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DEP - UFSCar

• Prof. Dr. Horacio Hideki Yanasse

CTE - INPE

• Prof. Dr. Flávio Keidi Miyazawa

Instituto de Computação - UNICAMP (Suplente)

• Prof. Dr. Luis Augusto Angelotti Meira

FT - UNICAMP (Suplente)

• Prof. Dr. Yuri Abitbol de Menezes Frota

IC - UFF (Suplente)

1Aux́ılio Financeiro: Capes e FAPESP (processo 2011/08563-9) 2011–2013

vii





Abstract

In this work we are interested in packing and routing problems. Assuming P 6= NP ,

we have that there are no efficient algorithms to deal with such problems. Besides exact

algorithms, two approaches to solve such problems are Approximation Algorithms and

Heuristics. In this thesis we show algorithms using these three approaches for both packing

and routing problems.

The first two addressed problems are generalizations of classical packing problems: The

Two Dimensional Knapsack problem and the Strip Packing problem. These problems were

generalized by adding constraints on the way the items can be inserted/removed into/from

the bin (These constraints appear in the context of routing problems). The third problem

is combination of packing and routing problems. It is a generalization of the classical

Pickup and Delivery problem.

We propose the first approximation results for some packing problems. Besides that,

we present some practical algorithms for the third problem. The heuristics were assessed

through computational experiments by comparing their results with exact algorithms.

ix





Resumo

Neste trabalho estamos interessados em problemas de empacotamento e roteamento. As-

sumindo a hipótese de que P 6= NP , sabemos que não existem algoritmos eficientes para

resolver tais problemas. Além de algoritmos exatos, duas das abordagens para resolver

tais problemas são Algoritmos Aproximados e Heuŕısticas. Nesta tese mostramos algo-

ritmos baseados nestas três abordagens para ambos os problemas, de empacotamento e

roteamento.

Os dois primeiros problemas atacados foram generalizações de problemas clássicos de

empacotamento: O problema da mochila bidimensional e o problema de empacotamento

em faixas. Estes foram generalizados adicionando restrições na forma de carregamento

e descarregamento dos itens no recipiente (restrições estas, que aparecem no contexto

de problemas de roteamento). O terceiro problema é uma combinação de problemas de

empacotamento e roteamento. Neste caso, atacamos uma generalização do clássico Pickup

and Delivery Problem.

Propomos os primeiros resultados de aproximação para algumas versões dos problemas

de empacotamento supracitados. Além disto, apresentamos algumas abordagens práticas

para o terceiro problema. As heuŕısticas foram avaliadas através de experimentos com-

putacionais comparando os seus resultados com algoritmos exatos.

xi
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“... It is a tale, told by an idiot, full of

sound and fury, signifying nothing.”

William Shakespeare
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Caṕıtulo 1

Introdução

Neste trabalho estamos interessados em problemas de empacotamento bidimensionais e

problemas de roteamento. Muitas das variações destes problemas clássicos de otimização

pertencem à classe NP-dif́ıcil [25]. Nos problemas de otimização combinatória temos

um conjunto, geralmente finito, de objetos e uma função objetivo definida sobre este

conjunto. O objetivo consiste em encontrar um dos objetos que minimiza ou maximiza

a função objetivo dada. Em geral, métodos exaustivos são inviáveis para se resolver tais

problemas devido ao tamanho do conjunto de objetos.

Como trabalho de doutorado realizamos um estudo sobre problemas de roteamento

e empacotamento bidimensionais com certas restrições relacionadas aos problemas de

roteamento.

Nos problemas de roteamento temos um grafo com dois conjuntos de vértices identi-

ficados como: depósitos e clientes, além de um conjunto de requisições de cada cliente.

Neste caso, uma requisição pode ser uma demanda de carga, cuja representação pode

ser simplesmente um peso, ou formato de cada item da carga, que por sua vez pode ser

uni, bi ou tridimensional. Desta forma, o problema consiste em encontrar um conjunto

de rotas (percorridas por véıculos) que minimizam uma função objetivo dada, atendam

as requisições de cada cliente e respeitem as restrições do problema (Capacidades dos

véıculos, números de visitas aos clientes, etc). Como exemplo de problema de roteamento

podemos citar o Capacitated Vehicle Routing Problem (CVRP) [48].

Nos problemas de empacotamento, por sua vez, temos um conjunto de objetos grandes,

chamados de bins, e vários objetos menores, chamados de itens. O objetivo do problema

é empacotar itens dentro de bins, de forma a maximizar ou minimizar uma dada função

objetivo. Como exemplos clássicos de problemas de empacotamento bidimensionais po-

demos citar o Two Dimensional Bin Packing Problem e o Strip Packing Problem [36].

Neste trabalho, supomos a hipótese de que P 6= NP . Desta forma, tais problemas

de empacotamento, roteamento e muitos outros problemas de otimização que são NP-
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2 Caṕıtulo 1. Introdução

dif́ıceis, não possuem algoritmos eficientes, ou seja, polinomiais [7], para resolvê-los de

forma exata. Muitos destes problemas aparecem em aplicações práticas e há um forte

apelo econômico para resolvê-los.

Este trabalho é focado no desenvolvimento e análise de algoritmos aproximados, exatos

e heuŕısticas para versões dos problemas supracitados. De maneira geral, heuŕısticas são

algoritmos que abdicam da garantia de otimalidade a fim de reduzir a sua complexidade

de tempo. Os Algoritmos Aproximados, por sua vez, são aqueles para os quais é posśıvel

demonstrar que suas soluções sempre estão dentro de um certo fator (distância) do ótimo.

1.1 Objetivos do Trabalho

O objetivo principal do trabalho é apresentar novos algoritmos para versões de problemas

de roteamento e empacotamento bidimensional. Além disto, buscamos abordar alguns

problemas de maneira mais teórica, utilizando algoritmos aproximados e outros de maneira

mais prática com a implementação de heuŕısticas e algoritmos exatos que são testados

realizando-se experimentos computacionais.

1.2 Organização do Trabalho

Esta tese está organizada como uma coletânea de artigos. Apesar deste modelo induzir re-

petições em algumas definições, ele nos permite apresentar de maneira direta os resultados

obtidos durante o doutorado.

O restante da tese foi organizada da seguinte forma. No Caṕıtulo 2 introduzimos os

problemas atacados durante o doutorado, além de apresentar algumas técnicas utilizadas

no restante do trabalho. Um resumo dos resultados obtidos no doutorado é mostrado

no Caṕıtulo 3. Após isto, os artigos são apresentados nos caṕıtulos seguintes (4, 5 e 6).

Por fim, o Caṕıtulo 7 contém as considerações finais do trabalho, além de discorrer sobre

alguns posśıveis trabalhos futuros.



Caṕıtulo 2

Preliminares

Neste Caṕıtulo discorremos sobre os problemas atacados na tese e algumas técnicas uti-

lizadas para resolvê-los. Primeiramente apresentamos os problemas de roteamento consi-

derados (Seção 2.1) e, em seguida, os de empacotamento (Seção 2.2). Por fim, resumimos

alguns tópicos abordados nos caṕıtulos seguintes: Algoritmos Aproximados (Seção 2.3) e

a metaheuŕıstica GRASP (Seção 2.4).

2.1 Problemas de Roteamento

Problemas de roteamento de véıculos consistem no atendimento de um conjunto de de-

mandas de clientes, por meio de véıculos que estão inicialmente localizados em depósitos.

Em geral, cada véıculo possui uma capacidade que não deve ser excedida pelas deman-

das atendidas por este véıculo. Formalmente, temos um grafo completo G(V,E) com

demandas d : V ! R e custos c : E ! R, e R véıculos com capacidades pi, 1 ≤ i ≤ R,

inicialmente localizados em um vértice inicial d chamado de depósito. O objetivo é encon-

trar um conjunto de R rotas (ciclos) ri, disjuntas (exceto por d), onde cada ciclo contém

o vértice d, todos os vértices são visitados e a soma das demandas em cada rota ri não

excede pi. Este conjunto de rotas deve ter o menor custo posśıvel (soma dos custos das

arestas das rotas). De nosso conhecimento, os primeiros a estudar este problema foram

Dantzig e Ramser em [14].

É fácil ver que este problema é NP-dif́ıcil, já que se fizermos R = 1 e pi =
P

v2V d(v),

então temos um método para se resolver o clássico problema Traveling Salesman Problem

(TSP) [3].

Muitas variações desta versão básica do problema já foram propostas. Estas variam

desde modificações da função objetivo (minimizar distância total, minimizar a utilização

de véıculos) até a adição de novas restrições (janelas de tempo, entregas particionadas)

[33]. Em determinados casos, a demanda dos clientes pode ser representada como um

3



4 Caṕıtulo 2. Preliminares

conjunto de produtos ou itens.

Transportadoras, por exemplo, devem organizar suas entregas em caminhões de forma

a atender todos os pedidos de uma região minimizando os custos de distância e tempo

para realizar esta tarefa. Neste cenário, obter bons arranjos de produtos nos caminhões

desempenha um papel importante no problema como um todo, já que um arranjo mal

feito pode gerar retrabalho nas tarefas de carregamento e descarregamento do caminhão.

Neste contexto, surge o problema Capacitated Vehicle Routing Problem with Two Di-

mensional Loading Constraints (2L-CVRP) [16, 26, 54, 23]. Nele o problema CVRP é

combinado com problemas de empacotamento a fim de modelar uma situação onde se

faz necessário entregar um conjunto de produtos ao longo de uma rota. Neste problema,

busca-se minimizar o custo do transporte necessário para realizar entregas de produtos

a clientes em diferentes localizações. Estes produtos (itens) são enviados em véıculos

(bins) que estão inicialmente situados no fornecedor dos produtos (todos os produtos são

carregados antes de se percorrer a rota). Para acomodar os itens nos bins é utilizado

um algoritmo de empacotamento com restrição de descarregamento, para garantir que,

durante a entrega de produtos de cada cliente, não hajam produtos de outros clientes

bloqueando a sáıda do bin.

Na Figura 2.1 temos um exemplo do 2L-CVRP. Os clientes A, B e C serão visitados

em ordem (veja a parte (a)). O empacotamento apresentado em (b) é inviável pois há

itens de B bloqueando a sáıda de um item de A. Por fim, o empacotamento em (c) é

viável.

Em outros casos, além de descarregar produtos ao longo de uma rota, faz-se necessário

carregar novos produtos no caminhão. Considere por exemplo o caso em que é necessário

transportar demandas entre pares de clientes ao longo de uma rota. Se desconsiderarmos

as demandas dos clientes e levarmos em consideração apenas a ordem de visita dos clientes

então teremos o Pickup and Delivery Problem (PDP). Este problema é uma generalização

do clássico TSP, descrito anteriormente. O PDP consiste em encontrar, no grafo de

entrada, um ciclo hamiltoniano de custo mı́nimo que satisfaça todas as restrições de

ordem de visita dos clientes (antes de entregar uma demanda é necessário pegá-la no seu

respectivo cliente). Estas restrições são representadas através de pares de vértices do grafo

(um de coleta e outro de entrega).

Se considerarmos que as demandas são produtos que serão carregados e descarregados

ao longo da rota então teremos o problema referenciado na literatura como Pickup and

Delivery Problem with Two Dimensional Loading/Unloading Constraints [38] (PDPLU).

Neste caso o arranjo dos produtos (itens) no caminhão (bin) deve considerar que itens serão

removidos e inseridos no bin em ordem definida pela rota considerada. Neste problema,

temos o mesmo objetivo do PDP, porém, devemos considerar a inserção e remoção dos

itens na rota. Desta forma, deve-se garantir que na inserção de um item, este não será
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Figura 2.1: Exemplo do 2L-CVRP.

bloqueado até atingir a sua posição de empacotamento e, como no 2L-CVRP, o mesmo

deve acontecer no seu descarregamento.

Na Figura 2.2 temos um exemplo do PDPLU. Considere que a rota é definida como

“carregamento” de itens de A (pa), “carregamento” de itens de B (pb), “descarregamento”

de itens de A (da) e, por fim, “descarregamento” de itens de B (db) (Parte (a)). Em (b)

temos um empacotamento inviável, pois há um item de A cuja remoção é bloqueada pelo

item de B. Em (c) temos um empacotamento inviável, já que há itens de A bloqueando o

carregamento do item de B. Em (d) temos um empacotamento viável.

Na tese, estudamos o problema PDPLU e problemas de empacotamento relacionados

ao 2L-CVRP.

2.2 Problemas de Empacotamento com Restrições de

Carregamento e Descarregamento

Nos problemas de empacotamento, temos um ou mais objetos grandes n-dimensionais,

os quais chamamos de bins, e vários objetos menores também n-dimensionais os quais

chamamos de itens. O objetivo do problema é empacotar itens dentro de bins, de forma a
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Diversos aplicações industriais podem ser modelados utilizando estes problemas de

empacotamento. Dentre eles podemos citar: problemas de corte de insumos (aço, vi-

dro, tecido, etc), alocação de recursos, problemas de carregamento (caminhões, vagões,

contêineres, etc), entre outras [22, 8, 34, 52, 16].

Para uma visão mais abrangente da área de problemas de empacotamento, recomenda-

se a leitura dos trabalhos [18] e [50], propostos por Dyckhoff (1990) e Wäscher et al.

(2007).

Quando um problema de empacotamento é submetido à restrições que impõem a forma

como itens (bi ou tridimensionais) devem ser inseridos/removidos do bin ou a ordem

com que estas operações podem ser realizadas, então este é chamado de Problema de

Empacotamento com Restrições de Carregamento e Descarregamento. Estes aparecem

em áreas como Pesquisa Operacional e Loǵıstica.

Nos problemas considerados neste trabalho, exceto quando disposto contrário, será

realizado apenas um movimento para o carregamento e outro para o descarregamento dos

itens. Este movimento se dará a partir da posição de entrada do véıculo, em linha reta,

até a posição final de empacotamento, sem que haja sobreposição dos itens ao longo do

caminho. Na Figura 2.3, apresentamos um exemplo de remoção e inserção de itens. Nas

figuras 2.1, 2.2 e 2.3 os itens são inseridos e removidos pelo topo do bin utilizando-se

apenas de um movimento. Ademais, nos problemas abordados, durante a remoção de um

item não é permitida a movimentação dos itens já empacotados. Para fins de notação,

nas figuras, o lado do bin que será utilizado para a inserção e remoção dos itens, estará

tracejado, enquanto os outros três estarão em linha cheia (exceto no Caṕıtulo 5, onde

uma das dimensões do bin é ilimitada).

Na Figura 2.3 temos um exemplo de restrição de descarregamento. Suponha que des-

carregaremos os itens de A antes dos itens de B. Neste caso, o empacotamento apresentado

em (a) é inviável, pois, mesmo havendo espaço para remover os itens de A pelo topo, isto

exigiria mais de um movimento dos itens de A para remoção ou movimentar o item de B.

Em (b) temos um empacotamento viável.

De maneira geral, na tese, abordamos três versões de problemas de empacotamento

com restrições de carregamento e/ou descarregamento: Two Dimensional Knapsack Pro-

blem with Unloading Constraints (2KPU), Strip Packing Problem with Unloading Cons-

traints (SPPU) e o Two Dimensional Knapsack Problem with Loading and Unloading

Constraints (2KPLU).

O 2KPU pode ser definido da seguinte maneira. A entrada consiste em um bin B e

uma lista de itens L = (a1, . . . , am), cada item ai com altura e largura (h(ai), w(ai)), valor

(v(ai)) e cliente ou classe (c(ai)), além disso, o objetivo é empacotar um subconjunto de L

de tal maneira que a soma dos valores dos itens empacotados seja maximizada e os itens

podem ser removidos do empacotamento em ordem crescente de valores c(ai), sem alterar
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técnica, é formular o dual do programa linear e obter soluções a partir das variáveis duais.

No caso do uso da técnica primal-dual o algoritmo projetado é combinatório, porém

fortemente baseado nas formulações primal e dual do problema.

No âmbito teórico, os algoritmos de aproximação mais desejados são os que possuem o

menor fator de aproximação posśıvel. Para alguns problemas, é posśıvel mostrar que exis-

tem famı́lias de algoritmos com fatores de aproximação (1 + ε), no caso de problemas de

minimização, e (1−ε), no caso de problemas de maximização, onde ε > 0 é uma constante

e pode ser tomada tão pequena quanto se deseje. Chamamos PTAS (Polynomial Time

Approximation Scheme) uma famı́lia de algoritmos que têm tais fatores de aproximação

e têm complexidade de tempo polinomial no tamanho da entrada. Se, além de serem

polinomiais no tamanho da entrada, os algoritmos forem polinomiais em 1/ε, dizemos que

são FPTAS (Fully Polynomial Time Approximation Scheme). Caso existam constantes

aditivas nos fatores de aproximação destes algoritmos, chamaremo-los APTAS (Asympto-

tic Polynomial Time Approximation Scheme) e AFPTAS (Asymptotic Fully Polynomial

Time Approximation Scheme), respectivamente. Nestes esquemas de aproximação temos

uma famı́lia de algoritmos aproximados pois, dado um ε > 0 fixo, podemos construir um

algoritmo com tal aproximação e tempo de execução polinomial. Dentre os esquemas

supracitados, os FPTAS são os mais desejados.

Além de apresentar algoritmos de aproximação para problemas NP-dif́ıceis, também

podemos demonstrar que alguns deles não podem ser aproximados além de um certo fator

α (fator de inaproximabilidade). Nestes casos, dado um problema P , devemos demonstrar

que não pode existir um algoritmo α-aproximado para P . Uma das formas de fazê-lo é

através de reduções, demonstrando que caso exista um algoritmo polinomial α-aproximado

para P , então podemos resolver algum outro problema NP-Dif́ıcil em tempo polinomial.

Para mais detalhes em inaproximabilidade veja [1, 49].

Para determinados problemas ditos online, onde não é posśıvel conhecer toda a instância

I de entrada a priori, devemos projetar algoritmos que processem a entrada de maneira

sequencial, à medida que ela lhe é apresentada, sem que seja posśıvel modificar escolhas

feitas em passos anteriores. A este tipo de algoritmos dá-se o nome de algoritmos on-

line. Para mais detalhes sobre algoritmos online veja [5]. Um algoritmo A é dito ser

α-competitivo se é online e é α-aproximado. Nestes casos o valor A(I) é comparado com

o valor da solução ótima offline OPT (I), a fim de obtermos uma aproximação.

