
Amanda Sávio Nascimento e Silva

“Uma Infraestrutura Autoadaptativa Baseada em

Linhas de Produtos de Software para Composições

de Serviços Tolerantes a Falhas”

CAMPINAS

2013

i

ii

iii

iv

v

Instituto de Computação

Universidade Estadual de Campinas

Uma Infraestrutura Autoadaptativa Baseada em

Linhas de Produtos de Software para Composições

de Serviços Tolerantes a Falhas

Amanda Sávio Nascimento e Silva1

15 de outubro de 2013

Banca Examinadora:

• Profa. Dra. Cećılia Mary Ficher Rubira (Orientadora)

• Prof. Dr. Patrick Henrique da Silva Brito

Instituto de Computação - UFAL

• Profa. Dra. Itana Maria de Souza Gimenes

Departamento de Informática - UEM

• Profa. Dra. Ariadne Maria Brito Rizzoni Carvalho

Instituto de Computação - UNICAMP

• Profa. Dra. Maria Beatriz Felgar de Toledo

Instituto de Computação - UNICAMP

• Prof. Dr. Paulo Cesar Masiero

Instituto de Ciências Matemáticas e de Computação - USP (suplente)

• Profa. Dra. Eliane Martins e Prof. Dr. Edmundo Roberto Mauro Madeira

Instituto de Computação, UNICAMP (suplentes)

1Suporte financeiro: CNPQ (processo 141253/2009-6) 03/2009 – 02/2012; CAPES-PDEE (processo
5363-10-1) 01/2011–08/2011; UOL Bolsa Pesquisa (processo 20120217172801) 04/2012 – 03/2013.

vii

Abstract

Nowadays, society depends on systems based on Service-Oriented Architecture (SOA)

for its basic day-to-day functioning. As a consequence, these systems should be reliable.

Fault-tolerant service compositions encompass a set of services, each with equivalent func-

tionality yet different designs, called alternate services, that are used to implement fault

tolerance techniques. A particular technique, for example, Recovery Blocks or N-version

Programming, might be more suitable in a context than in another one, depending on

non-functional requirements of an application, for example, performance or reliability.

SOA-based applications often rely in an environment that is highly dynamic and several

decisions should be postponed until runtime, where we have different stakeholders with

conflicting requirements, and fluctuations in the quality of services (QoS) are recurrent.

Therefore, a fault-tolerant service composition should adapt itself to meet the dynami-

cally and widely changing context. Nevertheless, the existing diversity-based solutions

for fault-tolerant service compositions present some drawbacks: (i) they do not support

the selection of alternate services that are in fact efficient to support a reliable service

composition; (ii) they usually support only one fault tolerance technique, thus not be-

ing able to face various clients’ requirements; (iii) they do not support an adaptive fault

tolerance mechanism able to instantiate different fault tolerance strategies at runtime to

cope with dynamic changes in the context. In this thesis, we present a solution based on

software product line, which explores the variability among various software fault tole-

rance techniques and changes in the execution environment, to implement fault-tolerant

and self-adaptive service compositions. The proposed solution encompasses: (a) a set of

directives to investigate to what extent alternate services are able to tolerate software

faults; (b) a family of software fault tolerance techniques to support reliable service com-

positions, such as the most suitable technique can be chosen according to the context; (c)

a self-adaptive infrastructure to instantiate at runtime appropriate fault tolerance tech-

niques in response to changes in the context, through dynamic management of software

variability. Results from empirical studies suggest that the proposed solution is efficient to

support fault-tolerant and self-adaptive service compositions. Directions for future work

are also presented.

ix

Resumo

A confiabilidade é um requisito de qualidade indispensável a muitos sistemas orienta-

dos a serviços, cada vez mais disseminados em várias atividades humanas. Composições

confiáveis de serviços são formadas por um conjunto de serviços com diversidade de proje-

tos, isto é, um conjunto de serviços funcionalmente equivalentes, ou serviços alternativos,

usados para implementar técnicas de tolerância a falhas. Uma determinada técnica, como

por exemplo, Recovery Blocks ou N-version Programming, pode ser mais adequada para

um contexto espećıfico de execução do que outra, dependendo dos requisitos exigidos pela

aplicação, como por exemplo, desempenho. Sistemas orientados a serviços são usualmente

implantados num ambiente altamente dinâmico, em que são comuns alterações nos requi-

sitos dos clientes e flutuações na qualidade de serviços. Portanto, uma composição de

serviços confiável deveria poder modificar seu próprio comportamento dinamicamente em

resposta a essas mudanças. Entretanto, as soluções existentes, que usam diversidade de

projetos para implementar composições confiáveis, apresentam algumas limitações: (i)

não apóiam a seleção de serviços alternativos adequados que garantam que a composição

realmente tolere falhas de software; (ii) em geral implementam uma única técnica de

tolerância a falhas, não apoiando os requisitos diversos de clientes; e (iii) não apoiam um

mecanismo autoadaptativo capaz de mudar a estratégia de tolerância a falhas em tempo

de execução. Nessa tese, é apresentada uma solução baseada em linhas de produtos de

software, que explora a variabilidade de software existente nas técnicas de tolerância a

falhas e nas mudanças ocorridas no ambiente de execução, para a implementação de com-

posições de serviços tolerantes a falhas e autoadaptativas. A solução encompassa: (a) um

conjunto de diretrizes para investigar até que ponto serviços alternativos são realmente

diversos entre si para tolerar falhas de software; (b) uma famı́lia de técnicas de tolerância

a falhas para construir composições conf́ıaveis que permite a escolha de uma técnica mais

adequada para o contexto; e (c) uma infraestrutura autoadaptiva que apoia a instanciação

de técnicas diferentes de tolerância a falhas como resposta a mudanças ocorridas no con-

texto, baseando-se no gerenciamento dinâmico de variabilidades de software. Resultados

de estudos emṕıricos sugerem que a solução é eficiente para apoiar composições de serviços

tolerantes a falhas e autoadaptativas. Direções para trabalhos futuros são apresentadas.

xi

Às pessoas que amo.

xiii

Agradecimentos

Primeiramente, agradeço à minha orientadora Profa. Dra. Cećılia M. F. Rubira e ao

Prof. Dr. Fernando Castor, um grande colaborador neste projeto, pelas oportunidades,

dedicação, compreensão e ensinamentos passados. São incontáveis as contribuições dadas

não somente a minha formação enquanto pesquisadora mas também enquanto pessoa.

Gratidão.

I would like to thank Dr. Jaejoon Lee, my supervisor during my PhD internship in

Lancaster University (UK), and Dr. Rachel Burrows, a work colleague. They were always

supportive.

Agradeço aos funcionários e pesquisadores do Instituto de Ciências de Computação

da Universidade Estadual de Campinas, que me auxiliaram em diferentes etapas deste

projeto.

Meus sinceros agradecimentos ao CNPq (processo: 141253/2009-6), à CAPES (pro-

cesso: 5363-10-1), e à UOL Bolsa Pesquisa (processo: 20120217172801), pelo apoio finan-

ceiro para o desenvolvimento deste projeto de pesquisa.

À minha famı́lia, não há palavras que expressem a minha gratidão pelo apoio, com-

preensão, incentivo e ensinamentos. Amo e sinto-me amada, certamente o principal ali-

cerce em tudo que realizo. É um privilégio viver em harmonia com vocês diariamente.

Gratidão.

Finalmente, agradeço aos meus amigos e colegas pelo apoio, consciente ou inconsciente,

nesta etapa. A special thanks to the new friends I could meet during my stay in Lancaster,

UK.

xv

”A writer doesn’t solve problems. He

allows them to emerge”.

Friedrich Dürrenmatt

xvii

Sumário

Abstract ix

Resumo xi

Dedicatória xiii

Agradecimentos xv

Eṕıgrafe xvii

1 Introdução 1

1.1 Contexto . 4

1.2 Definição do Problema e Questões de Pesquisa 7

1.2.1 Insuficiência de Evidências Relativas a Eficiência de Serviços Alter-

nativos para Tolerar Falhas de Software 7

1.2.2 Ausência de Soluções que Apoiam Diferentes Técnicas Baseadas em

Diversidade de Projetos . 9

1.2.3 Ausência de Mecanismos Adequados para Adaptação Dinâmica das

Composições Confiáveis de Serviços 10

1.3 Solução Proposta . 11

1.3.1 Uma Infraestrutura para Mensurar Diversidade de Serviços Alter-

nativos e suas Implicações . 11

1.3.2 Uma Famı́lia de Técnicas de Tolerância a Falhas de Software

Baseadas em Diversidade de Projetos 13

1.3.3 Uma Infraestrutura Baseada em Linhas de Produtos de Software

(Dinâmicas) . 15

1.4 Estrutura da Tese . 18

2 Fundamentos Teóricos de Reúso de Software, Tolerância a Falhas, e

Sistemas de Software Autoadaptativos 19

xix

2.1 Software Reuse . 19

2.1.1 Service-Oriented Architecture (SOA) 20

2.1.2 Cosmos* Implementation Model . 20

2.1.3 (Dynamic) Software Product Lines 22

2.2 Fault Tolerance . 27

2.2.1 Redundancy . 27

2.2.2 Basic Design Diversity Concept . 28

2.2.3 Structuring Software Redundancy 30

2.2.4 Error Recovery . 30

2.2.5 Design Diversity Software Fault Tolerance Techniques 30

2.2.6 Reliability . 33

2.3 Self-Adaptive Systems and the Autonomic Control Loop 34

2.4 Synergies between DSPLs and Self-Adaptative System 35

3 An Experimental Setup to Assess Design Diversity of Alternate Services 37

3.1 Overview . 37

3.2 An Infrastructure to Assess Service Diversity 39

3.2.1 Research Questions and Hypotheses 40

3.2.2 Detailed Description of the Activities 41

3.3 Evaluation . 46

3.3.1 Research Questions and Hypotheses 46

3.3.2 Target Requirements Specifications and Alternate Services 47

3.3.3 Target Input Cases . 47

3.3.4 Identification of Failures . 49

3.3.5 Study Results and Discussion . 50

3.3.6 Study Limitations . 56

3.4 Lessons Learned . 57

3.5 Related Work . 58

3.6 Summary . 60

4 A Systematic Review of Design Diversity-Based Solutions for Fault-

Tolerant SOAs 63

4.1 Overview . 63

4.2 A General Taxonomy for Software Fault Tolerance Techniques based on

Design Diversity . 64

4.2.1 A Comparison of Design Solutions 68

4.3 Research Method . 71

4.3.1 Research Question . 71

4.3.2 Search Process . 71

xxi

4.3.3 Study Selection . 72

4.3.4 Data Collection and Synthesis . 73

4.4 Results . 73

4.4.1 Search Results . 73

4.4.2 A Classification of the Primary Studies 74

4.4.3 Selection of Alternate Services . 74

4.4.4 Execution of Alternate Services . 77

4.4.5 Judgement on Result Acceptability 77

4.5 Discussion . 81

4.6 Threats to Validity . 82

4.7 Related Work . 83

4.8 Summary . 84

5 A Model-Driven Infrastructure for Developing Product Line Architec-

tures 87

5.1 Overview . 87

5.2 A Model-Driven Infrastructure for Product Line Architecture Development 89

5.2.1 Activities 1-2: To Specify Use Case and Feature Models 90

5.2.2 Activity 3: To Map from Features to a PLA Model 91

5.2.3 Activity 4: To Specify Architectural Variability 91

5.2.4 Activity 5: To Translate PLAs to Implementation Models 91

5.2.5 Activity 6: To Generate Product Models 92

5.3 Evaluation . 92

5.3.1 A Family of Software Fault Tolerance Techniques for SOAs 92

5.4 Lessons Learned . 97

5.5 Related Work . 100

5.6 Summary . 101

6 ArCMAPE: A Software Product Line Infrastructure to Support Self-

Adaptation of Fault-Tolerant Composite Services 103

6.1 Overview . 104

6.2 ArCMAPE . 106

6.3 Evaluation . 117

6.3.1 E-credit . 117

6.3.2 E-tour . 120

6.3.3 Study Limitations . 125

6.4 Discussion . 125

6.5 Related Work . 126

6.6 Summary . 128

xxiii

7 Conclusões e Trabalhos Futuros 129

7.1 Conclusões . 129

7.2 Contribuições . 131

7.2.1 Contribuições Principais . 131

7.2.2 Contribuições Secundárias . 134

7.2.3 Contribuições Não Relacionadas . 135

7.3 Publicacações . 135

7.4 Trabalhos Futuros . 137

Referências Bibliográficas 140

xxv

Lista de Tabelas

3.1 Selected Statistical Tests . 44

3.2 Target Requirements Specifications. 48

3.3 Number of input and failing inputs. 50

3.4 Estimation of the overall difference in reliability 56

4.1 Voter Results Given Details About Alternate Output Space([1] - page 310) 70

4.2 Search String . 72

4.3 Classification of the Primary Studies . 75

6.1 Time overhead imposed by ArCMAPE (in milliseconds ms) 119

6.2 Reliability measurements of single non-fault-tolerant services

(Rel EstNF T Srv
) and FT-Composition employing voters and the target

alternate services (Rel EstF T SOAr
) - the reliability estimator values are

between 0 and 1. 122

6.3 Memory Consumption (MB - Megabytes): DZ (Distance By Zip Codes),

WF (Weather Forecast), VC (Validate Credit Card), PE (Parallel Execu-

tion Scheme), SE(Sequential Execution Scheme), ArCMAPE (specifically,

time to execute the plan function) . 124

xxvii

Lista de Figuras

2.1 (a) An architectural view and a detailed design of a COSMOS* component;

(b) A detailed design of the COSMOS* component 22

2.2 The FArM method [2] . 24

2.3 CVL transformation (or materialisation) [3] 26

2.4 Basic Design Diversity [1] . 28

2.5 Status Indicating possible State of adjudicators [1] 29

2.6 Various Views of Redundant Software (figure extracted from [1]-page 20) . 31

2.7 Reference Architectures For Recovery Block Techniques 32

2.8 Reference Architectures For N-Version Programming 33

2.9 Autonomic Control Loop [4] . 34

3.1 A method to assess design diversity of alternate services. 40

3.2 Joint frequency distribution of failures and successes in failure scenarios . . 53

3.3 Relative frequency of coincident failures and similar correct results in failure

scenarios. 54

3.4 Reliability estimations for the different architectural solutions 55

4.1 General Taxonomy of Design Issues and Solutions 65

5.1 A semi-automated model-driven method for developing product line archi-

tectures . 89

5.2 A Partial Feature Model for Software Fault Tolerance Techniques Applied

to SOA (notation proposed by Ferber et al. [5]) 94

5.3 Using CVL to explicitly and systematically specify and resolve variability

at the PLA model . 97

5.4 Using CVL Eclipse Plug-in to specify architectural variability 98

6.1 An Overview of ArCMAPE . 107

6.2 An overview of the rule metamodel . 108

6.3 An overview of the context model . 109

6.4 An excerpt of FT-PLA . 110

xxix

6.5 Executive: An excerpt of its detailed design 111

6.6 AltServiceSelectionMgr: An excerpt of its detailed design - Extension

Points (required interfaces) . 112

6.7 ExecutionSchemeMgr: An excerpt of its detailed design - Extension

Points (required interfaces) . 113

6.8 AdjudicatorMgr: An excerpt of its detailed design - Extension Points

(required interfaces) . 114

6.9 An excerpt of the high-level architecture of FT-e-credit. 118

6.10 An excerpt of the high-level architecture of FT-e-tour. 120

6.11 Execution Time (ms-milliseconds): DZ (Distance By Zip Codes), WF

(Weather Forecast), VC (Validate Credit Card), PE (Parallel Execution

Scheme), SE(Sequential Execution Scheme), ArCMAPE (specifically, time

to execute the plan function) . 123

xxxi

Caṕıtulo 1

Introdução

Em 1968, na primeira conferência de engenharia de software apoiada pela OTAN1, foi

cunhada a expressão crise de software em referência ao problema de desenvolver sistemas

de software grandes e confiáveis de maneira sistemática e efetiva [6]. Convidado a es-

crever um artigo para a conferência, Mcllroy [7] enfatizou a importância da utilização

de técnicas para produção em massa de software, dado que fomentar o reúso de soft-

ware seria uma forma de superar a crise [8]. Segundo Mcllroy, a replicação de software

tem uma vantagem em relação às demais indústrias por não demandar matéria-prima.

De maneira complementar, Randell [6], editor e participante da conferência, pontuou que

possivelmente haveria um incentivo para melhorar a qualidade inicial do software caso seus

custos de replicação fossem similares aos custos provenientes da replicação de hardware.

Uma das técnicas que surgiram para promover o reúso foi o desenvolvimento baseado

em componentes (DBC), que visa a construção rápida de sistemas a partir de componentes

pré-fabricados [9]. Conforme a definição proposta por Szyperski [10], um componente

de software é uma unidade com interfaces e dependências de contexto explicitamente

especificadas, que pode ser fornecido isoladamente para integrar sistemas de software

desenvolvidos por terceiros. Por meio de interfaces providas e interfaces requeridas, os

componentes de software, respectivamente, disponibilizam seus serviços e explicitam os

serviços dos quais dependem. Essas propriedades contribuem para aumentar a coesão dos

componentes de software e diminuir o acoplamento entre eles [11].

Na década de noventa, a disciplina chamada de arquitetura de software foi um dos

grandes focos da atenção dos pesquisadores. De acordo com Bass et al. [12], a arquitetura

de software define uma estrutura de alto ńıvel do sistema composta por elementos arquite-

turais e pelo relacionamento entre eles. Elementos arquiteturais podem ser compostos por

componentes arquiteturais e conectores arquiteturais. Um componente arquitetural é res-

ponsável pelo processamento e armazenagem de dados relacionados às funcionalidades do

1sigla para Organização do Tratado do Atlântico Norte

1

2 Caṕıtulo 1. Introdução

sistema [13]. Já um conector arquitetural é responsável por intermediar a comunicação

entre componentes arquiteturais. Uma configuração arquitetural, por sua vez, define um

conjunto de componentes arquiteturais ligados por conectores arquiteturais [14]. Dessa

forma, o conceito de arquitetura de software pode ser vista como complementar ao desen-

volvimento baseado em componentes.

No cenário atual, de aplicações dinâmicas e distribúıdas, a interoperabilidade, definida

como a capacidade de dois ou mais sistemas heterogêneos compartilharem informação de

maneira eficiente [15], é um requisito fundamental. A adoção de Arquiteturas Orientadas

a Serviços (SOA2) popularizou-se a partir do ano de dois mil e cinco como uma das

principais abordagens para aumentar o grau de interoperabilidade de sistemas. SOA é

um modelo de componentes de software que interrelaciona diferentes unidades funcionais,

chamadas serviços, por intermédio de interfaces bem definidas, que são independentes

de plataformas e linguagens de implementação [16]. A computação orientada a serviços

pode ser considerada uma abordagem de reúso interorganizacional bem sucedida [17].

Serviços permitem às organizações exporem suas competências e capacidades de negócios

na Internet (ou Intranet) programaticamente ao utilizar padrões e protocolos abertos [17].

Desta forma, serviços que são constrúıdos sobre uma gama heterogênea de sistemas

interagem entre si de maneira uniforme por intermédio de composições de serviços [17].

Uma composição de serviços, ou um serviço composto, pode ser definida como uma com-

binação de atividades invocadas numa ordem predefinida e executadas como um todo [16].

Serviços Web constituem uma das tecnologias que apoia a realização de SOAs e são usual-

mente descritos, publicados e invocados mediante padrões XML, eXtensible Markup Lan-

guage, (e.g. SOAP - Simple Object Access Protocol, WSDL - Web Services Description

Language). Além do mais, recentemente, serviços Rest (Representational State Trans-

fer) tem sido amplamente utilizados como uma alternativa para a tecnologia de serviços

Web mais eficiente. Dentre os diversos tipos de serviços, no presente trabalho focamos

Serviços Web. Por essa razão, de agora em diante nos referimos a serviços Web apenas

como serviços.

Um dos desafios computacionais inerente à heterogeneidade, distribuição e autonomia

das diferentes entidades que participam em sistemas orientados a serviços refere-se ao

fato que estes sistemas devem apoiar a seleção, composição e invocação dos seus serviços

em tempo de execução. Além disso, estes sistemas, de modo frequente, são implantados

num ambiente altamente dinâmico em que (i) é comum a existência de vários clientes com,

possivelmente, requisitos conflitantes; (ii) flutuações nos valores de atributos de qualidade

de serviços (QoS3) são recorrentes; (iii) instabilidades no ambiente de execução são usuais;

e (iv) frequentemente algumas decisões de projeto devem ser selecionadas em tempo de

2Do inglês, Service-Oriented Architecture - SOA
3Do inglês, Quality of Services (QoS)

3

execução [17, 16]. Em outras palavras, sistemas orientados a serviços, de modo usual,

compõem um conjunto emergente de sistemas de software conhecidos como sistemas de

software autoadaptativos footnoteDo inglês, Self-adaptive systems [17, 18, 16].

Um sistema de software autoadaptativo modifica seu próprio comportamento em res-

posta à percepção de mudanças no ambiente de execução e no sistema em si, ou seja,

mudanças no contexto [19, 18]. Em dois mil e dois, Garlan, Wolf e Kramer organi-

zaram o primeiro workshop [20] (1st ACM Workshop on Self-Healing Systems (WOSS

02)) direcionado à discussão acerca de sistemas autocuráveis4 e, de uma forma mais

abrangente, sistemas dinamicamente adaptáveis5. Eles enfatizaram que, no passado, os

sistemas que apoiavam a autoadaptação eram raros, e, situavam-se, essencialmente, em

áreas de domı́nio em que a intervenção humana em sistemas de software não era viável

(e.g. sistemas de software embarcados em equipamentos lançados ao espaço para análises

diversas). Entretanto, outros sistemas passaram a apresentar requisitos de autoadaptação,

incluindo sistemas de e-commerce e sistemas embarcados em dispositivos móveis. Con-

sequentemente, sistemas autoadaptativos passaram a ser estudados em áreas diversas de

conhecimento, tais como, sistemas de controle, arquiteturas de software, computação to-

lerante a falhas e redes neurais [20, 21].

Na década de setenta, Parnas [22] apresentou o desenvolvimento de artefatos de soft-

ware reutilizáveis pertencentes a um domı́nio espećıfico ao propor o conceito de famı́lias

de produtos, visando prover variabilidades de requisitos não-funcionais. Variabilidade de

software é a capacidade que um sistema de software ou artefato tem de ser modificado ou

configurado para ser usado em contexto espećıfico [23]. A variabilidade de software é com-

posta por pontos de variação, os locais dos artefatos de um software em que decisões de

escolha do produto podem ser tomadas, e variantes, as alternativas associadas aos pontos

de variação. Kang et al. [24], nos anos noventa, propuseram a análise de domı́nio orientada

a caracteŕısticas com o propósito de modelar variabilidades de software. Caracteŕıstica é

uma propriedade de sistema que é relevante para alguma parte interessada [25]. Um mo-

delo de caracteŕısticas6 pode ser usado para representar as caracteŕısticas de um domı́nio,

e é definido como um modelo gráfico e hierárquico que representa as caracteŕısticas como

obrigatórias, opcionais ou alternativas [5].

Esses trabalhos de Parnas [22] e Kang et al. [24] foram essenciais para o surgimento do

conceito de linhas de produtos de software (SPL7), um conjunto de sistemas de software

que compartilham caracteŕısticas comuns e possuem caracteŕısticas distintas visando sa-

tisfazer as necessidades de um nicho de mercado [26]. O principal propósito da engenharia

4Do inglês, Self-healing systems
5O segundo workshop neste tópico, 2nd ACM SIGSOFT Workshop on Self-Managed Systems (WOSS

04), teve seu nome alterado para refletir essa visão mais ampla sobre a adaptação dinâmica.
6Do inglês, Feature model
7Do inglês, Software Product Line (SPL)

4 Caṕıtulo 1. Introdução

de linhas de produtos é oferecer produtos personalizados a um custo razoável [27]. O reúso

de software em linhas de produtos cria uma infraestrutura de apoio necessária para que

possa ser aplicado na prática. Em face disso, ao apoiar o reúso de software planejado,

linhas de produtos diferem das abordagens anteriores [28]. As arquiteturas de linhas de

produtos (PLAs8) são artefatos que ajudam a lidar com a complexidade das linhas de

produtos abstraindo seus detalhes de implementação [12]. Uma arquitetura da linha de

produto representa as variabilidades de software envolvendo os elementos arquiteturais

do sistema: componentes, conectores e configuração arquitetural [27].

A variabilidade arquitetural reflete a existência de alternativas de projeto arquitetural

e é expressa por meio de um conjunto de pontos de variação e variantes arquiteturais [29].

Pontos de variação arquiteturais são locais na arquitetura nos quais decisões relacionadas

à escolha de produtos são tomadas. Elas representam as variações do modelo de ca-

racteŕısticas no modelo de arquitetura [29]. As variantes arquiteturais representam as

alternativas associadas a um determinado ponto de variação arquitetural. A partir da

resolução de pontos de variação arquitetural, é posśıvel escolher quais variantes vão fazer

parte de um determinado produto de software num processo chamado de configuração do

produto [27].

Embora engenharias tradicionais de SPLs reconheçam a possibilidade de postergar

tomadas de decisão para tempo de execução, SPLs geralmente gerenciam suas variabili-

dades em tempo de projeto. Em contraste, Linhas de Produtos de Software Dinâmicas

(DSPLs9), uma proposta que popularizou-se com Hallsteinsen et al. [30] em dois mil e oito,

estendem SPLs a fim de apoiar tomadas de decisões dinamicamente [18, 31, 32]. DSPLs

são usualmente utilizadas para projetar e implementar sistemas autoadaptativos, uma vez

que apoiam a identificação e representação expĺıcita das partes desses sistemas e seleção

de suas partes variantes em tempo de execução a partir do gerenciamento dinâmico de

variabilidades de software.

1.1 Contexto

Na atualidade, a sociedade é dependente de sistemas orientados a serviços para realizar

tarefas rotineiras, tais como recuperar valores de câmbios de moedas, efetuar compras em

lojas virtuais, consultar posśıveis rotas entre duas coordenadas geográficas, comprar pas-

sagens de voos e efetuar reservas diversas [17, 16, 33, 34]. Ademais, diferentes organizações

cooperam a fim de oferecer serviços mais elaborados ou sofisticados para seus clientes,

possibilitando, assim, a integração de seus negócios [16]. Exemplos t́ıpicos deste cenário

são: (i) o setor financeiro global, em que diferentes bancos se fundem para se tornarem mais

8Do inglês, Product Line Architecture (PLA)
9Do inglês, Dynamic Software Product Lines (DSPLs)

1.1. Contexto 5

competitivos; (ii) a integração de diferentes agências do setor de viagens; (iii) pequenas e

médias empresas que, apesar de cada uma ter suas próprias estratégias de negócios, deci-

dem se unir em uma rede para se tornarem mais competitivas; e (iv) a adoção de Governo

Eletrônico, ou e-Government, que integra aplicações dos setores públicos a fim de oferecer

serviços públicos tradicionais também por canais eletrônicos [35]. Essa disseminação de

sistemas orientados a serviços em várias atividades humanas torna a confiabilidade10 uma

caracteŕıstica indispensável a esses sistemas [36, 37, 38, 39, 34, 40, 41].

Confiabilidade é um dos atributos de dependabilidade11, que involve outros atributos,

tais como, disponibilidade, segurança, integridade e manutenibilidade [1]. Confiabilidade

pode ser definida como a capacidade do sistema de oferecer suas funcionalidades conforme

a especificação por um tempo determinado [15]. Quando um sistema é executado sob

vários casos de entrada, a sua taxa, ou frequência, de execuções bem sucedidas pode

ser utilizada como uma estimativa de sua confiabilidade [42]. De modo geral, o grau de

confiança de um sistema depende principalmente do número de falhas contidas no mesmo

e da maneira como ele se comporta na presença delas [42, 1]. Falhas12 são eventos que

causam erros13. Se a falha não for tolerada ou o erro correspondente tratado, ocorrerá

um defeito14, que se manifestará pela mudança indesejada na funcionalidade [1].

As principais técnicas utilizadas para o desenvolvimento de sistemas de software com

requisitos de confiabilidade são prevenção de falhas, detecção de falhas e tolerância a

falhas [1]. Em particular, estamos interessados em tolerância a falhas, definida como a

capacidade do sistema se comportar de maneira bem-definida uma vez que falhas ocor-

ram [43, 44]. Ao projetar um sistem tolerante a falhas, o primeiro pré-requisito é especi-

ficar, por meio de um modelo de falhas, as falhas que devem ser toleradas [44]. O próximo

passo é adicionar redundância ao sistema, isto é, recursos adicionais utilizados para de-

tectar e tolerar as falhas identificadas [42, 44]. Tais recursos não seriam necessários se

a tolerância a falhas não fosse implementada [43, 42, 1]. Redundância pode ser inserida

de diferentes formas, por exemplo, redundância de hardware, de software e de tempo [1].

Em particular, a redundância de software pode ser empregada de forma impĺıcita, medi-

ante mecanismos de tratamento de exceções, e de forma expĺıcita, mediante técnicas de

tolerância a falhas baseadas em diversidade de projetos [45].

Nesta tese, focamos o uso de técnicas de tolerância a falhas de software baseadas

em diversidade de projetos. Falhas de software, conforme definição de Pullum [1], podem

ocorrer por dois principais motivos: (i) devido a especificação incorreta de requisitos - o

desenvolvimento do sistema de software satisfaz os requisitos, no entanto, os requisitos não

10Do inglês, reliability
11Do inglês, dependability
12Do inglês, Fault
13Do inglês, Error
14Do inglês, Failure

6 Caṕıtulo 1. Introdução

foram especificados de forma apropriada; e (ii) devido a uma implementação inadequada

que não satisfaz os requisitos - tal implementação é resultante de um projeto incorreto ou

uma codificação incorreta [1]. Falhas de software são também conhecidas como falhas de

projeto ou bugs [43, 1]. As técnicas baseadas em diversidade de projetos para tolerar falhas

de software são implementadas a partir do uso de múltiplas, ou alternativas, versões de

componentes de software que são funcionalmente equivalentes e, no entanto, projetados

e desenvolvidos de forma independente [46, 1]. A partir de agora, para simplificar, os

termos falhas e falhas de software são utilizados de forma intercambiáveis neste texto,

embora, conforme discutido, o termo falha contenha um significado mais abrangente do

que falha de software.

O mecanismo básico das técnicas de tolerância a falhas baseadas em diversidade de

projetos para satisfação de confiabilidade é o seguinte [1]: valores de entradas são provi-

dos para os componentes de software alternativos. Estes componentes executam suas

operações sob estes valores. Ao término das execuções, possivelmente, haverá múltiplos

valores de retorno. Deste conjunto de valores, um resultado considerado correto, aceitável

ou mais promissor deve ser escolhido, caso exista. Esta tarefa de decisão é realizada por

um mecanismo chamado juiz (e.g. teste de aceitação ou votadores [1]). O resultado es-

colhido é, então, retornado a unidade subsequente de execução do sistema de software.

Cabe ressaltar que uma determinada técnica para tolerância a falhas baseada em diver-

sidade de projetos, como por exemplo, Recovery Blocks ou N-version Programming, pode

ser mais adequada para um contexto espećıfico de execução do que outra, dependendo

dos requisitos exigidos pela aplicação, como por exemplo, desempenho [47, 48, 46]. Além

disso, ao se empregar diversidade de projetos, é esperado que os componentes de software

alternativos falhem raramente para os mesmos casos de entrada, pois isso aumenta a pro-

babilidade de falhas serem toleradas [49, 50, 51, 52, 1]. Quando componentes de software

alternativos falham para um mesmo caso de entrada ocorre uma falha coincidente, o que

pode levar a uma mudança indesejada do comportamento do juiz [1].

Na década de noventa, o uso de técnicas baseadas em diversidade de projetos para

tolerar falhas de software foi bastante criticado pois, a partir de uma especificação comum,

componentes de software alternativos eram desenvolvidos basicamente a partir do zero

- um processo bastante custoso [53, 54]. À vista disso, tais técnicas eram geralmente

utilizadas em sistemas altamente cŕıticos, em que a ocorrência de falhas acarretaria em

grandes prejúızos financeiros ou, até mesmo, perda de vida [1]. Não obstante, atualmente,

no contexto de arquitetura orientadas a serviços, é posśıvel encontrar na Internet, um

ambiente aberto e dinâmico, serviços funcionalmente equivalentes [55, 40, 56, 16]. Estes

serviços, aqui chamados de serviços alternativos, podem estar dispońıveis gratuitamente

ou serem oferecidos por diferentes organizações para seus parceiros de negócios, inclusive,

a um custo financeiro pré-determinado [17, 17, 57].

1.2. Definição do Problema e Questões de Pesquisa 7

Devido à facilidade de reutilização de serviços alternativos, vários pesquisadores

propuseram a adoção de técnicas de tolerância a falhas baseadas em diversidade

de projetos com a finalidade de aumentar a confiabilidade de sistemas orientados a

serviços [36, 37, 38, 33, 58, 39, 34, 40, 41, 59]. Nessas soluções, composições confiáveis

de serviços são formadas por um conjunto de serviços alternativos, usados para imple-

mentar técnicas de tolerância a falhas. Em linhas gerais, estas soluções atuam como

conectores arquiteturais entre clientes e serviços alternativos. A facilidade de reutilização

de serviços alternativos para tolerar falhas permite que sistemas orientados a serviços se-

jam confiáveis a fim de evitar também pequenos contratempos, além de prejúızos e danos

maiores. Cabe ressaltar que, em geral, os usuários estão cada vez mais exigentes no que se

refere aos requisitos de qualidade e eles são pouco tolerantes com os defeitos de sistemas

de software [34, 33, 58].

1.2 Definição do Problema e Questões de Pesquisa

Sistemas orientados a serviços diferem de sistemas tradicionais devido a suas carac-

teŕısticas de heterogeneidade, distribuição, autonomia e dinamismo [17, 60, 16]. Con-

sequentemente, esses sistemas fomentam novos desafios de pesquisas no que tange a uti-

lização de soluções baseadas em diversidade de projetos para tolerar falhas de software.

O problema que esta tese se propõe a resolver é dividido em três subproblemas. Primeiro,

não há diretrizes para apoiar a seleção de serviços alternativos adequados e que garan-

tam que uma composição realmente tolere falhas de software. Segundo, há uma lacuna

no que tange a existência de soluções capazes de apoiar estratégias de tolerância a fa-

lhas apropriadas para requisitos diversos de clientes e contextos de uso - a flexibilidade

é um requisito de qualidade fundamental em sistemas orientados a serviços [17, 60, 16].

Terceiro, há uma carência por infraestruturas autoadaptivas que apoiem várias técnicas

de tolerância a falhas simultaneamente e a escolha da técnica mais apropriada para os

diferentes contextos em tempo de execução - a autoadptação é outro requisito fundamen-

tal desses sistemas [18, 61, 62]. Esses problemas são motivados e descritos nas próximas

subseções. Além disso, a cada um desses problemas são atribúıdos uma ou mais questões

de pesquisa.

1.2.1 Insuficiência de Evidências Relativas a Eficiência de

Serviços Alternativos para Tolerar Falhas de Software

Ao utilizar técnicas baseadas em diversidade de projetos para tolerar falhas de software,

o projetista assume que falhas coincidentes entre os componentes de software alternativos

são raras, e, se existirem, os resultados das execuções serão suficientemente diferentes para

8 Caṕıtulo 1. Introdução

apoiar a detecção de erros e distinção de um resultado correto ou aceitável [1]. Quanto

mais diversos são os componentes de software alternativos (e.g. desenvolvidos a partir de

diferentes linguagens e plataformas ou diferentes algoritmos), menor a probabilidade deles

falharem para um mesmo caso de entrada, e, consequentemente, maior a probabilidade de

falhas de um ou mais destes componentes serem toleradas, se necessário. Neste sentido,

análises emṕıricas de diversidade de projetos em componentes de software funcionalmente

equivalentes constitúıram um importante tópico de pesquisa entre meados da década de

oitenta e ińıcio da década de noventa [1].

Um número considerável de estudos e experimentos foram realizados a fim de men-

surar quão diversos e eficientes componentes de software alternativos eram para tole-

rar falhas [49, 50, 51, 52]. Na maioria das pesquisas, os times de desenvolvimento e a

plataforma adotada para implementar os componentes de software alternativos, bem como

seus códigos fonte, eram bem conhecidos. Os resultados obtidos sugerem que alcançar os

benef́ıcios advindos da utilização de diversidade de projetos para apoiar sistemas de soft-

ware confiáveis pode não ser tão simples. Em muitos casos, contraditoriamente, é posśıvel

obter maiores ı́ndices de confiabilidade ao adotar um componente de software simples do

que ao usar múltiplos componentes de software na tentativa de tolerar falhas [49, 52].

No contexto de sistemas orientados a serviços, as autores de soluções baseadas em

diversidade de projetos assumem de modo intŕınseco que serviços alternativos são sempre

eficientes para tolerar falhas de software [36, 37, 38, 39, 34, 40, 41]. No entanto, não há na

literatura evidências suficientes para ratificar esta suposição. Serviços são caixas-pretas

de reúso e estão usualmente sob controle de terceiros, isto é, de organizações indepen-

dentes [17, 16, 60]. O termo caixa-preta refere-se ao fato que somente as interfaces de

requisições dos serviços são dispońıveis e usualmente não há detalhes acerca de como

foram projetados, implementados, ou mesmo especificados [17]. Por consequência, torna-

se dif́ıcil extrapolar conclusões dos estudos prévios sobre diversidade de projetos para o

contexto de serviços alternativos. Dessa forma, é essencial buscar evidências que corrobo-

ram ou refutam a hipótese de que serviços alternativos são sempre eficientes para apoiar

o aumento da confiabilidade de sistemas orientados a serviços. À vista disso, definimos

as nossas primeiras questões de pesquisa.

Questão de Pesquisa 1 (QP1) Como mensurar se serviços alternativos são diversos

e eficientes para tolerar falhas de software quando alavancados por técnicas baseadas em

diversidade de projetos?

Questão de Pesquisa 2 (QP2) Quais as implicações de se utilizar serviços alterna-

tivos para tolerar falhas de software?

Até onde sabemos, dado um requisito funcional e seus respectivos serviços alternativos,

não há diretrizes para analisar (i) se estes serviços são de fato providos por diferentes

projetos; e (ii) a frequência com que estes serviços falham para um mesmo caso de entrada.

1.2. Definição do Problema e Questões de Pesquisa 9

Ao estudarmos de maneira adequada a diversidade de serviços, seremos capazes de apoiar

um maior grau de confiabilidade ao implantar uma composição que alavanca serviços

alternativos para tolerar falhas, ou ao implantar um serviço simples que exiba maior grau

de confiabilidade do que seria o caso se diversidade de projetos fosse adotada.

1.2.2 Ausência de Soluções que Apoiam Diferentes Técnicas

Baseadas em Diversidade de Projetos

As várias técnicas de tolerância a falhas baseadas em diversidade de projetos apresentam

diferentes valores para requisitos de qualidade (e.g. confiabilidade, tempo de resposta e

consumo de memória) [1] e facilidades para julgar diferentes tipos de resultados retornados

após a execução dos componentes de software alternativos (e.g. um tipo de dado complexo

ou simples). Em linhas gerais, estas técnicas diferem em termos de escolhas de projetos no

que tange (i) esquemas para executar componentes de software alternativos (e.g. execução

em sequencial ou em paralelo); (ii) tipos júızes (e.g. votadores, testes de aceitação ou

variações desses); e (iii) componentes de software alternativos que são utilizados [46, 1].

Consequentemente, uma determinada técnica pode ser mais adequada para um contexto

espećıfico de execução do que outra, dependendo dos requisitos exigidos pela aplicação.

Apesar da exigência por sistemas orientados a serviços confiáveis, o mercado de soft-

ware atual apresenta outros requisitos aparentemente antagônicos, como a necessidade

desses sistemas serem flex́ıveis a fim de facilmente acomodarem requisitos, possivelmente

conflitantes, dos seus diversos clientes [17, 16]. Conforme mencionado, variando os re-

quisitos funcionais e de qualidade, pode ser necessário utilizar técnicas mais adequadas

de tolerância a falhas. Além disso, sistemas orientados a serviços devem ser flex́ıveis

de modo a apoiar diversos requisitos de clientes. Por consequência, soluções baseadas

em diversidade de projetos para composições confiáveis de serviços, idealmente, deveriam

apoiar técnicas de tolerância a falhas customizadas para diferentes clientes e contextos.

No entanto, não há na literatura (i) um mapeamento de quais escolhas de projetos são

apoiadas pelas soluções existentes para composições de serviços tolerantes a falhas; (ii)

diretrizes indicando quais escolhas de projetos são mais eficientes para determinados re-

quisitos da aplicação; e (iii) soluções que apoiem várias técnicas de tolerância a falhas

simultaneamente, e, consequentemente, que apoiem requisitos diversos de clientes. Nesse

sentido, surgem as seguintes questões de pesquisas.

Questão de Pesquisa 3 (QP3) Quais as escolhas de projetos que são apoiadas por

soluções existentes para composições de serviços tolerantes a falhas de software? Quais

as principais diferenças entre essas escolhas de projetos no que tange os requisitos de

qualidade?

Questão de Pesquisa 4 (QP4) Como apoiar uma infraestrutura que acomode de

10 Caṕıtulo 1. Introdução

forma planejada diferentes técnicas de tolerância a falhas?

Ao respondermos a QP3, seremos capazes de pontuar as principais similaridades e

diferenças entre as soluções existentes, bem como apoiar a escolha de soluções mais ade-

quadas para diferentes contextos conforme requisitos de diversos clientes. Ademais, a

partir da análise das soluções existentes e suas implicações, é posśıvel identificar oportu-

nidades de progressos no que se refere a propostas de composições de serviços tolerantes

a falhas. Referente a QP4, tal infraestrutura permitiria reutilizar as escolhas de projetos

apoiadas por soluções existentes para composições de serviços tolerantes a falhas, como

também acomodar outras escolhas de projetos não contempladas por tais soluções.

