"
oW,

UNICAMP

Alexandre Tachard Passos

“Combinatorial algorithms and linear programming

for inference in natural language processing.”

“Algoritmos combinatorios e programacao linear
para inferéncia em processamento de linguagem
natural.”

CAMPINAS
2013

i

vz

G
UNICAMP

University of Campinas
Institute of Computing

<&

Universidade Estadual de Campinas
Instituto de Computacdo

Alexandre Tachard Passos

“Combinatorial algorithms and linear programming for
inference in natural language processing.”

Supervisor:

Prof. Dr. Jacques Wainer

| Orientador(a):

“Algoritmos combinatérios e programacdo linear para

inferéncia em processamento de linguagem natural.”

PhD Thesis presented to the Post Gradu-
ate Program of the Institute of Computing
of the University of Campinas to obtain a
Doctor degree in Computer Science.

THIS VOLUME CORRESPONDS TO THE FI-
NAL VERSION OF THE THESIS DEFENDED
BY ALEXANDRE TACHARD PASSOS, UN-
DER THE SUPERVISION OF PROF. DR.

Tese de Doutorado apresentada ao Programa de
Pés-Graduacdo em Ciéncia da Computacdo do
Instituto de Computacdo da Universidade Es-
tadual de Campinas para obtencdo do titulo de
Doutor em Ciéncia da Computacdo.

ESTE EXEMPLAR CORRESPONDE A VERSAO
FINAL DA TESE DEFENDIDA POR ALEXAN-
DRE TACHARD PASSOS, SOB ORIENTAGAO DE
Pror. DrR. JACQUES WAINER.

JACQUES WAINER. /) (
jl
/A

Supervisér) signa(m)e / Assinatura do Orientador(a)
CAMPINAS

2013

iii

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Passos, Alexandre Tachard, 1986-
P268c Combinatorial algorithms and linear programming for inference in natural
language processing / Alexandre Tachard Passos. — Campinas, SP : [s.n.], 2013.

Orientador: Jacques Wainer.
Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Computacéo.

1. Aprendizado de maquina. 2. Processamento da linguagem natural
(Computagéo). 3. Algoritmos. 4. Programagao linear. 5. Analise combinatéria. I.
Wainer, Jacques,1958-. II. Universidade Estadual de Campinas. Instituto de
Computacao. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Algoritmos combinatérios e de programagcao linear para inferéncia em
processamento de linguagem natural

Palavras-chave em inglés:

Machine learning

Natural language processing (Computer science)
Algorithms

Linear programming

Combinatorial analysis

Area de concentracéo: Ciéncia da Computagéo
Titulacao: Doutor em Ciéncia da Computagao

Banca examinadora:

Jacques Wainer [Orientador]

Andrew Kachites McCallum

Sebastian Robert Riedel

Siome Klein Goldenstein

Eduardo Alves do Valle Junior

Data de defesa: 28-08-2013

Programa de Pés-Graduacéao: Ciéncia da Computacdo

TERMO DE APROVACAO

Tese Defendida e Aprovada em 16 de Agosto de 2013, pela Banca

examinadora composta pelos Professores Doutores:

o b

Prof. Dr'. Andf'ewpléa/thites McCallum
UMASS / AMHERST

Prof. Dr. Sebastian Robert Riedel
DCS - University College, London

Prof.}r./Si/ome Klein G nstein
IC / UNIC P

Joando A fo Vol I
Prof. Dr. Eduardo Alves do Valle Junior
FEEC / UNICAMP
!/7
A5 k<
Z“Prof. Dr. Jacques Wainer

IC / UNICAMP

Institute of Computing /Instituto de Computagdo
University of Campinas / Universidade Estadual de Campinas

Combinatorial algorithms and linear programming

for inference in natural language processing.

Alexandre Tachard Passos

August 28, 2013

Examiner Board/Banca Examinadora:
e Prof. Dr. Jacques Wainer (Supervisor)

e Prof. Dr. Siome Klein Goldenstein
Institute of Computing - UNICAMP

e Prof. Dr. Eduardo Valle
Institute of Computing - UNICAMP

e Dr. Andrew K McCallum
School of Computer Science - UMass Amherst

e Dr. Sebastian Riedel
Department of Computer Science - University College London

vil

Abstract

In natural language processing, and in general machine learning, probabilistic graphical
models (and more generally structured linear models) are commonly used. Although
these models are convenient, allowing the expression of complex relationships between
many random variables one wants to predict given a document or sentence, most learning
and prediction algorithms for general models are inefficient. Hence there has recently
been interest in using linear programming relaxations for the inference tasks necessary
when learning or applying these models.

This thesis presents two contributions to the theory and practice of linear program-
ming relaxations for inference in structured linear models. First we present a new al-
gorithm, based on column generation (a technique which is dual to the cutting planes
method) to accelerate the Viterbi algorithm, the most popular exact inference technique
for linear-chain graphical models. The method is also applicable to tree graphical models
and hypergraph models. Then we present a new linear programming relaxation for the
problem of joint inference, when one has many submodels and wants to predict using all
of them at once. In general joint inference is NP-complete, but algorithms based on dual
decomposition have proven to be efficiently applicable for the case when the joint model
can be expressed as many separate models plus linear equality constraints. This thesis
proposes an extension to dual decomposition which allows also the presence of factors
which score parts that belong in different submodels, improving the expressivity of dual
decomposition at no extra computational cost.

1X

Resumo

Em processamento de linguagem natural, e em aprendizado de méquina em geral, ¢ comum
o uso de modelos graficos probabilisticos (probabilistic graphical models). Embora estes
modelos sejam muito convenientes, possibilitando a expressao de relacoes complexas entre
varias variaveis que se deseja prever dado uma sentenca ou um documento, algoritmos
comuns de aprendizado e de previsao utilizando estes modelos sao frequentemente inefi-
cientes. Por isso tém-se explorado recentemente o uso de relaxagoes usando programacao
linear deste problema de inferéncia.

Esta tese apresenta duas contribuicoes para a teoria e pratica de relaxagoes de pro-
gramacao linear para inferéncia em modelos probabilisticos graficos. Primeiro, apresen-
tamos um novo algoritmo, baseado na técnica de geragao de colunas (dual a técnica dos
planos de corte) que acelera a execucao do algoritmo de Viterbi, a técnica mais utilizada
para inferéncia em modelos lineares. O algoritmo apresentado também se aplica em mod-
elos que sao arvores e em hipergrafos. Em segundo mostramos uma nova relaxacao linear
para o problema de inferéncia conjunta, quando se quer acoplar varios modelos, em cada
qual inferéncia é eficiente mas em cuja juncao inferéncia é NP-completa. Esta tese propoe
uma extensao a técnica de decomposicao dual (dual decomposition) que permite além de
juntar varios modelos a adicao de fatores que tocam mais de um submodelo eficientemente.

x1

lara,

xiii

Acknowledgements

First to my advisor, Jacques Wainer, who supported me throughout this very odd process.
I’d also like to specially thank Andrew McCallum, for treating me as his own student,
and teaching me more than I could have hoped for. Looking back over the past two years
I've learned undeniably much, and most of it from him.

There were many others who held advisory roles for me, and whom I want to thank:
Pedro Kroger, George Lima, Siome Goldenstein, Joseph Turian, Aria Haghighi, Hanna
Wallach, Sebastian Riedel, Jurgen van Gael, Tushar Chandra, and others.

Most of this thesis would not have been possible without the collaboration of my
colleagues. First David Belanger, who co-authored many of my papers, and on whom I
bounced many ideas in the past years. Special thanks to Daniel Duckworth for having
read earlier drafts of this thesis and provided substantial comments on it. One learns
the most from one’s peers, and I learned much from the others at IESL: Sam Anzaroot,
Anton Bakalov, Jinho Choi, Laura Dietz, Gregory Druck, Ari Kobren, Vineet Kumar,
Brian Martin, David Mimno, Harshal Pandya, Sameer Singh, David Soergel, Luke Vilnis,
Michael Wick, Limin Yao, and Jiaping Zheng; and at UNICAMP: Daniel Cason, Murilo
de Lima, Jefferson Moisés, Robson Peixoto, Heitor Nicoliello, and others.

During the PhD process I had the good fortune of doing two internships in research
labs: Microsoft Research Cambridge and Google Research. Both experiences were very
enlightening, and substantially changed my world view. I’d like to thank the people I
worked with, at Microsoft: Khalid El-Arini, Ali Eslami, Michael Gartrell, Thore Graepel,
Ralf Herbrich, Tom Minka, Ulrich Paquet, Matthew Smith, David Stern, Martin Szum-
mer, and others; and at Google: Kevin Canini, Rafael Frongillo, Jason Gauci, Eugene Ie,
Kristen LeFevre, Indraneel Mukherjee, Fernando Pereira, Yoram Singer, Tal Shaked, and
others. I also would like to thank CNPQ and CAPES for partially funding my research.

I’d like to thank other people in the field with whom I haven’t yet overlapped institutionally—

and some haven’t even met in person—but who managed to help me regardless: John
Myles White, Richard Socher, Yoav Goldberg, Neil Parikh, André Martins, Mark Reid,
Nikete Della Penna, Joe Reisinger, Leon Palafox, Hal Daumé III, David Warde-Farley,
Mikio Braun, Rob Zinkov, Tiberio Caetano, Yaroslav Bulatov, and others. I had the

XV

opportunity to write a paper with Piyush Rai, which is not in this thesis only because of
cohesion. I learned much from software design and machine learning from the scikit-
learn folks: Gael Varoquaux, Olivier Grisel, Alexandre Gramfort, Fabian Pedregosa,
Andreas Mueller, Mathieu Blondei, Nelle Varoquaux, and others. Also thanks to the
metaoptimize.com/qa community, for answering my questions.

If not for friends, old and new, I’d have come apart long ago. I'd like to thank first
Emma Tosch, Manuela Borzone, and Luisa Galindo, for helping me keep myself together
in my time in the US. To my old friends, Aline Bessa, Lola, Ivana Pristed, Nara Almeida,
Manuel Sa, Tulio Miranda, Olmo Lacerda, Lais Mendonca, Alais de Hoogh, we may be
apart physically but you are still very important to me. There are also the friends in the
Ambherst area: Jeff Dalton, Cibele Freire, Fabricio Murai, Andrea Vu, Tommy Boucher,
John Foley, and others.

Finally my family, Jorgina Ribeiro Tachard, Bruno Tachard Passos, and José Leandro
Pereira Passos, who have been very understanding of the distance and constraints of this
weird journey.

And last, but not least, to Iara, for whom no simple acknowledgment is enough.

I do not thank the scala compiler ;-).

XVii

Contents

Abstract

Resumo

Dedication

Acknowledgements

1

2

Introduction

Natural Language Processing

2.1 Part-of-speech tagging
2.2 Dependency parsing L.

Optimization basics

3.1 Constrained optimization and Lagrange duality
3.2 Convex optimization
3.2.1 The subgradient method
3.3 Dual decomposition
3.4 Linear programming
3.4.1 Linear programming for combinatorial optimization . .
3.4.2 Cutting planes and column generation

Structured prediction

4.1 Structured linear models
4.1.1 MAP and Marginal Inference
4.1.2 Joint inference and dual decomposition
4.1.3 Projection variables and max-marginals
4.1.4 Block coordinate descent for dual decomposition

4.1.5 Estimating the parameters of structured linear models

Xix

ix

xi

xiii

XV

10
12
13
14
15
17
18

4.1.6 Optimality Theory
4.2 Graphical models
4.2.1 MAP inference in acyclic pairwise factor graphs
4.2.2 MAP inference in general discrete graphical models
4.2.3 The LP relaxation
4.2.4 MPLP for inference in graphical models
4.2.5 Bayesian networks and continuous graphical models
4.2.6 Part-of-speech tagging graphical model
4.3 Hypergraph models
4.3.1 MAP inference in hypergraph models
4.3.2 Projective dependency parsing as a hypergraph model

Faster MAP inference with column generation

5.1 A detour: beam search for approximate MAP inference
5.2 An efficient reduced-cost oracle
5.3 Better reduced costs from forward and backward messages
5.4 The main column generation algorithm
5.5 Estimating the accuracy gap of beam search
5.6 Loss-augmented inference for the 0/1loss
5.7 Exploiting time vs accuracy tradeoffs
5.8 A forward-backward reduced cost for tree models
5.9 An inside-outside reduced-cost for hypergraph models
5.10 Related work L
5.11 A sample execution of the CG algorithm
5.12 Experiments
5.13 Conclusions

Linear programming relaxations for joint inference
6.1 A novel linear programming formulation of joint inference
6.2 A projected subgradient algorithm
6.3 A block coordinate descent algorithm
6.4 Representing arbitrary pairwise scores
6.5 Application to inference in graphical models
6.6 Application to corpus-wide inference in natural language processing
6.6.1 A structure for corpus-wide inference models
6.7 Related worko
6.8 Experiments
6.8.1 The projection variables
6.8.2 The modelling parts Lo

xx1

51
53
54
%)
57
59
60
62
63
65
67
68
70
7

6.8.3 POS Tagging 91

6.8.4 Parsing 92

6.9 Conclusions, 95
7 Conclusions and future work 101
Bibliography 102

xxiil

List of Tables

2.1

4.1

4.2

0.1

5.2

5.3
5.4

6.1

6.2
6.3

A list of 12 universal parts of speech.

The edges used in the Eisner algorithm’s hypergraph. LC(h,m) is a left-
headed complete span with head h and modifier m, LI are left-headed
incomplete spans, etc.

The edges in the Koo et al Model 1’s hypergraph. LC(g, h, m) is a left-
complete span with grandparent g, head h, and modifier m. SI are sibling
spans. The grandparent index g is always constrained to lie outside the span.

A sample execution of the column generation algorithm. The first column
shows the sentence’s tokens, the second their true parts of speech. The
third column shows the CG algorithm’s initial guess for the POS tag of
each token, the fourth and fifth columns show the domain of each token
after the first and second CG iteration, respectively, and the last column
shows the exact answer predicted by CG.

Comparing inference time and exactness of Column Generation (CG), Viterbi,
Viterbi with the final pruning technique of section 5.2 (Viterbi+P), and CG
with duality gap termination condition 0.15%(CG+DG), and beam search
on POS tagging (left) and joint POS/NER (right).
The performance of column generation with different reduced-costs.

The speedups for a 0/1 loss oracle. The table shows sentences per second
for two-best inference using Viterbi, pruned Viterbi, and CG.

Normalized number of inference runs for each algorithm to attain quantiles
of the best dual solution in the WSJ-200 tagging experiment. Best results
are in bold. If a quantile was not reached during 100 iterations, we show

¢ 9

The results of the WSJ-50 tagging experiment.
The results of the WSJ-100 tagging experiment.

XXV

6

48

49

6.4

6.5

6.6

6.7

The results of the WSJ-500 tagging experiment. The rows are the total
times inference is run to achieve each quantile, normalized by the size of
the corpus.
Comparing corpus-wide inference vs. isolated inference for the POS exper-
ments.o
Normalized number of runs of inference for each algorithm to attain quan-
tiles of the best solution in the parsing experiments. Quantiles not reached
during 100 iterations are labelled ‘na’.
Unlabeled attachment scores for the parsing experiments.

XXVIl

List of Figures

2.1

2.2

2.3
24

3.1

4.1
4.2

4.3

5.1

5.2

6.1

6.2

6.3

6.4

6.5

An example natural language processing pipeline for extracting named en-

tities from text. L L 4
An example sentence, with the token boundaries delineated by []s. 4
A sentence annotated with universal parts of speech. 5

An example of a dependency tree. Edges are drawn from heads to modifiers. 7
An example of a polytope and linear objective. 19

Paradigms for structured prediction and some example techniques. 22
A factor graph. Variables are named and represented as circles, factors are
represented as squAares. L. 36

The linear chain graphical model used for POS tagging for a fragment of
our example sentence. 42

A histogram of iterations until convergence of column generation in the
POS tagging experiment. L 72
Training-time manipulation of accuracy vs. test throughput for our algo-
rithm. 74

A single consensus structure. Rounded rectangles represent sentence-level
MAP problems. Dark squares are agreement parts. The bottom circles are
single variables in the sentences. The consensus variable is on top. 86
The variable-copying version of Fig. 6.1 used by dual decomposition, where
dashed lines denote equality constraints. 87
Accuracy (top) and dual objective (bottom) v.s. runs of sentence-level
inference for the WSJ-200 tagging experiment. 96
Accuracy versus normalized number of runs of inference in individual sen-
tences for the WSJ to QTB parsing experiment. 98
Value of the dual objective versus normalized number runs of inference in
individual sentences for the WSJ to QTB parsing experiment. 98

XX1X

6.6

6.7

Accuracy versus normalized number of runs of inference in individual sen-
tences for the QTB to WSJ parsing experiment.
Value of the dual objective versus normalized number runs of inference in
individual sentences for the QTB to WSJ parsing experiment.

XXX1

List of Algorithms

3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
5.3
6.1
6.2

The cutting planes algorithm. 19
The column generation algorithm. 20
The subgradient method for dual decomposition. 27
MPLP for solving the dual decomposition objective. 31
The MAP variable elimination algorithm. 37
The variable elimination algorithm for computing max-marginals. 37
The algorithm for MAP in a hypergraph. 46
The inside-outside algorithm for max-marginals in a hypergraph. 46
The beam search algorithm, with a beam of size one. 53
An efficient reduced-cost oracle algorithm. 55
The main column generation algorithm. 59
The boxed subgradient method for optimizing our objective. 80
Box-constrained block coordinate ascent algorithm. 83

Xxx1il

Chapter 1

Introduction

In recent years Natural Language Processing (NLP) seems to have matured enough to
be profitably applicable in many endeavors. A recent high-profile example is the Watson
system from IBM, which won a televised game of Jeopardy! against two of the best
known human players [19]. Google uses its large-scale Knowledge Graph [88], built by
automatically refining and expanding Freebase [4], a semantic web version of wikipedia,
in most of its search queries, which are reportedly tagged and parsed with special-purpose
algorithms.

Coupled with the very large corpora easily acquired online, there is now a need to
routinely analyze, with a standard NLP pipeline, millions or billions of tokens, not just
in industry applications but also in academic endeavors, such as the Knowledge Base
Population (KBP) challenges in the Text Analysis Conference (TAC) [60, 29].

This need for fast analysis of large corpora highlights a tension in state-of-the-art
approaches to NLP problems, which mostly fall into one of two camps: they are either
sequences of classifiers, which are fast at training and prediction time, but are prone
to overfitting and often don’t achieve the best accuracies, or they are structured linear
models, which achieve very high accuracies at the expense of a more computationally
intensive training and prediction process. The main challenge in structured linear models
is the problem of inference, which is determining, out of all possible output structures,
either the probability of each structure or which structure is most compatible with the
input data.

While in general the problem of inference is intractable, and either # P-hard or N P-
hard [36, 106, 59], there are known polynomial-time inference algorithms for most practical
models in NLP. Most of these algorithms are of combinatorial nature, based on dynamic
programming. That said, these algorithms are still often orders of magnitude slower than
simpler approaches based on greedy search or a sequence of classifiers. Moreover, these
polynomial-time algorithms do not generally compose, which make the problem of joint

2 Chapter 1. Introduction

inference, both across tasks in a single document, and across documents in a corpus,
intractable.

Recently much progress has been made on the tractability of inference in progressively
more general structured linear models, much of it using the tools of linear programming
relaxations [91]. The same linear programming relaxations allow one to efficiently reduce
the problem of joint inference to a sequence of inference problems in reweighted models,
using the technique of dual decomposition [37].

In this thesis, instead of focusing on turning previously-intractable problems into
tractable ones, we focus on accelerating the known combinatorial algorithms for infer-
ence in these problems using techniques from linear programming. In chapter 5 we show
how to adapt the technique of column generation, described in section 3.4.2, to accelerate
the well-known Viterbi algorithm for decoding in linear chain graphical models, in a way
which generalizes to more complex models and allows for a finer grained control of the
tradeoffs between prediction time and model accuracy. In chapter 6 we extend the domain
on which dual decomposition is applicable, presenting simpler and faster algorithms for
the case where different submodels are coupled by more than linear equality constraints,
while still reducing the joint problem to a sequence of independent problems solvable with
known combinatorial algorithms.

Throughout these chapters we’ll look at the connections between the combinatorial
and linear programming views of inference in structured linear models, and how these
views can be brought together to accelerate state-of-the-art approaches to solving natural
language processing problems.

Chapter 2

Natural Language Processing

In this chapter we will look at basic terminology, definitions, and tasks for natural language
processing (NLP).

Natural language processing can be broadly defined as the computational study of
language and its manifestations. While linguists have long studied language, identifying
many universalities across languages, their structures, and the forms of individual varia-
tion of some concepts across linguistic groups and individuals, having computational tools
available allows for quantitative analysis at a scale which is not made possible by small-
scale experiments. A large fraction of linguistic knowledge can be seen as mapping from
observed representations of language, such as text, to latent structures, which highlight
the commonalities across different pieces of text as well as different languages entirely.
One of the basic tools of linguistics is a grammar, which is a concise way of describing
valid sentences in a language. Grammars are concise because they abstract away from
surface syntactic and lexical phenomena and are expressed as compatibility rules over
latent structures.