2.4 Metaheuŕıstica GRASP

Nesta Seção descreveremos as principais ideias da metaheuŕıstica GRASP, as quais serão

utilizadas em alguns dos algoritmos propostos nesta tese.

As metaheuŕısticas são procedimentos genéricos utilizados para guiar o desenvolvi-
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mento de heuŕısticas para problemas espećıficos. Cada uma utiliza um mecanismo di-

ferente para fugir de ótimos locais e tentam se aproximar ou encontrar alguma solução

ótima global. Dentre as metaheuŕısticas mais conhecidas podemos citar os algoritmos

genéticos [30], a Busca Tabu [27], simulated annealing [32], GRASP [19] e Otimização por

Colônias de Formigas [9].

A metaheuŕıstica GRASP foi proposta por Feo et al. [19], mais formalmente em [20].

Esta metaheuŕıstica é guiada por um procedimento iterativo onde cada iteração é formada

por duas fases: Construção e Busca Local. A fase de Construção ou fase construtiva

cria uma solução s inicial viável, enquanto que a fase de Busca Local, por sua vez, busca

soluções melhores na vizinhança de s. A melhor dentre todas as soluções encontradas nas

iterações realizadas é devolvida como o resultado do algoritmo GRASP.

Na fase construtiva, é criada uma Lista Restrita de Candidatos (LRC) formada pelos

elementos que, quando inseridos na solução parcial, levam a novas soluções de baixo

custo. Após isto, é sorteado, aleatoriamente, um dos elementos da LRC e este é inserido

na solução parcial. Este procedimento é repetido enquanto uma solução viável não é

encontrada.

A Busca Local é um método simples usado para resolver problemas de otimização com-

binatória e, devido as suas limitações, na maioria dos casos, serve basicamente como apoio

a outros algoritmos mais rebuscados como o GRASP. Seu processo básico é o seguinte.

Dada uma solução inicial s, analisar a vizinhança de s (denotada por V(s)) em busca de

uma solução de melhor valor. Se uma solução melhor for encontrada, então segue a busca

pela vizinhança desta nova solução encontrada. Este processo é repetido até que a solução

atual seja um ótimo local na vizinhança. As deficiências deste tipo simples de busca são

amenizadas devido à caracteŕıstica de múltiplos pontos iniciais (multistart) do GRASP.

Nos algoritmos 1, 2 e 3 são apresentados pseudocódigos que sintetizam a metaheuŕıstica

GRASP e suas fases.

Algorithm 1 Fase-Construtiva

1: begin
2: input: A lista de elementos L do problema (candidatos).
3: Solução ← ?
4: while Solução não é viável do
5: Calcule os custos incrementais de cada candidato.
6: Construa a Lista Restrita de Candidatos LRC ⊆ L.
7: Selecione aleatoriamente um elemento e 2 LRC.
8: Solução ← Solução [ {e}.
9: L ← L\{e}.

10: return Solução.
11: end
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Algorithm 2 Busca Local (Minimização)

1: begin
2: input: s uma solução inicial.
3: while s não é mı́nimo local do
4: Seja s0 = min(V(s)).
5: s ← s0.
6: return s.
7: end

Algorithm 3 GRASP

1: begin
2: input: MaxIter, o número máximo de iterações e L a lista de entrada do problema.
3: Melhor Solução ← 1
4: for i = 1 to MaxIter do
5: Solução ← Fase-Construtiva(L).
6: Solução ← Busca-Local(Solução).
7: Melhor Solução ← min(Melhor Solução, Solução).
8: return Melhor Solução.
9: end

O algoritmo GRASP é executado por um número máximo de iterações (MaxIter).

Dentre as soluções geradas nas iterações do algoritmo é escolhida aquela de menor custo

(no caso de problemas de minimização).

Heuŕısticas GRASP são consideradas gulosas pois sua fase construtiva gera soluções

iterativamente com itens mais promissores. Por vezes são chamadas “semi-gulosas” pois

esta escolha é feita de maneira aleatória a partir da LRC. Caso esta tenha apenas um

elemento então o algoritmo seria puramente guloso. Este fator aleatório é muito impor-

tante para que soluções diferentes do espaço de soluções sejam encontradas e, portanto,

ajuda na fuga de ótimos locais. Além disto, estas heuŕısticas são chamadas adaptativas

pois os valores (custos) de cada candidato são recalculados no ińıcio de cada iteração da

fase construtiva, tornando mais ou menos promissores dependendo da configuração atual

do algoritmo.

As implementações GRASP geralmente usam valores fixos como parâmetros das es-

colhas aleatórias do algoritmo, entretanto isto pode ser melhorado com valores que se

ajustem durante a execução da heuŕıstica. Nestes casos, ela é chamada GRASP reativa

[43].

Outra técnica bastante utilizada em conjunto com o GRASP é o Path-relinking. Esta

técnica foi proposta por Glover [28] para buscar melhores soluções no “caminho” entre

boas soluções encontradas com Busca Tabu e Scatter Search. Esta técnica busca mes-
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clar diferentes caracteŕısticas das melhores soluções encontradas pelo GRASP gerando

possivelmente, soluções melhores.

No trabalho [45] a metaheuŕıstica GRASP e suas melhorias são detalhadas. Neste

trabalho, são apresentadas também as melhores formas de se aplicar cada uma destas

técnicas (GRASP reativa, Path-relinking, etc).



Caṕıtulo 3

Resumo dos Resultados

Nesta seção apresentamos os resultados obtidos durante o doutorado. Para tanto, descre-

vemos sucintamente os resultados apresentados em cada artigo dos caṕıtulos seguintes.

Além disto, discorremos sobre dois trabalhos adicionais realizados durante o doutorado,

porém que não estão inseridos como caṕıtulos na tese (Seção 3.4).

3.1 A Note on a Two Dimensional Knapsack Pro-

blem With Unloading Constraints

No Caṕıtulo 4 estamos interessados na versão bidimensional do Two Dimensional Knap-

sack Problem with Unloading Constraints (2KPU). Nele apresentamos os primeiros al-

goritmos aproximados para o problema em questão. Primeiramente, desenvolvemos um

algoritmo h́ıbrido, o qual combina dois tipos de algoritmos aproximados: Algoritmos para

o 2KP bidimensional e algoritmos baseados em ńıveis para o Two Dimensional Bin Pa-

cking Problem bidimensional (2BPP). A partir deste algoritmo proposto e de sua análise,

desenvolvemos algoritmos aproximados para 3 variantes do 2KPU ortogonal sem rotações.

Uma (3+ε)-aproximação para o caso em que os itens e o bin são quadrados, um algoritmo

(3 + ε) aproximado para o caso em que o valor dos itens é igual a sua área e, por fim,

uma (6 + ε)-aproximação para o caso em que os itens são retangulares e o bin quadrado.

Quando rotações são permitidas, estes fatores de aproximação foram reduzidos a 2/3 (Por

exemplo, uma (4 + ε)-aproximação para último caso citado, porém utilizando rotações).

Por fim, apresentamos um algoritmo (4 + ε) aproximado para o caso geral do problema

sem rotações, utilizando o algoritmo Next-Fit Decreasing Height(NFDH) [31]. Ademais,

mostramos que este fator de aproximação é justo.

Resultados preliminares foram publicados na conferência Latin-American Algorithms,

Graphs and Optimization Symposium - LAGOS [12]. Uma versão completa aceita para pu-

15
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blicação na revista RAIRO - Theoretical Informatics and Applications [47] é apresentada

no Caṕıtulo 4. Para facilitar a notação e a definição destes algoritmos, neste trabalho,

utilizamos, excepcionalmente, o lado direito dos bins para a remoção dos itens. Isto ficará

evidente na primeira figura Caṕıtulo 4 (Figura 4.1).

3.2 Two Dimensional Strip Packing with Unloading

Constraints

No Caṕıtulo 5 desenvolvemos vários algoritmos aproximados para o Strip Packing Problem

with Unloading Constraints (SPPU). Neste problema temos uma faixa F de largura um

e altura infinita, e n itens divididos em C classes (ordens) diferentes, cada item ai com

altura h(ai), largura w(ai) e classe c(ai). Assim como no SPP, desejamos empacotar os n

itens minimizando a altura utilizada, porém agora consideramos a restrição de que itens

de maior classe (c(ai)) não podem bloquear a sáıda de itens de menor classe. Supomos

também que é permitida a rotação ortogonal dos itens.

De maneira geral, neste trabalho, atacamos duas versões do problema em questão. A

primeira, como descrita acima e a segunda com uma restrição de descarregamento modi-

ficada (relaxada). Nesta segunda versão pode-se realizar dois movimentos para remover

um item do bin, um horizontal e um vertical (ver a Figura 5.1 no Caṕıtulo 5).

Para o caso em que podemos realizar movimentos horizontais e verticais para remover

os itens, desenvolvemos um algoritmo com aproximação assintótica 3. Este algoritmo

divide os itens em 4 tipos, baseado em seus tamanhos, e os empacota com uma versão

modificada do NFDH. Desenvolvemos também um algoritmo para o caso paramétrico

desta versão, onde os itens têm um largura limitada por um fator 1/m, m ≥ 2. Este

algoritmo é ( m
m−1

+ ε)-aproximado.

Para o caso onde só é permitido realizar movimentos verticais, apresentamos uma

5.745-aproximação assintótica. Este algoritmo utiliza um Teorema apresentado por Meir

and Moser em [40] sobre a área dos itens empacotados com o NFDH. Por fim, também

projetamos algoritmos para a versão paramétrica deste problema. Neste caso, supomos

ambos, largura e altura, limitados por 1/m, m ≥ 3, e então utilizamos o teorema proposto

por Li e Cheng em [35] para desenvolver um algoritmo ( m
m−2

)-aproximado.

Estes resultados melhoram aqueles obtidos pelo aluno e apresentados na sua dis-

sertação de mestrado [11].

A versão apresentada no Caṕıtulo 5 corresponde ao artigo completo aceito para pu-

blicação na revista Discrete Applied Mathematics. Uma versão preliminar do mesmo foi

publicada na conferência Latin-American Algorithms, Graphs and Optimization Sympo-

sium - LAGOS [13].
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3.3 On The Pickup and Delivery with Two Dimen-

sional Loading/Unloading Constraints

No Caṕıtulo 6 estudamos o Pickup and Delivery Problem with Two Dimensional Loa-

ding/Unloading Constraints (PDPLU), o qual surge como uma generalização do clássico

Pickup and Delivery Problem (PDP) [41]. A entrada do PDPLU consiste em um grafo

completo G com 2n+1 vértices, sendo um depósito e n pares (pi, di) (representando pon-

tos de carregamento e descarregamento de um cliente i), e uma lista de itens Li associada

a cada par de vértices (pi, di). O objetivo do problema é encontrar um ciclo hamilto-

niano de custo mı́nimo onde cada vértice pi é visitado antes do seu par di e existe um

empacotamento válido para essa rota, respeitando as restrições do problema 2KPLU.

No 2KPLU temos basicamente a mesma instância do 2KPU porém ao invés de ape-

nas um atributo de ordem (c(ai)) um item ai terá dois atributos (carregamento p(ai) e

descarregamento d(ai)). Estes atributos indicam o momento em que um item será inse-

rido (carregamento) e removido (descarregamento) do recipiente em questão. Neste caso

abordaremos uma restrição a mais, a restrição de carregamento dos itens (modelando o

problema de forma ideal para atacar o problema PDPLU).

Primeiramente, a fim de resolver o PDPLU de maneira exata, utilizamos uma versão

simplificada do algoritmo Branch-and-Cut apresentado em [17] em conjunto com nossos

algoritmos para o 2KPLU. Nossa abordagem foi testar, para cada rota gerada com o

Branch-and-Cut, se existe um empacotamento válido para os itens, considerando a ordem

definida pela rota, satisfazendo as restrições do 2KPLU. Testamos também algumas

versões modificadas do algoritmo para o 2KPLU.

Além disto, continuamos os estudos com o desenvolvimento de heuŕısticas para o

problema em questão. Primeiramente, adaptamos a melhor heuŕıstica da literatura [44]

para o problema PDP, inserindo os algoritmos de empacotamento para o 2KPLU para

validar as rotas geradas no algoritmo. Esta adaptação foi comparada com uma nova

heuŕıstica GRASP que propusemos para o problema PDPLU. Esta é baseada na inserção

de pares de vértices (clientes) na solução.

Para o 2KPLU, desenvolvemos dois algoritmos exatos. Um deles é uma extensão do

algoritmo exato bidimensional que considera todos os pontos de canto para o empacota-

mento [39]. Na enumeração dos posśıveis pontos onde pode-se empacotar um item deve-se

remover alguns pontos inviáveis e adicionar outros baseado nas restrições de carregamento

e descarregamento. Ademais, para definir os pontos de canto, devemos considerar ape-

nas itens do empacotamento que certamente estarão juntos com o item sendo empacotado

durante algum momento na rota considerada. Desta forma, veremos que em alguns empa-

cotamentos teremos itens sobrepostos, mas somente em casos em que ambos não estarão

empacotados ao mesmo tempo na rota. O outro algoritmo exato é baseado na formulação



18 Caṕıtulo 3. Resumo dos Resultados

com Constraint Programming (CP) apresentada por Malapert et al. [38].

Além disto, trabalhamos também em três heuŕısticas simples para o problema 2KPLU.

Uma heuŕıstica baseada no algoritmo Bottom Left [2, 6], outra baseada no Touching

Perimeter [37] e uma terceira que busca maximizar a sobreposição dos itens que não

estarão juntos no bin ao mesmo tempo. A ideia básica de todas as heuŕısticas é perturbar

a lista de itens de entrada e depois utilizar os algoritmos básicos considerando as restrições

de carregamento e descarregamento. Ideias similares foram utilizadas no contexto do

problema 2L-CVRP [26, 54].

Realizamos experimentos computacionais com várias versões destes algoritmos. Para

isto, criamos novas instâncias para o PDPLU baseadas em instâncias do PDP já utilizadas

na literatura [17]. Os resultados mostraram que o melhor algoritmo exato testado para o

PDPLU foi o algoritmo que utiliza CP para o 2KPLU. Além disto, a heuŕıstica GRASP

obteve consistentemente os melhores resultados dentre as heuŕısticas para o PDPLU.

O Caṕıtulo 6 apresenta uma versão completa do artigo, que será submetido para

publicação em uma revista.

3.4 Outros Trabalhos Feitos Durante o Doutorado

Ainda durante o doutorado participamos na elaboração de outros dois trabalhos aceitos

que não estão inclúıdos como caṕıtulos na tese por se tratarem de trabalhos que já apa-

receram em dissertações de mestrado. O primeiro foi a finalização do nosso trabalho de

mestrado com resultados teóricos e práticos para o SPPU [10] (Seção 3.4.1). O segundo

foi um trabalho na área de escalonamento em grades computacionais da dissertação de

mestrado de Peixoto em [42] (Seção 3.4.2).

3.4.1 Artigo: Heuristics for the strip packing problem with unloading

constraints

Neste trabalho estudamos o problema SPPU, já definido anteriormente. Nele apresenta-

mos os primeiros resultados de aproximação para o SPPU. Do ponto de vista teórico,

descrevemos uma 6.75 aproximação para o caso não orientado do SPPU e uma 1.75 apro-

ximação para o caso orientado em que o número de classes dos itens é constante. Do

ponto de vista prático, propusemos uma heuŕıstica GRASP para o problema e realizamos

extensivos experimentos computacionais em novas instâncias criadas para o SPPU.

Durante o doutorado finalizamos uma pequena parte dos resultados teóricos do artigo

e, além disto, implementamos uma grande parte dos experimentos, que foram solicitados

para fins de aceitação do trabalho. Um artigo com estes resultados foi publicado na revista

Computers & Operations Research [11].
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3.4.2 Artigo: On the Worst Case of Scheduling with Task Replication

on Computational Grids

Neste trabalho estudamos um problema de escalonamento que consiste em escalonar n

tarefas emmmáquinas onde, em geral, a velocidade das máquinas é desconhecida a priori.

Este é um cenário t́ıpico em uma grade computacional, onde o poder de processamento

varia de máquina para máquina e no decorrer do tempo.

Como resultados, apresentamos os primeiros algoritmos aproximados para a versão

do problema que permite replicação de tarefas e que busca minimizar o Total Processor

Cycle Consumption (TPCC) [24], além disto, mostramos que estes resultados são justos.

Do ponto de vista prático, foram realizados extensivos experimentos computacionais com

várias versões dos algoritmos analisados. Este estudo prático concluiu que a replicação

induz um maior ganho em situações com grande variabilidade no poder de processamento

das máquinas.

Durante o doutorado, tivemos que implementar e testar vários algoritmos estudados

no artigo. Um artigo com estes resultados foi aceito para publicação na revista Journal

of Combinatorial Optimization [53].
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Knapsack Problem With Unloading
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Abstract

In this paper we address the two-dimensional knapsack problem with unloading con-

straints: we have a bin B, and a list L of n rectangular items, each item with a class value

in {1, . . . , C}. The problem is to pack a subset of L into B, maximizing the total profit of

packed items, where the packing must satisfy the unloading constraint: while removing

one item a, items with higher class values can not block a.

Each item has an associated profit.

We present a (4 + ε)-approximation algorithm when the bin is a square. We also

present (3 + ε)-approximation algorithms for two special cases of this problem.

1991 Mathematics Subject Classification. 68W25,05B40,90C27.

4.1 Introduction

In this paper we study the two-dimensional knapsack problem with unloading constraints

(KU), that is a generalization of the well known NP-Hard two-dimensional knapsack
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Constraints.
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problem [1, 13]. This problem arises in operations research transportation problems, like

the 2L-CVRP (Capacitated Vehicle Routing Problem with Two Dimensional Loading

Constraints Problem) [6, 10]. In this problem we are given k identical vehicles, with a

weight capacity and a rectangular surface that may be accessed only from one side. We

are also given a graph that represents the customers, the distance between them and the

starting point of the vehicles (a special vertex on the graph which represents the depot).

Each customer has a demand given by a set of rectangular items. The goal is to find k

routes that visits all clients such that the total cost of the routes is minimized. For each

route it must be obtained a feasible packing of the items of the clients in the route: the

unloading of items of a client must not be blocked by items of customers to be visited

later along the route (unloading constraint).

