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Resumo

A recuperagdo de imagens por conteddo (CBIR) é uma 4drea que vem recebendo crescente
atengdo por parte da comunidade cientifica por causa do crescimento exponenpcial do
nimero de imagens que vém sendo disponibilizadas, principalmente na WWW, A medida
gue cresce o volume de imagens armazenadas, cresce também ¢ interesse por sistemas
capazes de recuperar eficientemente essas imagens a partir do seu contetido visual.

Nosso trabalho concentrou-se em téemicas gue pudessem ser aplicadas em grandes
coleces de imagens heterogéneas. Nesse tipo de colecho, ndo se pode assumir nenhum
tipo de conhecimento sobre o conteddo semantico e/ou visual das imagens, e o custo de
utilizar técnicas semi-automaticas {com intervencdo humana) é alto em virtude do volume
e da heterogeneidade das imagens que precisam ser analisadas. Nds nos concentramos na
informacao de cor presente nas imagens, e enfocamos os irés tdpicos que cousideramos
mais importantes para se realizar a recuperacio de imagens baseada em cor: (1) como
apalisar e extrair informacio de cor das imagens de forma automdtica e eficiente; (2)
como representar essa informacio de forma compacta e efetiva; e (3) como comparar
eficientemente as caracteristicas visuais que descrevem duas imagens.

As principais contribuigdes do nosso trabalbo foram dois algoritmos para a analise
automatica do conteudo visual das imagens (CBC e BIC), duas funcgdes de distancia para a
comparagio das informacdes extraidas das imagens (MiCRoM e dLog) e uma representagao
alternativa para abordagens que decompdem e representam imagens a partir de células
de tamanho fixo (CCH).
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Abstract

Content-based image retrieval (CBIR) is an area that has received increasing attention
from the scientific community due to the exponential growing of available images, mainly
at the WWW. This has spurred great interest for systerns that are able to efficiently
refrieve images according to their visual content.

Our work has focused in techuniques suitable for broad image domains. In 2 broad
image domain, it 18 pot possible to assume or use any o prior? knowledge about the
visual content and/or semantic content of the images. Moreover, the cost of using semi-
attomatic image analysis fechniques is prohibitive because of the heterogeneity and the
amount of images thai must be analyzed. We have directed our work to color-based
image retrieval, and have focused on the three main issues that should be addressed in
order to achieve color-based image retrieval: {1) how to analyze and describe images in
an automatic and efficient way; (2) how to represent the image content in a compact and
effective way; and (3) how to efficiently compare the visual features extracted from the
images.

The main contributions of our work are two algorithms to automatically analyze the
visual content of the images (CBC and BIC), two distance functions to compare the visual
features extracted from the images (MiCRoM and dlog), and an alternative representation

for CBIR approaches that decompose and represent images according to a grid of equal-
sized cells (CCH).
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Capitulo 1

Introducao

Bancos de dados de imagens {BDIs) t8m se tornado cada vez mais freqiientes nos mais vari-
ados dorafuios de aplicagdes, tais como maquinas de busca multimidia [83, 97}, bibliotecas
digitais [59, 62, 98], bancos de dados geogrificos [47, 57, 98] e bancos de dados médicos
[49]. A evolugio das tecnologias de aquisicdo, transmissfo e armazenamento de imagens
tem: permitido a construcdo de BDIs cada vez maiores. A medida gue cresce o volume
de imagens armazenadas, cresce também o interesse por sistemas capazes de recuperar
essas imagens de acordo com o seu contetdo visual (CBIR - Content-Bused Irmage Re-
trieval) [8, 120]. CBIR é uma drea multidisciplinar e envolve, principalmente, técnicas de
banco de dados, processamento de imagens, recuperacdo de informacio, reconhecimento
de padrdes, e interfaces usudrio-mdquina [65].

A recuperac¢ao de imagens baseada em conteido baseia-se em descricoes compactas
das Imagens. A descricido das imagens pode acontecer em virios niveis diferentes, e pode
ser ou nao dependente do dominio das imagens [90]. Em imagens médicas, por exerplo,
pode-se extrair informacio a respeito das estruturas anatdmicas do corpo humano que
sao conhecidas a priori (49, 74]. O mesmo acontece em sistemas de recuperagio de faces
humanas [9, 77, 116, 117]. Nesses dominios, as caracteristicas visuais mais relevantes sao
aquelas que descrevem as relagbes espaciais entre os objetos que compdéem cada imagein.

E possivel descrever imagens utilizando-se atributos que sao independentes do conteado
visual das imagens, tais como o nome do arquive, seu formato grifico, seu tamanho fisico,
e as suas dimensoes espaciais. Atributos como esses podem ser eficientemente gerencla-
dos por sistemas gerenciadores de banco de dados (SGBDs) [27, 50, 105]. No entanto, a
maior dificuldade desse tipo de representacio € que as consultas sfo restritas aos atributos
armazenados, e esses atributos nfo descrevem o conteddo das imagens.

Uma segunda alternativa para descrever imagens consiste em utilizar palavras-chave
e/ou anotacdes geradas por especialistas acerca do conteddo das unagens. A descricao
textual das imagens pode ser eficientemente gerenciada por sistemas de recuperagao de



informacdo [42, 48, 81, 82, 115, 118]. No entanto, esse tipo de técnica requer intervengio
humana para obter as descricOes textuals de cada imagem individualmente, Existe ainda
o problema da subjetividade ¢ da incompletude na descricao das imagens, ja que a in-
terpretacdo do contedde visnal de uma imagem varia de acordo com o conhecimento,
cbjetivo, experiéncia e percepcio de cada analisador [34].

Finalmente, é possivel utilizar caracteristicas visuais de baixo nive] tais como dis-
tribuigao de cores [4, 30, 33, 73, 98, 107}, textura [63, 70, 86, 95, 112, 121], formas [41],
posicao e relacdes topoldgicas entre regides da imagem [19, 53, 78] para descrever, rep-
resentar e comparar imagens. K geral, essas caracteristicas visuais sfo representadas’
como vetores k-dimensionais. As relagbes espaciais entre os objetos/regites (por exem-
plo, adjacéncia, sobreposicao, e relacdes de inclusio) tém sido representadas através de
2D-strings (19, 53] ou ARGs {Attribuied Relational Graphs) [78].

A descricio de imagens utilizando caracteristicas visuals de baixo nivel é especialmente
itil em grandes colegSes de imagens heterogéneas [92]. Consideramos heterogéneo um
conjunto de imagens gue nac pertence a wm unico dominic seméntico e/ou visual, ou
seja, tanto a semantica associada 3s imagens quanto as suas caracteristicas visuais nao
seguem um padrio preestabelecido. A World-Wide Web (WWW) € o melhor exemplo de
um gigantesco repositorio de imageuns heterogéneas. Em colecbes desse tipo, nio é possivel
preestabelecer nenhuina caracteristica das imagens armazenadas e s2o necessirias técuicas
automdaticas e eficientes para a andlise, representacdo e comparacao dessas imagens. O
custo de utilizar técnicas semi-automaticas {com iutervencdo humana) é alto em virtude
da heterogeneidade e do volume das imagens que precisam ser analisadas.

Dentre as caracteristicas visuais de baixo nivel que podemn ser utilizadas na recuperacio
de imagens baseada em contetdo, a informacio de cor é uma das mais amplamente uti-
lizadas [13, 61]. Essa preferéncia pela informacio de cor se deve a alguns fatores [103]:
(1) a cor é uma caracteristica visual que é imediatamente percebida quando se olha para
uma imagem; (2} os conceitos envolvidos sdo simples de serem entendidos e implementa-
dos; (3) a informacdo de cor estd presente na ampla maioria dos dominios de imageus e
(4) os resultados obtidos utilizando a informacio de cor sfo satisfatérios em geral; (4) a
informacao de cor pode ser processada de forma auntomstica.

Apesar da importéncia de descrever imagens em diferentes niveis e utilizando difer-
entes caracteristicas visuais, nosso trabalho enfocou exclusivamente a informacio de cor
¢ técnicas para lidar com esse tipo de informacéo, jd que a utilizagio da informacao de
cor é importante na mailoria dos sistemas de recuperacao de imagens por contetido.

A Figura 2.1 mostra a representacio esquematica de uma imagem sendo armazenada
em urm sistema que faz uso da informacao de cor para descrever, representar, comparar e
recuperar imagens. Apos uma imagem ser fornecida como entrada, o seu contetdo visual
¢ analisado e resumido em um espaco de cores preestabelecido. Em seguida, uma repre-



sentacao é escolhida para a informacio extraida durante a etapa de andlise da imagem.
Eissa representacdo € o que na pritica denominamos uma caracteristica visnal da imagem.
A caracteristica visual que representa z imagem de entrada € entio armazenada no BDI
e indexada com o objetivo de reduzir o tempo de busca guando uma consulia visual for
processadsa.

A recuperacdo de imagens armazenadas em um BDI € um processo interativo que
envolve diversos tipos de consulta, em diferentes etapas. Em geral, o objetivo das con-
sultas visuais € encoutrar e recuperar imagens que sejain similares a wma imagem/esboco
fornecido pelo usudrio, ou seja, as consultas ndo se baseiam em correspondéncia exata
{(matching) como acontece em bancos de dados tradicionais. Existem basicamente dois
tipos de consultas visuais [93]: (1) encontrar as & imagens mais proximas de wmna dada
imagem e {2) encontrar as imagens que est3o acima de um limite de similaridade | de uma
dada imagem,

Em nosso trabalbo, estamos interessados na informacdo de cor {caracteristica visual
de baixo nivel) presente nas imagens. Esse tipo de informacio ¢ dificil de ser expressa
pelos usudrios durante a formulagio de uma consulta visual. Por causa disso, nos con-
centramos no paradigma de counsultas-por-exemplo (QBE), isto é, em cousultas nas guais
uma Imagem consulta € fornecida pelo usudrio como exemplo das imagens desejadas e o
sistemna retorna as imagens do BDI classificadas em ordem decrescente de similaridade em
relagio a essa imagem consulta. Para comparar a (dis)similaridade entre duas imagens,
€ necessario uma funcio que calcule a distdncia entre as caracteristicas visuais que repre-
sentam essas imagens. A funcdo de distdncia também é determinante na escolha de uma
estrutura de indexacdo que acelere 0 processamento de consultas, j4 que cada estrutura
imnpoe suas proprias restricoes ac tipo de fungdo que ¢ capaz de indexar.

De acordo com o cendrio descrito acima, uds consideramos a existéncia de quatro
topicos chave que precisam ser explorados para que se realize a recuperacio automadtica
de imagens baseada em informacao de cor: (1) como agpalisar e extrair informagio de
cor das imagens de forma automdtica e eficiente; (2) como representar essa informacio
de forma compacta e efetiva; (3) como comparar de maneira efetiva e eficiente as carac-
teristicas visuais que descrevem duas imagens; e {4) como indexar de forma adequada essas
caracteristicas visuais para reduzir ao maximo o tempo de busca quando uma consulta
visual é processada. Em nosso trabalho nés enfocamos os trés primeiros tépicos acima.
Apesar de ndo termos explorado formalmente a indexaciio das caracteristicas visuails ex-
trafdas das imagens, os requisitos para uma indexacio eficiente foram uma preocupagio
constante em todas as técnicas que propusemos.

Finalmente, para avaliar quantifativamente o desempenho de um sistema de recu-
peracao de informacio, s80 necessdrias medidas de eficiéucia e efetividade [48, 115, 118].
As medidas de eficiéncia estdo relacionadas aos custos (em termos de recursos computa-
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cionais) para realizar wn conjunto de tarefas e sdo, de certa forma, independentes do tipo
de documento que estd sendo recuperado. As medidas de efetividade, ao contrario, estio
intimamente relacionadas ao tipo de documento gue estd sendo recuperado e a0s critérios
de avaliacio desses documentos, pois se preocupam em medir a capacidade de wm sistema
fornecer adequadamente as informagdes requeridas pelo usudrio [48, 82, 118]. Por se tratar
de um tipo de recuperacio de informacio bastante especifico, a recuperagio de imagens
por conteddo requer uma metodologia de avaliacho também especifica, de acordo com as
restrigbes desse dominio.

O restante desse capitulo estd organizado como se segue. A Secdo 1.1 introduz al-
guns conceitos importantes sobre imagem digital e ¢ processamento de imagens digitais.
Na Secido 1.2, sdo identificadas as principais técnicas para a andlise e a representacdo
do contendo visual de imagens em sistemas de recuperacfo de lmagens baseados em in-
formacdo de cor. A Secao 1.3 discute aspectos relacionados a0 processamento de consultas
visuais tals como a comparagio e a indexacao de caracteristicas visuais extraidas das ims-
gens. Os critérios e as metodologias existentes para a avaliagao da efetividade de sistemas
de recuperacdo de imagens sao identificados na Secfo 1.4. Uma classificacdo para as
técnicas e sistemas existentes para CBIR é proposta na Secio 1.5. A Seciio 1.6 identi-
fica as principais contribuicbes de nosso trabalho. Finalmente, a organizacio dos demais
capitulos da tese é detalhada na Secdo 1.7.

1.1 Imagem digital

Uma imagem {monocromidtica) é uma funcaéo bidimensional f{z,vy), onde z e y sdo co-
ordenadas espaciais e o valor de f em qualquer ponto (z,y) é proporcional ao britho {ou
nivel de cinza) da imagem nesse ponto [37]. Uma imagem digital nada mais é que uma
imagem f(z,y) que teve tanto as suas coordenadas espacials quanto o seu brilho dis-
cretizados (digitalizados). Dessa forma, uma imagem digital pode ser interpretada como
uma matriz onde cada elemento ¢ identificado pelos indices da linha e da coluna as quais
pertence, e o valor do elemento corresponde ao seu brilho ou nivel de cinza. Os elementos
dessa matriz sdo conhecidos como pixels (picture elements).

A digitalizacao das coordenadas espaciais é conhecida como amostragem (image sam-
pling) e a digitalizacio do brilho é conhecida como quantizacio do nivel de cinza (gray-
level quantization) [37]. A resolugio de uma imagem (o grau de detalhes perceptiveis)
é fortemente dependente desses dois parimetros. Quanto mais finas a amostragem e
a quantizacio, melhor a imagem digitalizada aproxima o contetido da imagem original.
No entanto, os custos de armazenamento e de processamento da imagem digital crescem
rapidamente com o aumento da resolugio.

No caso de imagens digitais coloridas, cada pixel é descrito ndo apenas pelo seu brilho,
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mas também por outras propriedades como matiz e saturagio. Em geral, a cor de cada
pixel é representada como um ponto em um sistema de coordenadas 3D conhecido como
espaco de cores. Alguns espacos de cores sio discutidos na Secdo 2.1. Um exemplo de
espaco de cores 3D ¢é o espaco RGB {Red, Green, Blue), onde cada cor é representada
como uma combinacgao de trés cores primdrias {vermelho, verde e azul}.

Um pixel p com coordenadas espacias (z,y) possul quatro vizinhos no espaco {hoxi-
zontais e verticais) cujas coordenadas sio:

Na(p)={{z+ Ly}, {z~ Lyh{z,y+1),(z.y— 1)} (1.1

Adicionalmente, é possivel definir outros quatro vizinhos (nas diagonais):

Nplp)={{z+1Ly+1),(z+Ly~1)(z-Ly+ 1),z -1,y 1}} (1.2)

A unido dos dois conjuntos anteriores determina um total de oito vizinhos para o pixel p:

Ns(p) = Ni(p) U Np(p) (1.3)

Um caminho entre dois pixels p e ¢ cujas coordenadas espacias sdo (z,y) e (s, 1) € uma
seqiiéncia de pixels distintos com coordenadas:

(:’E’.Q:yﬂ): (-'El: yi):---:(:ﬁn;yn) (14)

onde (w0, ¥o} = {x,y) € (®n,yn) = (5,1), (@i, %) é adjacente a {w;_1,¥;1) de acordo com
algum critério de adjacéncia (por exemplo, sdo vizinhos considerando-se 4 vizinhos por
pixel), 0 <4 < n, e n é o tamanho do caminho [37].

Se p e g sac pixels que pertencemn a um subconjunto S de pixels da imagem, entio
p € conexo a ¢ em S se existe um caminho entre p e ¢ formado apenas por pixels que
pertencemn a 5. Para qualquer pixel p € S, ¢ conjunto de todos os pontos que sao conexos
apem S éconhecido como uma componente conexa de S. Como conseqiiéncia, dois pixels
guaisquer de umna mesma componente conexa sio conexos entre si e duas componentes
conexas diferentes sio disjuntas [37].

1.1.1 Processamento de imagens digitais

( processamentoe de imagens digitais € uma drea que envolve aspectos de hardware, soft-
ware € VATios conceitos tedricos [37]. O processamento de uma imagem digital pode ser
subdividido em cinco passos principais: (1} aquisicdo da imagem, (2) pré-processamento,
(3) segmentacdo, (4} representagio e descricao e (5) reconhecimento e interpretacio.
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O primeiro passo do processo cousiste em capturar a imagem digital. Para isso sao
necessirios sensores (por exemplo, uma cdmera de video) e, caso o sinal produzido pelo
sensor seja analogico, umn conversor analdgico-digital pars digitalizar esse sinal.

O préximo passo consiste em pré-processar a hnagem digital capturada na etapa an-
terior. O objetivo do pré-processamento € melhorar a gualidade da lmagem em aspecios
que permitam elevar a chance de sucesso das etapas seguintes.

O terceire passo refere-se a segmentacdo da imagem. O objetivo da segmentagio é par-
ticiopar a imagemn em Suas partes counstituintes ou objetos. A gualidade da segmentacio
é decisiva para ¢ sucesse das etapas posteriores.

Uma vez segmentadas, as regides da imagern precisam ser representadas em uma forma
adeguada ao processamento por computador. Nesse caso, a primeira decisio diz respeito &
representaciao ou da borda ou do conteddo das regites. Cada representacio é adequada a
um tipo especifico de processamento. Também é necesséario fazer wina desericdo das regides
com o objetive de destacar caracteristicas visuals de interesse para as eiapas seguintes,
A descrigio (ou extraclo de caracteristicas visuais) refere-se & extracio de caracteristicas
que sejamn uteis para diferenciar diferentes classes de objetos.

A dltima etapa do processo refere-se a0 reconhecimento e interpretagio de objetos. O
reconhecimento € wm processo que identifica objetos a partir das informacbes extraidas
de seus descritores. A interpretacdio, por sua vez, consiste em associar significado a umn
coujunto de objetos previamente identificados.

E importaute observar que todas as cinco etapas descritas anteriormente utilizam
informacdes sobre o dorinio do problema que estd sendo tratado e também fornecem
novas informactes acerca desse dominio, do processo em andamento, e da imagem sendo
processada. Todo esse conhecimento é codificado e armazenamento em uma base de dados
que estd disponivel ao longo de todas as etapas do processamento da imagem.

1.2 Analise e representacao do contetido visual das
imagens

A primeira decisdo a ser tomada ao projetar uin sistema de recuperacio de imagens por
contetido utilizando informacao de cor refere-se & escolha do espago de cores a ser uti-
lizado. Um espaco de cores € um sistema de coordenadas 3D onde cada cor é representada
por um ponto nesse espaco tridimensional [37]. Os espacos de cores existentes podem ser
classificados em trés grandes categorias {13, 37, 61] (1) orientados ao hardware, (2) ori-
entados ao usudrio e (3) uniformes. Cada uma dessas categorias tem umn contexto de
aplicacao bastante especifico. Os espagos de cores existentes sdo discutidos em detalhes
na Se¢io 2.1. Em particular, sfo discutidos os espagos RGB (orientado ao hardware),
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HSV (orientado a0 usudrio) e LAB (uniforme).

Uma vez gue 0 espaco de cores fol escolhido, a segunda decisfo em qualquer sistema
para CBIR consiste em reduzir o ndmero de cores presente nas imagens (quantizacio) e
também o nlwmero de posiches espacials que precisam ser consideradas para se descrever 2
distribuigao espacial das cores dentro das imagens {amostragem). As técuicas existentes
pars esse tipo de reducio podem ser classificadas em estaticas ou dinamicas. Ag técnicas
estaticas utilizam esquemsas preestabelecidos que sfo independentes da imagem sendo
analisada. Exemplos de técnicas estdticas sio a gquantizacao uniforme do espaco de cores
{13, 61] e a decomposicdo espacial das imagens em células de tamanhbo fixo [94, 104, 113].
As técnicas dindmicas fazem uso do conteddo das imagens para obter uma reducao de
informacao malor e mais robusta que a das técuicas estiticas. As técuicas dinfmicas
realizam simultaneamente a redugdo do ntimero de corss e de posiches espaciais através
de algoritmos de agrupamento {clustering) [5, 31, 45 ou de segmentacio de imagens [37).
Tanto as técnicas estaticas quanto as técnicas dindmicas para a simplificacdo do conteido
visual das imagens s8o discutidas em detalhes na Segio 2.2

Uma vez gque a informacéo presente nas imagens foi devidamente reduzida, a terceira
decis@o refere-se & escolha de uma representacloc adequada para essa informagio. As
possivels representagoes podem ser classificadas em globais, baseadas em particionarmento
ou regionais. As representacdes globals descrevem a distribui¢io de cores da imagem
como um todo, desprezando a distribuicdo espacial das cores dentro das imagens, As rep-
resentacoes baseadas em particionamento assumemn que as imagens foram espacialmente
decompostas em células de acordo com um esquema preestabelecido e entio descrevem a
informacio de cor de cada célula individualmente. As representacdes regionais assuinem
que as imagens foram segmentadas em regides com tamanho, forma e posigcdo varidvels
e descrevem cada uma dessas regides individualmente. Todas essas representactes sao
discutidas em detalhes na Secio 2.3.

1.3 Processamento de consultas visuais

U dos componentes mais importantes de um sistema de recuperacio de imagens por
conteddo € a funcio de distdncia utilizada para comparar as caracteristicas visnais ex-
traidas das imagens. Essa funcio afeta diretamente o tempo de processamento de uma
consulta visual e a gqualidade da resposta obtida (efetividade) [13, 61]. Quanto maior a
correlacio entre a fungio de distincia e a percepcio humana de similaridade, maior serd
a efetividade do sistema em recuperar imagens relevantes de acordo com os requisitos do
usuario. A complexidade computacional da funcio de distancia também é immportante pois,
dependendo dessa complexidade, € possivel que o tempo para comparar as caracteristicas
visuais extraidas de duas imagens (tempo de CPU) seja maior que o tempo gasto para
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acessar as paginas de disco onde essas caracteristicas visuals estfo armazenadas (tempo
de entrada e saida — E/S) [20, 23, 108]. Ao contrdrio de sistemas convencionais, o tempo
de busca passa a ser dominado pelo tempo de CPU a0 invés do tempo de E/S.

A fungio de distadncia utilizada para comparar imagens também limita o universo
de técuicas de filiragein e métodos de acesso gue podem ser utilizados para reduzir o
egpaco de busca guando uma consulia visual € processada. As técnicas de fltragem
sfo baseadas em uma distancia simples gue € comprovadamente um limite inferior para
a distducia original. A vova distdncia ¢ uiilizada para eliminar rapidamente imagens
udo relevantes, gerando uma lista de imagens candidatas que deve ser pds-processada
utilizando a distancia original para eliminar falsos-positivos [84]. Os métodos de acesso
utilizam combinagtes mais sofisticadas de estrutura de dados e algoritmos para organizar
as caracteristicas visuals das lmagens e gerenciar o processo de busca, de forma que as
imagens de interesse possarn ser localizadas rapidamente [20, 35

Distancias geomeétricas como Ly ¢ Ly podem ser utilizadas em conjunto com métodos de
acesso espaciais (SAMs) [35] para reduzir o espago de busca. Fungdes mais complexas que
satisfazem os axiomas métricos {principalinente & propriedade da desigualdade triangular)
podem ser utilizadas em conjunto com métodos de acesso métricos (MAMs) [20] para
reduzir simultaneamente o espaco de busca e o nimero de comparacoes entre imagens a0
processar uma consulta visual. J4 a indexacio de funcbes nao-métricas é um problema
em aberto para o qual existem apenas solugdes aproximadas 51, 36, 71].

A Secdo 2.4 discute em detalhes as funcdes de distancia utilizadas para comparar as
caracteristicas visuais extraidas das imagens. Essas funcdes sdo classificadas em geoméiricas
(vetoriais), métricas e ndo-métricas. Em particular, sdo discutidas as fungdes da familia L,
e 0s axiomas meétricos da positividade, simetria, reflexividade e desigualdade triangular.
Em seguida, a Seclo 2.5 discute o conceito de busca por similaridade e a necessidade de
técnicas de filtragem e/on métodos de acesso para reduzir o tempo de busca quando uma
consulta visual € processada. S3o discutidas algumas técunicas de filtragem, métodos de
acesso espaciais (SAMs), métodos de acesso métricos (MAMs) e a indexacio aproximada
baseada em funcoes naoc-métricas,

1.4 Avaliacao de efetividade

Quando uma nova abordagem para a recuperacio de imagens por conteddo € proposta,
é necessdrio avaliar seu desempenho. Em sistemas de banco de dados tradicionais, o
tempo de resposta e o espaco utilizado para representar os dados sdo os critérios normal-
mente utilizados nessa avaliagdo. No contexto de recuperacio de informacdo, é preciso
avaliar, adicionalmente, a relevincia da informacdo recuperada {(efetividade) em relagéo
aos requisitos do usudrio [48, 82, 115, 118].
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A avaliagdo da efetividade de um sistema de recuperacio de informacio € uma tarefa
bastante complexa. No contexto de recuperacio de informacio textual, existem vérias
colecOes de documentos utilizadas para se realizar esse tipo de avaliacio (CACM, ADI,
INSPEC, Medilars e IS} ¢ uma conferéucia denominada TREC especialmente dedicada
a esse topico [115, 118]. Como resuliado, existem experimentos ¢ medidas padronizadas
e um f6rum para pesquisadores gue queiram comparar o8 seus resultados utilizando um
mesno framework.

Infelizrnente, na 4rea de recuperagdo de imagens por conteudo (CBIR), o cendrio é
completamente diferente daquele descrito acima. Em geral, sdo utilizadas coleces de
imagens relativamente pequenas e completamente diferentes entre si. Cada grupo de
pesquisadores realiza experimentos baseados em critérios completamente distintos e néo
hé um denchmark que seja aceito e amplamente utilizado.

