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Abstract

To keep up with an increasing demand for computational resources, IT companies need

to build facilities that host hundreds of thousands of computers, the data centers. This

environment is highly dependent on electrical energy, a resource that is becoming expen-

sive and limited. In this context, this thesis develops a global data center-level power

and performance optimization approach for Web Server data centers. It presents a power

measurement framework for commodity servers, develops empirical models for estimating

the power consumed by Web servers, and implements one of the global power optimization

heuristics on a state-of-the-art, high-density SeaMicro SM15k cluster by AMD.

The power measuring framework is composed of a custom made board, which is able

to capture the power consumption; a data acquisition device that samples the measured

values; and a piece of software that manages the framework.

We show a novel method for developing full system Web server power models that

prunes model parameters and reduces non-linear relationships among performance mea-

surements and system power. The Web server power models use as parameters perfor-

mance indicators read from the machine internal performance counters. We evaluate our

approach on an AMD Opteron-based Web server and on an Intel i7-based Web server.

Our best model displays an average absolute error of 1.92% for the Intel i7 server and

1.46% for AMD Opteron as compared to actual measurements, and 90th percentile for the

absolute percent error equals to 2.66% for Intel i7 and 2.08% for AMD Opteron.

We deploy the global power management system in a state-of-the-art SeaMicro SM15k

cluster. The implementation relies on the concept of Virtual Power States, a combina-

tion of CPU utilization rate to the P/C power states available in modern processors,

and on our global optimization algorithm called Slack Recovery. We also propose and

implement a novel mechanism to control utilization rates in each server, a key aspect of

our power/performance optimization system. Experimental results show that our Slack

Recovery-based system can reduce up to 16% of the power consumption when compared

to the Linux performance governor and 6.7% when compared to the Linux ondemand

governor.
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Resumo

Para acompanhar uma demanda crescente pelos recursos computacionais, empresas de TI

precisaram construir instalações que comportam centenas de milhares de computadores

chamadas centro de dados. Este ambiente é altamente dependente de energia elétrica,

um recurso que é cada vez mais caro e escasso. Neste contexto, esta tese apresenta uma

abordagem para otimizar potência e desempenho em centro de dados Web. Para isto,

apresentamos uma infraestrutura para medir a potência dissipada por computadores de

prateleiras, desenvolvemos modelos emṕıricos que estimam a potência de servidores Web

e, por fim, implementamos uma de nossas heuŕısticas de otimização de potência global

em um aglomerado de nós de processamento chamado AMD SeaMicro SM15k.

A infraestrutura de medição de potência é composta por: uma placa personalizada,

que é capaz de medir potência e é instalada em computadores de prateleira; um conversor

de dados analógico/digital que amostra os valores de potência; e um software controlador.

Mostramos uma nova metodologia para o desenvolvimento de modelos de potência

para servidores Web que diminuem a quantidade de parâmetros dos modelos e reduzem

as relações não lineares entre medidas de desempenho e potência do sistema. Avaliamos

a nossa metodologia em dois servidores Web, um constitúıdo por um processador AMD

Opteron e outro por processador Intel i7. Nossos melhores modelos tem erro médio

absoluto de 1,92% e noventa percentil para o erro absoluto de 2,66% para o sistema

com processador Intel i7. O erro médio para o sistema composto pelo processador AMD

Opteron é de 1,46% e o noventa percentil para o erro absoluto é igual a 2,08%.

A implantação do sistema de otimização de potência global foi feita em um aglomerado

de nós de processamento SeaMicro SM15k. A implementação se baseia no conceito de

Virtual Power States, uma combinação de taxa de utilização de CPU com os estados de

potência P e C dispońıveis em processadores modernos, e no nosso algoritmo de otimização

chamado Slack Recovery. Propomos e implementamos também um novo mecanismo capaz

de controlar a utilização da CPU. Nossos resultados experimentais mostram que o nosso

sistema de otimização pode reduzir o consumo de potência em até 16% quando comparado

com o governador de potência do Linux chamado performance e em até 6,7% quando

comparado com outro governador de potência do Linux chamado ondemand.
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À minha namorada Junielles, que esteve ao meu lado no final deste trabalho, que

teve toda a paciência do mundo em todos os momentos e que me incentivou até o último
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orgulho de ter convivido com todos vocês.
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Chapter 1

Introduction

The shift towards increasing demand in computational resources has forced companies to

build facilities hosting hundreds of thousands of computers called data centers. A vari-

ety of services, from search (e.g. Google and Yahoo), to e-commerce (e.g. Amazon and

e-Bay), to stock trading (e.g. Fidelity and e-Trade) and media streaming (e.g. YouTube)

rely on the computing capabilities of data centers. This comes at a price of higher op-

erational costs which include the management of these installations, the electricity costs,

and environmental impacts due to the increased power consumption.

The power associated with the IT equipment in a data center includes the power

of the servers, the power required by the cooling, and auxiliary equipment (e.g. power

distribution units, switching, back up power). The power consumption of the actual

server drives the power needs for auxiliary equipment and cooling; thus, reducing server

power has a direct effect on reducing data center power as a whole. Futhermore, saving

energy implies in reducing costs because the total cost of ownership of a data center is

proportional to its power consumption.

In 2005, the energy consumption of total servers corresponded to about 0.6% of total

electricity consumed in the USA. If auxiliary equipment was taken into account, this share

increases to 1.2% [36]. In 2010, the electricity used in US data centers accounted for

between 1.7 and 2.2% of total electricity use [37]. In this context, power-aware computing

has emerged as a concern in data centers.

In 2009, Schulz claimed that 50% of electrical power was spent on cooling in a typical

data center [62]. However, on modern data centers, this problem is solved by building the

facilities in cold places such as arctic region or close to rivers where they can use water

to cool servers. Data-centers efficiency can be measured using a metric called Power

Usage Effectiveness (PUE), which is calculated by dividing the total electric power used

in a facility by the power brought to the computing units (e.g. computers, networking

equipment). By 2006 the PUE of 85% of data centers was about 2, that is, for each
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watt used for computation other additional two watts were spent by cooling and auxiliary

equipments [46]. By the end of 2010, Google’s data centers achieved an overall PUE of

1.1 [61] a huge improvement.

The share of computation power to total is increasing while the contribution of auxil-

iary equipment for total power is being reduced. Therefore, two important ways to reduce

computation power are as follows: building energy efficiency into the design of system and

components; and adaptively controlling the power consumption of systems in response to

fluctuations in environment conditions or workload. The former method includes circuit

techniques to reduce dynamic power such as clock gating, where the clock signal to inac-

tive processor parts is disable; and adding multiple voltage and frequency levels in system

components. The latter approach requires intelligent methods to switch servers on and

off and to choose the operating voltage and frequency levels in order to optimize power

and performance. This thesis is inserted in the last class as it develops and implements

power optimizations on Web Server clusters.

Current server CPUs rely on a hierarchy of states controlled by the operating system,

middleware, and hardware, in order to trade off power and performance at runtime. These

states are typically called S-States, C-States and P-States [13,49]. S-States determine the

overall system power state, such as sleep, or hibernate. C-States are power-saving states,

ranging from C0 to Cn, with C0 being the active state, and the others being idle states

with increasing power savings and increasing time overhead in switching among them. P-

States are different stages of processor frequency and voltage which can be used to trade-off

performance and power consumption within active states. The ACPI [2] standard provides

platform-independent interfaces for accessing the state tables and for applying power

management policies as determined by the OS or upper software layers. For example,

according to ACPI tables found in operating systems the Intel i7 860 processor cores have

14 P-states, or 14 different levels of frequency and voltage. While these internal control

mechanisms are very useful to optimize power on a single CPU, they result in a local

optimization.

Figure 1.1 illustrates the high-level functionality of our system. It consists of two parts:

a data center and a power/performance manager. The data center has a monitoring

system that captures the sensor data, that is, readings of the power and performance

values of each core in the data center. The manager takes into account any external

policy and the input workload, and determines on-the-fly the best configuration of power

states for all cores (i.e., which core needs to be shut down, or brought up, or have its

power state or utilization rate changed). It then passes this new configuration and the

new workload distribution back to the data center, which is then reconfigured while the

workload is running. Our methodology contrasts to prior works as it is the first to relate

the concept of utilization rate to the P/C power states to develop a global optimization
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1.1 Contributions

This thesis presents a custom-made power measuring infrastructure that is able to measure

power on commodity servers; it investigates Web Server power modeling techniques and

develops accurate empirical models for estimating the power consumed by Web Servers

considering all their major parts, such as processors, disk, memory, network, and other

motherboard components. The power of processors is characterized for their different

P-states and models are developed for each P-state. It applies correlation-based feature

selection (CFS) [27] to prune correlated model parameters and k-means clustering to

soften non-linear relationship among server measurements and power consumption on

linear power models improving model accuracy. We developed a global data center-

level optimization approach for Web Server clusters by looking at the performance and

power, simultaneously, of all CPU cores and then deciding what should be the P-state and

utilization rate of each core. As part of the implementation of our optimization algorithm,

we present an original mechanism to control the CPU utilization rate of each server.

In summary, the contributions of this thesis are as follows:

• A custom-made power measuring infrastructure that can be installed on commodity

servers.

• Accurate empirical models for each P-state that are able to estimate the power

consumed by Web Servers considering all their major parts.

• A Web Server power characterization for their different P-states.

• Application of a correlation-based feature selection (CFS) algorithm to prune cor-

related model parameters.

• k-means clustering to soften non-linear relationship among server measurements and

power consumption on linear power models.

• Deployment the Slack Recovery algorithm [6], on a real cluster, composed of 25

SeaMicro nodes to minimize power under a minimum performance requirement.

• A novel mechanism to control CPU utilization rates in each server, a key aspect on

our power/performance optimization system.

This thesis resulted in the following publications:

• Leonardo Piga, Reinaldo A. Bergamaschi, Rodolfo Azevedo, and Sandro Rigo.

Power Measuring Infrastructure for Computing Systems. Technical report, Insti-

tute of Computing, University of Campinas, 2011.
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• Leonardo Piga, Reinaldo A. Bergamaschi, Felipe Klein, Rodolfo Azevedo, and San-

dro Rigo. Empirical Web Server Power Modeling and Characterization. In IEEE

International Symposium on Workload Characterization (IISWC), 2011, 2011 [50]

• Reinaldo A. Bergamaschi, Leonardo Piga, Sandro Rigo, Rodolfo Azevedo, and Guido

Araujo. Data Center Power and Performance Optimization through Global Selec-

tion of P-States and Utilization Rates. Sustainable Computing: Informatics and

Systems, 2012 [6]

We have two papers submitted to Journals:

• Leonardo Piga, Reinaldo A. Bergamaschi, and Sandro Rigo. Empirical and An-

alytical Approaches for Web Server Power Modeling. In ‘‘Jornal of Cluster

Computing’’.

