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Resumo

Hoje em dia, estdo disponiveis, publicamente, uma imensa quantidade de informacGes genéti-
cas. O desafio atual da Gendmica € processar estes dados de forma a obter conclus@es biol6gicas
relevantes. Uma das maneiras de estruturar estas informacdes € através de comparagio de
genomas, que busca semelhancas ¢ diferencas entre 0s genomas de dois ou mais organismos.

Neste contexto, a irea de Rearranjo de Genomas vem recebendo bastante atencfo ultima-
mente. Uma forma de comparar genomas € através da disténcia de rearranjo, determinada pelo
niimero minimo de eventos de rearranjo que podem explicar as diferencas entre dois genomas.
Os principais estudos em distincia de rearranjo envolvem eventos de reversdes e transposicdes.

A presente coletinea € composta de oito artigos, contendo vérios resultados importantes
sobre Rearranjo de Genomas. Estes trabalhos foram apresentados em seis conferéncias, sendo
uma nacional e cinco internacionais. Dois destes trabalhos serdo publicados em importantes
revistas internacionais e outro foi incluido como um capitulo de um livro.

Nossas principais contribuicdes podem ser divididas em dois grupos: um novo formalismo
algébrico e uma série de resultados envolvendo o evento de transposi¢io.

A nova teoria algébrica relaciona a teoria de Rearranjo de Genomas com a de grupos de
permutacdes. Nossa intencdo foi estabelecer um formalismo algébrico que simplificasse a
obtencéo de novos resultados, até hoje, muito baseados na construcéo de diagramas.

Estudamos o evento de transposicio de varias formas. Além de apresentarmos resultados
sobre a distincia de transposicdo entre uma permutacio e sua inversa, também estudamos o
problema de rearranjo envolvendo transposi¢des e reversdes simultaneamente, construindo al-
goritmos de aproximacio ¢ estabelecendo uma conjectura sobre o didmetro.

Usamos o formalismo algébrico para mostrar que € possivel determinar a disténcia de fusdo,
fissdo e transposi¢ao em tempo polinomial. Este € o primeiro resultado polinomial conhecido
para um problema de rearranjo envolvendo o evento de transposigéo.

Por dltimo, introduzimos dois novos problemas de rearranjo: o problema de distincia sin-
ténica envolvendo fusdes e fissdes, e o problema de transposi¢do de prefixos. Para ambos
apresentamos resultados significativos, que avangam o conhecimento na area.
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Abstract

Nowadays, a buge amount of genetic information is publicly available. Genomic’s current
chalienge is to process this information in order to obtain relevant biological conclusions. One
possible way of structuring this information is through genome comparison, where we seek
similarities and differences among the genomes of two or more organisms.

In this context, the area of Genome Rearrangements has received considerable attention
lately. One way of comparing genomes is given by the rearrangement distance, which is deter-
mined by the minimum number of rearrangement events that explain the differences between
two genomes. The main studies in rearrangement distance involve reversal and transposition
gvents.

The present collection is composed of eight articles, containing several important results on
Genome Rearrangements. These papers were presented in six conferences, one with Brazilian
scope and five with international scope. Two of these works will be published in important
international journals, and one other work appeared as a book chapter.

Our main contributions can be divided into two groups: a new algebraic formalism and a
series of results involving the transposition event.

The new algebraic theory relates the genome rearrangement theory to the theory of permu-
tation groups. Our intention was to establish an algebraic formalism that simplifies the creation
of new results, up to now excessively based on the construction of diagrams.

We studied the transposition event in several ways. Besides presenting results on the trans-
positions distance between a permutation and its inverse, we also studied the rearrangement
problem involving transpositions and reversals simultaneously, constructing approximation al-
gorithms and proposing a conjecture on the diameter.

We used the algebraic formalism to show that it is possible to determine the distance of
fusion, fission, and transposition in polynomial time. This is the first polynomial time result for
a rearrangement problem involving the transposition event.

Finally, we introduced two now rearrangement problems: the syntenic distance problem in-
volving fission and fusion, and the prefix transposition problem. For each one of these problems
we present significant results, widening the knowledge in this area.
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Capitulo 1

Introducao

Com o advento de técnicas de seglienciamento rdpido, estamos testemunhando um crescimento
espetacular na quantidade de dados moleculares, em especial, de DNA e seqiiéncias protéicas.
O grande desafio destes novos tempos da Gendmica é processar esta enorme quantidade de
dados e extrair informagGes bioldgicas relevantes.

Um modo de estruturar essas informacdes € através da comparacio de genomas, através da
gual nés analisamos dados de espécies distintas para descobrir similaridades e diferengas entre
genomas relacionados. Entre os vdrios modos de se fazer este tipo de comparacio, a drea de
Rearranjo de Genomas vem ganhando destaque ultimamente.

Nesta drea, moléculas grandes de DNA, tipicamente extraidas de cromossomos, sdo anali-
sadas considerando a ordem relativa de seus genes, com o objetivo de determinar a distincia
de rearranjo, determinada pelo nimero minimo de eventos de rearranjo que podem explicar as
diferencas entre as duas moléculas de DNA.

Muitos eventos de rearranjo foram recentemente estudados, tais como reversdes, trans-
posicOes, translocacOes, fusBes e fissOes, além de algumas combinagles de eventos e alguns
eventos Testrios.

Uma reversdo tem a propriedade de inverter a ordem de um conjunto de genes contiguos
no genoma. Waiterson ¢ colegas [123] introduziram o primeiro algoritmo rudimentar para
o problema. Kececioglu e Sankoff [78] apresentaramn um algoritmo guloso que atingia uma
aproximacdo de fator 2. Bafna e Pevzner {8] obtiveram um algoritmo de aproximacao com fa-
tor 7/4 para o problema usando uma estrutura denominada “Grafo de Breakpoints”. Em 1998,
Christie [29] mostrou um algoritmo de aproximagio com fator 3/2, sendo por muito tempo o
melhor resultado conhecido. Berman, Hannenhalli e Karpinski [14] apresentaram recentemente
um algoritmo de aproximacio 1.375. Caprara [19] provou que o problema geral de ordenacgéo
por reversoes € NP-Completo.

Uma série de outros trabalhos [22, 25, 15, 23, 24, 58, 74, 76, 77, 78] apresentaram aborda-
gens alternativas para o probiema levando em consideragfc aspectos mais praticos.

1
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Uma das variagdes mais conhecidas deste problema € a ordenacio por reversdes quando
as orientacOes dos genes sdo conhecidas. Bafna e Pevzner [8] descreveram um algoritmo de
aproximacdo com fator 3/2. Hannenhalli e Pevzer [64] provaram que esta variante do pro-
blema pode ser resolvida em tempo polinomial, apresentando um algoritmo de complexidade
O(r*). Berman ¢ Hannenhalli [13] posteriormente apresentaram um algoritmo com complexi-
dade O{n*a{n)), onde a{n) € o inverso da fungfo de Ackerman, que é uma fungfo praticamente
constante. Kaplan, Shamir e Tarjan [73] introduziram o melhor algoritmo conhecido para ¢ pro-
blema, que roda em tempo O(n?). Meidanis, Walter e Dias [92] provaram que o problema de
ordenacdo por reversdes em cromossomos circulares pode ser resolvido, quando se conhecem
as orientag8es dos genes, em tempo O(n?).

Na literatura de Rearranjo de Genomas encontramos ainda varios outros trabalhos [2, 4, 27,
20,52,66,71, 117, 11, 12, 5] envolvendo variantes de problemas de distdncia de reversio.

QOutro evento de rearranjo bastante estudado € a transposicfo, que troca dois conjuntos ad-
jacentes de genes. Bafna e Pevzner [7, 9] descreveram um algoritmo de aproximacfo com fator
3/2 para o problema, usando uma estrutura denominada “Diagrama de Ciclos”. Christie [30]
apresentou um algoritmo mais simples para o problema com o mesmo fator de aproximacéo,
mas que tem uma complexidade de pior caso igual a O(n?*). Aliernativamente, Walter, Dias e
Meidanis [121] apresentaram um algoritmo simples de ser implementado gue roda em O(n?),
mas cujo fator de aproximacdo é de 2.25. Guyer, Heath e Vergara [58] apresentaram uma
série de heurfsticas para este problema baseadas no comprimento da maior subseqiiéncia e na
maior subcadeia de uma permutagdo. Até o presente momento a complexidade do problema
da distdncia de transposi¢cdo permanece em aberto, nfio sendo conhecido nenhum algoritme
polinomial exato e nenhuma prova de que ele seja NP-completo.

Variantes do problema de distdncia de transposicio, nas quais existem restrigdes quanto ao
tamanho ou a posi¢ao dos blocos a serem trocados por uma transposicio, foram estudadas por
Aigner e West [3], Heath e Vergara [65] e por Dias ¢ Meidanis [44].

Christie [28] descreveu um novo evento de rearranjo, denominado block-interchange. e que
tem a propriedade de trocar dois conjuntos de genes, ndo necessariamente adjacentes. Desta
forma, block-interchange pode ser considerado uma generalizacio do evento de transposicio.
Christie provou que o problema de se encontrar o menor nimero de block-interchanges, que
transformam uma permutacfo em outra, pode ser resolvido em tempo gquadratico.

Podemos mencionar ainda o evento de translocagio, que possui a propriedade de trocar
trechos de cromossomos distintos. As transiocacdes foram alvo dos estudos de Hannenhalli [60]
e Kececioglu e Ravi [75].

Outros dois eventos interessantes s30 a fusfo e a fissdo. Uma fusio atua sobre dois cromos-
somos unindo-os. Uma fissfo, por sua vez, divide um cromossomo em dois. Dias e Meida-
nis [42] estudaram o problema de rearranjo de genomas envolvendo os eventos de fusio, fissic
e transposi¢ao.
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O problema da distincia de rearranjo de genomas envolvendo simultaneamente reversdes
e transposicdes foi estudado por Blanchette, Kunisawa e Sankoff [16], Gu, Peng ¢ Sudbo-
rough [55], Lin e Xue {35] ¢ também por Walter, Dias e Meidanis [120, 96].

Chamamos de distincia siniénica, o problema de se determinar a menor distdncia de re-
arranjo envolvendo genomas multi-cromossomais quando a ordem dos genes € desconhecida.
Este problema foi estudado por Liben-Nowell [82, 83, 79, 84], DasGupta e colegas [38], Fer-
retti, Nadeau e Sankoff [48] e também por Dias e Meidanis [43].

Trabalhos relacionados a Rearranjo de Genomas foram tema de dissertacdes de mestrado,
como as de Araujo [40], Curado [36] e Oliveira {41], como também de teses de doutorado,
como as de Christie [30], Hannenhali [59], Vergara [117] ¢ Walter [119].

Maiores informagtes sobre Biologia Computacional podem ser obtidos nos livros de Setubal
e Meidanis [105, 106], Gusfield [57], Pevzner {103] e Waterman [122]. Informacdes adicionais
sobre Rearranjo de Genomas podem ser obtidas nos artigos gue compdem esta coletinea.

O restante deste capitulo serd dedicado aos dois aspectos que compuseram este doutorado:

e O aspecto tebrico, alvo principal desta tese, seré tratado através da apresentacfo dos arti-
gos que compdem esta coletdnea (Secfo 1.1);

o O aspecto pratico serd abordado brevemente na Secdo 1.2, onde também descreveremos
os trabalhos de bioinformatica realizados pelo aluno no Laboratério de Biolnformadtica
(LBI) do Instituto de Computacao da Unicamp.

1.1 A Coletanea de Artigos

Esta tese de doutorado € orientada a resultados em problemas de rearranjo de genomas, apresen-
tados em forma de oito artigos, um artigo por capftulo. Teoricamente, o leitor pode ler qualquer
urmn dos capitulos desta tese independentemente, j que todas as informacdes necessérias para a
compreensio do trabatho estfio definidas no préprio capitulo. O ponto negativo desta aborda-
gem ¢ a redundéncia de conceitos, sentida principalmente no inicio de cada capitulo.

Os resultados demonstrados nestes artigos foram apresentados em uma conferéncia nacional
e em cinco conferéncias internacionais. Além disso dois trabalhos serdo publicados em revistas
internacionais, e outro foi incluido como um capitulo de um livro publicade em 2000.

Os artigos que comp0Oem esta coletinea podem ser divididos em duas partes com quatro tra-
balhos cada. Na primeira encontram-se artigos cujos principais resultados foram apresentados
anteriormente na tese de doutorado da Profa. Maria Emilia M. T. Walter [119]. No segundo
grupo, temos quatro trabalhos com contribuigOes originais. Nas duas se¢Ges seguintes descre-
vemos resumidamente cada um de nossos artigos.
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1.1.1 Primeiros Trabalhos

Todos os trabalhos desta se¢@o foram escritos em co-autoria com a Profa. Maria Emilia M. T.
Walter e com o Prof. Jodo Meidanis. Estes trabathos foram originalmente escritos entre 1997
e 1999, periodo que corresponde a0 inicio desta tese ¢ ao fim da tese de doutorado da Profa.
Maria Emilia M. T. Walter. Alguns desses trabalhos, como veremos adiante, foram revisados
nos anos seguintes.

Nem todos 0s artigos escritos neste perfodo fazem parte da presente coletdnea. Este € o
case do trabalho “A New Approach for Approximating The Transposition Distance” (Maria
Emilia M. T. Walter, Zanoni Dias e Jodo Meidanis) [121] apresentado no String Processing
and Information Retrieval (SPIRE’2000) realizado na cidade de A Corufia, Espanha, no més
de setembro de 2000. Para maiores detalhes sobre os principais resultados deste trabalho ver
Seglo A.2.2.

Reversal Distance of Signed Circular Chromosomes

Neste nosso primeiro trabalho estudamos o problema de comparar dois cromossomos circulares,
gue evolufram a partir de um ancestral comum através de reversdes, supondo que s&o conhe-
cidas a ordem dos genes e suas orientacles, Apresentamos o primeiro algoritmo polinomial
para determinar esta distincia, baseado no algoritmo quadrético proposto por Kaplan, Shamir
e Tarjan [72] para resolver o problema da disténcia de reversdo de cromossomos lineares com
sinais.

Além de calcular o didmetro de reversdo para Crorn0ssomos com sinais, tanto lineares guanto
circulares, esclarecemos alguns pontos importantes sobre comparagio de cromossomos linea-
res, inclusive corrigindo uma conjectura sobre o didmetro de reversfo para cromossomos linea-
res apresentada por Kececioglu e Sankoff [77] num trabalho de 1994.

Este artigo foi originalmente escrito em portugués e apresentado no XX7V Brazilian Software
and Hardware Seminars (SEMISH 97), realizado em Brasilia, Distrito Federal, em agosto de
1997 [92]. No final do ano 2000, foi ampliado e inteiramente traduzido para o inglés. A
versdo aqui apresentada € a mesma que estd depositada como relatdrio técnico no Instituto de
Computag¢do da Unicamp sob o niimero IC-00-23 [95].

‘Transposition Distance Between a Permutation and its Reverse

Neste trabalho, determinamos ¢ menor nimero de transposi¢des necessarias para transformar
uma permutagdo qualquer na sua inversa. O problema tratado aqui foi proposto em 1995 por
Bafna e Pevzner [7], no artigo que € considerado a principal referéncia sobre distdncia de
transposicdo.

Provamos que a distdncia de transposic@o entre uma permutacio de tamanhon > 2 e a
permutacio que representa a sua inversa éexatamente [n/2] -+ 1. Apresentamos também um



1.1. A Coleténea de Artigos 5

algoritmo que calcula uma série 6tima de eventos para este problema. Até hoje, este € um dos
raros casos para o qual a distdncia de transposicdo € conhecida. Nés conjecturamos que este
seja o valor do didmetro de transposicfio.

Este artigo foi apresentado no IV South American Workshop on String Processing (WSP’97),
na cidade de Valparaiso, Chile, em novembro de 1997 [93].

Reversal and Transposition Distance of Linear Chromosomes

Neste artigo, apresentamos dois algoritmos de aproximacio para o problema da distdncia de
reversio e transposicio para cromossomos lineares: um algoritmo com fator de aproximacio
3 para o problema no qual as orientaces dos genes s@o desconhecidas e outro com fator de
aproximacfo 2 quando existe a informagdes sobre as orientacdes dos genes.

Nossos algoritmos baseiam-se no de fato que, no primeiro caso, sempre podemos remover
pelo menos um breakpoint por operagio, enquanto no segundo caso, garantimos que sempre €
possivel criar pelo menos um ciclo usando, uma reversio ou uma transposicao.

Provamos também um limite inferior para o difimetro de reversfo e transposiciio para cro-
mossomos quando conhecemos as orientacGes dos genes. Acreditamos que este valor seja de
fato o difmetro para estes eventos de rearranjo.

Em setembro de 1998 apresentamos este trabalho no congresso internacional String Proces-
sing and Information Retrieval (SPIRE’98), em Santa Cruz de la Sierra, na Bolivia [120].

A Lower Bound on the Reversal and Transposition Diameter

Neste artigo, nds mostramos que a distdncia de reversdo e transposicao da permutacdo m, =
(-1 -2 ... —(n—1) —n)emrelacdo aidentidade t,, = {(+1 +2 +3 ... +(n—1) +n)
é In/2| + 2 para n > 3, determinando assim um limite inferior ndo trivial para o didmetro
de reversdo e transposi¢Oes para genomas lineares com informac8es sobre a orientacfio de seus
genes.

Este trabalho € uma extensdo de alguns resultados apresentados no artigo anterior [120]. A
versdo apresentada agui corresponde ao relatério técnico IC-00-16 de outubro de 2000 [94].

Alguns meses antes de terminarmos a redacfo deste relatdrio técnico submetemos um re-
sumo para a revista Journal of Computational Biology. Apés dois anos e meio, fomos comuni-

cados pelos editores do JCB que este resumo foi aceito e serd publicado no volume 9, niimero
5, de 2002 [96].

1.1.2 Contribuicoes Originais

Os quatro trabalhos resumidos a seguir foram desenvolvidos pelo proponente desta tese e seu
orientador entre os anos de 2000 e 2002. Todos estes artigos sio coniribui¢des originais.
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An Alternative Algebraic Formalism For Genome Rearrangements

Agui relacionamos a recente teoria de Rearranjo de Genomas com a teoria de grupos de permu-
tacBes de uma nova forma que acreditamos poder auxiliar em futuros avangos na drea. Esse
trabalho foi motivado pelo fato de muitos argumentos em Rearranjo de Genomas serem base-
ados em figuras, ou em enumeracdo exaustiva de todos os casos, evidenciando a falta de um
formalismo algébrico adequado. N§s pretendemos dar 4 drea de Rearranjo de Genomas um
forte formalismo algébrico, assim como a geometria analitica formeceu alternativas a argumen-
tos geométricos baseados em figuras.

Uma vers@o preliminar deste trabatho foi apresentada no congresso Gene Order Dynamics,
Comparative Maps and Multigene Families (DCAF’2000), realizado na cidade de Le Chante-
cler, no Canadd, em setembro de 2000 [89]. Este trabalho integra o livro Comparative Ge-
nomics: Empirical and Analvitical Approaches to Gene Order Dynamics, Map Alignment ond
Evolution of Gene Families [90] lancado em novembro do mesmo ano com os trabalhos apre-
sentados no DCAF 2000

Nesta tese, apresentamos uma versio estendida deste trabalho com resultados extras sobre
o uso da teoria algébrica aplicada ao problema da distdncia de reversio.

The Genome Distance Problem by Fusion, Fission, and Transposition is Easy

Dados dois genomas circulares, fornecemos um algoritmo polinomial que deterrnina uma série
de fusdes, fissdes e transposi¢des, de peso minimo, que transforma um genoma no outro. Neste
problema, fusdes e fissOes tém peso 1, enquanto que uma transposicéio recebe peso 2.

Este algoritmo € baseado em resultados cldssicos da teoria de grupos de permutacgdes e € o
primeiro resultado polinomial para um problema de rearranjo de genomas envolvendo o evento
de transposi¢do.

A versdo apresentada nesta tese corresponde ao relatério técnico nimero IC-01-07 do Ins-
tituto de Computacgio da Unicamp, de julho de 2001 [91]. Este trabaltho, com pequenas altera-
¢Oes, foi apresentado no String Processing and Information Retrieval (SPIRE 2001 ) realizado
na Laguna de San Rafael, no Chile, em novembro de 2001 [42].

The Genome Rearrangement Distance Problem with Arbitrary Weights

Este trabalho € uma continuacio natural do artigo sobre distincia de fusdo, fissdo e transposi¢do
apresentado no SPIRE’2001 [42]. A diferenca fundamental € que agora associamos peso 1 para
fusdes e fissdes € um peso arbitrdrio para as transposicdes. NGs provamos que este probiema
¢ pelo menos tdo dificil quanto o problema da distancia de transposicdo, problema que ainda
permanece em aberto.

Algumas variagdes do problema também sdo estudadas. Por exemplo, mostramos um algo-
ritmo polinomial para o problema da distancia sint€nica com distingo de genes, quando apenas
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eventos de fusOes ¢ fissGes sfo permitidos. Provamos ainda que o problema similar de distancia
sinténica sern distingdo de genes € NP-Dificil.

Estes resultados estdo reunidos no relatdrio técnico IC-02-01 do Instituto de Computacio
de marc¢o de 2002 [43]. Pretendemos submeter nos préximos meses este trabalho a uma con-
feréncia internacional da 4rea de Biologia Computacional.

Sorting by Prefix Transpositions

Neste trabalho, introduzimos um novo evento de Rearranjo de Genomas que denominamos de
Transposicio de Prefixos. Esta operag@o move o bloco formado pelos primeiros genes de um
genoma linear para qualquer outra posi¢do do genoma.

Apresentamos o$ primeiros resultados para o problema de ordenac@o por transposicdes de
prefixos, como, por exemplo, algoritmos com fatores de aproximacio 2 ¢ 3. Conjecturamos
gue o didmetro de transposicio de prefixos € D(n) = n ~ E%J, e exibimos resultados de vérios
testes computacionais que sustentam esta hipétese.

Por dltimo, propomos um algoritmo que decide quando uma permutagdo, que representa
um genoma linear, pode ser ordenada usando apenas o nimero de transposi¢gdes indicadas pela
lower bound de breakpoints.

Estes resultados foram apresentados em Lisboa, Portugal, durante a realizag@o do String
Processing and Information Retrieval (SPIRE’2002), em setembro de 2002 {44].

Este artigo foi selecionado para publicagfo pelos editores do Journal of Discrete Algorithms,

presentes no SPIRE’2002. Uma versio estendida serd especialmente preparada para a revista,
cuja publicacdo deve ocorrer n0s proximos meses.

1.2 Bioinformatica

Um dos aspectos decisivos para o grande avango da genética atual € o uso intensivo de técnicas
computacionais. A bioinformdtica € a ciéncia responsdvel pela aplicacio da informdtica para
andlise € administracio de grandes quantidades de dados genéticos. De certa forma, podemos
considerar a bioinformatica como a faceta prética da biologia computacional.

Toda a pesquisa da moderna Biologia Molecular ndo seria possivel sem a computagdo. Os
programas de computador, por exemplo, tém papel fundamental na montagem de um genoma,
a partir dos fragmentos de DNA obtidos pelos laboratérios de seqiienciamento. Além disso, sdo
estes programas que permitem a comparacdo das seqiiéncias descobertas com padroes genéticos
j& conhecidos € armazenados em bancos de dados.

Para se ter uma idéia do volume hoje (setembro de 2002) conhecido de informacbes gené-
ticas, o GenBank [53], que € o maior banco de dados internacional de seqii€ncias genéticas,
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possui as seqii€ncias completas de 1073 virus, 99 procariotos e 17 eucariotos. E este nimero
nfo péra de crescer, quase dobrando a cada ano.

E o Brasil, como um dos expoentes mundiais em genética, temn uma bioinformatica de des-
tague. Boa parte deste reconhecimento se deve ao Laboratdrio de Biolnformética (LBI) [80] do
Instituto de Computa¢io da Unicamp, responsével pela bicinformatics dos primeiros projetos
de segilenciamento gengtico do pais.

A seguir, descreveremos resumidamenie dois importantes 1ipos de projetos em que o LBl
esteve envolvido nos dltimos anos: Projeto Genoma (Secdo 1.2.1) e Projeto EST (Secdo 1.2.2).

1.2.1 Projeto Genoma

Um projeto genoma tem como objetive principal determinar as seqiiéncias de DNA completas
de todos 08 cromossomos de um organismo. A rmaior dificuldade € que as méquinas de segiien-
ciamento, hoje em dia, s&0 capazes de obter, no méximo, mil bases de cada vez. Isto demonstra
a inviabilidade de seqiienciar um cromossomo de um organismo complexo de uma s6 vez, ja
que, por exemplo, a seqliéncia de DNA de um cromossomo de uma bactéria € tipicamente for-
mada por milhdes de bases € a de um eucarioto pode chegar a cern milhdes de bases.

Um dos métodos mais utilizados para se resolver este problema £ o seqgilenciamento de uma
grande quantidade de fragmentos aleatSrios de DNA, suficientes para cobrir 0 cromossomo
original vérias vezes. Assim, o problema se reduz a um grande quebra-cabeca que € resol-
vido por um programa de computador chamado montador, que reconstitui a molécula original,
utilizando-se da sobreposicdo dos fragmentos. Montadores de genomas, devido a sua grande
importéncia prética, 0 muito estudados {81, 26, 54, 98, 107].

Nos ltimos anos, varios projetos genoma importantes foram concluidos, como € o caso
da Caenorhabditis elegans [46] (verme), Arabidopsis thaliana [68] (planta), da Drosophila
melanogaster [1] (mosca) e do Home sapiens {32, 116] (homem). Em 1997, o Brasil, com o
projeto genoma da Xylella fastidiosa, entrou para o seleto grupo de pajses com projetos genoma
em andamento.

A Xylella fastidiosa, bactéria causadora da praga do amarelinho, foi o organismo escolhido
para o primeiro projeto de seglienciamento brasileire principalmente por causa de tré€s fatores:
ndo haver no mundo, na época, outra pesquisa de segiienciamento de uma bactéria que causa
doencas em plantas (fitopatégeno); por sua importancia econdmica (cerca de 30% dos laranjais
paulistas sdo afetados pelo amarelinho); e por causa do tamanho de seu genoma (2,7 milhdes
de pares de bases, relativamente pequeno).

A FAPESP - Fundacdo de Amparo 4 Pesquisa do Estado de Sdo Paulo [47], investiu cerca de
USS 15 milhdes no genoma da Xylella, e boa parte deste valor foi utilizado para criar € equipar
a Rede ONSA [100] (Organization for Nucleotide Sequencing and Analysis), formada por 35
laboratérios, sendo 34 de seqiienciamento e um de bioinformdtica (LBI), distribuidos pelo es-
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tado de S#o Paulo. A Fundecitrus - Fundo de Defesa da Citricultura [51], e 0 CNPq - Conselho
Nacional de Desenvolvimento Cientifico e Tecnoldgico [31], também disponibilizaram recursos
para este projeto.

(G LBI foi o responsdvel por receber, via internet, os dados gerados pelos laboratdrios de
seqiienciamento e montar ¢ genoma completo da Xylelia, além de oferecer uma série de servigos
para a comunidade de cientistas da Rede ONSA. Este trabalho de bioinformética foi realizado
por uma equipe de onze pessoas & consumiu aproximadamente US$ 300 mil.

O artigo que descreve os resultados do projeto Xylella foi reportagem de capa da revista Na-
ture [108], © que mostra a grande repercussio internacional alcangada pela iniciativa brasileira.
O projeto determinou que o cromossomo principal da bactéria € formado por 2.679.305 bases,
sendo identificados 2.838 genes. A Xylella possui ainda dois plasmideos: o maior € formado
por 51.158 bases ¢ possui 65 genes, ¢ 0 menor ¢ formado por apenas 1.285 bases com 2 genes
identificados. Maiores detalhes sobre a bioinformética do projeto Xylella podem ser obtidos na
dissertacdo de mestrado de Okura [99].

(s 192 cientistas, entre eles ¢ aluno ¢ dez colegas do LBI, que fizeram da Xvlella um grande
sucesso, foram premiados em 21 de fevereiro de 2000, com a medalha do Mérito Cientifico e
Tecnologico [38] msutuida por Mério Covas, entdo governador do Estado de S&o Paulo.

O seqiienciamento do genoma da Xylella fol apenas a primeira etapa de um longo processo,
cujo resultado final serd a cura da praga do amarelinho. Pensando nisso, a FAPESP criou o
Projeto Genoma Funcional [50], que desde o fim do seglienciamento investiga 0s mecanismos
de transmiss#o e de estabelecimento da bactéria na planta.

No rastro do sucesso da Xylella, o Brasil desenvolveu com sucesso outros projetos genoma
como, por exemplo, o projeto das bactérias Chromobacterium violaceum realizado pelo Projeto
Genoma Brasileiro [17] e o Projeto Xanthomonas [37] também realizado pela Rede ONSA.

1.2.2 Projeto EST

Projetos ESTs s#o alternativas aos projetos de seqiienciamento de genomas completos. Ao invés
de seqiienciar todo ¢ genoma de um organismo e depois tentar descobrir quais sdo seus genes,
num projeto EST (Expressed Sequence Tag), apenas os genes expressos pelo organismo $30
capturados e seqgiienciados.

Um EST, de forma geral, ndo corresponde a um gene ineiro e sim, a apenas uma parte
dele. Surge, entdo, um importante problema computacional denominado clustering, ou seja,
agrupar todos os ESTs que correspondem ao mesmo gene em um tinico grupo (cluster). Assim
como no caso de montagem de genoma, varios métodos novos para clustering foram propostos
recentemente, quase sermpre baseados em experiéncias praticas em projetos de ESTs, como € o
caso do trabatho de Miller e colegas [97] e Telles e da Silva [112].

O dbEST [39] (Expressed Sequence Tags database) é o0 maior banco piiblico do mundo de
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EST e conta, hoje em dia, com mais de 12 milhdes de ESTs, entre eles, 4,5 milhdes de ESTs
humanos, 2,6 milhdes de ESTs de camundongo, 350 mil ESTs de rato e 270 mil ESTs de soja.
A partir de informnagBes contidas em bancos como este, € possivel deduzir a funcionalidade de
um novo gene identificado num projeto EST. H4 trés anos, o dbEST possuia pouco mais de 2
milhdes de ESTs depositados.

Mais ou menos na mesma €poca, em jutho de 1999, a Rede ONSA ingressou em uma nova
empreitada: o Projeto SUCEST (Sugarcane EST Project) {110], que tinha o ambicioso objetivo
de ser o maior projeto pablico do mundo de segiienciamento de ESTs de planta. A cana-de-
agiicar foi escolhida por ser uma planta economicamente importante para o Brasil, responsédvel
por 25% da produgao mundial, que se concentra principalmente em paises tropicais.

A cana-de-agucar produzida hoje no Brasil € um hibrido de outras cinco espécies. Por causa
disso, seu genoma € muito complexo, formado por um ntimero varidvel de cromossomos (entre
70 e 120), o que inviabiliza seu estudo através de um projeto genoma convencional. Este projeto
foi financiado pela FAPESP e pela Copersucar - Cooperativa de Produtores de Cana, Agicar e
Alcool do Estado de S#o Paulo [33]. O projeto SUCEST produziu 291.904 ESTs de cana-de-
acticar.