Esforcos importantes na diregdo de criar umn benchrnark para CBIR vém sendo realiza-
dos por Gunther & Beretta [39], Leung & Ip [34] e Muller et al. [66]. Dentre os maiores
problemas enfrentados para se obter um benchmark desse tipo estdc a criagdo de uma
colecio de mnagens sem restrigdes de direitos autorais, o julgamento da relevincia dessas
imagens em relacio a um conjunto de imagens consulta (ground #ruth) ¢ um conjunto de
medidas de efetividade apropriadas para a avaliagdo de CBIR.

A Secao 2.7 discute em detalhes o problema de avaliacio de efetividade em sistemas
de recuperacio de imagens por conteiido. Em particular, sdo discutidas varias medidas
de efetividade gue vém sendo utilizadas nesse tipo de avaliacao.

1.5 Abordagens existentes para a recuperagao de im-
agens por conteudo

As abordagens existentes para a recuperacio de imagens baseada na informacio de cor
podem ser classificadas em (1) globais [3, 29, 88, 106, 122|, (2) baseadas em particiona-
mento [38, 53, 64, 87, 113] ¢ (3) regionais [7, 18, 28, 58]. Essa classificacio basela-se no
tipo de representacao adotada para as caracteristicas visuais extraidas das imagens.
Cada uma das t18s categorias identificadas acima oferece umn compromisso distinto
entre a complexidade dos algoritmos de andlise das imagens, a utilizacio de espaco em
disco para representar essas caracteristicas, a complexidade da fungao de disténcia uti-
lizada para comparar as caracteristicas visuals extraidas e, finalmente, a efetividade do
processo de recuperacao das imagens. E importante observar que cada categoria possul
caracteristicas desejdveis e também limitagbes bem conhecidas. Nenhuma delas € 6tima
em todas as situacgOes. Na pratica néds temos observado que em algumas situagdes es-
pecificas, abordagens globais bastante simples so mais efetivas que abordagens regionais
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bastanie complexas.

1.5.1 Abordagens globais

As abordagens globais pars CBIR [3, 29, 88, 106, 122] descrevem a distribuicio de cores
das imagens como um todo, desprezando a distribuicio espacial dessas cores dentro das
imagens. Em geral, essas abordagens s8o as mais eficientes em termos de extracio, rep-
resentacao e comparacao das caracteristicas visuais extraidas das imagens.

A abordagem global mais siples consiste em representar a distribuicio de cores de
wina imagem através de um histograma de cor global — GCH {13, 61]. Esse histograma
é obtido contando-se, para cada uma das cores possiveis, o numerc de pixels da imagem
com essas cores. (0 GCH pode ser visto como um vetor k-dimensional, onde k é o nmero
de cores representadas. Esses vetores podem ser eficientemente comparados utilizando-se
uma distdncia vetorial como a distdncia Ly (City-Block) ou 2 distdncia L, (Euclideana).
Adicionalmente, os GCHs podem ser, dependendo de sua dimensionalidade %, eficiente-
mente indexados utilizando-se métodos de acesso espaciais - SAMs, As abordagens globais
para a recuperagao de inagens por conteddo sao discutidas em detalhes na Seciio 2.6.1.

1.5.2 Abordagens baseadas em particionamento

As abordagens para CBIR baseadas em particionamento [38, 55, 64, 87, 113] decompdem
espacialimente as imagens utilizando uma estratégia de particionamento simples e comum
a toda imagem. Por exemplo, cada imagem € particionada em 3x3 regides retangulares
de mesmo tamanho. A distribuicio de cores de cada partigio é descrita individualmente.
G objetivo do particionamento espacial é adicionar informacio de como as cores estio
espacialmente distribuidas dentro da imagem. Assim como em abordagens globais, a ex-
tracho das caracteristicas visuals é bastante eficiente, com a vantagem de que a informacdo
espacial capturada por essas abordagens aumenta a efetividade em relacéo as abordagens
globais. No entanto, a representacfio e a comparacao das imagens ficam computacional-
mente bem mais caras, ja que o conteddo de cada particio é representado e comparado
individualmente.

O particionamento espacial mais simples cousiste em decompor as imagens de acordo
com uma grade de células retangulares e que nao se sobrepoem. O countetido visual de
cada célula é representado por um histograma de cor (nesse caso um Histograma de
Cor Local — LCH). Assim comeoe nas abordagens globais, esses histogramas sio vetores
k-dimensionais que podem ser eficientemente comparados utilizando distancias vetoriais
e indexados utilizando métodos de acesso espaciais (SAMs).

A principal limitagdo das abordagens baseadas em particionamento é gue as imagens
sdo decompostas sem levar em consideracio o conteddo visual das imagens. £ possivel
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gue um objeto da imagem seja particionado em varias paries e, a0 mesmo tempo, que
partes de vérios objetos distintos sejam representadas conjuntamente. As abordagens
baseadas em particionamento para a recuperagéo de imnagens por conteddo sao discutidas
em detalhes na Secdo 2.6.2.

1.5.3 Abordagens regionais

As abordagens regionais para CBIR {7, 18, 28, 58] utilizam técnicas automdticas de seg-
mentacio para decomnpor as imagens de acordo com o seu contetdo visual. O nimerc de
regides obtido, assim como o tamanho, a forma e localizagdo espacial de cada regifo varia
de finagem para imagem. Nesse contexto, o objetivo da segmentacio nio é, necessaria-
mente, segmentar de maneira precisa todos os objetos presentes em uma lmagern, mas a
decomposicao das magens em regides cujos pixels possuem um alto grau de similaridade
de acordo com alguma propriedade visual preestabelecida. No entanto, quanto melhor
as regites obtidas representarem os objetos que compdem as imagens, mais efetiva serd a
abordagem na recuperacio de imagens visualmente similares de acordo com a percepgio
humansa de similaridade.

As abordagens regionais utilizam algoritmos complexos {computacionalmente caros)
para segmentar imagens e também para comparar duas imagens de acordo com o seu
conjunto de regides. Tantc a segmentacio automadatica de imagens quanto a comparacio
efetiva e eficiente de imagens segmentadas sdo problemas bastante dificeis gque limitam
o potencial das abordagens regionais. No entanto, essas abordagens costumam ser bem
mais efetivas que as abordagens globais e as abordagens baseadas em particionamnento.
As abordagens regionais para a recuperacio de imagens por contetido sio discutidas em
detalhes na Secéo 2.6.3.

1.6 Contribuicoes

Esta segdo descreve as principais contribuicdes do nosso trabalho. Cada uma dessas
contribuictes estd detalthada em um capitulo da tese, e corresponde a um artigo publicado
em conferéncia, periddico ou livro internacional. Nosso objetivo aqui nio € descrever em
detalhes cada contribuicdo, mas enumeréd-las e fornecer wmn indicador da natureza da
contribuigio e dos resultados obtidos.

Uma lista das abreviagdes utilizadas e os respectivos significados podem ser encon-
trados no preficio da tese. Da mesma forma, a desericdo detalhada e as referéncias
bibliograficas relativas as diversas técnicas e métodos citados podem ser encontradas 1o
Capitulo 2.
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1.6.1 Revisao bibliografica

Em [103], us identificamos, descrevemos ¢ classificamos diversas técuicas ¢ sistemas para
a recuperacéo de imagens baseada em informacio de cor. Essa revisdo bibliogréfica
corresponde ao Capitulo 2 da tese. Nesse capitulo sfo discutidos os espacos de cores,
técnicas para a reducao da informacio preseute nas imagens, representacles para as car-
acteristicas visuals extraidas das imagens, functes de distdncla para a comparacio dessas
caracteristicas visuals, técnicas de filtragem e métodos de acesso para reduzir o tempo de
busca guando uma consulia visual é processada, sistemas existentes para a recuperagdo
de imagens por conteudo, e métodos e medidas para 2 avaliacio de efetividade.

1.6.2 CCH - Cell/Color Histograms

Em [99, 104], nds propusemos e avaliamos uma representagio alternativa e mais compacta
para abordagens de recuperacio de imagens baseada em particionamento denominands
CCH - Celi/Color Histograms. Essa representacao é formalmente proposta ¢ avaliada no
Capitulo 3.

A idéia central da abordagem CCH é que a utilizagio de Cell/Color histograms im-
plica em uma representacio mais compacta e flexivel que a utilizacdo de histogramas de
cor locais (LCHs). O ganho em termos de espago baseia-se no fato de que apenas um
subconjunto reduzido de cores estad presente na maioria das imagens. A abordagem CCH
descreve a distribuigio espacial de cada cor nas particdes da irnagem, ao invés de descrever
a distribuicdo de cores em cada particio individualmente. Essa representacao alternativa
¢ mais compacta porque evita a representacao da distribuicdo espacial de cores que nado
estao presentes nas imagens ou de cores que, intencionalmente, nio se deseja representar
(por exemplo cores presentes em um numero “desprezivel” de pixels). Adicionalmente,
¢ proposta uma generalizagio da funcio de distdncia L, (City-block) para comparar os
histogramas utilizados na abordagem CCH.

Qutra contribuicdo desse trabalho € a metodologia de avaliagio de efetividade discutida
na Secao 3.3. Nessa secdo, sao fornecidas algumas diretrizes para se realizar a avaliacao
de efetividade em sistemas para CBIR. Dentre os requisitos discutidos estdo: (1) uma
colecio de imagens que seja representativa do universo a ser investigado; (2) um conjunto
de imagens consulta que seja representativo da colecio de imagens utilizada; (3) o conjunto
de imagens aceitas como relevantes para cada imagem consulia utilizada; (4} wmna medida
de efetividade coerente com os critérios de avaliacao adotados. Em particular, é proposta a
medida de efetividade 6,4. Essa medida é uma variagio da medida de precisio média [17]
que tem por objetivo normalizar os resultados de efetividade de acordo com caracteristicas
implicitas da metodologia de avaliacdo adotada. A normalizagdo dos resultados baseia-se
no uso de uma abordagem de referéncia.
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Os experimentos descritos no Capitulo 3 basearam-se em uma colecio de 20.000 ima-
gens heterogéneas, no espago de cores RGB ¢uantizado uniformemente em 64 cores e em
15 umagens consulta. Para cada imagem consulta, o conjnnto de imagens consideradas
relevantes fol determinado ¢ priori. A efetividade das abordagens foi medida utilizando-se
graficos de Precisdo vs. Revocacdio (PxR) e também a medida 6, mencionada acima.

Um experimento preliminar envolvendo a nossa colecio de 20.000 imagens {discutido
na Secao 3.1) mostrou que, em média, cada imagem da colecao é formada por 29 das 64
cores possiveis. Também fol observado que 90% do contendo de uma imagem poderxa ser
descrite (em média) utilizaudo-se apenas 9 das 64 cores possiveis,

O experimento descrito na Secgo 3.4.1 comparou a abordagem CCH com 3 outras
abordagens para a recuperacac de imagens baseada na informacio de cor discutidas na
Segio 2.6 (GCH, CCV e Grid). Duas das abordagens comparadas eram globais (GCH,
CCV) e a outra era uma abordagem baseada em particionamento {Grid). Os resulta-
dos confirmaram que as asbordagens baseadas em particionamento, apesar de utilizarem
consideravelmente mais espago para representar asg imagens, também oferecem ganhos
em termos de efetividade. Também foi observade gque a abordagem CCH foi tao efetiva
quanto a abordagem Grid porém, como esperdvamos, com uma substancial reducdo de
55% no espago utilizado para representar as caracteristicas visuais extraidas das imagens.

O experimento descrito na Segho 3.4.2 avaliou o compromisso entre espago utilizado
e efetividade variando-se o numero de células do particionamento espacial. Como es-
perdvainos, quanto maior o ndmero de células, maior a efetividade e maior o espago
utilizado. O experimento descrito na Secdo 3.4.3 investigou o compromisso entre espago
utilizado e efetividade quando o conteddo das imagens é parcialmente representado. Foi
observado um grande ganho de espago (sem comprometer sensivelmente a efetividade)
quando apenas cerca de 90% do conteddo das imagens foi represeutado. Finalmente, o
experimento descrito na Secdo 3.4.4 combinou algumas configuractes dos experimentos
anteriores para demonstrar a flexibilidade da abordagem CCH. Os resultados mostraram
que, utilizando-se uma particiio espacial de 8 x8 células e representando 100% do conteddo
das imagens, a abordagem CCH e 130 efetiva quanto a abordagem Grid, com a vantagem
de utilizar 55% menos espaco. Também foi observado que, utilizando-se uma particio
espacial em 3 x 3 células e representando-se 80% do contetdo das imagens, a abordagem
CCH utiliza menos espago que um GCH e, ainda assim, conseguiu ser 43% mais efetiva.
Qutros resultados intermedidrios também foram analisados.

1.6.3 CBC - Color-Based Clustering

Em [100], nds propusemos e avaliamos o CBC (Color-Bused Clustering), uma nova abor-
dagemn regional para a recuperacio de imagens baseada em informacio de cor. O CBCé
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formalmente apresentado no Capitulo 4.

O CB(segmenta linagens automatica e eficientemente utilizando uma técnica de agru-
pameuto de pixels baseada em informacio de cor. O algoritmo de agrupamento utilizado €
automatico, tem uma lnplementacio eficiente e é independente do dominio das imagens,
permitindo sua aplicacio em grandes colegbes de imagens heterogéneas. Foi utilizada uma
variagao do algoritmo de single-linkage [31] cuja complexidade computacional é O(nlogn),
onde n € o mmero de pixels da imagem de entrada. Os pixels sao agrupados até gue a
disténcia intergrupos exceda um Hinite dp. As regides obtidas apés a aplicacdo do algo-
ritino de agrupamento sao disjuntas, couexas e tém um tamanho minimo definido por um
pardmetro sg. O ndmero de regifes obtide ao final do processo depende dos parimetros
dy & sg, e do coutetdo visual de cada imagem.

Para cada regiio obtida é extraido wmn vetor de caracteristicas que armazena a cor
média da regido, seu tamanho (mimero de pixels), e as coordenadas espaciais do seu centro
geométrico. O tamanho e as coordenadas do centro de cada regido sado normalizados em
relacio ao tamanho e 3s dimensdes da imagem. Dessa forma, uma imagemn € representada
por uin conjunto de vetores, um para cada regiao segmentada.

A comparagao de duas imagens na abordagem CBC é realizada regido por regido.
Comio o numero de regiGes de duas imagens pode ser distinto e as regices obtidas com
o algoritmo automadtico de segmenta¢io sido apenas wma aproximacio dos objetos que
compdem uma imagem, nds idealizamos uma funcgio de distincia que contorna essas
aproximagoes. A funcio de distncia proposta é uma composicao ponderada da distdncia
entre pares de regides. As regibes (reais) das imagens sd0 decompostas em regides virtuais,
de forma que as duas imagens comparadas passam a ter o mesmo ndmero de regides
virtuais, existindo um casamento 1 para 1 entre as regides virtuals das duas imageuns.
Duas regides casadas possuem sempre o mesmo tamanho (que é utilizado como peso
na obtencdo da distincia final entre as imagens). Por coincidéncia, enquanto o artigo
que propunha o CBC estava sendo avaliado para publicacao, foi publicado um outro
artigo que propunha uma distincia para comparacio de imagens segmentadas denominada
IRM {Integrated Region Matching) [58]. Apesar da formulagdo distinta, a distincia JRM
se mostrou equivalente & distdncia que estdvamos propondo, limitando assim a nossa
contribuicio. _

Os resultados experimentais descritos na Secao 4.3 comparam ¢ CBC comn cinco outras
abordagens para CBIR discutidas na Secio 2.6: trés abordagens globais (GCH, CMM e
CCV), e duas abordagens baseadas em particionamento (Grid e CCH). O CBC foi investi-
gado com trés combinacdes distintas de pardmetros, cada uma das trés resultando em um
namero diferente de regides por imagem. As abordagens foram comparadas em termos de
espago utilizado e efetividade. Os experimentos basearam-se emn duas colecoes de imagens,
uma com 1023 imagens e a outra com 20.000 imagens heterogéneas. Foram utilizadas 28
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imagens consulta. Para cada imagem consulta. o conjunto de imagens consideradas rel-
evantes fol determinado a priori. A efetividade das abordagens foi medida utilizando
gréficos de Precisio vs. Revocaclo (P x R) e também a medida de rank médio normal-
izado — NovgR', uma variagio simples da medida de efetividade proposta no contexto do
projeto QBIC da IBM [32].

OUs experimentos mostraram que, dentre as abordagens globals, o GCH tem o8 mel-
hores resultados de efetvidade, enguanto o CMM, a menor utilizacho de espaco. Também
foi confirmado que o CCH que propomos no Capitulo 3 é mals eficiente e utiliza menos
espago que o Grid. Apesar de mals efetivo que o GCH, o CCH utiliza bem mais espago
por representar ¢ contendo de cada célula individualmente. Ag trés variaches da abor-
dagem CBC se mostrarain mais efetivas que a abordagem CCH (a mais efetiva dentre as
abordagens existentes que foram comparadas), mais robustas em relagio ao crescimento
da colecio de imagens, e também mais compactas em termos de utilizacdo de espaco.
A configuracdo com um ulmero intermedidrio de regibes mostrou ¢ melhor compromisso
entre sspacoe utilizado & efetividade,

1.6.4 MiCRoM — Minimum-Cost Region Matching

Recentemente, diversos sisiemas para CBIR baseados em técnicas de segmentacdo de
imagens tém sido propostos. Nesses sistemas, as imagens sao segmentadas e represen-
tadas por um conjunto de regioes, e a comparacdo das imagens é feita de acordo com
as caracteristicas visuais extraidas de cada regido. Um problema claro nesse tipo de sis-
tema é a funcao de distancia usada para comparar imagens segmentadas. Em geral, as
fungbes existentes sdo ndo-métricas, dificultando a utilizacio de técuicas de filtragem e¢/ou
métodos de acesso para acelerar o processamento das consultas. Com o objetivo de con-
tornar essa linitacio, nés propusemos MiCRoM { Minimum-Cost Region Matching), una
funcao métrica para a comparacdo de imagens segmentadas [102]. A funcho MiCRoM é
formalmente apresentada no Capitulo 5.

A funcio MiCRoM é uma extensdo da funcdo nio-métrica que propusemos em [100] e
que, na verdade, se mostrou equivalente & funcdo fRM utilizada no sistema SIMPLIcity
[58]. A funcdo MiCRoM fornece a distancia Stima entre duas imagens (de acorde com
a modelagem do problema adotada) que a abordagem gulosa utilizada na funcio JAEM
alguns vezes ndo consegue obter. A funcio MiCRoM modela a comparagio de imagens
segmentadas como um problema de fluxo de custo minimo em redes [2]. Mais especifica-
mente, a comparagdo de imagens é modelada como o problema do transporte.

O problema do trausporte é wmn problema de programacio linear com uma estrutura
bastante especifica {2]. Por causa disso, ¢ possivel utilizar algoritimos especializados que
encontram a solucio para esse tipo de problema de forma mauito mais eficiente que al-
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goritmos convencionais de programacao linear. Existem intimeros algoritmos eficientes
para solucionar o problema do transporte. No nosso caso, nés atilizamos o algoritmo C52
proposto por Cherkassky e Goldberg® [36].

Os experimentos desse trabalbo basearam-se em uma colecio com 20.000 imagens
heterogéueas e em 18 imagens consulta. Nesse trabalho, nds passamos a determinar o
conjunto de imagens relevantes {RRSet) para cada consulta utilizando wmna téenica de
pooling similar Aquele utilizada nas conferéncias TREC [115, 118]. As imagens relevantes
para uma consulia sdo extraidas de um conjunto de imagens candidatas. Esse conjunto
de candidatas € compostco pelas 30 primeiras imagens retornadas por cada abordagem
investigada 1o estudo comparative em questdo. As imagens candidatas sdo visualmente
inspecionadas para se determinar a relevincia de cada uma. O subconjunto de imagens
relevantes passa a ser o RRSet da consulta em questdo. A efetividade das abordagens foi
medida utilizando-se graficos de Preciso vs. Revocagio P x A.

Nos experimentos descritos na Segdo 3.2, nds comparamos as distiacias [RM e Mi-
CRoM utilizando imagens segmentadas com ¢ CBC {descrito na secho amterior). Os
resultados mostraram que a distancia MiCRoM € ac menos tao efetiva quanto a distancia
IRM. Esse resultado comprova que a estratégia gulosa adotada pela JRM funciona muito
bem, pois os resultados de efetividade sdo quase ta3o bons guanto os resultados obtidos
com a MiCRoM (versdo Stima da distdncia IRM). A vantagem da MiCEoM é ser uma
funcdo métrica que permite a utilizacdo da propriedade da desigualdade triangular para
acelerar o processamento de consultas.

Os experimentos descritos na Se¢do 5.3 avaliam a utilizacio de umna técnica de filtragem
baseada na propriedade da designaldade triangular para acelerar o processamento de
consultas. A técnica de filtragem utilizada foi proposta por Santos et al [84]. A utilizacio
da filtragem permitiu reduzir em 2/3 o tempo gasto para se realizar uma busca pelos 100
vizinhos mais préximos de uma imagem.

1.6.5 BIC — Border/Interior Pixel Classification

Em [101] nds propusemos BIC (Border/Interior Pizel Classification), wma nova abor-
dagem para a recuperagac de imagens por contetido em grandes colecoes de imagens
heterogéneas. A abordagem BIC é formalmente apresentada no Capitulo 6.

O foco da abordagem BIC é a simplicidade. Nossa experiéncia com a abordagem CBC
e a distancia MiCRoM nos ensinou que, no contexto de imagens heterogéneas, tanto a
segmentacio automdtica quanto a comparacio de imagens segmentadas sdo problemas
bastante dificeis. Com o objetivo de manter as solugdes para esses problemas tratdveis
do ponto de vista computacional, fol necessario introduzir virios tipos de simplificacoes

Thitp://www.intertrust.com/star/goldberg /soft. html
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gue, como nao poderia deixar de ser, tém impacto direto na efetividade do sistema.
Nesse sentido, a abordagem BIC representa uma alternativa diferente para o problema
de recuperacdo de imagens por contetdo. Ao invés de utilizar técnicas sofisticadas cujos
resultados precisam ser relaxados para serem trativeis do ponto de vista computacional,
a abordagem BJC utiliza técnicas simples {porém poderosas) cujos resultados podem
ser preservados (sem simplificacbes) duraunte todas as etapas do processo de recuperagéo
de imagens por contetido. A abordagem BIC tem tr8s componentes principais: (1) um
algoriting simples, eficiente ¢ poderoso para a andlise do contetdo visual das jmagens, {2}
uma nova funcio de distancia logaritmica para a comparagao de histogramas de cores e
(3) uma representacdo compacta para as caracteristicas visuais extraidas das imagens.

O algoritmo de analise de imagens da abordagem B1C utiliza o espago de cores RGB
uniformemente gquantizado em 4 x 4 x 4 = 64 cores. Apos a guantizacio do espago de
cores, é feita uma classificacio bindria dos pixels da imagem de entrada. Cada pixel é
classificado em borda ou interior. Umi pixel é considerado borda se ao menos vm de seus
quatro vizinhos (superior, inferior, direito e esquerdo) possui uma cor guantizada diferente
da sua. Caso contririo, o pixel é classificado como interior. Apds a classificacdo dos pixels,
s80 calculados dois histogramas de cores: um considerando-se apenas pixels classificados
como borda e ¢ outro, considerando-se apenas pixels classificados como interior.

A classificacio dos pixels em borda/interior permite analisar o conteido das imagens
em termos (1) do tamanho das regides conexas (regides grandes possuem mais pixels de
interior enquanto regides pequenas possuem mais pixel de borda), (2} da forma das regides
conexas (regides com forma regular possuem mais pixels de interior enquanto regides com
forma irregular possuem mais pixels de borda) e (3) da homogeneidade das regides (regides
planas possuem mais pixels de interior enguanto regides de textura possuem mais pixels
de borda). O grau em que cada uma das propriedades acima ¢ verdadeira depende da
proporcio entre pixels de interior e de borda e também da porcao da imagem coberta por
cada uma das cores.

Os histogramas que representam as imagens na abordagem BIC sic comparados
utilizando-se uma nova distancia & qual denominamos dlog. A funcdo dlog, ao nvés
de calcular a diferenca entre os elementos do histograma diretamente, calcula a diferenga
entre o log desses elementos. O objetivoe é reduzir o efeito negativo introduzido por um
tinico elemento do histograma com um valor muito alto. Um xinico elemento do histograma
com um valor muito alto domina a diferenca entre histogramas mas, em geral, esse ele-
mento estd associado ao fundo da imagem {(background) o qual possui pouca informacio
semantica e, como conseqiidncia, possui pouca importincia semantica ne julgamento de
similaridade feito pelo usuéario.

A utilizacdo da funclo dLog para comparar histogramas, além de aumentar a efetivi-
dade do sistema, permite armazenar os histogramas em metade do espago originalmente
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necessdrio. Essa redugao € possivel armazenando-se o log dos elementos do histograma
30 invés do valor original. No caso da abordagem BJC (tal como propusemos), é possivel
representar o conteddo visual de gualquer imagem em apenas 64 bytes de memdria. Como
consegiiéncia, é possivel manter emn memdria as caracteristicas visuais de grandes colegies
de imagens, eliminando completamente a necessidade de métodos de acesso a disco para
agilizar 0 processamento de consultas visuais.

Os experimentos desse trabalho basearam-se em uma colecio com 20.000 imagens het-
erogéneas e em 50 imagens consulta. Assim como discutido na Secdo 1.6.4, o conjunto de
imagens relevantes (RRSet) para cada cousulta foi determinado utilizando-se uma técuica
de pooling similar aquela utilizada nas counferéncias TREC [115, 118]. A efetividade das
abordagens comparadas fol medida utilizando-se 11 medidas diferentes. Foram utilizadas
duas medidags em forma de gréficos ( P x R e # x A}, ¢ nove outras medidas que resultam,
cada uma delas, em um Gnico valor para a efetividade de wm sitema (P(r), P{30), R(30),
P(100), R{100}, 8P-Precision, e 11P-Precision). A medida de § x B é wma variacio da
medida de P x R que nés propusemos e que acreditamos ser mais adequada ao contexto
de recuperacdo de imagens por coutetdo, além de ser mais facilmente interpretada.

Na Secio 6.3, a abordagemn BIC é comparada com quatro outras abordagens, o CBC
descrito na Segao 1.6.3, uma abordagem baseada em particionamento (Grid 9) e duas
abordagens globais (GCH e CCV)}. Os resultados de 11 medidas de efetividade confirmam
que a abordagem BI( é consideravelmente mais efetiva que as demais, incluindo o CBC.
Além de ser mais efetiva, a abordagem BIC € também mais compacta e mais eficiente.

