.S
U
R
F.
10

k

W
SA.1

k

W
SA.1

0k

(a) Full score view

●

●

●

●

●

●

●

●

95% confidence limits

W
A

S
 s

c
o
re

0
.3

2
0
.3

4
0
.3

6
0
.3

8
0
.4

0
0
.4

2

S.S
IF

T.
1k

D
.S

IF
T.
1k

D
.S

IF
T.
10

k

S.S
IF

T.
10

k

S.S
U
R
F.
1k

S.S
U
R
F.
10

k

W
SA.1

k

W
SA.1

0k

(b) Zoom in view

Figure 4.28: WAS scores and its confidence intervals for single results in the test set.

Figure 4.29 shows the correlation analysis for the test set. Compared to the training

set correlogram, the results on the test set also show a rather different behavior of the

studied methods. In general, they seem to be less correlated (lighter color and less painted

circles). We can also observe that S.SURF.10 has the lowest correlation coefficients.

Figure 4.30 shows the correlation versus mean WAS involving S.SIFT.1k and other

descriptors. This figure shows a concentration of fusion methods for mean values in the

range of 0.35 and 0.39. Note also that correlation scores are below 0.27.

The outcome of the fusion of S.SIFT.1k and S.Surf.10k was surprising. Unlike the

other combinations, this fusion lowered the WAS. Moreover, looking at Figure 4.31, there

is no clear winner in terms of best descriptor fusion, as most of the combinations yield

statistically similar results. In addition to that, we also observe that the combination of

SiS1, WSA10, and SiD1 does not yield enhanced results, as we had expected given the
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Figure 4.29: Correlation in the test set. Upper panel shows the dispersion graph for each
pair of methods.

performance of this combination for the training set, nor the fusion improved over the

best single descriptor result in test set (S.SURF.10k).

It seems that there are some fundamental differences between the training set and the

test set that explains these distinct geocoding results of the evaluated methods. In fact,

in the test set, there are more close up photos, whereas the training set includes pictures

in a wider frame, i.e., the images depict more distant objects (buildings). These results

suggest that a better performance of our geocoding framework in terms of combining

different descriptors can be achieved when both the training and the test set share similar

characteristics, as we observed in the Placing Task in the MediaEval 2012.
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Figure 4.31: SSift1k × other WAS scores and its confidence interval for fusion results in
test set.





Chapter 5

Conclusions

In this chapter, we summarize our contributions, as well as list the main conclusions of

our study. We also present possible extensions to be addressed in future work.

5.1 Main contributions

References to places are often found in digital objects (e.g., documents, images, and

videos) of several digital libraries. Geographic information can enrich services like brows-

ing and searches, opening new opportunities for establishing new relations based on geo-

graphic location. However, the primary requirement to offer these geo-enabled services is

that digital objects must be geocoded, i.e., they should be related to some place on Earth.

This work has investigated the fusion of textual and visual content for geocoding

digital objects and has proposed a flexible framework to perform multimodal geocoding

by combining ranked lists defined in terms of different modalities. In our approach,

textual and visual descriptors were combined using a rank aggregation approach. To the

best of our knowledge, this is the first attempt to address this problem using this kind

of solution. The potential of this framework relies on the fact that each module can be

improved separately, opening new opportunities for further investigation related to the

development and use of novel rank aggregation methods for geocoding task. Moreover,

it facilitates attaching new components to deal with new modalities of information and

replacing the implementations by those that advance in dealing with a certain modality.

An architecture was designed to implement the proposed geocoding framework and it

was first validated in the context of the Placing Task of the MediaEval 2012 initiative.

Conducted experiments demonstrate that the use of the proposed fusion approach yields

better results when compared with those based on a single clue (either textual or visual

descriptor). Results also demonstrate that, despite of the simple textual descriptor meth-

ods used, the performance of the proposed method is comparable to the best submissions

93
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of the Placing Task in the same year. We have also demonstrated the use of a method

based on correlation analysis of geocoding results associated with different modalities to

select features that enhanced geocoding results when combined.