1.2.3 Ausência de Mecanismos Adequados para Adaptação

Dinâmica das Composições Confiáveis de Serviços

Outro requisito de qualidade essencial para sistemas orientados a serviços é a autoadap-

tação em resposta a mudanças dinâmicas nos requisitos dos clientes, variações na disponi-

bilidade de recursos de hardware e de software, e flutuações nos valores de atributos de

qualidade dos serviços (QoS) [63, 19, 21, 64]. Em face disso, soluções para composições

de serviços tolerantes a falhas, idealmente, deveriam apoiar técnicas de tolerância a falhas

adaptadas para o contexto corrente. Entretanto, a adoção de um mecanismo autoadapta-

tivo para tolerância a falhas, de um modo geral, implica em alguns desafios de pesquisa,

conforme descrito a seguir [63]. Primeiro, a lógica de adaptação idealmente deve ser

separada da lógica de tolerância a falhas [63, 65], de modo a facilitar a compreensão,

manutenção e modularidade do mecanismo como um todo. Segundo, além desta sepa-

ração de interesses, é importante manter uma separação expĺıcita dos componentes de

software responsáveis por realizar a lógica de adaptação, dos componentes que realizam

a lógica de tolerância a falhas [65]. Terceiro, esta separação, por sua vez, requer o uso de

um conjunto bem estruturado de modelos de alto ńıvel que são utilizados para abstrair

detalhes do ambiente de execução, do estado do sistema propriamente dito, e de requisitos

dos usuários [66, 67]. Estes modelos de abstração idealmente deveriam compor uma base

para a análise e tomadas de decisões acerca do comportamento dinâmico da lógica de

tolerância a falhas em conformidade com o contexto [68, 67]. Finalmente, alterações em

tais abstrações de alto ńıvel deveriam ser refletidas para o sistema em execução, a fim de

efetivamente adaptar o mecanismo de tolerância a falhas dinamicamente [66, 67]. Neste

sentido, a quinta questão de pesquisa é:

Questão de Pesquisa 5 (QP5) Como apoiar de forma adequada uma infraestrutura

autoadaptiva para apoiar a instanciação de técnicas diferentes de tolerância a falhas em

resposta a mudanças ocorridas no contexto?

Referente a QP5, a partir da análise da literatura relacionada [34, 41, 58, 33], observa-

1.3. Solução Proposta 11

mos que há uma lacuna no que se refere a existência de soluções baseadas em diversidade

de projetos que apoiem, de forma adequada, composições de serviços tolerantes a falhas

e autoadaptáveis.

1.3 Solução Proposta

Esta tese descreve uma solução que visa avançar o estado da arte no que tange a con-

cepção e implementação de sistemas confiáveis orientados a serviços mediante técnicas de

tolerância a falhas de software baseadas em diversidade de projetos. A solução proposta

contempla: (i) uma infraestrutura que apoia a seleção de serviços alternativos eficientes

que garantam que a composição realmente tolere falhas de software; (ii) uma famı́lia de

técnicas de tolerância a falhas para construir composições confiáveis que permita a es-

colha de uma técnica mais adequada para o contexto; e (iii) uma infraestrutura capaz de

apoiar várias técnicas de tolerância a falhas de software simultaneamente, de modo que

a técnica mais adaptada é instanciada em tempo de execução, baseando-se no gerenci-

amento dinâmico de variabilidades de software. A escolha da técnica mais adequada é

realizada em conformidade com poĺıticas de alto ńıvel pré-estabelecidas e percepção do

contexto corrente (e.g. flutuações na qualidade de serviços e mudanças de requisitos de

clientes).

Para alcançar estes três objetivos, respondemos cada uma das questões de pesquisa,

apresentadas na seção anterior, combinando técnicas de quatro disciplinas: estudos em-

ṕıricos em engenharia de software, linhas de produtos de software (dinâmicas), sistemas

autoadaptativos, desenvolvimento centrado na arquitetura de software e desenvolvimento

baseado em componentes, conforme descrito nas seções subsequentes. Até onde sabemos,

o uso de linhas de produtos de software (dinâmicas) para tolerar falhas de software em

sistemas orientados a serviços é uma das contribuições originais desta pesquisa. Além

disso, soluções existentes baseadas em linhas de produtos de software (dinâmicas) foca

variabilidade funcional (e.g. [69, 18, 70, 71, 72, 73]). Ao contrário, neste trabalho, focamos

variabilidade não-funcional ao explorar a variabilidade de software existente nas técnicas

de tolerância a falhas e nas mudanças ocorridas no ambiente de execução.

1.3.1 Uma Infraestrutura para Mensurar Diversidade de

Serviços Alternativos e suas Implicações

Questão de Pesquisa 1 (QP1) Como mensurar se serviços alternativos são diversos

e eficientes para tolerar falhas de software quando utilizados para implementar técnicas

baseadas em diversidade de projetos?

12 Caṕıtulo 1. Introdução

Questão de Pesquisa 2 (QP2) Quais as implicações de se utilizar serviços alterna-

tivos para tolerar falhas de software?

Com o objetivo de responder a QP1, propomos uma infraestrutura que engloba um

conjunto de diretrizes e ferramentas para apoiar a preparação e a execução de estudos

emṕıricos para investigar, dado a especificação de um requisito funcional, até que ponto

seus serviços alternativos são eficientes para tolerar falhas de software quando estrutu-

rados mediante técnicas baseadas em diversidade de projetos. Uma vez que serviços são

caixas-pretas, toda a investigação é realizada a partir do ponto de vista do cliente [16, 60].

Primeiro, a infraestrutura, através do uso de testes estat́ısticos, permite verificar se

os serviços alternativos apresentam diferenças significativas em seus valores de sáıda e

frequência de falhas quando executados sob uma mesma sequência de valores de entrada.

Se os serviços alternativos apresentarem diferentes comportamentos observados, isso su-

gere que eles são de fato providos por diferentes implementações, e, possivelmente, pro-

jetos. Caso contrário, consideramos que não temos evidências suficientes para afirmar se

eles são ou não diversos. Segundo, a infraestrutura apoia o cálculo estimado da confia-

bilidade alcançada por serviços individualmente (i.e. serviços simples) e pela composição

que usa tais serviços alternativos para tolerar falhas de software. Resultados de estudos

emṕıricos, nos quais analisamos a eficiência de serviços alternativos gratuitos, baseados

em SOAP/WSDL e dispońıveis na Internet para tolerar falhas de software, sugerem a

viabilidade e eficiência da solução proposta.

Conforme mencionado, as soluções existentes para mensurar diversidade de compo-

nentes de software alternativos não são aplicáveis a serviços alternativos que mantêm

somente suas interfaces de requisições dispońıveis (i.e. são caixas pretas) [49, 50, 51, 52].

Portanto, uma contribuição original desta tese é uma infraestrutura que apoia um con-

junto de diretrizes para investigar a diversidade de serviços alternativos e a eficiência

dos mesmos para tolerar falhas de software. Essa infraestrutura resultou na seguinte

publicação:

Nascimento A.S.; Castor, F.; Rubira, C. M. F; Burrows, R. An experimental setup to

assess design diversity of functionally equivalent services. 16th International Confer-

ence on Evaluation & Assessment in Software Engineering, 2012, Ciudad Real, Spain.

Posteriormente, a fim de responder a QP2, a infraestrutura proposta foi utilizada

em estudos emṕıricos mais abrangentes com a finalidade de obtermos um maior entendi-

mento das implicações de se empregar diversidade de projetos para apoiar composições

de serviços tolerantes a falhas. Os resultados obtidos sugerem que pode existir diversi-

dade na implementação de serviços alternativos. Entretanto, em algumas circunstâncias,

a frequência com que os serviços alternativos falham num mesmo caso de entrada pode

ser tão alta que usar um serviço isoladamente pode produzir melhores resultados de confi-

1.3. Solução Proposta 13

abilidade do que empregar técnicas de diversidade de projetos. Estes resultados reforçam

a relevância da infraestrutura proposta para mensurar a diversidade de serviços alterna-

tivos. Conforme mencionado, as soluções existentes partem do pressuposto que serviços

alternativos são sempre eficientes para tolerar falhas de software. Entretanto, obtivemos

evidências que refutam esta hipótese por intermédio de estudos emṕıricos. Um maior

entendimento das implicações de se utilizar serviços alternativos para tolerar falhas de

software é uma contribuição original desta tese. Esses estudos emṕıricos resultaram nas

seguintes publicações.

• Nascimento A.S.; Castor, F.; Burrows, R.; Rubira, C.M.F. An Empirical Study

on Design Diversity of Functionally Equivalent Web Services. 7th International Con-

ference on Availability, Reliability and Security, 2012, Prague, Czech Republic.

• Nascimento A.S.; Castor, F.; Burrows, R.; Rubira, C.M.F. An Empirical Study

on Design Diversity of Functionally Equivalent Web Services. IC, UNICAMP, Tech.

Rep. IC-12-18, 2012. (versão estendida do artigo anterior)

1.3.2 Uma Famı́lia de Técnicas de Tolerância a Falhas de Soft-

ware Baseadas em Diversidade de Projetos

Questão de Pesquisa 3 (QP3) Quais escolhas de projetos são apoiadas por soluções

existentes para serviços compostos tolerantes a falhas de software? Quais as principais

diferenças entre essas escolhas de projetos no que tange os requisitos de qualidade?

Questão de Pesquisa 4 (QP4) Como apoiar uma infraestrutura de reúso que aco-

mode de forma planejada diferentes técnicas de tolerância a falhas?

Com o objetivo de responder a QP3, realizamos uma revisão sistemática para indentifi-

carmos as semelhanças e diferenças entre as várias soluções existentes para composições de

serviços tolerantes a falhas. Tais soluções constituem nossos estudos primários. A revisão

sistemática foi estruturada a partir de diretrizes propostas por Kitchenham e Charters [74].

Estas diretrizes constituem três fases da revisão sistemática: planejamento, execução, e

apresentação dos resultados obtidos. Os estudos primários analisados foram classificados

com base numa taxonomia que identifica as principais escolhas de projetos referentes às di-

versas técnicas de tolerância a falhas (e.g. os diferentes esquemas de execução de serviços

alternativos e os diferentes júızes) [1]. Realizamos também um levantamento inicial de

quais requisitos de qualidade são apoiados pelas escolhas de projetos identificadas (i.e.

a execução sequencial de serviços alternativos requer menos memória do que a execução

paralela de tais serviços), facilitando a escolha de soluções mais apropriadas para diferen-

tes contextos. Além disso, apontamos referências para estudos mais aprofundados acerca

da utilização das diferentes escolhas de projetos e suas implicações [49, 50, 51, 52]. Esses

14 Caṕıtulo 1. Introdução

estudos são baseados em diferentes suposições relativas a modelos de falhas. Logo, tais

estudos compõem um importante ponto de partida para elaboração de modelos de falhas

também adequados para diferentes contextos.

Cabe ressaltar que as publicações relativas às soluções existentes para composições

de serviços tolerantes a falhas são baseadas em diferentes contextos conceituais e

técnicos [36, 37, 38, 39, 34, 40, 41], o que dificulta a escolha entre as soluções exis-

tentes. Portanto, uma outra contribuição desta tese é uma descrição padronizada das

soluções identificadas. Enfatizamos, ainda, que estudos emṕıricos em Engenharia de Soft-

ware são essenciais, pois permitem a construção de uma base de conhecimento cient́ıfico

sobre o quão eficientes são diferentes soluções para engenharia de software, permitindo

uma escolha fundamentada [75]. A revisão sistemática resultou na seguinte publicação:

• Nascimento A.S.; Rubira, C. M. F.; Burrows, R.; Castor, F. A systematic review of

design diversity-based solutions for fault-tolerant SOAs. 17th International Conference

on Evaluation and Assessment in Software Engineering, 2013, Porto de Galinhas, PE,

Brazil.

Com o objetivo de responder a QP4, projetamos uma famı́lia de técnicas de tolerância a

falhas baseadas em diversidade de projetos para apoiar composições confiáveis de serviços.

Conforme mencionado, linhas de produtos apoiam o reúso de software de forma plane-

jada e a criação de produtos personalizados a um custo razoável [28]. A partir da análise

do domı́nio de tolerância a falhas de software [45, 1, 46, 48, 76] e de composição de

serviços [17, 16, 60], extráımos as caracteŕısticas comuns e variáveis entre as técnicas de

interesse. A análise de domı́nio também contemplou: (i) o levantamento de caracteŕısticas

peculiares a sistemas orientados a serviços, como interoperabilidade e descoberta e in-

vocação dinâmicas de serviços alternativos [17, 16, 60]; e (ii) as semelhanças e diferenças,

identificadas a partir da revisão sistemática das soluções existentes para composições

confiáveis de serviços [57].

As caracteŕısticas identificadas foram inicialmente estruturadas num modelo de carac-

teŕısticas e posteriormente mapeadas para uma arquitetura de linha de produtos baseada

em componentes de software [2]. Mais especificamente, o modelo de caracteŕısticas pro-

posto estende o modelo previamente apresentado por Brito et al. [45], a fim de explici-

tamente apoiar caracteŕısticas peculiares a sistemas orientados a serviços. Para a imple-

mentação da arquitetura da linha de produtos, utilizamos um modelo independente de

plataforma tecnológica para projeto e implementação de arquiteturas de software baseadas

em componentes. Este modelo de implementação de componentes oferece diretrizes para

materializar elementos arquiteturais em código-fonte [77]. É importante notar que num

primeiro momento temos somente o ‘esqueleto’ da arquitetura da famı́lia de técnicas de

tolerância a falhas implementada. Nesta arquitetura, as conexões entre os componentes

1.3. Solução Proposta 15

arquiteturais são exercitadas através de suas interfaces providas e requeridas, contudo

é preciso implementar o comportamento dos diversos métodos (e.g. reutilizando imple-

mentações das soluções existentes na literatura). Cabe ressalar que a partir da análise

da literatura relacionada [36, 37, 38, 33, 58, 39, 34, 40, 41, 59], observamos que há uma

lacuna no que tange a existência de soluções flex́ıveis baseadas em diversidade de projetos

para composições confiáveis de serviços. Portanto, a concepção de uma famı́lia de técnicas

baseadas em diversidade de projetos para composições de serviços tolerantes a falhas é

também uma contribuição desta tese.

Além disso, propomos uma infraestrutura dirigida por modelos para apoiar o desen-

volvimento semi-automatizado de arquiteturas de linhas de produtos de software em geral.

Utilizamos a infraestrutura proposta para especificar e validar o modelo de caracteŕısticas

e o modelo arquitetural da famı́lia de técnicas de tolerância a falhas. A infraestrutura

dirigida por modelos encompassa um conjunto de ferramentas e métodos para garantir

que modelos de mais alto ńıvel de abstração sejam mapeados para modelos de mais baixo

ńıvel de abstração, até a implementação da arquitetura da linha de produtos, de forma

semi-automatizada, coordenada e consistente. As soluções existentes para a engenha-

ria de linhas de produtos dirigida por modelos apresentam algumas lacunas, como por

exemplo, (i) não definem de forma clara a sequência de modelos a serem produzidos e

as transformações executadas entre os diferentes modelos [78, 79]; e (ii) não apresentam

um suporte ferramental para apoiar a automatização das transformações entre os mode-

los [80, 81]. Portanto, uma infraestrutura dirigida por modelos e semi-automatizada para

apoiar o desenvolvimento sistemático de arquiteturas de linhas de produtos de software é

mais uma contribuição desta tese.

O projeto da famı́lia de técnicas de tolerância a falhas para serviços compostos

confiáveis e a proposta da infraestrutura dirigida por modelos para desenvolver arquite-

turas de linhas de produtos de software, resultaram na seguinte publicação.

• Nascimento A.S.; Rubira, C. M. F.; Burrows, R.; Castor, F. A systematic review of

design diversity-based solutions for fault-tolerant SOAs. 17th International Conference

on Evaluation and Assessment in Software Engineering, 2013, Porto de Galinhas, PE,

Brazil.

1.3.3 Uma Infraestrutura Baseada em Linhas de Produtos de

Software (Dinâmicas)

Questão de Pesquisa 5 (QP5) Como apoiar de forma adequada uma infraestrutura

autoadaptiva que apoia a instanciação de técnicas diferentes de tolerância a falhas em

resposta a mudanças ocorridas no contexto?

16 Caṕıtulo 1. Introdução

A fim de respondermos a QP5, propomos uma infraestrutura baseada em linhas de

produtos de software (dinâmicas), chamada ArCMAPE, para composições de serviços to-

lerantes a falhas e autoadaptativos. ArCMAPE é composta por uma famı́lia de técnicas de

tolerância a falhas e apoia a instanciação da técnica mais adaptada em tempo de execução

conforme mudanças nos requisitos de clientes e valores dos atributos de qualidade de

serviços (QoS). A técnica mais adaptada é aquela que (i) satisfaz regras pré-estabelecidas

(e.g. serviços alternativos que executam pagamentos de cartão de créditos devem ser exe-

cutados de forma sequencial e seus resultados analisados por testes de aceitação para evitar

cobranças duplicadas); e (ii) maximiza uma função objetivo. Esta função objetivo leva

em consideração tanto os valores correntes de QoS quanto prioridades pré-estabelecidas

por diversos clientes (e.g. para alguns, maximizar tempo de resposta, para outros, a

disponibilidade).

ArCMAPE foi projetada numa arquitetura reflexiva a fim de apoiar a separação de

interesses. O ńıvel meta baseia-se no loop autonômico [82] para discorrer sobre o com-

portamento dinâmico da estratégia de tolerância a falhas e o contexto corrente. Para

tomadas de decisão, o ńıvel meta analisa e manipula modelos da linha de produtos (i.e.

o modelo de caracteŕısticas e a arquitetura da linha, referentes a famı́lia de técnicas de

tolerância a falhas), e modelos contendo outras informações relevantes do contexto (e.g.

valores de QoS e requisitos dos clientes). Estes modelos são mantidos dinamicamente e

constantemente refletem a configuração da técnica de tolerância a falhas em execução.

Planos de adaptação são gerados de forma automática, reduzindo a complexidade re-

ferente à especificação da lógica de adaptação dinâmica do mecanismo de tolerância a

falhas. O ńıvel base é composto por componentes de software implementando a arquite-

tura da linha de produtos. Mais especificamente, no ńıvel base, componentes de software

implementando as caracteŕısticas mandatórias são fornecidos, enquanto que componentes

de software implementando caracteŕısticas variáveis podem ser facilmente inseridos em

pontos de extensão, no caso, pontos de variação, definidos na arquitetura. A técnica de

tolerância a falhas mais adaptada é instanciada automaticamente em tempo de execução

a partir da configuração dinâmica de produtos, isto é, mediante gerenciamento dinâmico

de variabilidades de software.

Cabe ressaltar que os modelos mantidos em tempo de execução podem ser especifi-

cados e validados a partir da infraestrutura proposta dirigida por modelos para desen-

volvimento de arquiteturas de linhas de produtos de software. Os serviços aternativos

podem ser escolhidos mediante a infraestrutura proposta para mensurar diversidade de

serviços. As demais caracteŕısticas alternativas podem ser realizadas a partir da análise

e reúso das escolhas de projetos apoiadas por soluções existentes para composições de

serviços confiáveis, descritas na revisão sistemática (e.g. diferentes esquemas para exe-

cutar serviços alternativos e diferentes júızes para julgar seus resultados). Resultados de

1.3. Solução Proposta 17

estudos emṕıricos sugerem que ArCMAPE é eficiente para apoiar composições de serviços

confiáveis e autoadaptivas e não insere um overhead excessivo para apoiar o gerenciamento

dinâmico de variabilidades de software.

A partir da análise da literatura relacionada, obsevamos que composições de serviços

autoadaptáveis e tolerantes a falhas não apoiam soluções para os desafios de pesquisa

(Seção 1.2.3) relacionados aos mecanismos de tolerância a falhas autoadaptativos [34, 41,

58, 33]. A proposta de uma infraestrutura facilmente extenśıvel e que apoia o gerencia-

mento dinâmico de variabilidades de software a fim de instanciar em tempo de execução

técnicas de tolerância a falhas apropriadas para diferentes contextos é uma contribuição

desta tese. ArCMAPE resultou nos seguintes artigos:

• Nascimento A.S.; Rubira, C. M. F.; Castor, F. A Comprehensive Solution for

Fault-Tolerant Composite Services, 2013. (a ser submetido numa revista)

• Nascimento A.S.; Rubira, C. M. F.; Castor, F. ArCMAPE: A Software Product

Line Infrastructure to Support Fault-Tolerant Composite Services. 15th IEEE Inter-

national Symposium on High Assurance Systems Engineering, 2014, Miami, Florida,

USA.

• Nascimento A.S.; Rubira, C. M. F.; Castor, F. Using CVL to Support Self-

Adaptation of Fault-Tolerant Service Compositions. 7th IEEE International Confer-

ence on Self-Adaptive and Self-Organizing Systems, 2013, Philadelphia, USA. (resumo

expandido)

• Nascimento A.S.; Castor, F.; Rubira, C. M. F. Identifying Modelling Dimen-

sions of a Self-Adaptive Framework for Fault-Tolerant SOAs - An Experience Report.

1st Workshop on Dependability in Adaptive and Self-Managing Systems co-located

LADC, 2013, Rio de Janeiro.

• Nascimento A.S.; Rubira, C. M. F.; Lee, J. An SPL approach for adaptive fault

tolerance in SOA. 1st International Workshop on Services, Clouds and Alternative

Design Strategies for Variant-Rich Software Systems co-located with SPLC, 2011,

Munich, Germany.

• Nascimento A.S.; Rubira, C. M. F. Tolerância a Falhas em Linhas de Produto de

Software Baseadas em Serviços Web. V Workshop de Teses, Dissertações e Trabalhos

de Iniciação Cient́ıfica em Andamento IC-UNICAMP, 2009, Campinas, SP, Brazil.

(resumo)

• Nascimento A.S.; Rubira, C. M. F. Especificação de uma abordagem sistemática

para gerenciar e implementar Linhas de Produtos Dinâmicas e baseadas em serviços

Web. V Workshop de Teses, Dissertações e Trabalhos de Iniciação Cient́ıfica em An-

damento IC-UNICAMP, 2009, Campinas, SP, Brazil. (resumo)

18 Caṕıtulo 1. Introdução

1.4 Estrutura da Tese

Esta tese foi escrita baseada em uma coleção de artigos cient́ıficos publicados em ou sub-

metidos a conferências internacionais, simpósios nacionais e internacionais, e periódicos

internacionais. Por esta razão, com exceção dos caṕıtulos de introdução e conclusão,

foram preservados os textos originais dos artigos em inglês. Cada caṕıtulo é autocontido,

apresentando problemas e motivações, solução proposta e sua avaliação, e trabalhos rela-

cionados. Com o propósito de evitar textos redundantes, especialmente sobre motivação

e fundamentos teóricos, os conteúdos dos artigos originais foram adaptados com o in-

tuito de serem inseridos sem os seus fundamentos teóricos, introduções e suas conclusões.

Além disso, nos Caṕıtulos 3 a 6, foi acrescentada uma seção chamada Overview, que ap-

resenta uma visão geral do caṕıtulo com base nos artigos originais associados ao caṕıtulo

em questão. Nesses caṕıtulos, também foi adicionada uma seção chamada Summary,

que apresenta considerações relevantes acerca do caṕıtulo em questão. No ińıcio de cada

caṕıtulo, adicionamos um prólogo indicando a referência da qual o respectivo conteúdo

foi extráıdo.

O restante desta tese está organizado como segue: O Caṕıtulo 2 apresenta alguns

fundamentos teóricos sobre os conceitos contidos nesta tese. O Caṕıtulo 3 descreve a

infraestrutura proposta para avaliar quão eficientes um dado conjunto de serviços alter-

nativos é para tolerar falhas de software. Nesse caṕıtulo, também apresentamos estudos

emṕıricos realizados, mediante o uso da infraestrutura proposta, com a finalidade de me-

lhor entendermos as implicações de se utilizar diversidade de projetos para tolerar falhas

de software de serviços. Portanto, no Caṕıtulo 3, apresentamos soluções para o primeiro

subproblema que esta tese visa resolver. O Caṕıtulo 4 apresenta a revisão sistemática que

conduzimos com o propósito de analisar e classificar as soluções existentes baseadas em

diversidade de projetos para composições de serviços tolerantes a falhas. O Caṕıtulo 5

descreve uma infraestrutura dirigida a modelos e semi-automatizada para desenvolver

arquiteturas de linhas de produtos de software diversas. Neste caṕıtulo, é apresentado

como a infraestrutura foi utilizada para propormos uma famı́lia de técnicas de tolerância

a falhas de software. Portanto, nos Caṕıtulos 4 e 5, apresentamos soluções para o se-

gundo subproblema que esta tese visa resolver. O Caṕıtulo 6 descreve a infraestrutura

baseada em linhas de produtos de software dinâmicas para apoiar composições de serviços

confiáveis e autoadaptáveis. Portanto, no caṕıtulo 6, apresentamos soluções para o ter-

ceiro subproblema que esta tese visa resolver. Finalmente, no Caṕıtulo 7, apresentamos

as conclusões e identificamos direções de pesquisas futuras.

Caṕıtulo 2

Fundamentos Teóricos de Reúso de

Software, Tolerância a Falhas, e

Sistemas de Software

Autoadaptativos

Este caṕıtulo apresenta alguns conceitos de fudamentos teóricos sobre desenvolvimento

baseado em componentes, arquiteturas orientadas a serviços, linhas de produtos de soft-

ware (dinâmicas), técnicas de tolerância a falhas de software baseadas em diversidade de

projeto, e sistemas autoadaptativos. O conteúdo deste caṕıtulo foi retirado de três publi-

cações: um artigo publicado no 17th International Conference on Evaluation and Assess-

ment in Software Engineering - EASE ’13, que apresenta a revisão sistemática de soluções

baseadas em diversidade de software para composições de serviços tolerantes a falhas; um

artigo publicado no 7th Brazilian Symposium on Software Components - SBCARS ’13,

que apresenta uma infraestrutura dirigida por modelos para apoiar o desenvolvimento de

arquiteturas de linhas de produtos de software; e um artigo publicado no 1st Workshop

on Dependability in Adaptive and Self-Managing Systems (WDAS) em conjunto com o

6th Latin-American Symposium on Dependable Computing - LADC’13, que descreve de

forma sistemática o comportamento dinâmico da infraestrutura proposta para apoiar com-

posições de serviços tolerantes a falhas e autoadaptativas. Como o conteúdo do caṕıtulo

foi extráıdo na ı́ntegra desses artigos, foi preservado o idiomal original.

2.1 Software Reuse

Currently, there is an increasing need to address software evolvability in order to grad-

ually cope with different stakeholders’ needs [22, 10]. At the same time, the software

19

20 Caṕıtulo 2. Fundamentos Teóricos

system’s desired time-to-market is ever decreasing. This reality demands on software sys-

tems’ capability of rapid modification and enhancement to achieve cost-effective software

evolution [22, 10, 27]. To face these needs, advanced software paradigms have emerged.

Service-oriented computing, component-based development and software product line en-

geneering are three promising cases in particular as they increase software reuse at the

architectural level of design [10, 16, 27].

In this section, we briefly describe service-oriented architectures; COSMOS*, a com-

ponent implementation model; and (dynamic) software product lines.

2.1.1 Service-Oriented Architecture (SOA)

SOA is described as a component-based model which interrelates different functional

units (or services) by means of well-defined interfaces that should be neutral, platform-

and language-independent [16]. Services running over heterogeneous systems may then

interact and be used as building blocks for composite services [16]. Due of the specifics

of the SOA scenarios, to aggregate multiple services into a single composite services it is

necessary to support a series of functional and quality requirements, for example, interop-

erability capabilities; autonomic composition of services; QoS-aware service compositions;

and business-driven automated compositions, as discussed in the literature (e.g. [83, 16]).

SOA is often found in web service applications. Web Services, called as services for

simplicity, often rely on XML-based standards such as SOAP (Simple Object Access Pro-

tocol) and WSDL (Web Services Description Language) to exchange information with

other applications over the Internet. Services can be read-only, which means that, given

a request, these services provide access to data that may be read but not changed or

deleted [15]. They can also be classified as stateless or stateful. Stateless services support

no mechanism within themselves to handle state across requests [84]. Stateful services

keep state information across requests [84]. To evaluate our solution, in our empirical

studies we reuse third-party, stateless, read-only, SOAP/WSDL-based Web Services. It

was a decision that stemmed from the availability of cost-free services and the possibility

of comparing their results. It is important to mention that, recently, Representational

State Transfer (REST) has gained widespread acceptance across the Web as a simpler

alternative to SOAP- and WSDL-based Web services [85].

2.1.2 Cosmos* Implementation Model

The COSMOS* model [77] is a generic and platform-independent implementation model,

which uses object-oriented structures, such as interfaces, classes and packages, to im-

plement component-based software architectures. The main advantages of COSMOS*,

when compared with other component models such as Corba Component Model (CCM),

2.1. Software Reuse 21

Enterprise Java Beans, and .NET, is threefold. COSMOS* provides traceability between

the software architecture and the respective source code by explicitly representing archi-

tectural units, such as components, connectors and configuration. Second, COSMOS* is

based on a set of design patterns, thus, it is considered a platform-independent model.

Thirdly, the set of design patterns employed by COSMOS* can be automatically trans-

lated to source code. In particular, our solution employs Bellatrix [86], an Eclipse Plug-

in that translates graphically specified software architectures (using Unified Modelling

Language - UML) to Java source code in COSMOS*. Bellatrix allows the creation of

a ‘skeletal’ system in which the communication paths are exercised but which at first has

a minimal functionality. This ‘skeletal’ system can then be used to implement the system

incrementally, easing the integration and testing efforts [12].

To address different perspectives of component-based systems, COSMOS* defines five

sub-models: (i) a specification model specifies the components; (ii) an implementation

model explicitly separates the provided and required interfaces from the implementation;

(iii) a connector model specifies the link between components using connectors, thus

enabling two or more components to be connected in a configuration; (in) a composite

components model specifies high-granularity components, which are composed by other

COSMOS* components; and (v) a system model defines a software component which can

be executed, thus encapsulating the necessary dependencies. Figure 2.1 (a) shows an

architectural view of a COSMOS* component called CompA and Figure 2.1 (b) shows

the detailed design of the same COSMOS* component [77]. We have used UML notation

in this work to model architecture and detailed design and, in Figure2.1 (a) , we have

omitted operations and attributes for the sake of clarity.

The component is internally divided into specification (CompA.specpackage) and im-

plementation (CompA.implpackage). The specification is the external view of the com-

ponent, which is also sub-divided into two parts: one that specifies the provided services

(CompA.spec.prov package) and the other makes dependencies explicit (CompA.spec.req

package). For instance, IManager and IA are provided interfaces and IB is a required

interface. The COSMOS* implementation model also defines classes to support compo-

nent instantiation and to implement provided interfaces. The CompA.impl package has

three mandatory classes: (i) a ComponentFactory class, responsible for instantiating the

component; (ii) a Facade class that realizes provided interfaces, following the Facade

design pattern; and (iii) a Manager class that realizes IManager interface and provides

meta-information about the component. ClassA and ClassB are examples of auxiliary

classes.

22 Caṕıtulo 2. Fundamentos Teóricos

Figure 2.1: (a) An architectural view and a detailed design of a COSMOS* component;
(b) A detailed design of the COSMOS* component

2.1.3 (Dynamic) Software Product Lines

Software product line (SPL) is a systematic software reuse approach that promotes the

generation of specific products from a set of core assets for a given domain, exploiting

the commonalities and variabilities among these products [23, 87]. Software variability is

defined as the capacity that a software system or artefact has to be modified for use in a

particular context at some point in its life-cycle [23]. Although traditional SPL engineering

recognizes late variability, it typically selects, deploys, and acts on their features before

delivery of the software [18]. In contrast, Dynamic Software Product Lines (DSPLs)

extend SPLs to support late variability [18]. In the following, we briefly describe some

background on software product line engeneering.

Use Case Modelling for Software Product Lines

To specify the functional requirements of a SPL, it is important to capture the require-

ments that are common to all members of the family as well as the variable ones. Go-

maa [88] identifies different kinds of use cases: kernel use cases, which are needed by all

members of the product line; optional use cases, which are needed by only some members

of the product line; and alternative use cases, which are usually mutually exclusive and

where different versions of the use case are required by different members of the product

line.

2.1. Software Reuse 23

According to Gomaa [88], product line use cases can be described by its (i) name;

(ii) reuse category (whether the target use case is kernel, optional, or alternative); (iii)

summary description; (iv) actors - the only external entities that interact with the system;

(v) dependency - this optional section describes whether the use case includes or extends

another use case; (vi) preconditions - one or more conditions that must be true at the

start of the use case; (vii) description - a narrative description of the main sequence of

the use case; (viii) alternatives - a narrative description of alternative branches off the

main sequence; (ix) variation points; and (x) postcondition - the condition that is always

true at the end of the use case if the main sequence has been followed [88]. Regarding

the item (ix), variation points identify places in the use case description where different

functionality can be introduced for the different members of the product line, i.e., a

variation point is a location in a use case where a change can take place [89]. We refer to

Gomaa [88] for further details on how to identify and specify use cases.

Feature Models

A feature is a system property that is relevant to some stakeholder [25]. A feature model

represents the commonalities among all products of a product line as mandatory features,

while variabilities among products are represented as variable features. Variable features

extensively fall into three categories: (i) optional, which may or may not be present in

a product; (ii) alternative, which indicates a set of features, from which only one must

be present in a product; and (iii) multiple features, which represents a set of features,

from which at least one must be present in a product [5, 45]. The feature model can

also represent additional constraints between features. Some examples of constraints

are mutual dependency, when a feature requires another, and mutual exclusion, when a

feature excludes another [5, 45]. Furthermore, use cases should be mapped to the features

on the basis of their reuse properties [88].

Product Line Architectures (PLAs)

One of the main artifacts of a SPL is the product line architecture (PLA) [90], which

explicitly represents the commonalities and variabilities of architectural elements and

their configurations [27]. The commonalities are reused in different products, while the

variabilities are resolved through design decisions related to the choices at the PLA [27].

In PLAs, software variability can be reached by delaying certain architectural design

decisions, which are described through variation points. A variation point is the place at

the software architecture where a design decision can be made. Variants are the different

possibilities that exist to satisfy a variation point. Binding the variant is the selection

of some variant supported by a variation point. A well-known technique to efficiently

24 Caṕıtulo 2. Fundamentos Teóricos

and rapidly derive products from a set of reusable assets it the combination of SPL and

Component-based Development (CBD) [90]. Furthermore, a component framework [27, 2]

can be used to guarantee that components that need to be configured are successfully

coordinated. In this case, variation points are represented by locations in the framework

where plug-in components may be added and variants are realized by specific choices of

the plug-in [27]. The explicit integration of plug-in mechanisms in the PLAs reduces the

effort for the composition of the final products [2]. We emphasize that a PLA is a key

artefact to achieve a controlled evolution and it should be consistent with the feature

model.

Feature-Architecture Mapping (FArM)

By iteratively refining the initial feature model, the FArM method enables the construc-

tion of a transformed feature model containing exclusively functional features, whose busi-

ness logic can be implemented into architectural components [2]. It is largely accepted

that FArM improves maintainability and flexibility of PLAs [2]. The FArM transformation

flow is shown in Figure 2.2 and is briefly described in the following.

Figure 2.2: The FArM method [2]

Firstly, non-architecture-related features should be removed from the initial FM. Qua-

lity features, in turn, can be resolved by integrating them into existing functional features

by enhancing their specification or by adding new features providing functional solutions

that fulfil the quality features and their specifications. Secondly, architectural require-

ments (AR) are identified (e.g. authentication and interoperability). AR can be handled

through direct resolution, integration in existing functional features and addition of new

functional features. The third interacts relation is used to model the communication of

features. A valid FArM interacts relation connects two features where one feature uses

the other feature’s functionality; and the correct operation of one feature either alters

2.1. Software Reuse 25

or contradicts the behaviour of the other feature. Once all interacts relations between

features are identified, features are then transformed based on the type and the number

of interacts relations.

The last transformation is based on the analysis of hierarchy relations between super-

features and their sub-features. The sub-feature can specialize, be part of or present

alternatives to their super-feature. At this transformation, invalid hierarchy relations are

removed and their features remain without any sub-features. Whenever it is necessary,

new hierarchy relations may be created [2]. In the last FArM iterations the system archi-

tects commit to certain architecture and they can also employ a specific architectural style

by adapting components to a particular style (e.g. a plug-in or a layered architecture).

Decision Models

For generating a specific product, it is necessary to instantiate the PLA considering the

design choices associated with particular variants [90, 27]. To support these choices, a

decision model should be constructed in order to relate the possible choices of variants

in the feature model, to high-level decisions of the software architecture in the form of

variation points [68, 27]. In other words, the decision model documents the decisions that

need to be made at the context of a PLA, and which are related to the variants of the

feature model, thus providing support for tuning the software architecture according to

the requirements of the system [90]. The decision model provides a mapping from the

requirements (feature model) to the design (PLA). Through this artefact, the client can

directly participate of the decision process of a specific product, since it is possible to

abstract away about technical details.

Common Variability Language (CVL)

CVL is a domain-independent language for specifying and resolving variability being con-

sidered for standardization at Object Management Group [3] (OMG). CVL allows the

specification of variability over models of any language defined using a MOF-based meta-

model, including Unified Modelling Language (UML) and Domain Specific Languages

(DSLs) [3]. As illustrated in Figure 2.3, in CVL approach we have three models:

• Base Model: a model described in a DSL.

• Variability Model: the model that defines variability on the base model.

• Resolution Model: the model that defines how to resolve the variability model to

create a new model in the base DSL.

With variability model and resolution model properly defined, it is possible to run CVL

model-to-model transformation to generate new resolved models, or product models, in the

26 Caṕıtulo 2. Fundamentos Teóricos

Figure 2.3: CVL transformation (or materialisation) [3]

base language [3]. This process is also called materialisation. In general terms, a resolution

model specifies a feature configuration (i.e. a set of selected features), and a base model

specifies a PLA model. The core concepts of the CVL materialisation are substitutions.

A substitution replaces base model elements defined as a placement by base model elements

defined as a replacement. CVL creates a product model by copying the base model and

performing the selected substitutions. Under some circunstances, some replacing model

elements, not already in the base model, may have to be added. These additional model

elements can be found at the CVL library.

More specifically, in CVL, a variability model consists of three main parts [3]:

• Variation points: Define the points of the base model that are variable and can

be modified during the CVL execution. For instance, some of the variation points

supported by CVL are the existence of elements of the base model or substitutions of

elements of the base model.

• Variability Specification Tree (VSpec tree): Tree structures whose elements represent

choices bound to variation points. These choices are resolved by a resolution model

and propagated to variation points and the base model, generating the resolved model

without variability. In general terms, VSpec trees are similar to feature models and

deciding choices is similar to selecting features [3].

• OCL Constraints: CVL supports the definition of OCL constraints among elements

of a VSpec tree, providing a highly flexible mechanism for delimiting the bounds of

variability, being able to discard invalid configurations.

It is important to notice that the CVL variability model defines a decision model,

because CVL specifies (a) variabilities and commonalities in domain requirements; and (b)

how requirements choices map to choices of decisions that need to be made at the context

of a PLA [91]. A product model is in fact a decision model instance, in which all decisions

2.2. Fault Tolerance 27

are resolved. A product model can be further used to instantiate a specific product from

SPL artefacts [91]. The base, variability, and resolution models are described in details

in Section 5.3.1, in the context of the SPL proposed to support software fault tolerance

techniques.

2.2 Fault Tolerance

A fault is the identified or hypothesized cause of an error [92, 93]. An error is part of the

system state that is liable to lead to a failure [92, 93]. A failure, in turn, occurs when

the service delivered by the system deviates from the specified service [1, 93]. So, with

software fault tolerance, we want to prevent failures by tolerating faults whose occurrences

are known when errors are detected [1]. When designing fault tolerance, a first prerequisite

is to specify, by means of fault models, the faults that should be tolerated [44]. The next

step is to enrich the system under consideration with components or concepts that provide

protection against faults from the fault models [44].

2.2.1 Redundancy

A key supporting concept for fault tolerance is redundancy, that is, additional resources

that would not be required if fault tolerance was not being implemented [1]. Redun-

dancy can take several forms, for example, hardware and software. Software redundancy

includes the additional programs, modules, or objects used in the system to support fault

tolerance [46]. Redundant or diverse software can reside on the redundant hardware to

tolerate both hardware and software faults. Hardware redundancy includes replicated and

supplementary hardware added to the system to support fault tolerance [46].

For instance, we are interested in software faults. According to Pullum [1], ’software

faults may be traced to incorrect requirements (where the software matches the require-

ments, but the behavior specified in the requirements is not appropriate) or to the imple-

mentation (software design and coding) not satisfying the requirements‘. Software faults

are also called design faults or bugs [1]. To protect against software faults, we cannot

simply duplicate identical software units, as is typically done for hardware units to toler-

ate hardware faults, because doing so will simply duplicate the problem [1]. A solution to

the problem of replicating design and implementation faults is to introduce diversity into

the software replicas [94]. In the following, we present the basic design diversity concept.

28 Caṕıtulo 2. Fundamentos Teóricos

2.2.2 Basic Design Diversity Concept

Design diversity is the provision of functionally equivalent services through separate de-

sign and implementations [46, 1, 42]. When diversity is used, the redundant software

components are termed variants, versions, or alternates1 [46]. Figure 2.4 illustrates the

basic design diversity concept. Inputs are distributed to multiple software components,

each with equivalent functionality yet different designs, the alternates. The alternates

execute their operations and produce their results, from which a single correct or accept-

able result must be derived, if any [1]. The mechanism responsible for this task is called

an adjudicator. The input to the adjudicator function consisting of at least the alternate

outputs is called syndrome [95]. To execute the alternates, it is necessary to provide

all of them with exactly the same experience of the system state when their respective

executions start in order to ensure consistency of input data [94, 46].

Figure 2.4: Basic Design Diversity [1]

If alternates fail on the same input case, then a coincident failure [96] is said to have

occurred. The goals of increasing diversity in alternates are to decrease the probability

of coincident failures and to increase the probability that the alternates fail on disjoint

subsets of the input space, when they do fail [1]. The achievement of these goals increases

the system’s reliability and increases the ability to detect failures when they occur [96, 97].

In other words, the more diverse alternates are, the less likely coincident failures are to

occur and the more failures of alternates is likely to be detectable [1, 42, 49, 96]. In fact,

1Although Laprie et al. [46] justifies the usage of the term ‘variants’ to identify the multiple functionally
equivalent software components, we use ‘alternates’ instead to avoid conflict with the notion of variant
from SPL.

2.2. Fault Tolerance 29

adjudicators might fail when coincident failures occur [1].

Adjudicators

Adjudicators generally comes in two flavours, voters and Acceptance Tests (ATs). We refer

to Pullum [1] for a description about the various types of adjudicators and their opera-

tions (pages 269-324) - e.g. exact majority, consensus, formal consensus, formal majority,

median, mean, weighted, and dynamic voters; acceptance tests based on satisfaction of

requirements, accounting tests, computer run-time acceptance tests and reasonableness

acceptance tests. Ideally, the adjudication mechanism should be free from errors itself

since the adjudicator is not replicated and typically does not have an alternate [1]. Ad-

judicators encompass three possible states, or status, as illustrated in Figure 2.5 [1] and

briefly described in the following. The correct result, if any, and the staus indicator are

returned to the subsequent program modules.