Nesse projeto, o Laboratdrio de Biolnformética criou o web site que foi o “ponto de encon-
tro” dos 74 laboratérios de seqiienciamento € andlise que fizeram parte do consércio.

O trabatho “Bioinformatics of the sugarcane EST project” (Guilherme P. Telles, Marilia D.
V. Braga, Zanoni Dias, Lin Tzy Li, José€ A. A. Quitzau, Felipe R. da Silvae Jodo Meidanis) [111]
descreve todas as atividades desenvolvidas pelo LBI, incluindo categorizacio, gendmica com-
parativa € o clustering responsavel por agrupar os ESTs em 43.141 clusters. Este trabalho foi
publicado em dezembro de 2001, na edicHo especial da revista Genetics and Molecular Biology
sobre o Projeto SUCEST. Nos proximos meses deve ser publicado um artigo com as principais
contribuicdes bioldgicas deste projeto {118].

Logo apds o inicio do Projeto SUCEST, surgiu o Projeto Céncer [113] desenvolvido pela
Rede ONSA em parceria com o Instituto Ludwig de Pesquisa sobre o Céncer {86]. Esse projeto
teve como objetivos gerar entre 500 mil e um milh#o de ESTs oriundos de células humanas com
clncer, produzindo aproximadamente 50 mil clusters. Outro projeto EST em desenvolvimento
é o do parasita Schistosoma mansoni [104] que deve gerar cerca de 120 mil ESTs até o final de
2002.
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Capitulo 2

Reversal Distance of Signed Circular
Chromosomes *

Joao Meidanis
Maria Emilia M. T. Walter

Zanoni Dias

Abstract

We study the problem of comparing two circular chromosomes, evolved from a com-
mon ancestor by reversals, given the order of the corresponding genes and their orientations.
Determining the minimum number of reversals between the chromosomes is equivalent to
took for the minimum number of reversals that transforms a circular sequence of signed
integer numbers, defined in an appropriate manner, into another, where a reversal acts on
a subsequence, reversing its order and flipping the signs. We carefully formalize the con-
cepts of circular chromosome and circular reversal, and show that this problem is essen-
tially equivalent to the analogous problem on linear chromosomes. As a consequence we
derive polynomial time algorithms based on this observation. We also compute the reversal
diameter for signed chromosomes, both linear and circular.

*Trabalho depositado como Relatério Técnico no Instituto de Computacdo da Unicamp em dezembro de
2000, sob o mimero 1C-00-23. Uma versao anterior deste relatorio foi apresentade no X1V Brazilian Software
and Hardware Seminars (SEMISH’97), realizade em Brasilia, Distrito Federal, em agosto de 1937,
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2.1 Introduction

The huge amount of data resulting from genome sequencing in Molecular Biology is giving rise
to an increasing interest in the development of algorithms for comparing genomes of related
species. Particularly these data allowed studies on mutational events acting on large portions
of the chromosomes, that can be used to compare genomes for which the traditional methods
of comparing DNA sequences are not conclusive. There are several mutational events affecting
large fragments of genomes of organisms, and among them, the reversal seems to be one of the
commonest, A reversal replaces a sequence of an arbitrary region of the chromosome with the
reverse complementary sequence. This reverses the gene order within the region, and changes
the orientation of each gene. In this paper we study the comparison of two genomes, formed
each by a single circular chromosome, on the basis of the order and orientation of their common
genes, and in terms of the mutational event of reversal.

A circular chromosome can be seen as a circular arrangement of blocks of genes, where
each block has an orientation. Figure 2.1 shows examples of circular chromosomes of two
species of plants, where each number represents a block composed by one or more genes, and
the arrows indicate the orientations of the blocks of one species relative to the other.

In a circular chromosome, a reversal 18 defined by fixing two cut points in this chromosome,
and reversing the order of the genes in one of the two regions delimited by these points (see
Figure 2.2).

In general terms, the problem of reversal distance of signed circular chromosomes is for-
mulated as follows. Given two circular chromosomes A and B, we want the shortest series of
reversals that transforms A into B. This minimum number of reversals is called reversal dis-
tance between A and B. Figure 2.3 shows an example of a circular chromossome transformed
into another with the minimum number of reversals.

Another version of this problem arises when the orientations of the genes on the chromo-
somes are not known. In that case, we have the unsigned version of the problem, where the
reversals only reverse gene order. There are other versions of the same problem considering
linear chromosomes, and other mutational events besides reversal. The literature on problems
originated by different types of mutational events is growing very quickly in recent years. In
the foilowing, we briefly review other works studying reversal, observing that chromosomes are
commonly represented by permutations in this context.

With respect to linear chromosomes, Aigner and West [3] had studied the problem of sort-
ing a permutation, considering the operation of reinsertion of the first element in the sequence
of the permutation. The sorting diameter (the maximum distance between two permutations)
in this case is n — 1, where n is the number of elements of the permutation. Kececiogla and
Sankoff [76, 78] had studied the problem of the reversal distance of unsigned linear permuta-
tions, and developed the first approximation aigorithm for the problem, Their algorithm runs in
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Figure 2.1: Examples of circular chromosomes of two species of plants. {a) The arrows indicate
the orientations of a species relative to the other. (b) These examples show different represen-
tations of the same chromosome. (¢) These examples show the same chromosome, considering
the two possible forms to view the gene blocks of a circular chromosome. These two forms are

considered equivalent, and these two chromosomes are obtained from one another by reflection
relative to the axis shown in the figure.

O(n?) time and is guaranteed to use no more than two times the reversal distance. They also
developed efficient bounds, used on a branch-and-bound algorithm, that solved to optimality or
almost optimality permutations ranging from 30 to 50 elements. Bafna and Pevzner [§] after-
wards introduced a new structure, the breakpoint graph of an initial permutation relative to a
target permutation, that allowed to set up a more precise lower bound to the reversal distance,
considering another parameter, based on a maximum alternating cycle decomposition, denoted
by c{r). Based on that graph, they devised an approximation algorithm with a4 performance
guarantee of 7/4, and introduced an approximation algorithm for signed permutations with a
guarantee of 3/2.

Hannenhalli and Pevzner {64] introduced two new parameters: the number of hurdles (h(7))
and an indicator of whether the breakpoint graph is a fortress, (f(x)). Together with the maxi-
murn number of cycles of the alternating cycles decomposition (c¢{n}) of the breakpoint graph,
these parameters allowed the authors to demonstrate a duality theorem. Based on this theorem,
they presented the first polinomial algorithm for the problem of the reversal distance of the
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Figure 2.2: This example shows the two possibilities for reversal in a circular chromosome,
given two cuts,
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7 i N
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| S | S
3 4
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(turnip)

Figure 2.3: This example shows a series of reversals that transforms B. oleracea (cabbage) into
B. campestris (tarnip).



2.2. A formalization for the problem 17

signed linear permutations, with time complexity O(n*). Berman and Hannenhalli [13] intro-
duced new data structures on that algorithm and lowered the complexity to O(na(n)). Finally,
Kaplan, Shamir and Tarjan [73], based on the Hannenhalli and Pevzner theory, and using part
of the Berman and Hannenhalli algorithm, showed a new algorithm with O(n?) complexity. We
will call this last one K87 algorithm.

With respect to circular chromosomes, Watterson and other authors [123] showed an algo-
rithm, very simple, to find out the reversal distance of circular permutations, establishing a lower
bound (number of breakpoints/2), and an upper bound (n — 2) for the reversal distance. They
presented also a stochastic algorithm for the problem. Kececioglu and Sankoff [77] presented
an exact branch-and-bound algorithm for the problem of reversal distance of signed circular
permutations. This algorithm, using simple methods to find the lower and upper bounds, found
extremely precise values for the reversal distance in several experiments. The authors reported
that they did not know reasons to justify the proximity of these limits. Now we know that the
Hannenhalli and Pevzner theory justifies these results, because h{r) and f(#} are small for
random permutations.

In this paper we present a formalism for circular chromosomes and for reversals acting on
them. As a consequence we show polinomial algorithms for the problem of reversal distance of
signed circular chromosomes. These algorithms are based on the theory for the linear problem
given by Hannenhalli and Pevzner {64]. Besides, we calculate the reversal diameter for linear
and circular chromosomes.

In Section 2 we first formalize a circular chromosome by an equivalence class, and next
we show that there is an isomorphism between reversals acting on circular chromosomes and
reversals acting on linear chromosomes. This result allow us to compute the reversal distance of
signed circular chromosomes by computing the reversal distance of signed linear chromosomes
with one less gene. In Section 3 we show some results concerning the reversal distances of
signed circular and linear permutations of the same size. In Section 4 we calculate the reversal
diameter of signed linear and circular permutations. Finally, the last section brings conclusions
of this work and indicates some future directions.

2.2 A formalization for the problem

2.2.1 Linear Chromosomes

We begin by presenting a brief overview of some important results about signed linear chromo-
somes, due mainly to Bafna and Pevzner [8] and Hannenhalli and Pevzner [64]. A signed linear
chromosome is represented by a signed permutation. A signed permutation is an ordinary per-
mutation, except that each element has positive (+) or negative (—) sign, indicating the relative
orientation of the block. In this case, a reversal p of the interval [, j] is denoted by o{t, j) and
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we have
o(i, j) ™= (R .. T4t Wt Tisd Wi it -+ )
where 7, indicates the inversion of the sign of 7.

The problem of the reversal distance of signed linear chromosomes is commonly formalized
as follows. Given two permutations 7 and ¢ modeling two signed linear chromosomes, the
reversal distance problem of m and ¢ is to find a series of reversals g;, ¢4, ..., 0; such that
O:* Gee1 v ... Q2017 = o and?is minimum. We call ¢ the reversal distance of 7 and o,
denoted by d(7. o).

The algorithms of Bafna and Pevzner [8] and of Hannenhalli and Pevzner [64] are based on
a structure called breakpoint graph. This graph is constructed from 7 and o as follows. Each
one of the signed integers is represented by an arrow, from left to right when the sign is +, and
from right to left when the sign is —. The initial and final points of these arrows are the vertices
of this graph. Besides, we add two reference points, one on the left of the sequence (labelled
by L) and the other on its right (labelled by R). After that, we put realify edges joining extreme
points of adjacent arrows in 7, and desire edges joining extreme points of adjacent arrows in o.
Important properties of this graph are:

1. The resulting graph is formed by a collection of even cycles. When 7 = o, the number
of these cycles gets its maximum value, n + 1. For two different permutations, there are
less than n + 1 cycles.

2. Each reality edge from a cycle whose size is larger than 2 represents a breakpoint in the
permutation, that 1s, a point where a reversal will have to act in order to transform 7 into
o. When two vertices belong to a cycle of size 2, that is, are joined by two paralle] edges,
exactly one reality and one desire edge, we say that there is not a break in that position.

From this graph we can compute three parameters that allow us to compute the reversal distance
of m and ¢: the number of cycles ¢(w, o), the number of hurdles A(x, o) and a parameter f{7, o)
indicating whether the graph is a fortress, where this last value can be equal to 1 or 0 only. The
reversal distance is then given by:

dim,o)=n+1—cr, o)+ him o)+ flr o).

We refer the readers to the important works [64, 13, 73] or to the introdutory text of Setubal
and Meidanis [106] for a more detailed explanation on these parameters. We will not need
details on hurdles and fortresses until Section 2.4, where we will review these concepts.

2.2.2 Circular Chromosomes

Now we give a formalization of a circular chromosome by an equivalence class.
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(1 -54+4-34+2) (42415443 (34241 54+ (+4-3 42 +1-5) (-5+4 -3 +2+1)
Figure 2.4: In a circular chromosome we can choose each one of the genes block as the first

one. Then, all of these sequences are considered equivalent, and they represent the circular
chromosome of B. oleracea shown in the Figure 1 (a).
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Figure 2.5: In a circular chromosome two sequences where one of them is obtained from the
other by reflection are considered equivalent. The circular chromosome represented is B. oler-
acea shown in Figure 1 (a).

Intuitively, a circular chromosome is a circular arrangement of signed blocks (see Fig-
ure 2.1). A block of genes of the chromosome will be modelled by a signed integer. The
sign “+” indicates an arrow in clockwise direction in Figure 2.1, and the sign “—7” indicates an
arrow in counterclockwise direction. Given an initial block, we can represent a circular chro-
mosome by a sequence as follows. Through convention, we always read the blocks in clockwise
direction. Walk around the chromosome in clockwise direction, beginning at the initial block,
and write down the signed integers corresponding to the blocks found. Then, 7 = (my7a. .. 75 )
will denote the circular chromosome, with n blocks of genes. As an example, the chromosome
of B. oleracea of Figure 2.1a can be represented by the sequence (+1 —5 +4 —3 +2}.

We can choose each one of the blocks as the first one, and therefore we can have many
different sequences representing the same chromosome (see Figure 2.4). All of these se-
quences are considered equivalent. Besides, two sequences where one of them is obtained
by the other by reflection are considered equivalent, and in particular 7 = (7;7,...7,) and
5.7 = (FpTn-1... .Ko71) are considered equivalent sequences (see Figure 2.5).

This way, a sequence modeling a circular chromosome is a representative of an equivalence
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class in the set of all sequences. Below we define the rotation and the reflection operations, that
will formalize the two characteristics described above. From these operations we will define

an eguivalence relation between two sequences, and an equivalence class that will represent a
circilar chromosome.,

We will call S, the set of all possible sequences of distinct signed integers, where each
sequence has size n. These integers must belong to the interval [1..n]. Observe that {S,| = 2"nl.

Let us take 7 = (mma2. .. 7). @ sequence of 5,. We will define two types of operations acting
in 7 as follows:

e Rotarions. We will denote by r the basic rotation that moves the permutation elements
one position 1o the left:

7T = (TeMy ... . TaT1)-

We will define r* for every i € Z in the usual way: ¢ is the composition of 7 i times

for i > 0 and r~* is the inverse of r. Besides, r° is the identity. We have the following
important relations:

r? = 7% or more generally, 7" =V if i = j (mod n)foralls, j € Z.
ripd =¥ foralli,j € Z.
The operations 7 are called rotations.

e Reflections. We will denote by s the basic reflection that inverses the order of the permu-
tation and also the signs. So,

We will define §° for all i € Z as follows: s is the composition of s 4 times for i > 0
and s7¢ is the inverse of s*. Note that s = &*. Besides, s” is the identity. We have the
following important relations:

s? = 87, or more generally, s* = s/ ifi = § (mod 2) foralli,j € Z.
sis? = s foralli,j € Z.
We can apply r and s to a sequence, using the above definitions. Then, rs7 = r(s7) =

T(FnTn—t - -ToT1) = (Fne1Tnwo - - oW1 Tn).

We have the following relation:

rs = gr . (2.1

Generically, the operations sr° are called reflections. Each reflection is equal to its own
inverse.
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Now we will define an equivalence relation between two sequences 7 and .

Definition 2.2.1 Given two sequences 7 and ~, we define
T~y

ifand only if there are i, j € Z such that v = r*s’ - 7.

The above relation is an equivalence relation. The proof of this result is simple. Eque-
tion (2.1) can be used in this proof.

From this equivalence relation, we can define an equivalence class of the sequence 7, de-
noted by [}, which represents a signed circular chromosome, as follows

i ={y € Splm ~~}

This formalization is interesting biologically, because it does not fix the first element of
the sequence, and then each one of the genes block can be the first, it is sufficient toc apply
rotation. Besides, two sequences where one of them is obtained from the other by reflection can
be produced applying the s operator.

2.2.3 (ircular Reversals

We model now how a reversal will act in a class A representing a circular chromosome. First
we note that there are two possibilities for a reversal acting on a circular chromosome, given
the two points where the cuts have occurred (see Figure 2.6).

Suppose the two cuts occur betweenico1,7and j, 7 &1, withl1 < i < 7 <n. Here © and &
are the usual operations of subtraction and addition, respectively, except that we take the resuit
modulo n and choose 7 rather than zero as the representative of the class of multiples of n. We
will assume that these cuts are distinct, therefore ¢ # {j & 1).

Also if we choose ¢ and j such that 7 > 7, we can change ¢ and j without problems because
both are just pointers to the cuts.

Then we have the following lemma.

Lemma 2.2.1 Given a sequence © from an equivalence class A which models a circular chro-
mosome, and two integers i and j with1 < i < j < nandi # (j 1) such that these cuts occur
between 1 & 1,1, and j,j & 1, the sequences resulting from the two possible ways of reversing
the circular chromosome between these cuts belong to the same equivalence class.
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{(AR.AE T.AR ..E
T n  j+l i i -2

Figure 2.6: This figure shows that the two circular chromosomes resulting from the reversal
are represented by two sequences that belong to the same equivalence class. Note that the
arrow, before the reversion, indicates the first block of the sequence chosen from the equivalence
class which represents the circular chromosome. The portion of the chromosome suffering the
reversal can include or not the arrow. (a) In this case, the reversal does not include the arrow.
The sequence resulting from the reversal is shown. (b) In that case, the reversal includes the
arrow. We can apply reflection and rotation in the sequence resulting from the reversal in order

to obtain the same sequence as in case (a). The sequences resulting from each operation are
shown.

Proof:

We will denote by P and (J the two possible ways of reversing the circular chromosome (see

Figure 2.6). Taking sequence 7w = (71...M;_17;... T;M41 ... Ty} from class A, and applying
P on A we have

P [(’/Tl SRIRN(E T (5 IR (3 R S ?Tn)} = i(’fT} PN ’fTi_.}_ﬁ'mj . .?gﬂ'j.*.j_ . Ti'ﬂ)]
Applying ¢ on A we have
Q . [(WI RN TS IR (R I ﬂn)] = [('-f”i—l-’z'_?n - .w’:’;‘j_ﬁ_li’?i cae ij'ffi'—l .. _7?2)]

But applying r~! and s on (7y... 717 ... FiT 41 ... Tn) We have

?"_13 N (74"1 RPN Tl"i__l-—?"irj - .-fiﬁj+1 . ﬂ'ﬁ) = (ﬁl_ﬁ“—n .- ..Tf"'"s_j.ug..}f(

}
g
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T ={{+1 =544 =3 +2) (-5 +4 -3 +2 +1) (+4 =3 42 +1 ~5)
(<342 41 -5 +4) (+2 41 ~5 +4 -3
(243445 -1 {43445 -1 =D {4 +5 -1 -2 +3)
(+5 =1 =2 +3 —4) (=1 -2 +3 ~4 +5)}

can ([n]) = (+1 =5 +4 -3 +2)

Figure 2.7: Example of an equivalence class [w] and its canonical representative can{{z]).

So
PrAl=1Q- 4
B

Now we can enunciate the problem of finding the minimal number of reversals acting on
circular chromosomes with known relative orientations.

Given two equivalence classes 4 and B, representing two circular chromosomes with known
relative orientations, the problem of reversal distance of signed circular chromosomes is to
find a series of reversals P, P, ..., P, suchthat P, - P, 1 -... - P - P-4 = Banduis
minimum. We call u the reversal distance of A and B, denoted by d°( A4, B).

2.2.4 Relating Circular Chromosomes to Linear Chromosomes

In the formalization of circular chromosomes, we would like to use some results from the linear
case. A linear reversal (7, j) acts as described in Section 2.2.1. It would be tempting to define
a corresponding circular reversal ¢°(z, j) by

o (8,4 - [x] = [o(4, 5) - 7]
However this definition does not make sense, because different choices of sequences 7 inside
an equivalence class A lead to non-equivalent right-hand members. So, it will not be permitted
a random choice of the sequence in 4 in which the reversal will act.

We will define a canonical representative of A, denoted by can{A), with the characteristics
of having the 1 block fixed as the first element of the sequence, and with the + orientation (see
Figure 2.7).

Note that each equivalence class has a unique canonical representative. For the formalism, a

reversal will be applied only in the canonical representative. Thus, given a linear reversal o(z, ;)
with 1 < 1 < 7 < n, we define a circular reversal ¢°(4, 7} by the formula
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o:(i.5) - A = [oli,j) - can(4)]

Netice that the case (i, 7) == {1,n} is excluded from consideration as mentioned in Sec-
tion 2.2.3.

The next theorem tells us that every circular reversal is of the form ¢°(4, j) for some 1, 7.
Moreover, we can aiways choose the indices from 2 0 n.

Theorem 2.2.1 For any circular reversal P, there are integersiand jwith2 < 1 < 7 < nsuch
that

P A={g(i,j) - can(A)].

Proof: A circular reversal F’ must be applied only in the canonical representative of the equiva-
lence class A representing the circular chromosome. There are two possible forms for a reversal
acting on any sequence of A4, but both of them produce sequences that belong to the same equiv-
alence class (Lemma 2.2.1). As we can choose any of these forms we will pick the form not
including m; = +1. This way P - A will produce a sequence which is also a canonical represen-
tative. In other words, the canonical representative of the equivalence class which models the
circular chromosome before the reversal is carried to a canonical representative of the equiva-
lence class which represents the circular chromosome after the reversal. In this case, in terms of

the linear representation, the reversal acts in the canonical representative like a linear reversal
o(i, 7). Then,

o6, 7)) (+1lmy . .m . W) = (17 Ty T )

with 2 < ¢ < j < n. This comes from the definition of linear reversal. As the right sequence is
canonical we have
o(i.7) - can(A) = can{P - A)
from where
(o(i, j) - can(A)] = [can(P - A)] = P- 4.

[ ]
We will see now that there is an isomorphism between reversals acting on circular chromo-
somes and reversals acting on linear chromosomes. To prove this, we will initially define two
bijections. Recall that S, is the set of all signed linear permutations on n elements. Let R, be
the set of all linear reversals on n elements, and S%, ¢ the analogous sets for the circular case.
Define
@ S;i R e .

so that
w(A) = take can(A), remove -+ 1, subtract 1 from the others
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and
§:R. — R,
so that
§(P)=pli—1,7-1)
where P = p¢(1,7},2<i<j <n
We enunciate the result.
Theorem 2.2.2 Given the two bijections o and 6 defined above, we have
o(P- 4) = 8(P) - p(4)

Proof:
First we have

@(F - A} = take can(P - A), remove + 1, subtract 1 from the others
Let (by Theorem 2.2.1) P = ¢°(1, 7}, with2 € 1 € § < n, and A = [r], where 7, = +1. Then,
w{P - A) = take p(i,j) - w, remove -+ 1, subtract 1 from the others

On the other side, since can{A) = x, we have

(A} = take 7, remove + 1, subtract 1 from the others

and
0(P)=oli — 1,7 - 1)
Then we have the result, because 8( P} will act on the same elements as (7, ).

Note that { 57 {=[ Sp-y |=2"7{n — 1)l and | Bf, |=| Ry = ((n = 1)n)/2.
From Theorem 2.2.2 we have imnmediately.

Corollary 2.2.1 Given any two classes A and B modeling two circular chromosomes, and the
bijection @ defined above,

d*(A, B) = d(¢(A), ¢(B))

From Corollary 2.2.1 we can derive an algorithm to the problem of signed circular chro-
mosomes. Basically it consists in running any algorithm solving the problem of signed linear
chromosomes, taking as inpuis two permutations, obtained from applying the bijection ¢ in the
two classes representing the circular chromosomes.

In particular, if we take the KST algorithm, the complexity of the algorithm is O(n?) (to
find out the input sequences costs O(n) and the KST algorithm has complexity O(n?)), where
7. is the number of genes blocks of the circular chromosomes.

We can also obtain the circular reversals used, just applying the inverse of ¢ on each step
of the algorithm for the linear chromosome. It does not affect the complexity of the above
algorithm because it takes O(1).
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2.3 Relating circular chromeosomes to linear chromosomes of
the same size
In the previous section we saw that there is a distance preserving correspondence between circu-

iar chromosomes and linear chromosomes of size one unit smaller. Here we will derive similar
results for circular and linear chromosomes of the same size.

First of all, we would like to know what is the relation between d(7, o) and d°([r], [o]) for

any 7 and . As we will see in Theorem 2.3.1, d°{[r], [¢]} < d(r, o). Before this, we need
three technical lemmas.

Lemma 2.3.1 Given two linear permutations o and %, such that ¢ = q - 7 where ¢ = r or s,
then for every reversal p there is a reversal ¢ suchthat p-m ~ g - 0.

Proof:
Lets = (71...7n).
We have two possibiliiies for g.

e Suppose o =77 = (mems ... ymy) and ¢ = p(4, 7) so that
Q(Z,j) C T = (7?1 PN ﬁi—lﬁj .. -‘ﬁiﬁ—j-s-l <. .ﬁn)
We have three cases.

l.i=1l7=mn
oll,n) 7= {(F,...71)
In this case g = 5. Take ¢ = 5 also. We have

o-T=§-T~T~O~s o=0 0
2. ¢ = 1,7 < n: In this case

Q(lj} s T = (_fj . .7—T—1’Trj+1 . .?Tn).

Then:
Q(.?:n - 1) s = (7?27{'3. . .Wj_l’,’rjfn . -F‘j-{'}ﬂ—l)
s-ofn—1) 0= (T1mm ---ﬁnfj...fﬁr‘z)
n—j1

SQ(]/TL—* 1) - o= (?‘Fj..uﬁ3fg"f17rj+1“n7rn)
o(Lj) -7 =" s olin—1) -0
=0

Therefore, taking ¢’ = p(j,n — 1) we have

o-m~g -0
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3. 4> 1.7 < n:lInthiscase

Then:

o(i.f) m=r"t0li-1,j-1)-0

e Suppose 0= s -7 = (Fpn...71) and ¢ = p{i, j) so that
Q(Z“j’} s = (7‘5”1 . ..Tri_l??j“ ..ﬁ’g’ll’j_f.l ...’ﬁ‘n)

Then:

Q(n+1—j,ﬂ-§-1—2)'dﬁ ("ffn...?T_j.g‘lﬂi...ﬂ‘j?'s-i..l,..fl)
S'Q(n"?‘l——j,n"*‘}mi)'(}':(7i'1...Wi_i_fja..—fiﬁjél.l.ﬁn)
e,j) - m=s-oln+1—-jin+1-1)-c

Therefore, taking ¢’ = g(n + 1 — j,n+ 1 — 1), we have

Lemma 2.3.2 Given rwo linear permutations = and o, such that = ~ ¢ then for every reversal
o there is a reversal ¢ suchthat -7 ~ ¢ - 0.

Proof:
Take o =Gy " Gu—1 ... 1 -7, wherev > O,and g, = rors, forl <i <.

This proof will be made by induction on v.

e v=0:justmake ¢ = o
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e v > (: Take
o' =gy
Given p. we want to obtain ¢ such that
g m~g-o

By the induction hypothesis, we have

Q‘?TNQ;!‘G!

But, ¢ = g, - ¢’ and then, using Lemma 2.3.1, there is ¢ such that
g
o’ ~da

Then,

Lemma 2.3.3 Given a permutation 7 and a reversal o, then
lo- 7] =P 7]
where P = I, the identity transformation, or P is a circular reversal.

Proof:
Let o be the canonical representative of [r]:

7~ ¢ = can([r])
Lemma 2.3.2 says that given g there is ¢’ such that
o-m~g -0,

hence
o 7 =[d 0]
But ¢ = o{4,7) with 1 < ¢ < j < n. Then we have two cases:

1. i=7& 1. Then, ¢ = 5 and
lo-7] = [s-0]=[o] = [7],

so P = [ works in this case.
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2. 1 # j & 1. Because ¢ is canonical,
loli,g) - lol] = &°(i. 5} - [7]
hence P = g°(4, j} works in this case.
B

Now we show that there are fewer reversals in the circular case than in the linear case when
both chromosomes have the same size.

Theorem 2.3.1 Given any two permutations - and o,

d(r, o) 2 d*{[r], [o])

?

Proof:
Take t = d(7, o). Then,

Using Lemma 2.3.3 we have
F-F ... P [r] =]o]
where P/ is either a circular reversal or the identity. Then,
d*([nl, [o]) < t = d(, 0)

=

We note that it is not true that d(r, 0) = d°([x], [o]). for any 7 and &. It is enough to take

7 ={(-2+3+1)and o = (+1 + 2+ 3). We have d°([r}, [g]) = 1 because d°([z|,[0]) =

d(can([7]), can([o])) = 1, where can([x]) = (+1 — 2 + 3). But d(7,0) = 3. To make this

computation, it is sufficient to construct the breakpoint graphs of 7 and ¢, and use the formula
presented by Hannenhalli and Pevzner [64].

Following we demonstrate another theorem that solves the problem of reversal distance for
signed circular chromosomes.

Theorem 2.3.2 Given two circular chromosomes represented by classes A and B we have

d*(A, B) = d{can(A), can(B})
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Proof:
First we will show that

d{A, B) < d{can{A), can{B)}

By Theorem 2.3.1 we know that d{7, o) > d°([n},[¢]}). In particular, taking 7 = can(A4)
and o = can{B), we immediately have the result.
Secondly, we will show that

d*(A, B) = d(can( 4}, can(B))

To solve the problem of the reversal distance of signed circular chromosome, we use rever-
sals in the interval {2, n], that act always in the canonical representative sequence. Considering
the linear chromosome can(A), initially, 7; = +1 is in its correct position, and this is not modi-
fied throughout the process. Thus, these reversals supply a series of reversals for the linear case
100.

=

From Theorem 2.3.2 we can derive another algorithm for the problem of signed circular
chromosomes that consists in running any algorithm solving the problem of signed linear chro-
mosomes giving as input the canonical representatives of 4 and B.

Let us take the two input permutations o and 3, where « is a permutation of the A class
which represents one of the circular chromosomes, and § a permutation of the B class which
represents the other circular chromosome. The canonical representatives are obtained traversing
the two permutations « and 5 finding the position % of the 1 block. If it has sign -+ we just apply
rk=1 and if it has sign — we apply 7%~ followed by s.

In particular, if we take the KST algorithm, the complexity of the algorithm is O(n?) (1o find
out the canonical representatives costs O(n) and the KST algorithm has complexity O(n?)),
where 7 is the number of gene blocks of the circular chromosomes.

Finally we prove a theorem that allow us to say that the canonical representatives of the
classes modeling the circular chromosomes provide a minimum distance, among all permuta-
tions belonging to those two classes.

Theorem 2.3.3 Given any two classes A and B modeling circular chromosomes, we have

d{can{A), can(B)) = min {d(7,0)}.

Proof:
To begin with, notice that we have d°(4, B) = d(can{A4), can(B)} (from Theorem 2.3.2).
From Theorem 2.3.1, we have each value d(r, o) greater than or equal to d*([7], [0]).
B
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A question arises here. Which sequences, from the two equivalence classes modeling the
circular chromosomes, lead to a minimum reversal distance? Our results showed that the
canonical representatives from the classes certainly do. But they are not the only ones. An
example found in an article of Palmer and co-authors [102] did not have the characteristics
of our canonical representatives, but led to a minimum distance. The sequences in that case
were (-8 -7 -6 -5 -4 -3 -2 -1 ~11 ~10 -390 - 9B —9A4) and
(-4 +3 —2 +8 +7 -1 =5 —6 —11 +10 +94 —9B + 9C). If we call optimal
representatives of two classes modeling circular chromosomes, two permutations, one for each
class, that lead to a minimum reversal distance, we would like to know how to characterize this
set of optimal representatives.

