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Abstract

The Morse theory is important for studying the topology of scalar functions such as el-
evation of terrains and data from physical simulations, which relates the topology of a
function to critical points. The smooth theory has been adapted to discrete data through
constructions such as the Morse-Smale complexes and the discrete Morse complex. Morse
complexes have been applied to image processing, however, there are still challenges in-
volving algorithms and practical considerations for computation and modeling of the
complexes. Morse complexes can be used as means of defining the connectedness of in-
terest points in images. Usually, interest points are considered as independent elements
described by local information. Such an approach has its limitations since local infor-
mation may not suffice for describing certain image regions. Minimum and maximum
points are widely used as interest points in images, which can be obtained from Morse
complexes, as well as their connectivity in the image space. This thesis presents an al-
gorithmic and data structure driven approach to computing the discrete Morse complex
of 2-dimensional images. The construction is optimal and allows easy manipulation of
the complex. Theoretical and applied results are presented to show the effectiveness of
the method. Applied experiments include the computation of persistent homology and
hierarchies of complexes over elevation terrain data. Another contribution is the proposi-
tion of a topological operator, called Local Morse Context (LMC), computed over Morse
complexes, for extracting neighborhoods of interest points to explore the structural in-
formation in images. The LMC is used in the development of a matching algorithm,
which helps reducing the number of incorrect matches between images and obtaining a
confidence measure of whether a correspondence is correct or incorrect. The approach is
tested in synthetic and challenging underwater stereo pairs of images, for which available
methods may obtain many incorrect correspondences.
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Resumo

A Teoria de Morse é importante para o estudo da topologia em fungoes escalares como
elevacao de terrenos e dados provenientes de simulagoes fisicas, a qual relaciona a topolo-
gia de uma fung¢ao com seus pontos criticos. A teoria continua foi adaptada para dados
discretos através de construgoes como os complexos de Morse-Smale e o complexo dis-
creto de Morse. Complexos de Morse tém sido aplicados em processamento de imagens,
no entanto, ainda existem desafios envolvendo algoritmos e consideragoes praticas para a
computacao e modelagem dos complexos para imagens. Complexos de Morse podem ser
usados como um meio de definir a conexao entre pontos de interesse em imagens. Nor-
malmente, pontos de interesse sao considerados como elementos independentes descritos
por informagao local. Tal abordagem apresenta limitagoes uma vez que informagao local
pode nao ser suficiente para descrever certas regioes da imagem. Pontos de minimo é
maximo sao comumente utilizados como pontos de interesse em imagens, os quais podem
ser obtidos a partir dos complexos de Morse, bem como sua conectividade no espaco de im-
agem. Esta tese apresenta uma abordagem dirigida por algoritmos e estruturas de dados
para computar o complexo de Morse discreto em imagens bidimensionais. A construgao é
6tima e permite facil manipulacdo do complexo. Resultados tedricos e experimentais sao
apresentados para mostrar que o método é eficaz. Experimentos realizados incluem a com-
putacao de homologia persistente e hierarquias de complexos sobre dados de elevagao de
terrenos. Outra contribuicao é a proposicao de um operador topoldgico, chamado Con-
texto Local de Morse, computado sobre complexos de Morse, para extrair vizinhancas
de pontos de interesse para explorar a informacao estrutural de imagens. O contexto
local de Morse ¢ usado no desenvolvimento de um algoritmo que auxilia a redugao do
nimero de casamentos incorretos entre pontos de interesse e na obtencao de uma medida
de confianca para tais correspondéncias. A abordagem proposta é testada em pares de
imagens sintéticas e de imagens subaquédticas, para as quais métodos existentes podem
obter muitas correspondéncias incorretas.
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Chapter 1

Introduction

Computational topology has been studied for information visualization, image processing,
fluid mechanics and structural biology. In this thesis, we focus on the computation and
exploration of topological tools in image processing. In particular, we study the combina-
torial representation of images by cell complexes and an important tool for acquiring and
analyzing the topology of such spaces, the Morse theory. We introduce a new method for
computing the complexes derived from the Morse theory and also present practical mat-
ters for coding the algorithms and the representations of such complexes. The features
obtained by the Morse theory are then related to image features and we present a method
for computing connections between these features.