• Leonardo Piga, Reinaldo A. Bergamaschi, Mauricio Breternitz, and Sandro Rigo.

Adaptive Global Power Optimization for Web Servers. In ‘‘Jornal of Supercom-

puting’’.

In addition, during the development of this thesis, two other side-related papers were

published:

• M. Breternitz, K. Lowery, A. Charnoff, P. Kaminski, and L. Piga. Cloud Workload

Analysis with SWAT. In 2012 IEEE 24th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), 2012 [12]

• Leonardo Piga, Gabriel F. T. Gomes, Rafael Auler, Bruno Rosa, Sandro Rigo, and

Edson Borin. Assessing Computer Performance with SToCS. In Proceedings of the

4th ACM/SPEC International Conference on Performance Engineering, ICPE ’13,

2013 [52]

1.2 Organization

This thesis developed power and performance policies to reduce the energy consumption

on Web data centers. In order to study this problem, we first needed to measure server

power. Hence, we studied alternatives to measure server power and developed a custom-

made power measuring infrastructure, presented in Chapter 3. Since the availability of

power measuring infrastructure was limited, Chapter 4 presents techniques to estimate

Web Server power by using available system level statistics. These models were used

on our simulation environment to develop and test the power and performance policy
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The next three tasks were to develop the data center simulator, develop the power-

aware optimization algorithms, and test the power-aware policies in a simulation environ-

ment [(III,IV,V) in Figure 1.2]. These tasks were developed jointly with other members

of our research group. We published a paper on “Sustainable Computing: Informatics

and Systems Journal” describing the simulator and the results [6].

Chapter 4 describes the development of accurate power models [(VI) in Figure 1.2].

These models can be used to estimate the power of the system on-the-fly on clusters that

do not have embedded power meter mechanisms. A previous version of this work was

published as a short paper in the “IISWC 2011 Conference” [50]. An updated version of

this work is under review for the “Jornal of Cluster Computing”.

Tasks VII to XI are described in Chapter 5. A version of this work is under review

for the “Jornal of Supercomputing”. The cluster monitoring system [(VII) in Figure 1.2]

is a client-server system that collects performance counters and system level statistics

and assigns frequency and utilization rate to the Web Server to implement the “Virtual

Power States” (frequency states plus a utilization level) see [6]. The system architecture

overview is described in Section 5.2.

To perform the control of the Web Server CPU utilization [(VIII) in Figure 1.2] we

developed a controller mechanism based on modern control theory that used a feedback

control loop. This mechanism adjusted the weights of HAProxy, an open-source proxy

implementation. The description of the utilization controller is found in Section 5.4.

The “Integration” [(IX) in Figure 1.2] task consisted of combining the power-aware

load-balancing heuristics with the cluster monitoring system and the mechanism for con-

troling the Web Server utilization.

The next task was to deploy the system on a real environment [(X) in Figure 1.2].

We ran our infrastructure on a SeaMicro SM15k cluster. This cluster virtualizes the I/O

and has special fabric to interconnect computing nodes. This results in a high density

cluster that is target for cloud computing applications. Finally, we ran the experiments

and report the results.

In summary, the remainder of this thesis is organized as follows:

• Chapter 2 presents the related works. They are divided into five categories. We give

special attention to the works that presents power models and power optimization

under performance requirements.

• Chapter 3 presents our custom-made power measuring infrastructure used to mea-

sure power during the power modeling phase of this thesis. It also describes the

the Intel Running Average Power Limit (RAPL) interfaces [29,59] used to measure

CPU power on the SeaMicro cluster.
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• Chapter 4 describes the Web Server power modeling techniques. The models are

developed incrementally starting from a linear-regression-based power model and

ending with a model that uses K-means clustering.

• Chapter 5 presents the implementation of the Slack Recovery algorithm on a SeaMi-

cro cluster along with a CPU utilization control mechanism.

• Chapter 6 summarizes the results of this thesis and presents possible future works.



Chapter 2

Related Work

The thesis related works can be divided in five major areas. The first area is related to data

center provision. The second area describes the studies in Web Server characterization.

The third area presents the papers that optimize performance under a given power cap.

The fourth area shows the studies that optimize power under performance constraints,

which could be either at the microarchitectural level or system level. The fifth area

presents the power modeling related works. This thesis focuses on the last two areas

as it studies Web Server power modeling techniques that can be used to derive Web

Server power models on systems that do not have embedded power meter facilities and

implements a power optimization heuristic on a modern Web Server cluster.

2.1 Data Center Provision

There are some works that focused on resource planning. Fan et al. [23] characterized

the power consumption of a data center by breaking up the power consumption into

components such as computing units and cooling. They developed a model to improve

the data center power provision.

Filani et al. [25] focused on increasing the compute density by changing the server

provision policy. They used a closed-loop control algorithm to perform power manage-

ment, by acting on processor states and memory in order to comply with certain policy

directives dictated by the upper level software.

2.2 Web Server Characterization

The work described by Bohrer et al. [11] measured and analyzed the power in a single Web

Server using a specific processor type and developed a power simulator for it using static

9
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workloads. They did power characterization of Web Servers considering a hypothetical

support to DVFS (Dynamic Voltage and Frequency Scaling). They developed a Web

Server simulation tool which could predict the power consumption based on Web requests

and CPU cycles. The adopted workload was generated from LOG files and static Web

content. Such workload was not compatible with modern Web content, which heavily

rely on dynamic content for rendering the pages. In this thesis, we also do power and

performance characterization of Web Servers; however, our workload has dynamic content.

We used SPECweb2009 [64] and the CloudSuite Web Server benchmark, which runs a

Web 2.0 web-based social calendar called Olio [24].

2.3 Performance Optimization under a Power Cap

Other works intend to maximize performance given a power cap. Rajamani and Le-

furgy [53] investigated the problem of scheduling service requests among servers in a

cluster in order to minimize energy consumption known as Power-Aware Energy Distri-

bution (PARD). The authors evaluated the influence of the system-workload context on

energy-saving schemes using a simple on/off model for estimating the energy consumption

of the cluster. In Chen et al. [18], on/off node optimizations were applied in a multiple-

application data center. The goal was to determine how many servers and their operation

frequencies should be used for each application. All servers ran the same application at

the same frequency.

Kant et al. [33] developed a simple task model based on QoS requirements and pre-

sented Willow, a simple adaptative control scheme for energy-adaptive computing (EAC)

that considered power and thermal constraints simultaneously. They discussed three sce-

narios for applying their model: 1) Cluster EAC, where clients submit requests that

required significant computation on the cluster side; 2) Client-Server EAC, where observ-

ing QoS was an important requirement; and 3) Peer-to-Peer EAC, where devices changed

information through a network.

Winter et al. [66] presented scheduling and power management algorithms for hetere-

geneous many-core architectures. Cochran et al. [19] presented a control techinique to

choose CPU voltage and frequency states in an optimal way in order to maximize per-

formance under a power budget. Shen et al. [63] developed an operating system feature

that enabled request level power management. Meisner et al. [48] evaluated the effects

of switching CPU states to idle states for a short period of time on online data-intensive

services (e.g. web search). The problem was more complicated than other Web work-

loads, since it required fast response time and the data were distributed across the nodes

unabling nodes shutdown.
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2.4 Power Optimization under Performance Thresh-

old

There are works focused on microarchitectural power optimization. The in-core power

management algorithms in Isci et al. [30] dynamically controled the processor parameters

(frequency, voltage and fetch throttling) in order to optimize power and/or performance

according to on-the-fly workloads. They reported up to 38% of power savings with 17.7%

in performance degradation.

A survey of power management techniques developed to explore and optimize the

power–performance trade-off in data centers can be found in Bianchini and Rajamony [10].

There are works that tried to reduce the power consumption maintaining a certain

performance level. The work in Chase et al. [16] developed an agent-based approach,

implemented in the middleware, to turn off servers under low-load conditions while main-

taining the expected (or contracted) Service Level Agreements (SLAs). Their approach

was based on turning servers on and off and distributing the work among the powered-up

servers. They could reduce energy in up to 29% for a Web workload from the 2000s.

In Kusic et al. [38], dynamic resource provisioning was used in a virtualized computing

environment to reduce power consumption while maintaining SLA. This work accounts

for the switching costs incurred while provisioning (turning on/off) virtual machines and

explicitly encoded the corresponding risk in the optimization problem. They reported

26% of power savings.

In Elnozahy et al. [21], five cluster-wide power management policies were evaluated.

The authors applied DVFS and node on/off techniques to reduce power consumption

during periods of reduced workload. The policies assumed that the workload was balanced

among cluster nodes. Policies include: independent voltage scaling, where each node

managed its own power consumption; coordinated nodes’ voltage scaling actions; turning

nodes on/off so the minimum number of servers required by the workload was kept active;

and combinations of these techniques. The authors concluded that between 33% and 50%

of cluster energy could be saved by applying the combined policy, when compared to a

cluster that is not power managed.

In their follow up research [22], the authors used DVFS and request batching (where

the servicing of incoming packets was delayed until a specified batching timeout was

reached) management mechanisms to propose three policies to reduce energy consump-

tion in Web Servers. They showed that DVFS was better suited for moderately intense

workloads, while batching was better for low-intensity workloads. They also proposed a

combined policy that reached 17% to 42% energy savings in all workloads, compared to

a base model with no optimization. A feedback-driven control framework was used to

adjust the policiy parameters.
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Bertini et al. [8] presented an optimal linear programming-based solution to the prob-

lem of dynamic cluster configuration combined with the use of feedback control theory

to control the QoS (Quality of Service) and dynamically select which servers turn on/off

or their operating frequencies. Two control theory schemes were compared, single-input

single-output (SISO) controller and single-input multiple-output (SIMO) controller. The

authors showed that the SISO approach did not scale as an online solution, so they ap-

plied a table-based offline solution. On the other hand, the SIMO approach ran with

N-independent controllers, at a cost of loss of optimality. They reported 40% in power

reduction. Afterwards, the authors revisited the problem of energy consumption mini-

mization with QoS guarantees, but this time focused on an e-commerce application and

its control loop, presenting a new metric for QoS [7].

Abbasi et al. [1] proposed TACOMA (two-tier architecture for cooling-computing en-

ergy managements), a two-tier Internet data center scheme. The first tier adjusted the

number of active servers; the second tier predicted the workload arrival rate. The algo-

rithm evaluation was based on web traces and they reported energy savings of up to 40%

considering compute and cooling power.