One of the goals of natural language processing, then, is to build systems that take
language data as input and produce some kind of linguistic structure as output, mim-
icking the analytical work which can be performed by linguists. The structure can be
interesting in and of itself, as is the case of machine translation or automatic knowledge
base generation, but it might also be useful as a building block for other tasks which
extract more complex structures from text. Often many natural language processing sys-
tems are chained together in a pipeline, with one system’s output serving as input to the
next system, until finally the end result is obtained. Figure 2.1 shows an example of an
NLP pipeline for extracting named entities from text.

In this thesis we will consider only a few natural language processing problems, when
the input is text already encoded as a sequence of characters and the processing is done
one sentence at a time.

4 Chapter 2. Natural Language Processing

Sentence Part-of- Named

Tokenizing segmen- speech entity
tation tagging recognition

Figure 2.1: An example natural language processing pipeline for extracting named entities
from text.

[Doonesbury] [creator’s] [union] [troubles]| [are] [no] [laughing] [matter] [.]

Figure 2.2: An example sentence, with the token boundaries delineated by []s.

A sentence is a sequence of characters, which are split into tokens, which are usually
contiguous sequences of characters separated by space or punctuation on either side.
Figure 2.2 shows an example sentence, with the word tokens marked.

We distinguish between a word token, which is a specific sequence of characters in a
specific sentence, and its word type, which is the sequence of characters when removed
from context. For example, “river” is a word type, while its occurrence in the sentence
“she rowed down the river” is the last word token in that sentence.

While historically NLP systems were mostly rule-based or logic-based until the late
1980s, most modern techniques are statistical in nature. We refer the reader to Manning
and Schiitze [47] for a discussion of some early techniques in statistical natural language
processing or Jurafsky and Martin [31] for a more modern treatment. Today most state-
of-the-art NLP systems are statistical, with a few exceptions, such as the stanford within-
document coreference resolver [43].

The statistical, or corpus-based approach to natural language processing proceeds
roughly as follows. First, a large amount of text is annotated by linguistically-trained
experts. This is referred to as a corpus. The main corpus used throughout this thesis is
the Wall Street Journal section of the Penn Treebank [48], in which close to one million
word tokens were annotated with phrase structure parse trees and part of speech tags.
Then, an NLP practitioner comes up with a statistical or learning-based model which
can, given a sentence, make a prediction of what would the linguistic structure of that
sentence look like. The parameters of this model are estimated on a subset of the corpus
and the quality of the predictions of the model are evaluated on the remaining section
of the corpus. A system is declared to be state-of-the-art if its evaluation is competitive
with the best known published results.

There are, of course, alternative scenarios. The most relevant one for this thesis
is the domain adaptation scenario, in which a model is trained in a large corpus and
evaluated on a different, most likely smaller, corpus comprising data from a different
domain. For example, the Penn Treebank does not contain many questions, so a small

2.1. Part-of-speech tagging 5

[Doonesbury]youx [creator’s]xous [union]yous [troubles]youn [are]yvers [00]per
[laughing]AD.I [matter]l\'om\' []

Figure 2.3: A sentence annotated with universal parts of speech.

corpus of questions was annotated [30], and we will later perform some experiments on
applying models trained in the Penn Treebank on the Question Treebank.

Throughout this thesis we will mostly look at two natural language processing prob-
lems: predicting parts-of-speech of word tokens and parsing sentences with a dependency
grammar.

2.1 Part-of-speech tagging

Often in language the specific type of a given word token matters less to how it fits
grammatically in sentences than what is commonly referred to as its part-of-speech. For
example, in English, most common nouns can be used written after determiners or ad-
jectives, but are not often used after adverbs or before determiners. Table 2.1 lists 12
parts of speech which can be found in most languages, and comprise the universal part
of speech tagset [73]. More commonly, however, individual corpora for specific languages
use much finer parts of speech. The Penn Treebank, for example, distinguishes between
plural and singular, proper and non proper nouns, among others.

The task of part-of-speech tagging is to tag each token in a sentence with its part-of-
speech in that context. Figure 2.3 shows an example sentence from the Penn Treebank
tagged with its ground-truth parts of speech.

While most word types have a clear predominant part of speech (and, indeed, pre-
dicting for each word type its most frequent part of speech in the Penn Treebank test
set is almost as accurate as many state-of-the-art systems), any part of speech tagging
system is bound to encounter at test time words it did not see at training time. Also, for
the cases in which there is ambiguity, the parts-of-speech of tokens surrounding any given

token provide strong evidence as to how that token might be tagged.

The accuracy of state of the art part-of-speech tagging systems on the Penn Tree-
bank, using the standard training, development, and testing splits, is around 97% [46].
Most state of the art approaches either use conditional random fields [41] or independent
sequential classification of each token [8].

In this thesis we will mostly concern ourselves with conditional random field models
of part-of-speech tagging.

6 Chapter 2. Natural Language Processing

Table 2.1: A list of 12 universal parts of speech.

VERB | Verbs (all tenses and modes)
NOUN | Nouns (common and proper)
PRON | Pronouns

ADJ | Adjectives

ADYV | Adverbs

ADP | Adpositions (prepositions and postpositions)
CONJ | Conjunctions

DET | Determiners

NUM | Cardinal numbers

PRT | Particles or other function words

X | Other: foreign words, typos, abbreviations

Punctuation

2.2 Dependency parsing

While very useful, parts of speech capture very shallow information at best about the
syntactic structure of a sentence. Very often one desires a richer notion of syntactic struc-
ture, including phrases, subject-verb-object, which words are being modified by which
other words, etc.

While at first most NLP research focused on statistical parsing with context-free gram-
mars, more recently the community has been focusing on parsing with bilexicalized, or
dependency, grammars. There are many reasons for this switch, but the main ones are
that while context-free annotations are very expressive they are also very difficult to pre-
cisely specify and annotate, and much of their structure does not generalize well across
languages [67]. Moreover, many other NLP tasks don’t require the full detailed structure
of a context-free parse, requiring only detection of the phrase boundaries, identification
of the main verb of a sentence, the main noun phrases, the subject/object, etc, and all
these structures are cheaply obtained from a dependency representation.

2.2. Dependency parsing 7

root

N AN NN

Doonesbury creator’s union troubles are no laughing matter .

Figure 2.4: An example of a dependency tree. Edges are drawn from heads to modifiers.

A dependency parse is an assignment of a “head word” to each token in a sentence
such that the graph formed by these head-to-modifier edges is a directed tree, with one (or
sometimes more) words having no “head words”. Moreover, for many languages, including
English, dependency trees can often assumed to be projective [58]; that is, when drawing
dependency edges above the words the edges should not cross (equivalently, if a span is
defined by all tokens between a given token’s leftmost and rightmost descendants, given
any two spans either one strictly contains the other or they do not overlap). Figure 2.4
shows an example of a dependency tree. The head word token of the sentence is the verb
“are”, its modifiers to the left, headed by “troubles”, form the subject, while its modifiers
to the right, headed by “matter”, form the object.

Most state of the art dependency parsers can be roughly classified into one of two
main families: graph-based and transition-based approaches.

Graph-based approaches [58, 56, 38, 17] learn a model that can assign a score to
any dependency tree, assuming this score factors as a sum of scores of parts of the tree,
and then at test time searches for the highest-scoring tree for any given sentence. For
non-projective dependency parsing a first-order model, whose score depends only on the
presence or absence of individual edges, can be solved with a directed maximum span-
ning tree algorithm, but higher-order models, whose scores can depend on the presence or
absence of pairs or triples of edges, are known to be intractable [57]. For projective depen-
dency parsing it is possible to use higher-order models with polynomial-time algorithms
on the length of the sentence [38], though it is arguable whether measuring asymptotic
complexity as sentence length grows is the right approach, as most sentences in most
languages tend to be of relatively short length.

Transition-based approaches [68, 24, 7, 26], on the other hand, learn a classifier that
will act as a variant of a shift-reduce automaton on each sentence at test time. This
family of algorithms has linear or expected linear complexity on the length of a sentence,
and are in practice much faster than most graph-based approaches. While the basic shift-
reduce model can only produce projective trees there are known extensions of it that
can produce any non projective tree. The search for a parse, however, is approximate in
transition-based models, and most practical algorithms are known to not find the overall

8 Chapter 2. Natural Language Processing

best sequence of state transitions. This also creates some difficulties when justifying
parameter estimation for these models [24].

In this thesis we’ll mostly concern ourselves with graph-based projective dependency
parsing.

Chapter 3

Optimization basics

In this chapter we’ll do a brief overview of the main concepts in linear programming and
convex optimization.
Let o be a vector in R". We write the dot product between two vectors as 7y or

(z,y).
In this chapter let f(z) be a function from R™ to R U {oo}. If it is differentiable
let Vf(x) be its gradient at the vector x. The set of points on which f is finite, D; =

{z|f(x) < oo} is said to be the domain of f.

Definition 1. A function ||-||: R" — R is a norm it it satisfies the following properties:
e (riangle inequality, ||z + y||< ||z||+]|y|| for any vectors x and y;
e homogeneity, ||az||= |a|||z|| for any scalar o and vector x; and

e separation, ||z||= 0 if and only if x = 0.

Definition 2. Given a norm ||-||, its dual norm ||-||. is defined as
lyll= max 2"y, (3.1)

It is easy to see that the two-norm ||z|s= vV zTx is a norm, and its its own dual norm.
The sum of the absolute values of the coordinates of a vector is also a norm, ||z[j1= >, |z,
and its dual is the max-norm or infinity-norm, ||z||.= max;|z;|.

Definition 3. A function f is said to be Lipschitz continuous with constant L under a
norm ||-|| if the difference in function value between two points is bounded by a constant
times the norm of the difference of the points,

[f(z) = f(y)|< Lz —yll (3-2)

10 Chapter 3. Optimization basics

Definition 4. The simplex in R" is the set A = {x|x; > 0,> . x; = 1} of vectors in which
all coordinates are positive and sum to one.

A necessary condition for a point z* to be a solution to the generic unconstrained
optimization problem with a differentiable objective,

i /(). (3.3

is that V f(z*) = 0. This is called the first-order optimality condition for unconstrained
optimization problems. It is not, however, a sufficient condition unless more assumptions
are made about the problem.

3.1 Constrained optimization and Lagrange duality

In this section we will look at first-order optimality conditions for constrained optimization
problems. This presentation follows Boyd and Vandenberghe [5].

Definition 5. Let g(x) : R* — R™ and h(x) : R® — RF be vector-valued functions. A
constrained optimization problem is

min. f(x)
s.t. gi(z)=0 (3.4)

The value of this constrained problem is the smallest possible f(x*) which can be attained
such that x* satisfies the equality and inequality constraints above. A point which satisfies
these constraints is said to be feasible.

We refer to this problem as the primal optimization problem

From the specification of this problem we can construct a family of parametric lower
bounds called the dual function.

Definition 6. Given an optimization problem, we define its Lagrangian as
L(z, A, v) = f(z) + A g(x) + 7" h(z). (3.5)

Note that minimizing the Lagrangian with respect to x, for any value of A and for any
non-negative value of v, lower-bounds the value of the constrained optimization problem,
as it is always possible to select a feasible z, and then the second term in the Lagrangian
is zero and the third term is non negative.

3.1. Constrained optimization and Lagrange duality 11

Definition 7. We refer to the result of this minimization, as a function of X and v, as
the Lagrange dual function,

D\ vy) = mzin L(z, A\, 7), (3.6)

and we refer to the problem of maximizing the dual function as the dual optimization
problem
max.) , D (A, 7). (3.7)

Under some conditions one can prove strong duality; that is, that the maximum value
of the dual function, over all possible A and positive v, is equal to the minimum of the
constrained objective function.

Then, for an optimal feasible point x* of the primal problem and an optimal feasible
point A*,v* of the dual problem, we have that

f&") = D\,7") (3.8)
= min f(z) + A" g(z) + 77" h(z) (3.9)

<)+ N Tg(a") + 4 Th(z") (3.10)

< f@)+7"h(a") (3.11)

0 < vTh(z¥) (3.12)

in which the first equality is strong duality, the second is the definition of the dual function,
the third follows from the fact that the minimizer has lower value than any point, and
the fourth from the fact that feasibility of z* implies that g(z*) = 0.

Then, because we know that 77 is positive and h;(z*) is non positive, we have that,
for any primal-dual optimal setting z*, *, v*,

Yihy(a®) =0, (3.13)

or, equivalently, that either 47 = 0 or hj(z*) = 0 or both. This is referred to as the
complimentary slackness condition.
Moreover, since z* minimizes the Lagrangian, we must have that

Vi) + XTVg(x*) + v TVh(z*) = 0. (3.14)

This is referred to as the stationarity condition.

Together with feasibility (i.e., that g(x) = 0 and h(z) < 0) these form the Karush-
Kuhn-Tucker necessary conditions for optimality of optimization problems. For a broader
discussion of Lagrange duality, how it relates to optimization, the sufficient counterparts
of the KKT conditions, and other issues we refer the reader to Boyd and Vandenberghe
5].

12 Chapter 3. Optimization basics

3.2 Convex optimization

In this section we’ll see how the general results from section 3.1 apply to specifically
convex functions. We'll state many general results from convex analysis without proof,
and we refer the reader to Boyd and Vandenberghe [5] for the proofs.

Definition 8. Given a vector a € A in which each coordinate is non negative and they
all sum to one, a convex combination of a set of vectors x; is defined as), cyx;. A set is
said to be convex if given n points in the set, their convex combination is also in the set.

Definition 9. From any function f we can define its epigraph as the set (x,y) : f(x) < y.

A function is said to be convex if its epigraph is convex. It is easy to see that this
implies Jensen’s inequality

f(Ez]) < E[f(2)]. (3.15)

For any two convex sets S; and S5 there exists a separating hyperplane A such that
hTxy > hTxy for all ; € Si, 29 € Sy. This holds even for a point z in the boundary of a
convex set and the interior of the set. For any convex function, then, for all points x in
its domain, there exists a hyperplane g such that

fly) > f(@) +g" (y —). (3.16)

We refer to ¢g as a point in the subgradient of f, which we write as g € df(x). It is
possible to prove that if f is differentiable at x there is only one such ¢ and it is equal to
the gradient of f at x. Similarly to the gradient, if a function is Lipschitz with constant
L then the norm of all of its subgradients is bounded by L.

Subgradients can be constructed from essentially the same rules as gradients (chain
rule, linearity, etc), with a few additional rules. An important one is that for a function
f(z) = max; f;(x), any subgradient of one maximizing f;(z) is a subgradient of f(z),

Op f () = {0 f3 ()| f(2) = max fi(2)}. (3.17)

An optimization problem is said to be convex if it can be written as

min. f(z)
s.t. gi(z) <0 (3.18)
Ax =D

in which f and g¢; are convex functions.

3.2. Convex optimization 13

For convex optimization problems, the KKT conditions described in section 3.1 are
necessary and sufficient for optimality, as long as there is an open set of feasible points
(this is known as Slater’s condition). If the function is not differentiable optimality can
be proven as long as there is a subgradient of f and ¢ which satisfies the KKT conditions.

The Fenchel dual of a convex function is defined as

f*(y) = maxy’x — f(2). (3.19)
The function and its dual obey the Fenchel-Young inequality,
y'e < f2) + [(), (3.20)
and also the gradient mapping properties,
VIVIY) =y (3.21)
Vi(Vf(x) = . (3.22)

An example of a function which is its own Fenchel conjugate is the two-norm squared,

f@) =zl

3.2.1 The subgradient method

One general-purpose method for solving unconstrained convex optimization problems is
the subgradient method. One starts with zq = 0, and at each iteration one sets z;,1 =
x—m0f (x,); that is, points are perturbed by adding a learning rate 7, times a subgradient
of the function at the current iterate. Assuming that the subgradients have a norm
bounded by L and that the norm of the optimal point x* is less than R, one has that

|z —2*|* = flwe =m0 f(2) — 2" (3.23)
= o — 2" *=2n0f (x)" (s — &) + 7 |0 f (x)I* (3.24)
< oy — 2 ||P =200 f ()T (2, — 2%) + n?L? (3.25)
< e — a2 =20, (f (20) = f(27)) + nfL? (3.26)
< a2 S mf () = f(2) + D niL? (3.27)
23 mi(f(a) = @) < [l P+)L (3.28)
. R* 4+ Y. niL?
min f(x;) — f(z* —_—= 3.29
(min f(z;) — f(z7)) 25 (3.29)
And hence any schedule for the learning rates n; for which lim; ., L% () will

Zi i
converge to the optimal solution; moreover if the learning rates are set to ﬁ then the

error after T iterations is on the order of O (%)

14 Chapter 3. Optimization basics

There is a matching lower bound stating that any first-order method for a non dif-
ferentiable convex function will have this rate in the worst case, though there are other
more efficient methods if more assumptions are made about the function. See Nesterov
[65] for more details and a broader discussion of different optimization methods and their
convergence rates.

3.3 Dual decomposition

While there exist general-purpose optimization methods, which can solve any convex
optimization problem, there are specialized algorithms which exploit the properties of
specific function families, and hence can be more efficient. For example, as will be seen in
section 4.3, most dynamic programming algorithms correspond to a linear program, and
hence can be solved by entering the linear program into a general-purpose LP solver such
as Gurobi [28]. This is, however, impractical, as simply writing down all the constraints
of a dynamic program is as expensive as directly solving it.

While the set of functions for which a special-purpose algorithm is known is fairly
restricted, many problems can be decomposed into subproblems which can be solved
using specialized algorithms. Dual decomposition is one of many techniques that allow
one to exploit such a decomposition.

In the simplest case, consider the following optimization problem,

min. f(z) + g(z) (3.30)

where f and g are convex and can be efficiently solved with specialized algorithms. One
can then rewrite this problem as follows

min. f(z)+ g(y)

(3.31)
s.t. x=y
and then look at its corresponding dual problem,
max., D(\) = (min f(z) — ATz) + (min g(y) + \Ty). (3.32)
T Y

This dual problem can then be solved with the subgradient method, as described in
section 3.2.1. Note that a subgradient of this objective with respect to lambda is the
difference between a minimizing = for the first part and a minimizing y for the second
one, as a consequence of equation (3.17). Also note that when a minimizer 2* of the first

3.4. Linear programming 15

subproblem is identical to a minimizer y* of the second subproblem—that is, the primal
constraint is satisfied—the value of the optimization problem does not depend on .

The fully general case of dual decomposition is as follows. There are n problems f;(z;)
which one wants to optimize, with the linear agreement constraint that » . A;z; = 0. One
can write the primal as

min. Z fi(@;)
s.t. Z 142"1/'z =0

Adding a dual variable A to account for the constraint we can write the Lagrangian as

L(x,\) = Z filzs) + AT (Z Al-xi> . (3.34)

Regrouping the terms we can write the dual problem as

(3.33)

max D()) = Z min(fi(:) + A Ayy) (3.35)

Let 2} be a maximizer of f;(x;) + AT A;z;. Then a subgradient algorithm for the dual
problem updates A as follows:

AGFD =A@ 4 ZAZ@ (3.36)

Note that the matrices A; are unrestricted. They can, for example, enforce that only
certain coordinates of the vectors x; have to agree, or project differently-sized z; and x;
vectors into a shared space on which agreement is enforced.

3.4 Linear programming

In this section we’ll restrict ourselves to the case in which f(x), g(x), and h(z) are all linear
functions of z. As any linear equality g7z = b can be expressed as two linear inequalities
gz < band —gl'x < bwe'll talk about the general linear optimization problem, or linear
program (LP) as

min. ¢’z
s.t. Ar <b (3.37)

x>0

16 Chapter 3. Optimization basics

where Axr < b is shorthand for stating that for each dimension i of the vector Az,
We can write the Lagrangian for the linear program as

L(x,\) = o — M (Ax — b), (3.38)

with the constraints that x and A are positive. Rearranging to pull out A\ gives us

L(z,\) = b" A — 27 (ATX —¢), (3.39)
which is the (negated) Lagrangian of the following linear program
max. b\
s.t. ATA > ¢ (3.40)
A>0

Note that each variable in the primal program in equation (3.37) became a constraint
in the dual program, and likewise each constraint in the primal program is a dual variable
in the dual program. It is also easy to see that if one allows variables to be negative
(which can be represented by replacing x; in the program with the difference between two
nonnegative variables z;7 — x;) the corresponding dual constraint has to be satisfied with
equality. The dual of a dual problem, it’s easy to see, is again the primal problem in the
canonical form.

Because linear programs have linear objective and linear inequality constraints and
linear functions are convex, they are convex optimization problems, and hence as was
seen in section 3.2 the KKT conditions are sufficient for optimality, so it is enough to
produce a pair of primal and dual variables which satisfy the stationarity, feasibility,
and complimentary slackness conditions to show that one has solved the linear program
exactly. Alternatively, presenting a feasible setting of the primal variables and a feasible
setting of the dual variables which have the same objective value is a sufficient condition
for optimality.