From the above results, it can be shown that Corollary 2.2.1 and Theorem 2.3.2 are equiva-
lent, in the following sense:

Theorem 2.3.4 Given two classes A and B modeling rwo linear chromosomes and the bijection
i defined above, then
d(o{A), 9(B)) = d(can({A), can(B))

2.4 The reversal diameter of signed chromosomes

The circular reversal diameter, denoted by D°(n), of the equivalence classes on S,, with
respect to the circular reversal distance, is the maximum distance between two equivalence
classes. Similarly, the linear reversal diameter, denoted by D{n), of the n element permuta-
tions of the set S,,, with respect to the linear reversal distance, is the maximum distance between
two permutations. We show now that the reversal diameter for signed linear and circular chro-
mosomes are respectively n -+ 1 and 7 (except in a few cases). This corrects a statement from
Kececioglu and Sankoff [77] thatsaid thatn — 2 < D(n) <n — 1.

Now we need some definitions and facts about hurdles and fortresses, as mentioned earlier.
A cycle C is bad when for any reversal g acting on two reality edges of € we have

e(n,o) =¢clp- 7, 0).

Otherwise, the cycle is good.

Two cycles are interleaving when there are two desire edges, one from each cycle, that
cross. A cycle C is contained in another cycle D when C and D are not interleaving and C is
contained in at least one desire edge of D.

The following facts will be important in this section:

e If a bad cycle C does not interleave with and does not contain any other cycle, then C
forms a hurdle just by itself. We should point out that these are not the only types of
hurdles that can exist in a breakpoint graph, but this will suffice for our purposes.
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e In a fortress there is at least one cycle that does not belong to a hurdle. Again, we point
out that this condition is not sufficient to define fortresses.

Theorem 2.4.1 The reversal diameter of linear chromosomes is

w& 8, n+ 1 otherwise
TESH

D(n}zmax){d’(ﬁ,g)}ﬂ{ﬂ fn=1lorn=23

Proof:
We will show two sequences, w, and oy, that give d(w,,0,) = n + 1, for each n. The

construction depends on n being even or odd. All the integers will have + sign in our examples,
so we omit them in the proof.

& Forneven, n > 2, consider
Tn=1{214365 ... n—4n—-5n—-2n—3nn~1)

and
On=1t,=1{1234 ... n—1nj

The breakpoint graph for 7, with respect to ¢, is formed by exactly one cycle, of size
n -+ 1, involving all labels. This is a bad cycle and therefore a hurdle. Figure 2.8 shows
examples of breakpoint graphs for n = 2 and 4 with respect 10 ty,.

In this case, using the Hannenhalli and Pevzner formula [64], and by construction of the
breakpoint graph G(7,,, 0, ) of the sequence 7,, with respect 10 ¢y,

Fnin)=n+1) — 1 +1 +0=n+1

e Fornodd,n=2-k+1withk >0

Initialiy we observe that for n = 1 we have just two permutations with distance 1 between
them, so D(1) = 1.

For n = 3 we have from a theorem of Kececioglu and Sankoff [77] that the greedy
algorithm sorts any permutation 7 with at least one negative element in at most n — 1
steps. Then, only the permutations with all elements positive are candidates to have
D{n) = n + 1. Using this fact and constructing the breakpoint graphs for all possible
sequences with all their elements positive for n = 3, we conclude that d(m3,:3) < 3. On
the otherhand, 73 = (32 1) and ¢3 = (1 2 3) give d(m3,¢3) = 3, s0 D(3) = 3.

Now we will present sequences 7, such that d(7,, t,) = n + 1 for the other cases of n
odd.n =2 -k+1withk > 2, thatis, n > 5. We consider now the remainder between
n -+ 1 and 3. We have three cases:
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z B

214 3

L -2 +2 -1 +1 -4 +4 -3 +3 R

Figure 2.8: The breakpoint graph for n = 2 e 4 with respect to ¢,,.

— rematinder = 0: Consider the sequence
(213546879 ---n—-6n—-Tn—5n-3n-4n—-2nn-1)

The breakpoint graph for m, with respect to ¢, with n > 5 is formed by exactly
(n +1)/3 cycles of size 3, with n > 5, constructed one beside the other. These
are bad cycles and therefore hurdles. Figure 2.9 shows an example of a breakpoint
graph for n = 5 with respect to i5.

In this case, using Hannenhalli and Pevzner formula [64], and by construction of the
breakpoint graph G(w,,, oy, ) of 7, with respect to ¢,,,

d(Fntn)=(n+1) - n+1}/3+ (n+1)/3 +0=n+1
~ remainder = 1: Consider the sequence

(213546 - n~15n—-13n—-14n~12n—-10n~11

n—9n—-Tn—-8n—-5n~6n—4n—-2n—-3nn-1)

The breakpoint graph for 7, with respect to ¢, with n > 9 is formed by exactly
(n—9)/3 cycles of size 3, and 2 cycles of size 5, with n > 9, constructed one beside
the other. These are bad cycles, and therefore hurdles. We note that the restriction
n > 9 does not eliminate any n such that (n + 1) mod 3 = 1, because n = 9 is
the first odd number satisfying n > 5. Figure 2.9 shows an example of a breakpoint
graph for n = 9 with respect to .
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21354
+2 -1 4+l -3 43 -5 45 4 #4 R

2135476

TR TR

L -2 +2 -1 +1 -3 43 -5 +5 4 +4 -7 +7 -6 +6 R

2 143574698

TR RN TR

L 2 +2 -1 41 4 +4 -3 +3 -5 +35 7 +7 -6 +% 89 +9 -8 +8 R

Figure 2.9: The breakpoint graphs for n = 5, 7 and 9 with respect {0 ¢,,.

In this case, using the Hannenhalli and Pevzner formula {64], and by construction
of the breakpoint graph G (7, 0,,) of m, with respect to ¢,

dmp,tn) =n+1) — (n=9)/3+2) + {(n—9)/3+2) + 0=n+1
remainder = 2. Consider the sequence
(213546 ---n—-11n-12n—-10n~-8n~%n—-7n—5n—=6
n—4n—-2n—-3nn-—1)

The breakpoint graph for 7, with respect to ¢, with n > 7 is formed by exactly
(n —4)/3 cycles of size 3, and 1 cycle of size 5, with n > 7, constructed one beside
the other. These are bad cycles, and so hurdles. We note that the restrictionn > 7
does not eliminate any n such that (n + 1) mod 3 = 2, because n = 7 is the first
odd number satisfying n > 5. Figure 2.9 shows an example of a breakpoint graph
for n = 7 with respect to ¢.

In this case, using the Hannenhalli and Pevner formula [64], and by construction of
the breakpoint graph G(m,, ¢,,) of 7, with respect 10 ¢y,

AT, tn) =(n+1) — ((n—4)/3+1) + (n—4)/3+1) + 0=n-+1
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Then, we proved that D{n) > n+ 1. We yet have to prove that D{n) < n + 2, to obtain the
wanted resuit.

We have, by the Hannenhalli and Pevner formula [64],
d(ﬂ-n‘? Lﬂ) - (Ti _§_ 1) - C(ﬂ—nﬂ én) + }2‘(7??’&3 Ln) "%_ f{ﬁnr Ln)

First, we have A(my, in) < (7, in}, by definition of h{7,, tn). 80, if A7y, tn) = (70, tn)s
then we have d(Tn, tn) < (n+ 1)+ 1, thatis, d(mp, tn) < n+ 2. Butif f(m,.1,) = 1, then
necessarily A{mn, tn) < ¢(7n, tn), and then d(m,, 1,) < n + 2.

This proves the linear case.

From the bijections defined earlier, we have the following result.
Lemma 2.4.1

Df(ny=D(n-1)

From this lemma, we have the following theorem showing the circular reversal diameter of
the equivalence classes on §,,.

Theorem 2.4.2 The reversal diameter of circular chromosomes is

Df(n) = max {d%(4,B)} =

B 8§

n—1 ifn=Ln=20rn=4
n otherwise

2.5 Conclusions

In this work, we attempted to start a systematic study of the theory of the reversal distance
problem for signed circular chromosomes. To do this, we gave some contributions, described as
follows. First we formalized circular chromosomes by equivalence classes. This is interesting
because it includes the different forms tc visualize a signed circular chromosome, obtained
by rotations and reflections. We also defined circular reversals using the known definitions
of linear reversals, which allowed to solve the reversal distance problem of signed circular
chromosomes by using polinomial algorithms that solve the reversal distance problem of signed
linear chromosome, giving as input suitable sequences from the equivalence classes. Besides,
we presented some results concerning the linear and circular chromosomes of the same size.
Finally, we determined the signed reversal diameter for linear (D{n) = n + 1) and circular
chromosomes (D°(n} = n), correcting a result of Kececioglu and Sankoff {77] on the linear
reversal diameter D(n).

To finish, a question arising from these studies is which permutations from the equivalence
classes lead to 2 minimum reversal distance, that is, we would like to know how to characterize
precisely the set of optimal representatives.
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Transposition Distance Between a
Permutation and its Reverse *

Jodo Meidanis
Maria Emilia M. T. Walter

Zanoni Dias

Abstract

In this note we solve an open question posed by Bafna and Pevzner [9], regarding
chromosome distance with respect to transpositions: we show that the distance between
a permutation and its reverse (without complementation) is [n/2| + 1, where n is the

size of the permutations. We also present an algorithm to compute an optimal series of
transpositions.

*Trabalho apresentado no IV South American Workshop on String Processing (WSP'97), realizado na
cidade de Valparaiso, no Chile, em novembro de 1997,
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3.1 Introduction

The huge amount of data resulting from genome sequencing in Molecular Biology is giving rise
to an increasing interest in the development of algorithms for comparing genomes of related
species. Particularly these data prompted research on mutational events acting on large portions
of the chromeosomes. Such events can be used to compare genomes for which the traditional
methods of comparing DNA sequences are not conclusive. The field originated by the study of
large mutations on chromosomes is known as genome rearrangements.

There are several mutational events affecting large fragments of genomes of organisms,
including duplication, reversal, transposition {acting on a single chromosome), translocation,
fusion, and fission (involving more than one chromosome). Each such event or combination of
events gives rise 1o a theoretical problem of finding, given two genomes, the shortest series of
events that transforms one genome into the other. We seek the shortest series because it has the
largest likelihood of occurrence under a general principle of parsimony. Notice that in general
more than one shortest series exists. The length of the shortest series is called the distance
between the two genomes,

Chromosomes are usually represented as permutations of integers in a given range, each
integer representing a gene. Sometimes the integers are signed to indicate the orientation of
the gene. However, when the gene orientations are unknown or not relevant (as in the case of
transpositions), the integers are unsigned.

In the last few years we have witnessed formidable advances in our understanding of genome
rearrangements. A partial list of known results follows. With respect to the reversal event, Han-
nenhalli and Pevzner [64] presented the first polynomial time algorithm to find the distance,
later improved on its running time by Berman and Hannenhaili [13], and Kaplan, Shamir, and
Tarjan [73]. These results concern signed permutations. For the unsigned case, also involv-
ing reversals, Caprara [18, 21] showed that finding the distance is NP-hard. Hannenhalli and
Pevzner [62] studied a multichromosomal distance problem for signed genomes involving rever-
sals, fusion, fission, and a specific form of translocation, producing a polynomial time algorithm
in this case as well. Bafna and Pevzner [9] analyzed the problem with respect to transpositions,
presenting several approximation algorithms, and leaving a number of open questions, among
them the complexity of the problem and the diameter (largest possible distance between two
permutations of size n). Gu, Peng, and Sudborough [56, 55] gave approximation algorithms for
the combination of events of reversal and transposition.

In this work we solve an open question posed by Bafna and Pevzner [9], regarding chromo-
some distance with respect to transpositions: we show that the distance between a permutation
and its reverse (without complementation) is {n/2| + 1, where n is the size of the permutations.
Besides, we present an algorithm to compute an optimal series of transpositions.
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3.2 Definitions

Chromosomes are represented by permutations of integers in the range 1..n, where n is the
number of genes of interest in the chromosome. For instance, (3 4 2 6 1 5) represents a
chromosome with six genes. A transposition is an operation that transforms a permutation into
another one, “cuiting” a certain portion of the permutation and “pasting” it elsewhere in the
same permutation. A transposition p(i, j, k) is defined by three integers 7, 7, and k such that
1<i<j<n+1L1<k<n+1,andk ¢ i, 7], in the following way. It “cuts” the portion
between positions ¢ and j — 1, including the extremes, and “pastes” it just before position k.
Thus, we can write

pli, g k) - (mamg . T Ty T Tg) =

(?Tl’ﬂ'g s 1Ty T Wy 1 TR - ﬁn}:
ifi < j<k,and

pli, g k) - (Mg W T T TR =

(ﬂ';’/’?g PR RS WL A2 T i Y| P I S .Wn),

if k < i < 7. Notice that p(3, 7, k) = p{7, k,7) wheni < j < k.
Given two permutations 7 and o, the transposition distance or just distance between them
is the minimum number { of transpositions g; . .. g; such that

Gt ... 01T = 0.

‘We denote such distance by d(7, o). Because the inverse of a transposition is also a transposi-
tion, we have that d(7, o) = d(o, 7).

A powerful tool for studying the transposition distance is the reality and desire diagram of
two permutations. Suppose we want to compute d{r, o). We construct this diagram writing the
origin permutation 7 in the following way. Replace each integer ¢ by a pair of points —i and
-+1, in this order, and add two extra points, one called +0 at the beginning of the sequence, and
one called —{n -+ 1) at the end of the sequence. Now draw oriented realiry edges from —m; to
+0, from ;.7 to +7;, and from —(n + 1) to +7,. Fnally, draw oriented desire edges from
+0 to —o3, from +o; to —o;41, and from +o,, to —(n + 1).

The diagram has exactly n + 1 reality edges and the same number of desire edges. The idea
is that reality edges indicate the situation as it is now, while desire edges indicate the situation
sought. When reality equals desire in all edges, we have 7 = o and d = 0. Therefore, in a way,
our goal is to apply transpositions so that reality becomes closer to desire. Figure 3.1 shows the
diagram corresponding to a pair of permutations.

Bafna and Pevzner [9] made several useful results regarding the reality and desire diagram.
One of them is that the diagram is composed of a number of cycles, with each cycle alternating
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T= (85143276)

2
i

(12345678)

. AR

0 8 48 5 +5 -1 41 4 +4 3 43 2 42 7 +7 -6 +6 -9

Figure 3.1: Reality and desire diagram for two permutations, 7 and o, as showed. In this figure,
reality edges are represented by thick lines and desire edges by thin lines.

between reality and desire edges. The Jength of a cycle is the number of reality edges in it
{(which is the same as the number of desire edges in it). One important remark follows.

Lemma 3.2.1 The sum of the lengths of all cycles in any reality and desire diagram is always
equal ton + 1.

Moreover, a transposition can affect the number of cycles in a very specific way, as the
following lemma shows [9]. Denote ¢(7, o) the number of cycles in the diagram of 7 and o.

Lemma 3.2.2 For any permutations © and ¢ and any transposition ¢ we have
clo-m,0)=c(r, o)+,

where x = 2, 0, or 2.

A transposition p is called a —2-move, a 0-move, or a Z-move according to z being —2, 0,

or 2 in the previous lemma. Since ¢{o,¢) = n + 1, the maximum possible, we would like to
perform 2-moves as much as possible.

If fact, a stronger statement can be made regarding the effect of a transposition on a diagram.
Denote by ¢,4¢{7, o) the number of cycles of odd length in the diagram of 7 and ¢.

Lemma 3.2.3 For any permutations © and ¢ and any transposition g we have

Coqd (0T, 0) = Cogq (T, 0) + T,

where z = —2, 0, or 2.
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From this lemma we have the following lower bound on the distance:

Theorem 3.2.1 For any permutations n and o we have

d(’:’?, G’) > (?’6 -+ 1) — Codd
2

Now we make some definitions used in the following sections.

First we show a way 10 represent a cycle by its reality edges. We number the reality edges of
the diagram assigning label { to a reality edge from 7,4 to m;, with 0 < {1 < n, so we label them
from 1 to n + 1. Let us consider a cycle C of size &, taking the reality edges in the order they
appear in the cycle, {¢1,...,4}. A cycle C can be represented in & possible ways, depending
on the choice of the first reality edge. We will consider a canonical representative of a cycle C,
taking the initial reality edge 7; as the rightmost edge of C' in 7, that is, #; = maX;<s<r 4. In
the diagram of Figure 3.1 we have three cycles, with canonical representatives Cy = {9, 7, 5, 2),
Cy = (8,1,3)and Cs = (6,4).

Let us consider now three reality edges z, y, 2 belonging to the same cycle C in the diagram.
C forces an order on z, ¥, z, and we have three possible representations of this order. We will
choose as the canonical representative of a triple (x,y, z) the one starting from the rightmost
reality edge max(z,y, z). A triple in the canonical order is non-oriented if ¢ > y > z and
oriented if y < z < z. In the diagram of Figure 3.1 we have the following non-oriented triples:
(9,7,5),(9,7,2),(9,5,2), and (7, 5, 2); and the oriented triple (8,1, 3).

Finally, we say that a cycle is oriented if it admits a 2-move, and non-oriented if there is no
possible 2-moves acting on it. In the diagram of Figure 3.1 we have ; and (s non-oriented
and C; oriented.

3.3 Computing the transposition distance

Given the permutations 7 = (nn—1n—-2 ... 21)and: = {12 ... n—2n—1n) we
want to compute the transposition distance d(m,:). Of course, this distance will be the same
for any pair consisting of a permutation and its reverse. Theorem 3.3.1 below establishes that
dm,)=1ifn=2andd(r,1) = |2]| +1ifn > 2.

However, in the proof of this theorem we need the following lemma, which can be easily
proved. Bafna and Pevzner [9] mention part of this result in their work.

Lemma 3.3.1 Let C be a cycle and (z,y, ) a triple of C in the canonical representation. Then
we have

(z,y, 2) is oriented if and only if oy, z, z) is a 2-move
and
(z,y, z) is non-oriented if and only if ply, z, z) is a O-move
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Now we will state and prove the main theorem.

Theorem 3.3.1 Given the permurationsm ={nn—-1n-2 ... 21 and . ={12 ... n~
2n—1n), wehave forn > 2

1 fn=212
dr, i) =

2] +1 ifn>2
Proof: From the work of Bafna and Pevzoer [9], givenwt = (nn—-1n-2 ... 2 1) wehave

1 if n is even
Codd (ﬂ-; 5) =
Oou2 ifnisodd

Applying the lower bound given by Theorem 3.2.1 for d(r, 1) we have

(n+1)—c &“’;}:—ng if nn is even

1) = Codd

a0y > ) T Cort
- 2 ; o .

2lou 22 ifnisodd

MNotice that in order to attain the lower bound every transposition used must increase the
number of odd cycles.

For 7 and : as defined earlier in this section Bafna and Pevzner [9] proved the following
upper bound

dim, ) < [%} + 1

foralln > 1.
We have two cases:

1. When n is odd:

s For the case of  odd cycles:

n+1 n
d(m, 1) > =i-|+1
(r0) 2= bj+
In that case, the lower bound is exactly equal to the upper bound, and then d(7, ) =

z]+1
e For the case of 2 odd cycles:
n-—1 n
JL) 2 e - +1
dlm 1) 2 = #[A+

and the gap is exactly 1. But here we have two non-oriented odd cycles. This
implies that the next move cannot increase ¢4y, and therefore we cannot reach the
lower bound.
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So, whennisoddthenwehaved(nn—1n—-2 ... 21} = {-’;—J + 1.

2. When n is even: |
T

n
d(m, i) > 2 {_ | +1
257 5t
and the gap is exactly 1. In this case, we have to prove that there is necessarily a transpo-

sition that will not increase c,qy during any transposition sequence that transforms 7 into
L

The first transposition is either a 0-move or a 2-move. We cannot apply a —2-move
because this first diagram is formed by just one cycle.

If we apply a O-move, the unique odd cycle is transformed into another odd cycle, not
increasing Codd-

So, we have to verify what happens if we apply a 2-move. We will show that any 2-move
gives rise 1o a diagram with all cycles non-oriented. This will imply the result as follows.
We have two possibilities. If the resulting diagram has one odd cycle and two even cycles,
the first transposition did not increase c,q4. On the other hand, if we end up with three

odd cycles, the second transposition of the series cannot increase c,q4, because all three
cycles are non-oriented.

Let us now study what happens when the first transposition is 2 2-move. From Lemma
3.3.1 we know that every 2-move corresponds to an oriented triple in the unique cycle of
the diagram. The order of reality edges in this cycle is such that all even labels appear
together, in decreasing order, and all odd labels appear together, also in decreasing order.
It foliows that the possible 2-moves are of the form p(i, j, k) with ¢ and j of opposite
parity, k of same parityas ¢, and 1 <i < j <k <n+ L

We now have to apply one such transposition and analyze the resulting diagram. Because
i < j < k, we have

oli, k) - nn—1n—-2...21)=
(n—=1..n—-i4+2 n—j+1...n-k+4+2
n—i+1l...n—j+2 n—k+1...21).

Figure 3.2 shows examples of such 2-moves.

The important fact here is that, because of the opposite parity of j and %, and of 7 and
7, the cycle involving reality edge (n — i + 1,n — k + 2) is non-oriented. Likewise, the
cycle involving reality edge (n — &k + 1, n — j + 2) is non-oriented because of the opposite
parity of ¢ and j (regardless of the parity of k), and the cycle involving reality edge
(n—j+1,n~—1i+2)1is also non-oriented because j and k have opposite parity (regardless
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(a) 7

+0 8 487.7 +7°-6 +6°-5 +5°-4 443 43 -2 42°-1 +1° -9

(&)
0(34,5) «

P .

40 Y8 48 o7 47 -5 45°6 464 243 4300 420e] 410D

pi2,58) - ®

& e d i
+H -8 +8 4 4 3 43 2 42 7 47 -6 +6 -5 +5 -1 +1 B

p{1,8% - =«

40 1 41 -8 48 Y7 47 -6 468 450 443 430 4250

Figure 3.2: This figure shows the diagram created by a strictly decreasing sequence with respect
to the identity, and the diagrams created by some possible 2-moves applied to the first diagram.
(a) The diagram created by the decreasing cycle# = (8 7 6 5 4 3 2 1) with respect to
7 =(12345678). (b) The diagrams created by some transpositions applied to 7 as
indicated.

of the parity of ¢). Thus, in any case we end up with three non-oriented cycles, which
proves the theorem.

3.4 An algorithm to compute d(7, 7)

We show now an algorithm to compute the transposition distance between a strictly decreasing
sequence with respect 1o the identity. Note that the algorithm runs without using the reality and
desire diagram. Instead, it uses an explicit series of transpositions that work in the case treated
in this article. As the series has length {n/2] + 1, the resuits in the previous section guarantee
that it is a shortest series.
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Algorithm

Input: n>2,n={(nn—-1... 21)
Quiput: t =d(n,7)and 01, 09, ..., 0
begin

1. T Qi(i,

2.t 1

%Ln}«'fr

3. ifn iseven then

te—t+1

Mg ¢ 05, 5 +Ln+1)-m
ke

pe1

4, if n is odd then
k0
p+ 0
5. while k < |2] do
t+—t+1
ﬂ'témgt(m wk,i%J —k+2n+1—k+p) 71
k—k+1

6. return ¢, oy, oo, - - ., 0s

3 E 4

end

The four initial steps create, from the initial permutation, a new permnutation with two de-
creasing subsequences on its left extremity, and an increasing sequence, on its right end. If n is
gven then we have

n n n
Note that the decreasing subsequences have [3] — 1 elements each. We marked the subse-
quences with parenthesis.

If n is odd then we have

1
n—; .32 (nn=-1... ntl

7T1=(

+1)(1)

Analogously, in this case the first two subsequences also have [%] — 1 elements each.
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The loop in step 5 moves both the last element of first subsequence and the first element of
second subsequence to the right end of the permutation, where two other subsequences are being
increased as the algorithm runs. Generically, if n 1s even then we have, after £ — 1 iterations of
the loop,

ﬁmﬁ(gﬁ % R (n—E+1 .. -;3-;-»2) (12.. k+1)(n=k+2...n).
If n is odd then we have, afier k iterations,
+1 i
wkﬂﬂz(ng L kF2Y(n—k ... n—21—1+1) (12 ... k+)(n—k+1...n)

So this algornithm correctly transforms the permutation in its inverse, using franspositions.
Also, the algorithm runs in [gJ + 1 steps, forn > 2.

Figure 3.3 shows examples of this algorithm executions for the decreasing sequences for
n = 6 and n == 7, with respect to the identity.

@ 654321 ® 7654321
B
432651 4327651
1 !
4365102 4365127
N 1
451236 4512367
N 1
123456 1234567

Figure 3.3: This figure shows two executions of the algorithm. (a) Example with r even. (b)
Example with 7 odd.

3.5 Conclusions

We demonstrated that the transposition distance between a permutation and its reverse (without
complementation) is i%_f +1 foralln > 2, where n is the size of the permutation. We conjecture
that this is in fact the value of the transposition diameter.

We also presented an algorithm to find an optimal series of sorting transpositions for the
case studied.
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Abstract

In recent years we are seeing increasing interest in research on mutational events acting
on large portions of the chromosomes. Among these events, a reversal acts on a fragment of
a chromosome reversing the order and orientation of the genes, and a transposition moves
fragments from one region to another within a chromosome. In this article we analyze
genomes evolving by reversals and transpositions. We present approximation algorithms to
compute the reversal and transposition distance for linear permutations, and a lower bound
on the reversal and transposition diameter of signed linear permutations.

* Trabalho apresentado no String Processing and Infermation Retrieval (SPIRE’98) realizado na cidade
de Sania Cruz de la Sierra, na Bolfvia, em setembro de 1998,
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4.1 Imntroduction

The huge amount of data resulting from genome sequencing in molecular biology is giving rise
to an increasing interest in the development of algorithms for comparing genomes of related
species. Particularly these data prompted research on mutational events acting on large portions
of the chromosomes. Such events can be used to compare genomes for which the traditional
alignment methods of comparing DNA sequences are not conclusive. The field originated by
the study of non-local mutations on chromosomes is known as genome rearrangements.

There are several mutational events affecting large fragments of genomes of organisms, in-
cluding duplication, insertion, deletion, reversal, transposition (acting on a single chromosome),
translocation, fusion and fission (involving more than one chromosome). Each such event or
combination of events gives rise 1o a theoretical problem of finding, given two genomes, the
shortest series of events that transforms one genome into the other. We seek the shortest se-
ries because it has the largest likeithood of occurrence under a general principle of parsimony.
Notice that in general more than one shortest series exists. The length of the shortest series is
called the disrance between the two genomes.

In this article we are working with genomes composed by a single chromosome. Chromo-
somes are usually represented as permutations of integers in the range 1..n, for a given n, each
integer representing a gene or a genetic marker. Sometimes the integers are signed to indicate
the orientation of the gene. However, when gene orientations are unknown, the integers are
unsigned.

In the last few years we have witnessed formidable advances in our understanding of genome
rearrangements. A partial list of known results follows. With respect to the reversal event, Ke-
cecioglu and Sankoff [78] presented the first algorithms for computing the reversal distance be-
tween two unsigned linear chromosomes. Bafna and Pevzner [§] improved the Kececioglu and
Sankoff algorithm, for signed and unsigned linear permutations. Hannenhalli and Pevzner [64]
presented the first polynomial time algorithm to find the reversal distance of signed linear chro-
mosomes, later improved on its running time by Berman and Hannenhalli [13] and Kaplan,
Shamir and Tagan [73]. Caprara, Lancia, and Ng [23] implemented a branch-and-bound al-
gorithm for computing the exact reversal distance between two unsigned permutations which
performs very well in practice. Caprara [18, 21] later showed that this problem is NP-hard.

Regarding the problem of reversal distance between two signed circular permutations, Kece-
cioglu and Sankoff [77] gave an approximation algorithm, and Meidanis, Walter and Dias [92,
05] gave a polynomial time algorithm for it. With respect to the transposition event, Bafna
and Pevzner [9] analyzed the transposition distance problem between two unsigned linear chro-
mosomes, presenting several approximation algorithms. Christie [28] gave a polynomial time
algorithm for computing distance under a novel operation, block interchange.

Analyzing genomes evolving due to different mutational events represents today a great
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challenge. Hannenhalli and co-authors [61] analyzed genomes evolving by different events,
particularly reversals and transpositions. Hannenhalli and Pevzner [62] presented a polyno-
mial time algorithm for comparing genomes evolving by reversals, translocations, fusions and
fissions. Gu, Peng and Sudborough {56, 557 gave approximation algorithms to compute the dis-
tance between two signed permutations, allowing three operations, reversal, transposition and
reversal+transposition simultaneously.

In this paper we want to contribute in the analysis of reversals and transpositions acting
on a single chromosome. The results of this work are as follows. We extend the analysis
of transpositions to signed permutations, and obtain approximation algorithms for computing
the reversal and transposition distance for both signed and unsigned permutations. Finally, we
present lower bound for the reversal and transposition diameter of signed permutations, and
conclude.

4.2 Definitions

In this section we formalize the problem of computing the reversal and transposition distance
of linear chromosomes.

We assume that the order of genes in a chromosome is represented by a permutation 7 =
(my, 72 ... Ty), where each 7; is an integer in 1..n. If the gene orientations are known, each m;
is a signed integer.

A reversal is an operation that transforms a permutation into another, reversing the order of
the genes on a certain portion of the permutation. A reversal r(1, j) is defined by two integers
1,7, such that 1 < ¢ < 7 < n, reversing the order of the genes between ¢ and j, including the
extremes. Thus, we have

T3, J) - {71 Tt MMt - TTgpt oo Tp) =

(?Tl Cee 7!'2'_1?_?‘ ca Flé+1?7~g7('j+1 P TT‘n)

where 75, symbol means —7,, if the integer is signed, or 7, if the integer is not signed.

A rransposition is an operation transforming a permutation into another, “cutting” a certain
portion of the permutation and “pasting” it elsewhere in the same permutation. A transposition
{1, 7, k) is defined by three integers ¢, j, and ksuchthat 1 < i< j<n+1,1<k <n+1, and
k ¢ [i, 7], in the following way. It “cuts” the portion between positions 7 and j — 1, including
the extremes, and “pastes” it just before position £. Thus, we can write

ﬁ(i,j, k) . (’/T]_...7T2'_.17T?;...?Tj_lﬁj...fi'k_lfrk...ﬁn)

(74’1 v 1Ty ...’Ie”k.‘l?'ri...ﬂ’j_;‘f{"k...ﬁn)
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ifi <j<k,and
Ha, 4 k) - (T o et M o Ty Ty o Tt T oo T )

(?’fl e Ty vﬁjmlf’?kw--ﬁi—-i'Tj-v-ﬁn)

ifk < i< j. Noticethat £{4, 7, k) = t(j, k, 1) wheni{ < j < k.

Given two permutations 7 and o, we want to compute a shortest series of reversals and
transpositions that transforms 7 into o, that i, we want to find py, g, . . ., py, Where p; is either
a reversal of a transposition, such that p, - py—1 ... - p2- 01 -7 = ¢ and v is minimum. We call
the reversal and transposition distance and denote it by d(7, o). Without loss of generality we
can fix ¢. Unless otherwise noted, all our developments will be done with o being the identity
permutation, which is ¢ = (1...n) in the unsigned case and ¢ = {+1... + n) in the signed
case.

In the following an operation can be a reversal or a transposition.

We usually extend permutation 7 by adding my = 0 and 7m,..; = n + 1 in the unsigned case,
or mp = -0 and Tue1 = +(n + 1} in the signed case. The extended permutation will still be
denoted by 7.