In the context of photo geocoding of VT buildings, we have downloaded and selected

the photos that could be used for the training dataset and produced the test set and

prepared the ground truth location for them. In the VT building experiment, we were

able to enhance significantly the geocoding results by using rank aggregation approaches

if the training set (our knowledge base) captures the characteristics of the test set. The

fusion framework was applied to combine results from different local visual descriptors.

Another contribution of this work is the proposal of a new score measure, named

Weighted Average Score (WAS), to assess the quality of the results of geocoding methods.

Instead of counting videos correctly assigned within various predefined precision radii (a

common approach used in the literature), each method is evaluated in terms of a score

between 0 (poor) and 1 (perfect), based on the geographical distances among produced

predictions and ground truth locations. We showed that the proposed evaluation measure

can be tuned to be used in specific experiment contexts (e.g., whole world or a city). This

proposed measure was also implemented and applied in both study cases where we have

validated our framework proposal.

5.2 Possible Extensions

We envision many further steps and derived works from this one. They are summarized

below:

• Investigating other strategies for combining different modalities and exploring the

strength of each modality for geocoding multimedia objects. Some promising al-

ternatives rely on the use of rank aggregation methods based on re-ranking ap-

proaches [101, 102, 103, 104]. In addition, we would like to evaluate the use of

supervised methods for feature selection and fusion as those applied in [31, 35].

• Using other external sources, such as user profiles and its indirect relationships,

Geonames,1 and Wikipedia [29], to filter out noisy data from ranked lists. Strategies

used in [48, 122] can be combined with the proposed geocoding framework.

• Implementing novel components in the proposed framework that exploit ontologies,

thesauri, and gazetteers to improve geocoding results.

1http://www.geonames.org/ (as of Dec. 2013).
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• Designing one additional level of abstraction in the fusion module by taking the

top-k best ranked items found in ranked lists defined by different descriptors and

use their geographical coordinates to combine or re-rank candidate locations. For

example, we may consider the top-k points from a final rank aggregation list to define

the location of a query object. Another strategy is to consider the coordinates of

top-k items from ranked lists of different features. In these cases, we are addressing

the geocoding problem by processing a set of candidate location points.

We devise two possible methods following these ideas: (a) first, we can divide the

Earth in a grid (e.g., fixed or varied size based on, for example, the approach pro-

posed in [48]) and consider the cells where objects are more frequently found to

reason a candidate location for the query image/video; (b) another strategy is to

explore different clustering methods on candidate geographic coordinates and select

the most promising cluster (e.g., the most dense) that will give its lat/long to the

query object.

• Other possible extensions consist in the use of the proposed framework in different

data fusion applications:

– event detection tasks based on their type, time, and geographic location. In this

case, the knowledge base should be about targeting events instead of locations;

– geographic information retrieval of scholarly digital libraries based on image,

sound, text, location, and time. For example, in [95], the fish species identifica-

tion task is based on narrowing down the candidate family based on locations

where a specimen was found besides other usual physical characteristics. Ad-

ditionally, it might be interesting to explore the combination of the ranked lists

from the searches of each individual feature in order to improve the final result;

– social media geographic information mining based on multimodal data (e.g.,

image, text, time, users, friends and/or followers[28], preferences, and where-

abouts);

• Incorporating other kinds of data such as those derived from remote sensing images

(e.g., aerial), temporal information, and thematic maps (e.g., vegetation, terrain

and population) into the proposed framework.

• Improving searching and browsing services by using the proposed framework to

return more relevant documents. The proposed framework could be used for ex-

ample to combine diverse features of a digital object (e.g., textual, visual, spatial-

temporal). Geocoded digital objects can also be used in novel DL services such as

search based on geographical queries as discussed in Section 2.1.2.
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5.3 Published Contributions

This work resulted in publication of journal papers [82, 85], a book chapter [83], papers in

conference proceedings [84, 86, 105], working notes [77, 78, 79], and technical reports [80,

81], which are listed below:

• A rank aggregation framework for video multimodal geocoding [85].

Lin Tzy Li, Daniel C. G. Pedronette, Jurandy Almeida, Otávio A. B. Penatti,

Rodrigo Tripodi Calumby, and Ricardo da Silva Torres. Multimedia Tools and Ap-

plications, pages 1–37, 2013. http://dx.doi.org/10.1007/s11042-013-1588-4.