It is often useful to talk about an integer linear program (ILP); that is, a linear program
in which the variables x are restricted to be integral.

There are many algorithms for solving linear programs, though most practical general-
purpose techniques are based on either the simplex algorithm or interior point methods.
For more information on linear programming we refer the reader to Dantzig [13].

3.4. Linear programming 17

3.4.1 Linear programming for combinatorial optimization

Many important combinatorial optimization problems can be framed as linear programs.
Moreover, there is a close connection between popular dynamic programming algorithms
for combinatorial problems and their linear programming representation.

As an illustration, in this section we’ll look at the problem of shortest paths in a
directed acyclic graph. A directed acyclic graph G is defined as a tuple (V, F), where
V' is a set of vertices (or nodes) and E is a set of edges. Each e € F is itself a tuple
(s Je, We), where ¢ € V,j € V are the source and destination of the edge and w, is its
weight. A sequence s, ..., t of nodes is said to be a path if there is an edge between any
two adjacent nodes in the path. A graph is said to be acyclic if there is no non-empty
path which starts and ends at the same node.

The problem of finding the shortest path between any two nodes s and t in a directed
acyclic graph can be framed as the following linear problem, with one variable e; indicating
whether edge 7 is in the path and one constraint per node:

min. Zweiei
st Y e=1 (3.41)

ei:jel—t
E ej — g ;=0 VYn,n#sn#t
jEj:n iei:n

The dual of this LP, then, has one variable per node and one constraint per edge in
the graph, and is as follows

max. V,
s.it. Vj, =V, <w. Ve,i.#s (3.42)
Vs=0

where the last constraint exists just because there was no constraint for the source variable
in the primal problem, so it shouldn’t have a dual variable, and will show up with value
0 in all constraints it appears in.

These constraints then can be rewritten as saying that the value of each node is less
or equal to the minimum, over all its incoming edges, of the weight of the edge plus the
value of the node from which it comes, as in

Vo, < min w, + V. (3.43)

eje=n

18 Chapter 3. Optimization basics

Then, because the graph is acyclic, we can order the nodes such that all nodes with
an edge entering node n come before n in the ordering, and set the variables to make
the inequalities in equation (3.43) tight. This is referred to as dual coordinate ascent, as
each dual variable is optimized in turn to satisfy all the constraints. This is guaranteed
to produce a dual feasible solution because the graph is acyclic. At the same time, if you
store the maximizers from equation (3.43) you can reconstruct a primal solution by setting
the primal variables corresponding to those edges to 1 and all others to zero. Doing so
with backtracking is guaranteed to maintain primal feasibility and it will have the same
objective value as the one obtained by dual coordinate ascent, so they form a primal-dual
optimal pair.

The algorithm we just derived by reasoning about this linear program is the standard
breadth-first-search algorithm for finding shortest paths in acyclic graphs.

3.4.2 Cutting planes and column generation

In this section we will describe the dual techniques of cutting planes and column gener-
ation for solving linear programs with a large number of constraints or variables. These
techniques are very general, and can be extended to solving general convex problems. For
a more thorough survey we refer the reader to Mitchell [62] or other operations research
texts.

Historically these techniques seem to have been proposed around the ellipsoid algo-
rithm [33, 64] and the Dantzig-Wolfe decomposition [12], as a way of reducing the so-
lution of exponentially large linear programs to the repeated solution of tractable linear
programs. While the precise structure of the ellipsoid algorithm or the Dantzig-Wolfe
decomposition are not relevant to this thesis, many of their usages in practice involve the
meta algorithms of cutting planes and column generation, which are central to chapter 5.

Assuming a linear program is feasible, the linear inequality constraints then define a
polytope, which is a high-dimensional extension of a polygon. An important property in
solving linear programs with more constraints than variables is that if there is a solution
then a solution has to lie in a corner of the polytope, and a corner of an n-dimensional
polytope is the point in which n inequality constraints are satisfied with equality. Figure
3.1 illustrates this property in two dimensions. Note that by complimentary slackness,
then, only these n dual variables can have nonzero values.

This suggests that if one has a linear program with a very large number of constraints,
it should be possible to solve it more efficiently by at first ignoring most of these con-
straints, solving this relaxed problem exactly, finding violated constraints, and adding
them to the relaxed problem. This process then is repeated until no constraints are vio-
lated. This is referred to as the cutting planes algorithm, and the pseudocode is displayed

3.4. Linear programming 19

Figure 3.1: An example of a polytope and linear objective.

Algorithm 3.1 The cutting planes algorithm.

1: function CUTTINGPLANES

2 Initialize and solve the restricted problem
3: while there is a violated constraint ¢ do
4 Add ¢ to the restricted problem

5 Solve the restricted problem

in Algorithm 3.1. A compelling property of the cutting plane algorithm, when combined
with the ellipsoid algorithm for solving linear programs, is that even if the original problem
has an exponential number of constraints it is possible to solve it in polynomial time as
long as it is possible to find a violating constraint, if there is one, in polynomial time. An
algorithm that takes a point and finds such constraints is often referred to as a violation
oracle.
It is often important to talk about the amount a given constraint is violated. If a
constraint is
Alz < b;, (3.44)

its violation is defined as

and if the violation is positive the constraint is said to be violated. Many cutting plane
algorithms assume the existence of an oracle which returns the most violated constraint

20 Chapter 3. Optimization basics

Algorithm 3.2 The column generation algorithm.

1: function COLUMNGENERATION

2 Initialize and solve the restricted problem

3: while there is a variable x with positive reduced cost do
4 Add z to the restricted problem

5 Solve the restricted problem

in the set.

One can, of course, apply the cutting planes method to the dual of a linear program.
Then the same polytope argument suggests that if there are more primal variables than
constraints there should be a solution in which most such variables are set to zero. Then
one can run the column generation algorithm as long as one has a reduced cost oracle,
which finds the primal variable z; with largest reduced cost,

Ri =)\T14Z — G4, (346)

which is the amount by which the corresponding dual constraint is being violated. Al-
gorithm 3.2 shows the pseudocode for column generation. Another way of interpreting
the reduced cost of a variable is that it is its (negated) coefficient in the Lagrangian of
equation (3.39). Hence if the reduced cost is positive it is possible to improve the value of
the Lagrangian by allowing that variable to be nonzero. Note that the KKT conditions
of stationarity and complimentary slackness on the LP dual imply that all reduced costs
of the variables have to be nonpositive.

Note that while the intermediate iterates of the cutting planes method do not satisfy all
the primal constraints, they do satisfy all the dual constraints and monotonically improve
the dual objective. Likewise, the iterates of column generation maintain primal feasibility,
which means that column generation can be stopped early to return approximate solutions,
and the optimality gap can be bounded by the sum all positive reduced costs of the
variables which haven’t been yet considered.

Chapter 4

Structured prediction

In many learning tasks, such as the ones described in chapter 2, one observes an input
o € O and wants to predict a class label x € U, where the set U of valid possible labels can
be exponentially large (in the size of 0). In this setting normal multiclass classification
techniques fail, because most such techniques can’t predict a label that has never been
seen in the training data and often learn a per-label set of parameters. To generalize
multiclass classification to this exponential-sized setting, then, one must assume that
the set of labels is somehow structured, and exploit this structure to make learning and
classification possible.

Structured prediction problems often occur in natural language processing and com-
puter vision, as in these fields it is often convenient to frame a prediction problem as ag-
gregating, from local information, a globally consistent picture of what the labels should
look like.

For example, in part-of-speech tagging, a natural language processing system receives
a sentence and has to output an assignment of a part of speech for each word token in it.
While it is possible to model this problem as independent classification of each word token,
with its label being its part-of-speech, the parts of speech of the tokens surrounding a token
contain very relevant information, which can help disambiguate unseen or ambiguous word
types. For example, if an unseen word type is between words tagged as adjective and verb
it is fair to assume it is a noun, while if it is between a noun and a verb it is fair to assume
it is an adjective. Indeed, one of the earliest successful part-of-speech tagging systems,
described in Klein and Simmons [34], used such rules to tag unknown words without
requiring a dictionary.

There are many different approaches to solving structured prediction problems, but
most can be classified by their position in two roughly orthogonal axes: whether search
for an output is performed incrementally or exactly, and whether the parameters are
estimated to directly optimize structured accuracy. If the parameters are not directly

21

22 Chapter 4. Structured prediction

Exact search
A

- Structured
Generative .
linear
models
models

Indirect optimization < » Direct optimization

MALT Searn /
Parser Dagger

 /
Incremental search

Figure 4.1: Paradigms for structured prediction and some example techniques.

optimized for accuracy they can be maximizing generative log-likelihood, or accuracy of a
local classifier which is then applied repeatedly. Models with exact search generally have
a higher accuracy than models with approximate search, at the expense of speed, and
likewise models with direct optimization tend to generalize better to unseen examples.

On the incremental search with direct training corner we have algorithms such as
Searn[14] or Dagger [81], which treat structured prediction as a reinforcement learning
problem, in which the predictor makes a sequence of decisions, each pruning the search
space, until one single output is left, which is its prediction. Training is done by reducing
the problem to classification and carefully ensuring that the classifier’s distribution over
training examples is close to the distribution over test examples that will be induced by
the search process.

On the incremental search with indirect training corner we have transition-based de-
pendency parsers (such as the MALT parser [68]), and the ClearNLP tagger [8], which
perform search at test time using a classifier that was trained to predict how to make
correct local decisions at test time assuming that the decisions it has made so far were
correct. Bridging the gap between direct and indirect training we have approaches such

4.1. Structured linear models 23

as bootstrap [7] or dynamic oracles [24], which can be used to train a Dagger-style model.
Another family of approaches that perform approximate search with somewhat direct
training is the neural network approaches to structured prediction. The Senna system
[11] jointly learns the parameters of a neural network for many prediction tasks, and
searches incrementally at test time for the best output. Recursive neural networks [90]
learn a composition operator to minimize reconstruction error of phrases, and then use
this operator with incremental search to parse sentences.

With exact search and indirect training there are, for example, generative models such
as the Collins parser [10] or the Berkeley parser [72], though in practice these parsers use
inexact search at test time for speed reasons.

Finally, in this thesis we will mostly concern ourselves with models in the corner where
search is performed exactly and training is done to directly optimize test-time accuracy.
Examples of this are conditional random field models for part-of-speech tagging [41] and
maximum spanning tree parsers [58, 56]. While there are many families of approaches in
this corner, in this thesis we’ll concern ourselves mostly with structured linear models.

4.1 Structured linear models

Structured linear models [41, 102, 97, 9] are a very popular class of algorithms for struc-
tured prediction. The idea unifying structured linear models is to represent each valid
label as a binary vector x, each dimension of which represents whether a specific “part”
is present or absent in that label. The score of each label is expressed as a dot product
(w,x), and hence it is linear in the parts. Finally, and this is where the structure comes
from, not all binary vectors are valid, and the set of valid vectors is denoted as U.

There are many classes of structured linear models, and perhaps the most popular
of these is graphical models, which will be described in more detail in section 4.2. A
graphical model describes a probability distribution over a given set of random variables
by defining “factors”, each of which assigns a score to a setting of its neighboring random
variables. Each such setting, then, defines a part. The valid settings of the parts vector
X in a graphical model are those where different factors agree about the values of the
variables which they both touch.

The main motivation for structured linear models is structured prediction. While in
multiclass classification the size of the set of possible labelings is small, in structured
prediction it is often exponentially-sized as a function of the observation. Then naively
solving the prediction problem

max w’ X (4.1)
xeu

by enumerating all possible outputs is intractable, and one has to restrict oneself to sets

24 Chapter 4. Structured prediction

where this maximization can be performed efficiently. Similarly, learning one independent
score for each possible label is intractable, as most labels—assignments of tag sequences
to tokens, or assignments of parse trees to sentences, for example—will never be seen in
the training data. By decoupling the scoring of a label into the scoring of its parts, which
will hopefully be seen in the training data, and structuring the parts such that finding the
best possible label can be done efficiently, structured linear models exploit the structure
in the parts to effectively learn predictors for structured prediction problems.

Structured linear models can easily be adapted to handle the case where the set of
possible labellings itself varies across different training examples, as long as differently-
sized labels share parts. In dependency parsing, for example, a labeling is an assignment
of parents to each token in a sentence, so sentences with different sizes will have different
sets of possible labelings. Because of the local properties of structured linear models,
which can, for example, decompose the score of a parse tree as a sum of the scores of each
edge in it, it is still possible to learn and predict using such models.

A general representation of a structured linear model, then, is a function of an obser-
vation o, as (w,U), which specifies the set of parts (and their scores) for this observation
as well as the set of valid labelings. Commonly the score of a part is expressed as a dot
product between some features of the observation and a learned parameter vector 6, as in

wlix = 0"f(0,x) = 67 infi(o), (4.2)

where f;(0) is a feature vector for part ¢ in training example o, and f(o,x) is the sum of
the feature vectors for all parts active in x. We'll alternate between these notations as
convenient.

4.1.1 MAP and Marginal Inference

Structured linear models are used for prediction and for defining probability distributions.
Intuitively, a structured linear model is a redundant representation of the possible labels
of an observation o, and a way to score each label. If all possible binary vectors were in
the set U then intuitively each part with a positive score would be active when predicting
and each part with a negative score wouldn’t. The constraints in ¢ then help incorporate
redundant scores of different parts into one cohesive labeling of an observation.

There are then two natural problems with structured linear models. Computing the
best valid labeling, or MAP inference, and computing the expected labeling, or marginal
inference.

For both problems, a key quantity involved is the log partition function,

log Z; ,(0) = tlogZexp(07f (o x)) , (4.3)

xeU

4.1. Structured linear models 25

where t is a positive real number referred to as the temperature. When omitted, assume
that t = 1.
Note that the limit of the log partition function as the temperature goes to zero is the
maximum possible score of any label x,
lim log Z, ,(0) = max 0 f (0, x). (4.4)
t—0 ’ xeU
This means that a subgradient of the partition function at zero temperature is a vector

f(0,x*) with maximum compatibility. Using the chain rule one can see that for t = 1 the
gradient of the partition function is

1

\V4 log Zl,()(e) = eru exp (HTf(O, X))

Zexp (67£(0,x)) £(0,x), (4.5)

xeU

which can be written as an the expectation of the feature vector f(o, x),
\Y log Zl,o(e) = Ly [f(O, X)L (46)

in which the probability of each configuration is proportional to the exponential of its
compatibility,
Py(x]o) ox exp(67f(0,x)). (4.7)

In this thesis we define the problem of computing log Zy ,(€) and one of its subgradients
as MAP inference and the problem of computing log Z; ,(f) and one such gradient as
marginal inference. A way of conceptualizing MAP and marginal inference is that MAP
inference finds an x* which is a mode of the distribution Fy(x|o) while marginal inference
finds the mean F[x] of that distribution.

The acronym MAP stands for maximum a-posteriori. This is so because historically
in structured linear models in which 07f(0,x) is defined as log P(o|x) + log P(x), which
is the logarithm of the product between a prior distribution over structures x and a
likelihood function of observations o given a structure. MAP inference then computes a
maximum a-posteriori structure x according to this prior and likelihood. Models with
this factorization in their parameters are called generative models, because they can be
interpreted as describing a process in which the variables x and o are generated by a
stochastic process.

The problem of MAP inference will be the main focus of this thesis.

4.1.2 Joint inference and dual decomposition

It is often the case that while one does not have an efficient inference method for a given
structured linear model, its parts can be partitioned into sets (referred to as submodels)

26 Chapter 4. Structured prediction

such that inference is tractable in each such set and the global validity constraint can be
expressed as linear constraints. MAP inference in such models is often referred to as joint
inference [79, 84, 82, 20].

In that case the dual decomposition algorithm from section 3.3 can be used to construct
a MAP inference algorithm.

The general joint inference problem can be written as

max.y Z (Wi, X;)

7

where each x; represents the vector of parts of a specific structured linear model and each
matrix A; projects each x; into the constraint space. If the linear constraint did not exist
the problem would be easy, and equivalent to independence inference in each submodel.

The dual decomposition algorithm solves this problem by dualizing the linear con-
straint, forming the Lagrangian

> (wixi) + AT <Z Aixl) : (4.9)

%

and regrouping its terms and maximizing over the primal variables to form the dual
problem
min D(A) = max (w; + ATA;, x;) . (4.10)

A — X; €U,
1

This problem is convex, as it is the sum of the supremum of linear functions of A, and
hence can be solved with any convex optimization technique [5].
Any subgradient of the dual function with respect to A can be written as

OD(A) = > Ax], (4.11)

for some x} which is a maximizer of the reweighted MAP inference problem

max <W,- + ATA,, xi>) (4.12)

x; EU;

Given a subgradient, one can then apply the subgradient method to solve the dual
problem. As seen in section 3.2.1, the subgradient method is an iterative algorithm which

4.1. Structured linear models 27

Algorithm 4.1 The subgradient method for dual decomposition.
1: Age <0
2: while has not converged do
3: for submodel 7 do
4: X; < maXy, ey, <wi +ATA;, xi>
5 A A—nO3 Aixt

at each iteration updates the dual variables by subtracting from them the subgradient of
the objective function, multiplied by a per-iteration step-size n®:

xgt)* = max <Wi + ATA,, Xi> (4.13)
xX; EU;
A= AD O A (4.14)

As long as the sequence of step sizes n® satisfies some simple conditions the subgradient
method is guaranteed to converge to the optimal solution [65].

Applying the subgradient method to optimizing D(X) consists of alternatively doing
MAP inference on the subproblems and updating their weights accordingly, until the
primal constraint is satisfied, at which point the dual objective is minimized. Algorithm
4.1 shows the pseudocode for joint inference with dual decomposition.

4.1.3 Projection variables and max-marginals

While the representation of a structured linear model in terms of parts is convenient, as
it captures the dependencies used during inference and learning, one often wants to refer
to a function of a labeling which is not a part itself.

Definition 10. Given a labeling x, a matriz A is said to define a projection variable if,
for every valid x € U,
Ax =¢; (4.15)

for some direction j.

That is, a projection variable is a matrix such that, for any valid setting x of the parts
in a labeling, the vector Ax is zero everywhere but in exactly one coordinate.

For projection variables defined by binary matrices, given a row of A, the parts for
which it is nonzero can never be active at the same time in a labeling. Each column of
A, conversely, can only have one nonzero element.

An interesting projection variable is, in a pairwise graphical model, whose parts score
settings of pairs of variables, the value of a single variable. A matrix A which defines such

28 Chapter 4. Structured prediction

a projection variable can then have in each row the value 1 for all parts in a mutually
exclusive set for which that variable has that value. Another projection variable is simply
whether that variable in a graphical model has one out of a few specific values (for example,
whether the part-of-speech tag for a specific token in a sentence defines a noun).

Projection variables are relevant when doing joint inference, as they allow the expres-
sion of linear constraints which connect parts in different models, as these parts might
split the set of possible labelings in different ways.

Given a projection variable it is often important to talk about the way the model
behaves conditioned on it taking one of its possible values.

Definition 11. The maz-marginal m* of projection variable A is a vector such that

m*(i) = max (w,x) s.t. Ax=e¢;. (4.16)

The max-marginals of projection variable then represent how good each value of the
projection variable is.

A key property of max-marginals is that they are linear over changes to the weights
in the direction of their projection variable. That is,

my, 1 a (1) = my (i) + a(i) (4.17)
This can be verified by substituting the expression on the left in their definition:
A - T
m;, ra(i) = max (w+a"Ax) st. Ax=¢;
= max(w,x) + (a"A,x) st. Ax=¢;
xeu
= max(w,x)+ ai) s.t. Ax =¢;

xeu
= ma (i) + ali).

This property is essential for many usages of max-marginals.

Computing max marginals

It is sometimes more natural to define max-marginals over parts. A max-marginal over
parts is a vector m with one coordinate per part such that in each coordinate its value is
the best possible score of a setting which uses that part,
m(7) = max (w,x) s.t. (e;,x) = 1. (4.22)
xeu

Many known efficient MAP inference algorithms can compute max-marginals over
parts (that is, the best possible model score such that a given part is in the solution) at

4.1. Structured linear models 29

very little additional cost. For example, for tree-structured graphical models one can use
the forward-backward algorithm [36], and for hypergraph models one can use its general-
ization, inside-outside [89]. Even in structured linear models for which efficient algorithms
for computing max-marginals over parts aren’t known, such as minimum spanning tree
for projective dependency parsing, it is always possible to compute them by setting the
score of each part, in turn, to oo and running normal MAP inference, at an extra cost
proportional to the number of parts, if so desired, though probably if this is necessary
then it is unlikely that large gains in efficiency will be observed by using methods which
depend on max-marginals.

Given max-marginals for parts one can easily compute max-marginals for projection
variables. Given the constraints on the matrices A defining projection variables—that for
any valid x we have that Ax = ¢; for some j, and given that x is restricted to be a binary
vector—it is always possible to express each such matrix as a binary matrix. Then, given
max-marginals for all parts in x, one can compute max-marginals for Ax by, for each row
of A, selecting the highest-valued max-marginal of any part for which that row is 1:

m* (i) = max m(i). (4.23)
JiAij=1
Note that because each part will only have a value of 1 in a single row of A, computing
the max-marginals of arbitrary projection variables has linear complexity on the number
of parts.

