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Abstract

Using personal traits for searching people is paramount in several application areas and

has attracted an ever-growing attention from the scientific community over the past years.

Some practical applications in the realm of digital forensics and surveillance include lo-

cating a suspect or finding missing people in a public space. In this work, we aim at

assigning describable visual attributes (e.g., white chubby male wearing glasses and with

bangs) as labels to images to describe their appearance and performing visual searches

without relying on image annotations during testing. For that, we create mid-level image

representations for face images based on visual dictionaries linking visual properties in

the images to describable attributes. First, we propose one single-level and one multi-

level approaches to solve simple queries (queries containing only one attribute). For both

methods, the first step consists of obtaining image low-level features either using a sparse

or a dense-sampling scheme. The characterization is followed by the visual dictionary

creation step in which we assess both a random selection and a clustering algorithm for

selecting the most important features collected in the first stage. Such features then feed

2-class classifiers for the describable visual attributes of interest which assign to each im-

age a decision score used to obtain its ranking. As the multi-level image characterization

involves combining the answers of different levels, we also propose some fusion methods

in this regard. For more complex queries (2+ attributes), we use three state-of-the-art

approaches for combining the rankings: product of probabilities, rank aggregation and

rank position. We also extend upon the rank aggregation method in order to take advan-

tage of complementary information produced by the different characterization schemes.

We have considered fifteen attribute classifiers and, consequently, their direct counter-

parts theoretically allowing 215 = 32, 768 different combined queries (the actual number

is smaller since some attributes are contradictory or mutually exclusive). Experimen-

tal results show that the multilevel approach improves retrieval precision for most of

the attributes in comparison with other methods. Finally, for combined attributes, the

multilevel characterization approach along with the modified rank aggregation scheme

boosts the precision performance when compared to other methods such as product of

probabilities and rank position.
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Resumo

Utilizar caracteŕısticas pessoais para procurar pessoas é fundamental em diversas áreas de

aplicação e nos últimos anos tem atráıdo uma atenção crescente por parte da comunidade

cient́ıfica com aplicações no campo da forense digital e vigilância tais como: localização

de suspeitos ou de pessoas desaparecidas em espaços públicos. Neste trabalho, objetiva-

mos utilizar atributos visuais descrit́ıveis (por exemplo, homens brancos com bochechas

em destaque usando óculos e com franja) como rótulos nas imagens para descrever sua

aparência e, dessa forma, realizar buscas visuais por conteúdo sem depender de anotações

nas imagens durante os testes. Para isso, criamos representações robustas para imagens

de faces baseadas em dicionários visuais, vinculando as propriedades visuais das ima-

gens aos atributos descrit́ıveis. Primeiro, propomos duas abordagens de caracterização

das imagens, uma de escala única e outra de múltiplas escalas para resolver consultas

simples (somente um atributo). Em ambos os métodos, obtemos as caracteŕısticas de

baixo ńıvel das imagens utilizando amostragens esparsas ou densas. Em seguida, sele-

cionamos as caracteŕısticas de maior repetibilidade para a criação de representações de

médio ńıvel baseadas em dicionários visuais. Posteriormente, treinamos classificadores

binários para cada atributo visual os quais atribuem, para cada imagem, uma pontuação

de decisão utilizada para obter sua classificação. Também propomos diferentes formas de

fusão para o método de descrição de múltiplas escalas. Para consultas mais complexas

(mais de dois atributos), avaliamos três abordagens presentes na literatura para combinar

ordens (rankings): produto de probabilidades, rank aggregation e rank position. Além

disso, propomos uma extensão do método de combinação baseado em rank aggregation

para levar em conta informações complementares produzidas pelos diferentes métodos.

Consideramos quinze classificadores de atributos e, consequentemente, seus negativos,

permitindo, teoricamente, 215 = 32 768 diferentes consultas combinadas. Os experimen-

tos mostram que a abordagem de descrição em múltiplas escalas melhora a precisão de

recuperação para a maior parte dos atributos em comparação com outros métodos. Final-

mente, para consultas mais complexas, a abordagem de descrição em múltiplas escalas em

conjunto com versão estendida do rank aggregation melhoram a precisão em comparação

com outros métodos de fusão como o produto de probabilidades e o rank position.
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Chapter 1

Introduction

A large set of applications takes facial attributes to identify people. An example is in

criminal investigation, when the police are interested in locating a suspect. In such cases,

typically eyewitnesses fill out a description form indicating personal traits associated with

the target as seen at the time when an event has happened [9]. Based on such descriptions,

action can be taken such as manually searching the entire image and video archive looking

for a person with similar descriptions. However, this search process has the disadvantage

of being time consuming and, often, inaccurate.

To date, most of the automated methods aiming at solving this problem rely on ex-

tracting image low-level features [2] and using such features to directly training classifiers

with the objective of identifying or detecting the person of interest [30].

Aligned with this trend, in this work we propose to analyze the images with a unified

mid-level representation for all associated textual description based on visual dictionaries

and fusion techniques. Our approach builds visual dictionaries for representing each facial

attribute important features, an approach inspired in the current computer vision and

image processing literature.

During the years, textual metadata seemed to be the main currency of most online

search engines. Notwithstanding, for the vast majority of images on the internet and in

private collections, the attached annotations are often ambiguous, incorrect, or simply

not present [30]. In this sense, it is paramount to design and deploy search methods with

the goal of automatically labeling images with no need for any associated metadata.

Given a database of face images and a user query comprising a set of attributes rep-

resenting the presence or absence of a visual feature (e.g., blond hair woman with bangs

wearing glasses), our objective is to retrieve an image subset from the database satisfying

each facial attribute contained in the query.

Some of the main challenges in this research include: defining a descriptor robust

enough to generalize visual attributes on images, for this we use visual dictionaries. Other

1
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1.2 Contributions

The main contributions achieved in this work are:

• We propose a novel representation of low-level features for face description based on

points of interest (PoIs) and in a common mid-level representation of such discrim-

inative features using the concept of visual dictionaries. The idea is to design and

deploy a characterization approach that captures nuances only in a low-level descrip-

tion (e.g., small variations in a local neighborhood) while also capturing higher-level

properties (e.g., mid-level features shared by images of the same category).

• We evaluate sparse and dense feature characterization processes before building

the visual dictionaries. The dense sampling-based method greatly improves the

description power of our methods when compared to the approach we proposed

in [12] based on sparse-based feature sampling which is also part of this dissertation.

• In the multilevel approach, we describe and classify the images in each of the scales

in the same fashion as for the single level, then we discuss several methods for

combining the different levels.

• With the visual dictionaries introduction and the dense-sampling approach, we

achieve significant improvements on the results in comparison to the results ob-

tained in the state of the art [30], our own prior work [12], and also a top-performer

texture descriptor in the literature [5, 41].

• In order to solve complex queries, we evaluate three methods to combine the different

ranked lists. The obtained results showed good performance in comparison to the

state of the art [30, 47]. In some cases, for multiple-attribute queries, we obtained

100% of precision in the top positions.

1.3 Organization of the Text

We organized the remainder of this work into five chapters: Chapter 2 explains the re-

lated work. Chapters 3 and 4 present our methods for solving single and complex queries,

respectively. Chapter 5 presents the experiments and the obtained results. Finally, Chap-

ter 6 presents the conclusions of our work.



Chapter 2

Related Work

Our work here can be regarded as a form of Content-based Image Retrieval (CBIR), in

which the content is limited to face images and the queries are describable attributes or

keywords related to the face. In this chapter, we present the related work to our research

in terms of objectives to be achieved. At the beginning, we detail the related researches

to searching for people through visual attributes. Then, we present the state-of-the-art

of the principal rank fusion techniques.

2.1 Searching for people through visual attributes

Several researchers have been conducted to improve the performance of people search

engines. Thus, currently being developed robust features to represent visual attributes

and advanced technologies to detect faces.

Several works have been done regarding face characterization. Early work on appearance-

based face verification [50] looked at the distance between pairs of images in a low di-

mensional subspace obtained using Principal Components Analysis (PCA). Variations in

pose, expression, and lighting cause significant difficulties in the face verification task. To

solve these problems, sometimes alignment, especially in 3D are used. Unfortunately, in

a real-world scenario, 3D alignment is difficult (expensive) [30]. The Fisherfaces work [3]

showed that linear discriminant analysis could be used for simple attribute classification

such as glasses/no glasses.

In computer vision, the use of attributes has recently been receiving much attention

from a number of different groups. Prior work on visual attributes has focused mainly on

ethnicity and on gender classification [7, 18]. Ferrari and Zisserman [16] were probably the

first ones to propose visual attributes as text labels that can be automatically assigned to

scenes, categories, or objects using machine learning techniques. Histograms of Oriented

Gradient (HoG) is the most commonly used to characterize visual attributes [28, 29, 30].

5



2.1. Searching for people through visual attributes 6

Color descriptors have also been used to represent visual attributes. In [1], the au-

thors discussed the main contributions of color to face recognition. Notwithstanding, the

authors concluded that color does not provide diagnostic information for face recognition,

this results were consistent with earlier reports [27]. However, color cues are not entirely

disregarded, they contribute significantly under degraded conditions [1]. In this work,

we do not evaluate color descriptors, because the images with which we conducted our

experiments are in good conditions.

In [28], the authors created the first image search engine based entirely on faces.

Using simple text queries such as “smiling men with blond hair and mustaches“, users

can search through over 3.1 million faces which have been automatically labeled on the

basis of several facial attributes. The proposed approach was based on a combination of

Support Vector Machines and Adaboost which exploits the strong structure of faces to

select and train on the optimal set of features for each attribute.