Figure 2.5: Status Indicating possible State of adjudicators [1]

Status = NIL Status is initialized to this value. If the Status returned from the adju-

dicator is NIL then an error ocurred during adjudication. That is, this status indicates

that the adjudicator has not completed examining the alternate results [1]. Ignore the

returned ‘correct’ output, if any.

Status = EXCEPTION The adjudicator was not able to find the presumed correct

output given the alternate results, although it did complet processing [1].

Status = SUCCESS The adjudicator did complete processing and found the assumed

correct, adjudicated result [1].

Voter Adjudicators

In particular, for the empirical studies on service diversity, we are interested in a

three-alternate voting system since this is the minimum number of alternates that al-

lows a service composition to tolerate faults of one of its services. In a three-alternate

system, three kind of results are possible: (i) correct result- executions of a majority of

the alternates in the triplet result in identical or similar correct results from which a

single correct result is adjudicated [98]; (ii) failure- a majority of alternates fail on the

same input case (i.e. coincident failures) resulting in similar or identical incorrect results,

30 Caṕıtulo 2. Fundamentos Teóricos

therefore the voter returns either an incorrect result as the presumably ‘correct one’, or

no output [1, 98]; (iii) failure exception- three results that are not within an acceptable

range (i.e. they are not similar) are returned by execution of alternates, therefore, a voter

is not able to decide whether results were successful or not [98].

2.2.3 Structuring Software Redundancy

As discussed by Laprie et al. and Pullum [46, 1], software redundancy can be structured

in many forms, as illustrated in Figure 2.6. The final fault-tolerant system can have (a) all

replicas and adjudicators on a single hardware component, (b) replicas on multiple hard-

ware components, or (c) the adjudicator on a separate hardware component. Moreover,

the software that is replicated can range from an entire program to a program segment as

shown in Figure 2.6(d). According to Pullum [1], the choices to be made in structuring

software redundancy are based on available resources (e.g. the underlying hardware) and

the specific application.

2.2.4 Error Recovery

The fault tolerance process is that set of activities whose goal is to remove errors and

their effects from the computational state before a failure occurs [1]. In particular, error

recovery is the process in which the erroneous state is substituted with an error-free

state [1]. Error recovery is performed using either backward recovery or forward recovery.

On one hand, backward recovery attempts to return the system to a correct or error-free

state by restoring or rolling back the system to a previously saved state, which is assumed

to be error-free [1]. On the other hand, forward recovery attempts to return the system

to a correct or error-free state by finding a new state from which the system can continue

operation. Compared with backward error recovery, the forward recovery is usually more

efficient in terms of the overhead (e.g. time and memory) it requires [1].

2.2.5 Design Diversity Software Fault Tolerance Techniques

This section covers the original and basic design diverse software fault tolerance tech-

niques - recovery blocks (RcB) and N-version programming (NVP) [1]. Each one of these

techniques can be realised by a reference architecture, which provides a proven template

solution for a particular domain [45, 99].

2.2. Fault Tolerance 31

Figure 2.6: Various Views of Redundant Software (figure extracted from [1]-page 20)

32 Caṕıtulo 2. Fundamentos Teóricos

Recovery Block

The recovery block (RcB) technique was introduced by Horning et al. [47], with early

implementation by Randell [76]. RcB combines the basics of the checkpoint and restart

approach with multiple versions of a software component such that a different version is

tried after an error is detected [46, 45]. Checkpoints are created before a version is exe-

cuted for providing an operational state for recovering after a version fails. A reference

architecture for tolerating a single fault using the RB technique was proposed by Brito et

al. [45], and is shown in Figure 2.7. The Switch is responsible for choosing a proper Al-

ternate to execute the service, in case an error is detected by the AcceptanceTest (i.e.

any one of the various acceptance tests [1]). The data integrity between two executions

is guaranteed by the Checkpoint element.

Figure 2.7: Reference Architectures For Recovery Block Techniques

Wilfredo [100] claims that in RcB, the execution of the multiple versions can be also in

parallel, depending on the available processing capability and performance requirements.

Under this circunstance, it is not necessary to employ rollback recovery since parallel

execution provides a valid operational starting point for the multiple versions through

a synchronization regime [1, 100]. RcB is typically uniprocessor implemented, with the

executive and all components residing on a single hardware unit [1] (Figure 2.6 (a)).

However, when employing RcB to support fault-tolerant service compositions, we can

have n alternate services residing on n hardware units and the executive residing on a

different hardware unit. Therefore, we can have n + 1 hardware units (Figure 2.6 (c)).

Under this circunstance, communications between software components are done through

remote methods calls or method invocations.

N-Version Programming

N-version programming (NVP) was suggested by Elmendorf [48] and developed by

Aviziens and Chen [101, 102]. NVP is a multi-version technique in which all the ver-

2.2. Fault Tolerance 33

sions are designed to satisfy the same specification. The outcome is obtained using com-

pensation by comparing the outputs of the versions through voting [101, 102] (i.e. any

one of the various voters [1]). Figure 2.8 presents a reference architecture proposed by

Brito et al. [45] for tolerating a single fault using the NVP technique. In this architec-

ture, the Switch connector is responsible to receive the results of all the three versions of

components and then judge if there is a reliable result based on voting.

Wilfredo claims [100] that actual execution of the multiple versions could be also se-

quential. Under this circunstance, it may be required the usage of checkpoints to reload

the state before an alternate version is executed [100]. According to Pullum [1], the NVP

is typically multiprocessor implemented with components residing on n hardware units

and the executive together with the voter residing on one of the processors [1]. How-

ever, when employing NVP to support fault-tolerant service compositions, the executive

together with the voter can reside on a separate hardware unit, therefore, we can have

n + 1 hardware units (Figure 2.6 (c)). Under this circunstance, communications between

software components are done through remote methods calls or method invocations.

Figure 2.8: Reference Architectures For N-Version Programming

2.2.6 Reliability

Reliability is defined as ‘the ability of a system or component to perform its required

functions under stated conditions for a specified period of time’ [15]. When the execution

time is not readily available, approximations such as the number of test cases executed

may be used [42]. In this sense, the successful execution rate can be adopted to estimate

the reliability of a system. The value of the success rate 0 ≤ qrate(s) ≤ 1 of a system s

is computed from data of past invocations [103] qrate(s) = Nc(s)/k(s), where Nc(s) is the

number of successful results provided by a system s within the maximum expected time

frame, and K(s) is the total number of invocations of the system.

34 Caṕıtulo 2. Fundamentos Teóricos

Moreover, by means of successful execution rate, we are able to estimate the difference

in reliability of a fault-tolerant architecture based on design diversity, or FT-architecture,

and single non-fault-tolerant alternates, in order to find out evidence on whether the

first supports a reliability improvement over the latter. A positive difference in reliability

indicates an increase in reliability [42], that is, the FT-architecture tolerated faults of its

alternates, which rarely fail on the same input cases [1]. On the other hand, a negative

difference indicates a reliability decrease [42]. The introduction of design diversity might

lead to occurrence of coincident failures, which might defeat most adjudicators [1, 42, 49].

2.3 Self-Adaptive Systems and the Autonomic Con-

trol Loop

Software-based systems today increasingly operate in changing environments with variable

user needs. Consequently, systems are increasingly expected to dynamically self-adapt to

accommodate such changes [82, 4, 66]. The autonomic control loop provides the generic

mechanism for self-adaptation. This loop, shown in Figure 2.9, typically involves four key

activities: collect, analyze, decide and act [4].

Figure 2.9: Autonomic Control Loop [4]

Sensors collect data from the executing system and its context about its current

state [4]. The accumulated data is then cleaned, filtered, and pruned and, finally, stored

for future reference to portray an accurate model of past and current states. Then, the

data is analysed to infer trends and identify symptoms. Subsequently, the planning (de-

cide) attempts to predict the future to decide on how to act on the executing system and

its context through actuators or effectors [4].

For instance, we focus on the feedback control loop proposed by IBM’s autonomic

2.4. DSPLs and Self-Adaptive Systems 35

computing initiative, also known as the MAPE-K control loop. MAPE-K includes the

Monitoring, Analyzing, Planning and Executing functions and is fed with knowledge, the

K on MAPE-K. We refer to the IBM’s architectural blueprint for details on fundamental

concepts, constructs and architectural building blocks of the MAPE-K loop [82].

2.4 Synergies between DSPLs and Self-Adaptative

Systems

Self-adaptive systems can be built based on software product line principles by means

of feature-based runtime adaptation. From the perspective of runtime adaptation, well-

established variability modelling in the SPL domain promises to be a valuable basis for

the definition of appropriate models at runtime. These models are required in adaptive

systems [104]. Under these circunstances, although variability analysis and design can be

performed at development time, the variability binding and reconfiguration is performed

at runtime. Thus it requires some kinds of variability mechanisms to map environment

variants to variable features, which, in turn, should be mapped to variants in the PLA

level; and support runtime reconfiguration [105]. As a result, the self-adaptation strategies

can be obtained and specified in a higher feature level rather than the lower program level,

which makes it easily validated and understood by the system users [105]. On the other

hand, the decision of producing a new product (i.e. to adapt to another configuration)

can follow, among other solutions, the autonomic MAPE-k loop, a mechanism to fully

automate the derivation process into self-adaptive systems [82].

Caṕıtulo 3

An Experimental Setup to Assess

Design Diversity of Alternate

Services

Este caṕıtulo apresenta uma infraestrutura que apoia a preparação e a execução de estudos

emṕıricos para investigar o quão eficiente um conjunto de serviços alternativos é para to-

lerar falhas de software. A fim de avaliar a solução proposta e analisarmos as implicações

de se utilizar diversidade de projetos para apoiar composições de serviços tolerantes a

falhas, a infraestrutura foi utilizada para analisar a diversidade de vários serviços alterna-

tivos dispońıveis na Internet. O conteúdo deste caṕıtulo foi retirado de dois artigos, um

publicado no 16th International Conference on Evaluation and Assessment in Software

Engineering - EASE ’12, que apresenta as diretrizes para avaliar diversidade de projeto;

o outro publicado no o 7th International Conference on Availability, Reliability and Se-

curity - ARES’12, que apresenta os resultados de um estudo emṕırico abrangente sobre

diversidade de serviços alternativos e suas implicações. Como o conteúdo deste caṕıtulo

foi extráıdo na ı́ntegra de tais artigos, foi preservado o idioma original.

3.1 Overview

Software faults cannot be tolerated by simple replication of identical software components

since the same mistake will exist in each copy of the components [1]. A solution to this

problem is to introduce diversity into the software replicas [1, 100, 42]. Design diversity is

the provision of functionally equivalent software components, called alternates, through

different design and implementations [1]. The main goal of increasing diversity is to

increase the probability that alternates fail on disjoint subsets of the input space, when

they do fail [1, 42]. In software fault-tolerant architectures based on design diversity,

37

38 Caṕıtulo 3. A Framework to Assess Service Diversity

called FT-architectures, a task is executed by several alternates. The results of these

executions are provided to an adjudicator, which operates upon them to determine which

one to output as the presumably correct result [1, 106]. Adjudicators might fail, when

coincident failures occur. A coincident failures is said to have occurred if a majority of

alternates fail on the same input case [1, 96]. Hence, FT-architectures might not provide

an improvement in reliability over a single software component [1, 49, 107].

Today’s society is highly dependent on systems based on Service-Oriented Architec-

tures (SOA) for its basic day-to-day functioning [16, 57]. A composite service, the basis

for the construction of applications in the SOA world, can be regarded as a combination

of activities invoked in a predefined order and executed as a whole [16]. Nevertheless, it

is unlikely that services, usually controlled by third parties, will ever be completely free

from software faults arising out of wrong specifications and incorrect coding [34, 1]. In

the past, employing design diversity used to be costly [53, 54] because the need for two

or more alternates implied implementing the same system more than once, almost from

scratch [49, 54]. However, nowadays, in the context of SOA, on the web a number of func-

tionally equivalent web services, or alternate services, usually exist to achieve a particular

task [55, 40, 56, 16]. These alternate services might be simply cost-free and open access or

even offered by different organizations to their own business partners to cope with changes

in the level of user requirements and quality of services (QoS) [16]. Due to the low cost

of reusing alternate services, several diversity-based solutions have been developed [57].

These solutions operate as mediators between clients and alternate services. The latter

are structured in fault-tolerant composite web services [40, 56], called FT-compositions

for simplicity. From the clients’ viewpoint, the FT-composition works as a single, reliable

service.

solutions operate in the communication between clients and alternate services. The lat-

ter are structured in fault-tolerant composite services [40, 56, 33], called FT-compositions

for simplicity. From the clients’ viewpoint, the FT-composition works as a single, reliable

service.

A considerable number of studies and experiments aim to assess design diversity [49,

50, 51, 52]. In most of existing research, the development teams, the adopted platform to

implement alternates and their source code are well known. However, services are black

boxes and independently developed by different organizations. Therefore, it is difficult to

extrapolate the results of previous studies about design diversity to the context of SOA.

Although diversity-based solutions exist in SOA, to the best of our knowledge, given

a requirements specification, there are no directives to assess (i) whether its alternate

services are actually provided by means of design and implementations that are sufficiently

different, i.e. usable for fault tolerance [96, 97]; and (ii) how often its alternates fail on

the same input case, i.e., how effective service diversity is for tolerating faults [1, 49,

3.2. An Infrastructure to Assess Service Diversity 39

107]. With proper assessment of service diversity, we are able to achieve higher levels

of reliability by employing either (i) the FT-composition with selected alternate services;

or (ii) a single non-fault-tolerant service, called NFT-service, that can exhibit higher

reliability than would be the case if diversity was employed.

We propose a set of directives to organize the preparation and execution of an ex-

periment to investigate, given a requirements specification, to what extent its alternate

services are able to tolerate software faults. The investigation is performed from clients’

viewpoint because services are black boxes [16, 60]. Firstly, the proposed solution supports

an investigation on whether alternate services are diverse. This is achieved through the

adoption of statistical tests to check whether alternate services present difference in their

outputs and their failure behaviours. If alternates have different observed behaviour, it

suggests that they are in fact provided by different design and implementations. Secondly,

the solution also supports the analysis of if and by how much the use of the FT-composition

improves reliability when compared to a NFT-service. For this, we estimate the achieved

reliability of these two architectural-solutions.

We evaluated the applicability and usefulness of the proposed experimental setup by

employing it to assess diversity of alternate services adhering to a number of requirements

specifications. These empirical studies also provided more insight on the effectiveness of

design diversity in service-oriented applications and its implications. We found out that,

for some requirements, coincident failures of two services are frequent enough that using

the most reliable service in isolation yields the best results. Data and observations regard-

ing our studies are available at our study webpage [108]. We emphasize that empirical

studies are needed from a Software Engineering (SE) perspective because they enable

the development of scientific knowledge about how useful different SE solutions are, thus

allowing for informed and well-grounded decision [75].

3.2 An Infrastructure to Assess Service Diversity

Figure 3.1 presents an overview of the proposed experimental setup. Given a requirements

specification (Activity I), the investigation of service diversity is based on the execution

of alternate services under the same sequence of input cases (Activities II, III, IV). Lit-

tlewood and Miller [97] have demonstrated that the probabilities of coincident failures

are decreased when alternates exhibit diversity at the level of design, implementation and

also in terms of failure behaviour. Therefore, first, we examine whether alternate services

are sufficiently diverse [1, 42] (Activities V,VI,VII). Second, it is necessary to perform

an empirical investigation to truly assess whether FT-composition is tolerating faults,

if alternate services fail on disjoint subsets of the input space [1, 96, 97]. Furthermore,

through the comparison of different architectural solutions (Activities VIII,IX,X), we are

40 Caṕıtulo 3. A Framework to Assess Service Diversity

able to achieve higher levels of reliability by employing either (i) FT-composition (Activity

XI); or (ii) the most reliable NFT-service (Activity XII).

Figure 3.1: A method to assess design diversity of alternate services.

3.2.1 Research Questions and Hypotheses

Given a requirements specification and its alternate services, the proposed experimental

setup aims to provide directives to answer the following research questions:

RQ0: Are alternate services diverse?

To empirically investigate research question RQ0, we hypothesize the following:

• Null hypothesis (H01): There is no difference in observed outputs with respect to

alternate services.

• Null hypothesis (H02): There is no difference in observed frequency (or proportion)

of failures with respect to alternate services.

3.2. An Infrastructure to Assess Service Diversity 41

RQ1: Does the use of a FT-composition support an improvement in reliability

when compared to a NFT-service?

3.2.2 Detailed Description of the Activities

In this section, we describe all activities presented in Figure 3.1.

Activity I

First of all, select a particular requirements specification. We call the selected specification

r.

Activity II

Identify alternate services that realize the requirements specification r. In this work, Vr is

the set of such alternate services. It contains exactly three elements, the minimum number

of alternates employed by diversity-based techniques that leverage voters [1]. It is easy

to obtain precise estimates for more than three alternates using the same experimental

setup. We define Vr as follows:

Vr = {v1, v2, v3}, (3.1)

where v1, v2, v3 are alternates implementing requirements specification r.

Activity III

Given the requirements specification r, select input cases at random from the input

space [97]. The same inputs should be supplied to each of alternate v ∈ Vr in order

to improve the precision of the experiment [109, 75]. We define the Xr set of input cases

as follows:

Xr = {x1, x2, ..., xm}, (3.2)

where xi, 1 ≤ i ≤ m, are inputs. The bigger the number of analysed input cases m,

the more precise the obtained measurements [97, 109, 75].

We emphasize that minor adaptations in input data supplied to each alternate service

might be required according to its expected formats of inputs. For example, suppose that

a service is responsible for Validating an email address. For one of the alternates, data

provided is ‘a@a.com, validationOperator’, while for others alternates, the data provided

should be ‘a@a.com’.

42 Caṕıtulo 3. A Framework to Assess Service Diversity

Activity IV

After the sets of alternate services (i.e. Vr) and of input cases (i.e. Xr) have been

identified, we are able to execute alternate services. Each input case x ∈ Xr is distributed

to each alternate v ∈ Vr, which then executes its operation. Since we are interested in

investigating the output space, we define a function, called exe(v, x), that returns the

output value resulting from the execution of an alternate service v under input x.

Then, for each alternate service v ∈ Vr, we define the Orv
set, which associates inputs,

alternate services, and the corresponding outputs, as follows:

Orv
=

{

(v, x, exe(v, x))|x ∈ Xr

}

(3.3)

It should be noticed that the whole analysis is made based on the comparison of third

elements of identified triples. The first two elements of the triples are only identifiers

adopted to guarantee that there is no duplicate elements, which are not allowed (or

are ignored) in sets. Moreover, different alternates may return output formats that are

equivalent but not the same, therefore output sets need to be standardized before the

analysis commences. For example, for the Email Validation task, given an valid email

address, one alternate returns as output the ‘It is valid’ string, while the other one returns

‘1‘.

Activity V

Identify input cases under which at least one alternate fails. The identification of failing

input cases is essential to analyse and understand the failure behaviour of alternate ser-

vices [97, 110]. To identify failing inputs, we propose the adoption of the performance

function p(v, x), defined by Littlewood and Miller [97]. This function indicates whether

an alternate v, when executed under the input x, returns either a correct result or a failure

within the maximum expected time frame TF (Section 2.2.6). The performance function

p(v, x) is defined as follows [97]:

p(v, x) =

1 if v does not fail on x within TF

0 otherwise
(3.4)

This function requires a means to identify whether a alternate fails or not under a

certain input. For example, adoption of assertions on the anticipated system state [1];

adoption of a gold version [49, 53]; a consistency relationship between inputs and outputs

that is sufficient to assert correction [42]; and comparison of outputs of a large number of

versions [42].

3.2. An Infrastructure to Assess Service Diversity 43

Let FXr ⊆ Xr, be the set of failing input cases. We define FXr as follows:

FXr = {x|x ∈ Xr ∧ (∃v ∈ Vr | p(v, x) = 0)} (3.5)

where |FXr| ≥ 1. If |FXr| = 0, it means that none of the alternates failed on any of

the analysed input cases. If that is the case, it is not necessary to conduct the remaining

activities, since using any single alternate would yield the highest reliability.

Activity VI

For each input case under which a alternate fails, if any other alternate does not fail on

the same input case, there is evidence that (i) a diversity-based technique might tolerate

that fault [110]; (ii) alternate services fail on disjoint subsets of the input space [110];

(iii) alternate services have distinguishable frequency of failures. In order to look for

such evidence, we should analyse the performance of each alternate under failing input

cases. The analysis consists observing the outputs produced by all the alternates under

the inputs from FXr and determining which alternates failed under those inputs. For

each alternate v ∈ Vr, we define PVrv
as the set of performances under failing inputs:

PVrv
=

{

(v, x, p(v, x))|x ∈ FXr

}

(3.6)

In a complementary way, for each requirements specification r ∈ R, let FS(r) be

the set of all alternate performances under failing inputs in specification r. That is, the

FS(r) associates all alternate services belonging to V (r), failing input cases from FX(r)

and alternate performances under such failing inputs. The FS(r) set is called as failure

scenario, for simplicity.

FS(r) = PF (r, v1) ∪ PF (r, v2) ∪ PF (r, v3) (3.7)

Activity VII

At this point, we have the data that is necessary to answer research question RQ0 (Section

3.2.1), that is, whether alternate services belonging to Vr are diverse or not. For that,

we need to test null hypotheses H01 and H02, which go on to state that alternate services

have no distinguishable effect on the outputs and frequency of failures. Therefore, to check

H01 and H02, it is necessary to determine whether, respectively, the sets of outputs (i.e.

Or1
, Or2

,Or3
) and sets of alternate performances (i.e. FSr1

, FSr2
, FSr3

) are significantly

different among themselves. Consequently, we need to find out probabilities p01 and p02 of

44 Caṕıtulo 3. A Framework to Assess Service Diversity

rejecting, respectively, hypotheses H01 and H02 at the α significance level [109, 75], where

α = 0.05, for instance. That is, given probabilities p01 and p02, if any probability is less

than α, we can reject its related null hypothesis at a 0.05 significance level [109, 75].

In this context, we adopt non-parametric statistical tests to investigate both hypothe-

ses H01 and H02. In general, nonparametric statistical tests typically are more accessible

than parametric ones [109, 75], which further motivates our work. On the one hand, non-

parametric tests are based on a model that specifies only very general conditions and none

regarding the specific form of the distribution from which the sample was drawn [109]. On

the other hand, parametric tests require complex assumptions about analysed data [109].

In particular, our solution is based on nonparametric statistical tests for the case of

k related or matched samples [109]. In these tests, k related samples of equal size (n)

are matched according to some criteria, sometimes called treatments, which may affect

the values of the observations [109]. These tests are suitable for our experimental setup

due to the following reasons. Given a particular requirements specification r, the same

input cases, which belong to the Xr set, are subjected to different treatments, that is, it is

processed by different alternate services belonging to the Vr set. We want to investigate

whether these different treatments have distinguishable effects on observed output space

of alternates (i.e. in their sets of outputs and performances). The adopted tests are

summarized in Table 3.1. Each test is suitable for specific sampling types of variables

under study. The supported sampling types also show the capabilities and limitations of

our solution.

Table 3.1: Selected Statistical Tests

Nonparametric Statistical

Test

Brief Description Required sampling type

Cochran Q test It provides a method for testing
whether three or more matched sets of
frequencies or proportions differ signif-
icantly among themselves [109].

Categorical (specifically, in a di-
chotomized ordinal scale or in a nomi-
nal scale with two levels) [109]

Friedman two-way analysis of
variance by ranks

It tests whether k samples are from the
same population or population with
the same median. [109].

At least an ordinal scale (i.e. variable
under study are at least ordered) [109].

In particular, regarding the H01 hypothesis, we should first analyse the type of output

in order to choose a suitable statistical test. Whereas, for the H02 hypothesis, we always

adopt the Cochran Q test, because data is dichotomized as ‘1 ’(i.e. success) and ‘0’(i.e.

failure). When one or both of the hypotheses H01 and H02 are rejected, we have enough

evidence to conclude that diversity is applied to alternate services. Otherwise, they should

have similar or identical behaviour when executed under the same sequence of inputs.

However, we should prefer a set of alternate services that present difference in outputs

3.2. An Infrastructure to Assess Service Diversity 45

and in terms of failures [97]. The more diverse alternates are, the less likely coincident

failures are to occur [97]. Nevertheless, given any individual requirements specification, if

we cannot reject at least one of these hypotheses, there is not enough evidence suggesting

that alternate services are diverse and, thus, usable for fault tolerance. In these scenarios,

if there are no more alternate services to be analysed, we should employ the NFT-service

that exhibits the highest reliability (Activities VIII,XII). We refer to Siegel and Castellan

Jr. [109] for further details on both the Cochran Q test and the Friedman analysis.

Activities VIII, IX

In order to measure the reliability of NFT-services and of FT-compositions, we define,

respectively, the reliability estimators Rel EstNF T Srv
and Rel EstF T SOAr

. We estimate

both Rel EstNF T Srv
and Rel EstF T SOAr

by means of the successful execution rate, which

calculates the probability that a request is correctly responded (Section 2.2.6). Further-

more, to improve the precision of the obtained measures, all the reliability estimators we

define are based on the analysis of failing inputs, which belong to the FXr set.

Estimator for NFT-services

We define the Rel EstNF T Srv
estimator for NFT-services as follows:

Rel EstNF T Srv
=

∑

x∈F Xr
p(v, x)

|FXr|
(3.8)

Where, |FXr| ≥ 1, as mentioned, and 0 ≤ Rel EstNF T Srv
≤ 1. If Rel EstNF T Srv

=

1, it implies that the analysed alternate service is able to return correct results for all

failing input cases from FXr. If Rel EstNF T Srv
= 0, the analysed alternate service failed

on all failing inputs.

Estimators for a FT-Composition

To define the reliability estimator for a FT-composition Rel EstF T SOAr
, we considered

the general definitions of voters (Section 2.2.2). Specifically, we are interested in cases

where a majority of the alternates were successful and a voter is able to adjudicate a correct

result [1, 42]. Also, we assume that one is able to develop a perfect voter. Previous

studies evaluating design diversity as a technique to improve overall system reliability

have made the same assumption [1, 106, 49, 98, 111]. We define the reliability estimator

Rel EstF T SOAr
for a FT-composition, as follows:

Rel EstF T SOAr
=

∑

x∈F Xr
geq

(

(p(v1, x) + p(v2, x) + p(v3, x)), 2
)

|FXr|
(3.9)

46 Caṕıtulo 3. A Framework to Assess Service Diversity

where, geq is an operator that returns 1 if the first argument is greater than or equal

to the second argument and 0 otherwise, |FXr| ≥ 1, and 0 ≤ Rel EstF T SOAr
≤ 1. If

Rel EstF T SOAr
= 1, it implies that voters are always able to adjudicate a single correct

result from alternate results, where alternates were executed under input cases belonging

to the FXr set. Hence, voters were able to tolerate all faults whose activation has led

to failure of alternates. If Rel EstF T SOAr
= 0, voters are not able to tolerate any faults

whose activation has led to coincident failures.

It is important to notice that the reliability estimation of a FT-composition should

take into account the adopted adjudicator [112]. If instead of using voters, we adopt

acceptance tests, then the FT-composition will be successful under an input case if at

least one of the results from the target alternate services satisfies the assertion employed

by the acceptance test [1]. At this point, our solution can be extended to support other

adjudicators.

Activity X

Finally, we check whether the FT-composition is more reliable than each NFT-service in

isolation in order to answer research question RQ1 (Section 3.2.1). Given the reliability es-

timators Rel EstNF T Srv
(the alternate with the highest reliability) and Rel EstF T SOAr

,

we estimate the overall differences in reliability achieved by adopting different architec-

tural solutions by calculating (Rel EstF T SOAr
−Rel EstNF T Srv

). As discussed in Section

2.2.6, a positive difference indicates that the FT-composition exhibits higher reliability

(Activity XI). On the other hand, a negative difference indicates that, if there are no more

alternate services to analyse, we should employ the most reliable NFT-service (Activity

XII).

3.3 Evaluation

We have applied the proposed directives and executed the experimental procedures on a

number of alternate services adhering to different requirements specifications. Our goal

was twofold: (i) to exemplify the use of the experimental setup to assess alternate services

developed by third-parties; (ii) to show its effectiveness to evaluate the reliability of FT-

compositions and NFT-services; (iii) and to provide more insight on the effectiveness of

design diversity in service-oriented applications and its implications.

3.3.1 Research Questions and Hypotheses

To conduct our investigation, we analysed alternate services adhering to seven different

requirements specifications. This study aims to answer the following research questions.

3.3. Evaluation 47

RQ0: Do functionally equivalent services (i.e. alternate services) present diversity in

their design and implementations?

To empirically investigate research question RQ0, for each specification, we hypothe-

size the following:

Null hypotheses (H01...07): There is no difference in observed outputs with respect to

alternate services.

Null hypotheses (H11...17): There is no difference in observed frequency of failures with

respect to alternate services.

Although hypotheses are assigned to each requirements specification, we do not focus

on understanding the real impact of each specification individually, only of the results.

Given any individual requirements specification, if we cannot reject at least one of its

related hypotheses, within the scope of this work, we will report that there is not enough

evidence to either confirm or deny the existence of diversity in the implementation of its

alternate services.

RQ1: Does the use of a FT-compositions, built with alternate services and voters, support

an improvement in reliability when compared to single services?

3.3.2 Target Requirements Specifications and Alternate Ser-

vices

We selected seven requirements specifications that are performed by a population of third-

party, stateless, read-only and SOAP/WSDL-based Web services. We will refer to these

as services, for simplicity. The selection of these services required cost-free alternate

availability of services and the possibility of comparing alternate results. Table 3.2 briefly

describes the requirements specifications (Activity I). Alternate services adhering to these

specifications were selected at online services repositories [113, 114] (Activity II). For all

alternates, we identified their corresponding descriptions, specified in WSDL documents.

Based on these descriptions, we created Web service clients by adopting the Java API

for XML Web Services (JAX-WS), a Java programming language API for creating and

invoking Web services [84].

3.3.3 Target Input Cases

For each requirements specification, we generated the Xr set of inputs (Activity III)

as follows.

(1) Email Validations: We choose three popular domains (i.e. Yahoo, Gmail and Hotmail)

and two unpopular domains (i.e. ic.unicamp.br, ige.unicamp.br). Each one of these mail

48 Caṕıtulo 3. A Framework to Assess Service Diversity

Table 3.2: Target Requirements Specifications.

Requirements Specification (Functionality)
(1)Email Validations validates email addresses for client applications.
(2)Credit Card Validations validates credit card numbers.
(3)Distance By ZIP Codes finds the distance between any two ZIP Codes.
(4)Currency Trading returns ‘up-to-date’ currency rates.
(5)Temperature Conversion converts temperature from Kelvin to Celsius.
(6)Weather Forecast provides weather forecast for cities.
(7)ZIP code geocoding converts ZIP codes into geographic coordinates.

servers specifies its restrictions on login specifications. Based on these restrictions, we

randomly generate 1149 mail addresses as inputs to our experiment. We generated valid

email addresses including existing ones and not-valid addresses.

(2) Credit Card Validations: We randomly generated 1046 credit card numbers. The

valid credit card numbers were generated conforming to the Luhn formula (MOD 10

check) [115]. MOD 10 check is a simple checksum formula used to validate a variety of

identification numbers, including credit card numbers [115]. The adopted valid credit

card types were MasterCard, VISA 16 digit, VISA 13 digit, American Express, Discover,

Diners Club, enRoute, JCB 15 digit, JCB 16 digit and Voyager. Invalid credit card

numbers were randomly generated and they did not conform to the Luhn formula.

(3) Distance By Zip Codes: We generated 1021 input pairs comprising of an origin Zip

code and a destination one: < Starting ZIP code, Ending ZIP code >. Both codes

were randomly selected from a database that contains 13137 Zip Codes within the United

States [116].

(4) Currency Trading: The following currencies compose the input set used to get ‘up-to-

date’ currency exchange rates: AUD (Australian Dollars), CAD (Canadian Dollars), CHF

(Swiss Francs), DKK (Danish Kroner), EUR (Euros), HKD (Hong Kong Dollars), JPY

(Japanese Yen), NOK (Norwegian Kroner), NZD (New Zealand Dollars), SEK (Swedish

Krona), SGD (Singapore Dollars), TWD (Taiwan Dollars), USD (US Dollars) and ZAR

(South African Rand).

(5) Temperature Conversion: We randomly generated 1049 real numbers as input case

including values below absolute zero, the lowest possible temperature [117].

(6) Weather Forecast: We randomly selected 926 Zip Codes from the database that con-

tains 13137 US Zip Codes [116].

(7) US Zip code geocoding: We randomly selected 1200 Zip codes from a database with

13137 US Zip Codes [116].

3.3. Evaluation 49

For each requirements specification, we distributed input cases to its alternates, which

then execute their operations by means of the Java clients. Therefore, we identified, for

each alternate service v ∈ Vr, its set of outputs Orv
(Activity IV).

3.3.4 Identification of Failures

For each requirements specification r ∈ R, given its alternate services v ∈ V (r) and its

inputs x ∈ X(r), we identified whether an alternate service fails or not under certain

input. Usually, in this type of experiment, the experiment administrator employs a ‘gold’

version as a means to identify failures [49, 98]. It is used by comparing the output of

the alternate service, for a given input case, to the output that is known to be correct,

the one returned by the gold version [49, 98]. For each particular set of requirements

r ∈ R, we either wrote or employed a third-party gold version g(r). In a complementary

way, for some alternate services, we adopted acceptance criteria, which is used to evaluate

whether a alternate result is acceptable compared to the one returned by the gold version,

as follows.

Gold Versions: For the (1) Email validations, we implemented a program based on the

restrictions on login specifications defined by the adopted mail servers. For (2) Credit card

validations, we implemented a routine based on the Luhn algorithm. This algorithm is

described in ISO/IEC 7812-1[118]. For the (3) Distance by ZIP codes, we implemented an

algorithm based on Google API [119]. The gold version for (4) Currency trading is based

on the values provided by CNN Money [120]. For the (5) Temperature conversion, our

implementation was based on the relationship between Kelvin and Celsius scales [117].

For (6) Weather forecast, we implemented a routine based on information for weather

forecast provided by Weather.com. The (7) Geocoder gold version is based on the Google

API [119].

Acceptance Criteria The (3) Distances by ZIP codes, (4) Currency Trading, (5) Tem-

perature Conversions and (6) Code Geocoding are realized by services that use floating-

point arithmetic (FPA). The use of FPA in general computing produces a result that is

accurate only within a certain range [1]. The use of design diversity, especially if FPA is

used, can also produce individual alternate results that differ within a certain range [1].

In this way, Pullum defines a tolerance as a variance allowed by a decision algorithm to

decide whether results were successful [1]. Consequently, for the services whose outputs

use FPA, we adopted acceptance criteria to check whether alternate services ‘disagree’or

not with gold versions. We specify tolerance ranges based on measures of dispersion un-

der all alternate results and the gold version result, thus, reducing subjectiveness of the

specified criterion.

For each requirement specification, we identified all input cases under which at least

50 Caṕıtulo 3. A Framework to Assess Service Diversity

one of its alternate service fails, i.e., we identified its FXr set (Activity V). For instance,

the maximum expected time frame (TF) is of 5 minutes. For each requirements specifi-

cation, Table 3.3 shows the absolute sizes of Xr and FXr, i.e., the number of inputs and

the number of failing inputs. For (1) Email Validation, for example, we have identified

454 input cases under which at least one alternate failed, out of a total of 1449 input

cases. Afterwards, based on the FXr set, we generated for each alternate v ∈ Vr its set

of performances PVrv
(Activity VI).

Table 3.3: Number of input and failing inputs.

Requirements Specification |Xr| |FXr|
(1) Email validations 1449 454
(2) Credit Card Validations 1046 262
(3) Distance by ZIP Codes 1021 238
(4) Currency Trading 15 1
(5) Temperature Conversion 1049 765
(6) Weather Forecast 925 224
(7) ZIP code geocoding 1200 210

Details on (i) alternate descriptions; (ii) input cases; (iii) gold versions; (iv) Java

clients; are available at our study webpage [108].

3.3.5 Study Results and Discussion

Once all data have been collected, we analysed them to provide an in-depth analysis of

design diversity in service-oriented applications. In this section, we present and discuss

the results and their implications.

Investigating Research Question RQ0

For each requirements specification, the set of its input cases is subjected to different

treatments, that is, it is processed by different alternate services [112]. We investigated

whether different treatments have distinguishable effect on the observed behaviour from

client’s viewpoint, in particular, on the output values and frequency of failures [112] (Ac-

tivity VII). To find out all probabilities, which are estimated based on observed data, we

adopted R, a language and environment and programming language for statistical com-

puting and graphics [121, 122]. Details on the calculations and our R working environment

are available at our study webpage [121].

3.3. Evaluation 51

Comparison of resulting outputs

For each requirements specification, we checked whether sets of alternate outputs are

significantly different among themselves. That is, we test the null hypotheses H01,...,07

(Section 3.3.1). On one hand, for (1) Email Validations and (2) Credit Card Validations,

the output values returned by their alternates are categorical data. On the other hand,

for (3) Distances by Zip Codes, (4) Currency Trading, (5) Temperature Conversions, (6)

Weather Forecasts and (7) ZIP code geocoding, the output values are data in at least an

ordinal scale. Therefore, we adopted different statistical tests for checking H01,02 and

H03...07.

To test the null hypotheses H01 and H02, we adopted the Cochran Q test. This test is

suitable for out study because (i) the data are from |V (r)| > 2 related groups; (ii) the data

are dichotomized as valid and not-valid; (iii) we want to examine whether the frequency

of both ‘valid’ and ‘not-valid’ as outputs are the same for all alternate services when they

are executed under the same sequence of inputs. To test the null hypotheses H03...07, we

adopted the Friedman two-way analysis of variance by ranks. This analysis is suitable for

our study because (i) we want to find out whether alternate services are from the same

population or not, that is, have similar output values when executed under the same

input cases; (ii) the analysed data are in at least an ordinal scale [112, 109]. We rejected

the hypotheses H01,02 and H03...07 for p − value < 0.05 [112, 109]. These results suggest

that diversity is applied to alternate services, otherwise, they would have had similar or

identical outputs values when executed under the same sequence of inputs [112].

Comparison of frequencies of failures

For each requirements specification r ∈ R, given its alternate services v ∈ V (r), we

checked whether its set of performances PVrv
are significantly different among them-

selves. We test the null hypotheses H11...17 at the significance level α (α = 0.05). We

adopted the Cochran Q test which is suitable for this study because (i) the data are from

(|V (r)| > 2) related groups; (ii) the data are dichotomized as ‘1 ’(i.e. success) and ‘0’(i.e.

failure); and (iii) we want to examine whether the frequency of both correct results and

failures are the same for all alternate services, which are executed under the same input

cases [112]. According to the results the probabilities p11, p12, p13, p15, p16 and p17 were

less than the significance level (α). Therefore, the results provide us evidence to reject the

null hypotheses H11,12,13,15,16,17. Hence, for all requirements specifications, except for (4)

Currency Trading, we conclude that frequencies of failures are dependent on their alter-

nate services with 95% confidence [109]. That is, alternate services have a distinguishable

effect on the distribution of failures. For (4) Currency Trading, there is only one failing

input, thus we did not adopt the Cochran Q test to either accept or reject H14.

52 Caṕıtulo 3. A Framework to Assess Service Diversity

For each specification r ∈ R, we graphically illustrate the relative frequency of both

correct results and failures of each individual alternate service v ∈ V (r) by means of |R|

bar charts. These charts are represented in Figure 3.2. Failures and correct results are

represented, respectively, under label Failure and Success. Alternate service identifiers

(i.e. v1, v2, v3) and Total represent the analysed categories. Overall success rate, under

label ‘Total’, give us the total frequency of failures and successes presented into a failure

scenario (the FS(r) set, Definition 3.7). For each particular specification, differences re-

garding the observed behaviour of its alternate services and the grand total might suggest

that the proportion of failures is dependent on the alternate services. Otherwise, pro-

portions of outputs of a particular kind would be similar or identical for all bars in the

related chart [123]. In Figure 3.2, we can notice that differences among frequencies of fail-

ures are less pronounced for alternate services belonging to (5) Temperature Conversions

(Figure 3.2(5)). For other requirements specifications, at least two of their alternates

have marked differences on their proportions of failures (e.g. Figure 3.2(1); Figure 3.2(2);

Figure3.2(7)). Moreover, Figure 3.2(4) suggests that we can reject the hypothesis H14,

otherwise its alternates should present the same proportion of failures and correct re-

sults. All these observations reinforce our conclusions that the target alternate services

are diverse (Activity VII).

Investigating Research Question RQ1

We examined which alternates fail coincidentally and which ones return similar (or iden-

tical) correct results coincidentally (Section 2.2.2). Figure 3.3 presents the relative fre-

quency of both coincident failures and similar correct results in each failure scenario.

Coincident failures are represented under the label ‘Failure’, while similar correct results

are represented under label ‘Success’. We represented all possible coincident failures,

that is: v1v2 (v1 and v2 fail, v3 does not fail), v2v3 (v2 and v3 fail,v1 does not fail),

v1v3 (v1 and v3 fail, v2 does not fail) and v1v2v3 (all alternates fail). In a similar way,

we represented similar correct results, that is, v1v2 (v1 and v2 are successful, v3 fails),

v2v3 (v2 and v3 are successful, v1 fails) and v1v3 (v1 and v3 are successful, v2 fails).

The case where v1, v2 and v3 are correct does not belong to the set of failure scenarios,

which is composed by alternate performances under failing input cases. Moreover, we

represented, under label ‘Total’, the total proportion of coincident failures and coincident

similar results into a failure scenario.

By analysing Figure 3.3, we can notice that frequencies of coincident failures are not the

same under different matched subsets of alternate services. Otherwise, for each particular

specification, in its related chart, proportions of coincident failures would be similar or

identical for all five bars [123]. For example, regarding coincident failures, in Figure 3.3(1),

the alternates v1 and v2 fail coincidentally in approximately 20% of the input cases, while

3.3. Evaluation 53

Figure 3.2: Joint frequency distribution of failures and successes in failure scenarios

v1 and v3 do not fail on the same input case. Related to similar correct results, e.g., in

Figure 3.3(3), the alternates v1 and v3 return similar correct results coincidentally in

approximately 4% of the input cases, while the alternates v2 and v3 are coincidentally

successful in approximately 88% of the input cases which belong to the failure scenario.