The KU problem can be formally defined as follows: We are given a bin B of width

and height 1, and n items of C different classes, each item ai with height h(ai), width

w(ai), profit p(ai) and class c(ai). A packing is feasible if items do not overlap, all of them

are packed inside bin B, and there is an order to unload the items, such that no item

of a given class blocks the way out of other items of smaller classes. We consider that

while removing one item of B only horizontal movements are allowed. The class values

c represents the order in which items must be removed. While removing one item, only

this item can be moved and only in the available free space of the bin. In this case, if an

item ai is packed in (xi, yi) (i.e. its bottom left corner is placed at this position) and aj
is packed in (xj, yj) and c(aj) > c(ai) then either yj + h(aj) ≤ yi or yi + h(ai) ≤ yj or

xj + w(aj) ≤ xi. These constraints guarantee that item aj is not blocking ai during its

removal while using only horizontal movements (see Fig. 4.1).

Since items are removed in non-decreasing order of values c, we can assume that, in

a feasible packing, when removing item ai, only items aj with class c(aj) ≥ c(ai) are still

packed. The other items ak with c(ak) < c(ai) should be removed previously. The value

of a feasible solution is the sum of the profits of items packed in B.

The KU problem is a generalization of the classical two dimensional Knapsack Prob-

lem: a special case in which all items have the same class value c.

Denote by OPT (I) the cost of an optimal packing for the instance I and A(I) the cost

of the solution computed by algorithm A. The proposed algorithms have polynomial-time

complexity and satisfy supI
A(I)

OPT (I)
≤ α, where α is the approximation ratio.

Related Work. An extended abstract of this work appeared in [3] and to our knowledge,

there are no approximation algorithms for the KU problem. There are a few heuristics

focused on the 2L-CVRP Problem [6, 10, 5, 16], and some heuristics for the strip packing

version of the problem [4]. There is also an exact algorithm for the three dimensional

version of the KU problem, based on an ILP formulation which take into account other

practical constraints within the unloading constraint [14, 15].
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into a square; and a (3 + ε)-approximation algorithm for the geometrical case where the

profits corresponds to the area of the rectangles. We also show some results for the case

in which orthogonal rotations are allowed.

The paper is organized as follows. In Section 4.2 we present a general result that leads

to three approximation algorithms. In Section 4.3 we present an (4 + ε)-approximation

algorithm for the general case. Finally, in Section 4.4 we draw some conclusions.

4.2 A Hybrid Algorithm for the KU problem

In this Section we present a general method to generate approximation algorithms for

several versions of the KU problem. Using it we present approximation algorithms for

three variations of the problem.

We define a regular two-dimensional knapsack problem, as a two-dimensional Knapsack

problem in which:

• The items can not overlap.

• The items and the bin have rectangular form;

• Any level based packing is a valid (not necessarily optimal) solution to the problem;

For instance the classical Geometrical and Guillotined cases of the two-dimensional Knap-

sack problem are regular.

First we will prove a general result: given an algorithm for a regular two-dimensional

knapsack problem and another level based algorithm for the two-dimensional bin packing

problem, we can construct another algorithm for the same knapsack problem with the

unload constraint.

By level based algorithm we mean an algorithm that packs items into levels (shelves),

where items in some level are “separated” from items in other levels: all items in a level

l0 = 0 are packed with their bottom at the bottom of the bin B, and the items of a

subsequent level li+1 are packed with their bottom in a line above all the items at level

li such that li+1 = li + maxak2li(h(ak)). Notice that items in the same level can be

arranged horizontally in an arbitrary manner without breaking the levels structure. The

algorithms First-Fit Decreasing Height (FFDH) and Next-Fit Decreasing Height (NFDH)

are examples of level based algorithms for the Strip packing problem [2] and the algorithm

Hybrid First-Fit (HFF) is a level based algorithm for the two-dimensional bin packing

problem [8].

Denote by p(Bi) the sum of the profits of items packed into the bin Bi, and denote by

p(L) the sum of the profits of items in the list. L

Input list of rectangles
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Theorem 4.2.1 Let AK be an α-approximation algorithm for a regular 2D knapsack

problem. Let ABP be an absolute β-approximation level based algorithm for the 2D bin

packing problem. Then there is an (αβ)-approximation algorithm, denoted by AKU for

the same version of the knapsack problem and that respects the unloading constraints.

Error note: Any β approximation is sufficient. The term absolute was misused here.

Proof. The Algorithm AKU is presented in Algorithm 4. It uses algorithm AK (an

α-approximation algorithm for a regular 2D knapsack problem) and algorithm ABP (an

absolute β-approximation algorithm for the 2D bin packing problem that is based on

levels).

In line 3 of Algorithm 4, algorithm AK selects a list of items L0 ⊆ L as a solution

for the knapsack problem. Then in line 4 of Algorithm 4, the level based algorithm ABP

generates the packing P of the items in L0 into bins. Finally, the Algorithm AKU selects

the bin with the largest total profit among the created bins, sort each level in this bin by

class and return it as a solution (lines 5-8 of Algorithm 4).

Algorithm 4 AKU algorithm

1: Input: Algorithms AK and ABP and a list L of items of C different classes.
2: Begin
3: L0 ← AK(L);
4: P ← ABP (L

0);
5: Let B1, . . . , Bm be the bins in P .
6: Let B be the bin with largest total profit p(B) among the bins in P .
7: Sort items in each level of B by non-increasing order of class.
8: return B.
9: end

First notice that the items in B are partitioned into levels since it is generated by a

level based algorithm ABP . The items in each level of B are sorted by non-increasing

order of class. This guarantees that the final packing satisfies the unloading constraint.

Also, since the problem is regular then the items can be packed in levels.

Now consider the total profit in bin B. Denote by OPTK the value of an optimal

packing for the regular 2D knapsack problem, and OPTKU the value of an optimal packing

for the regular 2D knapsack version of the problem with unloading constraints. Given a

list of items L, we have OPTK(L) ≥ OPTKU(L).

Assume that ABP (L
0) returned m bins. Since ABP is an absolute β-approximation

algorithm, we have m ≤ β. Let (B1, . . . , Bm) be the set of bins returned by the algorithm

ABP . We have

mp(B) ≥
m
X

j=1

p(Bj)
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= p(L0)

≥ 1

α
OPTK(L)

≥ 1

α
OPTKU(L).

Therefore,

p(B) ≥ 1

mα
OPTKU(L) ≥

1

αβ
OPTKU(L).

From the previous inequality, we conclude that AKU is an (αβ)-approximation algorithm

for the 2D knapsack problem with unloading constraints.

In [8], van Stee and Harren proved that the HFF algorithm, for the two-dimensional bin

packing problem, is an absolute 3-approximation when bins are squares and items cannot

be rotated, and is an absolute 2-approximation when 90 degree rotations are allowed. So,

using the HFF algorithm, which is a level based algorithm, we can prove the following

results applying Theorem 4.2.1:

• Let AK be the PTAS proposed in [12] for the 2D knapsack problem where items

are squares, with profits, and the bin is also a square. Then there is a (3 + ε)-

approximation algorithm for the same version of the problem and that respects

the unloading constraints. If rotations are allowed then the algorithm is a (2 +

ε)-approximation.

• LetAK be the (2 + ε)-approximation algorithm proposed in [13] for the 2D knapsack

problem, where items are rectangles with profits, and the bin is a square. Then

there is a (6 + ε)-approximation algorithm for the same 2D knapsack problem with

unloading constraints. If rotations are allowed then the algorithm is a (4 + ε)-

approximation.

• Let AK be the PTAS proposed in [11] for the 2D knapsack problem where items are

rectangles with profits that are proportional to their area (this problem is known

as Geometrical Knapsack), and the bin is a square. Then there is a (3 + ε)-

approximation algorithm for the 2D Geometrical Knapsack problem with unloading

constraints. If rotations are allowed then the algorithm is a (2 + ε)-approximation.

Let n = |L| and TA(n) be the time complexity of algorithm A. It is important

to notice that the time complexity of the algorithm AKU is bounded by O(TAK
(n) +

TABP
(n) + O(n log n)), with TAK

(n) from line 3 on Algorithm 4, TABP
(n) from line 4 on
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Algorithm 4 and O(n log n) from line 7 on Algorithm 4. Thus, assuming AK and AKU

being polynomial-time algorithms, then so is AKU .

4.3 A 4-approximation Algorithm for the KU Prob-

lem

In this section we present a (4 + ε)-approximation algorithm for the general 2D KU

problem, without rotations, where items have arbitrary profits and the bin is a square.

This result improves the (6 + ε)-approximation algorithm of the previous section.

Let Aε be the (1+ε)-approximation algorithm for the one-dimensional knapsack prob-

lem with arbitrary profits [9], and consider the NFDH algorithm [2], which is a level based

algorithm for the strip packing problem.

With approximation factor of 2.

The NFDH starts by sorting the items by non-increasing order of height. Then,

starting from the bottom of the strip as its first level, the algorithm packs items in order

on the current level (at the bottom of the level and left justified) as long as they fit; then

the current level is closed and the same procedure is applied to a new level above the

current level while there are items to be packed.

In Algorithm 5 we present our A0
KU algorithm for the KU Problem. It starts selecting

a set L0 of items with the algorithm Aε where each 2D item ai of the original instance is

transformed into an item for the 1D knapsack problem: the size of the item, s(ai), has

value equal to the area of ai and the profit values are the same (line 3-4 of Algorithm

5). Then it uses the NFDH algorithm to generate a strip packing with the 2D items in

L0 (lines 5 of Algorithm 5). Finally the algorithm packs the levels generated by NFDH

into 4 bins, and selects the one with the largest total profit as a final solution (lines 6-8

of Algorithm 5).

Teorema 4.3.1 The A0
KU algorithm is a (4 + ε)-approximation algorithm for the KU

problem.

Proof. Denote by Area(L) the total area of items in a given list L. First, notice that

the algorithm Aε selects L0 such that Area(L0) ≤ 1 and p(L0) ≥ 1
1+ε

OPTK(L) where

OPTK(L) is the value of an optimal solution for the 2D knapsack problem.

Since NFDH(L0) ≤ 2Area(L0) + 1 (see [2]), we have that NFDH(L0) ≤ 3.

Let P be the strip packing solution computed by NFDH algorithm. We claim that

there are at most three levels with height larger than 1/2 in this packing (the height of

some level is the height of the highest item packed on it). The levels are sorted by height

in P . Suppose for the purpose of contradiction that the first four levels have height > 1/2.
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Algorithm 5 A0
KU algorithm

1: Input: A list L of 2D items of C different classes.
2: Begin
3: Let Lu be the list L of items where each item now has size s(ai) = h(ai) · w(ai), and

profits values remain the same.
4: Let L0 be the original 2D items selected by algorithm Aε(Lu).
5: Generate the packing P with NFDH(L0).
6: Pack the levels of P into at most 4 bins.
7: Let B be the bin with largest total profit p(B) among the 4 created bins.
8: Sort each level in B by non-increasing order of class.
9: return B.
10: end

Then all items packed in the first, second and third levels have height > 1/2. The first

item packed in the fourth level also has height > 1/2. It is easy to see that the items of

the first and second level have total area > 1/2 and the items of the third level together

with the first item of the fourth level also have total area > 1/2. But this contradicts the

fact that Area(L0) ≤ 1, and so at most three levels have height larger than 1/2.

Now we show how to pack all levels of P into at most 4 bins. Pack each level with

height larger than 1/2 in three different bins B1, B2 and B3 (if there are less than 3 levels

with height > 1/2 consider the 3 largest levels). Now for the remaining levels pack them

in the first bin until for the first time the total height is larger than 1, then proceed to

the second bin, and finally to the third. Notice that only the first and second bins may

have total height larger than 1, since the total height of all levels is at most 3. Pack the

last packed levels of bin B1 and B2 in another bin B4 (this can be done since each one of

these levels have height < 1/2).

Finally the algorithm selects the bin B with largest total profit among B1, B2, B3 and

B4. The items in the levels of this bin are sorted in non-increasing order of class values.

This guarantees that we have a feasible packing for the KU problem. Finally we have

4 · p(B) ≥
4

X

i=1

p(Bi)

= p(L0)

≥ 1

1 + ε
OPTK(L)

≥ 1

1 + ε
OPTKU(L).
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4.4 Concluding Remarks

In this paper we consider some variants of the 2D knapsack problem with unloading

constraints. To our knowledge, this is the first paper to present approximation results to

this problem. We presented a (6+ ε)-approximation algorithm for the general case of the

problem, and two (3 + ε)-approximation algorithms, one for the special case where the

profits are proportional to the areas of the items and another one for the version where

items are squares. Finally, we improve our first result for the general case and present a

(4 + ε)-approximation algorithm and proved that this result is tight.
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[11] K. Jansen and L. Prädel. How to maximize the total area of rectangles packed into

a rectangle. Technical Report 0908, Christian-Albrechts-Universität zu kiel, Italy,

2009.

[12] K. Jansen and R. Solis-Oba. A polynomial time approximation scheme for the

square packing problem. In Proc. of the Integer Programming and Combinatorial

Optimization, volume 5035 of LNCS, pages 184–198. Springer Berlin / Heidelberg,

2008.

[13] K. Jansen and G. Zhang. On rectangle packing: maximizing benefits. In Proc. of

the 15th ACM-SIAM Symposium on Discrete Algorithms, pages 204–213, Philadel-

phia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[14] L. Junqueira, R. Morabito, and D. Yamashita. Abordagens para problemas de

carregamento de contêiners com considerações de múltiplos destinos. Gestão &

Produção., 18(1), 2011.

[15] L. Junqueira, R. Morabito, and D. S. Yamashita. Mip-based approaches for the

container loading problem with multi-drop constraints. Annals of Operations Re-

search, 199(1):51–75, 2012.

[16] E. E. Zachariadis, C. T. Kiranoudis, and C. D. Tarantilis. A guided tabu search for

the vehicle routing problem with two-dimensional loading constraints. European

Journal of Operational Research, 195:729–743, 2009.





Chapter 5

Artigo: Two Dimensional Strip Packing

with Unloading Constraints 1

J. L. M. da Silveira2 E. C. Xavier2 F. K. Miyazawa2

Abstract

In this paper we present approximation algorithms for the two dimensional strip packing

problem with unloading constraints. In this problem, we are given a strip S of width 1

and unbounded height, and n items of C different classes, each item ai with height h(ai),

width w(ai) and class c(ai). As in the strip packing problem, we have to pack all items

minimizing the used height, but now we have the additional constraint that items of higher

classes cannot block the way out of lower classes items. For the case in which horizontal

and vertical movements to remove the items are allowed, we design an algorithm whose

asymptotic performance bound is 3. For the case in which only vertical movements are

allowed, we design a bin packing based algorithm with asymptotic approximation ratio

of 5.745. Moreover, we also design approximation algorithms for restricted cases of both

versions of the problem. These problems have practical applications on routing problems

with loading/unloading constraints.

5.1 Introduction

In this paper we study two variants of the strip packing problem with unloading con-

straint, that are generalizations of the well known NP-Hard strip packing problem. These

1This research was supported by CNPQ and FAPESP
2Institute of Computing, University of Campinas - UNICAMP, Av. Albert Einstein, 1251, Campinas,

Brazil; jmoises@ic.unicamp.br & ecx@ic.unicamp.br & fkm@ic.unicamp.br
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In [1], Azar and Epstein proposed an online 4-competitive algorithm to a version

of the strip packing problem, where while packing one item there must be a free way

from the top of the bin until the position where the item is packed. In this model, a

rectangle arrives from the top of S as in the well known TETRIS game, and it should be

moved continuously using only the free space until it reaches its place. In this case both

horizontal and vertical movements are allowed. Notice that in the final solution, each item

(in reversal order) can be removed from the strip using only the free space, since they

were packed in order. If we consider that items can perform both horizontal and vertical

movements, their online algorithm can be easily modified to an offline algorithm to the

problem SPUvh. If we sort the list L of items by non-increasing order of class values we

get L0, and then if we use their algorithm in L0 we find a feasible solution to SPUvh, since

each item ai had reached its place when there were packed only items of class greater than

or equal to c(ai). Since it could be packed in order, it can also be removed in order. This

way, we easily devise an offline 4-approximation algorithm for the SPUvh problem. The

algorithm we propose for the SPUvh problem is somewhat similar to the one presented in

[1]. In general we use the idea of generating shelves and packing them in an order such

that their width do not block other items to be packed.

In [5], Fekete, Kamphans and Schweer, proposed a 2.6154-competitive online algorithm

for the strip packing problem, where items must be squares. In this algorithm, the items

are packed from the top of S and are moved only with vertical movements to reach

its final position. In addition, an item is not allowed to move upwards and has to be

supported from below when reaching its final position. These conditions are called gravity

constraints. Their slot based algorithm can be easily used to the SPUv problem, achieving

a 2.6154-approximation, in the special case where items are squares. We just need to sort

the items in non-increasing order of class values. To the authors knowledge the best online

algorithm for the general case of rectangles for the strip packing problem, is still the result

of Azar and Epstein [1].

author’s

In [2], Silveira et. al. presented several heuristics for the SPU problem, and among

them, a 6.75-approximation algorithm. In this work we improve this result presenting a 3-

approximation algorithm for the SPUvh problem. In [7], Iori et. al. tackled the 2L-CVRP

problem where the SPU appears as a sub-problem. To solve the packing problem they

used the bottom-left heuristic and a branch-and-bound procedure to check the feasibility

of the loadings. Finally in [8] Junqueira et. al. presented integer programming models

for a 3D version of the problem, where one has to decide if 3D boxes fit in a 3D container,

and the packing satisfies unloading constraints.

Given an algorithm A to the SPU problem, and an instance I, we denote by A(I) the

cost of the solution computed by A over the instance I. We denote by OPT (I) the height
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used by an optimum packing of I. The proposed algorithms to the SPU problem are

asymptotically bounded, thus they satisfy A(I) ≤ αOPT (I) + β, where β is a constant

and α is the asymptotic approximation ratio.

In this paper we present an algorithm with asymptotic approximation ratio 5.745 to

the SPUv problem and another one with approximation ratio 3 to the SPUvh problem

when rotations are allowed. We show an algorithm for the parametric cases of both

problems. For the SPUvh problem we design an algorithm for the oriented case in which

the rectangles have width bounded by 1/m, where m ≥ 2. This algorithm has asymptotic

ratio ( m
m−1

+ ") plus an additive constant of 2+"
"
. For the parametric case of the SPUv

problem, in which the rectangles have width bounded by 1/m, m ≥ 3, we design an

asymptotic
(

m
m−2

)

-approximation algorithm.