A breakpoint of a permutation 7 is a pair z = (my, ;) such that neither z nor 7 =
(711, 7;) are of the form (o}, 0;4;) for some j such that 0 < j < n. Therefore, to reach o from
7, we must have at least one operation “separating” 7; and 7;.,. Breakpoints are indicated by a
bullet (o) between 7; and 7, (see Figure 4.1). We denote by b(r. o} the number of breakpoints
of 7= with respect 1o .

Breakpoints divide a permutation into strips. If the target permutation ¢ is the identity,
strips are always sequences of consecutive integers. In the unsigned case, a strip can be ei-
ther increasing or decreasing as a sequence of integers, and we will call them accordingly as
increasing strips or decreasing strips. In the signed case, all sirips are increasing, but we sep-
arate them into positive or negative strips, according to the sign of their elements (all elements
in a strip must have the same sign).

0 25 1 2 64 7 § 3 G 8 el10

Figure 4.1: Strips and breakpoints of a permutation 7 = (051247 6 3 9 8 10 ) with

respecttoo = (012345678910 ). Strips are the sequences between two consecutive
breakpoints.

A powerful tool for studying the reversal and transposition distance is the reality and desire
diagram of two permutations. In the literature [8, 64, 13] this is called the breakpoint graph of
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two permutations, but we prefer to call it a diagram because its graph structure alone does not
capture all the important information: the order of nodes is relevant too.

The rest of this section refers to signed permutations only. We construct this diagram writing
the original permutation 7 in the following way. Replace each integer 7 by a pair of points —¢
and -+, in this order. For instance, +4 is replaced by —4 and +4; —8 is replaced by +8 and -8,
Add two extra points, one calied +0 at the beginning of the sequence, and one called —(n-+1) at
the end of the sequence. Now draw reality edges between +0 and —ny, between ~+m; and ~m;41,
and between +7, and —{n -+ 1). Finally, draw desire edges between +0 and —o;, between -+o;
and —o;.1, and between +0, and ~{n -+ 1). Again, in the literature, reality edges are called
black edges and desire edges are called gray edges. We prefer the denominations reality and
desire because they are more informative: reality edges refer to the current permutation and
desire edges refer to the target permutation.

The diagram has exactly n -+ 1 reality edges and the same number of desire edges. The idea
is that reality edges indicate the situation as it is now, while desire edges indicate the situation
sought. When reality equals desire in all edges, we have 7 = ¢ and d = 0. Therefore, our
goal is to apply reversals and transpositions so that reality becomes desire. Figure 4.2 shows
the diagram corresponding to a pair of permutations. We denote by G{7, ¢} the diagram of the
permutations 7 and o.

£ £
O +5-5-1 +1-2 +2-4 +4+7-7 +6-6 -3 +3-9 +5-8 +8-10

“5 +1 +2 +4 =7 -

Figure 4.2: Reality and desire diagram for two permutations, 7 = {
7 +8 + 9 +10). The value of

6 +3 +9 +8 ando=(+1 +2 +3 +4 +5 +6 +
e(rr, o) is 3 in this case.

Observe that the diagram is composed of a number of cycles, with each cycle altermnating
between reality and desire edges. The length of a cycle is the number of reality edges in it
{which is the same as the number of desire edges in it). We will denote by k-cycle a cycle with
length k. The decomposition of G(r, o) into cycles is unique and we denote by ¢(r, o) the
number of the cycles in G(r, o).

4.3 Approximation algorithms

‘We present now approximation algorithms for computing the reversal and transposition distance
of two permutations. We will give a 3-approximation algorithm for the unsigned case and a 2-
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approximation algorithm for the signed case.

Let us begin with the unsigned case. Note that the only permutation having 0 breakpoints
with respect to o is exactly o, and then the sequence of reversals and transpositions transforming
7 into ¢ must take the number of breakpoints from b{m, &) to 0. We also observe that reversals
can remove at most two breakpoints, and transpositions can remove at most three breakpoints.
This observation impiies immediately a lower bound, given in the next theorem.

Theorem 4.3.1 Given two unsigned permutations m and o we have

é(ﬁ?: 7) < d(m, o).

Theorem 4.3.2 Given two permutations = and o, with @ # o, there is an operation p removing
at least one breakpoint.

Proof: The intuitive idea is to increase the first strip on each operation, removing its rightmost
breakpoint without introducing new breakpoints.

The first strip on the left is always an increasing strip. Taking the maximum element on this
first strip, find its successor, which will be necessarily to the right. If the successor is in the
beginning of a strip, or is the only element on the strip, we apply a transposition. If it is in the
end, we apply a reversal. E

Repeated application of Theorem 4.3.2 gives a 3-approximation algorithm for computing
the reversal and transposition distance of unsigned permutations. Its time complexity is O(n?),
where 7 is the size of the permutations. It takes time O(n) to find the operation and apply it.

4.3.1 Signed Permutations

Now we turn to the signed case. Note that the diagram G(o, o) is the only one having n + 1
cycles. So, the sequence of reversals and transpositions transforming « into ¢ must take the
number of cycles from ¢{r, o) to n + 1. For two permutations 7 and ¢, and an operation p,
denote Ac(p) = ¢(p- 7, 0) — ¢(x, o) as the gain in the number of cycles due to an operation p.

Lemma 4.3.1 Aclp) € {-2,-1,0,1,2}

Proof: We note first that p can be a reversal or a transposition.

Each reversal acts on two reality edges belonging to at most two cycles, creating or de-
stroying at most one cycle. Hannenhalli and Pevzner [64] have shown that, for a reversal,
Ac(p) € {~1,0,1}.

Each transposition acts on three reality edges belonging to at most three cycles. Bafna
and Pevzner [9] have shown that for the unsigned case Ac(p) € {~2,0,2}. It corresponds,
in the signed case, to a diagram generated by a permutation composed only by positive strips.
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Figure 4.3: This figure shows all possible cases of transposition acting on a signed permutation,
where only the affected cycles are shown.
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However, in the signed case, we have also Ac{p) == —1 or +1. This can be seen from Figure 4.3,
which shows all possible actions of a transposition on signed permutations. ]
The following theorem comes directly from Lemma 4.3.1.

Theorem 4.3.3 Given two signed permutations = and o then we have

(n+1)—¢c(r, o)
2

< d{m, o)

Forz € {2.1,0, -1, —2}, define 2 z-move on = with respect to ¢ as an operation g such that
Ac{p) = z. As we mentioned, Figure 4.3 shows al! possible actions on signed permutations.
In each of the cases shown, a transposition transforms reality edges (b,a),{d,¢) and (f,€)
into (d, a}, (b,e) and (f,c). Dashed lines denote a path that can be formed by one or more
desire/reality edges. Since the inverse of a transposition is a transposition, the transformations
are reversible. Notice that there is only one pattern corresponding to a 2-move, and only three
patterns corresponding to an 1-move. This fact leads to the following theorem.

Theorem 4.3.4 A diagram admits a 2-move if and only if there are three reality edges (a,b),
(e, d), and (e, ) such that

1. they appear in this order in the diagram

2. they belong to the same cycle

3. ais connected to d, b to e, and c to f, by paths not containing any of the edges (a,b),
(c,d), and (e, f).

We show now a way to apply a reversal or a transposition on a signed permutation in order
to obtain an increase of c{m, o) by at least 2 in two consecutive moves.

Theorem 4.3.85 Given two signed permutations m and o, there is either a 1-move, a 2-move or
a 0-move followed by a 2-move.

Proof:

If there are negative strips, Hannenhalli and Pevzner [64] have shown that there is always a
reversal increasing the number of cycles, and is therefore an 1-move.

If all strips are positive, we can view this permutation as an unsigned one, and apply a
result from Bafna and Pevzner [9], guaranteeing the existence of either a 2-move, or a 0-move
followed by a 2-move. =

From Theorem 4.3.5 we can derive an upper bound for the reversal and transposition dis-
tance.
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Theorem 4.3.6 Given two signed permutations = and o we have
d(ﬁ“, g) < (?’L + }-) - C{T‘—? 0’}

Given a permutation 7 to be transformed into o, the intuitive idea of the algorithm is, while
we have negative strips on 7 with respect to o we apply reversals as described on Theorem 4.3.5.
If we cannot apply reversals of this kind, and this sequence of reversals did not transform 7 into
o then the diagram is generated by a permutation having only positive strips with respect to o.
Then we use the results of Bafna and Pevzner [9] to discover the sequence of transpositions to be
applied. We note that, when these transpositions are being applied, all diagrams are generated
from permutations having only positive strips with respect to o.

This gives a 2-approximation algorithm for computing the reversal and transposition dis-
tance of signed permutations. Its time complexity is O(n®), where n is the size of the per-
mutations. Both a suitable reversal and a suitable transposition, as specified in the proof of
Theorem 4.3.5, can be found in time O{n) [9, 64].

4.4 Reversal and transposition diameter

In this section we give initial steps for computing the maximum number of operations for the
reversal and transposition distance of signed permutations.

Taking S, as the set of all permutations with size n, define

D(n) = max d(r,0)

T oeS,

to be the reversal and transposition diameter of thisset. Let7 = (~1 —2 ... —(n—1) —n)

ando = (+1 +2 ... +(n—1} +mn). Thenc(r, o) = 1 for all n, and we have a lower bound
(by Theorem 4.3.3),

[gl < d(m,0).

More precisely, we can prove the following result.

Theorem 4.4.1 Takingm = (-1 —2 ... —(n—1) ~n)ando =(+1 +2 ... n—1mn),
then we have
2] +1 #n=1,2

{

dim,o) =
[+2 #n>3

w3
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Proof: We have two cases according to the parity of n.

¢ When 2 is 0dd, a lower bound is [2] < d(m, o). But [2] = 28 = %] + 1 < d{7, 7).
To achieve the lower bound, all operations applied must be Z-moves, except one which
must be a I-move. No 2-moves exist in the original diagram, and for every 1-move in the
first step, the resulting diagram does not admit 2-moves. Hence, the lower bound cannot

be achieved and we have d(7,0) > [§] + 2.

s When n is even, Tables 4.1 summarize the argument. The table labeled “FIRST MOVE”
analyzes all possibilities for the first move. Two of these possibilities require an analysis
of the second move as well, which is done in the table labeled “SECOND MOVE.” Two
arguments are used heavily in this table. One of them is that when negative elements
remain, we cannot achieve the | 2| + 1 lower bound because we are forced to use at least
one reversal, which is never a 2-move. The other is that one can verify in some cases that
a 2-move does not exist looking for the characterization given by Theorem 4.3.4.

When 2 > 3 we can obtain an upper bound for d(7, o) in the following way. First, we apply
areversal on 7, obtaining r(1,n) -7 = (+n + (n—1) ... +2 + 1). Then we use the result of
Christie [30], also obtained independently by Meidanis, Walter and Dias [93], that determines
the transposition distance dy(r - 7, 0) = [§| + 1, for n > 2. Therefore, we have the upper
bound, d(m, o) < [%] + 2, for n > 3. This completes the proof. ]

We can verify that D(n) = [ 2] + 2 forn = 3, 4.

4.5 Conclusions

In this article we have presented approximation algorithms for computing the reversal and trans-
position distance. For the signed and unsigned cases we have shown algorithms based on the
notion of breakpoints and cycles, respectively. For the signed case our algorithm uses a specific
type of reversal while possible, and after that it uses part of the Bafna and Pevzner theory [9] to
get the transpositions to be applied.

The lower bounds used to estimate the approximation factor were simple, yet they lead to
a deeper result, namely, the calculation of the exact distance between permutation (-1 -2 ...
—{n — 1) —n) and the identity. This proof is more involved and uses the characterization of 2~
and 1-moves given in Figure 4.3. Of course the result provides a lower bound for the diameter,
which we conjecture to be an upper bound as well.

Plans for future work include dealing with other operations, notably the combined rever-
sal+transposition, which is a natural operation to consider form the biological standpoint, and
studying weighted problems, where each type of operation has a different weight, and the goal
is to minimize the total weight.
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FIRST MOVE

reversal

Z-move

impossible, no reversal is a 2-move

i-move

must be r{¢, ) with 7 — { even; analyze second
move

(-move

if (1, n), use known result on transposition dis-
tance (a); otherwise negative elements remain

transposition

Z-move

the unique 2-move pattern in Figure 4.3 does
not exist in the diagram

i-move

must be ¢(¢, 7, k) with j ~ ¢ and &k — 4 both odd;
analyze second move

(-move

negative elements remain

SECOND MOVE

r(i,7) with j — 7 even

2-move

the unique Z-move pattern in Figure 4.3 does
not exist in the diagram

i-move

if transposition, negative elements remain; if re-
versal, negative elements remain except when
first move was v(1,n) or r{i + 1,n) for odd 1,
but then the unique 2-move pattern in Figure 4.3
does not exist in the diagram

t(i, j, k) with both j — ¢ and
k — j odd

2-move

the unique 2-move pattern in Figure 4.3 does
not exist in the diagram

I-move

if transposition, negative elements remain; if re-
versal, negative elements remain except when
it is r(1,n). But then r(1l,n) - #{i.5,k) =
tn+2—kn+2-—~jn+2-14- r(ln),
which was already analyzed

Table 4.1: Analysis of the first two steps in computing the distance. (a) See result by Christie
and Meidanis, Walter, Dias in the text. In the SECOND MOVE table we do not consider (-
moves since if the second move is a 0-move, the lower bound cannot be achieved, because the

first move was an 1l-move.
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One possible model to study genome evolution is to represent genomes as permutations
of genes and compute distances based on the minimum number of certain operations (re-
arrangements) needed to transform one permutation into another. Under this model, the
shorter the distance, the closer the genomes are. Two operations that have been extensively
studied are the reversal and the transposition. A reversal is an operation that reverses the
order of the genes on a certain portion of the pertnutation. A transposition is an operation
that “cuts” a certain portion of the permutation and “pastes” it elsewhere in the same per-
mutation. In this paper we show that the reversal and transposition distance of the signed
permutation 7, = (—1 —2 ... —(n — 1) —n) with respect to the identity is [n/2] 4 2
for all n > 3. We conjecture that this value is the diameter of the permutation group under
these operations.
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5.1 Introduction

One possible model to study genome evolation is to represent genomes as permutations of
genes and compute distances based on the minimum number of certain operations (rearrange-
ments) needed to transform one permutation into another. Under this model, the shorter the
distance, the closer the genomes are.
In general, genes are represented as integers from 1 to n, and a permutation 7 @ {1,2,...,n}
— {1,2,...,n} by
(my 7y ... W),

where 7; denotes 7(i).

Permutations can be signed, in which case each w; has a positive or negative sign to model
the orientation of genes. We will call permutation group the set of all permutations of a given
size n. The unsigned permutation group has n! elements, while the signed group has 2™n!
clements.

In this note we are interested in the diameter of permutation groups, that is, the maximum
distance possible between two permutations of size n, under several operation choices. Two
operations that have been extensively studied are the reversal and the transposition. A reversal
is an operation that reverses the order of the genes on a certain portion of the permutation.
A transposition is an operation that “cuts” a certain portion of the permutation and “pastes”
it elsewhere in the same permutation. (Refer to Section 5.2 for more formal definitions.) A
transposition is also called a block move in the Jiterature. A block interchange operation
exchanges two portions of a permutation [28]. Transpositions and block interchanges never
affect the signs (if present) of a permutation. For this reason, they are studied in the unsigned
case only. We could also conceive an operation that “cuts” a portion and “pastes” it elsewhere
reversed. Call this a transversal.

Table 5.1 shows what is currently known about the diameter for signed and unsigned per-
mutations under various combinations of the above operations. In this note we provide a lower
bound for the diameter in the case of signed permutations evolving by transpositions and rever-
sals.

Analyzing genomes evolving due to different mutational events represents today a great
challenge. Hannenhalli and others [61] analyzed genomes evelving by different events, particu-
larly reversals and transpositions. Hannenhalli and Pevzner [62] presented a polynomial time al-
gorithm for comparing genomes evolving by reversals, translocations, fusions and fissions. Gu,
Peng and Sudborough [56, 55] gave approximation algorithms to compute the distance between
two signed permutations, allowing three operations, reversal, transposition and transversal.

In this work we contribute t0 the analysis of reversals and transpositions acting on a single
chromosome having genes with known orientation. We show a permutation 7,, that needs at
least {n/2] + 2 steps to be sorted, thus obtaining a lower bound on the diameter of the signed
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Operations Size Degree Diameter
Reversals (unsigned) [8] nl (g) D=n-1
Reversals (signed) [64, 95] | 27n! (3)+n D=n+1
Transpositions [9, 93, 30] n! (”“;1) n/2i+1<D<{3n/4]
Reversals, transpositions * | 2"n! (”“;i) + (g) +n in/2]+2<D
Block interchange [28] nl (") D= |n/2]

* This paper

Table 5.1: Results known about the diameter of permutation groups under genome rearrange-
ment operations. The column “Size” refers to the size of the graph, i.e., the total number of
permutations for n elements. “Degree™ is how many neighbors a permutation has. In the col-

umn “Diameter” either the diameter is given or the known bounds, with I representing the
diameter.

permutation group under these operations.

5.2 Definitions

In this section we formalize the problem of computing the reversal and transposition distance
of linear chromosomes.

We assume that the order and orientation of genes in a chromosome are represented by a
permutation 7 = (7 7 ... 7,), where each m; is a signed integer such that 1 < |m; < n and
mi| # |m;} for i # 3.

A reversal 7(1, j) is defined by two integers 4, 7, such that 1 < i < j < n, reversing the
order and sign of 7y, 7 < £ < j. Thus we have

PG J) - (T o Wiy Ty e Ty Tja oen ) =

3

(’71'1 cee Ty Mg ool Tgpl Tp Tyl - - 7T.n)
where 7, means 7 with opposite sign.
A transposition £(%, j, k) is defined by three integers 4, j, and k such that 1 < i < j < n+1,
and k € [i, j], in the following way. It “cuts” the portion between positions ¢ and j ~ 1, including
the extremes, and “pastes” it just before position k. Thus, if ¢ < 7 < k, we can write

i, 5o k) - (7 s Moy Ty e Ty Ty . Tpe1 T . Tp) =

(M) oo Moy Ty e gy Mg «vo Wjmy Tk -- 0 Tp)

Given two permutations 7 and o, we want to compute a shortest series of reversals and
transpositions that transforms 7 into o, that is, we want to find g1, 02, .-, 0w, Where p; 15 a

7 H
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reversal or a transposition, such that 9, - gy—1 - ... 02+ 01 - ™ = o and v is minimum. We call
u the reversal and transpesition distance between 7 and ¢ and denote it by d(7, ). Without
loss of generality we can fix 0. All our developments will be done with ¢ being the identity
permutation, whichis ¢ == ¢, = (+1 ... +n). In this case we denote d(7, 4, ) simply by d(7).

In the following an operation can be a reversal or a transposition.

A powerful tool for studying the reversal and transposition distance is the reality and desire
diagram of two permutations. In the literature [9, 64, 63] this is called the breakpoint graph of
two permutations, but we prefer to call it a diagram because its graph structure alone does not
capture all the important information: the order of nodes is relevant too.

We first extend a permutation 7 by adding 7y = +0 and 7,41 = +{n + 1). The extended
permutation will still be denoted by 7. We construct this diagram writing the original permu-
tation 7 in the following way. Replace each integer i by a pair of points —i and +i, in this
order. For instance +4 is replaced by —4 and +4; —7 is replaced by 47 and —7. Add two exirs
points, one called +0 at the beginning of the sequence, and one called —(n+1) at the end of the
sequence. Now draw reality edges between --0 and —my, between -+7;..; and —7;, and between
+7, and —(n + 1). Finally, draw desire edges between +0 and —1, between +{(i — 1) and —1,
and between +n and —(n -+ 1} (see Figure 5.1). Again, in the literature, reality edges are called
black edges and desire edges are called gray edges. We prefer the denominations reality and
desire because they are more informative: reality edges refer to the current permutation, that is,
where we are, and desire edges refer to the target permutation, that is, where we would like to
be. We denote G{r) the diagram of the permutation 7 (with respect to the identity).

Observe that the diagram is composed of a number of cycles, with each cycle alternating
between reality and desire edges. The length of a cycle is the number of reality edges in it
(which is the same as the number of desire edges in it). The decomposition of G(7) into cycles
is unique and we denote by ¢(7) the number of cycles in G(7).

The cycles of G(r) are denoted by a bracket notation as follows. We number the reality
edges of G(m,) from 1 to n + 1 by assigning label ¢ to the reality edge (m;, m;_1), with 1 <
i < n - 1. Besides, we will assign to the label ¢ from cycle ¢ an orientation -+ or —1z, defined
with respect to the orientation of the greatest (in absolute value) label / from ¢, which is +/ by
convention. So, taking these labels and their orientations, in the order they appear in around the
cycle, the unique cycle of the diagram in Figure 5.1 (¢) is

[+(n+1),+n=1),...,+4,+2,-1,-3,..., ~n]

i

fornoddor
(+n+1),+n—-1),...,+3,+1,-2,—4,..., —n]

H

for n even.
The diagram has exactly n + 1 reality edges and the same number of desire edges. The idea
is that reality edges indicate the situation as it is now, and desire edges indicate the situation
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(a)

(7T

0 +1 -1 +2 -2 +3 3 +4 4 45 -5 6

(b

(T D

O +1 -1 22 -2 +3 3 4 4 45 -5 46 -6 7

(TN T

g +1 -1 +2 -2 +3 -3 +(n-1} -(n-1) +n -n {(n+i)
Figure 5.1: The figure shows: (a) The diagram for 7 = {~1 -2 ~3 ~4 ~5). (b) The diagram
form=(~1-2-3~4~5 ~6). (c) The general diagram forr = (—1 -2 ... —(n — 1} —n),
for all n.

sought. When reality equals desire in ail edges, we have 7 = ¢,, and d(#) = 0. Therefore, our
goal is to apply reversals and transpositions so that reality becomes desire.

Note that the diagram G(:,) is the only one having n + 1 cycles. So, the sequence of
reversals and transpositions transforming 7 into ¢, must take the number of cycles from ¢(#) to
n+ 1. For a permutation 7, and an operation g, denote by Ac(w, ¢) the difference ¢{p-7) —¢().
This is the gain in the number of cycles due to operation p applied to 7.

Theorem 5.2.1 Ac(rn, o) € {-2,-1,0,1,2}

Proof: We note first that ¢ can be a reversal or a transposition.

Each reversal acts on two reality edges belonging to at most two cycles, creating or de-
stroying at most one cycle. Hannenhalli and Pevzner [64] have shown that, for a reversal,
Ac(m, o) € {—1,0,1}.

Each transposition acts on three reality edges belonging to at most three cycles. Figure 5.2
shows all possible actions of a transposition on a signed permutation. As we can see, there
are cases where the number of cycles stays the same, or increases by one or two. So, for a
transposition, Ac(r, g} € {~2,~1,0,1, +2}. »

Forz € {~2,-1,0,1,2}, define an z-move on 7 as an operation g such that Ac{r, p) = z.
Notice that, in Figure 5.2, there is only one pattern corresponding to a 2-move (or —2-move),
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Figure 5.2: This figure shows all possible actions of a transposition on a signed permutation.
Only affected cycles are shown. A dashed line indicates a path formed by one or more desire
and reality edges. Since the inverse of a transposition is a transposition, the transformations are
reversible.

three patterns corresponding to a 1-move (or —1-move), and the others corresponding to O-
moves.

The entire distance problem can be seen as finding shortest paths in a directed graph where
a vertex corresponds to a permutation 7, and there is an edge (7, o) from = to ¢ when there
is an operation (reversal or transposition) ¢ such that ¢ = ¢ - 7. We are interested in shortest
directed paths from 7 10 ¢,,, where the length of a path is just its number of edges. However, we
can assign weights to the edges in a way that will help us investigate the problem. In the sequel
we will define the weight of an edge and of a path, on that graph.

Definition 5.2.1 Given the permutations © and o, such that o = g 7 for some operation g, we
define the weight of the edge (7, 0) as

win, o) =2+ ¢(x) — ¢lo).
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Notice that w(w, o) > 0 for all edges (Theorem 5.2.1). The weight w(w, o) can be also
written as 2 — Ac(w, g), where g is the operation that transforms 7 into ¢. Since 2 is the highest
value that Ac{w, ¢) can take, and we know that high values of Ac(r, o} will get us closer to our
goal, we can think of the weight as a measure of “waste” in each operation we do.

Definition 5.2.2 Given a path p = mym1 7Ty . . . Tp_1 Tk, We define the weight of p as

wip) = Z w{m_q, 7).

il
Note that w{p) > 0 for all paths. We can now relate the length of a path with the weight of
the same path, with important consequences on the distance. Let {p| denote the length of a path
.
Theorem 5.2.2 Let p = mym 7z ... Te_17y be a path. We have
w(p) = 2lp| + c(mo) — e(m).

The proof is just an induction on k. An important corollary is the following.

Corollary 5.2.1 For any permutation ™ and any shortest path p from 7 to i, we have

dir) = w(p) ——c(;r)%—n-é—l'

The proof is immediate from the theorem, using my = 7 and 7 = ¢y,

5.3 The reversal and transposition diameter

Taking S, as the set of all signed permutations with size n, define D(n) = maX,¢s, d(7,t,) as
the reversal and transposition diameter of signed permutations. In this section we present a
lower bound on this number, based on the distances of particular permutations for each integer
n.

This particular permutation is 7, = (-1 =2 ... —(n—1) —n). We will compute its
reversal and transpositions distance, which will give a lower bound for the diameter D(n). We
start by showing an upper bound for d(r,}, for alln > 3.

Theorem 5.3.1 We have d(r,) < |2| +2forn > 3.
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Proof: First we apply the reversal (1, n} on =, obtaining
m, =r(l,n)-m = {(+n+{n—1) ... +2 +1),

a permutation with positive signs only.

After that we recall a result from Meidanis, Walter and Dias [93], independently shown by
Christie [30], proving that the transposition distance d;( ) is [2| + 1,forn > 2.

The total number of operations is then |} + 2, which is an upper bound on the distance
d{m,) forn = 3. B

Qur strategy to show that this upper bound is a lower bound as well will be to prove that ev-
ery path p from 7, 10 ¢, satisfies w(p) > 3. Then, by force of Corollary 5.2.1 and Lemma 5.3.1,
we will have the desired result (see Theorem 5.3.4).

The general form of the diagram generated by this permutation is given in Figure 5.1 (¢).
The number of cycles is always 1, and we state this as our next lemma.

Lemma 5.3.1 We have c(m,) = 1 foralin.

We need auxiliary results to support our claims. One that appears with frequency is a suf-
ficient condition for the lack of 2-moves. Recall the format of the cycles in the diagram of
T

c=[+(n+1),+(n~1),...,+2,-1,~3,...,—n],
for n odd and
c=[+n+1)+n—-1),..., +3,+1,-2,...,—n]

for n even. Notice that regardless of the parity of n these cycles are formed by two decreasing
subsequences. We call bimonotonous the cycles formed by two decreasing subsequences, the
first made of positive elements, and the second formed by negative elements. Such cycles cannot
be broken by a transposition, as the following results show.

Lemma 5.3.2 A permutation © admits a 2-move if and only if there are three reality edges
labeled i, j and k with i < j < k, belonging to the same cycle in G{r), and appearing in thar
cycle either in the order k1, j (or i, j, k or j, k, i) with orientation -+, or in the order k, j, i (or
7,1, k ori, k, j) with orientation —.

Proof: Theorem 5.2.1 shows that there is just one pattern corresponding to a 2-move. In
this pattern (see Figure 5.2), we can verify that, taking the three labels (belonging to the same
cycle) ¢, j and k such that ¢ < j < £, and assigning to label % the orientation +4, we force
the orientations of ¢ and j to be respectively -+ and +7, implying that these three labels appear
in the cycle with the order £,4, 7 (or ¢, , & or j, k, i), and all three with the same orientation.
Analogously, if we assign to k the orientation —k, the orientations of ¢ and j become —i and
~ 7, implying the order k£, 7,4 (or j,%,k or 4, k, j), with {, j and £ with the same orientation.
The proof on the other side is immediate. We apply (i, 7, k) on 7, with ¢, 7 and & following
the conditions of the lemma, and obtain the desired result. =
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Theorem 5.3.2 Let m be a permutation for which all cycles in its reality and desire diagram
are bimonotonous. Then w(r, ow) > 1 for all operations p.

Proof: Of course, win, gr) = 0 is equivalent to saying that p is a 2-move on w. A 2-move

has to be a transposition, and acting on three reality edges of the same cycle. However, by

the bimonotonicity of the cycles of 7, we cannot choose three labels following the conditions

of Lemma 35.3.2, considering just one of these two subsequences. Another way to get these

labels would be to choose them from both subsequences. But then they will not have the same

orientation, so also in this case we cannot have the conditions of Lemma 5.3.2. |
We are now ready for our main theorem.

Theorem 5.3.3 Let p = oyo; ... 0 be any path from 7, = 0y to i1, = 0. Then we have, for
n > 3

1. ?.U{O”{}CH) Z 1
2. ifw(oeoy) =1, then w(oroa) > 1

3 ifw(ogoi02) = 2, thenw(op...0x) = 1

Proof: The first claim is true because the weight is always greater than or equal to zero, and it
is zero only if the operation is a 2-move. However, oy = 7, has only one cycle, and this cycle
is bimonotonous. Our claim then follows from Theorem 5.3.2.

For the second claim, observe that w(oy0,) = 1 exactly when the operation g that acted on
oy = T, was a l-move. Both reversals and transpositions can be 1-moves in the signed case, so
we need to analyze these two cases.

Let us deal with reversals first. It is well known [106] that a reversal breaks a cycle (that is,
is a 1-move) if and only if the two reality edges where it acts have opposite orientations. Since
(i, 7) acts on reality edges i and 7 -+ 1, this means that r(4, j) is a 1-move if and only if 7 and
7 have the same parity. The diagram of the permutation r(3, j) - 7, in this case has two cycles.
The exact pattern of the resulting cycles depends on the relative parity of 4, 7, and n, but in all
cases they are bimonotonous. For instance, if 7, j, and n are all odd, these cycles are

e = [F5,+0F~-2),. . +E+2), 4, +(E—2), ..., +3,+1,
—2,—4,...,—(i—1)],

co = [Hn+1),+n—1),. .+ + 1+ —1),+( - 3),...,+(E+ 1),
~(F+2),~{j +4),...,~n].

It is apparent that these two cycles are bimonotonous. The other cases can be verified
analogously. Therefore w(oq02) > 1if g is a reversal.
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The case where g is a transposition (¢, 7, &) also requires an analysis based on the parity of
i, 7, k,and n. From Figure 5.1 and Figure 5.2 we see that this operation is a 1-move if and only
if ¢ and k have the same parity, and ; has the opposite parity from ¢ and %. For instance, in the
case of i, k, and n all odd and j even, we have a diagram G{t(4, j, k) - 7} formed by two cycles,
which are

E=1),+&—-3),.. .45+~ 2),...,+(i+1)]
n+1h+n—=1),. ., +Ek+1),+i+ k-5 - 1),
Hi+k—5—=3), . i+ 2),+1, {0~ 2),. .., 43, +1,
2,4, ~{—1),~(i+k~7+1),
—(i+k—J+3),...,~k,—~(k+2),...,—n]

The first cycle is monotonous and therefore does not admit a 2-move. The second cycle is
bimonotonous, and, by Theorem 35.3.2, does not admit a 2-move either. The other cases can be
verified analogously.