Several of these works reported significant savings (30% or more). Their contributions

were undoubtedly relevant for the CPU architectures and data center power management

techniques at the time. However, the state-of-the-art today is very different. CPU power

(both active and idle) in modern architectures (e.g., Intel Ivy Bridge) is considerably lower

than it was 5 years ago; thus, reducing significantly the gains that simple On/Off or DVFS

techniques can achieve. In addition, the power/performance management techniques in

today’s data centers (e.g., Linux ondemand governor [14]) are much more effective than

the baseline data center approaches used in these previous works. In this thesis, we

investigate power and performance trade-offs for Web Servers on a state-of-the-art, high-

density, power-efficient SeaMicro SM15k cluster by AMD and we were able to reduce

power consumption in up to 16% even in such a power efficient cluster.

2.5 Power Modeling

Applying power optimization requires, maintaining an average power budget, asserting

peak-power constraints, or optimizing performance under a power cap require monitoring

the power consumption. Previous works developed linear power models based on system

performance measurements, which have shown suitable for CPU-bound workloads [5,9,20,

31,32]. They have used Performance Monitoring Counters (PMC) as proxies to estimate

CPU power.

Bellosa [5] showed that CPU power correlates to floating point operations, L2 cache

references, and memory references. His work was one of the first to propose the use of
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PMCs to create an energy-aware scheduler.

Joseph et al. [32] introduced a model capable of estimating the power consumption

for the processor and its sub-components by using PMCs and some heuristics based on

capacitance models. Though accurate, such information might not be available for all

processors. Isci et al. [31] introduced a model for the Pentium IV processor that did not

rely upon circuit-level information. However, their model required more then 15 PMCs,

even though such a large number of counters is not usually available at the same time on

most modern processors.

Contreras and Martonosi [20] used PMCs as inputs to a linear model for an Intel

mobile processor at three voltage and frequency levels. Their model was validated with

benchmarks representing embedded systems. Bertran et al. [9] used PMCs to build power

models for contemporary Intel multi-core processors considering all voltage and frequency

levels available.

Chen et al. [17] presented performance and power models in a multi-programmed

multi-core enviroment by addressing the problem of time sharing. The performance model

was based on the cache access pattern. They proposed a power model using neural

network and another using linear regression on CPU performance counters. The reported

prediction error was 3.2% for the former and 3.8% for the later. Though accurate, they

only evaluated their models for CPU-intensive benchmarks (i.e. SPECcpu 2000).

Lewis et al. [41] also proposed power models using PMCs to enable dynamic control of

thermal footprint. They modeled the computer using system of deterministics differential

equation whose solution was estimated via time-series approximation. Since their model

used a time series, it needed to keep previous samples to estimate future values. They

reported prediction error between 1.6% and 3.3% for both systems that they evaluated.

In our best Web Server Power model, the prediction error is 1.92% for the Intel i7

server and 1.46% for the AMD Opteron. Therefore, our proposed technique is equivalent

in terms of accuracy to the other alternatives [17,41].

The works listed so far focused mainly on CPU benchmarks, whose applications fully

utilize the processor. Because Web Servers typically do not run CPU-bound workloads,

due to the high number of I/O operations performed by such servers, the shared resources

are more likely to be used more often resulting in non-linear effects between power and

system measurements. Koller et al. [35] tried to deal with this issue by aggregating appli-

cation parameters, such as throughput, to the power model. They reported improvements

of up to 10 times over a simple power model that only uses CPU utilization.

Rivoire et al. [56] created JouleSort a benchmark that characterized energy efficiency

to evaluate systems. It was a full-system benchmark that specified a workload, a metric

to compare systems, and rules for running it. They continued the research on metrics

and models and compared several high-level full-system power models [57]. They used a
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variety of workloads and architectures and also observed non-linear effects among CPU

power and performance measurements due to bottlenecks on shared resources.

Another component that should be taken into account when dealing with Web Servers

is the hard disk drive. Carrera and Bianchini [15] proposed the usage of disks with

multiple rotation speeds to reduce the energy consumption in data centers. The authors

used power values from data-sheets instead of actually measuring power. They showed

that SCSI hard disks could account for up to 24% of the overall energy consumption of

a server. Besides, if a server was built with a higher number of disks, this fraction could

increase to 77%. In our experiments with Web Servers, we observed that hard disk power

account for up to 20% but did not exhibit a wide variation allowing this power component

to be modeled as a constant value.

Zedlewski et al. [67] developed a tool called Dempsey, which simulated disk operations

in order to estimate the power consumption for a given workload. Their model was built

with real power measurements. However, the chosen modeling parameters were based

upon disk information that might not be available for all classes of hard disks.

2.6 What is different in this work

This section describes the contributions of this work to the state-of-the-art in in Web

Server power modeling techniques and in the Web Server Power and Performance opti-

mization field.

2.6.1 Web Server Power Modeling

Most contemporary high-end processors feature sensors for monitoring energy consump-

tion [54]; however, in commodity processors, which are prevalent in Internet-based data

centers, this is typically not the case. Nevertheless, these processors usually feature event

counters that can be used to estimate power consumption. For example, the second-

generation Intel Core microarchitecture uses performance events as proxies of power con-

sumption [60]. The technique is based on reading hundreds of internal performance coun-

ters and on applying activity energy costs to each event to estimate power. Previous

studies have used these probes to indirectly estimate power consumption [5, 9, 20, 31, 32].

Their usual approach is to derive linear power models based on the usage numbers col-

lected for the processor sub-components (e.g. caches and branch predictor).

This work advances the state-of-the-art in this area by presenting power models for two

systems considering all their major parts (i.e. processors, disks, network, memory, and

other motherboard components) and all its software stack (when running as Web Servers)

for their different CPU core voltage and frequency states (also known as P-states). These
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models can be used for commodity systems for on-the-fly power-saving algorithms, and

among other applications, they can also be used by simulators which evaluates the power

behavior of workloads. Our models have been used in a data center simulator to guide

the implementation of power/performance optimization algorithms through voltage and

frequency state assignment [6].

The power models are developed by using different methods, such as, linear regression,

cluster analysis, and machine learning techniques having hardware events (e.g. number

of instructions, unhalted cycles, cache misses) and system level measurements (e.g. page-

faults, number of context switches) as proxies for power. However, linear power models

based on system measurements and performance counters exhibit issues that need to be

investigated: excess of parameters and non-linear relation among power and the associated

factors (as is the case for I/O bound workloads).

The fewer the number of parameters of a model the faster the power estimation; there-

fore, we prune model parameters by using a correlation-based feature selection (CFS) [27]

algorithm for choosing a subset of them that is most correlated to the power measure-

ments. This approach has reduced the number of parameters preserving accuracy and

precision when compared to a model using all the parameters.

To allow the use of power models based on linear regression on these types of workloads,

we use k-means clustering to group up the performance measurements. Linear regression is

applied on each cluster to dismiss the non-linear relationship among server measurements

and power consumption improving model precision when compared to the other models.

From our knowledge, this is the first work that applies CFS and k-means clustering to

improve linear regression-based power models for computing systems.

2.6.2 Web Server Power and Performance Optimization

Our approach differs from previous works as it is the first to combine the notion of

utilization rate to the P/C power states available in modern processors to define what we

called Virtual Power States. This enabled us to develop a global optimization approach

by looking at the performance and power of all cores in a data center simultaneously, in

order to achieve a global data center-level optimization of power and performance.

This work is part of a project that presents a framework for modeling and simulating

the power and performance behavior of complete data centers composed hierarchically

of racks, nodes (or blades), CPUs and cores. Based on the concept of Virtual Power

States, two algorithms for selecting the states in each core in order to optimize the power

and/or performance of the data center were developed. The first algorithm was based on

Integer Linear Programming (ILP) and was able to find optimal solutions for a limited-size

data center (due to runtime limitations). The second one was a Slack Recovery heuristic
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algorithm which can find near optimal solutions for all cases (when compared to the ILP

results).

In this work, we developed power optimization techniques that can show significant

improvements over best-of-breed, production-level dense data centers, using the latest

CPU architectures. We took the concepts of Virtual Power States (VPS) and the Slack

Recovery algorithm and applied them to a modern cluster architecture composed of 25

nodes of SeaMicro servers [3], a state-of-the-art server architecture by AMD.

Several practical implementation aspects could be overlooked in a simulation environ-

ment. In this work, we implemented everything in the actual cluster; thus, demonstrating

not only that the approach is scalable, but can achieve significant savings even consid-

ering the extremely power-efficient baseline starting point, such as the SeaMicro cluster

using Intel’s Xeon processors (Ivy Bridge architecture), running Linux ondemand governor

power management.

As part of the power optimization algorithms, we developed a novel mechanism to

control the CPU utilization rate of each server, a key aspect of our approach.

To the best of our knowledge, this is the first work to implement and evaluate pow-

er/performance optimization algorithms in such high-density cluster architectures (e.g.,

the SeaMicro SM15k cluster). We believe the results are general and applicable to a wide

range of data center architectures.



Chapter 3

Power Measuring Infrastructure

There are several methods to measure the power delivered to a given component. Some

approaches use expensive intelligent power supplies or motherboards that have embedded

power meters [39]. In other works [11,67], multimeters connected in series with the circuit

are used for current measurements. This approach might add noise into the circuit and

not be suitable for high sampling rates. This Chapter presents our power measuring

infrastructure used to develop the Web Server power models described in Chapter 4. It

also presents details about the Running Average Power Limit (RAPL) interfaces [29, 59]

used to measure the CPU power on SeaMicro SM15k cluster.

3.1 Custom-made board

To measure the power consumption of a server, we designed a custom-made measuring

device similar to the infrastructure described in other works [45, 51] as shown in Figure

3.1. To measure the power consumption of a server, we connect sensors in series with the

positive power lines that measures the current that flow across the wires. In a regular

server that uses the ATX interface, the memory banks, the CPU, and the chipset are

powered by the 3.3V, 5.0V and 12.0V rails. The hard-disk has an exclusive power con-

nector. According to the ATX specification, 11 wires need to be monitor, plus two wires

that feed the CPU, and two that feed the hard disk. Thus, 15 current transducers (LTS

25-NP [40]) in series with the power lines are used so as to convert current to measurable

voltage. Given that the voltages of these wires are known upfront, by measuring the

currents that flow through them, it is possible to calculate the power consumption, which

is the product of voltage and current.

We used the LTS sensors because they present high accuracy (±0.2%) and linearity of

less than 0.1%. The LTS 25-NP operation mode is described in the graph of Figure 3.2.

