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November 08, 2013

Examiner Board/Banca Examinadora:
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Institute of Computing - University of Campinas (Substitute/Suplente)

1Financial support: FAPESP scholarship (process 2010/15340-3) 2010–2013. The author also ac-
knowledges the financial support given to this work, under the project “Security Technologies for Mobile
Environments — TSAM”, granted by the Fund for Technological Development of Telecommunications
(FUNTTEL) of the Brazilian Ministry of Communications, through Agreement Nr. 01.11.0028.00 with
the Financier of Studies and Projects — FINEP / MCTI.

vii





Abstract

The efficient and secure implementation of cryptographic schemes is an important aspect

of practical cryptography. In this work, we focus on the software implementation of rele-

vant algorithms in elliptic curve cryptography (ECC), pairing-based cryptography (PBC)

and in authenticated encryption (AE). Two modern computational platforms were tar-

geted: the MSP430 microcontroller, often used in wireless sensor networks, and the ARM

processor, widely employed in mobile devices such as smartphones and tablets which are

increasingly becoming ubiquitous. Techniques for improving the software performance

by taking advantage of instruction sets, peripherals and algorithmic enhancements are

described. The secure implementation, which aims at thwarting common side-channel at-

tacks, is also studied and new techniques are provided for improving its efficiency on ARM

processors. These results contribute to the building of efficient and secure cryptographic

systems on wireless sensors and mobile processors.
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Resumo

A implementação eficiente e segura de esquemas criptográficos é um aspecto importante

da criptografia aplicada. Neste trabalho, foca-se na implementação em software de al-

goritmos relevantes da criptografia de curvas eĺıpticas (CCE), criptografia baseada em

emparelhamentos (CBE), e de cifração autenticada (CA). Duas plataformas computa-

cionais modernas foram utilizadas: o microcontrolador MSP430, bastante utilizado em

redes de sensores sem fio, e o processador ARM, amplamente empregado por dispositi-

vos móveis como smartphones e tablets que estão se tornando cada vez mais populares.

Técnicas para a melhoria de desempenho em software utilizando conjuntos de instruções,

periféricos e melhorias algoŕıtmicas são descritas. A implementação segura, cujo objetivo

é prevenir certos ataques de canais secundários, também é estudada e novas técnicas são

providas para reduzir seu impacto na velocidade em processadores ARM. Tais resultados

contribuem para a construção eficiente e segura de sistemas criptográficos em sensores

sem fio e processadores móveis.
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Ao meu orientador e professor, Julio López, pelos importantes conselhos, sugestões e
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Ao professor Ricardo Dahab, Danilo Câmara, Diego Aranha, Leonardo Oliveira, Roberto
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Chapter 1

Introduction

Modern cryptography is mainly built on two areas of study: symmetric and asymmetric

cryptography. Symmetric systems allow participants who share the same key to commu-

nicate with confidentiality and authentication. Confidentiality means that only parties

who know the key used to encrypt a message will be able to read it; authentication means

that the recipient of a message can detect if it was really generated by a party who holds

the key used to authenticate it. Even though symmetric systems offer a high degree of

security and efficiency, they are difficult to use in practice since the participants need to

agree on which key to use in a secure manner, even though they can be far apart and only

have access to insecure channels of communication that can be eavesdropped or manipu-

lated. Asymmetric cryptography attempts to solve this issue by splitting the key into two

parts: the private key, which is kept secret by its owner, and the public key, which can be

sent to any other participant without security risks. This allows secure communication

with any party, as long as their public key is known.

Symmetric cryptography itself is, for the most part, composed by two types of schemes:

ciphers and message authentication codes (MACs). The former enable confidentiality and

the latter enable authentication. Ciphers can be classified as block ciphers (which split

the message into fixed-size blocks) and stream ciphers (which can process each bit of the

message separately). The first widespread block cipher was Data Encryption Standard

(DES), which was published in 1977. Amazingly, even today it can only be broken by

brute force, and is no longer being used due to its small key size (56 bits) and block

size (64 bits). The Advanced Encryption Standard (AES), published in 1998, is now

the widespread block cipher, supporting key sizes of 128, 192 and 256 bits. Stream

ciphers are more employed in restricted hardware since they are often more efficient; one

well known stream cipher is RC4, which suffers from some weaknesses such as biased

output. Two popular MACs are CBC-MAC and HMAC, the first is built upon a block

cipher and the second upon a hash function. Cipher and MACs are often used together;

1
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however, since there are many pitfalls when employing both type of schemes together

(for example, different keys must be used for each one), a new type of scheme surfaced:

authenticated encryption (AE), which provides both confidentiality and authentication in

a single scheme.

The great idea of asymmetric cryptography (also known as Public Key Cryptography

(PKC)) was born with the work of Diffie and Hellman [43] in 1976, which proposed a

public key agreement scheme where two parties can compute a shared key through a

channel which can be eavesdropped by adversaries; this shared key can then be used with

symmetric cryptography to carry out the communication between parties. However, it

was the work of Rivest, Shamir and Adleman [134] in 1977 which enabled the widespread

adoption of public key cryptography with the RSA public key encryption and signature

schemes. It is important to also mention the work of Ralph Merkle, who first proposed

a public key scheme in 1974 which was rejected both by his professor and by the journal

Communications of the ACM; and the work of James H. Ellis, Clifford Cocks, and Malcolm

Williamson at the Government Communications Headquarters (GCHQ) in the United

Kingdom, which developed asymmetric schemes in 1973 — a fact which was declassified

only in 1997. In addition to key agreement, other important asymmetric schemes are

encryption (which provides confidentiality) and digital signatures (which provides not

only authentication but also non-repudiation, since a signed message can be traced to

only one person: the holder of the private key used for signing).

Public key cryptography, however, has its flaws. A critical requirement of PKC is

to have assurance on who is the owner of the public key being used in an asymmetric

scheme. Without this assurance, it is possible to carry out a man-in-the-middle attack

where an adversary can intercept the communication between two parties and replace

the public key being sent with his own. This problem can be solved with a Public Key

Infrastructure (PKI), where certification authorities verify the ownership of public keys

and generate signed certificates binding the publics keys to the identity of their holders.

This leaves the problem of authenticating the public keys of the authorities themselves;

this is accomplished by a certification chain leading to a set of root authorities which the

participants of the scheme must trust.

This is the approach used for secure communication in the Internet; however, it is

not adequate in many scenarios where the complexity of a PKI can be too costly. In

this context, Identity-Based Cryptography (IBC) was born with the work of Shamir [144]

in 1985, where the public key is replaced with the identity of the participant (e.g. its

ID number, email, etc), thus making it implicitly authenticated. The downside of this

approach is that the private keys must be generated by a Key Generation Center (KGC),

which therefore is able to impersonate any participant of the system. Nevertheless, IBC

can be useful in scenarios where there is trust in a central authority, e.g. inside a company
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or in wireless sensor networks. Concrete IBC schemes were only developed much later,

with three independent works [28,38,139].

Asymmetric cryptography is known for its number theoretic grounds. RSA uses the

arithmetic of numbers modulo the product of two large primes, and relies on the difficulty

of factoring these products. However, the existence of specialized algorithms for factoring

with sub-exponential complexity forces the use of relatively larger numbers. For example,

3072-bit numbers are required in the 128-bit level of security, which means that an attacker

must carry computations in the order of 2128 steps in order to break a RSA system

employing 3072-bit numbers. Thus, an alternate construction of asymmetric cryptography

was proposed independently by Neal Koblitz [86] and Victor Miller [111]: the Elliptic

Curve Cryptography (ECC). It can be much faster than RSA since, except in special

cases, only exponential attacks are known for breaking ECC. For example, for the 128-bit

level of security, numbers with only 256 bits are required. Since then, ECC gained more

popularity, specially in environments where performance is critical. The most efficient

identity-based systems also employ ECC, but only as the basis for its main building

block: the bilinear pairing. This is a powerful mathematical tool which enabled the

creation of not only IBC, but other interesting schemes such as tripartite one-round key

agreement and short signatures, which can be half the size of usual ECC-based digital

signatures. The efficient computation of pairings was based on the work of Miller [112] in

1986; schemes using them compose the Pairing-Based Cryptography (PBC).

1.1 Objectives

The implementation of cryptographic schemes is a important subject for mainly two

reasons: efficiency and security.

Ideally, cryptography should be transparent, with low impact on the performance

of computer systems. Since security is intangible and often not appreciated by users

(unless when broken), it is often sacrificed in the name of performance. For example,

laptops should have their disk encrypted in order to prevent access to sensitive data if

stolen (which often happens). However, if disk encryption reduced the performance of the

system too greatly, most users would refrain to use it. This issue becomes more important

with the advent of mobile devices, which have reduced processing power and, maybe more

importantly, limited battery charge. Another example of system where efficiency is crucial

are those with heavy usage, such as popular webmail services. To give a concrete example,

Google Mail switched to encrypted connections by default in 2010 [140], claiming that the

increase in CPU usage was only 1% [92]. However, they use RC4 as the default cipher,

which was known for having weaknesses which led to a concrete attack against Transport

Layer Security (TLS) in 2013 [4]. The reason for using RC4 in the first place was probably
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due to its high efficiency compared to AES, showing how a lack of performance can lead

to sacrifices in security. Another interesting observation is that many HTTPS servers

(including Google’s) use RSA with 1024-bit modulus, which is now often considered too

small and is being phased out by NIST [16], who disallows its use after 2013. Again, the

reason for using 1024-bit is probably to improve performance.

Secure implementations are also extremely important. Of course, a incorrect imple-

mentation may lead to breaks in security, but even a correct implementation may be

attacked by using information from side-channels. Side Channel Attacks (SCAs) take

advantage from information such as the execution time, power consumption and cache

usage from cryptographic schemes in order to obtain secret information such as plaintext

or even keys. Fortunately, it is possible to avoid many types of these attacks with careful

implementation of the schemes. It is worth mentioning that these attacks are more easily

carried out in mobile devices due to their small size, which facilitates physical access by

attackers.

Based on these observations, the objective of this thesis is to propose and describe

methods for implementing existing cryptographic schemes in software with efficiency and

security, in two concrete platforms. The first platform is the MSP430 microcontroller, a

cheap processor with extremely low power consumption which is often used in Wireless

Sensor Networks (WSNs). For the MSP430, only efficiency was considered, since in the

scenario of WSNs it is often considered acceptable that the attacker may compromise

part of the nodes. The second platform is the ARM processor, which is widespread in

mobile devices. These devices are becoming ubiquitous and often hold a lot of sensitive

information from its owner, indicating the need for cryptographic protection. Due to their

limited power supply with batteries, the performance of cryptographic schemes becomes

relevant for them. Secure implementation is now more important, since it is easy for an

attacker to obtain physical access to the devices and any compromise can be critical.

Three types of schemes were implemented: digital signatures, key agreement and

authenticated encryption. Together, they can meet most of the cryptographic needs of

many systems. For the asymmetric schemes, we employ ECC due to its high efficiency and

PBC due to its interesting applications, including IBC. For symmetric cryptography, AE

was chosen since it is becoming increasingly popular due to repeated failures in composing

ciphers and authentication codes correctly, as illustrated by the recent attack against

TLS [5].

1.2 Methodology

An efficient implementation usually starts with a reference implementation, whose cor-

rectness can be determined with a test suite. In our case, the RELIC toolkit [7] was
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used. This implementation can then be profiled (using tools such as gprof) in order to

determine which parts of the source take the most time in execution and thus can lead to

more gains when optimized. This step can by sped up with previous knowledge of critical

paths; for example, it is widely known that finite field arithmetic takes the most part of

the execution time in ECC schemes.

In order to obtain better performance, the characteristics of the underlying platform

(instructions and their timings, peripherals, etc.) must be studied in order to improve the

performance of the critical paths. It is also possible to improve the algorithm themselves

with mathematical tricks, manipulating formulas and so on.

Finally, each improvement must be benchmarked in order to evaluate its effectiveness.

This benchmark can also be done with profiling tools; however, these tools usually interfere

with the timings reported and can lead to misleading results. For this reason, it is also

important to measure the speed of algorithms using non-interfering techniques, such as

simply measuring the time taken by an algorithm to execute (usually inside a loop with

many iterations, to improve the precision). These measurements can be done either with

regular timers (which use e.g. nanoseconds) or cycle-based timers, which are often more

accurate.

A secure implementation starts with determining which data must be kept secure

(usually keys, but sometimes other values) and which parts of the algorithms deal with

this data. The implementation must avoid paths dependent on this secret data, for

example, a loop whose number iteration is the number of bits of the data; and it must

also avoid branching on secret data and using secret data as indices into arrays. More

details are given later in this document.

Our software implementation follows the usual approach of an efficient implementation:

using the C language for high level code, and assembly code for specific critical functions

in the underlying arithmetic.

The implementation of ECC and PBC was built in a modular manner, as illustrated

by Figure 1.1; each abstraction level relies on the lower level. The base level consists of the

performance-critical functions mostly implemented in assembly. The AE implementation

is simpler, with a high-level interface and some specific functions in assembly.

On the MSP430, the MSPsim simulator was used [50] in order to obtain timings and

memory usage. Since it is a cycle accurate simulator it provides the same exact timings

from real hardware. Nevertheless, a development board was also used to check the accu-

racy of the timings. On the ARM, timings were obtained using the clock gettime Linux

function in three development boards (with ARM Cortex A8, A9 and A15 processors).
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Three memory models where defined for these new devices. The small memory model

uses the old MSP430 architecture and its memory is limited to the 16-bit address space.

The medium memory model uses 20-bit pointers to functions but 16-bit pointers to data,

allowing code to occupy the entire 20-bit address space while limiting data to the 16-

bit address space. This is the simplest choice for taking advantage of the MSP430X,

since code space is often more critical than data space in cryptographic implementations;

additionally, porting MSP430 assembly code for this model is simpler since it only requires

changing the function call and return instructions. For this reason, the medium model was

used in this work. The large memory model uses 20-bit pointers for both instruction and

data, while limiting the size of data objects to 32 KB. It suffers from lower performance,

since every memory read and write is doubled (20-bit data is stored in two 16-bit words)

and it hinders the porting of MSP430 assembly code. The huge memory model is similar

to the large model, but lifts the restriction on the size of data objects.

1.3.2 ARM

The ARM is a 32-bit architecture which is widely employed in mobile processors due to

its low power consumption compared to similar processors. It is actually just an archi-

tecture specification, which is implemented by a multitude of vendors. The architecture

has a series of versions, the most current being the ARMv7. Recent mobile devices fea-

ture the ARM Cortex series, which are processor core designs implementing the ARMv7

architecture. Again, these designs are also implemented by a multitude of vendors.

The ARM architecture features a RISC instruction set where operands must be ex-

plicitly loaded from and written to memory. It provides an integrated shifter which allows

one of the operands of most instructions to be shifted without the need for a separate

instruction. It provides 13 general purpose 32-bit registers. The ARMv7 also specifies

an optional Single Instruction Multiple Data (SIMD) extension branded as the NEON

engine. It features several instructions operating on 64-bit registers and, in some cases,

128-bit registers. There are 32 64-bit NEON registers, which can also be viewed as 16

128-bit registers.

Since ARM is a complex architecture compared to MSP430, including wide pipelines

and caches, it is hard to estimate the cycles taken by a program and for this reason all

measurements were taken on actual hardware. Still, the manual of the Cortex A8 and

A9 processors list the cycles taken by each instruction, including in which cycle of the

pipeline the operands are read and written. This implies that pipeline stalls depend not

only on the order of instructions, but also on which instructions are being processed. This

information is useful when designing assembly algorithms. On the Cortex A15, however,

the presence of out-of-order execution and dual-issue makes it hard to estimate the number



8 Chapter 1. Introduction

of cycle taken and the mentioned list is no longer provided by the vendor.

1.4 Mathematical Foundation

1.4.1 Elliptic Curves

Elliptic curves are a mathematical construction which appeared in the study of elliptic

integrals involved in the computation of the arc length of an ellipse. Their first application

in cryptography was shown by Hendrik W. Lenstra [95] on a method for factoring integers;

afterward, they were used to build cryptosystems by Victor S. Miller [111] and Neal

Koblitz [86], independently. They are now the basis of many cryptographic protocols and

are also the foundation of bilinear pairings.

An elliptic curve E over a field K, denoted E/K, is defined by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1.1)

where a1, a2, a3, a4, a6 ∈ K. Equation 1.1 is also known as the generalized Weierstrass

equation. In cryptography, only finite fields are used; in particular fields with prime order

(denoted Fp, where p is a large prime, and referred to as prime fields) and fields whose

order is a power of two (denote F2m , where m is prime, and referred to as binary fields).

A generic field is written as Fq. If the elliptic curve is defined over Fp then it can be

transformed into the simplified equation

y2 = x3 + ax + b (1.2)

with a, b ∈ Fp. If the elliptic curve is defined over F2m and a1 6= 0 then it can be

transformed into the simplified equation

y2 + xy = x3 + ax2 + b (1.3)

with a, b ∈ F2m . A point in a elliptic curve is a pair P = (x, y) which satisfies the curve

equation.

The striking aspect of elliptic curves is that it is possible to construct a group with their

set of points. The group operation, named “point addition”, can be defined geometrically.

The sum of two points P, Q ∈ E/K is shown in Figure 1.2, and can be defined as follows.

Draw a line through the points P and Q. This line will intercept the curve in a third

point T . Now, draw a vertical line through T ; the line will intercept the curve in another

point R, which is defined as the sum of P and Q. If the points P and Q are the same, as

illustrated in Figure 1.3, then the first line is drawn tangent to the point; this is also called

“point doubling” since P + P = 2P . If the first line drawn is vertical, then the result is
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an algorithm [112] to compute the Weil pairing in polynomial time. His intention was

to try to reduce the discrete logarithm problem over the multiplicative subgroup of finite

fields (on which relies the security of the Diffie-Hellman and ElGamal cryptosystems)

to the ECDLP. This would show that the security of ECC would be at least as good

as the classical asymmetrical cryptosystems. However, he managed to prove the inverse

reduction, from ECDLP to the regular discrete logarithm problem, using the Weil pairing

which can be computed in polynomial time in a specific class of elliptic curves. This was

precisely the MOV attack [110] published in 1993 which demonstrated that these special

curves could be broken more easily by using the Weil pairing. Later, it was observed

that pairings could be used constructively by carefully selecting curves where the cost

of breaking it through ECDLP was the same as breaking it through the Weil pairing.

The first such application was the tripartite one-round key-exchange by Joux [78], which

was soon followed by the birth of IBC protocols using pairings by Sakai, Ohgishi and

Kasahara [139] and by Boneh and Franklin [28].

A bilinear pairing is abstractly defined as follows. Given three groups G1, G2 and GT

with prime order r, with G1 and G2 written additively and GT multiplicatively, a bilinear

pairing is defined as a map e : G1 ×G2 → GT with the following properties:

1. (bilinearity) for all R, S ∈ G1 and T ∈ G2 we have that

e(R + S, T ) = e(R, T )e(S, T )

and for all R ∈ G1 and S, T ∈ G2 we have that

e(R, S + T ) = e(R, S)e(R, T ) .

An important consequence is that for every a, b ∈ Z, R ∈ G1 and S ∈ G2 we have

that e(aR, bS) = e(R, S)ab;

2. (non-degeneracy) e(R, S) = 1 for all S ∈ G2 if and only if R = 0, analogously

e(R, S) = 1 for all R ∈ G1 if and only if S = 0;

3. (computability) the map e is efficiently computable.

When G1 = G2 we have a symmetric pairing, which must be constructed with super-

singular elliptic curves. When G1 6= G2, the pairing is called asymmetric.

Rational Functions and Divisors

In order to give a concrete pairing construction, some definitions will be required. For

a positive integer r, the r-torsion points of E(Fq) are the set {P ∈ E(Fq) | rP = ∞},
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denoted by E(Fq)[r]. In a field Fq, the r-th roots of unity are the set {x ∈ Fq | xr = 1}.
For a elliptic curve group E(Fq) of order n, given a prime r which divides n but does not

divide q−1, the embedding degree of E(Fq) in relation to r is the smallest positive integer

k such that r divides qk−1. If k is the embedding degree then E(Fqk)[r] has order r2 and

the r-th roots of unity in Fqk have r elements.

A rational function f(x, y) in E(Fq) is a function f(x, y) = g(x, y)/h(x, y) where

g(x, y) and h(x, y) are polynomial functions with coefficients in Fq and where the domain

of f(x, y) is restricted to points (x, y) in E(Fq). For a point P = (xP , yP ), it is possible to

write f(xP , yP ) as f(P ). The zeros of a rational function f(x, y) = g(x, y)/h(x, y) are all

points P such that f(P ) = 0 and g(P ) 6= 0, while the poles of the same rational function

are all points P such that f(P ) 6= 0 and g(P ) = 0.

A divisor D on E(Fq) is a formal sum D = a1〈P1〉+ . . . + an〈Pn〉 where ai are integers

and Pi ∈ E(Fq). The name “formal sum” implies that this is just a way to associate

integers with points, and that the point multiplications and additions should not be

carried out. Divisors can be added and subtracted similarly to polynomials. The divisor

of a rational function f(x, y) on E(Fq), denoted by div(f), is a divisor D on E(Fq),

written as above, where ai is the multiplicity of Pi if it is a zero of f(x, y) or the negative

of the multiplicity of Pi if it is a pole of f(x, y). It is true that a1P1 + . . . + anPn = ∞
and a1 + . . . + an = 0 for all divisors of rational functions on elliptic curves.

In pairings, line functions play an important role. The line function for a vertical line

through P = (xP , yP ) ∈ E(Fq) is given by vP (x, y) = x − xP ; its divisor is div(vP ) =

〈P 〉+〈−P 〉−2〈∞〉. The line function for line tangent to P is given by tP (x, y) = y−yP −
λ(x−xP ) where λ = (3x2

p+a)/(2yP ); its divisor is div(tP ) = 2〈P 〉+〈−2P 〉−3〈∞〉. The line

function for a non-vertical, non-tangent line through P = (xP , yP ), Q = (xQ, yQ) ∈ E(Fq)

is given by ℓP,Q(x, y) = y − yP − λ(x− xP ) where λ = (yQ − yP )/(xQ − xP ); its divisor is

div(ℓP,Q) = 〈P 〉+ 〈Q〉+ 〈−(P + Q)〉 − 3〈∞〉.

Miller Function and Miller’s Algorithm

A Miller function is the cornerstone of the pairing computation, and is defined as the

rational function fi,P (Q) on E(Fqk) whose divisor is div(fi,P ) = i〈P 〉− 〈iP 〉− 〈(i− 1)∞〉,
where i is a positive integer and P ∈ E(Fq). (A function can be completely defined by its

divisor, up to multiplication by a constant.) Miller’s observation was that it is possible
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to compute fi,P (Q) in polynomial time by taking advantage of the following recursion:

fi,P (Q) =



































1 if i = 1;

fi/2,P (Q)2 · t(i/2)P (Q)

viP (Q)
if i even;

fi−1,P (Q) · ℓ(i−1)P,P (Q)

viP (Q)
if i odd.

which can be written iteratively as described in Algorithm 1.1 (Miller’s Algorithm). Note

that Miller’s algorithm implicitly computes rP in the Z variable.

Algorithm 1.1 Miller’s Algorithm

Input: P ∈ E(Fqk)[r], Q ∈ E(Fqk), r ∈ N

Output: fr,P (Q) ∈ Fqk

1: (rn−1, . . . , r0)2 ← r
2: x← 1
3: Z ← P
4: for i = n− 2 to 0 do
5: x← x2 · tZ(Q)/v2Z(Q)
6: Z ← 2Z
7: if ri = 1 then
8: x← x · ℓZ,P (Q)/vZ+P (Q)
9: Z ← Z + P

return x

Tate Pairing

While the Weil pairing [156] was the first, the Tate pairing [153] quickly took over for

being more efficient. In its modern version with contributions by Lichtenbaum [96] and

Barreto [19], the Tate pairing τr : E(Fq)[r] × E(Fqk)[r] → F
∗

qk is defined by τr(P, Q) =

fr,P (Q)(qk
−1)/r for a prime r that divides the order of E(Fq).

Ate Pairing

The Ate pairing [72] halves the loop size in the Miller algorithm, and therefore can be

faster. It uses the Frobenius map πq : E(Fqe) 7→ E(Fqe) which is defined as πq(Q) =

(xq
Q, yq

Q) for any positive integer e.

The Ate pairing ate : {P ∈ E(Fqk)[r] : πq(P ) = qP}×E(Fq)[r] is defined by ate(Q, P ) =

fT,Q(P )(qk
−1)/r where T = t− 1, t is the Frobenius trace of E(Fq), and r divides the order

of E(Fq).
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BN Curves

Bilinear pairings require specific elliptic curves where the embedding degree k is small, but

not too small. This is because they can be attacked in two fronts. First, an adversary can

try to attack the elliptic curve group E(Fq); the best known attacks for this (with some

exceptions) are generic algorithms for computing discrete logarithms with exponential

complexity such as Pollard’s Rho [130]. Alternatively, the adversary can use the pairing

itself to break the discrete logarithm in the curve by mapping it to the multiplicative sub-

group of the finite field F
∗

qk ; the best known attack for this are sub-exponential algorithms

such as the index calculus [1]. For this reason, k must be large enough such that the cost

of breaking Fqk is at least the same as the cost of breaking E(Fq). However, if it is too

big, then the pairing becomes too costly to compute.