• Revisitando os desafios da recuperação de informação geográfica na

web [82]. Lin Tzy Li and Ricardo da Silva Torres. Cadernos CPqD Tecnolo-

gia, 6(1):7–20, jan–jun 2010. http://www.cpqd.com.br/cadernosdetecnologia/

Vol6_N1_jan_jun_2010/pdf/artigo1.pdf

• Geospatial information [83]. Lin Tzy Li and Ricardo da S. Torres. In Edward A.

Fox and Jonathan P. Leidig, editors, Digital Library Applications: CBIR, Educa-

tion, Social Networks, eScience/Simulation, GIS, Synthesis Lectures on Information

Concepts, Retrieval, and Services. Morgan & Claypool Publishers, pages 85–120,

March 2014. http://dx.doi.org/10.2200/S00565ED1V01Y201401ICR032

• A visual approach for video geocoding using bag-of-scenes [105]. Otávio

A. B. Penatti, Lin Tzy Li, Jurandy Almeida, and Ricardo da Silva Torres. In Pro-

ceedings of the ACM International Conference on Multimedia Retrieval, ICMR’12,

pages 53:1–53:8, 2012. http://doi.acm.org/10.1145/2324796.2324857.

• Domain-specific image geocoding: a case study on Virginia Tech build-

ing photos. [86]. Lin Tzy Li, Otávio A. B. Penatti, Edward A. Fox, and Ri-

cardo da Silva Torres. In Proceedings of the ACM/IEEE-CS Joint Conference on

Digital Libraries, JCDL’13, pages 363–366, 2013. http://doi.acm.org/10.1145/

2467696.2467727

• Multimedia multimodal geocoding [84]. Lin Tzy Li, Daniel Carlos Guimarães

Pedronette, Jurandy Almeida, Otávio A. B. Penatti, Rodrigo Tripodi Calumby,

and Ricardo da Silva Torres. In Proceedings of the ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, SIGSPATIAL’12, pages

474–477, 2012. http://doi.acm.org/10.1145/2424321.2424393

• CTRnet DL for disaster information services [129]. Seungwon Yang, An-

drea L. Kavanaugh, Nádia P. Kozievitch, Lin Tzy Li, Venkat Srinivasan, Steven D.
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Sheetz, Travis Whalen, Donald Shoemaker, Ricardo da Silva Torres, and Edward A.

Fox. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries,

JCDL’11, pages 437–438, 2011. http://doi.acm.org/10.1145/1998076.1998173

• RECOD working notes for placing task MediaEval 2011 [77]. Lin Tzy Li,

Jurandy Almeida, and Ricardo da Silva Torres. In Working Notes Proceedings of

the MediaEval Workshop, volume 807 of CEUR Workshop Proceedings, pages 1–2,

2011. http://ceur-ws.org/Vol-807/Li_UNICAMP_Placing_me11wn.pdf

• A multimodal approach for video geocoding [78]. Lin Tzy Li, Jurandy

Almeida, Daniel C. G. Pedronette, Otávio A. B. Penatti, and Ricardo da Silva Tor-

res. In Working Notes Proceedings of the MediaEval 2012 Workshop, volume 927

of CEUR Workshop Proceedings, 2 pages, 2012. http://ceur-ws.org/Vol-927/

mediaeval2012_submission_19.pdf

• Multimodal image geocoding: the 2013 RECOD’s approach [79]. Lin Tzy

Li, Jurandy Almeida, Otávio A. B. Penatti, Rodrigo Tripodi Calumby, Daniel André

Gonçalves, and Ricardo da Silva Torres. In Working Notes Proceedings of the

MediaEval Workshop, volume 1043 of CEUR Workshop Proceedings, pages 1–2, 2013.

http://ceur-ws.org/Vol-1043/mediaeval2013_submission_65.pdf

• Coping with geographical relationships in web searches [81]. Lin Tzy Li

and Ricardo da Silva Torres. Technical Report IC-10-04, Institute of Computing,

University of Campinas, 19 pages, January 2010. http://www.ic.unicamp.br/

˜reltech/2010/10-04.pdf

• Revisitando os desafios da recuperação de informação geográfica na

web [80]. Lin Tzy Li and Ricardo da Silva Torres. Technical Report IC-09-

18, Institute of Computing, University of Campinas, 19 pages, May 2009. http:

//www.ic.unicamp.br/˜reltech/2009/09-18.pdf

We also collaborated on some initiatives that have been carried out in Digital Library

Research Lab (DLRL) at Virginia Tech, USA, in the context of two research projects.