Moreover, we can notice that behaviours in terms of both coincident failures and

similar correct results differ among failure scenarios belonging to different requirements

specifications. For example, in some circumstances, failure scenarios are composed pre-

dominantly by coincident failures, e.g. Figure 3.3(5), while other scenarios are mainly

54 Caṕıtulo 3. A Framework to Assess Service Diversity

Figure 3.3: Relative frequency of coincident failures and similar correct results in failure
scenarios.

composed by similar correct results, e.g. Figure 3.3(2) and Figure 3.3(3). Moreover,

for some requirement specifications, similar or identical correct results represent approx-

imately 100% of failures scenarios (e.g. Figure 3.3(2); Figure 3.3(3) and Figure 3.3(4)).

It is rare for all three alternates to fail coincidentally. However, related to the (5) Tem-

perature Conversions, in Figure 3.3(5), we can notice that all alternates fail in some 36%

3.3. Evaluation 55

of input cases. All these observations suggest that frequency of coincident failures is

dependent on both the requirements specifications and their alternate services.

On the basis of the data represented in Figure 3.2 and Figure 3.3, for each requirements

specification r, we also estimated the reliability of each NFT-service v ∈ Vr and of the FT-

composition (Activities VIII and IX). These reliability measurements are calculated by

means of the estimators, respectively, Rel EstNF T Srv
and Rel EstF T SOAr

, whose values

are between 0 and 1. For each analysed requirements specification, we also identified

its alternate service that exhibits the greatest reliability. Figure 3.4 summarized the

obtained values for such estimators. For example, for (1) Email Validations, the reliability

estimated for the most reliable single service is about 0.95, while the one estimated for

the FT-Composition is about 0.80.

Figure 3.4: Reliability estimations for the different architectural solutions

Based on the values represented in Figure 3.4, we estimated the overall differences in re-

liability achieved by adopting different architectural solutions (Activity X). The obtained

values, expressed as a percentage, are summarized in Table 3.4. A positive difference in

reliability indicates an increase in reliability [42], i.e., the FT-composition tolerated faults

of its alternate services, which rarely fail on the same input cases [1]. A negative differ-

ence indicates a reliability decrease [42]. The introduction of design diversity might lead

to the occurrence of coincident failures, which might defeat most adjudicators [1, 42]. In

Figure 3.4 we can observe that, for three specifications (i.e. Figure 3.4 (1); Figure 3.4 (4);

Figure 3.4 (5)) the reliability estimation of fault-tolerant composite service is equal to or

less than the one achieved by a single service (i.e. the overall reliability either remains

the same or decreases). Such fact is confirmed across the second column of Table 3.4.

Therefore, regarding research question RQ1, we cannot be confident that service diversity

is always efficient to tolerate software faults.

56 Caṕıtulo 3. A Framework to Assess Service Diversity

Table 3.4: Estimation of the overall difference in reliability

Requirements Specification Percentage of reliability improvement
(1) Email validations (-15.90)
(2) Credit Card Validations 1.50
(3) Distance By ZIP Codes 1.30
(4) Currency Trading 0.00
(5) Temperature Conversions 0.00
(6) Weather Forecasts 4.90
(7) ZIP code geocoding 12.30

3.3.6 Study Limitations

We briefly discuss the limitations of our study based on the categories of validity threats

presented by Wohlin et al. [75]. For each category, we identified the possible threats to

validity and, whenever it is applicable, the measures we took to reduce the risks.

Internal Validity: One threat to internal validity we identified is guaranteeing that

gold versions result in correct results under all input cases. Regarding identification of

failures, the gold version actually just provides another version to check against [98]. It is,

of course, possible that failures common to all of the versions, including the gold one, were

not detected [42, 49, 98]. This is an unavoidable consequence of this type of experiment

as pointed out in the related literature [42, 49, 98]. Hence, both alternate services and

analysed FT-compositions might produce results that are more or less reliable than the

measured ones. To mitigate this risk, as part of the experiment, the gold version has been

subjected to several test cases.

Construct Validity: This work does not address at all the aspects related to voter

implementation problems (e.g. synchronization of the alternates, delays due to communi-

cation between the end-user servers and the various remote servers, maintainability issues

of fault-tolerant compositions). That is, the adoption of voters might affect other con-

structs negatively. Since we do not observe these unintended side effects of voters, we

identify one more threat to the construct validity: the restricted generalizability across

constructs, as suggested by Wohlin et al. [75]. However, it should be noticed that the

study of side effects of voters is outside the scope of this paper. We performed an inves-

tigation, specifically, on design diversity of alternate services and we assume that one is

able to develop a perfect voter, as already mentioned [1, 106, 49, 98, 111].

External Validity: We identified one threat to external validity. The alternate services

may not be representative of industrial practice since all of them are based on simple

functionality. Regarding such risk, since we were looking for evidence on whether alternate

3.4. Lessons Learned 57

services are able to face software faults, the complexity of service functionality would have

no negative effect on our final conclusions because more complex systems have larger

design spaces. Therefore, there are more opportunities for the introduction of problems

that have different causes [1, 49]. Furthermore, while the empirical analysis of design

diversity was a hotly-debated topic in the mid-1980s and early 1990s [1], no studies so

far have been carried out in the context of Web services and this study represents a step

stone in this direction.

Conclusion Validity: We identified three threats to conclusion validity: (i) the number

of requirements specifications i.e., sample size; (ii) the homogeneity of input cases; and

(iii) the time-out setting for the request. Risk (i) cannot be completely avoided due to

the lack of requirements specifications implemented by cost-free, functionally equivalent

SOAP/WSDL-based Web Services. Moreover, existing empirical studies on effectiveness

of design diversity for fault tolerance are based on the analysis of only one requirements

specification, which is implemented by several variant components [49, 52, 110]. Therefore,

seven requirements functionalities seem to be sufficient to derive preliminary conclusions

about the general design diversity of services. Regarding risk (ii), according to Littlewood

and Miller [97], in order to assess whether alternates fail independently, it is necessary to

guarantee that input cases are also independent, i.e., heterogeneous. In this way, to mit-

igate risk (ii), inputs from the input space were chosen at random for each requirements

specification. Related to the risk (iii), it is well known that services might take a variable

amount of time to respond requests due to the dynamic and unpredictable nature of com-

munication links. Consequently, some of the failures might be observed because services

do not respond within the expected time frame. To mitigate this risk, we specified a high

value of the time-out setting for requests (i.e. 5 minutes).

services do not respond within the expected time frame. To mitigate this risk, we

specified a high value of the time-out setting for requests (i.e. 5 minutes).

3.4 Lessons Learned

We proposed an assessment approach to investigate design diversity of alternate ser-

vices. The feasibility of the proposed approach was assessed using third-party, stateless,

read-only, SOAP/WSDL-based alternate services adhering to seven different requirements

specifications. First, diversity-based fault tolerance techniques require some form of di-

versity among alternates [1]. For all analysed requirements specifications, we found out

that output samples returned by the execution of different alternate services differ sig-

nificantly among themselves. That is, the output values are dependent on the alternate

services. Therefore, we have sufficient evidence to conclude that alternate services in fact

seem to be diverse and usable for software fault tolerance. Second, design diversity aims

58 Caṕıtulo 3. A Framework to Assess Service Diversity

to make alternates as diverse as possible in order to minimize identical design faults and

implementation mistakes. However, for some requirements specifications, the number of

input cases under which most or all alternates failed coincidentally was high enough that

using the most reliable service in isolation yields the best results. Therefore, this study

has shown that diverse designs in SOAs do not always result in increased overall service

reliability, which also reinforces the usefulness of our assessment framework.

For all analysed requirements specifications, the results also suggest that the frequency

of failures depends on the alternate service. Therefore, since there is difference in observed

proportion of failures with respect to alternate services, we can also conclude that the

frequency of coincident failures seems to be dependent on adopted alternate services. That

is, different combination of alternate services, which are structured in FT-compositions,

might imply in different measures of enhanced reliability. Consequently, in order to try

to achieve higher measures of reliability by adopting diversity-fault tolerance techniques,

we should first observe effects of combining different alternate services.

Furthermore, care needs to be taken by software developers when selecting alternate

services based solely on diversity of their failure rates. In fact, the FT-composition that

exhibited the highest increase in reliability (i.e. (7) Zip code geocoding) was composed of

alternates that had only ≈ 30% difference in the failure-rates between the most faulty and

least faulty alternate. For five of the requirements specifications, alternates with higher

variance in failure-rate actually displayed a lower improvement in reliability. For this

reason, additional indicators must be utilized to assess how effective service diversity is

to tolerate software faults, such as taking into consideration the individual failure rate of

each alternate. By applying a failure-rate threshold that a alternate service must satisfy

may help software designers pinpoint alternates that are likely to negatively contribute to

the overall service reliability. Once potentially problematic alternates have been isolated,

appropriate action can be taken such as eliminating the alternate from the FT-composition

or, alternatively, by increasing the total number of alternates to the design so that the

higher coincident failure-rates have less influence on the overall FT-composition. We

emphasize that in studies on the effectiveness of voting algorithms, it was shown that

voters have a high probability of selecting the correct result value when the reliability

estimated for each alternate is greater than 0.5 [1].

3.5 Related Work

Although there is much related research in the literature, we are not familiar with any

work that proposes a general experimental setup to evaluate design diversity of alternates,

when they are black boxes, and its effectiveness for fault tolerance. We address, in turn,

work related to (i) effectiveness of design diversity, (ii) design diversity of alternates, and

3.5. Related Work 59

(iii) design diversity in SOAs.

Empirical Studies on Effectiveness of Design Diversity for Fault Tolerance

Knight and Leveson [49] and Eckhardt et al. [52], describe an experiment to investigate

whether it is valuable to use N-version programming, a design-diversity technique based

on voters, to achieve high levels of reliability (Section 2.2.5). Their experiments are based

on the analysis of the failure behaviour of several alternates of a program. All alternates

were developed and validated according to a common specification using independent

programming teams [49, 52]. These authors conclude that that N-version programming

must be used with care because the number of input cases under which most or all

alternate failed coincidentally was more than expected [49, 52].

Gashi et al. [110] studied design diversity as a means for tolerating design faults of

four popular off-the-shelf SQL servers. Their study is based on an analysis of the bug

reports available for the SQL servers. They conclude that design diversity is effective in

this category of products since none of identified bugs affected more than two products.

Findings from existing work reveal threats to the effectiveness of software that relies

on design diversity to tolerate faults [49, 52, 110]. This in turn reinforces the necessity for

a thorough methodology to support an assessment of the reliability of FT-compositions

that leverage alternate services.

Studies on Design Diversity of Alternates

Lyu et al. [50] quantified software diversity by proposing qualitative and quantitative

metrics. The first metric, assumes that diversity may be applied at the specification,

design, coding and the testing phases. The intensity of diversity at each identified phase

might vary according to the adoption of different implementers, languages, tools, algo-

rithms and methodologies. The proposed metrics quantify, based on characteristics of

alternate implementations, structural diversity, tough-spot diversity and failure diversity.

These metrics are subsequently used as indicators of which alternates may be unsuitable

for use.

Hilford et al. [51] proposed a method of incorporating diversity in the development

of alternates in order to eliminate as many software faults as possible before the testing

phase. They proposed the pipeline approach, in which different teams work on different

phases of the development process of each alternate. According to Chen et al. [124] in

order to estimate software diversity it is not enough to know only the failure probability of

each single alternate. It is necessary analyse the failure distribution patterns of each single

version. To analyse the failures of alternates, the authors adopted Data flow Perturbation

and Constant Perturbation, which are fault injection techniques.

These previous works [50, 51, 124] cannot be adopted in the context of SOAs,

since the only known information about services is their interfaces; neither source code,

nor information about deployment environment are available (i.e. services are black

60 Caṕıtulo 3. A Framework to Assess Service Diversity

boxes) [16, 60, 125].

Solutions based on Design Diversity in SOAs.

Nascimento et al. [40] present a software product line infrastructure for adaptive fault

tolerance in service-oriented applications. This solution supports different types of ad-

judicators (e.g. majority election and acceptance test) and different schemes to execute

the alternate services (e.g. sequential and parallel schemes). Chen [126] proposed an

infrastructure, called WS-Mediator that aligns the fault tolerance techniques based on

design diversity with service resilience information, that can be provided by both client

application itself and third-party tools. Gonçalves and Rubira [33] described a software

infrastructure that leverages voters and operates in the communication between a web ser-

vice’s clients and alternate service in order to provide fault tolerance. Zheng and Lyu [56]

proposed an adaptive QoS-aware fault tolerance strategy based on design diversity, voters

and acceptance tests for Web services. Nevertheless, for this previous work, there is an

underlying assumption that alternate services can always be efficiently employed by means

of diversity-based technique. As we discussed, there is no guarantee that this assumption

is always true. Therefore, we feel our work is complementary to theirs. One could inves-

tigate groups of alternate services by adopting our proposed experimental setup in order

to either select alternate services that are in fact able to tolerate software faults or choose

to employ the most reliable NFT-service.

3.6 Summary

Several solutions propose the use of functionally equivalent services (i.e alternate ser-

vices) to tolerate software faults in service-oriented architecture (SOA). However, given

a particular requirements specification, it is unclear whether its alternate services are

improving the fault tolerance of the software application. This is because the reliability

of fault-tolerant composition depends upon design diversity of their alternate services to

increase the probability that they fail on disjoint input spaces. One contribution of this

chapter is an assessment approach to investigate design diversity of alternate services.

First, based on the analysis of the output space, we check, by means nonparametric sta-

tistical tests, whether alternate services are provided by design and implementations that

are sufficiently different. If they are in fact diverse, we investigate if and by how much

service diversity is in fact effective for tolerating software faults. The feasibility of the pro-

posed approach was assessed using third-party, stateless, read-only, SOAP/WSDL-based

alternate services adhering to four different requirements specifications.

Based on the proposed solution, we presented the results of a novel study, in the context

of SOAs, to investigate whether functionally equivalent services (i.e. alternate services)

are able to tolerate software faults. We discussed in detail our findings and lessons learned

3.6. Summary 61

from this study. We concluded that the benefits of diversity-based solutions applied to

SOAs are not straightforward. Even when alternate services present design diversity, in

some cases, this diversity might not be sufficient to improve system reliability. These

results also reinforces the usefulness of our assessment framework. Existing work also

reveals threats to the effectiveness of software that relies on design diversity to tolerate

software faults. However, to the best of our knowledge, this is the first study assessing

how effective is service diversity for tolerating software faults.

In Chapter 4, we present a systematic literature review of design diversity-based so-

lutions for fault-tolerant composite services.

Caṕıtulo 4

A Systematic Review of Design

Diversity-Based Solutions for

Fault-Tolerant SOAs

Uma vez que obtivemos evidências de que serviços alternativos são eficientes para tole-

rar falhas de software, desde que devidamente selecionados, faz-se necessário estudar as

soluções existentes para composições de serviços tolerantes a falhas, a fim de (i) identificar

as similaridades e diferenças entre as soluções existentes; (ii) identificar suas principais

contribuições e limitações, (iii) prover diretrizes que apoiem a escolha de soluções apro-

priadas para diferentes contextos; e (iv) identificar oportunidades para avançar o estado

da arte no que tange o projeto e implementação de composições de serviços tolerantes a

falhas. Neste caṕıtulo, descrevemos a revisão sistemática das soluções existentes baseadas

em diversidade de projetos para composições de serviços tolerantes a falhas que alavan-

cam técnicas baseadas em diversidade de projetos. O conteúdo deste caṕıtulo é baseado

no artigo publicado no 17th International Conference on Evaluation and Assessment in

Software Engineering - EASE ’13, que apresenta todo o processo de preparação e execu-

ção da revisão e os resultados obtidos. Como o conteúdo deste caṕıtulo foi extráıdo na

ı́ntegra de tal artigo, foi preservado o idioma original.

4.1 Overview

service.

In general terms, three major design issues need to be considered while building soft-

ware fault-tolerant architectures based on design diversity, namely, (i) selection of al-

ternates that are sufficiently diverse and able to tolerate software faults; (ii) execution

of alternates; and (iii) selection of an adjudicator to determine the acceptability of the

63

64 Caṕıtulo 4. Systematic Literature Review

results obtained from the alternates [1, 127, 43]. Each design issue can be realized by a

set of alternative design decisions, which, in turn, imply in different degrees of quality re-

quirements (e.g. memory consumption, financial cost, response time and reliability). For

example, alternates can be executed either sequentially or in parallel, and alternate out-

puts can be adjudicated by adopting different voting and acceptance algorithms [1, 127].

Nevertheless, it is unclear the extent to which existing approaches for fault-tolerant

composite web services [40, 56], called FT-compositions for simplicity, support the above

mentioned design issues of a software fault-tolerant architecture based on design diver-

sity. Moreover, the publications regarding FT-compositions are written from different

viewpoints and rely on different technical backgrounds [33, 58, 39, 34, 40]. As a result, it

is hard to compare them and choose from these solutions. In this sense, we conducted a

systematic literature review that sheds light on the similarities and differences among var-

ious diversity-based approaches for FT-compositions, which compose our primary studies.

A taxonomy is developed to help address the three major design issues and their respec-

tive alternative design solutions, and to classify the primary studies. General remarks on

the effectiveness of the design solutions are also presented, which might be a good starting

point to choose proper design solutions in accordance with difference clients requirements.

In this chapter, we present details regarding the specified systematic literature review

method, including, our research question; search strategy; inclusion and exclusion criteria

to assess each potential primary study; data collection and data analysis. Finally, we

report our main findings and identify gaps in current approaches in order to suggest

opportunities for greater progress related to the design and implementation of reliable

SOA-based applications.

4.2 A General Taxonomy for Software Fault Tole-

rance Techniques based on Design Diversity

Three major design issues need to be considered while building software fault-tolerant

architectures based on design diversity, namely, selection of alternates; selection of alter-

nate execution schemes; and judgement on result acceptability [1, 43, 127]. We define a

general taxonomy, represented in Figure 4.1, for these common design issues and their

different design solutions. The proposed taxonomy is adopted to discuss and classify the

analysed primary studies. Both design issues and decisions were derived from the analy-

sis of largely adopted software fault tolerance techniques based on design diversity (e.g.

Recovery Blocks, N-Version Programming, N-Self Checking Programming, Consensus Re-

covery Block and Acceptance Voting) and adjudicators [47, 48, 128, 46, 129, 42, 43, 1]. We

also considered the reliable hybrid pattern structure proposed by Kim and Vouk [127]. In

4.2. DSPLs and Self-Adaptive Systems 65

comparison with their work, our work (i) identifies different types of voters and acceptance

tests based on the general taxonomy of adjudicators presented by Pullum[1]; and (ii) ex-

plicitly distinguishes the different schemes of alternate execution (i.e. sequentially or in

parallel). Different design decisions employ different measures of quality requirements [1].

These differences make each design solution suitable for a particular situation. In Sec-

tion 4.2.1, we briefly compare the described design solutions and present some general

remarks about their effectiveness.

The elements of the taxonomy are described in the following.

Software fault tolerance
techniques

based on design diversity

execution of variants

judgement on result
acceptability

variant 1

variant 2

variant n

voter

hybrid

acceptance tests satisfaction of requirements

accounting tests

computing run-time tests

reasonableness tests

mean

median

formal

consensus

majority

dynamic

sequential

paralell

consensus

majority

consensus

majority

selection of variants

Legend

Design Issues Design Solutions

Figure 4.1: General Taxonomy of Design Issues and Solutions

Design Issue I - Selection of Alternates: The number of alternate software compo-

nents can range from two alternates to n and they must be provided by different software

design and implementations. The main goal of increasing diversity is to increase the prob-

ability that alternates fail on disjoint subsets of the input space [1, 42]. The reliability of

the alternates should be as high as possible, so that at least one alternate will be opera-

tional at all times [1]. Finally, alternates might be chosen at different points during the

software lifecycle.

Design Issue II - Execution of Alternates: Alternates can be executed either sequen-

tially or in parallel. The execution schemes should provide all alternates with exactly the

same experience the system state when their respective executions start to ensure con-

sistency of input data [31], which be can be achieved by employing backward recovery

or forward recovery (Section 2.2.4). Sequential execution often requires the use of check-

points (it usually employs backward recovery), and parallel execution often requires the

use of algorithms to ensure consistency of input data (it usually employs forward recovery

by invoking all the alternates and coordinating their execution through a synchronization

66 Caṕıtulo 4. Systematic Literature Review

regime) [1, 100].

• Sequential: in implementing a sequential execution scheme the alternates are exe-

cuted one at a time. Generally, in the sequential execution scheme, the most efficient

alternate (e.g. in terms of response time or financial cost) is located first in the series,

and is termed primary alternate. The less efficient alternates are placed serially after

the primary alternate and are referred to as (secondary) alternates. Thus, the result-

ing rank of the alternates reflects the graceful degradation in the performance of the

alternates [1].

• Parallel: in the parallel execution scheme, alternates are executed concurrently.

The resulting outputs can be provided to the adjudicator in an asynchronous fashion

as each version completes, or in a synchronous manner [1, 127].

Design Issue III - Judgement on Result Acceptability: Adjudicators, or decision

mechanisms, generally come in two flavours, voters and Acceptance Tests (ATs).

Voters: Voters are based on a relative judgement on result acceptability by comparison

of alternate results [1]. We present an overview of voters that are mostly described in

the literature [1, 43]. We refer to Pullum [1] for further details on voter procedures and

pseudocodes.

• Exact Majority Voter: The exact majority selects the value of the majority of

the alternates as its presumably correct result [130]. This voter is also known as the

m-out-of-n voter [1]. The agreement number, m, is the number of versions required to

match for system success [96]. The total number of alternatives, i.e. n, is rarely more

than 3. Consequently, the majority voter is generally seen as a 2-out-of-3 voter.

• Consensus Voter: This voter allows the selection of a consensus or set of matching

alternate results as the adjudicated result if no majority exists [1]. That is, this voter

is a generalization of the majority voter [53].

• Formal Consensus and Majority Voter: The Formal Consensus and Majority

voter is a variation of, respectively, the consensus and the exact majority voters [1]. Ba-

sically, the formal voter uses a comparison tolerance indicating the maximum distance

allowed between two correct output values for the same input. In this way, alternates

results that are different, but quite close together, are the adjudicated correct answers.

• Median Voter: The median voter selects the median of the alternate’ output values

as its adjudicated result. Alternate outputs must be in an ordered space [1].

• Mean an Weighted Voter: The mean and weighted voter selects, respectively,

the mean or weighted average of the alternates’ output values, which are in an ordered

4.2. DSPLs and Self-Adaptive Systems 67

space, as the adjudicated result [131]. Additional information related to the trustwor-

thiness of the alternatives might be used to assign weights to the alternate outputs, if

using the weighted average voter [1].

• Dynamic Majority and Consensus Voters: Unlike previously described voters,

dynamic voters are not defeated when any alternate fails to provide a result [1]. Dy-

namic majority and consensus voters operate in a way similar to, respectively, majority

and consensus voters, with the exception that dynamic voters can handle a varying

number of inputs [1]. When the dynamic voter adjudicates upon two results, a com-

parison takes place. When comparing, if the results match, the matching value will

be output as the correct result. Otherwise, no selected output will be returned.

Acceptance Tests (ATs): ATs relies on an absolute judgement with respect to a spec-

ification [1]. With ATs, only one alternate is executed at a time. The AT is responsible

for checking whether the produced result is correct. In case it is not, another alternate

is executed until a correct result is obtained, if possible. Pullum [1] claims that ATs can

also be used not to determine if a result is correct, but to indicate if something blatantly

incorrect has resulted from the execution of an alternate.

• Acceptance Tests Based on Satisfaction of Requirements: When conditions

that must be met at the completion of alternate execution are used to construct AT,

we have a ‘satisfaction of requirements’ type AT [1]. These conditions might arise

from the problem statement of the software specifications.

• Accounting Tests: Accounting ATs are suitable for transaction-oriented applica-

tions with simple mathematical operations [1]. For example, when a large number of

records are reordered or transmitted, a tally is made of both the sum over all records

and the total number of records of a particular data field. These results can be

compared between the source and the destination to implement an accounting check

AT [1].

• Computer Run-Time Tests: Run-time tests detect anomalous states such as

overflow, undefined operation code, underflow, write-protection violations or end of

file [1].

• Reasonableness Tests: These ATs are used to determine if the state of an object in

the system is reasonable (e.g. precomputed ranges or expected sequences of program

states [1]).

Hybrid Adjudicators: A hybrid adjudicator generally incorporates a combination

of AT and voter characteristics. For example, alternate results are evaluated by an AT,

and only accepted results are sent to the voter [1].

68 Caṕıtulo 4. Systematic Literature Review

4.2.1 A Comparison of Design Solutions

To provide an exhaustive discussion into the performances of the described design so-

lutions is outside the scope of this work. We refer to Pullum[1] for a list of references

for efficiency and capability investigations on design solutions of software fault tolerance

techniques based on design diversity ([1]:page 120:Table 4.2). As emphasized by Pullum,

each study has different underlying assumptions, thus it is difficult to compare the results

across experiments [1]. The fault assumptions used in the experiments and studies are

important and if changed or ignored can alter the interpretation of the results [1]. There-

fore, the reader is encouraged to examine all references identified by Pullum [1] (page

120:Table 4.2) for details on assumptions made by the researchers, experiment design,

and results interpretation. We summarize some of the findings from these empirical stud-

ies on design diversity, in particular the findings related to non-functional characteristics

of the described design solutions (Figure 4.1). The analysis of these characteristics might

be a good starting point to choose a proper design solution and to specify the system

fault model (Section 2.2). The fault taxonomy for service-oriented architectures proposed

by Bruning et al. [132] can also be useful to define the fault model.

Firstly, as already discussed (Section 3.4), it is essential to select alternates that are

sufficiently diverse in order to decrease the probability of occurrence of coincident fail-

ures [49, 50, 51, 52, 133]. With respect to the execution of alternates, in the parallel

scheme, there is an underlying assumption that sufficient hardware resources are avail-

able to enable the execution of alternates concurrently. Even with sufficient parallelism,

the execution time of this scheme will be constrained by the slowest version - there may

be a substantial difference in the execution speeds of the fastest and slowest version be-

cause of the need to generate independent designs [43]. When alternates are executed

in parallel, there is also a synchronization time overhead. The time required to execute

alternates in a sequential way will range from the execution time of the primary alternate

(if acceptance tests are employed and the primary result is acceptable) to the sum of

execution time of all alternates (e.g. if all alternate results are subjected to ATs [37]).

Nevertheless, this time will normally be constrained by the execution time of the primary

alternate [43]. Furthermore, under some circumstances, a specific execution scheme is not

applied, e.g., when there is a processing cost charged for the use of alternate services,

invoking them in parallel might incur in greater actual cost (i.e. in sequential schemes,

not all alternates are necessarily executed) [34].

The adjudicator would run its decision-making algorithm on the results and determine

which one (if any) to output as the presumably correct result. Just as we can imagine

different specific criteria for determining the ‘best’ item depending on what that item is,

so we can use different criteria for selecting the ‘correct’or ‘best’ result to output. The

probabilites of activation of related faults between alternates are likely to be greater for

4.2. DSPLs and Self-Adaptive Systems 69

voters than for acceptance tests (ATs) [134]. If one could develop a perfect AT and a

perfect voter and if we assume failure independence, then ATs with three alternates is

a better solution than the three-alternate voting system [130]. In general, ATs are more

difficult to construct in practice because they are strongly application-dependent and

because it is not always possible to determine a criterion to judge variant results [1, 106].

As a consequence, voting is a more useful technique in a practical setting, because voting

adjudicators are easier to develop [1, 100].

The exact mojority voter is most appropriately used to examine integer or binary re-

sults, but can be used on any type of input [95]. The majority voter has a high probability

of selecting the correct result value when the probability of an alternate failure is less than

50% and the number of processes, n, is ‘large ’ [135] (Blough and Sullivan [135] used n =

7 and n = 15 in the study). However, when the probability of an alternate failure exceeds

50%, then the majority voter performs poorly [135]. In fact, all voters have a high proba-

bility of selecting the correct result value when the probability of alternate failures is less

than 50% [135]. A median voter can be defined for alternate outputs consisting of a single

value in an ordered space (e.g. real number) [1]. Median voter is a fast algorithm and is

likely to select a corret result in the correct range [135]. If it can be assumed that, for

each input value, no incorrect result lies between two correct results, and that a majority

of the replica outputs are correct, then the median voter produces a correct output [1].

Consensus voting is more stable than majority voting and always offers reliability at

least equivalent to majority voting [53, 130]. Nevertheless, in terms of implementation, the

consensus voting algorithm is more complex than the majority one, since the consensus

voting algorithm requires multiple comparisons [1]. Blough performed a study on the

effectiveness of voting algorithms [135]. He states that the median voter is expected to

perform better than the mean voting strategy. He also shows the overall superiority of the

median strategy over the majority voting scheme [135]. Furthermore, under circumstances

in which some or all alternates might not produce their results (e.g. some or all alternates

not providing their results within the maximum expected time frame; catastrophich failure

of some or all of the alternates), dynamic voters are the best option since they can process

zero to n inputs [1]. Finally, acceptance tests, exact majority, consensus and dynamic

voters can process any type of alternate outputs, while the remaining adjudicators must

receive inputs in a ordered space [1].

We summarize some details of the described voters in Table 4.1, which is based on a

summary table fashioned by Pullum [1]. We have added the type of alternate results the

voter is able to judge. The table states the resulting output of a fault tolerance technique,

given the type of alternate results provided to the voter and the type of voter. To use

this table, we must consider the primary concerns surrounding the software’s application

and details about the output space. For example, if safety is the primary concern, it is

70 Caṕıtulo 4. Systematic Literature Review

recommended to adopt the voter that would rather raise an exception and produce no

selected output than present an incorrect output as presumably correct one (e.g. the

exact majority or dynamic majority voters) [1]. If the primary goal is to avoid cases in

which the voter does not reach a decision, i.e., an answer is better than no answer, than

it is sufficient to adopt the voter that reaches a ‘No output’ result least often (e.g. the

median voter) [1]. As emphasized by Pullum [1], based on this criterion, exact majority

voter, formal majority voter, and dynamic majority voter can be considered the safest

voters, because they produce incorrect output ‘only’ in cases where most or all of the

variants produce identical and wrong results.

Table 4.1: Voter Results Given Details About Alternate Output Space([1] - page 310)

ALTERNATE

RESULTS

VOTER

Exact

Majority

Median Mean Weighted

Average

Consensus Formal

Major-

ity

Dynamic

Major-

ity

Dynamic

Con-

sensus

All outputs iden-
tical and correct

Correct Correct Correct Possibly
correct

Correct Correct Correct Correct

Majority Identi-
cal and correct

Correct Correct Possibly
correct

Possibly
Correct

Correct Correct Correct Correct

Plurality identi-
cal and correct

No output Possibly
correct

Possibly
Correct

Possibly
correct

Correct No out-
put

No out-
put

Correct

Distinct outputs,
all correct

No output Correct Possibly
correct

Possibly
correct

No output No out-
put

No out-
put

No out-
put

Distinct outputs,
all incorrect

No output Incorrect Possibly
incorrect

Possibly
incorrect

No output No out-
put

No out-
put

No out-
put

Plurality identi-
cal and wrong

No output Possibly
incorrect

Possibly
incorrect

Possibly
incorrect

Incorrect No out-
put

No out-
put

Incorrect

Majority identi-
cal and wrong

Incorrect Incorrect Possibly
incorrect

Possibly
incorrect

Incorrect Incorrect Incorrect Incorrect

All outputs iden-
tical and wrong

Incorrect Incorrect Incorrect Incorrect Incorrect Incorrect Incorrect Incorrect

ALTERNATE

RESULT

TYPE

Any Type In an
ordered
Space

In an
ordered
Space

In an
ordered
Spac

Any Type Floating-
point
arith-
metic

Any
Type

Any
Type

The voter outputs are [1]:

• Correct: The voter outputs a correct result;

• Possibly correct: The voter outputs a result that may be correct;

• Possibly incorrect: The voter outputs a result that may be incorrect;

• Incorrect: The voter outputs an incorrect result;

• No output: The voter does not output a result; an exception is raised.

4.3. Research Method 71

4.3 Research Method

This study has been conducted as a systematic literature review based on guidelines

proposed by Kitchenham and Charters [74]. The guidelines cover three phases of a

systematic review: planning, executing and reporting the review. In our work, the goal

of the review is to provide a better understanding of diversity-based approaches for FT-

compositions, which compose our primary studies [74].

4.3.1 Research Question

This work aims to answer the following research question.

RQ What design issues and respective design solutions related to fault tolerance based

on software diversity (Figure 4.1) are being supported by existing approaches for FT-

compositions?

To address the research question, we classify the primary studies using the proposed

taxonomy for software fault tolerance (Figure 4.1) and present a discussion regarding

solutions proposed to address the listed design issues.

4.3.2 Search Process

Searches for primary studies were executed using searching databases of software engi-

neering research that met the following criteria [136]:

• Contains peer-reviewed software engineering journals articles, conference proceed-

ings, and book chapters.

• Contains multiple journals and conference proceedings, which include volumes that

range from 2000 to 2012.

• Used in other software engineering systematic reviews (e.g. [137, 136, 138, 139]).

The resulting list of databases was: (i) ACM Digital Library; (ii) IEEE Electronic

Library; (iii) SpringerLink; (iv) Scopus; and (v) Scirus (Elsevier).

A search string was created to extract data from each database. We adopted var-

ious combinations of terms from (i) the main purpose of this review; (ii) the research

question [74, 140] and (iii) meaningful synonyms and alternate spellings. The resulting

search string is summarized in Table 4.2. Whenever it was necessary, this search string

was decomposed into several search terms (e.g. Recovery Block AND Service-Oriented

Architectures) due to restrictions imposed by some of the search engines.

72 Caṕıtulo 4. Systematic Literature Review

Table 4.2: Search String

(fault tolerance OR diversity OR fault-tolerant OR redundancy OR Recovery
block OR N-Version Programming OR Distributed Recovery Blocks OR N Self-
Checking Programming OR Consensus Recovery Block OR Acceptance Voting
OR dependability OR dependable OR reliable OR reliability) < AND >
(service-oriented architecture OR SOA OR service computing OR SOC OR
web services)

4.3.3 Study Selection

The database searches resulted in a large number of candidate papers. We adopted study

selection criteria to identify those studies that provide direct evidence about the research

question.

Inclusion Criteria:

• Approaches based on software diversity for FT- compositions, specifically focused on

web services, that support one or more issues identified in the taxonomy (Figure 4.1),

i.e. selection of alternate services, execution of alternates and judgement on result

acceptability.

Exclusion Criteria:

• Solutions for reliable SOA-based applications employing solely replicas of identical

services - although the adoption of identical replicas can improve system availability,

they are not able to tolerate software faults [1].

• Solutions for fault-tolerant SOAs based on data diverse software fault tolerance

techniques.

• Solutions for fault-tolerant SOA relying solely on exception handling - alternate

services are not employed as part of the exception handling mechanism.

• Duplicate reports of the same solution - when several reports of the proposed solution

exist in different papers the most complete version of the study was included in the

review.

• Short papers, introductions to special issues, tutorials, and mini-tracks.

• Studies presented in languages other than English.

• Papers addressing empirical studies on fault tolerance based on design diversity

applied to SOAs - not proposing any particular solution to employ FT-compositions.

4.4. Results 73

• Grey literature, that is, informally published written material.

These criteria were applied as performed in [74, 136]:

1. Reading the title in order to eliminate any irrelevant papers.

2. Reading the abstract and keywords to eliminate additional papers whose title may

have fit, but abstract did not relate to the research question.

3. Reading the introduction and, whenever it is necessary, the conclusion to elimi-

nate additional papers whose abstract was not enough to decide whether the inclu-

sion/exclusion criteria are applicable.

4. Reading the remainder of the paper and including only those that addressed the

research question.

4.3.4 Data Collection and Synthesis

We adopted a data extraction form to collect all the information needed to address the

review question [74]. The contents of the designed data form are composed by [74, 140]:

the source (e.g. journal, conference) and full reference; date of extraction; summary of the

proposed solution; supported design issues/solutions (Figure 4.1); and space for additional

notes.

4.4 Results

In this section, we present the results obtained.

4.4.1 Search Results

The searches returned thousands of papers that were filtered down to 17 primary stud-

ies [36, 37, 141, 142, 112, 38, 40, 143, 59, 144, 41, 145, 34, 33, 58, 146, 147]. In the solutions

by Dillen et al. [38], Santos et al. [59] and Mansour and Dillen [146], despite each service

being named a replica by the authors, these solutions were designed to tolerate different

responses by means of adjudicator mechanisms. This suggests these solutions could be

also implemented as a diversity-based solution. Therefore, these solutions were included

as primary studies.

Although we identified 23 articles by this search process, the articles [56, 148] are

short versions of another article [34], the article [143] is also an extended version of the

article [149]. The study presented by Gorbenko et al. in [125] and by Nascimento et

74 Caṕıtulo 4. Systematic Literature Review

al. [133] are based, respectively, on the solutions proposed in [145] and in [112] - therefore,

we consider the proposed solutions, i.e. [145, 112], as primary studies. Xu [150] examined

challenges in the fields of dependability and security that need to be addressed carefully in

order to provide sufficient support to enable service-oriented systems to offer non-trivial

Quality of Service guarantees. Then, Xu presents several advanced techniques developed

at the University of Leeds to achieve dependability and security in service-oriented systems

and applications, including, the solution proposed by Townend et al. [142]. Therefore,

only the work by Townend et al. [142] is included as a primary study. Milanovic and

Miroslaw [151] also highlight the use of techniques to tolerate software faults in SOA,

including techniques based on software diversity (e.g. N-Versions); however, no specific

solution is proposed in this direction.

4.4.2 A Classification of the Primary Studies

In Table 4.3, we present the summary of the design solutions supported by the analysed

primary studies. Each primary study was classified as follows:

Y(yes), the design solution is supported by a primary study; N(no), no information

at all about the design solution is specified; U(unknown) according to the authors the

design issue is supported, however, what design solutions are supported cannot be readily

inferred.

It is important to emphasize that the Table 4.3 was fashioned to show which design

issues have been addressed by existing approaches for FT-compositions. It might be

meaningless to rank the primary studies based solely on their ‘quantity of Yes’ since the

studies present different purposes (e.g. some solutions are mainly focused on supporting

the selection of alternate services [112, 142], while other ones are focused on executing

alternate services [33, 58]). Although it’s difficult to compare these solutions, Section 4.2.1

presents non-functional characteristics related to the design solutions supported by the

authors - thus supporting researchers’ decision making when selecting design solutions

more adjusted to different clients requirements.

In the next subsections, we discuss the answers to our research question RQ (Sec-

tion 4.3.1) and present the main proposed solutions regarding the design issues (Fig-

ure 4.1). Because of space limitations, summaries of solutions are representative rather

than exhaustive.

4.4.3 Selection of Alternate Services

The aims of selecting alternates are twofold: (i) to increase the probability of selecting

alternates that are provided by different designs and implementations; (ii) to determine

an appropriate degree and/or selection of alternate services targeting an optimal trade-off

4.4. Results 75

Table 4.3: Classification of the Primary Studies

P
R

I
M

A
R

Y
S

T
U

D
I
E

S

G
o
tz

e
et

a
l.

[3
6
]

B
u

y
s

et
a
l.

[3
7
]

N
o
u

ra
n

i
et

a
l.

[1
5
2
,

1
4
1
]

T
o
w

n
en

d
et

a
l.

[1
4
2
,

1
5
0
]

N
a
sc

im
en

to
et

a
l.

[1
1
2
,

1
3
3
]

D
il

le
n

et
a
l.

[3
8
]

N
a
sc

im
en

to
et

a
l.

[4
0
]

A
b

d
el

d
je

li
l

et
a
l.

[1
4
9
,

1
4
3
]

S
a
n

to
s

et
a
l.

[5
9
]

L
o
o
k
er

et
a
l.

[1
4
4
]

K
o
to

n
y
a

a
n

d
S

te
p

h
en

[4
1
]

G
o
rb

en
k
o

et
a
l.

[1
4
5
,

3
9
]

Z
h

en
g

a
n

d
L

y
u

[1
4
8
,

5
6
,

3
4
]

G
o
n

ca
lv

es
a
n

d
R

u
b

ir
a

[3
3
]

C
h

en
a
n

d
R

o
m

a
n

o
v

sk
y

[5
8
]

M
a
n

so
u

r
a
n

d
D

il
lo

n
[1

4
6
]

L
a
ra

n
je

ir
o

a
n

d
V

ie
ir

a
[1

4
7
]

DESIGN ISSUES AND SOLUTIONS

Selection of Alternate Services Y Y N Y Y Y Y Y N N Y Y Y N Y Y N

Execution of Alternate Services U Y Y U N Y Y Y Y Y Y Y Y Y Y Y Y

Sequentially - Y Y - - Y Y Y N N N Y Y Y Y Y Y

Parallely - Y Y - - Y Y Y Y Y Y Y Y Y Y Y Y

Judgement on Result Acceptability Y Y Y Y N Y Y Y Y Y Y U Y N N Y Y

Voter Y Y Y Y - Y Y Y Y N U - Y - - U Y

Median Voter N N N N - N N N N N - - N - - - N

Mean Voter N N N N - N N N N N - - N - - - N

Majority Voter N N Y N - N Y N N Y - - Y - - - N

Consensus Voter N N Y N - N N N Y N - - N - - - Y

Formal Voter N N N N - Y N Y N N - - N - - - N

Dynamic Voter Y Y Y Y - N N N N N - - N - - - N

Acceptance Tests N N U N - Y U N N N N - N - - U N

Satisf. Requir. - - - - - Y - - - - - - - - - - -

Account. Tests - - - - - N - - - - - - - - - - -

Comp. Run-Time Tests - - - - - N - - - - - - - - - - -

Reasonableness Tests - - - - - N - - - - - - - - - - -

Hybrid Adjudicator N N Y N - N N N N N N - N - - N N

76 Caṕıtulo 4. Systematic Literature Review

between reliability measures as well as performance-related factors such as timeliness, cost

and resource consumption. In general, alternates have been chosen at different points

during the software lifecycle. For instance, they can be chosen at design time by the

engineer, configured manually once the software is deployed, or even be discovered and

selected at run-time by the software itself.

The solutions by Townend et al. [142] and by Nascimento et al. [112] address the issue

(i): ensuring designs are diverse. Townend et al. [142] aims to detect diverse designs during

runtime. This is achieved by monitoring previous results and flow of data from a alternate

service using interaction provenance in order to reveal evidence that two alternates share

similar services or workflows. Such evidence may include matching common-mode failures

that have propagated back from two alternate services. Nascimento et al. [112] propose

an experimental setup to investigate, from clients’ viewpoint and by means of statistical

tests, whether alternate services present a difference in their outputs and their failure

behaviours. Their solution also investigates if and by how much the use of FT-composition

improves reliability when compared to a single non-fault-tolerant service [112].