To give a concrete example, at the 128-bit level of security, an elliptic curve with a

subgroup with 256-bit prime order is required; while a field with 3072-bit size is required.

Therefore, the ideal k in this situation is k = 12.

For randomly chosen curves, k usually has the same size as their order, which is too

large to offer efficient pairings. For this reason, special families of curves were developed

which have a fixed embedding degree. One of the most known families, which is extensively

used in this work, are the BN curves [20].

For a given integer z, it is possible to attempt to create a BN curve E/Fp : y2 = x3 + b

such that p = p(z) = 36z4 + 36z3 + 24z2 + 6z + 1, its order is given by n(z) = 36z4 +

36z3 + 18z2 + 6z + 1 and its Frobenius trace t(z) = 6z2 + 1. Not every z value successfully

creates a BN curve, but they are numerous nevertheless.

Eta Pairing

Another option of curves suitable for pairings are supersingular curves, which have k ≤ 6.

They are particularly interesting over binary fields, since in this case it is the only known

way to achieve a small embedding degree. A binary curve is supersingular if it has the

form y2 + cy = x3 + ax + b; its embedding degree is k = 4. Since k is relatively small,

it is necessary to use a larger base field in order to make Fqk large enough. To give a

concrete example, in the 80-bit level security, q = 2353 is required. (This does not take

into account recent attacks discovered while this work was being prepared, which will be

described later.)

The eta pairing [17] (from which Ate was derived) applies to supersingular algebraic

varieties, which includes supersingular elliptic curves, and it also halves the Miller loop.

In the case of binary supersingular curves, the eta pairing ηT : E(F2m)[r] × E(F2m)[r] is

defined by ηT (Q, P ) = fT,Q(P )(2mk
−1)/r where T = 2(m+1)/2 ± 1.
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Optimal Ate pairing

In 2008, the R-ate pairing [94] was created, which could further reduce the size of the

Miller loop; in the case of BN curves, to 1/4th of the original size. The Optimal Ate

pairing [154] was then created, being slightly faster, and its author conjectured that these

pairing were optimal in the sense that no further reduction to the Miller loop could be

obtained. This was later proven in [71].

The Optimal Ate pairing oate : {P ∈ E(Fqk)[r] : πq(P ) = qP} ×E(Fq)[r] is defined in

BN curves by oater(Q, P ) = (f · ℓQ3,−Q2
(P ) · ℓ−Q2+Q3,Q1

(P ) · ℓQ1−Q2+Q3,(6z+2)Q(P ))(pk
−1)/r

where Qi = πi
p(Q), z is the BN curve parameter, and r divides the order of E(Fq).

1.5 Algorithms

The cornerstone of ECC is the point multiplication algorithm: given a point P ∈ E(Fq)

and an integer k such that 0 < k < #E(Fq), to compute Q = kP . The basic algorithm

for point multiplication is the binary algorithm, based on the following recursion:

kP =



















∞ if k = 0,

2(k/2)P if k even,

(k − 1)P + P if k odd.

It can be converted in the iterative algorithm listed in Algorithm 1.2. It initializes an

accumulator with ∞ and it loops through the bits of the binary expansion of k, doubling

the accumulator and adding P if the bit is 1. Note that, in average, it requires t doublings

and t/2 additions where t is the bit-length of k.

Algorithm 1.2 Binary point multiplication algorithm

Input: k ∈ N, P ∈ E(Fq)
Output: kP

1: (kt−1, . . . , k1, k0)2 ← k
2: Q←∞
3: for i = t− 1 to 0 do
4: Q← 2Q
5: if ki = 1 then
6: Q← Q + P

7: return Q

There are many variations of the algorithm which speed it up. A common approach is

to use a different recoding for k, such as the Non-Adjacent Form (NAF) [147] which writes



16 Chapter 1. Introduction

k in base 2 but with coefficients in {−1, 0, 1}. The NAF-based multiplication requires t

doublings and t/3 additions, which is bit faster than the binary algorithm. There are

also windowing methods, which either look at a window of w bits of k in each iteration

or recode k with coefficients inside a larger range (e.g. in {−3,−1, 0, 1, 3}); they require

the precomputation of a table storing multiples of the base point P . The wNAF [147]

combines both approaches, and requires t doublings and t/(w + 1) additions.

Some schemes require the multiplication of a point which is known in advance. In

this case, windowing methods can employ larger precomputed tables. A very efficient

algorithm for the fixed point multiplication is the Comb method [98]. For t-bit scalars

and window size w, let d = ⌈t/w⌉. The Comb method is based on the observation that

kP can be written as

kP = k0P + k12P + k22
2P + . . . + kt−12

t−1P

= k0P + kd2dP + k2d22dP + . . . + k(w−1)d2(w−1)dP

+ 2(k1P + kd+12
dP + k2d+12

2dP + . . . + k(w−1)d+12
(w−1)dP )

+ 22(k2P + kd+22
dP + k2d+22

2dP + . . . + k(w−1)d+22
(w−1)dP

+ . . .

+ 2d−1(kd−1P + kd+(d−1)2
dP + k2d+(d−1)2

2dP + . . . + k(w−1)d+(d−1)2
(w−1)dP ) .

Let Ta = a0P + a12
dP + a22

2dP + . . . + aw−12
(w−1)dP ; then, by precomputing Ta for

every w-bit integer a it is possible to compute the above sum line by line, bottom up. In

each step, w bits of k are processed, leading to around d additions and d doublings. The

method is detailed in Algorithm 1.3. The precomputed table needs to hold 2w points.

Algorithm 1.3 Comb method for fixed point multiplication

Input: k ∈ N, P ∈ E(Fq), w ∈ N, Ta for every w-bit integer a
Output: kP

1: (kt−1, . . . , k1, k0)2 ← k
2: d← ⌈t/w⌉
3: Q←∞
4: for i = d− 1 to 0 do
5: Q← 2Q
6: a← (k(w−1)d+i, . . . , k2d+i, kd+i, ki)2

7: Q← Q + Ta

8: return Q

There are two improvements for the Comb algorithm. It is possible to run it over a

encoding of k with coefficients in {−1, 1} [69, 97]; in this case, it is possible to halve the

table size for a given k since T−a for a given a can be computed on the fly as −Ta. It is
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also possible to employ multiple precomputed tables [97], where the additional tables are

the same as the original multiplied by powers of 2. For example, using two tables, the

second table is the first multiplied by 2t/2. In this case, two separate bit windows are read

from the scalar k in each step and added to the accumulator, sharing the point doubling.

Therefore, with n tables, the number of doublings is divided by n.

Side-channel attacks are a critical concern in point multiplication algorithms, since in

many protocols the scalar k is the private key, or a secret number which can lead to the

private key. Naive implementations of the binary algorithm have been shown to be very

susceptible to these attacks, since it is possible to determine if the bit processed in each

step is 0 or 1 by measuring energy consumption. Windowing algorithms are also at risk:

using a bit window from the scalar as an index in a lookup table can leak the bit window,

since the lookup affects the processor cache [127].

The usual approach to avoid side-channel attacks in point multiplication is to make

sure that in each step the same amount of computation is carried out. This can be achieved

with special algorithms which obey this rule, such as the Montgomery ladder [118]. This

algorithm keeps in memory a pair of points whose difference is the base point P being

multiplied. Let k[u] denote the leftmost u bits of k; then kP = k[t]P can be computed

with the following recursion:

(k[u]P, k[u]P + P ) =



















(∞, P ) if u = 0,

(2k[u−1]P, k[u−1]P + (k[u−1]P + P )) if k[u] even,

(k[u−1]P + (k[u−1]P + P ), 2(k[u−1]P + P )) if k[u] odd.

Note that, in the u-th step, the points k[u−1]P and k[u−1]P + P are available from the

previous step. This implies that each step requires exactly a point doubling and a point

addition, regardless of the bit being processed. The Montgomery ladder is listed in iter-

ative form in Algorithm 1.4. If the elliptic curve is binary and non-supersingular, then

it is possible to improve the speed of the ladder since the x coordinate of the sum of a

pair of points whose difference is a known point can be easily computed from only the x

coordinates of the pair [103].

It is also possible to modify existing point multiplication algorithms to add resistance

to side-channel attacks. Lookup tables must be either avoided, or protected by reading

all elements from the table sequentially in each index lookup, selecting the correct value

with arithmetic operations as described in [91].
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Algorithm 1.4 Montgomery ladder point multiplication algorithm

Input: k ∈ N, P ∈ E(Fq)
Output: kP

1: (kt−1, . . . , k1, k0)2 ← k
2: Q0 ← P
3: Q1 ← 2P
4: for i = t− 2 to 0 do
5: if ki = 0 then
6: Q1 ← Q0 + Q1

7: Q0 ← 2Q0

8: else
9: Q0 ← Q0 + Q1

10: Q1 ← 2Q1

11: return Q0

1.6 Schemes and Protocols

1.6.1 Authenticated Encryption

An authenticated encryption scheme is composed of two algorithms: authenticated en-

cryption and decryption-verification (of integrity). The authenticated encryption algo-

rithm is denoted by the function EK(N, M, A) that returns (C, T ), where K ∈ {0, 1}k is

the k-bit key, N ∈ {0, 1}n is the n-bit nonce, M ∈ {0, 1}∗ is the message, A ∈ {0, 1}∗ is

the associated data, C ∈ {0, 1}∗ is the ciphertext and T ∈ {0, 1}t is the authentication

tag.

The nonce is a non-secret value that must be unique for each message (for a certain

key); its purpose is to prevent the same plaintext being always encrypted to the same

ciphertext. The impact of repeating a nonce depends on the scheme, but it can be

catastrophic — a recent target of research are schemes where the impact of such misusage

is limited. Some schemes support variable-length nonces, though in this work they are

assumed to have fixed size. The associated data (AD) is authenticated by the algorithm,

but not encrypted; this can be useful if some header must be sent in plaintext along

with the encrypted message, for example, in an internet packet. It can also be useful

to add a counter or timestamp to prevent replay attacks. The authentication tag is a

key-dependent digest of the message; if an attacker alters the ciphertext in transit, the

authentication tag will enable the recipient to detect the tampering. Some schemes also

support variable-length tags; again, in this work they are assumed to have fixed size.

The decryption-verification algorithm is denoted by the function DK(N, C, A, T ) that

returns (M, V ) where K, N, C, A, T, M are as above and V is a boolean value indicating
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if the given tag is valid (i.e. if the decrypted message and associated data are authentic).

There are two authenticated encryption schemes standardized by NIST: CCM [157]

and GCM [109]. CCM combines the CTR mode of encryption with the CBC-MAC au-

thentication code. GCM uses binary field arithmetic in order to provide authentication,

and CTR mode for encryption. Adoption was slow, but is increasing: both schemes were

included in version 1.2 of the TLS protocol which is widely used by web browsers; they are

regarded as the safest alternative considering recent attacks against other cipher suites

used in TLS (e.g. the CRIME attack [135] against CBC mode as employed in TLS and

the attack against RC4 [4] as employed in TLS). There are many other authenticated

encryption schemes such as OCB3, Hummingbird-2, MASHA, and EAX. Currently, a

competition (CAESAR [33]) is underway in order to select a new standard authenticated

encryption scheme, analogous to the AES and SHA-3 competitions.

1.6.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography requires participants to use the same elliptic curve in order

to successfully carry out protocols. For this reason, a set of curves have been standardized;

the most well known are the NIST curves [121], which are known by P-192, P-224, P-256,

P-384, and P-521 (prime curves over finite fields with the specified bit-length); B-163,

B-233, B-283, B-409, and B-571 (binary curves) and K-163, K-233, K-283, K-409, and

K-571 (binary Koblitz curves). There exists a P-160 curve which has been deprecated,

but it can be useful in some scenarios.

Two popular types of public key ECC schemes are digital signature and key agreement

schemes. The first allows the holder of a key pair to sign a message using the private key

such that any other party holding her public key can verify that the message received was

exactly the same message signed (integrity), and that only the holder of the correspondent

private key could sign it (non-repudiation). A key agreement scheme allows two parties to

computed a shared secret over a insecure channel, holding only the public key of the other

party. This shared secret can then be used to establish a secure channel using symmetric

key cryptography, including authenticated encryption.

A well known ECC digital signature scheme is the Elliptic Curve Digital Signature

Algorithm (ECDSA) [121]. It is composed of three algorithms: key generation, signing

and verification. Key generation and signing both require a fixed point multiplication,

while a simultaneous point multiplication is used in signature verification. A delicate part

of ECDSA is the handling of the value k in the signature generation. It must be randomly

generated for each message being signed; otherwise an attacker can trivially compute the

private key of the signer from two signatures generated with the same k (which happened

with the PlayStation 3 videogame console [32]). Additionally, the value k must not leak;
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for example, the timing information leaked by the OpenSSL ECDSA signature generation

enabled a remote private key recovery attack [31].

The ECDSA requires the computation of the inverse of k modulo the curve order

n. This is an expensive operation, specially with side-channel resistance. The Elliptic

Curve Schnorr Signature (ECSS) [141] is an alternative to ECDSA which does not require

this inversion, and otherwise is much similar to ECDSA while providing signatures 25%

smaller. It did not have much adoption probably due to its patents; however, they have

recently expired.

The Elliptic Curve Diffie-Hellman (ECDH) is a key agreement protocol where the key

generation uses a fixed point multiplication and key agreement requires a random point

multiplication. The protocol can be extended in order to provide forward secrecy, which

means that if an attacker is able to compromise the private key of one party than he

will not be able to compute any key agreed in the past by this party. This basically

requires using ephemeral key pairs and signing the public ephemeral key before sending it

to the other party; this is the approach used, for example, in the TLS protocol. A more

efficient alternative is to use an specialized key agreement protocol with forward secrecy

such as Elliptic Curve Menezes-Qu-Vanstone (ECMQV), which again did not have a large

adoption due to patents.

1.6.3 Pairing-Based Cryptography

For a t-bit level of security, the ECDSA and ECSS usually provide 4t-bit and 3t-bit

signatures respectively, which are smaller than RSA signatures (whose size is the same

as the RSA modulus size) for the same level of security. However, in some applications

even shorter signatures are useful; for example, when the signature must be printed in a

small receipt. This is exactly what is provided by pairing-based short signatures, which

have 2t bits. The Boneh-Lynn-Shacham (BLS) [30] uses a fixed point multiplication in

G2 for the key generation, a random point multiplication in G1 for the signing and two

pairing computations for verification. The Zhang-Safavi-Naini-Susilo (ZSS) [158] (also

independently invented by Boneh and Boyen [27]) also uses a fixed point multiplication

in G2 for the key generation, a fixed point multiplication in G1 for signing and both fixed

multiplication in G2 and a pairing computation for the verification.

The Sakai-Ohgishi-Kasahara (SOK) [139] is a non-interactive identity-based key agree-

ment scheme. Being identity-based, each party only need to know each other’s identities

in order to compute a shared key. Being non-interactive, they do not need to communicate

in order to compute this shared key, which is adequate in scenarios where communication

is expensive. Each SOK key agreement uses a single pairing computation.
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1.7 Contributions

The first line of the research presented in this work consisted in the efficient software

implementation of ECC and PBC for the MSP430 microcontroller. The following works

were published:

• Leonardo B. Oliveira, Diego F. Aranha, Conrado P. L. Gouvêa, Michael Scott,

Danilo F. Câmara, Julio López, and Ricardo Dahab. TinyPBC: Pairings for authen-

ticated identity-based non-interactive key distribution in sensor networks. Computer

Communications, 34(3):485–493, 2011;

• Conrado P. L. Gouvêa and Julio López. Implementação em software de criptografia

assimétrica para redes de sensores com o microcontrolador MSP430. In Anais do

X Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais,

pages 419–432, 2010;

• Leonardo B. Oliveira, Aman Kansal, Conrado P. L. Gouvêa, Diego F. Aranha, Julio

López, Bodhi Priyantha, Michel Goraczko, and Feng Zhao. Secure-TWS: Authenti-

cating node to multi-user communication in shared sensor networks. The Computer

Journal, 55(4):384–396, 2012;

• Conrado P. L. Gouvêa, Leonardo B. Oliveira, and Julio López. Efficient software

implementation of public-key cryptography on sensor networks using the MSP430X

microcontroller. Journal of Cryptographic Engineering, 2(1):19–29, 2012.

In the first paper, it was presented an efficient implementation of the SOK proto-

col, at the 70-bit level of security, for the AVR, MSP430 and ARM processors. The

non-interactive nature of the protocol can save energy since it reduces the amount of

communication needed. In this work, the author was responsible for the MSP430 imple-

mentation, where a 26% speedup was obtained compared to the state of the art.

The second paper presents efficient implementations of both ECC and PBC with the

ECDSA and SOK protocols, over both prime and binary fields, at the 80- and 128-bit

levels of security. The pairing computation obtained was 21–28% faster compared to the

state of the art, a result achieved with improvements in the finite field arithmetic.

The third paper presents a comparison of short (BLS, ZSS) and regular (Schnorr,

ECDSA) signature schemes, over both prime and binary fields, at the 80-bit level of secu-

rity, for the AVR and MSP430 microcontrollers. It was concluded that in this particular

scenario short signatures consume more energy than regular ones, since the energy saved

in the transmission is smaller than the increased cost of computation. In this work, the

author was responsible for the MSP430 implementation.
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The fourth paper is an expanded version of the second (which was presented in a local

symposium). It also studied the new MSP430X family of microcontrollers, featuring a

32-bit hardware multiplier. It described the implementation of Schnorr, ECDSA and ZSS

signatures schemes and of the SOK and ECMQV key agreement schemes, over both prime

and binary fields, at the 80- and 128-bit levels of security. It was shown that the new

multiplier resulted in 20-30% faster protocol timings.

The second line of research focused on the efficient software implementation of au-

thenticated encryption for the MSP430X. The following works were published.

• Conrado P. L. Gouvêa and Julio López. High speed implementation of authenticated

encryption for the MSP430X microcontroller. In ECRYPT Workshop on Lightweight

Cryptography, 2011;

• Conrado P. L. Gouvêa and Julio López. High speed implementation of authenticated

encryption for the MSP430X microcontroller. In LATINCRYPT 2012, volume 7533

of Lecture Notes in Computer Science, pages 288–304. Springer Berlin / Heidelberg,

2012.

The second work is an expanded version of the first (which was presented in a peer-

reviewed workshop without proceedings). It describes an implementation and compar-

ison of six authenticated encryption schemes: Counter with CBC-MAC (CCM), Ga-

lois/Counter Mode (GCM), Sophie Germain Counter Mode (SGCM), Offset Codebook

(OCB3), Hummingbird-2 and MASHA. The AES accelerator and 32-bit multiplier were

studied in order to improve the performance of the schemes, and techniques for improv-

ing their speed were presented. The work also presents an efficient implementation of the

AES block cipher specially tailored for 16-bit platforms.

The final line of research has focused on the ARM processor, more specifically on the

ARM Cortex series. The following work was published.

• Danilo Câmara, Conrado P. L. Gouvêa, Julio López, and Ricardo Dahab. Fast

software polynomial multiplication on ARM processors using the NEON engine. In

Security Engineering and Intelligence Informatics, volume 8128 of Lecture Notes in

Computer Science, pages 137–154. Springer Berlin / Heidelberg, 2013.

The main contribution of this work is a novel software binary polynomial multiplier

using a specific instruction from the NEON engine, a single-instruction multiple-data

extension present in the ARMv7 architecture. This multiplier is used in an efficient binary

field implementation, whose use is demonstrated in ECC and authenticated encryption

with the GCM scheme. The paper also employs state-of-the-art algorithms with side-

channel resistance, describing how to implement them efficiently using NEON. While
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it was not possible to break speed records held by non-standard prime curves in the

literature, there was significant improvement over other binary curve implementations

(70% speedup) and also in the GCM scheme.

RELIC.

The software implementation produced in this work is available online 1. Most of it was

integrated (and the rest is being) to the RELIC toolkit [7], a cryptographic open source

library maintained by Diego Aranha and the author. This allows the reproduction and

immediate application of the results obtained.

1.8 Recent Attacks

Cryptography is a ever evolving area of research with the peculiarity that an algorithm

or an entire subarea can be rendered useless overnight by advances in cryptanalysis. This

section covers attacks which are relevant to the schemes and algorithms implemented in

this work.

Related-key attacks for the Hummingbird-2 authenticated cipher were published by

Chai and Gong [35], Zhang et al. [159] (which contained errors and was later retracted),

and finally by one of its authors, Saarinen [138]. A related key attack requires the col-

lection of plaintext / ciphertext pairs which were encrypted by a set of keys which are

somehow related; for example, with a short Hamming distance between then. The rele-

vance of this kind of attack is still widely debated since keys should be chosen randomly,

which would stop the attack. For this reason, their impact on this work is not great.

Saarinen has also identified a class of weak keys in the GCM authenticated encryption

scheme [137]. When used, these keys leave the possibility of an attacker swapping certain

blocks in an encrypted message such as the tag is still considered as authentic, which

is considered a forgery. The probability of this attack working is n/2128, where n is the

number of blocks in the message; this is smaller than the expected security of 1/2128 but

may be considered small if n is not too large. It also worth mentioning that the original

proof of security of GCM [109] conceded a n/2128 probability for attacks; thus the attack

described does not reduce the assumed security of GCM.

Chatterjee et al. [36] pointed out that any authenticated encryption schemes whose

only restriction on the nonce is that it must be not repeated under the same key are

subject to an attack in the multi-user scenario, as follows. In the first phase, the attacker

collects authenticated tags for a fixed nonce-message pair from n different users; in the

second phase, she computes the authentication tag of the same pair for any w distinct

1http://conradoplg.cryptoland.net/software/
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keys. If there is a collision between a tag in the first phase and a tag from the second

(generated with a key k), then there is a good chance that the key used to generate the

first tag is k. The attacker, now in possession of the user key, can make arbitrary forgeries

(or decryptions) for this user. If the key and the tag both have t bits then this attack has

50% chance of working if nw = 2t, and has complexity O(w). For instance, the attack

requires O(2108) time for n = 220 users and 128-bit tags and keys, which is smaller than

the expected O(2128). This attack applies to most AE schemes, including CCM, GCM,

SGCM and OCB3. However, it is difficult to carry out in practice, since it requires a large

number of users and does not reduce the security margin enough for a concrete break.

The main objective of [36] was to point out that schemes which were supposedly proven

secure could still be subject to attacks, even if theoretical. Additionally, the attack can be

entirely avoided by using random nonces or incrementing nonces starting from a random

value.

The most striking result comes from a series of works published independently by

Antoine Joux [80] and Göloğlu et al. [58] breaking the discrete logarithm in some large

binary fields such as F214×127 , F227×73 and F228×113 , in a relatively small number of CPU

hours, using specialized function field sieve algorithms. This is directly relevant to the

security of pairing-based cryptography over binary curves E(F2m), since their security

also rely on the Discrete Logarithm Problem (DLP) over F24×m . Intuitively speaking,

these attacks are more dangerous to PBC when the largest prime factor of the exponent

is larger; in the mentioned attacks, these factors are 73, 113 and 127, while PBC uses 271

(believed to provide 70 bits of security) and 353 (80 bits). Since there was a gap between

those, it was not clear how big was the impact of these breaks. However, a few weeks later

Joux announced a discrete logarithm computation in F224×257 [79], which is much closer

to the fields used in PBC. With this, it must be concluded that PBC over binary elliptic

curves is insecure. Unfortunately, this renders part of this work obsolete, including the

whole paper [124] and parts of other papers using the ηT pairing. However, there is no

reason to believe that prime PBC is threatened, neither ECC over binary curves.

1.9 Organization

This thesis contains a collection of the most important papers published by the author

during his PhD, in non-chronological order. Papers were selected considering the results

achieved and the participation of the author. In Chapter 2 [63], the work with ECC

and PBC on the MSP430 is described, followed by the implementation of authenticated

encryption also for the MSP430 in Chapter 3 [59]. Chapter 4 [37] presents the work with

ECC and authenticated encryption for the ARM processor. Chapter 5 [125] presents

the comparison of signatures and short signatures in wireless sensors; we remark that its
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MSP430 timings were later improved in [59], but the reason we include it is to show a

more concrete application of the algorithms studied in this work and to highlight a work

with high degree of collaboration. Chapter 6 presents concluding remarks.

1.10 Corrections

Due to university regulations and copyright issues, the papers in this thesis were included

without modifications. However, they contain some issues that were discovered or pointed

out after publication. For this reason, this sections discusses those issues.

In most chapters, a distinction is made between “standard” and “non-standard” elliptic

curves. The criteria used for this classification is to consider whether the curve is included

in well-known standards such as from NIST and SECG; for this reason, a more accurate

name would be “standardized” and “non-standardized” curves. I believe this criteria is

important since many applications require interoperability with existing implementations,

and using standardized curves can ease this task.

In Chapter 2, is is mentioned that changing from MSP430 to MSP430X improves

timings by up to 15%, but does not explicitly explain why. The reason for this speed up

is that, if an operand is written to but not read from, then the instruction takes one less

cycle to execute in the MSP430X.