Um segundo experimento avaliou a utilizacio da distancia dLog em virias abordagens
baseadas em histogramas de cores. Em todos os casos, houve um ganho sensivel de
efetividade em comparacao com a utilizacio da funcdo L;. Além do ganho de efetividade, a
utilizacdo da funcfo dLog permite reduzir pela metade o espaco necessdrio para armazenar
os histogramas. Nenhuma das abordagens existentes {mesmo utilizando a funcdo dlog
para comparar histogramas) conseguin ser melhor que a abordagem BIC, sugerindo que,
embora a funcdo diog tenha uma contribuiclo importante na efetividade da abordagem
BIC, o algoritmo de andlise de imagens proposto é capaz de fazer a diferenca em relagio
as abordagens investigadas.

1.7 Organizacao da tese

O restante desta tese, com excegdo do Capitulo 7 (Conclusdes e trabalhos futuros), estd
escrito em inglés. O conteddo de cada capitulo baseia-se em wm artigo publicado em
periddico, conferéncia ou livro internacional. O conteddo de cada capitulo foi adaptado
para evitar redundincia em termnos de conteido com os capitulos anteriores, Quando
relevante, foram acrescentadas algumas informacbes que nfo estdo presentes nos artigos



1.7. Organizacac da tese 19

originais por causa de restricdes de espace. O restante da tese estd organizado como se
segue,

O Capitulo 2 identifica, classifica e descreve as principais técnicas e sistemas para a
recuperacgio de imagens baseada em informacao de cor [103]. S&o discutidos os espagos de
cores (Secdio 2.1}, técnicas para a reducio da informagio presente nas imagens (Secio 2.2),
representactes para a informacio de cor {Secdo 2.3}, fungdes de distdncia para a com-
paragio das caracteristicas visuals extraidas das imagens (Secdo 2.4), técnicas de filiragem
¢ métodos de acesso para reduzir o tempo de busca quando umsa consulta visual € pro-
cessada {Seclo 2.5}, sisternas existentes para a recuperacdo de imagens por counteido
(Secdo 2.6), e métodos e medidas para a avaliacio de efetividade (Secdo 2.7).

O Capitulo 3 descreve e avalia wma representacio alternativa e mais compacta para
abordagens de recuperacdo de immagens baseada em particionamento denominada Cell/Color
histograms — CCH (99, 104]. O CCH é proposto na Segio 3.1. A Secfic 3.2 apresenta uma
generalizacdo da funcdo de distancia Ly {City-block) para comparar os histogramas utiliza-
dos na abordagem CCH. Uma nova metodologia para a avaliagio de efetividade e também
uma nova medida denominada 6., sfo discutidas na Secdo 3.3. Os resultados experimen-
tais s30 apresentados e discutidos na Seco 3.4. A Seclo 3.5 apresenta as conclusfes do
capitulo.

O Capitulo 4 descreve e avalia wma nova abordagem regional para a recuperacio de
imagens baseada em informacio de cor denominada CBC (Color-Based Clustering) [100].
O algoritmo de agrupamento utilizado para segmentar as imagens é descrito na Secdo 4.1,
e a funcdo de distdncia utilizada para comparar as caracteristicas visuais extraidas das
imagens é descrita na Secio 4.2. Os experimentos sfo detalhados na Secdo 4.3 e os
resultados experimentais sdo discutidos na Segao 4.4. Finalmente, a Seciio 4.5 apresenta
as conclustes do capitulo.

O Capitulo 5 descreve e avalia MiCRoM (Minimum-Cost Region Matching), uina nova
funcdo métrica para a comparaclo de imagens segmentadas [102]. A funcio MiCRoM é
formalmente descrita na Secéo 5.1. A efetividade da fungdo MiCRoM é comparativamente
avaliada na Secfo 5.2. A utilizacdo da propriedade da desigualdade triangular para acel-
erar o processamento de consultas visuals € avaliada na Secdo 5.3, A Seclo 5.4 apresenta
as conclusbes do capitulo.

O Capitulo 6 descreve e avalia BIC (Border/Interior Pizel Classification), uma nova
abordagem para a recuperacio de imagens por conteido em grandes colecdes de imagens
heterogéneas [101]. A abordagem BIC tem trés componentes principais: (1) um algoritmo
simples, eficiente e poderose para a andlise do contetddo visual das imagens descrito na
Secdio 6.1.1, (2) uma nova funcdo de distincia {denominada dLog) para a comparacao de
histogramas de cores descrita na Secio 6.1.2 e {3) uma representacdo compacta para as
caracteristicas visuais extraidas das imagens que é descrita na Segdo 6.1.3. Os experimen-
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tos sdo detalhados na Secdo 6.2 e os resultados experimentais s&o discutidos na Secho 6.3
Finalmente, a SecBo 6.4 apresenta as conchisdes do capitulo.
(O Capitulo 7 apresenta as conclusdes da tese e identifica trabalbhos futuros.



Capitulo 2

Color-based Image Retrieval

This chapter® discusses techniques for color-based image retrieval, focusing in the five most
important issues that have to be addressed in order to achieve color-based image retrieval:
{a} what color-space we should use to describe, analyze and compare tmages; (b} how to
describe images based on their color distribution and the spatial distribution of colors; (¢}
how to represent the image coutent (i.e., visual features) in an image database; {d} what
distance function should be used to measure the similarity between two images based
on their visual features; and (e) which access method should be used to speedup query
processing. In addition, existing color-based image retrieval approaches are discussed
and classified into global, partition-based and regional, according to the representation
adopted for the color distribution of the images.

Image databases are becoming more and more common in several distinct applica-
tion domains, such as (multimedia) search engines, digital Hbraries, medical and geo-
graphic databases and criminal investigation. The evolution of techniques for acquisition,
transmission and storage of images has also allowed the construction of very large image
databases. All these factors have spurred great interest in image retrieval techniques.

Image retrieval is performed based on short descriptions of the images. Images may
be described by a set of content-independent attributes (file name, format, category,
size, author’s name, input device, date of creation and network/disk location) that can
be managed through conventional database management systems - DBMS. The main
drawback of this approach is that the allowed queries are limited to those based on
the existing attributes. Another alternative is to use keywords or annotations, such that
images can be retrieved by traditional information retrieval techuiques {IR). This approach
is less restrictive than the previous ome, but it still has problems like incompleteness,
subjectiveness and the drawback of manually annotating each individual image.

*The content of this chapter will be published as a chapter in the book entitled “Multimedia Mining
~ a Highway te Intelligent Multimedia Document” [103].
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A more adequate alfernative to image retrieval cousists of using low-level image fea-
tures like color and texture to represent, compare and retrieve images. This approach is
called content-based image retrieval — CBIR, nowadays an area of active multidisciplinary
research. A typlcal application for CBIR techniques is a World-Wide-Web (WWW) mul-
timedia search engine. The visual content of the WWW is a good example of a large and
heterogeneous image database, in the sense that the images belong to several distinct,
non-related semantic and visual domains. In this context, it is not possible to assmmne
or use any o priori knowledge about the visual content of the images during the image
analysis step. Moreover, the cost of using semi-automatic image analysis techuigues is
prohibitive. In this scenario, low-level features related to the visual content of the images,
such as color, are useful {o represent and compare images automatically.

In fact, color is the most commonly used low-level feature in CUBIR systems. Some
possible reasons for this fact are that {1} color is a feature which is immediately perceived
by humans when looking at an image, (2 the concepts involved are easy io understand
and to implement, {3) color is an important visual feature in the large majority of image
domains and (4) the results obiained by using color information are often satisfactory.

Despite the importance of describing images at different levels, using distinet visual
features and retrieval techniques, this chapter is mostly concerned with color-based image
retrieval, an important component in many image retrieval systems. As it shall become
clear from our discussion, retrieval of images according to color properties is inherently
different from, and more complex than, retrieval of well-structured (traditional) data.

Figure 2.1 shows a schematic representation of an image being inserted into an image
database. After a new input image is given (in its pictorial form), its visual content (e.g.,
color distribution and spatial distribution of colors) is analyzed and summarized accord-
ing to a predefined color-space. Compact representations are chosen for the information
obtained during the image analysis step. The representation of the image’s visual content
is then inserted into an index structure, useful to reduce the search space at guery time
and, consequently, the query processing time. The index structure is based on the image
representation and uses the properties of a distance function (used to measure the simi-
larity of two images) to reduce the search space. As well, the visual features of the input
image are stored in the image database.

According to the schema above, we consider the existence of five most important issues
that have to be addressed in order to achieve color-based image retrieval, each addressed
in a forthcomning section: {(a} what color-space we should use to describe, analyze and
compare images (Section 2.1}; (b) how to describe images based on their color distribution
and the spatial distribution of colors (Section 2.2); (¢} how to represent the image content
(visual features) in an image database (Section 2.3); (d) what distance function should
be used to measure the similarity between two images based on their visual features
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Image Database

Visual Features

Image Analysis Index Structure

Figure 2.1: Schematic representation of an image being stored in an image database

(Section 2.4); and (e} which access method should be used to index the visual features
{Section 2.5).

In addition, Section 2.6 discusses some existing approaches for color-based image re-
trieval. We use the representation adopted for the color distribution to classify the ap-
proaches in global, regional and partition-based. Section 2.7, presents a discussion about
retrieval effectiveness evaluation (i.e. how to evaluate the user’s satisfaction with the
retrieved images), which is a complex problem shared by all kinds of CBIR systems.

2.1 Color-spaces

Color information in digital images is found at pixel level. The color of a pixel is rep-
resented by three values, one for each channel of the chosen color-space. In essence, a
color-space is a specification of a 3D coordinate system and a subspace within that system
where each color is represented by a single point [37]. The choice of a color-space where
images will be represented, analyzed and compared is the first step in any color-based
image retrieval system. Existing color-spaces can be classified in three main categories:
{1) hardware-oriented, (2) user-oriented and (3) uniform color-spaces.

Hardware oriented models are defined according to properties of the devices used
to reproduce the colors {computer screen, color printer, TV monitor, etc). The best
known and used color-space is a hardware-oriented model known as RGB (Red, Green,
Blue) [13, 37, 61]. The RGB color-space is device-dependent, i.e., the displayed color
depends not only on the RGB values, but also on the device specifications. It is also not
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perceptually uniform, in the sense that the differences between RGEB colors do not reflect
the differences perceived by humanps. The RGB color-gpace is a cube as shown on the left
of Figure 2.2, where the main diagonal represents the gray values from black to white,
and any point (color) inside the cube is represented by a weighted sum of red, green, and
blue.
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Figure 2.2: The RGB and the CIE Lab color-spaces

Uniform color-spaces are spaces where the numerical differences among colors are
consistent with the differences perceived by humans. Examples are the Lab and Luv
color-spaces of CIE [13, 61]. CIE Lab model represents the differences of three elementary
pairs: red-green, yellow-blue and black-white. Thus, as shown on the right of Figure 2.2,
the ¢ axis of the CIE Lab color-space extends from green (—a) to red (+a) and the b axis
from blue (—b) to yellow (+b). The brightness (L) increases from the bottom to the top
of the three-dimensional model. The most imuportant aspect of the CIE Lab color-space
is that it is device independent.

User-oriented color-spaces are based on human perception of colors [13, 61]. They
exploit characteristics that are used by humans to distinguish one color from another
such as hue (the dominaut wavelength that produces the visual sensation of red, yellow,
green and blue, or a combination of two of them), saturation (the purity of the color, that
is related to the standard deviation around the dominant wavelength) and intensity (the
brightness of the color, that is related to the amount of white in the color). Some examples
of user-oriented spaces are the HSI and HSV color-spaces. The HSV (Hue, Saturation,
Value) color-space, for example, is represented by a hexagonal cone (see Figure 2.3). The
vertical axis of this cone represents the gray values {or intensities) from black to white,
the angle around the vertical axis defines the hue, and the distance from the vertical axis
gives the saturation. The Hue values vary from [0,360] degrees, starting from red (0),
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through yellow (60), green (120), cvan {180}, blue (240), magenta (300} and back to red
(360=0). HSV is also an non-uniform color-space.
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240 360

Figure 2.3; The HSV color-space

2.2 Color-based image description

This section discusses technigues to describe the color information present in an image.
Color information in digital images could be represented at pixel level, but this approach
would make impractical CBIR systems. Suppose for example that each color channel of
the RGB color-space is represented using 8 bits, i.e., it is possible to represent 2° = 256
distinct levels for each color compounent, resulting in 256 x 256 x 256 = 16,777,216
distinct colors. Moreover, consider an image with spatial dimensions 300 x 300. This
means that there are 90,000 absolute spatial locations to be considered in a pixel-by-
pixel comparative analysis of two images. These two numbers (distinct colors and spatial
locations) are usually sufficiently large to preveut the comparison of images at the pixel
ievel.

Therefore. it is required a shorter description of the color distribution and the spatial
distribution of colors that provides efficiency and effectiveness in CBIR systems. The
color distribution indicates the percentage of each color in the image, while the spatial
distribution of colors indicates in what regions of the image a given color appears. These
descriptors can be further reduced in size by static or dynamic reduction methods. Static
methods uses a fixed scheme for every image, while dynamic methods exploit the visual
content of the image to produce shorter, more fexible and more robust descriptors.
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2.2.1 Static reduction methods

The stmplest scheme to reduce the number of colors present in an image is the use of
2 uniform and coarse quantization of each color chamnnel. For example, if instead of
using 8 bits to repressnt each color channel, it is used the two most significant bits {hence
uniformly quantizing each chanuel in 4 digtinct va' eg), it is obtained a total of 4 x4 x4==64
distinct colors. An advantage of the static quant.  :ion is that the obtained colors do not
need io be represented explicitly, since they can be derived from the guantization scheme.
it makes the comparison of images easier, because the mumber of colors and the colors
themselves are constant for all images.

The static and uniform quantization of a color-space has also well-known disadvan-
tages. One problem is that the colors present in ap image are not necessarily uniformly
distributed in the color-space. Another problem is that it is difficult to obtain an adeguate
compromise about the granularity of the quantization. It should be fine enough in such
2 way that perceptually distinct colors are not classified together, but coarse enough to
drastically reduce the number of distinct colors present in the hmage. Finally, uniform
quantization is 1ot appropriate for non-uniform color-spaces such as RGEB and HSV, since
simnilar colors may be separated and non-similar colors classified together.

An alternative to avoid the static quantization step is to reduce the color information
by computing statistics about the color distribution such as average color. Such methods
have the advantage to be computationally simple, to result in very compact descriptors,
and to provide an efficient way for image comparison. However, their effectiveness is usu-
ally low because images composed by completely different colors might result in identical
statistics.

Static quantization schemes can also be used to reduce the color spatial distribution.
This corresponds to reduce the image resolution by pixel resampling, or the most common
approach, by superimposing a grid of rectangular-cells over the image such that the color
distribution of each cell is computed individually. Image partitioning is an important
factor to determining the functionality and the efficiency of CBIR systems [94]. For
instance, by breaking the images into smaller, more manageable units, it usually becomes
easier for the systems to compress, store, access and retrieve the image data. However,
no single partitioning scheme is known to be optimal for distinct CBIR applications.

2.2.2 Dynamic reduction methods

Dyunamic reduction methods exploit the visual content of the images to reduce simmltaue-
ously the number of distinct colors and the number of spatial locations in an image. These
methods rely on Image segmentation technigues that group together neighboring pixels
with similar colors. Each group represents an image region whose color is the average
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color of its pixels. In this way, the number of distinct colors present in the original image
is reduced. Simultaneously, the image is segmented into regions with high degree of color
similarity and well-defined spatial location, size and shape. These characteristics are more
compact and meaningful than the spatial location of each individual image pixel.

In genperal, dypamic reduction methods make use of one of the following image seg-
mentation techniques: boundary detection [37], region growing [37], region splitting and
merging {37], deusity estimation [18, 78] and hierarchical clustering [5, 31, 45].

Boundary detection technigues assume that the transition between two regions can
be determined on the basis of visual property discoutinuities. In general they should
be followed by some kind of edge-linking algerithm. Region growing technigues start
with a set of seed points and, from these poiuts, grows regions by appending to each seed
point those neighboring pixels with similar color. Region splitting and merging techniques
subdivide an image into a set of arbitrary, disjoint regions, and then merge and/or split
the regions depending of the colors present in each region. Density estimation technigues
are based on the assnmption that the underlying data density is a mixture of g Gaussian
densities. The ¢ means and covariances of these Gaussiaus are estimated and the data
are partitioned among them to get regions.

Hierarchical clustering {5, 31, 45] are among the best-known clustering methods. There
are basically two types of hierarchical algorithms: agglomerative and divisive. Agglomer-
ative methods start when all pixels are apart, i.e., they start with »n singleton clusters.
‘Then in each step two clusters are merged until a stop criterion is satisfied (for example, a
predefined number of regions is obtained). A generic agglomerative clustering algorithia
is shown in Figure 2.4.

hggl~Clustering (k)
Consider n singleton clusters, one for each data element
Let ¥ =n.
If ¥ <k, then stop.
Find the nearest pair of distinct clusters, say A and O
Merge A and DB, delete D3, and decrement &' by one
Go to 3

U b W RN

Figure 2.4: Generic agglomerative clustering algorithm

Divisive methods start when all pixels are together and, in each following step, a
cluster is split up, until there are n of them. In the literature, hierarchical clustering is
usually meant to be agglomerative clustering. The main reason for this appears to be
the computational aspect [45]. In the first step of an agglomerative algorithm all possible
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fusion of two objects are considered, leading to C? = —n—‘{%ﬂl combinations. This number
grows quadratically with n. A divisive algorithm based on the same principle would start
by cousidering all divisions of the data set into two nonempty subsets, which amounts to
27— —1 possibilities. The latter number grows exponentially fast and even for medium-size
data sets, such a complete epumeration approach is computationally prohibitive.

When do (A, B) = min(d{4;, B;}) is used as distance measure between clusters 4 =
{Aj, Ao, . Ap} and B = {By, B, .., B,}, the resulting clustering algorithmu is often
called nearest-neighbor or the minimum algorithm. If it is terminated when the distance
between nearest clusters exceeds an arbitrary threshold, it is called the single-linkage
algorithm, which is the oldest and simplest agglomerative clustering algorithm. Figare 2.5
shows an image processed using two of the technigues described above (boundary detection
and hierarchical clustering).

After Edge=Detection After Clustering

Figure 2.5: An image after edge detection and hierarchical clustering

2.3 Visual features extraction and representation

Once we have chosen a short descriptor for the color information present in an image, the
next step in a color-based CBIR system consists of representing this information in the
image database. The stored information about the visual content of an image is what we
call its visual features. In this section, possible representations for the color infermation
are classified in global, partition-based and regional.

2.3.1 Global representations

Global representations describe the color distribution of the whole image, ignoring the spa-
tial distribution of colors. The most used global representation for the color distribution
of an image is the Global Color Histogram — GCH.
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A GCH is obtained by counting how many pixels of the image have each of the guan-
tized colors (obtained after a guantization step). It can be viewed as a k-dimensional
vector, where & is the number of colors represented by the histogram. Usually the pixel
count is normalized to avoid scaling bias. An example of global histogram is shown in
Figure 2.6.

iobal Gray—-ievel Histogram

0 i
Black White

Figure 2.6: An image and its global histogram

When used to represent non-uniformly quantized colors, GCHs are always dense vec-
tors, i.e., there is no histogram bins with zero value. Moreover, each quantized color
should be represented explicitly, and the dimension of the GCHs of two distinct images
can be different, as the number of colors obtained using non-uniform guantization schemes
depends on the visual content of each image.

When the GCH is used to represent uniformly quantized colors, there is no need to
represent colors explicitly, as this information can be derived from the quantization scheme
adopted. In this context, the existence of null bins within the histogram is common, i.e.,
it is common that an image be composed only by some of the quantized colors. In this
particular case, it is possible to apply compression technigues based on the existence of
null bins to reduce the space required to store GCHs.

2.3.2 Partition-based representations

Partition-based representations describe the color distribution of each cell of an image
individually. In this case, it is assumed that the image was statically partitioned into 2
set of rectangular cells, according to a predefined scheme. The color distribution of each
partition cell is described individually, by means of a Local Color Histogram — LCH, as
shown in Figure 2.7.

As the partition-scheme is independent of the visual content of the images, it is not
possible to assume that the colors of each partition cell are similar. In this case, the local
color histogram (LCH) representation seems to be more robust than the use of simple
statistics such as average color.
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Figure 2.7: An image partitioned in 4 cells and their respective local gray-level histograms

In partition-based representations, there is no need to siore spatial properties of the
partition cells such as size, shape and spatial location. This information can be easily
derived from the partition scheme adopted {which is common for every image).

2.3.3 Regional representations

Regional representations describe the color distribution of each image region individually.
The majn difference of regional and partition-based representations is that the regions of
an image are obtained dynamically, according to the visual content of the image. Ideally,
the obtained regions correspond to the high-level concepi of objects that an user can
easily distinguish when he/she looks at the image. Unlike partition cells, the regions of
an image have different size, spatial location and shape. This additional information can
be stored and used to increase retrieval effectiveness.

When the segmentation process is based solely on color properties, it is expected a
high degree of color-similarity among the colors present in a region. In this case, it is
possible to adopt simple statistic information {such as average color) to represent the
color distribution of each region.

2.4 Distance functions

An important aspect of any CBIR systern is the distance function used to compare the vi-
sual features extracted from images. The distance function affects directly the time spent
processing a visual query and the quality of the retrieval (effectiveness). The better the
distance simulates the human perception of similarity using the available visual features,
the more effective is the CBIR system in retrieving images relevant to the user’s needs.
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The computational complexity of the distance function is alse an important factor
when procsssing a visual query. Depending on the distance complexity, it is possible thas
the processing time to compute digtances between images dominates the time needed to
access the disk pages where the visual features are stored. The distance function also
restricts the universe of filtering techniques and/or access methods that can be used to
speedup guery processing.

If the visual features of an image are represented by k-dimensional vectors, these
vectors can be viewed as points in a k-dimensional space (each vector element corresponds
to a spatial coordinate). In this case, it is possible to use geometric distances of the [,
family to compare the visual features of two images. Suppose a = {a1,as,...ax} and
b= {b1,ba, ..., b} are two k-dimensioval vectors. The family of L, distances is defined as:

k
Ly(a,b) = (3 _ la: — &:#)7 (2.1)

i=i

Some well-known members of the L, family are the following distances:
o L (City-Block): Ly{a,b) = 3°F  la; — b

e L, (Euclidean): Ly(a,b) = (32, la; — bs[)1/2

» L. (Chebyshev): Lo(a,d) = mazt_ |a; — b;]

Figure 2.8 shows the set of poiuts (in a 2D vectorial space) at the same distance r
from a center point, according to each of the three geometric distances discussed above.

11 Lz Linf

Figure 2.8: Points at the same distance r from a central point according to distinct L,
distances

‘The advantage of modeling visual features in a vectorial space is that the geometric
distances used to compare two vectors are computationally simple. Moreover, as will
be discussed in Section 2.5.2, it is possible to use spatial access methods to speedup
query processing. However, it is not always possible or effective to model complex CBIR
systems in a vectorial space. This is the case in regional CBIR systems, where the number
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of regions of two lmages and their properties are not the same. In this case, a more
adequate alternative is to model the system using a metric space.

A metric space is composed by a set of elements {in our case, these elements are the
visual features stored in the lmage database} plus a metric distance to compare these
elements. In metric spaces, there is no restriction about the representation of the visual
features. In this case, what really matter are the properties of the distance used to
compare the visual features. A distance d that is used to compare images is considered a
metric if, for any images z, v and z, the following properties hold:

e Positiveness or minimality - d{w,y) > 0, for every z and y

e Symmetry - d(z,y) = d{y, z), for every z and v

e Reflexivity or séif—simiiari%y - dlz, z} =0, for every z

e Triangular inequality - d(z, y) < d{z, z) + d{z, y), for every =, v and #

A graphical representation of the triangular inequality property in a 2D vectorial space
can be viewed in Figure 2.9. It is important to notice that vectorial spaces are particular
cases of metric spaces. The triangular inequality property is the most important metric
axiom for indexing purposes, as this property is extensively used to reduce the search
space at query time, as discussed in the next section.

d(x.y)

Figure 2.9: A graphical 2D representation of the triangular inequality property

In the psychology literature, it has been found that some measwres used to model the
human perception of similarity contradict in different ways the metric axioms [83]. It is
believed that the metric axioms are too restrictive in the context of similarity search. One
of the most criticized metric axioms is the triangular inequality property, coincidentally
the most important axiom for indexing purposes [6, 71]. There are some alternatives to
deal with the limitations of the metric model such as the three ordinal properties (more
flexible than the metric axioms) proposed by Tversky and Gati [110], and a model based
on set-theoretic considerations known as Feature Contrast Model— FCM [109]. This model
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was recently extended by Santini and Jain [83] to include the use of fuzzy predicates. The
main disadvantage of using nou-metiric spaces is that, in this context, the indexing is an
open problem in computer science {Section 2.5.4).

2.5 Similarity search

Searching is a fundamental problem in computer science. However, searching for database
images which are similar or close to a given visual query is inherent different from the
exact-match search in traditional database systems.

The simplest algorithin for searching an image database is sequential scanning. In this
approach each image of the database is compared against the query image to measure
their similarity and select the images that should be returned. Although simple, this
approach is not viable for large image databases as the time spent processing a guery is
proportional to the database size, 1e., the sequential scanning approach does not scale
well.

There are basically two alternatives o reduce the complexity of the searching process.
One is the use of filtering techniques and the other is the use of access methods. Filtering
techniques are based on a simple distance that lower-bounds the original complex disiance
used to compare images. This distance is used to quickly filter out irrelevant images.
Ouly those images that could vot be filtered out (in general a much smaller subset of
the complete database) have to be compared using the more complex function. Access
methods may use more sophisticated combinations of techniques and data structures to
organize the visual features and manage the search process so that visual features relevant
0 a visual query can be located guickly. In access methods, the aim is to divide the search
space into several subspaces in a way that only a few of these subspaces need to be searched
when processing a visual query.

2.5.1 Filtering

Since effictent techuiques to cope with vector spaces exist, application designers try to give
their problems a vector space structure. Omne of the most common reductions consists of
mapping a general metric space into a vector space in such a way that each element of the
metric space will be represented as a point in the target vector space [84]. The two spaces
will be related by two distances, the original distance d(z,y} and the vectorial distance
do(x, v} which calculate the distance between poiuts in the vectorial space. Because of
the space reduction, some non-relevant elements {false-positives) can be captured in the
vectorial space when a query is processed. Thus, the result of a query processed in the
vectorial space generates a candidate list, whick should be analyzed using the original
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distance to eliminate false-hits. If the vectorial distance is a lower-bound for the original
distance, then it is guaranteed that the filtering process will not filter out relevant images
{false-tiegatives).