The work of Kumar et al. [29] describes two methods for face verification. The first

method - “attribute” classifiers - uses binary classifiers trained to recognize the presence

or absence of describable aspects of visual appearance (e.g., gender, race, and age). The

second method - “simile” classifiers - removes the manual labeling required for attribute

classification and instead learns the similarity of faces, or regions of faces, to specific

reference people. The authors evaluated their proposed methods with the Labeled Faces

in the Wild (LFW) dataset. Figure 2.1 depicts the results obtained by different attribute

classifiers for two images of the same person (a), and two images of the different persons

(b).

(a) (b)

Figure 2.1: Responses of different visual attribute classifiers for image of (a) the same
person, (b) different persons [29].
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In [12], a previous work of our own, we proposed a sparse characterization method

based on SURF [2] to extract low-level features and build visual dictionaries to represent

visual attributes.

The works proposed by Kumar et al. [30] and Park et al. [37] regarding combination

of textual and visual features are the most similar to ours. In [30], the authors explore

direct image pixel intensities, edge magnitude, and edge orientation features with and

without normalization for searching faces based on describable features. For dealing with

multiple attribute queries, the authors use product of probabilities. Figure 2.2 shows the

face verification pipeline proposed by the authors. In [37], the authors use soft biometric

traits (scars, marks, and tattoos) for speeding up face matching and narrowing down face

searching tasks. Additional research in describable visual attributes is also present in the

computer vision community [28, 29, 32].

Figure 2.2: The face verification pipeline using attribute and simile classifiers proposed
in [30].

Regarding the underlying objective, our method is similar to [30] and [37]. However,

the three methods have important differences. For instance, our method relies on a

mid-level image representation based on visual dictionaries which serve as a projection

space for the low-level features extracted from the faces. This projection space is more

discriminative in some situations as we shall discuss in the next sections. In addition, here

we explore the power of dense sampling characterization techniques as well as different

fusion methods.



2.2. Rank fusion techniques 8

2.2 Rank fusion techniques

For combining different decision scores towards a unified decision-making scheme, re-

searchers have proposed various approaches. In [44], the author proposed the Borda

count method and the Condorcet algorithm for combining documents. In Borda count

method, the highest ranked individual (in an n-way vote) gets n votes and each subse-

quent gets one vote less (so the number two gets n − 1 and the number three gets n − 2

and so on). Then, for each alternative, all the votes are added up and the alternative with

the highest number of votes wins the election. In the Condorcet election method, voters

rank the candidates in the order of preference. The vote counting procedure then takes

into account each preference of each voter for one candidate over another. The Condorcet

voting algorithm is a majoritarian method that specifies the winner as the candidate,

which beats each of the other candidates in a pair wise comparison.

Bayesian networks have also been explored for intelligent decision [47] as well as logical

operations (e.g., AND, OR), majority voting, summing decision scores [9], and behavior

knowledge space [31].

Recently, Scheirer et al. [48] have introduced techniques based on the statistical Ex-

treme Value Theory for constructing normalized “multi-attribute spaces” from raw clas-

sifier decision scores. The authors map each decision score (in its own domain) onto a

probability that the given attribute is present in the image. Following [48], in this work

we also normalize classifier decision scores and map them onto probabilities.

In addition to product of probabilities, in this work we used rank position [36] and

rank aggregation to combine different decision scores.

2.2.1 Rank position (reciprocal rank) method

In this approach, to merge the images into a unified list only the rank positions of retrieved

images are used. Retrieval systems determine the rank positions. When a duplicated

image is found, the inverse of its rankings are summed up, since the images returned by

more than one retrieval system might be more likely to be relevant. The following equation

shows the computation of the rank score of document i using the position information of

this image in all of the systems (j = 1...n).

r(di) =
1

∑

j 1/position(dij)
,

In this approach, first Rank Position score of each document to be combined is evalu-

ated, then using these rank position scores, documents are sorted in non-decreasing order.



2.2. Rank fusion techniques 9

Example. Suppose that we have four different retrieval systems A, B, C, and D with a

document collection composed of documents a, b, c, d, e, f , and g. Let us assume that for

a given query their top four results are ranked as follows:

A = (a, b, c, d)

B = (a, d, b, e)

C = (c, a, f, e)

D = (b, g, e, f)

Now, we compute the rank position of each document in the document list, and the

rank scores of the documents are as follows:

r(a) = 1/(1 + 1 + 1/2) = 0.4

r(b) = 1/(1/2 + 1/3 + 1) = 0.54, and so on

The final ranked list of documents is a > b > c > d > e > f > g, i.e., a is the document

with the highest rank, i.e., it is the top most document; b is the second document, etc.

2.2.2 Rank aggregation

Rank aggregation is a traditional approach which has been employed with this objective in

many applications [33]. Basically, rank aggregation approaches aim at combining different

rankings in order to obtain a more accurate one. More precisely, rank aggregation can be

seen as the task of finding a permutation that minimizes the Kendall-tau distance to the

input rankings. The Kendall-tau distance is defined as the sum over all input rankings of

the number of pairs of elements that are in a different order in the input ranking than in

the output ranking [46].

Recently, a rank aggregation method was proposed aiming at considering the relation-

ships among images being ranked in content-based image retrieval tasks. The RL-Sim

Algorithm [40] considers the similarity among ranked lists for analyzing the relationships

among objects.

In this work, we use the traditional rank aggregation as a voting system. First, we

evaluate which documents are in the first position in each one of the results. If a document

is in the first position in the most of the results, then, this document will appear in the

first position in our final ranked list. Next, we remove the document of our results and

we repeat the process until remove all documents.
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Example. Suppose that we have three different retrieval systems A, B and C with

a document collection composed of documents a, b, c,, and d. Let us assume that for a

given query their results are ranked as follows:

A = (a, b, c, d)

B = (a, c, b, d)

C = (b, c, a, d)

In this case, the document a is in the first position in the most of our results, so the

document a is removed of our results and will appear in the first position in our final list.

A = (b, c, d)

B = (c, b, d)

C = (b, c, d)

FinalList = (a)

Then, we repeat the same process until we remove all the documents in our results:

A = (c, d)

B = (c, d)

C = (c, d)

FinalList = (a, b)

A = (d)

B = (d)

C = (d)

FinalList = (a, b, c)

A = ()

B = ()

C = ()

FinalList = (a, b, c, d)



Chapter 3

Methods for Simple Queries

In order to solve the problem of searching people through textual and visual attributes,

the first step of our approach is to solve the problem for simple queries (e.g., queries

composed by only one attribute). Then, we can use different methods for combining

the results obtained for these queries and solve more complex searches. In this chapter,

we explain in detail our proposed methodology to solve this first step. We propose two

methodologies for solving simple queries: one single-level and one multilevel. Some of the

methods developed herein resulted in the publication [12].

3.1 Single Level

In this section, we explain how to solve simple queries using a single-level characterization

approach. Our proposal is based on three stages: image characterization, visual word

dictionaries and image classification.

3.1.1 Image Characterization

Assuming the facial images are, at least, roughly aligned, we use an algorithm for ex-

traction of points of interest to represent their visual content and to characterize their

surrounding regions. We extract “low-level” features related to the attribute of interest

from different face regions. The features we use provide the representation of visual con-

tent of a given image through a set of Points of Interest (PoIs) in the image. In this

sense, in [12], we used a sparse-sampling characterization approach based on the Speeded

Up Robust Features (SURF) algorithm [2]. Then, in [11], we extended upon our prior

work and used a dense-sampling characterization method for finding more discriminative

points for each attribute of interest.

11
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More specifically, we extract representative interest points in an image region using

either a sparse- or dense-sampling approach.

Sparse-sampling approach For the sparse-sampling approach, we extract points of

interest representing the visual content of an image through the same algorithm presented

in [12]. Here, the objective is to find scale-invariant interest points such that we have a

representation robust to some possible image transformations (e.g., rotations, scale, and

partial occlusions). In the specific context of faces, normally this is not a serious problem

since it is possible to roughly align faces based on eye distances. For finding such interest

points, we use the well-known SURF algorithm [2], whose four main steps are:

1. Feature Point Detection: In this stage, SURF uses a Hessian detector approxi-

mation and integral images [51] to speed up the involved operations.

2. Feature Point Localization: SURF uses the determinant of the Hessian for both

location and scale. To localize the interest points in the image across different scales,

the method performs nonmaximum suppression in a 3 × 3 × 3 neighborhood. The

determinant’s maxima of the Hessian matrix are then interpolated in scale and

image space.

3. Orientation Assignment: In order to be invariant to rotation, SURF calculates

the Haar-wavelet responses for both x and y directions within a circular neighbor-

hood of radius 6s around the interest point, with s = σ the scale at which the

interest point was detected. The dominant orientation is estimated by calculating

the sum of all responses within a sliding orientation window covering an angle of π
3

and the interest point gets the orientation of the longest calculated vector [2].

4. PoI Characterization: For the extraction of the descriptor, SURF constructs a

square region centered around the interest point and oriented along the orientation

selected in the previous stage. The region is split up regularly into smaller 4 × 4

square sub-regions and, for each sub-region, the method computes a Haar wavelet

responses at 5 × 5 regularly-spaced sample points. Finally, the wavelet responses

are summed up over each subregion and form a first set of entries to the feature

vector [2].