For this sensor, IP max is 80A and IP N depends on the connection of the sensor sideline
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and [IP N , IP max], however these values are not observed along a large set of experiments.

Hence, the equations are for the interval [−IP N , IP N ].

j aj bj j aj bj

0 20.151 50.130 8 20.187 50.209
1 13.399 33.390 9 13.341 33.175
2 13.340 33.259 10 13.264 33.015
3 13.369 33.305 11 13.320 33.123
4 13.317 33.101 12 13.396 33.293
5 13.329 33.165 13 13.302 33.073
6 13.493 33.586 14 13.435 33.476
7 13.456 33.553

Table 3.1: Parameters of the Sensors

3.3 Monitoring software

This section presents the application software that runs on a remote computer identified

as “Monitor” in Figure 3.3. The application that interacts with the data acquisition

system works based on TCP/IP messages and is composed of seven main steps. Figure

3.4 illustrates the control flow. The first step is the initialization which opens a TCP/IP

socket and listens for connections. Only one client is allowed at a time. The second step

waits for Start messages. The third step is responsible for recognizing the measuring

type mark, which determines the action taken when a sample is read. Then, the program

flow is split up into two parts, one responsible for reading and processing the samples and

other that waits for Stop messages. After receiving a Stop message, the reading process

halts, the two parts are joint, and the application waits for the next message. If the next

message is a Start the process restarts from the third step. If it is a Quit message, the

application executes the termination steps and halts.

A starting message is followed by a measuring type mark. It determines how the

samples should be stored. Some experiments need only a summarized result such as

mean, minimum value, maximum value, others may need to store all samples. Currently,

the application has four ways of processing the samples:

1. Read the samples, convert the sampled current values into power values, group them

into CPU, HD, and miscellaneous components power, and write them into a binary

file.
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Figure 3.4: Application Control Flow

2. Read the samples, convert the sampled current values into power values, group

them into CPU, HD, and miscellaneous components power, compute the

average, checks for the minimum and the maximum values. After receiving a Stop

message, these statistics are sent to the client over TCP/IP messages.

3. Read the samples, convert the sampled current values into power values, for each

sensor, compute the average, checks for the minimum and the maximum values.

After receiving a Stop message, these statistics are sent to the client over TCP/IP

messages.

4. Read the samples, convert the sampled current values into power values, store the

latter into a big buffer. After receiving a Stop message, the buffer is sent to the

client over TCP/IP.

These operation modes are sufficient for most of the experiments that we need. For

the last mode, we developed a converter that enables the signals to be displayed in a

waveform. The program we used to do this operation is the GTKWave [26]. Figure 3.5

shows a period of time when the computer is in idle mode. If we observe the CPU signals,

we can see that it displays bursts of power in intervals of 4ms. This corresponds to the

system tick clock cycle which is 250Hz. This mode is interesting for using when seeking

patterns along the time line.
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Figure 3.5: Waveform when the computer is in idle

3.4 Intel Running Average Power Limit Interfaces

Another approach used for measuring CPU power is the embedded power estimator

counters available on modern architecture such as Intel Sandy Bridge and AMD Fam-

ily 15h processors. Intel made available the Running Average Power Limit (RAPL) in-

terfaces [29, 59] after the second-generation Intel Core microarchitecture. The technique

is based on reading hundreds of internal performance counters and on applying activity

energy costs to each event to estimate power with an accuracy of around of 10% [59].

The interface makes available special processor registers that estimates the power and

energy consumption of CPU-level components such as CPU and memory controllers. It

also can be used to limit the power consumption during a period of time. This could be

explored in the implementation of maximize performance under a power cap of the Slack

Recovery algorithm. However, in this thesis, we are not investigating this mode.

Chapter 5 presents how we used RAPL interfaces on SeaMicro cluster to optimize Web

Server power. We used the RAPL interfaces on the SeaMicro SM15k cluster instead of

our custom-made board experiments for four reasons: The first is availability, the cluster

CPUs have the RAPL interface. The second is the geographic barrier, the servers were

located in USA and we did not have physical access to it. The third reason is because the

board interfaces would not be compatible with the SeaMicro fabric. The last reason is the

fact that on SM15k cluster, the I/O components are virtualized and used more efficiently

because the HD and network power component is divided among the nodes. Hence, the

CPU power component dominates the system power.
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The counters can only be accessed by kernel code (ring-0). Thus, we developed a Linux

Kernel module that reads the counters and make the values available in the sys filesystem,

a specicial directory that carries information about device drivers and hardware. This

approach facilitates the readings of the counters as the counters can be accessed as regular

system files. For our experiments on SM15k cluster, we measure the whole CPU package

power.



Chapter 4

Web Server Power Models

This Chapter presents the techniques used to develop the Web Server power models.

It describes the experimental methodology used to collect power and performance mea-

surements, the characterization models and the experimental results. The models are

developed incrementally by starting with a linear-regression-based model containing data

points from SPECweb 2009 benchmark and SPECint 2006 benchmark for all P-states

and ending with a model that softens non-linear relation between power and performance

statistics.

4.1 Experimental Methodology for Web Server Power

Modeling

This section introduces the power characterization methodology to measure the power

consumption of commodity system computers. The workloads are SPECint2006 and

SPECweb2009. Our main target is Web Server models, however, we use SPECint2006 to

stimulate higher activity level on the CPU. We develop models for two different commodity

systems: (1) A server with Intel i7 860 processor, 4 GB of memory, and an Western Digital

serial ATA hard disk of 500 GB and 7200 rpm running Ubuntu 9.10 x86. (2) A server with

an AMD Opteron 6168 processor containing 12 cores, 16 GB of memory, and a Seagate

serial ATA hard disk of 1 TB and 7200 rpm with Ubuntu 10.04 x64 as operating system.

All servers run the Apache 2.2.16 Web Server configured to use threads and PHP 5.3.3

for serving SPECweb2009 [64].

The experimental setup environment is depicted in Figure 4.1. SPECweb2009 [64] (i)

is a benchmark suite that generates server requests based on real Web applications, char-

acterizing by different workloads. In order to synchronize the power numbers collected

from our measuring device with the performance statistics from the Web Server, we im-
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making requests.

SPECweb2009’s architecture contains four major components, as shown in Figure 4.1.

The first component, represented by the box named Client in (i), is responsible for sim-

ulating application clients. It sends HTTP requests to the server and receives server

responses. The second component is the Web Server and its related software [box (iii)

in the figure], which is described in Section 4.1.4. The third component is PTDaemon,

a background application used for collecting server power statistics. Finally, the last

component is the Prime Client which is responsible for controlling workload execution

(initializing processes, managing clients, collecting results). In our experiments we hosted

the Client and Prime Client components on the same computer.

The following strategy was adopted for the execution of SPECweb2009. Seven com-

puters were used as clients simulating 500 and 2000 real clients so as to emulate different

server loads. This will impose different activity levels on the server, directly impacting its

CPU load and network traffic. To synchronize power and performance measurements, a

middleware layer was implemented [(ii) in Figure 4.1]. It intercepts controlling messages

sent/received to/from PTDaemon [64].

4.1.2 Middleware

In order to integrate the SPECweb2009 software with the experimental measuring device,

we implemented a software layer that handles the communication between the Prime

Client and PTDaemon. Our middleware monitor TCP/IP messages (especially go and

stop) sent between these components so as to synchronize the power measurements,

obtained with our device, with the performance statistics from the Web Server.

When the Prime Client enters the run stage, it sends a go message and the middleware

intercepts it. The go message is then forwarded to PTDaemon which, in turn, sends a

start message to the Web Server daemon responsible for collecting performance statistics.

Another message is sent to the power measuring device to start measuring the power

consumed by the server. All these three messages are sent in parallel.

During this phase, the middleware keeps the synchronization between the power mea-

surements and the performance statistics by sending sync messages to the measurement

device and to the performance daemon running on the Web Server on a second-by-second

basis.

When the Prime Client finishes the run stage, it sends a stop message to PTDae-

mon. In a similar fashion, the middleware intercepts this message and forwards stopping

messages to both the performance daemon and the power measurement device.
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4.1.3 Server Performance Measurements

In this work, we developed models for three different commodity systems. The first is a

server with an Intel Core 2 Quad Q6600 processor with 8 GB of memory and a Seagate

serial ATA hard disk of 500 GB and 7200 rpm. The operating system is the CentOS

Linux 4.5 running Linux kernel version 2.6.31. The second is a server with Intel i7 860

processor, 4 GB of memory and a Western Digital serial ATA hard disk of 500 GB and

7200 rpm. The operating system is Ubuntu 9.10 x86. The third computer is a server with

an AMD Opteron 6168 processor containing 12 cores, 16 GB of memory and a Seagate

serial ATA hard disk of 1 TB and 7200 rpm with operating system Ubuntu 10.04 x64. All

servers run the Apache 2.2.16 Web Server configured to use threads and PHP 5.3.3.

We collected statistics for the usage of CPU, disk, and OS in our experiments. The

process of gathering these values does not have a significant impact during power mea-

surement [9, 31,32].

Hardware events and operating system measurements representing higher level system

activity are collected to be used as proxies for power. Operating system measurements are

important especially for the Web Server application where many processes of the same

type are running in parallel. Perf [55] utility is responsible for assessing these events.

The models correlate the collected performance rates (events per second) to the power

measurements. Section 5.5 explains how these metrics affect the power models. The

metrics are as follows:

Instructions retired per second: The CPI (Cycles Per Instructions) value or the

equivalent BIPS (Billions of Instructions per Second) are directly correlated to CPU

activity level making them important parameters for power models.

Unhalted Cycles per second: This also represents CPU activity level. Higher

values are expected when more functional units are working; hence, affecting CPU power

consumption.

Last level (L3) cache references per second: Under different P-states (i.e. dif-

ferent frequencies) and different workloads, the last-level cache references per unit of time

can change significantly, making it an important parameter in power models.

Last level (L3) cache misses per second: When there is a processor cache miss,

its pipeline stalls affecting power consumption. This parameter also reflects the demand

for memory resources since a miss in the last level cache requires an access to the main

memory.

Page faults per unit of time: This metric captures the demand for memory re-

sources with low level of temporal locality, reducing the activity level in the node.

Context switches per unit of time: This metric is used to capture the activity

level of the operating system.

CPU migration per unit of time: This counter increases every time a process
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changes CPUs. When a process switches CPU, the instruction code cache is flushed,

invalidated, and reloaded on the new CPU decreasing the system activity level.

CPU Load: The time share that the CPU spends executing useful processes, that

is, (1.0 − tIdle) · 100%, where tIdle is the share of time that the idle process is scheduled.