In Chapter 4, the ARM processor is described as being “low power”. Clearly, this re-

mark sounds odd when the microcontroller MSP430 is being covered in the other sections,

since the MSP430 has a much lower power consumption compared to ARM. However,

ARM is considered more energy efficient compared to similar 32-bit processors such as

Intel x86.

Again in Chapter 4, some algorithms are described as taking “constant time”. This is

not entirely correct since the time taken by the algorithms also depends on the parameter

size. What was meant is that the time taken by the algorithm is constant for a given

elliptic curve or finite field.





Chapter 2

Efficient Software Implementation of

Public-Key Cryptography on Sensor

Networks Using the MSP430X

Microcontroller

Conrado P. L. Gouvêa, Leonardo B. Oliveira and Julio López

Abstract

In this work we describe a software implementation of Elliptic Curve Cryptography (ECC)

and Pairing-Based Cryptography (PBC) for the MSP430 microcontroller family, which is

used in wireless sensors. Digital signature, short signature and key distribution protocols

were implemented at the 80- and 128-bit levels of security, over both binary and prime

fields. The timing results of our software implementation show an improvement of about

25–30% in the pairing computation over previous implementations. We also provide

results for the MSP430X extension of the original family, which has new instructions. In

particular, using the new 32-bit hardware multiplier available in some MSP430X models,

we have achieved a further improvement of about 45% in the prime field multiplication and

20–30% in protocol timings. The combination of fast algorithms and improved hardware

allows us to show that even the 128-bit level of security can be considered feasible for this

platform.

Conrado P. L. Gouvêa, Leonardo B. Oliveira, and Julio López. Efficient software implementation
of public-key cryptography on sensor networks using the MSP430X microcontroller. Journal of Crypto-
graphic Engineering, 2(1):19–29, 2012, with kind permission from Springer Science and Business Media.
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2.1 Introduction

Wireless Sensor Networks (WSNs) are ad hoc networks consisted mainly of small sensor

nodes with limited resources and one or more base stations, which connect the sensor

nodes to the rest of the world. They are used for monitoring environments and provide

fine-grained sensing to users.

Security in WSNs is of paramount importance because their applications range from

battlefield reconnaissance and emergency rescue operations to surveillance and environ-

mental protection. Besides, the fact that they monitor the environment raises innumerous

privacy concerns that can be only mitigated through the use of security.

In this work, we describe a high speed software implementation of both Elliptic Curve

Cryptography (ECC) and Pairing-Based Cryptography (PBC) for wireless sensors using

the MSP430 family of microcontrollers (used in popular sensor nodes platforms such as

the TelosB and the Tmote Sky). We show how one can combine algorithmic strategies and

platform technology to efficient implement in software the Elliptic Curve Digital Signature

Algorithm (ECDSA), Elliptic Curve Schnorr Signature (ECSS), and Zhang-Safavi-Naini-

Susilo (ZSS) signature schemes as well as the Sakai-Ohgishi-Kasahara (SOK) and Elliptic

Curve Menezes-Qu-Vanstone (ECMQV) key agreement protocols at both 80-bit and 128-

bit security levels over both prime and binary fields.

Our main contributions are (i) to show how to implement these protocols efficiently

on the MSP430; (ii) to our knowledge, present the fastest times published so far for

the platform; (iii) assess the impact on performance of the MSP430X, the most recent

representative of the MSP430 family; (iv) show how to take advantage of the new 32-bit

hardware multiplier available in some MSP430X models; (v) and show the feasibility of the

128-bit level of security on modern MSP430 devices. Our results indicate improvements

that ranges from 25% to 30% over previous timings.

The remainder of this work is organized as follows. In Section 2.2, we present the

characteristics of the MSP430 family. In Section 2.3 we discuss the cryptographic protocols

we have implemented. In Sections 2.4 and 2.5 we describe our implementation techniques

and optimizations along with the results obtained. Finally, we discuss related work in

Section 2.6 and conclude in Section 2.7.

2.2 The MSP430 Family

The microcontrollers from the MSP430 family have many characteristics in common,

such as being 16-bit, having the same instruction set and 12 general-purpose registers.

The clock frequency and ROM/RAM sizes varies for each member. Table 2.1 presents

the features of some relevant microcontrollers, including the MSP430F1611 used in the
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Table 2.1: Features of relevant MSP devices

Microcontroller MSPX Clock ROM RAM MPY32

(MHz) (KB) (KB)

MSP430F1611 No 8 48 10 No

MSP430F2417 Yes 16 92 8 No

CC430F6137 Yes 20 32 4 Yes

MSP430F5529 Yes 25 128 8 Yes

Tmote Sky and TelosB sensors, and the MSP430F2417 used in the TinyNode 184.

The MSP430 family instruction set has addition, subtraction and one-bit only shifts.

A swap byte instruction is available, which can be used for cheaper 8-bit shifts. Integer

multiplication is carried out with a hardware multiplier — a memory-mapped peripheral

that is present in all mentioned models. The cost of using this hardware is simply the

cost of writing the operands and reading the result to/from a certain memory address.

There is no division instruction. Operands can be referenced by four addressing modes:

register direct, indexed, register indirect and indirect with auto-increment. Instructions

can use immediate constants that are codified in offset words adjacent to the instruction.

The number of cycles that an instruction takes to execute can be computed easily, with

a few exceptions. It takes one cycle to fetch the instruction and one cycle to read each

offset word, if any. Add one cycle for each in-memory source (read) and two cycles for a

in-memory destination (write).

The MSP430 architecture was later expanded into the backward-compatible MSP430X

architecture. These microcontrollers (also referred to as MSPX) are able to address up

to 1 MB of memory with 20-bit pointers. New instructions are available, such as pushing

and popping multiple registers with only one instruction and up to 4-bit shifts with one

instruction (which still take the same number of cycles than using separate instructions).

Its instructions timings are also different; the most important distinction is that moving

data to memory takes one less cycle to execute. Some new MSP430X models feature a new

32-bit hardware multiplier (referred to as MPY32) whose usage is similar to the old 16-bit

multiplier and which can be used to greatly improve the performance of cryptographic

operations as will be described later.

2.3 Cryptographic Protocols

An elliptic curve E over a field K is defined by the equation y2 +a1xy +a3y = x3 +a2x
2 +

a4x + a6, with ai ∈ K. A point in an elliptic curve is a pair (x, y) ∈ K ×K that satisfies
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Table 2.2: Elliptic curves used in this work

Curve Security (bits) Field Random Used in

secp160r1 [34] 80 Prime Yes ECC

secp160k1 [34] 80 Prime No ECC

K-163 [121] 80 Binary No ECC

BN-158 [125] 80 Prime No PBC

SS-353 [125] 80 Binary No PBC

P-256 [121] 128 Prime Yes ECC

secp256k1 [34] 128 Prime No ECC

K-283 [121] 128 Binary No ECC

BN-254 [123] 128 Prime No PBC

the curve equation. It is possible to define a point addition operation such that the set

of points in the curve — together with an identity element called the point at infinity —

forms a group. This group is denoted E(K). Given a point P = (xP , yP ) in E(K) and an

integer k, the point multiplication operation kP can be defined as the sum of k copies of

the point P , using the point addition operation of the elliptic curve. Table 2.2 lists the

curves used in this work. A random curve is a curve which was generated verifiably at

random.

Given three groups G1, G2 e GT of prime order r, with G1 e G2 additive and GT

multiplicative, a bilinear pairing is defined as a map e : G1×G2 → GT with the bilinearity

property, that is, for all a, b ∈ Z, R ∈ G1 and S ∈ G2 we have that e(aR, bS) = e(R, S)ab.

In PBC, usually, G1 and G2 are subgroups of the group of points in certain elliptic curves

over finite fields and GT is the multiplicative subgroup of a finite field. If G1 = G2, the

pairing is called symmetric, otherwise, it is called asymmetric. In this work, the pairing

over the binary field is symmetric and the pairing over the prime field is asymmetric.

2.3.1 ECDSA

We have implemented the Elliptic Curve Digital Signature Algorithm (ECDSA) [121]

since it is extremely popular and standardized. It is composed of three operations: key

generation, signature and verification. The key generation requires a point multiplication

of a fixed point G that is known by all participants. The signature also requires a fixed

point multiplication while the signature requires the computation of kG + ℓQ where G is

fixed and Q is the point corresponding to the public key of the signer. For more details

we refer to the standard [121].

For implementing ECDSA we have chosen the curves secp160r1 and secp160k1 (over
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160-bit prime fields) from the SECG standard [34]; P-256 and secp256k1 (over 256-bit

prime fields) from the NIST and SECG standards [34, 121]; K-163 (over the binary field

F2163) and K-283 (over F2283) from NIST [121]. Those curves allow a fast modular reduction

with only additions, shifts and xors (and a few multiplications in some cases) due to the

special form of their prime moduli and reduction polynomials.

2.3.2 ECSS

We have also implemented the Elliptic Curve Schnorr Signature (ECSS) [141] which is

very similar to ECDSA but does not require an inversion modulo the group order, thus

being faster. The ECSS has been patented, but its patents seem to have expired recently.

The same curves used in ECDSA were employed for ECSS.

2.3.3 ZSS Short Signature Scheme

The Zhang-Safavi-Naini-Susilo (ZSS) scheme [158] is a short signature scheme based on

pairings that allows signatures with half the size of ECDSA’s. Its signature generation re-

quires a fixed point multiplication, while the verification requires one pairing computation

and one fixed point multiplication.

We remark that using supersingular binary curves in order to implement pairing-

based short signatures defeats the short signature property, as was pointed out in [30].

Since these curves have a small embedding degree, they require larger fields and therefore

provide larger signatures. For example, at the 80-bit level of security, a 353-bit field is

required which results in a 353-bit signature, in contrast to the 320-bit signature achieved

by ECDSA. For this reason, only prime fields were used for this protocol. Two BN

curves [20] over prime fields with 158 bits (BN-158) and 254 bits (BN-254) were chosen,

using the Optimal Ate pairing [154].

2.3.4 ECMQV Authenticated Key Agreement Protocol

The Elliptic Curve Menezes-Qu-Vanstone (ECMQV) [93] is a family of authenticated

key agreement protocols; we have implemented the two-pass variant. This protocol is

composed of two operations: key generation and key agreement. The key generation is

the same as ECDSA’s and requires a fixed point multiplication. The key agreement itself

has two stages: first, the parties exchange public keys; then, a ephemeral key pair is

generated (again with a fixed point multiplication) and the ephemeral public key is sent

to the other party, while the ephemeral public key of the other party is received. The

agreed key is then computed using two random point multiplications. The curves used

for ECMQV were the same curves used for ECDSA.
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2.3.5 SOK Non-Interactive Authenticated Key Agreement Pro-

tocol

Public key authentication is the main problem of ECC, since it requires an infrastructure

that can be expensive for sensors. The Identity-Based Cryptography (IBC) provides an

alternative to classic asymmetric cryptography where public keys are the identities of the

users (such as an email address) and thus they are implicitly authenticated. Its downside

is the requirement for a Key Generation Center (KGC) which generates the private keys

of the users and therefore can impersonate them. However, this center is acceptable

in the wireless sensor network scenario since the sensors trust the KGC as they are all

maintained by the same organization. The most popular method to instantiate IBC is

based on pairings.

One of the best IBC schemes for wireless sensors networks is the Sakai-Ohgishi-

Kasahara (SOK) non-interactive authenticated key agreement protocol [139]. This pro-

tocol enables two parties to combine a mutual key without any communication, knowing

only each other’s identities; afterwards, communication can be carried out with symmetric

encryption. For this reason, it is well suited for sensor networks where communication

is often costly. In SOK, a key agreement requires a single pairing computation. If the

pairing is asymmetric, its implementation is slightly more complex. While [48] suggests

computing two pairings to solve the asymmetric case, it can be done with only one pairing

computation [60].

Loosely speaking, the security of SOK depends on the difficulty of solving the discrete

logarithm problem in the pairing groups G1, G2, and GT . Since G1 and G2 are elliptic

curves, the underlying fields must have at least 160 and 256 bits at the 80- and 128-bit

levels of security, respectively. The finite field from which GT is a subgroup, however,

must have a larger size than G1 and G2 due to the existence of sub-exponential attacks to

its discrete logarithm problem. For prime fields, the standard [120] recommends orders

with 1024 and 3072 bits at the 80- and 128-bit levels of security, respectively. For binary

fields, due to Coppersmith’s attack [40], a more conservative approach is required: at

least approximately 1412 and 4036 bits at the 80- and 128-bit levels, respectively.

In order to implement SOK the two aforementioned BN curves were used (BN-158 and

BN-254) along with a supersingular curve over the binary field F2353 (SS-353) [125]. Note

that the curve over F2271 used in works such as [124, 149] offers only 70 bits of security

due to [40], while the curve over F2353 offers 80 bits of security. A binary curve offering

128 bits of security was not implemented since it would required a huge base field (more

than 1000 bits) and thus would result in very poor performance.
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2.4 Efficient Software Implementation

Our implementation was written in the C language, with critical finite field operations

written in assembly. The IAR Embedded Workbench 5.40 was used for development and

execution, using both its simulator and boards equipped with a MSP430F2417 and a

CC430F6137.

2.4.1 Prime Field Arithmetic

The prime field arithmetic is composed of addition, subtraction, multiplication, squaring

and inversion modulo a prime p. The most important are multiplication and squaring,

since ECC and PBC protocols spend around 70% of their computation in those operations.

The multiplication in a prime field has two steps: the integer multiplication of the two

n-word operands into a 2n-word intermediate result, and the reduction modulo p in order

to obtain the n-word result.

The integer multiplication is carried out with the Comba algorithm [39], a column-

oriented version of the usual multiplication algorithm. There is also a hybrid algorithm

that combines both techniques [143]. However, Comba offers a better performance in

this platform since its fundamental multiply-and-accumulate step is exactly what is pro-

vided by the Multiply and Accumulate (MAC) operation of the MSP430 hardware mul-

tiplier [60]. The Karatsuba [83] algorithm can also be used in order to reduce the size

of the multiplier required. We have determined that using Karatsuba leads to a better

performance in the 256-bit field, and thus was used in this case.

The modular reduction of the intermediate result is computed with the Montgomery

algorithm [117], since it does not requires division, which is not available in the MSP430.

It has the same structure as the Comba multiplication, but with the first operand being

the prime modulus and the second operand generated on the fly during the algorithm.

Therefore, we can use the same MAC optimization [60].

When using the 32-bit multiplier, we employ the same Comba method, now with 32-

bit digits and still taking advantage of the MAC operation. In order to fully use the

power of the multiplier, it is important to enable the MPYDLYWRTEN bit which allows

writing the operands of the next MAC operation while the previous is still being carried

out.

In the PBC context, a very effective optimization for modular reduction was found,

which was briefly mentioned in [125] and is further detailed here. When using BN curves,

the prime modulus is given by the polynomial p(x) = 36x4 + 36x3 + 24x2 + 6x + 1 where

x is the parameter that defines the curve. Consider the curves generated by the values

x1 = 238 + 25 + 24 + 1 (suitable at the 80-bit level of security) and x2 = −262 − 255 − 1

(suggested by [123], suitable at the 128-bit level of security). The prime moduli in those



34 Chapter 2. PKC on Sensor Networks Using MSP430X

cases are

p(x1) = 0x2400 0000 6ED0 0000 7FE9

C000 419F EC80 0CA0 35C7,

p(x2) = 0x2523 6482 4000 0001 BA34 4D80 0000 0008

6121 0000 0000 0013 A700 0000 0000 0013,

respectively, in base 16. Notice that p(x1) has two 16-bit digits with a zero value, while

p(x2) has five digits with zero value and one digit is the number one. Since Montgomery

reduction is analogous to a multiplication, the steps with multiplications by zero can

be discarded and the steps with multiplication by one can be simplified. For example,

when using p(x2), it was required 162 = 256 multiply-and-accumulate steps during the

Montgomery reduction. Ignoring the steps with multiplications by zero, 256 − 16 · 5 =

176 steps are now required, a 31% reduction. We remark that the generic optimization

technique that takes advantage of sparse primes has been used before [65,85], but to the

best of our knowledge this work and [125] provide the first application of the technique

in the context of PBC. The focus of the curve suggested by [123] was probably in the

fact that a sparse parameter leads to a faster Miller loop, but it also speeds up the field

arithmetic as shown.

When using the 32-bit multiplier, it is more difficult to apply this technique. In p(x2),

the three zeros in odd-indexed 16-bit digits allow the replacement of some 32x32-bit

multiplications by 32x16-bit multiplications, which is a little faster. However, we were

unable to take advantage of the zeros in even-indexed digits.

2.4.2 Binary Field Arithmetic

The binary field arithmetic is composed by the addition, subtraction, multiplication,

squaring, inversion and square root operations over the field F2m . Addition in this field

becomes a simple xor of the operands; multiplication becomes more expensive due to the

absence of a hardware multiplier and therefore must be implemented very efficiently; and

squaring can be computed much faster with precomputed tables.

The binary field multiplication is also composed of two steps: polynomial multiplica-

tion of the operands followed by a polynomial reduction. The polynomial multiplication

is computed with the López-Dahab (LD) algorithm [104], which appears to be the most

efficient in this scenario [9,149]. Optionally, the LD algorithm can be combined with the

Karatsuba algorithm; we have employed it in the 283- and 353-bit fields. The square of a

binary field element can be computed very quickly with the help of precomputed tables

stored in ROM, as described in e.g. [9].
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The polynomial reduction after polynomial multiplication and squaring can be com-

puted efficiently due to the special form of the reduction polynomial in the chosen curves.

It can be computed with only shifts and xors, as described in e.g. [70]. For the curve over

F2353 used in the ηT pairing, we have used the trinomial z353 + z95 + 1 for the field F2353

since reduction, in this case, can be carried out with 1- and 2-bit shifts only [125].

The square root of a binary field element a(z) is the element c(z) such that c(z)2 =

a(z). In this work, it is only used on the curve F2353 , during the computation of the ηT

pairing. As described in [53], it can be computed using lookup tables and a multiplication

by
√

z. This multiplication can be computed efficiently in the given curve, using 1-bit

shifts only, by noting that
√

z ≡ z177 + z48 in F2353 .

Inversion in the binary field can be computed using the extended Euclidean algorithm.

In order to optimize it we have used the same approach as [9], using dedicated functions

for shifting one to eight bits which are timing consuming during inversion.

2.4.3 Point Arithmetic

The main operations in ECC are the the random point multiplication (kP ), fixed point

multiplication (kG, where G is known in advance) and the simultaneous multiplication of

a fixed and a random point (kG+ℓP ), all of which are based on point addition and dupli-

cation. Using the names from the Explicit-Formulas Database1, the prime curves use Ja-

cobian coordinates and the madd-2007-bl mixed addition [25] formulas; the dbl-2001-b

doubling [22] formulas were used for the secp160r1 and P-256 curves while the dbl-2009-l

doubling [11] formulas were used for the secp160k1, secp256k1, BN-158 and BN-254 curves

(except for the pairing computation in the latter two curves). For the K-163 and K-283

curves, the madd-2005-dl mixed addition formula [2] was employed; point doubling is

not needed for Koblitz curves.

For fixed point multiplication, the Comb [98] method was selected in the prime case

and the wTNAF method in the binary case [147]. These methods take advantage of pre-

computation tables containing multiples of the fixed point G in order to speed up the

computation. For simultaneous multiplication, the wNAF- and wTNAF-based interleav-

ing method [114] were chosen for the prime and binary cases, respectively. This method

uses a precomputation table for the fixed point and a smaller table, computed on the fly,

for the random point. For all methods mentioned, we have used precomputed tables with

8 points and on-the-fly tables with 4 points.

On the secp160k1 and secp256k1 curves, which are used for ECDSA and ECSS, and on

the BN curves used for ZSS, the Gallant-Lambert-Vanstone (GLV) method [56] enables a

faster point multiplication. These curves all have the form y2 = x3 + b over Fp with p ≡ 1

1http://www.hyperelliptic.org/EFD/
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(mod 6) and have a map φ : E(Fp) 7→ E(Fp) defined by (x, y) 7→ (βx, y) where β ∈ Fp

is an element of order 3. Let λ be an integer satisfying λ2 + λ ≡ −1 (mod n). Then

φ(P ) = λP . It is possible to take advantage of this fact in order to improve the speed of

point multiplication kP , as follows. Write k as k = k0 +λk1, then compute k0P +k1φ(P ).

If k0 and k1 have half the bit length of k, then it is possible to use the interleaved point

multiplication [114] which is faster than computing kP directly, since the number of point

duplications will be cut in half.

The critical operation in the signing algorithm of ZSS, ECDSA, and ECSS is the

fixed point multiplication, where the Comb method is often faster than wNAF. However,

mixing Comb and GLV is not straightforward. It can be done, as mentioned in [125],

by considering the two-table version of the Comb method. In this version, two tables

are precomputed with multiples of P and 2t/2P , where t is the bit length of k. Write

k = k0 + 2t/2k1; now, kP can be computed taking advantage of the two tables. When

the GLV method is available, we can decompose k as usual (k = k0 + λk1). However, the

second table, now with multiples of φ(P ), does not need to be precomputed since we can

just apply φ to the elements of the first table when necessary. Therefore, we can use half

of the space of the usual Comb multiplication while achieving the same performance, or

we can use the same space (doubling the size of the first table) while cutting the number

of point duplications in half — which we have chosen.

For GLV to be effective, the decomposition of k must be computed efficiently. This

can be done using some precomputation, as hinted in [70] and mentioned in [125]. We

describe the approach in [125] in a more detailed manner as follows. In order to decompose

k as k0 and k1 with the appropriate bit lengths, we precompute the vectors ~v1, ~v2 ∈ Z×Z

as described in [56]. Now, we must solve the equation (k, 0) = β1 ~v1 + β2 ~v2 for β1 and

β2, then round the result to the nearest integers as b1 = ⌊β1⌉ and b2 = ⌊β2⌉. Compute

~v = b1 ~v1 + b2 ~v2 and finally let (k0, k1) = (k, 0)− ~v.

The critical operation when decomposing k is to solve the given equation. Write

~v1 = (v10, v11) and ~v2 = (v20, v21). Let d = v10v21 − v11v20. It is then possible to compute

β1, β2 as β1 = (kv21)/d, β2 = −(kv11)/d. The multiple precision division by d is the

most expensive part, but it can be avoided as follows. Let t = ⌊k⌋ + 2 and compute

g1 = ⌊(2tv21)/d⌉ and g2 = ⌊(2tv11)/d⌉. Note that g1 and g2 are integer constants which

can be precomputed. We can now compute both β′

1 = ⌊(kg1)/2t⌋, β′

2 = −⌊(kg2)/2t⌋,
where the floored division by 2t is a simple right shift of t bits. The last bit discarded in

this right shift must be stored, and if it is 1, then b1 = β′

1 + 1, otherwise b1 = β1. The

same applies to β′

2. The decomposition of k now follows as described.
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2.4.4 Pairing Computation Algorithms

The standard algorithm for computing pairings is the Miller algorithm [112]. The first

pairings used were the Weil and Tate, but the fastest ones are called optimal pairings [154].

Among them, the Optimal Ate pairing was chosen [154] for the prime case and the ηT

pairing [17] for the binary case. A pairing computation is divided in two parts: the Miller

loop, which is analogous to a point multiplication with some additional computation; and

the final exponentiation, which maps the result of the Miller loop — a coset element —

to a canonical representation of the coset.

In this work, BN curves [20] were used in the prime case. They are a family of

pairing-friendly elliptic curves of the form y3 = x3 + b, with embedding degree 12. When

using a BN curve with the Optimal Ate pairing, the pairing groups become G1 = E(Fp),

G2 = {Q ∈ E(Fp12) : pQ = (xp
Q, yp

Q), rQ = ∞} and GT = {x ∈ F
∗

p12 : xr = 1}. The G2

group can be represented by the preimage of the twisting isomorphism φ : E ′ → E, where

E ′ is the sextic twist of E. Since this group is defined over Fp2 , it has smaller elements and

its operations are more efficient. The Miller loop therefore requires point arithmetic in

E ′(Fp2). Points are represented with projective coordinates using the formulas from [8].

The loop also requires arithmetic in Fp2 and Fp12 . The latter is built as an extension

tower Fp2 → Fp6 → Fp12 . In Fp2 we employ the lazy reduction technique [155]. This

allows computing ab + cd, for example, with two multiplications and a single reduction,

instead of the usual two multiplications and two reductions — this is accomplished by

multiplying ab and cd, adding the double precision results, and reducing the result. It

is possible to employ this technique for the entire Fp12 as described in [8], but it can be

costly in terms of memory, as will be examined later.

Still in the prime case using BN curves, the final exponentiation requires Fp12 arith-

metic. We follow the approach from [142], with the field squaring optimized as described

in [64]. It is also possible to employ the compressed squaring technique from [82] as de-

tailed and improved in [8] but again it can be costly in terms of memory. Hashing to G2

in the asymmetric case is another important operation since it requires a expensive point

multiplication by the cofactor of E ′(Fp2), which has the same size of p. However, this

multiplication can be greatly sped up using the technique from [54].