Regarding issue (ii): the degree of alternates necessary, the responsibility for decid-

ing which alternates are necessary may be based on different measurements and different

points throughout the execution. Buys et al. [37] and Dillen et al. [38] propose a fault to-

lerance strategy that autonomously changes the amount of redundancy or the selection of

alternate services. The architecture proposed by Buys et al. [37] bases this decision upon

the current execution context and clients’ requirements at the time of request. They pro-

pose a measure to infer combinations of alternate services that are, in fact, effective. This

measure quantifies the historical effectiveness of each alternate service by penalising or

rewarding it when it disagrees or complies with the majority decision respectively. Gotze

et al. [36] propose a solution where every atomic service provides information about

its dependability attributes and every composite service has to provide additional infor-

mation about their external services that are used to provide the desired functionality.

The calculated dependability attributes and probability values of the resulting compos-

ite service are then used to manually optimize the composite service towards the user’s

expectations [36], differing from the solution by Buys [37] and Dillen et al. [38] in which

alternate services are automatically selected.

The solution by Nascimento et al. [40], Abdeldjelil et al. [149, 143], Chen and Ro-

manovsky [58] and Zheng and Lyu [148, 56, 34] allows the dynamic selection of alternate

services based on a priority schemes where client defines requirements in terms of QoS.

QoS values are updated by monitoring procedures in [40, 149, 143, 58] and by encour-

aging users to contribute their individually-obtained QoS information of the target Web

services in [148, 56, 34]. The solution by Kotonya and Stephen [41] and by Mansour and

Dillon [146] support a QoS matching scheme that will prioritize services based on reliabi-

4.4. Results 77

lity and performance metrics. These metrics are not shared with the client, i.e., a client

cannot express preference for specific QoS metrics. The solution by Gorbenko [145] moni-

tors dependability attributes and selects an appropriate service based on them. However,

the motivation behind this solution was to manage service upgrades, i.e. switching from

an old version to a new version online when the level of dependability of the new service

is acceptable.

4.4.4 Execution of Alternate Services

Both parallel and sequential execution schemes have been addressed. The solution by

Nascimento et al. [112] does not aim to support execution schemes. The solutions by Gotze

et al. [36], Townend et al. [142] supports execution of alternates; however, they do not

specify how alternates might be executed in parallel, sequentially or both. Most solutions

support both execution schemes [37, 141, 38, 40, 143, 145, 33, 58, 147, 148, 56, 34, 146],

the solution by Looker et al. [144], Santos et al. [59] and by Kotonya and Stephen [41]

support the parallel execution of alternates. An important characteristic of the execution

scheme proposed by Laranjeiro and Vieira [147] is that it can use functionally equivalent

web services that have different interfaces, providing developers with more options to build

their solutions (i.e. input/ output adapters). However, their solution operates on a static

connectivity mode, requiring static generation of local proxy classes for each alternate

service [147]. The solution by Abdeldjelil et al. [143] allows the execution of alternate

services that present diversity also in their interfaces and results by mapping operations

and parameters in the domain ontology.

4.4.5 Judgement on Result Acceptability

A variety of decision mechanisms were found amongst the target papers. The main

advantage of diversity-based solutions is that they allow for alternate service responses to

be compared using a large choice of voter and acceptance test techniques. For instance,

majority, consensus, formal and dynamic voters are addressed by some of the existing

approaches for FT-compositions. Acceptance tests (ATs) are also supported; however, as

they are strongly application-dependent there are fewer approaches supporting ATs.

Majority Voters

Majority voters are supported by Nourani et al. [152, 141], Looker et al. [144], Nascimento

et al. [40] and Zheng and Lyu [148, 56, 34]. The solution by Nourani et al. [152, 141]

supports the implementation of FT-compositions by means of the WS-BPEL. In this sense,

the authors present details on the prototype implementation by identifying the BPEL

78 Caṕıtulo 4. Systematic Literature Review

structured activities adopted. For the adjudication mechanism, which is also implemented

as web service and invoked from a BPEL process, the authors mention the adoption

of voters, including majority, dynamic and consensus ones, acceptance test and hybrid

adjudicator. Nevertheless, no details on voting procedures are provided, except for the

majority one. Differently from other solutions, they adopt diversity to allow two majority

voting mechanisms to be applied, if necessary, to the same input set. In BPEL process,

if for any reason the voter faces faults or the result shows the absence of consensus, the

second version of voter is invoked using the same inputs. This avoids the voting process to

become a single point of failure [152, 141]. The Web Service-Fault Tolerance Mechanism

(WS-FTM) proposed by Looker et al. [144] supports the majority voter that allows generic

result comparison. Nascimento et al. [40] and Zheng and Lyu [148, 56, 34] do not present

additional information on voting procedures. We emphasize, however, that the solution by

Zheng and Lyu [148, 56, 34] supports different fault tolerance strategies and the authors

described in detail a dynamic fault tolerance strategy selection algorithm.

Consensus Voters

Nourani et al. [152, 141] argues that their solution support the consensus voters. In the

solution by Santos et al. [59], there is a component responsible for arbitrating the adjudi-

cated output based on the output with the highest number of occurrences. Therefore, we

inferred that their decision mechanism is based on the consensus voter. The benefits of

diverse components is not only limited to the services, in the solution proposed by Laran-

jeiro and Vieira [147] the voter protocol supports two voting mechanisms to be utilized at

the same time: a unanimous voter and a consensus voter. Their solution also supports an

evaluation mechanism that performs a continuous assessment of the quality of services.

During the voting process, if an impasse occurs the QoS values of the alternates are used

to select one response. According to the authors, the impasse occurs whenever different

alternate results present the same number of occurrences [147]. However, in their solution,

it is not clear how they judge alternate result acceptability when alternates are executed

sequentially.

Formal Voters

When dealing with greater variability in alternate service interfaces, a straightforward

consensus voting mechanism may not suffice. Some solutions accept a certain amount of

variability and agree that a consensus is formed with multiple equivalent results. The

solution by Dillen et al. [38] supports the formal consensus voting, in the paper, called

plurality voting. For each invocation of the scheme, the alternate services will be parti-

tioned based on the equivalence of their results, and the result associated to the largest

4.4. Results 79

cluster will be accepted as the correct result [38]. Abdeldjelil et al. [149, 143] describe a

specific voting algorithm, called equivalence vote, that will decide if multiple concurrent

service responses are equivalent or not. This is based on a pre-agreed amount of deviation

for answers to be considered equivalent. Their algorithm requires as input an ordered set

of equivalent results and the functional deviation to authorize among them.

Dynamic Voters

Dynamic consensus and dynamic majority voters are supported by a number of solu-

tions [36, 37, 152, 141, 142]. This may be more suitable for applications where it is

acceptable for some alternate services to fail and an answer still be returned from the

remaining alternate services. Due to the intricacies of dynamic decision mechanisms de-

fined in our taxonomy some classifications in our review have been changed from the

classifications used in the target papers. The solution by Gotze et al. [36] define three

FT-protocols, namely, one, any and majority. Only the majority operator allows for the

enhancement of reliability and availability. The remaining operators are mainly focused

on achieving high levels of availability and are out of the scope of this work. They de-

fine the majority as an operation that schedules the same request to all defined services.

Afterwards this operation uses the results of all services that did not fail and chooses

the most common result. Based on this general definition, we inferred that their solution

(according to our taxonomy) in fact supports the dynamic consensus voter instead of the

majority one that has been specified by the authors [36].

According to Buys et al. [37], their solution, called A-NVP composite, supports ma-

jority voting. However, for similar reasons to the Gotze et al. classification we decided

their solution instead supports a dynamic majority voter. Moreover, the response latency

of the A-NVP composite is guaranteed not to exceed a maximum response time defined

by the client. If no absolute majority could be established before the maximum response

time, an exception will be issued to signal that consensus could not be found [37]. In

addition, according to Townend et al. [142], their solution supports different types of vot-

ing algorithms to choose from. However, we inferred that the dynamic consensus voting

is the only decision mechanism supported. The voter is dynamic as it can process 0 to

n results, where n is the number of executed alternate services. Specifically, the voting

discards results of any alternate service whose weighting, which is defined based on the

confidence of that service returning a correct result, falls below a user-defined value, and

performs consensus voting on the remaining results.

80 Caṕıtulo 4. Systematic Literature Review

Acceptance Tests

Acceptance tests give the client the freedom to specify accepted values according to pre-

defined requirements. Nascimento et al. [40] propose a solution that supports a mechanism

responsible for the error-processing technique, which, in turn, supports acceptance tests,

voters and comparisons. The solution by Dillen et al. [38] has been designed so that ac-

ceptance tests are no longer hardwired within the FT-composition. ATs can be configured

at runtime through a parameterised assertion holding an XPath expression that will be

used to assess the acceptability of the response returned by each of the probed alternates.

The solution by Mansour and Dillon [146] propose a scheme to combine alternate web

services into parallel and serial configurations with centralized coordination. In this case,

the broker has an acceptance testing mechanism that examines the results returned from

a particular web service. The acceptance test is conducted using the broker, which might

be a single point of failure. To increase the reliability of the broker introduced in their

systems and mask out errors at the broker level they suggest a modified general scheme

based on triple modular redundancy and N-version programming, which also includes a

voting algorithm. The ATs could be specified as examining a post-condition or inalternate

association with the service. The solution by Zheng and Lyu [148, 56, 34] and by Chen

and Romanovsky [58] supports recovery block strategy (RB), nevertheless, they do not

mention any acceptance tests, the adjudicator employed in RB.

Other Remarks

The solution by Gorbenko et al. [145] supports an adjudicator, whose type is not explic-

itly specified, that is also responsible for reconfiguration (switching the releases on or off),

recovery of the failed releases and for logging the information which may be needed for

further analysis [145]. Extensibility is an important feature, and is important in SOA

architecture when the context and available services are constantly changing. In the

solution by Kotonya and Stephen [41] different adjudicators might be plugged to their

solutions. Also, new web services may be discovered and combined with the existing

set of services. A particularly robust protocol detailed in this paper, Andros, provides a

three-step consensus and authentication solution to tolerate Byzantine faults at a trade-

off with system resources. Chen and Romanovsky [58] claim that although N-Version

programming techniques require voting on results, in a real world application, it is not

always possible to vote on results received from different services. In this sense, their

solution for fault-tolerant SOAs supports well defined extension-points in which voting

implementation might be included. The solution by Gonçalves and Rubira [33] encapsu-

lates the WS-Mediator proposed by Chen and Romanovsky [58], therefore, it is possible

to include voting implementations in extension-points of the WS-Mediator.

4.5. Discussion 81

4.5 Discussion

Related to the selection of alternate services, we identified its two main purposes, to

select diverse alternates and to determine an appropriate degree and/or selection of alter-

nate services. We should emphasize that these two different purposes are complementary.

This is because the reliability of fault-tolerant compositions depends upon design diver-

sity of their alternate services to increase the probability that they fail on disjoint input

spaces. For most of the proposed approaches for FT-compositions there is an underly-

ing assumption that alternate services can always be efficiently employed by means of

diversity-based techniques [148, 56, 34, 41, 36]. However, Nascimento et al. [133] presents

an empirical study to investigate whether alternate services are able to tolerate software

faults. They concluded that the benefits of diversity-based solutions applied to SOAs are

not straightforward. Even when alternates seem to present design diversity, in some cases,

this diversity might not be sufficient to improve system reliability. That is, the chosen set

of alternates will impact on the success of the FT-strategy used (Section 3.4).

Runtime decisions regarding which alternate services are used require trade-offs ac-

cording to which specific QoS attributes to use, and their feasibility of obtaining them.

There are important considerations for delegating QoS responsibility to different parts

of the architecture. It may be less process intensive to require each atomic service to

provide quality measurements of themselves, however, lack of trust or need to ensure data

integrity may mean that QoS is monitored from the client. For instance, many approaches

measure availability by monitoring the alternate service ’heartbeat’ - this is certainly fea-

sible with most available services. However, a particular challenge for fault tolerance is

to find a feasible way of measuring another QoS attributes, for example, the security of

potential services, an issue tackled by Gotze et al. [36] where various levels of service

transparency are taken into account. Moreover, while many solutions provide means of

optimizing service selection once the alternate services have been chosen, we feel there is

a growing need to integrate tests to ensure a specific service as being, indeed, suitable

as a candidate alternate service. This is particularly needed with growing capabilities of

fault-tolerant SOA in terms of autonomic searching, discovering and selection of alternate

services.

With respect to the execution scheme, both parallel and sequential execution schemes

have been addressed. This is particularly important, as the type of execution scheme

will affect important QoS attributes such as execution time and resource consumption

(Section 4.2.1). Related to the decision mechanisms, it is important to notice that the

expected behaviour of alternate services is likely to affect the complexity of the chosen

decision mechanism. For example, to choose among voting algorithms presented in the

proposed taxonomy (Figure 4.1), we should consider the primary concerns surrounding

82 Caṕıtulo 4. Systematic Literature Review

the software’s application and details about the output space (Section 4.2.1). As we

can observe in the proposed classification (Table 4.3) there are still some adjudicators

not addressed by current approaches for FT-compositions, e.g., median, mean voters and

acceptance tests. One can claim that existing solutions might be easily extended.

On one hand, when looking beyond the implementation of solely the decision mech-

anism, we can also find interesting architectural solutions that provide additional func-

tionality at this point. For instance, by defining key extension points or ability for plug-

gable FT strategies enhances the flexibility and interoperability of fault-tolerant SOA

design. On the other hand, the authors do not explicitly describe how to extend their

solutions, for example, what interfaces must be implemented when inserting a custom

adjudicator [40, 41, 147, 58]. Secondly, in general, adjudication procedures are marginally

described, for example authors do not specify which type of alternate outputs their solu-

tions are able to process or how to navigate through elements and attributes in messages

returned by the alternate services in order to adjudicate the acceptability of specific frag-

ments from these messages [38, 40, 59, 41]. In other words, most authors do not specify

clear guidelines on the reuse and, in particular, customization of their decision mechanisms

in practical settings.

In addition, related with the decision mechanism, many FT-protocols within diversity-

based fault tolerance solutions frequently selected results based on properties other than

the actual response values, such as response time or likelihood of failure. This perhaps

reflects the reality that even when reliability of results is uncertain, the fastest response

time remains one of the main sought-after service qualities. Finally, it is interesting to

observe that although various design issues and respective design solutions related to

software fault tolerance techniques have been supported, they are spread among existing

approaches for FT-compositions. That is, there is no a single solution able to cope with

conflicting client requirements by employing at the same time a wide variety of schemes

to select and execute alternate services and to determine the adjudicated result from the

alternate services. There is a lack of solutions able to bring out a set of closely related

fault tolerance techniques based on design diversity in close accordance with customers’

requirements and high-level policies (e.g. to adopt a fault tolerance technique based on

parallel execution scheme for better response time).

4.6 Threats to Validity

We identified some possible threats to validity [75] and the measures we took to reduce

the risks.

Internal Validity: In terms of internal validity, our study is based on 17 papers that

matched our criteria (Section 4.3.2). This number is not high, nevertheless, it is repre-

4.7. Related Work 83

sentative of this area of research [140, 153]. To mitigate this risk, we adopted a search

strategy that aims to detect as much of the relevant literature as possible [74]. Neverthe-

less, the size of the sample should be kept in mind when assessing the generality of our

results.

Construct validity: We identified two threats to construct validity: the study selection

and data extraction are error-prone activities. Related to the study selection, this activity

was performed by one of the researches at two different points in time, thus reducing the

risk of having the inclusion/exclusion criteria applied inconsistently. Related to the data

extraction, data might have been extracted in an inconsistent manner and to reduce this

risk, as suggested by Kitchenham and Charters [74], all primary studies were assigned to

one of the researchers, responsible for extracting the data [74]. Another researcher was

asked to perform data extraction on a subset of primary studies chosen at random (for

instance, on 6 studies). Data from the researches were compared and disagreements were

resolved by consensus among researchers.

Conclusion validity: We identified one threat to conclusion validity, which is the relia-

bility of the taxonomy itself used to classify the primary studies. To mitigate the risks

of employing an inadequate taxonomy, before it was built, we had analysed the domain

knowledge of software fault tolerance techniques based on design diversity in depth (e.g.

[47, 48, 128, 46, 129, 42, 43, 1]).

4.7 Related Work

We are not familiar with any work that surveys diverse fault-tolerant SOAs. As a conse-

quence, we address, in turn, work related to literature review of fault tolerance techniques

in general.

Garcia et al. [154] present a comparative study of exception handling mechanisms

for building dependable object-oriented software. The authors define a taxonomy to help

address main basic technical aspects for a given exception handling proposal. By means of

the proposed taxonomy, the authors survey various exception mechanisms implemented

in different object-oriented languages, evaluates and compares different designs. Our

classification of software fault tolerance solutions is also based on a general taxonomy of

design issues. However, compared to their work, we do not provide a rating of the primary

studies according to a quality assessment.

Carzaniga et al [155] identify some key dimensions upon which they define a taxonomy

of fault tolerance and self-healing techniques in order to survey and compare the different

ways redundancy has been exploited in the software domain. These are the intention of re-

dundancy (deliberate or opportunistic), the type of redundancy (code, data, environment),

the nature of triggers and adjudicators that can activate redundant mechanisms and use

84 Caṕıtulo 4. Systematic Literature Review

their results (preventive - implicit adjudicator or reactive or- implicit/explicit adjudica-

tor), and lastly the class of faults addressed by the redundancy mechanisms (Bohrbugs

or Heisenbugs). The proposed taxonomy is used to classify well known techniques, for

example, N-version programming, exception handling and data diversity. The concepts

presented in their taxonomy and the ones presented in the taxonomy we employed are

orthogonal. In fact, our classification is performed in lower level of abstraction.

Ammar et al. [156] propose a survey of the different aspects of system fault tole-

rance and discuss some issues that arise in hardware fault tolerance and software fault

tolerance. In this context, the authors distinguish information, spatial and temporal re-

dundancy; present the three fundamental concepts of fault tolerance (i.e. failure, error,

fault); describe the four steps of fault tolerance (i.e. error detection, damage assessment,

error recovery, and fault removal) and relate these to the differences of redundant tech-

niques for handling hardware as well as software faults. According to the authors, since

redundancy may be used under a variety of forms to achieve fault tolerance, the design

of a fault-tolerant system involves a set of trade-offs between redundancy requirements

(imposed by the need for fault tolerance) and requirements of economy (economy of the

process, and the product) [156]. The authors also emphasize that program fault tolerance

is no panacea, like almost everything in software engineering. We refer to their work for

an interesting discussion on reasons to support this claim.

Florio and Blonda [157] present a survey of linguistic structures for application-level

fault tolerance (ALFT). The authors emphasize the importance of employing appropriate

structuring techniques to support an adequate separation between the functional and fault

tolerance concerns. They claim the design choice of which fault tolerance provisions to

support can be conditioned by the adequacy of the syntactical structure at ‘hosting’ the

various provisions, called syntactical adequacy. Moreover, offline and online (dynamic)

management of fault tolerance provisions and their parameters may be an important re-

quirement for managing the fault-tolerant code in an ALFT, called adaptability. These

three properties, separation of concerns, adaptability and syntactical adequacy are re-

ferred as the structural attributes of ALFT. The structural attributes are adopted to

classify and analyse a number of ALFTs, including, recovery blocks and n-version pro-

gramming. This classification is also orthogonal to the classification we have provided.

4.8 Summary

Due to the low cost of reusing existing functionally equivalent services, called alternate

services, several solutions based on design diversity exist to support fault-tolerant Service-

Oriented Architecture (SOA). Regarding fault tolerance based on software diversity, three

major design issues need to be considered, namely, selection of alternate services; alternate

4.8. Summary 85

execution schemes; and judgement on result acceptability. These design issues may be

realized by different design solutions. Different design decisions imply in different measures

of quality requirements (e.g. memory utilization, execution time, reliability, financial costs

and availability). In this chapter, we define a general taxonomy for these common design

issues and their different design solutions. We also provide an initial comparison of the

various design solutions in terms of their quality requirements. Based on this information

and by means of systematic literature review method, we present a comprehensive survey

of existing solutions for fault-tolerant SOAs and discuss their main contributions and

limitations, thus, suggesting directions for future work.

Because a SOA differs from conventional architectures, it poses new challenges for

diversity-based solutions. Applications based on SOA rely in a singular scenario, where

the environment is highly dynamic, the uncertainty is high and several decisions cannot

be taken at design time but must be postponed until runtime, where the control is highly

distributed, and we have different stakeholders with possibly conflicting requirements [17,

16, 60, 158]. Because of that, solutions should provide greater flexibility in terms of

alternate selection, execution of alternate services and the decision mechanisms. For

examplo, decision mechanisms need to be flexible in order to take into account the wide

range of types of adjudicators so that a specific adjudicator could be adopted accordingly

to high-level policies specifying what is desired.

In Chapter 5, we design a family of software fault tolerance techniques based on design

diversity to support FT-compositions. The proposed solution provides an infrastructure

that leverages software product line engineering to facilitate the development of fault to-

lerance strategies tailored to individual clients’ needs. The proposed family was specified

and designed by means of a model-driven infrastructure, presented in Chapter 5, for devel-

oping product line architectures. We adopted COSMOS* (Section 2.1.2) to implement the

resulting product line architecture, thus creating a ‘skeletal’ system in which the commu-

nication paths are exercised but which at first has a minimal functionality. This ‘skeletal’

system can then be used to implement the final products, i.e. the software fault tolerance

techniques, incrementally, easing the integration and testing efforts [12]. Implementation

of the design solutions supported by the analysed primary studies (Table 4.3) could also

be reused to implement the family of fault tolerance techniques for FT-compositions (i.e.

by wrapping such implementations into COSMOS* implementation packages).

Caṕıtulo 5

A Model-Driven Infrastructure for

Developing Product Line

Architectures

Neste caṕıtulo, apresentamos uma infraestrutura dirigida por modelos para implementar

de forma consistente e coordenada arquiteturas de linhas de produtos de software em

geral. Utilizando esta infraestrutura, criamos uma famı́lia de técnicas de tolerância a fa-

lhas baseadas em diversidade de projetos para apoiar composições de serviços tolerantes a

falhas. O conteúdo desse caṕıtulo foi retirado do artigo publicado no 7th Brazilian Sym-

posium on Software Components, Architecture, and Reuse - SBCARS’13, que apresenta

a infraestrutra dirigida por modelos para apoiar o desenvolvimento de arquiteturas de

linhas de produtos de software e sua avaliação. Como o conteúdo do caṕıtulo foi extráıdo

na ı́ntegra desse artigo, foi preservado o idiomal original.

5.1 Overview

Currently, there is an increasing need to address software architecture evolvability in

order to gradually cope with new stakeholders’ needs [27]. At the same time, the software

system’s desired time-to-market is ever decreasing [27, 79, 159]. This reality demands

on software architectures’ capability of rapid modification and enhancement to achieve

cost-effective software evolution. To face these needs, advanced software paradigms have

emerged. For instance, Model Driven Engineering (MDE) and Software Product Line

Engineering (SPLE) are two promising cases in particular as they increase software reuse

at the architectural level of design [79, 159, 45].

MDE conceives software development as transformation chains where higher level mod-

els are transformed into lower level models [160]. In MDE, reuse is mainly achieved by

87

88 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

means of model transformations, which are built once but can be enacted for a variety of

input models that yield different results [160]. Models are considered as first-class entities,

are used to capture every important aspect of a software system for a given purpose, and

are not just auxiliary documentation artefacts; rather, they are source artefacts and can

be used for automated analysis and/or code generation [159, 81].

SPLE systematises the reuse of software artefacts through the exploration of com-

monalities and variabilities among similar products [27, 161]. Feature modelling is a

technique for representing the commonalities and the variabilities in concise, taxonomic

form [2, 159] (Section 2.1.3). A key to the success of SPL implementation is structur-

ing its commonalities and variabilities in Product Line Architectures (PLAs) in terms of

variable architectural elements, and their respective interfaces, which are associated with

variants [27] (Section 2.1.3). Furthermore, SPLE encompasses two sub-processes [27]: (i)

domain engineering aims to define and realize the commonality and the variability of the

SPL; and (ii) application engineering aims to derive specific applications by exploiting

the variability of the SPL.

The combination of MDE and SPLE, referred to as Model-Driven Product Line Engi-

neering (MD-PLE), integrates the advantages of both [79]. SPLE provides a well-defined

application scope, which enables the development and selection of appropriate modelling

languages [159]. On the other hand, MDE supports the different facets of a product line

more abstractly. For instance, architectural variability can be specified systematically by

appropriate models, thus enabling (i) an automated product derivation process in accor-

dance with feature configurations, also called resolution models [3]; and (ii) an automated

generation of source code to implement PLA models [78, 159]. Model-driven engineering

method to develop SPLs should describe systematically how to refine models to decrease

the level of abstraction to reach a code implementation. Nevertheless, existing solutions

for MD-PLE either do not define clearly the sequence of models to be developed at each

SPLE sub-process and how models transformations are performed between the different

process phases [78, 79], or, if they do, they lack of automation support [80, 81].

In this sense, we propose a model-driven infrastructure to implement PLAs through a

step-by-step refinement from high-level models into lower level abstractions. The infras-

tructure employs a set of existing process, tools and models, such as model transformations

are semi-automated. More specifically, to specify common and variable requirements of

the product line we adopt use case models, as suggested by Gomaa [88] (Section 2.1.3),

and feature models [2] (Section 2.1.3). Second, the FArM (Feature-Architecture Map-

ping [2]) method is adopted to perform a sequence of transformations on the initial feature

model to map features to a PLA (Section 2.1.3). Third, we explicitly and systematically

specify architectural variability such that executing the variability specification model

with a resolution model will yield a product model. In particular, our solution is based

5.2. A Model-Driven Infrastructure for Product Line Architecture Development 89

on the Common Variability Language (CVL), a generic variability modelling language

being considered for standardization at the Object Management Group (OMG) [3] (Sec-

tion 2.1.3). Finally, in accordance with the PLA model, the source code generation is

guided by component-based development process and uses COSMOS*, a component im-

plementation model that materializes the elements of a software architecture using the

concepts available in object-oriented programming languages [77] (Section 2.1.2).

We have identified a set of supporting tools to specify and validate the target models

and automate model-to-model transformations. We show the feasibility and effectiveness

of the proposed solution by employing it to implement a PLA to support a family of

fault tolerance techniques applied to service-oriented architectures (SOAs). The resulting

models are described in detail and lessons learned from executing this case study are also

presented. Contributions of this work are threfold (i) a model-driven, systematic and semi-

automated engineering method to develop PLAs; (ii) to promote the incorporation of CVL

and its supporting tools in a comprehensive engineering method for PLA implementation,

ensuring that CVL models are effectively coordinated; and (iii) a family of software fault

tolerance techniques to support fault-tolerant service-orietend systems.

5.2 A Model-Driven Infrastructure for Product Line

Architecture Development

Figure 5.1: A semi-automated model-driven method for developing product line architec-
tures

90 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

We present a model-driven infrastructure that combines existing methods, tools, mod-

els and languages to implement PLAs, as illustrated in Figure 5.1. The infrastructure en-

compasses a semi-automated engineering method that supports a step-by-step high-level

refinement of models into lower level abstractions. In summary, the infrastructure firstly

enables the identification and specification of common and variable requirements and fea-

tures of a SPL (Activities 1 and 2). Secondly, features are realized by a component-based

PLA (Activities 3-5). Finally, features and their respective components are chosen which

allowing for instantiation of a final product (Activity 6). The resulting feature model,

PLA model and variability model are persisted in XMI (XML Metadata Interchange)

format, the standard proposed by the OMG for MOF metadata exchange. The main

activities of the proposed method are described in detail in the following.

5.2.1 Activities 1-2: To Specify Use Case and Feature Models

These activities are concerned with the domain requirements engineering which encom-

passes all activities for eliciting and documenting the common and variable requirements

of the SPL [27].

Specification of Use Case Models

The input for this activity consists of the product roadmap and domain knowledge. This

may include, for example, specification, (pseudo) codes and data flow diagrams related to

the products needed. The output comprises of reusable, textual and model-based require-

ments. In particular, for specification of use cases, we suggest the template proposed by

Gomaa [88] (Section 2.1.3).

Specification and Validation of Feature Models

The input for this activity is mainly composed by the use case descriptions. The output

comprises of a feature model and feature specifications. At this stage, a feature model

is specified in order to differentiate among members of the SPL [5, 88] (Section 2.1.3).

Use cases and features can be used to complement each other, thus enhancing variability

descriptions [88]. A software engineer is responsible for specifying a feature model that is

consistent with the use cases [88]. In particular, use cases should be mapped to the features

on the basis of their reuse properties [88]. To specify and validate features models, we

adopted FaMa-FM, a largely accepted test suite to support automated analysis of feature

models [162]. For instance, we test whether the feature model is valid and we verify the

number of products it encompasses.

5.2. A Model-Driven Infrastructure for Product Line Architecture Development 91

5.2.2 Activity 3: To Map from Features to a PLA Model

The input of this activity consists of the feature model and feature specifications. The

output comprises of an initial PLA. To specify the PLA, we adopt the FArM method

(Section 2.1.3). We emphasize that a correct specification of feature realizations is essen-

tial for the derivation of correct and intended products [2]. This specification is frequently

carried out by a software engineer who has a great understanding of the product line do-

main, making automation extremely difficult. Although the transformation from features

to a PLA model is not automated, FArM encompasses a series of well-defined transforma-

tions on the initial feature model in order to achieve a strong mapping between features

and the architecture [2]. Consequently, the FArM method ensures that the feature model

is consistent with the PLA. Variability at the PLA implies using variable configurations

of components and interfaces (e.g. common components can use required interfaces for

accessing functionality provided by variant components [27]).

5.2.3 Activity 4: To Specify Architectural Variability

The input of this activity comprises of the transformed feature model and the PLA model

(i.e. the models resulting from FArM transformations - Activity 3). The output consists

of a CVL variability model specifying architectural variability as first-class entities. Al-

though FArM is essential to drive the specification of the PLA, it does not systematically

define the details of the transformations required to get a specific product model accord-

ing to a resolution model. To overcome this gap, our solution employs CVL to specify

software variability explicitly and systematically at the PLA model (Section 2.1.3). CVL

ensures the consistency among the PLA model and its products [3, 73, 163]. By means

of the CVL-Enable Papyrus Eclipse Plug-in, the initial PLA is firstly specified in UML, a

MOF-based language. The resulting PLA model encompasses the base and variant mod-

els, according to the CVL nomenclature (Figure 2.3). Second, the transformed feature

model is used to specify the CVL variability model by using the CVL diagram, which is

encompassed by the CVL Eclipse Plug-in. This plug-in also enables the definition of how

model elements of the base model shall be manipulated to yield a new product model [3],

as exemplified in Section 3.3.

5.2.4 Activity 5: To Translate PLAs to Implementation Models

The input of this activity comprises of the UML-based PLA model. The output consists

of a Java source model encompassing the COSMOS* sub-models (Section 2.1.2) for each

architectural component and connector of the PLA model. The PLA model (from Ac-

tivity 3) is used as the basis for model transformation from component-based software

92 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

architectures to detailed design of software components. In particular, we adopt the Bel-

latrix case tool [86] to automate the generation of Java source code in COSMOS* from

UML component based-models specified in XMI. By automatically generating Java source

code in COSMOS*, we ensure that the PLA implementation is consistent with the PLA

model.

5.2.5 Activity 6: To Generate Product Models

The input of this activity comprises of the UML-based PLA, the CVL variability model

and the COSMOS*-based source code. The output consists of a product model archi-

tecture and its respective COSMOS*-based implementation. Software components, in-

terfaces, and other software assets are not created anew. Instead, they are derived from

the platform by binding variability [27, 3]. At this stage, a software engineer is able to

configure a specific product by choosing the set of features required. For instance, it is

necessary to create a CVL resolution model (Section 2.1.3). The realizations of the chosen

features are then applied to the base model to derive the product model by using the CVL

Eclipse Plug-in [3]. That is, by using the product line and resolution models, specifics

products are obtained by CVL model-to-model transformation, which is in charge of ex-

ercising the built-in variability mechanisms of the PLA model [3, 73, 163]. As already

mentioned, Bellatrix creates a ‘skeletal’ PLA implementation in which the communication

paths are exercised but which at first has a minimal functionality. In this way, the product

architecture implementation can be derived by specific choices of the COSMOS*-based

components and connectors realising the product model (e.g. by connecting the required

interface of each common component to exactly one, matching provided interface of a

variant component [27]).

5.3 Evaluation

We present an illustrative application of the proposed solution to demonstrate its feasi-

bility, effectiveness and present a concrete example of our activities in practice.

5.3.1 A Family of Software Fault Tolerance Techniques for SOAs

We show the development of a PLA to support a family of software fault tolerance tech-

niques based on design diversity applied to SOAs [57]. In summary, these techniques

are used to create fault-tolerant composite services, called FT-compositions, that leverage

functionally equivalent services, or alternate services, to tolerate software faults [40]. We

felt this example was well suited to demonstrate our solution as existing software fault

5.3. Evaluation 93

tolerance techniques differ in terms of (i) quality requirements (e.g. execution time and

reliability), and (ii) types of alternates’ results that they are able to adjudicate (e.g. sim-

ple or complex data types) - that makes different techniques more suitable in different

contexts [57, 1]. Mass customization using a PLA to support multiple fault tolerance tech-

niques can be employed to address different demands on solutions for FT-compositions.

We consider the following fault tolerance techniques: Recovery Block (RcB), N-Version

Programming (NVP) and N-Self-Checking Programming (NSCP) [1]. In addition, we also

take into account the RcB’ and NVP’ techniques, indicating, respectively, the adoption

of parallel execution of the multiple alternate services combined with Acceptance Tests,

and, the fully sequential execution of the multiple alternate services combined with vot-

ers [1, 57]. In the following, we describe the activities and models presented in Figure 5.1,

but individual use case descriptions are omitted due to space constraints. For the specifi-

cation of use cases, we took into account a set of roles and functionalities that composite

services, in general, should encompass for the aggregation of multiple services into a sin-

gle composite service (e.g. interoperability capabilities and autonomic composition of

services) [16]. Additional information for use case specification was taken from domain

knowledge of software fault tolerance techniques based on design diversity, such as the

various types of adjudicators and their operations [45, 46, 1, 57].

A Feature Model (FT-FM) for Fault-Tolerant Composite Services

Features were derived from use cases descriptions (Figure 5.1: Activity 1). In Figure

5.2(a), we show an excerpt of the resulting feature model (Figure 5.1: Activity 2). The

feature model is an extension of the model proposed by Brito et al. [45] and the one of

our previous work [40]. In comparison with these previous models, our revised feature

model (i) identifies different types of adjudicators [57] (these sub-features were omitted

in the figure to avoid an unreadable feature model); (ii) explicitly distinguishes between

different sequential execution schemes; (iii) allows the combination of a parallel execution

scheme with acceptance tests (for instance, the RcB’ technique) and the combination of a

fully sequential scheme with voters (for instance, the NVP’ technique); and (iv) explicitly

states some aspects that are specifics to FT- compositions.

The Executive feature aims to orchestrate a software fault tolerance technique opera-

tion. It is composed of seven mandatory features. The Consistency of input data feature

presents how the consistency of data is achieved, either implicitly through backward error

recovery, or explicitly through a synchronization regime [1, 45]. The Execution scheme

feature represents the three possible ways for executing the alternate services: condition-

ally or fully sequential execution and parallel execution [1, 57]. The Judgement on result

feature presents how the judgement on result should be performed, either with an absolute

criteria (involving the result of only one alternate service), or a relative criteria (involving

94 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

the results of more than one alternate service) [45, 46]. The Adjudicator feature captures a

set of alternative features related to the different ways that can be employed for detecting

errors: by emphacceptance testing (ATs), voting or comparison [45, 1, 57].

The Number of Alternate Services for tolerating f sequential faults represents the num-

ber of alternate services to tolerate f solid faults [1, 45, 46]. A solid software fault is recur-

rent under normal operation or cannot be recovered [46]. In contrast, a soft software fault

is recoverable and has a negligible likelihood of recurrence. Provided there are no fault

coincidences, an architecture tolerating a solid fault can also tolerate a (theoretically)

infinite sequence of soft faults [46]. The Dynamic Selection represents which alternate

services will be dynamically employed as part of the FT-composition. Alternate services

are defined by a common shared terminology so that service selection can be achieved

automatically [16]. The Suspension of operation delivery during error processing feature

indicates whether the error recovery technique suspends the execution when an error is

detected [1, 45, 46]. In case the execution is suspended, it is necessary to define what

the purpose of the suspension is: either for re-executing the target operation or only for

switching to another result [45, 46].

Figure 5.2: A Partial Feature Model for Software Fault Tolerance Techniques Applied to
SOA (notation proposed by Ferber et al. [5])

According to the FaMa-FM [162] tool, the proposed feature model (Figure 5.2(a)) is

a valid one and it encompasses 36 products (taking into account the different subtypes of

adjudicators).

5.3. Evaluation 95

A Product Line Architecture for Fault-Tolerant Composite Services

We adopt the FArM (Section 2.1.3) to map from features to a PLA (Figure 5.1: Ac-

tivity 3). Regarding the first transformation, our initial feature model contains neither

architecture-related nor quality features; consequently, no transformations were performed

at this stage. With respect to the second transformation, we identified one architectural

requirement: interoperability. Products should provide its main functionalities via ser-

vices that are defined by means of well-defined interfaces that should be neutral, platform-

and language-independent. This requirement was used to enhance the description of

the Executive feature that should provide interoperable services. Related to the third

transformation, we analysed interacts relations, as follows.

The Judgement on Result and Suspension of Service Delivery are used, in fact encom-

passed, by Adjudicator and Execution Scheme, respectively. As a consequence, we inte-

grated Judgement on Result and Suspension of Service Delivery, into, respectively, Adju-

dicator and Execution Scheme. We also integrated the features related to the consistency

of input data into features related to the execution of the alternate services, due to their

usage interacts relations, represented in Figure 5.2(a). Therefore, execution schemes must

provide all alternate services with exactly the same experience the system state when their

respective executions start [1]. Regarding the fourth FArM transformation, the # of alter-

native services for tolerating f sequential faults feature and its sub-features do not present

a valid hierarchy relation - they simply represent a value assignment. We decided to re-

move theses features from the transformed model. Due of this removal, we enhance the

specification of the adjudicators by explicitly specifying the number of alternate services

each type of adjudicator should ideally employ to tolerate f sequential faults.

CVL Models related to the Feature and Product Line Architecture Models

At this stage, CVL was adopt to explicitly specify architectural variability (Figure 5.1:

Activity 4). Figure 5.3 shows an excerpt of the transformed feature model and PLA (from

FArM transformations). We have omitted architectural connectors and interface names

for the sake of clarity. More specifically, the transformed feature model is represented by

means of a CVL variability model, which is also composed by the variability specifica-

tion tree (VSpec). In the VTSpec, in Figure 5.3(a), choices are represented by rounded

rectangle with their names inside. A non-dashed link and dashed link between choices

indicates that the child choice is, respectively, resolved according to its parent [3] and is

not implied by its parent. For example, if the Executive is resolved to true, its sub-choices

are also resolved to true, whereas when Execution Scheme is true, its sub-choices can be

resolved either positively or negatively. Choices have a group multiplicity, indicated by a

triangle, with a lower and an upper bound (e.g. we can select up to n alternate services

96 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

and exactly one adjudicator). VSpec trees are similar to feature models and deciding

choices is similar to selecting features [3].

The resulting FT-PLA model is represented by means of the base model and variant

models using UML, as illustrated in Figure 5.3(d) and Figure 5.3(c), respectively. In

Figure 5.3(b), a variation point is a specification of concrete variability in the base model

and it defines specific modifications to be applied to the base model during materiali-

sation [3, 73]. Variation points, defined at the product realization layer, refer to base

model elements via base model handles and are bound to elements of the VSpec [3]. For

instance, we represent variability on the base model by means of FragmentSubstituition.

A FragmentSubstitution is a choice variation point which specifies that a fragment of the

base model, called the placement, may be substituted for another fragment, called the

replacement. As illustrated in Figure 5.3(d), we created auxiliary object models, which

are not transformed to source code, to define placements. The replacement objects, or

variant models, can be found into the CVL Library (Figure 5.3(c)).

The resolution model is a structural replica of the corresponding VSpec model such

that choices are positively or negatively resolved [3], as exemplified in Figure 5.3(e). In

particular, we always assume that a resolution model starts with a set of resolutions -

choices related to the mandatory features (i.e. Executive, Adjudicator, Selector and Ex-

ecution Scheme) are always set to true, whereas alternative and multiple choices need

to be resolved to true or false. To generate product models, these choices are resolved

by a resolution model and propagated to variation points and the base model [3]. In

Figure 5.3(e), for example, we select the Parallel execution scheme, the Service 1, Ser-

vice 2 and Service 3 as alternate services and we choose to judge the results from the

alternate services by using a median voter (Median Vt). Therefore, after executing the

CVL transformation, as a resolved model, we have an architectural specification in UML

of the N-Version Programming (NVP) with a median voter, as illustrated in Figure 5.3(f)

(Figure 5.1: Activity 6).

By means of the CVL variability model, CVL also supports the definition of OCL

constraints among elements of a VSpec to define choices constraints [3]. For example, we

should specify that to choose the conditionally sequential execution scheme implies choos-

ing an acceptance test as an adjudicator, thus, being able to discard invalid configurations

- these features are mutually inclusive as represented in Figure 5.2(a).

In Figure 5.4, which is semantically equivalent to Figure 5.3, there is an excerpt of

the models we generated by means of CVL Eclipse Plug-ins. From left to right, we have

the following models. First, we defined elements of the CVL library, for instance, variant

models related to the different types of adjudicators, execution schemes and alternate

services. Secondly, we have the base model, which mainly encompasses the mandatory

features (or choices in CVL notation), with the exception of auxiliary elements defined

5.4. Lessons Learned 97

Figure 5.3: Using CVL to explicitly and systematically specify and resolve variability at
the PLA model

solely to support the specification of placement fragments. Thirdly, we have the model

representing the software architecture of the NVP software fault tolerance technique em-

ploying a median voter as an adjudicator. Finally, we have the variability specification

tree in which variation points are defined and linked to the base model and the elements

from the CVL library. In the variability specification tree, the highlighted elements are

part of the resolution model in which is specified the choices related to the instantiation

of the NVP with median voter (Figure 5.1: Activity 6). The CVL tool also supports

validation operations and the defined variability model was validated successfully.