5.2 An algorithm for the SPUvh problem

In this section we describe a 3-approximation algorithm, denoted by Avh, for the SPUvh

problem. We assume the constraint that items must be removed in order from the final

packing using vertical and horizontal movements in the available free space of the strip.

We assume that both width and height of each rectangle is bounded by 1. First, we

present two algorithms that will be used as routines in the Avh algorithm.

Consider the following four types of items:

• L: items ai with h(ai) and w(ai) > 2/3.

• T : items ai with h(ai) > 2/3 and w(ai) < 1/3.

• M: items ai with any h(ai) and 2/3 ≥ w(ai) ≥ 1/3.

• S: items ai with h(ai) and w(ai) < 1/3.

It is easy to see that one can properly rotate an item such that it fits into one of these

four item types.

We present now a modified version of the classical NFDH (Next Fit Decreasing Height)

algorithm, called MNFDH (Modified NFDH) (Alg. 6) . The NFDH algorithm generates

a packing divided into horizontal shelves, each shelf has height equal to the maximum

rectangle height among the rectangles in the shelf. Rectangles packed in a same shelf are

packed side by side. As in the classical NFDH algorithm, the MNFDH pack the items

into horizontal shelves, but the rule to close a shelf is modified. Also, the height of each

shelf is pre-determined, given by a parameter h. The MNFDH algorithm deals with items

of width strictly smaller than w and generate shelves of height h (w and h are parameters
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Algorithm 6 Modified NFDH

1: Input: Parameters w and h, and a list L of items with width smaller than w.
2: Begin
3: F ← ?.
4: Let F be a shelf at the bottom of S (shelf 0) of height h and width w(F ) = 0.
5: for each item a 2 L in the order occurring in the input do
6: pack a into F at the left-most position.
7: w(F ) = w(F ) + w(a)
8: if w(F ) ≥ 1− w then
9: F ← F [ F .
10: Close the actual shelf F and create a new shelf F , with w(F ) = 0 and height h,

above the last one.
11: If the last created shelf has width smaller than 1 − w (non-full), then let FNF be a

set containing this shelf, otherwise FNF is empty.
12: Return: (F , FNF ).
13: end.

of this algorithm). In the MNFDH algorithm, a shelf F is closed if its width becomes

large enough, specifically w(F ) ≥ 1− w.

Denote each closed shelf as a full shelf (Alg. 6, line 10) and non-full otherwise. Notice

that all the generated shelves are full, except possible the last one, since each item a has

w(a) < w . Furthermore, if we remove the last item (the right-most one) of each full shelf

F , then w(F ) < 1− w, since once w(F ) ≥ 1− w the shelf is closed.

Now we present an algorithm called Base (Alg. 7) which deals with items of types

M, T and S. The algorithm MNFDH is used by the Base algorithm as a routine to pack

items of types T and S. The algorithm Base starts rotating the items a of types S and

T , such that h(a) ≥ w(a) and items of type M such that, 2/3 ≥ w(a) ≥ 1/3 (Line 3).

After that, it generates five sets of shelves, based on the types of each item (Lines 8 -

10). The items of types S and T are packed with the MNFDH algorithm, and the items

of type M are just piled left justified on the strip S (packed in individual shelves). The

shelves containing one item of type M, are considered full. Finally, it generates the final

packing by properly sorting and packing the sets of shelves created, aiming to attend the

unloading constraint (Lines 11 - 14 and Fig. 5.2).

We prove two lemmas concerning the Base algorithm. The first one (Lemma 5.2.1),

deals with the unloading constraint and Lemma 5.2.2 deals with the fraction of occupied

area of the strip S.

Lemma 5.2.1 The packing produced by Base satisfies the constraints of SPUvh
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Algorithm 7 Base

1: Input: List L of items of types T , M and S, partitioned into C classes.
2: Begin
3: Rotate the items a of type S and T such that h(a) ≥ w(a) and the items of type M

such that, 2/3 ≥ w(a) ≥ 1/3.
4: Let LP = {a 2 L: a has type S}
5: Let LT = {a 2 L: a has type T }
6: Let LM = {a 2 L: a has type M}
7: Partition the set LP into LP0 , LP1 , . . . , LPk

, such that, a 2 LPi
iff 1

2i·3 ≥ h(a) > 1
2i+1·3 .

8: (PF
i ,P

NF
i ) ← MNFDH(LPi

, 1/3, 1
2i·3), for 0 ≤ i ≤ k

9: (TF ,TNF ) ← MNFDH(LT , 1/3, 1)
10: Sort items of LM in non-increasing order of class and pack each item a 2 LM in an

individual shelf left justified. Denote this packing by M.
11: For each shelf in TF ,TNF , PF

i and PNF
i (0 ≤ i ≤ k) sort its items by non-increasing

order of class (Starting from left).
12: Let F ← TF [PF

1 ,[ . . . [PF
k .

13: Sort the shelves in F in non-increasing order of class value of the right-most item.
Pack in S the shelves of F in this order.

14: Pack in S, TNF , PNF
i , 0 ≤ i ≤ k and M, in this order.

15: Return: The packing in S.
16: end.

Proof. We are going to show that any item can be removed from the strip S using one

horizontal movement and then one vertical movement.

If an item a 2 M then it can be removed from S since the items that are packed above

a have lower class values (Line 10). Now consider an item a 2 TNF [ (PNF
i , 1 ≤ i ≤ k).

In this case, the items in the same shelf of a that are to its right, will be removed before

a (Line 11). Moreover, since a can reach the right-boundary of S, it can be removed

from S, since all strips F above it have w(F ) ≤ 2/3 (Line 14). Finally, consider an item

a 2 TF [ (PF
i , 1 ≤ i ≤ k), packed in a shelf F . Since the items in F are sorted, from

left to right, by non-increasing value of class, a can reach the right-most side of S (Line

10). Furthermore, since the shelves are sorted, starting from the bottom of S, in non-

increasing order of class value of the right-most item in the shelf, we can conclude that

at least one item (the right-most one) of each shelf above F , in TF [ (PF
i , 1 ≤ i ≤ k),

will be removed before a. Thus, a can be removed using the right-most side of S. In the

moment of removing a, each shelf above F has width strictly smaller than 1−w = 2/3.

Lemma 5.2.2 The shelves in the sets F and M generated by the Base algorithm have at

least 1/3 of occupied area.
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the non-full shelves which do not brake the unloading constraint (Lines 16 to 19).

break

Then the algorithm proceeds by packing the selected items and shelves (Lines 20 and

21). The algorithm ends when there are no more items to be packed.

Algorithm 8 Avh

1: Input: List L of n items partitioned into C classes.
2: Begin
3: Assign each item of L into one of the types L, T , M and S doing rotations if necessary.
4: For each item ai 2 L [ S rotate it such that h(ai) ≥ w(ai), 1 ≤ i ≤ n.
5: Sort items of L in non-increasing order of class value. Ties are broken by widest first.
6: Let B = {b1, . . . , bj} be a maximal prefix of L containing only items of type L.
7: Pack each item of B left justified, in individual shelves at the bottom of S in order.
8: L ← L\B
9: while L 6= ? do
10: Let {a1, . . . , ai} be a maximal prefix of L containing only items of types S, T or

M.
11: Let F ← Base({a1, . . . , ai})
12: L ← L\{a1, . . . , ai}
13: Let B = {b1, . . . , bj} be a maximal prefix of items of type L in L.
14: L ← L\B
15: Let b be the widest item in B
16: for each non-full shelf F 2 F do
17: if w(F ) + w(b) ≤ 1 then
18: F ← F\{F}.
19: Reinsert each item a0 2 F in the beginning of L, keeping them sorted by

non-increase value of class.
20: Pack F in S in order.
21: Pack items of B in S left justified, each item in an individual shelf above all previous

shelves.
22: Return: The generated packing.
23: end.

Lemma 5.2.3 The packing produced by Avh satisfies the constraints of the SPUvh prob-

lem.

Proof. We are going to prove that the unloading constraint is satisfied as a loop invariant

for line 9 of the Avh algorithm.

Notice that before the first iteration we have an empty solution or a sequence of type L
items piled left justified on S, which is trivially feasible. Now suppose that the algorithm
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is starting its ith iteration of the while loop, and assume that the current solution is

feasible. Let F be the set of shelves generated by Base algorithm in this iteration, and

{b1, . . . , bj} be the set of items of type L that will be packed in this iteration. By Lemma

5.2.1 the packing is feasible considering only the items in F . A problem might occur

when considering items of types T and S in F with classes higher than the classes of the

items packed in previous iterations. These items came from non-full shelves F that were

not packed in previous iterations because w(F ) + w(b) ≤ 1 (for some item b of type L).
Notice that w(F ) ≤ 1−w(b) ≤ 1/3 (Line 17). Then, each new shelf F 0 in F of type T or

S contains at most w0 = 1/3 of width occupied with these higher class items. Then these

higher class items could only block previously packed items of type L. But this does not
occur since w0 + w(b) ≤ 1 for all items b of type L of lower classes.

5.2.1 Avh Analysis

Lemma 5.2.4 The set of shelves generated by the Avh algorithm has at least 1/3 of

occupied area, except for 5/3 of height.

Proof. Notice that the full shelves have at least 1/3 of occupied area by Lemma 5.2.2.

So we just need to prove that the non-full shelves and the shelves with items of type

L also have, at least 1/3 of occupied area on average. We are going to associate each

non-full shelf, that was not removed in the loop of line 16 of the Avh algorithm, with the

largest item of type L above it, that was packed in the same iteration of the while loop

(line 9). Notice that at any given iteration, the Base algorithm generates at most one

non-full shelf TNF of type T and at most one non-full shelf PNF
i for each i ≥ 0, that

packs items of type S.
The total height of PNF

i shelves is at most

1
X

i=0

1

2i · 3 = 2/3

The total height of an item of type T is 1.

Error: Total height of a shelf containing an item of type T .

If no item of type L is packed above these non-full shelves, then this is the last iteration.

So at most 5/3 of height of non-full shelves will not be associated with any item of type

L.
Consider some iteration where non-full shelves are packed, and items of type L are

packed above them. Let b be the widest item of type L packed in this iteration above

these non-full shelves. We associate non-full shelves uniquely with b.



42 Chapter 5. Artigo: Two Dimensional Strip Packing with Unloading Constraints

The shelf B that contains b has h(B) = h(b) and w(B) = w(b) ≥ 2/3. The possible

shelf TNF has h(TNF ) = 1 and w(TNF ) ≥ 1 − w(b), otherwise it would not be packed

in this iteration (lines 17-19 of Avh). Furthermore each item a in TNF has h(a) ≥ 2/3.

Finally, each shelf PNF
i has h(PNF

i ) = 1
2i·3 and also w(PNF

i ) ≥ 1 − w(b). Moreover each

item a in PNF
i has h(a) > 1

2i+1·3 .

We can bound the occupied area in the shelves B, TNF , and all PNF
i by

h(b) · w(b) + [1− w(b)] · 2/3 + [1− w(b)] · sh
2

h(b) + 1 + sh
(5.1)

where 2/3 < w(b) ≤ h(b) ≤ 1 and 0 ≤ sh ≤ 2/3 (sh is the total height of PNF
i shelves.

The minimum of this function occurs when w(b) = h(b) = 2/3 + ε and sh = 2/3 and has

value > 1/3 (see Appendix 5.8.1).

Theorem 5.2.5 Let L be a list of rectangles, then Avh(L) ≤ 3 ·OPT (L) + 5/3.

Proof. Let S be the solution returned by the algorithm Avh. It is filled by full shelves,

and type L items with its associated non-full shelves. Due to Lemma 5.2.4, the strip S

have at least 1/3 of occupied area on average, except perhaps by 5/3 of height. We can

conclude that (Avh(L)− 5/3) · 1/3 ≤ P

ai2L h(ai) · w(ai) and then

Avh(L) ≤ 3 ·OPT (L) + 5/3

5.3 An Algorithm to a parametric oriented case of

the SPUvh Problem

In this version of the problem, we are going to assume that the items can not be rotated

and the width of the items is bounded by 1/m, m ≥ 2. Since the approximation analysis

is based on area arguments the result remain valid for the case in which rotations are

allowed.

The algorithm is called Ap
vh (Alg. 9) and takes two parameters: the factor m and a

constant ε. The algorithm starts by partitioning the input list L by the height of the

items. Then it generates a set of strips for each partition using the algorithm MNFDH

(Alg. 6). Finally it proceeds by packing and sorting the full shelves and then packing the

non-full ones.
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Algorithm 9 Ap
vh

1: Input: List L of items partitioned into C classes, m and ε.
2: Begin
3: P ← ? and N ← ?
4: Let r = 1

1+ε/2

5: Let Li = {a : a 2 L and ri+1 < h(a) ≤ ri}, for i ≥ 0.
6: for each i do
7: (F ,F 0) ← MNFDH(Li, 1/m, ri)
8: P ← P [ F
9: N ← N [ F 0

10: Sort items in each shelf in P [N by non-increasing order of class (Starting from left).
11: Sort the shelves in P by non-increasing order of class of the right-most item.
12: Pack P in S in order and then pack , N in S above P .
13: Return: The generated packing.
14: end.

Lemma 5.3.1 The packing produced by Ap
vh satisfies the constraints of SPUvh

Proof. This proof is similar to the proof of the Lemma 5.2.1.

5.3.1 Ap
vhAnalysis

Theorem 5.3.2 Let L be a list of rectangles, then Ap
vh(L) ≤

(

m
m−1

+ ε
)

·OPT (L)+ 2+ε
ε
.

Proof. First, consider some shelf F 2 P . Since this shelf is full, we have that w(F ) ≥
1− 1/m and, moreover, suppose that F was created to pack items from the list Li, which

means that this shelf has, at least ri+1

ri
= r of occupied height. Then we can bound

the occupied area in F by r(1 − 1/m) = r(m−1)
m

. Also notice that there is, at most one

shelf F 2 N with items from Li. So we can bound the total height of strips in N by
P1

i=0 r
i = 1

1−r
= 2+ε

ε

Finally we have (Ap
vh(L)− 2+ε

ε
) · r(m−1)

m
≤ P

ai2L h(ai) · w(ai) and then

Ap
vh(L) ≤

(

(1 + ε/2) ·m
m− 1

)

·OPT (L) +
2 + ε

ε
≤

(

m

m− 1
+ ε

)

·OPT (L) +
2 + ε

ε
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5.4 An Algorithm to the SPUv Problem

In this Section we present an algorithm, denoted by Av to solve the SPUv problem when

only vertical movements of items are allowed and orthogonal rotation of items is allowed.

We are going to use the NFDH algorithm. In [10], Meir and Moser proved the following

result for the NFDH:

Theorem 5.4.1 Any list of rectangles L = {a1, . . . , ak} with total area A can be packed

by the NFDH algorithm into a unit square if 1 ≥ w(ai) ≥ h(ai), for i = 1, . . . , k; h(ai) ≥
h(ai+1), for i = 1, . . . , k − 1 and A ≤ 7

16
.

The algorithm Av computes the solution in two stages. First it packs the items into

bins of height 1 and width 1 (unit square bins), using the NFDH algorithm. The algorithm

also packs some large items alone in one bin. The bins used to pack these large items

have height 1 and width equal to the width of the item. Then it packs the bins rotated

into S (the strip) such that each shelf created by the NFDH becomes vertical, but with

limited height 1, the maximum width of the bin. We first show the bin packing algorithm

named Bin Packing Decreasing Order (BPDO) in Algorithm 10, and then we present the

Av in Algorithm 11.

Denote by Bk the kth bin created by the algorithm BPDO, h(Bk) its occupied height

and w(Bk) the occupied width. Also denote by A(L) =
P

ai2L h(ai)w(ai), where L =

(a1, . . . , am) is a list of items.

The BPDO algorithm starts by sorting the items in non-increasing order of class values

(line 4). Then it selects the largest prefix of items that can be packed in a bin B of height

1 and width 1 using the NFDH algorithm (line 6). By Theorem 5.4.1 these items can be

packed in a single bin (line 9). After packing these items, the algorithm sorts each shelf

created by the NFDH algorithm by class values (line 10). The algorithm then removes

the packed items from the list of items (line 11). If the first item ak+1 of the remaining

list has w(ak+1)h(ak+1) ≥ 0.263422, the algorithm packs it alone in a new bin B0, of width

w(ak+1) (line 14). The algorithm repeats this process until L = ?.

The algorithm Av is presented in Algorithm 11. It just calls the algorithm BPDO,

merge all bins returned side by side forming a strip of height 1 and width equal to the

total width of the bins. The strip is rotated to provide a solution to the original problem.

Theorem 5.4.2 The packing produced by Av satisfies the constraints of SPUv

Proof. Let B1, . . . , Bm be the bins created by BPDO in the order they were created.

These bins are packed in the strip S in the order they were created. For each successive

pair of bins Bk and Bk+1 we guarantee that all items in Bk+1 have class smaller than
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Algorithm 10 Bin Packing Decreasing Order (BPDO)

1: Input: List L of items partitioned into C different classes.
2: Begin
3: Let LB = ? be a list of bins.
4: Sort items in L in non-increasing order of class value.
5: while (L 6= ?) do
6: Let L0 = (a1, . . . , ak) be the largest prefix of L such that A(L0) ≤ 7/16 < A(L0 [

{ak+1}).
7: Rotate the items ai in L0 such that w(ai) ≥ h(ai).
8: Sort L0 in non-increasing order of height.
9: Pack L0 using the NFDH algorithm in a new bin B.
10: Sort items in each generated shelf in non-increasing order of class value
11: L ← L\L0 and LB ← LB +B
12: if (A({ak+1}) ≥ 0.263422) then
13: Rotate ak+1 such that h(ak+1) ≥ w(ak+1)
14: Pack ak+1 in a new bin B0 of height 1 and width w(ak+1).
15: L ← L\{ak+1} and LB ← LB +B0

16: Return LB.
17: end.

Algorithm 11 Av

1: Input: L = {a1, a2, . . . ,an}
2: Begin
3: Let B1, B2, . . . , Bm be the bins computed by BPDO in the order they were created.
4: Concatenate B1, B2, . . . , Bm forming one strip S of height 1 and width

Pm
k=1 w(Bi).