The idle process is an infinite loop of halt instructions that changes the core to the HALT

state when scheduled by the Operating System.

The disk parameters are collected by reading Linux device block statistics [43]. Ta-

ble 4.1 presents the disk events available on the Linux system1.

Table 4.1: Disk Activity Parameters
number of reads writes completed time reading time writing
reads merged writes merged I/O in progress time doing I/O
sectors read sectors written time in queue

In order to synchronize the power numbers collected from our power measuring de-

vice with the performance measurements, we simultaneously sample power and perfor-

mance on fixed rates (1 second in our experiments). When a given workload execution

is completed, the monitoring software stores the resulting power values and performance

measurements on disk for model generation. Collecting system-level statistics (such as

number of page-faults and context switches) requires only small amount of processing

because our sampling rate is one second. Moreover, measuring performance counters re-

quires executing only one instruction to start sampling (wrmsr) and other to read the

register values (rdpmc) [29]. We measured the overhead of collecting performance statis-

tics while measuring power and observed that they are negligible corroborating to previous

works [9, 31, 32].

4.1.4 Server Power Measurements

We used the custom-made power measuring infrastructure described in Chapter 3 to

collect the power values of the servers. This infrastructure uses current transducers, a

16-bit data acquisition system that is able to read the sensors’ output at 25 k samples per

second. The board is installed in series with the server power supply and a monitoring

software stores the power data.

4.2 Characterization Model

Our models are derived using regression techniques on experimental data using system-

level measurements and performance counters as proxies for estimating the power con-

1reads/writes merged count the frequency that two 4 kB operations become one 8 kB operation
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sumption of the system for each CPU core frequency and voltage state. The following

components contribute to the system power: CPU power; chipset, video board, network

device, memories, and fans (miscellaneous components); and hard disk power. The to-

tal power of the system is computed by simply adding up the estimated power obtained

for each component as shown by Equation 4.1. Further discussions about the model

accuracies and precisions are done in Section 5.5.

PTotal = PCPU + Pdisk + Pmiscellaneous (4.1)

Modern processors support Dynamic Voltage and Frequency Scaling (DVFS), which

can be exploited to optimize power and performance. Each voltage and frequency operat-

ing point represents a so-called power-saving state of the processor. The ACPI [2] is the

operating system interface to these power-saving states, usually called C-states and P-

states. C0 is the active state and C1 . . . Cn−1 are the idle states. The deeper the state the

higher the savings, at the cost of increasing time penalty for returning to the active state.

When in idle states, the processor normally turns off some of its internal components. In

C0, it is possible to trade-off power consumption for performance by setting the processor

to performance states (P-states) in accordance with the workload being executed.

On Linux, the P-states and their changing policy can be controlled by using the sysfs

utility, which provides information about devices and drivers from the kernel space to the

user space and interfaces to toggle them. There are operating system’s utilities such

as “On-demand Linux Governor” which can control the P-state transitions automatically

based on the workload. There is also the “Userspace Linux Governor” utility which allows

users to control the P-states of the CPU directly. Our models are developed in the context

of the latter and they will be used as part of a global power and performance optimization

policy [6]. The policy will choose the P-States for all CPU nodes and set them for each

time-window.

P-states represent different operating points of frequency and voltage with different

power and performance characteristics. The Intel i7 860 processor has 14 power states

operating from 1.2 GHz to 2.8 GHz. The AMD Opteron processor has 5 power states

operating from 800 MHz to 1.9 GHz. We derived models for CPU (i.e. CPU cores, L1, L2

cache, and L3 cache) by measuring power and performance on each CPU P-state. Thus,

each benchmark run is repeated by setting all cores of the CPU to the same P-state. This

is not a limitation of the work, as the same methodology described in this paper can be

used on a core by core basis.

To develop the models, we run SPECweb2009 and SPECint2006 according to the

following strategy. For SPECweb2009, seven computers run as clients simulating 500

and 2000 real clients so as to emulate different server loads. This imposes different ac-

tivity levels on the server directly impacting its CPU load and network traffic. Since
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Figure 4.3: Box plot for CPU load for SPECint2006, SPECweb2009 with 500 users, and
SPECweb2009 with 2000 on each i7 P-State. Each benchmark stresses different ranges of
the CPU Load

operation is different from a Login operation, resulting in different CPU usages. Moreover,

certain operations are more frequent depending on the operation mix, resulting on the

outliers.

Next, we analyze the power variation on CPU, disk, and miscellaneous components.

Figure 4.4 shows the power variation in the box plots. The CPU is the critical component

of total power since it has the most contribution to total power and is responsible for the

most power variation; consequently, it requires more detailed power models.

The work described by Zedlewski et al. [67] presents models using disk time reading

and disk time writing to estimate disk power. Following this idea, we developed disk

power models based on the disk usage parameters that estimate the serial ATA disk

power consumption. However, these models displayed low coefficient of determination

(R2), low precision and accuracy; hence, this approach was discarded. We attribute this

lack of correlation to the operating system that delays the update of disk statistic counters

impacting on synchronization between disk statistics events and its power measuring.

However, it is possible to see that disk power varies very little. In addition, the stan-

dard deviations are less than 5% of the mean values for this power component. Figure 4.4

shows that the disk power is concentrated between 8.0 W and 9.0 W for the Opteron-based
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system and 5.0 W to 6.0 W for the Intel i7-based system. The disk power consumption

is responsible for only 10% to 12% of the total power; thus, we model disk power as a

constant value. We grouped all other computer components such as chipset, video board,

network device, memories, and fans in a power component called miscellaneous compo-

nents. Following the same argument used for disk, miscellaneous components power has

small contribution to total power and small variance; hence, we also model this component

as a constant value equal to the average power of all points.

On the AMD Opteron Server, the CPU contribution to total power is even higher

compared to disk and miscellaneous component power. Therefore, considering constant

power models for these components has even smaller impact on total model accuracy

when compared to the Intel i7 Server.
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Figure 4.4: Average device power measurements for SPECint2006, SPECweb2009 with
500 users, and SPECweb2009 with 2000 on each P-State for AMD Opteron and Intel i7.
The lines represents the minimum and the maximum device power measurement. CPU
presents the most variation and has the most contribution for total power.
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4.3 Experimental Results

This section presents the results for our experiments and the evaluation of our power

models. We split up the data-set into training set (50 percent of the points) for building

the models and testing set (remaining 50 percent of the points) for model validation. We

build the power models incrementally starting from a Global Power Model (GPM), which

does not distinguish P-states nor application running on the server and then we apply

enhancements to improve accuracy and precision of the models.

We observe that model generality, excess of parameters, and non-linear relation among

power and performance measurements on I/O intensive applications impose limitations

on the usage of linear regression techniques. We address these issues by developing com-

puter system power models considering the following: (1) models that consider P-states

as nominal parameters and the application that the computer is running, (2) models that

make use of a machine-learning algorithm (CFS) for selecting the parameters most cor-

related to power, and (3) models that soften non-linear effects among computer system

measurements and power by using K-means clustering.

4.3.1 Global Power Model

The first power model, called Global Power Model (GPM), is built using linear regression

having the miscellaneous component and the hard disk power modeled as a constant

value equal to the average power of these power components. We use points from all P-

states and from both benchmarks (i.e. SPECint2006 and SPECweb2009) to develop this

model; hence, we are not distinguishing P-states nor applications. For the CPU power

component, the performance measurements described in Section 4.1.3 are the dependent

variables and the CPU power the independent variable.

Figure 4.5 shows the histogram and the cumulative distribution function (CDF) for

this model on the Intel i7 machine. There are outliers which can reach up to 120% of the

absolute percent error (omitted in Figure 4.5(a)). Even though, most of the points are

concentrated within 50% absolute error. The CDF (Figure 4.5(b)) clarifies this observa-

tion. The median is about 15% and the 90th percentile is about 20% (dashed line) (i.e.

90% percent of the points display an absolute percent error lesser than 20%).

Rivoire et al. [57,58] claims that a power model must have the average for the absolute

percent error lesser than 10% to be consider accurate. Therefore, this model does not

fit this requirement. The remaining of this Section discusses enhancements done on the

power models to improve their accuracy and precision.



4.3. Experimental Results 34

0.00

0.02

0.04

0.06

0 10 20 30 40 50
Absolute Percent Error (%)

F
re

q
u

en
cy

(a) Histogram

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Absolute Percent Error (%)

C
u

m
u

la
ti

v
e 

D
is

tr
ib

u
ti

o
n

F
u

n
ct

io
n

(b) Cumulative Distribution Function

Figure 4.5: Full-system power model for Intel i7 using the parameters described in Sec-
tion 4.1.3. (a) presents the distribution for the absolute percent error, (b) presents the
cumulative distribution function and the 90th percentile of the absolute percent error in
dashed line.

4.3.2 Nominal Parameters and Model Specificity

In Figure 4.4 we have shown that CPU power characteristics change when P-states change.

Thus considering this parameter as nominal improves precision and accuracy. Hence, the

first improvement that we do in GPM is to consider P-state as nominal parameter. In

this approach, the CPU power is modeled by doing linear regression on the points of each

P-state. This model is called P-State-based Power Model (pSPM). Differently from GPM,

in pSPM, hard disk power and miscellaneous component power are modeled to a constant

value equal to the average power on each P-state.

Figure 4.6 shows the cumulative distribution function for the GPM (solid line) and

the pSPM (dashed line). The steeper the line, the more accurate the model. Thus, we

observe that by doing a linear regression for each P-state, we improve the precision of the

power models. Figure 4.6 also shows that for the AMD Opteron server both GPM and

pSPM meet the accuracy requirements (i.e. average for the absolute percent error below

10%). However, they still do not meet the accuracy requirements for the Intel i7 server.

We have observed in our experiments that if a model is general (using points from

either SPECint2006 or SPECweb2009), it needs more parameters to have similar accuracy

and precision to a model developed for a specific application. To improve the pSPM, we

consider the application that the machine is running. On Web Server environment the

workload is known upfront, the power variation is mostly due to variation on the number

of concurrent requests. Thus, we relinquish model generality and focus on an specialized
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Figure 4.6: Comparison between Global Power Model (GPM) and P-State-based Power
Model (pSPM). The latter is more precise, since it has narrower steeper CDF curve.

power model for Web Server application by considering just measurements done when

running the SPECweb2009. This model is called Web Server Power Model (WSPM). In

fact, we are targeting Web Server power models on our Data Center simulator; in this

way, we take advantage of a more specific power model to also improve the simulator

performance.
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Figure 4.7: Cumulative distribution function (CDF) for the absolute percent error for
P-State-based Power Model (pSPM) and Web Server Power Model (WSPM). The latter
is more accurate having a steeper line.