The PLA Implementation

Bellatrix was used to materialise through model-to-model transformation the elements of

the UML-based PLA to JAVA source code in COSMOS* (Figure 5.1: Activity 5).

5.4 Lessons Learned

We proposed a model-driven and semi-automated infrastructure to define and manage

PLAs. Our solution encompasses a model-based method (i) to specify common and

variable use cases as proposed by Gomaa [88]; (ii) to specify a feature model [5]; (iii) to

98 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

Figure 5.4: Using CVL Eclipse Plug-in to specify architectural variability

map features to the PLA using FArM [2]; (iv) to specify variability at the architectural

level using CVL [3]; (v) and to automate the generation of code related to the software

architecture using COMOS* [77]. These reused approaches have been validated, are well-

documented and explored in other domains [2, 3, 73, 163, 88]. Differently, in this work

we document and explore how these approaches and related tools can be used together to

develop PLAs. In particular, we employ this method to define a family of software fault

tolerance techniques for fault-tolerant service compositions. We discuss lessons learned

from executing this case study.

Activities 1 and 2 (Figure 5.1) were adopted to specify common and variable require-

ments, which was essential to achieve a better understanding of the commonality and the

variability of the intended SPL and to define the set of applications the SPL is planned

for. To map from use cases to features is an error-prone and time-consuming task. Al-

though it is a research challenge to fully automate this task, it could be greatly benefitted

if an initial feature model could be automatically generated by analysing reuse properties

of the use cases. Under this circumstance, a software engineer could incrementally refine

the initial feature model by specifying appropriate many-to-many associations [88].

Activity 3 specifies a feature-oriented development method to map features to architec-

tural components using FArM. The transformation from the feature model to the PLA

was smoothly, although it is not automated. We could observe that to map a feature to the

PLA can be systematically performed by carrying out the series of FArM transformations

for the feature at hand [2]. Furthermore, due to the encapsulation of the feature business

logic in one architectural component, the effects of removing and updating features were

5.4. Lessons Learned 99

localized. As claimed by Sochos et al. [2], we noticed that FArM improves maintain-

ability and flexibility of PLAs. Nevertheless, FArM does not (i) define the details of the

transformations required in order to generate product models in accordance with feature

configurations; and (ii) provide clear guidelines on how to describe all the traceability

links among the initial and transformed feature models and the resulting PLA.

Activity 4 uses CVL to specify software variability as a first-class concern [73]. The

CVL Eclipse Plug-in greatly facilitates the specification and resolution of software vari-

ability. By specifying variability systematically, we are able to produce the right product

models automatically given a resolution model encompassing a set of preselected features

(Activity 6). This formalization of product creation process improves analyzability and

maintainability [3, 73, 163]. In addition, by using CVL, the specification of the PLA

using UML does not have to be extended or overloaded with variability. The base and

variant models are oblivious to the CVL model while the CVL model refers to objects of

those models [3]. Because of this separation of concerns, there may be several variability

models applying to the same architectural model which also facilitates the evolution of

these product line assets [3].

We noticed that there are several strategies for defining a base model (Figure 2.3).

One obvious choice is to define a complete model where CVL can remove features to get a

specific product model [163]. Another choice is to adopt a minimal CVL model such that a

product model will be generated by adding features to the base model [163]. We preferred

to use neither maximum nor minimum, but somewhere in between. We created auxiliary

elements in the base model to represent placement fragments. The variant models (found

in the CVL Library) were then used as replacements for these placement fragments. This

seemed to be the most practical way to specify fragment substitutions in our software

solution.

Using the transformed feature model and its related PLA to define, respectively, the

variability specification tree and the base and variant models, was essential to ease the

selection of products and maintenance of the product line. By using models from FArM,

it is possible to define a compact product realization layer regarding the number of substi-

tutions and the complexity of the substitutions. This is due to the strong mapping from

features to software components [2]. Based on the choice specification layer, the product

realization layer further defines low level, fairly detailed, operations required to transform

the base model to a resolved product model [73].

The learning curve of using the proposed method is an important consideration due

to the different types of tools and documentation that is available for the activities. The

specification of use cases was easily performed as Gomaa [88] presents a template for use

case specifications. With respect to the FaMa-FM, XML (eXtensible Markup Language),

Lisp or plain text can be used to load and save feature models [162]. Although there are

100 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

many examples available illustrating the feature model notations employed by FaMa-FM,

in fact, a GUI editor tool support is missing. With respect to FArM, the transition from

a feature model to a PLA is explained by the authors in a short but comprehensive way

as they provide a running example illustrating each FArM transformation [2].

CVL is a relatively small language with clearly defined semantics making it less time-

consuming to learn it [73]. By being able to use the base MOF-compliant language editor

to select and highlight fragments, it is not required to know the lower level implemen-

tation details of CVL [73]. In our case, the definition of fragments and substitutions on

the target base model was intuitive as we were familiar with our architectural model and

the Papyrus Eclipse Plug-in. CVL Plug-in requires ‘an old’ Eclipse version and some

compatible libraries [3]. To find some of the required libraries were a time-consuming

task. The COSMOS* implementation model also defines clear semantics which are in

fact representative of software component models. It was also straightforward to imple-

ment component-based software architectures specifically due to the support of Bellatrix

(Activities 5 and 6).

The tasks to ensure consistency among models are not fully automated. Under some

refinements from high-level models into lower level abstractions, a software engineer is

responsible for ensuring that models are consistent. Because it is an error-prone activity,

we identified useful guidelines to facilitate the accomplishment of this task (e.g. the

method by Gomaa [88] to map from use cases to features and FArM [2] to map from

features to PLAs). Nevertheless, despite the smooth transition from the feature model to

the architecture, the process could be greatly facilitated if there was one tool that provided

support for all the activities. This would achieve greater consistency, traceability among

models, efficiency and familiarity within the development environment which would lessen

the learning curve. Unfortunately, it is difficult to find the support for specific modelling

needs (e.g. to model optional/ mandatory features and architectural variability etc.) at

the same time as finding compatible tools that support a large range of the specified

activities.

5.5 Related Work

Zhang et al. [78] propose a tool to compare the existing potential product models to

identify reusable assets such as model fragments. A preliminary PLA model and a CVL

variability model can be automatically specified based on the comparison results. Our

solutions complement each other as we can employ the CVL Compare tool to generate the

initial PLA model and they can use Bellatrix to generate code automatically. The solution

by Chastek el al. [80], encompasses a set of process, and tools to ensure that models are

effectively coordinated. Our solution can be regarded as an instantiation of their method

5.6. Summary 101

engineering, which is described in a higher level of abstraction. Their solution does not

allow the automatic generation of product models given a resolution model, neither the

automatic translation of the PLA model to an implementation model. Unlike our solution,

Chastek el al. [80] present general guidelines to create test assets by using the JUnit test

framework.

Azanza et al. [79] present a MD-PLE, but they focus on extracting product line arte-

facts from existing software applications. Our solution, in fact, can be regarded as a

proactive approach for mass-customization [161], which is appropriate when the require-

ments for the set of products needed are well defined and stable [161]. Buchmann et

al. [164] propose a MD-PLE for software configuration management systems. They are

able to instantiate an application-specific system, which is executable, according to the

selection of features. We intend to reuse their solution to refine the COSMOS*-based im-

plementation of PLAs. To specify architectural variability they develop a tool that maps

features to corresponding domain model elements by manually annotating elements of the

domain model with feature expressions. To specify and manage these annotations is an

error-prone activity. At this point, we adopt CVL, a well-defined language for specifying

and resolving software variability [3, 73, 163].

A number of works have been using CVL to specify and resolve software variability [3,

73, 163]. In particular, we refer to the work by Svendsen et al. [73] for a detailed description

of how to use CVL, its main concepts, the CVL tool support and a discussion on different

strategies to choose a base model and to create the CVL Library. One of the main purposes

of that work [73] is to show the applicability of the CVL to support the transformation

of an original (e.g. a product line model) into a configured, new product model.

5.6 Summary

In this chapter, we present a comprehensive, semi-automated, systematic and model-

driven engineering method for Product Line Architecture (PLA) development ensuring

that models are effectively coordinated. The method is supported by an infrastructure

that encompasses a set of existing processes, languages and tools, which are consistent

and interoperable. The process involves extracting common and variable functional re-

quirements of the product line using use case models. To differentiate among members

of the product line, features are extracted to form a feature model and subsequently

mapped to a component-based PLA model. Finally, using preselected features, individual

component-based product models are generated through model-to-model transformations.

Our solution employs Common Variability Language to specify and resolve architectural

variability and COSMOS*, a component implementation model, to realize the PLA. We

presented well known Eclipse Plug-ins that can be used to manage and validate the models

102 Caṕıtulo 5. Model-Driven Infrastructure for Developing PLAs

and to support model-to-model transformations.

To exemplify and evaluate the proposed solution, we employ it to develop a PLA to

support family of software fault tolerance techniques for fault-tolerant composite services.

The proposed family can be extended by either adding or removing features in order

to cope with different clients’ requirements. As discussed in this chapter, the proposed

model-driven infrastructure supports the generation of ‘skeletal’ systems, consequently,

to have executable fault tolerance strategies, it is necessary to incrementally implement

the behaviour of methods defined within COSMOS*-based implementation models. The

provisioning of components to meet this specification can be achieved either by directly

implementing the specification or by finding an existing component that fits the speci-

fication [165] (i.e. to reuse the implementation provided by existing solutions for FT-

compositions - Table 4.3).

In Chapter 6, we present ArCMAPE, an infraestrutura based on dynamic software

product lines to support self-adaptation of fault-tolerant service compositions. ArCMAPE

relies on a reflective architecture to support separation of concerns. The base-level is

composed by a framework implementing the FT-PLA. Software components implementing

the mandatory features are already provided, whereas variant software components can be

added at predefined places. The meta-level leverages the FT-FM and FT-PLA models at

runtime and resolves variants dynamically in order to support the dynamic instantiation

of fault tolerance techniques more adapted to the current context.

Caṕıtulo 6

ArCMAPE: A Software Product

Line Infrastructure to Support

Self-Adaptation of Fault-Tolerant

Composite Services

Neste caṕıtulo propomos ArCMAPE, uma solução baseada em linhas de produtos de

software (dinâmicas) para apoiar uma famı́lia de técnicas de tolerância a falhas baseadas

em diversidade de projetos para composições de serviços confiáveis, tal que a técnica

mais adaptada ao contexto seja instanciada em tempo de execução. ArCMAPE é uma

extensão da nossa implementação preliminar para composições de serviços autoadaptati-

vas e confiáveis, publicada no 1st Workshop on Services, Clouds, and Alternative Design

Strategies for Variant-Rich Software Systems em conjunto com SPLC’11. A solução inicial

foi estendida para apoiar uma separação clara de interesses entre a lógica de tolerância a

falhas e lógica de adaptação, especificar e resolver variabilidades arquiteturais de forma

sistemática, e apoiar a geração dinâmica de planos de adaptação. Estas necessidades

de melhorias foram identificadas a partir de um estudo do comportamento dinâmico da

solução preliminar, que foi apresentado num artigo publicado no 1st Workshop on De-

pendability in Adaptive and Self-Managing Systems em conjunto com LADC’13. Parte

do conteúdo deste caṕıtulo foi retirado de um artigo a ser publicado no 15th IEEE In-

ternational Symposium on High Assurance Systems Engineering - HASE’14, que descreve

detalhes acerca da especificação, projeto e implementação do ArCMAPE. Como a maior

parte conteúdo deste caṕıtulo foi extráıdo na ı́ntegra de tal artigo, foi preservado o idioma

original. Enfatizamos que um resumo expandido sobre ArCMAPE foi publicado no 7th

IEEE International Conference on Self-Adaptive and Self-Organizing Systems - SASO’

13

103

104 Caṕıtulo 6. ArCMAPE

6.1 Overview

A systematic review of solutions for fault-tolerant composite web services [40, 56],

called FT-compositions for simplicity, has shown us that (i) few solutions support vari-

ous software fault tolerance techniques at the same time [34, 41]; and (ii) solutions do

not support an adaptable architecture at which changes can be made easily, specially, at

runtime [33, 126] (Section 4.5). Systems based on Service-Oriented Architectures (SOA)

often rely in an environment that is highly dynamic and several decisions should be post-

poned until runtime, where we have different stakeholders with conflicting requirements,

and fluctuations in the quality of services (QoS) are recurrent [17, 16]. Consequently,

solutions for FT-compositions ideally should support an adaptive fault tolerance mecha-

nism to dynamically bring out fault tolerance strategies in close accordance with clients’

requirements and the environment.

Adaptive Fault Tolerance Mechanisms (AFTMs) are able to meet the dynamically and

widely changing fault tolerance requirements [63]. Nevertheless, AFTMs raise a number of

research and engineering challenges. In AFTMs, the adaptation logic should be separated

from the fault tolerance logic to improve the comprehension, maintainability, testability

and modularity of such mechanisms [63, 67]. Furthermore, it is important to clearly

separate the components realizing the fault tolerance logic from the components realizing

the dynamic adaptation [67]. This separation requires using a set of well-structured and

clearly organized high-level abstractions to reason about the fault tolerance mechanism’s

dynamic behaviour and its environment [67, 66]. Finally, it is necessary to link the high-

level abstractions to the running fault tolerance strategy (to actually adapt it) [68, 67].

Dynamic Software Product Lines (DSPLs) extend Software Product Lines (SPLs) to

support late variability [18]. DSPLs provide the modelling framework to understand a

self-adaptive system by highlighting the relationships among its parts [18] (Section 2.1.3).

Furthermore, by leveraging the product line assets to runtime, DSPLs ensure that a self-

adaptive system moves from a consistent configuration to another in accordance with

feature constraints [18] (Section 2.4). We propose an DSPL infrastructure, called Ar-

CMAPE, to support self-adaptation of FT-compositions, by means of feature-based run-

time adaptations. In particular, ArCMAPE (i) supports a family of software fault to-

lerance techniques based on design diversity; and (ii) is able to dynamically instantiate

fault tolerance techniques suitable to the context in accordance with high-level policies.

The target family of fault tolerance techniques can be developed on the basis of the

FT-FM and FT-PLA models described in Section 5.3.1 (i.e. removal or addition of vari-

able features, but the mandatory features remain unchanged). Hereafter, the configured

models are referred to as FT-FM’ and FT-PLA’ to avoid misunderstandings. Common

Variability Language (CVL) (Section 2.1.3) needs to be adopted to specify architectural

6.1. Overview 105

variability as a first-class concern at the FT-PLA’ model (Section 5.2). By specifying

variability systematically, we are able to produce the right product models automatically

given a resolution model encompassing a set of preselected features, through CVL model-

to-model transformation (Figure 2.3 and Figure 5.3). This facility is mainly used by

ArCMAPE to generate adaptation plans dynamically.

To overcome the research challenges related to AFTMs [63], ArCMAPE was designed

on a reflective architecture to support separation of concerns between the adaptation

and fault tolerance logics. The meta-level relies on an autonomic loop [82] (Section 2.3)

and leverages the FT-FM’ and FT-PLA’ models at runtime for reasoning on the fault

tolerance’s dynamic behaviour and its environment. The base-level is composed by the

FT-PLA’ implementation. ArCMAPE provides (i) software components implementing

the mandatory features; and (ii) a foundation on which variation points are represented

by locations in the FT-PLA’ where plug-in components, or variant components, may be

added. The variant components should implement the target variable features. At run-

time, depending on the context, ArCMAPE dynamically chooses suitable variant com-

ponents to realize those variation points. The chosen variant components may provide

better quality of service (QoS) or offer new services that did not make sense in the previous

context (e.g. due to changes in client requirements).

We present two empirical studies to exemplify the use of ArCMAPE in practical

settings, show its feasibility and to assess the time overhead it imposes to support late

variability. If we have a high overhead it could outweigh the benefits of the dynamic

adaptation itself [32]. The first empirical study, referred to as e-credit, is based on an

enterprise application, described in [166], that provides instant credit decisions for in-

store purchases. For this study we provide scripts implementing the target alternate

services. The second empirical study, referred to as e-tour, is based on a web store for

packages tour and leverages alternate services available on the Web to tolerate software

faults. Outcomes from these studies suggest that ArCMAPE (i) is efficient to support

and dynamically derive software fault tolerance techniques for FT-compositions tailored to

the specific needs of different clients and contexts; (ii) can be easily extended and reused;

and (iii) does not introduce an excessive time overhead to support dynamic management

of software variability.

Finally, it is important to notice that the models leveraged at runtime by ArCMAPE

can be specified and validated by using the model-driven infrastructure for developing

PLAs (Section 5.2). The target alternate services, which are also variable features, can

be selected by means of the guidelines to asses service diversity (Section 3.2). The study

presented in Chapter 4 can also be a good starting point to make choices related to the

other variable features and to implement them (i.e. different adjudicators and execution

schemes) (Section 4.4).

106 Caṕıtulo 6. ArCMAPE

6.2 ArCMAPE

ArCMAPE mediates the communication between clients and alternate services. When

using ArCMAPE to tolerate software faults by leveraging n alternative services, we can

have n + 1 hardware units (Figure 2.6 (c)), and the software replicated is a service opera-

tion, that is, a program segment (Figure 2.6(d)). As illustrated in Figure 6.1, ArCMAPE

relies on a dynamic component framework. Furthermore, ArCMAPE was designed on a

reflective architecture. The base-level, or running system, is composed by software com-

ponents implementing the FT-PLA’ model. The meta-level relies on a MAPE-K loop

(Section 2.3) and manipulates models to resolve variability at runtime by specific choices

of the variant components at the base level. These models belong to the knowledge base.

A dynamic adaptation corresponds to the dynamic instantiation of a software fault to-

lerance technique, i.e. a product, that satisfies high-level policies while maximizes the

utility value, or subjective preferences, which is calculated based on pre-defined weights

for QoS. The base-level is oblivious to the adaptation level, which is modularized as a

stand-alone module, or aspect (i.e. Aspect-Oriented Programming) [167]. At runtime,

the adaptation logic intercepts the running system when a requisition is sent by a client

to ArCMAPE, since such logic decides which fault tolerance strategy will be provided to

this requisition. Sensors and effectors are used, respectively, to gather details about and

change the behaviour of the running system [82]. In the following subsections, we go into

detail on the knowledge base, and the base and meta levels.

The Knowledge Base

The knowledge base is composed by the FT-FM’; FT-PLA’ (including the CVL variabil-

ity model); high-level policies defined as Event-Condition-Action (ECA) rules; reflection

product model, which abstracts the running software fault tolerance technique; auxiliary

mappings (mapping from features from the FT-FM’ to choices of the CVL variability

model); and details on the current context. These models are not causally connected

with the runtime system, that is, they are not be directly modified to adapt the running

system, but they reflect what happens at runtime (in the execution context) [68, 67]. On

the contrary, these models serve as a basis for reasoning about the environment and de-

termining a new configuration more adapted to the current context, if necessary [68]. The

knowledge base offers enough details to fully automate the dynamic adaptation process,

as described in Section 6.2. In the following, we describe the ECA rules in more detail.

Event-Condition-Action (ECA) Rules

ECA rules can be specified to handle known and common changes in a deterministic

way [91, 21]. These rules allow us to map general conditions to actions, which represent a

set of pre-selected features [21]. A rule is composed of several clauses [158], as illustrated in

6.2. ArCMAPE 107

Figure 6.1: An Overview of ArCMAPE

Figure 6.2. Each clause is composed of one or more test and one or more body. The clause

test is a classical condition expressed on observables that are objects abstracting a state of

the current context. Condition is used to specify conditions. The clause body is a dynamic

adaptation composed of two parts: places and changes. The place defines a variation point

in the FT-PLA’. The change defines the chosen variable components(s), which should not

violate feature constraints of the FT-FM’. To define the Observable concept, we have

specified a context model. This model describes from a high level of abstraction the

structure of the proposed fault tolerance mechanism itself. The goal is to enable the

fault tolerance mechanism to observe its own structure and behaviour at runtime and to

represent explicitly every entity that can be used as observables (to specify rules). The

context model, which can be regarded as an excerpt of the ArCMAPE conceptual model,

is illustrated in Figure 6.3.

In summary, Adjudicator, Executor, Selector, and AlternateService are specializations

of Service, which is composed by a set of operations (Operation). Each operation is spec-

ified by means of IOPEs (Inputs, Outputs, Preconditions, Effects) (Profile) and presents

a set of values for its quality of service attributes (QoS). The description of inputs and

outputs encompasses their data types (either primitive or composed types) and should

be based on a shared name convention (DataTypeDesc). A Reliable Requisition, defined

as a requisition sent by a client to ArCMAPE, is associated to client preferences (User-

Preferences), which is specified in terms of pre-defined weights for QoS (QoSWeight).

108 Caṕıtulo 6. ArCMAPE

Figure 6.2: An overview of the rule metamodel

Furthermore a reliable requisition is also described by means of IOPEs. This common

terminology is used by Selector to search for concrete alternate services (AlternateService)

by matching IOPEs, in particular, by analysing client requests and descriptions of the ser-

vices registered in the repository (Repository). Concrete alternate services are structured

in a NTuple, the input of the execution scheme (Executor). After service executions,

outputs are produced (AlternateRes). The alternate services and the results from their

executions are structured in a NTupeExecution. From a NTupeExecution, a syndrome,

the input to the adjudicator function consisting of at least the alternate outputs, is ex-

tracted (Syndrome) - Section 2.2.2. Given a syndrome, an adjudicator (Adjudicator) is

responsible for identifying the correct or most acceptable result (AdjudicatedResult), if

any.

Therefore, rules can be specified in terms of client preferences; number of alternate

services realizing a requisition; result data types that adjudicators are able to judge;

service descriptions; availability of adjudicators, execution schemes, and means to select

alternate services; and so on. For example, to avoid inconsistencies, we could specify

that credit card payment operations should always be invoked by means of a conditionally

sequential execution scheme and their results judged by acceptance tests.

The Fault Tolerance Level

The fault tolerance level, also called base-level or running system, encompasses the imple-

mentation of the FT-PLA’. Implementation of its common components are already pro-

vided (i.e. Executive, ExecutionMgr, AdjudicatorMgr and AltServiceSelectionMgr) (Fig-

6.2. ArCMAPE 109

Figure 6.3: An overview of the context model

ure 6.4). The variable features are usually dependent on the domain - e.g. an adjudicator

able to judge an application specific data type; an execution scheme to invoke SOAP (or

JAVA RMI) services; and a set of alternate services realizing an application specific task.

To support the variable features, ArCMAPE restricts the variability to adding and using

variant components at predefined places. The variant components should realise the tar-

get variable features. More specifically, variation points are represented by locations in

the FT-PLA’ where one or more plug-in components, i.e. variant components, may be

added [27].

At runtime, architectural variabilities are realised by specific choices of the variant

component. The underlying dynamic component framework itself has a registration in-

terface to give the variant component access to the framework through the registration of

the access interface [27]. Through registration, the variant components make themselves

known to the framework and, consequently, to ArCMAPE, which afterwards is able to

access functionality from the variants [2]. Under these circumstances, the combination

of a required access interface and a provided registration interface makes up the plug-in

location [27]. Figure 6.4 shows an excerpt of the FT-PLA model in order to highlight

the interface names, which were omitted in the previous figure (Figure 5.3) for the sake

of clarity. For instance, as illustrated in Figure 6.4, the plug-in locations are required

110 Caṕıtulo 6. ArCMAPE

interfaces (i.e. IR ExecuteAltService, textitIR AdjudicateResults, and IR SelectService).

As a consequence, the variant components should be connected to these locations through

their own provided interfaces. To fit, each variant component has to obey rules defined

by ArCMAPE.

Figure 6.4: An excerpt of FT-PLA

Excerpts of the Detailed Design of the FT-PLA

In Figures 6.5-6.8, we show excerpts of the detailed design of Executive, Execution-

SchemeMgr, AdjudicatorMgr, and AltServiceSelectionMgr. These components are based

on COSMOS* (Section 2.1.2). For instance, data types and exceptions are classes with

private attributes and get/set operations, containing only the information needed by other

components. Instances of data types and exceptions are used to exchange information

between architectural elements, thus providing information hiding of the implementation

classes [45]. Both packages br...spec.dataTypes and br...spec.excep were not specified by

the general structure of the COSMOS* implementation model (Figure 2.1). We refer

to the description of the context model (Figure 6.3) for further details on the specified

data types. The implementation models (i.e. the br...impl packages) have been omitted

from Figures 6.5-6.8 for the sake of clarity. Furthermore, each one of the components

(Executive, ExecutionSchemeMgr, AdjudicatorMgr, and AltServiceSelectionMgr) provide

meta-information by means of its I...Manager interface, as specified by COSMOS*.

The Executive component, illustrated in Figure 6.5, is responsible for orchestrating

the execution of a fault tolerance strategy. It provides an interface used to configure

the fault tolerance mechanism (the definePolicies(...) operation), and to execute a fault

strategy itself (the executeFaultTolerance(...) operation). It requires interfaces to manage

the selection of alternate services (IAdjucatorMgt), to execute alternate services (IExe-

cutionSchemeMgt), and to judge results from these alternate services (ISelectionMech-

6.2. ArCMAPE 111

anismMgt). These required interfaces are realised by, respectively AltServiceSelection-

Mgr, AdjudicatorMgr, and ExecutionMgr. The execution of the Executive component can

propagate exceptions to clients - the exceptions thrown by the execution of AltService-

SelectionMgr, AdjudicatorMgr, and ExecutionMgr. If an undeclared exception is caught

after the execution of these components, Executive throws an UndeclaredException to

clients. The UndeclaredException exception is used to allow us to attach failure seman-

tics to exceptions associated with exceptional conditions that were not anticipated by the

component’s specification. In this way, clients can also deal with the undeclared excep-

tions in a systematic way [168]. The execution of the Executive component can also throw

the SelectorNotAvailable, ExecutorNotAvailable and AdjudicatorNotAvailable, indicating

that the there is no variant components implementing, respectively, the required selector,

execution scheme and adjudicator.

Figure 6.5: Executive: An excerpt of its detailed design

The AltServiceSelectionMgr component, illustrated in Figure 6.6, is responsible for

managing the selection of alternative services. It defines a required interface, a varia-

tion point, called ISelectService. One or more variant components realising this required

112 Caṕıtulo 6. ArCMAPE

interface should be added. These variant components should provide concrete services

matching the profiles contained by reliable requisitions (Figure 6.3). The bindConcrete-

Service(...):... operation, from both ISelectionMechanismMgt and ISelectSerivce inter-

faces, raises the NoConcreteServiceException and InvalidRepositoryException exceptions,

indicating, respectively, that no1 services have been found and no repository has been

found. These exceptions are declared in these operation signatures. The description()

operation provides a description of the Selector plugged in.

Figure 6.6: AltServiceSelectionMgr: An excerpt of its detailed design - Extension Points
(required interfaces)

The ExecutionSchemeMgr component, illustrated in Figure 6.7, is responsible for man-

aging the execution of alternate services give a ReliableRequisition and a NTuple. It de-

fines a required interface, a variation point, called IExecuteAltService. One or more variant

components realising this required interface should be added. These variant components

should execute the target alternate services in order to obtain their results and return

the respective NTupeExecution. The executeAltServices(..) operation, from both IExe-

cutionSchemeMgt and IExecuteAltService interfaces, raises the TimeOutException, and

ServicesNotAvailableException exceptions, indicating, respectively, that no services have

executed within the time allotted and no services were available. These exceptions are

1Notice that if at least one service has been found, depending on the adjudicator, a correct result
might still be identified, consequently no exception should be thrown under this circumstance.

6.2. ArCMAPE 113

declared in these operation signatures. The description() operation provides a description

of the execution scheme, or Executor, plugged in.

Figure 6.7: ExecutionSchemeMgr: An excerpt of its detailed design - Extension Points
(required interfaces)

The AdjudicatorMgr component, illustrated in Figure 6.8, is responsible for manag-

ing the adjudication of results returned from the execution of alternative services. It

defines a required interface, a variation point, called IAdjucateResults. One or more

variant components realising this required interface should be added. These variant com-

ponents should find out a AdjudicatedResult, if any, given a Syndrome. The adjudicate(..)

operation, from both IAdjucatorMgt and IAdjudicateResults interfaces, raises the NoAd-

judicatedResultException and InternalErrorException exceptions, indicating, respectively,

that the adjudicator did complete processing, but was not able to find an adjudicated

result given the syndrome; and the adjudicator has not completed examining the alter-

nate results and an error occurred during adjudication (Figure 2.5). These exceptions are

declared in these operation signatures. The description() operation provides a description

of the Adjudicator plugged in.

The Adaptation Level

Unlike the FT-PLA, the adaptation level, or meta-level, is independent on the application,

thus it can be reused across different domains. The input for the execution of the adap-

tation logic consists of the assets from the knowledge base. These assets serve as a basis

for reasoning about the environment and determining a software fault tolerance technique

114 Caṕıtulo 6. ArCMAPE

Figure 6.8: AdjudicatorMgr: An excerpt of its detailed design - Extension Points (re-
quired interfaces)

suitable to the current context, if necessary. Therefore, the effort to design adaptation

logic explicitly is decreased. The adaptation level, which is already implemented, relies

on an autonomic control loop [82], for instance, the MAPE-K loop (Section 2.3).

The Monitor Component updates run-time objects related to the context model (Fig-

ure 6.3) when relevant changes appear in the running system’s execution context. Details

from the base-level are collected through Sensors. Sensors should log any significant

changes that appear in the running system (e.g. addition/removal of components). For

instance, when software components are removed, the Monitor is in charge of disabling

selection of its related features to avoid inconsistencies. On the other hand, when soft-

ware components are added, a software engineer is in charge of keeping the knowledge

base up-to-date. In particular, Monitor monitors QoS values of software components im-

plementing the variable features, including the alternate services. Monitor also computes

the utility of the functional variable features based on pre-defined weights for QoS, as

follows.

We adopt the concept of sub-trees, denoted as ST , to group a collection of features with

a common (either identical or similar) functionality but possibly different QoS. These sub-

trees are automatically identified by analysing the FT-FM’. For example, in Figure 5.2(b),

we have two sub-trees: ST(String)={Majority, Consensus}, ST(Integer)={Mean, Me-

dian}. For each feature of a sub-tree (ST) is associated a QoS vector [q1, ..., qm] (e.g.

[availability, reliability, memory consumption, financial cost]). Suppose there are α QoS

6.2. ArCMAPE 115

values to be maximized and β QoS values to be minimized. The utility function for a

feature k in a sub-tree ST is defined as proposed by Yo and Lin [169]:

F (k)ST =
∑α

i=1 wi ∗ qai(k)−µai

σai
+

∑β
j=1 wj ∗ (1 −

qbj(k)−µbj

σbj
)

where w is the weight for each QoS parameter set by a client (0 < wi, wj < 1,
∑α

i=1 wi+
∑β

j=1 wj = 1, α + β = m). µ and σ are, respectively, the average value and the standard

deviation of the QoS attribute for all candidates in the ST sub-tree.

The Analyse Component selects the most suitable features if adaptation is required.

First, Analyse ensures that clients and applications requirements are addressed by exe-

cuting at runtime pre-defined ECA rules. Second, it selects a set of variable features that

present the highest utility value while satisfying feature constraints from the FT-FM.

More specifically, executing ECA rules might result in leaf features or features identifying

sub-trees. For example, in Figure 5.2(b), if a String adjudicator is selected, we identify

a sub-tree composed by Majority Voter and Consensus Voter, whereas if Consensus is

selected, we have a leaf feature. In the first case, it is necessary to find out the feature that

present the highest utility of the identified sub-tree. At this stage we handle unknown

changes since QoS values vary over time. We adopt a greedy algorithm to recursively find

out the most valuable feature of each sub-tree - a different maximization model could be

adopted.

Once we have identified the most valuable adjudicator, execution scheme and alter-

nate services in accordance with the predefined ECA-rules, if these features are different

from the ones encompassed by the currently running fault tolerance strategy, a dynamic

adaptation is required. As a consequence, the set of required features is passed to the

plan function.

The Plan Component identifies the set of software components to be (un)bound in

order to actually adapt the running system in agreement with the requisition sent by the

Analyse component. First, it dynamically generates a CVL resolution model (Figures 2.3)

in accordance with the set of required features. Subsequently, a new product model is

generated at runtime accordingly by executing CVL model-to-model transformation (see

example in Figure 6.4). By comparing the new product model with the reflection product

model, the plan function dynamically generates a change plan [68]. Models comparisons

are specified as follows. The TM and RM are defined as the set of, respectively, all

elements of the new model and all elements of the reflection model. The corresponding

configuration change, ∆C, is defined as a par (∆C⊕, ∆C⊖), such as, ∆C⊕ is the set of

all the elements of the new model that have no matching counterpart in the reflection

model, whereas ∆C⊖ is the set of all the elements of the reflection model that have no

matching counterpart in the new model [170]. Architectural components related to the

model elements belonging to the ∆C⊕ should be bound at runtime. On the other hand

architectural components related to the model elements belonging to the ∆C⊖ should be

116 Caṕıtulo 6. ArCMAPE

unbound at runtime. The ∆C⊕ and ∆C⊖ set are specified as follows:

∆C = (∆C⊕, ∆C⊖)

∆C⊕ := TM \ RM

∆C⊖ := RM \ TM

If (∆C⊕ = ∅ and ∆C⊖ = ∅), than no adaptation is required, otherwise it is necessary

to update the reflection model (RM = TM) [170]. The change plan, composed by ∆C⊕

and ∆C⊖, is logically passed to the Execute component.

The Execute Component generates reconfiguration scripts on the fly in accordance

with the adaptation plan in order to realize the causal connection between high-level

abstractions from the meta-level and the running system (base-level). Effectors execute

these scripts in order to finally instantiate the most adapted software fault tolerance

technique. In particular, effectors use APIs for introspection and reconfiguration provided

by the underlying dynamic component framework. To correctly handle the life-cycle of

the running components we adopt the topological sorting of command suggested in [68]:

components, which should be stopped, are stopped and then bindings are removed before

removing components. Components are added before adding bindings and components,

which should be (re-)started, are (re-)started.

The ArCMAPE Implementation

The ArCMAPE Implementation relies on Equinox, an implementation of the OSGi R4

core framework specification [171]. OSGi, also known as SOA in VM (virtual machine), is

a module system and service platform for the Java programming language that implements

a complete and dynamic component model [171]. The OSGi specifications enables a

development model where applications are (dynamically) composed of many different

(reusable) components. It also enables components to hide their implementations from

other components while communicating through services.

To simplify the component configuration and assembly, at the PLA implementation

level, we restrict the use of concrete types in favour of interfaces. In particular, common

components, through their variation points, depend on interface types. Implementations

of these interfaces are injected into the common component instances at runtime. As a

consequence, the plug-in components, i.e. variant components, know statically to which

variation points they have to connect, whereas the variation points, which provide the

connection facility, do not know the variant components statically. For instance, the meta-

level assumes the responsibility of locating and/or instantiating the variant components

and simply supplying them to the variation points when needed. Therefore, our imple-

mentation combines inversion of control and dependency injection to allow late binding

of variants [171]. We refer to the OSGi specification for further details on how the variant

components can make themselves known to the OSGi runtime environment [171], and,

6.3. Evaluation 117

consequently, to ArCMAPE.

Furthermore, Sensors and Effectors were implemented by means of APIs for introspec-

tion and reconfiguration provided by the OSGi platform [171]. Software components were

implemented according to COSMOS* [77]. At runtime, to bind software components in

the base-level, we employ a service locator, instead of traditional architectural connectors,

that are used to break a component’s dependency on component implementations. The

‘service locator’ is used by Effectors and acts as a simple run-time linker.

To programmatically and dynamically create CVL resolution models and invoke CVL

model-to-model transformation, we extended a headless (a non-GUI) CVL Eclipse Plug-

in. For product models comparisons, we use EMF Compare [172]. EMF Compare is a

comparison engine that compares any kind of models producing as results a diff and

a match model that specifies, respectively, the differences and the similarities between

the source and the target models [68]. ECA-based rules are defined and managed by

employing a rule engine, for instance, the JRuleEngine engine [173]. We modularize the

meta-level as an aspect, which intercepts the running system when a requisition is sent

by a client to ArCMAPE. For instance, we use Aspectj, an aspect-oriented extension for

the Java programming language [167].

6.3 Evaluation

To exemplify the use of the proposed solution and to assess its effectiveness, we present

two case studies.

6.3.1 E-credit

We present a case study, called e-credit, based on an enterprise application, described

in [166], that provides instant credit decisions for in-store purchases. Among other func-

tionalities of e-credit, we focus on the approval of credit line. When a customer in a

retail store wishes to purchase an expensive item, the store clerk offers the customer an

instant line of credit to make the purchase and pay later. If the customer is interested

in obtaining the line of credit, the customer’s information and a request for credit is sent

to the remote e-credit server for approval. E-credit, in turn, invokes remote web services

realizing the credit decision, which is based on the analysis of the customer’s credit card

records. This information can be purchased from multiple vendors at varying prices based

on volume. Different vendors employ different algorithms to make a credit decision. A

failure to make a decision could result in a customer not making a purchase or in ap-

proving a credit line that would have to be denied. To face software faults, we develop

the FT-e-credit, which leverages ArCMAPE to support FT-compositions. An excerpt of

118 Caṕıtulo 6. ArCMAPE

the high-level architecture of FT-e-credit is shown in Figure 6.9. ArCMAPE acts as an

architectural connector between e-credit and alternate services, used to implement fault

tolerance techniques.

Figure 6.9: An excerpt of the high-level architecture of FT-e-credit.

Related to ArCMAPE, besides its mandatory features, we taken into account (i) three

alternate services; (ii) three executions schemes (fully sequential, parallel and condition-

ally sequential ones); (iii) one majority voter able to judge Boolean data type; and (iv) one

computer run-time acceptance tests, which detects anomalous answers (e.g. timeout ex-

ceptions or undefined operation code) [1]. To have an executable instance of ArCMAPE,

we provide software components implementing these variable features. The target ad-

judicators were implemented based on pseudocode samples provided by Pullum [1]. To

implement the variant execution schemes, we reused the implementation provided by Chen

and Romanovsky [126] (Table 4.3). All these variant components were implemented in ac-

cordance with COSMOS* and were plugged in the base level. To implement the alternate

services we have adopted scripts in order to random generate 1 or 0 (i.e. credit requisition

has been approved or denied) and exceptions, for instance, undefined operation code [1].

The alternate services rely on the SOAP/WSDL protocol and were deployed in a remote

server.

We customized the FT-FM (Figure 5.2) and the FT-PLA (Figure 6.4) in accordance

with the target variable features. For instance, FT-FM-ecredit and FT-PLA-ecredit sup-

port 5 different software fault tolerance techniques, or products. To define the target

fault model, we taken into account a fault taxonomy for service-oriented architectures

defined by Bruning et al. [132], and general remarks about the target design solutions [1]

(Section 4.2.1). The target fault models includes discovery faults, including no service

found and timeout; and execution fault, including incorrect results, undefined operation

codes and time out. To calculate the utility of each one of the functional variable fea-

tures at runtime, we mocked the Monitor component implementation. For that, we

programmatically simulated changes in QoS of variable features, for instance, realiability,

6.3. Evaluation 119

memory consumption and financial costs. Changes on user preferences were also simu-

lated (weights for QoS). To programmatically simulate these inherent instabilities of a

real execution scenario is a sufficient condition to trigger dynamic adaptations.

We implemented a client application (a store) to send requisitions for credit decisions

to e-credit, which, in turn, invokes ArCMAPE. For instance, 5000 requisitions were sent

and the amount required was generated at random ($200 - $10000). Finally, we taken

into account one ECA rule, to know: if the amount of credit line required is greater than

$5000 then the alternate services should be executed in parallel or in a fully sequential

way and results obtained should be judged by the majority voter; otherwise the alternate

services should be executed in a conditionally sequential way and the results from services

should be judged by the acceptance test.

During adaptation processes on DSPLs, the cost to monitor the context data and exe-

cute plans in order to deploy new configurations can be considered fixed [174]. However, it

is critical to make the plan task as efficient as possible because it depends on the number

of variable features [174]. As a consequence, we measured the time required to generate

adaptation plans dynamically in order to analyse the overhead imposed by ArCMAPE to

support late variability. In Table 6.1, we present the approximate time obtained to (i)

execute each one of the target software fault tolerance techniques (which includes the time

required to execute the alternate services - about 10 ms); and (ii) generate adaptation

plans at runtime.

Table 6.1: Time overhead imposed by ArCMAPE (in milliseconds ms)

Activity Specification Mean Median St.Deviation # Executions

Tec. 1: Parallel + Majority + Alt. Services 1578.80 388.00 24566.26 902
Tec. 2: Fully Sequential + Majority + Alt. Services 1767.60 842.50 17202.45 889
Tec. 3: Parallel + ATs + Alt. Services 1597.594 409.00 24566.35 724
Tec. 4: Fully Sequential + ATs + Alt. Services 1829.58 863 17592.91 1002
Tec. 5: Conditionally Sequential + ATs + Alt. Services 453.36 445.6 176.15 1483
ArCMAPE: Generate Adaptation Plans Dynamically 82.58 73 38.93 2742

The median time required to generate adaptation plans at runtime is about 73 ms,

which tends to be very close to the mean time (82.58). The slowest and the highest

median time to execute a fault tolerance is, respectively, about 388 ms (Technique 1) and

846.00 ms (Technique 4). In the worst case, the median time to execute ArCMAPE is

about 18.04% of the time to execute a software fault tolerance technique (Technique 1).

Furthermore, the execution of the fault tolerance techniques might present higher values

for the standard deviation due to inherent instabilities of the Internet, as the alternate

services are available remotely. These results suggest that ArCMAPE does not introduce

an excessive time overhead.

120 Caṕıtulo 6. ArCMAPE

6.3.2 E-tour

We present a case study based on a web store for packages tour. Hereafter, we refer to

this study application as e-tour. The e-tour, among other functionalities, sales packages

for sightseeing. For transportation purposes, a tourist region is virtually divided into

sectors by defining concentric circles, or zones, taking into account clients’ interests. The

tour price is automatically calculated based on the size of the radius encompassed by

the zone a client is interested in. Under some circumstances, e-tour can automatically

offer substantial discounts to packages purchased at least in 3 days in advance. The

percentage discount can vary depending on the weather forecast for the places of interest.

In the case of bad weather some destinations should be avoided (e.g. scenic overlooks),

whereas packages for other destinations can benefit from a higher discount (e.g. museums

and castles).

To qualify for discounts, clients should register themselves in e-tour by providing,

among other information, a credit card number. The e-tour system invokes remote web

services realizing the three described functional requirements, to known: distance between

two zip codes, used to delimit zones, weather forecast, and credit card number validation.