Those efforts resulted in co-authoring the following additional works:

• SuperIDR: a tool for fish identification and information retrieval [94].

Uma Murthy, Edward A. Fox, Yinlin Chen, Eric M. Hallerman, Donald J. Orth,

Ricardo da Silva Torres, Lin Tzy Li, Nádia P. Kozievitch, Felipe S. P. Andrade,

Tiago R. C. Falcão, and Evandro Ramos. Fisheries, 38(2):65–75, 2013. http:

//www.tandfonline.com/doi/abs/10.1080/03632415.2013.757982
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• Social media use by government: from the routine to the critical [58]. An-

drea L. Kavanaugh, Edward A. Fox, Steven D. Sheetz, Seungwon Yang, Lin Tzy Li,

Donald J. Shoemaker, Apostol Natsev, and Lexing Xie. Government Information

Quarterly, 29(4):480 – 491, 2012. Social Media in Government - Selections from the

12th Annual International Conference on Digital Government Research (dg.o2011).

http://dx.doi.org/10.1016/j.giq.2012.06.002

• Social media use by government: from the routine to the critical[59].

Andrea Kavanaugh, Edward A. Fox, Steven D. Sheetz, Seungwon Yang, Lin Tzy Li,

Travis Whalen, Donald Shoemaker, Paul Natsev, and Lexing Xie. In Proceedings

of the International Digital Government Research Conference, dg.o ’11, 10 pages,

2011. http://doi.acm.org/10.1145/2037556.2037574

• Use of subimages in fish species identification: a qualitative study [95].

Uma Murthy, Lin Tzy Li, Eric Hallerman, Edward A. Fox, Manuel A. Pérez-

Quiñones, Lois M. Delcambre, and Ricardo da Silva Torres. In Proceedings of

the ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’11, pages 185–

194, 2011. http://doi.acm.org/10.1145/1998076.1998112

• Experiment and analysis services in a fingerprint digital library for col-

laborative research [98]. Sung Hee Park, Jonathan P. Leidig, Lin Tzy Li, Ed-

ward A. Fox, Nathan J. Short, Kevin E. Hoyle, A. Lynn Abbott, and Michael S.

Hsiao. In Research and Advanced Technology for Digital Libraries. Proceedings

of International Conference on Theory and Practice of Digital Libraries, TPDL

2011, volume 6966 of Lecture Notes in Computer Science, pages 179–191, 2011.

http://doi.acm.org/10.1145/2042536.2042562

• Microblogging in crisis situations: Mass protests in Iran, Tunisia, Egypt [60].

Andrea Kavanaugh, Seungwon Yang, Steve Sheetz, Lin Tzy Li, and Edward A. Fox.

In TRANSNATIONAL HCI Workshop in conjuction with the ACM Conference on

Human Factors in Computing Systems (CHI’11), 7 pages, 2011. http://www.

princeton.edu/˜jvertesi/TransnationalHCI/Participants_files/Kavanaugh.

pdf

• Twitter use during an emergency event: the case of the UT Austin

shooting [87]. Lin Tzy Li, Seungwon Yang, Andrea Kavanaugh, Edward A. Fox,

Steven D. Sheetz, Donald Shoemaker, Travis F. Whalen, and Venkat Srinivasan. In

Proceedings of the International Digital Government Research Conference, dg.o ’11,

2 pages, 2011. http://doi.acm.org/10.1145/2037556.2037613
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informação geográfica na web. Technical Report IC-09-18, Institute of Computing,

University of Campinas, May 2009.

[81] Lin Tzy Li and Ricardo da Silva Torres. Coping with geographical relationships

in web searches. Technical Report IC-10-04, Institute of Computing, University of

Campinas, January 2010.

[82] Lin Tzy Li and Ricardo da Silva Torres. Revisitando os desafios da recuperação de
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INRIA/IRISA identifies geographic location of a video. In Larson et al. [73], pages

1–2.
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