Let us now turn to the third ¢laim. Again we divide the proof into two cases: either there
is a negative element in o or all elements there are positive. If there is at least one negative
element, then w({oz...0r) > 1 because otherwise only transpositions would be applied until
we reach ¢, but ¢, does not have negative elements and transpositions do not change signs.

We concentrate then in the case where o5 has all elements positive. Since op = m, has all
elements negative, there are only four possible ways of reaching an all-positive permutation in
two steps:

1. oo =7(1,4) -7(i + 1,n) - oy, for some ¢ between 1 and n — 1, including extremes.
2. gy =7r(i+1,n)-r(1,7} - g4, for some i between 1 and n — 1, including extremes.
3. op = tli,f,k)-r(1,n) op forsometripled, j, kwithl <i<j<k<n+1
4. o9 =1(1,n) (i, j, k) - oo, for some triple ¢, j, kwith1 <i<j<k<n+ 1

The first two cases are actually the same, since r(1,17) and r(¢ + 1, 7} commute. In fact, we
will show that all cases can be reduced to the third one. The key to this fact is to notice that any
transposition can be written as the product of three reversals:

t(zfj:k) KT(ZJ]C—-I)T(?,,]‘—})’I’(j,k——l) (5'1)

This can be easily verified from the definitions. If we use i = 1 and £ = n + 1 in this equation,
we get:
Hl,,n+1)=r(l,n)-r{l,j—1)-7{f,n),
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showing that Cases 1 and 2 are indeed particular instances of Case 4 (recall that 7(1,n)? = I).
On the other hand,

r(i,n) 26, 5, k) -r(Ln) =tk 7,1,

wheret = n+2—4, 7 =n+2—74, and ¥ = n-+ 2 ~ k, which shows that Case 4 can be
reduced to Case 3.

Let us then concentrate on Case 3. Notice that in this case ¢y is the permutation {+n
+{n—1) ... +2 +1}. A consequence of the work by Meidanis, Walter, and Dias [93] and
that of Christie [30], which computed the transposition distance of such permutations, is that
w{oy ... tn) = 2 for any path consisting of transpositions only. Now if w(oy ... o) = 0, this
would refer to a path using transpositions only, and therefore we can conclude that w{cio,) = 2
and that w{opo1) = 0, a contradiction since the first step r(1,n) was a reversal. It follows that
w(oy ...or) = 1 asclaimed. B

Theorem 5.3.4 We have d(m,) > (5] + 2forn > 3.

Proof: Theorem 5.3.3 guarantees that w{p) > 3 for any path from 7, 0 ¢,. Plugging this into
the formula of Corollary 5.2.1 we conclude that

n+3
2 b
which implies d(m,} > | 2| -+ 2 since d(w,,) is an integer. [
The next theorem comes directly from Theorems 5.3.4 and 5.3.1.

d(ﬂ'n) >

Theorem 5.3.5 Given the permutations m, and i, for all n, then we have

oy b+ ifn=1,2
d(””)_{ L%J+2 ifn >3

Proof: For n = 1itis obvious that d{rx,,) = 1 since 7, # ¢, and a reversal will do. For n = 2
a minimum series of operations transforming 7, into ¢, consists of two operations. For n > 3,
the result follows from Theorems 5.3.1 and 5.3.4.

5.4 Conclusions

In this work we extend the analysis of transpositions done by Bafna and Pevzner (1995) to
signed permutations, and compute the the reversal and transposition distance of the signed
permutation (—1 —2 ... —(n — 1) —n) with respect to the identity (+1 +2 ... +n —1 +n).
The proof is based on the number of cycles that can be created, on the first two steps, in the
diagrams generated on any sequence of operations transforming 7, on ¢,. Obviously this result
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gives a lower bound for the diameter. We conjecture that this is also an upper bound. We remark
that the exact value of the transposition diameter is still unknown (see Table 5.1).

An interesting point to be studied later is the diameter of signed permutations under rever-
sals, transpositions, and rransversals. A transversal acts by moving a block of genes to another
place on the permutation, but with the genes reversed. This operation is biclogically as natural
as the transposition.

Another line of study is to consider different weights for transpositions and reversals. With
equal weights, as done here, the minimum path consists predominantly of transpositions. It
would be interesting to use weights suggested by what has been observed in practice. Appar-
ently, transpositions should weigh about twice as much as reversals.
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Capitulo 6

An Alternative Algebraic Formalism For
Genome Rearrangements *

Jodo Meidanis

Zanoni Dias

Abstract

Here we relate the recent theory of genome rearrangements to the theory of permutation
groups in a new way and hope to set the ground for further advances in the area. This work
was motivated by the fact that many arguments in genome rearrangements are of the form
“look at the figure”, and lack more formal algebraic derivation. We intend to give the

area a strong algebraic formalism, much as analytic geometry provided an alternative for
geometric arguments based on pictures.

*Este trabalho corresponde a versdo estendide do artigo apresentade no Gene Order Dynamics, Compa-
rative Maps and Muliigene Families (DCAF 2000) realizado na cidade de Le Chantecler, no Canadd, em
setembro de 2000, ¢ que também integra ¢ livre Comparative Genomics: Empirical and Analytical Approa-
ches to Gene Order Dynamics, Map Alignment and Evelution of Gene Families publicado em novembro de
2000,
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6.1 Introduction

In this paper we are concerned with the genome rearrangement problem viewed as a combina-
torial problem. In the general formulation of this problem we are given two genomes (or parts
of genomes), viewed as ordered lists of genes (or others markers), and a set of allowed mutation
events (reversals, transpositions, etc). To solve the problem we must find the minimum number
of events that lead from one genome to another. In general the solution is symmetric, that is,
the same series of events, taken backward, will transform the second genome into the first. We
will also restrict ourselves (o the case of conservative events, that is, events that do not change
the available gene pool. Thus events such as duplications or deletions will not be considered in
this study.

Recent developments in this field include the polynomial solution to the signed reversal case
[64], the NP-hardness of unsigned reversal distance [21], and partial results for transposition
distance [9, 92}, to name just a few. Many doctoral dissertations were devoted to this theme
(see, for instance, the theses of [117], [3C], and [119]). Transposition distance seems t0 be &
harder problem, that has eluded researchers for many vears now. Its computational complexity
is still unknown. We feel that new, more powerful formal tools are needed to successfully attack
this problem.

The mathematical formalization of genome rearrangements usually begins by representing
genomes as permutations. Thus, a genome 7 consisting of genes 7y, 7y, 73, ..., Ty, in this order
is written as:

T o= {7 Ty Mg ... Tp) (6.1)

meaning that 7 is the function (permutations are functions):
1= m,2=m,3=73,...,0 = T,

that is, = maps 1 into 7, 2 into 7y, and so on.

In this paper we will propose a different view of a genome as a permutation, namely, that
Equation [6.1] denotes the function:

[ = Mo, My = My, .., Tpe1 => Ty Ty = 71 (6.2)

that is, 7 maps m; Into 7y, 7 Into 73, and so on. Note that the last gene 7, is mapped into the
first gene ;. This 1s necessary, because permutations are functions that map each element into
some other, and they cannot repeat images. However, this implies a circular character to our
genome. But circular genomes do exist, and, as we will see in subsequent sections, the study of
rearrangements of linear genomes is really not much different from circular ones.

Qur goal in this note is to convince the reader that interpretation (6.2) is much more sensible,
for a number of reasons. First, it allows us to directly apply many long known results from per-
mutation group theory. Important tools such as breakpoints, the breakpoint graph, cycles, good
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cycles, bad cycles, gray edges, black edges, which served as basic building blocks for most of
the advances in the field can be algebrajcally defined instead of graphically defined as they have
been until now. Therefore, arguments that relied on pictures can now be expressed completely
in algebraic terms. We consider this a powerful step towards a massive attack on such problems,
much like analytic geometry is a powerful way of looking into geometric problems.

In Section 6.2 we briefly review the basics on permutation groups. Section 6.3 contains
the first steps in redefining genome rearrangements under the new formalism that we propose.
In the Section 6.4 we use theory just developed to show some results that have been proved

based on pictures. In Section 6.5 we apply the theory to reversal distance problem. Finally, we
conclude in Section 6.6.

6.2 Permutation Groups

Permutations groups have been studied at least since the eighteenth century, when Galois wrote
his much acclaimed theory for solving algebraic equations. Here we briefly recall a few classical
results that are useful in genome rearrangements. For more information see references {70, 87].
Given a base set E, a permutation on ¥ is a one-to-one function from E onto itself. Permu-
tations are composed of one or more cycles. A cycle involving elements a, b, ¢, for instance, i8
written:
(abc)

meaning that o is mapped into b, which is mapped into ¢, which in turn is mapped back into a.
Cycles can be of any length. Cycles of length 1 are not explicitly written. Thus, if we write:

a={abe)

we implicitly mean that all others elements are left in place by ¢, that is, a(z) = z forz #
a,b,c. Note: (abc)=(beca) = (cab)
The support of a permutation o, Supp(a), is the set of elements not fixed by a:

Supp(a) = {z € Eylalz) # z}.

The size of a cycle is the number of elements in its support.

The product (or composition) of two permutations ¢, 3 is denoted by aS. In general o #
Bo, but when o and 3 are disjoint cycles they commute: ¢ = Sa. Every permutation can be
written in an unique way as a product of disjoint cycles (apart from the order of the factors). We
refer to this as the cycle decomposition of a permutation.

The identity permutation, that maps every element into itseif, will be denoted by 1. Every
permutation ¢ has an inverse o' such that aa™ = a~*a = 1. For cycles, the inverse is
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obtained reverting the order of the elements: (a & ¢) is the inverse of (¢ b a). For a general
permutation, invert every cycle in its cycle decomposition.

To compute the product of o and f, o3, we must keep in mind that 3 will be applied first,
and then a, as in af{(z) = «(8{x)). Therefore, to compute a product of non-disjoint cycles we
need to proceed as follows. Take the example:

(abc)abd){cdb).

To compute this, we start with any element, say a, and compute its image. The element ¢ is
fixed by the rightmost cycle, then is mapped into b by the second cycle, and & is mapped into ¢
by the leftmost cycle. So, the final destination of a 1s c. We then write:

labe)labd)(cdb)=(ac ...

and then proceed finding out the image of ¢: ¢ goes to d, d goes 1o a, a goes to b, respectively,
by the rightmost, middle, and leftmost cycle, so cis finally mapped into &. And so on. We reach
the result:
(abe)abd){cdb) =(ach)id) = (ach)
since singleton cycles do not need to be explicitly indicated.
One important operation is the conjugation. The conjugation of 5 by « is the permutation

afo~t. This results in a permutation with the same cycle structure of 3 but the elements are
changed by «. For instance, if 5 = (by b3 ... b;) then:

afa! = (alb) alb) ... ab))

If 3 is a product of disjoint cycles, each one will be affected by « in the same way to form
aBa~!. Conjugations are so important that we will have a special notation for them: «- 5 means

the same as oo

6.2.1 Short Cycles

A 2-cycle is a cycle of size 2. A 3-cycle is a cycle of order 3. It is important to know how
products by 2- or 3-cycles affect an arbitrary permutation.

Let o = (a b) be a 2-cycle. Its effect on an arbitrary permutation 3 can be described as
follows. If a and b are in the same cycle in 5, this cycle is broken in two in aF. If ¢ and b are in
two distinct cycles in 3, these two cycles become one in 5. Here and in the rest of the paper
we say “cycle in 87 meaning “cycle in the unigue cycle decomposition of 57.

The same results are valid for Sa. Notice that S« and o3 are conjugates: a{Ba)a™! = af,
and therefore have the same cycle structure.

Now take an arbitrary 3-cycle o = (a b c) and an arbitrary permutation 5. Three cases
appear:
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1. If @, b, and ¢ are in three different cycles in 5, these three cycles become a single cycle in

afs.

2. If two of a, b, ¢, are in the same cycle, and the third element is in a different cycle in 5,
then these two cycles recombine into another two cycles in 3. Thus, the total number of
cycles is maintained.

3. If a, b, and c are all in the same cycle in §, the result depends on the orientation they
have in this cycle of 5. Selecting ¢ as the starting point, this cycle can have the form
(@...b...c..)or{a...c...b...). Inthe first case, the cycle becomes (a ... ¢ ...
b ...)in af. In the second case, the cycle breaks into (a .. .){& .. .}(c ...) inaf.

The same results (except for the exact format of the resulting cycles in case 3) are valid for

B

6.2.2 Norm and Divisibility

In past sections we used phrases of the form “a, b, ¢ in this order in 7. It turns out that there is
an algebraic way of expressing the same meaning. The notion of norm comes to our rescue.

It is well known that every permutation can be written as a product of 2-cycles. For instance,
the cycle (a b ¢ d) can be written as:

(abed) = (ab)(be)cd)

This can be easily generalized to all cycles. Since every permutation is a product of cycles,
it is clear that every permutation is a product of 2-cycles.

There are in general many ways of writing a permutation « as a product of 2-cycles. Among
all these products, there must be some that use as few 2-cycles as possible. Let o] denote the
minimum number % such that « can written as a product of k£ 2-cycles. We call [a| the norm
of o.. For instance, {1| = 0, [{a b)| = 1 and |{a b c d}| < 3 (we will see later that this is an
equality). '

Theorem 6.2.1 For every permutations o and (3, he have:
L |jel=0&a=1
2 ja™ =la
3.8 ai=lo|

4. laf| < la| + |3



78 Capitulo 6. An Alternative Algebraic Formalism For Genome Rearrangements

Proof: Item 1 is obvious, since using no cycles all we can produce is the identity. For item 2: if

o = q ...0p, with each «; being a 2-cycle, then o™ = oy ... &;. So, for each decomposition

of |a} into 2-cycles we have a decomposition of a~! with the same pumber of cycles. This

proves that || < |a|. By symmetry we conclude that |} < |o |, and this proves item 2.
Also, if o = oy ... o, we have than

Bra={8 -a)f o). (8 o)

with each J - «v; being a 2-cycle. Again, this allows us to conclude that |5 - o < |a/. Since this
is true for every « and 8, we also have |31 - (8- a)| < |8 - o] or, equivalently, |a] < |5 - al.
This proves item 3.

Item 4:

o=k a=0...m

Bl=1e8=5..5
So,

ef=ar...axB... B = |aBl < k+1=la]+ 8]

This proves item 4.

Corollary 6.2.1 |af| = |5¢]

Let us start with the observations in Section 2.1. One of them says that if & = (a b), and
a e b are in the same cycle in 5, this cycle is broken in two in Sa. Calling ¢{) the number of
cycles in the cycle decomposition of a permutation « (including singleton cycles), this can be
represented as ¢ and b in the same cycle of § = c(f8a) = ¢(8) + 1. The other observationis: a
and b in different cycles of 8 = ¢(fa) = ¢(8) — 1.

These two facts are important because they say that the number of cycles changes by at most
one when we multiply by a 2-cycle. Since the identity permutation in a set E has exactly | E|
cycles, we have the following result:

Theorem 6.2.2 For any permutation «, if & = a ...qy, with each o; being a 2-cycle, then
k> E| - cla).

Proof: Inductionink. For k = 0, we have a = 1, ¢{a) = |E| and |E| — ¢(a) = 0. For k > 0,
leto = @y ... 0 1- We know by induction hypothesis that k — 1 > |E| ~ ¢{¢’). But ¢} =
eldlag) > e(o/)=1. Thenk = (k—1)+1 > |[E| —c(e/)+1 = |E| - (c() = 1) = |E| —cle).
.
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Corollary 6.2.2 For any permutation o, we have (ol > |E| — c{a).
In fact, this 1s an equality, as the next result shows.

Theorem 6.2.3 For any permutation o, we have |a| < |E| - ¢(a).

Proof: leto = o;...ay be the cycle decomposition of o including the I-cycles as well. If
cycle o; has size [;, we can write it as a product of 2-cycles with [; — 1 terms (see beginning of
Section 6.2.2). We therefore end up with a product of =7 (I; — 1) Z-cycles for o, But:

5 k
2([2-— =Y lL~k=|El—cla)

=1

Therefore, we have |a| < |E| — ¢(a). Z
Corollary 6.2.3 For any permutation o, we have || = |F| — ¢(a).

We say that a permutation « divides permutation § when [fa™| = || — |a|. We use the
notation ¢/ to indicate this fact.

In the sequel, we present some basic propositions of the divisibility relation and later we use
them to express algebraically the order of elements in a cycle.

Theorem 6.2.4 The divisibility relation is an order relation, that is:
1. alo
2. alfand Bl = o = 3

3. «|B and Bi6 = «ld

Proof:
1. jaa | =il} = 0and jo| — |a| = 0.

2. We have that:
a8 = B = |6] - |o

Bla = a8 = |af — |f]

However, a8~ = (Ba~*)7*, and therefore |Sa™*| = |a571|. But then we have [3a™}| =
=80 i=1=qa=243
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3. In this case, we have:
a|8 = |Ba = 18— o],

818 = 557 = 16l — 13,

So,
1B+ 1687 = 18] — led.
But
da™" | =1667"8aTH < (687 + BT < o] — o,
and

Bl = 6o el < [de + ol = [fa™H 2 6] - o
We conclude that {da™ ] = |§] — |al, that is, of6.

N

In addition, divisibility has some nice extra properties, and can be used to give an algebraic

characterization of the fact that cycle « appears in the cycle decomposition of permutation 5, a
phrase that we usually abbreviate as “« is a cycle of 37

Theorem 6.2.5 Let o be a cycle and 3 an arbitrary permutation. Then « is a cycle of B if and
only if the following two conditions hold:

1. alf

2. there is no cycle o with oijed| .
o,

Theorem 6.2.6 If |8 then o~ t|571.

We can use the divisibility relation to express concepts we use frequently, like the order of
elements in a cycle or whether two elements belong to the same cycle or not in a permutation.

In view of the last corollary, we can say that «|3 if and only if ¢(8a™) = ¢(8) + |, that is,
if and only if the number of cycles in So~! increases by o} compared to the number of cycles
in 3. In others words, a~* causes maximum cycle breaking in 3.

If o is the 2-cycle (a b), o divides 8 if and only if @ and b are in the same cycle of 3. And
if o is the 3-cycle (a b ¢), o divides 3 if and only if @, b and ¢ are in the same cycle of 3, and
appear in this order in it.

We summarize these observations in the following theorems.
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Theorem 6.2.7 Let a,b,c € E and o be a permutation. Then:

1. a,bare in the same cycle of o <= (ab)|o

2. a,b, cin the same cycle of o and appear in this order in this cycle <= (abc)lo
Theorem 6.2.8 Let o = (ab)}, 5 be permuiations. Then:

1. B ==> acycle is broken in o3 (when compared to 5)

2. o fB == two cycles are joined in of (when compared to 5)

Theorem 6.2.9 Let o = (abc), 8 be permutations. Then:
1. o) <= acycle is broken in three paris in S (when compared to 3)

2. o [ 3 but all 2-cycles {ab), (be), (ac) divide 8 == a cycle has two regions transposed in
Ba~* (when compared to 3}

3. o [ B and exactly two of (ab), {bc), {ac) divide 8 == two cycles are recombined in o™
(when compared to ()

4. (ab), (bc), (ac) do nor divide 8 == three cycles are joined in So™* (when compared to 3)

6.3 Genome Rearrangements

To formalize genome rearrangement problems we will use as base set for the permutations the
set B, = {~1,+1,-2,+2,..., ~n,+n}, where n is the number of genes. Thus, we will be
modeling both strands of the underlying DNA molecule. Each element +¢ or —: represents a
marker on the #*" gene, with its opposite meaning a marker in the same location in the opposite
strand. We will first model circular genomes, which conform more naturally to the formalism,
and will later comment on the necessary adaptations for linear genomes.

To begin with, let I be the permutation that maps each elements into its counterpart on the
other strand. The permutation I" can be written as:

F=(-1+1)(~-2 +2)...(—n +n)

that is, a product of n disjoint 2-cycles. Notice that ['{a) # a forall a € E,, and ['*{a) =
['(T'(a)) = aforall o € E,. In other words, [Z = 1 or, equivalently, ! = I

A cycle is admissible when it does not contain —¢ and -+ for the same i. Thus, I is far from
being an admissible cycle. An admissible cycle of size n is called a genome strand, because it
models a strand of a genome formed by these n genes in some order. If we have an admissible
cycle o, we can compute its reverse complement, as in the examples of the Table 6.1.
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o reverse complement
(43 =1 +74+5){ (=5 -7 +1-3)
(+2 +4 +6) (=6 —4 —2)

Table 6.1: Examples of admissible cycles v and their reverse complement.

-

+0 +3 -3 242 +5 -5 +4 -4 -1 +1 -G

Figure 6.1: Breakpoint Graph for genomes 7 = (-3 +2 -5 —4 +1)(-1 +4 +5 —2 +3}
ando=(+1 +2 +3 +4 +5)(=5 —~4 —3 —2 — 1),

There is an algebraic way of obtaining the reverse complement. If o is an admissible cvcle,
a~!isits reverse; I'- o = 'al is its complement. The reverse complement is when we do both:
(T @) torD - (o), which results in the same expression ['a~'T.

Given a genome strand 7, its reverse complement my = 7' forms the complementary
strand of the same genome. We represent this genome as the product of the two strands: 7 =
717, Since the strands form two disjoint cycles it does not matter in which order we take the
product: mymy = 7p®;. Also, it does not matter which strand we call 7;: had we started with
7o we would have computed its reverse complement m; and the final genome would have been
the same. This is just as DNA should be: no matter which strand you pick, when you let it pair
with its reverse complement, you get the same DNA molecule.

Formally, we define a genome as a permutation that can be written as my 'y 1T, for some
genome strand 7. Note that TxT" = 7~ for every genome 7. The general genome rearrange-
ment problem then becomes: given two genomes 7 and ¢ and a class of operations, find the
minimum number of events (operations) that transform = into ¢. This minimum number is
called the distance between 7 and o.

We will talk about classes of operations later, but for any of the several problems obtained by
choosing a different set of operations, the breakpoint graph plays an important role. Classically,
the breakpoint graph is constructed as in Figure 6.1.

Details of the construction have been described previously several times and will not be
repeated here. See for instance [64, 106]. Our objective is to obtain this graph, or an equivalent
structure, by algebraic manipulations. The breakpoint graph is used when we want to transform
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7 into a constant genome ¢ = (+1 +2 +3 +4 +5)(—5 —4 —3 —2 — 1). It then depends
on both 7 and . In fact, it has been defined for linear genomes, and to adapt to that we need
consider “extended” versions of mand o takemy = (40 — 3 + 2 —~ 5 ~4 -+ 1) and identify
—0 with —6.

The breakpoint graph is composed of black edges, which depend only on 7, and of gray
edges, which depend only on ¢. Its turns out that I'r is a product of 2-cycles that correspond
exactly to the black edges. And I'c corresponds to the gray edges in the same way. In the
preceding example, we have:

I'm = (~0 +0){(~1 +1)(-2 +2)(-3 +3)(~4 +4)(-5 +5)
(40 -3 +2 -5 -4 +1)(-1 +4+5~2+3 -0)
= {(+0 +3)(~3 ~ 2)(+2 +5)(~5 +4)(—4 —1)(+1 —0),

exactly the black edges. And I'c will give the gray edges:
To={(+0 - 1}(+1 —2){+2 = 3)(+3 —4)(+4 ~5)(+> —0}.

In the classical theory of genome rearrangements the cycle structure of the breakpoint graph
plays an important role. Although we could not obtain the cycles of the breakpoint graph
themselves, we derived an algebraic expression for the square of the cycles. This expression is
just the product (I'7)(I'z) = ['nl'c. In the example, we have:

I'rlo = (+0 —4)(+3 —1)(—3 +5 + 1)(=2 =0 + 2}(—5)(+4)

For each cycle of the breakpoint graph we have two cycles in ['nI'o. If the cycle in the
breakpoint graph is (a1 a2 ... ag) , we have (0 a3 ... age—1) and {ag Ggk—» ... G2) in
I'wTo. Therefore, this is not exactly the square of a breakpoint cycle, because one of them is
reversed. Strictly speaking, we cannot model as permutations the cycles of the breakpoint graph,
since they have no orientation. This in part explains why one cycle in the square is reversed.
Had we taken I'7['o the other cycle would have been reversed. Notice that 'm0 = 7~ %o, and
Tol'r = o7 r.

In any case, these constructions allow us to rephrase technical properties of breakpoint
graphs in algebraic terms. For instance, how many breakpoints 7 has with respect to ¢? This is
just the number of elements not fixed by I'rl'o, divided by 2:

_ |Supp(T'nlo)i
—

Likewise, the number of cycles in the breakpoint graph is half the number of cycles in 7% o.
We can define also the length (size) of the cycles, good or bad cycles, cycles that can be broken
by certain operations. We hope to be able to define interleaving cycles, hurdles, fortresses, all
in algebraic terms.

b{m, o)
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3 2 -4 2
+l +3 42 N M +4 42 +l
A B A B

Figure 6.2: Linear genomes with fixed extremes,

+1 3 2 +4 3 4 2 +1
+3 42 ) 4 42
-1 -4 O

Fgure 6.3: Linear genomes without fixed extremes.

6.3.1 Linear Genomes

The theory developed so far fits nicely with circular genomes. In this section we will briefly
examine the case of linear genomes.

First, we must recognize that there are actually two kinds of linear genome: with free and
with fixed extremes. Let us define each kind, starting with the one with fixed extremes.

When we compare two regions of two different genomes, and these regions are flanked by
conserved parts, we need to use the fixed-extreme case (Figure 6.2). In this case, we add an
extra dummy gene B A, which represents the fixed extremities of the regions, and proceed as in
the circular case.

When we compare two entire linear genomes, we need to take into account that there is a
free reversal that can be applied, so the distance in this case becomes:

dfree = min(dfixed(ﬁ; U): dfz‘:ced(r‘ . 7?—1: d))

More details on the relationship between linear and circular genome rearrangement prob-
lems can be found in the references {119, 921

6.3.2 Operations

We will define in this section the events {operations) of reversal, transposition (or block move),
and block interchange, some of them in the their signed and unsigned version. We will do a
very detailed job for reversals, and then just state the results for the others, to save space.

Given a genome 7, to perform a reversal on it we need to choose two distinct markers u and
v, in the same strand of 7, and then replace the path from u to v (including v but excluding v)
by its reverse complement. Of course, a similar operaticn will be performed on the other strand,
to make sure the final result is still a valid genome. Figure 6.4 shows what is meant.

‘We want to write the resulting genome ¢ as pm, where p is a permutation that will represent
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A Reverse complement of A
®
) @
/ A
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T~ B ~,

]
Reverse complement of A A/ A
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Figure 6.4: A reversal p applied to genome 7.

the reversal. With some work, we see that ¢ differs from 7 only in the following mappings:
oy =7Tv, oTu = v, 6Tv = u, on v = 7l
Therefore, p = o7~ * maps:

prTy = or T = oTv = u

1

pv=cr v =nlu

Ly = 7Tw

pu=on
orTu=on Tu=oclu=v

with all other elements fixed by p. Or, written as a product of disjoint cycles:
o = (unTov)(v alu).

This is then the general formula of a reversal applicable to 7, where v and v are two elements
in same strand of 7. We say that = and o differ by a reversal when there is such a reversal p
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with o = pr. Notice that the definition of a reversal depends on 7. There is no way to define
a class of permutations that will be “the reversals™, valid for all genomes. Each genome has
a particular set of reversals that can be applied to it, and this sets varies from one genome to
another.

For this reason, we cannot view the genome rearrangement problem directly as a “group
generators” problem, where a class of generators of the symmetric group is given and we seek
the minimum number of generators to wrife a given permutation. Nevertheless, it can be viewed
indirectly as a group generators problem. We intend to pursue this approach in a future paper.

The reversal distance problem is: given two genomes 7 and ¢, find the minimum % such that
there are genoIes g, Y1, . . - Yk With ™ = 7y, 0 = 74 and +y; differs from ;.1 by a reversal, for
i=0,..., (E—1).

In a previous version of this manuscript we stated that unsigned reversals could also be
handled, but this is false, as far as we can see, because unsigned reversals do not exist in nature.
They are artifacts created 1o deal with the lack of information on orientation. However, the
following operations can be handled by this formalism.

A transposition is defined as:

7= (7u v 7w}(Tw Tv Tu)

where u, v and w are three distinct elements in the same strand in 7, appearing in this order
{1, v, w) in the strand.
A reversal+transposition is defined as:

7= (7u 7v Tw) (7w v Tu)

where u, v and w are distinct elements in the same strand in 7, appearing in this order (u, v, w)
in this strand. A reversal+transposition models the event in which a block detaches itself from
a genome and reappears elsewhere, in the same strand but the block is reversed,

A block interchange is defined as:

8 = (ru mw){rz 7v){(Tu Tw)(Tz Tv)

where u, v, w and x are four distinct elements in the same strand of 7, appearing in the order
(u, v, w, z) in this strand.

Each one (or a group of) of these types of events can be used to define a genome rearrange-
ment problem: given two genomes 7 and o, find the minimum £ such that there are genomes
o V1se - Ve WIth T = g, 0 = 7 and -y; differs from ;. by the specific operation (or a group
of),fori=0, ..., (k—1).
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6.4 Using the Theory

We will use the theory developed to show two results whose proof was based on pictorial rep-
resentations. The first result appears in Christie’s proof that a block interchange cannot create
three cycles [28]. The other result is that there is only one way for a transposition to break a
cyele, proved by Walter & colleagues by reference to a picture [120].

Theorem 6.4.1 Ler w and o be two genomes, and 3 a block interchange on w, Then the number
of cveles in o(Bm) ™1 is not higher than 4 plus the number of cycles in on™ L.

Proof: We have o(8%)~! = on~!3871, which is o7~! multiplied by 5~!. The cycle structure
of 571 is the same as 5’s: four 2-cycles. By the classical results about products by 2-cycles it is
immediate that multiplying by four 2-cycles we cannot create more than 4 extra cycles. ]

Theorem 6.4.2 Ler 7 and ¢ be two genomes, and 7 = (u v w){#Tw nlv 7lw) a transposition
on T, where u, U, w appear in this order in the same cycle of 7. Then o{(rn)™* has four more

cycles than or~t if and only if u,v,w are in the same cycle in on~"' and appear in the order
(u, v, w) in this cycle.

Proof: Transpositions do not mix genome strands, and therefore we know that the elements
of a strand of 7 will form a strand in 77 (possibly in different order). Let 7; be the strand
that contains u, v and w, and o, the corresponding strand in 0. We then have 7 = m 'n' T,
o = oy Toy'T, and on~! = oyn H(Top 'THI'mT). Then o(rn)~! = or~ 7! will be the
product of disjoint permutations o177 (w v u), and (Doy D) (Tm I {(#lu 7 Tv nlw).

In the first component oy 7,  (w v u) we have a product of a 3-cycle by o377 *. We know
from Theorem 6.2.9) that this produces two extra cycles if and only if (uvw)|oy77?, that is, if
and only if u, v, w appear in the same cycle of oy 77 ! in the order (u, v, w), as stated. n

6.5 Reversal Distance

In this section we will apply our theory to the reversal distance problem.

6.5.1 Good and Bad Cycle Pairs

Let us start by examining the cycle structure of o7, where ¢ and 7 are two genomes. It turns
out that every cycle « in on~* has a companion cycle (7T) - o~ also in on~'. Their product
will be called a cycle pair in on™!