Axn example of the reduction discussed above is the use of the average color as g filter
for color histograms. As the comparison of average colors is much more efficient than
the comparison of color histograms, it is possible to quickly eliminate the majority of the
non-relevant images using this simple filter. Only the lmages in the candidate-list should
be compared using their color histograms.

More general filtering techniques define & images of the database as reference, compute
and store the distances between the database images and the reference images as k-
dimensional vectors (which represent points in a vectorial space) and then, use a simple
and efficient geometric distance to filter out von-relevant images in the vectorial space,
generating 2 candidate list. It is important to observe that this approach implies In
additional overhead to compute the coordinates of the images in the projected vectorial
space and also additional overhead to store these new coordinates. Santos et al [84] discuss
how to define the best number of reference objects {spatial dimensions in the projected
vectorial space) and present an efficient algorithm to find out good reference objects based
on the concept of intrinsic dimension [20].

Filtering techniques make extensive use of the triangular inequality property to elim-
inate non-relevant images without computing the original distance between images, re-
ducing the CPU time required to process a visual query. However, the number of disk
accesses (I/Os) remains approximately the same, as the whole database should be com-
pared in the vectorial space. One alternative to reduce the number of 1/Os to process
a query is to index the vectorial space using a spatial access method (SAM). A SAM
reduces the comparison of images only to those near to the query image in the vectorial
space, reducing the number of 1/0s to process a visual query. SAMs will be discussed in
next section.

2.5.2 Spatial access methods — SAMs

Spatial access methods (SAMs) [35] make extensive use of spatial coordinates to group
and classify points in the space. These methods are very sensitive to the number of di-
mensions of the vectorial space. This dependence is called the curse of dimensionality
[1, 12, 14, 35]. In general, when the vector space dimension is high, the use of dimensional-
ity reduction techniques is common. Some examples of these technigues are mathematical
transforms that preserve distance, like Karhunen Loeve, Discrete Fourier or Discrete Co-
sine [80]. These mathematical transforms map the original vectors into new vectors where
the information is ruore representative at the first coefficients. The indexing of only these
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first coefficients of the new vector reduces the dimensionality of the data at the cost of
introducing false-positives (because of the little loss of information related to coefficients
not indexed). These false-positives should be discarded in a post-processing step. A good
survey on SAMs can be found in [35]. Next we will briefly discuss some existing SAMs.

The MD*-tree [26] is an extension of the traditional B™-tree structure [27, 50, 103] to
support multiple dimensions and also similarity queries. The K-d tree [11] is a generaliza-
tion of a binary tree that uses k-dimensional vectors instead of a single-valued pumber.
The main problem of this structure is that it is not balanced and thus, its performance
depends on the order in which objects are inserted. The Grid-file method statically di-
vides a k-dimensional space into equal-sized bypercubes, and use these hypercubes to
reduce the search space [72]. The R-tree [40] and its most well-known variation, the R*-
tree [10], are height-balanced trees that dynamically decompose the space, and represent
this decomposed space into an hierarchical structure based on the notion of minimum
bounding rectungles ~ MBRs. An example of some MBRs and their organization into an
R-tree structure is shown in Figure 2.10. The SS-tree is a variation of a R-tree that uses
a sphere {instead of a rectangle) as 2 minimum bounding region [114]. The SR-tree is an-
other variation of the R-iree that uses a combination of spheres (compact representation
and bounding regions with smaller diameter) and rectangles (good in terms of volume at
the leaves of the tree} as bounding regions [44]. The TV-tree can also be considered a
variation of a R-tree [60]. In this structure, the minimum bounding region can be of any
shape, depending on the application. Moreover, the vectors are allowed to contract or
extend dynamically.

2.5.3 Metric access methods — MAMs

SAMs use the absolute spatial location of objects to partition and search a vectorial
space. However, this information is not available in a general metric space. In this case,
the only information available are the relative distances among objects. Because of this,
metric access methods (MAMs) aims to partition the data space in regions by choosing
representative elements and clustering the other elements around them [20].

MAMs can be classified in two main categories [20]: those based on discrete distance
functions and those that deal with continuous distances. They alsc can be classified as
static or dynamic, according to their support for insertion/deletion after the creation
of the index. We will focus our discussion in MAMs that support continuous distance
functions, as this is the case iu color-based image retrieval systems. Next we will briefly
describe some existing metric access methods. A good survey on this topic can be found
in [20].

The Vantage-point Tree (VPT) is a MAM that recursively builds a binary tree ac-
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Figure 2.10: An example of R-tree organization

cording to a representative object called vantage point [119]. Elements are put at the
left or right subtrees if their distances to the vantage point are smaller /higher than the
median of all distances. The Multi-Vantage-Point tree (MVPT) extends the previous idea
t0 mn-ary trees using m — 1 percentiles instead of just the median [13]. The Bisector-tree
(BST) is also a binary tree constructed using two points ¢ and ¢ called centers [43).
The elements closer t0 ¢y are stored at the left subtree and those closer to oo are stored
at the right subtree. For each of these poiuts, it is also stored its covering radius (the
mazximuin distance between the center and the elements in its associated subtree). The
Generalized-Hyperplane Tree (GHT) is similar to the BST. The main difference is that
it is used the hyperplane between ¢; and ¢, {instead of the query radius) as the pruning
criterion at query time [111]. The Geometric Near-Neighbor Access Tree (GNAT) extends
the GHT to an m-ary tree [16]. All MAMs discussed above are static in the sense that
they do not support insertions/deletions after the index is created.

The first dynamic MAM proposed was the M-tree [23]. The M-tree is an me-ary
height-balanced tree projected to reduce both 1/0O and distance computations. It aims
at combining advantages of balanced and dynamic SAMs with the capabilities of static
MAMs to index objects using features and distance functions that do not fit uto a vector
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space. The SLIM-tree is a variation of the M-tree that uses a new splitting algorithm
based on the concept of minimum-~spanning tree, and a wew algorithm to reorganize a
metric-tree in order to reduce the degree of overlap between nodes at the same tree level
[108].

2.5.4 Approximate and non-metric methods

Iu some applications, the precision of a gquery can be relaxed to reduce the query process-
ing time. The notion of ezact similerity search is replaced by the notion of approzimate
sinilarity segrch, based on approximate or probabilistic algorithms. There are also ap-
proximate methods for the indexing of non-metric spaces.

The defenders of approximate similarity search argument that this is just another
approximation step introduced into a process where there are several approximations: (1)
the visual features used to represent and compare images 1S an approximation of the visual
content of the images; (2) the metric space used to model the similarity between hmages is
an approximation of the human perception of similarity; (3) the retrieval threshold used
during a query processing is also an approximation for the similarity of relevant images.
In noun-critical applications, it is not necessary to pay the high price of an exact search,
as it is acceptable to miss a {small) fraction of the target objects introducing one more
approximation in a completely approximated process.

Approximate search algorithms make extensive use of clustering technigues to classify
similar objects together [51, 56, 71]. Some approaches like [51, 71] use the triangular
inequality to reduce the search space even if the distance used to compare two objects
does not satisfy this metric property. Other approaches perform only a local search in
the disk block where the guery objects reside. It is also common to use a traditional
access method like M-tree together with a precision parameter which controls the degree
of approximation used in the search algorithm [20].

2.6 Existing CBIR approaches

In this section, some existing color-based CBIR approaches are discussed and classified
into three main groups: (1) global approaches, {2} partition-based approaches and (3)
regional approaches. This classification is based on the representation adopted for the
color information present in an image, as discussed in Section 2.3.

The category of global approaches is, in general, the most efficient one in terms of visual
features extraction, space overhead, and comparisons of images. However, the absence
of spatial and topological information is an important limitation that affects directly
retrieval effectiveness. In the other extreme are regional approaches, based on complex
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image processing techniques {o decompose images into regions of high color-wise similarity.
These approaches require complex algorithms to extract visual features, use complex
distance functions to compare images and implies high space overhead. Nonetheless,
in general, the retrieval effectiveness is improved considerably. In between these two
categories are the partition-based approaches. These approaches decompose images using
a simple fixed strategy, usually based on a grid of rectangular cells superimposed over the
images. In general, both the efficiency and the effectiveness of partition-based approaches
are a corupromise between global and regional approaches. The main exception to this
rule is the space overhead, which is bound to be large for partition-based approaches.

Besides the tradeoff of efficiency and effectiveness, each of these categories has some
desirable characteristics and also important limitations. Not a single approach is the
best for all applications. For instance, in some specific situations, the use of a simple
global color histogram plus an L, geometric distance can be more effective than the use
of compiex regional approaches.

2.6.1 Global CBIR approaches

The most simple and well-known approach to color-based image retrieval consists in uni-
formly quantizing the RGB color-space {typically into 64 colors), representing the color
distribution of imnages by meauns of global color histograms — GCHs, mapping these GCHs
into a A-dimensional vectorial space, comparing the GCHs using the [y geometric dis-
tance, and indexing the obtained vectorial space using spatial access methods — SAMs.

The main advantages of this basic approach are that it is very efficient in terms of
vigual features extraction, representation and comparison, and the adopted representation
is also invariant to image rotation and translation. This invariance is a necessary condition
in some application domains. However, this basic approach has also many well-known
limitations.

The most important limitation of the histogram representation is that it does not
have any kind of information about the spatial distribution of colors. Images with very
different spatial layout may have similar representations, specially in large collections of
images. Another problem is that, although a histogram can be viewed as a k-dimensional
vector, there are correlations between the spatial coordinates of this vector, as the col-
ors represented by each histogramm bin have different degrees of color-similarity (color
crosstalk). Thus, it is possible that two images with similar (but not exactly the same)
colors have maximum distance according to a geometric distance between their color his-
tograms. There are also problems related to the color-space quantization and the storage
requirerents.

Oue alternative to deal with the color crosstalk phenomenon is to compare histograms
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using distances that exploit the correlations between histograms bins, such as the weighted
Euclidean distance [13, 81]. However, when this digtance is adopted to compare his-
tograms, it is not possible to index the visual features using SAMs, as these methods are
unable to treat correlations among spatial dimensions. In this case, one alternative to
index the visual features is the use of metric access methods — MAMs.

Another possibility to deal with the problem of color crosstalk is to exploit alternative
representations for the color distribution. Stricker and Orengo [106] proposed two of such
representations. The first one is the cumulative color histogram, which exploits the fact
that the color similarity between two nearby histogram bins should be bigger than the
color similarity between two further separated bins. The idea of cumulative histograms
was improved by Zhang et al [122].

The second approach presented by Stricker and Orengo [106], instead of representing
the complete color distribution, represents only iis dominant features, via the first thiee
moments of each color channel. This alternative representation also reduces considerably
the space overhead when compared to color histograms. Dimai [29] also proposed a
compact representation of colors which deal with the problem of colors crosstalk. In his
approach, an image is represented by its average color and the covariance matrix of the
color chanuels. The statistic methods discussed above have the advantage that they are
computationally simmple, and avoid the quantization of the color-space. However, images
composed by colors completely distinet can have the same color statistics.

The problem of color-space quantization is related to the fact that the uniform quanti-
zation of a non-uniforin color-space such as RGB is not the most adequate alternative, as
perceptually similar colors can be classified apart and non-similar colors grouped together.
One alternative to deal with this problem is the use of perceptually uniform color-spaces
such as the CIE Lab. Another possibility is the use of non-uniform guantization schemes
such as the ones proposed in [3, 88].

Chitkara [22] proposed a technigue to deal with the problem of the high storage re-
quirements of histograms. He observed that, after color gquantization, images usually
exhibit a low number of colors, and most of those cover less than 10% of the image area.
Assuming that the human visual perception of colors follows a log-like scale, he proposed
a non-uniform discretization of the GCH bins in order to encode each color bin into a bit-
string. A careful representation of those bit-strings may reduce significantly the GCH's
space overhead.

Finally, the problem of the lack of information about the spatial location of colors
was addressed by Pass et al [75]. They proposed classifying each pixel of a histogram
bin as either coherent or incoherent depending upon whether the pixel is part of a large,
connected, and similarly-colored region. The resulting structure is called Color-Coherence
Vector — CCV. With the same purpose, Chen and Wong [21] proposed an augmented
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color histogram that captures the spatial distribution of pixels in addition to the color
distribution. The spatial mformation is incorporated by computing features from the
spatial distance between pixels belonging to the same intensity color. The mean, variance
and entropy of the distances are computed to form an augmented image histogram.

2.6.2 Partition-based CBIR approaches

The basic partition-based image retrieval system comnsists in decomposing images using
a simple fixed strategy based on a grid of rectangular cells (3 x 3, 4 x 4) superimposed
over the images, in suck a way that all cells have the same size and do not overlap. The
color-space is uniformly guantized as in the basic global approach described in previous
section, and the visual content of each partition cell is described by means of a local color
bistogram - LCH. The distance of two images is computed as an average of the distances
between the LCHs of equivalent cells {cells at the same spatial position).

Like global approaches, the partition-based approaches vary in terms of the under-
lving color-space, the color-space guantization scheme, the chosen representation for the
color information an the distance used to compare images. However, in partition-based
approaches, there is also the possibility of exploiting alternative partition schemes. Al-
though the decomposed representation of the color information adopted in partition-based
approaches has the advantage to spatially locating colors inside the image, at the same
time, it introduces some new limitations related to the cell crosstalk phenomenon, to
the sensitivity to rotation and/or trauslation of images, to the sensitivity to the absolute
spatial location of image objects and finally to the increasing in space overhead when
compared to global approaches.

The main problem of our basic partition-based approach is that the distance between
distinct partition cells are not considered when comparing two images. So, it is possible
that two similar images whose objects are in different positions have the maximum possible
distance. This problem is similar to the color crosstalk phenomenon when comparing color
histograms; hence we call this the cell-crosstalk phenomenon.

The problems of cell crosstalk, sensitivity to image rotation and/or translation and
sensitivity to absolute spatial location of objects are all related and can be addressed in
two distinct ways. Oue alternative is to exploit more complex distance functions that,
instead of comparing only the corresponding cells between two images, perform a more
elaborate comparison in order to define the best matching of cells. One possible solution
to this problem is to compare the coutent of every pair of cells, weighting the distances
by the spatial distance between them. One such approach was presented by Wang [113],
where each cell of each image is modeled as a node in a bipartite graph with the edge
cost being the color-distance between cells. The best matching of cells is the solution of
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the corresponding assignment problem [52].

The second and more commonly used solution for the problem of cell crosstalk consists
of adopting a hierarchical representation of the spatial decomposition [38, 35, 64, 87]. In
general, this hierarchy is based on 2 quadiree structure [91]. At the top of the hierarchy,
there is a global representation of the image content that does not suffer from spatial
limnitations. At the second level, the image representation is decomposed in 2x2 cells. At
the third level, the representation is decomposed in 4x4 cells, and so on. The cells of
distinct levels have different sizes and overiaps, minimizing the spatial problerus identified
above. The comparison of two images is performed initially at the top of this hierarchy
and then refined in subsequent levels. The hierarchical representation of the partition
structure implies a great increasing in terms of storage requirements.

2.6.3 Hegional CBIR approaches

Hegional CBIR systems are based on segmentation techuiques to decompose lmages ac-
cording to their visual contens. The segmentation of the lmages is more fexible and robust
than the fixed scheme adopted in partition-based approaches. However, the comparison
of segmented images is a very difficult problem because of inaccurate segmentation [58],
an inherent characteristic of fully automatic regional CBIR systems. The most common
approach in regional systems is to compare the regions of the images individually, as in
Blobworld system [18]. Recently, in order to reduce the influence of inaccurate segmen-
tation, systems like SIMPLIcity [58] start comparing images according to the properties
of all segmented images, not only in a region-by-region basis. Next we will discuss the
characteristics of some existing regional approaches.

The IBM QBIC system [7] is based on a clustering process where two clusters of pixels
are merged if their routual rank falls bellow a predefined threshold. The mutual rank
of clusters P and Q is n + m, where @ is the n®* closest cluster to P and P is the m®™
closest cluster to ¢J. The distance between two clusters is measured as the Fuclidean
distance between their mean colors. For each color obtained after the clustering process,
the connected components of the pixel population having that color are identified and, for
each conuected component, a bounding rectangle is calculated. The bounding rectangles
of a given color are successively clustered into groups of geometrically close rectangles
until one rectangle remains. The result is a hierarchical tree structure for each color. The
distance between two regions is calculated as a weighted sum of the distance between the
colors themselves and the distance between their associated tree. The distance between
two images [ and J is the average of the distances between each region of 7 and its closest
region in J.

The Netra II system [28] uses a boundary detection algorithm called EdgeFlow to
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segment images. A perceptual color quantization scheme is then used to guantize the
colors in each image region. A color histogram is computed for the colors obtained after
the quantization step. The color histogram of two regions i1s compared using a distance
equivalent to the weighted Euclidean distance [13]. Each guantized color of a region is
indexed individually in a 3D space. The corresponding percentage and the label of the
region are stored along with the quantized colors. Instead of using a SAM to index each
gquantized color, it is proposed an alternative structure called Lattice, where a set of
reference points {Lattices) in the 3D space are chosen o priori and the quantized colors
to be indexed are assigned to their nearest lattice point.

The Blobworld system [18] clusters pixels in a joint color-texture-position 8D space
modeled as a mixture of Gaussians. The color of each region is represented as a 500
bins local color histogram (in Lab color-space). To compare the color of two regions, it
is used the weighted Euclidean distance [13]. lmages are compared based on individual
regions. Although guerving based on a limited number of regions is allowed, the guery is
performed by merging single-region query results.

The SIMPLIcity system [58] segments images based on color and frequency features
using the k-rneans algorithm to cluster the feature vectors into classes. Each class cor-
responds to a region in the segmented image. Images are compared using the properties
of all segmented regions, according to the IRM (Integrated Region Matching) shmilarity
measure. lnitially, the IRM similarity measure matches regions of the two images. The
match process allows one region of an image to be matched to several regions of another
image. After regions are matched, the similarity measure is computed as a weighted sum
of the similarity between region pairs, with weights defined by a significance matrix.

2.7 Evaluation of retrieval effectiveness

Onee a new CBIR approach is conceived, it is necessary to evaluate its performance. In
data retrieval systems, the response time and the space required are usually the metrics
adopted for evaluating a new system. ln the domain of information retrieval, however,
there is the additional issue of evaluating the relevance of the information retrieved (effec-
tiveness). Effectiveness evaluation is a very complex task. For the purpose of effectiveness
evaluation in text-based retrieval, there are several reference collections available (e.g.,
CACM, ADI, INSPEC, Medilars and ISI) and even a full conference (TREC) dedicated
to the issue [118]. Thus, there is a wealth of reference experiments, uniform scoring pro-
cedures, and forums for researchers interested in comparing their results using a common
framework.

Unfortunately, in the domain of CBIR systems the situation is quite different. The
CBIR community has not been nearly as active in this regard and has used relatively small
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and widely different test collections in s experiments. Comparisons between various
CBIR systems are difficult to make because distinct groups conduct experiments focused
on distinct aspects of retrieval (even when the same test collection is used) and there are
no widely accepted benchmarks. Some efforts toward a benchmark for CBIR have been
made by Muller et al [66], Guuther and Beretta [39] and Leung and Ip [34]. The main
problems to obtain a benchmark for CBIR are (1) the construction of a reference database
of images without copyright restrictions, (2} judging the relevance of the database images
for a set of reference visual gueries (ground truth) and (3) the evaluation of retrieval
effectiveness. '

The effectiveness of a retrieval system is a measure related to the user’s satisfaction
with the system output. Iv establishing measures of effectiveness, the first decision to
make is the number of levels of judgment allowed for the user in this evaluation [48]. The
basic choice is between a binury and an n-ory measure. A binary measure is the simplest
to implement and to use. Each image is either accepted or rejected. This acceptance or
rejection is usually couched in terms of the relevance of the image to the user. However,
relevance is ifself an ill defined term, as it has a degree of psychological subjectiveness.
Different users, or even the same user under other circumstances, may perceive the visual
content of an image in a different way. A system is judged to be effective if satisfactory
evaluation results are obtained using an external relevance criteria [82]. Moving beyond
a binary measure to a n-ary one allows the user to consider levels or degrees of relevance.
While the choice of a scale for relevance is open, the scale for retrieval is closed: either a
document is retrieved or it is not [48].

Almost all effectiveness measures used in CBIR systems were originally designed to
evaluate textual information retrieval systems. The use of these measures in CBIR systems
is acceptable, as the main purpose in both kinds of systems is to evaluate the ranking
algorithm according to an external judgment of relevance. The external judgment of
relevance is inherently different for images an textual documents, however this judgment
is assumed 1o be correct, and is not the issue under evaluation.

2.7.1 Precision and Recall

Among the large variety of existing retrieval eflectiveness measures, Precision vs. Recall
(P x R} curves [118, 48, 82, 115] are the most well-known and used measure in practice.
Although they are not the most adequate measure in the context of ranked output [32, 48,
82}, they have been widely used also in evaluation of CBIR systems. The main problem
with these curves is that they do not characterize adequately the ranked output of CBIR
systems. They are more adeguate to systems that produces an unordered set of documents
which are either relevant or not.
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When binary scales are used for both relevance and retrieval, a 2x2 contingency table
{Table 2.1) cau be established showing how the image collection is divided by these two
classifications [48].

According 1o this contingency table, the precision F, is the fraction of the r retrieved
images that are relevant to the query, that is:

=" (2.2)

Table 2.1: Contingency table for evaluating retrieval effectiveness

Retrieved  Not Retrieved
Relevant A B
Not relevant O D

While precision measures the accuracy of the search, recall measures the extent to
which the retrieval is exhaustive. The recall R, of a method is the proportion of the total
number of relevant images that were retrieved among the r returned images, namely:

A
 A+B

The recall measurement requires knowledge about the total number of relevant images
within the collection. By definition, it is a non-decreasing function of the rank of the
retrieved images [115]. If 50 images are retrieved as the answer to some query, and 35
of them are relevant, the precision at r = 30 is Fyo == T0%. If, ou the same query as
before, there are 70 relevant images within the image collection, the recall at r = 50 is
Rso = 50%, since 35 out of 70 of the relevant images were selected within the top 50
retrieved lmages.

Some retrieval systems can produce varying amounts of output, and a recall-precision
pair can be computed for each retrieved image. Given a set of recall-precision pairs, a
recall-precision curve can be constructed by plotting the precision against the recall. In
general, the curve closest to the upper right-hand corner of the curve (where recall and
precision are both maximized) indicates the best performance. If interpolated precision
values are used, the curve is non-increasing. The interpolated precision at a given point
is the maximum precision at this and at all previous recall levels [115]. The interpolated
curve is a smoothed version of the original curve that represents the best performance a
user can achieve [46].

(2.3)
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2.7.2 Single-valued measures

Some observers postulate that a retrieval effectiveness measure should be expressible as
a single number (instead of two values such as P x R) that can be put on a scale to give
absolute and relative values [82]. Measures such as F measure [81] and the M Z metric [89]
combine aspects of precision and recall into a single effectiveness value. Other single-value
measures uses a single point sampled from the P x K curve as an effectiveness descriptor,
such as [115]: (1) the precision at the minkmum point at which recall could be 100% (R-
value), or (2) the precision when the first relevant image 18 retrieved, or (3) the precision
at a fixed recall level such as 10% or 20%, or (4) the precision at specific rank values such
as after 30 or 100 images are retrieved. It is also common to compute a single number
that characterizes the effectiveness at all recall levels, such as 3-point or 11-point average
precision [115]. All variations of the P x R curves discussed above provide very specific
effectiveness information and thus, have a limited context of application. However, the
use of several of those measures in addition to a P x R graph gives a clear characterization
of the retrieval process according to different viewpoints.

Ranking algorithins are at the core of CBIR systems and atternpt to establish a simple
ordering of the retrieved images. lmages appearing at the top of this ordering are con-
sidered to be more likely to be relevant. Images are presented and examined sequentially
by the user in order to decide about their relevance. One of the first measures especially
designed to the context of ranked output was the normalized recall - R, [82]. The
Ry orm value reflects the number of nonrelevant images that have to be retrieved in order
to reach a recall value of 100%. The main problem of this measure is that the effectiveness
result is dependent of the size of the collection. The larger the collection, the smaller the
numerical differenice between the effectiveness of two systems, even when using the same
set of query images.

A variation of the R, .., measure proposed in QBIC project [32] uses the ratio between
the average rank of the relevant images and an ideal average rank (where all relevant
images appear abead of the noun-relevant ones) to measure the effectiveness of CBIR
systems. This ratio shows how close to the top of the ranked output the set of relevant
images appear. The main problem with this measure is that the average rank of relevant
images is very sensitive to the rank of the last relevant images retrieved (large numerical
values). Another problem is that the process of averaging the results of several distinct
queries is also sensitive to the worse queries, since they are bouud to have much larger
numerical values.

There are also other single-valued measures to evaluate ranking algorithms as, for ex-
ample, the erpected search length [24], the sliding ratio [79] and the satisfuction/frustration
[48] measures. The expected search length is a measure that assumes that the images are
presented to the user in a weakly ordered sequence. The sliding ratio measure is based on
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the comparison of two ranked lists of items. Oue list is the output of an actual retrieval
systemn, and the other represents an ideal system in which the items are ranked in de-
creasing relevance order. This model is more complex than the ones previously described
because it allows the assignment of numeric relevance weights to the images. The sliding
ratio measure has been further refined by Myaeng and Korfhage [67]. They separated out
the relevant and irrelevant images and defined two measures: (1) saiisfoction, which con-
siders only the relevant images and (2) frustrafion, which considers only the nou-relevant
images. They also proposed a weighted combination of satisfaction and frustration.



Capitulo 3

CC

— Cell/Color Histograms

Color is a comnmonly used feature for realizing content-based image refrieval (CBIR).
In this context, this chapter presents a new approack for UBIR that ig based on the
well known and widely used color histograms'. Previous approaches have used a single
global color histogram (GCH) for the whole image, or local color histograms (LCHs)
for cells within a grid of fixed size. Our approach is also based on a grid of cells, but
unlike the latter it uses a cell histogram for each of the colors actually present in the
images, representing how that color is distributed among the image cells — thus the name
Cell/Color Histograms. Our experiments have shown that the actual number of colors
present in images is often low. Thus we are able to achieve performance comparable
to using LCHs within a grid, but with a much smaller space overhead. Furthermore,
the proposed approach is very flexible in the sense that the user has alternative ways
to calibrate the trade-off between space overhead and retrieval effectiveness. In fact, we
have been able to outperformn GCHs (typically a compact representation) in terms of
effectiveness, requiring less storage space.