1.1 Problem

Topology [68] is a branch of mathematics whose studies emphasize information such as
connectivity and continuity of spaces. A space is usually formed by a set of points and,
therefore, it has no structure at all.

In image processing and computer vision, features are commonly considered as inde-
pendent elements defined or described by some local information. This is a limitation
since there is no knowledge of the relationship between elements and of how they relate
to form image functions as a whole.

Topological tools can be used to introduce information on connectivity and on how a
space is formed. However, in order to use these tools in image processing and analysis,
some questions must be answered. How to retrieve the topology of an image? How to
represent the topological features and their connections? How to describe the topology
and explore its connectedness?
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1.2 Motivation

Computational topology is a field gaining importance for analyzing images at qualitative,
structural and abstract levels [5, 11, 19, 28, 50, 73, 92]. In particular, the Morse the-
ory [64] is a tool for studying the topology of functions. The Morse theory relates the
topology of a smooth function with its critical points (maxima, saddles and minima in a
2-dimensional function) and decomposes a differentiable function in partitions of uniform
flow characterizing the vector field of the function [26].

Topology makes a space more interesting by adding a connectivity so that points start
to have a knowledge of other points in their neighborhood. Figure 1.1a shows points in
a space, whereas Figure 1.1b shows a topological space. Clearly, space with connectivity
carries more information than space without topology.

[}
(a) Space (b) Topological space

Figure 1.1: Set of points (a) forming a space and (b) with connectivity (neighborhood
information) forming a topological space.

Figure 1.2 shows level sets of a function! f. The level set is a subset of points p with
f(p) < v, such that, for increasing values of v, the level sets form a “growing” space.
The contours generated by the boundaries of the components in each step have already
been studied for partitions of terrains [12]. These are the origins of the Morse theory.
The contours are determined by the geometry of the function and the relation between
geometry and topology is the subject of the Morse theory.

A set of growing spaces, as in Figure 1.2, produces what is called a filtration. The
filtration produces a history of topological changes and can be used to capture the struc-
ture of a function. This is the subject of study of the persistence homology [99], that
computes a topological invariant of great importance in the latest advances related to
computational topology [9, 10, 35, 40, 41, 93|, including applications in image processing
and computer vision [16, 27, 33].

!The function shown in the images was produced with MATLAB peaks.
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Ll v
)]

Figure 1.2: A growing space defined by level sets characterizing the topology of a function.

Several issues arise when transposing the topology tools to computational methods.
The adaptation of the Morse theory does not encounter the same smooth notions for defin-
ing the basics on critical points and gradient flow. In many image processing problems,
functions represent a space with scalar measures over it. This is, for instance, the case
of elevation of terrains and functions derived from physical simulations. The domain of
image functions is sampled and the continuous Morse theory can not be directly applied
to it. The adaptation of the continuous theory to sampled data has been studied in works
such as [6, 26, 99|, which, based on the work of Banchoff [1], use the simulation of smooth
notions to guide the computation and produce what is called Morse-Smale complex [99].

Such constructions present structural considerations that need to be dealt with and
that occur due to the discrete nature of the data. An important case is that of saddle
points. Saddles in the discrete adaptation can be found in more than one form. Another
difficulty comes from the intersection of integral curves that introduce extra critical points.

The discrete Morse theory, formulated by Forman [30, 31], is an adaptation of the
Morse theory to discrete structures. It has been explored in works such as King et al. [46]
and Lewiner et al. [53, 54], which proposes algorithms for the computation of discrete
Morse functions. Robins et al. [76] recently provided algorithms for computing discrete
Morse complexes for image analysis purposes. However, there are also many practical
issues that are not considered.