A failure to get this information could result in (i) customers not purchasing a package

tour; (ii) in calculating prices and discounts improperly; or (iii) making difficult to create

new accounts. To face software faults we develop the FT-e-tour, which employ ArCMAPE

to support FT-compositions. An excerpt of the high-level architecture of FT-e-tour is

shown in Figure 6.10. ArCMAPE acts as an architectural connector between e-tour and

alternate services, used to implement fault tolerance techniques.

Figure 6.10: An excerpt of the high-level architecture of FT-e-tour.

6.3. Evaluation 121

To evaluate our solution within the scope of FT-e-tour, firstly, we identified multiple

alternate services adhering to the three described functional requirements. Second, we in-

vestigated whether the target alternate services are in fact able to tolerate software faults.

Third, we specify a family of software fault tolerance techniques supported ArCMAPE. We

also provide software components implementing the target variable features. Fourth, we

configure ArCMAPE accordingly and employ it to support the FT-e-tour (Figure 6.10).

Subsequently, we performed experiments to evaluate the overhead imposed by ArCMAPE

to support late variability.

Service Diversity Assessment

To implement FT-e-tour we leverage, for each required operation, three alternate services

that are cost-free, third-party, stateless, read-only and based on SOAP/WSDL (Section

2.1.1). Such alternate services were selected from online services repositories [113, 114]

and are representative of real scenarios (i.e. they are under control of third-parties and

available on the Web). As described in Section 3.2, for each one of the requirements,

its alternate services were executed under the same sequence of inputs. Based on the

analysis of the output space, we check, by means nonparametric statistical tests, whether

alternates are provided by different design and implementations [112]. Furthermore, for

each functional requirement, we estimated the reliability achieved by its single services

and by the FT-composition. In particular, we are interested in three-alternate voting

systems since this is the minimum number of alternates that allows a service composition

to tolerate faults from one of its services (Section 2.2.2). Outcomes from the investigation

of service diversity are summarized in Table 6.2.

For the three functional requirements, we conclude that their alternate services are in

fact diverse at the significance level α (α = 0.05). To employ FT-compositions leveraging

the target alternate services for credit card validation, weather forecast, and distance by

zip codes improve the overall reliability, when compared to its respective single non-fault-

tolerant services, in, respectively, 1.50%, 4.90%, and 1.30%. These outcomes suggest that

the target alternate services are efficient to tolerate software faults.

Configuration of ArCMAPE

Besides the mandatory features (Figure 5.2), we taken into account (i) one majority voter

able to judge Boolean data type; (ii) one formal voter able to judge whether integer

values are either identical or similar (i.e. values are within an acceptable range [1]); (ii)

one parallel execution scheme; (iii) one fully sequential execution scheme; and (iv) the

selected alternate services. We customized the FT-FM (Figure 5.2) and the FT-PLA

(Figure 5.3) accordingly by using the model-driven infrastructure for developing PLAs

122 Caṕıtulo 6. ArCMAPE

Table 6.2: Reliability measurements of single non-fault-tolerant services (Rel EstNF T Srv
)

and FT-Composition employing voters and the target alternate services (Rel EstF T SOAr
)

- the reliability estimator values are between 0 and 1.

Requirements Are services diverse? Rel EstNF T Srv
Rel EstF T SOAr

Reliability Gains (%)

v1 v2 v3

Credit Card Validation Yes 0.961 0.973 0.534 0.988 1.50%
Weather Forecast Yes 0.946 0.343 0.705 0.995 4.90%
Distance By ZIP Codes Yes 0.105 0.978 0.907 0.991 1.30%

(Section 5.2). The resulting assets are called as FT-FM-etour and FT-PLA-etour, for

simplicity. For instance, FT-FM-etour and FT-PLA-etour support 12 different software

fault tolerance techniques, or products.

To have an executable instance of ArCMAPE, we provide software components im-

plementing the target variable features by reusing existing solutions (Table 4.3). The

implementation of the formal voter is based on the pseudodoce provided by Abdeldjelil

et al. [143]. To implement the majority voter we leveraged the Java Comparable, as sug-

gested by Looker et al. [144]. To execute the target alternate services, we wrapped the

execution schemes provided by Chen and Romanovsky [58]. All these variant components

are based on COSMOS* and were plugged in the FT-FM-etour. To the best of our knowl-

edge only the solutions by Chen and Romanovsky [58] and by Goncalves and Rubira [33]

are available on the Web.

To define the target fault model, we taken into account a fault taxonomy for service-

oriented architectures defined by Bruning et al. [132], and general remarks about the

target design solutions [1] (Section 4.2.1). The target fault models includes discovery

faults, including no service found and timeout; and execution fault, including incorrect

results and time out. Furthermore, for this empirical study, we defined two ECA rules,

to know (i) credit card validation requires adjudicators able to judge Boolean data types;

and (ii) weather forecast and distance by zip codes requires adjudicators able to judge inte-

ger data type. We updated the ArCMAPE knowledge base by providing the FT-FM-etour

and FT-PLA-etour models and the ECA rules.

Overhead Imposed by ArCMAPE

To evaluate the overhead imposed by ArCMAPE to support feature-based runtime adap-

tations, we implemented a client application to send requisitions to FT-e-tour, which, in

turn, invokes ArCMAPE. For instance, 7000 requisitions were sent. The operation re-

quired by the client application (credit card validation, weather forecast or distance by zip

6.3. Evaluation 123

codes) is specified randomly. To calculate the utility of each one of the functional variable

features at runtime, we mocked the Monitor component implementation. For that, we

programmatically simulated changes in QoS of the target variable features, for instance,

reliability, memory consumption and financial costs. Changes on user preferences were

also simulated (weights for QoS). To programmatically simulate these inherent instabili-

ties of a real execution scenario is a sufficient condition to trigger dynamic adaptations.

To estimate the time and memory required to execute a software fault tolerance tech-

nique, we measured the time and memory taken to invoke the target alternate services.

The overhead imposed to judge results from the target alternate services can be consid-

ered fixed and presents low values (we employ voters able to judge simple data types). In

Figure 6.11 and Table 6.3 we illustrate, respectively, the approximate time and memory

required to (i) invoke the alternate services by employing different execution schemes;

and (ii) plan adaptations dynamically. For instance, in total, ArCMAPE adapted it-

self 2154 times to face changes in QoS related to the variable features. Each one of the

execution schemes represented in Figure 6.11 was invoked around 1000 times.

Figure 6.11: Execution Time (ms-milliseconds): DZ (Distance By Zip Codes), WF
(Weather Forecast), VC (Validate Credit Card), PE (Parallel Execution Scheme),
SE(Sequential Execution Scheme), ArCMAPE (specifically, time to execute the plan func-
tion)

As we can observe in Figure 6.11, the median time required to generate adaptation

124 Caṕıtulo 6. ArCMAPE

plans at runtime is about 70 ms. In half of the cases in which adaptations were performed,

the time required to generate the respective plans range of 50 ms to 80 ms. The lowest

25% of execution times range from 50 ms to 70 ms. The top 25% of the time values are

in the range of 80 ms to 100 ms with few exceptions (the outliers). As the median is

nearer to the lower quartile (Q1) it suggests that to support late variability maintains,

in the case, a low overhead cost. Furthermore, because the box is very thin relative to

the whiskers, it suggests that a very high number of cases are contained within a very

small segment of the sample. Consequently, the time required by ArCMAPE to generate

adaptations plans tend to be very close to the mean.

Contrary to the time required to execute the target alternate services sequentially,

the cost to execute them in parallel seems to be spread out over a large range of values.

The slowest median times obtained for alternate service executions is around 200 ms and

belongs to DZ.PE and WF.PE. The slowest execution time to invoke the services in

sequential and in parallel is, respectively, about 640 ms (DZ.SE) and 180 ms (DZ.PE).

On the other hand, the highest execution time to invoke the alternate services in sequential

and in parallel is, respectively, about 550000 ms (V C.SE) and 550000 ms (V C.PE) - we

have omitted values higher than 2000 ms for the sake of clarity. Finally, it is interesting to

notice that, in general, the time taken to execute services, even in parallel or in sequential,

varies more than the one required by ArCMAPE to generate plans at runtime. The time

to execute services also presents more extreme values that deviate significantly from the

rest of the sample. These results might be related to inherent instabilities of the Internet

- as the alternate services are available remotely.

As described in Table 6.3, ArCMAPE takes more memory to generate adaptation

plans than the amount required to execute the alternate services. For instance, the

mean and median memory consumed by ArCMAPE is about, respectively, 13, 67 MB

and 13, 49 MB. Furthermore, ArCMAPE presents higher values for standard deviations,

which suggest that the memory required to generate adaptation plans seems to be more

widely spread. To execute services use about 9 MB of memory. We could observe

by means of this empirical study that the highest amount of memory is consumed by

ArCMAPE during the execution of CVL model-to-model transformation.

Table 6.3: Memory Consumption (MB - Megabytes): DZ (Distance By Zip Codes),
WF (Weather Forecast), VC (Validate Credit Card), PE (Parallel Execution Scheme),
SE(Sequential Execution Scheme), ArCMAPE (specifically, time to execute the plan func-
tion)

DZ-PE WF-PE VC-PE DZ-SE WF-SE VC-SE ArCMAPE

Mean 8.50 9.58 9.60 8.50 9.52 9.58 13.67
Median 8.48 9.52 9.57 8.49 9.52 9.57 13.49
Standard Variation 0.071 0.15 0.13 0.073 0.068 0.10 2.70

6.4. Discussion 125

6.3.3 Study Limitations

In this section we discuss some limitations of our empirical studies based on categories of

validity threats presented by Wohlin et al. [75]. We identified possible threats to validity

and, whenever it is applicable, the measures we took to reduce the risks.

External Validity: We identified one major threat to external validity: the target

alternate services may not be representative of industrial practice since all of them are

based on simple functionalities. This risk cannot be completely avoided due to the lack of

functional requirements implemented by cost-free, functionally equivalent SOAP/WSDL-

based Web Services [57, 112]. Regarding such risk, since we were looking for evidence

on whether ArCMAPE imposes an excessive overhead to support late variability, the

complexity of service functionality would have no negative effect on our final conclusions,

because more complex systems usually take larger time to execute and consume more

memory.

Conclusion Validity: We identified one main threat to conclusion validity: the number

of employed variable features. Firstly, the low number of alternate services, as already

mentioned, cannot be completely avoided due to the lack of cost-free web services. To

mitigate this risk, we leveraged a number of different execution schemes and different

adjudicators. As a result, for e-credit and e-tour, we obtained, respectively, 5 and 12

different products, which is representative of this area of research [18, 62, 68, 175].

6.4 Discussion

For the e-tour, to execute an experiment to assess service diversity was essential to allow

us to improve the overall reliability by employing appropriate alternate services as part of

the FT-compositions. On the other hand, measuring service diversity was time-consuming

and a great deal of work. Nevertheless, while the empirical analysis of design diversity

was a hotly-debated topic in the mid-1980s and early 1990s [1], no alternative guidelines

to support diversity assessment so far have been proposed in the context of Web services.

Furthermore, outcomes from our previous work point out the efficiency of the employed

method [57, 133].

To specify a family of software fault tolerance techniques to develop FT-e-credit

and FT-e-tour was greatly facilitated by two main facts. First, a general feature model

and product line model was previously defined in order to identify commonalities and

variabilities among various software fault tolerance techniques (i.e. models in Figure 5.2

and Figure 5.3). Secondly, the employed models are supported by existing tools, identi-

fied by the proposed model-driven infrastructure for developing PLAs (Section 5.2). This

model-driven infrastructure further facilitates the execution of offline activities, as they

126 Caṕıtulo 6. ArCMAPE

are required when design models are leveraged at runtime [68] (e.g. modelling, validation

and evolution). Consequently, it was straightforward to specify customized models. Fur-

thermore, it is important to emphasize that the offline activities are required to guarantee

efficiency and correctness at runtime [68].

By instantiating ArCMAPE, we realized that the effects of changes, such as the re-

moval and addition of features, were localized. This mainly happened due to two rea-

sons. First, ArCMAPE explicitly supports well-defined extension points in which software

components implementing variable features can be plugged in. The explicit integration

of plug-in mechanisms in the PLAs reduces the effort for the composition of the final

products [2]. Second, ArCMAPE supports an explicit separation of concerns between the

adaptation and the fault tolerance logic. By reusing models from design time to automat-

ically generate adaptation plans at runtime is a suitable approach to decrease the effort

to design adaptation logic explicitly. Therefore, ArCMAPE supports maintainability and

flexibility of software fault tolerance techniques applied to SOAs.

Outcomes from the empirical studies suggest that ArCMAPE seems to introduce a

considerable overhead related to the memory usage when compared to the amount taken to

execute a fault tolerance technique. Nevertheless, it is important to notice that although

ArCMAPE implies in higher memory consumption, it does not impact negatively the

execution time. Furthermore, while the execution of the alternate services manipulates, for

instance, simple data types (i.e. Boolean, integer and string), the generation of adaptation

plans takes into account the feature model, the product line architecture and ECA rules.

Consequently, these results for memory consumption were already expected. Nevertheless,

to investigate eventual memory bottlenecks is a fundamental issue for future work.

In fact, we have already identified that the CVL model-to-model transformation is

the most costly function employed to generate adaptation plans dynamically. As already

mentioned, our solution reuses a third CVL implementation to generate product mod-

els [3]. Although we could employ more lightweight approaches to specify and generate

these models at runtime, CVL ensures that software variability is systematically defined

and resolved. To ensure the correctness of all abstraction models leveraged at runtime is

particularly critical issue for a solution that should protect against software design faults

instead of inserting new ones.

6.5 Related Work

We address work related to existing solutions for FT-compositions; and solutions for

DSPLs.

Solutions for FT-compositions

A systematic literature review of diversity-based solutions for FT-compositions has

6.5. Related Work 127

shown us the main drawbacks and contributions of these solutions. Firstly, some solu-

tions support only one software fault tolerance technique which is not customizable to

face changing requirements [144, 59, 36, 152, 141]. Secondly, even when authors claim

that their solutions can be customized, they not explicitly describe how to extend their

solutions, for example, what interfaces must be implemented when inserting a custom

adjudicator [40, 41, 147, 126, 33]. Furthermore, outcomes from the systematic litera-

ture review suggest that there is a lack of solutions able to manage the whole process of

building FT-compositions according to clients’ specific requirements. Our solution sup-

ports selection of alternate services, specification and design of software fault tolerance

techniques, and a framework to manage these techniques dynamically in accordance with

high-level policies and the current context.

Some solutions are able to face changing requirements at runtime by selecting and

executing the most appropriate software fault tolerance technique [34, 33, 126]. Never-

theless, these solutions do not considerer separation of concerns between adaptation and

fault tolerance logics. The solution by Zheng and Lyu [148, 56, 34] supports different fault

tolerance strategies and the authors described in detail a dynamic fault tolerance strategy

selection algorithm. Their selection algorithm could be incorporated into ArCMAPE in-

stead of selecting a software fault tolerance technique that maximizes the utility function.

Finally, it is important to emphasize that ArCMAPE is an extension of our very

preliminary solution for FT-compositions [40], which presents some drawbacks: (i) models

leveraged to runtime were specified in an ad hoc way, thus, it is difficult and error prone

to specify and validate them; (ii) fault tolerance and adaptation logics were not clearly

separated (e.g. the monitor component was employed at the base-level);(iii) adaptations

were defined by ECA rules (it might be not scalable [91]).

Solutions for DSPL

MADAM [176] leverages architectural models at runtime to reason about adaptation

and uses the adaptation capabilities offered by dynamic platforms to supports runtime

variability [176]. The EU MUSIC project [61] extends the solution developed in MADAM

to ubiquitous computing and SOA (e.g. to discover services dynamically). At this point,

our solution is similar to the MUSIC solution. Morin et al [68, 67] use model-driven engi-

neering (MDE) and aspect-oriented modelling techniques to support runtime variability

and dynamic generate product models. These solutions [68, 176, 61] also rely on models

comparisons to generate adaptation plans. Nevertheless, in our work, product models are

systematically and dynamically generated by CVL transformations.

Baresi and Pasquale [18] enriches Business Process Execution Language (BPEL) com-

positions with software variability by using CVL, which makes it possible to easily generate

a DSPL. They employ a dynamic version of BPEL, called DyBPEL, to manage and run

the DSPL. Ayora et al. [62] manage software variability at design time and runtime by

128 Caṕıtulo 6. ArCMAPE

using the CVL. Software variability is defined in business processes [62] and the authors

also describes how the base, variability and resolution models are leveraged at runtime

by a MAPE-K loop to adapt business processes. These solutions [18, 62] do not use CVL

transformation dynamically neither support comparisons between reflection and target

models.

6.6 Summary

Within distributed SOA applications, the bulk of the complexity is situated in the ap-

plication layer, and there will often remain design faults which eluded detection despite

rigorous and extensive testing and debugging [37]. Due to the low cost of reusing function-

ality equivalent services, or alternate services, several solutions based on design diversity

have been proposed to support fault-tolerant composite services, or FT-compositions.

Nevertheless, it is challenging to apply existing solutions for FT-compositions due to the

lack of capabilities to adapt themselves at runtime to cope with dynamic changes of (a)

user requirements and (b) the level of quality of services (QoS).

In this chapter we propose ArCMAPE, an DSPL infrastructure to support self-adap-

tation of FT-compositions in close accordance with high-level policies and the current

context. ArCMAPE allows leveraging a family of software fault tolerance techniques

based on design diversity at runtime and instantiates the most suitable one through dy-

namic management of software variability. The instantiation of suitable fault tolerance

techniques is achieved by means of feature-based runtime adaptations, thus the effort to

design adaptation logic explicitly is decreased. In this chaper, we provided a detailed

design of ArCMAPE in order to facilitate its reuse in practical settings. Furthermore, we

exemplified the use of the proposed solution and evaluated it by employing ArCMAPE to

support FT-compositions within two web applications: one for instant credit decisions,

and the other one for selling packages tour. Outcomes from these empirical studies sug-

gest that ArCMAPE (i) is efficient to support self- adaptation of fault-tolerant service

compositions; (ii) does not introduce an excessive overhead to dynamically adapt itself;

and (iii) is easily reused and customized to be used in practical settings. To the best of

knowledge, to employ (dynamic) software product line to support software fault tolerance

for service oriented systems is a novel solution.

In Chapter 7, we present the final conclusions of this thesis.

Caṕıtulo 7

Conclusões e Trabalhos Futuros

Neste caṕıtulo, apresentamos as conclusões desta tese (Seção 7.1), suas principais con-

tribuições (Seção 7.2) e publicações correspondentes (Seção 7.3). Por fim, discutimos

direções para trabalhos futuros (Seção 7.4).

7.1 Conclusões

Esta tese apresentou estudos emṕıricos, infraestruturas e métodos para apoiar o projeto e

implementação de sistemas confiáveis orientados a serviços que usam técnicas de tolerância

a falhas de software baseadas em diversidade de projetos. Em linhas gerais, serviços Web

funcionalmente equivalentes, aqui chamados de serviços alternativos, são estruturados em

composições de serviços que alavancam técnicas baseadas em diversidade de projetos para

tolerar falhas de software. A seguir, descrevemos com mais detalhes os desafios e soluções

apresentados nesta tese. As questões de pesquisa são apresentadas a seguir.

Questão de Pesquisa 1 (QP1) Como mensurar se serviços alternativos são diversos

e eficientes para tolerar falhas de software quando alavancados por técnicas baseadas em

diversidade de projetos?

Questão de Pesquisa 2 (QP2) Quais as implicações de se utilizar serviços alterna-

tivos para tolerar falhas de software?

Referente a QP1, propusemos uma infraestrutura, apresentada no Caṕıtulo 3, para

apoiar a organização e execução de estudos emṕıricos que visam investigar se um dado

conjunto de serviços alternativos são eficientes para tolerar falhas de software quando

executados por intermédio de técnicas de tolerância a falhas baseadas em diversidade de

projetos. A solução proposta encopassa diretrizes para analisar (i) se os serviços alter-

nativos são de fato providos por diferentes projetos; e (ii) a confiabilidade alcançada por

estes serviços quando estruturados em serviços compostos para tolerar falhas de software.

Utilizamos estas diretrizes para avaliar a diversidade de serviços alternativos baseados

129

130 Caṕıtulo 7. Conclusões e Trabalhos Futuros

em SOAP/WSDL e gratuitamente dispońıveis na Internet. Resultados obtidos apontam

a viabilidade e eficiência da solução proposta. Num segundo momento, para respon-

der a QP2, conforme descrito no Caṕıtulo 3, utilizamos esta infraestrutura num estudo

mais abrangente a fim de obtermos um maior entendimento das implicações de se utilizar

técnicas de diversidade de projetos para apoiar serviços compostos confiáveis. A partir

deste estudo, obtivemos evidências que sugerem que os benef́ıcios de se utilizar diversi-

dade de projetos para apoiar maiores ı́ndices de confiabilidade em sistemas orientados a

serviços não são tão triviais, embora sim, sejam alcançáveis (Seção 3.4).

Questão de Pesquisa 3 (QP3) Quais escolhas de projetos são apoiadas por soluções

existentes para composições de serviços tolerantes a falhas de software? Quais as principais

diferenças entre essas escolhas de projeto no que tange os requisitos de qualidade?

Realizamos um estudo sistemático, descrito no Caṕıtulo 4, que apoiou a classificação

das soluções existentes para composições de serviços tolerantes a falhas conforme uma

taxonomia, que lista as principais decisões de projetos e suas respectivas soluções de pro-

jeto referentes às diversas técnicas de tolerância a falhas de software (Seção 4.2). Além

disso, apresentamos algumas considerações no que tange as diferenças em termos de requi-

sitos de qualidade das diferentes soluções de projeto identificadas (Seção 4.2.1). A partir

dos resultados obtidos é posśıvel identificar mais facilmente as principais contribuições

e limitações das soluções existentes, bem como escolher soluções mais apropriadas para

diferentes contextos. Ademais, essa comparação das soluções de projetos pode ser útil na

concepção de modelos de falhas conforme as soluções escolhidas.

Questão de Pesquisa 4 (QP4) Como apoiar uma infraestrutura que acomode de

forma planejada diferentes técnicas de tolerância a falhas?

Como apresentado no Caṕıtulo 5, propusemos uma famı́lia de técnicas de tolerância

a falhas de software para apoiar serviços compostos confiáveis. É sabido que linhas de

produtos de software apoiam o reúso planejado e customização de produtos similares a

um custo razoável [28]. Em particular, os artefatos desta famı́lia foram especificados e

projetados de forma sistemática, consistente e coordenada mediante o uso de uma in-

fraestrutura dirigida por modelos para apoiar a implementação de arquiteturas de linhas

de produtos em geral. Como resultado, obtivemos a implementação de uma arquitetura

de linha de produtos que contempla o projeto de diferentes técnicas de tolerância a falhas.

Essa implementação inicial pode ser refinada a fim de apoiar técnicas de fato executáveis,

inclusive a partir da reutilização da implementação de soluções existentes.

Questão de Pesquisa 5 (QP5) Como apoiar de forma adequada uma infraestrutura

autoadaptiva que apoia a instanciação de técnicas diferentes de tolerância a falhas em

resposta a mudanças ocorridas no contexto?

Como descrito no Caṕıtulo 6, propusemos uma infraestrutura, baseada em linhas

de produtos de software dinâmicas, que apoia uma famı́lia de técnicas de tolerância a

7.2. Contribuições 131

falhas (Seção 6.2), de forma que a técnica mais adaptada seja instanciada em tempo de

execução conforme a percepção do contexto, incluindo mudanças nos requisitos de clientes

e flutuações nos valores de qualidade de serviços. Para apoiar a configuração dinâmica de

produtos, utilizamos o loop autonômico, tal que a técnica mais apropriada é instanciada

por intermédio de gerenciamento dinâmico de variabilidades de software (Seção 6.2). Os

estudos de caso e-credit (Secção 6.3.1), uma linha de aprovação de crédito online; e

do e-tour (Seção 6.3.2), uma loja virtual para vendas de pacotes tuŕısticos, mostraram

que a infraestrutura proposta é eficiente para apoiar composições de serviços confiáveis

e autoadaptativas e não implica em um overhead excessivo para apoiar gerenciamento

dinâmico de variabilidades de software.

A avalição das soluções propostas para responder às questões de pesquisas também

apontaram direções para trabalhos futuros, conforme descrito em detalhe na Seção 7.4.

7.2 Contribuições

As contribuições desta tese situam-se em algumas subáreas de engenharia de software a

saber: projeto e implementação de sistemas tolerantes a falha de software, em particular,

sistemas confiáveis orientados a serviços; estudos emṕıricos em engenharia de software;

desenvolvimento de sistemas de software dirigido a modelos; e projeto e implementação

de sistemas autoadaptativos. A seguir, apresentamos as contribuições principais e se-

cundárias desta tese. Apresentamos também outras contribuições não relacionadas ao

foco princial deste trabalho, no entanto, relacionadas a trabalhos desenvolvidos no grupo

de pesquisa em Engenharia de Software do IC-UNICAMP.

7.2.1 Contribuições Principais

As principais contribuições relacionadas ao trabalho desenvolvido são:

• Utilização de linhas de produtos de software para apoiar requisitos não-funcionais em

sistemas orientados a serviços. As soluções existentes baseadas em linhas de produtos

de software geralmente apoiam variabilidades em requisitos funcionais [18, 67, 69, 71,

62]. As soluções existentes para apoiar composições de serviços tolerantes a falhas

que alavancam técnicas baseadas em diversidade de projetos não apoiam requisitos

de reusabilidade e manutenção e não apoiam a adaptação dinâmica do mecanismo de

tolerância a falhas de forma adequada [36, 37, 38, 33, 58, 39, 34, 40, 41, 59]. Nesta tese,

apresentamos uma solução baseada em linhas de produtos de software, que explora a

variabilidade de software existente nas técnicas de tolerância a falhas e nas mudanças

ocorridas no ambiente de execução, para a implementação de composições de serviços

tolerantes a falhas e autoadaptativas.

132 Caṕıtulo 7. Conclusões e Trabalhos Futuros

• Um maior entendimento sobre as implicações de se utilizar técnicas baseadas em

diversidade de projetos para tolerar falhas de software de serviços (Caṕıtulo 3). As

soluções existentes para serviços compostos confiáveis que alavancam técnicas de to-

lerância a falhas baseadas em diversidade de projetos assumem, intrinsicamente, que

serviços alternativos são sempre eficientes para tolerar falhas de software. A partir

dos estudos emṕıricos que realizamos, constatamos que em algumas situações, con-

trariando o esperado, utilizar serviços simples pode gerar melhores resultados do que

adotar técnicas de diversidade de projetados. À vista disso, é extremamente impor-

tante selecionar um conjunto de serviços alternativos adequados para compor uma

composição de serviços efetivamente confiável. Embora existam estudos semelhantes

realizados nas décadas de oitenta e noventa [49, 50, 51, 52], seria complicado extra-

polar as conclusões desses estudos para o contexto de sistemas orientados a serviços,

que apresentam caracteŕısticas bastante peculiares. Este estudo foi posśıvel mediante

a utilização de um conjunto de diretrizes (Caṕıtulo 3) para avaliar o quão eficiente um

conjunto de serviços alternativos é para tolerar falhas de software.

• Uma solução abrangente que avança o estado da arte no que tange a concepção e im-

plementação de sistemas confiáveis orientados a serviços mediante o uso de técnicas

de tolerância a falhas de software baseadas em diversidade de projetos. A solução

proposta contempla desde a seleção de serviços funcionalmente equivalentes, que são

eficientes para tolerar falhas de software; até a especificação, projeto e implementação

de uma famı́lia de técnicas de tolerância a falhas; e instanciação dinâmica da técnica

mais apropriada conforme poĺıticas de alto ńıvel pré-definidas e percepção do con-

texto corrente. Até onde sabemos, não há uma solução na literatura que contemple

todas estas etapas relativas ao desenvolvimento de sistemas confiáveis orientados a

serviços [36, 37, 38, 33, 58, 39, 34, 40, 41, 59].

• Uma revisão sistemática das principais soluções de projeto apoiadas por soluções para

serviços compostos confiáveis que alavancam serviços alternativos para tolerar falhas

de software (Caṕıtulo 4). A partir da análise das soluções existentes para serviços

compostos confiáveis, identificamos de forma sistemática e efetiva suas principais con-

tribuições e limitações. Tais soluções, até então, eram descritas a partir de diferentes

contextos conceituais e técnicos, dificultando o seu entendimento e comparação. Nosso

estudo facilita a escolha de soluções mais apropriadas para determinados requisitos,

além de apontar direções para pesquisas futuras no que tange a concepção e desen-

volvimento de sistemas confiáveis orientados a serviços.

• Uma famı́lia de técnicas baseadas em diversidade de projetos para tolerar falhas de

software de serviços (Caṕıtulo 5). A linha de produtos proposta contempla tanto

requisitos de técnicas de tolerância a falhas baseadas em diversidade de projetos,

7.2. Contribuições 133

quanto requisitos inerentes a sistemas orientados a serviços. Ao adotar aborda-

gens de linhas de produtos, uma técnica que apoia a reutilização de forma estru-

turada e planejada [27, 87], obtivemos uma solução que apoia requisitos de extensão,

manutenção e evolução. Tais requisitos de qualidade são essenciais para sistemas ori-

entados a serviços, que em geral apoiam vários clientes, comumente com requisitos

conflitantes [17, 16]. Até onde sabemos, não há na literatura uma solução propondo

uma famı́lia de técnicas de tolerância a falhas para sistemas orientados a serviços.

• Uma infraestrutura dirigida por modelos para o desenvolvimento de arquiteturas de

linhas de produto (Caṕıtulo 5) Esta infraestrutura garante que modelos referentes à

concepção e desenvolvimento de arquiteturas de linhas de produtos são coordenados de

forma eficiente e são consistentes entre si. Além disso, a infraestrutura apoia um con-

junto de atividades, tipicamente executadas em tempo de projeto, que são essenciais

para garantir a corretude de arquiteturas de linhas de produto como: especificação de

modelos valendo-se de um apoio ferramental; validação de modelos; e transformação

automatizada de modelos de alto ńıvel de abstração para modelos de ńıvel de ab-

stração mais baixo [67]. No contexto deste trabalho, em particular, estas atividades

são particularmente importantes, pois aumentam a corretude de modelos que são uti-

lizados num processo de tolerar falhas de software. Caso todos estes modelos fossem

especificados e mantidos manualmente, poderia haver uma maior inserção de erros,

contrariando o propósito principal da solução. Além disso, a junção de ferramen-

tas e diretrizes num método sistemático para especificar e implementar arquiteturas

de linhas de produtos de forma semi-automatizada corresponde a uma contribuição

original.

• Uma infraestrutura baseada em linhas de produtos de software dinâmicas para apoiar

serviços compostos confiáveis e autoadaptativos que alavancam serviços alternativos

para tolerar falhas de software (Caṕıtulo 6). A infraestrutura para serviços compos-

tos confiáveis apoia soluções para os diferentes desafios de pesquisas inerentes aos

mecanismos autoaptativos para tolerância a falhas em geral, a saber: (i) separação de

interesses entre a lógica de adaptação dinâmica e a lógica de tolerância a falhas; (ii)

uso de modelos de abstração para facilitar a especificação do comportamento dinâmico

da estratégia de tolerância a falhas; (iii) configuração da estratégia de tolerância a fa-

lhas em tempo de execução em conformidade com alterações realizadas nos modelos de

abstração; e (iv) alterações dos modelos de abstração em conformidade com percepção

do contexto. Estas soluções foram propostas mediante utilização de linhas de produ-

tos de software dinâmicas. Em particular, foi utilizado um loop autonômico [82] para

gerenciamento dinâmico das variabilidades de software. Até onde sabemos, não há na

literatura mecanismos autoadaptativos de tolerância a falhas baseada em diversidade

134 Caṕıtulo 7. Conclusões e Trabalhos Futuros

de projetos para sistemas orientados a serviços que contemplam soluções para todos

estes desafios [36, 37, 38, 33, 58, 39, 34, 40, 41, 59].

• Uma solução abrangente para uma famı́lia de técnicas de tolerância a falhas baseadas

em diversidade de projetos para apoiar serviços compostos confiáveis. Considerando

a utilização conjunta da infraestrutura dirigida por modelos para implementar ar-

quiteturas de linhas de produtos e da infraestrutura para apoiar o gerencialmente

dinâmico de variabilidade de software, temos uma solução abrangente para especi-

ficar, implementar e executar uma famı́lia de técnicas para tolerar falhas de software

de serviços. Esta solução abrangente contempla desde atividades tipicamente exe-

cutadas em tempo de projeto, até tomadas de decisão em tempo de execução com

diretrizes de reúso, extensão e evolução é uma contribuição original no que tange à

concepção e desenvolvimento de sistemas confiáveis orientados a serviços.

7.2.2 Contribuições Secundárias

As principais contribuições secundárias relacionadas à esta tese são:

• Uma infraestrutura dirigida por modelos para linhas de produtos de software

dinâmicas. Embora a infraestrutura dirigida por modelos e a infraestrutura para

gerenciamento dinâmico de variabilidade de software tenham sido exemplificadas e val-

idadas no contexto de sistemas confiáveis orientados a serviços, é de suma importância

salientar que estas infraestruturas poderiam ser reutilizadas em outros domı́nios. Elas,

essencialmente, processam modelos estruturados, que poderiam conter caracteŕısticas

referentes a quaisquer outras linhas de produtos de software.

• Geração automática de planos de adaptação dinâmica em sistemas autoadaptativos

valendo-se de uma especificação sistemática de variabilidades arquiteturais. Até onde

sabemos, gerar planos de adaptação dinamicamente a partir da especificação e reso-

lução sistemática de variabilidades arquiteturais é uma contribuição original. Mais

especificamente, utilizamos CVL, uma linguagem genérica para especificação de varia-

bilidades de software, que apoia a geração automática de modelos de produtos em con-

formidade com uma configuração de caracteŕısticas. Embora algumas soluções diversas

existentes utilizem CVL para gerar modelos de produtos estaticamente [18, 62, 73, 163],

nossa solução inova ao gerar estes modelos também em tempo de execução. Cabe

ressaltar que CVL tem sido considerada pela OMG para se tornar uma linguagem

padrão de especificação de variabilidades de software.

7.3. Publicacações 135

7.2.3 Contribuições Não Relacionadas

As contribuições não relacionadas referem-se aos trabalhos relativos à área de pesquisa da

tese, mas que estão fora do seu foco principal. Essas contribuições não foram apresentadas

no contexto da tese e são descritas brevemente a seguir. As contribuição não relacionadas

consistem normalmente de trabalhos envolvendo outros membros do grupo de pesquisa

em engenharia de software do IC/UNICAMP.

• Variabilidade em tratamento de exceções em linha de produtos de software. Nesta

tese, focamos o uso de técnicas de tolerância a falhas de software baseadas em di-

versidade de software. A fim de aumentar a confiabilidade geral de um sistema de

software, é posśıvel utilizar, de forma complementar a estas técnicas, o tratamento de

exceções. Neste sentido, assim como exploramos variabilidades de software referentes

às diferentes técnicas baseadas em diversidade projeto, um outro trabalho do grupo

explorou variabilidades no que tange o comportamento excepcional de sistemas de soft-

ware [175]. Alguns resultados iniciais foram publicados no Workshop on Exception

Handling (WEH’12), em conjunto com ICSE.

• Uma infraestrutura para apoiar o tratamento de exceção coordenado em composições

de serviços. Também com a finalidade de aumentar a confiabilidade de sistemas orien-

tados a serviços, foi proposta uma infraestrutura que gerencia o tratamento de exceções

de forma coordenada em composições de serviços mediante a utilização de conceitos

de ações atômicas coordenadas [177]. Alguns resultados iniciais foram publicados no

5th Latin American Symposium on Dependable Computing Workshops (LADCW’11),

em conjunto com o LADC.

• Uma famı́lia de técnicas de monitoramento de atributos de QoS em Sistemas Ori-

entados a Serviços Este projeto tem como principal objetivo apoiar uma famı́lia de

técnicas de monitoramento de QoS em sistemas orientado a serviços. Para tanto, a

infraestrutura dirigida por modelos proposta nesta tese está sendo reutilizada para

apoiar o desenvolvimento da arquitetura correspondente à famı́lia de interesse. Além

disso, as diretrizes aqui seguidas para uma revisão sistemática foram reutilizadas a

fim de obtermos as principais contribuições e limitações no que se refere a soluções

existentes para monitoramento de QoS de serviços.

7.3 Publicacações

Trabalhos publicados no decorrer desta tese, ordenados pela relevância para a tese:

• Nascimento A.S.; Rubira, C. M. F.; Burrows, R.; Castor, F. A systematic review

of design diversity-based solutions for fault-tolerant SOAs. In: 17th International

136 Caṕıtulo 7. Conclusões e Trabalhos Futuros

Conference on Evaluation and Assessment in Software Engineering, 2013, Porto de

Galinhas, PE, Brazil.

• Nascimento A.S.; Castor, F.; Rubira, C. M. F; Burrows, R. An experimental setup

to assess design diversity of functionally equivalent services. In: 16th International

Conference on Evaluation & Assessment in Software Engineering, 2012, Ciudad Real,

Spain.

• Nascimento A.S.; Rubira, C. M. F.; Castor, F. ArCMAPE: A Software Product

Line Infrastructure to Support Fault-Tolerant Composite Services. 15th IEEE Inter-

national Symposium on High Assurance Systems Engineering, 2014, Miami, Florida,

USA.

• Nascimento A.S.; Castor, F.; Burrows, R.; Rubira, C.M.F. An Empirical Study

on Design Diversity of Functionally Equivalent Web Services. In: 7th International

Conference on Availability, Reliability and Security, 2012, Prague, Czech Republic.

• Nascimento A.S.; Rubira, C. M. F.; Burrows, R.; Castor, F. A Model-Driven

Infrastructure for Developing Product Line Architectures Using CVL. In: 7th Brazilian

Symposium on Software Components, Architecture, and Reuse., 2013, Braśılia, DF,

Brazil.

• Nascimento A.S.; Rubira, C. M. F.; Castor, F. Using CVL to Support Self-

Adaptation of Fault-Tolerant Service Compositions. In: Seventh IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, 2013, Philadelphia, USA.

• Nascimento A.S.; Rubira, C. M. F.; Lee, J. An SPL approach for adaptive fault

tolerance in SOA. In: 1st International Workshop on Services, Clouds and Alternative

Design Strategies for Variant-Rich Software Systems co-located with SPLC, 2011,

Munich, Germany.

• Nascimento A.S.; Castor, F.; Rubira, C. M. F. Identifying Modelling Dimensions

of a Self-Adaptive Framework for Fault-Tolerant SOAs - An Experience Report. In:

1st Workshop on Dependability in Adaptive and Self-Managing Systems co-located

with LADC, 2013, Rio de Janeiro.

• Nascimento A.S.; Castor, F.; Burrows, R.; Rubira, C.M.F. An Empirical Study

on Design Diversity of Functionally Equivalent Web Services. IC, UNICAMP, Tech.

Rep. IC-12-18, 2012.

• Nascimento A.S.; Rubira, C. M. F. Tolerância a Falhas em Linhas de Produto de

Software Baseadas em Serviços Web. V Workshop de Teses, Dissertações e Trabalhos

de Iniciação Cient́ıfica em Andamento IC-UNICAMP, 2009, Campinas, SP, Brazil.

(resumo)

7.4. Trabalhos Futuros 137

• Nascimento A.S.; Rubira, C. M. F. Especificação de uma abordagem sistemática

para gerenciar e implementar Linhas de Produtos Dinâmicas e baseadas em serviços

Web. V Workshop de Teses, Dissertações e Trabalhos de Iniciação Cient́ıfica em An-

damento IC-UNICAMP, 2009, Campinas, SP, Brazil. (resumo)

• Iizuka, B.; Nascimento A.S.; Tizzei, L.P.; Rubira, C. M. F.. Supporting the

evolution of exception handling in component-based product line architecture. In: 5th

International Workshop on Exception Handling co-located with ICSE, 2012, Zurich.

• Manzoni, R. J.; Nascimento A.S.; Rubira, C. M. F. WSCA-DRIP: An Infrastruc-

ture to Web Service Composition Actions. In: 5th Latin American Symposium on

Dependable Computing Workshops co-located LADC, 2011, São José dos Campos,

SP, Brazil.

7.4 Trabalhos Futuros

A seguir são listados alguns tópicos que podem dar continuidade a esta pesquisa:

• Um estudo para avaliar a eficiência de serviços REST funcionalmente equivalentes

para tolerar falhas de software. Este estudo teria como objetivo analisar se nossas prin-

cipais conclusões acerca das implicações de se utilizar serviços web alternativos para

tolerar falhas de software também se aplicam para serviços REST. A infraestrutura

proposta nesta tese (Caṕıtulo 3) poderia ser reutilizada nesta direção, modificando,

no entanto, os objetos de estudo.

• Extensão do ArCMAPE para que este possa apoiar uma famı́lia de estratégias de

monitoramento de atributos de qualidade de serviços (QoS). Conforme mencionado,

no momento, o componente de monitoramento do ArCMAPE é mocked (Seção 6.3.2).

No entanto, está sendo desenvolvido pelo grupo de pesquisa em engenharia de soft-

ware do IC/UNICAMP uma infraestrutura para apoiar uma famı́lia de estratégias de

monitoramento de QoS. Tal infraestrutura pode ser incorporada ao ArCMAPE.

• Estudos emṕıricos para avaliar a usabilidade das infraestruturas propostas. Foram

propostras três principais infraestruturas: para avaliar diversidade de serviços, para

projetar e implementar arquiteturas de linhas de produtos de software, e para apoiar

uma famı́lia de técnicas de tolerância a falhas, de forma que a técnica mais apropriada

seja dinamicamente instanciada conforme percepção do contexto. Poderia ser realizado

um estudo de caso no qual, a partir de diretrizes gerais de uso, um grupo de usuários

teria como objetivo projetar e implementar uma famı́lia de técnicas de tolerância a

falhas utilizando as três infraestruturas propostas. Possibilitando, assim, o estudo mais

efetivo da usabilidade de tais infraestruturas [75]. A usabilidade é a medida pela qual

138 Caṕıtulo 7. Conclusões e Trabalhos Futuros

um produto pode ser usado por usuários espećıficos para alcançar objetivos espećıficos

com efetividade, eficiência e satisfação em um contexto de uso espećıfico [75, 15].