4.1.4 Block coordinate descent for dual decomposition

One disadvantage of the subgradient method for optimizing the dual decomposition ob-
jective from section 4.1.2 is that a step size schedule has to be selected in hindsight, the
speed of convergence depends strongly on the step size schedule selected, and no step-size
schedule is uniformly good. In our experiments we found variations of more than one
order of magnitude of performance across different subgradient schedules, and often there
was no single schedule which performed among the best in hindsight for all problems.
Intuitively it should be possible to adjust the step size of a subgradient update locally if
one has access to some information about how “confident” each submodel is in its answer.

In this section we will look at the update rule of MPLP [23], an inference algorithm
for graphical models which reduces the problem of MAP inference to joint inference where
each clique is a separate model and each model is constrained to assign the same value
to overlapping variables, and optimizes this dual decomposition objective using block
coordinate descent.

Block coordinate descent methods for optimization work by selecting a subset of the
coordinates in the problem’s vector space and exactly minimizing the objective with

30 Chapter 4. Structured prediction

respect to those coordinates, leaving the others fixed. To apply block coordinate descent to
the dual decomposition objective one needs to be able to exactly minimize it with respect
to some coordinates, and to enable that we need to make more assumptions about the
constraint structure of the problem.

First, instead of a single vector constraint) . A;x; = 0 we will break this down into
many constraints over pairs of models, which enforce equality:

max.y Z (Wi, x;)

st Vi x €U, (4.24)

V(Ae, A c1,00) €EC Al xe, = AnXe,

where C is a set of constraints, each constraint being represented by two projection
matrices and A., and A., and two indices into models ¢; and cs.

In a graphical model in the normal representation (where each factor defines a part
for each settings of its neighboring variables) projection variables can map full labelings
of the graph to the settings of individual variables in the graphical model. In general
they can refer to any set of mutually exclusive states of a structured linear model, such
as the dependency parents of a token, whether a certain set of superpixels is marked as a
segment, etc.

Since the max-marginals of a projection variable represent the best possible score
achievable by each value of the variable, if these max-marginals have a unique maximizer
that will be the value the variable is set to in any optimal solution. With this property
and linearity, to satisfy a constraint of the form

Aclxcl - Achcg7 (425)

which arises by requiring that 0 is in the subgradient of the dual objective for A., all that
is necessary is to set the dual variables A. such that there exists a coordinate ¢ which is
the maximizer of both readjusted max-marginals; that is, for all j,

mAe (i) + Xe(i) > m®(h) + Ae()) (4.26)
mez (i) — A (i) > mPe(5) — A(4), (4.27)

because of the linearity of max-marginals discussed in section 4.1.3.

An easy way to ensure that there exists a single coordinate which maximizes both
max-marginals is to set A, such that the max-marginals of both projection variables are
equal in all coordinates, that is

m®e 4 X, = mPe — A, (4.28)

4.1. Structured linear models 31

Algorithm 4.2 MPLP for solving the dual decomposition objective.
1: A« 0
2: while has not converged do

3 for equality constraint ¢ do
4: mAe ¢ MaxMargs | we, + Z)\EAC/1 - Z)\EACIQ
dicj=c1 cich=c1
5: mA< MaxMargs | we, + Z)\ZCAC/I - Z /\ZCAC/2
c:ch=ca c:ch=ca
1
6: Ae 3 (mA61 - mA62)

Solving the above for A. leads to the MPLP updates,

A = %(mAC? _ mAa), (4.29)

Algorithm 4.2 shows how to apply MPLP to solve the dual decomposition objective
when max-marginals are available. It consists of alternately computing max-marginals
and updating the dual variables according to equation (4.29).

Previous research has shown that while block coordinate descent methods are not
guaranteed to converge for non-strongly-convex non-smooth optimization problems MPLP
often does converge when optimizing the dual decomposition objective, and often does so
faster and to better solutions than the subgradient method [92]. There are many alterna-
tive convergent block coordinate descent algorithms which optimize dual functions similar
to dual decomposition’s, and with better convergence properties [61, 86, 77]. There are
many other convergent relaxation-based message-passing algorithms for graphical models
with similar structure [94, 105].

4.1.5 Estimating the parameters of structured linear models

While a structured linear model coupled with either MAP or marginal inference is a recipe
for going from an observation o to a high-scoring label x given a parameter vector 6, by
scoring each part according to equation (4.1), it is not obvious a priori what would be a
good value for 6.

In the standard learning setting, one is given training data, a set of samples (0;, X;) ~ D
from some data distribution D and one wants to estimate a parameter vector € such that
when given new test data o; also sampled from D the structured linear model will return
the appropriate x;.

There are many forms of parameter estimation in structured linear models. Since
marginal inference defines a likelihood function Py (x|o) it is natural to maximize the

32 Chapter 4. Structured prediction

likelihood of the true labels when estimating the parameters [41]. Similarly, since MAP
inference can be seen as returning the vector x* which lies closest to a given corner of
instance space, it is possible to define a reasonable notion of a margin between correct
and incorrect answers and generalize the perceptron [9] and support vector machine [102]
algorithms to apply to structured linear models. All these algorithms can be seen as
optimizing some regularized convex loss functions of the given (o0;,x;) pairs.

Regularized optimization problems look like

min.y Y 0(0;,x],0) + |0 (4.30)

for some norm-like function ||-||, which is usually either the 2-norm squared [|0||3 or the
I-norm ||f||;, where the latter is preferred when one desires sparsity, due to its prop-
erty of producing minimizers * which have most coordinates identically set to zero [98].
There are known results in learning theory that state that solutions to such regularized
optimization problems should generalize to unseen examples [103, 66, 45].

A simple loss function is known as the negative log-likelihood of the true output
variables x* given the observed input o and the current parameters, and is defined as

li(0,x*,0) = log Z, ,(0) — 07£(0,x"). (4.31)

Note that the gradient of this loss with respect to 6 is just the difference between
observed and expected features f under the model,

Vi (0,x*,0) = Ey[f(0,x)] — f(0,x"), (4.32)

and a subgradient for the zero-temperature case is the difference between one maximizing
feature vector and the feature vector of the true label,

Vio(0,x*,0) = f(0,argmax, 07 f(0,x)) — f(0,x*). (4.33)

Using stochastic gradient descent using the above gradient is the structured perceptron
algorithm [9)].

Note that at the unregularized optimum of the above-specified loss functions the sum
of the gradients of all training examples is zero. This means that, for each feature,
the model will predict that it occurrs in the same fraction of parts as it occurrs in the
true data. Hence structured linear models make feature engineering easy: if one can
find features which are consistently over-represented or under-represented in the parts
output by a model, adding them to the optimization problem is expected to fix this bias,
leading to the common process where an engineer looks at the mispredictions of a model,
hypothesizes features which correlate with the errors, and adds them to the model.

4.1. Structured linear models 33

Both the above loss function gradients say that essentially the same loss is incurred
whenever a wrong x is predicted instead of x*. This assumption, however, might be too
restrictive and unrealistic; in part-of-speech tagging, for example, a wrong output that
is incorrect in just a single token is better than a wrong output that is incorrect on all
tokens. If you can define the loss of predicting x when x* is the ground truth as a linear
function wZL f(o,x), then you can define the structured SVM loss [102)]

Lm0, X", 0) = max {(0 4+ we) £(0,x)} — £(0,x7). (4.34)

A subgradient of this loss function then is just the difference between one maximizing
feature vector and the ground truth feature vector,

Vigm(0,x*,0) = f(0, arg max, (0 + wx*)Tf(o, x)) — f(o,x). (4.35)

While it is possible to define an equivalent marginal version of the structured SVM
loss [22] as the difference between log Z; . (6 +wy+) and the score of the true label, it hasn’t
been frequently used in practice. An attractive property of the structured SVM loss is
that upper bounds the loss wZ.f(o,x) for all training examples x;, so it is possible to
transform optimization guarantees into the generalization guarantees for w on test data.

We will consider two different loss functions wy+ in this thesis. One, the 0/1 loss, is
defined such that

0 if x=x*
wl.f(o,x) = (4.36)

X

1 otherwise

While this in general does not decompose over the representation of parts implied by
the structured linear model at hand, and hence loss-augmented inference can be hard,
its gradient can still be computed if one can find the second-best solution to the MAP
inference problem. Another common loss is the Hamming loss, which is defined as

wl.f(o,x) = ZmaX(O,xi —X;). (4.37)
i
Hence it counts the number of parts on which x and x* differ.
Finally, there is also the SampleRank [109] loss function, which for every two valid
configurations x and x’ such that some downstream objective assigns a higher score to x
than to x’, penalizes the model by an amount of margin violation between x and x’,

ESampleRank,X* (07 9) - max((), (9 + wx*>T(f(07 X,) - f(Oa X)) + 1) (438>

Pairs of x,x’ configurations are commonly found by stochastic random search of settings
that are somewhat close to a ground truth setting, and it is possible to give some guar-
antees of convergence for this algorithm, as it strictly generalizes the structured SVM
loss.

34 Chapter 4. Structured prediction

4.1.6 Optimality Theory

There are many similarities between structured linear models, as presented here, and
optimality theory, a family of linguistic models of phonetics and some other parts of
linguistics [74].

Optimality Theory (OT) is a way of modeling the linguistic process by which a latent
universal structure gets transformed into the observed surface structure which is language-
specific. OT models the transformative process not as a sequence of transformations but
as a selection of one optimal candidate across many possibilities. This allows a linguist
to represent each language’s process not as a sequence of transformations but as a set
of preferences over universal constraints and the selection of the surface structure which
violates less of these constraints.

Formally, the process of OT is as follows. Given a latent structure, a universal process
called GEN generates a (possibly infinite, or very large) set of candidate surface represen-
tations. Then each candidate is evaluated according to a universal set CON of constraints,
most of which are expected to be violated in most candidate representations. Finally, a
language-specific process called EVAL ranks the constraints, and selects the surface repre-
sentation which violates less highly-ranked constraints. A simplified version of linguistic
work then is to discover universal constraints in CON and to discover their ranks in in-
dividual languages by finding example structures which can elicit this difference. The
process is rather tricky and cannot be done in isolation: given constraints A and B and
two possible surface structures x which violates A and y which violates B, observing that
one given language prefers x over Y might suggest that in this language eval ranks B as
more important than A, but if there is a third higher-ranked constraint C' which y violates
but z doesn’t this might also explain the phenomenon.

It is easy to make parallels between structured linear models and OT. The set of valid
part assignments U is a natural analogue to GEN, and likewise each part is analogous
to each constraint in CON. The main difference, then, is that instead of eval selecting
the output x which violates the least number of higher-ranked constraints a structured
linear model defines a linear notion of compatibility between inputs and outputs via
the parameter vector . This means that it is possible, given certain parameters 6, for
many lower-ranked constraints to dominate a higher-ranking one. On the other hand,
the scores can be used to define a probability distribution over outputs, in which the
difference between the scores of two output structures corresponds to the logarithm of
the ratio of their frequencies, allowing the model to explain some amount of individual
variation. The most important difference, however, is that while eliciting the language-
specific rankings in EVAL is a hard and subjective problem, estimating the parameter
vector 6 of a structured linear model is a simple convex optimization problem assuming
one has a list of observed (o0;,x;) input-output pairs.

4.2. Graphical models 35

Similarly, much of the criticism of OT and structured linear models is the same:
while the formalism is rich, it leaves the computational problem of selecting the best
constraint unspecified, and without making assumptions about the set ¢ and the feature
representation f (o, x) it does not seem possible for efficient inference to be done in general.

For further discussion of OT we refer the reader to McCarthy [55].

4.2 Graphical models

Graphical models are perhaps the most commonly used structured linear models. Here
we’ll restrict our presentation to discrete Markov random fields and conditional random
fields from the perspective of factor graphs. We will ignore considerations of conditional
independence, d-separation, Bayesian networks, and others that were foundational in
studies of graphical models, and for a more complete picture we refer the reader to Koller
and Friedman [36] or Wainwright and Jordan [106].

A graphical model is a structured linear model defined by two elements: a set of
variables and a set of factors. Each output x is a set of assignments to the variables and
each factor defines a set of parts, one for each possible setting of its neighboring variables.

In a linear-chain model for part-of-speech tagging [41], for example, each variable is a
set of part-of-speech assignments to each observed word token i. A factor is defined neigh-
boring each individual token’s label, and also each pair of adjacent labels in a sentence.
These factors’ feature vectors then can compute counts of the form “‘part-of-speech p
occurred attached to a word token of type w”, or “tokens 7 and 7 + 1 had parts-of-speech
p and p’ assigned to them”.

Since each factor depends only on a subset of the output variables it is possible to draw
a bipartite graph in which variables and factors are nodes and there is an edge between a
variable and a factor if that factor depends on the value of that variable. Note that it’s
always possible to represent two factors that touch the same variables as a single factor
without loss of generality. This graph is called a factor graph, and figure 4.2 shows an
example of a factor graph.

A graphical model whose factors touch at most two variables is said to be pairwise,
and when talking about pairwise graphical models we’ll refer to factors as edges, as each
factor will connect two variables in the factor graph.

We can write the score of a setting x of the variables in a pairwise graphical model,

wlix = 1 (X, Xj)wi (Xq, Xj) + 1 (X)) wi (X5) 4.39
> 2 j ZZ/ (4.39)

njel X, X;

then, as

where the first sum is over all pairs of variables 7, 7 which are connected by one factor, the
second sum is over all values X;, X; which the variables i and j can take, w;;(X;, X;) is

36 Chapter 4. Structured prediction

Figure 4.2: A factor graph. Variables are named and represented as circles, factors are
represented as squares.

the score of the part corresponding to the factor between variables ¢ and j when they are
set to X; and X, and likewise 1;(X;) and w;(X;) represent the factors that touch only
variable i.

So one can write the MAP score of this graphical model as

log Zy ,(0 maxz Z“” (Xi, X;)0,(X5, X +ZZM1)0:(X5). (4.40)

INISIOD. O ¢

4.2.1 MAP inference in acyclic pairwise factor graphs

The key property of graphical models is that if the factor graph is acyclic there are po-
lynomial-time dynamic programming algorithms for MAP and marginal inference, which
work by what is called variable elimination.

Variable elimination is a process which, when applied to an acyclic factor graph,
returns a factor graph with one variable removed with the property that its log Z; ,(w) is
unchanged. We'll present here the variable elimination algorithm for MAP inference (that
is, when ¢ = 0), but the algorithm for marginal inference is the same, with basic operations
taken from a different ring [2]. We'll assume that the factor graph is connected and that
all factors touch at most two variables, though it is easy to generalize this procedure for
when these conditions do not apply.

Let ¢ be the index of a variable that has only one other neighboring variable (let’s call
it j'), then we can write the MAP score as

log Z.,(0 —max Z Z”” Xi, Xj)wi; (X, X;j) +ZZM

JEE XuX (4.41)

+ Z :U/i’j’(X’i’-/ Xj')wi’j’(X’i’a X]/) —|— ZM,/ (Xﬂ)’lU,ﬂ(Xz/)

Xi’7Xj’ X,

4.2. Graphical models 37

Algorithm 4.3 The MAP variable elimination algorithm.
1: function MAP (6, x)

2: for Variable z; in topological order do
3: for Value X, which parent z, can take do
4: @ (Xp) — maxy; ijchild ofz; ¥j (Xl) + epi (Xp7 Xl)

Algorithm 4.4 The variable elimination algorithm for computing max-marginals.

1: function MAP (6, x)

2 for Variable z; in topological order do

3: for Value X, which parent z, can take do

4 i (Xp) = maxx, Dy nid ofa, % (Xi) 1 Opi(Xp, Xi)

for Variable z; in reverse topological order do
for Child z. do
for Value X. which z. can take do
ﬁf(XC) — maxx, ﬁf(XZ) + Qic(Xh XC) + Z

e (Xl)

siblingc

and then analytically “maximize out” the variable ¢’ by folding its potentials into the local
potentials of its neighboring variable j'. That is, define

Wi (Xy) = wjy (X)) + max{wy (Xo) + wiy (Xir, Xj0) }, (4.42)
and w}(X;) = w;(X;) otherwise. Let’s refer to the right-hand part of the above equation
as ayj(X;). We can then say that

log Zyo(w) = log Z; ,(W') (4.43)

where Z’ is computed over a model without variable 4’.

It is easy to see that iterating this procedure will eliminate all variables, leaving us
with the MAP score of the model. Algorithm 4.3 shows how this procedure defines a
dynamic programming algorithm.

This algorithm is referred to as a message-passing algorithm because it can be repre-
sented by each variable in the graph sending a message to its parent variable containing
the best possible score, for each setting of the parent variable, of the subtree of which the
variable is the root.

Variable elimination can also be used to get max-marginals. Just note that a byproduct
of the variable elimination messages is the max-marginals of the “root” node. Because the
graph is acyclic at a cost identical to the cost of eliminating all variables it is possible to
compute what would the variable elimination algorithm look like assuming each variable
was the “root”, by continuing the variable elimination process eliminating all variables

38 Chapter 4. Structured prediction

on “the other side”. This can be done by defining two types of messages: up messages,
which go from leaves to the root, and down messages, which go from the root to the leaf.
The up messages are those from normal variable elimination, while the down messages
sent by a parent variable to each child variable are the sum of its parent’s down message
plus its score plus the up messages of the siblings of that variable. Algorithm 4.4 shows
the variable elimination algorithm for computing max-marginals, where the up messages
to variable x; are denoted as a;(X;) and the down messages from variable z; to child
variable x. are denoted as [§(X.). The max-marginals of a variable x; then are the sum
of the up message of its children with the down message of its parent,

m" (X;) = B(Xi) + Y ae(X5). (4.44)

child x.

4.2.2 MAP inference in general discrete graphical models

In the general case MAP inference for graphical models is known to be N P-complete [36].
For discrete pairwise models, the MAP inference problem can be naturally written as the
following integer linear program,

max. Y > pi(Xi, Xj)wii (X, X;)
i,jEEX-L',Xj

s.t. Z [LU(X“X]) =1
Xi,X; (445)

Z i (Xi, Xj) = ZMjk(Xja Xk)
Xi Xk

pij (Xi, X;5) € {0, 1}

in which the local potentials w;(Y;) have been arbitrarily folded into the pairwise poten-

tials for notational convenience. Each binary variable in the above ILP represents whether
each part in the structured linear model is active in the solution, and it is easy to see that
the above mentioned constraints are sufficient to specify exactly the set of vectors which
can be obtained from valid settings of the variables in the graphical model.

4.2.3 The LP relaxation

Since the integer linear program formulation can’t be solved efficiently in general, it is
natural to look at its linear programming relaxation, obtained by relaxing the constraints
that the indicator variables 1i;;(X;, X;) should be binary, and allowing them to take any
real number between 0 and 1.

4.2. Graphical models 39

The LP relaxation, however, is known to not be tight in general. If the graph has
cycles it is possible to have solutions of the LP relaxation which are not solutions to
the ILP (a simple example is the three-node binary cycle graph with identical repulsive
potentials, for which the LP solution is fractional). This is because the constraints in the
relaxation do not perfectly encode the convex hull of all integral vertices of the ILP, which
is known as the marginal polytope [106].

One interesting thing about the dual of the LP relaxation is that it provides another
way to derive algorithm 4.3. If the LP relaxation is written as

max. Z Z pij (X, Xj)wiz (X, X;)
iJGEX/,j,XJ'

s.t. Z fo1(Xo, X1) =1
Xo,X1 (4.46)

> (X, X5) = (X, X)
X Xk

1ij (X, X;) € [0,1]
its LP dual is

min. T
D oa(X) = D ap(X)) < wy(X, X;)
i:(3,5)EE k:(j,k)EE

Note that if an ordering is chosen such that each variable 7 has a unique parent and the
model is a tree, each constraint states that
Odj(Xj) Z Z O[,L(XZ) =+ wij(Xz'y Xj), (448)
i:(i,j)€E
which is identical to the second term of equation (4.42).
So one can think of variable elimination as a way of solving the LP relaxation of infer-
ence in a graphical model by dual coordinate ascent, with a schedule that is guaranteed

to converge. Note the similarity between this linear program and the linear program for
shortest paths shown in section 3.4.1.

4.2.4 MPLP for inference in graphical models

While it is possible to solve the LP relaxation of MAP inference in graphical models by
entering it into an off-the-shelf LP solver such as Gurobi [28] or CPLEX [27], the cost

40 Chapter 4. Structured prediction

of simply writing out the linear program is often prohibitive, making it desirable to find
special-purpose methods for solving this LP relaxation directly.

In this section we will talk about the MPLP algorithm [23], one of many message-
passing algorithms that solves the LP relaxation of MAP inference. MPLP works by
reducing the problem of MAP inference in a graphical model to joint inference on many
independent smaller models (one per factor), using dual decomposition to enforce agree-
ment between these submodels (see section 3.3 and section 4.1.2 for an explanation) and
block-coordinate descent to minimize the dual decomposition objective, as seen in section
4.1.4.