Figure 4.7 presents the CDF for the pSPM and the WSPM We observe that the

general power model is inaccurate specially on the Intel i7 server. On the other hand,

an specialized power model has improved accuracy reducing the 90th percentile of the

absolute percent error on the AMD Opteron server from 4.4% to 3.5% and on the Intel i7

server from 18.9% to 4.3%. The WSPM meets the accuracy requirements, since it displays

the average for the absolute percent error below 10%. However, this model requires all the

parameters that were presented in Section 4.1.3. The next section shows how we reduce

the number of parameters.
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Table 4.2: Coefficients for the Web Server CPU Power Model at each P-state for both
architectures

Server Pstate Const. BIPS
Context CPU Page CPU Unhalted LL Cache LL Cache
Swts./s Load Faults/s Migs./s Cycles/s Refs/s Misses/s

P0 20.77 18.83 6.69E-04 -1.2605 4.97E-04 -2.39E-03 -6.23E-09 2.00E-07 -1.89E-06
P1 18.93 14.52 9.47E-04 -0.4822 2.58E-04 -1.09E-03 -7.28E-09 7.30E-09 1.46E-07
P2 18.41 12.17 1.13E-03 -0.3459 2.64E-04 -1.74E-03 -6.03E-09 -1.26E-08 -8.27E-08
P3 18.40 14.81 8.97E-04 -0.2476 2.42E-04 -2.30E-03 -1.03E-08 1.95E-07 7.75E-07
P4 18.32 13.74 8.25E-04 -0.3675 1.98E-04 -2.54E-03 -8.46E-09 1.81E-07 5.73E-07

Intel P5 18.53 12.88 9.55E-04 -0.2574 2.14E-04 -1.15E-03 -7.81E-09 2.30E-08 5.35E-07
i7 P6 17.91 11.21 9.52E-04 -0.2387 1.80E-04 -2.40E-03 -6.49E-09 8.23E-08 3.58E-07

P7 18.06 12.44 5.90E-04 -0.3628 1.59E-04 -1.32E-03 -7.24E-09 1.50E-07 6.23E-07
P8 17.88 12.03 6.93E-04 -0.2775 1.60E-04 -1.24E-03 -6.56E-09 6.54E-08 3.74E-07
P9 18.03 10.74 7.14E-04 -0.2064 1.41E-04 -2.06E-03 -5.92E-09 6.28E-08 5.92E-07
P10 18.19 11.51 6.09E-04 -0.1187 1.25E-04 -1.70E-03 -7.50E-09 9.94E-08 8.15E-07
P11 18.28 9.59 6.34E-04 -0.1077 8.85E-05 -1.40E-03 -5.82E-09 2.35E-08 1.07E-06
P12 18.08 10.43 4.45E-04 -0.0269 1.08E-04 -8.90E-04 -7.37E-09 9.62E-08 7.91E-07
P13 17.35 9.76 3.44E-04 -0.0715 1.19E-04 -9.05E-04 -6.28E-09 1.09E-07 6.70E-07
P0 46.95 -0.70 1.58E-03 0.4675 -1.03E-05 -3.94E-03 -4.68E-09 9.46E-09 2.32E-07
P1 43.89 -12.46 2.27E-03 0.5750 1.95E-05 -2.34E-03 3.88E-09 2.73E-08 -7.30E-07

AMD P2 42.83 -10.84 2.03E-03 0.4801 7.61E-06 -2.15E-03 3.55E-09 2.45E-08 -6.23E-07
Opteron P3 40.48 4.70 1.35E-03 0.3792 -1.02E-04 -7.51E-04 2.39E-09 -1.54E-08 -3.58E-07

P4 42.28 3.14 1.10E-03 0.3851 4.64E-05 -2.51E-04 -8.52E-10 4.75E-09 -4.93E-07

on the job of feature selection for machine learning through a correlation based approach.

The main assumption is that high quality feature sets (in our case all performance param-

eters) carry features that are highly correlated with the class (i.e. power). We believe that

CFS is more appropriate for this task them other methods, such as Principal Component

Analysis, because it returns a well determined subset of the input parameters (in contrast

to other methods that rely the choice of them to experimenters). Therefore, it reduces

the design space exploration and time analysing the models’ accuracy. From our knowl-

edge, this is the first work that uses this algorithm to support the choice of performance

parameters to be used as proxies to power.

We develop the Pruned Web Server Power Model (PWSPM) by applying CFS on

points of each P-state, which prune parameters. Then, we apply linear regression using

CPU power as the independent variable and the CFS selected parameters as the dependent

variables. Table 4.3 shows the coefficients calculated at each P-state for the Intel i7 and

AMD Opteron servers. The algorithm is able to reduce from nine parameters to up to

three parameters at each P-state.

Figure 4.9 shows the CDF for the WSPM and for the PWSPM (in dashed lines). The

average of the absolute percent error for WSPM is 2.08% for the Intel i7 and 1.81% for the

AMD Opteron. For the PWSPM, the average of the absolute percent error is 2.86% for

the Intel i7 and 2.07% for the AMD Opteron. Therefore, PWSPM uses fewer parameters

having similar accuracy and precision.
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Table 4.3: Coefficients for the CPU Pruned Web Server Power Model at each P-state for
both architectures

Server Pstate Cte BIPS
Context CPU Page CPU Unhalted LL Cache LL Cache
Swts./s Load Faults/s Migs./s Cycles/s Refs/s Misses/s

Intel i7

P0 24.69 1.98 1.17E-03
P1 18.92 8.93 1.05E-03 -1.24
P2 18.68 6.75 1.13E-03 -0.89
P3 18.47 6.85 1.05E-03 -0.86
P4 18.56 7.88 8.97E-04 -0.93
P5 18.13 7.17 1.00E-03 -0.84
P6 18.03 7.07 8.69E-04 -0.74
P7 17.99 7.33 7.45E-04 -0.69
P8 17.65 7.96 6.95E-04 -0.71
P9 19.49 2.63 9.15E-05
P10 18.81 1.88 4.62E-04
P11 18.38 1.91 4.56E-04
P12 18.27 1.90 4.46E-04
P13 17.71 1.98 4.28E-04
P0 47.83 -1.52 1.03E-03 0.40
P1 47.88 -3.38 7.01E-04 0.67

AMD P2 47.16 0.68
Opteron P3 42.62 0.59

P4 42.48 0.54
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Figure 4.9: Cumulative distribution function (CDF) for the absolute percent error for
Web Server Power Model (WSPM) and Pruned Web Server Power Model (PWSPM).

4.3.4 Softening non-Linear Effects

A Web Server needs to answer thousands of clients in a short period of time; hence,

multiple processes are spawned creating an environment dominated by resource sharing.

When using performance measurements as proxies for CPU power, non-linear relations

are observed due to bottlenecks on shared resources, as noted by Rivoire [57].

Figures 4.10 and 4.11 show plots of CPU power versus BIPS and context switches,

respectively, for Intel i7 sever at some of its P-states when running SPECweb2009 bench-

mark. The solid lines represent the linear model equation, while the dashed lines represent

a log-log regression.

The non-linear effects are more remarkable at the higher performance states such as

P0, P1, P2, and when running I/O bound workloads (i.e. SPECweb2009). At higher

performance states, the frequency is higher and the CPU is relatively faster than the
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I/O devices; hence, it becomes idle more often waiting for I/O. Moreover, the CPU can

handle more requests, increasing the competition for the shared resources, such as memory

controllers and hard disk. Therefore, the CPU operates in bursts of processing creating

non-linear effects among power and performance measurements.
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Figure 4.10: i7 power versus BIPS. The lines represent the linear regression while the
dashed lines represent a log regression.
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Figure 4.11: i7 power versus Context Switches per second. The lines represent the linear
regression while the dashed lines represent a log regression.

Applying polynomial regression might be difficult when the polynomial order is un-

known. Using logarithm regression results in models that do not take into account “idle

power”, because when no activity is observed in the computer the model yields a power
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value that is equal to zero. We use K-means clustering technique [44] to soften the

non-linear effects. This approach approximates a non-linear curve using multiple linear

segments creating a different equation with a different slope for each cluster. We use

average values of HD power and miscellaneous components power for each cluster at each

P-state to derive these two components power model.

K-means clustering is a cluster analysis method which targets to divide n observations

into k clusters where each point lies into the cluster with the nearest mean. In a formal

presentation, let X = x1, x2, ..., xn be a set of observations, where each observation is

a d-dimensional real vector, K-means clustering partitions the n observations into k sets

S = S1, S2, ..., Sn (k ≤ n), minimizing the within-cluster sum of squares, where µi is the

mean of points in Si:

arg min
c

k
∑

i=1

∑

xj∈Si

‖ xj − µi ‖2 (4.2)

To obtain models with higher accuracy, we need to select the most pertinent set of

variables that is used to create the clusters (based on CFS algorithm), the most suitable

distance function, and the most appropriate number of clusters (i.e. k). This model is

called Cluster Web Server Power Model (CWSPM).

Selecting the most pertinent variables: When using cluster techniques, we ob-

serve that using a large number of attributes (i.e. all the gathered events) yields less

precise models. We attribute this fact to the presence of high correlation among cluster-

ing variables which might overweight one or more parameters [34]. Hence, we apply the

CFS algorithm to obtain a smaller set of variables mostly correlated to power.

Choice of the most suitable distance function between the points: We use

the euclidean distance for the K-means clustering distance function in our models.

Selecting the most suitable number of clusters: To select an appropriate value

of k, we use the sum of the squared errors of prediction (SSE) (also known as an F-test)

as a function of the number of clusters and observe when adding another cluster does not

yield better modeling of the data. This can be done visually by using “elbow criterion”

where small values of k explain most of the variance. At some point the gain drops,

resulting in an angle in the graph where the number of clusters is set.

Figure 4.12 shows the elbow plots for some P-states on the Intel i7 server where the

circles highlight the number of clusters selected for each P-state (i.e. the location of the

“elbow”). Note that the CFS algorithm may select different sets of variables for each

P-state as shown in Table 4.3.

In order to explain the reasoning behind the usage of the K-means clustering, lets

focus on the case of P0-state of the Intel i7 server. In this case, CFS returned BIPS and

number of context switches per second as the performance statistics that should be used
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Figure 4.15: Cumulative distribution function (CDF) for the absolute percent error for
WSPM, PWSPM, and CWSPM. The latter is the best model in terms of accuracy and
also uses fewer parameters.

absolute percent below 10%) at all frequency states. Furthermore, the CWSPM model

uses fewer parameters than the WSPM and is the most accurate at all P-states but P9

on the Intel i7. Therefore, we select the CWSPM as the best model.
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Figure 4.16: Average of the the absolute percent error for WSPM, PWSPM, and CWSPM.