• Uma solução de tolerância a falhas que contemple tanto técnicas de diversidade de

projetos, quanto tratamento de exceção. A nossa solução poderia ser estendida a fim

de apoiar variabilidades de software relativas a diferentes estratégias de tratamento

de exceção [175, 177]. Ao combinar técnicas baseadas em diversidade de projeto e

tratamento de exceção seria posśıvel apoiar maiores ı́ndices de confiabilidades em

sistemas orientados a serviços e maior flexibilidade do mecanismo de tolerância a falhas

como um todo. Cabe ressaltar que até o momento, conforme descrito no Caṕıtulo 6,

as exceções são simplesmente propagadas para os clientes. Um ponto de partida seria

inserir tais exceções no modelo contextual (Figura 6.3) e prover tratadores alternativos

para as mesmas.

• Estudos emṕıricos para analisar requisitos de qualidade (e.g. confiabilidade, tempo

de resposta, consumo de memória e disponibilidade) ao empregar diferentes técnicas

de tolerância a falhas de software baseadas em diversidade de projetos que executam

serviços alternativos. Nesta tese, assumimos que diferentes técnicas de tolerância a

falhas apresentam diferentes requisitos de qualidade, valendo-nos de estudos já exis-

tentes [1, 49, 50, 51, 52, 133]. Entretanto, seria bastante útil um estudo atual que

forneça um mapeamento adequado das técnicas mais apropriadas para diferentes pri-

oridades de requisitos de qualidade no contexto de sistemas orientados a serviços. Tal

estudo, facilitaria também a criação de modelos de falhas apropriados.

• Uma evolução da nossa solução a fim de apoiar a modularização de interesses

transversais. Para o projeto e implementação da arquitetura da famı́lia de técnicas

baseadas em diversidade de projetos para apoiar serviços compostos confiáveis, as va-

riabilidades de software são resolvidas a partir de componentes que podem ser plugados

em pontos pré-estabelecidos. Para tanto, não levamos em consideração os interesses

transversais. Tizzei et al. [178] propõem uma visão de caracteŕıstica orientada a as-

pectos que tem um papel complementar ao modelo de caracteŕısticas, ao permitir

analisar como as caracteŕısticas transversais afetam outras caracteŕısticas. Esta visão

de caracteŕısticas orientada a aspectos é então utilizada para guiar o projeto de uma

arquitetura de LPS baseada em componentes e aspectos. Dias et al. [71] propõem

uma extensão do modelo COSMOS* (Seção 2.1.2), chamado COSMOS*-VP, que visa

modularizar variabilidade arquitetural e caracteŕısticas transversais. Este modelo usa

técnicas de aspectos para apoiar a modularização e técnicas de componentes para

minimizar o acoplamento entre os módulos. Desta forma, ao refatorar nossa solução a

partir desta abordagem orientada a aspectos, seria posśıvel obter uma arquitetura que

seja mais facilmente evolúıda. Estudos emṕıricos deveriam ser realizados para analisar

7.4. Trabalhos Futuros 139

esta hipótese.

• Um ambiente integrado para desenvolvimento de arquitetura de linhas de produtos

dirigido por modelos. A infraestrutura dirigida por modelos que propusemos para de-

senvolver arquiteturas de linhas de produto de software engloba diferentes técnicas,

ferramentas e métodos (Caṕıtulo 5). Tal infraestrutura poderia ser bastante benefici-

ada se existisse um ambiente integrado para apoiar todas as atividades inclúıdas no

processo de desenvolvimento de arquiteturas de linhas de produtos. Este ambiente

facilitaria a especificação, validação e transformação de modelos, que também seriam

mais consistentes. Ainda, diminuiria a curva de aprendizagem de utilização da in-

fraestrutura, uma vez que não seria necessário aprender diversas técnicas e métodos

independentes.

• Uma solução para o desenvolvimento de linhas de produtos de software dinâmicas.

Embora uma das contribuições desta tese seja uma solução para projetar e implementar

linhas de produtos de software dinâmicas, esta solução foi descrita e validada de forma

marginal, uma vez que o foco principal da tese é uma solução para tolerância a falhas

em sistemas orientados a serviços. Neste sentido, valendo-se dos resultados e soluções

iniciais apresentados nesta tese, seria viável especificar uma solução abrangente para

apoiar linhas de produtos de software dinâmicas.

Referências Bibliográficas

[1] L. L. Pullum, Software fault tolerance techniques and implementation. Norwood,

MA, USA: Artech House, Inc., 2001.

[2] P. Sochos, M. Riebisch, and I. Philippow, “The feature-architecture mapping (farm)

method for feature-oriented development of software product lines,” in Proceedings

of the 13th Annual IEEE International Symposium and Workshop on Engineering

of Computer Based Systems (ECBS’06), March 2006, pp. 308 – 318.

[3] O. M. Group, “Welcome to the common variability language,” Last access:

September, 2013. [Online]. Available: 〈http://www.omgwiki.org/variability/doku.

php?id=start&rev=1351084099〉

[4] S. Dobson, S. Denazis, A. Fernández, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon,

F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of autonomic communications,”

ACM Transactions on Autonomous and Adaptive Systems, vol. 1, no. 2, pp. 223 –

259, 2006.

[5] S. Ferber, J. Haag, and J. Savolainen, “Feature interaction and dependencies: Mod-

eling features for reengineering a legacy product line,” in Proceedings of the 2nd

International Conference on Software Product Lines (SPLC’02), August 2002, pp.

235 – 256.

[6] P. Naur and B. Randell, Proceedings of the NATO software engineering conference.

Garmisch, Germany: Van Nostrand Reinhold, 1968.

[7] M. D. Mcilroy, “Mass produced software components,” Tech. Rep., October 1968.

[8] M. Anastasopoulos and C. Gacek, “Implementing product line variabilities,” in

Proceedings of Symposium on Software Reusability (SSR’01), May 2001, pp. 109 –

117.

[9] F. Bachmann, L. Bass, C. Buhman, S. C. Dorda, F. Long, J. Robert, R. Seacord,

and K. Wallnau, “Technical concepts of component-based software engineering,”

141

142 REFERÊNCIAS BIBLIOGRÁFICAS

Software Engineering Institute, Carnegie Mellon University, Tech. Rep. Technical

Report CMU/SEI-2000-TR-008, May 2000.

[10] C. Szyperski, Component software: Beyond object-oriented programming, 2nd ed.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[11] J. Hopkins, “Component primer,” Communications of the ACM, vol. 43, no. 10, pp.

27 – 30, 2000.

[12] L. Bass, P. Clements, and R. Kazman, Software architecture in practice, 2nd ed.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[13] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,”

ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40 – 52, 1992.

[14] P. A. Guerra, “Uma abordagem arquitetural para tolerância a falhas em sistemas de

software baseados em componentes,” PhD thesis, Institute of Computing, University

of Campinas, 2004.

[15] A. Geraci, IEEE standard computer dictionary: Compilation of IEEE standard com-

puter glossaries. Piscataway, NJ, USA: IEEE Press, 1991.

[16] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented

computing: State of the art and research challenges,” Computer, vol. 40, no. 11, pp.

38 – 45, 2007.

[17] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics and di-

rections,” in Proceedings of the 4th International Conference on Web Information

Systems Engineering (WISE ’03), December 2003, pp. 3 – 12.

[18] L. Baresi, S. Guinea, and L. Pasquale, “Service-oriented dynamic software product

lines,” Computer, vol. 45, no. 10, pp. 42 – 48, 2012.

[19] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic,

A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An architecture-based approach to

self-adaptive software,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 54 – 62, 1999.

[20] D. Galan, A. Wolf, and J. Kramer, Proceedings of the 1st ACM workshop on self-

healing systems. Charleston, SC, USA: ACM Press/Addison-Wesley Publishing

Co, 2002.

REFERÊNCIAS BIBLIOGRÁFICAS 143

[21] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,

N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein,

C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,

S. Malek, R. Mirandola, H. A. Muller, S. Park, M. Shaw, M. Tichy, M. Tivoli,

D. Weyns, and J. Whittle, “Software engineering for self-adaptive systems: A re-

search roadmap,” in Software Engineering for Self-Adaptive Systems, B. H. Cheng,

R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer Berlin Heidelberg,

2009, pp. 1 – 26.

[22] D. L. Parnas, “On the design and development of program families,” IEEE Trans-

actions on Software Engineering, vol. 2, no. 1, pp. 1 – 9, 1976.

[23] J. Van Gurp, J. Bosch, and M. Svahnbergm, “On the notion of variability in software

product lines,” in Proceedings of the Working IEEE/IFIP Conference on Software

Architecture (WICSA ’01), August 2001, pp. 45 – 54.

[24] K. C. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-oriented

domain analysis (foda) feasibility study,” Software Engineering Institute, Carnegie

Mellon University, Tech. Rep. Technical Report CMU/SEI-90-TR-21, November

1990.

[25] K. Czarnecki and U. W. Eisenecker, Generative programming: Methods, tools, and

applications. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,

2000.

[26] P. C. Clements and L. M. Northrop, Software product lines: Practices and patterns.

Boston, MA, USA: Addison Wesley Professional, 2002.

[27] K. Pohl, G. Böckle, and F. J. van der Linden, Software product line engineering:

Foundations, principles and techniques. Secaucus, NJ, USA: Springer-Verlag New

York, Inc., 2005.

[28] L. M. Northrop, “Sei’s software product line tenets,” IEEE Software, vol. 19, no. 4,

pp. 32 – 40, 2002.

[29] S. Thiel and A. Hein, “Systematic integration of variability into product line ar-

chitecture design,” in Proceedings of the 2nd International Conference on Software

Product Lines (SPLC’02), August 2002, pp. 130 – 153.

[30] S. Hallsteinsen, M. Hinchey, P. Sooyong, and K. Schmid, “Dynamic software product

lines,” Computer, vol. 41, no. 4, pp. 93 – 95, 2008.

144 REFERÊNCIAS BIBLIOGRÁFICAS

[31] A. S. Nascimento, C. M. F. Rubira, R. Burrows, and F. Castor, “A model-driven

infrastructure for developing product line architectures using cvl,” in Proceedings of

the 7th International Conferences on Self-Adaptative and Self-Organizing Systems

(SBCARS’13), September 2013, p. Accepted for publication.

[32] A. S. Nascimento, C. M. F. Rubira, and F. Castor, “Identifying modelling dimen-

sions of a self-adaptive framework for fault-tolerant soas - an experience report,”

in Proceedings of 1st Workshop on Dependability in Adaptive and Self-Managing

Systems (WDAS-LADC’13), April 2013, pp. 23 – 30.

[33] E. M. Gonçalves and C. M. F. Rubira, “Archmeds: An infrastructure for dependable

service-oriented architectures,” in Proceedings of the 17th IEEE International Con-

ference and Workshops on the Engineering of Computer-Based Systems (ECBS’10),

March 2010, pp. 371 – 378.

[34] Z. Zheng and M. R. Lyu, “An adaptive qos-aware fault tolerance strategy for web

services,” Empirical Software Engineering, vol. 15, no. 4, pp. 323 – 345, 2010.

[35] I. J. G. dos Santos and E. R. M. Madeira, “A semantic-enabled middleware for

citizen-centric e-government services,” IJIIT, vol. 6, no. 3, pp. 34–55, 2010.

[36] J. Gotze, J. Muller, and P. Muller, “Iterative service orchestration based on depend-

ability attributes,” in Proceedings of the 34th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA’08), September 2008, pp. 353–360.

[37] J. Buys, V. De Florio, and C. Blondia, “Towards context-aware adaptive fault tole-

rance in soa applications,” in Proceedings. of the 5th ACM International Conference

on Distributed Event-Based System (DEBS’11), July 2011, pp. 63 – 74.

[38] R. Dillen, J. Buys, V. Florio, and C. Blondia, “Wsdm-enabled autonomic augmen-

tation of classical multi-version software fault-tolerance mechanisms,” in Computer

Safety, Reliability, and Security, F. Ortmeier and P. Daniel, Eds. Springer Berlin

Heidelberg, 2012, pp. 294 – 306.

[39] A. Gorbenko, A. Romanovsky, V. Kharchenko, and O. Tarasyuk, “Dependability

of service-oriented computing: Time-probabilistic failure modelling,” in Software

Engineering for Resilient Systems, P. Avgeriou, Ed. Springer Berlin Heidelberg,

2012, pp. 121 – 133.

[40] A. S. Nascimento, C. M. F. Rubira, and J. Lee, “An spl approach for adaptive fault

tolerance in soa,” in Proceedings of the 15th International Software Product Line

Conference (SPLC’11), August 2011, pp. 1 – 8.

REFERÊNCIAS BIBLIOGRÁFICAS 145

[41] G. Kotonya and S. Hall, “A differentiation-aware fault-tolerant framework for web

services,” in Service-Oriented Computing, P. P. Maglio, M. Weske, J. Yang, and

M. Fantinato, Eds. Springer Berlin Heidelberg, 2010, pp. 137 – 151.

[42] M. R. L., Handbook of software reliability engineering. Hightstown, NJ, USA:

McGraw-Hill, Inc., 1996.

[43] P. A. Lee and T. Anderson, Fault tolerance: Principles and practice, 2nd ed. Se-

caucus, NJ, USA: Springer-Verlag New York, Inc., 1990.

[44] F. C. Gärtner, “Fundamentals of fault-tolerant distributed computing in asyn-

chronous environments,” ACM Comput. Surv., vol. 31, no. 1, pp. 1–26, March 1999.

[45] P. H. S. Brito, C. M. F. Rubira, and R. Lemos, “Verifying architectural variabili-

ties in software fault tolerance techniques,” in Joint Working IEEE/IFIP Confer-

ence on Software Architecture and European Conference on Software Architecture

(WICSA/ECSA’09), September 2009, pp. 231 – 240.

[46] J. C. Laprie, C. Béounes, and K. Kanoun, “Definition and analysis of hardware and

software-fault-tolerant architectures,” Computer, vol. 23, no. 7, pp. 39 – 51, 1990.

[47] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, “A program struc-

ture for error detection and recovery,” in Proceedings of an International Symposium

on Operating Systems: Theoretical and Practical Aspects, April 1974, pp. 171 – 187.

[48] W. R. Elmendorf, “Fault-tolerant programming,” in Proceedings of the 2nd IEEE

International Symposium on Fault Tolerant Computing (FTCS’2), June 1972, pp.

79 – 83.

[49] J. C. Knight and N. G. Leveson, “An experimental evaluation of the assumption

of independence in multiversion programming,” IEEE Transactions on Software

Engineering, vol. 12, no. 1, 1986.

[50] M. R. Lyu, J. H. Chen, and A. Avizienis, “Experience in metrics and measurements

of n-version programming,” International Journal of Reliability, Quality and Safety

Engineering, vol. 1, no. 1, pp. 41 – 62, 1994.

[51] V. Hilford, M. R. Lyu, B. Cukic, A. Jamoussi, and F. B. Bastani, “Diversity in

the software development process,” in Proceedings of the 3rd Workshop on Object-

Oriented Real-Time Dependable Systems (WORDS,97), February 1997, pp. 129 –

136.

146 REFERÊNCIAS BIBLIOGRÁFICAS

[52] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A.

Vouk, and J. P. J. Kelly, “An experimental evaluation of software redundancy as

a strategy for improving reliability,” IEEE Transactions on Software Engineering,

vol. 17, no. 7, pp. 692 – 702, 1991.

[53] M. A. Vouk, D. F. Mcallister, D. E. Eckhardt, and K. Kim, “An empirical evaluation

of consensus voting and consensus recovery block reliability in the presence of failure

correlation,” Journal of Computer and Software Engineering, vol. 1, pp. 364 – 388,

1993.

[54] T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Moulding, “Software fault

tolerance: An evaluation,” IEEE Transactions on Software Engineering, vol. SE-11,

no. 12, pp. 1502 – 1510, 1985.

[55] T. Mollerand and H. Schuldt, “Osiris next: Flexible semantic failure handling for

composite web service execution,” in Proceedings of the 4th IEEE International

Conference on Semantic Computing (ICSC’10), September 2010, pp. 212 – 217.

[56] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-oriented sys-

tems,” in Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering (ICSE’10), May 2010, pp. 35 – 44.

[57] A. S. Nascimento, C. M. F. Rubira, R. Burrows, and F. Castor, “A systematic

review of design diversity-based solutions for fault-tolerant soas,” in Proceedings

of the 17th International Conference on Evaluation and Assessment in Software

Engineering (EASE’13), April 2013, pp. 107 – 118.

[58] C. Yuhui and A. Romanovsky, “Improving the dependability of web services inte-

gration,” IT Professional, vol. 10, no. 3, pp. 29 –35, 2008.

[59] G. T. Santos, L. C. Lung, and C. Montez, “Ftweb: A fault tolerant infrastructure

for web services,” in Proceedings of the 9th IEEE International EDOC Enterprise

Computing Conference (EDOC ’05), September 2005, pp. 95 – 105.

[60] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and

principles,” IEEE Internet Computing, vol. 9, no. 1, pp. 75 – 81, 2005.

[61] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli,

and U. Scholz, “Music: Middleware support for self-adaptation in ubiquitous and

service-oriented environments,” in Software Engineering for Self-Adaptive Systems,

B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer Berlin

Heidelberg, 2009, pp. 164 –182.

REFERÊNCIAS BIBLIOGRÁFICAS 147

[62] C. Ayora, V. Torres, V. Pelechano, and G. H. Alférez, “Applying cvl to business

process variability management,” in Proceedings of the VARiability for You Work-

shop: Variability Modeling Made Useful for Everyone (VARY’12), September 2012,

pp. 26 – 31.

[63] K. H. Kim and T. F. Lawrence, “Adaptive fault tolerance: Issues and approaches,”

in Proceedings of the 2nd IEEE Workshop on Future Trends of Distributed Comput-

ing Systems (FTDCS’90), October 1990, pp. 38 – 46.

[64] A. Papageorgiou, T. Krop, S. Ahlfeld, S. Schulte, J. Eckert, and R. Steinmetz,

“Enhancing availability through dynamic monitoring and management in a self-

adaptive soa platform,” International Journal on Advances in Software, vol. 3, no.

3-4, pp. 434 – 446, 2011.

[65] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”

Communications of the ACM, vol. 15, no. 12, pp. 1053 – 1058, 1972.

[66] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow:

Architecture-based self-adaptation with reusable infrastructure,” Computer, vol. 37,

no. 10, pp. 46 – 54, 2004.

[67] B. Morin, “Leveraging models from design-time to runtime to support dynamic

variability,” PhD thesis, School for Mathematics, Computing, Signal, Electronics,

Telecommunications, University of Rennes, 2010.

[68] B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg, “Models@ run.time to

support dynamic adaptation,” Computer, vol. 42, no. 10, pp. 44 – 51, 2009.

[69] L. P. Tizzei, M. Dias, C. M. F. Rubira, A. Garcia, and J. Lee, “Components meet

aspects: Assessing design stability of a software product line,” Information and

Software Technology, vol. 53, no. 2, pp. 121 – 136, 2011.

[70] C. Ayora, V. Torres, V. Pelechano, and G. H. Alférez, “Applying cvl to business

process variability management,” in Proceedings of the VARiablity for You Work-

shop: Variability Modeling Made Useful for Everyone (VARY’12), September 2012,

pp. 26 – 31.

[71] M. O. Dias, L. Tizzei, C. M. F. Rubira, A. F. Garcia, and J. Lee, “Leveraging

aspect-connectors to improve stability of product-line variabilities.”

148 REFERÊNCIAS BIBLIOGRÁFICAS

[72] K. C. Kang, M. Kim, J. Lee, and B. Kim, “Feature-oriented re-engineering of legacy

systems into product line assets: a case study,” in Proceedings of the 9th Interna-

tional Conference on Software Product Lines (SPLC’05), September 2005, pp. 45 –

56.

[73] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, O. Haugen, B. Moller-

Pedersen, and G. K. Olsen, “Developing a software product line for train control: a

case study of cvl,” in Proceedings of the 14th International Conference on Software

Product Lines (SPLC’10), September 2010, pp. 106 – 120.

[74] K. B. and S. Charters, “Guidelines for performing systematic literature reviews

in software engineering,” Department of Computer Science, University of Durham,

Tech. Rep. Technical Report EBSE 2007-001, July 2007.

[75] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in software engineering: An introduction. Norwell, MA, USA:

Kluwer Academic Publishers, 2000.

[76] B. Randell, “System structure for software fault tolerance,” in Proceedings of the

1st International Conference on Reliable Software, April 1975, pp. 437 – 449.

[77] L. A. Gayard, C. M. F. Rubira, and P. A. C. Guerra, “Cosmos*: a component system

model for software architectures,” Institute of Computing, University of Campinas,

Tech. Rep. Technical Report IC-08-04, February 2008.

[78] X. Zhang, O. Haugen, and B. Moller-Pedersen, “Model comparison to synthesize a

model-driven software product line,” in Proceedings of the 15th International Soft-

ware Product Line Conference (SPLC’11), August 2011, pp. 90 – 99.

[79] M. Azanza, J. De Sosa, S. Trujillo, and O. Diaz, “Towards a process-line for md-

ple,” in 2nd International Workshop on Model-Driven Product Line Engineering

(MDPLE’10), June 2010, pp. 3 – 12.

[80] G. Chastek, P. Donohoe, J. D. McGregor, and D. Muthig, “Engineering a produc-

tion method for a software product line,” in Proceedings of the 15th International

Software Product Line Conference (SPLC’11), August 2011, pp. 277 – 286.

[81] A. P. Magalhaes, J. M. N. David, R. S. P. Maciel, B. C. Silva, and F. A. Silva, “Mod-

den: An integrated approach for model driven development and software product

line processes,” in Proceedings of 5th Brazilian Symposium on Software Components,

Architectures and Reuse (SBCARS’11), September 2011, pp. 21 – 30.

REFERÊNCIAS BIBLIOGRÁFICAS 149

[82] I. Corporation, “An architectural blueprint for autonomic computing,” Department

of Computing Science, University of Newcastle upon Tyne, Tech. Rep. n/a, October

2004.

[83] M. P. Papazoglou and W. J. Heuvel, “Service oriented architectures: Approaches,

technologies and research issues,” The International Journal on Very Large Data

Bases, vol. 16, no. 3, pp. 389 – 415, 2007.

[84] JAX-WS, “Jax-ws reference implementation,” Last access: December, 2011.

[Online]. Available: 〈https://jax-ws.dev.java.net〉

[85] L. Richardson and S. Ruby, Restful web services, 1st ed. O’Reilly, 2007.

[86] R. T. Tomita, F. Castor, P. A. d. C. Guerra, and C. M. F. Rubira, “Bellatrix:

An environment with arquitectural support for component-based development (in

portuguese),” in Proceedings of the 4th Brazilian Workshop on Component-Based

Development (WDBC’04), September 2004, p. 01 – 10.

[87] S. E. Institute, “Framework for software product line practive,” Last access:

September, 2013. [Online]. Available: 〈http://www.sei.cmu.edu/productlines/

framework.html〉

[88] H. Gomaa, Designing software product lines with UML: From use cases to pattern-

based software architectures. Redwood City, CA, USA: Addison Wesley Longman

Publishing Co., Inc., 2004.

[89] I. Jacobson, M. Griss, and P. Jonsson, Software reuse: architecture, process and

organization for business success. New York, NY, USA: ACM Press/Addison-

Wesley Publishing Co., 1997.

[90] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua,

D. Muthig, B. Paech, J. Wüst, and J. Zettel, Component-based product line en-

gineering with UML. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 2002.

[91] N. Bencomo, S. Hallsteinsen, and E. Almeida, “A view of the dynamic software

product line landscape,” Computer, vol. 45, no. 10, pp. 36 – 41, 2012.

[92] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation and availabil-

ity assurance techniques,” International Journal of Systems Assurance Engineering

and Management, vol. 1, no. 4, pp. 340 – 350, 2010.

150 REFERÊNCIAS BIBLIOGRÁFICAS

[93] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-

onomy of dependable and secure computing,” IEEE Transactions on Dependable

and Secure Computing, vol. 1, no. 1, pp. 11 – 33, 2004.

[94] M. Hiller, “Software fault-tolerance techniques from a real-time systems point of

view - an overview,” Department of Computer Engineering, Chalmers University of

Technology, Tech. Rep. Technical Report 98-16, November 1998.

[95] F. Saglietti, “The impact of voter granularity in fault-tolerant software on system

reliability and availability,” in Software Fault Tolerance, M. Kersken and F. Saglietti,

Eds. Springer Berlin Heidelberg, 1992, pp. 199 – 212.

[96] D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of multiversion

software subject to coincident errors,” IEEE Transactions on Software Engineering,

vol. SE-11, no. 12, pp. 1511 – 1517, 1985.

[97] B. Littlewood and D. R. Miller, “Conceptual modeling of coincident failures in

multiversion software,” IEEE Transactions on Software Engineering, vol. 15, no. 12,

pp. 1596 –1614, 1989.

[98] T. J. Shimeall and N. G. Leveson, “An empirical comparison of software fault to-

lerance and fault elimination,” in Proceedings of the 2nd Workshop on Software

Testing Verification and Analysis (WST’98), July 1998, pp. 180 – 187.

[99] P. Kruchten, The rational unified process: An introduction, 3rd ed. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[100] T. Wilfredo, “Software fault tolerance: A tutorial,” National Aeronautics and Space

Administration (NASA), Tech. Rep., 2000.

[101] A. Avizienis and L. Chen, “On the implementation of n-version programming for

software fault tolerance during execution,” in Proceedings of the 1st IEEE Inter-

national Computer Software and Applications Conference (COMPSAC), November

1977, pp. 149 – 155.

[102] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach to

reliability of software operation,” in Digest of papers of the 8th Annual International

Conference on Fault-Tolerant Computing, June 1978, pp. 21 – 23.

[103] L. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,

“Qos-aware middleware for web services composition,” IEEE Transactions on Soft-

ware Engineering, vol. 30, no. 5, pp. 311 – 327, 2004.

REFERÊNCIAS BIBLIOGRÁFICAS 151

[104] V. Alves, D. Schneider, M. Becker, and N. Bencomo, “Comparitive study of vari-

ability management in software product lines and runtime adaptable systems,” in

3rd International Workshop on Variability Modelling of Software intensive Systems

(VaMoS’09).

[105] L. Shen, X. Peng, J. Liu, and W. Zhao, “Towards feature-oriented variability re-

configuration in dynamic software product lines,” in Proceedings of the 12th Inter-

national Conference on Top Productivity through Software Reuse (ICSR’11), June

2011, pp. 52 – 68.

[106] F. Di Giandomenico and L. Strigini, “Adjudicators for diverse-redundant compo-

nents,” in Proceedings of the 9th Symposium on Reliability in Distributed Software

and Database Systems (SRDS’90), October 1990, pp. 114 –123.

[107] J. L. Gersting, R. L. Nist, D. B. Roberts, and R. L. van Valkenburg, “A comparison

of voting algorithms for n-version programming,” in Proceedings of the 24th Annual

Hawaii International Conference on System Sciences (HICSS’91), January 1991,

pp. 253 – 262.

[108] S. Setting, “An empirical study on design diversity of variant services,” Last

access: September, 2013. [Online]. Available: 〈https://sites.google.com/site/

variantservices2s11/home〉

[109] S. Siegel and N. J. Castellan, Nonparametric statistics for the behavioral sciences,

2nd ed. New York, NY, USA: McGraw–Hill, Inc., 1988.

[110] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via diversity for off-the-shelf

products: A study with sql database servers,” IEEE Transactions on Dependable

and Secure Computing, vol. 4, no. 4, pp. 280 – 294, 2007.

[111] D. Partridge and W. Krzanowski, “Software diversity: Practical statistics for its

measurement and exploitation,” Information and Software Technology, vol. 39,

no. 10, pp. 707 – 717, 1997.

[112] A. S. Nascimento, F. Castor, C. M. F. Rubira, and R. Burrows, “An experimental

setup to assess design diversity of functionally equivalent services,” in Proceedings

of the 16th International Conference on Evaluation and Assessment in Software

Engineering (EASE’12), May 2012, pp. 177 – 186.

[113] S. W. Services, “Seekda’s web services portal,” Last access: December, 2011.

[Online]. Available: 〈http://webservices.seekda.com〉

152 REFERÊNCIAS BIBLIOGRÁFICAS

[114] ProgrammableWeb, “Programmableweb repository,” Last access: September, 2013.

[Online]. Available: 〈http://www.programmableweb.com/apis/directory〉

[115] H. P. Luhn, “A statistical approach to mechanized encoding and searching of literary

information,” IBM Journal of Research and Development, vol. 1, no. 4, pp. 309 –

317, 1957.

[116] U. S. C. Bureau, “Us zip codes,” Last access: December, 2011. [Online]. Available:

〈http://www.census.gov/tiger/tms/gazetteer/zips.txt〉

[117] F. A. Bettelheim, W. H. Brown, and M. K. Campbell.

[118] I. O. for Standardization (ISO), “Iso/iec 7812-1:2006: Identification cards,” Last

access: December, 2011. [Online]. Available: 〈http://www.iso.org/iso/isocatalogue/

cataloguetc/catalogue/detail.htm?csnumber=39698〉

[119] G. Developers, “A google geocoding api,” Last access: September, 2013. [Online].

Available: 〈http://code.google.com/apis/maps/documentation/geocoding〉

[120] C. Money, “Cnn money,” Last access: September, 2013. [Online]. Available:

〈http://money.cnn.com/data/currencies〉

[121] E. Studies, “An experimental setup to assess diversity in soa,” Last

access: September, 2013. [Online]. Available: 〈https://sites.google.com/site/

assessingdiversityinsoa〉

[122] R. Project, “The r project for statistical computing,” Last access: September,

2013. [Online]. Available: 〈http://www.r-project.org〉

[123] D. S. Moore, The basic practice of statistics, 2nd ed. New York, NY, USA: W. H.

Freeman & Co., 1999.

[124] L. Chen, J. May, and G. Hughes, “Assessment of the benefit of redundant systems,”

in Computer Safety, Reliability and Security, S. Anderson, S. Bologna, and M. Felici,

Eds. Springer-Verlag London, 2002, pp. 151 – 162.

[125] A. Gorbenko, V. Kharchenko, and A. Romanovsky, “Using inherent service redun-

dancy and diversity to ensure web services dependability,” in Methods, Models and

Tools for Fault Tolerance, M. Butle, C. Jones, A. Romanovsky, and E. Troubitsyna,

Eds. Springer Berlin Heidelberg, 2009, pp. 324 – 341.

[126] C. Yuhui, “Ws-mediator for improving dependability of service composition,” PhD

thesis, Department of Computing Science, University of Newcastle upon Tyne, 2008.

REFERÊNCIAS BIBLIOGRÁFICAS 153

[127] F. Daniels, K. Kim, and M. A. Vouk, “The reliable hybrid pattern: a generalized

software fault tolerant design pattern,” in Proceedings of the 4th Conference of

Patter Languages of Programming Conference (PloP’97), September 1997, pp. 1 –

9.

[128] K. H. Kim, “Distributed execution of recovery blocks: An approach to uniform

treatment of hardware and software faults,” in Proceedings of 4th the International

Conference on Distributed Computing Systems (ICDSC’84), May 1984, pp. 526 –

532.

[129] R. K. Scott, J. W. Gault, and D. F. Mcallister, “Fault-tolerant software reliability

modeling,” IEEE Transactions on Software Engineering, vol. SE-13, no. 5, pp. 582

– 592, 1987.

[130] D. F. McAllister and M. A. Vouk, “Fault-tolerant software reliability engineering.”

[131] R. B. Broen, “New voters for redundant systems,” Journal of Dynamic Systems,

Measurement, and Control, vol. 97, no. 1, pp. 41 – 45, 1975.

[132] S. Bruning, S. Weissleder, and M. Malek, “A fault taxonomy for service-oriented

architecture,” in Proceedings of the 10th IEEE High Assurance Systems Engineering

Symposium, 2007, pp. 367–368.

[133] A. S. Nascimento, F. Castor, C. M. F. Rubira, and R. Burrows, “An empirical study

on design diversity of functionally equivalent web services,” in Proceedings of the

7th International Conference on Availability, Reliability and Security (ARES’12),

August 2012, pp. 236 – 241.

[134] J. Arlat, K. Kanoun, and J. C. Laprie, “Dependability evaluation of software

fault-tolerance,” in Digest of Papers of the 18th International Symposium on Fault-

Tolerant Computing (FTCS’18), June 1988, pp. 142 – 177.

[135] D. M. Blough and G. F. Sullivan, “A comparison of voting strategies for fault-

tolerant distributed systems,” in Proceedings of the 9th Symposium Reliable Dis-

tributed Systems (SRDS’09), October 1990, pp. 136 – 145.

[136] B. J. Williams and J. C. Carver, “Characterizing software architecture changes: A

systematic review,” Information and Software Technology, vol. 52, no. 1, pp. 31–51,

2010.

[137] E. S. F. Cardozo, J. B. F. Araújo Neto, A. Barza, A. C. C. França, and F. Q. B.

da Silva, “Scrum and productivity in software projects: a systematic literature

154 REFERÊNCIAS BIBLIOGRÁFICAS

review,” in Proceedings of the 14th International Conference on Evaluation and

Assessment in Software Engineering (EASE’10), April 2010, pp. 131 – 134.

[138] M. Jorgensen and M. Shepperd, “A systematic review of software development cost

estimation studies,” IEEE Transactions on Software Engineering, vol. 33, no. 1, pp.

33 – 53, 2007.

[139] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-company

cost estimation studies: A systematic review,” IEEE Transactions on Software En-

gineering, vol. 33, no. 5, pp. 316 – 329, 2007.

[140] B. A. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and

S. Linkman, “Systematic literature reviews in software engineering - a systematic

literature review,” Information and Software Technology, vol. 51, no. 1, pp. 7–15,

2009.

[141] E. Nourani, “A new architecture for dependable web services using n-version pro-

gramming,” in Proceedings of 3rd International Conference on Computer Research

and Development (ICCRD’11), March 2011, pp. 333 – 336.

[142] P. Townend, P. Groth, and J. Xu, “A provenance-aware weighted fault tolerance

scheme for service-based applications,” in Proceedings of the 8th IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05),

March 2005, pp. 258 – 266.

[143] H. Abdeldjelil, N. Faci, Z. Maamar, and D. Benslimane, “A diversity-based approach

for managing faults in web services,” in Proceedings of the IEEE 26th International

Conference on Advanced Information Networking and Applications, March 2012, pp.

81 – 88.

[144] N. Looker, M. Munro, and J. Xu, “Increasing web service dependability through

consensus voting,” in Proceedings of the 29th annual International Conference on

Computer Software and Applications (COMPSAC-W’05), July 2005, pp. 66 – 69.

[145] A. Gorbenko, V. Kharchenko, P. Popov, and A. Romanovsky, “Dependable com-

posite web services with components upgraded online,” in Architecting Dependable

Systems III, R. Lemos, C. Gacek, and A. Romanovsky, Eds. Springer-Verlag Berlin

Heidelberg, 2005, pp. 92 – 121.

[146] H. Mansour and T. Dillon, “Dependability and rollback recovery for composite web

services,” IEEE Transactions on Services Computing, vol. 4, no. 4, pp. 328 – 339,

2011.

REFERÊNCIAS BIBLIOGRÁFICAS 155

[147] N. Laranjeiro and M. Vieira, “Towards fault tolerance in web services compositions,”

in Proceedings of the 2nd International Workshop on Engineering Fault Tolerant

Systems (EFTS’07), September 2007, p. n/a.

[148] Z. Zheng and M. R. Lyu, “Ws-dream: A distributed reliability assessment mecha-

nism for web services,” in Proceedings of the International Conference on Dependable

Systems and Networks, June 2008, pp. 392 – 397.

[149] N. Faci, H. Abdeldjelil, Z. Maamar, and D. Benslimane, “Using diversity to design

and deploy fault tolerant web services,” in Proceedings of the 20th IEEE Interna-

tional Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-

prises (WETICE’11), June 2011, pp. 73 – 78.

[150] X. Jie, “Achieving dependability in service-oriented systems,” in Dependable and

Historic Computing, C. B. Jones and J. L. Lloyd, Eds. Springer Berlin Heidelberg,

2011, pp. 504 – 522.

[151] N. Milanovic and M. Malek, “Service-oriented operating system: A key element in

improving service availability,” in Proceedings of the 4th International Symposium

on Service Availability (ISAS ’07), May 2007, pp. 31 – 42.

[152] E. Nourani and M. A. Azgomi, “A design pattern for dependable web services using

design diversity techniques and ws-bpel,” in Proceedings of the 6th International

Conference on Innovations in Information Technology (IIT’09), December 2009,

pp. 290 – 294.

[153] R. Burrows, A. Garcia, and F. Taiani, “Coupling metrics for aspect-oriented

programming: A systematic review of maintainability studies,” in Evaluation of

Novel Approaches to Software Engineering, L. Maciaszek, C. Gonzalez-Perez, and

S. Jablonski, Eds. Springer Berlin Heidelberg, 2010, pp. 277 – 290.

[154] A. F. Garcia, C. M. F. Rubira, A. B. Romanovsky, and J. Xu, “A comparative

study of exception handling mechanisms for building dependable object-oriented

software,” Journal of Systems and Software, vol. 59, no. 2, pp. 197 – 222, 2001.

[155] A. Carzaniga, A. Gorla, and M. Pezze, “Handling software faults with redundancy,”

in Architecting Dependable Systems VI, R. Lemos, J. C. Fabre, C. Gacek, F. Gad-

ducci, and M. Beek, Eds. Springer-Verlag, 2009, pp. 148 – 171.

[156] H. H. Ammar, B. Cukic, A. Mili, and C. Fuhrman, “A comparative analysis of

hardware and software fault tolerance: Impact on software reliability engineering,”

Annals of Software Engineering, vol. 10, no. 1-4, pp. 103 – 150, 2000.

156 REFERÊNCIAS BIBLIOGRÁFICAS

[157] V. D. Florio and C. Blondia, “A survey of linguistic structures for application-level

fault tolerance,” ACM Computing Surveys, vol. 40, no. 2, pp. 6:1 – 6:37, 2008.

[158] C. Parra, X. Blanc, and L. Duchien, “Context awareness for dynamic service-

oriented product lines,” in Proceedings of the 13th International Software Product

Line Conference (SPLC’09), August 2009, pp. 131 – 140.

[159] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, and K. Pietroszek, “Model-

driven software product lines,” in Proceeding of the 20th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA ’05), October 2005, pp. 126 – 127.

[160] X. Zhang and B. Moller-Pedersen, “Towards correct product derivation in model-

driven product lines,” in Proceedings of the 7th International Conference on System

Analysis and Modeling: Theory and Practice (SAM’12), October 2012, pp. 179 –

197.

[161] C. W. Krueger, “Easing the transition to software mass customization,” in Soft-

ware Product-Family Engineering, F. van der Linden, Ed. Springer-Verlag Berlin

Heidelberg, 2002, pp. 282 – 293.

[162] I. R. Group, “Fama framework,” Last access: September, 2013. [Online]. Available:

〈http://www.isa.us.es/fama〉

[163] E. Rouille, B. Combemale, O. Barais, D. Touzet, and J. M. Jezequel, “Leveraging

cvl to manage variability in software process lines,” in Proceedings of the 19th Asia-

Pacific Software Engineering Conference (APSEC ’12), December 2012, pp. 148 –

157.

[164] T. Buchmann, A. Dotor, and B. Westfechtel, “Mod2-scm: A model-driven product

line for software configuration management systems,” Information and Software

Technology, vol. 55, no. 3, pp. 630 – 650, 2013.

[165] J. Cheesman and J. Daniels, UML components: A simple process for specifying

component-based software. Boston, MA, USA: Addison-Wesley Longman Publish-

ing Co., Inc., 2000.

[166] J. White, B. Dougherty, H. D. Strowd, and D. C. Schmidt, “Using filtered cartesian

flattening and microrebooting to build enterprise applications with self-adaptive

healing,” in Software Engineering for Self-Adaptive Systems, B. H. C. Cheng,

R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Springer Berlin Heidelberg,

2009, pp. 241 – 260.

REFERÊNCIAS BIBLIOGRÁFICAS 157

[167] L. Ramnivas, AspectJ in action: Enterprise AOP with spring applications, 2nd ed.

Greenwich, CT, USA: Manning Publications Co., 2009.

[168] F. Castor, P. A. C. Guerra, V. A. Pagano, and C. M. F. Rubira, “A systematic

approach for structuring exception handling in robust component-based software,”

Journal of the Brazilian Computer Society, vol. 10, no. 3, pp. 5 – 19, 2005.

[169] Y. Tao and L. Kwei-Jay, “Service selection algorithms for composing complex ser-

vices with multiple qos constraints,” in Proceedings of the 3rd International Confer-

ence on Service-Oriented Computing (ICSOC’05), December 2005, pp. 130 – 143.

[170] M. Rosenmuller, N. Siegmund, M. Pukall, and S. Apel, “Combining runtime adap-

tation and static binding in dynamic software product lines,” School of Computer

Science, University of Magdeburg, Tech. Rep. Technical Report FIN-02-2011, Febru-

ary 2011.

[171] O. Alliance, “Osgi - the dynamic module system for java,” Last access: September,

2013. [Online]. Available: 〈http://www.osgi.org/Main/HomePage〉

[172] Eclipse, “Eclipse modeling framework technology (emft),” Last access: September,

2013. [Online]. Available: 〈http://www.eclipse.org/modeling/emft/〉

[173] JRuleEngine, “Jruleengine – project description,” Last access: September, 2013.

[Online]. Available: 〈http://jruleengine.sourceforge.net〉

[174] G. Brataas, S. Hallsteinsen, R. Rouvoy, and F. Eliassen, “Scalability of decision

models for dynamic product lines,” in Proceedings of the 1st International Workshop

on Dynamic Software Product Lines (DSPL’07), September 2007, pp. 23 – 32.

[175] B. Iizuka, A. Nascimento, L. Tizzei, and C. Rubira, “Supporting the evolution of

exception handling in component-based product line architecture,” in Exception

Handling (WEH), 2012 5th International Workshop on, June 2012, pp. 62–64.

[176] K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hallsteinsen,

G. Horn, M. U. Khan, A. Mamelli, G. A. Papadopoulos, N. Paspallis, R. Reichle,

and E. Stav, “A comprehensive solution for application-level adaptation,” Software

– Practice and Experience, vol. 39, no. 4, pp. 385 – 422, 2009.

[177] R. de Jesus Manzoni, A. Nascimento, and C. Rubira, “Wsca-drip: An infrastruc-

ture to web service composition actions,” in Dependable Computing Workshops

(LADCW), 2011 Fifth Latin-American Symposium on, April 2011, pp. 29–32.

158 REFERÊNCIAS BIBLIOGRÁFICAS

[178] L. P. Tizzei, C. M. F. Rubira, and L. Jaejoon, “An aspect-based feature model

for architecting component product lines,” in Proceedings of the 38th EUROMI-

CRO Conference on Software Engineering and Advanced Applications (SEAA’12),

September 2012, pp. 85 – 92.