For the binary case, a supersingular curve over a 353-bit field was used. Here, the pair-

ing groups become G1 = G2 = E(F2353) and GT = F24×353 . The ηT pairing computation

follows its original description [17].
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Table 2.3: Timings in cycles for prime field arithmetic

80-bit 128-bit

Algorithm MSP MSPX MPY32 MSP MSPX MPY32

Comba mult. 1,565 1,299 741 3,563 2,981 1,620

Comba squaring 1,350 1,056 630 2,946 2,435 1,369

Reduction

Montgomery, in [60] 1,785 3,989

Montgomery 1,659 3,600

Montgomery, sparse 1,413 1,174 853 2,670 2,232 1,695

2.5 Results

Using the MSPsim and the IAR simulators, the number of cycles taken by each operation

was measured. In some cases we give the timing in seconds; these are derived from

the number of cycles assuming a 8 million hertz clock. The exact clock depends on the

MSP430 model being used and in the voltage fed to the microcontroller.

The MSP430F6137 microcontroller used for testing the 32-bit multiplier features only

4 KB of RAM and 32 KB of ROM, making it difficult to fit our code in the available space.

In this case, we have used the IAR simulator to run the programs for the MSP430F5529,

which has 128 KB of ROM and the same 32-bit multiplier.

2.5.1 Prime Field Timings

Table 2.3 gives the timings of the prime field operations. First, we note that there is a small

gain in comparison to [60], which presents the fastest timings so far for the MSP430 to the

best of our knowledge. Particularly, in the modular reduction, we have obtained an 8%

improvement by noting that is not necessary to read the prime modulus from the memory

— since it is fixed, we can embed its digits in the instructions as immediate constants.

However, the most expressive savings come from the sparse modulus optimization — 14%

in the 160-bit field and 26% in the 256-bit field.

The MSP430X improves the timings by roughly 15%, while the MPY32 results in

multiplications and squarings that are around 40% faster and reductions that are around

30% faster. The limited improvement for reduction is due to not being able to take full

advantage of the sparse primes.
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Table 2.4: Timings in cycles for binary field arithmetic

80-bit, ECC 128-bit, ECC 80-bit, PBC

Algorithm MSP MSPX MSP MSPX MSP MSPX

LD mult. 3,907 3,585 8,655 8,166 13,868 12,902

Squaring 249 199 389 325 489 415

Square root 934 852

Fast reduction 448 397 888 835 494 426

2.5.2 Binary Field Timings

Timings for binary field arithmetic are listed in Table 2.4. Previous works have used

the 70-bit level for PBC [124, 149], which prevents comparisons. The reduction in F2283

requires many shifts due to standardized reduction polynomial used in the K-283 curve;

this explains why it is slower than the reduction in the larger field F2353 . The MSP430X

improves the timings around 5–15%, less than in the prime case probably due to the

smaller number of memory writes in the LD multiplication.

2.5.3 Protocol Timings

Table 2.5 presents the timings of signature algorithms. The fastest timings are plotted for

comparison in Fig. 2.1a and 2.1b. For ECDSA, it can be seen that the binary curves offer

a better performance than the random prime curves, but the special prime curves are even

faster. Using MSP430X leads to a approximately 15% improvement in the prime case and

around 5–10% in the binary case. Using MPY32 gives a further 20–30% improvement.

Timings for ECSS were omitted for brevity but they are roughly 10% faster than ECDSA

for signing and 5% faster for verifying.

Even though ZSS provides signatures with half the bit length of ECDSA, it appears

that it does not give any substantial advantage in this scenario — the energy cost of

the increased signing time defeats any energy saving with the decreased communication

cost due to the smaller signature; as already shown in [125]. Nevertheless, it can be

useful in scenarios where communication is very expensive, such as underwater sensor

networks [55]. Also, note that verification in ZSS is costly since it requires one pairing

computation; but this may not be a issue if only signing is required by the sensors and

verification is done by more powerful devices.

Timings for pairing computation and key agreement protocols are given in Table 2.6

and the fastest version of each plotted for comparison in Fig. 2.2. We observe again a





2.5. Results 41

Table 2.6: Timings in seconds for pairing computation
and key agreement protocols

Algorithm Curve MSP MSPX MPY32

80-bit

ηT 2.586 2.395

Optimal Ate 3.791 3.202 2.470

SOK SS-353 2.668 2.493

SOK (G1) BN-158 3.875 3.285 2.533

SOK (G2) BN-158 4.554 3.861 2.982

ECMQV K-163 0.719 0.658

secp160r1 0.982 0.838 0.671

secp160k1 0.730 0.626 0.513

128-bit

Optimal Ate 9.930 8.461 5.967

SOK (G1) BN-254 10.202 8.693 6.134

SOK (G2) BN-254 11.766 10.036 7.121

ECMQV K-283 2.291 2.150

secp256r1 2.842 2.437 1.742

secp256k1 2.065 1.776 1.298

near 15% improvement with MSP430X and a further 25–30% gain with MPY32. Using

MPY32, the prime curve almost reaches the performance of the binary curve at the 80-

bit level of security. The reason for the binary curve being so competitive — despite

the fact that there is no hardware accelerator involved in its computation — is that, in

both Koblitz curves and in the ηT pairing, point doublings are replaced by the Frobenius

endomorphism which is simply the extremely fast squaring of the point coordinates. The

ECMQV protocol is around 75–80% faster than SOK, but of course it requires a great

deal of communication (to receive the certificate with the other party’s public key, to send

our certificate to the other party, to receive the other party’s ephemeral public key, and

to send our ephemeral public key to the other party) which makes it much less attractive

in this scenario. It is interesting to note that the SOK with hash in G2 is more expensive

than in G1 in the asymmetric case due to the requirement of multiplying the hashed point

by the curve cofactor.

All timings reported so far have been scaled to a 8 MHz clock in order to allow com-

parisons with previous works. However, there are MSP430X microcontrollers with up to

25 MHz maximum clock. For this reason, to give a better picture of what is achievable
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about 40,000 times, assuming a 3.31 mA current under 3.6 V, which are required to obtain

the desired clock [46].

2.5.5 Impact of recent optimizations

Using the optimizations from [8] it is possible to speed up the prime pairing computation

even more, but with a somewhat large memory cost. At the 80-bit level of security, using

the lazy reduction for the entire extension tower leads to a 7–8% speed up in the pairing

computation, but increases RAM usage by 1 KB (a 33% increase) and ROM usage by

0.9 KB. Using the compressed squaring optimization for the final exponentiation leads to

a further 4% speed up, but increases RAM usage by another 1 KB and ROM usage by

1.4 KB. At the 128-bit level of security, the lazy reduction optimization leads to a 5%

speed up (which is smaller than the 80-bit level since the reduction here is comparatively

faster due to the sparser prime), increasing RAM usage by 1.5 KB (a 33% increase) and

ROM usage by 1.2 KB; while the compressed squaring leads to a further 7% speed up,

increasing RAM usage by 1.2 KB and ROM usage by 1.4 KB.

2.6 Related Work

One of the first ECC implementations for the MSP430 is the work of Guajardo et al. [66],

which achieves a random point multiplication in 0.425 s (when scaled to 8 MHz) on the

curve secp128r1 (64 bits of security), using the binary point multiplication algorithm and

the 16-bit hardware multiplier. For comparison, our timing for the same algorithm is

0.581 s on the curve secp160r1, which offers 80 bits of security.

The work NanoECC [150] presents a point multiplication in 0.72 s and 1.04 s on prime

(secp160r1) and binary (K-163) curves, respectively, at the 80-bit level of security. Un-

fortunately it is not clear which point multiplication algorithm was used in these timings.

For comparison, our timings are 0.525 s and 0.256 s, respectively, using 4NAF/4TNAF.

They also provide timings for the 7.4 MHz ATmega: 1.27 s and 2.16 s respectively.

In [60], it is described how to use the multiply and accumulate (MAC) operation of

the MSP430 hardware multiplier to improve the speed of both ECC and PBC when using

prime curves. At the 80-bit level of security, our pairing over the BN curve offers a 25%

gain in comparison to their pairing over a MNT curve (which offers roughly 70 bits of

security). This result may seem surprising since the BN curve uses a GT with 1920-bit

order, much more than the 1024 bits required at this level of security. However, it is

explained by the many existent optimizations tailored for BN curves. At the 128-bit level

of security, we have obtained a 30% improvement in comparison their work in the pairing

computation over the BN curve. This saving is explained by the sparse prime reduction
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optimization and the new formula for the final exponentiation from [64].

TinyPBC [124] provides timings for the ηT pairing over a supersingular 271-bit curve,

which offers roughly 70 bits of security. The pairing timing is 1.27 s for the 8 MHz MSP430,

1.90 s for the 7.4 MHz ATmega and 0.14 s for the 13 MHz ARM PXA27x. For comparison,

our 80-bit security pairing timing is 2.586 s. It is possible to notice that the binary pairing

scales very poorly with the level of security.

The work Secure-TWS [125] focuses on digital signatures at the 80-bit level of security

and presents a small subset of the results of this paper. The 7.4 MHz ATmega timings

are 0.710 s for ZSS signature over prime BN curve, 0.680 s for ECDSA signature over the

secp160k1 curve and 0.370 s over the K-163 curve.

2.7 Conclusion

Even though it is challenging, the implementation of cryptography for wireless sensor

networks is viable. In this work, the best known timings for ECC and PBC in the MSP430

family of microcontrollers were presented, including results for the MSP430X extension

of the family and using the new 32-bit hardware multiplier featured in some MSP430X

models. Specifically, we have obtained a prime field multiplication that is 12% and 18%

faster for 160- and 256-bit prime fields, respectively, by taking advantage of the sparse

prime reduction. Our efficient implementation leads to a 25–30% speedup in the pairing

computation compared to the best known timings published. We note that the sparse

prime reduction can also be applied in other 8- and 16-bit platforms, and also at larger

levels of security. Additionally, we were able to improve the timings of ECDSA and ZSS

signatures using the GLV method, describing a method for decomposing the multiplier

that avoids divisions and a method for using GLV in conjunction with the Comb point

multiplication.

It was shown that the MSP430X extension provides a performance gain of roughly

15% due to faster instructions (mainly when writing to memory) and we were able to

take advantage of the 32-bit multiplier present in some of the MSP430X microcontrollers

in order to obtain a 20–30% improvement in protocol timings. Finally, we remark that on

a 25 MHz MSP430F5529 with full clock speed it is possible to compute a 80-bit security

SOK key agreement in 0.8 s, a 128-bit SOK key agreement in less than 2.5 s, and an

ECDSA signature in under 150 ms.
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Chapter 3

High Speed Implementation of

Authenticated Encryption for the

MSP430X Microcontroller

Conrado P. L. Gouvêa and Julio López

Abstract

Authenticated encryption is a symmetric cryptography scheme that provides both confi-

dentiality and authentication. In this work we describe an optimized implementation of

authenticated encryption for the MSP430X family of microcontrollers. The CCM, GCM,

SGCM, OCB3, Hummingbird-2 and MASHA authenticated encryption schemes were im-

plemented at the 128-bit level of security and their performance was compared. The AES

accelerator included in some models of the MSP430X family is also studied and we explore

its characteristics to improve the performance of the implemented modes, achieving up to

10 times of speedup. The CCM and OCB3 schemes were the fastest when using the AES

accelerator while MASHA and Hummingbird-2 were the fastest when using only software.

3.1 Introduction

Constrained platforms such as sensor nodes, smart cards and radio-frequency identifica-

tion (RFID) devices have a great number of applications, many of which with security

Conrado P. L. Gouvêa and Julio López. High speed implementation of authenticated encryption
for the MSP430X microcontroller. In LATINCRYPT 2012, volume 7533 of Lecture Notes in Computer
Science, pages 288–304. Springer Berlin / Heidelberg, 2012, with kind permission from Springer Science
and Business Media.

47



48 Chapter 3. Authenticated Encryption for the MSP430X

requirements that require cryptographic schemes. The implementation of such schemes

in these devices is very challenging since it must provide high speed while consuming a

small amount of resources (energy, code size and RAM). In this scenario, symmetric cryp-

tography becomes an essential tool in the development of security solutions, since it can

provide both confidentiality and authenticity after being bootstrapped by some protocol

for key agreement or distribution. Encryption and authentication can be done through

generic composition of separate methods; however, the study of an alternative approach

named authenticated encryption (AE) has gained popularity.

Authenticated encryption provides both confidentiality and authenticity within a sin-

gle scheme. It is often more efficient than using separate methods and usually consumes

a smaller amount of resources. It also prevents common critical mistakes when combining

encryption and authentication such as not using separate keys for each task. There are

many AE schemes; see e.g. [90] for a non-exhaustive list. Some AE schemes are built

using a block cipher, in this case, they are also called AE modes. In this work, we follow

the approach from [90] and compare the Counter with CBC-MAC (CCM) mode [157],

the Galois/Counter Mode (GCM) [109] and the Offset Codebook (OCB3) mode [90]. We

have also implemented the Sophie Germain Counter Mode [136], the Hummingbird-2 ci-

pher [49] and the MASHA cipher [84]. The CCM mode and GCM have been standardized

by the National Institute of Standards and Technology (NIST); CCM is used for Wi-Fi

WPA2 security (IEEE 802.11i) while GCM is used in TLS, IPSec and NSA Suite B, for

example. The recently proposed OCB3 mode is the third iteration of the OCB mode

and appears to be very efficient in multiple platforms. The SGCM is a variant of GCM

and was proposed to be resistant against some existing attacks against GCM while being

equally or more efficient; we have implemented it in order to check this claim and compare

it to GCM. The Hummingbird-2 cipher (which may be referred to as HB2 in this work)

is specially suited for 16-bit platforms and was implemented in order to compare it to the

other non-specially suited modes. The MASHA cipher is based on a stream cipher and

claims to fill the gap for authenticated encryption algorithms based on stream ciphers

which achieve a good balance between security and performance.

The goal of this work is to provide an efficient implementation and comparison of the

aforementioned AE schemes (CCM, GCM, SGCM, OCB3, Hummingbird-2, and MASHA)

for the MSP430X microcontroller family from Texas Instruments. This family is an ex-

tension of the MSP430 which have been used in multiple scenarios such as wireless sensor

networks; furthermore, some microcontrollers of this family feature an AES accelerator

module which can encrypt and decrypt using 128-bit keys. Our main contributions are:

(i) to study (for the first time, to the best of our knowledge) the efficient usage and impact

of this AES accelerator module in the implemented AE schemes; (ii) to describe a high

speed implementation of those AE schemes for the MSP430X, achieving performance 10
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times faster for CCM using the AES accelerator instead of AES in software; (iii) to de-

scribe an efficient implementation of AES for 16-bit platforms; (iv) to show that CCM is

the fastest of those schemes whenever a non-parallel AES accelerator is available; and (v)

and to provide a comparison of the six AE schemes, with and without the AES accelera-

tor. We remark that the results regarding the efficient usage of the AES accelerator can

be applied to other devices featuring analogue accelerators, such as the AVR XMEGA.

This paper is organized as follows. In Section 3.2, the MSP430X microcontroller family

is described. Section 3.3 offers an introduction to AE. Our implementation is described

in Section 3.4, and the obtained results are detailed in Section 3.5. Section 3.6 provides

concluding remarks.

3.2 The MSP430X Family

The MSP430X family is composed by many microcontrollers which share the same instruc-

tion set and 12 general purpose registers. Although it is essentially a 16-bit architecture,

its registers have 20 bits, supporting up to 1 MB of addressing space. Each microcontroller

has distinct clock frequency, RAM and flash sizes.

Some MSP430X microcontrollers (namely the CC430 series) have an integrated radio

frequency transceiver, making them very suitable for wireless sensors. These models also

feature an AES accelerator module that supports encryption and decryption with 128-bit

keys only. The study of this accelerator is one key aspect of this study and for this reason

we describe its basic usage as follows. In order to encrypt a block of 16 bytes, a flag must

be set in a control register to specify encryption and the key must be written sequentially

(in bytes or words) in a specific memory address. The input block must then be written,

also sequentially, in another memory address. After 167 clock cycles, the result is ready

and must be read sequentially from a third address. It is possible to poll a control register

to check if the result is ready. Further blocks can be encrypted with the same key without

writing the key again. The decryption follows the same procedure, but it requires 214

clock cycles of processing. It is worth noting that these memory read and writes are just

like regular reads and writes to the RAM, and therefore the cost of communicating with

the accelerator is included in our timings.

3.3 Authenticated Encryption

An authenticated encryption scheme is composed of two algorithms: authenticated en-

cryption and decryption-verification (of integrity). The authenticated encryption algo-

rithm is denoted by the function EK(N, M, A) that returns (C, T ), where K ∈ {0, 1}k is
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the k-bit key, N ∈ {0, 1}n is the n-bit nonce, M ∈ {0, 1}∗ is the message, A ∈ {0, 1}∗ is

the associated data, C ∈ {0, 1}∗ is the ciphertext and T ∈ {0, 1}t is the authentication

tag. The decryption-verification algorithm is denoted by the function DK(N, C, A, T ) that

returns (M, V ) where K, N, C, A, T, M are as above and V is a boolean value indicating

if the given tag is valid (i.e. if the decrypted message and associated data are authentic).

Many AE schemes are built using a block cipher such as AES. Let EK(B) denote the

block cipher, where the key K is usually the same used in the AE mode and B ∈ {0, 1}b

is a b-bit message (a block). The inverse (decryption) function is denoted DK(B′) where

B′ is also a block (usually from the ciphertext). The CCM, GCM, SGCM and OCB3 are

based on block ciphers, while HB2 and MASHA are not.

It is possible to identify several properties of AE schemes; we offer a non-exhaustive

list. The number of block cipher calls used in the scheme is an important metric related to

performance. A scheme is considered online if it is able to encrypt a message with unknown

length using constant memory (this is useful, for example, if the end of the data is indicated

by a null terminator or a special packet). Some schemes only use the forward function

of the underlying block cipher (EK), which reduces the size of software and hardware

implementations. A scheme supports preprocessing of static associated data (AD) if the

authentication of the AD depends only on the key and can be cached between different

messages being sent (this is useful for a header that does not change). Some schemes are

covered by patents, which usually discourages its use. A scheme is parallelizable if it is

possible to process multiple blocks (or partially process them) in a parallel manner. Some

schemes support processing regular messages and AD in any order, while some schemes

require the processing of AD before the message, for example. The properties of the AE

schemes implemented in this work are compared in Table 3.1.

Remarks about security. The weak key attack against GCM, pointed out by the

author of SGCM [136], has probability n/2128 of working, where n is the number of blocks

in the message; this is negligible unless the message is large. There are related key attacks

against Hummingbird-2 [35,159] which, while undesirable, can be hard to apply in practice

since keys are (ideally) random. Finally, there is a key-recovery attack in the multi-user

setting [36] that can be applied to all schemes in this paper; however, they can be avoided

by using random nonces.

3.4 Efficient Implementation

We have written a fast software implementation of the AE schemes in the C language, with

critical functions written in assembly. The target chip was a CC430F6137 with 20 MHz

clock, 32 KB flash for code and 4 KB RAM. The compiler used was the IAR Embedded
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Table 3.1: Comparison of implemented AE schemes

Property CCM (S)GCM OCB3 HB2 MASHA

Block cipher callsa 2m + a + 2b m m + a + 1b — —

. . . in key setup 0 1 1 — —

Online No Yes Yes Yesc Yes

Uses only EK Yes Yes No — —

Prepr. of static AD No Yes Yes No N/A

Patent-free Yes Yes No No No

Parallelizable No Yes Yes No No

Standardized Yes (No) Yes No No No

Input order AD first AD first Any AD last N/A
a m, a are the number of message and AD blocks, respectively
b May have an additional block cipher call
c AD size must be fixed

Workbench version 5.30. For the AE modes based on block ciphers, we have used the

AES with 128-bit keys both in software and using the AES accelerator. Our source code

is available1 to allow reproduction of our results.

The interface to the AES accelerator was written in assembly, along with a function

to xor two blocks and another to increment a block.

3.4.1 CCM

The CCM (Counter with CBC-MAC) mode [157] essentially combines the CTR mode of

encryption with the CBC-MAC authentication scheme. For each message block, a counter

is encrypted with the block cipher and the result xored to the message to produce the

ciphertext; the counter is then incremented. The message is also xored to an “accumula-

tor” which is then encrypted; this accumulator will become the authentication tag after

all blocks are processed.

Its implementation was fairly straightforward, employing the assembly routines to xor

blocks and increment the counter.

3.4.2 GCM

The GCM (Galois/Counter Mode) [109] employs the arithmetic of the finite field F2128

for authentication and the CTR mode for encryption. For each message block, GCM

encrypts the counter and xors the result into the message to produce the ciphertext; the

1http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-msp430/
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counter is then incremented. The ciphertext is xored into an accumulator, which is then

multiplied in the finite field by a key-dependent constant H. The accumulator is used to

generated the authentication tag.

In order to speed up the GCM mode, polynomial multiplication was implemented in

unrolled assembly with the López-Dahab (LD) [104] algorithm using 4-bit window and

two lookup tables; it is described for reference in Appendix 3.6, Algorithm 3.3. The first

precomputation lookup table holds the product of H and all 4-bit polynomials. Each of

the 16 lines of the table has 132 bits, which take 9 words. This leads to a table with 288

bytes. The additional lookup table (which can be computed from the first one, shifting

each line 4 bits to the left) allows the switch from three 4-bit shifts of 256-bit blocks to

a single 8-bit shift of a 256-bit block, which can be computed efficiently with the swpb

(swap bytes) instruction of the MSP430.

3.4.3 SGCM

The SGCM (Sophie Germain Counter Mode) [136] is a variant of GCM that is not sus-

ceptible to weak key attacks that exist against GCM. While these attacks are of limited

nature, the author claims that they should be avoided. It has the same structure as GCM,

but instead of the F2128 arithmetic, it uses the prime field Fp with p = 2128 + 12451.

Arithmetic in Fp can be carried out with known algorithms such as Comba multi-

plication. We follow the approach in [63] which takes advantage of the multiply-and-

accumulate operation present in the hardware multiplier of the MSP430 family, also tak-

ing advantage of the 32-bit multiplier present in some MSP430X devices, including the

CC430 series.

3.4.4 OCB3

The OCB3 (Offset Codebook) mode [90] also employs the F2128 arithmetic (using the

same reduction polynomial from GCM), but in a simplified manner: it does not require full

multiplication, but only multiplication by powers of z (the variable used in the polynomial

representation of the field elements). For each i-th message block, OCB3 computes the

finite field multiplication of a nonce/key-dependent constant L0 by the polynomial zj,

where j is the number of trailing zeros in the binary representation of the block index

i; the result is xored into an accumulator ∆. This accumulator is xored to the message,

encrypted, and the result is xored back with ∆ to generate the ciphertext. The message

block is xored into another accumulator Y , which is used to generate the tag.

A lookup table with 8 entries (128 bytes) was used to hold the some precomputed

values of L0 · zj. Two functions were implemented in assembly: multiplication by z (using
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left shifts) and the function used to compute the number of trailing zeros (using right

shifts).

3.4.5 Hummingbird-2 (HB2)

The Hummingbird-2 [49] is an authenticated encryption algorithm which is not built

upon a block cipher. It processes 16-bit blocks and was specially designed for resource-

constrained platforms. The small block size is achieved by maintaining an 128-bit internal

state that is updated with each block processed. Authenticated data is processed after the

confidential data by simply processing the blocks and discarding the ciphertext generated.

The algorithm is built upon the following functions for encryption:

S(x) = S4(x[0..3]) | (S3(x[4..7])≪ 4)

| (S2(x[8..11])≪ 8) | (S1(x[12..15])≪ 12)

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10)

f(x) = L(S(x))

WD16(x, a, b, c, d) = f(f(f(f(x⊕ a)⊕ b)⊕ c)⊕ d) ;

where S1, S2, S3, S4 are S-boxes and ≪ denotes the circular left shift of a 16-bit word.

For each 16-bit message block, HB2 calls WD16 four times, using as inputs different com-

binations of the message, state and key.

We have unrolled the WD16 function. The function f is critical since it is called 16

times per block and must be very efficient; our approach is to use two precomputed

lookup tables fL, fH each one with 256 2-byte elements, such that f(x) = fL[x & 0xFF]⊕
fH [(x & 0xFF00)≫ 8]. These tables are generated by computing fL[x]← L(S4(x[0..3]) |
(S3(x[4..7]) ≪ 4)) for every byte x and fH [x] ← L((S2(x[8..11]) ≪ 8) | (S1(x[12..15]) ≪
12)) also for every byte x. This optimization does not apply for f−1(x) since the inverse

S-boxes are applied after the shifts in L−1(x) . In this case, we have used precomputed

lookup tables LL, LH such that L(x) = LL[x & 0xFF] ⊕ LH [(x & 0xFF00) ≫ 8]. These

are computed as fL[x] ← L(x[0..7]), fH [x] ← L(x[8..15] ≪ 8) for every byte x. The four

4-bit inverse S-boxes have been merged in two 8-bit inverse S-boxes S−1
L , S−1

H such that

S−1(x) = S−1
L (x[0..7]) | (S−1

H (x[8..15])≪ 8).

3.4.6 MASHA

MASHA [84] is an authenticated encryption algorithm based on a stream cipher. Stream

ciphers are interesting since they are often more efficient than block ciphers. However,

many stream ciphers which also provide authentication either have security issues (e.g.
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Phelix) or performance issues. The MASHA authors propose the algorithm in order to

attempt to fill this gap.