5: Return S rotated such that its width is 1 and its height is
Pm

k=1 w(Bk).
6: end.

or equal to the items in Bk, since the algorithm packs items in non-increasing order of

classes. So items in one bin will not block items in previous bins. Inside each bin, the

feasibility of the solution is guaranteed by the packing in shelves. Items in each shelf

are sorted by non-increasing order of class value. Each shelf generated by the NFDH

algorithm is rotated in the final solution (line 5 of Alg. 11). Also notice that different

shelves does not interfere with each other, since all items are packed completely inside a

shelf.
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5.4.1 Av Analysis

In this Section we use arguments based on the occupied area of each bin to prove the

approximation of the Av algorithm.

Lemma 5.4.3 Let B1, . . . , Bm be the bins computed by BPDO in the order they were

created. Then B1, . . . , Bm−1 have occupied area of at least 0.174 on average.

Proof. We will prove that the bins created in each iteration of the main loop (line 5)

have at least 0.174 of occupied area on average (except perhaps the last created bin).

Consider some iteration of the main loop at line 5. Let Bj be the jth-created bin using

NFDH(L0) at line 9, where L0 = {a1, . . . , ak}.
Case 1: Consider that A({ak+1}) < 0.263422. Since A(L0) ≤ 7/16 < A(L0 [ {ak+1}) we
have

A(L0) > 7/16− A({ak+1}) > 7/16− 0.263422 ≈ 0.174078

and all items in L0 are packed in Bj by Theorem 5.4.1. Since A({ak+1}) < 0.263422 only

this bin is created on this iteration of the loop.

Case 2: Consider that A({ak+1}) ≥ 0.263422. Then ak+1 is rotated, such that h(ak+1) ≥
w(ak+1), and it is packed in a new bin Bj+1, where w(Bj+1) = w(ak+1).

The total width occupied in the two bins Bj and Bj+1 is at most (1 + w(ak+1)) and

the total area of the items packed in these two bins is h(ak+1)w(ak+1) + A(L0). Then we

can bound the occupied area in the occupied width of bins Bk and Bk+1 by

w(ak+1)h(ak+1) + A(L0)

1 + w(ak+1)
(5.2)

where 1 ≥ h(ak+1) ≥ w(ak+1) > 0, A({ak+1}) > 0.263422 and 0 < A(L0) ≤ 7/16. The

minimum of this function occurs when w(ak+1) = h(ak+1) ≈ 0.51325, A(L0) = 0 and has

value ≈ 0.174077 > 0.174 (see 5.8.2).

Theorem 5.4.4 Let L be a list of rectangles, then, Av(L) ≤ 5.745OPT (L) + 1.

Proof. Due to Lemma 5.4.3, each bin created by the algorithm has on average 0.174 of

occupied area in the corresponding width, except perhaps the last generated bin. Since

the total width of the bins corresponds to the total height of the used strip, we have

(Av(L)− 1)0.174 ≤ P

ai2L w(ai) · b(ai) and then

Av(L) ≤ 5.745
X

ai2L
w(ai) · b(ai) + 1 ≤ 5.745OPT (L) + 1.
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5.5 An algorithm to a parametric version of the SPUv

problem

In this Section we present an algorithm for a special version of the SPUv problem where

the width and the height of the items are bounded by 1/m, m ≥ 3 and the items can be

rotated. The algorithm presented in this section is similar to the Av algorithm, but even

simpler. In this case we are going to use a result presented by Li and Cheng [9].

Theorem 5.5.1 A list L of rectangles L = {a1, . . . , ak}, can be packed in a unit square

bin by the NFDH algorithm if exists an integer m ≥ 3 such that:

1. h(ai) ≤ 1
m
, 1 ≤ i ≤ k

2. w(ai) ≤ 1
m
, 1 ≤ i ≤ k

3.
Pk

i=1 h(ai)w(ai) ≤
(

1− 1
m

)2

The algorithm for this restricted case is called Ap
v (Alg. 12) and takes only one

parameter, the value of m. The algorithm starts by sorting the input list L in non-

increasing order of class value (Line 4). Then, while exist items to be packed, it selects

the largest prefix of items that can be packed in a unit square bin B using the NFDH

algorithm (line 6). This prefix is selected based on Theorem 5.5.1 (line 9). After packing

this prefix, the algorithm sorts items in each shelf created by the NFDH algorithm by

class values (line 10). The algorithm repeats this process until L = ?. Finally, it joins

the created bins forming the final strip S (Line 11).

Lemma 5.5.2 The packing produced by Ap
v satisfies the constraints of SPUv

Proof. This proof is similar to the proof of the Theorem 5.4.2.

5.5.1 Ap
v Analysis

Theorem 5.5.3 Let L be a list of rectangles, then Ap
v(L) ≤

(

m
m−2

)

·OPT (L) + 1.

Proof. Notice that each bin Bi 2 LB has at least (1 − 1
m
)2 − 1

m2 = m−2
m

of occupied

area, since A(Bi) + h(a)w(a) >
(

1− 1
m

)2
for some item a (Line 6).

Then we have (Ap
v(L)− 1) · m−2

m
≤ P

ai2L h(ai) · w(ai) and then

Ap
v(L) ≤

(

m

m− 2

)

·OPT (L) + 1
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Algorithm 12 Ap
v

1: Input: List L of items partitioned into C different classes.
2: Begin
3: Let LB = ? be a list of bins.
4: Sort items in L in non-increasing order of class value.
5: while (L 6= ?) do

6: Let L0 = (a1, . . . , ak) be the largest prefix of L such that A(L0) ≤
(

1− 1
m

)2
<

A(L0 [ {ak+1}).
7: Rotate the items ai in L0 such that w(ai) ≥ h(ai).
8: Sort items in L0 in non-increasing order of height.
9: Pack L0 using the NFDH algorithm in a new bin B.
10: Sort items in each generated shelf in non-increasing order of class value.
11: Concatenate the list LB = {B1, . . . , Bm} in order, forming one strip S of height 1

and width
Pm

k=1 w(Bi).
12: Return S rotated such that its width is 1 and its height is

Pm
k=1 w(Bk).

13: end.

5.6 Concluding Remarks

In this paper we consider a variant of the two dimensional strip packing problem where we

have constraints on how items can be removed from the strip. These are called unloading

constraints and appear in vehicle routing problems where items are delivered along a

route. We presented an algorithm with asymptotic performance bound 5.745 for the SPUv

problem when rotations are allowed. We also presented a 3-approximation algorithm for

the SPUvh problem when rotations are allowed. Finally, we also presented two algorithms

for parametric cases of both problems. For the parametric SPUvh problem, where the

rectangles have width bounded by 1/m, m ≥ 2, we proposed an algorithm with asymptotic

ratio ( m
m−1

+ ") plus an additive constant of 2+"
"
. For the parametric SPUv problem, in

which the rectangles have both width and height bounded by 1/m, m ≥ 3, we presented

an asymptotic
(

m
m−2

)

-approximation algorithm.
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5.8 Appendix

5.8.1 Minimizing function (5.1)

Proof. We have to find the minimum of the function

f(x, y, z) =
xy + (z/2 + 2/3) · (1− y)

x+ z + 1

where 1 ≥ y ≥ x ≥ 2/3 and 2/3 ≥ z ≥ 0.

This function has no critical points in the considered region. Moreover the function
@f
@z

= x(3−9y)+y−1
6(x+z+1)2

< 0, in the considered region. Thus the minimum of this function can

be found on the limits of the region, in this case when z = 2/3.
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Case 1: Consider that y = 1. Then f(x, 1) = x
x+1

which is strictly increasing at

(0.263422; 1] and so we find the minimum with x = 0.263422, which leads to a mini-

mum of 0.208499.

Case 2: Consider that x = y. Then f(x, x) = x2

x+1
which is strictly increasing at

(
p
0.263422; 1] and so we find the minimum with x =

p
0.263422, which leads to a mini-

mum of 0.263422
1+

p
0.263422

.

Case 3: Consider that xy = 0.263422. Then f(x, y) = 0.263422
x+1

which is strictly decreasing

at (0.263422,
p
0.263422] and so we find the minimum with x =

p
0.263422, which leads

to a minimum 0.263422
1+

p
0.263422

.

So the minimum of the function

w(ak+1)h(ak+1) + A(L0)

1 + w(ak+1)

occurs when w(ak+1) = h(ak+1) =
p
0.263422, A(L0) = 0 and has value 0.263422

1+
p
0.263422

≈
0.174077.





Chapter 6

Artigo: On The Pickup and Delivery

with Two Dimensional Loading/Unloading

Constraints Problem 1

J. L. M. da Silveira2 E. C. Xavier2

Abstract

This article addresses the Pickup and Delivery Problem with Two Dimensional Load-

ing/Unloading Constraints (PDPLU). In this problem, we are given a weighted complete

graph with 2n+ 1 vertices, a collection S = {S1, . . . , Sn} of sets of rectangular items and

a bin B of width W and height H. Vertex 0 is a depot and the remaining vertices are

grouped into n pairs (pi, di), 1 ≤ i ≤ n representing a pickup and a delivery point for each

costumer. Each set Si corresponds to items that have to be transported from pi to di.

As in the well-known Pickup and Delivery Problem (PDP), we have to find the shortest

Hamiltonian cycle (route) such that each vertex pi is visited before di, 1 ≤ i ≤ n, but now

we have the additional constraint that it there must exist a feasible packing of all items

from S into B satisfying Loading/Unloading constraints. This constraint ensures that

exists a free way to insert/remove items into/from B along the route. We propose two

exact algorithms and a GRASP heuristic for the PDPLU. We provide an extensive com-

putational experiment with these algorithms using new instances adapted from existing

instances for the PDP.

Key Words: Pickup and Delivery, Two Dimensional Knapsack, GRASP.

1This research was supported by CNPQ and FAPESP
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6.1 Introduction

The combination of packing and routing problems has received some attention in recent

years. This combination models situations where one aims to move goods along a route

using vehicles of limited capacity. The Pickup and Delivery Problem (PDP) is a classical

routing problem [15]. In this problem a graph with a set of pairs of vertices (pickup and

delivery) is given and the objective is to generate a route (Hamiltonian cycle) of minimum

total cost that visits each pickup client before its delivery pair. We are interested in a

generalization of the PDP problem where a set of rectangular items is associated to each

pair of pickup and delivery. The objective is to find the PDP solution of minimal cost such

that all items can be packed in one vehicle satisfying the traditional packing constraints

and loading/unloading constraints. The loading/unloading constraint is the following:

While loading/delivering items of a client, there must not exist items of other clients

blocking the way in/out of the items of the current client (we always consider loading

and unloading movements using the top of the two dimensional bin and using only one

vertical movement) (see Fig. 6.1). This problem is called Pickup and Delivery Problem

with Two Dimensional Loading/Unloading Constraints (PDPLU) [13].

A similar generalization for the Capacitated Vehicle Routing Problem was addressed

in ([11, 9, 21, 8]), but in this case the packing constraints are easier to tackle, since only

the unloading constraint needs to be satisfied.

Besides the routing sub-problem of the PDPLU we also have a particular packing

sub-problem: given a list of items with an order in which items are packed and removed

from the bin, one has to decide if there is a feasible packing of the items, satisfying the

loading/unloading constraints (defined by the order in which items are packed/removed

from the bin).The decision version of this problem is a generalization of the classical Two

Dimensional Knapsack Problem (2KP) [10]. It also generalizes the 2KP version with

unloading constraints only [5]. In this problem we are given a set of rectangular items

and a bin and we have to find a feasible solution that satisfies the loading/unloading

constraint. We call this problem by Two Dimensional Knapsack Problem with Loading

and Unloading Constraints (2KPLU) (see Fig. 6.1).

To the best of our knowledge, the only paper that addressed the PDPLU problem was

the one of Malapert et. al. [13], where they proposed a Constraint Programming (CP)

model for the 2KPLU. No experiments were made with this model in order to assess its

quality. Also, the routing problem itself was not addressed.

Besides the scarcity of studies on the PDPLU, the PDP and 2KP problems are well

known in the literature.

The PDP version addressed here was studied by Ruland and Rodin in [20]. They

proposed an ILP (Integer Linear Programming) model and performed several experiments
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no study on the 2KPLU itself besides the constraint programming model aforementioned

[13].

6.1.1 Our Results

We propose two exact algorithms for the PDPLU. Both algorithms are based on the

Ruland and Rodin’s ILP model [20] for the PDP. Both exact algorithms generate routes

whose viability, according to the loading/unloading constraints, need to be checked. The

two exact algorithms differ on how it is checked the feasibility of the route: one algorithm

uses a combinatorial backtracking algorithm to solve the 2KPLU while the other uses the

constraint programming model of [13]. Each infeasible route is avoided in the ILP model

by inserting a cut, removing this route from the feasible space of the ILP model.

To solve the packing problem (2KPLU) we used exact algorithms and heuristics. One

exact algorithm is based on the recursive procedure that uses the Corner Points concept

[3, 14]. The other exact algorithm is an implementation of the CP model proposed in

[13].

We also propose a Reactive Greedy Randomized Adaptive Search Procedure (GRASP)

heuristic with Path Relinking for the PDPLU. This heuristic is based on the insertion of

pairs of vertex in the current solution (route). We tested different methods of Local Search

and Path Relinking. We compare this heuristic with an adaptation of the best heuristic of

Renaud’s [18] for the PDP. In these heuristics the packing problem was solved by simple

packing heuristics based on the BL.

The effectiveness of the algorithms and heuristics are assessed through an extensive

computational experiment using new instances that were created by adapting instances

from the PDP [7].

Our best exact algorithm solved all instances with 5 pairs of vertices, more than half

of the instances with 10 pairs of vertices with up to 20 items, and just a few instances

with 20 pairs of vertices, including one with 40 items. Finally our GRASP heuristic is

tested against the exact algorithms. It generates solutions with value close to the optimal

while using low CPU time.

6.1.2 Paper Organization

This paper is organized as follows: In Section 6.2 we introduce definitions and formalize

the description of the PDPLU. The exact algorithms and heuristics for both routing and

packing problems are presented in sections 6.3 and 6.4, respectively. In Section 6.5 we

describe a data structure used to store a set of feasible/infeasible routes.

The method for generating the instances used on the experiments is described in

Section 6.6. In Section 6.7 we summarize our computational experiments and results.
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Finally, in Section 6.8, we draw some conclusions about the effectiveness of the proposed

heuristics and exact algorithms.

6.2 Definitions and Basic Notation

We first define the decision version of the packing problem 2KPLU and then the general

problem PDPLU.

An instance for the 2KPLU consists of a bin B of height H and width W , and a list

L = (a1, . . . , am) of rectangular items, each ai of width w(ai) and height h(ai), pickup

point p(ai) and delivery point d(ai) (p(ai) represents the time ai must be packed in B and

d(ai) represents the time ai must be removed from the packing).

Two items ai and aj shares the bin if they appear packed together at some time in

the bin. If some item ai is such that d(ai) < p(aj) for some aj, then these two items do

not share the bin.

A packing of L into B is feasible if it satisfies the following constraints:

1. If ai and aj shares the bin then they must not overlap. Formally,

(p(aj) < d(ai) ^ p(ai) < d(aj)) )
(x(ai) ≥ x(aj) + w(aj) _ x(aj) ≥ x(ai) + w(ai)_
y(ai) ≥ y(aj) + h(aj) _ y(aj) ≥ y(ai) + h(ai)).

2. If ai is packed and removed while aj remains packed, then aj must not block ai in

any of these events (packing or removing). Formally,

(p(aj) < p(ai) ^ d(ai) < d(aj)) )
(x(ai) ≥ x(aj) + w(aj) _ x(aj) ≥ x(ai) + w(ai) _ y(ai) ≥ y(aj) + h(aj)).

3. If ai is packed before aj, and removed while aj is still packed, then ai and aj must

not block each other. Formally,

(p(ai) < p(aj) < d(ai) < d(aj)) )
(x(ai) ≥ x(aj) + w(aj) _ x(aj) ≥ x(ai) + w(ai)).

4. Each item ai must be packed inside B from time p(ai) to d(ai). Formally,

0 ≤ x(ai) ^ x(ai) + w(ai) ≤ W ^ 0 ≤ y(ai) ^ y(ai) + h(ai) ≤ H.
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We consider the decision version of the 2KPLU: Given a list of items L and a bin B

we need to decide if there is a feasible packing of L into B or not.

We consider only the oriented case of the 2KPLU (rotations are forbidden). This

problem is strongly NP-Hard since it is a generalization of the classical Knapsack Problem.

An instance for the PDPLU consists of a non-oriented complete graph G(V,E) with

costs c(e) for each edge e 2 E. The size of V is |V | = 2n + 1, where the vertices

are partitioned into three sets V = {0} [ P [ D where vertex 0 represents the depot,

P = {p1, . . . , pn} represents pickup points and D = {d1, . . . , dn} delivery points. We are

also given a collection S = {S1, . . . , Sn} of sets of rectangular items and a bin B of width

W and height H. Each set Si is associated with the pair (pi, di). The problem is to

find a minimum cost Hamiltonian cycle starting and ending at the depot, satisfying that

each pi is visited before di and that exists a packing for S into B satisfying the 2KPLU

constraints when using the ordering of the cycle for the pickup and delivery values of the

items.

Through the paper we denote a route r as an ordered sequence of vertices (v1, . . . , vk)

and its size by |r| = k. We also define the operator r − r0 by the removal of vertices in

r0 from r preserving the order (for instance (1, 2, 4, 5) − (1, 4) = (2, 5)). We additionally

define r + r0 as the append operation (for instance (1, 2, 3) + (4) = (1, 2, 3, 4)). We also

say that r ⊆ r0 if the route r is a sub-sequence of r0 (r = r0 − r00 for some r00). Finally, an

item a belongs to a route r (a 2 r) if and only if pi 2 r and a 2 Si.

Let P be a packing of a list of items L = {a1, . . . , am}. Denote by c(P) the induced

height of P . Formally,

c(P) = max1≤i≤m{y(ai) + h(ai)}.

6.3 Exact Algorithms

In this section we present two exact algorithms for the 2KPLU. The first one is a back-

tracking algorithm that uses corner points for packing items. The second one is based on

the constraint programming model of Malapert et al. [13].

6.3.1 A Backtracking algorithm for the 2KPLU

In this section we present the backtracking algorithm which we call Recursive Corner.

The main idea of the algorithm Recursive Corner (RC) is to use the concept of Corner

Points [3, 14] and Backtracking. At some point in the search tree we will have a set of

items packed in the bin, a set of corner points and the remaining unpacked items. At

each level of the search, a new packing is tested combining a different pair of unpacked

item and a corner point. If there is such valid pair then the algorithm is recursively called
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for the remaining items. If there is no valid pairs remaining to test, then a Backtracking

is done.