The remainder of this chapter is organized as follows. Section 3.1 presents our ap-
proach for CBIR, named Celi/Color Histograms — CCH, which is more compact, robust
and flexible than those discussed in Sections 2.6.1 and 2.6.2. Section 3.2 presents a gen-
eralization of the L, distance that is used to compare images in all approaches included
in our comparative analysis. Section 3.3 discusses how we evaluate retrieval effectiveness
in our experiments and Section 3.4 presents our experimental results. Finally, Section 3.5
presents the chapter conclusions.

1This chapter will be published in the “Knowledge and Informution Systems International Journal”
[104].
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3.1 Cell/Color Histograms - CCH

Our main contribution in this chapter is a compact and flexible representation for partition-
based CBIR approaches. Our motivation is to reduce the space overhead of these ap-
proaches taking advantage of the fact that only a relatively low number of distinct values
of & particular visual feature are present in most images. ln particular, we adopt the color
feature represented by mesns of histograms to describe images. However, it is possible to
encode any other visual feature of an image under the same principle.

Crar proposal contrasts with those that exploit only alternative representations for the
visual features in order 1o reduce space overhead. Consider a technique that yields a very
compact representation for the color distribution of an image. Such a technique can be
applied directly to represent the content of the whole image or the content of each image
cell individually, after an appropriate spatial partitioning. However, if the global repre-
sentation requires n bytes, the partition-based representation will require Of{mn) bytes,
where m is the number of partition cells in which the image is decomposed. The increasing
factor in space overhead is constant, independently of the chosen compact representation.
In our approach, the space overhead reduction is not obtained via compact color repre-
sentation, but through exploiting a more elegant representation for the spatial partition
structure as a whole. Thus, it can be applied in any partition-based CBIR approach,
independently of the chosen color-space, quantization scheme, distance function, or color
representation. These issues will be discussed in more details at the end of this section.

In our approach, we exploit the fact that only a relatively low number of distinct
quantized colors are present in most images. The graph shown in Figure 3.1 confirms
our intuition. This graph was obtained using a collection of 20,000 heterogeneous JPEG
images and the RGB color-space uniformly quantized in 64 colors (a typical quantization
scheme). This graph shows how much of an image is covered by a given number of colors.
In the average, there were only 28.71 colors per image from a total of 64 quantized colors.
Mereover, about 90% of the image content corresponds to only 9 colors. These values show
that at least 35% of a color histogram has null bins and that one is able to describe 30%
of the color distribution of the image by using only 14% of such bins. Observe also that,
if a grid of cells is adopted to spatially decompose an image and a local color histogram
is used to describe the coutent of each cell individually, the amount of null bins grows
proportionally to the number of cells. Hereafter, we refer to such generic partition-based
CBIR approach as the Grid approach.

In order to avoid the explicit representation of quantized colors not present in an image,
we propose to represent the partition structure in an alternative perspective. Assuming
that the number of cells is fixed for a partition scheme and that the number of quantized
colors present in a given image is not, we propose to describe the spatial distribution
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Figure 3.1: Color contribution for image content in our collection of heterogenecus images.

of each individual color through the partition cells, instead of representing the color
distribution of each individual cell. Thus, we propose to represent the partition structure
by a set of cell histograms instead of a set of (local) color histograms.

A cell bistogram is formally defined as follows. Comnsider an image partitioned into
I x J non-overlapping cells and a color-space uniformnly quantized in € colors. A cell
histogram for a given color ¢, 0 < ¢ < C, is a set of / x J bins (oue for each partition
cell). The value of each histogram bin is given by the function p(celly) = ng/n. In this
function, celly is the &% partition cell (0 < k < I x J), n; is the number of pixels in cell;
with color ¢, and 7 is the pumber of image pixels. An image composed by m quantized
colors is thus deseribed by mn cell histograms, each one describing the spatial distribution
of one color.

We call the set of cell histograms used to describe an image Cell/Color Histograms
or CCH for short. It is important to notice that, when using the CCH representation, if
a color is not present in the image, there is no cell histogram associated to it, hence we
save storage space. Compare this to the Grid approach representation, where one would
need necessarily to store I x J histograms, each with C bins, regardless of how many
colors are actually present in the image. Figure 3.2 illustrates this discussion by showing
an image composed by two colors with a 2x2 grid of cells superimposed, and its CCH
representation.

The CCH approach combines in a compact, flexible and elegant way the color dis-
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Figure 3.2: An image partitioned using a 2x2 grid of cells and its CCH representation.

tribution of an image with the spatial distribution of each color. Our approach is more
compact in the sense that only colors present in the image are represented. It is flexible
because the task of performing color exclusion (Section 3.4, experiment 111} becones more
natural in the global representation of cell histograms than in the local representation of
local color histograms. Moreover, CCH allows the adoption of alternative types of sim-
ilarity metrics to compare images, as discussed in Section 3.2. Finally, it offers various
opportunities for trade-off between space overhead and retrieval effectiveness, as shown
in Section 3.4, experiment I'V.

The cell histograms have all desirable characteristics and limitations of traditional
histograms, as discussed in Section 2.6.1. All techniques so far discussed to overcorne
histogram limitations can be equally applied to our cell histograms. It is possible to use
more compact representations, represeut the cell histograms as cumulative histograms, or
use compression technigues to reduce their space overhead. Compression techniques are
equally useful for cell histograms because the probability that all colors are present in all
partition cells is as small as the probability that all quantized colors are present in the
image.

It is possible to use our C'CH approach in conjunction with any existing colox-space
and guantization scheme. When using dynamic color-space guantization schemes, the
C'CH approach becomes even more compact, because there is no need to replicate the
explicit representation of the quantized colors in each individual cell. Moreover, the CCH
representation can be used in conjunction with more robust partition-based techniques. It
is possible to adopt alternative partition schemes, a hierarchical representation for CCH,
and also more complex and robust distance functions to compare two CCH representa-
tons.

3.2 Similarity metric

In this section, we discuss how to extend a traditional similarity metric used to compare
images to the variable-size representation of CCH. As we will see, all that is required is a
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generalization of the metric definition.

We will adopt the L, metric distance to demonsirate the generalization process. In
Section 3.3 this metric is used to compare irages in all compared CBIR approaches. The
I, distance definition for a multi-histogram representation is shown in Eguation 3.1.

kit
D(hylil, halil) = Y ihgli]li] = Rald (5]} (3.1)
=1
where 7 represents the number of histogram bins. The values b [i][7] and hyfd][/] represent
the normalized value of the % bin of the i histogram used to describe the query image
(he) and the database image (hy), respectively. In the case of a GCH, there is only
one histogram to be compared. In traditional partition-based approaches such as the
Grid approach discussed in the previous section. there are a fixed number of local color
histograms, one for each partition cell. In CCH approach, there are a variable number of
histograms per image, depending on the number of quantized colors actrally present in
the image,

We are assuming that the histogram bins are normalized with respect to the image
size, i.e. to the number of image pixels. In this way, the sum of the histogram bins
is at most 1. This limit occurs when the area represented by the histogram equals the
image size, i.e., when we are using a global histogram. Moreover, the distance between
two h1stograms D(hylil, hafd]) is at most 2. The distance Himit may occur only when two
completely distinet global histograms are compared.

A stricter limit for the distance between any pair of histograms can be established in
the following way. Let a,[{] be the image area described by the hy[i] histogram and a,i]
be the image area described by the hy[i] histogram. Counsider that these values are also
normalized according to the image size. When these two histograms are compared, we
obtain D(hgld], hali]) < a4ld]+aqfd]. Thus, in order to normalize the distance between two
histograms D(h, (4], halé]), we divide this distance by a,[é]+a,[i], as shown in Equation 3.2.

o o D(Be[d], halt])
Dn(hgld], hali]) = “odldl + adli) (3.2)
So far, D, measures the normalized distance between two histograms. The similarity
between two histograms is then the complement of the distance D,. Finally, the similarity
5 between two images (Equation 3.3) is the weighted sum of the similarity between the
histograms that describe each image:

S(hg, ha) = Zu, x (1 — Dy (Rgld], hali)) (3.3)
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The weight values are used to normalize the similarity between two images and are re-
lated to the image area described by each pair of compared histograms. Three possibilities
for the weight function are:

e wiji] = is where 7 is the number of histograis used to represent an image
e wsyil = min(a,ld], agld])
e wyli] = 1]

If a,lé] = aqli] for every ¢, these three weight functions are identical. This is the cage
when we compare GCHs, where n = 1 and g,[¢] = a4[f] = 1, and also when we compare
traditional partition-based approaches such as Grid, where a4fi] = aq4fi) = 1/n for every
i. However, for the CCH approach, these three weight functions are distinct, since the
number of histograms used to represent an jmage is variable, as well as the image area
covered by each histogram. Both depend on the actual color distribution of the compared
images. The w; function results in a simple arithmetic mean of the distance between
histograms. The w; function is not symmetric and thus, the distance between two images
does not satisfy the symmetry axiom for a metric. Because of this, we choose to work
with the function ws in our experiments. It is a symunetric function and we have observed
in practice that the effectiveness results obtained with this function are betier than the
wi resuits.

The two images in Figure 3.3 will be used to exemplify the application of the similarity
metric in three histogram-based CBIR approaches: GCH, Grid and CCH. For simplicity,
we divide the images only into 4 cells (2x2 grid) in order to spatially locate colors. The
cells are corupared from top to bottom, left to right, and the color space has only three
colors: black, gray and white, represented by the numbers 1, 2 and 3, respectively. In
Figure 3.3, ¢ is the query image, and d is the database image to be compared against
g. Figure 3.4 shows the visual features (histograms) obtained from the query image by
each CBIR approach. The top row shows the single GCH. The second row depicts the
set of four LCHs of the Grid approach, one for each partition cell. The bottom of the
figure shows the three cell histogram, one for each quantized color present in ¢. Similarly,
Figure 3.5 shows the respective histograms for the database image (d).

The GCH for ¢ could be represented as h, = [0.5,0.25, 0.25] meaning that it has 50%
of black, 25% of gray and 25% of white pixels, respectively. Similarly, hq = [0.5,0.0,0.5].
Using Equation 3.3 we have:

0.5 ~ 0.5] + [0.25 — 0.0] + 10.25 — 0.5
Secrlg.d)=1x (1| kd 2 |+ |

Iu the Grid approach, the normalized distance for the first cell is DL = 0, because both
cells have only black pixels. For the other three cells, the distances are D? = 1,02 =1

) = 0.75
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3 : 4

Query nage () Detabase mage (4)
Figure 3.3: Sample images partitioned in 2x2 cells.

and D = 0, respectively. In addition, the weights wli] sre all the same, because all cells
have the same relative area. Thus, we have:

Serialg, d) =025 x {(4— (DL + DE 4+ DY+ D;)) = 0.5

" Next we compare the three CCH cell histograms (for black, gray and white colors)
using Equation 3.2. We have 25% of black pixels in cells 1 and 2 of image ¢, and in cells
1 and 3 of image d (recall that the quantity of pixels in a cell is normalized with respect
to the image size), hence:

0.25 — 0.25 + [0.25 — 0] + [0 — 0.25] + [0 - 0] _

0.5+0.5 B
Likewise, we obtain D% = 1, and D¥**¢ = .33, Lastly, the normalized cell-histogram
distances are complemented and weighted according to Equation 3.3 (notice that, unlike
the GCH and the Grid approaches, the weights wi] are now variable, depending on the
areas occupied by each color). The similarity between the two images according to CCH
approach is:

Dpfeck = 0.5

SC‘CH(% d) ={.5 x (1 —_ 0.5} + 0 x (3. - 1) +0.25 x (1 e 033) = (.42

3.3 Ewvaluation of retrieval effectiveness

Once a new CBIR approach is conceived, it is necessary to evaluate its performance.
In data retrieval systems, the respounse time and the space required are usually the pa-
rameters adopted for evaluating a new system. In the domain of information retrieval,
however, there is the additional issue of evaluating the relevance of the retrieved informa-
tion (effectiveness). In this paper, our focus is the evaluation of effectiveness vs. space
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Figure 3.4: Histograms of image ¢ {(Figure 3.3) in different CBIR approaches.

overhead. The efficiency of the retrieval is an aspect that is tightly related to indexing
structures/techniques, which is subject of further research.

Effectiveness evaluation is a very complex task. In order to evaluate CBIR effective-
ness, it is necessary at least a reference collection of images, a set of query images, a set
of relevant images (chosen a priori) for each query and an adequate retrieval effectiveness
measure. Next we discuss how we deal with these requirements in our experiments.

Reference collection —  In the context of large and heterogeneous image collections, a
good reference collection to evaluate retrieval effectiveness should clearly be large enough
to be heterogeneous, i.e., to contain several semantically and/or visually distinet image
domains. Ideally, each of such domains should alse be composed by clusters of images with
stmilar visual characteristics (visual clusters). Corel Corp.? is a well-known manufacturer
of image collections that follow such an approach. Incidentally their images are often
used, though in an ad-hoc manner, to test new CBIR approaches. In our experiments
we are using as reference a heterogeneous collection of 20,000 JPEG images from a Corel
stock CD?. This collection is formed by approximately 200 distinct image domains, each
one composed of approximately 100 images. We believe that is a sufficiently large number
of distinct domains and images per domain for the purpose of our evaluation study.

2http://www. corel.com
3Corel GALLERY Magic 65,000 - Stock Photo Library 2
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Figure 3.5: Histograms of image J (Figure 3.3} in different CBIR approaches.

Query images — Out of the reference collection, we selected 15 images of distinct
domains to be used as query images. The set of query images is a subset of the images
shown in Figure 7.1.

Relevant result sets {RRSets) — Once the query images are selected, the next step
is to establish the set of images inside the reference collection that we accept as relevant
for each query image. We call this set of relevant images the relevant result set (RR3et) of
a query image. Given a query image, an ideal CBIR approach retrieves the images of its
RRSet ahead of any other image within the reference collection. We selected the RRSet
of a query image by visually analyzing the other images that belong to the same semautic
domain of the query image. All images that, in addition to the semantic similarity, had
also similar visual properties were chosen to compose the RRSet. Some examples of
RRSets* are shown in Figures 7.2, 7.3 and 7.4.

3.3.1 Retrieval effectiveness measures

We evaluate retrieval effectiveness using a variation of the QBIC measure [32] discussed
in Section 2.7.2 that we call ,,,. The 6., measure is defined as follows:

“The sets of query images and respective RRSets can be seen  at
http://www.cs,.ualberta. ca/~mn/CBIRone.
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IRRSet
Zizi rank{i)
|RRSet]
where |[RRSet] is the number of relevant images within the RRSet of & given query. The
surmmnation is performed following the order established by the ranking slgorithm. Thus,
i represents the ideal rank of the i relevant image that was retrieved, and rank(d) is
a function that returns the actual rank of this i** relevant image. The rank(i) value
varies in the interval [1,|DB]], where |DB] is the size (pumber of images) of the reference
collection. As we can observe, 0 < G4, < 1 and &4, = 1 represents an ideal system, i.e.,

a system where all relevant images are retrieved ahead of the non-relevant ones.

When performing a CBIR experiment, the effectiveness results of several distinct
gueries must be averaged in order to derive a single value that adequately describes
the system effectiveness. During this averaging process, there are many implicit factors
that must be considered in order to derive a coherent effectiveness value, such as the
complexity of each guery image, the proportion of relevant/non-relevaut images inside
the reference collection per query image, and the discriminatory power of the visual fea-
tures relative to the chosen guery image {assuming we are working with a collection of
heterogenecus images). For example, searching for simple images composed just by one
distinctive oblect and a homogeneous background is generally much more effective than
searching for more complex images.

The implicit characteristics of a CBIR experiment are very hard to extract and to
explicitly use during the measurement process, during the analysis of the results, or during
the averaging of the results of multiple queries. In practice, we need an indirect way to
normalize the results of individual queries according to these implicit characteristics. In
order to do this, we propose the use of a well-known (and ideally effective) CBIR approach
as a reference to derive a more robust measure. Assuming that the implicit characteristics
of the CBIR experiment are the same for both, the approach being analyzed and for the
reference approach, a relative result becomes more robust than an absolute effectiveness
value obtained with the #,, measure. Thus, we propose the 6,, measure, based on a
reference CBIR approach. Namely, for a given query ¢ and a reference approach denoted
as ref, we have:

Baps = (3.4)

_ Bass(9) — 6247 (9)
8’”3 ( ) - ref
Oass ()
The 8,4 value represents the percentage of gain (positive values) or loss (negative
values) relative to the reference approach. The fact that the effectiveness results obtained
with the 6, measure are normalized according to the experiment characteristics allows
a comparison of results even when the reference collection, query images and RRSets are

x 100 (3.5)
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not the same. All that is required is the adoption of a similar evaluation methodology
and the use of the same reference CBIR approach.

I our experiments we adopted the GCH as our reference because it is simple, well
known, widely used and, in general, effective for color-based image retrieval.

3.4 Experimental results

This section presents the results of four experiments we performed in order to demon-
strate the compactness, robustness and fexibility of the CCH approach in termus of space
overhead and retrieval effectiveness.

The first experiment compares CCH with three other color-based CBIR approaches.
Our goal is to contextualize the results obtained with CCH. The second and third exper-
iments exploit the Hexibility of CCH representation. As argued earlier, one of our main
goals with the CCH is to reduce the space overhead of partition-based CBIR approaches.
We exploit this issue in these two experiments, analyzing how the spatial partition (num-
ber of cells} and a partial representation of the visual content of the images affect both the
space overhead and the retrieval effectiveness. The last experiment combines the other
three, in order to demonstrate how one can finely tune the CCH approach, analyzing the
various opportunities for trade-off between space overhead and effectiveness it offers.

3.4.1 Experiment I — Comparison with traditional approaches

This first experiment compares, in terms of retrieval effectiveness and space overhead,
CCH against three other color-based CBIR approaches discussed in Section 2.6: (1) GCH-
our reference approach, (2) CCV and (3) Grid.

The four compared approaches (CCH, CCV, Grid and GCH) are color-based and adopt
a histogram representation for the visual features extracted from images. As discussed
in Section 2.6.1, the histogram representation has some limitations, and there are many
technigues that deal with these limitations in CBIR literature. These techniques can
be applied with success to all four compared approaches, even the CCH. In this paper
however, it is not our goal to analyze the effectiveness of these techniques and the effects
of adopting these techrigues in distinet CBIR approaches. Although this topic is part of
our future research, some discussion was already taken at the end of Section 3.1.

The goal of this first experiment is siruply to contextualize the results obtained with
CCH by showing that, in a common scenario (in terms of color-space, quantization
schemes, distance function, partition scheme, color representation, etc.), our approach
is more effective than similar global approaches. Moreover, it is as effective as equivalent
partition-based approaches, with a considerable gain in space overhead obtained without
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the help of any other technique {such as histogram compression} than our alternative
representation of the partition structure.

In order to perform a fair and robust comparison, we adopted (where applicable)
the same set of simple and widely used parameters. In this way, the source of the space
overhead and of the retrieval effectiveness in each approach becomes evident, We adopted
the RGB color-space uniformly quantized in 64 colors. The spatial partition of the images
was obtained using a fixed 8§x8 grid of equal-size, non-overlapping cells. Tu all approaches,
images were compared using the distance function discussed in Section 3.2, based ou the
we weight function.

With the parameters above, the GCH of an jage has 64 bins, one for each quantized
color. The CCV representation results in 128 bins, two bins for each of the guantized
colors. Using Grid, each image is described by 8 x8=64 local color histograms, each with
64 bins. In CCH, each cell histogram has 8x8=64 bins, oue for each partition cell. The
maxizmum pumber of cell histogramns is 64, one for each guantized color. However, for our
reference collection of images, less than 29 cell histograms (in average) were needed per
image (Figure 3.1}. Therefore, the CCH representation requires in average 55% less space
than the Grid representation, our representative of traditional partition-based approaches.

As we can see in Table 3.1, the CCV effectiveness is 10% (6, value) higher than
the GCH (reference approach) effectiveness, whereas the Grid effectiveness is 95% higher.
The effectiveness gain obtained with CCH is slightly worse than the gain obtained with
Grid. The P x R curves of the first experiment can be viewed in Figure 3.6. As ome
canl see, these curves are consistent with the values obtained with the 8, effectiveness
measure (Table 3.1},

Table 3.1 Effectiveness and space overhead values for the first experiment.

Approach | Number of bins | 65, | 6,
GCH 64 0.36 | —
CCv 128 0.40 | 10%
Grid 4096 0.59 | 95%
CCH 1856* 0.59 | 89%

*Average value

3.4.2 Experiment II — Reducing the number of partition cells

In this experiment, we exploit how the reduction in the number of partition cells affects
the effectiveness of CCH approach. We compared the use of 8x8, 6x6, 4x4, 3x3 and
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Figure 3.6: Precision vs. Recall curves for Experiment 1.

2x 2 grids of equal-sized nou-overlapping cells. Obviously, the coarser the grid of cells the
smaller the space overhead, but the trade-off is evident in terms of retrieval effectiveness.
The results of Table 3.2 show that, as the number of cells decreases, the retrieval effec-
tiveness also decreases due to the loss of spatial information. There is less information to
distinguish images, increasing the number of false-hits, and thus decreasing the retrieval
effectiveness. The P x R curves showed in Figure 3.7 confinn these results, but also
show that, for smaller values of recall, the precision does not vary as much, which is an
interesting fact especially for applications where one is mostly interested in the first few
retrieved images.

Table 3.2: Effects of the number of cells reduction in CCH effectiveness.

Number of cells | Number of bins* | 8, | e
8x8 1835 0.59 | 89%
6x6 1044 0.58 | 84%
4x4 464 0.35 | 69%
3x3 261 0.55 | 63%
2x2 116 0.45 | 35%

*Average values

3.4.3 Experiment III — Partial representation of image’s content

This experiment exploits a partial representation for the color distribution of an image.
We are interested in investigating how the retrieval effectiveness is affected if the content
of the images is partially represented.

As showed in Figure 3.1 and discussed in Section 3.1, on average ouly about 28 colors
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Figure 3.7: Precision vs. Recall curves for Experiment I1.

{out of 64 possible)} are present in each image of our reference collection. The same figure
showed that only a small number of colors are responsible for the majority of the image
coutent. For example, in average, 95% of the image content 18 composed by only 12 colors,
90% is composed by 9 colors, 80% is composed by 6 colors and 70% of the image conient
is composed by ounly 4 colors.

Based on the numbers above, we have two alternatives to partially represent the color
distribution of an image. The first one consists in fixing a number, say &, of dominant
colors and to represent the percentage of the images covered by these & colors. The second
alternative cousists in fixing the percentage of the image we want to represent, and to use
as many (dominant) colors as necessary to cover that percentage. While in the former
alternative, the percentage of the image represented depends on its visual content, in the
latter, it is the number of used colors that depends on the visual content of the image.

The main disadvantage of using a fixed number k of dominant colors to represent
images is that the portion of the images covered by these colors can vary largely. In
some cases, k dominant colors could be sufficient to represent 100% of the image con-
tent (the image has exactly k distinct colors). For colorful images where all colors cover
approximately the same percentage of the image, £ dominant colors {assuming that &
is a small value)} covers only a small fraction of the image. It should be clear that the
representation obtained using this approach is not robust, as simple images can be repre-
sented completely, while more complex images are poorly represented. Therefore, in our
experiments we represent images partially by fixing the percentage of the images we want
to represent (the second alternative discussed above). Thus, we have the guarantee that
the same portion of the images is represented, independently of the relative complexity
of their visual content.

It is also important to notice that, when using CCH, the dominant colors that cover
a predefined percentage of the images are chosen globally, while in approaches like Grid,
this decision is local (the set of dominant colors is determined for each individual cell). We
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argue that, in the context of query-by-image-example, the global decision of CCH is more
robust than the local decision of Grid. It is possible that colors dominant in the whole
image are not dominant in some cells and alse that non-dominant colors in the whole
image are dominant in some cells. As a result, the local decision of approaches like Grid
results iz a non-optimal representation for the purpose of query-by-image-example, where
the user is interested in the properties of the images as a whole, not in a particular portion
of the images. If the idea is to have a more robust representation for the purpose of query-
by-region-example, regional approaches (Section 2.6.3) are 2 much better alternative than
partition-based approaches.

The experiment summarized in Table 3.3 exploits the partial representation of image’s
content in conjunction with the CCH approach. We fixed the color-space quantization
scheme (64 colors) and the spatial partition scheme (8x8=64 cells). The smaller the
pumber of represented colors, the smaller the number of cell histograms needed fo describe
an image. As expected, both the storage requirernents and the refrieval effectiveness
decrease with the partial representation of the image coutent. However, the range between
90% and 100% of image content results in small effectiveness decreasing when compared
to the reduction of the space overhead. For instance, in order to represent 90% of the
image content, we need on average 9 colors, resulting in 9 cell histograms. This number is
69% smaller than the number of cell histograms required to represent 100% of the image
content (29 colors in average). The effectiveness results (8,,) decreases 7%, but the gain
in storage space seems to offset well the loss in retrieval effectiveness. The corresponding
Precision vs. Recall curves can be viewed in Figure 3.8. As iu previous experiments, these
curves follow the effectiveness results obtained with the 8, measure.

Table 3.3: Effectiveness results for partial representation of the image content using CCH.

% of the umage | Number of Colors* | Number of bins* | 6., | #,a
100% 29 1856 0.59 | 89%
95% i2 768 0.58 | 84%
90% 9 576 0.57 | 81%
80% 6 384 0.53 | 67%
70% 4 256 1 0.43 | 34%

*Average values

3.4.4 Experiment IV — Fine tuning of CCH

In the last round of experiments, we compare the GCH, Grid and CCV against some
variations of the CCH approach, using different number of cells aud representing different
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Figure 3.8: Precision vs. Recall curves for Experiment II1.

percentages of the image content. Our goal is to demonstrate how one can finely tune
the CCH approach, by analyzing the varions opportunities for trade-off between space
overhead and effectiveness it offers. This also serves to summarize the previous experi-
ments, comparing simultaneously the space overhead and the retrieval effectiveness of all
investigated approaches.

The results of the last experiment are shown in Table 3.4. By representing 100% of the
image content and partitioning the images in 8x8 cells, CCH offers retrieval effectiveness
sirnilar to Grid, but with a considerable reduction of 55% in space overhead. Alternatively,
by representing 80% of the image’s content and adopting a partition of 3x3 cells, CCH
requires the smallest space overhead, 15% smaller than the GCH (our reference approach)},
yet yielding an effectiveness (6,) 43% higher.