Our implementation was based on C source provided by the designers. We have

changed it to reduce code size and memory footprint. The code stores the linear shift

registers in circular buffers in order to avoid the actual shifts. The scheme requires

multiplication, in F28 , by four distinct constants. These are precomputed in a 256-element

table which stores the multiplication of all bytes by these constants. Two such tables are

required for each of the two distinct fields used by MASHA, totaling 2 KB. Since this is

already large, we chose to use a byte-oriented approach for the MixColumns step instead

of the 16-bit tailored code we will describe below. Therefore, the total space for the

precomputed values becomes 2.75 KB.

3.4.7 Improving AES for 16-bit

We have used a software implementation of AES in order to perform comparisons with

the hardware accelerator. Our implementation was based on the byte-oriented version

from [57], but we have modified it to take advantage of the 16-bit platform. The first

change was to improve the AddRoundKey function (which simply computes the xor of 128-

bit blocks) in order to xor 16-bit words at a time. The second change was to improve the

use of lookup tables as follows.

As it is well known, the input and output blocks of the AES can be viewed as 4×4 ma-

trices in column-major order whose elements are in F28 ; and the AES function SubBytes,

ShiftRows and MixColumns steps can be combined in a single one. In this step, the

column j of the result matrix can be computed as
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where e is the output matrix, a is the input matrix, S is the forward S-box, k is the

round key matrix, and matrix indices are computed modulo four. Inspired by the 32-

bit optimization of using four precomputed tables with 256 elements of with 4-byte each

(totaling 4 KB), we employ the following tables:

T0[a] =

[

S[a] · 02

S[a]

]

, T1[a] =

[

S[a]

S[a] · 03

]

, T2[a] =

[

S[a] · 03

S[a] · 02

]

, T3[a] =

[

S[a]

S[a]

]

.

They consume 2 KB, half the size of the 32-bit version, providing a good compromise be-

tween the 8-bit and 32-bit oriented implementations. These tables allow the computation
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of column ej as

[

e0,j

e1,j

]

= T0[a0,j]⊕ T2[a1,j−1]⊕ T1[a2,j−2]⊕ T3[a3,j−3] ,

[

e2,j

e3,j

]

= T1[a0,j]⊕ T3[a1,j−1]⊕ T0[a2,j−2]⊕ T2[a3,j−3] .

3.4.8 Using the AES accelerator

As previously mentioned, the AES encryption and decryption using the AES hardware

accelerator requires waiting for 167 and 214 cycles, respectively, before reading the results.

The key to an efficient implementation using the module is to use this “delay slot” to carry

out other operations that do not depend on the result of the encryption/decryption.

For example, in the CCM mode, the counter incrementation and the xor between the

message and the accumulator can be carried out while the counter is being encrypted: the

counter is written to the AES accelerator, the counter is incremented, we then wait for

the result of the encryption and xor the result to the message when it is ready. In CCM

it is also possible to generate the ciphertext (xor the encrypted result and the message)

while the accumulator is being encrypted. In the GCM mode, it is possible to increment

the counter while the counter is being encrypted. In the OCB3 mode, the xor between

the message and the accumulator Y can be carried out while the message, xored to ∆, is

being encrypted. For reference, these computations which can be carried out in the delay

slot are marked in the algorithms of Appendix 3.6.

3.5 Results

The performance of the implemented AE schemes was measured for the authenticated

encryption and decryption-verification of messages with 16 bytes and 4 KB, along with

the Internet Performance Index (IPI) [109], which is a weighted timing for messages with

44 bytes (5%), 552 bytes (15%), 576 bytes (20%), and 1500 bytes (60%). For each message

size, we have measured the time to compute all nonce-dependent values along with time for

authenticated encryption and decryption-verification with 128-bit tags (except MASHA,

which uses 256-bit tags). The derivation of key-dependent values is not included. For

OCB3, it was assumed that the block cipher call in init ctr was cached.

The timings were obtained using a development board with a CC430F6137 chip and

are reported on Table 3.2; this data can also be viewed as throughput in Figures 3.1

and 3.2, considering a 20 MHz clock. The number of cycles taken by the algorithms was

measured using the built-in cycle counter present in the CC430 models, which can be read
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Table 3.2: Timings of implemented AE schemes for different
message lengths, in cycles per byte

Using AES accelerator Using AES in software

Scheme 16 bytes IPI 4 KB 16 bytes IPI 4 KB

Encryption

CTRa 26 23 23 195 194 193

CCM 116 38 36 778 381 375

GCM 426 183 180 696 320 314

SGCM 242 89 87 567 254 250

OCB3 144 39 38 469 209 205

HB2b 569 200 196

MASHAb 3,014 182 152

Decryption

CTRa 26 23 23 195 194 193

CCM 129 47 46 781 380 375

GCM 429 183 180 699 319 314

SGCM 243 89 87 571 254 250

OCB3 217 48 46 510 245 242

HB2b 669 297 292

MASHAb 3,016 182 151
a Non-authenticated encryption scheme included for comparison
b Does not use AES

in the IAR debugger. Stack usage was also measured using the debugger. Code size was

determined from the reports produced by the compiler, adding the size for text (code)

and constants.

Using the AES accelerator. First, we analyze the results using the AES accelerator,

for IPI and 4 KB messages. The GCM performance is more than 5 times slower than

the other schemes; this is due to the complexity of the full binary field multiplication.

The SGCM is more than 50% faster than GCM, since the prime field arithmetic is much

faster on this platform, specially using the 32-bit hardware multiplier. Still, it is slower

than the other schemes. Both CCM and OCB3 have almost the same speed, with CCM

being around 4% faster. This is surprising, since that OCB3 essentially outperforms

CCM in many platforms [90]. The result is explained by the combination of two facts:

the hardware support for AES, which reduces the overhead of an extra block cipher call in

CCM; and the fact that the AES accelerator does not support parallelism, which prevents
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Table 3.3: ROM and RAM (stack) usage of AE schemes, in bytes. When using software
AES, 2,904 additional ROM bytes are required for CCM, GCM and SGCM and 5,860
bytes for OCB3

CTR CCM GCM SGCM OCB3 HB2 MASHA

ROM 130 1,094 4,680 2,172 1,724 3,674 5,602

RAM 100 258 886 322 538 196 499

performance for 16-byte messages is worse than OCB3 since it is still dominated by the

block processing. Hummingbird-2 loses to OCB3 due to its larger nonce setup and tag

generation. The greatest surprise is the MASHA performance which is almost four times

slower than CCM, making it the slowest scheme for small messages. This result is ex-

plained by the fact that its nonce setup and tag generation are very expensive, requiring

more than 20 state updates each (which take roughly the same time as encrypting ten

128-bit blocks).

Further analysis. In order to evaluate our AES software implementation, consider

the timings from [42] (also based on [57]) which achieved 286 Kbps at 8 MHz in the

ECB mode. Scaling this to 20 MHz we get 716 Kbps, while our ECB implementation

achieved 889 Kbps. We conclude that our 16-bit implementation is 24% faster then the

byte-oriented implementation.

Table 3.3 lists the ROM and RAM usage for programs implementing AE schemes

for both encryption and decryption, using the AES accelerator. The reported sizes refer

only to the code related to the algorithms and excludes the benchmark code. We recall

that the MSP430X model we have used features 32 KB of flash for code and 4 KB RAM.

The code for GCM is large due to the unrolled F2128 multiplier, while the code for CCM

is the smallest since it mostly relies on the block cipher. The RAM usage follows the

same pattern: GCM has the second largest usage, since it has the largest precomputation

table; the Hummingbird-2 cipher (followed by CCM) has the smallest RAM usage since it

requires no runtime precomputation at all. The MASHA cipher requires the largest code

space, due to the many precomputed tables used; this can be reduced by sacrificing speed.

When using the software AES implementation, 2,904 additional ROM bytes are required

for CCM, GCM and SGCM (which use EK only) and 5,860 additional ROM bytes are

required for OCB3.
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3.5.1 Related work

A commercial 128-bit AES implementation for the MSP430 [75] achieves 340 cycles per byte

for encryption and 550 cpb for decryption, in ECB mode, using 2536 bytes. Our implemen-

tation provides 180 cpb and 216 cpb, respectively, but uses 5860 bytes. With space-time

tradeoffs, it should be feasible to achieve similar results, but we have not explored them.

Simplicio Jr. et al. [146] have implemented EAX, GCM, LetterSoup, OCB2 and

CCFB+H for the MSP430, using Curupira as the underlying block cipher. The EAX

mode is [21] is described as an “cleaned-up” CCM and has similar performance. The

authors report the results in milliseconds, but do not state the clock used. Assuming

a 8 MHz clock, their timings (in cycles per byte, considering their timings for 60-byte

messages and our timings for 16-byte messages) are 1,733 cpb for EAX, 5,133 cpb for

GCM, 1,680 cpb for LetterSoup, 1,506 cpb for OCB2 and 2,266 cpb for CCFB+H with

8-byte tag. Our CCM is 2.2 times faster than their EAX, while our GCM is 7.3 times

faster, and our OCB3 3.2 times faster than their OCB2. This difference can probably be

explained by the fact that the authors have not optimized the algorithms for performance.

In [42], the encryption performance using the AES module present in the CC2420

transceiver is studied, achieving 110 cycles per byte. This is still 5 times slower than our

results for the CTR mode, probably because the CC2420 is a peripheral and communi-

cating with it is more expensive.

The Dragon-MAC [99] is based on the Dragon stream cipher. Its authors describe

an implementation for the MSP430 that achieves 21.4 cycles per byte for authenticated

encryption (applying Dragon then Dragon-MAC), which is faster than all timings in this

work. However, it requires 18.9 KB of code. Our CCM implementation using the AES

accelerator is 1.7 times slower, but 11 times smaller; while our HB2 is 9.2 times slower

and 5.1 times smaller.

The Hummingbird-2 timings reported for the MSP430 in its paper [49] are about

6% and 2% faster for encryption and decryption than the timings we have obtained.

However, the authors do not describe their optimization techniques, nor the exact MSP430

model used and their timing methodology, making it difficult to explain their achieved

speed. However, we believe that our implementation is good enough for comparisons.

Furthermore, by completely unrolling the encryption and decryption functions, we were

able to achieve timings 3% and 4% faster than theirs, increasing code size by 296 and 432

bytes, respectively.
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3.6 Conclusion and Future Work

The CCM and OCB3 modes were found to provide similar speed results using the AES

accelerator, with CCM being around 5% faster. While OCB3 is the fastest scheme in

many platforms, we expect CCM to be faster whenever a non-parallel AES accelerator

is available. This is the case for the MSP430X models studied and is also the case for

other platforms, for example, the AVR XMEGA microcontroller with has an analogue

AES module.

The CCM appears to be the best choice for MSP430X models with AES accelera-

tor considering that it also consumes less code space and less stack RAM. If one of the

undesirable properties of CCM must be avoided (not being online, lack of support for

preprocessing of static AD), a good alternative is the EAX mode [21] and should have

performance similar to CCM. Considering software-only schemes, it is harder to give a

clear recommendation: SGCM, OCB3 and HB2 provide good results, with distinct ad-

vantages and downsides. The GCM mode, even though it has many good properties, does

not appear to be adequate in software implementation for resource-constrained platforms

since it requires very large lookup tables in order to be competitive.

Some other relevant facts we have found are that Hummingbird-2 is slower than AES;

that SGCM is 50% faster than GCM when using the AES accelerator and 20% when

not; and that OCB3 and Hummingbird-2 in particular have a decryption performance

remarkably slower than encryption (18% and 50% respectively). MASHA has great speed

for large enough messages (29% faster than the second fastest, HB2) but very low perfor-

mance for small messages (almost 4 times slower than the second slowest, CCM). For this

reason, we believe there is still the need for a fast, secure and lightweight authenticated

encryption scheme based on a stream cipher.

For future works it would be interesting to implement and compare lightweight encrypt-

and-authenticate or authenticated encryption schemes such as LetterSoup [145] and

Rabbit-MAC [152] for the MSP430X. Another possible venue for research is to study the

efficient implementation of authenticated encryption using the AES accelerator featured

in other platforms such as the AVR XMEGA and devices based on the ARM Cortex such

as the EFM32 Gecko, STM32 and LPC1800.

Appendix: Algorithms

Algorithm 3.1 presents CCM, where the function format computes a header block B0

(which encodes the tag length, message length and nonce), the blocks A1, . . . , Aa (which

encode the length of the associated data along with the data itself) and the blocks

M1, . . . , Mm which represent the original message. The function init ctr returns the
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Algorithm 3.1 CCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits

1: B0, A1, . . . , Aa, M1, . . . , Mm ← format(N, A, M)
2: Y ← EK(B0)
3: for i← 1 to a do
4: Y ← EK(Ai ⊕ Y )

5: J ← init ctr(N)
6: S0 ← EK(J)
7: J ← inc(J)
8: for i← 1 to m do
9: U ← EK(J)

10: J ← inc(J) ⊲ delay slot
11: S ←Mi ⊕ Y ⊲ delay slot
12: Y ← EK(S)
13: Ci ←Mi ⊕ U ⊲ delay slot

14: T ← Y [0..t− 1]⊕ S0[0..t− 1]

initial counter based on the nonce. The function inc increments the counter.

Algorithm 3.2 describes GCM, where the function init ctr initializes the counter and

the function inc ctr increments the counter. The operation A · B denotes the multipli-

cation of A and B in F2128 . The mode benefits from precomputed lookup tables since the

second operand is fixed for all multiplications (lines 6, 14 and 16 from Algorithm 3.1).

The LD multiplication with two tables, used in the field multiplication, is described in

Algorithm 3.3.

OCB3 is described in Algorithm 3.4, where the function init delta derives a value

from the nonce and it may require a block cipher call, as explained later. The function

ntz(i) returns the number of trailing zeros in the binary representation of i (e.g. ntz(1) =

0, ntz(2) = 1). The function getL(L0, x) computes the field element L0 · zx and can

benefit from a precomputed lookup table. Notice that the multiplication by z is simply

a left shift of the operand by one bit, discarding the last bit and xoring the last byte of

the result with 135 (which is the representation of z7 + z2 + z1 + 1) if the discarded bit

was 1. The function hash authenticates the additional data and is omitted for brevity.
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Algorithm 3.2 GCM encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits

1: A1, . . . , Aa ← A
2: M1, . . . , Mm ←M
3: H ← EK(0128)
4: Y ← 0128

5: for i← 1 to a do
6: Y ← (Ai ⊕ Y ) ·H
7: J ← init ctr(N)
8: S0 ← EK(J)
9: J ← inc(J)

10: for i← 1 to m do
11: U ← EK(J)
12: J ← inc(J) ⊲ delay slot
13: Ci ←Mi ⊕ U
14: Y ← (Ci ⊕ Y ) ·H
15: L← [len(A)]64 || [len(M)]64

16: S ← (L⊕ Y ) ·H
17: T ← (S ⊕ S0)[0..t− 1]

Algorithm 3.3 López-Dahab multiplication in F2128 for 16-bit words and 4-bit window,
using 2 lookup tables.

Input: a(z) = a[0..7], b(z) = b[0..7]
Output: c(z) = c[0..15]

1: Compute T0(u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2: Compute T1(u) = u(z)b(z)z4 for all polynomials u(z) of degree lower than 4.
3: c[0..15]← 0
4: for k ← 1 down to 0 do
5: for i← 0 to 7 do
6: u0 ← (a[i]≫ (8k)) mod 24

7: u1 ← (a[i]≫ (8k + 4)) mod 24

8: for j ← 0 to 8 do
9: c[i + j]← c[i + j]⊕ T0(u0)[j]⊕ T1(u1)[j]

10: if k > 0 then
11: c(z)← c(z)z8

return c
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Algorithm 3.4 OCB3 mode encryption

Input: Message M , additional data A, nonce N , key K
Output: Ciphertext C, authentication tag T with t bits

1: A1, . . . , Aa ← A
2: M1, . . . , Mm ←M
3: L∗ ← EK(0128)
4: L$ ← L∗ · z
5: L0 ← L$ · z
6: Y ← 0128

7: ∆← init delta(N, K)
8: for i← 1 to m do
9: ∆← ∆⊕ getL(L0, ntz(i))

10: U ← EK(Mi ⊕∆)
11: Y ← Y ⊕Mi ⊲ delay slot
12: Ci ← U ⊕∆

13: ∆← ∆⊕ L$

14: F ← EK(Y ⊕∆)
15: G← hash(K, A)
16: T ← (F ⊕G)[0..t− 1]
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Multiplication on ARM Processors
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Abstract

Efficient algorithms for binary field operations are required in several cryptographic op-

erations such as digital signatures over binary elliptic curves and encryption. The main

performance-critical operation in these fields is the multiplication, since most processors

do not support instructions to carry out a polynomial multiplication. In this paper we

describe a novel software multiplier for performing a polynomial multiplication of two

64-bit binary polynomials based on the VMULL instruction included in the NEON engine

supported in many ARM processors. This multiplier is then used as a building block to

obtain a fast software multiplication in the binary field F2m , which is up to 45% faster

compared to the best known algorithm. We also illustrate the performance improvement

in point multiplication on binary elliptic curves using the new multiplier, improving the

performance of standard NIST curves at the 128- and 256-bit levels of security. The impact

on the GCM authenticated encryption scheme is also studied, with new speed records.

We present timing results of our software implementation on the ARM Cortex-A8, A9

and A15 processors.

Danilo Câmara, Conrado P. L. Gouvêa, Julio López, and Ricardo Dahab. Fast software polynomial
multiplication on ARM processors using the NEON engine. In Security Engineering and Intelligence
Informatics, volume 8128 of Lecture Notes in Computer Science, pages 137–154. Springer Berlin / Hei-
delberg, 2013, with kind permission from Springer Science and Business Media.
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4.1 Introduction

Mobile devices such as smartphones and tablets are becoming ubiquitous. While these

devices are relatively powerful, they still are constrained in some aspects such as power

consumption. Due to the wireless nature of their communication, it is very important to

secure all messages in order to prevent eavesdropping and disclosure of personal informa-

tion. For this reason, the research of efficient software implementation of cryptography

in those devices becomes relevant. Both public key and symmetric cryptography are

cornerstones of most cryptographic solutions; in particular, the public-key elliptic curve

schemes and the symmetric authenticated encryption schemes are often used due to their

high efficiency. Elliptic curve schemes include the well known Elliptic Curve Digital Sig-

nature Algorithm (ECDSA) and the Elliptic Curve Diffie Hellman (ECDH) key agreement

scheme; while the Galois/Counter Mode (GCM) is an important example of authenticated

encryption scheme which is included in many standards such as IPSec and TLS.

A significant portion of mobile devices uses processors based on the 32-bit RISC ARM

architecture, suitable for low-power applications due to its relatively simple design, making

it an appropriate choice of target platform for efficient implementation. Many ARM pro-

cessors are equipped with a NEON engine, which is a set of instructions and large registers

that supports operations in multiple data using a single instruction. Thus, our objective is

to provide an efficient software implementation of cryptography for the ARM architecture,

taking advantage of the NEON engine. We have aimed for standard protection against

basic side-channel attacks (timing and cache-leakage). Our main contributions are: (i) to

describe a new technique to carry out polynomial multiplication by taking advantage of

the VMULL NEON instruction, achieving a binary field multiplication that is up to 45%

faster than a state-of-the-art LD [104] multiplication also using NEON; (ii) using the new

multiplier, to achieve speed records of elliptic curve schemes on standard NIST curves and

of authenticated encryption with GCM; (iii) to offer, for the first time in the literature,

comprehensive timings for four binary NIST elliptic curves and one non-standard curve,

on three different ARM Cortex processors. With this contributions, we advance the state

of the art of elliptic curve cryptography using binary fields, offering an improved com-

parison with the (already highly optimized) implementations using prime fields present

in the literature. Our code will be available1 to allow reproduction of results.

Related work.

Morozov et al. [119] have implemented ECC for the OMAP 3530 platform, which features

a 500 MHz ARM Cortex-A8 core and a DSP core. Taking advantage of the XORMPY

instruction of the DSP core, they achieve 2,106 µs in the B-163 elliptic curve and 7,965 µs

1http://conradoplg.cryptoland.net/ecc-and-ae-for-arm-neon/
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in the B-283 curve to compute a shared key, which should scale to 1,053 and 3,982 Kcycles

respectively.

Bernstein and Schwabe [26] have described an efficient implementation of non-standard

cryptographic primitives using the NEON engine on a Cortex-A8 at the 128-bit security

level, using Montgomery and Edwards elliptic curves over the prime field F(2255
−19). The

primitives offer basic resistance against side-channel attacks. They obtain 527 Kcycles to

compute a shared secret key, 368 Kcycles to sign a message and 650 Kcycles to verify a

signature.

Hamburg [69] has also efficiently implemented non-standard cryptographic primitives

on a Cortex-A9 without NEON support at the 128-bit security level, using Montgomery

and Edwards Curves over the prime field F(2252
−2232

−1), with basic resistance against side-

channel attacks. He obtains 616 Kcycles to compute a shared key, 262 Kcycles to sign a

message and 605 Kcycles to verify a signature.

Faz-Hernández et al. [52] have targeted the 128-bit security level with a GLV-GLS

curve over the prime field F(2127
−5997)2 , which supports a four dimensional decomposition

of the scalar for speeding up point multiplication. The implementation also provides basic

resistance against side-channel attacks. They have obtained 417 and 244 Kcycles for ran-

dom point multiplication on the Cortex-A9 and A15 respectively; 172 and 100 Kcycles for

fixed point multiplication and 463 and 266 Kcycles for simultaneous point multiplication.

Krovetz and Rogaway [90] studied the software performance of three authenticated

encryption modes (CCM, GCM and OCB3) in many platforms. In particular, they report

50.8 cycles per byte (cpb) for GCM over AES with large messages using the Cortex-A8;

an overhead of 25.4 cpb over unauthenticated AES encryption.

Polyakov [131] has contributed a NEON implementation of GHASH, the authentica-

tion code used by GCM, to the OpenSSL project. He reports a 15 cpb performance on

the Cortex-A8.

Paper structure.

This paper is organized as follows. In Section 4.2 we describe the ARM architecture. In

Section 4.3, the binary field arithmetic is explained, along with our new multiplier based

on the the VMULL instruction. Section 4.4 describes the high-level algorithms used and

Section 4.5 presents our results. Finally, concluding remarks are given in Section 4.6.

4.2 ARM Architecture

The ARM is a RISC architecture known for enabling the production of low-power proces-

sors and is widely spread in mobile devices. It features a fairly usual instruction set with
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some interesting characteristics such as integrated shifts, conditional execution of most

instructions, and optional update of condition codes by arithmetic instructions. There are

sixteen 32-bit registers (R0–R15), thirteen of which are general-purpose. The version 7 of

the ARM architecture has added an advanced Single Instruction, Multiple Data (SIMD)

extension referred as “NEON engine”, which is composed of a collection of SIMD instruc-

tions using 64- or 128-bit operands and a bank of sixteen 128-bit registers. These are

named Q0–Q15 when viewed as 128-bit, and D0–D31 when viewed as 64-bit. There are

many CPU designs based on the ARM architecture such as the ARM7, ARM9, ARM11

and the ARM Cortex series. In this work, we used three ARM Cortex devices, which we

now describe.

Cortex-A8. The ARM Cortex-A8 processor is a full implementation of the ARMv7

architecture including the NEON engine. Compared to previous ARM cores the Cortex-

A8 is dual-issue superscalar, achieving up to twice the instructions executed per clock

cycle. Some pairs of NEON instructions can also be dual-issued, mainly a load/store or

permutation instruction together with a data-processing instruction. Its pipeline has 13

stages followed by 10 NEON stages; its L2 cache is internal. The Cortex-A8 is used by

devices such as the iPad, iPhone 4, Galaxy Tab, and Nexus S.

Cortex-A9. The ARM Cortex-A9 shares the same instruction set with the Cortex-A8,

but it features up to four cores. It no longer supports NEON dual-issue and its L2 cache

is external. However, it supports out-of-order execution of regular ARM instructions and

register renaming, and has a 9–12 stage pipeline (more for NEON, we were unable to find

how many). Devices that feature the Cortex-A9 include the iPad 2, iPhone 4S, Galaxy S

II, and Kindle Fire.

Cortex-A15. Implements the ARMv7 architecture, provides dual-issue and out-of-

order execution for most NEON instructions and can feature up to four cores. Its pipeline

is wider, with 15 to 25 stages. The Cortex-A15 is present in devices such as the Chrome-

book, Nexus 10, and Galaxy S4.

Instructions.

We highlight the NEON instructions which are important in this work, also illustrated in

Figure 4.1. The VMULL instruction is able to carry out several multiplications in parallel;

the VMULL.P8 version takes as input two 64-bit input vectors A and B of eight 8-bit binary

polynomials and returns a 128-bit output vector C of eight 16-bit binary polynomials,

where the i-th element of C is the multiplication of the i-th elements from each input.
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which we have named the Karatsuba/NEON/VMULL multiplier (KNV), described below.

4.3.1 New Karatsuba/NEON/VMULL (KNV) Multiplier

Our new approach was to built a 64-bit polynomial multiplier, which computes the 128-bit

product of two 64-bit polynomials. This multiplier was then combined with the Karatsuba

algorithm [83] in order to provide the full multiplication.