Dense-sampling approach For the dense-sampling approach, for each image, we ex-

tract the center point in a regular lattice of size 3×3 in the whole image with superposition.

Then we use SURF’s last two steps [2] (PoI Assignment and Characterization) to describe
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3.1.2 Visual Word Dictionaries

After extracting points of interest in the image, we compute a mid-level image represen-

tation using visual dictionaries for preserving the distinctiveness power of the descriptors

while increasing their generalization [8]. Basically, we select the most representative points

of interest according to the describable attribute of interest by means of either random

selection or clustering. The final set of selected points of interest represents a projection

space onto which the points of interest found in any image are projected creating its rep-

resentative feature vector. Given a set of ‘words’ from the visual dictionary, we find the

feature vector representing each image of the collection analyzing and assigning each of

its PoIs to the closest visual word in the dictionary, a process sometimes called projection

or hard assignment coding [4].

As previously mentioned, surely low-level features are not enough to fully represent

images of faces. When searching for a specific target, this discriminative power is ex-

tremely important. However, when searching for more complex categories, this high

discriminability is a problem since the ability to generalize becomes uppermost. As these

solutions are often designed for exact matching [34, 2], they do not translate directly

into good results for image classification. In this sense, we can use the concept of visual

vocabularies [8, 15, 25, 10] to increase the descriptor generalization.

When creating a visual vocabulary, each set of points of interest becomes a ‘visual

word’ of a ‘dictionary’. Searching for “senior people”, for instance, in a database of images

with faces, consists of selecting and creating a database of training examples comprising

training positive examples (i.e., faces of senior people) and negative images (i.e., faces of

non-senior people). The points of interest are calculated within the region of interest for

the attribute ‘senior’ (R2) as Figure 3.1 depicts.

After filtering the points of interest, we create a visual dictionary representing distinc-

tive features of images for each specific describable attribute either using random selection

of points of interest or using a clustering algorithm.

Here is another crucial detail of the methods we discuss in this work when compared

to traditional visual dictionaries approaches in the literature. To create the visual dictio-

nary, we set k
2

words to represent the presence of the describable attribute (e.g., senior

people) and k
2

for the absence of such attribute (e.g., non-senior people). Normally, in the

literature, a dictionary is created without class information (bag of words). Throughout

a series of experiments and also from previous experience of our group in other classifica-

tion problems [24, 42, 45], we have observed that, at least for binary visual classification

problems, the class-aware dictionary creation process is more effective.
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3.2 Multilevel Approach

In order to improve the characterization of the images and consequently the performance

of our attribute classifiers, we also propose a multilevel image characterization approach.

In this section, we explain this novel scheme to solve simple queries. Initially, our proposal

is similar to the single-level approach and also uses three steps: image characterization,

visual word dictionaries and image classification. However, as we now have different

answers for each level/scale, we need to combine them toward a final answer. For that, we

propose some combination methods taking into consideration the resulting lists produced

by the attribute classifiers across different scales.

3.2.1 Image Characterization

To characterize the images in a multilevel approach, we first need to extract the regions

according to each attribute as depicted in Figure 3.1. Then, we scale the regions in

different scales. In this work, we evaluate six scales: 0.5×, 0.75×, 1×, 1.5×, 2× and

2.5× and represent them respectively as Level 1, Level 2, Level 3, Level 4, Level 5 and

Level 6. Finally, for each region at each level, we describe the images using a sparse-

sampling approach in the same fashion that in a single level. We do not evaluate the

dense-sampling in the multilevel approach because it is too expensive. Figure 3.3 shows

the image characterization process in the multilevel approach.

3.2.2 Visual Dictionaries

Having created the descriptions for the images in the six scales, we build the feature vectors

for each image using the best dictionaries previously generated in a single level (i.e., for

each attribute, we simply use the dictionary created with points calculated with the

single-level characterization method). Figure 3.3 depicts how we use the best dictionaries

anteriorly created to generate a feature vector for each image at each level.

3.2.3 Image Classification

To classify the images in the different levels and generate a score for each image, we use

the best SVM models created in a single level (i.e., for each attribute, we simply use the

SVM classification model created with feature vectors created through the single-level

characterization method). Then, for each region, according to each attribute, we obtain

six different scores from each attribute classifier. Figure 3.3 shows the image classification

process in the multilevel approach.





3.2. Multilevel Approach 18

Figure 3.4: Ben Affleck.jpg - image obtained from PubFig dataset [29].

Table 3.1: Scores obtained by our attribute classifier for each one of the six levels.

Scores
Image Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Ben Affleck.jpg 0.01 0.56 0.59 0.89 0.94 0.97

the image belongs to the negative class). To obtain the final score using this method,

we simply average the scores of the winning class. For instance, if the number of scores

belonging to the positive class is greater or equal to the number of scores belonging to

the negative class, we average the scores belonging to the positive class. For the image in

Figure 3.4, most of the scores in Table 3.1 belong to the positive class (Level 2, Level 3,

Level 4, Level 5 and Level 6), then we averaged these scores. The final score is 0.79.

Majority Voting Best (MVB): Majority Voting Best is a variant of the previous

method. The main difference is that before counting the votes, we remove the three

closest values to 0.5 (decisions for which the classifiers are mostly in doubt). After that, we

perform the majority voting in the remaining three values. For the example in Table 3.1,

we remove the Level 2, Level 3 and Level 4, then we use the MV method only in the

Level 1, Level 5 and Level 6. By using this method, sometimes we remove votes with high

confidence, but even so, our experiments shown a good performance in comparison with

the other methods. The final score for this image using the MVB method is 0.64.

Weighted Fusion (WF): In this method, we weighted the scores using the confidences

obtained by each attribute classifier. First, we normalize the confidences by dividing each
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one of these by the sum of all confidences. Then, we multiply the normalized confidences

by the scores obtained in each level. Finally, we get the final score by adding all the

weighted scores. In our experiments, the confidences used for the attribute “male” were

as follows. Level 1: 0.744, Level 2: 0.806, Level 3: 0.834, Level 4: 0.804, Level 5: 0.818

and Level 6: 0.82. For the example above, the final score using the WF method is 0.67.

The classifier confidences are learned during training using a separated validation set.

MetaFusion (MF): In this method, we trained an SVM classifier using the six scores

obtained in each level as a feature vector. The classifiers are learned during training using

a separated validation set. Then, we evaluate the images using the classifiers previously

trained obtaining the final score. For our example, the final score is 0.73.

Average Fusion (AF): This method is the simplest of all. The final score is obtained

by averaging the scores of the different levels. In our example, the final score is 0.66. Note

that AF is a special case of WF in which all the weights are set to 1.

Finally, Table 3.2 shows the initial scores in the different levels and the final (combined)

scores obtained using the proposed methods for the example above.

Table 3.2: Initial and final scores obtained using the proposed methods.
Initial Scores Final Scores

Image Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 MV MVB WF MF AF

Ben Affleck.jpg 0.01 0.56 0.59 0.89 0.94 0.97 0.79 0.64 0.67 0.73 0.66



Chapter 4

Methods for Complex Queries

In order to solve complex queries (e.g., queries with more than one attribute), we combine

the classification confidence of different attribute classifiers such that the final ranking

refers to images in decreasing order of relevance regarding the query terms.

For solving a query such as “give me faces depicting a white woman with blond hair

wearing glasses and with bangs”, we fuse the scores given by each attribute classifier (a

rank for white people, a rank for non-male, a rank for blond hair, a rank for glasses and a

rank for bangs) to produce a ranking based on the combination of the attributes.

We consider three combination methods herein: product of probabilities, rank posi-

tion and rank aggregation computed over the scores of each individual attribute classifier.

In this chapter, we explain at length each of these methods. Most of the methods dis-

cussed in this chapter were published in [12] and then improved upon and submitted to

a journal [11].

4.1 Product of Probabilities

Given a query Q = {ap, ..., aq}, this method finds, for each image Ii in the database,

its scores in each rank rp, ..., rq, and multiply the values [30]. The Ii’s resulting scores

are then sorted in decreasing order. To prevent high confidence for one attribute from

dominating the search results, it is necessary to convert the confidences to probabilities.

We transform each score si in a new score s′

i ensuring that the difference between s′

i and

s′

i+1 is equal to the difference between s′

i+1 and s′

i+2. Figure 4.1 depicts an example of

rank fusion using product of probabilities before normalization aforementioned.

20
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4.3 Rank Aggregation

In this section, we explain the traditional rank aggregation algorithm which has been used

in our previous work [12] and we describe an extension to the RL-Sim Algorithm [40] for

combining ranked lists computed by different classifiers.

4.3.1 Traditional Rank Aggregation

Rank aggregation takes m different rankings of n candidates (possibly given by different

voters) and aggregate them in a single ranking. Kemeny [26] proposed an aggregation

mechanism that produces the global ranking that minimizes the number of inverted pairs

with the input rankings. The algorithm produces a Footrule-optimal aggregation that

minimizes the sum of the differences of the ranks.

4.3.2 Modified Rank Aggregation

LetA={a1, a2, . . . , an} be a set of attributes and let C={c1, c2, . . . , cn} be a set of classifiers

for each attribute. Let IC={img1, img2, . . . , imgN} be an image collection. Let pl(imgi)

be the probability assigned by the classifier cl to the image imgi.

We aim at combining the probabilities given by classifiers cl ∈ C, in order to compute a

combined ranked list τA. The ranked list τA=(img1, img2, . . . , imgns
) can be defined as a

permutation of the collection IC . A permutation τA is as a bijection from the set collection

IC onto the set [N ] = {1, 2, . . . , N}. For a permutation τA, we interpret τA(imgi) as the

position (or rank) of image imgi in the ranked list τA.