Every cycle ¢ in 7 has a companion cycle (I'r) - o1 also in 7~ to. The cycle o is good
if and only if (I'7) - & is good.
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First, we note that there are four ways of specifying the pivot points u, v of a reversal p{u, v),
because:

plu,v) = plv,u) = p(rTu, 7Tv) = plxlv, 7Tu).

According to the relative positions of u, v in o7~ we have three cases:
1. u, v in the same cycle of o7~ !

2. wu, v in companion cycles of o7 ™*

3. u, v in non-companion cycles of o ™?

Notice that any of these conditions, if true for u and v, is also true for v, u, for 7wy, 7Ty,
and for 7'y, wl'u, that is, they are independent of the particular pivot points chosen and are
therefore characteristics of the reversal itself,

In case 1 the number of cycles of om~* does not change, because we have:

o =olu...v.. ) ..7lv. . .wlu)

Then,

Q
5
=
|
Q
)
™

afu...v.. ) .7Tv...7Tu)(u 7o) {v nlu)
afu...aTu. . jv...7Tv...)

In case 2 the number of cycles of o7~ increases by 2:

Then,
on lpTt = on7lp
= ofu...7Tv..)(...v...7Tu)(u nTv){v nTu)
= ofu..){v.. )@ Tu.. )(#xTv.. )

In case 3 the number of cycles of o7~ ! decreases by 2:
o™ =alu..){...alu)(v.. }(..2Tv}
Then,

Q
=
™
[
2
R~

corlw) (v (L oalv){u alv) (v 7lu)
wo..rTo Jw. o oalu. )

H
2B
2
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Based on these observations, we say that a reversal p(u, v) that can be applied to genome 7
is a cycle rwister in case 1, a cycle breaker in case 2, and a cycle merger in case 3. In the first
two cases we say that plu, v) acis on the cycle pair that contains ¢ and v. Because there are
alternative ways of picking the pivot points for a given reversal, it is necessary to refer to the
cycle pair as a whole and not just to the cycle individually.

Take an arbitrary cycle o of on ™. Let & be the length of this cycle, and let k1 and ks be the
number of elements in this cycle that are in strands wy and 7, of 7. Define the imbalance of o as
\ky — ko|. This number has the same parity as & and lies between 0 and k. It is in fact a property
of the cycle pair of &, because the companion cycle (71') - o will have the same imbalance.

We define a bad o7~" cycle pair as a cycle pair that has imbalance equal to k, where k is
the length of its cycles. A good o7 cycle pair is a cycle pair with imbalance less than k.

Theorem 6.5.1 A cycle pair v is good if and only if there is a cycle breaker thar acts on .

Proof: If -y is good then there are u, v in the same cycle of v and in different strands of 7. The
reversal p(u, 7T'v) is a cycle breaker acting on 7.

Conversely, let p{u, v) be a cycle breaker of v. Then u, v are in companion cycles. But then
u, w1 v are in the same cycle of v and in different strands of 7. E

6.5.2 Interleaving Cycles

Two cycle pairs 7 and -y, interleave when there are reversals gy acting on ~; and p, acting on
v such that p1 g™ # popyw. We can construct a graph where each cycle pair is a vertex, and
interleaving cycle pairs are joined by an edge. A connected component of this graph is good
when there is at least one good cycle pair in it. Otherwise it is a bad component.

Theorem 6.5.2 If all components are good, then

6.6 Conclusions

We propose a new way of looking of genomes as permutations, one that is more comfortable
for those that have experience in permutation groups. Much remains do be done, but we feel
this is the right way to attack difficult problems.
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The Genome Distance Problem by Fusion,
Fission, and Transposition is Easy *

Zanoni Dias

Joao Meidanis

Abstract

Given two genomes represented as circularly ordered sequences of genes, we show a
polynomial time algorithm for the minimum weight series of fusion, fissions, and transpo-
sitions (with transpositions weighing twice as much as fusions and fissions) that transforms
one genome into the other. The algorithm is based on classical results of permutation group
theory and is the first polynomial result for a genome rearrangement problem involving
transpositions. It has been observed in real biological instances that transpositions occur
with about half the frequency of reversals. Although we are not using reversals in this study,
this observation motivated the double weight assigned to transpositions.

*Trabalho depositade come Relatdrio Técnice ne Instituto de Computacio da Unicamp em julho de
2001, sob ¢ nimero IC-01-07. Este artigo foi apresentado no String Processing and Information Retrieval
(SPIRE’2001) realizado na Laguna de San Rafael, no Chile, em novembro de 2001,
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7.1 Introduction

With the advent of fast sequencing techniques, we are witnessing today a spectacular increase in
the quantity of molecular data (DNA and protein sequences). More than 40 complete microbial
genomes are known now, and about 170 others are in progress {114]. The great challenge we
face now is how to process this huge amount of data and extract from it relevant biological
information that could help design drugs, understand life and disease, improve crops, and so
on. One way to structure this information is by comparative genomics, where we analyze data
coming from distinct species and learn from the similarities and differences in related genomes.
Among the several proposed ways of comparing genomes, the area of genome rearrangements
has received a lot of attention recently [8, 7, 61, 64, 62, 55, 92, 117, 28, 30, 119]. In this
area, very large DNA molecules (usually entire chromosomes or large pieces of chromosomes)
are investigated with respect to the relative order of genes in them. The goal is to determine
a rearrangement distance, which is the minimum number of rearrangement events that could
explain the differences between two such DNA molecules.

Many different events have been considered. Reversals, transpositions and translocations
are the best studied ones from a theoretical point of view, although in practice events such as
duplications and deletions are at least as important. As far reversals are concerned, Hannen-
halli and Pevzner presented the first polynomial time algorithm [64], subsequently improved
by Kaplan, Shamir, and Tarjan [73]. Caprara showed that the reversal problem is NP-hard if
we disregard the orientation of genes [21]. Hannenhalli and Pevzner also solved in polynomial
time a multi-chromosomal problem involving translocation, fusion and fission [62]. Bafna
and Pevzner [9] studied the transposition distance between two linear unsigned chromosomes,
presenting several approximation algorithms, the best one having approximation factor 1.5 and
running in O{n?} time, and suggesting some open problems. Christie [30] devised an alterna-
tive 1.5-approximation algorithm that runs in O(n*) time. Guyer, Heath, and Vergara [58] im-
plemented several algorithms for computing the transposition distance, based on subsequences
and runs in a permutation. Christie [28] proposed and solved the problem of block-interchange
distance. A block-interchange can be viewed as a generalization of a transposition. In a block-
interchange two non-intersecting substrings of any length are swapped in the permutation. In
a transposition the substrings must be adjacent. Transposition distance seems to be a harder
problem, that has eluded researchers for many years now. Its computational complexity is still
unknown.

We show a polynomial time algorithm for the minimum weight series of fusion, fissions,
and transpositions (with transpositions weighing twice as much as fusions and fissions) that
transforms one genome into the other. The algorithm is based on classic results of permutation
group theory and it is the first polynomial result for a genome rearrangement problem involving
transpositions. It has been observed [16] in real biological instances that transpositions occur
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Figure 7.1: A multi-chromosomal genome.

with about half the frequency of reversals.

In the following sections we present definitions, the main result of this work, proof sketches
and conclusions and plans for future work.

7.2 Definitions, Modeling, and Results

A permutation in group theory is a one-to-one mapping from a set F into itself. We will use
permutations to represent genomes with circular chromosomes. The standard notation [87] for
permutations is to represent in parenthesis an element followed by its successive images. For
instance, if E = {1, 2, 3,4, 5} the permutation o such that

a(l) =3,0(2) =5,a(3)=2,a(4) = 1,a(5) =4

is represented as
(13254).

The representation is not unique since we could have started at an element other than 1:
(25413),(54132), etc. are all equivalent.

In our model, the set E is the set of genes of the genome and the permutation indicates how
genes follow each other in the chromosomes. Only circular chromosomes can be represented in
this way, but an easy translation of results from circular to linear chromosomes exists [90].

Permutations represent also multi-chromosomal genomes. For instance, if £ = {1, 2, 3, 4,
5, 6, 7} the permutation (1 5 4 3)(2 7 6) represents the genome depicted in Figure 7.1.

An element z if fixed under a permutation o when o{z) = z. Fixed elements can be omitted
in the parenthesized notation for permutations. For instance, if « is such that

a(l) = 1, 0(2) = 3,a(3) = 4, af4) = 2, a(5) = 5,
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then we can write o = (23 4), ora = (23 4)(1) or @ = {1)(2 3 4){(5). The missing elements
are implicitly understood as fixed. The support of a permutation « is the set of elements not
fixed by «. In the preceding example, we have Supp(a) = {2, 3, 4}. The identity permutation,
denoted simnply by 1 (without parenthesis), fixes all elements and has empty support.

Permutations can be composed as mappings. This defines a product of permutations. For
instance, if £ = {1,2,3,4,5.6},a = (23 4)and 8 = (31526 4) we have o defined as
aB{z) = o{B(z)) forall z € E, and therefore of = (1 5 3}(2 6). Any two permutations over
the same set can composed in this way. The operation is associative, the identity permutation is
the identity element, and every permutation « has an inverse o™ [87].

Composition of permutations is important in the context of genome rearrangements for at
least two reasons:

® Some permutations p with small support can be viewed as rearrangement events: pr is
then the result of event p acting on genome 7.

e Given two genomes ¢ and 7, the product on~!describes in some sense the “differences”
between the two genomes.

For instance, fusions and fissions can be seen as permutations of support size 2, and trans-
positions can be seen as permutations of support size 3, as we will see shortly. In addition, our
main result establishes that the distance between two genomes can be computed as n minus the
number of cycles in o7 ! (see Section 7.2.1 for a formal definition of cycles).

7.2.1 Orbits and Cycles

Any permutation can be written in a unique way as the product of cycles disjoint support (dis-
joint cycles). To understand cycles we need first the definition of orbit. An orbit can be defined
intuitively as a set of the form z, o(x), ¢*(z), . . . for some element . Since we are dealing with
finite sets, orbits are always finite, that is, there is a positive integer & such that o*(z) = z. A
more formal definition is given below.

Definition 7.2.1 An orbit of a permutation o is a minimal set of elements A such that for any
two elements 1,y € A there is an integer k such that o*(z) = y.

For instance, if E = {1,2,3,4,5,6} and o = (2 3 5)(1 4) then the orbits are {2, 3, 5},
{1,4}, and {6}. Restricting « to one of its orbits we obtain what is called a cycle of . Formally,
we have the following definition.

Definition 7.2.2 A cycle of a permutation o is a permutation (3 such that there is an orbit A of

o with @) 4
al{r) Hfzre
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For instance, if E = {1,2,3,4,5,6} and & = {2 3 5)(1 4) then the cycles of o are (2 3 5),
(14), and (6). A permutation that is a cycle of some permutation is called simply a cycle. The
size of the cycle is the number of elements of its non-singleton orbit if there is one, or 1 if all
orbits are singletons. A cycle of size k is also called 2 k-cycle.

It is important to note here a potentially confusion terminology used in the literature. The
term “transposition” is used in permutation group theory meaning 2-cycle. The same term
“transposition” is used in biclogy meaning a block move in a genome. Unfortunately, in both
areas the term “‘transposition” is well-established and very unlikely to change. We had to make
a choice in this paper, and decided to keep the biological meaning. Whenever we need to refer
to the group theoretical meaning of “transposition” we will use 2-cycle instead.

7.2.2 Rearrangement Events

We will define now the rearrangement events that are the main subject of this paper: fusion.
fission, and transposition. Intuitively, a fusion joins two chromosomes into one; a fission breaks
a chromosomes into two; and a transposition moves a block of consecutive genes from our place
into another in the same chromosome.

Formally, fusions and fissions correspond to 2-cycles. Given a 2-cycle p = (z y) and a
permutation 7, we have the following classical results:

e if 7 and y are in the same cycle of 7, then in pr this cycle is broken into two cycles, one

containing = and the other ¥ (among others elements). The remaining cycles of 7 are left
unchanged.

s if z and y are in the distinct cycle of 7, then in pr these two cycles are joined into one.
The remaining cycles of 7 are left unchanged.

These classical results show that 2-cycles correctly model fusions and fissions, because the
cycles of a permutation correspond to circular chromosomes of a genome. However, notice that
p = {z y) can act as a fusion for some genomes and as a fission for others. Therefore, being a
fusion {or a fission) is not an intrinsic property of p but rather depends also on the genome 7 on
which p is being applied. Nevertheless, all fusions and fissions are captured by 2-cycles.

Formally, transpositions correspond to 3-cycles. Again, a 3-cycle is not intrinsically a trans-
position, but rather its transposition status depends on the particular genome on which it is being
applied. More specifically, a 3-cycle p = (x y 2) is a transposition when it acts on a genome
7 where the elements z,y,z are all in the same cycle and appear in this order in the cycle. For
instance, if p = (732)and7m = (7153264)thenpr = (715264 3) and p models a
transposition.

We are now ready to define our problem formally. Given two genomes represented by
permutations 7 and ¢ over the same set of genes, find a series of events p1, pg, . - ., px such that:
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® OrPr—1---P2T =0

e ecach p; is a fusion, fission or transposition for the genome g;_; 052 .. . pe o7 on which it
acts, and

. . L , . .
e TF_ w(p;) is minimum, where w(g;) is 1 if p; is a fusion or fission, and 2 if p; is a
transposition.

The minimum value of £¥_, w(g;) is called the distance between 7 and o.

The main result of this paper is that the problem just defined is solvable in polynomial time,
This follows from a classical result in permutation group theory as we will see in the next
section.

7.3  Proof Sketches

In this section we will sketch some of the proofs need in our main result. We begin with some
additional definitions, continue with a formal staternent of the main result, and finish with the
proof sketches.

Definition 7.3.1 A permutation p is a valid event for another permutation (genome) © with
either:

1. pisa2-cycle, or
2. pis a transposition when applied to 7.

In case (1) the weight of p, denoted by w{p), is equal to 1, in case (2), w{p) = 2.

Notice that if p is a valid event for 7 then p~! is a valid event for pr. In other words, valid
events can be “undone” by other valid events of the same weight.

Definition 7.3.2 An ordered sequence of permutations {py, p2, - . ., pr) is a series of valid events
leading from 7 to o when:

e cach p; is a valid event for p;_1p;_o ... pop17, and
® Opfk1..- 21T =0
We are interested in such a series with minimum total weight % w(p;).

1=

Definition 7.3.3 For a permutation o, let c(a) denote the number of orbits of o For two
permutations {genomes) T and o, let c(w, o) denote the number of orbits of on™*.
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For instance, ¢(m, 7) = n for any genome 7, where n = |FE| is the number of genes.

Definition 7.3.4 Given two permutations {genomes) n and o and a valid event p for 7, denote
by Aclp, m, o) the value:
Aclp,m, o) = clpm, o) — o7, o)

The quantity Ac{p, 7, o) is the increase in the number of orbits of o7 " when 7 is replaced
by prr. If this number is positive, pr is “closer” to ¢ then 7 was.

Definition 7.3.3 A valid event p for m is good with respect to ¢ when:
Aclp,m,0) = w(p)
Our main result can be stated as follows.

Theorem 7.3.1 Given fwo permutations (genomes) 7 and o, the distance between them is n —
e(m, o).

The proof relies on the following two lemmas.

Lemma 7.3.1 For any series of valid events (py, pa, . . ., py) leading from 7 to o we have:
Tiaw(p) 20~ e(m, o)
with equality if and only if each p; is good for p,_1p;_» . .. p2py7 with respect to .
Proof: Suppose that
PePr—1---P21T = O (7.1)

Each p; is a 2-cycle or a 3-cycle, but any 3-cycle can be written as a preduct of two 2-cycles.
Replacing every 3-cycle of equation (7.1) by a product of 2-cycles, we have:

CptCpi_y « .. CoyTT = 0’ﬂ'~1

where each ¢; is a 2-cycle. The number of 2-cycles involved is just:
k! = Zlew(pz)

since 2-cycles have weight 1 and 3-cycles weight 2. But there is a classical result that says that
if a permutation « can be written as a product of 2-cycles, the number of 2-cycles is at least
n — c(w) [87].
Therefore,
K >n—cla)
or
Ziwl(p) 2 n—clr,0)
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Lemma 7.3.2 Given two distinct permutations (genomes) w and o, there is always a good event
for ™ with respect to G.

Proof: Since m 3% o we have o7~ # 1 and there is a k-cycle in o7~ with & > 2. Choose z
and y as two distinct elements in this k-cycle. We claim that the event p = {z y) is valid for 7
and is a good event with respect to 0.

The event p is valid for 7 since it is a 2-cycle, and therefore is either a fusion or a fission in
7. It is a good event with respect to ¢ because of the following argument. By choice we know
that p splits a cycle of o7 ™! into two. Therefore,

clon™lp) = clor ™) + 1
In addition, p is a 2-cycle so p = p~'. But then:

Alp,mo) = clpm,o) —clm, o) =clor ™ p™t) = clon™)

= clor)+1—¢clon™) =1 =wip)

B
This suggests the following algorithm for finding the distance and an optimal series of events
leading from 7 to 0.

FUSION, FISSION, AND TRANSPOSITION DISTANCE()

Inputz. o

d«0

While 7 # o

do p + any valid event for # which is good with respect to o
output p
T P
d«d+1

output d

00~ Ch W o e B

The complexity of this algorithm is O(n?), because the main loop is executed at most n
times and consumes at most n steps per iteration. Lemma 7.3.2 guarantees that step 4 is well
defined.

7.4 Conclusions

We have shown how a classical result on permutation groups leads to a polynomial time algo-
rithm for weighted genome rearrangement distance involving fusions (with weight 1), fissions
(with weight 1), and transpositions (with weight 2). This is the first complexity result for a
rearrangement problem involving transpositions. We hope this result can be extended to more
general problems, involving other events, arbitrary weights, and signed genomes.
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The Genome Rearrangement Distance
Problem with Arbitrary Weights *

Z.anoni Dias

Jodo Meidanis

Abstract

Recently we have shown that given two muiti-chromossomal genomes it is easy to com-
pute the minimum weight series of fusions, fissions, and transpositions needed to transform
one genome into the other, when the weight associated to transpositions is twice as large
as that associated to fusions and fissions [91]. In this work we present several results on
the computation of distance when an arbitrary weight is associated to transpositions. Some
variations of the problem are also studied. For instance we present a polynomial time algo-

rithm for the problem of syntenic distance when only the events of fusions and fissions are
admitted.

* Trabalho depositade como Relatério Técnico ne Instituto de Computacio da Unicamp em margo de 2002,
sob o niimerg IC-02-01.
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8.1 Introduction

In the last years genomic science displayed astonishing advances. Hundreds of genomes, from
organisms ranging from viruses and uni-cellular organisms such as bacteria all the way up to
human beings, had their gene content uncovered [114]. And the mind-boggling rhythm does
not stop: every week new genomes are announced. In this context a new challenge emerges:
how to relate the huge quantity of genetic information available nowadays?

The area of Genome Rearrangements has progressed a good deal trying to answer this ques-
tion. In this area we compare two genomes taking into account the order of this genes, rather
than the gene sequence as is done in classical sequence comparison. Some studies, for instance,
the one done by Palmer and Herbon [101], show that the comparison of gene order leads to
conclusions quite compatible with the real evolutionary scenario of the species.

The main rearrangement events are reversals, transpositions, block-interchange, transloca-
tions, fusions, and fissions. A reversal inverts a contiguous region of a genome, and flips the
orientation of the genes, in case the genome has this information. A transposition exchanges two
adjacent regions of a chromosome, while a block-interchange exchanges two arbitrary, contigu-
ous regions of a chromosome. A translocation exchanges regions from distinct chromosornes.
A fusion joins two chromosomes together and a fission divides a chromosome into two new
Ones.

The main results obtained in this area recently are the following. Hannenhalli and Pevzner
presented the first polynomial-time algorithm for the reversal distance problem when gene ori-
entations are known [64], with faster and faster algorithms closely following [13, 73, 6]. Caprara
proved that the reversal distance problem is NP-Hard when no information on the orientation of
the genes is given [21], and in this case, the best approximation algorithm, with a performance
ratio of 1.5, was proposed by Christie [29].

The transposition distance problem has been studied by Bafna and Pevzner [9]. They pre-
sented an approximation algorithm for the problem with performance ratio of 1.5. Alternative
approximation algorithms were proposed by Christie [30] and Walter, Meidanis, and Dias [121].
The complexity of the transposition distance problem still unknown.

The block-interchange distance problem was proposed and solved by Christie [28]. The
distance problem involving translocation, fusion, and fission was solved by Hannenhalli and
Pevzner [62].

In a previous work, we presented the first polynomial-time algorithm for distance problems
involving transposition [91]. We exhibited an algorithm that finds a minimum cost series of the
events fusion, fission, and transposition, when a transposition costs twice as much as a fusion
or fission, needed to transform a genome in another. The idea of having a larger weight for
transpositions came from the fact that experiments have shown that transpositions occurs with
about half the frequency of reversals in real biological instances [16]. The main result of this
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last work is based on properties of permutation group.

In this work we presente several results on the fusion, fission, and transposition distance
problem when the weight associated to transpositions is arbitrary. Variants of the problem are
also studied, for instance, the syntenic distance problem when just fusions and fission are al-
lowed, In this case we show a polynomial-time algorithm based on partial results on the syntenic
distance using fusions, fissions, and translocations developed by Ferreti and colleagues [48], and
later by DasGupta and colleagues [38].

In the following sections we define more formally the problem of computing the fusion,
fission, and transposition distance, with emphasis on the case where we asscciate an arbitrary
weight to the transposition event. We present also inequalities involving the versions of the
distance with weight two and with another weight associated to transpositions. We then show
that the problem of computing the fusion, fission, and transposition distance with arbitrary
weight is at least as difficult as computing the transposition distance. We show also a variation
of our main problem: the synienic distance problem with just fusions and fissions. Finally, we
present conclusions and ideas for future work.

8.2 The Fusion, Fission, and Transposition Problem

Before attacking the problem with an arbitrary weight given to transpositions, let us formally
define the original problem tacked by Meidanis and Dias [91].

Definition 8.2.1 Given rwo genomes © and o, denote by d(w,c) the weight of a minimum-
weight series of fusions, fissions, and transpositions that transform © into o, when we associate
weight 1 to fusions and fissions, and weight 2 fo transpositions.

In their original work, the authors show that d(7, o) can be computed in polynomial time,
with an O{n) algorithm, where 7 is the number of genes in the genome 7 (or in o).

A natural question is then: what can we say about this problem when an arbitrary weight w
is used instead of 2 for transpositions? The present work answers this question partially.

8.2.1 Using Arbitrary Weights for Transpositions

Here we consider the fusion, fission, and transposition distance problem between two genomes
when the weights associated to the mutational events are 1, 1, and w, respectively. In this case
we denote by d,, (7, o) the distance between the two genomes.

In the sequel we show a few basic facts about the relation between d(7, o) and d,, (7, o).

Lemma 8.2.1 Forw > 2 we have:

d,(m,0) = dlr, o}
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Proof: It is easy to see that every transposition can be replaced by a fission-fusion pair, There-
fore, every optimal series of events when transpositions have weight w > 2 is composed solely

by fusions and fissions. But by resulits of Meidanis and Dias [91], every optimal series of fusions
and fissions that transforms 7 into ¢ has weight d{7, o). ]

In the sequel we will show some properties of d,. {7, o).
Lemma 8.2.2 Forw > 0 we have:
dy(m, o) <d(m, o).
Theorem 8.2.1 For( < w < 2 we have:
dim, o) < %dw(ﬂ“, 7).
Proof: Let pi, p2. ..., pp De an optimal series of events such that:
PrPr—1--. PIT =0,
considering weight w for transpositions. If n, (g, p2, . . ., p&) is the number of transpositions in

the optimal series py, P2, .. ., pr and ngy (p1, P2, ..., p) is the number of fusions and fissions in
this series, we can write:

dW(T"a O-) = nff(ﬂl: P2, - :Pk) + WnT(PI: Py :ﬁk)
However, we can also write:
d(m, o) < npplpn, P2, - px) + 2n0(p1, P2s - - -5 Pi),s (8.1)

because, after all, p1, o2, . . ., px 18 one possible series of events leading from 7 to . Multiplying
Equation 8.1 by w/2 we get, successively,

IA

W W
§d(ﬁ.‘ 0') _é“nff(ng F2eeons pk) + L‘m‘r'(Pla 2P ?pk)

IA

nff(ﬁz:ﬁz: e =Pk) + wn.(p1, pa, - - '»Pk)
d{d(ﬂ-? O’)’

It

since w/2 < 1. ]
From Lemma 8.2.2 and Theorem 8.2.1 we have the following result.

Theorem 8.2.2 For (0 < w < 2 we have:

dy(m,o) <dr,e) < %dw('ﬁ“, o)
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Therefore, we may conclude that the algorithm for the fusion, fission, and transposition
(with weight 2 for transpositions) presented by Meidanis and Dias [91] is an approximation
algorithm with performance ratio % for the problem where the weight of a transposition is w,
with 0 <w < Z.

The next theorem indicates a sufficient condition for a transposition with weight w, used on
an optimal series that ransforms 7 into ¢, to be used on an optimal series that transforms 7 into
o when transpositions have weight 2.

Theorem 8.2. 3 Let 7w and o be two genomes, and T a transposition. If d (7w, 0) = d{r7,0) +
w, d(7,0) < = w} and 1 < w < 2, thend(r,0) =d(rn,0) + 2.

Proof: Plrsz we notice that the hypothesis d, (7, 0) = d,(77,0) + w implies w < 2, and that
d(m, o) < (2 s implies w > 1.
Assume that d{m, 0} > d,{rm, o) + w. We have then:

dim, o) = du(r.o)
> dylrm, o) +w
> wd(*r;,o) N

Rewriting,
2d(m,0) > wd(rm,0) + 2w
d(r,o) Z wd(rr, o) — d(m, o) + 2w
d(m, o) 2 d(rm, o) + (w— Dd(rr,0) — d{m,0) + 2w
If we could prove prove that

(w—1)d(rm, 0} —d{m, o)+ 2w>1 (8.2)
the result follow, because d(w, o) is an integer and we wouid have
dir,o) > d(rm, o) +1 > d(rm,0) + 2.
Therefore, our goal is to prove Equation (8.2). Given that
d{rm, o) > d(r,0) — 2
and because w — 1 is non-negative, it suffices to prove that
(w—1D{d{m,0)—2)—d(r,0)+2w>1
which, by straighforward algebraic manipulation, is equivalent to

d{m,0) <

(2-w)
provided that w # 2.



104 Capitulo 8. The Genome Rearrangement Distance Problem with Arbitrary Weights

8.3 Relationship Between Evolutionary Distance Problems

In this section we will show a relationship between the distance problem involving fusion,
fission, and transpositions when the weight associated 1o transpositions is part of the input, and
the (pure) transposition distance problem. The transposition problem has been studied intensely
in the last years [9, 93, 30, 119], but its computational complexity is still unknown.

Theorem 8.3.1 The distance problem invoiving fusions, fissions, and transpositions when the
weight of transpositions is part of the input is NP-Hard if the transposition distance problem is
NP-Hard.

Proof: We will show that it is possible to polynomially reduce the transposition distance
problem to the distance problem involving fusion, fission, and arbitrarity-weighted transposition
(DPFEFWT).

Given an instance of the transposition distance problem consisting of two genomes 7 and o,
we will build an instance for the DPFFWT as follows. We use the genomes 7 and ¢ as part of
the input, and select w = 1/n, as the weight to given to transpositions, where n is the number
of genes in 7 (or in o).

We know that given two genomes A and B with one n-gene chromosome each, it is possible
to transform one into the other with at most n — 1 transpositions {9]. Therefore, we can solve
our instance using transpositions alone at a cost d,(7, ¢} < 1, and no fusions or fissions will be
used.

The series of events obtained for the DPFFWT is also an optimal series for the transposition
distance problem, because of the value chosen for w. The value of the transposition distance
can be obtained as follows: d, (7, o) = nd, (7, o).

Therefore, we may conclude that if the transposition distance problem is NP-Hard, s0 is the
DPFFWT. =

Two observations are in order with respect to the value of w. First, notice that any series of
events transforming a mono chromosomal genome 7 into another monochromosomal genome
o using at least a fusion or a fission will have weight at least 2. Hence, we could have chosen
w = 2/n. Second, if the conjecture by Meidanis, Walter e Dias [93] about the transposition
diameter is correct, we would have D, = | (n — 1)/2] + 1, and hence any value for w such that
0 < w < 4/(n + 1} would suffice.

In the next section we treat the problem where transpositions have zero weight. Notice
that in this case any transformation affecting only one chromosome has cost zero. Therefore,
we are in fact interested in guaranteeing that the two genomes have the same sets of genes as
chromosomes, regardless of the order of these genes in the set. In other words, we are talking
about the synteny problem using only the events of fusion and fission.
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8.4 The Syntenic Distance Problem

Ferretti and coworkers {43] proposed a distance measure with a high degree of abstraction,
where the order of genes in a particular chromosome is unknown or ignored. The genome of
a species is then just a collection of gene sets. Each set correspond to a chromosome. In this
gynieny context a gene may occur several times in a genome. We define two types of operation:
fusion and fission. Fusion correspond to set union, and fission to division of a set A into B and
C such that A = B U (. Notice that B and C may have genes in common. Originally the
problem was proposed with a third operation, translocation, which exchanges subsets of two
chromosomes.

The syntenic distance between two genomes in our context is the minimum number of fu-
sions and fissions necessary to transform the genome of a species into the genome of the other
species. We denote by dyynienic(T, 0} the syntenic distance between genomes 7 and o,

Observe that, given two genomes, it is always possible fo transform one into the other us-
ing only fusions and fissions, when both genomes have the same gene set. The justification of
this model is as follows: for many organisms the information that specifies the gene order in a
chromosome (physical map) is not known, but the distribution of genes in each chromosome is.
Even with such incomplete information it is important to have a precise definition of an evolu-
tionary distance based on genomic events, and the syntenic distance, or just synteny, provides
this definition.

DasGupta and colleagues [38] studied the synteny problem when fusions, fissions, and
translocations are permitted. They have proved that this problem is NP-Hard, and showed an
approximation algorithm with a factor 2. They have also proved that the median problem for
three genomes using synteny with the three operations mentioned above is NP-Hard, and that
in this case it is possible to obtain approximation algorithms with factor 4 + ¢ for any ¢ > 0.
Several of the results presented here on synteny are an adaptation of results from DasGupta et.
al. [38] for the problem when only fusions and fission are allowed.

Lemma 8.4.1 Let 7 and o be two genomes with the same gene set. Then we have dsyntenic(7, 0)
= dsyntem’c(aa 7‘”)-

Proof: Given a series of events transforming 7 into o it is easy to revert each operation (the
reverse of a fusion is a fission and vice-versa) to obtain a series of operations from ¢ into 7.
Hence, the minimum series has the same length in both directions. [ ]

8.4.1 The Compact Representation

Ferretti, Nadeau and Sankoff [48] defined a compact representation for the synteny problem.
Given two genomes 7 and ¢ it is possible to obtain a compact representation of the problem
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with respect to 7 using the following method. For each chromosome 7; of the genome 7 create
chromosome 7 = {1} in 7'. For each chromosome o; of o create o’ = U,e,, {y/z € 7, }.
For instance, let 7 = {7y, m, 13} and 0 = {01, 03} with:

T = {{Z? 5, C}:?E'Q = {b,d?ﬁ}:‘ﬁ”g = {f@g}

o1=1{b,c,d, f, g}, 00 ={a,b e}

The compact representation of the problem with respect to 7 is:

= {{1}, {2}, {3}}
o' = {{1,2,3},{1,2}}

Analogously we can define the compact representation with respect to ¢. For each chromo-

some m; of m, create 7' = Use,, {ylz € oy}. For each chromosome o of ¢ create o = {;} in
o". The problem above becomes:

' ={{1,2},{1,2},{1};

o ={{1},{2}}
The following results have been proved by DasGupta et. al. [38].