The 64-bit multiplier was built using the VMULL.P8 instruction (VMULL for short) as

follows. Consider two 64-bit polynomials a(z) and b(z) over F2 represented as vectors of

eight 8-bit polynomials:

A = (a7, a6, a5, a4, a3, a2, a1, a0); B = (b7, b6, b5, b4, b3, b2, b1, b0).

To compute the polynomial multiplication c(z) = a(z) · b(z) (represented as a vector C),

the schoolbook method would require sixty-four 8-bit multiplications with every (ai, bj)

combination, where each product is xored into an accumulator in the appropriate position.

In our proposal, these multiplications can be done with eight executions of VMULL by

rearranging the inputs. Let ≫ denote a circular right shift; compute A1 = A ≫ 8,

A2 = A ≫ 16, A3 = A ≫ 24, B1 = B ≫ 8, B2 = B ≫ 16, B3 = B ≫ 24 and

B4 = B ≫ 32 using VEXT. This results in:

A1 = (a0, a7, a6, a5, a4, a3, a2, a1); B1 = (b0, b7, b6, b5, b4, b3, b2, b1);

A2 = (a1, a0, a7, a6, a5, a4, a3, a2); B2 = (b1, b0, b7, b6, b5, b4, b3, b2);

A3 = (a2, a1, a0, a7, a6, a5, a4, a3); B3 = (b2, b1, b0, b7, b6, b5, b4, b3);

B4 = (b3, b2, b1, b0, b7, b6, b5, b4).

Now compute these VMULL products:

D = VMULL(A, B) = (a7b7, a6b6, a5b5, a4b4, a3b3, a2b2, a1b1, a0b0);

E = VMULL(A, B1) = (a7b0, a6b7, a5b6, a4b5, a3b4, a2b3, a1b2, a0b1);

F = VMULL(A1, B) = (a0b7, a7b6, a6b5, a5b4, a4b3, a3b2, a2b1, a1b0);

G = VMULL(A, B2) = (a7b1, a6b0, a5b7, a4b6, a3b5, a2b4, a1b3, a0b2);

H = VMULL(A2, B) = (a1b7, a0b6, a7b5, a6b4, a5b3, a4b2, a3b1, a2b0);

I = VMULL(A, B3) = (a7b2, a6b1, a5b0, a4b7, a3b6, a2b5, a1b4, a0b3);

J = VMULL(A3, B) = (a2b7, a1b6, a0b5, a7b4, a6b3, a5b2, a4b1, a3b0);

K = VMULL(A, B4) = (a7b3, a6b2, a5b1, a4b0, a3b7, a2b6, a1b5, a0b4).

These vectors of eight 16-bit polynomials contain the product of every (ai, bj) combination,

as required. We now need to xor everything into place. Let L = E + F , M = G + H and
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Algorithm 4.1 Computation of L and (P0 + P1)≪ 8 from A and B

Input: 64-bit registers ad (holding A), bd (holding B) and k48 (holding the constant
0x0000FFFFFFFFFFFF)

Output: 128-bit register tq (th|tl) (holding (P0 + P1)≪ 8)
1: vext.8 tl, ad, ad, $1

2: vmull.p8 tq, tl, bd

3: vext.8 ul, bd, bd, $1

4: vmull.p8 uq, ad, ul

5: veor tq, tq, uq

6: veor tl, tl, th

7: vand th, th, k48

8: veor tl, tl, th

9: vext.8 tq, tq, tq, $15

N = I + J . Let ki be the i-th element of vector K and analogously to L, M and N . Now,

compute:

P0 = (0, 0, 0, 0, ℓ7, 0, 0, 0); P4 = (0, 0, 0, 0, n7, n6, n5, 0);

P1 = (0, ℓ6, ℓ5, ℓ4, ℓ3, ℓ2, ℓ1, ℓ0); P5 = (0, 0, 0, n4, n3, n2, n1, n0);

P2 = (0, 0, 0, 0, m7, m6, 0, 0); P6 = (0, 0, 0, 0, k7, k6, k5, k4);

P3 = (0, 0, m5, m4, m3, m2, m1, m0); P7 = (0, 0, 0, 0, k3, k2, k1, k0).

The final result is obtained with:

C = A ·B = D + (P0 + P1)≪ 8 + (P2 + P3)≪ 16 + (P4 + P5)≪ 24 + (P6 + P7)≪ 32.

The expansion of the above equation produces the same results of the schoolbook

method for multiplication, verifying its correctness. The whole process is illustrated in

Figure 4.2, and Algorithm 4.6 in the Appendix lists the assembly code for reference. The

partial results (P0 + P1) ≪ 8, (P2 + P3) ≪ 16 or (P4 + P5) ≪ 24 can each be computed

from L, M or N with four instructions (two xors, one mask operation and one shift). The

partial result (P6 + P7)≪ 32 can be computed from K with three instructions (one xor,

one mask operation and one shift). To clarify our approach, we list the assembly code

used in the computation of L and (P0 + P1) ≪ 8 from A and B in Algorithm 4.1 and

describe it below.

In Algorithm 4.1, the 128-bit NEON register tq can be viewed as two 64-bit registers

such that tq = th||tl where tl is the lower part and th is the higher part; the same

applies to other registers. In line 1, the VEXT instruction concatenates the lower 8 bits of

A with the higher (64 − 8) = 56 bits of A, resulting in the value A1 being stored in tl.

Line 2 computes F = VMULL(A1, B) in the tq register. Lines 3 and 4 compute B1 and then
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E = VMULL(A, B1) in the uq register, while line 5 computes L = E + F in the tq register.

Observe that the result we want, (P0 +P1), can be viewed as (0, ℓ6, ℓ5, ℓ4, ℓ3 + ℓ7, ℓ2, ℓ1, ℓ0).

The straightforward way to compute (P0+P1) from L would be to use a mask operation to

isolate ℓ7, xor it to tq in the appropriate position and do another mask operation to clear

the highest 16 bits. However, we use another approach which does not need a temporary

register, described as follows. In line 6, we xor the higher part of tq into the lower part,

obtaining (ℓ7, ℓ6, ℓ5, ℓ4, ℓ3 + ℓ7, ℓ2 + ℓ6, ℓ1 + ℓ5, ℓ0 + ℓ4). Line 7 uses a mask operation to

clear the higher 16 bits of tq, which now holds (0, ℓ6, ℓ5, ℓ4, ℓ3 + ℓ7, ℓ2 + ℓ6, ℓ1 + ℓ5, ℓ0 +

ℓ4). In line 8, the higher part of tq is again xored into the lower part, resulting in the

expected (0, ℓ6, ℓ5, ℓ4, ℓ3 + ℓ7, ℓ2, ℓ1, ℓ0) which is finally shifted 8 bits to the left with the

VEXT instruction in line 9.

4.3.2 Additional Binary Field Operations

Squaring a binary polynomial corresponds to inserting a 0 bit between every consecutive

bits of the input, which often requires precomputed tables. The VMULL instruction can

improve squaring since, when using the same 64-bit value as the two operands, it computes

the 128-bit polynomial square of that value.

Multiplication and squaring of binary polynomials produce values of degree at most

2m− 2, which must be reduced modulo f(z) = zm + r(z). Since zm ≡ r(z) (mod f(z)),

the usual approach is to multiply the upper part by r(z) using shift and xors. For small

polynomials r(z) it is possible to use the VMULL instruction to carry out multiplication by

r(z) with a special 8×64-bit multiplier; this was done for F2128 (r(z) = z7 +z2 +z +1) and

F2251 (r(z) = z7 + z4 + z2 + 1). Reduction in F2283 takes advantage of the factorization of

r(z) = z12+z7+z5+1 = (z7+1)(z5+1) as described in [6]. For F2571 , r(z) = z10+z5+z2+1,

and its reduction is computed with the usual shifts and xors.

Field inversion is commonly carried out with the well-known extended Euclidean algo-

rithm, but it does not take constant time and may be vulnerable to side channel attacks.

For this reason, we have used the Itoh-Tsujii algorithm [77], which is an optimization

of inversion through Fermat’s little theorem (a(x)−1 = a(x)2m
−2). The algorithm uses

a repeated field squaring operation a(x)2k

for some values of k; we have implemented

a special function where field squaring is completely done using NEON instruction and

registers using the same techniques described for squaring and reduction, but avoiding

reads and writes to memory.
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4.4 Algorithms

The KNV multiplier was used as the building block for a implementation of Elliptic

Curve Cryptography (ECC) and of authenticated encryption (AE), which we now describe

together with our implementation of side-channel resistance.

4.4.1 Side-Channel Resistance

Side-channel attacks [89] are a serious threat for cryptographic implementations; different

attacks require different levels of protection. Here we consider the basic level of resistance

which avoids: branching on secret data, algorithms with timings dependent on secret

data, and accessing table indexes with secret indices.

The building block of a side-channel resistant (SCR) implementation can be considered

the “select” operation t← Select(a, b, v), which copies a into t if the bit v is 0 or copies

b if v is 1. This operation can be implemented without branching as described in [91] and

listed for reference in Algorithm 4.3 in the Appendix. In ARM assembly, Select can be

implemented easily since most instructions can be made conditional to a previous register

comparison. However, a faster approach is to use the NEON instruction VBIT Qd, Qn,

Qm (bitwise insert if false) — it inserts each bit in Qn into Qd if the corresponding bit in

Qm is 1, otherwise it leaves the corresponding bit in Qd unchanged. If the m value from

Algorithm 4.3 is stored in Qm, then VBIT is precisely the Select operation restricted to

the case where t and a refer to the same location (which is often the case).

Some of the algorithms we will describe use precomputed tables to improve perfor-

mance. However, looking up a table entry may leak its index through side-channels, since

it affects the contents of the processor cache. For this reason, we employ a side-channel

resistant table lookup. We follow the strategy found in the source code of [26], listed for

reference in Algorithm 4.4 in the Appendix, where s can be computed without branches

by copying the sign bit of r (e.g. in the C language, convert r to unsigned and right shift

the result in order to get the highest bit). We have implemented the SCR table lookup

for elliptic curve points entirely in assembly with the VBIT instruction. It is possible to

hold the entire t value (a point) in NEON registers, without any memory writes except

for the final result.

4.4.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography is composed of public key cryptographic schemes using the

arithmetic of points on elliptic curves over finite fields, and it uses shorter keys at the

same security level in comparison to alternative public-key systems such as RSA and DSA.

Two types of fields are mainly used: prime fields (with p elements, where p is prime) and
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binary fields (with 2m elements for some m). While prime fields are used more often (and

most literature on ECC for ARM uses them), we decided to study the efficiency of ECC

using binary fields with our KNV multiplier.

Four standardized curves for Elliptic Curve Cryptography (ECC) [121] were imple-

mented: the random curves B-283 and B-571 which provide 128 and 256 bits of security

respectively; and the Koblitz curves K-283 and K-571 which provide the same bits of

security respectively. A non-standard curve over F2251 [24] (“B-251”, roughly 128 bits of

security) was also implemented, due to its high efficiency.

The main algorithm in ECC is the point multiplication, which often appears in three

different cases: the random point multiplication kP (k terms of the elliptic point P are

summed), where the point P is not known in advance; the fixed point multiplication

kG, where G is fixed; and the simultaneous point multiplication kP + ℓG where P is

random and G is fixed. In the random point case, we chose the Montgomery-LD multipli-

cation [103] which offers high efficiency and basic side-channel resistance (SCR) without

precomputed tables. In the fixed point case, the signed multi-table Comb method is em-

ployed [69], with side-channel resistant table lookups. It uses t tables with 2w−1 points.

For simultaneous point multiplication, we have used the interleaving method [56, 114] of

w-(T)NAF. It employs two window sizes: d for the fixed point (requiring a precomputed

table with 2d−2 elements) and w for the random point (requiring a on-the-fly table with

2w−2 elements). SCR is not required in this case since the algorithm is only used for

signature verification, whose inputs are public.

The main advantage of Koblitz curves is the existence of specialized algorithms for

point multiplication which take advantage of the efficient endomorphism τ present in those

curves [147]. However, we have not used these algorithms since we are not aware of any

SCR methods for recoding the scalar k into the representation required by them. There-

fore, the only performance gain in those curves were obtained using a special doubling

formula with two field multiplications; see Algorithm 4.2. Montgomery-LD also requires

one less multiplication per iteration in Koblitz curves.

We have selected the three following well known ECC protocols. The Elliptic Curve

Digital Signature Algorithm (ECDSA) requires a fixed point multiplication for signing and

a simultaneous point multiplication for verification. The Elliptic Curve Diffie-Hellman

(ECDH) [15] is a key agreement scheme which requires a random point multiplication,

and the Elliptic Curve Schnorr Signature (ECSS) [141] is similar to ECDSA but does not

require an inversion modulo the elliptic curve order.
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Algorithm 4.2 Our proposed point doubling on the Koblitz curve Ea : y2 + xy = x3 +
ax2 + 1, a ∈ {0, 1} over F2m using LD projective coordinates

Input: Point P = (X1, Y1, Z1) ∈ Ea(F2m)
Output: Point Q = (X3, Y3, Z3) = 2P

1: S ← X1Z1

2: T ← (X1 + Z1)
2

3: X3 ← T 2

4: Z3 ← S2

5: if a = 0 then
6: Y3 ← ((Y1 + T )(Y1 + S) + Z3)

2

7: else
8: Y3 ← (Y1(Y1 + S + T ))2

9: return (X3, Y3, Z3)

4.4.3 Inversion modulo the elliptic curve order

When signing, the ECDSA generates a random secret value k which is multiplied by the

generator point; this requires side-channel resistance since if k leaks then it is possible

to compute the signer’s private key. However, an often overlooked point is that ECDSA

also requires the inversion of k modulo the elliptic curve order n. This is usually carried

out with the extended Euclidean algorithm, whose number of steps are input-dependent

and therefore theoretically susceptible to side-channel attacks. While we are not aware of

any concrete attacks exploiting this issue, we are also not aware of any arguments for the

impossibility of such an attack. Therefore, we believe it is safer to use a SCR inversion.

The obvious approach for SCR inversion would be to use Fermat’s little theorem

(a−1 ≡ an−2 (mod n)), which would require a very fast multiplier modulo n to be efficient.

However, we have found a simple variant of the binary extended Euclidean algorithm by

Niels Möller [115] which takes a fixed number of steps. For reference, it is described in

Algorithm 4.5 in the Appendix, where branches are used for clarity and can be avoided

with Select. The algorithm is built entirely upon four operations over integers with the

same size as n: addition, subtraction, negation and right shift by one bit. These can be

implemented in assembly for speed; alternatively the whole algorithm can be implemented

in assembly in order to avoid reads and writes by keeping operands (a, b, u and v) in

NEON registers. We have followed the latter approach for fields at the 128-bit level of

security, and the former approach for the 256-bit level, since the operands are then too

big to fit in registers.

Interestingly, implementing this algorithm raised a few issues with NEON. The right

shift and Select can be implemented efficiently using NEON; however, we had to resort

to regular ARM instructions for addition and subtraction, since it is difficult to handle
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carries with NEON. This requires moving data back and forth from NEON to ARM

registers; which can be costly. In the Cortex A8, since the NEON pipeline starts after

the ARM pipeline, a move from NEON to ARM causes a 15+ cycles stall. The obvious

approach to mitigate this would be to move from NEON to ARM beforehand, but this is

difficult due to the limited number of ARM registers. Our approach was then to partially

revert to storing operands in memory since it becomes faster to read from cached memory

than to move data between NEON and ARM. In the Cortex A9 we followed the same

approach, but with smaller gains, since the ARM and NEON pipelines are partly parallel

and moving from NEON to ARM is not that costly (around 4 cycles of latency). However,

the Cortex A15 is much more optimized in this sense and our original approach of keeping

operands in registers was faster.

4.4.4 Authenticated Encryption

An authenticated encryption (AE) symmetric scheme provides both encryption and au-

thentication using a single key, and is often more efficient and easy to employ than using

two separate encryption and authentication schemes (e.g. AES-CTR with HMAC). The

Galois/Counter Mode (GCM) [109] is an AE scheme which is built upon a block cipher,

usually AES. It was standardized by NIST and is used in IPSec, SSH and TLS. For

each message block, GCM encrypts it using the underlying block cipher in CTR mode

and xors the ciphertext into an accumulator, which is then multiplied in F2128 by a key-

dependent constant. After processing the last block, this accumulator is used to generate

the authentication tag.

We have implemented the F2128 multiplication using the same techniques described

above; modular reduction took advantage of the VMULL instruction since r(z) in this field

is small. We remark that our implementation does not uses precomputed tables (as it is

often required for GCM) and is side-channel resistant (if the underlying block cipher also

is). For benchmarking, we have used an assembly implementation of AES from OpenSSL

without SCR; however this is not an issue since we are more interested in the overhead

added by GCM to the plain AES encryption.

4.5 Results

To evaluate our software implementation, we have used a DevKit8000 board with an

600 MHz ARM Cortex-A8 processor, a PandaBoard board with a 1 GHz ARM Cortex-A9

processor and an Arndale board with a 1.7 GHz ARM Cortex-A15 processor. We have

used the GCC 4.5.1 compiler. Our optimized code is written in the C and assembly

languages using the RELIC library [7]. Each function is benchmarked with two nested
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Table 4.1: Our timings in cycles for binary field arithmetic

Algorithm/Processor F2251 F2283 F2571

Multiplication (LD) A8 671 1,032 3,071

A9 774 1,208 3,140

A15 412 595 1,424

Multiplication (KNV) A8 385 558 1,506

A9 491 701 1,889

A15 317 446 1,103

Squaring (Table) A8 155 179 349

A9 168 197 394

A15 128 151 282

Squaring (VMULL) A8 57 53 126

A9 63 59 146

A15 43 42 99

Inversion (Itoh-Tsujii) A8 18,190 20,777 90,936

A9 19,565 22,356 97,913

A15 13,709 16,803 71,220

loops with n iterations each; inside the outer loop, an input is randomly generated; and

the given operation is executed n times in the inner loop using this input. The total

time taken by this procedure, given by the clock gettime function in nanoseconds, is

divided by n2 in order to give the final result for the given operation. We chose n = 1024

for measuring fast operations such as finite field arithmetic, and n = 64 for the slower

operations such as point multiplication.

Table 4.1 presents the timings of field operations used in ECC. Our new Karat-

suba/NEON/VMULL (KNV) multiplication gives a up to 45% improvement compared to

the LD/NEON implementation. For field squaring, we have obtained a significant im-

provement of up to 70% compared to the conventional table lookup approach. The very

fast squaring made the Itoh-Tsujii inversion feasible.

Timings for ECC protocols are listed in Table 4.2, while Figure 4.3 plots the 128-bit

level timings to aid visualization. Compared to the LD/NEON multiplier with table-

based squaring, the KNV multiplication with VMULL-based squaring improved the point

multiplication by up to 50%. ECDSA is 25–70% slower than ECSS due to the SCR

modular inversion required.

When limited to standard NIST elliptic curves, our ECDH over K-283 is 70% faster
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Table 4.2: Our timings in 103 cycles for elliptic curve protocols

Algorithm/Processor B-251 B-283 K-283 B-571 K-571

ECDH Agreement A8 657 1,097 934 5,731 4,870

A9 789 1,350 1,148 7,094 6,018

A15 511 866 736 4,242 3,603

ECDSA Sign A8 458 624 606 2,770 2,673

A9 442 612 602 2,880 2,816

A15 233 337 330 1,740 1,688

ECSS Sign A8 270 389 371 1,944 1,846

A9 285 414 404 2,137 2,073

A15 186 270 263 1,264 1,212

ECDSA Verify A8 943 1,397 791 6,673 3,069

A9 1,100 1,644 887 8,171 3,581

A15 715 1,064 583 4,882 2,237

ECSS Verify A8 933 1,337 735 6,338 3,064

A9 1,086 1,572 827 7,776 3,602

A15 715 1,022 546 4,623 2,228

than the results of Morozov et al. [119]. Considering non-standard curves, we now compare

our binary B-251 to the prime curves in the state of the art; this is also shown in Table 4.3.

On the A8, compared to Bernstein and Schwabe’s [26], our key agreement is 25% slower;

our signing is 26% faster; and our verification is 43% slower. On the A9, compared to

Faz-Hernández et al. [52], our random point multiplication is 88% slower, our fixed point

multiplication is 53% slower; and our simultaneous point multiplication is 132% slower.

On the A15, also compared to Faz-Hernández et al. [52], our random point multiplication

is 108% slower, our fixed point multiplication is 72% slower; and our simultaneous point

multiplication is 162% slower. We remark that this is a comparison of our implementation

of binary elliptic curves with the state-of-the-art prime elliptic curve implementations,

which are very different. In particular, note that the arithmetic of prime curves can take

advantage of native 32× 32-bit and 64× 64-bit multiply instructions.

For the GCM authenticated encryption scheme, we have obtained 38.6, 41.9 and 31.1

cycles per byte for large messages, for the A8, A9 and A15 respectively; a 13.7, 13.6 and

9.2 cpb overhead to AES-CTR. Our A8 overhead is 46% faster than the timing reported

by Krovetz and Rogaway’s [90] and 8.6% faster than [131].

It is interesting to compare the timings across Cortex processors. The A9 results are

often slower than the A8 results: while the A9 improved performance of regular ARM
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Table 4.3: Our best ECC timings (on the non-
standard elliptic curve B-251 over binary field)
compared to state-of-the-art timings using non-
standard elliptic curves over prime fields, at the
128-bit level of security, in 103 cycles

Algorithm/Processor Ours [26] [69] [52]

Key Agreement A8 657 527

A9 789 616 417

A15 511 244

Sign A8 270 368

A9 285 262 172

A15 186 100

Verify A8 933 650

A9 1,086 605 463

A15 715 266

curves for ARM, which seems to be lacking in the literature. In addition, the arrival of

ARMv8 processors in the future (including the Cortex A53 and A57) may provide great

speed up to binary ECC, since the architecture will provide two instructions for the full

64-bit binary multiplier (PMULL and PMULL2) and will double the number of NEON

registers [10].

Reference Algorithms

Listed below are algorithms for reference and the full code of our multiplier.

Algorithm 4.3 Branchless select, described by Emilia Käsper in [91]

Input: W -bit words a, b, v, with v ∈ {0, 1}
Output: b if v, else a

1: function Select(a, b, v)
2: m← TwosComplement(−v, W ) ⊲ convert −v to W -bit two’s complement
3: t← (m & (a⊕ b))⊕ a
4: return t
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Algorithm 4.4 SCR table lookup, contained in the source code of Bernstein and
Schwabe’s [26]

Input: array a with n elements of any fixed type, desired index k, 0 ≤ k < n
Output: a[k]

1: function Choose(a, n, k)
2: t← a[0]
3: for i← 1 to n− 1 do
4: r ← (i⊕ k)− 1
5: s← (r < 0) ⊲ s holds whether i is equal to k
6: t← Select(t, a[i], s)

7: return t

Algorithm 4.5 SCR modular inversion algorithm by Niels Möller in the Nettle li-
brary [115]

Input: integer x, odd integer n, x < n
Output: x−1 (mod n)

1: function ModInv(x, n)
2: (a, b, u, v)← (x, n, 1, 1)
3: ℓ← ⌊log2 n⌋+ 1 ⊲ number of bits in n
4: for i← 0 to 2ℓ− 1 do
5: odd← a & 1
6: if odd and a ≥ b then
7: a← a− b
8: else if odd and a < b then
9: (a, b, u, v)← (b− a, a, v, u)

10: a← a≫ 1
11: if odd then u← u− v
12: if u < 0 then u← u + n
13: if u & 1 then u← u + n
14: u← u≫ 1
15: return v
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Algorithm 4.6 Our proposed ARM NEON 64-bit binary multiplication C = A ·B with
128-bit result

Input: 64-bit registers ad (holding A), bd (holding B), k16 (holding the constant
0xFFFF), k32 (holding 0xFFFFFFFF), k48 (holding the constant 0xFFFFFFFFFFFF).

Output: 128-bit register rq (rh|rl) (holding A).
Uses temporary 128-bit registers t0q (t0h|t0l), t1q (t1h|t1l), t2q (t2h|t2l),
t3q (t3h|t3l).