The ranked list τA is computed based on a similarity measure sim(·). We can say

that, if imgi is ranked before imgj in the ranked list τA (that is, τA(imgi) < τA(imgj)),

then the dissimilarity measure sim(imgi) ≥ sim(imgj). The rank aggregation algorithm

aims at defining the similarity measure sim(·) in terms of probabilities given by the set

of classifiers C.

The first step of the algorithm computes the similarity measure by multiplying the

classifiers probabilities, as follows:

sim(imgi) =
n

∏

l=1

pl(imgi) (4.1)

Given this initial similarity measure, we can obtain an initial ranked list τA. Since

the top positions of the ranked list τA represent the main region of interest, we apply

a second step which aims at improving the ranked list at top positions. We used an

approach inspired by the RL-Sim Algorithm [40] for analyzing the relationships among
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the images at the top NS
1 positions of the initial ranked list.

First, we compute a dissimilarity measure d(·, ·) between any two given images

imgi, imgj ∈ IC at the first top NS positions of τA (τA(imgi) ≤ NS), as follows:

d(imgi, imgj) = n

√

√

√

√

n
∏

l=1

1 + (pl(imgi) − pl(imgj))2 (4.2)

Given the computed dissimilarity measure, a ranked list τi is computed for each image

at the top NS positions of τA. We can say that, if imgx is ranked before imgy in the ranked

list of imgi (that is, τi(imgx) < τi(imgy)), then d(imgi, imgx) ≤ d(imgi, imgy). Given

two images imgi, imgj and their respective ranked lists τi, τj, a new and more effective

distance measure between the two images can be computed by considering the similarity

of ranked lists, at their top k positions2 [40].

An approach to computing the similarity between two ranked lists τi and τi proposed

in [13] is the intersection metric ψ, which measures the extent of overlap between τi and

τi. Equation 4.3 formally defines the intersection metric ψ:

ψ(τi, τj, k) =

∑k
kc=1 | kNN(imgi, kc) ∩ kNN(imgj, kc) |

k
, (4.3)

where kNN(imgi, kc) is a set of top kc images of the ranked list τi.

Finally, the top NS positions of the ranked list τA are updated according to a new

similarity measure computed for considering the similarity of top k ranked lists, as follows:

sim(imgi) = 1 +
sim(imgi)

∑k

j=1
ψ(τi,τj ,k)×(j−1)

∑k

j=1
(j−1)

(4.4)

Note that the term (j−1) aims at defining a higher weight for images at top positions

of the ranked list τi.

1We used NS = 200 in our experiments.
2We used k = 15 in our experiments.



Chapter 5

Experiments and Results

In this chapter, we present the experiments we performed to validate the approaches

we discuss in this work. In this work, we represent a query as a set of attributes

Q = {ap, ..., aq}. We consider 15 attributes: asian, bangs, bald, beard, black skin, black

hair, blond hair, chubby, glasses, gray hair, male, mustache, senior, white and youth and

represent them respectively as as, bg, ba, be, bl, bah, boh, ch, gl, gh, ma, mu, se, wh and

yo.

The absence of an attribute is shown with an overline (e.g., gl). For example, a query

that contains glasses, non-beard, and non-mustache is represented by Q = {gl, be,mu}.

Finally, the fusion functions F : Q → R product of probabilities, rank aggregation and

rank position are denoted respectively as Fproduct, Faggregation and Fposition.

In order to show the results in the same order in which we present our methods, we

divide this chapter into three sections: datasets, results for simple queries and results for

complex queries. First, we briefly explain the datasets used in our experiments. There-

after, we present in detail the experiments and the obtained results for both methods for

simple queries (Chapter 3) and for complex queries (Chapter 4).

5.1 Datasets

In this work, we performed our experiments using two datasets: Labeled Faces in the Wild

(LFW) [23] and Public Figures Face Database (PubFig) [29]. These datasets are the most

commonly used to evaluate visual attributes in the literature [12, 28, 29, 30, 47, 48]. We

used the LFW dataset to build the best dictionaries and train all the attribute classifiers.

Then, we used the PubFig dataset to evaluate the attribute classifiers using the best

dictionaries and the best models generated in the LFW dataset. This cross-dataset process

is another main contribution of this work since it presents a more robust way of comparing

different attribute classifiers in circumstances closer to real-world conditions.

24
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5.1.1 Labeled Faces in the Wild (LFW)

We used the Labeled Faces in the Wild (LFW) dataset [23] which comprises 13,000+ face

images with faces designed for unconstrained face recognition. Here we used an LFW

version whose images were aligned with funneling since it is not our purpose to validate

any face registration algorithm. We emphasize, however, that any eye location technique

(e.g., [21]) could be used to find the eyes in the images and perform eye-based geometric

alignment. In [12], we evaluated six attributes in this dataset (now extended to consider

the 15 of interest in this work), and we obtained good results in comparison with the

state-of-the-art [29]. In this dataset, we used 6,000 images to train all our attribute

classifiers and the remainder of the images to test. Thereby, we avoid the overlap when

combined attributes. Figure 5.1 shows three examples of the aligned images contained in

LFW dataset.

Figure 5.1: Examples of the aligned images contained in the LFW dataset.

5.1.2 Public Figures Face Database (PubFig)

The PubFig database [29] is a large, real-world face dataset comprising 58,797 images of

200 people collected from the internet. Unlike most other existing face datasets, these im-

ages are taken in completely uncontrolled situations with non-cooperative subjects. Thus,

there is large variation in pose, lighting, expression, scene, camera, imaging conditions

and parameters, etc.

We performed the experiments in 39,023 images from PubFig given that the authors

made available only a list with the links to the original images, therefore many of the links

in the list were broken. Due to the completely uncontrolled acquisition conditions present

in the images of PubFig, we had to extract only the faces and then scale the images to a

fixed size. Figure 5.2 depicts three examples of the images in PubFig.
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Figure 5.2: Examples of the images contained in PubFig dataset.

5.2 Results for Simple Queries

In order to solve simple queries, we use the methods explained in Chapter 3. We present

the results for both single level and multilevel approaches.

5.2.1 Single Level

In this section, we use the methods detailed in Chapter 3. Before going any further,

we explore the importance of the number of words in the dictionary creation for each

considered attribute classifier and the effectiveness of each binary classifier for finding one

describable attribute at a time. We assess three vocabulary sizes: 100, 500 and 1,000

words, where half of the words refers to the presence of the attribute and half to its

absence. We select the best-performing dictionary for each attribute.
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For all attributes we consider, we use 1,000 training images and 500 testing images from

the LFW dataset. We used 2-class SVM classifiers with a radial basis kernel. The SVM

parameters were calculated for each training set, using the standard LibSVM’s built-in

grid search fine-tuning algorithm1. For the creation of the visual dictionaries, we evaluate

three methods detailed below.

Method #1: In this method, we use a sparse-sampling approach to extracting the low-

level features. We use an algorithm for extraction of points of interest to represent their

visual content and to characterize their surrounding regions [12]. For this task we use all

stages of the SURF [2] algorithm. After this, to build the visual dictionaries we use the

well-know clustering algorithm k-means to represent visual attributes. This is basically

the method we proposed in [12]. There we validated using six describable attributes.

Then, we extend the validation to 15 attributes.

Table 5.1 shows the classification accuracy (#correctly classifications / #misclassifi-

cations) and the area under the Receiver Operating Curve (ROC) for each case of this

method.

Table 5.1: Accuracy and area under the curve (AUC) for each facial attribute considering
Method #1.

Attribute Accuracy AUC Number of Words
Asian 73.80% 81.37% 100
Bald 83.40% 90.23% 100
Bangs 80.20% 88.50% 500
Beard 79.00% 87.40% 500
Black 79.20% 85.07% 1,000
Black Hair 81.60% 89.15% 500
Blond Hair 77.20% 85.85% 500
Chubby 69.80% 74.61% 1,000
Glasses 80.40% 88.35% 500
Gray Hair 85.60% 90.95% 500
Male 81.60% 90.82% 1,000
Mustache 84.80% 91.65% 500
Senior 85.40% 90.15% 1,000
White 81.60% 88.80% 1,000
Youth 80.40% 88.61% 1,000

The results corroborate our idea that, by introducing visual dictionaries, we achieve

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Table 5.2: Accuracy and AUC for each visual attribute. Although the feature vector
lengths of Methods #2, #3 and HoG vary, SASI feature vector is always of 64-d as this
was the best vector length reported in [41].