Aiming to prove the correctness of the algorithm we first prove some properties about

packing and Corner Points. First, we show that there is always a way to sort the items in

any packing in such way that items that appear later on the sequence are “above and at

the right” from previous items. After that, we show that the RC algorithm finds a valid

packing if such packing exists.

Items ordering

In this section we prove the existence of a particular order for items in any packing P .

Notice that for the 2KPLU we can assume a feasible packing in which all items are packed,

including items that do not share the bin. The packing must satisfy all constraints of the

problem and items that do not share the bin may overlap to each other.

First, we define the relation ≺ over the set of items in a packing.

Definition 6.3.1 Given two items ai and aj, then ai ≺ aj iff

( x(aj) ≥ x(ai) + w(ai) ^ y(aj) + h(aj) > y(ai) ) (6.1)

_
( y(aj) ≥ y(ai) + h(ai) ^ x(aj) + w(aj) > x(ai) ), (6.2)

moreover, if we assume no overlap between two items, ai ≺ aj iff

x(aj) + w(aj) > x(ai) ^ y(aj) + h(aj) > y(ai). (6.3)

Equation (6.1) defines that the left border of aj is to the right of the right border of

ai, while that aj top is above the bottom of ai. Equation (6.2) defines that the bottom of

aj is above the top of ai and that the right border of aj is to the right of ai’s left border.

Finally, equation (6.3) has the same effect of (6.1) and (6.2) assuming that there is no

overlap between ai and aj. It defines that aj’s right border is at right of ai’s left border

and that aj’s top is above the bottom of ai. Equation (6.3) can be also stated as follows:

the top-right point of aj dominates the bottom-left point of ai (except the cases in which

both points have equal coordinates).

We use both definitions through the paper. Figure 6.2 presents the graphic represen-

tation of the relation ≺.

Define ⊀ as the inverse of ≺ using the negative of the propositions (6.1), (6.2) and

(6.3) into (6.4), (6.5) e (6.6), respectively. So we have that ai ⊀ aj iff:

( (x(aj) < x(ai) + w(ai) _ y(aj) + h(aj) ≤ y(ai) ) (6.4)

^
( (y(aj) < y(ai) + h(ai) _ x(aj) + w(aj) ≤ x(ai) ), (6.5)
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a) b)

(R2)

aj

h(aj) - ε

w(aj) - ε ai

h(aj) + ε

w(aj) + ε

(R1)

Figure 6.2: Suppose ε > 0 sufficiently small and ai ≺ aj, then the bottom left corner of
aj must be in (R1) (part a). Also ai’s bottom-left corner must be in (R2) (part b).

moreover, if we assume no overlap between two items, ai ⊀ aj iff

x(ai) ≥ x(aj) + w(aj) ^ y(ai) ≥ y(aj) + h(aj). (6.6)

Lemma 6.3.1 Let P be a valid packing of a list of items (without loading/unloading

constraints). Then ≺ defines a partial order π = {a1, . . . , an} over the items of P.

Proof. See the Appendix 6.10.

Corollary 6.3.2 Let ≺LU be a binary relation over the items of a packing P of items

L = {a1, . . . , am} for the 2KPLU, defined as: ai ≺LU aj iff

( ai ≺ aj ) ^ ( p(aj) < d(ai) ^ p(ai) < d(aj) )

Then ≺LU induces a partial ordering of P.

Corner Points

In this section we define the concept of Corner Points. First, define as r(ai), the region

of R2 covered by ai, formally, r(ai) = {(x, y) : x(ai) ≤ x < x(ai) + w(ai) and y(ai) ≤ y <

y(ai) + h(ai)}. Besides that, we define as r(B) the region of R2 occupied by the bin B.

In definition 6.3.2 we describe the region of the plane called envelope of P . It can be

defined as a subset of points p of r(B) such that there exists an item ai that contains a

point that dominates p.
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Definition 6.3.2 Let P be a packing of a list L of items. Thus, the envelope of P (e(P))

can be stated as follows:

e(P) = {(x, y) : 9(x0, y0) 2 r(ai) for some ai 2 P such that x0 ≥ x and y0 ≥ y}

We define as e−(P) = r(B) \ e(P), the region of r(B) minus the envelop of P . Define

the set of horizontal line segments that divide e−(P) and e(P) as the contour lines of P
(See Fig. 6.3).

A"A’"

A"

A’"

A"

Figure 6.3: In this figure we represent the contour lines of the packed items (l(P)) with
dashed lines. The region below l(P) is the e(P) and above e−(P). The white circles
represent the set corner(P). Suppose that an item a is being packed and that it will
be removed after the items A0, then we have the set orderContour(a,P) represented by
black circles.

Definition 6.3.3 Let P be a packing of a list L and e(P) its envelope, denote as the

contour lines of P (l(P)) the following set of points:

l(P) = {(x, y) : (x, y) 2 e−(P) such that @(x, y0) 2 e−(P) where y0 < y}.

Now we define formally the concept of Corner Points as the leftmost point in each

segment on l(P).

Definition 6.3.4 Let P a packing of a list L, we denote as the Corner Points of P
(corner(P)) the following set of points:

corner(P) = {(x, y) : (x, y) 2 l(P) and @(x0, y) 2 l(P) where x0 < x}.
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In order to consider the loading/unloading constraints, we consider some additional

points besides corner(P). For each item a still not packed in P , we define as corner∗(a,P)

the set points that considers the 2KPLU constraints. This set contains the points in

corner(P) and the points in l(P) that are projections of the right borders of any item in

P that will be removed before a (orderContour(a,P)). Formally

orderContour(a,P) = {(x(b) + w(b), y) :

9b 2 P such that (x(b) + w(b), y) 2 l(P) where d(b) < d(a)}

Finally, the set of points where a can be packed given P (See Fig. 6.3) is defined as:

corner∗(a,P) = {(x, y) : (x, y) 2 corner(P)
[

orderContour(a,P)

and @b 2 P such that packing a in (x, y) blocks b}

The RC Algorithm

The RC algorithm is basically a brute-force algorithm (See Alg. 13), which tests the

packing of each unpacked item in each corner point.

Now we prove the correctness of the algorithm RC (Theorem 6.3.5) using the Lemma

6.3.1 and Observations 6.3.3 and 6.3.4.

Observation 6.3.3 If P is a feasible packing for the 2KPLU, then there is a packing P 0,

with c(P 0) ≤ c(P), where the items can not be moved to the left or down without breaking

the constraints of the problem.

Observation 6.3.4 Let I = (L,B) be an instance of the 2KPLU. Before the RC algo-

rithm answers “No”, it must have generated all permutations of L, and for each permu-

tation its tested the packing of each item on all the contour points defined.

Theorem 6.3.5 Let I = (L,B) be and instance of the 2KPLU. If there is a feasible

packing P for I, then the algorithm RC will find it.

Proof. First, we define P 0 as in Observation 6.3.3, by moving each item down and to

the left while the packing remains feasible. Let σ = (a1, . . . , an) be the permutation of L

imposed by ≺LU in P 0. By 6.3.4, the RC algorithm, will eventually pack the items of L

in the order defined by σ.

Thus, we must prove that if the RC algorithm pack the items in this order it will find

the packing P 0. We do it by induction on the size k of a prefix of σ (the prefix is denoted

by σ(k)).
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Algorithm 13 Recursive Corner (RC)

1: Input: A list L of items, a bin B, and an empty packing P .
2: Output: “Yes” or “No” depending on the existence of a feasible packing of L into B

satisfying the 2KPLU constraints.
3: Begin
4: if L = ? then
5: Return Yes.
6: for a 2 L do
7: // List of items in P that share some part of the route with a.
8: L ← {ai 2 P : d(ai) > p(a) and d(a) > p(ai)}.
9: if L 6= ? then
10: P ← corner∗(a,L).
11: else
12: P ← {(0, 0)}.
13: for p 2 P do
14: Pack a in p.
15: if RC(L \ a,P [ a) = Yes then
16: Return Yes.
17: Remove a from p.
18: Return No.
19: end.
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Base: Let k = 1, and notice that the item a1 is packed on (0, 0). Since there is no item

i in σ such that ai ≺LU a1, we can assume that a1 is in (0, 0) in P 0 (Se observation 6.3.3

and Fig. 6.2 part b);.

Induction Hypothesis: The RC algorithm packs a prefix of σ of size k in the same

position as in P 0.

Step: Suppose the RC algorithm is packing the item ak+1, 1 < k ≤ n. By induction, we

have that ai, 1 ≤ i ≤ k were packed in their corresponding positions according to P 0. By

≺LU we have that all items aj 2 σ, such that aj ≺LU ak+1 were packed.

If we show that the position of ak+1 in P 0 is in corner∗(ak+1,
Sk

i=1 ak) then we prove

the theorem, since the algorithm will eventually pack the item on this position.

Notice that if ak+1 is positioned according to P 0, then it cannot have an intersection

with e(
Sk

i=1 ak) since we would have a contradiction. This occurs because ak+1 ≺LU aj, for

all 1 ≤ j ≤ k. Besides that, in P 0, ak+1 was positioned in the most bottom-left feasible

position. So we know that (x(ak+1), y(ak+1)) is in e−(
Sk

i=1 ak) and @(x(ak+1), y), y <

y(ak+1) in e−(
Sk

i=1 ak).

We have three cases according to what happened when trying to move ak+1 to the

left. In the first case, suppose that ak+1 cannot be moved to the left in P 0 because it

touches the right border of another item aj (x(aj) + w(aj) = x(ak+1)). This means that

@(x, y(ak+1)), x < x(ak+1) in e−(
Sk

i=1 ak). Therefore, (x(ak+1), y(ak+1)) 2 corner(P ).

In the second case, suppose that ak+1 cannot be moved to the left because it touches

the left border of the bin. Since ak+1 is in its lowest position possible, this point also

belongs to corner(P ).

In the third case, suppose that ak+1 cannot be pushed to the left in P 0 because it

would block an item aj already packed. In this case x(ak+1) = x(aj) + w(aj) for some

1 ≤ j ≤ k. By induction hypothesis aj is packed in the same position as in P 0. Besides

that, (x(aj) + w(aj), y(ak+1)) 2 orderContour(ak+1,
Sk

i=1 ak). Thus, this position will be

tested by the algorithm RC.

Notice that the order imposed by ≺LU has nothing to do with the order in which

the items are loaded by RC. For example, consider the instance defined by the route

(0, 1, 2, 3, 5, 4, 6, 0) with 3 items where p(A) = 1, d(A) = 6, p(B) = 2, d(B) = 4, p(C) = 3

and d(C) = 5. The order of loading on the bin would be (A,B,C). In this case, the RC

algorithm would not find a feasible solution using this order since it would pack the items

A and B with the configuration presented in part (1) of Figure 6.4. On the other hand, if

we consider the pack in part (2) of the same figure, we would find that the order imposed

by the ≺LU could be (B,A,C). In this case, the algorithm would find the packing in part

(2) of the same figure.
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Figure 6.6: Suppose a5 is not packed yet, and that items ai 1 ≤ i ≤ 4 belongs to the set
S, i.e, a5 is going to be packed after them, and all of them are going to be removed before
a5. There is no space to pack a5, thus this configuration is invalid.

p(ai) < p(aj) < d(ai) < d(aj) ) x(ai) + w(ai) ≤ x(aj) _
x(aj) + w(aj) ≤ x(ai) 8ai, aj 2 L (6.10)

The domains of xi and yi are defined such that the items are fully contained into

the bin (Constraints 6.7). Constraints (6.8) impose that items that belong to the same

client (same pickup and delivery vertex) will not overlap. The unloading constraint is

imposed by the constraints (6.9) which guarantees that if aj is packed and delivered while

ai remains packed then either aj is packed above ai or their projections on the base of the

bin do not overlap. Finally, the Constraints in (6.10) ensure that if ai is packed before

aj, and it is delivered before aj then the projections of ai and aj on the base of the bin

do not overlap.

6.3.3 An ILP based algorithm for the PDPLU

In [7], Dumitrescu et al. analyzed and improved the ILP model proposed by Ruland

and Rodin [20] for the PDP problem. In this Section we use the same model to solve

the PDPLU problem. The model generates routes satisfying the pickup and delivery

constraints but there is no guarantee that the items can be packed in the order determined

by the route. So we added a new separation procedure using exact algorithms for the

2KPLU to check the feasibility of the route. If the route is infeasible, then we insert a

cut in the model to avoid the generation of this route.
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Let G = (V,E) be the graph that is part of the input of the PDPLU problem. We

add a dummy delivery vertex (d0) to be the final point of the route (i.e. the delivery

point of the initial depot denoted by p0). We denote by δ(S) = {(i, j) 2 E : i 2 S, j /2
S or i /2 S, j 2 S} to be the edges of the cut given by some S ⊆ V . We also denote by

δ(v) = δ({v}), 8v 2 V .

The formulation is presented below. It contains |E| binary variables: one variable xij

for each edge eij. We also define x(E 0) =
P

(i,j)2E0 xij, for E
0 ⊆ E.

min
X

eij2E
c(eij)xij (6.11)

subject to

xp0,d0 = 1 (6.12)

x(δ(v)) = 2 8v 2 V (6.13)

x(δ(S)) ≥ 2 8S ⊆ V, 2 ≤ |S| ≤ |V |/2 (6.14)

x(δ(S)) ≥ 4 8S 2 U (6.15)

xij 2 {0, 1} 8eij 2 E, (6.16)

where U is the set of subsets of S ⊆ V that satisfies 3 ≤ |S| ≤ |V | − 2 with p0 2 S,

d0 /2 S and there exists i 2 {1, . . . , n} such that di 2 S and pi /2 S. Constraints (6.12),

(6.13), (6.14) and (6.16), define the classic Traveling Salesman Problem (TSP). Finally,

the constraint (6.15), guarantees that for each pair (pi, di), pi is visited before di.

Due to the exponential number of constraints ((6.14) and (6.15)) Ruland [20] and

Dumitrescu et al. [7] proposed a series of separation procedures for a Branch-and-Cut

algorithm. In our implementation, we used two of theses procedures in order to guarantee

the feasibility of the solution and to avoid the use of all the constraints in (6.14) and

(6.15).

The first procedure is a separation method for constraints (6.14), and makes use of

an algorithm for the max flow problem. Let x∗ be an optimal fractional solution for the

model. It is possible to verify the constraints (6.14) calculating the max flow from p0
to d0 (considering x∗ as the edges capacities). If the total flow is smaller than 2, with

corresponding minimum cut S, then we add to the model the constraint x(S) ≥ 2.

The second procedure is a separation method for the constraints (6.15). In this case,

the procedure aims to find a subset of U that violates the constraint (6.15). This problem

can also be modeled as a max flow problem. One just need to find the max flow from

{p0, di} to {pi, d0}, i 2 {1, . . . , n} on the same graph defined for the first procedure. If

the total flow is smaller than 4, with corresponding minimum cut S, then the constraint

x(S) ≥ 4 is added to the model.
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If none of these procedures add a new cut into the model and all variables have integer

values, then we test if the route induced by the solution is feasible from the 2KPLU stand

point.

To solve the PDPLU we solve the model presented using the separation procedures

described above. We call this algorithm ILPPDPLU. Notice that ILPPDPLU is an exact

algorithm as long as A2KPLU is also an exact algorithm for the 2KPLU problem.

6.4 Heuristic Algorithms

In this section we present heuristics for the problems 2KPLU and PDPLU. In Section

6.4.1 we show three heuristics for the 2KPLU that are based on the Bottom Left strategy.

Then in Section 6.4.2 we present an algorithm based on the work of Renaud et al. [18]

for the PDPLU. Finally, in Section 6.4.3 we describe a GRASP heuristic for the PDPLU.

6.4.1 Bottom Left heuristics for the 2KPLU

In this section we present three similar heuristics for the 2KPLU. These algorithms are

used to check if there is a feasible packing for the items given that they need to be packed

and removed according to some route.

The first heuristic (BLLU) is an adaptation of the classic Bottom Left (BL) algorithm

[1, 2]. The heuristic tries to pack the items in order (sorted by width) in the lowest

available position, left aligned. However the packing of an item must satisfy the constraints

of the 2KPLU. Thus items are packed in the lowest available feasible position left aligned.

If the packing becomes infeasible, we swap two randomly chosen items on the input list

and use the algorithm again. This process is repeated until a solution is found or the

algorithm reaches a certain number of iterations.

The BLLU is presented in Algorithm 14 and an example is given in Figure 6.7.

The second algorithm is similar to the BLLU but it uses a Touching Perimeter [12]

strategy instead of a BL. The touching perimeter of a packed item, corresponds to the

size of its edges that are touching other items or the borders of the bin. The algorithm

starts sorting the items by area (largest first). Then the algorithm proceeds by packing

the items in order and left aligned in the position that maximizes the touching perimeter.

As for the BLLU algorithm, this one also swaps items from the list and repeats the process

when no feasible solution is found.

The idea of the TP algorithm is to avoid the formation of small holes on the packing.

In Figure 6.8 we present an example of packing obtained with the algorithm TPLU .

The third heuristic has the same idea of the first two. However, instead of using

the lowest point or the maximum perimeter, we use a maximum overlap strategy. By
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Algorithm 14 BLLU

1: Input: A list of items L and a maximum number of iterations maxIter.
2: Output: Return yes or no, which depends if a feasible packing is found or not.
3: Begin

4: iter ← 0.
5: L0 = L

6: while iter < maxIter do

7: for a 2 L0 do
8: Let p be the lowest feasible position to pack a, left aligned.
9: if There is no such p then

10: Stop the for loop.
11: else

12: Pack a in p.
13: L0 = L0 − a.
14: if L0 == ? then

15: Return YES.
16: // Swap Items.
17: Let ai and aj be two randomly chosen items in L.
18: Swap ai and aj .
19: iter = iter +1.
20: Return No.
21: end.

definition, items that do not share the bin can overlap in a solution for the 2KPLU.

For example suppose that we have two pairs (p1, d1) and (p2, d2), and one item for each

pair. Consider the route (p1, d1, p2, d2), it is easy to see that both items can be packed at

position (0, 0). Given a list of items they are packed one after the other, in the position

that maximizes the overlap with already packed items that do not share the bin (ties

broken by maximum Touching Perimeter), left aligned, satisfying the 2KPLU constraints.

We call this algorithm OVERLAPLU . An example is presented in Figure 6.9.