Chapter 5

Global Power Optimization for Web

Server

This Chapter presents the implementation of the Slack Recovery algorithm configured

to minimize power under a performance threshold on a state-of-the-art, high-density,

power-efficient SeaMicro SM15k cluster by AMD. It also presents a CPU utilization rate

control mechanism, which is essential for the implementation of the Virtual Power States.

Experimental results show that our Slack Recovery-based system can reduce up to 16%

of the power consumption when compared to the Linux performance governor and 6.7%

when compared to the Linux ondemand governor.

5.1 SeaMicro Cluster Overview

We deploy our Power and Performance Optimizations on an AMD’s SeaMicro SM15k

(Figure 5.1(a)) family of Fabric Compute Systems (SM15k cluster) [3]. The SM15k cluster

is a high-density cluster composed of compute nodes, networking, and storage on a single

10 Rack Unit (RU). This system amortizes the power overhead of fixed system components

such as power supplies and fans among the cluster by sharing them among the cluster

nodes. Our SM15k cluster has 64 server cards and consumes between 3.0 kW and 3.5 kW.

A server card is logically described in Figure 5.1(b). Each server card is composed of

DRAM, CPU+Chipset, and the Freedom ASIC. The latter includes network interfaces,

which removes the need of network adapters, cables, and switches, resulting in a high-

density and energy efficient cluster. It also implements an I/O virtualization technology,

which virtualizes the disks to the server nodes. Each node accesses the disk as a virtual

SATA disk. This feature reduces power and space without requiring any special software

and driver. In our configuration, we used server cards composed of one Intel Xeon E3-

1265Lv2 processor, 32 GB ECC DRAM, 8x1Gbit network interface card, connected with

44
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Current processor cores, such as the Intel Xeon E3-1265Lv2, have internal mecha-

nisms in hardware and firmware to change its P/C-state according to its load and power.

According to ACPI tables found in operating systems, Intel Xeon E3-1265Lv2 has 11

P-states, or 11 different levels of frequency and voltage.

In high-density servers, such as SM15k cluster, peripherals (e.g., power supplies, fans,

and disks) are shared among the computing nodes; thus, their power component is lower

than on regular servers. Therefore, in this work, we considered only the CPU power. Intel

Xeon E3-1265Lv2 processors feature RAPL (Running Average Power Limit) interfaces [29,

59] which, among other capabilities, provide a power metering interface. We developed a

Linux kernel module that reads these power registers and provides a power estimate for

the CPU.

Our performance metric is billions-of-instructions-per-second (BIPS). We developed

an additional piece of software that uses libpfm-4.3 [42], to monitor the CPU performance

counters, allowing the measurement of number of instructions executed as well as user,

system, I/O, and idle times.

In our optimization problem, we observed that the CPU presents different power con-

sumption and different performance levels (measured in BIPS), under different utilization

rates. We define utilization rate as the ratio of the time that the CPU is doing useful

work (i.e., the CPU is not in idle mode) over the total amount of time in the observation

window. Figure 5.2 shows the relation of BIPS and CPU power for different P-states.

For example, a performance level of ten BIPS can be achieved in five different configu-

rations consuming from 16.7 W to 22 W as follows: P4-state under 100% utilization rate,

P3-state under 95% utilization rate, P2-state under 91% utilization rate, P1-state under

86% utilization rate, and P0-state under 77% utilization rate. This observation leads us

to add the utilization rate as an extra dimension to the optimization problem. Therefore,

our problem is to find a P-state and a utilization rate for each CPU that minimizes power

under a minimum performance requirement.

In Figure 5.2, we derived an envelope curve, which is the Pareto Frontier of states.

A point in the Pareto Frontier will provide the power consumption and the performance

of the CPU under a P-state and a utilization rate. Moreover, there is no other state

and utilization rate that would result in higher performance for the same power, or lower

power for the same performance. The union of the Pareto Frontier states and the idle

C-states constitute the set of VPS for a core. These Virtual Power States are the states

used by our optimization algorithm.

We showed how a Slack Recovery-based system can be deployed in practice using a

production, state-of-the-art, SeaMicro SM15k cluster, instead of simulation, and to show

how we can integrate a utilization rate control technique to such a system. The reader

may find more details about the optimization problem in our previous work [6].
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Figure 5.4: Intra-day variation of the load on a server

5.3.1 CPU Frequency Scaling Algorithms

This section describes the CPU frequency scaling algorithms used in this work. We

evaluated the algorithms Linux performance governor, Linux ondemand governor, which

performs local power optimization, and the Slack Recovery algorithm, which performs

global power optimization.

The first algorithm is the Linux performance governor [14], where the CPU frequency

is kept at the maximum when the CPU is executing any instruction. When in idle, it is

automatically put in power-safe states (also known as C-States) by the CPU hardware [59].

The second algorithm is the Linux ondemand governor [14]. The governor samples

the CPU usage at small intervals (typically 10ms) and decides which frequency to set the

CPU based on its utilization rate. A transition is done when the CPU utilization rate is

more than a threshold (typically 95%) in an interval.

The last algorithm was introduced in our previous work called Slack Recovery [6].

This heuristic algorithm is based on the idea of Slack Recovery (in power) to determine

a near optimal solution. At first, it assigns power states to all CPU nodes to a state of

the largest slack possible, that is, they are set to the highest performance virtual state,

so there will be performance slack to be exchanged for power. In this case, the algorithm

will switch the states of certain CPU nodes to decrease power and consequently lowering

performance up to a threshold.

The algorithm runs over a cluster model to find the optimal configuration and at

the end it assigns the VPS to the physical cluster. The cluster model is a set of node

models, which are implementations of the Pareto Frontier described in Section 5.2. The

implementation needs a model because it requires the estimation of power consumption

and performance for different configurations. The model also reduces significantly the

number of virtual state transitions.

For the sake of completeness in this text, we present the basic steps of the Slack
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1 bool SlackRecoveryPerNode :: minimizePower (

2 f l o a t minBIPS , f l o a t powerCap ,

3 f l o a t actualPower , f l o a t actualBIPS ) {

4

5 i f (! findInitialStateOnMinimizePower (minBIPS ,currPower , currBIPS ))

6 r e t u r n f a l s e ; // No feasible solution

7

8 // Now we are ready to execute the slack recovery algorithm

9 do {

10 nodeSel = NULL;

11 f o r all nodes n do

12 // There is slack: attempt to decrease power slack by moving

13 // to a lower power/ performance state

14 i f (n. getCurrentVirtualState () < NumVirtualStates -1) {

15 // Check if we meet the constraint for the next state

16 bipsChg = currBIPS -

17 provisionBIPS (currBIPS ,n. getCurrentVirtualState (),

18 n. getCurrentVirtualState ()+1);

19 i f ( currBIPS - bipsChg >= minBIPS ) {

20 // Provision power for the next state

21 nextSttPower =

22 provisionPower (currPower ,

23 n. getCurrentVirtualState (),

24 n. getCurrentVirtualState ()+1);

25 powerChg = currPower - nextSttPower ;

26 i f ( powerChg > bestPowerChg ) {

27 nodeSel = n; // Remember this node

28 bestPowerChg = powerChg ;

29 bestBipsChg = bipsChg ;

30 }

31 }

32 }

33 }

34 i f ( nodeSel != NULL) {

35 currBIPS = currBIPS - bestBipsChg ;

36 nodeSel -> oneStateMoveUp ();

37 }

38 } wh i l e ( nodeSel != NULL );

39 // Do the assignment in the actual nodes

40 assignVirtualStates ();

Figure 5.5: Slack-Recovery Algorithm Pseudo-code

Recovery algorithm. For further details, the reader should refer to Bergamaschi et al [6].

Figure 5.5 lists the Slack Recovery pseudo-code configured to minimize power given a

minimum performance. The algorithm starts by finding an initial configuration state

(line 5) that is able to sustain the minimum performance requirement. Next, it executes

the slack routine, where it tries to decrease power by moving to a lower performance state
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We also add an estimator error, ǫt, in order to amortize the prediction errors, calculated

as follows:

ǫt =

{

0 if t = 0

SrtActual
− SrtP redicted

if t > 0
(5.4)

Finally, the predicted session rate for the next time window is given by adding Equa-

tion 5.3 to Equation 5.4 as follows:

Srt+1 = 2 · Srt − Srt−1 + ǫt (5.5)

The performance prediction is done based on the variation of the system-wide work-

load. We empirically observed that the total workload, when measured at discrete time

intervals (i.e., 10 seconds in this work) tends to change smoothly with very few inver-

sions. In addition, even when the load variation changes direction, the prediction may

get it wrong for one or two intervals at most, before correcting itself.

After having predicted the performance for the next time window Πt+1, we used this

information as an input parameter for Slack Recovery. The algorithm returns a set of

VPS and we set each node to the corresponding virtual power state. The next Section,

discusses the implementation of VPSs in our environment.

5.4 Virtual Power State Implementation

A Virtual Power State (VPS) is a tuple containing a utilization rate and a P-state. While

one can easily set a node’s P-state; controlling each individual CPU utilization rate is

more difficult. This section discusses our approach to controlling the CPU utilization rate

on a Web Server cluster.

In order to follow the remainder of this section, let’s first define a number of variables

used in the ensuing formulation. Table 5.1 presents the variables and their corresponding

definitions.

Each server will handle a certain number of users until a point at which the CPU

utilization rate reaches 100%. Thus, one way to control the CPU utilization is to change

the number of users connected to a server. Figure 5.8 shows the relation of the users

connected to a server and its corresponding utilization rate for the Olio benchmark when

the server is operating at highest frequency. when the server is operating at highest

frequency (P0-state). When the server is operating at other P-states, we normalize the

utilization to P0-state using Equation 5.7 and Equation 5.8.

The CPU utilization rate (Ψ) could be used to estimate the number of connected

users (µ) to a Web Server using a second order degree polynomial fit from the curve in
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A ∆s greater than zero means ǫs users must be added to the server s, in order to make

it reach the target utilization rate. Otherwise, ǫs users must be removed from the server.

Therefore, the number of expected users to the next iteration (ηs) on the s server is given

by Equation 5.9.