It is also possible to obtain intermediate resulfs between the configurations discussed
above. For instance, by representing 90% of image content and by adopting a partition
of 4x4 cells, CCH results in a respectable reduction of 96.5% in space overhead when
compared to the Grid approach. As well, using twice the space overhead of GCH, it
is possible to be 61% more effective. Other intermediate results may be obtained by
choosing an adequate compromise between the number of cells and the percentage of the
umage content {number of colors} being represented. It is possible to emphasize retrieval
effectiveness or space overhead reduction. These results confirm the potential and the
flexibility of the CCH approach in comparison to traditional global and partition-based
approaches. The F x R curves of this experiment are shown in Figure 3.9.

3.5 Chapter conclusion

Our main contribution in this chapter is a simple, compact, flexible and yet very effective
variation of partition-based technigues called Cell/Color Histograms — CCH. To the best
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Table 3.4: Comparing the effectiveness of some distinet CCH configurations.

Approach Parameters Hesulis
Used Grid Size | % of the image | Number of bins | 6, | 8,4
GCH ix1 100% (64 colors) 64 0.36 | 0%
ooV ix1 100% {64 colors) 128 0.40 | 10%
Grid 8x8 100% {64 colors) 4006 0.59 1 95%
CCH 8x& 100% (29* colors) 18567 0.59 | 89%
CCH 66 95% (12* colors) 4327 0.56 | 78%
CCH 4x4 90% (9* colors) 144" 0.53 | 61%
CCH 3x3 80% (6" colors) 54 0.46 | 43%

*Average values
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Figure 3.9: Precision vs. Recall curves for Experiment IV,

of our knowledge, it is original in the way that visual features are encoded. Our motivation
was to reduce the space overhead of partition-based approaches taking advantage of the
fact that only a relatively low number of colors is present in most images. In particular,
we used color features to verify the idea.

The experimental results we cbtained confirm the compactness and the fexibility of
CCH in comparison o traditional global and partition-based approaches. It is possible to
emphasize retrieval effectiveness or space overhead reduction. For instance, if warranted,
one could use the CCH and obtain the smallest space overhead, 15% smaller than a GCH
while still being 43% more effective,

The experiments discussed in this chapter show that, under “usual” (e.g., using default
parameters) circumstaunces, CCH performs consistently well. Although we exploit our
approach using simple and well-known parameters, it is Important to observe that our
alternative representation can be applied with success in more sophisticated configurations
such as the ones that exploit hierarchical spatial decomposition of images, more complex
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distance functions, dynamic color-space quantization, histogram cornpression techniques,
etc.



Capitulo 4

CBC — Color-Based Clustering

In this chapter we present a new Conient-Based Image Retrieval {CBIR) approach based
on cluster analysis’. CBIR relies on compact representations for the visual content of im-
ages {visual features). In order to produce such visual features, we propose an efficient and
adaptive clustering algorithin to segment the images into regions of high color-similarity.
This approach contrasts with those that describe images using a single color histogram for
the whole image {global approaches), or local color histograms for a fixed number of im-
age cells {partition-based approaches). Our experimental results show that our clustering
approach offers high retrieval effectiveness with low space overhead. For example, using a
database of 20,000 images we obtained higher retrieval effectiveness than partition-based
methods with about the same space overhead of global methods, which are typically
regarded to as storage-wise corpact.

This chapter is organized as follows. Section 4.1 describes CBC, our clustering-based
approach to CBIR. The distance function used to compare the CBC representation of
two images is discussed in Section 4.2. Section 4.3 presents our experimental setup,
and Section 4.4 reports our experimental results comparing the retrieval effectiveness
among three variations of our approach and five other existing CBIR approaches. Finally,
Section 4.5 presents the chapter conclusions.

4.1 Color-based clustering — Our approach to CBIR

The CBC (Color-Based Clustering) approach is based on a fully automatic clustering
algorithm that has an efficient implementation. In CBC, each image is decomposed into
a set of disjoint, connected regions. Each region is larger (in number of pixels) than a
threshold size s5. Additionally, all pixels of a region have a predefined degree of color

!This chapter was published in the “Proceedings of the IDEAS’2001 International Symposium” [100].
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similarity, according to a threshold color-distance dg. We denote the procedure to obtain
these regions CBC(dy, sq). where the thresholds dy and sy are parameters defined by the
user. These parameters have a direct impact on the number of regions in which each image
is decomposed. We adopt the convention that parameters dp and sy are percentages of the
maximum value allowed. Thus, sg = 10 means a threshold size equivalent to 10% of the
image size (the maximum possible size of a region) and dy = 5 means a threshold distance
equivalent to 5% of the maximum distance between two points in the chosen color-space.
The CBC(dy, so) procedure can be concepiually divided into four main steps:

1. Convert an input image [ into a weighted and non-oriented graph G{V, £}, where
the pixels in 7 are the vertices of V' and each pair {p,¢) of 4-adjacent pixels in [
define an edge of & whose weight is the Euclidean distance between the colors of p
and ¢ in the CIE Lab color-space?.

2. Compute an adaptive and agglomerative clustering of pixels on G using dp as pa-
rameter, This algorithm outputs a graph partition where each part is a tree whose
nodes form a connected region of pixels, and the least similarity between distinct
regions is greater or equal to dp.

3. Systematically merge all regions whose area is less than 3p with their most similar
neighbor, until all remaining regions have area greater or equal to so.

4. Characterize each remaining region by a 8D feature vector (L,a,b, s, h,v), where
L.a,b are the mean values of the Lab color components in the region, s is the size
(number of pixels) of the region normalized by the image size, and h,v are the
pormalized horizontal and vertical coordinates of the geometric center of the region
in the image.

Notice that the feature vectors of all regions that compose the image ! represent its
visual content, and so, they are stored in the database. To complete the description of
the CBC procedure, we explain in the following subsection the clustering algorithm used
in step 2.

4.1.1 Clustering algorithm

Cluster analysis [31, 45] is one of the most well-developed and commonly used forms
of combinatorial data analysis, and hierarchical clustering are among the best-known

2The Lab space has been defined in order to make easier the evaluation of perceptual distance between
colors. In fact, they are defined according to transformations that approximate a tri-stimulus color-space
into an Euclidean space [13].
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clustering methods. Our clustering algorithm counsists of a simple and effective variation
of the agglomerative single-linkage clustering algorithin discussed in Section 2.2.2.

The sivgle-linkage algorithm can be described under the language and concepts of
graph theory [31]. Consider the data elements that we want to cluster (image pixels) as
being nodes of a graph. The merging of two (initially singleton) clusters A = {4;} and
B = {B,} corresponds to adding an edge between the nearest pair of nodes 4; € A and
B; € B. Since edges are added always between distinct nodes {(clusters), the resulting
graph never has any closed circuit. In fact, the resulting graph is a #ree. If this process
continues until all clusters are linked together, it can be shown that the resulting graph
is a minimal spanning tree ~ MST [31]. Based on the relation between the single-linkage
algorithm and minimal spannpipg trees, we chose to implement our single-linkage algorithm
with a implementation equivalent to that of the well known Kruskal’s greedy algorithm
to generate a MST [25, Section 24.2]. This is the asymptotically fastest implementation
known to us. The procedure that describes our variation of the single-linkage algorithm
is shown in Figure 4.1. '

Single~Linkage(G(V, E), dy)
for each vertex v € V do Make-Set(v)
sort the edges of F by nondecreasing weight w
for each edge (u,v) € E, ordered by nondecreasing weight
if dieen (Find-Set(u), Find~Set(v)) < dp
if Find-Set(u) # Find-Set(w), then Union(u,v)
else break

Gy 1 W R e

Figure 4.1: Our implementation of the Single-linkage clustering algorithm

The function Make-Set (.) creates a cluster with only one element: the node passed as
parameter. The function Find-Set(.) returns the identifier of the cluster that contains
the element passed as parameter. Our clustering algorithm works as follows. Line 1 creates
V1 clusters, each with one node of G. The edges in F are sorted by non-decreasing weight
in line 2. The for loop in lines 3-6 checks if the distance between the clusters of w and
v is smaller than the threshold distance dy (the stop eriterion) for each edge (w,v). If
s0, and if the clusters are distinct, they are merged. In order to diminish the effects
of the single-linkage chaining effect®, we have introduced a new heuristic into the stop

#The single-linkage algorithm is not able to keep two clusters clearly apart when they come very
close to each other, because a single link between the two clusters is sufficient to connect them. This
characteristic leads to & notorious chaining effect [31, 45, by which poorly separated clusters are chained
together.
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criterion. Instead of comparing the weight of the edge being analyzed directly with the
threshold distance dy, we compare the distance of the mean vector of each cluster with
dy. To do this, we assign 2 mean vector to sach cluster and update this vecior whenpever
a Union{.,.) operation is performed.

As we can see, we use the d,;, distance {discussed in Section 2.2.2) to decide the
ordering and which clusters are candidates to be merged, and dpeq, distance® to decide
whether or not the candidates should be merged. This solution has the advantage to be
as efficient as the traditional single-linkage procedure and, at the same time, to reduce
the chaining effect, the main problem of the single-linkage approach.

Our algorithmn differs from Kruskal’s algorithm in two ways. First, we do not store the
edges that compose the MST. Second, we add a stop criterion (line 4) to finish the process
before we obtain only one cluster (the MST). Clearly, the running time of our algorithm
is the same as in Kruskal’s algorithm: O{FlogE)} [25]. However, in our graph model
E == OV} (because of the connectivity restriction). Thus, our clustering procedure runs
in time O{nlogn), where n = |V is the number of pixels in the image. Examples of images
automatically segmented with the CBC clustering algorithmn are shown in Figure 7.7.

4.2 Distance function

In this section, we describe the distance function used to compare two images in CBC ap-
proach. The distance between two images 4 and B, d(4, B, «), is a weighted composition
of the distances between the regions that compose each image — Rd(A4;, B;, «). Here, A,
and B; are regions from images A and B obtained via the clustering algorithn detailed
before. The « parameter defines the weights used to combine the distance between the
color of the regions with the distance between the spatial position of the regions. The
distance function Rd(A;, B;, o) between regions 4; and B, is defined as:

Rd(A;, Bj, o) = « x Lyl Aj.color, B;.color) +
(1 — a) x Ly(A;.center, B;.center)

where L5(., .} represents the Euclidean distance between its arguments. The computation
of the distance between two images d{4, B, «) is algorithmically described in Figure 4.2,
and works as follows.

Initially, we compute all possible distauces between pairs of regions (one of each input
image), according to the function Rd(4;, B;, o). Additionally, all regions are initialized as
“non-matched” (status=0). The initialization steps (lines 1-4} take time O(nm), where

4dmean(“4: B} = d(AmeansBmean)y where 4 and B are clusters, and Amean 806 Brmean are A’s and
B’s median vectors.
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4{A B, o)
1 for sach pair of regioms 4; € 4 and B; € B
2 Apstatus =0
3 B;.status = §
4 SA;B{ :M(AZB_71Q>
5 sort the computed distances Dy p, in non-decreasing order
6 =0
7 for sach distance Dy, B; in pon-decreasing order
g if A;.status = Bj.status = 0
8 if Aj.size < Bj.size
10 w = A;.size
11 Bj.size = B size — A;.size
iz A;stotus =1
13 else
i4 w = B;.size
i5 A;.size = A size — Bjosize
i B status = 1
i7 if Aj.size =} then A;.status =1
ig ﬁmﬁ“f'“wXDAiBj
i2 return

Figure 4.2: Distance function algorithm

7 and i are the number of regions in the images A and B, respectively. In line 5, the
computed distances are ordered in non-decreasing order. In this way, the first distance
value corresponds to the best possible match between a region of image A and a region of
image B. The second value corresponds to the second best maich and so on. The ordering
of nm values takes time O(nmlog{nm)). For each distance D4, p, in non-decreasing order,
we compare the size of the related regions A4; and B;. The smallest region determines
the weight value w that will multiply the value Dy, p, in order to obtain the distance
5 between the images. The weight w represents the percentage of the two images that
match with distance Dy, p..

In each iteration of the for loop in line 7, the smallest region related to Dy, p, is marked
as “matched” (status=1). This means that the smaller region has matched completely,
and any other distance related to this region in the next iterations should be discarded.
Since at each iteration the largest region may not be completely matched, we subtract
the size of the smallest region (the percentage of the region actually matched) from the
size of the largest one. After this operatiown, if the size of the region equals 0 {occurs when
the two compared regions have the same size), then boih regions match completely and
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we mark them accordingly. If the size of the largest region remains greater than 0, then
we continue analyzing distances involving this region until the size of the region equals
0. Observe that the next distances involving a previous analyzed region will always be
higher than previous distances because we are analyzing these values in noun-decreasing
order, Observe also that, at the end of the process, the sum of the weight values w equals
1, meaning that the entire image content has been compared. The for loop in line 7 is
executed nm times, one for each distance Dy, 5. Thus, the execution of lines {7..18] takes
time O{nm),

It is mportant to notice that an actual region 4; of an image may be virtually “broken”
into smaller units to find the best possible match for it. The best possible match may
involve only one greater region, a set of several smaller regions, or also a combination of
partial content of several regions of the other image. In any way, at the end of the process,
the “real” regions of the two images were decomposed in possibly smaller “virtual” regions
in such a way that: {1) the number of “virtual” regions of the two images is the same,
(2} there is a one-to-one correspondence between the virtual regions of the two images
and (3) each pair of corresponding regions has the same size. Thus, the distance between
images becomes a weighted average of the distance between their corresponding virtual
regions where the weights are their sizes.

We will exemplify the application of our distance function using the immages in Fig-
ure 4.3. For the sake of simplicity, assume the use of gray-scale images and the distance
between two regions given only by the difference of their gray levels. In Figure 4.3, we
have two images 4 and B that we want to compare. Image A has three regions (obtained
via a suitable algorithm, e.g., our proposed CBC): A = {4; U A, U A3}. Likewise, immage
B has only two regions: B = {B; U By}. The best possible match between regions of A
and B is (Ay, By) because this pair of regions has exactly the same gray level. Since By is
larger than Az, we split B into two virtual regions By = {By; U B2}, in a way that one
of the resulting regions (Bi,) has exactly the same normalized size of region 4;. Thus,
we obtain {4,, Byg) and this match will contribute to the distance between 4 and B with
weight 0.25 (the normalized size of the matched regions).

The second best match between real regions of images A and B is (4, By) but, as
the region By was split before, and one of the resulting regions (Bj2) was matched in a
previous step, the only possible choice is (A, By;). Again, as region A; is larger than
region B, the algorithm decomposes A, in two virtual regions 4; = {4;; U442} in a way
that the virtual region A;; has the same size of By;. Thus, our second match is (Ao, By}
also with weight 0.25. Now, let us assume that the third best match is (4;, By). As Bs
is larger than A,, the algorithm decomposes B; in two virtual regions By = {By; U Bag}.
The third match is then (A, Byy) and the final match is (411, By). Since all the virtual
regions have the same size, the four virtual matches {evaluated according to their gray
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Figure 4.3: Ap example of how the distance function decomposes real regions into virtual
TEZIOnSs

level distance) are averaged with the same weight w = 0.25 in order to obtain the distance
between 4 and 5.

4.3 Experimental setup

We compared the effectiveness of CUBC with the effectiveness of five other approaches
discussed in Section 2.6: (1) Global Color Histogram ~ GCH, (2) Color-Coherence Vector
- CCV, (3} Color-Moments — CMM, (4) Grid and (5) Cell/Color Histograms — CCH. The
first three approaches are global methods and the last two are partition-based methods.

We compared the CBC appreach with three distinet combinations of threshold color-
distance {dp) and threshold size {sq). Each combination resulted in a different number
of regions per image. Since our distance function depends of a parameter o, we ex-
perimentally determined that o = 0.875 corresponds to the most adequate compromise.
Confirming our intuition, this value suggests that the distance between the colors of the
regions is more relevant than the position of such regions when we compare two images.
When we used o = 1 (eliminating completely the contribution of the spatial location to
the distance value), the effectiveness of our approach did become slightly smaller. A sum-
mary of the most important characteristics of the eight compared approaches is shown in
Table 4.1,

We evaluated the effectiveness of the approaches in processing image-based queries
using a controlled environment. Since we did not count with a population of users, the
evaluation study was based on objective criteria. For example, the set of relevant images
relative to a given query (RRSet) was determined e priori, using an objective relevance
criterion in which the relevance of a image relates to how well the image responds to the
query that was posed. The subjective view of relevance cousiders not only the content of
an image but also the state of knowledge of the user at the time of the search.

We used a dataset of 20,000 JPEG images from a stock CD by Corel Corp.. This
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Table 4.1: Summary of the compared approaches in CBC's effectiveness evaluation.

Approach Color-Space | Cells/regions ' | Space’ | Complexity® | Metric
GCH RGB 1 64 Ofn} Ly
CMM HSV i g Ofn) Ly
cov RGEB 1 128 O(n) L3
Zyid RGEB 84 4096 O{n) In
CCH RGB §4 1856 O(n) L
CBC(5, 0.3} Lab 11 66 Onlogn) | d(4, B, o)
CBC(3, 0.1} Lab 40 240 Olnlogn} d(4, B, o)
CBC(2, 0.05) Lab 155 930 O(nlogn) | d{4, B, o)

¥ Average values for the 20,000 images we used

b Average number of real numbers needed to represent the images in our database
111 is the size (number of pixels) of an image

fo=0.875

database is composed of images of several different domains and, for this reason is called
a heterogeneous dutabase. In each domain, the images are semantically related, allowing
to distinguish one domain from the others easily. Since the images belonging to the same
domain may not have a very similar visual content, we called these domains heterogeneous
domains. We chose 29 of such domains to be used in our experiments. Out of each domain,
we selected an image to be used as query image and a set of imnages visually simnilar to the
chosen query image called Relevani Resuli Set — RRSet. Examples of RRSets are shown
in Figures 7.2, 7.3 and 7.4.

In any CBIR approach, we expect to retrieve the RRSets as soon as possible, since they
correspond to what we consider relevant for each query image. In the average, we have
30 relevant images per query image. We have performed two distinet experiments with
databases of different sizes. In one experiment, we used the 20,000 images of the whole
dataset as a large and heterogeneous database. In the other experiment, we used the
union of the RRSets of the first experiment as a small and less heterogeneous database
with 1,023 images. We used the same queries and RRSets in both experiments. Our
goal was to analyze if the relative performance between the analyzed approaches remains
the same when we change the size of database, enlarging/diminishing the proportion of
relevant /non-relevant images.

We compared the approaches’ effectiveness using two distinet measures: (1) Precision
vs. Recall [82] and (2) Normalized Avercge Rank - NavgR' [99] (a derivative of the
measure presented in [32]).

The Normalized Average Rank (NavgR) measure was first used in the QBIC project
[32], and after that in some other CBIR approaches [86, 99]. NavgR measures how close
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the set of relevant items appears to the top of the ranked result. This value is normalized
considering an ideal reirieval in which the relevant images appear ahead of any non-
relevant one in the ranked result, The relative ordering of the RRSet elements is irrelevant
because we are using a binary judgment of relevance. The measure used in QBIC project
was defined as NavgR = A/I, where A and I are, respectively, the actual average rank
and the ideal average rank of the RRSet. In this paper, we propose a slightly different
definition of the NavgR measure, inverting the original ratio as shown in Equation 4.1.

IRRSeL] ¢
NavgRt = % = Zem - (=1 (1)
S rank(t)

In that equation, rank(i) is a function that returns the rank of the ¢ relevant image.
The rank values vary in the range [0, |DB] — 1], where {DB| denotes the cardinality of
the image database, With this alternative definition, the Navg® value ranges from 0
to 1 and equals 1 in the best case, as occurs in precision and recall measures. Higher
values of NavgR are associated to good effectiveness results, instead of vice-versa. This
fact reduces the dependence of the measure on the worst results during the process of
averaging results from distinct queries.

A drawback with the NavgR' measure, is that, the value obtained for a single query
is still very semsitive to the rank of the last relevant document retrieved. In this paper,
we deal with this problem considering only a predefined portion of the RRSets for the
purpose of NavgR' computation. We consider only the ranks of the first 80% portion of
au RRSet. The last 20% of the RRSets (with the highest numerical ranks) are discarded,
since any possible misleading judgment of relevance (that will strongly affect the NavgR'
value} could materialize itself as a large numerical rank.

4.4 Experimental results

Table 4.2 shows a comparative analysis of the approaches, based on the mean values of
NavgR' obtaived using the resulss of the 29 visual queries. This table shows relative val-
ues, obtained using the GCH approach as reference. We also included the space overhead
{in terms of floating-point numbers) and the computational complexity of each approach.
Figure 4.4 on the other hand, shows a summary of the results obtained in terms of P x &
curves. Due to the limited space only the curves comparing GCH (typical benchmark),
CCV (runner-up among the global approaches), CCH (the best performer among the
partitioning approaches) and CBC(3,0.1) (a “good compromise” version of the proposed
approach) are shown. Nevertheless, in general terms, the obtained values of NavgR'
are consistent with the P x R curves — which further supports the use of NavgR as a
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single measure for retrieval effectiveness. Next we discuss the results in terms of global,
partition-based and clustering approaches.

Table 4.2: Single-value CBCs effectiveness using GCH results as reference

Approach Space* | Complexity | Experiment 1 | Experiment 2
GCH 64 Ofn) — —
CMM 9 Ofn) -48.44% -61.00%
oCcvV 128 O(n) -4.07% -10.60%
Grid 4096 O(n) 9.00% 19.16%
CCH 1858 O(n) 16.97% 38.01%
CBC(5, 0.3) 66 O(nlogn) 10.56% 53.48%
CB((3, 0.1) 240 O(nlogn) 21.67% 98.09%
CB(C(2,0.05) | 930 Ofnlogn) 33.26% 112.93%

* Average number of Hoating-point numbers needed to represent each image

Experiment 2
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Figure 4.4: Precision vs. Recall curves for some of the investigated approaches

Among the global approaches (GCH, CMM and CCV), the traditional GCH has the
best performance in both experiments. Clearly, CMM is the worst approach in terms of
effectiveness, about 50% worse than GCH's. However, one must notice that CMAM vields
the smallest space overhead, seven times simpaller than GCH's overhead. CMM's and
CCV's relative performance were also sensitive to the growth, in size and heterogeneity,
of the image database.

Among the partition-based approaches (Grid and CCH), CCH is the best approach
in both experiments, with a space overhead 50% smailler than Grid's. The effectiveness
of CCH is about 38% better than GCH’s (at the second experiment of Table 4.2), at the
cost of a space overhead 30 times larger.

Finally, the results in Table 4.2 show that the three distinct configurations of our
clustering approach are more effective than CCH- the best of the compared approaches.
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The results also show that cur approach is more robust to the growth of the database.
Considering the CB((5,0.3) configuration, we have simultaneously the space overhead of
the GCH approach and au effectiveness higher than CCH's effectiveness {at the second
experiment ), with more robustness since the relative effectiveness of the CCH approach
doubled when the database growth, while the effectiveness of CBC(5,0.3) becomes 5 times
higher. Using a configuration that results in more regions {(CBC(2,0.05}), we can achieve
gaing of the order of 110% relative to the GUH approach, with more robustness and with
a space overhead 50% smaller than CCHs. The robustness is an important factor since
it implies that, the larger the database, the larger the differences in effectiveness between
our approach and the other compared approaches.

The CBC(3,0.1) configuration represents an interesting compromise among the size of
the number of regions, effectiveness and robustness. With this configuration, we obtain
in average 40 veglons per unage, resulting in a space overhead 4 times larger than GCH's,
but 90% smaller than CCH's. The effectiveness of CBC(3,0.1) is 98% higher than GCHs
while CCH's gain is only of 38%. When the database grows from 1.023 to 20.000 images,
the advantage of CCH in relation to GCH becomes approximately two times larger, while
with CBC(3,0.1) this advantage becomes five times larger, suggesting that CB(C(3,0.1) is
also considerably more robust than the other compared approaches. Figure 7.5 shows an
exampie of the top 30 images returned in respouse to a visual query using the CBC(3,0.1)
configuration. The query image in this example is the first image retrieved.

4.5 Chapter conclusion

In this chapter, we presented CBC, a new content-bused image retrieval approach based
on cluster analysis. Overall, our contribution within the ever-growing area of image
databases is an efficient process to obtain an image’s representation (visual features), and
an effective way to assess similarity between images. We have used a simple variation of
the single-linkage clustering algorithm to find out disjoint regions of the images composed
by pixels with a predefined degree of color similarity. This approach has the advantage of
avoiding the notoricus problem of color-space quantization, and of being adaptive in the
sense that the segmentation process depends mostly on the image itself rather than on
“artificial” parameters, such as the number of clusters or the like. Using CBC, images are
represented and compared based on the set of regions in which they were decomposed.
We have also proposed a new distance function to compare the CBC representation of
two images.

The effectiveness of three configurations of CBC were compared against the effec-
tiveness of five other CBIR approaches, in a controlled environment. Given the results
discussed along the paper, we believe that the main advantages of our approach are: (1)
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fleaibility — using different thresholds for region’s size and color’s distance, it is possible to
obiain different compromises between space overhead and effectiveness; (2} configurability
— both the clustering algorithm and the distance function can be tuned to work in specific
domains, i.e., to consider additionally domain-dependent visual features; (3) effectiveness
— the three configurations of CBC vielded better retrieval effectiveness than the other
five compared approaches; and (4) robusiness — our experiments have shown that CBCis
more robust with respect to the database growth. In fact, the larger the database size,
the larger the relative advantage of CBC.
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Matching

Minimum-Cost Region

Recently, several content-based image retrieval {CBIR) systems that make use of seg-
mented images have been proposed. In these systems, lmages are segmented and rep-
resented as a set of regions, and the distance between images is computed according to
the visual features of their regions. A major problem of existing distance functions used
1o compare segmenfed images is that they are not metrics. Hence, it is not possible to
exploit filtering techniques and/or access methods to speedup query processing, as both
technigues make extensive use of the triangular inequality property — one of the metric
axioms. In this work, we propose MiCRoM (Minimum-Cost Region Matchiug), an effec-
tive metric distance that models the comparison of segmented images as a minimum-cost
network flow problem'. To our knowledge, this is the first time a true metric distance
function is proposed to evaluate the distance between segmented images. Our experiments
show that MiCRoM is at least as effective as existing non-metric distances. Moreover,
we have been able to use the recently proposed Omui-sequential filtering technigue, and
have achieved nearly 2/3 savings in retrieval/query processing time.

The main problem to model a regional CBIR approach iu a metric space is related to
the distance function used to compare segmented images. To the best of our knowledge,
there are only a few works dedicated to this topic. In general, the most common approach
is to perform comparisons based on individual regions, as in Blobworld system {18]. In
this system, although querying based on a limited number of regions is allowed, the query
is performed by merging single-region query results. Even if it was possible to combine the
results obtained with each individual region of an image, there is no guarantee that the
full content of the images is compared. It is possible that most of the regions in an image
matches with the same region of the other. Moreover, if the comparison is performed in

1This chapter was published in the “Proceedings of the VISUAL2002 International Conference™ [102].
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the opposite direction, it is possible to obtain a completely different distance.