We’ll describe the MPLP algorithm for a pairwise graphical model but the generaliza-
tion for higher-order factors is simple.

Let e be a factor connecting variables ¢ and j with score z.(z;, ;). Let’s then rewrite
the LP relaxation in equation (4.47) by creating an indicator variable for each variable in
each factor and constraining all indicator copies for the same variable to be identical as
follows

max. Z /uLB(X“XJ)’LUe(Xl/XJ)

e,X;,X;
D ne(Xi, X)) = pej(X;) Ve, X, (4.49)
> pe(Xi X;) =1 Ve o pea(Xi) = pos(Xi) Vei,Y;

Adding Lagrange multipliers to the last set of constraints we get the following La-
grangian (omitting the other constraints),

Lp, A) = Z tre(Xi, Xj)we(Xi, X;) + Z Ae.ix, (0 (Xi) = prei(Xi))- (4.50)

e, X;,X; e,1,X;

Reordering the terms and maximizing over the primal variables gives us the following
LP dual

min. Z max fe(Xy, X;) {we(Xi, X;) — Aei(Xi) — Ae i (X))}

Hf(XmX

+Z max ,uol i>z)‘e7i(X

where all the maximizations are implicitly over the simplex A.

(4.51)

This is the dual decomposition objective for doing inference independently in each
factor and constraining all copies of each variable to be identical. As such it can be solved

4.2. Graphical models 41

with the subgradient method but it can be more efficiently solved with block coordinate
descent, a method which, even though it does not guarantee convergence, is often faster
in practice than the subgradient method. To derive the block coordinate descent method
note that a sufficient condition for optimality of this dual objective is that its subgradient
is 0, which, for any \.; means that the maximizer X of factor e’s assignment to variable
7 is the same as the maximizing assignment of the consensus copy of variable 1.

One way to ensure that this will happen for all copies of variable i is to make sure
that each factor’s max-marginals for variable 7 are identical. It is easy to see that setting

Aei(Xi) = = max b (X, X;) — A j(X;) (4.52)
e'#e J

is enough to do so, as it makes all the max-marginals and the consensus variable’s max-
marginals identical.

Iterating these updates usually converges to the optimum of the LP relaxation more
quickly than the subgradient method, as seen in the experiments in the MPLP paper [23]
and in Sontag et al’s dual decomposition tutorial [92]. They can, however, not converge
to the optimal solution of the LP relaxation, as is common in coordinate descent methods
for non-smooth functions. There are, however, smoothed versions of MPLP which are
guaranteed to converge to the optimal solution [50, 61]

MPLP is not the only message-passing algorithm that approximately solves an objec-
tive derived from the LP relaxation of graphical model inference. It is, however, represen-
tative, and readers should look at the references in this paragraph for further discussion
of these methods, their convergence, and how they relate to each other [16, 50, 105, 37,
94, 86, 77, 61]

4.2.5 Bayesian networks and continuous graphical models

Most of the presentation of graphical models so far has been nonstandard, in that it
covers mostly Markov random fields from the perspective of factor graphs, and with
discrete variables only. Another form of graphical model is the Bayesian network, which
is a Markov random field in which each variable has a “parent factor”, and the scores
the parent factor assigns to each value of the variable, when exponentiated, have to
sum to one. When using Bayesian networks, however, commonly the observations o are
also represented as variables being part of the same network, and MAP or marginal
inference is done only varying the variables in the label x. As Bayesian networks can be
represented with factor graphs we don’t need to describe learning differently, except by
mentioning that when using generative bayesian networks it is often possible to estimate
the parameters 6 by estimating the frequencies of substructures in the data.

42 Chapter 4. Structured prediction

Doones. creator’s union troubles are no

Figure 4.3: The linear chain graphical model used for POS tagging for a fragment of our
example sentence.

Many models in the literature have [latent variables z, which are variables in the
model which are neither a part of the observation o nor of the predicted label x. A latent-
variable structured linear model assigns scores by computing the dot product 07f (0, x, 2).
Since one is interested in predicting x from o, the latent variables need to be dealt with
somehow, either by summing over all their possible values or by choosing their values
which maximize the score of x. Learning in these models is nonconvex, as is the loss
functions we discussed all become the difference between two nonlinear convex functions,
and there are many approaches to do so in the literature. We refer the reader to Koller
and Friedman [36] for a discussion of graphical models with latent variables, and inference
and learning in those settings.

Finally, many graphical models in the literature have continuous variables z; instead
of the discrete variables we’ve restricted ourselves to considering so far. We note that as
long as the factors are parametrized as the logarithm of distributions from the exponential
family then the model is still a structured linear model, as the natural parametrization is
linear, and most of the arguments we make here can be generalized by replacing sums with
integrals and taking proper care to ensure measurability of the underlying distributions.

4.2.6 Part-of-speech tagging graphical model

In this section we’ll look at a basic way of solving the part of speech tagging problem
with a graphical model. As we saw in section 2.1, the most relevant pieces of information
about the part of speech tag we need to assign to a token are its word type and the part
of speech tags of the tokens around it.

Figure 4.3 shows an example of a graphical model with factors that capture these two
sources of information for part of speech tagging.

This form of graphical model is referred to as a linear chain, because it is possible
to put the variables in a sequence such that each variable only has factors touching the
other variables immediately next to it. The MAP inference algorithm based on variable
elimination for linear chain graphical models is known as the Viterbi algorithm [104].
The same linear chain structure is used in other tagging tasks, and even some sequence

4.3. Hypergraph models 43

segmentation tasks, such as noun phrase chunking [87] or named-entity recognition [53].

The specific form of the factors used in part of speech tagging models vary, but most
models have pairwise factors whose features are only the values of the two neighboring
variables and local factors whose features are cross-products of each variable’s value and
the following features of the observed sequences

1. the exact word type used at each position;
2. lemmatized, lower-cased, and otherwise canonicalized versions of the word types;
3. character prefixes and suffixes of the word tokens;

4. whether a token is entirely uppercase, is numbers, or is comprised only of punctua-
tion;

5. dictionary lookups for common part of speech tags of the word type;

6. the above features applied at the tokens surrounding any given token, and conjunc-
tions of these.

Moreover, some state of the art models have factors touching triples of adjacent tags,
instead of pairs.

4.3 Hypergraph models

While graphical models can be very intuitive to reason about, efficient inference is only
possible in special cases with very restricted structure. This means that when a structured
linear model has global constraints—like projectivity in dependency parsing—it can be
impossible or very difficult to represent efficiently as a graphical model. In this section
we will look at a specific generalization of acyclic factor graphs called hypergraph models,
grammars, or weighted logic programs [63, 89).

A hypergraph model is a directed hypergraph [21] with scores on the hyperedges. It is
represented by a tuple (N, S, ¢, F), in which N is a set of nodes, S C N is a set of nodes
named as sources, ¢t € N is the target node, and F is a set of hyperedge, in which each
edge e € F is a tuple (I, 0., w.), where I, C N is the set of input nodes of hyperedge e,
0. 18 its output node, and w, is its score. All these sets are finite.

When viewed as a structured linear model, the parts in a hypergraph model are the
edges which are active in any given hyperpath. An output label x is a set of hyperedges
which forms a valid path, in that the target node is the output node of one hyperedge in
the set and for each hyperedge in the set each of its input nodes is either a source node or
the output node of exactly one other hyperedge in the set. Similarly to directed graphs,

44 Chapter 4. Structured prediction

then, an ordering of a set of hyperedges is said to be a topological sort if for any node n
all hyperedges with n as output appear before any hyperedge with n as input. If there is
a topological sort for a set of hyperedges then the hypergraph is said to be acyclic.

A hypergraph generalizes a directed graph by letting each edge have more than one
input. Most concepts carry over from graphs to hypergraphs.

It is easy to see that an acyclic graphical model can be represented as a hypergraph
model: create a node for each (variable,value) pair, pick a “root” variable , create score
0 hyperedges connecting all its values to a target node, label all nodes corresponding
to values of degree-one variables as sources, and create a hyperedge for each setting of
a pairwise factor with the appropriate score. It is also easy to see that many dynamic
programming algorithms can be said to represent a hypergraph model: each dynamic pro-
gramming cell is a node in the hypergraph, and for each dynamic programming hyperedge
that says that the value of each cell has to be greater or equal to the sum of the values in
other cells plus a constant becomes a hyperedge in the hypergraph, and the property of
recursive substructures is just stating that the hypergraph is acyclic. Finally, context-free
grammars in Chomsky normal form are easily seen to be hypergraph models, by defining
a node for each contiguous span of characters in a sentence and each nonterminal in the
grammar, and creating hyperedges for all grammar productions.

The main reason why hypergraph models generalize graphical models for which in-
ference is efficient is that paths in the hypergraph support a richer notion of mutual
exclusivity than variables in graphical models. In a graphical model the one restriction
on the set of possible assignments is that each variable can take only one value. In general
hypergraphs, however, the restriction is that flow is conserved along nodes, which allows
for non-local mutual exclusion constraints. For example, a parsing hypergraph can be
seen as a binary graphical model with one variable per span of consecutive word tokens
in a sentence, whose value is one if that span is a constituent and zero otherwise. To rep-
resent the consistency constraints in a graphical model would require factors connecting
all variables representing overlapping spans to enforce nestedness, which would make in-
ference by variable elimination intractable. In a hypergraph model, however, by properly
adjusting the edges it is easy to ensure that spans are nested.

The most useful property about hypergraph models is that while MAP inference and
marginal inference are easily formulated in them, and solvable with dynamic programming
algorithms, they have more expressive power than acyclic graphical models. For example,
the Eisner algorithm [17, 56] is a way of encoding first-order projective dependency parsing
in a hypergraph model, which would not be possible with an acyclic graphical model
(though note that each hypergraph model is trivially a graphical model with one variable
per hyperedge and one factor touching all such variables that ensures they form a valid
path).

4.3. Hypergraph models 45

4.3.1 MAP inference in hypergraph models

A set of hyperedges P is said to form a hyperpath if the following conditions hold for any
any edge e € P,

1. for all input nodes i € I, either ¢ € S or there is an edge ¢’ € P such that o, = i;
and

2. its output o, is either the target ¢ or there is another edge ¢/ € P such that o, € ..

Equivalently, these constraints can be framed in terms of the nodes in the hypergraph
as follows. For each node n in the hypergraph which is not a source or target, the size of
the set of edges leaving the node is identical to the size of the set of edges entering the
node. Exactly one node enters the target node, and the source nodes are unconstrained.

The key property of hypergraph paths is that finding the maximum-scoring path can
be cast as the following LP, with one indicator variable x. for each hyperedge e:

max. erwe
st Y xe=1 (4.53)

0=t
dwe—> x.=0 Vng{SU{t}}
nele 0c=n

Its dual LP then will have one constraint per hyperedge and one variable V,, per
hypernode, and can be written as follows

st. T—> Vi>w, Ve:o =t (4.54)

It is easy to see that if the hypergraph is acyclic there is an order over the variables
V,, such that if n’ comes after n then the value of Vj, is not used, directly or indirectly,
in computing the value of V,,, and hence this LP can be solved with dual coordinate
ascent, which in this case is identical to dynamic programming. The time complexity of
this algorithm is O(|E|) and the space complexity is O(|N|). Algorithm 4.5 shows the
dynamic programming algorithm in pseudocode.

46 Chapter 4. Structured prediction

Algorithm 4.5 The algorithm for MAP in a hypergraph.

1: function INSIDEMAP (N, E)

2 Initialize V, = 0 for source s, V,, = —o0 otherwise
3: for Hyperedge e in topological order do
4
5

V,, ¢ max (VM, We + > Vn/)

n’'el.
return V

Algorithm 4.6 The inside-outside algorithm for max-marginals in a hypergraph.

1: function OUTSIDEMAP(N, FE)

2 V <+ INSIDEMAP(N, E)

3 Initialize O, = 0 for the target ¢, O,, = —o0 otherwise
4: for Hyperedge e in reverse topological order do
5.
6

for n € I, do
On < max (Ona Ooe + We + Zn’ele,n'?é" Vn/)

7 return O, V

This algorithm can be adapted for marginal inference by replacing all sums with
products and all maximizations with sums, and returning the logarithm of 7" instead of
T.

To compute max marginals, a simple extension of algorithm 4.5 can be used. It is
commonly referred to as the inside-outside algorithm [42], originally proposed as a way of
performing the E step in the EM algorithm for context-free grammar parsing. It works
by keeping an auxiliary table, O,, such that V,, 4+ O, is the score of the best path that
includes node n. Algorithm 4.6 shows the inside-outside algorithm. It works by, after
running algorithm 4.5, iterating over the edges in the reverse order while ensuring that,
for each node n, for each edge e such that n € I, the outside score of n is bigger than the
sum of the inside scores of its neighboring inputs plus the outside score of the target, or

O, = max O; + Z Vo + w,. (4.55)

enele n'€lcAn'#n
This algorithm, algorithm 4.6, is equivalent to the max-marginal algorithm for graph-
ical models, and it can be seen as efficiently considering all possible “rotations” of each
edge in the hypergraph. Its complexity is O(Ed?), where E is the number of edges in the
hypergraph and d is the maximum degree of an edge.
Note that because it is possible to compute max-marginals in hypergraph models it is
possible to apply the MPLP algorithm described in section 4.2.4 to inference in problems
for which individual factors can be expressed as hypergraph models.

4.3. Hypergraph models 47

4.3.2 Projective dependency parsing as a hypergraph model

As seen in section 2.2, dependency parsing is that task of detecting, for each word token
in a sentence, which other token heads the phrase containing it. For an example of a
dependency parse see Figure 2.4. As a requirement, the head relationships have to be
hierarchical; that is, each token has a single head and the directed graph induced by this
relationship is acyclic. Additionally, one is sometimes interested in adding the constraint
that the trees have to be projective; that is that when drawing the edges above the word
tokens two lines cannot cross or, equivalently, that the set of all tokens that are directly
or indirectly headed by a given token is a contiguous span of the sentence.

Projectivity means that it is possible to tackle the parsing problem with dynamic
programming. In this section we will look at the first-order model of Eisner and Satta
[17] and one third-order model by Koo and Collins [38].

Both these algorithms reduce the problem of projective dependency parsing to pars-
ing with a context-free grammar that can produce all dependency trees and is easily
represented as a hypergraph.

The key idea behind this specific grammar which makes it more efficient than the naive
alternative of explicitly keeping track of all possible head tokens for all contiguous sub
spans of the sentence is to, instead, construct the left and the right children of each token,
and “gluing” these pieces together only when constructing the left and right children of
its head.

The grammar includes four types of half-spans: left- and right-headed complete and
incomplete span. A left-headed span is a pair of indices such that all tokens in that span
are directly or indirectly headed by its leftmost token (and likewise for a right-headed
span). A left-headed complete span is a pair of indices such that the rightmost token in
the span cannot have any more dependents, while a left-headed incomplete span is such
that the rightmost token can still receive more dependents.

Spans are constructed as follows: a left-headed incomplete span can be combined with
a left-headed complete span immediately to its right to form a left-headed complete span.
In doing so the rightmost word token of the incomplete span acquires all its dependents.
Likewise, a left-headed complete span can be combined with a right-headed complete span
immediately to its right to form either a left-headed or a right-headed incomplete span,
by making the head token of either complete span take the head token of the other span
as a modifier. Table 4.1 shows all the edges in the Eisner algorithm’s hypergraph.

It is easy to see that these rules can be combined in a hypergraph: each span is a node
and each production rule is a hyperedge. Then MAP and max-marginals can be computed
using the generic algorithms in algorithm 4.5 and 4.6. As the hypergraph model allows
one to assign scores to each rule in the grammar one can use this model to assign a score
to each possible dependency edge in the sentence by assigning this score to all hyperedges

48 Chapter 4. Structured prediction

Table 4.1: The edges used in the Eisner algorithm’s hypergraph. LC(h,m) is a left-headed
complete span with head h and modifier m, LI are left-headed incomplete spans, etc.

Target Inputs Score Constraints
LC(h, m) | LI(h, s), LC(s, m) 0 h<s<m
RC(m, h) | RC(m, s), RI(s, h) 0 m<s<h

LI(h, m) | LC(h,s), RC(s+1, m) | SCOREEDGE(h,m) | h < s <m

RI(h, m) | LC(h, s), RC(s+1, m) | SCOREEDGE(m,h) | h < s <m

whose outputs are the incomplete spans in which those dependency edges are added and
letting all other hyperedges have a score of zero. For this reason, because scores depend
on single dependency edges, this model is referred to as a first-order model. It is easy to
see that there are O(n?) spans, and each span has O(n) incoming hyperedges, so the total
complexity of this algorithm is cubic on the length of the sentence.

This general idea can be extended to higher-order models by enriching the notion of
spans. Now we’ll present Model 1 from Koo and Collins [38], which is a third-order model
that allows scoring of some pairs of neighboring edges in a dependency tree as well as
triples of edges of the form (p— > n),(n— > sg), (n— > s1), where sy and s; are both
adjacent left children or right children of the node n.

This is accomplished by first creating the additional notion of a “sibling span”, which
is the connection of a left and a right complete spans which will be siblings (instead of one
heading the other as is the case in incomplete spans). Incomplete spans are grown then by
a word acquiring its first dependency as in the Eisner algorithm and subsequently adding
sibling spans to the modifier side. This allows the model to score pairs of dependency edges
which have the same parent word. The second difference is augmenting each span with a
“erandparent” index which lies outside it, and only gluing spans for which the grandparent
index matches. Table 4.2 shows the grammar used by the Model 1 algorithm. Similarly
to the Eisner algorithm, it is easy to see that there are O(n?®) nodes in the hypergraph and
each node has O(n) in-degree, so total time parsing complexity is O(n*) on the length of
the sentence.

4.3. Hypergraph models

49

Table 4.2: The edges in the Koo et al Model 1’s hypergraph. LC(g, h, m) is a left-
complete span with grandparent g, head h, and modifier m. SI are sibling spans. The
grandparent index g is always constrained to lie outside the span.

Target Inputs Score Constraints
LC(g, h, m) | LI(g, h, s), LC(h, s, m) 0 h<s<m
RC(g, m, h) | RC(h, m, s), RI(g, s, h) 0 m<s<h
LI(g, h, m) | LI(g, h, s), SI(h, s, m) TRIPLE(g, h, s, m) | h<s<m
LI(g, h, m) | LC(g, h, h), RC(h, h+1, m) | TRIPLE(g, h, -1, m) | h <m

RI(g, m, h) | SI(h, m, s), RI(g, s, h) TRIPLE(g, h, s, m) | m<s<h
RI(g, m, h) | LC(h, m, h-1), RC(g, h, h) | TRIPLE(g, h, -1, m) | m < h

SI(h, 1, r) LC(h, 1, s), RC(h, s+1, r) 0 I<s<r

Chapter 5

Faster M AP inference with column
generation

As was seen in section 4.2.3, there is a connection between the standard message-passing
algorithm for MAP inference in tree graphical models and a linear program. This begs
the following question: is it possible, then, to use tools developed for linear programming
to improve the understanding and the efficiency of message-passing algorithms for MAP
inference in chains and trees?

At first the answer to such a question might seem negative: simply enumerating
all variables and constraints of the linear program in topological order has the same
asymptotic time complexity as solving the problem by message-passing in the first place,
for models for which message-passing is possible. This observation rules out using LP
solving tools as black boxes for replacing the dynamic programming techniques. However,
this does not rule out using higher-level LP algorithms such as cutting planes or column
generation, which only require as black boxes the ability to solve smaller, restricted,
versions of the linear programs at hand.

At the same time, for many NLP tasks simply making decisions locally can be suffi-
ciently accurate. In the Penn Treebank, for example, selecting the majority POS tag for
each word type (including the test set) has a higher than 90% accuracy. In this setting
intuition suggests that it should be possible to find the optimal labelling of a sentence
without directly considering all possible alternatives for all possible token pairs. An ideal
algorithm would guess a labelling and refine it only in places where some ambiguity makes
it difficult to prove that the initial guess is correct.

In this chapter we’ll look at an algorithm for MAP inference in acyclic graphical models
which is based on column generation. While this algorithm’s asymptotic complexity is no
better than simple message-passing, we’ll look at experimental evidence which suggests
that if the parametrization of the graphical model is favorable it is possible to achieve

51

52 Chapter 5. Faster MAP inference with column generation

substantial speedups. We will not look at inference in loopy graphs as there is no exact
tractable message-passing algorithm for inference in these models.