6.4.2 A simple heuristic for the PDPLU

In this Section we describe a simple heuristic called 4-Opt∗∗∗ for the PDPLU based on a

heuristic presented by Renaud et. al. [18] for the PDP.

In [18], Renaud et. al. compared seven heuristics that are based on the following

strategy: use a constructive algorithm together with an improvement algorithm called

4-Opt∗∗ (an adaptation from the 4-Opt∗ proposed in [16, 17]). The 4-Opt∗∗ works by

removing and reinserting sets of 4 edges from the solution. After that, there are phases

of perturbation and improvement which are repeated until a stopping criteria is met.

Among the seven heuristics compared, the best one performs three basic steps:
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Figure 6.7: In this figure we have an example for the BLLU where b is the only item that
will be removed before a. The item a can not be packed in the point r since a would
not fit in the bin. Point q is also infeasible for a since the packing would not satisfy the
unloading constraint. Points p and s are feasible and p is chosen since it is the lowest one.

• Initialization: Construct a feasible solution (route) for the PDP inserting pairs of

vertices in a greedy way. Then apply the 4-Opt∗∗ in order to optimize the solution.

• Perturbation: Generate a route S1 by removing and reinserting pairs of vertices from

the current solution in feasible random positions. Then generate S2 in a similar way

but reinserting the removed vertices in a greedy way. Finally, consider a prefix from

S1. Construct a complete route by using this prefix and completing it with the

remaining vertices in the order they appear in S2. Do the same thing by using a

prefix of S2 and completing the route with vertices in the order they appear in S1.

• Post-optimization: Apply the 4-Opt∗∗ to the solutions found in the previous step

(only the combinations of S1 and S2). If a stop criteria is met then stop, otherwise

go to the Perturbation phase.

Our proposed heuristic is a simple modification of this one in order to construct routes

that have a feasible packing: when inserting pairs of vertices in the route, a 2KPLU

algorithm is used to tests if the insertion is valid.

6.4.3 A GRASP heuristic for the PDPLU

In this section we describe a Reactive GRASP with Path Relinking for the PDPLU.
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Figure 6.8: In this figure we have the same scenario from the Fig. 6.7. In this case, the
point s is chosen since it maximizes the touching perimeter of a.

First consider the Constructive phase. We always keep a partial feasible route con-

taining pairs of pickup and delivery points. This partial solution starts empty. At each

iteration, a new pair of vertices is selected from a Restricted Candidates List (RCL) and

inserted on the partial solution. The RCL is updated on each iteration by choosing the

x% best pairs of pickup and delivery points. The best pairs are the ones whose insertion

in the partial solution causes the minimum increase of its cost. In Alg. 15 we show the

Constructive phase.

The heuristic is said to be Reactive since the size of the Restricted Candidates List

(x) is self-adjustable. To adjust the value of x, we used the best approach described in

[19]. We have a set of possible values for x called Reactive Set, X = {x1, x2, . . . , xl}. Each
time the constructive phase is ran, we select the value for x randomly from this set. The

probability to select xi is pr(xi), 1 ≤ i ≤ l which is initially set as 1/l. Every time a

certain number of iterations (It update) are completed, the probabilities are updated with

a given Aggressiveness (see [19] for details). The idea is to increase the probabilities of

selecting values xi that result in good initial solutions. These parameters, such as l and

by how much update the probabilities, were set using a preliminary set of experiments.

We tested two methods for the Local Search. The first one is the 4-Opt∗∗ [18] but

considering the packing constraints (Section 6.4.2). In the second local search, for each

pair of vertices (pi, di), they are removed and re-inserted again in the lowest cost position

(see Alg. 16). The algorithm performs this operation until no improvement is obtained.

We also propose three routines for Path-Relinking (PR). Here we also follow the best

strategy recommended in [19]. We keep a small pool of size Pool size, containing elite
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Figure 6.9: In this figure we have a similar scenario from the Figures 6.7 and 6.8. Suppose
that items a and c do not share the bin. In this case, the point p is chosen due to the
overlap between a and c.

solutions: the best Pool size solutions generated so far by the GRASP heuristic. Every

time a new “good solution” is generated by the Local Search, we perform a path relinking

between this solution and one randomly chosen from the elite pool. By “good solution”

we mean a solution whose cost is at most d% worst than the best solution already found.

We set the value for d during our experiments (d can be seen as a filter for the PR usage).

The path relinking is done by transforming the elite solution into the current solution,

performing small modifications at each step, until the solutions becomes the same. We

can also consider the other direction, i.e, start from the current solution, and perform

modifications on it until it becomes the elite solution. During each modification step

from one solution to the other, we check if this modified solution has lower cost than the

worst solution on the elite set. If a better solution is created during some of these steps

the elite set is updated.

The first path-relinking routine (Path Relinking Prefix) perform modifications based

on prefixes of routes (an adaptation from [18]). Let pref(s, i) be the prefix of route s with

size i, i.e. the first i vertices visited by s after the depot. The path of modification steps

from solution s to s0 consists of |s|−2 new solutions s1, s2, . . . , s|s|−2 where si = pref(s0, i)+

(s − pref(s0, i)), i.e., the route si is formed by the prefix of s0 of size i, followed by the

remaining vertices in the order they appear in s. For instance, Let s = (1, 2, 3, 7, 6, 4, 8, 5)

and s0 = (1, 3, 7, 2, 4, 5, 8, 6), then s3 = (1, 3, 7, 2, 6, 4, 8, 5). This procedure is showed in

Alg. 17.

The second path-relinking (Path Relinking Remove) is based on the removal and in-
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Algorithm 15 Constructive phase

1: begin
2: Input: A list L = (pi, di), 1 ≤ i ≤ n, of vertices and the size of the RCL denoted by

x.
3: Output: A solution for the PDPLU.
4: Solution ← ?
5: while L 6= ? do
6: Build the RCL ⊆ L, with the x% best pairs of vertices from L (lowest insertion

cost).
7: Randomly select a pair (p, d) 2 RCL.
8: Insert (p, d) on Solution, on the positions that minimize the insertion cost.
9: L ← L\{(p, d)}.
10: return Solution.
11: end

Algorithm 16 Local Search Pairs

1: begin
2: input: An initial solution s for the PDPLU.
3: changed ← true
4: while changed do
5: changed ← false
6: for each pair (p, d) on s do
7: if there is a position posp, posd for p and d that reduces the cost of s then
8: changed ← true
9: Remove p and d from s, and insert them back on positions posp, posd.

10: return s.
11: end

sertion of pairs of vertices in a route s until it becomes equal to s0. Let s(i) be the i-th

vertex on the route s after the depot. The method starts by finding the first position i in s

such that s(i) 6= s0(i) and then remove the pair that contains s(i) and reinsert the vertices

into s on the same position as they appear in s0. For example, let (v, v + 4) 1 ≤ v ≤ 4

be the pairs of pickup and delivery in an instance. Let s = (1, 2, 3, 7, 6, 4, 8, 5) and

s0 = (1, 3, 7, 2, 4, 5, 8, 6) be the routes considered by the second routine, then the new

routes tested are (1, 3, 7, 2, 6, 4, 8, 5), (1, 3, 7, 2, 4, 6, 8, 5), (1, 3, 7, 2, 4, 5, 6, 8), in order.

This routine is described in Algorithm 18.

The third path-relinking routine is called (Path Relinking Remove best). We want to

transform route s into s0. On the first step we create one neighbor solution for each pair

of vertices (p, d) in s: For each (p, d) in s remove it and reinsert the vertices of this pair in

the positions as they appear in s0, creating a new route. Among all these new generated
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Algorithm 17 Path Relinking Prefix

1: begin
2: Input: Two feasible routes s and s0 for the PDPLU.
3: Output: The best intermediate solution between s and s0, inclusive.
4: for i in [0, |s0|] do
5: si = pref(s0, i) + (s− pref(s0, i))
6: return minsi (cost(si)).
7: end

Algorithm 18 Path Relinking Remove

1: begin
2: Input: Two feasible routes s and s0 for the PDPLU.
3: Output: The best intermediate solution between s and s0, inclusive.
4: newSolution ← s.
5: while s 6= s0 do
6: Let i be the smallest position in s such that s(i) 6= s0(i).
7: Let (p, d) such that s(i) = p or s(i) = d.
8: Remove p and d from s.
9: Insert p and d in s on the same positions they appear in s0.
10: if cost(s) < cost(newSolution) then
11: newSolution ← s.
12: return newSolution.
13: end

solutions, select the one with the lowest cost as the new current one. Then repeat this

process until the current route becomes equal to s0.

6.5 List of Routes

In this Section we discuss about a data structure used to improve the running time of

the route feasibility test. All the proposed algorithms for the PDPLU use the 2KPLU

algorithms to check whether a route is feasible or not. The exact algorithm based on

the ILP model always checks the feasibility of complete routes (routes that contain all

clients). The heuristics from sections 6.4.2 and 6.4.3 can also check the feasibility of

smaller routes while they are being constructed. To solve reasonable sized instances,

millions of feasibility tests are done by the algorithms and heuristics.

One may note that many of these tests are useless. Consider for example a feasible

route r = (p1, p2, p3, d2, d3, p4, d1, d4) with its corresponding packing P . Now consider that

the feasibility of r was already checked, and a route s = (p1, p3, d3, d1) in construction is

going to be tested. It is easy to see that s is feasible with packing defined by a subset
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of P . Thus, keeping a cache of already checked routes, we may discover the feasibility of

routes generated by the algorithm without executing the packing algorithms.

To be more formal: Given that a route r = (r1, . . . , rn) is feasible, with corresponding

packing P , then a route s = (s1, . . . , sm) such that s ⊆ r, is also feasible. Furthermore,

P 0 = {a : a 2 P , a 2 s} is a feasible packing for s. On the other hand suppose r is

infeasible. If s ⊇ r then s is infeasible.

We maintain a list of the routes already tested while solving a PDPLU instance. Before

trying to test if a route is feasible or not, a pretest is made checking the list of routes

already tested. If no result comes from the pretest then the packing algorithm is used

and the result is stored on the list. By doing this, we aim to reduce the packing time,

thus the overall time of the algorithms.

To be more descriptive, the data structure Routes List (RL) maintains two sets of

routes (feasible/infeasible) and a set of packings (for the feasible routes). The operations

that can be performed by the RL are:

• Insert a feasible route and its packing.

• Insert a infeasible route.

• Check whether a route is feasible, infeasible or unknown.

The first approach to implement this data structure is simple. Keep an array of arrays

for each set. The insertion operations can be done in O(1) time-complexity. To check if

a route s is feasible or not, one need to compare this route against each route in the data

structure. This can be done in O(kn) where n is the size of the largest route and k is the

number of routes stored.

Our experiments showed that even this simple approach improved the total execution

time of the heuristics in 50% on average.

After some improvements in the data-structure we achieved a version of it that reduced

the execution time of the heuristics in 90% on average. First, aiming to reduce the number

of routes on the list, the following modification was applied to the insertion operation:

while inserting a new feasible route r, if there is a feasible route s on the set, such that

s ⊆ r, then s can be removed from the set without losing any coverage. A similar

improvement can be done for the infeasible routes. Another improvement comes from the

simple observation that if a route s contains an element that is not in r then s ( r. So

using only a set of bits and one operation we can test this before testing if s ⊆ r.

It is important to notice that if we use this approach with heuristics for the 2KPLU

then the conclusions about infeasibility may not hold. In this case they would serve as

an heuristic.
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6.6 Generated Instances

The algorithms were tested using adapted instances from the PDP. The instances were

generated from the set of 35 instances used in [7]. Each one of these 35 instances consists

of a graph representing the depot, and pickup and delivery pairs. The number of pickup

and delivery pairs varies from 5 to 35. For each instance we generated 10 new ones by

creating 2D items to be carried from each pickup vertex to its corresponding delivery

vertex. We used a similar approach as in [11], that created 2D items using the graph

instances for the PDP.

The instances can be separated in four classes depending on the characteristics of the

generated items: (1) unitary instances, (2) tall and narrow, (3) short and wide, and (4)

homogeneous. Remember that the size of the vehicle is (W,H). For instances of classes

(2), (3) and (4) we use the following cutting method to create a predefined number of

items. First create a list L with some items of dimensions (W,H). Repeat the following

method until the predefined number of items is not obtained: select an item from L and

cut it into two new ones by doing a guillotined horizontal or vertical cut at some random

position. Replace the original item with these two new ones in L. In what follows are the

details of how instances were generated:

• unitary: Generate an unitary square for each pair (p, d).

• tall and thin: In the cutting method, cut an item vertically with probability 80%

otherwise cut it horizontally. Three instances are created as follows:

1. Create n items using the cutting method, starting with L = {(W,H)}. Assign
one item of the list for each pair of pickup and delivery at random.

2. Create 3n/2 items using the cutting method, starting with L = {(W,H), (W,H)}.
Assign one item for each pair randomly and the remaining n/2 items are ran-

domly assigned to the n pairs.

3. Create 2n items using the cutting method, with L = {(W,H), (W,H), (W,H)}
to start. Assign one item for each pair randomly and the remaining n items

are randomly assigned to the n pairs.

• short and wide: In the cutting method, cut an item vertically with probability

20% otherwise cut it horizontally. Three instances are created with n, 3n/2 and 2n

items using the same approach of the last instance class.

• homogeneous: In the cutting method, for each selected item, cut it in its largest

dimension and with cut between [35% and 65%] of the size of this dimension. Again
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three instances are created with n, 3n/2 and 2n items using the same approach of

the last instance class.

Thus we have 350 instances with 5 ≤ n ≤ 35 and 5 ≤ |L| ≤ 70. Furthermore we

can evaluate the algorithms with different packing characteristics. These instances are

publicly available at: www.loco.ic.unicamp.br/instances/pdplu/.

6.7 Computational experiments

The algorithms were coded in C++ and executed on an Intel i7-2600 3.40GHz processor

with 8 GB 1333 MHz DDR3 of main memory. The stopping criteria for all algorithms

was 2 CPU hours. For the GRASP heuristics we used a limit of 1000 iterations or 100

without improvement.

The raw results can be found at: www.loco.ic.unicamp.br/instances/pdplu/. The in-

stances are named as follows: pdp type t, where “pdp” is the PDP instance used, type

2 {“unitary”,“homogeneous”,“tall”, “short”} and t 2 {1, 2, 3} that corresponds respec-

tively to the number of items generated (n, 3n/2, or n). For the unitary type, t is always

equal to 1.

We used the following notations for the algorithms tested: A(B[,B]), where A is the

algorithm for the PDPLU problem and B is a 2KPLU algorithm. Moreover the algorithms

for the 2KPLU are used exactly in the given order. For instance G(BL,CP) stands for

the GRASP heuristic combined with both the BL heuristic and the CP algorithm (when

the BL fails).

In order to solve the problems up to optimality with the ILPPDPLU algorithm, we

used some combinations of exact algorithms and heuristics for the 2KPLU. In general

we tested ILPPDPLU(RC) and ILPPDPLU(CP), and since the best results were due

to ILPPDPLU(CP) we also tried the version ILPPDPLU(BL,TP,OVERLAPLU ,CP), in

order to check if the execution of heuristics for the packing problem could accelerate the

feasibility check. However, in general the heuristics only increased the running time of

the ILPPDPLU algorithm, since the number of feasible packings tested is usually really

small when compared with the number of infeasible ones. So we only present the results

comparing the exact algorithms ILPPDPLU(CP) and ILPPDPLU(RC).

We present some graphs showing the performance profiles [6] of the algorithms. This

method of comparing optimization softwares and algorithms, was proposed by Dolan and

Moré in [6]. See for example the graph in Figure 6.10. The idea is to compare algorithms

among themselves, computing for each instance of the problem the ratio between the

running time (or solution cost) of one algorithm and the best achieved running time

(or solution cost) for the instance.We compute all such ratios for all instances. If, for
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example, some algorithm has ratio equal to 1 for some instance, this means that this

algorithm obtained the best result for this instance among all algorithms. With the ratios

computed for all instances, we can generate the performance profiles. In the x axis we

have all possible values of ratios. For any given ratio, in the y axis we have the percentage

of instances that an algorithm could solve, such that the ratio of its running time to the

best one is at most the given ratio. We can also generate performance profiles comparing

the quality of solutions generated by the algorithms. For the exact algorithms this is not

done, since they always produce optimal solutions, but we construct performance profiles

comparing the quality of solutions for the heuristics.

The ILPPDPLU(CP) algorithm solved 99 instances up to optimality, while the algo-

rithm ILPPDPLU(RC) solved 73. Besides that, if we consider the instances where no

optimal solution was found, in general the solutions of the ILPPDPLU(CP) are of better

quality. In Figure 6.10 we present the performance profiles for the cost and running time

of the exact algorithms. The CP algorithm clearly outperforms the RC, having the best

running time in about 80% of the instances. Besides that, it did not found the best cost

solution in only 2 instances among 164 (those that some result was found by at least one

of the algorithms).

If we consider the different types of instances, the ones with “unitary” items turned out

to be the easiest ones, as expected. The ILPPDPLU(CP) algorithm solved 16 instances

among the 35 tested. On the other hand, the instances with “short and wide” items were

the hardest ones with only 22 instances solved to optimality (among 105). It seems that

the wider the items are, the harder the packing problem is, mainly due to the loading

and unloading constraints. The ILPPDPLU(RC) algorithm solved the same number of

“unitary” instances as the ILPPDPLU(CP). It also had a lower running time in some

instances.

The exact algorithms found optimal solutions in 99 of the 350 instances tested. All

instances with 5 pairs of vertices were solved up to optimality, however no instance with

more than 20 pairs of vertices was solved to optimality. The results where optimal so-

lutions were found, are used to calculate the gap between solutions computed by the

heuristics and the optimal.

We used a smaller set of instances to set up the GRASP parameters. In Table 6.1

we provide the parameters tested and the ones used in our final experiments. For the

4-Opt∗∗∗ heuristic we used the parameters as described in [18].

In our tests the GRASP heuristic achieved the best results and that is why we show

more versions of it in our analysis.