Method #2 Method #3 HoG SASI
Attribute # Words AUC Accuracy # Words AUC Accuracy Vector AUC Accuracy AUC Accuracy
Asian 1,000 88.61% 80.60% 1,000 90.95% 83.00% 540 89.65% 80.60% 69.71% 64.60%
Bald 1,000 93.11% 87.00% 1,000 93.85% 86.80% 450 95.18% 89.60% 91.51% 84.00%
Bangs 1,000 91.36% 81.60% 500 92.14% 83.20% 450 93.36% 83.10% 86.46% 78.40%
Beard 1,000 92.90% 86.40% 1,000 92.46% 86.20% 432 93.65% 89.40% 87.26% 78.60%
Black 500 87.07% 78.20% 1,000 88.50% 80.60% 540 85.85% 79.00% 71.84% 66.20%
Black Hair 500 93.37% 85.60% 500 92.97% 84.40% 450 85.25% 78.60% 90.53% 82.00%
Blond Hair 500 82.67% 74.20% 1,000 87.90% 78.00% 450 88.51% 79.40% 91.10% 84.60%
Chubby 1,000 71.65% 67.40% 1,000 75.71% 71.40% 540 79.07% 72.20% 63.86% 59.60%
Glasses 1,000 94.65% 88.60% 500 95.55% 88.60% 567 89.15% 82.20% 87.19% 78.60%
Gray Hair 1,000 94.61% 89.40% 500 93.23% 85.40% 450 93.01% 84.80% 91.57% 84.00%
Male 500 85.36% 77.20% 500 87.48% 79.80% 540 89.87% 82.00% 78.86% 71.60%
Mustache 1,000 95.92% 89.20% 1,000 97.14% 91.40% 144 94.92% 87.80% 88.73% 80.20%
Senior 1,000 92.82% 87.40% 1,000 95.25% 86.40% 540 94.14% 84.20% 83.14% 75.40%
White 500 92.54% 85.60% 500 93.15% 85.20% 540 93.55% 81.20% 81.57% 72.40%
Youth 1,000 92.43% 86.00% 1,000 94.14% 86.20% 540 94.12% 80.20% 83.47% 74.40%

In Figure 5.5, we show a comparison among the three proposed methods, HoG, and

SASI for the different attributes.

Discussion Dictionary sizes of 500 and 1,000 words are enough for a good image rep-

resentation regardless the used method. In addition, note that except for the attribute

Chubby, all other attributes present classification results (area under the curve) above 80%.

For the 15 considered attributes, Dense Sampling-based methods (Methods #2 and #3)

are more effective than either a HoG- or SASI-based solution in 10. Dense Sampling

followed by Clustering (Methods #3) is more appropriate than all other methods in six

out of 15 attributes.

More interesting than just counting which cases one method is better than other, is

the analysis of the reasons for such. Confronting Dense Sampling-based solutions (Meth-

ods #2 and #3) and HoG/SASI, we clearly see that HoG is more interesting for Bald,

Beard, Blond Hair and Male attributes. Interestingly, all of the cases here involve regions

of high-texture/high-gradient changes which is where HoG descriptor theoretically would

be more adequate (histogram of oriented gradients).
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Performing a more elaborate analysis of this behavior, we devised two simple exper-

iments (A and B). First, we calculated the co-occurrence matrices of all attributes and

calculated the average entropy for each one [20]. One co-occurrence matrix is calculated

for all the regions of a given attribute and the average entropy is calculated summing up

all entropies (one for each co-occurrence matrix) and dividing by the number of images

considered in the experiment.

The idea is that the higher the entropy, the higher the information gain on a given

region and, therefore, more richness of details, an indication of a region with higher levels

of texture. We base our idea on previous studies in the literature that associate high-

entropy regions to textures [43, 22]. Second, similarly, we calculate gradient maps using

the traditional Sobel operator [19]2 on the regions of interest and measure the average

magnitudes of the gradients in such regions. The idea is that the higher the changes the

more gradient exists in such regions.

Although Experiment A shows that for some cases, indeed, HoG goes well (e.g., bald =

0.84 average entropy, beard = 0.88 average entropy, blond hair = 0.83 average entropy),

there is no final rule as Method #3 shines in some attribute regions as well (bangs =

0.85 average entropy). Experiment B also corroborates that there is no universal rule

for when Method #3 outperforms both HoG and SASI (or vice-versa). For instance, the

two attributes with the highest gradient changes are glasses and mustache and here HoG

should go well as it is specially designed for capturing gradient changes. In both cases,

however, Method #3 outperforms HoG and SASI.

In face of the two experiments, we conclude that the difference in performance is

probably in the characterization power of Method #3 which performs a local analysis

of the region (PoI characterization) followed by a generalization of the analysis (mid-

level features through visual dictionaries). By sampling the lattice regularly and finding

the most discriminant features by means of clustering, Method #3 seems to capture the

best of both worlds for most features while HoG and SASI directly describes the regions

globally.

The question mark is regarding the attribute Chubby which theoretically could favor

any of the methods. However, this might be an artifact of the dataset used in which it

is possible that there are more images of chubby people with any of the other attributes

HoG shined (the average entropy for chubby = 0.95).

The dense sampling method is more appropriate in all other cases probably because

there are more points of interest to better capturing the variations within the regions of

interest. For the attribute Black Hair, for instance, the difference between Method #3 and

HoG is about six percentage points. Interestingly, this attribute also shows high gradient

but the dense sampling probably captures additional nuances that simple histogram of

2Similar results are obtained with other gradient detectors such as Canny [19].
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orientations could not capture (as a matter of fact, the average entropy of black hair

regions = 0.86, similar to bangs or blond hair). The same difference happens for Glasses

and Youth attributes. Glasses show high difference in gradients (similar to mustache

according to the experiment we described above) while youth shows very low gradient

changes. In both cases, Methods #2 and #3 go well.

It is worth noting that as the analysis of each describable attribute is performed

independently, nothing keeps us from using the most appropriate description approach

for each attribute. We could, for instance, use Method #1 for describing the attribute

Black Hair while using HoG for attributes like Male and Bald, Method #3 for attributes

like Glasses and Youth or even SASI for attribute as blond hair. As everything is based on

training examples, this task could be done automatically based on a small validation set

of queries and simple verification algorithms (average entropy/texture + gradient analysis

as we devised earlier).

5.2.2 Multilevel

We evaluate our multilevel approach in accordance to Section 3.2:

• Extract the regions according to each attribute (Figure 3.1),

• Scale the regions in the six levels,

• For each region at each level:

– Describe the images using the sparse-sampling method,

– Build the histogram according to the best dictionary (we use the same dictio-

nary obtained on the single level),

– Normalize the histogram,

– Classify the image using the best model previously created (we use the same

model evaluated on the single level)

In Table 5.3, we show the accuracies and AUCs obtained for each level in the testing

set of LFW dataset. Thereafter, we combine the different levels using the methods that

we propose in Section 3.2. For the testing set of LFW dataset we only evaluate three

methods: Majority Voting, Majority Voting Best and Weighted Fusion. The accuracies

and AUCs for these methods are depicted in Table 5.4.
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Table 5.3: Accuracies and AUCs for each visual attribute, evaluated in the six levels.

LFW-TEST (250 + 250−)
Attribute Accuracy Area under Curve (AUC)
Classifier Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

(0.5×) (0.75×) (1×) (1.5×) (2×) (2.5×) (0.5×) (0.75×) (1×) (1.5×) (2×) (2.5×)
Asian 60.00% 73.60% 76.80% 72.80% 73.00% 73.60% 82.55% 83.23% 86.15% 81.80% 82.29% 84.03%
Bald 50.20% 74.40% 81.40% 78.20% 78.40% 76.60% 62.93% 85.06% 88.68% 88.05% 88.06% 87.26%

Bangs 53.80% 64.40% 71.60% 69.20% 68.20% 67.60% 66.94% 71.06% 78.47% 76.43% 75.23% 75.67%
Beard 51.00% 66.80% 79.00% 76.20% 77.80% 77.60% 55.57% 78.13% 85.73% 84.67% 86.02% 85.61%
Black 49.80% 73.80% 78.20% 75.40% 76.80% 73.80% 74.45% 84.29% 85.60% 84.47% 86.04% 82.99%

Black Hair 63.20% 71.60% 76.80% 78.20% 77.20% 76.60% 68.96% 78.81% 84.09% 85.27% 83.54% 84.04%
Blond Hair 55.40% 62.60% 65.40% 64.60% 64.80% 63.40% 60.43% 69.36% 74.14% 71.04% 71.70% 70.81%

Chubby 52.80% 63.20% 61.20% 61.60% 61.60% 61.20% 61.52% 67.05% 67.19% 67.08% 68.66% 66.50%
Glasses 50.00% 72.40% 76.40% 72.00% 72.00% 70.00% 50.00% 78.54% 84.73% 84.00% 85.75% 83.73%

Gray Hair 63.80% 72.60% 76.60% 76.00% 76.20% 76.80% 75.19% 81.35% 84.89% 84.34% 84.70% 83.60%
Male 74.40% 80.60% 83.40% 80.40% 81.80% 82.00% 86.81% 89.65% 92.04% 89.04% 90.57% 91.46%

Mustache 50.00% 50.00% 77.60% 74.80% 68.80% 71.80% 50.00% 50.00% 87.77% 84.96% 83.80% 84.84%
Senior 51.40% 77.40% 81.80% 78.80% 81.00% 78.00% 76.29% 86.75% 89.58% 88.64% 90.82% 89.39%
White 73.40% 77.40% 84.40% 80.20% 82.00% 81.20% 85.11% 88.29% 92.13% 88.35% 91.25% 90.20%
Youth 62.40% 68.80% 75.40% 75.80% 77.20% 75.20% 69.82% 77.23% 84.76% 83.92% 84.55% 83.50%

Table 5.4: Accuracies and AUCs using MV, MVB and WF to combine the levels
LFW-TEST (250 + 250−)

Attribute Accuracy Area under Curve (AUC)
Classifier Majority Majority Weighted Majority Majority Weighted

Voting Voting Fusion Voting Voting Fusion
Best Best

Asian 78.00% 78.40% 79.20% 84.78% 87.16% 85.18%
Bald 81.00% 82.60% 82.60% 88.60% 88.67% 89.09%