For clarity of exposition we will focus mainly on linear chain graphical models, such
as those in Figure 4.3, in which the graph is connected and each variable has at most two
neighbors. Sections 5.8 and 5.9 show extensions of these techniques for tree-structured
graphical models and hypergraph models. Let’s also assume the factors decompose into
local factors, which assign scores to each setting of each variable in the chain in isolation,
and pairwise compatibility factors, which assign compatibility scores to all pairs of ad-
jacent labels. Letting pu;(x;, z;41) be the indicator on whether the i-th pair of adjacent
variables in the chain is set to values x;, x;y1, and likewise for 0;(x;) and 0;(x;, x;41) repre-
senting the scores of such assignments, we can write a linear program for MAP inference
as follows,

max. Z Z ui($i,$i+1)(9i($z’7$i+1)+9i(xz‘))

T T, Tit1

Sbe Y (@, 2,) = 1 (5.1)

Tn—1,Tn

E Hi—1 xz laxz E Hi xzaszrl

in which all variables are assumed to be posmve It is easy to see that this LP has
one variable per setting of adjacent variables in the chain, or O(nK?) variables, where
K is the number of values each variable can take, but only one constraint per label of
each graphical model variable, or O(nK) constraints. This suggests that it should be
possible to apply column generation to this problem, as the larger number of variables
than constraints suggests that there are optimal solutions in which most of these variables
are set to zero. Of course, it is possible to arrive at this conclusion by simply noting that
a valid output y in a graphical model assigns exactly one value to each variable, and
with this mapping in which each pair of graphical model variables is mapped to K2 LP
indicator variables most of their values have to be zero.
We can write the dual of this linear program as

min. T
st T — () > On(2y) (5.2)

Qip1(Tiv1) — a(x;) > 0;(x, xigq) + 0:(;)

Therefore the amount by which each dual constraint is violated is the following reduced
cost

Ri(zi, xi41) = 0;(2i, i41) + 0i(2;) + 04(2;) — qipr(@ig), (5.3)

5.1. A detour: beam search for approximate MAP inference 53

Algorithm 5.1 The beam search algorithm, with a beam of size one.

1: function BEAM(0, y)

2 g+ 0

3 x5 0

4: for Position ¢ in the chain do

5 for value z; do

6 a;(x;) a1 + 01 (2, x;)
7

Q; max,, a;(x;)

and if this quantity is positive then a dual constraint is violated, and it might be possible
to achieve a larger primal objective by inserting primal variable p;(z;, x;41) in the basis.

A column generation algorithm (see section 3.4.2) would then start with an arbitrary
restricted version of the primal problem, and alternatively solve it by message-passing
(which amounts to normal MAP message-passing where some messages are not sent) and
find variables with positive reduced cost.

The content of this chapter is an extended version of prior work which appeared in
NIPS 2012 [3].

5.1 A detour: beam search for approximate MAP
inference

Perhaps the most popular approximate inference algorithm for acyclic graphical models
is beam search. It works similarly to variable elimination, with one key difference: when
computing the local factors for the neighbor of an eliminated variable it only considers the
d best-scoring settings for that variable, ignoring the future pairwise compatibility scores.
The value d is known as the width of the beam. If d = K then beam search is exactly
the Viterbi algorithm, and finds the exact solution, while for smaller beam widths it is
approximate, with no guarantees on its performance. The pseudocode for beam search
with a beam of size one can be seen in Algorithm 5.1. The time complexity of beam
search is O(ndK), and the space complexity is O(nk).

The intuition behind beam search, and explanation for it being mostly successful and
widely used, is that local information is more than often enough to select the best answer,
and in the cases when it isn’t the pairwise compatibility with the immediately preceding
state often will.

Beam search can also be interpreted as solving a restricted version of the MAP infer-
ence linear program in equation (5.2) by coordinate ascent, in which the set of constraints
to include is dynamically chosen as the algorithm progresses. Because not all constraints

54 Chapter 5. Faster MAP inference with column generation

are eventually considered the beam search algorithm is not exact. The techniques de-
scribed in this chapter allow one to bound the suboptimality gap of beam search and
modify it such that convergence to the exact solution is guaranteed at a small additional
computational cost.

5.2 An efficient reduced-cost oracle

Generally, the key to an efficient column generation algorithm is the ability to exploit
the structure of the problem to find LP variables with positive reduced costs in less time
than it would take to simply enumerate all variables directly. In our specific case, while
the reduced cost expression from equation (5.3) is technically sufficient for a column
generation algorithm, a simple enumeration of all LP variables and computation of their
reduced costs is itself as expensive as the Viterbi algorithm. In this section we will see
how exploiting the structure of the problem allows us to design an efficient reduced-cost
oracle that, while having worst-case performance no better than explicitly enumerating
all LP variables, in practice finds an answer in much less time.

Revisiting the reduced-cost expression, we have that at position ¢ in the chain, for
variable assignments x; and x; 1, the reduced cost is the following expression,

Ri(2i, 2i41) = 0i(wi, 2541) + 0i(2;) + oi(2;) — g1 (@igr). (5.4)

A sufficient condition for the algorithm to have converged is that the maximum
reduced-cost is no greater than zero, or

lingﬁl Ri(zixi1) <0, (5.5)
as if this is the case then we have dual feasibility and then optimality.

To obtain a fast column-generation algorithm then a good strategy is to devise upper-
bounds on the reduced cost which can be efficiently computed and are sufficiently tight.
Here we’ll look at upper-bounding the reduced costs for all LP variables at any given
position ¢ in the chain. One simple way to do so is to, if possible, precompute upper
bounds on the rows and columns of the transition matrices 0;(z;, z;41),

TH(x;) > max0;(z;,vi) (5.6)
Tit1
T (CUZ'+1> Z max ei(l’i,$i+1>. (57)

T4

Note that for many linear chain graphical models, such as the models used in these
experiments, these bounds can be computed a priori, as the transition weights do not
depend on the observations. Even when they do it is often possible to bound their

5.3. Better reduced costs from forward and backward messages 55

Algorithm 5.2 An efficient reduced-cost oracle algorithm.

1: function REDUCEDCOSTORACLE(7, T+, T, S, S7)
2: U™ <= max S*(x;) + T ()

3: C™ « {ZL’iJrllSi(éUiJrl) + Ti(l'lurl) + Ut > 0}
4: U™« max S (zi41) + T (zi41)

zi1€CT
5: Ct « {z;|S* () + TH(x;) + U™ > 0}
6: Return {($i7$i+1)|xi € C+, Tiy € C7, Ri(xi,xiﬂ) > 0}

magnitude by computing how many features can be active for a given observation and
inspecting the model’s parameters.
Moreover, let’s define for convenience

ST (xiy1) = —aiga(Tig) (5.9)

to be the parts of the reduced cost which depend only on the left and right variable value,
respectively.

Given these upper bounds, then, one can compute an upper bound on the value of
any reduced cost for an LP variable at position 7 by

max R(z:, is1) < max (s+(x,-) + %T*(mi)) + max (smﬂ) 4 %T(xm)) (5.10)

TiyTit1 T Tit1

which can be computed in O(K) by independently maximizing over x; and z;yq. It is
easy to compute, given an upper-bound on the terms which depend only on x;, the set
of values of x;,1 for which the upper bound is positive, and vice versa. Then only this
pruned set of values needs to be examined for dual constraint violations, hence even when
there are variables with positive reduced cost it is possible to find them in subquadratic
time.

Algorithm 5.2 shows how to use these upper bounds to compute an efficient reduced-
cost oracle, which will, for any position in the chain, return all LP variables which have
positive reduced cost. These variables can then be added to the restricted primal problem
in a column generation algorithm.

5.3 Better reduced costs from forward and backward

messages

While we technically already have enough ingredients for a successful column generation
algorithm, the situation is still unsatisfying for a few reasons. The main one is that,

56 Chapter 5. Faster MAP inference with column generation

inspecting the reduced cost in equation (5.3), it is easy to see that it will be nonzero if
there is a better path for arriving at any given x;,; than one which is in the restricted
primal problem. This is intuitively wasteful, because it might be that even the best
possible way of arriving at state x; . still leaves it with a score low enough to never be a
part of the final solution, so there is no need to consider LP variables which assign that
value to that position in the chain. This suggests we could somehow try to incorporate
information from both sides of the chain in the expression for the reduced cost.

The usual dynamic programming algorithm for forward-backward MAP inference in

chains, seen in algorithm 4.4, can be converted to the following LP:
min. F+ B
site F— pp_1(xn_1,2,) > Op_1(tp_1,) + 0,(z,)
Qip1(Tip1) — ai(x;) > 0;(x, xig1) + 0;(2;) (5.11)
B — jio(wo, v1) > Oo(x0, 1)

Bic1(wim1) — Bi(ws) > i1 (i1, 23) + 0:(24)
This LP is simply the LP corresponding to the forward-backward dynamic programming
algorithm for message passing, shown in algorithm 4.4. Note that the value of this LP is
the sum of the best forward and backward scores, thereby being twice the value of the

graphical model.
This LP corresponds to the dual of the following LP,

max. Z pd (i, 2341) (0i(i, wi41) + 0i(:)) + Z 1 (@im1s w0) (O (w51,) + 05(:)

(2

s.t. Z p (i x) =1

Tn—1,Tn
Z Mg(anxl) =1
Z0,T1
Z ply (i, @) = Z pl (i, wi11)
Ti_1 Ti41

b _ b
Z/h-(ﬂ?i»-??iﬂ) = Z/l‘i—l(mi—lﬂmi)
Tit1 Ti—1

(5.12)

It is easy to see, however, that any set of edges which is active in a solution which is
optimal for the “backward” part of the LP is also an optimal solution for the “forward”

5.4. 'The main column generation algorithm 57

part of the LP, and hence given any optimal solution one can set u/ = u® and still have an
optimal solution to the problem. Enforcing this constraint directly leads to the following
LP

max. Z pi(is Tig1) (20i(25, w441) + 05(3) + 9-’”i+1>

s.t. Z Pn—1(Tp_1,Tp) =1

Tn—1,Tn

Z fio(wo, 1) = 1 (5.13)
Zo,T1

Z ,U/ifl(ajifla l’z) = Z ,Uz'(xi, Iz’+1)

Ti—1 Ti41

Z 1 (i, Tig1) = Z fi1(Ti-1, ;)

Tit1 Ti—1

which when dualized leads to the following LP

min. FF+ B
s.t. F— ,Un—l(xn—la xn) 2 971—1(xn—17 xn) + en(ajn)
B — po(wo, x1) > Oo(xo, 1)

Qi1 (Tiv1) — (i) + Bi(wi) — Bigr(ig1) > 205(i, 2ig1) + 0:(25) + Oigr (2441)
(5.14)

The main difference between the LP in equation (5.14) and the LP in equation (5.11)
is that the forward and backward constraints have been “merged”. It is easy to see that
a solution which is feasible in the original LP is also feasible in this forward-backward
LP, but the converse is not true. Intuitively, what the merged constraint states is that
along any given primal LP variable p;(x;, x;41) even if it could provide a better way at
“arriving” at a;1(x;41) when going forward in the chain it need not be in the solution if
it cannot also provide a better way of “arriving” at f;(x;) when going backwards in the
chain.

5.4 The main column generation algorithm

As seen in section 3.4.2, the main structure of a column generation algorithm is shown in
Algorithm 3.2. Its main ingredients are a restricted primal problem, how to solve it, and

58 Chapter 5. Faster MAP inference with column generation

how to select variables with positive reduced cost to add to it. We will tackle each item
in turn.

First, our restricted primal problem is defined as follows. For each position 7 in the
linear chain we keep a domain D;, a set of the possible labels for that token which are
active. This domain is initialized, at first, to be the label with the best local score. The set
of primal variables in the restricted problem is defined to be all primal variables involving
labels in the domain for each position in the chain. When adding a primal variable to
the restricted cost we simply add the label for each of its endpoints to the corresponding
domain. While this adds more primal variables than strictly necessary we found that
after adding one variable other variables involving the same endpoints would soon be
added, and maintaining an explicit list of variables in each position with size potentially
quadratic in the label set to be more costly than considering these unnecessary primal
variables.

We also keep for each position i a set C; of candidate labels. The label with the highest
local score z} is a candidate label, and a label z; is not a candidate only if

Oi(x:) + Ti(20) + T; (w5) < O5(a7) + L7 (a7) + L7 (7)), (5.15)

where
L (z;) < 1511111 0; (25, 0i41) (5.16)
L™ (zi41) < rrylin Oi(xi, Tiv1). (5.17)

T

That is, a label is filtered from the candidate set if its possible to upper-bound its score
to be less than a lower bound of the score of another label. Hence labels which are not in
the candidate set cannot possibly be a part of an optimal solution. As far as we are aware
this pruning method is novel, and as the experiments show it can be substantially faster
than naively applying max-product. This pruning technique is referred to as Viterbi+P
in the experiments.

When solving the restricted primal problem, dual variables «;(x;), 5;(x;) for all can-
didate labels z; € C; are computed, but their maximizations are made only with respect
to variables in the domain. That is,

Qip1(Tip1) = max ai(w;) + 0i(xi, ig1) + 05(x;) (5.18)
Bi1(Tio1) = ;T_leagf Bi(x;) + b1 (x5, ;) + 0;(z5). (5.19)

This solves the dual of the restricted LP because it enforces the dual constraints corre-
sponding to all primal variables in the LP, in this case all primal variables touching labels
which are in the domains of each position in the chain.

5.5. Estimating the accuracy gap of beam search 59

Algorithm 5.3 The main column generation algorithm.

1: fori+ 1 —ndo

2 D; + {argmax6;(x;)}

3: while domains have not converged do

4: (a, B) < GetMessages(D,0)

5 for i< 1—ndo

6 Dy, Df,, + ReducedCostOracle(i)
7 D; + D; U Dr

8 Dip1 < Dia UD,

While this representation is more wasteful, as dual constraints are being enforced
for primal variables which were never found to have a positive reduced cost, we found
experimentally that keeping a list of active edges instead of active values for each variable
can be memory-intensive and take longer to converge, as often adding one edge touching
one value would be followed by adding neighboring edges.

Note that this restricted problem assigns a value to all dual variables, even to those
whose constraints are unlikely to be violated in a dynamic programming solution. While
this seems wasteful, guessing values for these dual variables in a way that preserves fea-
sibility, necessary for reasoning in terms of a primal-dual optimal as in section 5.3, and
allows the efficient computation of a reduced-cost oracle proved difficult.

To find all edges with a positive reduced cost we can use the generic oracle from section
5.2.

Algorithm 5.3 shows the main column generation algorithm, and algorithm 5.2 shows
the reduced-cost oracle.

5.5 Estimating the accuracy gap of beam search
It is possible to use the reduced costs to upper-bound the score of any primal solution.

Theorem 1. Given a primal feasible solution to a restricted primal problem with score
S, and given its dual variables, the score of any other solution can be bounded as

S*< S+ Z max R;(x;,xiy1). (5.20)

L, Ti+1

We can sketch a proof of this as follows. Intuitively, because our indicator variables
are bound to be between 0 and 1, the maximum increase in score obtainable by adding
a primal variable to the model is its reduced cost. Hence if one has a partial solution,
obtained from beam search or from one of the variants of column generation, one can

60 Chapter 5. Faster MAP inference with column generation

stop search early and quantify the duality gap between the current solution and the best
possible solution.

Note that naively computing the maximizations in equation (5.20) has the same worst-
case complexity as exact inference, but can be accelerated in practice using the reduced
cost oracle from Algorithm 5.2.

5.6 Loss-augmented inference for the 0/1 loss

As described in section 4.1.5, a popular loss function for estimating the parameters of
structured linear models is the structured SVM with the 0/1 loss function, whose gradient
is defined as

Vlsm(0,x*,0) = f(0, arg max, 0Tf(0, x) + 0(x#£x")) — £(0,x"). (5.21)

To compute this gradient, then, it is necessary to find any solution with score greater
than the score of the true label minus 1, if one exists. If the ground truth solution is not
the solution with a highest score MAP inference will return a margin violation. However,
if the ground truth solution is the optimal this reduces to finding the second-best-scoring
solution, but only if there is such a solution with score less than 1 smaller than the score
of the ground truth solution.

The column-generation algorithm can be adapted to this task as follows. If a primal
variable is part of a solution with score at most + smaller than the score of the best
solution then its reduced cost is also lower bounded by —~. Then if one finds the set of
primal variables with reduced cost greater than —~ and runs any algorithm of choice for
two-best inference restricted to those primal variables one is guaranteed to find a margin
violation if there is one.

The following theorem ensures the validity of this algorithm:

Theorem 2. If we add to the restricted LP all primal variables with reduced cost larger
than —v in an optimal solution, k-best Viterbi inference using only the primal variables
in the restricted problem is guaranteed to return all of the top-k assignments with score
equal to M AP — ~ or larger, where M AP is the score of the MAP assignment.

Proof. While the notion of 2-best setting is not well-defined in terms of the LP (because
it can take on non-integral values), the one-to-one correspondence between settings of the
graphical model variables and feasible integral settings of the LP variables allows us to
reason about the properties of specific parts of a two-best solution.

Let p*, A* be a primal-dual optimal pair for a MAP inference LP, and let Dy, ..., D,
be the restricted domains of the primal variables. Let S(u) refer to the LP objective for
wand L(p, \) refer to the Lagrangian score for p, A.

5.6. Loss-augmented inference for the 0/1 loss 61

We'll use the subscript v to index the LP variables. Let R, (i, A) refer to the reduced
cost of LP variable v w.r.t dual variable vector .

Suppose, for the sake of contradiction, that there exists a setting of the graphical
model variables such that its corresponding integral LP variable setting fi is such that
S(p*) — S(fr) < v and some component of i isn’t in the instantiated pairwise domains.
Le. Jv s.t. i, ¢ D,. Note that by defining /i in terms of a setting to the graphical model
variables, we are specifying that ji satisfies the primal constraints by construction.

Since fi satisfies the primal constraints, S(fi) = L(jfi, A*). We also have that S(u*) =
L(f1, *) because p*, A* is a primal-dual pair. Therefore, we have the condition that
L(ft, *) — L(ji,A*) < ~. Now, let’s rewrite the terms of the Lagrangian in terms of
reduced costs. Let V be the index set for the components of j,:

> Ry, Ny = Y R, A)iy < (5.22)

veV veV

Since /1 is integral, we know that fi, is either 0 or 1. The same is true for u; because
we know the LP is tight. Therefore, we can cancel out the sums over the subset of V
where fi, = p;. We next split up this index set of places where they disagree into two
sets, ST, where p* =1 and 1, = 0, and S—, where i =0 and f1, = 1:

D Ry, Ny = > Ry, A iy <7 (5.23)

veS+ vES—

By the optimality of u*, we know that every term in the left hand sum is zero. There-
fore, we have that:

> Ry(fiw, A)jiy +7 > 0 (5.24)

vES™

Next, we split S~ up further into two sets. Let S} refer to the index set of components
fi, with fi, € D, and S refer to components fi, with X, ¢ D,,.

By the initial assumptions of the proof, we have that S, is nonempty. We actually
have that |S;|> 2. If |S;|= 1, then there’s no way that the primal constraints could be
satisfied by i because LP variables for adjacent primal variables in the graphical model
must agree on the setting of the node where they intersect.

For v € S}, we have that R,(fi,,*) < 0, by the fact that f, isn’t used in the LP
optimum. For v € S, we have that R,(fi,, A*) < —v, by the assumptions of the proof.

62 Chapter 5. Faster MAP inference with column generation

Therefore, we have:

7 Ro(fio, Xt +v =Y Rulfie,) + 7 (5.25)
veS—™ vES™
=) Ry(fi, \) + Y Ru(fin, A7) + 7 (5.26)
veS, veESH
<Y Ry(ji, A+ (5.27)
veES,
< =S5+ (5.28)
< =27+ (5.29)
<0 (5.30)

But we had in equation (5.24) that > o Ry(fiv, A*)fiy +7v > 0. Therefore, we have a
contradiction, and the proof is complete. O

Note that this can be extended to k-best inference if one has a parameter v such that
such that all k-best solutions have a score at most v worse than the optimal score. If
is not known a priori it can be determined by first guessing any value of v (including 0),
running k-best decoding using only the primal variables originally added to the restricted
LP, computing the score of the k-th solution returned, and set v to be the difference
between that score and the optimal score, as then one is guaranteed to find the true k
best settings possibly using a small subset of the settings of the primal variables in the
graphical model.

5.7 Exploiting time vs accuracy tradeoffs

The runtime of the reduced-cost oracle from section 5.2 depends quadratically on the
number of candidates x; or x;;1; whose reduced cost cannot be bound away from 0. It is
then desirable to tighten these bounds as much as possible to ensure that these sets are
small.

Since parameter estimation is structured linear models is often done with /5 regular-
ization, a convenient way to control the tightness of the bound is to change the strength
of the regularizer of the pairwise scores, relatively to the regularizer of the other scores
during parameter estimation. This will then learn a different model, possibly with lower
accuracy, but on which column generation is a faster inference method.

5.8. A forward-backward reduced cost for tree models 63

5.8 A forward-backward reduced cost for tree models

The LP version of the MAP problem in trees, as seen in section 4.2.3, is

max. Z pi(z:)0;(x;) + Z Z pig (@i,)73 (24, 75)

0,4 ijel xi,x;

> pi(wi) =1
Zuij(fl?uﬂ?j) = p;(;)

(5.31)

Z Lij (i, %‘) = ()

Following Wainwright and Jordan [106], we choose an arbitrary node as the root of
the tree and rewrite 5.31 as

max. Z,ul .1'1 91 331 + Z Z,Uzy iy X sz(£za >+9 ())

ije€E x;,7;

Zu” T, ;) Zujk xj,xr), Vke N(j)—1i,Vi,jeE, ;.