The heuristics were able to found optimal solutions for several instances (considering

the 99 instances with known optimal values). The GRASP heuristics G(OVERLAPLU)

and G(BL,TP,OVERLAPLU) found solutions with optimal value for more instances, 64
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Figure 6.10: Performance profiles for the cost(left) and running time(right) of the exact
algorithms for the PDPLU.

group Parameter Tested Best

Reactive GRASP

Reactive Sets {(10%, 20%, 50%, 100%), (10%, 20%, . . . , 100%)} (10%, 20%, 50%, 100%)
It update {every iteration, 20, 50, 100, 150} 100

Aggressiveness {1,2,4,8} 4

Path Relinking

PRAlgorithm {Prefix, Remove, Remove Best} Remove Best
Pool Size {10,20,50} 20
Direction {Current to Elite, Elite to Current, Both Ways} Elite to Current
Filter {5%, 10%, 15%} 10%

Local Search lsAlgorithm {Pairs, 4-Opt∗∗} Pairs

Table 6.1: Parameters for the GRASP heuristic.

instances each (among 99 known). Besithes that, the worst result was due to algorithm

4-Opt∗∗∗(BL,TP,OVERLAPLU), that found optimal solutions to 41 instances.

In Figure 6.11 we present the performance profiles of the heuristics considering all

instances that have at least 10 pairs of vertices and took more than 1 second of running

time, while in the Figures 6.12 to 6.15 we separate the results in Figure 6.11 by instance

type. In each one of these figures, the graph to the left is the performance profiles

considering the cost of the solutions, while the graph to the right presents the performance

profiles considering the running times of the heuristics.

In the graph to the left of Figure 6.11, we see that G(BL,TP,OVERLAPLU) found the

largest number of best solutions (about 80%), with the heuristic G(OVERLAPLU) very

close to it. It obtained the best results in 209 instances, against 178 from G(OVERLAPLU),

125 from G(TP), 116 from G(BL) and, 48 from 4-Opt∗∗∗(BL,TP,OVERLAPLU). On the

other hand the heuristic G(BL,TP,OVERLAPLU) is the slowest one as one can see from

the graph to the right of the figure 6.11.

One interesting point to notice is that if we consider the instances for which the

ILPPDPLU(CP) algorithm found sub-optimal solutions (64 instances), the best solution

found by one of the GRASP heuristics was better in 53 instances. Considering the in-



6.7. Computational experiments 81

stances for which an optimal solution was found by the exact algorithms, the average gap

between the solutions of the GRASP heuristics and the optimal ones was 13.23%.
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Figure 6.11: Cost(left) and time(right) factor for the heuristics in all instances.

From Figure 6.12 we can see that all GRASP heuristics were effective in finding good

solutions for the unitary instances. The GRASP heuristics found almost 100% of the best

solutions, while the heuristic 4-Opt∗∗∗ generated the best solutions in only about 20%

of the instances. It is interesting to notice that for these type of instances the GRASP

heuristics were faster than the 4-Opt∗∗∗ heuristic. The best results were found by the

G(OVERLAPLU) heuristic in 28 instances, followed by 26 from G(BL,TP,OVERLAPLU)

(see Fig. 6.12).
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Figure 6.12: Performance profiles for the solutions cost (left) and running time (right) for
the heuristics. Instances with unitary items.

For the remaining type of instances (Figures 6.13 to 6.15), the results were similar.
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The GRASP heuristics were the ones that found the largest number of best solutions

with G(BL,TP,OVERLAPLU) founding more than 80% of the best solutions, while the

4-Opt∗∗∗ heuristic founding less than 20% of the best solutions. On the other hand the 4-

Opt∗∗∗ heuristic was the fastest heuristic being more than 4 times faster than the GRASP

heuristics in more than 40% of the instances.
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Figure 6.13: Performance profiles for the solutions cost (left) and running time (right) for
the heuristics. Instances with “short and wide” items.
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Figure 6.14: Performance profiles for the solutions cost (left) and running time (right) for
the heuristics. Instances with “tall and thin” items.

In Figure 6.16 we present the running time of the GRASP heuristics as a function of

the instance size being solved. The time did not increase as expected. It seems that the

heuristics running time increases linearly from 20 to 35 pairs of items, despite its time

complexity. The explanation for this observation comes from the use of the Routes List
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Figure 6.15: Performance profiles for the solutions cost (left) and running time (right) for
the heuristics. Instances with “homogeneous” items.

data structure. In Figure 6.17, for each algorithm, we present the average proportion of the

number of packing sub-problems solved using the data structure (avoiding the use of the

packing algorithms again). Notice that the more packing problems solved with the data

structure, the faster the algorithm runs. From the figure we can see that the proportion of

sub-problems solved with the data structure stop decreasing in instances with 25 pairs of

vertices (about 70% of the sub-problems are solved with the data structure). Then from

instances with 25 to 35 pairs of vertices, the proportion of sub-problems solved stabilizes

and increase a little bit to about 75%. This explains why the increase of running time

diminishes for the instances of these sizes.

6.8 Conclusions

In this paper we proposed heuristics and exact algorithms for the Pickup and Delivery

Problem with Two Dimensional Loading/Unloading Constraints (PDPLU). The packing

part of the problem (Two Dimensional Knapsack Problem with Loading and Unloading

Constraints) was first studied in [13], and to the best of our knowledge this is the first

work to study the PDPLU and provide practical results for it.

Our exact algorithms for the PDPLU were based on an ILP model for the PDP found

in the literature. We combined this model with exact packing algorithms: one based on

Corner Points and another one based on Constraint Programming (CP). We also developed

heuristics for both problems (2KP and PDPLU). TheGRASP based heuristic achieved the

best results. We tested several versions of the GRASP heuristic choosing good methods

of the Local Search, and the Path Relinking. During these tests we also selected the best
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Figure 6.16: For each heuristic, the figure presents the average time in seconds used to
solve an instance of a given size.

parameters for the Reactive part of the GRASP.

The best optimal algorithm was composed by the ILP model for the PDP together

with the CP algorithm to solve the 2KPLU. Among the heuristics, the GRASP together

with the three packing heuristic obtained the best results.

We performed several tests to assess the quality of the proposed algorithms. Our exact

algorithms were able to solve 99 instances up to optimality (from 350). They were able

to solve some instances with 20 pairs of clients and 40 items.

The heuristics showed to be a good alternative when sub-optimal solutions are ac-

ceptable. The best GRASP heuristic was able to solve 64 instances to optimality (among

99).
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6.10 Appendix: Proof of Lemma 1

Given a list L and the packing P , we define a digraph D := (V,A), where V := {vi : ai 2
L} and A := {(vi, vj) : ai ≺ aj}.

Suppose D does not contains oriented cycles, then we have that a partial order exists.

Therefore, we just need to show that there is no oriented cycle in D.

This is done by induction in 1 ≤ k ≤ |V |, showing that D does not have a cycle of

size k. So we prove that for any path v1v2 . . . vk we have that (vk, v1) /2 A, thus finishing

the proof.

Base: Consider the cases k 2 1, 2, 3. If k = 1, for sake of contradiction suppose the loop

vivi in D and thus ai ≺ ai for some ai 2 L. Therefore, by (6.1) and (6.2),

x(ai) ≥ x(ai) + w(ai) _ y(ai) ≥ y(ai) + h(ai) !←,

and so (vi, vi) /2 A.

If k = 2, then, for sake of contradiction we have vivjvi 2 D, thus ai ≺ aj ≺ ai. For

each pair in the cycle, we have that (6.1) or (6.2) is true. Suppose (6.1) true in ai ≺ aj.

If (6.1) is also true in aj ≺ ai, then we have the following absurd:

x(aj) ≥ x(ai) + w(ai) > x(ai) ≥ x(aj) + w(aj) > x(aj) !← .

On the other hand, if (6.1) is false in aj ≺ ai, then we have the following contradiction:

y(aj) + h(aj) > y(ai) ≥ y(aj) + h(aj) !← .

A similar analysis may be done if (6.2) is true in ai ≺ aj. Therefore (vj, vi) /2 A.

Finally, consider k = 3. So, for sake of contradiction we have vivjvkvi, which implies

ai ≺ aj ≺ ak ≺ ai. In this case we have 8 combinations for equations (6.1) and (6.2) (two

in each ≺ relation). We use the following notation below: (e)(f)(g) denotes “e” valid in

ai ≺ aj, “f” valid in aj ≺ ak and, finally, “g” valid in relation ak ≺ ai.

1. Case (1)(1)(1):

x(ai) ≥1 x(ak)+w(ak) > x(ak) ≥2 x(aj)+w(aj) > x(aj) ≥3 x(ai)+w(ai) > x(ai) !← .

From ak ≺ ai we have 1, from aj ≺ ak we have 2, and 3 from ai ≺ aj.

2. Case (1)(1)(2):

x(ai) + w(ai) >1 x(ak) ≥2 x(aj) + w(aj) > x(aj) ≥3 x(ai) + w(ai) !← .

Where have 1 from ak ≺ ai, 2 from aj ≺ ak and 3 from ai ≺ aj.
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3. Case (1)(2)(1):

x(ai) ≥1 x(ak) + w(ak) >2 x(aj) ≥3 x(ai) + w(ai) > x(ai) !← .

Where 1 is from ak ≺ ai, 2 from aj ≺ ak, 3 from ai ≺ aj.

4. Case (1)(2)(2):

y(aj) + h(aj) >1 y(ai) ≥2 y(ak) + h(ak) > y(ak) ≥3 y(aj) + h(aj) !← .

Again 1 from ai ≺ aj, 2 from ak ≺ ai and 3 from ai ≺ aj.

5. Case (2)(1)(1): Similar to (1)(2)(2).

6. Case (2)(1)(2): Similar to (1)(2)(1).

7. Case (2)(2)(1): Similar to (1)(1)(2).

8. Case (2)(2)(2): Similar to (1)(1)(1).

Thus (vk, vi) /2 A.

Induction Hypothesis: Let C = v1v2 . . . vk0 be a path in D with k0 < k, then (vk0 , v1) /2
A, i. e., ak0 ⊀ a1.

Step: Let k ≥ 4. For sake of contradiction suppose

v1 ; vi ; vj ; vkv1.

So we have the following configuration:

a1 ≺ . . . ≺ ai ≺ . . . ≺ aj ≺ . . . ≺ ak ≺ a1.

Let 1 ≤ i < i + 1 < j ≤ k such that j 6= k or i > 1 (two non-adjacent items on the

configuration):

• If ai ≺ aj ) a1 ≺ . . . ≺ ai ≺ aj ≺ . . . ≺ ak.

Since this sequence has size smaller than k, we have by Induction Hypotheses that

(vk, v1) /2 A ) ak ⊀ a1 !← . (6.17)

• If aj ≺ ai ) ai ≺ . . . ≺ aj ≺ ai.

As before, by Induction Hypothesis.

(vj, vi) /2 A ) aj ⊀ ai !← . (6.18)
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So we just showed that there is no relation between any pair of non-adjacent items on

the cycle. Now we divide the proof in two cases based on the relation between a1 and a2.

Case 1: Suppose (6.1) valid in a1 ≺ a2
Thus, we have (x(a2) ≥ x(a1) + w(a1)).

So we prove by induction on 1 ≤ j < k that the item aj+1 is at right of aj, formally,

x(aj+1) ≥ x(aj) + w(aj).

Base 2: j = 1 was supposed to be true.

Induction Hypothesis 2: If 1 ≤ j < k, then x(aj+1) ≥ x(aj) + w(aj).

Step 2: If j ≥ 2 and by Induction Hypothesis 2 we have that x(aj) ≥ x(aj−1) +w(aj−1).

If j = 2 ) j + 1 = 3 < k

If j ≥ 3 ) j − 1 > 1

Thus, by (6.17) and (6.18) we have aj−1 ⊀ aj+1 and aj+1 ⊀ aj−1. Thus:

• From aj+1 ⊀ aj−1 (6.6), we have that

y(aj+1) ≥ y(aj−1) + h(aj−1) _ x(aj+1) ≥ x(aj−1) + w(aj−1) (6.19)

• Analogously, from aj−1 ⊀ aj+1 we know that

y(aj−1) ≥ y(aj+1) + h(aj+1) _ x(aj−1) ≥ x(aj+1) + w(aj+1) (6.20)

Using Induction Hypothesis 2 (x(aj) ≥ x(aj−1)+w(aj−1)) and aj−1 ≺ aj (6.3) we find:

x(aj) ≥ x(aj−1) + w(aj−1) ^ y(aj) + h(aj) > y(aj−1) (6.21)

Therefore, from aj ≺ aj+1 (6.3) we have x(aj+1) + w(aj+1) ≥ x(aj), Thus, adding

(6.21) we find:

x(aj+1) + w(aj+1) ≥ x(aj) ≥ x(aj−1) + w(aj−1) > x(aj−1) (6.22)

using (6.20) and (6.22) we wave

y(aj−1) ≥ y(aj+1) + h(aj+1). (6.23)

Finally, from (6.23) and aj−1 ≺ aj (6.3) we have y(aj) + h(aj) > y(aj−1) ≥ y(aj+1) +

h(aj+1) > y(aj+1). Thus, from aj ≺ aj+1, we have that x(aj+1) ≥ x(aj) +w(aj). Thus we

proved the Induction Hypothesis 2.

From that we know that

x(a1) + w(a1) ≤ x(a2) < x(a3) < . . . < x(ak).

Case 2: Suppose (2) valid in a2 ≺ a1
Thus y(a2) ≥ y(a1) + h(a1). By symmetry with Case 1, we have that:

y(a1) + h(a1) ≤ y(a2) < y(a3) < . . . < y(ak).

Since Case 1 or Case 2 are valid then: x(ak) > x(a1)+w(a1) _ y(ak) > y(a1)+h(a1),

which means vk ⊀ v1(6.6) !←.





Caṕıtulo 7

Considerações Finais

Neste trabalho apresentamos vários algoritmos para problemas de roteamento e empa-

cotamento. Desenvolvemos algoritmos combinatórios exatos, aproximados e heuŕısticas.

Também implementamos algoritmos baseados em PLI e CP. Estas abordagens nos per-

mitiram atacar diversos problemas diferentes alcançando sempre bons resultados.

No Caṕıtulo 4 apresentamos algoritmos para o Two Dimensional Knapsack Problem

with Unloading Constraints. Este é uma versão do clássico 2KP, com a adição de que os

itens possuem uma ordem de remoção da mochila. Esta restrição define que itens devem

possuir um caminho livre para serem removidos do bin em ordem. Neste trabalho apresen-

tamos os primeiros resultados da literatura para o problema: Uma (4 + ε)-aproximação

para o caso em que o bin é um quadrado e duas (3 + ε)-aproximações para casos especiais

do problema.

No Caṕıtulo 5 mostramos algoritmos aproximados para o Strip Packing Problem with

Unloading Constraints. Este é uma versão do clássico SPP, com uma generalização simi-

lar a do Two Dimensional Knapsack Problem with Unloading Constraints. Consideramos

duas versões deste problema, uma onde apenas um movimento vertical pode ser realizado

para remover os itens do bin e outra onde um movimento horizontal adicional também

pode ser realizado. Neste trabalho também atacamos versões paramétricas destes pro-

blemas, ou seja, onde os itens possuem tamanhos limitados por um fator. Os principais

resultados são uma 5.745-aproximação para a versão com apenas um movimento vertical

e uma 3-aproximação para o segundo caso. Os resultados apresentados no Caṕıtulo 5

melhoram os resultados apresentados por Silveira et al. em [11].

Por fim, no Caṕıtulo 6 atacamos o problema Pickup and Delivery Problem with Two

Dimensional Loading/Unloading Constraints. Este problema é uma generalização do

clássico PDP, com a adição de uma restrição de empacotamento (é necessário trans-

portar itens retangulares entre pares de clientes). Este empacotamento deve satisfazer

restrições de carregamento e descarregamento dos itens. Neste trabalho propusemos al-
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goritmos exatos e uma heuŕıstica GRASP para o problema. Mostramos que a técnica de

CP obteve os melhores resultados entre os algoritmos exatos para o problema de empa-

cotamento, enquanto que a heuŕıstica GRASP obteve bons resultados em tempo razoável

para o problema geral.

7.1 Trabalhos Futuros

Do ponto de vista do problema 2L-CVRP uma pergunta surge após os resultados apre-

sentados no Caṕıtulo 6: Será que modelos de Constraint Programming melhorariam os

melhores resultados exatos para o 2L-CVRP, apresentados por Iori et al. em [16]? A

utilização desta técnica obteve melhorias consideráveis quanto comparadas ao algoritmo

que utiliza Pontos de Contorno, que também é utilizado por Iori et al. [16].

Quanto ao modelo de Constraint Programming apresentado no Caṕıtulo 6 para o

2KPLU: Como podemos refiná-lo de forma a reduzir seu tempo de execução? Uma

posśıvel forma seria utilizando o conceito de pontos de discretização de largura ou Reduced

Raster Points [46, 4, 15].

Quanto às heuŕısticas para o 2KPLU: Será que heuŕısticas mais elaboradas como

a heuŕıstica GRASP apresentada por Silveira et al. [11] gerariam melhores resultados

para o problema PDPLU como um todo? Estas mostraram-se efetivas para o problema

2L-CVRP, portanto, o mesmo pode ser esperado para o PDPLU.

Quanto às restrições de carregamento e descarregamento: No Caṕıtulo 5, mostramos

uma forma de “relaxar” a restrição de descarregamento de forma a permitir mais de um

movimento para a remoção dos itens. Isto permite uma abordagem ainda mais prática

dos problemas atacados na tese. Desta forma, seria interessante estudar tanto o 2KPU

quanto o 2KPLU sob esta perspectiva. Além disto, analisar outras formas de relaxamento

das restrições de forma a modelar outras situações práticas.

Outra questão que permanece em aberto é quanto à existência de algoritmos aproxi-

mados para o 2KPLU. No Caṕıtulo 4 apresentamos diversos algoritmos para uma versão

restrita que considera apenas a restrição de descarregamento. Talvez o uso direto de em-

pacotamento em ńıveis não funcione de maneira tão intuitiva como no 2KPU, já que pode

não existir uma ordenação viável dentro de cada ńıvel.

Quanto ao PDPLU, seria interessante averiguar o desempenho das heuŕısticas GRASP

apresentadas no caṕıtulo 6 no contexto do problema PDP (desconsiderando-se o problema

de empacotamento associado). A melhor heuŕıstica para o PDP foi consistentemente supe-

rada pelas heuŕısticas GRASP no contexto do PDPLU e talvez, com pequenas adaptações,

o mesmo aconteça no caso do PDP.
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de Matemática -IMPA, Rio de Janeiro - RJ, 2001.

[22] J. S. Ferreira, M. A. Neves, and P. Fonseca e Castro. A two-phase roll cutting

problem. European Journal of Operational Research, 44(2):185 – 196, 1990.
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