1: vext.8 t0l, ad, ad, $1 ⊲ A1

2: vmull.p8 t0q, t0l, bd ⊲ F = A1*B

3: vext.8 rl, bd, bd, $1 ⊲ B1

4: vmull.p8 rq, ad, rl ⊲ E = A*B1

5: vext.8 t1l, ad, ad, $2 ⊲ A2

6: vmull.p8 t1q, t1l, bd ⊲ H = A2*B

7: vext.8 t3l, bd, bd, $2 ⊲ B2

8: vmull.p8 t3q, ad, t3l ⊲ G = A*B2

9: vext.8 t2l, ad, ad, $3 ⊲ A3

10: vmull.p8 t2q, t2l, bd ⊲ J = A3*B

11: veor t0q, t0q, rq ⊲ L = E + F

12: vext.8 rl, bd, bd, $3 ⊲ B3

13: vmull.p8 rq, ad, rl ⊲ I = A*B3

14: veor t1q, t1q, t3q ⊲ M = G + H

15: vext.8 t3l, bd, bd, $4 ⊲ B4

16: vmull.p8 t3q, ad, t3l ⊲ K = A*B4

17: veor t0l, t0l, t0h ⊲ t0 = (L) (P0 + P1) << 8

18: vand t0h, t0h, k48

19: veor t1l, t1l, t1h ⊲ t1 = (M) (P2 + P3) << 16

20: vand t1h, t1h, k32

21: veor t2q, t2q, rq ⊲ N = I + J

22: veor t0l, t0l, t0h

23: veor t1l, t1l, t1h

24: veor t2l, t2l, t2h ⊲ t2 = (N) (P4 + P5) << 24

25: vand t2h, t2h, k16

26: veor t3l, t3l, t3h ⊲ t3 = (K) (P6 + P7) << 32

27: vmov.i64 t3h, $0

28: vext.8 t0q, t0q, t0q, $15

29: veor t2l, t2l, t2h

30: vext.8 t1q, t1q, t1q, $14

31: vmull.p8 rq, ad, bd ⊲ D = A*B

32: vext.8 t2q, t2q, t2q, $13

33: vext.8 t3q, t3q, t3q, $12

34: veor t0q, t0q, t1q

35: veor t2q, t2q, t3q

36: veor rq, rq, t0q

37: veor rq, rq, t2q
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Abstract

Recent works have shown the usefulness of network and application layer protocols that

connect low-power sensor nodes directly to multiple applications and users on the In-

ternet. We propose a security solution for this scenario. While previous works have

provided security support for various communication patterns in sensor networks, such

as among nodes, from nodes to a base station, and from users to nodes, the security of

communication from sensor nodes to multiple users has not been sufficiently addressed.

Specifically, we explore this design space and develop a security solution, named Secure-

TWS, for efficient authentication of data sent by a resource constrained sensor node to

multiple users, using digital signatures. We investigate the resource overheads in commu-

nication and computation of four suitable signature schemes – the Elliptic Curve Digital

Signature Algorithm (ECDSA), the (elliptic curve) Schnorr signature, and the Boneh-

Lynn-Shacham (BLS) and Zhang-Safavi-Naini-Susilo (ZSS) short signature schemes. We

implement these schemes on two popular sensor node architectures (based on AVR AT-

mega128L and MSP430 processors with 802.15.4 radios) and experimentally characterize

relevant trade-offs.
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5.1 Introduction

This paper describes the implementation of a security solution for sensor nodes that

are shared by multiple users. Shared sensor nodes are useful in many scenarios such as

when a common sensing substrate is used by multiple applications. While the sharing of

sensors over the Internet is not new [81], recent works have demonstrated the usefulness

of methods that connect low-power sensor nodes directly to applications, locally and

over the Internet, without intermediary gateways, such as to improve interoperability,

deployment re-use, and reduce costs [132]. Network protocols at the IP layer [47,74] and

the application layer [132] have shown energy efficient methods to enable this mode of

operation. Figure 5.1 shows these communication scenarios.

Figure 5.1: Shared sensor scenario for which security solution is implemented.

Implementing such a direct connection from sensor nodes to multiple clients in prac-

tice further entails providing end-to-end security for data communication. The need for

security directly from the source node also arises in scenarios where the sensor node is de-

ployed by one entity but it sends its data over a network device provided by an untrusted

entity. For instance, a power metering node for real time demand-response pricing may

be deployed by the utility company (shown as Remote Sensor Owner in the figure) in a

home and the node may use the home Internet router supplied by the home owner. The

utility company trusts only the sensor node but not the intermediate network device. The

sensor node must supply authenticated data directly, rather than relying on the Internet

router. The data may also be accessed by other interested clients such as the home user

locally, or the building landlord remotely, who may all want authenticated data. Our

implementation complements the network layer and application layer protocols available

for these scenarios with support for security.

The fundamental communication pattern here is from a sensor node to multiple users.

A first requirement for security is that multiple users must be able to authenticate the data

they receive from a sensor node. Authentication is arguably the most important security

property in securing WSN communication [105]. We describe our implementation to

achieve authentication and provide experimental evaluations that help decide among key
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design choices involved. The design is optimized to provide authentication for node to

multi-user communication from resource-constrained sensor nodes. We explore the design

space and show that a digital signature-based approach is the most efficient choice for this

scenario, especially since the resource-constrained sensors may not be able to establish

shared keys with a changing set of multiple users. We also compare different digital

signature schemes for authenticating node to multi-user communication. The goal of the

paper is not to invent new cryptography primitives but rather to close the gap between

research and practice by evaluating certain key deign choices in realizing the security

implementation for a shared sensor scenario.

To sum up, our key contributions are:

1. We demonstrate how node-to-multiuser communication can be authenticated in

WSN’s, as well as identify and evaluate the design choices involved.

2. We provide a comparison between Boneh-Lynn-Shacham (BLS) [30] and Zhang-

Safavi-Naini-Susilo (ZSS) [158] short signature schemes with the Elliptic Curve

Digital Signature Algorithm (ECDSA) and (elliptic curve) Schnorr signature in the

context of WSN’s (note that ours is the first implementation of short signature

schemes on sensor platforms).

3. We provide an authenticated web service communication solution, named Secure

Tiny Web Service or Secure-TWS, for shared and interoperable sensor nodes, based

on integration of our security implementation with the Tiny Web Service stack

from [132] along with its underlying IP stack [47].

The remainder of this work is organized as follows. Section 5.2 discuss the overall

design motivation for the Secure-TWS security implementation along with its usage setup.

A detailed discussion of the implementation issues that were evaluated in our experiments

is provided in Section 5.3 and the evaluation results are discussed in Section 5.4. Related

work and conclusions appear in Sections 5.5 and 5.6, respectively.

5.2 Authentication for Shared Sensor Scenario

Authentication consists of two properties: i) source authentication, which ensures a re-

ceiver that the message did in fact originate from the claimed sender; and ii) data authen-

tication, that guarantees a receiver that the message received is “fresh” (i.e. it is not a

replay attack) and its content was not changed since it left the sender. A second aspect

of data security is privacy, typically ensured using data encryption. The implementation

presented in this paper does not address the privacy aspect; privacy might not even be

needed for many sensors shared over the Internet.
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In this section, we identify the key security primitives that are applicable for providing

authentication and select a small number of appropriate design options that need to be

evaluated for enabling efficient implementations. The system to provide the required secu-

rity features is described. The selected design options and parameters are then discussed

and evaluated with their implementations in subsequent sections.

5.2.1 Design Space

Authentication can be achieved using one of two types of security primitives: using mes-

sage authentication codes (MAC’s) and using digital signatures.

Using Message Authentication Codes

Methods that use MAC’s begin with an initialization step that involves distributing the

shared keys in a secure manner. Once keys are distributed, authentication in a pairwise

communication pattern is straightforward: sender uses the shared key to generate a mes-

sage authentication code that may be verified by the receiver. Computation overhead

for symmetric key cryptography is very low [129] and many embedded processors have

hardware support for it, such as a hardware implementation of AES.

The use of MAC’s for a node to multi-user scenario is possible, such as demonstrated

in µTESLA [129] and LEAP [161]. The µTESLA scheme was described for authentication

of messages from a base station to multiple nodes and the LEAP scheme for single hop

communication. Both schemes use a one-way key chain (a sequence of keys k1, . . . kn,

where ki+1 is generated from ki by applying a one-way hash function f(), i.e., ki+1 =

f(ki)) to achieve authentication. All nodes who are supposed to receive the authenticated

messages must be supplied with a group key kn in a secure manner. This group key

is common to all nodes. In µTESLA all nodes also have to maintain a synchronization

with the sender regarding which key in the sequence is currently valid. Clearly, these

requirements are not well-suited for our scenario where a sensor node is shared over the

Internet by a changing set of multiple clients.

The special case of one-to-one communications when the connection is between a

resource-constrained sensor node and a single client connected via the Internet was im-

plemented in [67] using SSL, and named Sizzle. The conventional Public Key Cryptog-

raphy (PKC) mechanisms used in SSL for exchange of shared keys were replaced with a

resource efficient version of PKC, based on Elliptic Curve Cryptography (ECC), leading

to a lighter version of SSL suitable for resource-constrained sensor nodes. Applying Sizzle

directly for node to multi-user communication communication is inefficient as the sensor

node would then have to run the SSL handshake with every one of its clients on the

Internet, including short term and transient ones. Also, the data would have to be sent
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multiple times to each client since a different session key would be used by each client,

and no multi-cast or sharing of the same data message would be feasible.

Digital Signature-Based Authentication

The alternative option of using digital signatures leads to certain advantages over the

approach of using MAC’s in this node to multi-user scenario:

1. When signatures are used, the node is not required to establish shared secret keys

with each client who wishes to receive authenticated data.

2. Shared keys need not be managed or stored at the resource-constrained node.

3. The same authenticated message can be sent to multiple users and forwarded or

multi-cast to other users retaining its authentication properties. This allows the

network layer to optimize service to multiple simultaneous clients using multi-cast

without requiring the sensor node to send multiple packets.

The design options for implementing digital signatures for sensor networks are discussed

next.

A digital signature allows a sender (signatory) to generate a signature on a message.

The receiver can verify the authenticity of the signature to ensure that the message indeed

originated from the claimed sender and has not been modified since. The signature is

generated using a private key known only to the sender and verified using a public key

known publicly to everyone including the receivers. An adversary cannot forge a sender’s

signature without the sender’s private key. Implementing digital signatures thus involves

providing two components – a method to obtain [public, private] key pairs used for signing

and verification, and efficient computation of the signatures.

The [public, private] key pairs can be obtained either using certificate-based schemes

or certificate-free schemes. In certificate-based schemes, the key pair is associated with

a particular user by a mutually trusted entity, sometimes referred to as a certification

authority (CA). The trusted entity signs a user’s credentials using its own private key

and everyone who trusts this entity can associate the given public key to that user.

Among certificate-free schemes, many are based on identity-based methods [144]. In

this approach, some unique information that correctly identifies the user (such as an email

address or an IP address) is used to derive their public key. No certification is thus needed

to bind the public key to the user. The keys are generated by an unconditionally trusted

authority (TA) for each user. While the identity-based scheme has lower overheads in

managing the issuance and verification of certificates, it has the drawback that the TA

in this case knows everyone’s private keys and can impersonate any user. While such
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a trusted authority is easy to implement within a single sensor network, such as when

all nodes fully trust the base station [124], it is not easy to provide in an Internet-based

sharing scenario with many different types of users.

A certificate-free scheme that does not require a TA has been proposed in [3], named

certificateless. However this scheme has a very high computation complexity and is not

suitable for resource-constrained sensor nodes. On the other hand, CA’s are already a part

of the existing infrastructure. Note that CA’s are easier to provide in the Internet since

the users only trust the CA to reliably bind public keys to themselves, and do not have

to allow the CA to be able to impersonate as themselves. Hence, in our implementation,

we use the certificate-based scheme.

While obtaining the key pair is a one time overhead, the second component, the

computation using the keys for signing and verification, is involved in every message

exchange. We now consider the computation and communication overheads of digital

signatures, for optimizing the design of this step. The signature computation choices

available are described below.

Digital Signature Algorithm (DSA): DSA is a commonly used certificate-based sig-

nature scheme specified by NIST in FIPS 186-3. Its security relies on the Discrete

Logarithm Problem (DLP) and the best known algorithm to solve it has a subexpo-

nential running time. As as result, the parameters for DSA are rather large, making

it ill suited for constrained environments such as sensor nodes.

Elliptic Curve DSA (ECDSA): ECDSA is the elliptic curve analogue of DSA. How-

ever, its security relies on the Elliptic Curve DLP which the best known algorithm to

solve it runs in fully exponential time. As consequence, one can use smaller param-

eters with the same security level of DSA. In addition, small key sizes offer potential

reduction in processing power, memory, bandwidth, and energy. In TinyECC [100],

for example, is shown that the generation of signatures using ECDSA on an MSP430-

based sensor platform, at the 80-bit security level, is only 1.6s. ECDSA’s signature

length, however, is as long as DSA’s. For instance, the signature schemes DSA-1024

and ECDSA-160, at 80-bit security level, produce a 320-bit signature.

Schnorr Signature: This signature scheme can be instantiated with the same efficient

parameters as ECDSA, producing signatures of the same bit-length. The main

difference between both is that Schnorr signatures do not require the computation

of modular inverses for generating signatures. It is considered the simplest digital

signature scheme to be provably secure in a random oracle model and is covered by

U.S. Patent 4,995,082, which has already expired.
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Signature Computation Communication
Scheme Generation Verification (bytes)

Identity-based [18] 2S 1S + 1P 40
Certificateless [3] 1S + 1P 4P 40

DSA 1E 2E 40
ECDSA 1S 2S 40
Schnorr 1S 2S 40

BLS 1S 2P 20
ZSS 1S 1S + 1P 20

Table 5.1: Signature schemes’s requirements and costs

Boneh-Lynn-Shacham (BLS) Scheme: BLS [30] is a certicate-based signature gen-

eration and verification scheme that relies on pairings [139]. It has the advantage

that its signature bit-length is half that of DSA’s and ECDSA’s for RSA-1024 se-

curity level. For this reason it is also referred to as a short signature scheme. Its

computation overhead is asymmetric: heavier computation is needed on the receiver

side but this is not a major concern for the scenario of interest.

Zhang-Safavi-Naini-Susilo (ZSS) Scheme: ZSS [158] is another certificate-based sig-

nature scheme relying on pairings. In comparison with BLS, ZSS requires smaller

computation overhead under the same random oracle hardness assumption. The

ZSS scheme is closely related to a scheme independently proposed by Boneh and

Boyen (BB) [27], but proven secure in a slightly weaker complexity assumption.1

The resource overheads for the above options are listed in Table 5.1. The exact

cost may vary by specific implementation; the table accounts for the fundamental steps

involved, using specific examples. Examples of identity-based and certificateless schemes

are also included for completeness, though they are clearly not strong contenders for our

design choices.

The communication overhead is quantified using the extra bits needed for security, in

addition to the data and protocol headers. The computation overhead is listed in terms

of the computationally intensive operations involved. A scalar or point multiplication

(denoted using S in the table) is a multiplication operation of a point, P, on the elliptic

curve by a scalar, k, to obtain Q = kP. This represents P added to itself k times where

the addition is as defined in the elliptic curve group. A pairing (denoted as P ) is a

1It is worth noting that BB has one variant that does not rely on the random oracle model of a hash
function at the expense of increasing the signature length. We have not employed this one for efficiency
purposes.
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computable, non-degenerate function that has a special property known as bilinearity.

Variants of the Tate pairing [139] are used in our implementation. An exponentiation

(denoted E in the table) is a modular exponentiation. i.e., a computation of the form

ab mod c.

Note that in the above schemes point multiplication works with 160-bit parameters

while the pairings and exponentiation work with much larger parameters, making the

point multiplication here relatively less computationally intensive than the other two

operations. The parameter sizes come from the underlying problems of the cryptosystems,

for achieving RSA-1024 equivalent security.

5.2.2 Authentication Setup

Based on the discussion of design options above, we can now select the overall authen-

tication procedure for the security scenario of interest. To summarize, a signature-based

scheme is preferred over MAC-based ones. Among signature-based schemes, a method

based on certificates is preferred over certificate-free ones. Such an authentication scheme

is implemented in Secure-TWS. It operates in shared wireless sensors as shown in Figure

5.2 and described below. Note that the procedure does not involve any processing at the

sensor that is specific to the client identity and the approach is hence scalable to any

number of short term or long term users of the sensor node.

Initialization: Prior to deployment, such as when the application code is loaded into

the sensor node, a [public,private] key pair, [ppub(i), ppvt(i)], is generated for each node

x(i). The private key ppvt(i) is loaded onto the node. The private key may optionally be

stored in a sensor node management database by the sensor owner but these need not be

shared with the certification authority or anyone else. The public key, ppub(i), should be

provided to a certification authority. The CA will verify the deploying entity’s identity

and issue a certificate that binds ppub(i) to x(i). Subsequently, the public key and the

certificate are uploaded to key servers from where clients may download them directly as

needed. This helps alleviating the need for nodes to transmit public keys and certificates

themselves.

Connection Setup: Client applications that wish to use data from a sensor node x(i)

may establish a connection to the sensor node using the Tiny Web Services stack [132]

included in Secure-TWS, or a lower layer Internet Protocol stack [47,74]. Multi-cast may

be used to support multiple simultaneous clients when available.

Authenticated Data Access: The client now downloads the sensor node’s public key,

ppub(i) and the corresponding certificate from a key server. The CA’s signature on the

certificate is verified by the client. Node x(i) signs the application layer data using one of

the certificate-based signature generation schemes and sends it to the client. The clients
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Figure 5.2: Overview of the authentication procedure implemented in Secure-TWS.

can authenticate the data using signature verification based on ppub(i).

5.2.3 Key Design Choices

The certificate-based digital signature scheme in the Secure-TWS setup described above

could be based on either the DSA, ECDSA, BLS, or ZSS algorithms. DSA is clearly worse

than ECDSA for sensor nodes due to its large parameter sizes and then we compare

ZSS, BLS, and ECDSA. The computation performed at the sensor node only involves

signature generation since the verification is performed at the client which is not resource-

constrained. Considering the computation overhead of signature generation in Table 5.1,

we see that all three schemes involve one point multiplication. ZSS and BLS do have

a lower communication overhead. Considering the table, therefore, complexity, i.e, the

order of computation alone, one may expect that ZSS and BLS are better. However in

actual implementation, it turns out that exact computation costs vary greatly among the

three choices due to the specific computation and parameter values involved. The choice

between these three options is explored in greater depth in the next section using actual

implementations of the schemes on two common sensor platforms.
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5.3 Secure-TWS Implementation

We now discuss in depth the design parameters and resource overheads that affect the

choice of digital signature schemes for shared sensor node usage. We also highlight spe-

cific implementation issues we faced in implementing these security primitives on two

commonly used sensor platforms.

5.3.1 Platform and Software

We utilize two commonly used low-power processors to implement the Secure-TWS au-

thentication solution: the MSP430-F2418 (16-bit 16MHz core, 8KB RAM, 116KB ROM)

and AVR ATmega128L (8-bit, 7.3728MHz core, 4KB RAM, 128KB ROM). The former

is present on the mPlatform [107] and the latter on the MICA mote family of nodes [73].

A block diagram of the software implementation is shown in Figure 5.3.

Figure 5.3: Block diagram of the security solution implementation.

As shown, the Secure-TWS implementation has been integrated with the Tiny Web

Service [132] stack along with its IP stack [47]. This integration has been tested for the

MSP430 processor only.

The key elements of the implementation are the ZSS, BLS, and ECDSA signature

generation methods. Note that only one of these is required in a specific instantiation

and we only compile the software to produce the complete system containing one of

these three schemes. Assembly language optimizations have been included to improve the

computation performance of signature generation.
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The finite field arithmetic and big number arithmetic used for the ECC arithmetic is

implemented using the RELIC library from [7]. RELIC is a publicly available C library

that implements all the arithmetic primitives required in our implementation and has

support for several popular platforms including the ones used in our implementation.

Note that the private key is stored locally on the node as it is used for signature

generation. If the node is compromised, this key may be stolen. However, the key pair for

the node is exclusive to that node itself and there is no shared key that may compromise

other nodes if this node is compromised.

// Application data collection and

processing

...

// generate signature and signed

message

ec sign(msg,sig); //generate

signature

strcpy(sigmsg,msg); //copy orig msg

strcat(sigmsg,sig); //append

signature

// prepare to send a signed message

s->send data ptr = (char *) sigmsg;

s->send data len = sizeof(sigmsg)-1;

Figure 5.4: Secure-TWS interface usage example

The application data interface uses C function calls. It allows using our implemen-

tation easily with the underlying Tiny Web Services stack [132]. Sample usage is shown

in Figure 5.4, with simply a function call made for signature generation, followed by

commands to send the message.

Next, we consider the choice of parameter values required for the various security

modules in the implementation.

5.3.2 Parameter Choices

In certain sensor network scenarios, where security is limited to within the network, a

64-bit security level has sometimes been used [129] to help reduce security overheads.

However, in our scenario, since the authentication must interface with the Internet, we

choose to use a 80-bit security level (or 1024-bit RSA) for greater security.
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The choice of finite fields and elliptic curves are crucial for the overall performance

of ECDSA and pairing-based schemes. The most commonly finite fields used in ECC

schemes are the prime field Fp and the binary field F2m . For some field operations such

as squaring, square-root, addition and reduction, binary fields present some computa-

tional advantage over prime fields. On the other hand, for some computational platforms,

prime fields can take advantage of a native multiplication instruction, for accelerating a

field multiplication. Both curves over prime or binary fields offer some optimizations for

point multiplication; the special family of binary curves, called Koblitz curves [87], have

the property that a point multiplication can be accelerated by exploiting the Frobenius

endomorphism π : (x, y) → (x2, y2). For example, the wTNAF [147] method for point

multiplication, replaces the computation of point doubling 2P by π(P ), a much faster

operation; on the other hand, for certain ordinary elliptic curves defined over prime fields

(p > 3), that have an efficiently-computable endomorphism, the technique of Gallant,

Lambert and Vanstone (GLV) [56] can be used to speed point multiplication on these

curves. We describe this method in Section 5.3.4 with a small modification to make it

faster in embedded architectures with expensive division instructions.

For our scenario, we obtain a good performance using standardized curves for the

software implementation of ECDSA at the 80-bit security level. Our implementation was

based on the binary Koblitz curve sect163k1 and on the prime curve secp160k1 defined

by [148]. The selection between primary and binary fields for the pairing-based schemes,

however, depends on numerous aspects and is not so straightforward. The verification

process in BLS and ZSS requires the computation of pairings. This restricts the choice of

parameters to pairing-friendly curves:

• When using binary fields, the only pairing friendly elliptic curves known are super-

singular, whose embedding degree are at most k = 4. This requires a 353-bit binary

field in order to provide the required 80-bit level of security, which in turn increases

the signature size to 353 bits. We conclude that curves over binary fields are not

adequate for implementing BLS or ZSS in this scenario since they provide worst

performance (which we have demonstrated experimentally) while requiring larger

signatures; this was also pointed out in [30]. Implementations of pairing-based key

agreement schemes have suggested using a 271-bit binary field [124], but due to Cop-

persmith’s attack [40], the more conservative choice of 353 bits is a better suggestion

for attaining the 80-bit security level.

• When using prime fields, there is a choice between supersingular and ordinary

curves. Supersingular prime curves are limited to an embedding degree of k = 2

(which is too low for the 80-bit level and would require a 512-bit prime field); there-

fore, an ordinary prime curve was chosen. There are multiple families of pairing-
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friendly ordinary prime curves, and for the required security level the MNT family

with k = 6 seems the most appropriate. However, there are some disadvantages with

this family — namely, it is a sparse family, which prevents the use of prime modulus

with a special form; and it provides quadratic twists only [113]. An alternative is

the BN family, which is specially appropriate for the 128-bit level of security due to

its embedding degree k = 12 and sextic twists [20]. While it seems ill-suited for the

80-bit level of security, it actually provides a faster implementation in this scenario

due to many optimizations tailored for the family [128]. In particular, the use of

sparse primes greatly improves its performance, as will be described later. We use

the BN curve y2 = x3 + 3 with parameter x = 238 + 25 + 24 + 1 and the Optimal

Ate pairing [154].

5.3.3 Algorithmic Choices

As mentioned in Table 5.1, elliptic curve scalar point multiplication is the most expensive

operation in ECDSA, BLS and ZSS signature generation. However, the computation

complexity of this operation varies widely between the three candidates.

ECDSA and Schnorr: As mentioned before, there is no restriction on curve selection,

so the most efficient curves can be used. For this reason, Koblitz binary curves

are employed due to the fast point multiplication using the wTNAF method. Fur-

thermore, the point P to be multiplied is a fixed public parameter that is known

a priori. In this case, point multiplication can be accelerated significantly using

pre-computation at the expense of some storage overhead. When using the wTNAF

method, for example, 2w−2− 1 points are precomputed offline, where w is the num-

ber of bits processed at once. In our ECDSA and Schnorr implementation, we have

used w = 5 resulting in 7 precomputed points stored in ROM. Each precomputed

value requires 44 bytes for storage resulting a storage overhead of 308 bytes. Such

an overhead is acceptable in most situations given the ROM sizes of current sensor

platforms.

BLS: In BLS, on the other hand, the point P value is dependent of the message being

signed and thus assumes a different value each time a signature is generated. Thus,

for the random point multiplication, we have used a right-to-left wNAF method,

with w = 4, requiring the online precomputation of 3 points. The reason for this

was that right-to-left approaches are faster when point doubling is cheaper, as it is

the case with the employed supersingular binary curve. Over a binary field, it is

also possible to use an optimization know as short exponent [88]: by using a private

key k with 160 bits instead of the full 353 bits, the security provided stays the
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same but the multiplication kP is much faster. Point multiplication in the prime

pairing-friendly curve was implemented according to the GLV method [56], with

the resulting simultaneous multiplication computed as the standard left-to-right

interleaving of 4-width NAFs [70].

ZSS: In this scheme, the point multiplication again involves a fixed basis. However, this

point multiplication is computed in the same pairing-friendly curves required by

BLS, providing a performance middle-ground between the schemes above. A comb

approach [98] with 8 precomputed points stored in ROM was used for computing

the fixed point multiplication in the binary case, while a combination of the comb

approach and the GLV method was employed in the prime case. The implementation

could use more precomputation to accelerate this operation, but for fairness, the

schemes must be evaluated with the same memory footprint.