This is done by assigning the local score of each node, besides the root, to its parent
transition edge.
From this LP you can derive the following Lagrangian,

L(p,\,T)= Zul (1)01 (1) +Z ZMW (@i, 25)(135(2, 25)+0;(x5))+T (Zul (1))

iJeEL T4,

+ Z Z Z)‘ka ;) <ZMJk Tj, k) Zﬁsz(wux]’))

ijeE x; keN(j)—i

(5.33)

whose terms can be rearranged to give rise to the following expression with reduced costs

:u’a)‘ T Z,ul 33'1 91 .731 Z)\Z_] Il

jeNa (5.34)

+ZZM2’J’($Z‘7%’) Tij (i, ;) +0;(25) + Z)‘kj i) = Aji(@s)

ijeEL x;,x; kEN(5)—i

64 Chapter 5. Faster MAP inference with column generation

By setting the maximum reduced cost of the pairwise marginals at each edge to zero we
get the standard max-product message-passing updates on trees,

i) = maxnj(xl,x])+9 ;) Z Aej(x5) (5.35)

keN(j)—i

Note that the value of these messages depends only on the fact that the root of the
tree is closer to ¢ than it is to j; otherwise the message going across this edge would be
analogous, except going in the other direction.

This shows that if we picked each leaf in turn as the root, computed the Lagrangian,
and averaged them, we’d get, at each edge, only two distinct values for the dual variables
associated with it, depending on whether the root is closer to i or to j from that edge.
The average Lagrangian, then, would have a value equal to

L(p, A, T) ZZM xy) | Oi(zy) Z Nij(x1)

leafl T JEN(1

+y = N, +N > wig(wi,x3) | (N; + Nj)rg (i,) + Nibly () N;05 ()

iyelE T4,

+ N D Ala) = i) | NG DD i) — ()
keN(j)—i keN(i)—j
(5.36)

where NV; is the number of leaves in the tree, N; the number of leaves reachable from node
This is the Lagrangian of the following primal problem

1 1
N 0 (N (i,) + Nibi(2:) + N;0;(;
max N, Ez %l ()0 () + %j Ni"‘Nj(1Tij (@i, x5) + (x;) + N;0;(x;))

s.t. Z/l,l(l’l) =1, Vleafl

> NkZNk@ o) = Ni Y (@i, w5), Vi, g
;

keN(i)—j
(5.37)

Note that the constraint here is equivalent to the sum of many marginalization con-
straints, as

5.9. An inside-outside reduced-cost for hypergraph models 65

as the number of leaves reachable through all descendants of 7 has to be equal to the
number of leaves reachable through 7.

Also note that this LP is a generalization for trees of the LP for chains presented in
equation (5.13).

The reduced cost in such an LP, for each edge 7, is

NiRij(wi, m5) = (Ni + Nj)7ij (i, 75) + Nibli(2:) + Nj(0;(;))

N LY ila) = Ay(ay)
KEN()—j (5.38)

+N D Aeglag) = Njilw)

kEN(j)—i

And, analogously to the chain case, it is easy to see that setting all dual variables to
the fixed points of the max-product messages is a sufficient but not necessary condition
for dual feasibility. A column generation algorithm can then be constructed by using an
identical reduced-cost oracle to the linear chain case.

5.9 An inside-outside reduced-cost for hypergraph
models

As seen in section 4.3.1, it is natural to represent a hypergraph model with the following
linear program,

max. Z fheWe for hyperedge e
s.t. Z e = Z i for node n apart from source and target (5.39)
€:0e=n en€l,
Z fe =1 for the target node t
€:0e=t

which asserts that for each node n, the sum of the indicator variables v, for the edges
entering n (that is, edges which have n as the target node o.) has to be equal to the sum
of the indicator variables of edges leaving n (that is, edges which have n as a member of
their set of inbound nodes 1.), and the objective scores each edge e by its weight w,.

66 Chapter 5. Faster MAP inference with column generation

The dual of this LP is

min. v,
(5.40)
s.t. v, — Z v, > w, for each edge e
nele

which has a variable storing the value v,, of each node n. Similarly to the graphical models
case, coordinate ascent in this dual is equivalent to the standard dynamic programming

algorithm.
By defining an outside value o, for each node n it is possible to define a backwards

version of this LP,

min. v, + g Oy

source s

s.t. v, — Z Uy, = We for each edge e (5.41)

nele

0; — 0o, — Z v, > w, for each edge e, input i € I,
n€le,n#i

and its dual
max. Zwe (/Le+ Z ufj)
e en€l,
s.t. Z Le

Z fhe + Z MZ/> for node n apart from source and target

€:0e=n en€le n'#n,n/ €l

Z e = Z Z e for node n apart from source and target
en€le en=oc n'#n,n'€l,

Z fe =1 for the target node t

e:0e=t

Z e =1 for all source nodes s

€:0e=S8

5.42
Note that in this LP a forward indicator variable p. can have a value larger than(1, ag

its value counts how often that edge is used in the forward and backward computations.

Because of the asymmetry between sources and target in hypergraph models it is not
possible to merge the primal variables for the forward and backward problems, as was
done in the chain and tree cases. That said, conditioned on its neighboring inputs, the
relationship between an input and its target is the same as in between adjacent node

5.10. Related work 67

variables in the chain and tree cases, leading us to the following LP

min. v; + Z 04
source s (5‘43>
—v; — 2 Z v, > 2w, for each edge e, input 7 € I,
ne€le,n#i

s.t. v, +0; — 0o,
which has a reduced-cost expression including forward and backward variables for each
input of each edge. While this LP underestimates the value of the source nodes which are
not in an optimal path, the same arguments as in the chain and tree cases suffice to prove
that it estimates the value of the target node correctly, as for all edges in the path there
can be no gap in the “upward” messages to offset a gap in the “downward” messages.

Note, however, that unlike in the chain and tree case, it is not possible to form an
efficient oracle for this reduced-cost, as there is not necessarily any clear structure in
the hyperedges which can be exploited to efficiently lower-bound and upper-bound the
scores of all edges which are not being considered. This might not be an issue, however,
as experimentally over 95% of the CPU time of hypergraph-based dependency parsers is
spent computing dot products between edge features and weights, and hence upper- and
lower-bounding the values of these dot products directly might be a productive approach.
Preliminary experiments however failed to obtain speedups on the third-order parsing
model described in table 4.2.

5.10 Related work

Column generation has been employed as a way of dramatically speeding up MAP in-
ference problems in Riedel et al [80], which applies it directly to the LP relaxation for
dependency parsing with grandparent edges.

There has been substantial prior work on improving the speed of max-product infer-
ence in chains by pruning the search process. CarpeDiem [18] relies on an an expression
similar to the oriented, left-to-right reduced cost equation (5.44), also with a similar prun-
ing strategy to the one described in section 5.2. Following up, Kaji et al. [32] presented
a staggered decoding strategy that similarly attempts to bound the best achievable score
using uninstantiated domains, but only used local scores when searching for new can-
didates. The dual variables obtained in earlier runs were then used to warm-start the
inference in later runs. Their techniques obtained similar speed-ups as ours over Viterbi
inference. However, their algorithms do not provide extensions to inference in trees, a
margin-violation oracle, and approximate inference using a duality gap. Furthermore,
Kaji et al. use data-dependent transition scores. This may improve our performance as
well, if the transition scores are more sharply peaked. Similarly, Raphael [75] also presents

68 Chapter 5. Faster MAP inference with column generation

a staggered decoding strategy, but does so in a way that applies to many dynamic pro-
gramming algorithms.

The strategy of preprocessing data-independent factors to speed up max-product has
been previously explored by McAuley and Caetano [51], who showed that if the transition
weights are large, savings can be obtained by sorting them offline. Our contributions, on
the other hand, are more effective when the transitions are small. The same authors
have also explored strategies to reduce the worst-case complexity of message-passing by
exploiting faster matrix multiplication algorithms [52].

Alternative methods of leveraging the interplay between fast dynamic programming
algorithms and higher-level LP techniques have been explored elsewhere. For example,
in dual decomposition [85], inference in joint models is reduced to repeated inference
in independent models. Tree block-coordinate descent performs approximate inference
in loopy models using exact inference in trees as a subroutine [94]. Column generation
is cutting planes in the dual, and cutting planes have been used successfully in various
machine learning contexts. See, for example, Sontag et al [93] and Riedel et al [78].

There is a mapping between dynamic programs and shortest path problems [49]. Our
reduced cost is an estimate of the desirability of an edge setting, and thus our algorithm
is heuristic search in the space of edge settings. With dual feasibility, this heuristic is
consistent, and thus our algorithm is iteratively constructing a heuristic such that it can
perform A* search for the final restricted LP [1].

There are other non-LP-related pruning techniques to accelerate MAP inference. For
example, Wang and Koller [107] propose a fast message-passing algorithm for inference
in graphs which are composed of a single cycle.

5.11 A sample execution of the CG algorithm

In this section we show an example of how the column generation algorithm works on a
sample sentence from the corpus. Table 5.1 shows an example sentence, the true part-
of-speech tags of its tokens, the model’s initial guess, the domains after each column
generation iteration, and the model’s final output.

The first thing to notice is that most tokens never have their labels questioned, as they
are obvious. Secondly, some mistakes are never fixed: the token “Poles” is tagges as a
plural proper noun (NNPS) instead of a plural common noun (NNS), which is its correct
tag. Then, some ambiguities are considered but are not sufficient to change the model’s
prediction: for example, the token “do” is first analyzed as a verb in its base form (VB),
then considered a verb in a non-third person singular present (VBP), but finally decided
to have the correct label, which was the initial guess. Finally, some tokens such as “view”
have their labels fixed by the algorithm: even though it functions as a verb in its base

5.11. A sample execution of the CG algorithm

69

Sentence | True tags | Initial domains | Iteration 1 | Iteration 2 | Final output
The DT DT DT DT DT
Poles NNS NNPS NNPS NNPS NNPS
Might MD MD MD PRP | MD PRP | MD
do VB VB VB VBP VB VBP VB
better RBR VB VB RB | VB RB | RB
RBR JJR | RBR JJR
to TO TO TO TO TO
view VB NN NN VB NN VB VB
it PRP PRP PRP PRP PRP
as IN IN IN IN IN
a DT DT DT DT DT
Trojan NNP NNP NNP NNP NNP
Horse NNP NNP NNP NNP NNP

Table 5.1: A sample execution of the column generation algorithm. The first column
shows the sentence’s tokens, the second their true parts of speech. The third column
shows the CG algorithm’s initial guess for the POS tag of each token, the fourth and
fifth columns show the domain of each token after the first and second CG iteration,
respectively, and the last column shows the exact answer predicted by CG.

form (VB), the model guesses it is a singular common noun (NN), but column generation
eventually considers the true label and the model settles on it.

Note that not all errors can be fixed. The token “better” is a comparative adverb
(RBR), but the model initially tags it as a verb in its base form (VB), considers many
options (including the true one), and eventually settles on the generic adverb (RB), which
is more similar to the true tag than the initial guess. The sizes of the domains of the tokens
after the second iteration of column generation are bigger in more ambiguous tokens and
smaller on more certain tokens, as is expected of a good pruning algorithm.

70 Chapter 5. Faster MAP inference with column generation

5.12 Experiments

In this section we experimentally analyze the proposed algorithms for the case of MAP
inference in linear chains. We show that

1. it is possible to accelerate the runtime of MAP inference in linear chains with column
generation;

2. the reduced-cost derived in section 5.3 leads to faster algorithms than the reduced
costs of other LPs;

3. the 0/1-loss oracle from section 5.6 provides dramatic speedups to two-best inference
in the case of large domain sizes; and

4. by changing the regularization strength on the transition weights it is possible to
explore time vs accuracy tradeoffs.

Since there are no formal worst-case performance guarantees for column generation,
and its performance depends heavily on the particular structure of the model to which
it is applied, we avoid experiments on synthethic data, focusing instead on two semi-
realistic problems: part-of-speech tagging with data from the Wall Street Journal section
of the Penn Treebank [48], and joint part-of-speech tagging and named-entity recognition
(NER) trained on the data from the CoNLL-2003 shared task [99]. NER is a sequence
segmentation task which is commonly solved by reducing it to sequence tagging, where
cach token gets tagged as being outside a segment (O), being inside a segment (I-TYPE),
or starting a new segment of the same type as the segment of the previous token (B-
TYPE). The CoNLL-2003 shared task has four segment types: person, organization,
location, and miscellaneous; and all explicitly named entities in the corpus are tagged
with their types.

For both tasks we used standard linear chain conditional random fields trained with
features similar to those in the Stanford POS tagger [101] and NER [20]. For the joint
task inference was performed on a state space where each token was labeled with a tuple
of POS tag and NER label. In both datasets there are 45 POS tags, and there are 8 NER
labels, so the total size of the label set for the joint task is 360. All models were trained,
unless otherwise specified, by optimizing f>-regularized log likelihood with the LBFGS
optimizer [44]. Unless otherwise specified the strength of the ¢5 regularizer was chosen to
maximize test-set performance.

All the code is implemented in the scala programming language [69] and the timing
experiments are on a circa 2010 Macbook Pro. The code uses the Factorie library for
graphical models [54], but all relevant code for inference was reimplemented as efficiently
as possible for this chapter.

5.12. Experiments 71

Table 5.2: Comparing inference time and exactness of Column Generation (CG), Viterbi,
Viterbi with the final pruning technique of section 5.2 (Viterbi+P), and CG with duality
gap termination condition 0.15%(CG+DG), and beam search on POS tagging (left) and
joint POS/NER (right).

Algorithm | % Exact | Sent./sec. Algorithm | % Exact | Sent./sec.
Viterbi 100 3144.6 Viterbi 100 56.9
Viterbi+-P 100 4515.3 Viterbi+P 100 498.9
CG 100 8227.6 CG 100 779.9
CG-DG 98.9 9355.6 CG-DG 98.4 804
Beam-1 D7.7 12117.6 Beam-1 66.6 3717.0
Beam-2 92.6 7519.3 Beam-5 98.5 994.97
Beam-3 98.4 6802.5 Beam-7 99.2 772.8
Beam-4 99.5 5731.2 Beam-10 99.5 275.1

For the first experiment we compare the performance of the following inference algo-
rithms on the two tasks:

e Viterbi, the standard forward message-passing algorithm;

e Viterbi+P, which uses Viterbi but only over the labels for each token which could
conceivably be the maximizer, using the pruning technique described in section 5.4;

e CG, which is column generation, algorithm 5.3, using the reduced-cost from section
5.3;

e CG-DG, which is column generation for approximate inference, as described in sec-
tion 5.5 which terminates if the score is within 0.15% of the best possible answer;
and

e Beam-N, which is beam search considering the N best labels for each token.

Note that Viterbi, Viterbi+P, and CG are exact inference algorithms, while CG-DG
and Beam-N are approximate.

Table 5.2 shows the performance of the algorithms in both the independent and joint
tasks. The conclusions are qualitatively similar: the pruning technique from Viterbi+P

72 Chapter 5. Faster MAP inference with column generation

Percentage of sentences

Iterations until convergence

Figure 5.1: A histogram of iterations until convergence of column generation in the POS
tagging experiment.

is by itself substantially faster than Viterbi, and column generation is faster still. For the
POS tagging experiment CG was faster than beam search with a beam of size two, which
was exact only 92.6% of the time, while in the joint experiment it was equivalent to a
beam of size seven, which is still exact only 99.2% of the time.

Since column generation might take many iterations until convergence it’s surprising
that it can be as fast as beam search considering only two labels per token. Figure 5.1
shows why this is true: in almost 70% of the sentences column generation terminates
after the first iteration, and only on a small fraction it needs more than three iterations.
A similar histogram for the joint POS/NER experiment shows that the mean number of
iterations is bigger, reflecting the bigger runtime.

Note that for ease of comparison only the time to actually perform inference was
recorded; the local scores and transition scores were precomputed for all inference algo-
rithms. All experiments were performed on a single machine on a single thread with no
substantial load, but we do not report precise timing numbers as those are irreproducible.

For the second experiment we compare the performance of column generation on POS
tagging using three different expressions for the reduced-cost:

e CG, which uses the reduced-cost from section 5.3;

5.12. Experiments 73

Table 5.3: The performance of column generation with different reduced-costs.

Reduced Cost | POS Sent./sec.
CG 8227.6
CG-a 5125.8
CG-a+0,4, 4532.1

Table 5.4: The speedups for a 0/1 loss oracle. The table shows sentences per second for
two-best inference using Viterbi, pruned Viterbi, and CG.

POS | POS/NER
Method Sent./sec. | Sent./sec.
Viterbi 2-best 56.0 .06
Viterbi+P 2-best 119.6 11.7
CG 85.0 299.9

e CG-a, which uses the following reduced-cost
Ri(wi, wiy1) = Qig1(Ti1) — i) — 0i(w) — 0;(wi, 2ig1), (5.44)

which incorporates only information from the forward dual variables o (and hence
no backward pass was performed); and

e CG-a+0, which uses the following reduced-cost

1
Ri(z, wiy1) = aip1(@ig1) — au(z;) — 5(91'(1’1') + 0 1(wi1)) — O0i(ws, v441), (5.45)

which also makes exclusive usage of the forward dual variables oo but also looks at the
local score of the second node in the path (and hence message-passing is performed
slightly different to account for the different definitions of the dual variables).

The results are in Table 5.3. As expected, the reduced-cost expression from section
5.3 leads to faster inference algorithms, as it incorporates global information from both
sides of the linear chain.

For the third experiment we analyze the speedups obtained by using the 0/1-loss oracle
defined in section 5.6. We compare three different algorithms:

74 Chapter 5. Faster MAP inference with column generation

Relative Error Rate

Relative throughput

t

Figure 5.2: Training-time manipulation of accuracy vs. test throughput for our algorithm.

e Viterbi 2-best, a simple adaptation of viterbi which stores the two best values for
each maximization operation;

e Viterbi+P 2-best, which is similar to Viterbi but prunes the labels which are guar-
anteed to not be a part of any two-best solution; and

e CG, which uses column generation to find a set of edges guaranteed to contain a
margin violation if one exists and then runs Viterbi 2-best on those edges.

Table 5.4 shows the results of this experiment. For POS tagging the simple Viterbi+P
2-best outperformed CG, which outperformed Viterbi, but in the joint task these con-
clusions were reversed, and CG was many hundreds of times faster than Viterbi. This is
because there are far more states to prune in the joint task than in the tagging task, and
hence a more effective but more expensive pruning method is beneficial.

For the fourth and final experiment we explore the time versus accuracy tradeoffs
allowed by the column generation algorithm. In this experiment we train many models
for POS tagging, varying the strength of /5 regularization of the transition weights between
0.1 and 10 times the strength of the local scores, leaving the regularization of the local
scores fixed to the same value used in the other experiments. We then plot, for each
regularization strength, the relative speedup of column generation, when analyzing all
sentences of the test set, and the relative accuracy of this model. Figure 5.2 shows that a
4x gain in speed can be obtained at the expense of an 8% relative decrease in accuracy,
which might be preferrable to using approximate inference.

5.13. Conclusions 75

5.13 Conclusions

In this chapter we presented an efficient family of algorithms based on column generation
for MAP inference in chains and trees. This algorithm exploits the fact that inference
can often rule out many possible values, and we can efficiently expand the set of values
on the fly. Depending on the parameter settings it can be twice as fast as Viterbi in WSJ
POS tagging and 13x faster in a joint POS-NER task.

The approach of accelerating dynamic programming algorithms with column genera-
tion seems fairly generic. It is still an open problem whether more efficient reduced cost
formulations can be found for other important model families, such as specific hypergraph
models used in parsing.

Chapter 6

Linear programming relaxations for
joint inference

All known efficient algorithms for MAP inference need to make assumptions about which
structure the parts can have. In graphical models, for example, the time complexity
of MAP inference is exponential in the treewidth of the graph, and in non-projective
dependency parsing inference over parts which correspond to presence/absence of single
edges in a tree leads to a polynomial-time algorithm but inference over parts which can
condition on two edges is NP-complete [59].

While efficient inference algorithms are known for many simple structured prediction
tasks, if one wants to have parts which don’t have the specified structure those algorithms
cannot be applied, and one is forced to resort to approximate methods, which can have
negative consequences for training a model [40], apart from possibly producing suboptimal
results.

When all the parts in a model can be partitioned such that for each partition an
efficient inference algorithm is known this problem is referred to as joint inference, as
it is effectively doing inference jointly on many models. A popular family of algorithms
for joint inference, applicable whenever the parts decompose in this way and the validity
conditions can be expressed as linear equality constraints across the submodels is dual de-
composition [83, 92, 37]. In dual decomposition the linearity of the constraints is exploited
by constructing a dual problem which does independent inference in each structured linear
model (hereafter referred to as a submodel) separately, with possibly different weights for
some parts, and shifts mass between parts in different models until the validity constraint
is satisfied.