Bangs 70.60% 71.60% 72.60% 77.46% 77.17% 79.34%
Beard 80.20% 80.60% 82.60% 86.89% 86.90% 88.22%
Black 78.20% 79.00% 78.60% 86.63% 87.56% 88.08%

Black Hair 79.60% 78.00% 78.80% 85.98% 83.45% 87.36%
Blond Hair 64.40% 64.00% 63.40% 73.45% 71.45% 73.05%

Chubby 63.40% 65.00% 64.80% 68.15% 69.18% 70.25%
Glasses 76.00% 77.80% 78.00% 87.02% 86.64% 88.35%

Gray Hair 77.00% 77.60% 77.80% 84.94% 85.70% 85.63%
Male 85.80% 86.80% 86.40% 93.27% 93.23% 94.48%

Mustache 78.00% 76.60% 77.60% 87.07% 86.87% 87.45%
Senior 84.40% 84.20% 86.40% 90.66% 91.82% 92.16%
White 85.80% 87.60% 87.40% 92.60% 94.51% 93.59%
Youth 78.20% 76.60% 77.20% 85.98% 82.72% 85.94%
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After this, we decided to perform our multilevel approach in the PubFig dataset

effectively testing on a cross-dataset condition. To evaluate the accuracies in the six

levels, we randomly selected, for each attribute, 250 positive images and 250 negative

images from PubFig. In this dataset, we evaluated 14 attributes because this dataset has

very few images of asian people, so we do not evaluate the attribute “asian”. Table 5.5

shows the accuracies and AUCs obtained for each level in PubFig.

Table 5.5: Accuracies and AUCs for each visual attribute, evaluated in the six levels using
the random images from PubFig.

PUBFIG – RANDOM IMAGES (250 + 250−)
Attribute Accuracy Area under Curve (AUC)
Classifier Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

(0.5×) (0.75×) (1×) (1.5×) (2×) (2.5×) (0.5×) (0.75×) (1×) (1.5×) (2×) (2.5×)
Bald 50.00% 50.80% 72.60% 83.60% 83.20% 80.20% 50.00% 46.93% 84.21% 91.97% 92.64% 92.57%

Bangs 50.00% 70.40% 85.20% 85.00% 82.60% 84.00% 50.00% 82.54% 91.56% 94.54% 94.08% 93.81%
Beard 50.00% 50.60% 78.20% 86.40% 82.60% 82.60% 50.00% 58.35% 87.71% 94.49% 94.19% 94.13%
Black 50.00% 77.60% 85.20% 83.20% 82.60% 81.60% 80.00% 87.36% 92.18% 92.73% 92.45% 92.36%

Black Hair 50.00% 55.40% 71.40% 79.20% 79.40% 81.00% 50.00% 67.89% 79.27% 87.99% 86.85% 88.96%
Blond Hair 50.00% 60.60% 74.20% 74.80% 74.80% 73.80% 50.00% 65.08% 83.81% 81.42% 81.87% 81.86%

Chubby 52.80% 58.60% 64.00% 63.20% 63.40% 63.40% 61.59% 61.85% 71.37% 70.70% 72.19% 69.63%
Glasses 52.00% 68.40% 81.80% 80.40% 84.80% 83.80% 60.90% 76.69% 90.02% 93.16% 94.99% 94.27%

Gray Hair 50.00% 61.20% 70.80% 78.60% 81.00% 80.00% 50.00% 72.20% 81.33% 88.23% 89.90% 88.69%
Male 71.20% 81.60% 85.80% 82.60% 82.00% 81.20% 83.18% 91.16% 94.27% 94.44% 93.61% 92.69%

Mustache 50.00% 50.00% 72.00% 81.20% 79.20% 82.20% 50.00% 50.00% 83.68% 89.65% 88.53% 90.60%
Senior 51.80% 78.60% 83.80% 83.40% 81.80% 79.80% 77.59% 88.73% 92.63% 94.05% 94.14% 93.13%
White 77.80% 83.00% 85.20% 87.00% 85.40% 84.60% 86.92% 93.09% 94.67% 95.14% 94.49% 93.73%
Youth 60.80% 76.80% 82.40% 84.40% 82.60% 83.60% 67.29% 84.37% 89.22% 92.63% 91.95% 91.86%

After testing for attributes in isolation for each level, we combine the different levels

using the six methods proposed in section 3.2. The accuracies and AUCs for these methods

are presented in Table 5.6. In this case, to evaluate MetaFusion we used the confidences

obtained by the attribute classifiers in the LFW dataset. For the case of WeightedFusion,

the proper weights giving the right importance for each classifier are also learned from in

LFW.
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Table 5.6: Accuracies and AUCs using MV, MVB, WF, MF and AF to combine the levels
using PubFig.

PUBFIG – RANDOM IMAGES (250 + 250−)
Attribute Accuracy Area under Curve (AUC)
Classifier Majority Majority Weighted Meta Average Majority Majority Weighted Meta Average

Voting Voting Fusion Fusion Fusion Voting Voting Fusion Fusion Fusion
Best Best

Bald 72.20% 86.20% 86.40% 85.60% 86.00% 81.86% 91.89% 92.19% 88.29% 92.19%
Bangs 89.40% 89.00% 89.80% 86.80% 90.20% 94.70% 95.18% 95.28% 93.67% 95.32%
Beard 89.40% 89.20% 90.40% 89.00% 90.60% 95.30% 94.36% 94.86% 93.83% 94.84%
Black 86.40% 85.80% 86.60% 86.80% 86.60% 92.88% 93.95% 93.55% 93.26% 93.52%

Black Hair 79.20% 78.60% 78.80% 81.00% 78.20% 89.02% 88.15% 90.15% 90.01% 90.05%
Blond Hair 77.40% 74.60% 75.80% 76.40% 76.60% 82.89% 80.99% 83.25% 85.14% 83.14%

Chubby 63.20% 65.00% 65.40% 63.00% 65.40% 72.24% 72.45% 72.90% 67.25% 72.89%
Glasses 90.00% 85.20% 89.60% 89.20% 89.20% 94.72% 85.41% 95.11% 93.01% 95.14%

Gray Hair 79.00% 78.60% 79.00% 78.00% 79.00% 86.75% 88.80% 88.03% 85.39% 87.97%
Male 88.60% 87.00% 88.00% 88.40% 87.60% 96.31% 96.50% 96.57% 96.62% 96.52%

Mustache 85.20% 82.00% 83.80% 81.40% 84.40% 90.17% 89.59% 91.86% 90.49% 91.95%
Senior 86.40% 86.20% 87.20% 86.60% 88.40% 94.76% 93.25% 95.23% 93.37% 95.23%
White 86.60% 89.20% 89.00% 86.20% 89.00% 95.11% 97.38% 96.42% 95.92% 96.38%
Youth 85.40% 82.40% 84.00% 85.00% 83.20% 92.16% 88.23% 92.36% 92.89% 92.00%

5.3 Results for Complex Queries

This section shows results for rank fusion techniques using the methods previously ex-

plained in Chapter 4. With k attributes, we have 2k possible queries. We have considered

k = 15 attribute classifiers and, consequently, their direct counterparts theoretically al-

lowing 215 = 32, 768 different combined queries. However, the actual number is smaller

since some attributes are contradictory. Similar to the results for simple queries, we per-

formed our experiments for both single level and multilevel approaches. Here, we present

the results for a subset of all possible queries in LFW and PubFig datasets for single

level. For multilevel, we evaluate in PubFig dataset as this is a more difficult and more

complete setup [6].
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5.3.1 Single Level

Score normalization is a fundamental task when dealing with discrepant values related to

different attribute classifiers and is paramount before fusion. To overcome this problem,

we normalize the scores using the traditional z-norm (subtract the overall mean score and

divide by the overall standard deviation). To measure the effectiveness of each original

rank and each rank resulting of a fusion, we assess the number of relevant images within

the retrieved images for a fixed recall. Table 5.7 shows the precision for a subset of queries.

In this case, we use the traditional rank aggregation explained in section 4.3.

Queries with a single attribute normally have high precision results as Table 5.7 shows.

An exception is noted for the attribute asian, due to the fact that LFW does not have a

significant number of images of asian people for training. Although the database contains

an acceptable number of asian images, the number of asian people is small when we

remove the training set part. However, as we would expect, the non-asian precision is

100%.

We note that the traditional rank aggregation method does not yield good results for

searches with two attributes. The reason is that only one vote is enough to put an image

in the resulting rank. The precision of traditional rank aggregation, for most of the queries

with two attributes, is approximately half of the precision of the product of probabilities

approach. In searches with more than two attributes, however, the results are interesting

with the three approaches disputing the lead. In some cases, like Q = {ma, ba, se},

traditional rank aggregation presents a huge difference in comparison with the product of

probabilities as Table 5.7 shows along with other complex queries. For complex queries

like Q = {wh,ma, se, ba,mu, gl}, rank position provides the highest accuracy. In general,

we observed that for two-attribute queries product of probabilities are more adequate

while for three traditional rank aggregation shows more interesting and after that there

is no clear advantage to any of the three.

In order to measure the precision of our approach, we have analyzed the results re-

turned in the top positions as Figure 5.6 depicts. As a result of such analysis, we have

observed that the higher precision is obtained in the top 25 positions and it decreases as

we analyze the next top positions. Maximizing the number of relevant results in the first

positions represents an important advantage to ensure the quality of the retrieved results.
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Table 5.7: Precision (%) of some selected complex queries in LFW dataset using the
single level approach. We also show some selected queries with just one attribute (no
fusion used) for reference.