5.3.4 Strategies for Point Multiplication

In the next section, we briefly describe our simple modifications to the conventional ap-

proaches for computing point multiplication in the pairing-friendly curves employed.

The Right-to-left approach

Left-to-right window-based approaches for computing scalar multiplications kP require

some amount of precomputation in the form of small multiples of a point P depending on

the window length w. The wNAF approach, for example, requires recoding the integer k

such that it can be represented in the digit set {3, 5, . . . , (2w−1−1)P} and also computing

the set of small multiples {3P, 5P, . . . , (2w−1 − 1)P}. These precomputed points must be

represented in affine coordinates to allow faster mixed-coordinate addition and minimize

storage overhead [70]. A straightforward way to compute this set of multiples is to double

P as 2P and successively add 2P as 3P = P + 2P, 5P = 3P + 2P, . . . , (2w−1 − 1)P =

(2w−1− 3)P + 2P , requiring in total one point doubling and 2w−2 − 1 point additions. In

order to minimize the number of field inversions computed in this precomputation stage,

curve arithmetic can be done in projective coordinates and the affine coordinates can be

recovered through an expensive simultaneous inversion [116].

If the elliptic curve supports a fast inversion-free doubling algorithm in affine coordi-

nates, as the pairing-friendly supersingular binary curves discussed, this can be avoided

with a simple alternate strategy: a set of accumulators {Q1, Q3, Q5, . . . , Q(2w−1
−1)} are

used to accumulate point 2iP in the i-th iteration of the algorithm. The final result can

then be recovered as Q =
∑(2w−1

−1)
j=1 jQj. This strategy will be faster whenever these final

(2w−1 − 1) point additions are faster than the simultaneous inversion operation and also

allow further savings depending on how efficient is doubling a point in affine coordinates.
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The GLV method

For the ECDSA, BLS and ZSS signatures, it is possible to exploit the efficient endomor-

phism φ : E → E such that φ(P ) = λP for some λ. Using it, the point multiplication

kP can be written as k = k0 + k1φ(P ), which can be computed more efficiently us-

ing an interleaving method. In order to split k, it is necessary to solve the equation

(k, 0) = β1v1 + β2v2 for β1, β2 where v1 = (v10, v11) and v2 = (v20, v21) are short vectors

precomputed as described in [56]. We can then write

d = v1,0v21 − v11v2,0

β1 = k
v21

d

β2 = −k
v11

d

and then round β1, β2 to the nearest integer. However, this approach requires a long

division by d, which is costly. In order to avoid it, simply precompute c1 = 2tv21

d
and

c2 = 2tv11

d
, rounded to the nearest integer, where t is the number of bits of the curve order

plus one. Then, for example, one can compute β1 = kc1

2t , since division by 2t is cheap.

The last bit discarded in the right shift by t decides if β1 should be rounded up or not.

This precomputation technique was hinted at in [70], but not actually described.

While the application of the GLV method for the ECDSA and BLS protocols is

straightforward, it is not that clear for the ZSS protocol, since it requires a fixed point

multiplication, usually computed with the comb method [98]. It can be done, however,

by an adaptation of the two-table variant of the comb method. In this approach, the

multiplier k is written as k = k0 + 2
|k|
2 k1 and certain multiples of the fixed point P are

precomputed in one table and multiples of 2
|k|
2 P are precomputed in a second table. This

approach is faster since kP can then be computed with an interleaving method, halving

the number of point duplications, but it requires twice the storage size. However, when

the GLV method is available, write k = k0 + k1φ(P ) as usual and the elements of the

second table can be computed from the first table using the endomorphism as needed.

Therefore, we achieve a faster multiplication with the same storage overhead.

5.3.5 Implementation on the ATmega128 8-bit processor

The MICAz Mote sensor node is equipped with an ATmega128 8-bit processor clocked at

7.3728MHz. The program code is stored in a 128KB EEPROM chip and data memory

is provided by a 4KB RAM chip [73]. The ATmega128 processor is a typical RISC

architecture with 32 registers, but six of them are special pointer registers. Since at

least one register is needed to store temporary results or data loaded from memory, 25

registers are generally available for arithmetic. The instruction set is also reduced, as
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only 1-bit shift/rotate instructions are natively supported. Bitwise shifts by arbitrary

amounts can then be implemented with combinations of shift/rotate instructions and

other instructions. In particular, shifts by 1, 4 and 7 bits can be implemented very

efficiently [9]. The processor pipeline has two stages and memory instructions always

cause pipeline stalls. Arithmetic instructions with register operands cost 1 cycle and

memory instructions or memory addressing cost 2 processing cycles [12]. Minimizing the

number of executed memory operations in low-level arithmetic is thus an evident necessity.

For the standardized binary field F2163 used in the ECDSA algorithm, we followed

the polynomial-basis implementation described in [9]. For the binary field F2353 used in

BLS/ZSS, we have selected the square-root friendly [13] trinomial f(x) = x353 + x69 + 1.

This pentanomial has two important features: modular reduction only requires shifts by

1, 4 or 7 bits which are fast in this platform; square-root extraction does not require

expensive shifts in processors with word size of 8 or 16 bits. The implementation of this

field closely follows [124], with the difference that the multiplier now first features an

instance of the Karatsuba algorithm before the direct López-Dahab method can be used.

This was required due to the increase in parameter size from 271 to 353 bits, quickly

exhausting the number of registers available for performing arithmetic.

For the prime curve used in BLS/ZSS, multiplication and squaring were implemented

with a hybrid comba approach as described in [143]. This method was specifically designed

to be implemented in embedded architectures with expensive memory acess. The multiple-

precision multiplication required for computing Montgomery reduction [117] was specially

optimized to take into account the sparse form of the prime modulus, where 6 of the 20

bytes required to store it are zero, allowing the elimination of several word multiplications

inside the reduction algorithm.

5.3.6 Implementation on the MSP430 16-bit processor

The mPlatform provides an MSP430F2418 16-bit processor clocked at 16 MHz. It contains

116KB of program flash memory and 8KB of RAM. The MSP430 family provides 12

general purpose registers and a small instruction set with 27 instructions including 1-bit-

only shifts (it is possible to use up to 4-bit shifts, but with the same speed of 4 distinct

shifts). In particular, 15-bit shifts can be implemented with the left-shift/rotate-through-

carry instructions. Operands may be located in registers or in memory. Since there is no

cache, determining the number of cycles taken by each instruction is simple (with a few

exceptions): one cycle to fetch the instruction, one cycle to fetch each offset word (if any),

one cycle for each memory read and one cycle for each memory write. Small constants

(−1, 0, 1, 2, 4 and 8) are generated by using some special registers and do not require

offset words when used.
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In the binary curve used for ECDSA, the standardized pentanomial f(x) = x163 +x7 +

x6 + x3 + 1 was used. Multiplication in F2163 was implemented with the LD algorithm,

while squaring was implemented with a 512-byte lookup table storing the square of all

8-bit polynomials in ROM. Field elements are stored as an array of n = 11 16-bit digits.

For the binary curve used in BLS/ZSS, we have chosen the slightly different trinomial

f(x) = x353 + x95 + 1 which allows reduction with only 1- and 2-bit shifts. Multiplication

was implemented with one level of Karatsuba, as described for the ATmega128.

For the prime curve used in BLS/ZSS, multiplication was implemented with the Comba

multiplication algorithm, using the MAC operation of the MSP430 hardware multiplier as

described in [60]. Modular reduction was implemented with the Montgomery algorithm

(also using the MAC operation), which avoids costly divisions. It was also possible to

speed up the reduction by exploiting the format of the prime modulus, since two of its 16-

bit digits are zero. Since the Montgomery reduction has the same structure of a multiple

precision multiplication (with one of the operands being the prime modulus), it is possible

to skip the steps involving multiplication by those zero digits.

5.4 Evaluation and Results

This section presents the performance and resource overheads of the Secure-TWS solution

implemented using the above parameters and compares these overheads for ZSS, BLS,

ECDSA, and Schnorr signature schemes on the MSP and AVR platforms. Specifically,

the measurements evaluate i) storage, ii) computation, and iii) communication overheads.

5.4.1 Storage

Table 5.2 summarizes storage requirements for the signature schemes. In general, ZSS

requires more ROM and global RAM, while BLS requires more RAM from the stack.

Note that virtually all the RAM memory is allocated from the stack, which means

that once cryptographic operations are completed the memory becomes available for the

sensor applications. Since this RAM is only used before sending a message, the memory is

available for data collection and processing operations at other times for the applications.

The ZSS protocol requires the largest global RAM space due to the precomputation

table for the fixed point multiplication. As a tradeoff, this table could be moved to ROM.

This also applies to the precomputed constants from the GLV method, which is the reason

ZSS requires more global RAM than ECDSA. The BLS protocol uses more stack RAM

due to the precomputation table used in random point multiplication.

The ZSS protocol also requires more ROM in comparison to BLS due to the inversion

modulo n present in the signature; this routine is fairly large and is not required for BLS.
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Memory Algorithm MSP AVR
Prime Binary Prime Binary

RAM (global)

ZSS 1.804 2.002 2.073 1.968
BLS 1.292 0.818 1.239 1.412

ECDSA 1.390 1.260 1.361 1.492
Schnorr 1.390 1.260 1.361 1.492

RAM (stack)

ZSS 1.438 2.596 1.471 2.280
BLS 2.086 2.830 1.942 2.533

ECDSA 1.923 1.834 1.783 1.326
Schnorr 2.010 1.860 1.811 1.356

ROM

ZSS 32.3 28.3 39.2 35.7
BLS 30.3 25.2 37.6 30.7

ECDSA 27.4 27.3 36.9 34.5
Schnorr 26.9 27.4 36.1 33.6

Table 5.2: Secure-TWS’s memory overheads (KB).
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Field Algorithm
MSP AVR

Time (ms) Energy (mJ) Time (ms) Energy (mJ)

prime

ZSS 229 6.8 710 18.0
BLS 302 9.0 1130 25.7

ECDSA 134 4.0 680 17.5
Schnorr 121 3.6 620 14.9

binary

ZSS 703 20.9 2490 59.8
BLS 391 11.6 1180 28.3

ECDSA 128 3.8 370 8.9
Schnorr 114 3.4 330 7.9

Table 5.3: Secure-TWS’s computations costs.

The same effect appears when comparing ECDSA and Schnorr.

5.4.2 Computation and Communication

Signature schemes based on ECC are often referred to as having similar computation

requirements for signature generation. Theoretically, this is not incorrect: the computa-

tionally intensive step that both schemes require is a point multiplication which in practice

incurs costs of the same order of magnitude. In practice, however, costs of the same order

are not necessarily equivalent, especially in resource-constrained sensor platforms. Having

implemented schemes on a real sensor platform allows measuring these differences in a

more precise manner.

Table 5.3 shows the computation costs for ZSS, BLS, ECDSA, and Schnorr signature

schemes. In our implementation, ZSS is faster than BLS due to the fixed point multipli-

cation using precomputation. ZSS is not faster than ECDSA since the latter i) makes use

of a special prime enabling fast reduction in the prime case and ii) uses a smaller finite

field in the binary case. Also, concerning ECDSA, its is worth noting that the binary

case faster than the prime case – due to the Koblitz curve optimizations –, but BLS and

ZSS are faster in the prime field – due to the smaller field required. The binary ZSS is

much slower than the binary BLS because it can not use the short exponent optimization.

Schnorr is slightly faster than ECDSA because the computation of a modular inversion is

not required. Also note that the results for the MSP and for the AVR are not equivalent,

since there are differences in clock speed and word size that favors the former – MSP is

usually 3 or 4 times faster than AVR.

Table 5.4, in turn, shows how signature length affects the communication energy cost

of transmitting the signature. The cost is higher for binary fields since the signature size

depends on the field size, and pairing-based protocols need a larger field in the binary case
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Field Algorithm
MSP AVR

Bit-length Energy (mJ) Bit-length Energy (mJ)

prime

ZSS 161 0.15 161 0.14
BLS 161 0.15 161 0.14

ECDSA 320 0.23 320 0.21
Schnorr 320 0.23 320 0.21

binary

ZSS 354 0.24 354 0.23
BLS 354 0.24 354 0.23

ECDSA 320 0.23 320 0.21
Schnorr 320 0.23 320 0.21

Table 5.4: Communication signature lengths and energy consumption for signature
schemes implemented in Secure-TWS

due to the small embedding degree of the supersingular binary curves [30]. It is worth

noting that the term “short signatures” is only applicable to ZSS and BLS when those are

implemented under prime fields – in fact, under binary fields, ZSS’ and BLS’ signature

sizes are larger even than ECDSA’s.

Finally, note that the energy consumption does not depend solely on the signature

length because of existing radio start-up energy costs. Radio costs are discussed in more

detail in [106].

5.4.3 Combined Resource Overhead

Overall costs are shown in Table 5.5. As can be seen from its data, the computation

energy dominates, while the size of the signature is not a significant issue.

In fact, the cost of computation is so much higher that even when the transmission

of the signed data to multiple recipients and over multiple wireless hops is considered,

the one time cost of computing the signature is still dominant for a reasonable number of

clients.

Based on these comparisons, it seems that Secure-TWS should be used with Schnorr

when only time and overall energy efficiency is required. Whenever there is the addi-

tional requirement of interoperability, ECDSA must rather be considered since it has also

performed well on the evaluated scenarios and is a standardized algorithm.

It is worth noting that ZSS and BLS may also be a good choice despite their results

in the evaluated scenarios. They indeed have smaller signatures and then are more ap-

propriate for scenarios where communication dominates energy consumption (e.g. for

underwater sensor networks [41]). Besides, BLS is able to aggregate signatures [29] and

then is also more adequate for environments where receivers are storage-constrained.
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Field Algorithm
MSP AVR

Energy (mJ) Energy (mJ)

prime

ZSS 6.95 18.14
BLS 9.15 25.84

ECDSA 4.23 17.71
Schnorr 3.83 15.12

binary

ZSS 21.14 60.03
BLS 11.84 28.53

ECDSA 4.03 9.11
Schnorr 3.63 8.15

Table 5.5: Energy overhead of different signature schemes in SecureTWS.

5.5 Related Work

Several works have addressed the problem of providing security in wireless sensor net-

works. Communication in WSNs exhibits a number of different patterns. To be effective

and efficient, a solution needs to be tailored to the particular communication pattern at

hand. This has lead to several methods for security for different scenarios:

1. Node to node 2 (e.g. [45, 51,101,126,129,161] among others);

2. Node to multiple nodes within same sensor network (e.g. [160]);

3. User to node (e.g. [129])

4. Node to user (e.g. [67]).

5. User to multiple nodes (e.g. [129]);

In this work we consider a communication pattern from a sensor node to multiple

Internet connected users.

This has not been sufficiently addressed before. The most closely related works are

those in one-to-many communication within sensor networks. Majority of these propos-

als make use of authenticated broadcasts, based on symmetric cryptosystems, such as

µTESLA [129]. The µTESLA approach has been studied and improved for specific con-

texts in follow up works (e.g [44,102,105,122]). A slightly different approach, specifically

targeted to local broadcasts, was proposed by Zhu et al. [161]. As discussed in Sec-

tion 5.2.1, those strategies, albeit very effective for the scenarios they are designed for,

are not adequate for authenticating node to multi-user interactions.

2Sometimes, this problem has been addressed indirectly, i.e., by providing a key agreement protocol.
Keys established can further be employed to generate message authentication codes
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The authentication in the reverse direction, from a user to multiple sensor nodes has

also been considered before. Ren et al. [133] have combined Merkle trees, Bloom filters,

and PKC-based signature schemes for this purpose.

Our implementation makes use of digital signature schemes based on PKC. PKC has

already been shown to be feasible in resource-constrained sensor nodes [68,100,108,151]).

For instance, Gura et al. [68] reported results for ECC and RSA primitives on the AT-

mega128L and demonstrated the advantages of ECC. We use ECC-based PKC in our

implementation. The ECC implementation in [68] is based upon arithmetic in prime

finite fields. Malan et al. [108], on the other hand, presented the first ECC implemen-

tation over binary fields for sensor nodes. We have used prime and binary fields in our

implementation, as discussed in Section 5.3.2.

Liu et al. [100] have previously demonstrated the ECDSA signature scheme in resource-

constrained sensor node platforms. We compare the ECDSA performance to BLS, demon-

strate its use for a shared sensor authentication scenario, and integrate it with end-to-end

network and application layer protocols from [47,132].

One of the signature schemes we have used in our proposal is the BLS, which is

based on Pairing-Based Cryptography (PBC), a relatively recent addition to ECC. PBC

has previously been proposed for use in WSNs [124, 151] but it has a high computation

overhead of several seconds. Szczechowiak et al. [151] developed an implementation of

pairings over binary and prime fields. Their implementation uses the Karatsuba’s multi-

plication method and takes 10.96s on an ATmega128L-based platform. This performance

has further been improved in [124], achieving the ηT pairing computation in 5.5s on the

ATmega128L by using López-Dahab field multiplication [104]. The same ηT has been

implemented in the work of Ishiguro et al [76] using ternary fields and evaluates pair-

ings in 5.79s. These works are complimentary to our implementation as in our approach,

the pairings are not required to be computed on the resource-constrained sensors, thus

avoiding the high computation overhead of PBC on the sensors.

5.6 Conclusion

We developed a solution, Secure-TWS, for authenticated communication for the scenario

of sensor nodes that are shared as a common deployed substrate among multiple appli-

cations and users both locally and through the Internet. Our implementation was tested

with existing web service layer and IP layer implementations for resource-constrained

sensor nodes, thus providing a useful system that can be used for deployment scenarios

where authentication is necessary.

We also discussed the numerous design choices that were considered in our imple-

mentation. We found that a digital signature-based approach is the most efficient choice
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for this type of interaction and then compared different digital signature schemes for re-

alizing it. The ZSS, BLS, ECDSA, and Schnorr schemes were the most desirable ones

and were implemented on two popular sensor platforms. This implementation provides

one of the first experimental characterization of ZSS’s and BLS’s resource overheads on

resource-constrained sensor nodes. The performance resource overheads were experimen-

tally measured and the factors involved in the choice among these schemes were discussed.

The implementation clearly shows that for this authentication scenario, computation costs

largely dominate over communication, as opposed to symmetric key-based schemes where

communication is the dominant cost.

The comparison also showed that, among the three schemes, Schnorr is fastest on

the AVR and MSP430 processors. In addition to providing a practically usable system,

the implementation effort has also provided valuable insights into relevant challenges and

design choices.

While this implementation has addressed the authentication problem, other security

aspects such as privacy may also be relevant in certain shared sensor node scenarios and

end-to-end solutions that are integrated with sensor node network stack implementations.

These may be addressed in future work.
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Chapter 6

Conclusions

The secure and efficient implementation of cryptographic schemes is an important area

of research and is critical for the successful deployment of cryptographic software in the

real world. Security against side-channel attacks is increasingly being considered essential

due to many existing feasible attacks. Efficiency is still important — despite the high

performance of modern CPUs — for multiple reasons such as: cryptographic schemes

are required in low-cost (and therefore low-performance) equipment such as smartcards

and wireless sensors; modern devices have limited battery life, and faster algorithms can

consume less energy; and high traffic servers may need to execute cryptographic schemes

as fast as possible to keep up with the number of client requests.

In the previous chapters, contributions to this subject were presented as a collection

of papers on which the author participated. These contributions were in Elliptic Curve

Cryptography, Pairing-Based Cryptography and authenticated encryption; and were con-

cretely implemented in the C and assembly languages and are available online.

In Chapter 2, the implementation of Elliptic Curve Cryptography (ECC) and Pairing-

Based Cryptography (PBC) for the MSP430 microcontroller was presented. New opti-

mizations for the finite field arithmetic were developed, taking advantage of the hardware

multiplier. The new MSP430X extension of the architecture was also studied and em-

ployed to successfully improve protocol timings. A technique for combining the GLV

method and the Comb point multiplication was also described, leading to improved tim-

ings for ECDSA and ZSS signing. The timings obtained for digital signature, short signa-

ture and key agreement are still the state of the art. Timings at 25 MHz include 0.144 s

for ECDSA signature, 0.271 s for ECDSA verification and 2.279 s SOK key agreement at

the 128-bit security level.

The implementation of authenticated encryption (CCM, GCM, SGCM, OCB3, MASHA,

Hummingbird-2) for the same MSP430 was then described in Chapter 3, establishing a

new state of the art. The AES accelerator present in some MSP430 devices was studied

109
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and used to greatly improve timings. To allow a fair comparison, an efficient software

implementation of the AES block cipher was also developed, focusing on 16-bit platforms.

Some interesting findings include CCM being faster than other schemes with the AES

accelerator, SGCM being faster than GCM; plain AES being faster than Hummingbird-

2; and the low performance of MASHA for small messages. With the AES accelerator,

throughputs obtained at 20 MHz include 6,915 Kb/s for AES-CTR, 4,391 Kb/s for CCM,

891 Kb/s for GCM; without the accelerator, 830 Kb/s for AES-CTR, 427 Kb/s for CCM,

509 Kb/s for GCM.

In Chapter 4, the ARM Cortex series of processors was the target platform; they are

widely used in mobile devices such as smartphones and tablets. The NEON engine — a

collection of registers and instructions supporting operations on multiple data with a single

instruction — was studied and its VMULL instruction was explored in order to develop an

efficient binary polynomial multiplier. This multiplier was then used to implement both

ECC and authenticated encryption with the GCM scheme. Improvement of the state of

the art was obtained for ECC over standard curves and for GCM, but not for non-standard

curves, where implementations over prime fields still hold speed records. Nevertheless, it

was possible to provide an interesting comparison between the two types of fields. The

work also paves the way for an efficient implementation on the new ARMv8 architecture

which will include a NEON instruction for polynomial multiplication; significant speed

improvements for both ECC and GCM are expected.

In Chapter 5, a concrete application of digital signatures (both regular and short,

pairing-based) was presented: Secure-TWS, a security solution which enables wireless

sensors to send data to clients through the web in an authenticated manner. Two plat-

forms were targeted: the AVR Atmel and MSP430 microcontrollers; I was responsible for

the latter implementation. Short and regular signatures were compared in terms of perfor-

mance and energy consumption. It was concluded that short signatures are not better in

this particular scenario since the energy saved in the transmission of the shorter signature

is less than the additional energy required by the short signature computation. However,

the paper remarks that short signatures are still useful in scenarios where communication

is very expensive, such as underwater sensor networks.

All code developed in this work is or will be made available in the RELIC library [7],

which is partly maintained by the author. This allows the reproduction of results by other

researchers.

Future work. The efficient and secure implementation of cryptographic schemes should

be a relevant topic for the foreseeable future. However, a complex topic is: which crypto-

graphic schemes should be implemented and deployed, and with which parameters? Re-

cently, documents on the programs carried out by the National Security Agency (NSA)
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leaked by a former contractor, Edward Snowden, confirmed the suspicion that the agency

enforced the inclusion of a backdoored pseudo-random number generator into one of the

NIST standards [14]. Along with many other leaks, this weakened the trust into american

cryptographic standards, which in turn is increasing the adoption of alternative schemes

and parameters. An example is Curve25519 [23], an elliptic curve which supports usual

public-key schemes which can be implemented in a secure and efficient manner, and

which is now the standard algorithm of the popular remote access software OpenSSH.

This rapidly changing landscape must be followed and studied in order to determine safe

and efficient schemes for future use.
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Henŕıquez. Faster implementation of scalar multiplication on Koblitz curves. In

Alejandro Hevia and Gregory Neven, editors, Progress in Cryptology — LATIN-

CRYPT 2012, volume 7533 of Lecture Notes in Computer Science, pages 177–193.

Springer Berlin / Heidelberg, 2012.

[7] Diego F. Aranha and Conrado P. L. Gouvêa. RELIC is an Efficient LIbrary for
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López. Faster explicit formulas for computing pairings over ordinary curves. In

113



114 BIBLIOGRAPHY

Advances in Cryptology — EUROCRYPT 2011, volume 6632 of Lecture Notes in

Computer Science, pages 48–68. Springer Berlin / Heidelberg, 2011.

[9] Diego F. Aranha, Leonardo B. Oliveira, Julio López, and Ricardo Dahab. Effi-
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Faster hashing to G2. In Selected Areas in Cryptography — SAC 2011, 2011.

[55] David Galindo, Rodrigo Roman, and Javier Lopez. A killer application for pairings:

Authenticated key establishment in underwater wireless sensor networks. In Cryp-

tology and Network Security, volume 5339 of Lecture Notes in Computer Science,

pages 120–132. Springer Berlin / Heidelberg, 2008.

[56] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multipli-

cation on elliptic curves with efficient endomorphisms. In Advances in Cryptology —

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 190–200.

Springer Berlin / Heidelberg, 2001.

[57] Brian Gladman. AES and combined encryption/authentication modes. http://

gladman.plushost.co.uk/oldsite/AES/, 2008.
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[103] Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over GF(2m)

without precomputation. In Cryptographic Hardware and Embedded Systems, vol-

ume 1717 of Lecture Notes in Computer Science, page 724. Springer Berlin / Hei-

delberg, 1999.
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