In order to reduce the influence of inaccurate segmentation, and to guarauntee the
comparison of the full content of the images, systems like SIMPLIcity [58] and CBC [100]
compare images according to the properties of all segmented regions simultaneously, not
only in a region-by-region basis. SIMPLlcity compares images according to the IRM
{Iutegrated Region Matching) distance. An equivalent distance function is used in CBC.
The main difference is that the visual features used to compare individual regions in CBC
and SIMPLIcity are not the same.

The JRM distance between two images X and Y is algorithmically described in Fig-
ure 4.2. The main problem of the [RAM distance function is that it does not satisfy the
triangular inequality property. This problem is related to the greedy approach of choosing
first the most similar regions to be matched. The greedy algorithin in this case does not
gnarantee that the obtained distance is the best {(smallest) one.

Figure 5.1 shows a counterexample where the results obtained with the JRM greedy
distance do not satisfy the triangular inequality property. In this example, images X, ¥
and Z are compared two-by-two, according to their regions. Each image has exactly two
regions of the same size (0.5). For illustrative purpose only, each region has its visual
feature represented by a single numerical value. This number could be, for example, the
average gray level of the region. The size and also the visual feature of the regious are
normalized between 0 and 1. The distance between two regions (d.,) is given by the
module of the difference of their visual features. The edges between images show the
matched regions according to the JRM distance. Ou the right of Figure 5.1, there is also
the result of the comparisons, organized it a triangular shape.

a=02 e c= 1.0 ex={3
X b >< z
b=06 =4 d=03

Figure 5.1: An example to show that the TRM distance does not satisty the triangular
inequaliiy property

As we can observe, the triangular comparison of the images give us the inequality
0.45 > 0.2 + 0.15, which contradicts the triangular inequality property. The problem in
this example is in the distance between images X and Y. The greedy approach adopted
in JRM results in a non-optimal distance when X and Y are compared, because there is
another match which reduces the distance between them.
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The optimal comparison that minimizes the distance between images X and ¥V is shown
in dotted lines, and gives the result optimal(X,Y)=05x[0.2-0.5]+05x[06—10/=
0.35. The result of this optimal comparison is shown between brackets in the triangular
representation of the distances among the three images. If the optimal distance is used,
we have 0.35 < 0.2 -+ (.15, which satisfies the triangular inequality property.

The remainder of this chapter is organized as follows. In Section 5.1, we propose
MiCRoM, our new metric distance to compare segmented images. The effectiveness of
MiCRoM 15 evaluated in Section 5.2. Experimental results related to the use of fltering
techniques based on the MiCHoM metric properties are presented in Section 5.3. Finally,
Section 5.4 states the chapter conclusions.

5.1 The Mi:CRoM metric distance

This section proposes MiCRoM (Minimure-Cost Region Matching), a new mefric dis-
tance function to compare the visual content of segmented images. As it will be shown
in Section 5.2, MiCRoM is at least as effective as JRM, the distance function used in
SIMPLIcity and CBC systems, and has the advantage that it can be adequately indexed
using existing MAMs [20] such as the M-tree [23]. It is also possible to use a combination
of filtering techniques and SAMSs [35] to speedup the query processing, as it will be shown
in Section 5.3.

The main idea of MiCRoM counsists of modeling the comparison of segmented images
as a minimum-cost network flow problem [2]. More specifically, the comparison of iinages
is modeled as a transportation problem. The transportation problem is an optimization
problem that can be informally expressed as follows. Assume that we have a number
of consumers with certain demand for a product. This product is made by a number
of producers with certain production capacities. The system is balanced in the sense
that the total demand equals the total production capacity. The production should be
transported from the producers to the consutners, such that every consumer gets exactly as
much product as it needs, and the transportation costs from all producers to all consumers
are known in advance. The transportation problem is to find the optimal {cheapest) way
to bring the products from the producers to the consumers. Next, a formal definition for
the transportation problem is given.

A network is a directed graph G = (V| E) composed by a set V of n nodes and a
set E of m arcs. Each node represents either a producer or a consumer. Assuming that
there are p producers and ¢ consumers, we have: n = p + ¢. Each node has an associated
number pd that represents its production (positive values) or its demand (negative values)
depending on whether the node is a producer or a consumer. The system is balanced,
so S0 pd; + Z;ﬂ pd; = 0. There is a directed arc (4, 7) for every pair of producer
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¢ and comsumer j. Thus, m = p x ¢. Each arc (7, 7) has two associated values: its
transportation capacity capy;, and its transportation cost costy;. The arc capacity is given
by capy; = min{|pdil, [pd;]). The decision variable in the trausportation problem is the
flow filow;; in each arc {(i,7). These flows should satisfy 0 < flow,; < capyy, and should
minimize the fanction 377, 37, (costy; x flow).

The minimum value of the function above corresponds to the MiCRoM distance {u)
between the two images, that s, u = min(3 7, ) 5., (costy; x flows;)). Despite of the
differences in the modeling of the problem, MiCRoM gives the optimal solution for the
comparison of segmented images that the greedy approach adopted in JRM somietimes
fails to obtain. In fact, the JRM distance can be thought as a greedy function to solve
the transportation problem {as defined above) that gives as much flow as possible to the
arcs with the smallest cost.

The minimum-cost network fow problem is a linear program with a very special strue-
ture [2]. As such, specialized algorithms can find solutions much faster than plain linear
programming algorithms. A large number of efficient algorithms for this specialized in-
stance of the problem are avallable. In our case, we used the CS2 code developed by
Cherkassky and Goldberg®. CS2 is a an efficient implementation of a scaling push-relabel
algorithm for the minimum-cost flow/transportation problem [36].

An example of two images and the modeling of their comparison as a transportation
problem can be viewed in Figure 5.2. Image X is composed by three regions a, b and ¢,
and image Y is cornposed by regions d and e. A single number represents the visual feature
of each region. This number and also the size of the regions are normalized between [0,1].
For example, size(a) = 0.5 and size(b) = 0.25. The comparison of images X and Y is
modeled as a transportation problem in the following way.

Each region of image X is modeled as a producer node, where the production is given
by the normalized size of the region. Similarly, each regior of image Y is modeled as a
consumer node, with a demand given by its size (remember that a demand is represented
by a negative value). Each are between pairs of producer/consumer nodes has a cost given
by the distance (d.e,) between the corresponding regions. In this example, this distance
is given by the absolute difference of the numerical properties of the regions.

A solution for the transportation problem modeled on top of Figure 5.2 can be viewed
on the bottom part of the same figure. As can be seen, half of node a’s production {0.25}
was transported to node d with cost 0.2. The other half (0.25) was transported to node
e with cost 0.7. All production of node b {(0.25) was transported to node e with cost
0.3, filling the demand of that node. Fiunally, the total production of node ¢ (0.25) was
transported to node d with cost 0. The minirmum transportation cost in this network is
thus {0.25 x 0.2} +(0.25 x 0.7) + (0.25 x 0.3) + (0.25 x 0.0) = 0.3. The bottom-right part

?hitp://www.intertrust.com/star/goldberg /soft.html
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Figure 5.2: Modeling the comparisonu of segmented iinages as a transportation problem

of Figure 5.2 shows how the solution of the transportation problem maps back on the
compared images. In this particular example, the JRM distance is exactly the same as
MiCReM, ie., p(X,Y) = irm(X,Y). However, as it was shown in the previous section,
this is not always the case.

5.1.1 MiCRoM metric properties

The MiCRoM distance decomposes the “real” regions of the images in “virtual” subregions
to compute the minimum distance between them. The regions obtained after the virtual
decomposition have very interesting properties:

The number of regions of the compared images becomes the same.

» The obtained regions are the ones that minimize the distance between the two
images, according to the model adopted (iransportation problem).

]

There 1s a one-to-one match between regions of the two images.

| ]

Matched regions have the same size.
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The above properties ensure that the distance between images is optimal and that
the full content of the imnages is compared. These properties are also useful to show that
the MiCRoM distance is a metric. By construction, it is clear that the MiCRoM distance
satisfies the axioms of positiveness, symmetry and reflexavity, Next, it will be shown that
this distance also satisfies the triangular inequality property. The demonstration assumes
that the distance dy., (used to compare individual regions of images) is a metric.

Consider the triangular comparison of three images (X, Y and Z) at the level of virtual
regions. Assume that a virtual region X; of image X maiches with a virtual region ¥}
of tmage Y. Similarly, assume that the virtual region ¥, matches with a virtual Z; of
image Z, and the virtual region Z; matches with a virtual region X; of image X, closing
a triangular match for a particular virtual region. As shown in Figure 5.3, there are two
possible relations between the virtual regions X; and X; of image X: either X; = X or
X; £ X, We call the first case a ¢yclic match, because the virtual region that started the
triangular match is the same that ends the process. The second case is called an acyclic
match, as the regions that started and ends the triangular match are different.

Cyelic Acyelic
¥
¥

Xi Zk
Xi=Xi Zk

Figure 5.3: Two alternatives for the triangular comparison of virtual regions

Initially, let us suppose that the application of the MiCRoM distance to compare
images X, ¥ and Z, results only in cyclic matches (X; = X;) at the level of virtual
regions. As we are assuming the cyclic property only when images X, Z are compared
{closing the triangular comparison of the images), this specific MiCRoM distance (with
the additional restriction of cyclic matches) is represented as Yeyeic(X, £)-

We know that in the case of cyclic matches, doeg (X, Zp) € Greg{ X5, Vi) + dreo (Y5, Zi)
for any regious X, ¥; and Z,, as we assumed that d,., is a metric. We also know that the
MiCRoM distance is only a linear combination of d,., distances. As the linear combination
of metric distances is also a metric, we have that, for the case of cyclic matches of virtual
regions, Jut“—yclic(Xr Z) < fl'(Xa Y) + :u(Y: Z)

The assumption of cyclic matches at the level of virtual regions does not guarantee
that the obtained distance is optimal, because this is not a restriction of our model.
However, as the MiCRoM distance is optimal, we have that (X, Z) < poyen X, £} <
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XYY+ w(Y, 2, e, independently of the use of acyclic matches of virtual regions,
the optimality of the MiCKoM distance alwayvs guarantee that the friangular inequality
property holds.

5.2 Effectiveness evaluation

This section presents our experimental results related to the effectiveness of the MiCFEoM
metric distance. We have compared MiCRolM with the JRM distance, under the same seg-
meniation scheme. In order to have a reference, we have also included the results obtained
when images are represented by their global color histograms (GCH), and compared with
the L; vectorial distance. We have used histograms with 64 uniformly quantized colors
in RGB color-space.

The experiments used a collection of 20,000 heterogeneous images®, composed by 200
distinct image domains, each one with 100 JPEG images. The MiCEoM and IRM dis-
tances were used to compare regions obtained with the CBC(3, 0.1) algorithn as described
in.Section 4.5. This configuration offers an intermediate compromise between the num-
ber of obtained regions (which affects the space overhead and the query processing time)
and the retrieval effectiveness. With this configuration, each image within our reference
collection was segmented (in average) in 40 connected regions. Each region of an image is
represented by its average color in the Lab color-space (3 values), its size (1 value), and
the spatial coordinates of its geometric center {2 values). Thus, each region of an image is
represented by 6 float-point numbers (fpus), and an image is represented by 6 x 40 = 240
fpns in average. The distance between regions of two images (d,.,) is a weighted compo-
sition of the distances between the average color and between the spatial position of the
regions.

Since it is generally difficult to express low-level features of images, the Query-By-
Example (QBE) paradigm was adopted, where an image is given as example and the sys-
temn retrieves the most similar matches for this image. The effectiveness of the approaches
was evaluated using a set of 18 query images, selected from our reference collection of im-
ages. The set of images accepted as relevant for each query image (RRSet) was determined
a priori, using a technique similar to the pooling method adopted in TREC conferences
[118, 115]. We extracted the set of relevant images (for a given query) from a pool of
possible relevant images. This pool is created by taking the top 30 images retrieved by
each compared approach. The pool of candidate images was then visually analyzed to
wltimately decide on the relevance of each image. The subset of relevant images in the
pool is the RRSet of the query image. We evaluated the effectiveness of the approaches

3Corel GALLERY Magic 65,000 - Stock Photo Library 2.
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using P x R curves (Section 2.7.1).

The results of the effectiveness comparison can be viewed in Figure 5.4, The best
overall resulis were obtained with the MiCRolM metric distance, followed by the JRM
distance. In both cases, the comparison was based on the regions obtained with the CBC
clustering algorithin. As can be seen, both results are better than the use of a GCH
to represent images plus a geometric distance (L) to compare these histograms. The
advantage of MiCRoM over JREM is evident, but not very large. This means that the JHM
distance, although not a metric, is 2 good approximation for the MiCHoM metric distance
in terms of effectiveness and also in terms of efficiency, as it is a less expensive distance
in computational terms. However, the MiCRoM metric distance, besides being a little
better in terms of effectiveness, has the advantage that its metric properties can be used
to speedup the query processing using filtering techniques and/or access methods.
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Figure 5.4: MiCRoM effectiveness results

For small collections, the combination of a efficient distance like JEAM and a linear
scan of the image database is an interesting approach. However, for large databases,
independently of its computational complexity, the use of a metric distance like MiCRoM
becomes more attractive as it is possible to reduce the guery time making extensive use
of the triangular inequality property. In the next section, we will investigate a filtering
technique that reduces the CPU time to process a visual query when complex distances
like M7CRoM are used to compare images.

5.3 Filtering based on metric distances

Since there are efficient techmiques to cope with vectorial spaces, application designers
try to give their problems a vectorial space structure. A common reduction consists of
mapping a general metric space into a projected vectorial space. A query processed in



5.3. Filtering based on metric distances 8%

the vectorial space generates a carndidate list of images that should be analyzed in the
original metric space in order to eliminate false-positives.

The space reduction as discussed above is obtained by defining & images of the database
as reference, computing the MiCRoM distance between the database images and the
reference images, storing these distances as k-dimensional vectors, and using a simple and
efficient geometric distance to filter out non-relevant images in the vectorial space {at
query time). Santos et al called this space reduction Omni-concept [84]. They proposed
the HF-algorithm to define the & reference images (foci} used to generate the k-dimensional
vectorial space {ommni-spuce). The sequential scan of the omui-space was called Omni-
sequential.

The omui-seguential algorithm makes extensive use of the triangular ineguality prop-
erty to eliminate non-relevant images at query time. In order to illustrate this process,
let us consider ( a query image, D a database image, F; the i focus used to generate
the k-dimensional omuni-space {1 <7 <k}, and a guery radius 7. The database image D
is a candidate image only if the following inequality holds:

m&:msiskfﬂ-(@, -F?«) - #(ED)} <7 (5'})

Notice that the distances p{Q, Fi) and pu(F;, D) are known at query time, as they
correspond to the ¢ ommni-coordinate (in the omni-space) of images Q and D, respectively.

In our filtering experiments, we adopted the omni-sequential algorithm. As discussed
in previous section, our reference collection of images has 20,000 images. The results
presented are relative to the 18 query images used in the effectiveness evaluation discussed
in previous section.

The proportion of the database filtered out using the omni-sequential algorithm was
evaluated by varying the number of foci between 1 and 10. The foci images were selected
according to the HF-algorithm. We used query radius varying between 0.005 and 0.1
(as the distances are normalized; the maximum distance between two images is 1.0). On
the left of Figure 3.5, it is shown the relation between the gquery radius and the average
number of images retrieved, ie., the number of images with a MiCRoM distance to the
query images smaller than the query radius.

As can be seen, in order to retrieve the top 100 most similar images {o a query image,
in average, a query radius of 0.045 is enough. A query radius of 0.1 (not shown in the
Figure) is sufficient to retrieve, in average, the top 9039 most similar images to the query
image. This is approximately half of the database size.

Omn the right of Figure 3.5, it is shown the degree of filtering using query-radius between
0.05 and 0.045, according to the number of foci used. As can be seen, independently of the
query radius used, the ideal number of foci seerns to be 4. After this point, the proportion
of the database filtered out does not increase substantially. For example, for a query radius
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Figure 5.5: MiCRoM filtering results

of 0.045, 63.45% of the image database was filtered out using ouly 4 foci. This means that
2/3 of the database was pruned without computing the MiCHoM distance, but only using
the L, distance in the 4-dimensional omni-space. This proportion grows to only 67.34%
when 10 foci are used. This behavior is the same for all query radius tested.

As the time io compare two 4-dimensional vectors using the I, distance is much
smaller than the comparison of the regions of two images using the MiCRoM distance, we
can say that the gain in CPU time using omni-sequential (for a query radius of 0.045) is
almost of 2/3 when compared to a linear scan of the image database.

In order to reduce the I/O time to process a visual query, it is possible to index the
generated 4-dimensional vectorial space using a spatial access method (SAM) such as the
R*-tree [10]. SAMs reduce the comparison of images only to those near the query image.
In this way, only a portion of the omni-space need to be read from the disk, further
reducing the number of I/O operations to process a visual query.

5.4 Chapter conclusion

This chapter presented MiCRoM {Mivimum-Cost Region Matching), an effective metric
distance to compare the visual content of segmented images. MiCRoM models the com-
parison of the regions of two images as a minimum-cost network flow problem {2]. Qur
experimental results show that the MiCRoM metric is at least as effective as the JRM
distance {38, 100]. This result shows that the greedy approach adopted in JRM, although
not optimal, gives results very close to the results obtained with MiCRoAM metric, with the
advantage of being less complex. However, the main disadvantage of JRM is that it is not
a metric distance and so, it is useful only when the image database is relatively small. The
MiCRoM metrie, although computationally more complex than JRM, is not only slightly
more effective, but more importantly, it has the great advantage that it allows the use
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of the triangular inequality property in filtering techniques [84} and/or access methods
[20, 35]. This yvields substantially reductions in guery processing time and a much broader
context of application than JEM.



Capitulo 6

BIC — Border/Interior Pixel
Classification

This chapter presents BIC {Border/Interior pixel Classification), a compact and efficient
CBIR approach suitable for broad image domains’. The BIC approach has three main
components: (1) a simple and powerful image analysis algorithm that classifies image
pixels as border or interior; (2) a new distance to compare histograms — dlog; (3) a
compact representation for the visual features extracted from images. Our experimental
results show that the BIC approach is consistently more compact, more efficient and more
effective than state-of-the-art CBIR approaches based on sophisticated image analysis
algorithms and complex distance functions. The B/C image analysis algorithm runs in
linear time on the image size, and the obtained visual features can be stored in mere 64
bytes of memory. Our experimental results also show that the dLog distance function has
two main advantages over vectorial distances (e.g., L, }: it 1s able to increase substantially
the effectiveness of histogram-based CBIR approaches and at the same time to reduce by
50% the space requirement to represent 2 histogram.

The remainder of this chapter is organized as follows. In Section 6.1, we discuss limi-
tations and drawbacks of the use of regional CBIR approaches in broad image domains,
and introduce the BIC approach. Section 6.2 presents our experimental setup in terms of
reference collection of images, query images, set of relevant images and retrieval effective-
ness measures. Our experimental results are discussed in Section 6.3. Finally, Section 6.4
presenuts the chapter conclusions.

'This chapter will be published in the “Proceedings of the ACM CIKM 2002 Initernational Conference”
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6.1 The BIC approach

During the last years, we have worked with regional CBIR approaches. In this period,
we could observe the porential and also the Limitations of these approaches when applied
to Jarge collections of heterogeneous images (broad image domains). A narrow tmage
domain has a limited and predictable variability in all relevant aspects of its appearance.
Collections of fingerprints, faces recorded over a clear background, and X-rays of the
human brain ave exampies of narrow lmage domains. A broad tmage domain, on the other
hand, has an unlimited and unpredictable variability of the image’s content. In general,
the interpretation of the image’s content is not unique, and the collection of images is
very large. As a comseqguence, it 1S not possible to use semi-auntomatic technigues and
domain-dependent knowledge during the analysis and comparison of images. Moreover,
the image analysis algorithm and also the distance function used to compare segmented
images should be as general as possible.

Our experience taught us that, even using very general image properties and automatic
segmentation algorithrus, it 1s possible to obtaln very good segmentation resuits in the
sense that the obtained regions match very much with the visual properties observed by
users. The main drawback of these algorithms is that sometimes the obtained regions are
only part of a real object, i.e., an object a user would likely identify by looking at the
image. Thus, it does not have a semantic by itself and should be combined with some
neighbor regions in order to represent a meaningful object. This problem is treated in
general at query time, by using complex distance functions to compare weakly segmented
images.

A second drawback of the automatic image segmentation algorithms is that the crite-
rion of homogeneous visual properties usually leads to a super segmentation of the image.
As a result, a precise representation of the obtained regions is prohibitive in terms of
storage space, and their comparison using a complex distance function is impractical.
The aforementioned problems become even more critical if one recalls that the number of
regions per image is variable and the obtained regions are alsc variable in size, shape and
spatial location.

In order to keep the problem of representing and comparing segmented images tractable,
the output of the segmentation algorithm is usnally simplified, relaxing properties in or-
der to preserve only a few regions, and also representing approximately the remaining
regious. As it is not possible to use additional knowledge about the content of the images
(domain-dependent knowledge) to perform this simplification, the consequence is that the
effectiveness of the approach is reduced in the same proportion in which the problem is
simplified. If the result of the image analysis algorithm must be relaxed in order to keep
the problem tractable in computational terms, it is very likely that the algorithm used is
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not the most adequate one for the problem in hand.

As we show in forthcoming sections, the keyv to reach efficient and effective CBIR
systerns in broad image domains is the use of simple and robust linage analysis algorithms
whose result can be preserved {without approximations) during the representation and
the comparison of the visual features. There is no point to use complex image analysis
algorithms if the properties of these algorithmns must be relaxed and sometimes discarded
in order to make the repregsentation and the comparison of the images a tractable problem.

Next we present BIC (Border/Interior pixel Classification), a new CBIR approach
suitable for broad image domains. The BIC approach has three main components: (1)
a simple and powerful image analysis algorithm that classifies image pixels as border or
interior; {2) a new logarithmic distance to compare histograms; (3} a compact representa-
tion for the visual features extracted from images. Each of these compouents is explained
in details in the following subsections.

6.1.1 Image analysis

The algorithm for image analysis in BIC approach relies on the RGB color-space uniformly
guantized in 4x4x4=64 colors. It is important to notice that any other color-space and
quantization scheme could be used as well. We chose this configuration because it is
widely used and it is effective, ag discussed in Section 4.5. Apother reason is to have fair
comparisons with other histogram-based CBIR approaches we have implemented that
also rely on the same scheme (RGB uniformly quantized in 64 colors}. We normalize
the pixel count of each histogramm bin between 0 and 255. This normalization is helpful
because if we approximate the pixel count to integer values in the interval [0,255], we are
able to represent a histogram bin using only one byte of memory. We have also observed
in practice that there is no clear advantage in using more than 255 distinct values per
histogram bin.

After the quantization step, lmage pixels are classified in border or interior pixels. A
pixel is classified as border if it is at the border of the image itself or if at least one of its 4-
neighbors (top, bottom, left and right) has a different quantized color. A pixel is classified
as interior if its 4-neighbors have the same quantized color. It is important to observe
that this classification is mutually exclusive (either a pixel is border or it is interior) and
it is based on a inherently binary visual property of the images. We choose 4-neighbors
instead of 8-neighbors because, given the simplicity and generality of the problem, the use
of 4-neighbors is able to reduce the image analysis complexity without perceptual losses
in terms of retrieval effectiveness.

After the image pixels are classified, one color histogram is computed counsidering only
border pixels, and another color histogram is computed considering only interior pix-
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els. In this way, we have the border/interior classification represented for each quantized
color. A binary classification of image pixels was also proposed within the CCV approach
{Section 2.6.1). However, the CCV binary classification is based on a non-binary visual
property of the images — the size of the connected components. In order to have a binary
classification in CCV, an empirical size threshold was introduced and most of the useful
information about the size of the connected components was lost in this reduction. More-
over, the approach may be very sensitive to the chosen threshold that, in practice, should
vary according to the visual content of the images. The consequence is that the CCV
approach is only a little bit more effective thany a simple GCH, as shown in Section 6.3,
The implcation of the approximation introduced in CCVin terms of effectiveness follows
the discussion presented in Section 6.1.

The classification of the pixels in border/interior for each quantized color is mmch
more discriminative than a simple GCH or CCV, as shown in the experimental results of
Section 6.3, This discriminative power can be analyzed for each individual color in terms
of shape, texture and connected compounenis. If the number of interior pixels for a given
color is smaller than the number of border pixels for the same color, than at least one
of the following visual properties is true: {1} the color is distributed in relatively large
regions with very irregular shape; (2) the color is distributed in small connected regions
such that the border of each region is larger than its interior; (3) the color is part of an
image region that is rich in texture information. Similarly, if the opposite situation is
true, i.e., the number of border pixels for a given color is smaller than the number of
interior pixels for the same color, than we can conclude that (4) the color is distributed in
relatively large and homogeneous regions with regular shape. The degree to which each
of the four aforementioned visual properties is true depends on the portion of the image
covered by and alsc on the proportion between border/interior pixels for each guantized
color. Figure 7.8 shows examples of images analyzed in terms of border and interior
pixels?.

6.1.2 dLog Distance function

As discussed in previous section, each image is described within BIC by means of two
color histograms with 64 bius each (one for each quantized color). In fact, these two
histograms car be stored and compared as a single histogram with 128 bins. As such,
we are able to use any vectorial distance function like Ly or Ly to compare the BIC
visual features. The main advantage of vectorial distances is their efficiency in comparing
histograms. Moreover, they allow the use of spatial or metric access methods to speedup

2A set of 50 images analyzed in terms of border/interior pixels can be viewed in color at:
htip://www. ic.unicamp.br/~873250/chbir/bic. html.
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query processing [103]. The use of access methods is important for large collections of
images, as the query processing time should not increase i the samne proportion tnat the
image collection increases.