Top-25 Top-50 Top-100
Q Fproduct Faggregation Fposition Fproduct Faggregation Fposition Fproduct Faggregation Fposition

{ma} 96.0 96.0 96.0 98.0 98.0 98.0 99.0 99.0 99.0
{gl} 100.0 100.0 100.0 100.0 100.0 100.0 99.0 99.0 99.0
{be} 80.0 80.0 80.0 66.0 66.0 66.0 62.0 62.0 62.0
{mu} 96.0 96.0 96.0 86.0 86.0 86.0 80.0 80.0 80.0
{be} 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
{mu} 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
{as} 100.0 100.0 100.0 100.0 100.0 100.0 99.0 99.0 99.0
{gl, as} 52.0 36.0 44.0 44.0 36.0 40.0 42.0 41.0 43.0
{gl, be} 52.0 32.0 36.0 40.0 22.0 28.0 26.0 17.0 20.0
{mu, be} 72.0 64.0 68.0 60.0 70.0 64.0 55.0 51.0 55.0
{ma, as} 24.0 16.0 16.0 20.0 16.0 18.0 26.0 15.0 17.0
{ma, gl} 44.0 8.0 16.0 32.0 16.0 26.0 24.0 5.0 10.0
{ma, gl} 100.0 96.0 100.0 98.0 90.0 96.0 96.0 80.0 85.0
{mu, be} 12.0 24.0 28.0 16.0 22.0 24.0 14.0 16.0 15.0
{ma, ba, se} 56.0 80.0 72.0 56.0 80.0 78.0 58.0 78.0 78.0
{ma, bl, bah} 20.0 32.0 28.0 26.0 34.0 30.0 30.0 33.0 34.0
{ma, bl, bah} 16.0 8.0 8.0 18.0 10.0 8.0 15.0 11.0 10.0
{ma, se, wh} 36.0 40.0 48.0 38.0 42.0 46.0 40.0 39.0 41.0
{ma, bg, se} 32.0 36.0 28.0 28.0 30.0 26.0 27.0 33.0 22.0
{ma,mu, se} 40.0 44.0 36.0 36.0 40.0 38.0 35.0 36.0 31.0
{ma, boh, yo} 72.0 56.0 36.0 68.0 50.0 32.0 61.0 47.0 28.0
{ma, bg, yo} 16.0 12.0 16.0 18.0 10.0 14.0 15.0 11.0 12.0

{mu, be, as, ba} 28.0 12.0 16.0 18.0 20.0 22.0 16.0 18.0 20.0
{gl,mu, be, as} 16.0 8.0 12.0 14.0 10.0 11.0 12.0 9.0 11.0
{ma, gl, as, ba} 12.0 8.0 8.0 10.0 12.0 10.0 8.0 9.0 7.0
{ma, gl,mu, ba} 28.0 16.0 20.0 24.0 18.0 22.0 21.0 23.0 24.0
{ma,mu, be, ba} 8.0 8.0 4.0 6.0 8.0 6.0 9.0 7.0 5.0
{gl,mu, be, ba} 28.0 88.0 72.0 22.0 80.0 68.0 21.0 81.0 65.0

{ma, gl,mu, yo, ba} 16.0 12.0 8.0 14.0 12.0 12.0 13.0 10.0 12.0
{ma, gl,mu, be, ba} 8.0 12.0 4.0 6.0 10.0 6.0 7.0 8.0 7.0
{wh, ch,ma, gl, bg} 32.0 20.0 16.0 36.0 22.0 14.0 31.0 19.0 13.0
{gl,mu, be, as, ba} 100.0 92.0 96.0 98.0 90.0 94.0 97.0 93.0 95.0
{ma, bg,mu, be, as, yo} 12.0 8.0 8.0 6.0 6.0 8.0 5.0 6.0 4.0
{wh,ma, se, ba,mu, gl} 20.0 24.0 28.0 18.0 20.0 24.0 16.0 19.0 21.0
{ma, gl,mu, be, as, ba} 24.0 12.0 16.0 18.0 10.0 14.0 15.0 8.0 11.0
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For complex queries in PubFig dataset, we evaluate product of probabilities

(MethodC1) and the modified rank aggregation (MethodC2) explained in section 4.3.

Table 5.8 shows the precisions obtained using these methods in the PubFig dataset for

some selected queries.

Table 5.8: Precision (%) of some selected queries in PubFig dataset using the single level
approach.

Top-25 Top-50 Top-100
Q MethodC1 MethodC2 MethodC1 MethodC2 MethodC1 MethodC2

{ma, be} 92.0 92.0 84.0 86.0 76.0 77.0
{ma, bl} 84.0 84.0 74.0 78.0 55.0 55.0
{ma, se} 88.0 80.0 88.0 86.0 85.0 85.0
{ma,wh} 68.0 68.0 78.0 76.0 81.0 81.0
{mu, be} 88.0 88.0 84.0 84.0 78.0 76.0
{ma,wh} 92.0 92.0 94.0 96.0 95.0 98.0
{ma, yo} 96.0 96.0 92.0 92.0 94.0 92.0
{ma, gl} 92.0 92.0 96.0 96.0 97.0 96.0
{ma, se, wh} 84.0 80.0 76.0 76.0 80.0 82.0
{ma, gl, se} 96.0 96.0 90.0 92.0 90.0 88.0
{ma,mu, se} 24.0 24.0 28.0 28.0 32.0 31.0
{ma, ba, se} 72.0 72.0 64.0 70.0 56.0 65.0
{ma, be,mu} 92.0 96.0 92.0 94.0 76.0 82.0
{ma, boh, yo} 52.0 56.0 48.0 52.0 55.0 54.0
{ma, bg, yo} 76.0 72.0 70.0 68.0 69.0 69.0
{ma, bg, se} 84.0 88.0 86.0 86.0 87.0 84.0
{ma, bl, bah} 56.0 48.0 36.0 40.0 29.0 32.0
{ma, gl,mu, be} 68.0 72.0 52.0 52.0 51.0 53.0
{ma, be,mu,wh} 84.0 80.0 76.0 76.0 76.0 72.0
{ma,wh, se, be} 44.0 40.0 42.0 42.0 42.0 42.0
{ma, boh, bg, wh} 80.0 84.0 78.0 78.0 72.0 75.0
{ma,mu, be, ba} 80.0 72.0 80.0 74.0 69.0 75.0
{gl,mu, be, ba} 92.0 88.0 94.0 92.0 95.0 92.0

{ma, gl,mu, yo, ba} 80.0 76.0 70.0 68.0 61.0 54.0
{ma, gl,mu, be, ba} 36.0 40.0 28.0 26.0 21.0 18.0
{ma,wh, bg, boh, yo} 76.0 76.0 66.0 72.0 68.0 57.0
{ma, gl, ba, se, wh} 52.0 52.0 36.0 42.0 37.0 37.0
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5.3.2 Multilevel

In PubFig dataset, we also considered the multilevel approach to solving complex queries.

In this case, we use the weighted fusion method for combining the different levels,

thereby generating one ranked list based on the six levels. For example, for the query

Q = {ma, gl}, we use weighted fusion to generate two ranked lists, one for the attribute

“male” and other for the attribute “glasses”. After that, to combine these ranked lists, we

proposed the following four methods based on the fusion techniques explained in Chap-

ter 4:

MethodC3: To combine the ranked lists, this method uses the product of probabilities

to multiply the scores in each one of the ranked lists.

MethodC4: This method use the modified rank aggregation to combine the ranked

lists.

MethodC5: In this method, for each attribute in the query, we first add the scores of

the weighted fusion list and the scores in the single level. Then, we use the modified rank

aggregation to combine the attributes in the complex query.

MethodC6: In this method, for each attribute in the query, we first add the scores

of each one of the six levels. Then, we use the modified rank aggregation to fusion the

attributes in the complex query.

Table 5.9 depicts the precisions obtained using the explained methods above for some

selected queries in PubFig dataset. The precisions obtained in this dataset are higher

compared to the precisions obtained in LFW dataset, this occurs mainly because PubFig

has many more images than LFW. In some queries ({mu, be}, {ma, be,mu}, etc.) in

Table 5.9 we obtained 100% of precision in Top-25, this is an important advantage, because

in the face search engines we must ensure that the images in the top positions meet the

attributes present in the query.

In Table 5.9, we note that by using multilevel approach, apparently we obtained similar

precisions in all methods. Thereafter, for a better understanding of the experiments, we

decided to analyze statistically the results. For this, we used all the precisions obtained for

each complex query in Table 5.9. In addition, we analyzed Table 5.9 results in conjunction

with Table 5.8 to demonstrate statistically if the multilevel approach is different than the

single level.

First, we used the well-known Analysis of Variance (ANOVA) to determine if our

methods represent a statistically significant factor. For this, performed an ANOVA test
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over the obtained results. According to [14], we define the null hipothesis H0: all the

methods means are equal. Table 5.10 shows the result obtained by using ANOVA. If the

p value is lower than 0.05, then the hypothesis H0 is rejected. In this case, p = 2.2e− 16,

it means that all the method means are not equal.

Table 5.9: Precision (%) of some selected queries in PubFig dataset using the multilevel
approach.