Lemma 8.4.2 Ler 7' and o’ be the two genomes that form the compact representation of m and
o with respect to m. There is a 1 — 1 mapping between each operation (fusion or fission) used
to transform T into o and each operation used to transform 7' into o', that is, dgyntenic(T,0) =
dsyntenia (77[1 OJ)'

Given two genomes 7 and o, the problem involving the compact representation with respect
to 7 and the problem involving the compact representation with respect to o are called dual
probiems. The following result shows the relationship between dual problems:

Lemma 8.4.3 Let 7 and o be two genomes over the same set of genes. Ler n' and ¢’ be their
compact representation with respect to m, and 7", 0" be their compact representation with
respect to 0. Then dsyntenic(T', 0') = deyntenic(7", 0”).

DasGupta and colleagues [38] have shown also an algorithm to construct the compact rep-
resentation with respect to a given genome.

Lemma 8.4.4 [f 7 and o have n and m chromosomes, respectively, and if each chromosome is
asubset of {1,2, ..., k}, then it is possible to construct the compact representation with respect
to 7 (or with respect to o) in time O((k + nm)a(k,n + m)), where oz, y) is the inverse of
Ackerman’s function {34].
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The function a{z,y) grows very slowly, and therefore it is reasonable to expect the algo-
rithm to exhibit a O(k + nm) behaviour in practice.
We define the synteny problem using the compact representation as follows:

Definition 8.4.1 Ler 7 be a genome with k chromosomes with each chromosome being a subset
of {1,2,...,n}. The synteny problem is 10 compute the minimum number of fusion and fission,
denoted by deynsenic (), needed to rransform w into the genome {{1},{2},...,{n}}.

8.4.2 The Canonical Order

The synteny distance problem has an important characteristic, rarely found in genome rear-
rangement problems: a canonical order for the mutation events.

Lemma 8.4.5 For any series of events that transforms 7 into o, with u fusions and v fissions,
there is a series transforming 7 into o, using v’ < u fusions and V' < v fissions, but where all
fusions occur before the fissions.

Proof:

Let pi, p2, ..., pi any sequence of events that transforms w into ¢. If all fusions occur
before the fissions there is nothing to be done. Let us then assume that there is ¢ < k such that
1 is the largest integer with p; being a fission and p,..; being a fusion. We will construct a new
SEries p1, P2, -+ Piet, Pis Piays Pitas - - - » Pro With pf being a fusion and p), , being a fission, or
conclude that p; and p;., can be supressed. Repeating this procedure as many times as needed
we obtain the desired series.

Suppose that fission p; transforms chromosome A of genome p;-1p;_5 ... py7 into A’ e A",
with A = A" U A", Likewise, suppose that fusion p;; transforms chromosomes B’ and B” of
the genome p;p;—1 ... py7 into B, with B = B’ U B”. We have three cases:

e If each of the two chromosomes A’ and A” created by fission p; is different from both B’
and B”, then we take p} = p;..; and p|_, = p;, since the two events are interchangeable.

e If A’ and A” are the same as B’ and B”, then p; and p;,; are inverses of each other and
can be supressed.

o In the remaining case one of the chromosomes A’, A" is equal to one of B, B". Without
loss of generality, suppose A’ = B'. We have then that the net effect of p; plus p;41 is to
transform chromosomes A and B” of genome p;._10;_» . . . p17 into chromosomes A" and
B of genome p;.1p; . .. p17. This effect can be also obtained by taking as p) the fusion
that transforms 4 and B" into A U B”, and as pj_, the fission that transforms A U B”
into A" and B. This last fission is a valid operation because AU B" = A" U A UB" =
A"UB UB"=A"UB.
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8.4.3 Lower Bound

In this section we will show a lower bound for the synteny problem using a data structure named
synteny graph.

Definition 8.4.2 Given a genome , the synteny graph Gsyntenic{T) has one vertex for each

chromosome of m. Two vertices are adjacent if and only if the corresponding chromosomes
have a nonempty intersection.

Lemma 8.4.6 Ler 7 be an arbitrary genome with n genes and p the number of connected com-
ponents of Gsyntenic(7). Then at least . — p fissions are necessary to transform w into i,

Proof: By definition G gynten:ic(tr) has n connected components, and therefore any series of
events that transforms 7 into ., must increase the number of connected components by n — p.
We need to determine how the mutation events affect the synteny graph. A fosion merges two
vertices into a single one. If the two vertices are in the same connected component, the number
of connected components does not change. If the vertices are in distinct components, then the
number of connected components will decrease by one. A fission is the opposite of a fusion,
and therefore the number of connecied components will either remain the same or increase by
one. We conclude that at least n — p fissions are necessary to transform Gsynenic(7} into a graph
with n connected components. B

Lemma 8.4.7 Consider a genome 7 with n genes and ¢ chromosomes. Let p be the number

of connected components of the graph G synienic(T). Then at least ¢ — p fusions are needed to
transform m into ip.

Proof: Let p:, po. ..., pr be any series of events transforming 7 into £, with u fusions.
According to Lemma 8.4.5, it can be chosen so that the first [ < u events are fusions and the
remaining events are fissions.

Then 7, = pio-1-.. /17 iS a genome that can be transformed into +,, using fissions only,
that is, 7; cannot contain chromosomes A and B with A N B # §. It follows that every con-
nected component of Gsynsenic(71) is composed of a single, isolated vertex. Since fusions do
not increase the number of components, the number of connected components in G synzenic(7:)
is at most p.

A fusion always decreases the number of vertices by one. We start with ¢ vertices and, after
all fusions are applied, we end up with at most p vertices (one vertex per component). It follows
that [ > ¢ — p, and, therefore, that u > ¢ — p. u

Combining Lemmas 8.4.6 and 8.4.7 we can state the following theorem proposing a lower
bound for the syntenic distance using the events of fusion and fission.

Theorem 8.4.1 Consider a genome m with n genes and c chromosomes. Let p be the number
of connected components of G syntenic(7). Then dgnsenic(m) = n+c — 2p.
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8.4.4 The Polynomial-Time Algorithm

In the sequel we exhibit an algorithm that cornputes the syntenic distance and vields an optimal
series of events that ransforms a genome 7 with 1 genes into .y,.

SYNTENIC DISTANCE (]
1 Input: 7,7

2 T fusions € 0

3 Tfissions ¥ 0

4 Determine the connected components Cy, Cs, . . ., T of Gyyntenic(T)
5 fori<—1ltwp

& do While |[C;] > 1

7 do p + any fusion involving two chromosomes X and ¥ of C;

8

9

T 4 OT
Nrusions ¥ M fusions +1
16 Print p
11 Remove X and YV andadd X UY t0 C;

12 forj« ltop
13 do While C; has a chromosome X with more then one gene
14 do p + any fission of X into disjoint parts 4 and B

15 T 4= P70

16 Nfissions + Mfissions + 1

17 Print p

i8 Remove X and add A and B to C;

16 OUtPUE: e fusions + N fissions
Figure 8.1: An algorithm for syntenic distance.

Theorem 8.4.2 Consider a genome T with n genes and ¢ chromosomes. Let p be the number
of connected components of the graph G gynienic (7). Then dgyntenic(7) = n + ¢ — 2p and it is
possible to obtain an optimal series of events transforming = into i, in O(n® + nca(nc,n))
time.

Proof: According to previous results, the algorithm in Figure 8.1 produce a series of events
that transforms 7 into ¢,,. Let us compute the number of fusions and fissions used. Each fusion
decreases the number of chromosomes by one. Initially, 7 contains ¢ chromosomes and after all
fusions are applied we end up with exactly p chromosomes (one for each component). Therefore
we used ¢ — p fusions. Regarding the fissions, each one creates a new chromosome. Because
at the end of the algorithm we have n chromosomes, the number of fissions is n — p, which
implies that dsyntenic(m) < n + ¢ — 2p. Using Theorem 8.4.1, we conclude that this is in an
exact algorithm for the synteny problem.
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The most time-consurming step of the algorithm is the one that determines the connected
components of the synteny graph (line 4), without explicitly constructing the graph. This step
can be implemented with a union-find structure, using union-by-rank and path compression,
in time O(nea{ne, n)) [34]. We construct the chromosome lists of each component in time
proportional to the sum of the component sizes, that is, in O{nc) time. Each iteration of the
Joop on lines 5-11 takes O(n) time, and therefore the entire loop takes O{nc) time, since it is
executed O(c) tirnes. Likewise, each iteration of the last loop (lines 12-18) takes O{n) and the
total time is O(n?) because it is executed O{n) times. We conclude that the algorithm runs in
O{n? + ncafne, n)) time. B

8.4.5 The Synteny Problem with Indistinguishable Genes

In the sequel we define a variation for the synteny problem. Here we do not know the order
of the genes, nor do we have sufficient information to identify which genes are in which chro-
mosomes. All we know is the number of genes in each chromosome. A chromosome will be
represented simply by an integer, and a genome 7 will be a set of integers (with multiplicity),
with |7| indicating the number of chromosomes.

A fusion acting on two chromosomes with r and s genes, transforms them into a new chro-
mosome with £ = 7 + s genes. A fission acting on a chromosome with ¢ genes transforms it
into two new chromosomes with r and s genes (t = r + s).

This model, where we do not have qualitative information on the genes, but only their quan-
tity, is compatible with hybridization experiments involving promoters [49]. These experiments
are a fast and simple way of obtaining a good idea on the number of genes in a chromosome.

We define syntenic distance problem between two genomes 7 and o with indistinguishable
genes as the smallest number of mutation events (fusions and fissions) that transform 7 into o,
and we denote this distance by dyynsenic(7, 7).

Lemma 8.4.8 Given two arbitrary genomes 7 and o, we have dgyntenic(7, o) >| |r| = |0l |.

Proof: If |v| > |o] at least |7| — |o| fusions are needed to transform 7 into o, since each
fusion decreases the number of chromosomes by one. Likewise, if 7| > o] then at least
|o} — || fissions are needed to transform 7 into o, since each fission increases the number of
chromosomes by one. u

Lemma 8.4.9 Given two arbitrary genomes  and o, we have Esyntenic(w, o) < m|+ o] — 2.

Proof: We can easily transform 7 into ¢ using the following algorithm: merge all chromosomes
of 7 into one single chromosome. With 7| — 1 fusions we can accomplish this transformation.
Then apply a series of fission so that the chromosomes of ¢ are created. For this task |o| — 1
fissions suffice. In this way it is possible to transform 7 into ¢ using || + |o| — 2 events. W
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Problem Result

Fusion, fission, and transposition distance (w = 2) O(n?) [91]

Fusion, fission, and transposition distance (0 < w < 2) Factor £ approx. [HERE]
Synteny with fusion, fission, and translocation NP-Hard + factor 2 approx. [38]
Synteny with fusion and fission (distinguishable genes) O(neafne, n)) [HERE]
Synteny with fusion and fission (indistinguishable genes) NP-Hard [HERE]

Table 8.1: Problems and result related to the present work.
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Theorem 8.4.3 Given two genomes 7 and o, we have:

[ ]7‘_1 - lg% 1< asynzenéc(ﬁﬁg) < %T;“é + ;Cﬂ - 2.

Theorem 8.4.4 The syntenic distance problem with indistinguishable genes is NP-Hard.

Proof: We will show that we can reduce the partition problem polynomially to the syntenic
distance problem with indistinguishable genes.

The partition problem can be defined as follows: given a set A = {ay,00,...,a,} of
positive integers, determine whether there exists a way of pariitioning A into two subsets
B ={bi,by,....bi} and C = {c1,¢3,...,cm} suchthat "L, b; = &7, ¢;.

If %, a; is odd the problem becomes trivial since it is impossible to obtain a suitable
partition, but if the sum is even the problem is NP-Hard.

Let A = {a1,02,...,0,} be a set such that 3., g, is even. We can construct an instance
of the syntenic distance problem with indistinguishable genes as follows: take 7 = A and
o = {01,020} Where oy = oy = (3.0 a;)/2.

By Theorem 8.4.3, we have 1 — 2 < dyyntenic(7, 0) < n. Observe that dyynienic(7, o) #
n — 1, because Lemma 8.4.8 says that n — 2 fusions are necessary; if the extra event is a fusion,
we end up with 1 chromosome; if it is a fission, we end up with 3 chromosomes; but ¢ has 2
chrormosomes.

The final part of the proof is to show that a solution for this instance of the syntenic distance
problem with indistinguishable genes corresponds to a solution of the original partition problem.
Notice that, in this context, the ability to partition A into two subsets of equal sum is equivalent
to being able to transform 7 into ¢ using fusions only.

If E’symmc(ﬁ, o) = n — 2 then it is possible to partition A as desired, since 7 can be trans-
formed into ¢ using fusions only. In contrast, if dyneenic(7, o) = 7, it is impossible to find a
suitable partition, because a fission was necessary to transform = into o. [

8.5 Conclusion

We have shown in this work results about the rearrangement distance using fusion, fissions, and
transpositions when an arbitrary weight is associated to transpositions (see Table 8.1). We have
proved that the distance problem using fusions, fissions, and transpositions with the transposi-
tion weight given as input is at least as hard as the transposition distance problem, which is still
open. Finally, we have determined the complexity of two variations on the syntenic distance
problem.
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Sorting by Prefix Transpositions *

Zanoni Dias

Joao Meidanis

Abstract

A transposition is an operation that exchanges two consecutive, adjacent blocks in a
permutation. A prefix transposition is a transposition that moves the first element in the
permutation. In this work we present the first results on the problem of sorting permuta-
tions with the minimuom number of prefix transpositions. This problem is a variation of the
transposition distance problem, related to genome rearrangements. We present approxima-
tion algorithms with performance ratios of 2 and 3. We conjecture that the maximurm prefix
transposition distance is D(n) = n — || and present the results of several computational
tests that support this. Finalty, we propose an algorithm that decides whether a given per-
mutation can be sorted using just the number of transpositions indicated by the breakpoint
lower bound.

* Trabalho apresentado no String Processing and Information Retrieval (SPIRE2002), realizado na cidade
de Lisboa, Portugal, em setembro de 2002. Uma versio estendida deste trabalho foi aceita para publicagiio na
revisia Journal of Discrete Algorithms.
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9.1 Introduction

Sequence comparison is one of the most studied problems in computer science. Usually we
are interested in finding the minimum number of local operations, such as insertions, deletions,
and substitutions that transform a given sequence into ancther given sequence, This is the edit
distance problem, described in many Computational Biclogy textbooks [106]. Several studies,
however, have shown that giobal operations such as reversals and transpositions (also called
rearrangement events) are more appropriate when we wish to compare the genomes of two
species {101].

A new research area called Genome Rearrangements appeared in the last years to deal with
problems such as, for instance, to find the minimum number of rearrangement events needed
to transform one genome into another. In the context of Genome Rearrangements, a genome
is represented by an n-tuple of genes (or gene clusters). When there are no repeated genes,
this n-tuple is a permutation. We proceed with a brief overview of the literature related to the
present work.

The best studied rearrangement event is the reversal. A reversal inverts a block of any size in
a genome. Caprara [18] proved that finding the minimum number of reversals needed to trans-
form one genome into another is an NP-Hard problem. Bafna and Pevzner [8] have presented
an algorithm with approximation factor 2 for this problem. Later Christie [29] presented the
best known algorithm for the problem, with factor 2.

Hannenhalli and Pevzner {64] have studied the reversal distance problem when the orien-
tation of genes is known. In this case they proved that there is a polynomial algorithm for the
“problem. This algorithm has been refined successively until Kaplan, Shamir and Tarjan [73]
presented a quadratic algorithm. Meidanis, Walter e Dias [95] have shown that all the reversal
theory developed for linear genomes can be easily adapted to circular genornes.

Another interesting variation of this problem is the so-called prefix reversal problem or pan-
cake problem as it was originally called [45]. In this variation only reversals involving the first
consecutive elements of a genome are permitted. Heydari and Sudborough [66] have proved
that this problem is NV P-Hard. Gates and Papadimitriou [52] and Heydari and Sudborough [67]
have studied the diameter of prefix reversals {see further details on diameter problems in Sec-
tion 9.4).

The rearrangement event called transposition has the property of exchanging two adjacent
blocks of any size in a genome. The transposition distance problem, that is, the problem of
finding the minimum number of transpositions necessary to transform one genome into another,
has been studied by Bafna and Pevzner [9], who presented the best approximation algorithm for
the problem, with factor % The transposition distance problem is still open: we do not know of
any N P-Hardness proof, and there are no evidences that an exact polynomial algorithm exists.
Christie [30] and Meidanis, Walter and Dias [93] have proved partial results on the transposition
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diameter.

In this work we present the first known results on the variation of the transposition distance
problem that we call prefix transposition distance, that is, the rearrangement distance problem
where only transpositions affecting two consecutive blocks of the genome, with one of these
blocks formed by the first consecutive elements of the genome.

The paper is divided as follows. Initially, in Section 9.2, we define important concepts that
will be used throughout. In Section 9.3 we present two approximation algorithms for the prefix
transposition distance problem, with factors 3 and 2. In Section 9.4 we present several results
on the prefix transposition diameter, leading to the conjecture that D{n) = n — ;_%j . and tests
with programs that we implemented to help validate our conjectures. We show in Section 9.5
an algorithm that verifies whether a given genome can be sorted using the minimum number
of prefix transpositions according to the breakpoint lower bound (L.emma 9.3.5). Finally, in
Section 9.6, we exhibit our conclusions and suggestions for future work.

8.2 Definitions

Here we introduce a number of basic concepts used in Genome Rearrangements. Notice that
some definitions, for instance that of transposition, is different from the definition used in other
areas.

Definition 9.2.1 An arbitrary genome formed by n. genes will be represented as a permutation

7 = [x[1] 7[2] ... w[n]] where each element of 7 represents a gene. The identity genome iy, is
defined as in, =112 ... n.

Definition 9.2.2 A rransposition p(z, y, z), where 1 <z < y < z < n+1, is an rearrangement
event that transforms « into the genome pm = [n[1] ... wlz—1]rly] ... wlz—1] =lz] ... 7ly—1]

Definition 9.2.3 A prefix transposition p{l,z,y), where 1 < z < y < n+ 1, is an rear-
rangement event that transforms m into the genome pn = [w{z] ... wly — 1] #{1] ... 7z — 1]

Definition 9.2.4 Given two genomes n and ¢ we define the transposition distance d. (7, o)
between these two genomes as being the least number of transpositions needed to transform 7
into o, that is, the smallest v such that there are transpositions ps, g, . . . Pr With pp ... pop1 T
= 0. We call sorting distance by transpositions, d, (), the transposition distance between the
genomes  and ip, that is, d, (1) = d-(7, 1p,).

Definition 9.2.5 Given two genomes 7 and o we define the prefix transposition distance d{7, o)
between these two genomes as being the least number of prefix transpositions needed to trans-
form w into o, that is, the smallest r such that there are prefix transpositions py, pa, . . . pr With
Dr - .. papuT = 0. We call sorting distance by prefix transpositions, d{r ), the prefix transposition
distance between genomes T and ip, that is, d{m} = d(7, 1,).



116 Capitulo 9. Sorting by Prefix Transpositions
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Figure 9.1: Two examples of how it is possible to obtain prefix transpositions p; and po such
that pm = pepy 7, for a given transposition p = p(z, v, 2), with z # 1.

9.3 Approximation Algorithms

The first important observation is the following,.
Lemma 9.3.1 For any permutation 7, we have d(w) > d (7).

Proof: This follows from the observation that every prefix transposition is a transposition. The
converse is not always true. u

9,3.1 Approximation Algorithm with Factor 3

Lemma 9.3.2 For every transposition p(z,y, z) with = # 1, there are prefix transpositions
p1(1, 7, 8) and pa(1, t,u) such that poprm = pr.

Proof: Indeed, itsufficestotaker =y, s = 2,t = z~y+1and v = z—y -z, or, alternatively,

r=gz,5=yt=y—z+1andu = 2 Figure 9.1 shows how two prefix transpositions can
simulate a transposition. -

Lemma 9.3.3 Any k-approximation algorithm for the transposition distance problem can be
transformed into a 2k-approximation algorithm for the prefix transposition distance problem.

Proof: Immediate from Lemma 9.3.2. u

Therefore it is easy to obtain an approximation algorithm with factor 3 for the prefix trans-
position distance problem using the approximation algorithms with factor % for the transposition
distance problem given by Bafna and Pevzner [9] and by Christie [30].
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9.3.2 Approximation Algorithm with Factor 2

We need to define a few important concepts before proceeding.
Definition 9.3.1 A bregkpoint for the prefix transposition problem is a position | of a permu-
tation 7 such that 7[i) — wli — 1] # 1, and 2 < 1 < n. By definition, position 1 {beginning of

the permutation) is always considered a breakpoint. Position n + 1 (end of the permutation)

is considered a breakpoint when n{n] # n. We denote by b(r) the number of breakpoints of
permutation .

By the former definition b(7) > 1 for any permutation 7 and the only permutations with
exactly one breakpoint are the identity permutations (7 = ¢, for all n).

Definition 9.3.2 A strip is a subsequence w[i..j] of 7 (1 < j) such that i and j + 1 are break-
points and there are no breakpoinis between these positions.

Definition 9.3.3 Given a permutation © and a prefix transposition p, we define Ab{r, p) as the
variation on the number of breakpoints due to operation p, that is, Ab(w, p) = b{pr) ~ b(n).

The first important observation about breakpoints is the following.

Lemma 9.3.4 Given a permutation = and a prefix transposition p, we have that Ab(n, p) €
{~2,-1,0,1,2}

Lemma 9.3.5 For every permutation =, we have that d(7) > {9@«:&]
Proof: Immediate from Lemma 9.3.4. ]

Lemma 9.3.6 Given a permutation m # 1, where n = |r|, it is always possible to obtain a
prefix transposition p such that Ab(z, p) > —1.

Proof: Let & be the last element of the first strip of 7. If & < n, then there is a strip beginning
with the element k + 1, such that 773k} < n~*k + 1] and p = p(1,n 1k} + 1,77k + 1])
suffices. If k = n, take p = p(L, 7'kl + 1,n+ 1). N

Lemma 9.3.7 Ler 7 be a permutation and p(l, z,y) a prefix transposition such that pm = i,
where n = |r|. Thenwlz] = 1 and Ab(r, p) = ~2.

Lemma 9.3.8 For every permutation 7, we have d(7) < b(w) — 2.
Proof: Immediate by Lemmas 9.32.6 and 9.3.7. [

Theorem 9.3.1 For every permuiation , we have Mri-1l < d(x) < b(n) ~ 2.
2
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Theorem 9.3.2 Any algorithm that produces the prefix rranspositions according 1o Lemmas
9.3.6 and 9.3.7 is an approximation algorithm with factor 2 for the prefix transposition distance
problem.

Another important point regarding genome rearrangments is the possibility of sorting a per-
mutation without ever increasing the number of breakpoints. Christie [30] has proved that this
is true for transposition events. The following lemma establishes the analogous resuit for prefix
transpositions. The proof 1s a bit lengthy and is omitted here, but appears in the full version of
this paper.

Lemma 9.3.9 Let 7 be an arbitrary permutation and d(w) = k its prefix rransposition distance.
Then there exists an optimal sequence of prefix transpositions pr, .. ., py, Such that py ... ;17 =
tn, Wwhere n = |m|, and Ab(p;_y ... 17, p;) = O forevery1 <1 < k.

9.3.3 The Cycle Diagram

Bafna and Pevzner [9] developed the “Cycle Diagram” (originally called “Cycle Graph™), a
very useful tool in the study of transposition distance problems. This structure was defined also
as the “Reality and Desire Diagram” by Meidanis, Walter and Dias [92], a definition that we
reproduce below.

Definition 9.3.4 The vertex sequence of the Cycle Diagram is constructed as follows: for every
element 7[i] of permutation = create a pair —7t] and +7li], in this order. Add a vertex +0
in the beginning of the sequence and a vertex —(n + 1) in the end. The edges of the diagram
are of two types: the “desire” (gray) edges and the “reality” (black) edges. The reality edges
are drawn joining vertices +0 and —n[l], +xlil and —7[i + 1] (for 1 < i < (n— 1)), and
finally +=[n] and —(n + 1). The desire edges are drawn joining vertices -+i and ~(i + 1) (for
0<i<nh

Once defined the diagram, we now need to define its cycles.

Definition 9.3.5 The size of a cycle in the Cycle Diagram is defined as the number of reality
edges that compose the cycle. We call c(7) the number of cycles in the Cycle Diagram of 7.
Similarly, coqq(7) is the number of odd cycles in the Cycle Diagram of 7.

Figure 9.2 shows a complete example of a Cycle Diagram. The diagram is composed by
two cycles of size 2 and a cycle of size 3. Note that the only permutations of n genes with n + 1
cycles are the identity permutations (7 = t,, for every n).

Definition 9.3.6 Given an arbitrary permutation 7 and a transposition p, we define Ac(w, p)
(Acoaq(™, p)) as the variation in number of cycles (odd cycles) caused by operation p, that is,
ﬁlc(ﬂ'sp) = clpm) — c() (Acoaq(m, p) = Codd{pT) = Coga(m) ).

The results in the next section were proved by Bafna and Pevzner [9].
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Figure 5.2: Cycle Diagramform = [426 15 3].

Results for {ranspositions

Lemma 9.3.10 Given an arbitrary permutation 7 and a transposition p, we have Acogq{7, p) =
{~2,0,2}

Lemma 9.3.11 For every permutation 7, we have d.(7) > E“—C‘g‘i—{-ﬂ

Lemma 9.3.12 Given an arbitrary permutation v 5% L, where n = |7|, it is always possible to
obtain either a transposition p such that Mcgeq(7, p) = 2 or three transpositions py, ps and ps
such that Deoga(T, p1) = 0, Acoga{ 17, p2) = 2 and Dcoga(paprm, p3) = 2.

Lemma 9.3.13 For every permutation w, we have d.(m) < 2(n — coga(7)).
Proof: Immediate by Lemma 9.3.12. ]
Theorem 9.3.3 For every permutation w, we have “=2%{0 < d_(1) < 3(n — coua()).

Theorem 9.3.4 Any algorithm that produces the transpositions indicated by Lemma 9.3.12 is
an algorithm of approximation with factor % Jor the transposition distance problem.

Results for prefix transpositions

In this section we will prove that it is not possible to obtain an approximation algorithm with
factor better than 2 using the theory developed for general transpositions.

Definition 9.3.7 Ler M, be the family of permutations defined as follows: M, =[132465

... 3k — 2 3k 3k — 11. The permuration My, is formed by one cycle of size 1 and k cycles of size
3.

Lemma 9.3.14 Consider the permutation My, for some k > 1. In this case we have d(My) >
2k and i1 is not possible 1o obtain a prefix transposition p such that Acggq( My, p) = 2 nor three
prefix transpositions py, ps and p3 such that Acega(Mi, p1) = 0, DAcogalpi My, p2) = 2 and
Acoaa(p2p1 M, p3) = 2.
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ALGORITHM TO SORT M ()

1 Input: m = My, withk > 1

2 fori<+ 1tk

3 dom <+ p{1,300—1)+2,30~ 1)+ 3)x
4 T+ p(1,2,3(t ~ 1)+ 4=

5 Ouput 2k

Figure 9.3: Algorithm to sort M.

Proof: Each one of the cycles of size 3 is eliminated only when a transposition acts on its
three reality edges. Since initially no cycle intercepts any other cycle and no 3-cycle can be
immediately destroyed, at least two movements are necessary per cycle. Hence d(M) > 2k. B

Lemma 9.3.15 Given a permutation My, with k > 1, we have d(M}) < 2k.

Proof: Immediate by the algorithm of Figure 9.3. A step-by-step execution of this algorithm
on permutation M, can be seen in Figure 9.4 B

Theorem 9.3.5 Given a permutation My, for some k > 1, we have d{ M) = 2k.
Proof: Immediate by Lemmas 9.3.14 and 9.3.15. [

Theorem 9.3.6 No approximation algorithm for the prefix transposition distance problem ba-
sed on the Cycle Diagram and using the lower bound of Lemma 9.3.11 can have an approxima-
tion factor less than 2.

Proof: It suffices to notice that the lower bound of Lemma 9.3.11 gives d(M}) > k, while we
know that in fact d{ M.} = 2k by Theorem 9.3.5. |

9.4 The Diameter of Prefix Transpositions

We call rearrangement diameter the largest rearrangement distance between two permutations
of a certain size n. We Denote by D(n) the diameter of prefix transpositions and by D-(n) the
diameter of transpositions. Bafna and Pevzner [9] proved the following result.

Theorem 9.4.1 The diameter of iranspositions for permutations of size n is such that § <
D.(n) < Z.

We can present a similar result for the prefix transposition distance problem.

Theorem 9.4.2 The diameter of prefix transpositions for permutations of size n is such that
2<Dn)<n-1
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Figure 9.4: (a) Permutation M; = [1 32 4 6 5]. (b)-(e) Sorting Ms.

Proof: To begin with note that D(n) > D.(n), since d(n) > d.(x) for any permutation 7
(Lemma 9.3.1). We can then use the result of Aigner and West [3] that says that the diameter
for the rearrangement distance problem that considers only insertion of the first element, that is,
transpositions of the form p(1,2,z),isn ~ 1. ]

Definition 9.4.1 Ler R, be the family of permutations defined as follows: R, =[nn—1 ... 21].
Permutation K, is formed by odd cycles only: just one cycle when n is odd, and two cycles
otherwise.

The following result was proved independently by Christie [30] and Meidanis, Walter and
Dias [93].

Theorem 9.4.3 Forn > 3, we have d,(R,,) = EJ + 1.

When dealing with prefix transpositions, we could state, based solely on Theorem 9.3.1,
that [ 1 < d{R,) < n — 1. However, a stronger statement holds.

Theorem 9.4.4 Forn > 4, we have d(R,) <n — |%].
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ALGORITHM TO SORT R, ()

oy
[n BN o B o RS I o SO U S ENRLPR A o B

11
12
i3
14
i5
16
17
18
19

Input: # = R,, withn > 4
m«— 4151
{Phase 1: Shuffling}
fori+— 1to (%) ~1
don « p{(1,5,m—2(i - 1))7
7 p(1,3, 3+ 2)m
{Phase 2: Greedy Phase}
a7 n]+1
Yy e m+ 1
for i « 110 2(%)
do z « n[z]
7+ p{l,z, )7
y o7z —1]+1
w4 7wy =1
z e m w1
{Phase 3: Positioning the Last Elements}
fori< (m+1)ion
dom « p(1,4,7+ 1j7
Quiput: . ~ [ 2]

Capitulo 9. Sorting by Prefix Transpositions

Figure 9.5: Algorithm to sort R,,.

Proof: The algorithm of Figure 9.5 sorts K, using exactly n — E‘» } prefix transpositions. A
step-by-step execution of this algorithm on permutation R;3 can be seen in Figure 9.6.  H

Lemma 9.4.1 Forn > 1, we have d(Rp41) > d(R,).