ηs =

{

χs − ǫs if ∆s < 0

χs + ǫs if ∆s ≥ 0
(5.9)

The HAProxy allows weights from 0 to 254; thus, the UCA converts each ηs to a

HAProxy weight ws as follows:

ws = round

(

ηs

max(η)
· 254

)

In order to evaluate the utilization control mechanism, we set up a small cluster

composed of 5 servers. We configured the benchmark to generate a fixed input load

that would be sufficient to keep the servers’ utilization at their respective utilization rate

targets. Our problem is to distribute the load across the servers by adjusting the load

balancer weights in order to keep the servers’ utilization rate at their respective targets.

The controller will adjust the HAProxy weights in order to keep the utilization rates at

their targets. Figure 5.12 shows the behavior of the utilization along 100 seconds for a

fixed load.
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Figure 5.12: Evaluation of the utilization controller mechanism for a fixed load. We see
that the controller is able to place the servers at the target utilization

The controller exhibits some variation around the target utilization rate because UCA

is based on the number of users, but an user can do different types of operations. For

example, an operation of adding a person uses more CPU than a logout operation. How-

ever, on the average the utilization rates converge to the targets as shown in the dotted

lines.
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5.5 Experimental Results

This section shows the evaluation of our power management mechanism in two different

scenarios: Constant number of users and Variable Number of Users, where we configured

the benchmark to follow the trend line described in Figure 5.4.

We compared our mechanism to the Linux performance governor, where the P-state

is kept at maximum frequency when the CPU is executing, and to the Linux ondemand

governor, where the operating system changes the frequency automatically.

We also evaluated a lower-bound for our Slack Recovery heuristic, by considering

that at idle the CPU would not consume any energy. Therefore, the lower bound is

the minimum power consumption on a fictitious environment where the power at 0% of

utilization rate is zero. This would be equivalent to turning on/off the idle CPUs in zero

time. In practice this might have detrimental effects on the QoS due to the time necessary

to switch the CPU back on.

5.5.1 Constant Number of Users

The first set of experiments was to evaluate the Slack Recovery implementation under

constant number of users. Our 25 Web Server node cluster supports up to 20,000 Olio

users when the front-end (PHP + nginx) and the back-end (MySQL) are running on the

same machine. We ran the benchmark 9 times changing the number of users on each

execution. The different number of users impacts the CPU cluster utilization rates and

the power and performance optimization space. Figure 5.13 shows the average power per

server for different number of users.
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Figure 5.13: Average power per node for different number of Olio benchmark users. The
Slack Recovery exhibits higher power savings when the number of users is higher.

Our results show that Slack Recovery can reduce the power consumption by up to

16% when compared with the performance Linux governor, and 6.67% when compared
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shown in Figure 5.4 was shrunk to five hours by calculating the average number of users

over a 7-hour time window in order to accelerate the experiments. The maximum number

of users was set to 18,000 (about 90% of the maximum capacity). The maximum follows

the provision standards that reserve some processing capacity to handle any utilization

spikes.

Figure 5.15 illustrates the power consumption of the cluster along the benchmark

execution in this scenario. The results agree with those from the constant number of

users, where the higher power savings are in the region of higher loads. Slack Recovery was

able to save 13.1% of the power on average when compared with the Linux performance

governor, and 5.6% when compared with the Linux ondemand governor.
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Figure 5.15: Cluster power variation along five hours of benchmark execution. The Lower
Bound is the minimum power consumption that would result by Slack Recovery if the
CPU power when utilization rate is 0% were zero watts

We also want to investigate the power behavior for each node. Figure 5.16 shows

the power consumption for the individual nodes along the benchmark execution for the

variable number of users.

The first observation is that three nodes (servers 22, 23, and 24) out of 25 are always

idle, as we can see in Figure 5.16 . This is related to the assumption that the maximum

load for the trend line curve corresponds to about 90% of the maximum processing power

capacity of the cluster. The algorithm concentrates the processing power to some nodes

while others are placed in idle mode. This fact raises a question about the potential of

adding to the algorithm the capacity of powering on/off nodes. We extrapolate our data

to determine this value.

The extrapolation is done by setting power to zero instead of 7.3W when the utilization

rate of a node is at 0% in a given time window. This is the Lower Bound showed in

Figure 5.16, because all idle nodes are considered off.

The Lower Bound corresponds to a reduction in power consumption of 39% when com-
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Figure 5.16: Cluster power variation along five hours of benchmark execution for each
server. Observe that the last three servers are always idle.

pared to the Linux performance governor, to 30% when compared to the Linux ondemand

governor, and to 23% to Slack Recovery.

On our SM15k cluster, a node takes about five minutes to be powered on. For this

reason, we did not consider the possibility to power on/off nodes at first sight. However,

this possibility is promising and could be feasible if we elaborate our demand predictor by

taking into account the time overhead for power on/off the nodes. We leave the evaluation

of this approach as a future work.



Chapter 6

Conclusions

The stunning increase in the demand for Internet services in the last few decades is the

primary reason for the need of larger data centers, which currently can host several thou-

sands of computers interconnected within a single facility. The corresponding growth in

the power consumption of such facilities has become a significant economical and envi-

ronmental issue. Thus, power consumption has become the main design constraint of

modern data centers.

This thesis presented empirical models for estimating the power consumed by Web

Servers. The models were validated with SPECweb2009, a state-of-the-art Web bench-

mark which characterizes different Web applications and contains both static and dynamic

content. We modeled two Web Servers having different processors and configurations.

The Web Server power measurements were done by a custom-made infrastructure

that enables power breakdown for the individual system components. We found that the

processor is the dominant component in the server’s power consumption, corroborating

the results presented by others [4]. This result reinforces the fact that the processor should

be the main target when devising power-aware optimization algorithms for Web Servers.

We also presented a novel approach for modeling full system power based on CFS

algorithm and k-means clustering. This new approach softened non-linear effects among

system measurements and system power improving model accuracy. Our models consid-

ered the different frequency and voltage operating points (P-states) of the processor and

took into account all major components of the server, such as processor, disk, network,

memory, and other motherboard components. Our best full-system power models dis-

played an average absolute error of 1.92% for the Intel i7 server and 1.46% for the AMD

Opteron as compared to actual measurements, and 90th percentile for the absolute percent

error equal to 2.66% for the Intel i7 and 2.08% for the AMD Opteron.

We also implemented an adaptive power management system for a Web Server cluster

running on a production environment. The cluster is composed by state-of-the art high

62
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density and power efficient architecture nodes, the AMD SeaMicro SM15k cluster.

Our system was based on the Slack Recovery [6] heuristic, which relies on the concept

of Virtual Power States (VPS), and was previously evaluated on a simulation environ-

ment. In order to bring it to a production cluster, we needed to show how VPSs could

be implemented on practice. We do so by presenting new techniques to predict future

demanded performance and a Utilization Control Agent (UCA). Our experimental evalu-

ation shows that the UCA is capable of maintaining the cluster at the desired utilization

rates.

Our power management system was compared to two Linux power consumption gov-

ernors: performance and ondemand. The experiments were conducted using Olio, a Web

2.0 web-based social calendar extracted from the CloudSuite Web Server benchmark [24].

We showed that our Slack Recovery-based system can save up to 16% of the power

consumed in the cluster when compared with the Linux performance governor, and up to

6.67% when compared with Linux ondemand governor. Finally, we evaluated the potential

for power savings that could be brought by powering on/off cluster nodes, an alternative

that may be promising but we decided not to include in this version of our system due to

the penalty of turning on/off SM15k cluster nodes. We plan to include this feature when

evaluating our power management system in future works.

6.1 Future Work

In Chapter 3, we presented Web Server power modeling techniques. We collected system

level performance statistics and used them as proxies to system power. In the experiments,

we correlated the power and performance measured on a time-window of one second. We

used this approach to reduce possible shifts among the measurements. This approach

was sufficient for Web Server power models. However, the approach might not work

for modeling applications that need finer granularity level. Therefore, a possible future

work is to study techniques to synchronize power and performance measurements. On

way to do this is to put the machine on idle for a period of time, which will reduce the

power consumption and the performance statistic rates. When the application starts,

spikes will be observed on the timeline graphs. Therefore, by using statistical methods

an experimenter could try to identify this marks and synchronize the measurements.

In Chapter 5, we presented a method to optimize power consumption globally on a

Web Server cluster. We createad the infrastructure and showed that the method was able

to save some energy. We also presented a lower-bound for the Slack Recovery heuristic

if we consider the idle power as idle, which is the same to power-on/off machines in zero

time. Therefore, the most straightforward future work would be to study techiniques to

power-on/off machines.



6.1. Future Work 64

Powering-on/off machines will need some changes on the current infrastructure im-

plementation. The implementation assumes that the nodes were already powered up.

Moreover, it synchronizes the nodes by using broadcast messages only once. Periodically

synchronization messages should be used to implement power-on/off capability.

The predictor also needs modifications to allow the capability of powering-on/off

nodes. Performance prediction is done for the next time window. In our experiments, we

used a time window of 20 seconds. A SM15k cluster node takes about 5 minutes to be

powered up. Therefore, adding a power on/off capability to the algorithm could be done

by spliting the prediction in two phases, a long term and a short term, so that, we can

account the time to power on/off the machine.

Chapter 5 also showed that by using our heuristic algorithm, the SLA increased by 8

times when compared to other algorithms. Although the bechmark SLA was met, this

penalty could be unacceptable for some clients. Therefore, it is necessary to investigate

methods to improve the SLA. One possible aproach would be to add a more intelligent

predictor that takes into account possible load variation. So as future work, it is pos-

sible to investigate different predictions methods and their impacts on SLA and power

consumption.

Finally, we can use the RAPL interfaces to implement the performance optimization

under a power cap. The Slack Recovery is able to optimize power under a performance

threshold and also optimize performance under a power cap. Power capping is for free

when using RAPL interfaces, since it can be readily done by writing the target power on

RAPL registers [29,59]. Therefore, the by combining RAPL interfaces, the Slack Recovery,

and the monitoring cluster infrastructure, the performance optimization problem under a

power cap could be easily implemented.



Appendix A

Acronyms

This is a list of the acronyms used in this thesis.

• CFS: Correlation-based Feature Selection

• CDF: Cumulative Distribution Function

• EAC: Energy-Adaptive Computing

• GPM: Global Power Model

• ILP: Integer Linear Programming

• pSPM: P-State-based Power Model

• PMC: Performance Monitoring Counter

• PUE: Power Usage Effectiveness

• PWSPM: Pruned Web Server Power Model

• RU: Rack Unit

• RAPL: Running Average Power Limit

• SLA: Service Level Agreement

• SIMO: Single-Input Multiple-Output

• SISO: Single-Input Single-Output

• VPS: Virtual Power States

• WSPM: Web Server Power Model
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