Top-25 Top-50 Top-100
Q MethodC3 MethodC4 MethodC5 MethodC6 MethodC3 MethodC4 MethodC5 MethodC6 MethodC3 MethodC4 MethodC5 MethodC6

{ma, be} 92.0 92.0 92.0 88.0 88.0 82.0 90.0 76.0 79.0 82.0 84.0 80.0
{ma, bl} 84.0 80.0 80.0 84.0 80.0 78.0 78.0 80.0 70.0 70.0 79.0 71.0
{ma, se} 96.0 100.0 100.0 100.0 98.0 100.0 100.0 96.0 96.0 100.0 100.0 97.0
{ma,wh} 96.0 96.0 96.0 96.0 98.0 96.0 98.0 96.0 96.0 96.0 97.0 97.0
{mu, be} 100.0 96.0 88.0 96.0 94.0 90.0 92.0 90.0 94.0 92.0 93.0 92.0
{ma,wh} 96.0 96.0 96.0 96.0 98.0 98.0 98.0 98.0 98.0 98.0 99.0 99.0
{ma, yo} 88.0 88.0 88.0 84.0 92.0 92.0 94.0 86.0 96.0 95.0 94.0 89.0
{ma, gl} 100.0 96.0 100.0 96.0 98.0 98.0 98.0 98.0 98.0 98.0 99.0 98.0
{ma, se, wh} 88.0 92.0 84.0 92.0 90.0 90.0 84.0 90.0 91.0 91.0 88.0 88.0
{ma, gl, se} 92.0 96.0 96.0 88.0 88.0 88.0 96.0 84.0 87.0 89.0 93.0 86.0
{ma,mu, se} 72.0 68.0 76.0 68.0 70.0 72.0 68.0 66.0 63.0 66.0 67.0 66.0
{ma, ba, se} 84.0 96.0 96.0 84.0 80.0 86.0 86.0 82.0 74.0 89.0 84.0 81.0
{ma, be,mu} 100.0 96.0 100.0 96.0 98.0 96.0 100.0 96.0 96.0 97.0 100.0 95.0
{ma, boh, yo} 68.0 64.0 64.0 60.0 56.0 60.0 56.0 50.0 53.0 51.0 50.0 51.0
{ma, bg, yo} 72.0 64.0 68.0 64.0 60.0 64.0 60.0 60.0 56.0 60.0 60.0 57.0
{ma, bg, se} 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 90.0 92.0 91.0 91.0
{ma, bl, bah} 52.0 52.0 52.0 52.0 40.0 42.0 52.0 46.0 37.0 39.0 43.0 39.0
{ma, gl,mu, be} 84.0 88.0 88.0 88.0 70.0 72.0 88.0 74.0 70.0 69.0 63.0 68.0
{ma, be,mu,wh} 96.0 92.0 80.0 88.0 90.0 90.0 90.0 90.0 80.0 83.0 85.0 80.0
{ma,wh, se, be} 56.0 56.0 60.0 48.0 56.0 44.0 58.0 52.0 54.0 54.0 55.0 51.0
{ma, boh, bg, wh} 84.0 88.0 76.0 80.0 78.0 84.0 84.0 82.0 80.0 85.0 82.0 84.0
{ma,mu, be, ba} 92.0 92.0 88.0 84.0 90.0 90.0 88.0 86.0 85.0 88.0 88.0 88.0
{gl,mu, be, ba} 100.0 92.0 96.0 92.0 96.0 96.0 98.0 92.0 96.0 98.0 98.0 94.0

{ma, gl,mu, yo, ba} 76.0 88.0 80.0 80.0 72.0 72.0 72.0 68.0 62.0 66.0 65.0 56.0
{ma, gl,mu, be, ba} 52.0 44.0 48.0 40.0 52.0 56.0 38.0 56.0 51.0 50.0 30.0 48.0
{ma,wh, bg, boh, yo} 80.0 76.0 76.0 56.0 78.0 64.0 68.0 56.0 72.0 67.0 61.0 40.0
{ma, gl, ba, se, wh} 64.0 80.0 80.0 80.0 58.0 66.0 66.0 64.0 54.0 60.0 58.0 58.0

Table 5.10: Analysis of Variance (ANOVA) of our six proposed methods.
Df Sum Sq Mean Sq F value Pr(>F)

Methods 5 0.9484 0.18968 39.567 2.2e-16
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We also used a method for comparing multiple hypotheses. In this case, we use Tukey

Honest Significant Differences (TukeyHSD) [17]. Table 5.11 shows the results obtained

by using TukeyHSD, the p-values were calculated according to [17].

Table 5.11 shows that the comparisons: MethodC3 - MethodC1 (p < 0.05), MethodC4

- MethodC1 (p < 0.05), MethodC5 - MethodC1 (p < 0.05), MethodC6 - MethodC1

(p < 0.05), MethodC3 - MethodC2 (p < 0.05), MethodC4 - MethodC2 (p < 0.05),

MethodC5 - MethodC2 (p < 0.05), MethodC6 - MethodC2 (p < 0.05) are statistically

different. Interestingly, such comparisons are comparisons between methods using single

level and methods using multilevel.

Finally, using this analysis and Tables 5.9 and 5.8, we can see that the multilevel

approach is better than the single level method for characterizing images.

Table 5.11: Multiple comparisons analysis between our six proposed methods using
TukeyHSD.

diff lwr upr p-value
MethodC2 - MethodC1 -0.001071429 -0.03164291 0.029500053 0.9999986
MethodC3 - MethodC1 0.093571429 0.06299995 0.124142910 0.0000000
MethodC4 - MethodC1 0.098452381 0.06788090 0.129023863 0.0000000
MethodC5 - MethodC1 0.094761905 0.06419042 0.125333386 0.0000000
MethodC6 - MethodC1 0.072142857 0.04157138 0.102714339 0.0000000
MethodC3 - MethodC2 0.094642857 0.06407138 0.125214339 0.0000000
MethodC4 - MethodC2 0.099523810 0.06895233 0.130095291 0.0000000
MethodC5 - MethodC2 0.095833333 0.06526185 0.126404815 0.0000000
MethodC6 - MethodC2 0.073214286 0.04264280 0.103785767 0.0000000
MethodC4 - MethodC3 0.004880952 -0.02569053 0.035452434 0.9974991
MethodC5 - MethodC3 0.001190476 -0.02938101 0.031761958 0.9999976
MethodC6 - MethodC3 -0.021428571 -0.05200005 0.009142910 0.3405295
MethodC5 - MethodC4 -0.003690476 -0.03426196 0.026881005 0.9993506
MethodC6 - MethodC4 -0.026309524 -0.05688101 0.004261958 0.1375164
MethodC6 - MethodC5 -0.022619048 -0.05319053 0.007952434 0.2801331

Figure 5.7 shows, graphically, the results in Table 5.11. The intervals not crossing the

dashed line in 0.0 represent the methods that are statistically different. In this case, we

use a 95% family-wise confidence level (p < 0.05).
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Figure 5.7: Multiple comparisons of means between our proposed methods using the
TukeyHSD [17].

In addition, we measure the precision of our methods in the PubFig dataset, Figure 5.8

shows the results returned in the top positions for each one of our methods evaluated in

PubFig. As well as in our experiments in LFW, in PubFig we also obtained the higher

precision in the top 25 positions, ensuring the quality of the retrieved results.





Chapter 6

Conclusion

In this work, we have discussed how to automatically train visual feature classifiers and

associate these features to text describable attributes allowing one to perform high-level

queries to a database of images without using text annotations. The train stage is per-

formed by using the LFW database, afterwards, the test stage evaluates the classifiers with

both LFW and PubFig datasets. We showed performance in line with recent attribute

classifiers from the literature [30] and important texture descriptors such as SASI [5].

We showed that the use of visual dictionaries is worthwhile to learn and represent

features in a common and standard form. We have shown that for many visual attributes

it is more interesting to characterize the images using a dense-sampling approach to

creating visual dictionaries. However, there are some attributes in which histogram of

gradients or HoG-based features are more appropriated although there is no final rule for

deciding about such cases.

We performed a multilevel approach to characterizing the images in different scales.

Then, we evaluated some methods for combining the scores obtained in the different

levels. In simple queries, we showed that the use of our multilevel approach improves the

accuracies in most of the attribute classifiers.

For dealing with complex queries (more than one attribute), we evaluated in the

LFW dataset three approaches from the state of the art for rank fusion (product of

probabilities, rank aggregation and rank position) using the attribute classifiers’ outputs.

We have built 15 attribute classifiers, but the incorporation of classifiers for new attributes

is straightforward. Then, we assessed our approaches in the PubFig dataset, where we

evaluated two methods for single level and four methods for multilevel approaches. For

complex queries, we showed statistically that the multilevel approach also improved the

accuracies obtained in a single level.

In addition, as each attribute classifier is independent, we can use the most appropriate

characterization method for each attribute. This opens a whole new branch of research

46



47

as many attributes are best represented using non-gradient based descriptors such as the

ones involving color features or even shape-based features. We aim at investigating these

new description forms as we add more attributes to the framework. A good start point

is the complete study performed by [41] in which the authors discuss the pros and cons

of several image descriptors in the literature and present a comparative study of global

color and texture descriptors for web image retrieval.

Finally, we now aim at investigating other classifier fusion techniques (e.g., [38, 39])

to improve the results for even more complex queries. Furthermore, other normalization

techniques may be used to reduce the effects of noise, improving the performance achieved

by the visual dictionaries (e.g., [49]). To date, we evaluated the multilevel approach

using a sparse-sampling, we now aim at performing experiments using the dense-sampling

approach. Another future direction is to investigate techniques to measure the level of

presence or absence of an attribute and be able to perform queries such as “white male in

the sixties, partially bald with a dense mustache, wearing glasses”, in which we make

use of describable attributes (emphasized in italics) and modifiers (emphasized in bold).
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