Proof: Itis easy to see that any series of prefix transpositions that sorts F,,.; will also sort 12,

provided we adapt the movements that include the element 7 -+ 1. |
Christie [30] and Meidanis, Walter and Dias [93] have proposed the following conjecture,
still open today.

Conjecture 9.4.1 The transposition diameter D, (n), forn > 3, is given by D.(n) = d,(R,) =
2]+ 1.

Likewise, we believe that the following statement is true.

Conjecture 9.4.2 The diameter of prefix transpositions D(n), for n > 4, is given by D{n) =
d(Ra) =n— 5]
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Figure 8.6: Steps to sort Rq3.

9.4.1 Tests

The tests that will be presented in this section were performed in a Digital Alpha Server GS140
computer, with 10 Alpha 21264 EV6 processors of 524MHz and 64-bit word length, with 8 GB
of physical memory and running the OSF1 version 4.0 operating systemn. All programs were
written in C++ and compiled with g++ using compilation directive “-03”. Our programs use
just one processor and during the tests the machine was always executing other processes as
well, The measured times are the times effectively spent by the programs (user + system time)
and not the total time of execution (real time).

We implemented two “branch and bound” algorithms to compute the exact distance of prefix
transpositions. The first version considers all possible prefix transpositions, while the second
version considers only prefix transpositions that do not create new breakpoints, according to
Lemma 9.3.9. Using these programs it was possible to obtain directly the prefix transposition
distance for all reverse permutations K, with n < 15. Table 9.1 and Figure 9.7 show resuit
summaries.

To verify the correctness of Theorem 9.4.4, we implemented the algorithm that sorts re-
verse permutations K, in polynomial time (Figure 9.5). We tested our implementation using
all reverse permutations R, for n < 50000. The algorithm correctly sorted all tested instances.
Note that these instances are several times bigger than the biggest instances used in practice in
genome rearrangement problems. Execution times for this algorithm are plotted in Figure 9.8.
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n  d(R,) Time without Time with
optimization (seconds) optimization (seconds)

0z 01 0 0

03 02 0 0

04 03 0 0

05 04 ¢ 0

06 05 O 0

07 06 G 0

08 06 4 2

09 47 g 3

10 08 59 22

11 09 1011 373

12 09 8872 2607

13 10 16294 4305

14 11 118463 45168

i5 12 2771374 1081631

i6 1z% 750 days * 300 days *

Table 9.1: distance of prefix transposition for reverse permutations with 16 or less elements.
The times in column “without optimization” refer to the “branch and bound” algorithm that
considers all prefix transpositions possible, while the column “with optimization” presents the
results of the implementation that considers only prefix transpositions that do not create new
breakpoints, according to Lemma 9.3.9. We could not compute d(R;s) directly using any of the
two implementations; instead we present an estimate of the time necessary for each algorithm
to compute correctly the distance. Note also that it is possible to infer the distance d{R;5) from
Theorem 9.4.4 and Lemma 9.4.1.

Lastly we implemented two programs to verify the conjectures proposed in Section 9.4. The
two programs are based in the same strategy. We built a graph as follows: we created a vertex
for each of the n! permutations with n elements and an edge for each pair of permutations
that differ by a rearrangement event. In this graph we search for the permutations that posses
the largest distance from the identity permutation. This strategy can be implemented in linear
time on the graph size. With this method we could certify in slightly over 20 hours that both
conjectures are true for permutations with n < 11 elements. Unfortunately 30 GB of physical
memory are need to build the graph for n = 12, what made the test of our conjectures for
n > 12 impossible.
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Figure 9.7: Results for the “branch and bound” algorithm. Total approximate time of 47 days
nonstop processing, with about 34 days for the version not optimized and 13 days for the opti-
mized version.

Sorting of Reverse Permutations
(nolynomial algorithm)

140
120 |}
100 —
50
40 |-
20 4

Time (in seconds)

. 10.000 20.000 30.000 40.000 50.000
Permutation Size

Figure 9.8: Results for the polynomial algorithm. Total approximate time of 27 days nonstop
processing.
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9.5 Permutations that Satisfy the Breakpoint Lower-Bound

Kececioglu and Sankoff [78] conjectured that to determine whether a permutation can be sorted
using the minimum number of reversals indicated by the breakpoint lower bound for reversals
was an N P-Hard problem, just like the general problem of sorting by reversals. Irving and
Christie [69] and Tran [115] independently proved that this conjecture is false, exhibiting a
polynomial algorithm for the problem.

In the case of prefix transpositions we know from Lemma 9.3.5 that for every permutation
7 we have d(7) > [(b{m) — 1)/2]. However, given a permutation 7, is it possible to determine
whether d(7) = {(b{7) — 1}/27 The following results prove that the answer is yes.

Lemma 9.5.1 Let w be an arbitrary permutation. Then there exists at most one prefix transpo-
sition p such that Ab{w, p) = —2.

Proof: Suppose that 7 and p(1, z, y) are such that Ab(r, p) = —2. In this case we have 7 =
1] 7z = Uzl owly = Urly]. Jand pr = [nlz]. . wly — 1 #[1]. .7z - 1xly] .. ],
where r{z — 1| # rlzl - Lialy -1 #alyl - Laly— 1] =rll]—land n[z — 1] = mly] — 1.
Finally, note that #[1] determines uniquely the index y, and y determines uniquely the index z.
E

Theorem 9.5.1 Let m be an arbitrary permutation. Then it is possible to determine in polyno-

mial time whether d{m} = 9-(3%15.

Proof: Immediate by the algorithm of Figure 9.9, that has complexity O(n?). B

Given an integer £, is it always possible to find a permutation = such that there is a series
of k prefix transpositions py, ..., pr With Ab(p;1pi2 ... 17, pi) = 2, for 1 <4 < k7 Once
again the answer is affirmative.

Definition 9.5.1 Let B, be the family of permutations defined as follows: B, = [k + 1k k +
2k —1k+3k—~2 ... 2k~ 122k 1. Permutation By, possesses 2k + 1 breakpoints.

Lemma 9.5.2 For every integer k it is possible to obtain a series of k prefix transpositions py,
D9, s i that sort By such that Ab(ps1pies... ;17 p;) = ~2, for 1 <i < k.

Proof: Immediate from the algorithm of Figure 9.10, that can be implemented in linear time.
|
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VERIFYING WHETHER 7 SATISFIES THE BREAKPOINTS LOWER-BOUND ()

1 Input: 7

2 neml

3 OK«+« TRUE

4 While 7 # 1, and OK

5 doy+ wir[l]—1]+1

6 T+ 7 xly] ~ 1]+ 1

7 { Verifies whether there exists a movement that removes two breakpoints}

g ifz <y

g then m + p(1,z,y)7
10 else OK « FALSE
11 Output: GK

Figure 9.9: The algorithm that verifies whether 7 has distance d(7) = éﬁ%—"i

ALGORITHM TO SORT By()

1 Input: 7w = B, withk > 1
2 fori+ ltok

3 dorw <« p(1,24,2i+ U)mr
4 OQutput: k

Figure 9.10: The algorithm that sorts By.

9.6 Conclusions

We introduced in this work a new problem of Genome Rearrangement that we called distance
of prefix transpositions. We showed a number of results for this problem, including two ap-
proximation algorithms (the best of them with factor 2), a proof that any permutation can be
sorted without “cutting strips,” a conjecture on the prefix transposition diameter stating that
D(n) =n- L%J , and an algorithm for determining whether a permutation can be sorted using a
series of prefix transpositions removing two breakpoints per step. The problem remains open.
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Capitulo 10

Conclusao

Apresentamos, nos capitulos anteriores, vérios trabalhos relacionados a Rearranjo de Genomas.
Agrupamos nossas principais contribuiges em dois grupos: um novo formalismo algébrico e
uma série de resultados envolvendo o evento de transposigfo.

Esta tese €, de certa forma, uma continuagio natural da tese de doutorado da Profa. Maria
Emilia M. T. Walter [119]. Sendo assim, nossa primeira contribuigio estd relacionada com o
principal problema apontado nas conclusdes daquela tese - a falta de uma “teoria estabelecida
e uniforme” para Rearranjo de Genomas. Ainda segundo a Profa. Maria Emilia, “nesta édrea, as
estruturas e 0s algoritmos propostos sfio completamente independentes uns dos outros, inclusive

na notacdo, € as estratégias de solugGes vém de diferentes dreas como Teoria da Computacio,
Estatistica e Matemadtica”.

No Capitulo 6, relacionamos a teoria de Rearranjo de Genomas com a teoria algébrica de
grupos de permutacGes. Nossa inten¢io foi estabelecer um formalismo algébrico forte o bas-
tante para permitir simplificar a obtencdo de novos resultados, até entdo muito baseados na
construgdo exaustiva de diagramas.

Um genoma fol definido como sendo uma permutacio. As diferencas entre dois genomas 7
e o sdo representadas pela férmula o7 ™", que nos permite deduzir algebricamente uma série de
informagdes relacionadas a distdncia de rearranjo entre os dois genomas, por exemplo o ndmero
de breakpoints ¢ de ciclos.

Definimos algebricamente as opera¢des de reversdo, transposi¢fo, transposigdo com re-
versdo e block interchange. Usando esta teoria foi possivel definir também algumas estrutu-
ras importantes para o problema da distincia de reversdo como, por exemplo, ciclos bons e
componentes boas.

Consideramos que demos os primeiros passos em direcfo a estabelecer um novo formalismo
para a 4rea, mas muito trabalho ainda precisa ser feito. Uma abordagem interessante seria obter
provas baseadas em argumentos algébricos para todos os principais resultados envolvendo o
evento de reversdo, que ja foi vastamente estudado. Esperamos que, num futuro préximo, todos
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os resuitados apresentados nesta tese possam ser demonstrados usando-se apenas dlgebra.

Outra contribuic@io importante desta tese sao os vérios resultados envolvendo o evento de
transposicdo. Este evento foi estudado de vdrias formas diferentes: como um problema de rear-
ranjo de genomas simples (Capitulo 3); associado com outros eventos de rearranjo (Capftulos 4,
5, 7 e 8): e como evento restrito (Capitulo 9).

No Capitulo 3, mostramos um limite inferior para o valor do didmetro de transposicio. Nos
dois capitulos seguintes, estudamos o problema da distancia de rearranjo em que 08 eVentos
de transposicdo e reversdo sio permitidos. No Capitulo 4 apresentamos dois algoritmos de
aproximagdo para este problema, e no Capitulo 5 exibimos um limite inferior para o valor do
dizdmetro.

Apresentamos 0s primeiros resultados inéditos no Capftulo 7, no qual utilizamos parte do
formalismo algébrico recém desenvolvido para mostrar que € possivel determinar a distincia
de fusdo, fissdo ¢ transposi¢io em tempo polinomial, guando uma transposicdo tem peso duas
vezes maior que uma fusfo e uma fissdo. Este € o primeiro resultado polinomial conhecido para
um problema de rearranjo envolvendo ¢ evento de transposigao.

Em seguida, no Capitulo 8, determinamos aproximagdes para o valor da distancia de fusao,
fiss3o e transposi¢io, quando as fusGes ¢ fissOes t&m peso unitdrio e as transposi¢les t&m pesos
arbitrrios.

No mesmo capitulo, apresentamos dois resultados importantes sobre distincia sinténica en-
volvendo fusdes ¢ fissdes. Primeiro, provamos que o problema com genes distinguiveis € po-
linomial e pode ser resolvido de forma eficiente. Em seguida, demonstramos que a versdo do
problema com genes indistinguiveis € NP-Diffcil.

No Capitulo 9, introduzimos o problema da distincia de transposicio de prefixos. Entre os
virios resultados apresentados neste capitulo, destacamos dois algoritmos de aproximacao, um
algoritmo para testar se uma permutacio pode ser ordenada usando transposigdes de prefixos
que sempre removem dois breakpoinis, € uma conjectura sobre ¢ valor do didmetro para este
problema, baseado num algoritmo que ordena a permutagdo reversa.

Apesar de todos 0s esforgos, 0 problema geral de distdncia de transposi¢do permanece em
aberto, nio sendo conhecido, até o momento, nenhum algoritmo polinomial exato, nem uma
prova que este problema seja NV P-Dificil. Temos esperanga que o formalismo algébrico intro-
duzido nesta tese possa ser utilizado para a obtengfio de novos resultados para transposicoes.

Vdérios problemas interessantes de Rearranjo de Genomas nio foram abordados nesta tese.
Este é o caso, por exemplo, do problema da mediana, que pode ser formulado da seguinte forma.
Dados genomas 71, Tg, ..., T, determinar um genoma o tal que .7, d(7;, o) seja minima,
onde d(7;, o) € a distAncia de rearranjo entre 7; e 0. Caprara [19] provou que o problema da
mediana, quando utilizamos distincia de reversdo, € NP-Dificil. Existern poucos resultados
para ¢ problema da mediana envolvendo outros eventos de rearranjo. Acreditamos que este
problema represente uma promissora drea de estudos.



Apéndice A
Implementacoes e Testes

Paralelamente & pesquisa tedrica, implementamos alguns programas gue poderdo auxiliar novos
trabalhos na drea de Rearranjo de Genomas, sobretudo com relaco ao evento de transposicio.
Podemos dividir as implementac¢des em dois grupos descritos a seguir.

Logo no comego desta tese, implementamos um visualizador da estrutura denominada “Dia-
grama de Ciclos”, estrutura muito utilizada em problemas de Rearranjo de Genomas. Desen-
volvemos este visualizador usando uma interface Web, de forma que ele pudesse ser acessado
em qualquer fugar do mundo conectado a internet.

Mais tarde, escrevemos uma sé€rie de programas para o célculo da distancia de transposigo.
Implementamos os algoritmos de aproximagio propostos nesta tese, como também algumas
heuristicas € algoritmos exatos branch and bound para o problema da disténcia de transposigio.

A seguir descreveremos em mais detalhes cada um desses programas.

A.1 O Visualizador de Diagramas de Ciclos

Um dos maiores problemas no estudo de Rearranjo de Genomas € o fato de grande parte da
teoria existente basear-se na construcdes de diagramas. Assim, para estudar uma seqiiéncia de
operagdes que transforma um genoma em outro € necessirio, muitas vezes, desenhar uma série
de diagramas, 0 que deixa a pesquisa muito lenta ou até mesmo invidvel.

Aqui vimos que havia duas opgdes: on desenvolver uma nova teoria que néo usasse dia-
gramas ou qualquer outro recurso grifico, ou implementar um visualizador automético que,
dada uma permutacdo, desenhasse o diagrama adequado. Escolhemos atuar nas duas frentes. A
teoria estd sendo desenvolvida, € um resultado inicial € apresentado no Capitulo 6 desta tese.

Batizamos nosso visualizador de Permutation Info. Este programa recebe uma permutagao,
constrdi o seu “Diagrama de Ciclos” (também conhecido na literatura como “Diagrama Reali-
dade Desejo” [93]) e exibe o resultado em uma pagina web.

O diagrama € composto por dois tipos de arestas: as cinzas (conhecidas também como
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arestas desejo) e as pretas (as arestas realidade). As arestas cinzas sfo representadas, no nosso
visualizador, por arcos, enquanto as arestas pretas, por tragos horizontais. Para maiores detalhes
sobre este diagrama, consultar o Capitulo 3 desta tese ou o trabalho de Bafna e Pevzner [9] sobre
distdncia de transposicio.

Dada uma permutacdo = qualguer, nosso visualizador apresenta outras informacdes muito
importantes para a investigaco do problema da distdncia de transposicio, como:

e o numero de breakpoints (b(m)),

» o niimero de ciclos {¢(7)),

e o ntmero de ciclos impares (C,q4{7)),

e a lower bound de ciclos fmpares (ou seja, d{n) > LB = Eﬂ:—%’ﬁﬁ),

@ a upper bound baseada no algoritmo de aproximagio % proposto por Bafna e Pevzner (ou
seja, d(m) SUB = [3(n+ 1 — cous())]).

Além disso 0 Permutation Info permite aplicar uma transposico & permutagdo. Para isso,
basta gque o usudrio forneca o niimero de trés arestas cinzas para indicar onde a permutacfo serd
quebrada e rearranjada pela transposigao.

Um exemplo prético do uso do Permutation Info pode ser acompanhado pelos “Diagrama
de Ciclos” e pelas outras informagdes exibidas nas figuras A.1 até A.6, onde uma série 6tima
de transposicdes € usada para transformar a permutaciio = = [8 73 2 1 6 5 4] na permutacdo
identidade 15 =[123456 7 8].

O Permutation Info foi escrito em Perl de forma a permitir que ele pudesse ser utilizado em
qualquer sisterna computacional com um servidor web adequadamente configurado e com um
interpretador Perl padrdo. Nosso visualizador usa as bibliotecas CGI e GD, ambas de dominio
publico [35].

A.2 Calculando a Distancia de Transposicao

A seguir, descreveremos os algoritmos que implementamos para calcular a distancia de transpo-
sicio. Dividimos esta se¢dio em duas partes, na primeira, abordaremos dois algoritmos usados
para calcular a distdncia exata, enquanto na segunda parte, falaremos da implementagfo de uma
heuristica para este problema. Todos os algoritmos apresentados nesta se¢fo foram implemen-
tados em Perl e posteriormente portados para C++ usando STL {109].
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Arguivo  Editar  Exibir  Faworitos  Ferramentas  Ajuda

=[87321654]

: Breakpoints | Cycles Jdd Cyeles  Lower Bound | Upper Bound

5

L]

s 3 3

Transposition: Ses ;W

Figura A.l: Permutation Info: neste exemplo, vemos o “Diagrama de Ciclos” da permutagdo
7w =[8732165 4], formado por irés ciclos {mpares, antes gue os blocos 3 2] e [1 6] fossem
trocados de lugar pela transposigdo p(3,5, 7).



134 Apéndice A, Implementagdes ¢ Testes

IT%@-?& rmirtation info

Srquivo  Edikar  Exibir  Favoritos  Ferramentas  &juda

s 3 1 4 s

Transposiion: 468 [ Avply

H
H
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L

Figura A.2: Permutation Info: neste exemplo, vemos o “Diagrama de Ciclos” da permutagio 7
= i8 7163254}, formado por trés ciclos, sendo dois deles pares e apenas um impar, antes que
os blocos [6 3] e {2 5] fossem trocados de lugar pela transposigdo p(4, 6, 8).
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ufation Info

grguivo  Editar  Exibir  Eavorbtos Feorramenias Aluda

& 5 3 5

Lzl

-~
[ f - /m

Figura A.3: Permutation info. neste exemplo, vemos 0 “Diagrama de Ciclos™ da permutacdo m
=[8 712563 4], formado por cinco ciclos, sendo trés ciclos unitdrios {{mpares) ¢ dois ciclos
pares, antes que 0s blocos [5 6] e [3 4] fossem trocados de lugar pela transposicio p(5,7,9).
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' 'Permutation Info

'g Arquivo  Editar  Exibir  Fawvoritos  Ferramentas Ajuda

tation Inft
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{2
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T
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Transposition: 1 23 . ; ey

Figura A.4: Permutation [nfo. neste exemplo, vemos 0 “Diagrama de Ciclos™ da permutagéo 7

pares, antes gue os elementos 7 e 8 fossem trocados de lugar pela transposic¢io p(1, 2, 3).

[8 712345 6], formado por sete ciclos, sendo cinco ciclos unitdrios (impares) e dois ciclos
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Permutation inlo

arguive  Editar  Exibir  Favortos  Ferramentas  Ajuda

@%ﬁ%@ ;
n=1781234506]

Brealkpoints Cyeles Udd Cycles Lower Beund Upper Bound

3 - i : 1 2

\

7
/ Fa T e Y
& i 2 3 4 5 &

Transposition: ”138 H | _i Applyﬂ 1

Figura A.5: Permutation Info: neste exemplo, vemos o “Diagrama de Cicios” da permutagdo
= 17812345 6], formado por sete ciclos, sendo seis ciclos unitdrios e um ciclo {mpar longo,

i

antes que os blocos {7 8] e [1 2 3 4 5 6] fossem trocados de lugar pela transposigio p(1, 3,9).
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¢ TP tion Info

Arouive Editar Exlbir  Eavoritos Ferramentas Ajuda

ermutation Info

7=[12345678]

;Emﬂ@@iﬂm éiﬁ?ﬂ% 0dd Cycles Lower Bound iifypgr Bound
- S T '

Lo N o N . S s T o W s N T N
B 1 2 3 4 5 @ 778 8

Transposition: :

Figura A.6: Permutation Info: neste exemplo, vemos o “Diagrama de Ciclos” da permutagio
identidade 15 = [1 2 34 56 7 8], formado por nove ciclos unitdrios.
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A.2.1 Distancia Exata

Em vérios rnomentos no decorrer desta tese, fol necessdrio obter o valor exato da distincia de

transposi¢ao de uma dada permutagfo. Infelizmente, até o presente momento nio € conhecido

nenhum algoritmo eficiente para o problema, nem uma prova que o mesmo seja NV P-Dificil.
Assim, para testar as vérias hipdteses sobre a distincia de transposiciic exploradas nesta

tese, resolvemos implementar um algoritmo exato utilizando a técnica de branch and bound
como o descrito na Figura A7,

ALGORITMO BRANCH AND BOUND PARA DISTANCIA DE TRANSPOSICAC(7)
1 n+ |7

2 best « i-g(n +1- codd(ﬂ'))‘l

3 current <0

4 Output: Transposition-Distance(r, best, current)

TRANSPOSITION-DISTANCE (7, best, current)
1 n+ |7

2 T =y

3 then best < current

4 else for all transpositions p

5 do 7' « prm

6 if current + %ﬁ < best

7 then best < Transposition-Distance{n’, best, current + 1)
8 OQutput: best

Figura A.7: Algoritmo branch and bound para o problema da distdncia de transposicdo. Cal-
cula, de forma recursiva, o valor exato da distincia de transposi¢ic (d(7) = best) sem retor-

nar, explicitamente, uma série de transposi¢des que permita transformar a permutacio = na
permutacgfo identidade.

Apesar dos algoritmos que utilizam a técnica de branch and bound serem essencialmente
exponenciais muitas vezes podem ser utilizados com sucesso para a solugdo de instincias pe-
quenas, mas muito Gteis na prética.

Duas decisdes sdo fundamentais para se conseguir uma bom desempenho de um algoritmo
como o proposto aqui. Primeiro, devemos determinar um forma eficiente de expandir o espago
de busca & procura de uma solug#io 6tima (branch). Segundo, temos que interromper uma busca
tdo logo ela se mostre infrutifera (bound).

Inicialmente para tentar ndo expandir desnecessariamente o espaco de busca utilizamos ape-
nas transposicdes que nio criassem novos breakpoints, jé que, de acordo com o que foi provado
por Christie [30], sempre existe uma série de transposi¢es tal que, o nimero de breakpoint



140 Apéndice A. Impiementacdes ¢ Testes

nunca aumenta. Infelizmente na pritica, esta versdo se mostrou mais lenta devido ao tempo ex-
tra necessdrio para se calcular o novo nimero de breakpoints a cada transposigfo aplicada. Na
nossa implementacio, decidimos testar todas as permutacdes aplicdveis a uma certa permutagio
(linha 4 da parte recursiva).

Existem dois pontos no nosso algoritmo onde tentamos limitar ¢ espaco de busca: na linha
2 da parte principal, quando calculamos uma estimativa inicial para a distancia de transposicio
utilizando a upper bound de ciclos {mpares, € na linha 6 da parte recursiva, quando utilizamos a
lower bound de ciclos impares para determinar se, naquele ponto da recursfo, ainda € possivel
obter uma distdncia de transposi¢do melhor do que a determinada pelo algoritmo até aquele
momento. '

Tanto a lower bound, quanto a upper bound de ciclos fmpares, foram definidas por Bafna e
Pevzner [9]. Inicialmente, haviamos utilizado limites mais simples para o problema baseados
nos nmeros de breakpoint, mas logo percebemos que eles no eram suficientemente fortes para
diminuir, de forma perceptivel, ¢ tempo de execuclo do algoritmo. Variacbes deste algoritmo
foram utilizadas para o problema da distdncia de transposi¢io de prefixos (ver, por exemplo,
resultados da Tabela 8.1).

Em véirios momentos, também estdvamos interessados em calcular o didmetro de transposi-
¢io para permutagOes de um certo tamanho n. Usar o algoritmo exponencial da Figura A.7 para
cada uma das n! permutacoes de tamanho n seria totalmente invidvel, mesmo para valores de n
bem pequenos {por exemplo, n = 10).

Assim, resolvemos implementar uma variagdo do algoritmo de Bellman [10] para o pro-
blema de se calcular a distincia de um vértice para todos os outros num grafo qualquer. Este
algoritmo utiliza uma fila para garantir que cada aresta seja verificada um nimero constante de
vezes. Este algoritmo € extremamente eficiente, calculando todas as distancia em tempo linear
no tamanho do grafo.

No nosso caso, cada vértice € uma permutagfo ¢ existe uma aresta entre dois vértices 7 e 7,
se existem transposicdes p’ e p”, tal que 7w = p'o e ¢ = p'm. Estamos, entido, interessados em
calcular a distincia neste grafo do vértice que representa a permutacio identidade ¢, para todos
os outros vértices. Como temos que o nimero de arestas incidentes em cada vértice € da ordem
de O(n?®), entdo, a complexidade total do algoritmo é O(n®n!).

Adaptamos também este algoritmo para o caso da disténcia de transposicdo de prefixos (ver
Secdo 9.4.1). O grande limitante deste algoritmo, como demonstram os testes exibidos naguela
secdo, € a sua enorme necessidade de memdria, por exemplo, seriam necessérios aproximada-
mente 30GB de memoria fisica para que o algoritmo calculasse o didmetro de transposigdo (ou
de transposicao de prefixos) para permutagdes de tamanho n = 12.
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CALCULO DA DISTANCIA DE TRANSPOSICAO PARA TODAS AS PERMUTACOES(n)

1 for all permutations 7 of size n

2 dod(m}=c0cc

3 d(tn) 0

4 Queune < ip

5  While (Jueue not empty

6 dow + Pop{Queue)

7 for all transpositions p

8 do 7w + pr

9 ifd(7’) = ¢
10 then d(7') « d(r) + 1
11 Push(Queue, ")

12 Qutput: d{r), for all permutations  of size n

Figura A.8: Algoritmo desenvolvido para calcular a distincia de transposico para todas as
permutagdo de um certo tamanho n.

A2.2 Heuristica

Logo no inicio dos trabalhos desta tese, sentimos a necessidade de poder contar com um algo-
ritmo polinomial, de ficil implementacdo, que fornecesse uma boa aproximagio para o valor da
distancia de transposi¢io.

A principio, pensamos em implementar o algoritmo proposto por Bafna ¢ Pevzner [9], mas
este algoritmo € complexo demais para nossos propdsitos, sendo, inclusive, objeto de trabalhos
de mestrado [41]. Como estdvamos interessados apenas na distincia de transposicio e ndo em
obter uma série de transposicdes que transformasse uma permutacio qualquer na permutagio
identidade, resolvemos implementar uma heuristica gulosa para o problema.

O algoritmo da Figura A.9 funciona da seguinte maneira: enquanto a permutacio de en-
trada ndo tiver sido ordenada e ainda nfo tiverem sido aplicadas tantas transposi¢des quanto o
nimero indicado pela upper bound de ciclos impares definida por Bafna e Pevzner, teste todas
as transposi¢des e aplique aquela com o maior Score. Definimos o Score de uma transposigio p
com relacdo a permutacio 7, como o niimero de ciclos que p cria (Ac(r, p)), mais o ndmero de
novos ciclos impares (Acygq(7, p)) € mais o nimero de novos ciclos bons (Acgeea(™, p)). Um
ciclo é chamado de bom, se ele pode ser quebrado em trés ciclos fmpares menores com apenas
uma transposicio.

Executamos a nossa heuristica para o problema da distincia de transposi¢do para todas
as permutages com tamanho menor ou igual a 11, totalizando aproximadamente 40 milhdes
de casos de testes. Os resuliados foram satisfatorios: em cerca de 98% dos casos a nossa
heuristica alcangou o valor exato da distincia de transposi¢ciio. Na Figura A.1, comparamos a
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nossa heuristica com o algoritmo WDM’ 2000 proposto por Walter, Dias e Meidanis [121].

HEURISTICA PARA O PROBLEMA DA DISTANCIA DE TRANSPOSICAO(7)

1 d+0
2 no
3 Maz + i'% {TZ +1— Codd(TT))-]i
4 Whilen # tp, and d < Mazx
5 doScore + —x
6 for all transpositions g
7 do Score « Ac(m, p) + AcoqalT, p) + Lcgooa(T, p)
8 if Score > Scoré
g then Score’ + Score
10 pep
11 74— g7
12 d—d-+1
13 Output: d

Figura A.9: Heuristica gulosa desenvolvida para o problema da distincia de transposigio.

O algoritmo WDM’2000 é um aigoritmo de aproximacio com fator 2.25 para o problema
da distancia de transposi¢8o com complexidade O(n?) e que, diferentemente da heurfstica apre-
sentada neste apéndice, pode ser usado para se obter, além do valor da distancia de transposic8o,
uma série de transposi¢des que efetivamente transformem uma permutaciio qualquer na permu-
tagéi(z identidade. Outra desvantagem da nossa heuristica € sua alta complexidade assintdtica,
O(n?), j4 que temos que testar, em cada passo, todas as O(n®) possiveis transposi¢des e levamos
tempo linear para calcular 0 Score de cada transposicio.

Por dltimo, € importante destacar que o passo 4 da Figura A.9 € usado para interromper
o algoritmo caso uma solu¢do nfio tenha sido obtida usando menos transposi¢Ges que a upper
bound de ciclos impares. Logo, esta heuristica nunca apresenta um fator de aproximacio maior
que %» mesmo guando ela ndo € capaz de determinar uma série de transposigdes que garanta
esta aproximagao.

Tentamos obter um método guloso mais eficiente para a escolha da transposicho a ser
aplicada a cada passo. Infelizmente, mesmo apds vdrias experiéncias, nd0 conseguimos uma
variac@o deste algoritmo que fornecesse resultados melhores do que aqueles apresentados na
Tabela A.1.

Todos os arquivos relacionados a esta tese, incluindo os programas apresentados neste
apéndice, podem ser obtidos diretamente com o aluno ou com seu orientador.
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Heuristica WMD’2000
N | Diferenca | Aproximacio | Diferenca | Aproximacéio
1 0 1 0 i
2 0 1 0 1
3 G 1 0 1
4 G i G 1
5 0 i 0 1
6 0 1 0,83% 1,33
7 0,02% 1,25 1,42% 1,50
8 0,08% 1,25 2.89% 1,75
9 0.15% 1,25 3,95% 1,75
10, L11% 1,50 5,88% 1,75
11, 2,18% 1,50 7,19% 2,00

143

Tabela A.1: Comparacio entre nossa heuristica para o problema da distincia de transposicéo
(Figura A.9) e o algoritmo WDM' 2000 proposto por Walter, Dias ¢ Meidanis {121]. As colu-
nas rotuladas de “Diferenca” indicam as porcentagens das permutacfes em gque 0s algoritmos
testados fornecem uma distancia maior do que a distdncia exata, de acordo com os resultados
obtidos usando o algoritmo da Figura A.8. J4 as colunas denominadas “Aproximagao” indicam
o fator de aproximacéo efetivamente obtido por cada algoritmo.
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