Vectorial distances have also well-known limitations. Oue of such Hmitations is that
& high value in a single histogram bin dominates the distance between two histograms,
uo matter the relative importance of this single value [61, 68]. If we think about an
image in terms of background/foreground regions, in general it is true that the foreground
determines the semantic of the image and as such, it is more important in determining
the similarity among images. It is equally true that, in general, the background covers
the majority of the image area. Thus, the regions that compose the background are
usually larger than the regions that compose the foreground. For instance, consider a set
of immages where the background covers 60% of the image’s content and this background
is homogeneous in the sense that it can be represented in just one histogram bin. Now
imagine that we perform a similarity search using one of such images as example. What
does happen when a vectorial distance is used to compare these histograms? Images
having a background with the same color but a different foreground are retrieved ahead
of any other image having the same foreground (i.e., a high degree of sernantic similarity)
but a background with a different color.

in order to deal with this distortion using only the information available within the
histogram representation, we propose the dLog distance function. The dLog function
compares histograms in a logarithmic scale, and is defined as:

i<AT
dLog(g.d) = >_ | f(qli]) — F(dli])] (6.1)
=g
g, fx=0
fla) =11, fo<z<1 (6.2)

[log, x| + 1, otherwise

In the previous equation, ¢ and d are two histograms with M bins each. The value
g[i] represents the i** bin of histogram ¢ and d[i] represents the i bin of histogram d.
The histogram bins are normalized between 0 and 255, as discussed in Section 6.1.1. A
similar but experimentally defined encodivg function f{.} was also used in [68].

The comparison of histograms with the dLog function does not solve the problem of
histogram bins with very high values, but diminishes its effects in most of the situations.
In a log-scale, the difference between the largest and the smallest distances between
histogram bins becomes smaller than in the original scale. In the original scale, the
smallest distance between histogram bins is zero (both images have the same amount of a
particular color} and the largest distance is 255 {when the images have just one color and
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they are different). In our log-scale, the smallest distance is 0 and the largest distance is
just 9. The range of distances In the original scale is thus 255/9 = 28 times larger than
in the proposed log-scale.

In Sectiou 6.3 we apply the dlog distance function to compare histograms in different
histogram-based CBIR approaches. In all cases, the use of the dlog function (instead of
L1} increases substantially the effectiveness of the approaches, making simple approaches
such as GCH almost as effective as a regional approach such as CBC.

6.1.3 Representation of visual features

When histograms are compared using the dLog distance function, it is possible to store
the result of the f{z) function {Equation 6.2) instead of the normalized pixel count. The
advantages of this log-based representation for histograms are: (1) the comparison of
the histograms according to the dlog distance becomes computationally simpler; (2} the
histogram can be stored in half of the space of the original representation; (3) as in [69],
we call interpret, represent, index and compare histograms as binary signatures.

If the log-based representation is adopied, we can compare histograms using simply
the I, distance. A careful look at Equation 6.1 reveals that the dZog distance is in fact
an L; distance of the log of the pixel count — f{z). If f(z) is already computed and
stored, all we have to do is just compare the log-based represented histograms using the
Ly vectorial distance. Moreover, observing Equations 6.1 and 6.2, and remembering that
0 < z < 255, we perceive that 0 < f(z) < 9. Thus, f(z) can assume only 10 distinct
values and these values can be stored in just 4 bits {10 < 2%). This means that the
log-based representation of histograms requires half of the space necessary to store the
normalized pixel count (original representation).

The log-based representation allows a reduction of 30% inu the required storage space
for any histogram-based CBIR approach. In the particular case of the BIC approach,
each BI(C histogram has 128 bins (64 for border pixels and 64 for interior pixels}. Thus,
it is possible to store a BIC histogram in just 64 bytes of memory. This is a very compact
representation for the visual features of an image. As an example, it is possible to store
16,000 BIC histograms in just 1Mbyte of memory. Considering a single desktop PC with
1Gbyte of free RAM memory, it is possible to keep in main memory (for the purpose of
similarity search) the BICrepresentation of approximately 16 millions of images. High-end
workstations can thus maintain fairly large collections of images in memory, completely
avoiding the necessity of disk-based access methods to speedup query processing.
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6.2 Experimental setup

In our experiments we adopted the widely used query-by-example (QBE) paradigm, as
it seems to be the most adequate way to submit queries in CBIR systems based on low-
level visual features. In QBE, an image is given ag a visual example of the information
needed. This image is analyzed and visual features are extracted. These features are used
to measure the distance between the guery image and the images stored in the image
database. The stored lmages are retrieved in increasing order of their distance to the
guery image (similarity-search).

The purpose of our experiments is 1o evaluate the effectiveness of the similarity-search
of different CBIR approaches in retrieving relevant images ahead of non-relevant ones.
Effectiveness evaluation is a very complex task. While in textual information retrieval
there are several reference collections of documents available (e.g., CACM, ADI, INSPEC,
Medilars and ISI) and even a full conference (TREC) dedicated 1o the issue of effectiveness
evaluation [118], in the domain of CBIR the situation is quite different. The CBIR
community has not been nearly as active in this respect, though some work has begun to
appear recently {e.g. [54, 66]).

In order to evaluate CBIR effectiveness, it is necessary at least a reference collection
of images, a set of query images, a set of relevant images for each query image (ground
truth), and adequate retrieval effectiveness measures. Next we discuss how we dealt with
these requirements in our experiments.

We are usiug as reference a heterogeneous collection of 20,000 JPEG images from a
Corel stock CD?. This collection has approximately 200 distinct image domains, each one
composed of approximately 100 images. We believe this is a sufficiently large number of
distinct domains (and also images per domain) for the purpose of our evaluation study.

Out of the reference collection, we selected 50 images of distinet domains to be used
as query images. These images are shown in Figure 7.1. Once the query images were
selected, the next step was to establish the set of images inside the reference collection
that we accept as relevant for each query image. We call this set of relevant images
the relevant result sef (RRSet) of a query image. Given a query image, an ideal CBIR
approach retrieves the images of its RRSet ahead of any other image within the reference
collection. We selected the RRSets using a technique similar to the pooling method adopted
in TREC conferences [118, Ch. 3], which is detailed next.

We extract the RRset for a given query from a pool of possible relevant images. This
pool consists of the top 30 images retrieved by each compared CBIR approach. The
pool of candidate images is visually analyzed to ultimately decide on the relevance of
each image. The subset of relevant images in the pool is the RRSet of the query image.

®Corel GALLERY Magic 65,000 - Stock Photo Library 2.
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The decision about the relevance of a given image was based on its visual properties, its
domain properties and its semantics. Three examples of RRSet® are shown in Figures 7.2,
7.3 and 7.4.

In our experiments, we adopted a total of 11 different measures of retrieval effec-
tiveness. We used two graphical measures (Precision vs. Recall and § vs. Recall), and
nine single value measures {P(r), P(30), B(30), P(100), R(100), 3P-Precision, and 11P-
Precision). Each of these measures evaluates a different aspect of the retrieval algorithm,
and their combination gives a clear characterization of effectiveness according to several
distinet criteria. Next, these retrieval effectiveness measures are discussed in details.

Precision vs. Recall (£ x ) curves [118] are well-known and widely used to evaluate
retrieval effectiveness. Precision is defined as the fraction of the retrieved images that
are relevant to the query. In contrast, recall measures the propertion of relevant images
among the retrieved images. As recall is 2 non-decreasing function of rank, precision can
be regarded as a function of recall rather than of rank. In general, the curve closest to
the top of the chart indicates the best performance.

A variation of the P x R curve we propose is the § vs. Recall curve (6 x R). We
define § as the average of the precision values measured whenever a relevant image is
retrieved. For 100% of recall, the & value is equivalent to the average precision used in
[17]. The main difference between # and precision is that, unlike precision, the § value
is accumulative, i.e., its computation cousiders not only the precision at a specific recall
level, but also the precision at previous recall levels. This accumulative computation is
more consistent with the ranking imposed by CBIR algorithms. While precision rely on
a simple binary property of the retrieved images (relevant or not), the § value takes into
account additionally the ordering of the retrieved images in its computation.

We have also used single-value retrieval effectiveness measures that can be put on a
scale to give absolute and relative values. One of such measures corresponds to measure
the precision when the number of retrieved images is just sufficient to include all the
relevant iimages for a query. This value is known as R-value [118], and we call the precision
at this point P({r). We also measure the values P(30), R(30), P(100) and R(100). The first
iwo measures correspond to the precision and the recall after 30 itnages are retrieved. The
choice of the value 30 was based on the fact that it corresponds to the retrieval cutoff point
used to determine the RRSets of the query images, as discussed at the beginning of this
section. Similarly, we compute the precision and the recall after 100 images are retrteved.
This value is an estimative of the number of retrieved images an average user would accept
to mspect in order to determine their relevance to his/her needs. Finally, the two other
single value measures are the 3-point and the 11-point average precision [118]. The 3-point

*The 50 query images used in our experiments and the corresponding RRSets can be viewed in color
at: http:/www,ic.unicamp.br/~973250/cbir/query.html.
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average precision (3P-Precision) is computed by averaging the precision taking at three
predefined recall levels, typically, 20%, 50% and 80%. The 11l-point average precision
{11P-Precision) is comuputed by averaging the precision taking at eleven predefined recall
levels: 0%, 10%, ... , 0%, 1006%.

We have compared the BIC approach with four other CBIR approaches, namely GCH,
CCV, Grid 9 and CBC. The GCH and the CCV approaches were reviewed in Section 2.6.1.
The Grid 9 approach is a variation of the basic partition-based approach discussed in
Section 2.6.2 that decomposes images using a grid of 3x3=0 equal-sized cells, CBCis a
regional CBIR approach proposed in Chapter 4. We have adopted the suggested CBC{S,
0.1) configuration.

6.3 Experimental results

This section discusses our experimental results relative to the effectiveness of the pro-
posed BIC approach. Initially, we compare BIC and some CBIR approaches reviewed in
Section 2.6, showing that BIC outperforms all of them. After that, we evaluate the effec-
tiveness of the dLog distance function when used with other histogram-based approaches,
and show that it indeed improves the effectiveness of all investigated approaches. We
conclude showing that BIC still prevails, outperforming all dLog-improved approaches.

In Figure 6.1 and in the first lines of Table 6.1, we compare BIC with existing CBIR
approaches. The results of the eleven measures confirm the general belief that partition-
based approaches are more effective than global approaches (Grid 9 is better than GCH),
and that regional CBIR approaches are more effective than partition-based approaches
(CBC is better than Grid 9). The comparison of CCV and GCH reveals that the pixel
classification of CCV becomes effective only after 20% of recall. However, the gain in
terms of effectiveness obtained with CCV approach is not very expressive, especially if
one considers ite storage overhead. More important, however, is the fact that the proposed
BIC approach is clearly more effective than all investigated CBIR approaches, including
CBC.

Besides being more effective than CBC, the BIC approach is also more compact and
efficient. The BIC approach is based on a very simple {(but powerful) image analysis
algorithm that runs in time O(n}, where n is the size (in pixels) of the image being
analyzed. Moreover, as discussed in Section 6.1.3, the BIC visual features can be stored
in just 64 bytes of memory, and the comparison of these visual features is based on the
very efficient and effective dLog distance function. The dLog distance function is several
orders of magnitude more efficient than the MiCRoM metric adopted in CBC approach.
While a visual query in our reference collection of images takes only a small fraction of a
second using the BIC approach, in CBC this same visual query takes several minutes to
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Fraciglot
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Figure 6.1: BIC versus existing CBIR approaches

Table 6.1: Single-valued effectiveness results of B/C approach

Approach | 3P-Precision | 11P-Precision | P(30) | R(30) | P(100) | R(100) | P(r)
BiC .48 89.50 . 0.46 .44 0.22 G.70 0.44

Ly BIC - 8.35 0.39 I 0.35 G.33 0.18 0.87 8.34
GCOH 0.28 0.34 | 0.30 (.30 0.17 0.02 .31
oov G.30 8.36 (.33 0.32 .17 0.52 0.32
Grid 9 0.34 0.39 0.35 (.35 0.17 0.06 0.34
dlog GCH 0.38 0.43 0.39 0.37 0.20 0.64 0.39
diog CCV 0.41 0.44 0.42 0.40 0.20 0.63 0.40
dLog Grid 9 0.40 0.43 0.40 0.40 0.19 (.61 0.39
CBC 0.39 (.42 0.40 0.39 0.18 0.58 0.39

be processed.

The second part of our experiments evaluated the effect of using the dlog distance
instead of L; in existing histogram-based approaches. The effectiveness results of this
experiment, which are also supported by the many measures used in Table 6.1, can be
observed in Figure 6.2. In that figure, each column is related to a CBIR approach.
We have plotted two graphs per approach, comparing its original effectiveness (using L,
distance) with the effectiveness when dLog is used instead of L. An exception is the last
column where we show how the use of L; would adversely affect BIC (recall that dLog is
the “native” distance designed for BIC). The top row shows the P x R graphs while the
bottom row shows the 6 x R graphs.

Observing Figure 6.2 and Table 6.1, one can conclude that the dLog distance function
clearly increases the effectiveness of all histogram-based approaches tested. This increase
in effectiveness is more accentuated in GCH and CCV than in Grid 9. We have observed
that, when the dlog function is used, the spatial information of Grid 9 becomes less
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Figure 6.2: Effectiveness results of the dlog distance function

important as it is unable to make the dlog Grid 9 more effective than dlog CCV. We
have observed a similar behavior also in the context of the proposed BIC approach. We
have tried several ways to add spatial information into the BIC visual features. However,
uone of these attempts were successful as they were unable to increase the effectiveness
of the BIC approach as it was proposed. We explain this behavior in the following way.
When the comparison of the visual features is based on less effective distances like L4,
the approaches are able to retrieve only a small fraction of the relevant images for a
given query image in the top T retrieved images, where T is a retrieval threshold. In
this context, the addition of spatial information is useful because it adds to the set of
retrieved images relevant images with similar spatial distribution of colors (that were not
originally retrieved}). However, if the visual features are compared using more robust
and effective distances like the dLog distance, the approaches are able to retrieve most of
the relevant images for a given query. In this context, if we add restrictions about the
spatial distribution of colors, we not orly do not include more relevant images to the set
of retrieved images (relevant images with similar spatial layout were already retrieved)
but, in fact, we eliminate from the set of retrieved images those relevant images that are
not similar to the guery image in terms of spatial layout of colors.

Finally, observing Figure 6.3, again supported by Table 6.1, we can conclude that
the BIC approach is clearly more effective than any of the dLog-improved histogram-
based approaches, including dLog CCV. As the dLog CCV uses the same representation
and distance function used in BIC, we can conclude that this gain in effectiveness is
due solely to the BIC image analysis algorithimn. As discussed in Section 6.1.1, the binary
classification of image pixels in border/interior adopted in B/C'is more robust and effective
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than the classification adopted in CC'V, that makes a binary classification of pixels based
on a non-binary image property — the size of the connected regions. Figure 7.6 shows
an example of the top 30 images returned in response 1o a visual guery using the BIC
approach®. The query image in this example is the first image retrieved.
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Figure 6.3: BI{ versus the dlog-improved CBIR approaches

6.4 Chapter conclusion

This paper presented BIC (Border/Interior pixel Classification), a compact and efficient
CBIR approach for broad image domains. The BIC approach has three main compo-
nents: (1) a simple and powerful image analysis algorithm that classifies image pixels as
border or interior; (2) a new logarithmic distance to compare histograms; {3) a compact
representation for the visual features extracted from images.

The BIC image analysis algorithim makes a binary classification of image pixels in
border or interior. Our experimental results show that the BIC approach is consistently
more effective than state-of-the-art regional CBIR approaches based on very sophisticated
image analysis algorithms, but that introduces several post-processing simplification steps
in order to maintain the representation and the comparison of segmented images a man-
ageable problem (in computational terms).

The second component of the BIC approach is the dlog metric distance function.
This function compares two histograms according to a log scale, diminishing distortions
in the measured distance generated by histogram bins with very high values. Asg our
experimental results show, the use of the dLog function has two major advantages over
vectorial distances like L;. First, the dLog function clearly increases the effectiveness of
any histogram-based CBIR approach. Second, the use of this function allows a log-based

5The top 30 images retrieved by the BIC approach for all 50 query images used in our experiments
can be viewed in color at: http://www.ic.unicamp.br/~9373250/cbir/bic30. html.
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representation for the histograms that makes possible to store a histogram bin in just 4 bits
of memory. This log-based representation reduces the space required to store a histogram
in any histogram-based CBIR approach. In the particular case of BIC approach, each
BIC histogram has 128 bins. Thus, it is possible 1o store a BIC histogram in just 64 bytes
of memory. This is a very compact representation for the visual features of an image.
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Capitulo 7

Conclusoes e Trabalhos Futuros

A recuperacdo de imagens por contelido (CBIR) é uma 4rea que vem recebendo cres-
cente atencao por parte da communidade clentifica. Esse interesse pode ser explicado por
véarios fatores como, por exemplo, (1) a reducdo do custo dos equipamentos de captura,
transmissao e arinazenamento de imagens; (2) o crescimento exponencial do ndmero de
imagens e videos publicados na internet; (3) os desafios cientificos envolvidos e as intdmeras
aplicacdes prdticas em sistemas como maquinas de busca, bibliotecas digitais, sistemas
de seguranca e em bancos de dados médicos e bancos de dados geogrificos; (4) a neces-
sidade de integragac de técnicas de reconhecimentos de padroes, anslise e interpretacio
de imagens, banco de dados, recuperacio de informacéo, interfaces homem-maquina den-
tre outras; (5) a inadequacio de técnicas tradicionais de banco de dados e recuperacao
de informacdo, bem como de técnicas semi-automaticas (com intervencio humana) para
descrever, representar e realizar buscas em grandes cole¢des de imagens.

Nosso trabalho concentrou-se em técnicas de CBIR que pudessem ser aplicadas em
grandes colegdes de imagens heterogéuneas. Nesse tipo de colecfio, nao se pode assumir
nenhum tipo de conhecimento sobre o conteddo semdntico e/ou visual das imagens, e o
custo de utilizar técnicas semi-automdticas (com intervencio humana) € alto em virtude
da heterogeneidade e do volume das imagens que precisam ser analisadas. O exemplo
cldssico desse tipo de repositério é o conteido visual da World- Wide Web - WWW.

Mals especificamente, nds nos concentramos na informacio de cor presente nas ima-
gens. A cor é wna das caracteristicas visuais mais amplamente utilizadas em técuicas de
CBIR por ser simples, intuitiva, estar presente na maioria das imagens e fornecer exce-
lentes resultados. Nosso trabalho enfocou trés tépicos que consideramos importantes para
se realizar a recuperagdo de imagens por conteddo utilizando informacio de cor: (1) como
analisar e extrair informacio de cor das imagens de forma automadtica e eficiente; (2) como
representar essa informacio de forma compacta e efetiva; (3) como comparar de maneira
efetiva e eficiente as caracteristicas visuais que descrevem duas imagens. Adicionalmente,
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foram investigadas técnicas e medidas para avaliar a efetividade de sistema de recuperacio
de imagens por contetido. Apesar de nao termos explorado formalmente a indexacfo das
caracterfsticas visuais extraidas das magens, os requisitos para uma indexacao eficiente
foram uma preocupacio constante em todas as téenicas que propusernos.

INo Capitulo 3, nds propusemos e avaliamos wmna representacio alternativa e mals com-
pacta para abordagens de recuperacao de imagens baseada em particionamento denomi-
nada CCH (Cell/Color Histograms). Adicionalmente, fol proposta uma generalizacio da
funcao de distdncia Ly { City-block) para comparar os histogramas utilizados na abordagem
CCH. Nos também propusemos uma metodologia de avaliagio de efetividade baseada em
uma nova medida denominada &,4.

Nesse capitulo foi realizado uin experimento que mostrou que, considerando-se ¢ espace
de cores RGB uniformemente quantizado em 4 x 4 x 4 = 64 cores e a nossa colecio de
20.000 imagens heterogépeas, em média cada lmagem era composta por apenas 29 das
64 cores possfvels. Também foi observado que 90% do contetdo de uma imagem pode
ser descrito (em média) utilizando apenas 9 das 64 cores possiveis. A comparacéo com
abordagens existentes coufirmou gue as abordagens baseadas em particionamento, apesar
de utilizarem consideravelmente mais espaco para representar as imagens, também ofer-
ecem ganhos em termos de efetividade. Nesse sentido, a abordagem CCH permitiu uma
reducio de 55% no espaco utilizado quando comparada com abordagens tradicionais de
particionamento, sem implicar emn perda de efetividade. Adicionalmente, foi demonstrado
experimentalmente que quanto maior o ndmero de células do particionamento, maior a
efetividade das abordagens e maior o espaco utilizado. Também foi investigada a possi-
bilidade de representar parcialmente o conteido das imagens. Foi observado um grande
ganho de espaco (sem comprometer sensivelmente a efetividade) quando apenas cerca de
90% do contetdo das imagens foi representado.

O Capitulo 4 apresentou o CBC (Color-Based Clustering), uma nova abordagem re-
gional para a recuperacdo de imagens baseada em informacio de cor. O CBC segmenta
imagens automaticamente, tem uma implementacio eficiente e é independente do dominio
das imagens, permitindo sua aplicacdo em grandes colegdes de imagens heterogéneas. O
algoritmo de andlise das imagens tem complexidade computacional O{nlogn), onde n é
o ndmero de pixels da imagem de entrada. Os resultados experimentais mostraram que
as trés variacoes da abordagem CBC que testamos foram mais efetivas que 5 outras abor-
dagens comparadas, incluindo o CCH. As variacbes do CBC mostraram-se mais robustas
emn relacao ao crescimento da colecio de imagens, e também mais compactas em termos
de utilizacio de espaco.

O Capitulo 5 apresentou MiCRoM (Minimum-Cost Region Matching), uma funcio
métrica para a comparagao de imagens segmentadas. A funcdo MiCRoM é uma extensao
da funcio JRM (nac-métrica) proposta em [58]. A funcdo MiCRoM forpece a distdncia
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gtima entre duas imagens (de acordo com a modelagem do problema adotada) que a
abordagem gulosa utilizada na funcdo JRM algumas vezes nao consegue obter. Esse tra-
balho também introduzin a idéia de determinar o conjunto de imagens relevantes (RRSet)
das imagens consulta utilizando uma técnica de pooling similar dguela utilizada nas con-
feréncias TREC [115, 118].

(s resultados experimentais mostraram que a distinca MiCRoM é so menos tdo
efetiva quanto a distincia JRM. Esse resultado comprova que a estratégia gulosa adotada
pela TRM na pratica funciona muito bem, pois os resultados de efetividade sdo quase t3o
bons quanto os resultados obtidos com a MiCRoM (versio otima da distancia JRA). A
vantagem da MiCRoM é ser uma funcéo métrica que permite a utilizacéo da propriedade
da desigualdade triangular para acelerar o processamento de consultas. Com base nisso,
ol demonstrado experimentalmente que a utilizacdo de uma técnica de filtragem baseada
na propriedade da desigualdade triangular reduziu em 2/3 o tempo gasto para se realizar
uma busca pelos 100 vizinhos mais préxdmos de uma imagem.

O Capitulo 6 apresentou BIC {Border/Inierior Pizel Classification}, uma nova sbor-
dagem para a recuperacio de imagens por conteido em grandes colecles de imagens
heterogéneas. A abordagem BIC tem trés componentes principais: (1) um algoritmo sim-
ples, eficiente e poderoso para a andlise do couteddo visual das imagens, (2) uma nova
funcao de distincia para a comparacio de histogramas de cores denominada dlog, ¢ {3)
uma representagdo compacta para as caracteristicas visuais extraidas das imagens.

Nesse trabalho foram utilizadas 50 imagens consulta e um total de 11 medidas difer-
entes para se avaliar a efetividade da abordagem BIC. Dentre essas medidas, estd uma
pova medida grafica a qual denominamos # x A. Essa medida é wma variacio da me-
dida de P x R que se mostrou mais adequada ao contexto de recuperacio de imagens
por contelido e também mails ficil de ser interpretada. A comparacio com abordagens
existentes (incluindo o CBC) confirmou que a abordagem BIC é consideravelmente mais
efetiva que as demais. Além de ser mais efetiva, a abordagem BIC é também mais com-
pacta e mais eficiente. Um segundo experimento avalion a utilizacdo da distancia dlog
em vdrias abordagens baseadas em histogramas de cores. Em todos os casos, houve um
ganho sensivel de efetividade em comparacio com a utilizacdo da fun¢do L,. Além do
ganho de efetividade, a utilizacdo da funcio diog permitiu reduzir pela metade o espaco
necessdrio para armagzenar os histogramas.

O nosso trabalbo pode ser estendido de varias formas diferentes. Algumas extensoes
imediatas seriam: (1) técnicas para tratar consultas baseadas em regides da Imagem ao
invés de utilizar a imagem inteira como exemplo; (2) utilizacdo de caracteristicas vi-
suais relacionadas & informacdo de textura, forma, posicdo e relagoes topoldgicas entre
regides da imagem; (3) investigacio de funcbes de distlncia para comparar essas no-
vas caracteristicas visuais; (4) utilizacio de caracteristicas visuais e funcdes de distdncia
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dependentes do dominio das imagens (em aplicacOes especificas); (5) projeto de uma lin-
guagem de consulta visual; {6) projeto de uma interface de consulta visual e interativa;
(7) implementacio de uma aplicagdo protétipo, por exemplo, uma méguina de busca
para pesquisar ¢ contetido visual da WWW,; (8) aplicar as técnicas propostas no contexto
de recuperagdo de video bagseada em conteddo, considerando adicionaliente o aspecio
temporal desse dominio; (9} utilizacfo de téenicas de relevance feedback para introduzir
i cardier seméntico ao processo de recuperacao de lmagens por contetdo, em partic-
ular guando s@o utilizadas caracteristicas visuais de baixo nivel como distribuicio de
cores; {10) investigar a possibilidade de realizar a indexacio aproximada de funcdes de
distancia nao-métricas como a JRM; (11) investigar a utilizacio de métodos de acesso para
acelerar o processamento de consultas visuais em colegbes gue selam compostas por um
nimero extremamente elevado de imagens, ou em abordagens onde a representacio das
imagens tenha uimn tamanho nao-trivial {por exemplo, ua abordagem CBC) e/ou a fungio
de distdncia tenha nma elevada complexidade computacional {por exemplo, 2 funcio M-

CRol:).
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Figure 7.1: Imagens consulta utilizadas em nossos experimentos
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Figure 7.2: Primeiro exemplo de RRSet
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Figure 7.3: Segundo exemplo de RRSet
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Figure 7.4: Terceiro exemplo de RRSet
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G024 jog

Figure 7.5: Exemplo do resultado de uma busca pelos 30 vizinhos mais préximos de uma
imagem utilizando o CBC
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Figure 7.6: Exemplo do resultado de uma busca pelos 30 vizinhos mais proximos de uma
imagem utilizando o BIC
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Figure 7.7: Exemplos de imagens automaticamente segmentadas com o algoritme CBC
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Figure 7.8: Exemplos da classificacfo binéria dos pixels de uma imagem em borda (preto)
e interior (branco)