In this chapter we present a new dual formulation for joint inference, which as well
as allowing for the linear equality constraints in dual decomposition also allows the cre-
ation of parts which span different submodels. This objective is very similar to the dual

77

78 Chapter 6. Linear programming relaxations for joint inference

decomposition objective, and can be solved with the same subgradient algorithm used
for dual decomposition or, if one suitably constrains the structure of these parts, a block
coordinate descent algorithm similar to MPLP [23].

We compare this dual formulation with standard dual decomposition in two corpus-
wide inference task for natural language processing: joint part-of-speech tagging and joint
dependency parsing [84].

The material from this chapter is an extension of a paper which has been submitted
to the JMLR [70].

6.1 A novel linear programming formulation of joint
inference

As seen in section 4.1.2, the dual decomposition algorithm can solve the inference problem
efficiently if each part in a model can be assigned exclusively to one out of many submodels
on which inference is efficient, and the validity constraints can be expressed as linear
equality constraints.

However, often one wants to assign scores to functions of a labeling that span multiple
such submodels. For example, in corpus-wide inference for POS tagging, one wants to
encourage different tokens of the same word type to have the same POS tag without
forcing them to do so. In general, given many submodels, one might want to add or
subtract something to the score whenever submodel a picks part ¢ and submodel b picks
part j. This construction can be implemented in dual decomposition, by creating suitable
projection variables selecting these parts and adding a new auxiliary model, a graphical
model, which has copies of these projection variables and assigns a score to joint settings of
them. Then the constraints enforcing that the projection variables have to agree with their
copies can be expressed as linear constraints. This approach is popular [84, 35, 6, 108], but
while attractive in its conceptual simplicity, introducing a separate submodel connecting
other submodels can make inference slower, as for information to flow between two coupled
submodels it needs to go through the auxiliary model, and hence it takes two dual variables
updates instead of one for changes to happen.

In this chapter we show how it is possible to directly represent some parts which
span across submodels and assign them dual variables, thereby omitting the need for
these extraneous submodels. We are effectively “optimizing out” inference in these parts,
instead of explicitly representing them as other submodels and constraints.

We will consider parts of the form p = (A,, i, B,, j, c?), which assigns a penalty equal
to P, to the score of the joint model whenever projection variable A, x; is set to value m
and projection variable B,x; is not set to value n. These parts can be made to represent

6.1. A novel linear programming formulation of joint inference 79

arbitrary pairwise scores, as shown in section 6.4.
The abstract form of the joint inference problem is

max. Z Wi, X;) ZZC” max(0, A,x,, (m) — Byx, (n)) (6.1)

P mn

where inference is performed in many independent submodels with extra scores for the
penalties mentioned above.
We can write this as a linear program by introducing the auxiliary variables 2P

max.y , g (Wi, X;) g g chzb
A

P mn

sit. 2h, > Ayx, (m) — Byzy, (n) (6.2)

2, >0

Note that for this problem to be well-defined we need ¢, to be non-negative. These two
problems have the same optimal value and the same maximizing x variables.
We can write the Lagrangian of this problem as

Z WZ7 Xl Z Z {Cfrmzfnn + Afnn(’zfnn - Apoi(m) + BPXP1()) + an mn} (63>

p mn

Using the stationarity KKT condition on z (that 0 is in the subgradient of the La-
grangian with respect to z) gives us

Substituting these we get
Z (Wi, X;) Z Z {)\mn poJ n) — Apx,, (m>)} (6.5)
7 P mn

with the constraints that
0< A, <dch

mn?

(6.6)

which follow from the non-negativity of the dual variables g and A for inequality con-
straints.
Reordering the sums,

Z (Wi, x;) + Z {Z A, x(m) Z AP Z B,y(n Z AP } (6.7)

80 Chapter 6. Linear programming relaxations for joint inference

Algorithm 6.1 The boxed subgradient method for optimizing our objective.
1: Age <O
2: while has not converged do
3: for submodel 7 do
4: X! ¢ maxy, ey, (Wi +

TN Ay = 5 1TV By, ;)

p'ipp=i p'ip=i

5: for part p do

6: AP (m,n) < max(0, min(c, n, AP — n® (A,x5(m) — B,x;(n))))
and finally
S twixi) + Y {xFATINL - xTBTNT1) (6.8)
@ P

Now we can maximize over the primal variables to get the desired dual problem:

i ; 1I"ATA, -) 1"NB, x;
m/\m ZII}EZ?X <w + Z p Z py X

i p:pi=i pip;j=i

(6.9)
st. 0< NP <P

Note the similarity with the dual problem for dual decomposition, in equation (4.10).
The similarity in functional form suggests that similar methods might be used to optimize
either problem.

If one interprets the c¢,,, scores as penalizing disagreement instead of enforcing agree-
ment (as in an equality constraint as used in dual decomposition), then the box constraints
on the dual variables A can be interpreted as the model trying to force the projection
variables to “agree”, but only up to a point.

6.2 A projected subgradient algorithm

This can be solved with the projected subgradient method. The subgradient of the dual
problem w.r.t. A(7,7) is simply Ax(m)—By(n). One step updates the lambdas according
to these and then truncates them to fit within the constraints. Algorithm 6.1 shows the
algorithm. Note the similarity to algorithm 4.1: in both cases inference in each submodel is
performed once per iteration, and the dual variables are updated using a subgradient which
is defined as the difference between two projection variables. The projected subgradient
method has the same convergence properties as the normal subgradient method [65].

The main differences are that there are more dual variables—there is one dual variable
per non-zero penalty ¢,,,—and that there is a projection step. Indeed, if one penalty c¢,,,
is set to infinity this algorithm degrades gracefully to a dual decomposition algorithm
which enforces the linear equality constraint Ax;(m) = Bx;(n).

6.3. A block coordinate descent algorithm 81

6.3 A block coordinate descent algorithm

In this section we derive a block coordinate descent algorithm for optimizing the dual
objective from section 6.1 which has a similar structure to MPLP.

The optimality conditions state that, for each coordinate pair (m,n), one of the fol-
lowing conditions has to be true:

1. Ax(m) = By(n);
2. Ax(m) =1 and A\, =0; or
3. Ax(m) =0 and A\, = Cun-

These conditions can be derived from the KKT conditions of the Lagrange multipliers
for the inequality constraints for 0 < A,,,, < ¢nn. If none of the inequality constraints is
tight their dual variables have to be 0 and hence we have condition 1; otherwise either
the dual variable for the upper bound or the dual variable for the lower bound is tight,
and we get condition 2 or 3.

Setting up a block coordinate descent algorithm similar to MPLP then involves the
following. For two projection variables, compute the primal objective of the optimal
solution, which is

max,,, mj, (m)+ mf}y(n) + Ay, (6.10)

where

U = = Y Conrr- (6.11)
Then given m*, n* which are maximizers of the above expression one sets A such that
mj (m*)+ Y A(m*,n) > mj (m)+ Y Am,n) (6.12)

m? (") = > Am.n*) > m} (n) = A(m,n). (6.13)

Satisfying these constraints ensure that the independent maximizations of the reweighted
problems will have the same score as the joint maximization in equation (6.10), construct-
ing a primal-dual optimal pair.

These constraints can be then put into any LP solver, such as Gurobi [28], which will
then compute valid solution to these inequalities.

If the problem has more structure, however, it is possible to analytically compute this
block coordinate descent step. More specifically, if we define an agreement factor to be

82 Chapter 6. Linear programming relaxations for joint inference

a set of parts with scores which assign penalties ¢, to pairwise settings (m,n) of the
projection variables, and are such that

cm fm=n
= (6.14)

0 otherwise

Cmn

Given these constraints on the penalties there are effectively only k dual variables,
as all others are constrained to be equal to 0 by equation (6.6). We refer to the dual
variables then as A(m), and equations (6.12) and (6.13) reduce to

mZ (m*) + Am*) > mi (m)+ A(m) (6.15)
mgy (n*) = A(n*) > mgy(m) — A(m). (6.16)

In these inequalities, a dual variable A(m) for m # m*, n* only appears in two inequal-
ities, one giving it an upper bound and the other giving it a lower bound, both of which
depend only on the values of A\(m*) and A(n*):

§m
>

(m*) + A(m*) —mj, (m) (6.17)
5 (n*) 4+ A(n*) + m? ,(m). (6.18)
Given these bounds, there are two possible cases:

1. If m* # n*, then A(m*) = 0 and A\(n*) = ¢+, according to the optimality conditions.

2. If m* = n* then the optimality conditions are indifferent as to the value of A(m*).
One can then, for each m # m*, use equations (6.17) and (6.18) to find an upper and
lower bound on the value of A(m*) which still allows the equations to be respected
and A\(m) to be within its boundaries,

A(m*) < e+ mfy (m*) — mgy(m) (6.19)
A(m*) > —mi (m*)+mi (m). (6.20)

Taking the maximum lower bound and the minimum upper bound, then, is guar-
anteed to give a non-empty interval in which an optimal A\(m*) is guaranteed to
lie.

After selecting the values of A\(m*) and A\(n*), equations (6.17) and (6.18) can be used
to determine the set of valid values for any other A\(m).

Algorithm 6.2 shows the block coordinate descent algorithm which was described in
this section. Note that its asymptotic per-step complexity is the same as MPLP, as it

6.4. Representing arbitrary pairwise scores 83

Algorithm 6.2 Box-constrained block coordinate ascent algorithm.

1: while has not converged do
2: for part p do

3: mA»: <+ MaxMargs | w,, + Z 1T)\Z,Ap;— Z 1T>\Z/Ac{2
p'ipi=c1 P :ph=p1
b mt e Mt (ot Y ITAA, - Y 17A7AY

pipy=c2 P':ph=p2

5: m*,n* < arg max,,, mA» (m) +m?r2 — ¢, 6(m#n)
6: if m* =n* then
7: U ¢+ ming,sp —e + mA7i (i) — mA» (m*)
8: L < maxy, £pm+ € — m?™?i (m) + m™% (m*)
9: Ap(m*) + (U + L)

10: else

11: Ap(m*) <=0

12: Ap(n*) cpe

13: for all m such that m # m*, m # n* do

14: U + —m®% (m) + m#A% (m*) + X, (m*)
15: L+ —m®™ (n*) + A (%) + m™?i (m)

16: Ap(m) < LU+ L)

is linear in the size of the projection variables, and the maximization in line 5 can often
be performed in time linear in the domain, as if all ¢,, are identical the maximizing pair
(m,n) is either the maximizer of the sum of the max-marginals or the maximizer of each
max-marginal independently (if the ¢,, are not identical there can be a situation where
there is another maximizer and all possibilities need to be considered).

6.4 Representing arbitrary pairwise scores

The derivation of the objective and algorithms in the previous sections were in terms of
penalties, which are defined such that whenever the first variable of the part has value
m and the second variable does not have value n a penalty of ¢,,, is subtracted from the
overall model score. In most formulations of graphical models, however, scores are defined
such that if the first variable has value m and the second has value n a score of a,,, is
added to the overall model score. In this section we will see how to convert a score-based
representation to a penalty-based representation.

Restating the definition of penalties, the value which is added to the joint model’s

84 Chapter 6. Linear programming relaxations for joint inference

score when the first variable has value m and the second has value n is
= o (6.21)
n'#n

To convert between scores and penalties, then, one sets up the following linear system:

U = — > Cou- (6.22)

To solve it, sum all the equations for a given value of m
Dty ==k =1)> comn, (6.23)
where k is the number of values which the first variable can take, and solve for) ¢y,
1
; Cnn = —7—7 ; - (6.24)
Then sum all the equations, for a given m, for all values of n except n’, and get
D = —(k = Vepw — (k=2)> Con- (6.25)
n#n/ n

Substituting equation (6.24) and solving for ¢, we get

k—2 Amn’ — 1 mn
Comt = (k=2) - F* . (6.26)

Substituting this into equation (6.22) suffices to verify correctness.

Note that for this to lead to a valid linear program we need ¢,,, to be non negative.
This is always possible to ensure without changing the optimal solution by adding a
constant C' to all scores a,,,, as then we have that

(k= 2)amn — Zn;én’ Amn — C

;= 2
Conm 1 , (6.27)

so setting C' to be sufficiently negative suffices to ensure non-negativity of ¢,,,.

6.5 Application to inference in graphical models

In a similar vein to MPLP [23], which uses dual decomposition and block coordinate
descent to solve the problem of inference in general high-treewidth graphical models, the

6.6. Application to corpus-wide inference in natural language processing 85

linear relaxation developed in this chapter can also be applied to that problem, with some
important differences.

MPLP reduces the problem of inference in graphical models to dual decomposition
by letting each factor of the model be its own submodel and enforcing that for each
variable all factors which touch it must agree on its value. Since these constraints are
linear constraints and max-marginals are easily computed from each single-factor model,
the block coordinate descent algorithm can be applied. A disadvantage of MPLP as an
inference algorithm is that before convergence one has a dual solution which disagrees on
the values of some variables in the graphical model. While there are strategies to obtain
primal iterates which converge to a solution [61], they are defined on a smoothed variant
of the algorithm.

To apply our objective to inference in graphical models with pairwise factors, however,
one can let each variable be its own submodel and express all factors as additional parts.
Unlike MPLP block coordinate descent can only be applied if all factors of the graphical
model have the structure described in section 6.4, where ¢,,,, = 0 if m # n. A conceptual
advantage of this algorithm over MPLP is that by its nature one always has a primal
feasible solution: optimization proceeds by first setting each variable to its locally optimal
value, ignoring the pairwise factors in the model, and then sending dual variable messages
between variables to account for the disagreement penalties specified by the model. While
there are no anytime guarantees in the algorithm itself (and it might produce intermediary
solutions which are worse than previous intermediary solutions) there is no ambiguity as
to how to select a valid solution if one wants to terminate optimization early.

6.6 Application to corpus-wide inference in natural
language processing

A natural application for many structured linear models with some simple parts which
extend across the models is corpus-wide inference in natural language processing. In
many settings, specially when the amount of training data is low, it is desirable to share
information about many prediction tasks that one needs to perform.

For example, in named-entity recognition a given phrase is usually either a named
entity or not, and moreover when it is a named entity it usually has the same type. This
means that one can aggregate different occurrences of the same phrase in a corpus and
add a penalty to the model for when those phrases don’t share the same type or whether
they are named entities or not [35, 6]. This effectively allows one to aggregate information
from all contexts in which the phrase appears to make a decision, instead of making each
decision independently.

86 Chapter 6. Linear programming relaxations for joint inference

LTJOJO]

Figure 6.1: A single consensus structure. Rounded rectangles represent sentence-level
MAP problems. Dark squares are agreement parts. The bottom circles are single variables
in the sentences. The consensus variable is on top.

Likewise in part-of-speech tagging of English and romance languages most rare word
types only appear in a corpus with a single part-of-speech tag, and which tag that is might
not be obvious from context in all occurrences, so again it is desirable to pool together
information from across these occurrences of the rare word type [84].

Of course, a joint model is not the only solution for these problems. State of the
art named entity detection systems, for example, can use rather intricate feature sharing
schemes, where features are pooled across different occurrences of similar word types
which are nearby in a corpus [76]. These schemes to tend to be more brittle than joint
inference, and to require more engineering to work equivalently well.

6.6.1 A structure for corpus-wide inference models

In this section we will follow Rush et al [84] and describe a general setup common to
corpus-wide inference problems.

In most such problems the specific submodels are already mostly accurate, and the
goal of joint inference is to tweak the submodels’ decisions in places where information
from the training data alone might not be sufficient to ensure good answers. The way
the tweaking is done is usually to achieve consensus: the modeller specifies some sets of
similar data points and adds parts to the joint model to encourage data points in the
same sets to have similar labelings.

There are many ways to achieve this. One could, for example, add parts to the joint
model encouraging agreement between all pairs of data points in the same consensus set,
but this has the disadvantages that, when the set have different sizes, it becomes hard to
choose the scores of the consensus parts in a way that doesn’t over count the importance
of agreement in the larger sets or undercounts in the smaller sets; at the same time most
inference methods scale in complexity at least linearly with the number of parts, and
hence having the number of parts in a set proportional to the square of the number of
elements in it is undesirable.

Another way is to add a consensus variable to the global model for each agreement

6.7. Related work 7

CO)OJO)

Figure 6.2: The variable-copying version of Fig. 6.1 used by dual decomposition, where
dashed lines denote equality constraints.

set, and add parts encouraging each data point to agree with the value of the consensus
variable. This leads to a structure, for each set, similar to Figure 6.1. The number of
agreement parts scales linearly with the size of each consensus set.

Note that to implement this framework with ordinary dual decomposition one needs
to define auxiliary submodels for the consensus structure, define projection variables both
in the auxiliary submodels and the normal submodels, and apply either the subgradient
method or MPLP. Figure 6.2 shows what the same structure looks like with variable
copies. The main advantage of the formulation described in this chapter when compared
with the standard formulation of corpus-wide inference with variable copies is that, by
sending messages directly across submodels, the inference process should be more efficient.
This is validated experimentally in section 6.8.

6.7 Related work

Decoding individual sentences using corpus-level information has proven to be useful in
various settings, particularly those involving domain adaptation or limited amounts of
labeled training data. Examples of methods for sharing information between sentences
include graph-based semi-supervised learning [95], using Gibbs sampling or loopy belief
propagation for inference in models that include skip-chain factors [20, 96, 35|, using
sentence-level models to extract context information and using an LP-solver to directly
solved the constrained inference problem [82], and introducing a “global MRF” connecting
sentence models, where inference is done by copying variables and using dual decomposi-
tion [84, 6, 35].

A further application of dual decomposition has been to avoid cascading errors in an
NLP pipeline by instead making all decisions jointly [79]. Dual decomposition has also
been applied to a wide variety of NLP problems that do not perform global inference,
but instead allow maximization of sentence-level score functions that decompose into
sub-functions for which maximization is tractable for each in isolation [39, 71, 83].

88 Chapter 6. Linear programming relaxations for joint inference

There have been limited applications of block coordinate descent for solving the dual
decomposition objective in NLP. However, we draw on various algorithmic ideas from the
machine learning literature. Our Box-BCD and Box-Subgradient algorithms are examples
of efficiently handling factors that have a specific structure [16, 50]. There is also a
precedent of constructing message passing schemes by doing block coordinate descent in
a dual problem [105, 37, 23, 94, 86, 77].

There is much work in natural language processing using joint inference to achieve
good results [20, 82, 39, 79| in individual prediction tasks instead of corpus-wide tasks,
with success. Most of these models, however, found no need for parts which span multiple
submodels.

6.8 Experiments

In this section we present experimental evidence that optimizing the dual objective pre-
sented in this chapter instead of the usual construction based on dual decomposition and
variable copies leads to faster convergence, both in terms of the value of the dual problem
and in terms of accuracy of the downstream joint model. Measuring accuracy is impor-
tant because it is conceivable that formulating the dual problem differently could lead
to faster decrease in the dual objective and yet slower downstream convergence; in our
experiments both metrics are, however, correlated.

We mirror the experimental setup of Rush et al [84] for both tagging and parsing. We
use the formulation of the corpus-wide inference problem described in section 6.6.1.

We consider two experimental tasks: part-of-speech tagging and dependency parsing.
In both cases we compare algorithms using our proposed dual objective with algorithms
which use the variable-copying structure depicted in Figure 6.2.

We compare the following algorithms:
e Subgradient: algorithm 4.1;

e MPLP: algorithm 4.2;

e Box-Subgradient: algorithm 6.1; and
e Box-BCD: algorithm 6.2.

We analyze each algorithm in terms of how quickly accuracy increases and the dual
objective decreases. Considering both is important, since they can be uncorrelated, due to
inherent error in the model’s fit to the data. This is why accuracy curves in the following
sections sometimes peak when the dual objective isn’t minimized.

6.8. Experiments 89

Rather than using wall-clock time as the benchmark against which we measure the
speed of the algorithms, we compare against the total number of calls to inference in
sentences. After the first pass through the corpus, which is shared by all algorithms, we
only perform inference on sentence for which some dual variable changed. We normalize
the total number of inference operations by the size of the corpus for ease of comparison
across experiments. This assumes all calls to inference are equally expensive, which is not
strictly true, as subsequent inference in the sentences can be accelerated by pruning and
caching.

Considering iterations rather than wall clock time is advantageous because it removes
the effect of implementation-level details when comparing the algorithms. While more
engineering can conceivably make calls to inference faster, the optimization algorithms
will still require the same number of calls to inference to converge. Nevertheless, counting
iterations is a reliable proxy for inference time: less than 5% of the total runtime in any
of our experiments was spent not doing inference in the sentences.

Our primary motivation for measuring inference calls instead of wall clock time, how-
ever, is that it allows us to be generous to the baseline algorithms we seek to outperform.
Though ‘optimizing out’ the consensus structures avoids the cost of performing MAP in
these structures, we ignore this cost in order to give optimistic cost measurements for
our baselines: Subgradient and MPLP. Second, we seek to demonstrate that our coor-
dinate descent methods are effective alternatives to the subgradient methods, and thus
we should properly account for the extra inference required by MPLP and Box-BCD to
compute max-marginals. We assign a pessimisti