The problem of saddles does not occur in the discrete Morse complex since there is
only one type. However, the V-paths (counterparts of integral curves in the smooth case)
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still can be an issue. The data structures and their influences are not a primary concern
in the prior studies. In Robins et al. [76], for example, discrete paths (integral curves)
are only implicitly stored and, therefore, it is not possible to draw them correctly for
visualizations.

In theoretical discussions, it is common to use adjacency matrices to model the com-
plexes [36]. This kind of structure is clearly not efficient for storage and for the computa-
tion of topological operations, such as neighborhoods of cells. An adjacency list would be
faster in such cases, but there are still some problems such as testing adjacent vertices or
dynamically maintaining the structure when complexes are simplified. There are, however,
efficient and well known data structures that can be used, such as the quad-edge [37].

Structures such as the quad-edge are ideal for subdivisions as the ones in 2-dimensional
complexes. However, it may be difficult to adapt the existing algorithms for computing
discrete Morse complexes directly. For example, the breadth-search based algorithm of
Robins et al. [76] for computing discrete Morse complexes produces inconsistent subdivi-
sions when using the quad-edge. In the quad-edge data structure, the traversal of edges
adjacent to a vertex, in a counterclockwise fashion (or, alternatively, clockwise), needs
to be consistently maintained, however, the breadth-search algorithm does not offer the
necessary information to provide which edge should precede or succeed another edge in
the traversal.

As we will show along this thesis, it is possible to compute the 2-dimensional discrete
Morse complex and maintain the consistency of the quad-edge data structure.

1.3 Objectives

The topology theory may be difficult for computer scientists since its mathematical lan-
guage is not studied in undergraduate courses and is a rare subject in graduate level.
However, the problems related to topology arise in fields such as computational geometry,
computer graphics, robotics, structural biology, and chemistry. We intend to introduce
the basic mathematical concepts with examples so that it is possible to easily under-
stand the ideas behind the concepts. Algorithms and data structures are also subject of
our discussion so that the presented methods are more intuitive for computer scientists
(Chapters 2 and 3).

We restrict our attention to the 2-dimensional case and tackle some important con-
siderations for the computation and modeling of discrete Morse complexes of images
(Chapter 4). We are particularly interested in algorithms and data structures for con-
structing the discrete Morse complex while allowing important topological computations
such as persistence and simplification of topological features, as well as the visualization
of the complexes.
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As already mentioned, V-paths can be a problem in the computation of discrete Morse
complexes. As we will show, paths can merge and branch, such that these cases need to
be considered to produce visualizations and simplifications of topological features.

We base our approach on Forman’s theory [30] and on the algorithm of Robins et.
al [76] to compute the discrete Morse vector field. We determine the paths between critical
cells, in a discrete vector field, starting from saddles. It is shown that such an approach is
optimal since it only processes cells that are in a path, opposed to the breadth-search that
considers cells even if they are not in any path. It is also possible to deal with merging and
branching cases properly and produce a consistent representation of the quad-edge model.
We also present algorithms to dealing with such cases for visualization purposes. Finally,
we model a complex so that topological computations such as homological persistence [4,
9, 18, 67, 93] and simplification of topological features [60, 75, 91] can be easily computed.
Such computations are performed and evaluated over elevation terrain data.

A topological operator computed over Morse complexes, called Local Morse Context
(LMC), is introduced as a way of computing neighborhoods of interest points to explore
the structural information in images (Chapter 5). The LMC is used in the development of
a matching algorithm that helps reducing the number of incorrect matches and obtaining
a confidence measure of whether a correspondence is correct or incorrect.

The approach is tested for the correspondence of synthetic and specially challenging
underwater stereo pairs of images, for which traditional methods present difficulties for
finding correct correspondences.

1.4 Contributions

The specific contributions of this thesis are:

e an algorithmic approach to the construction and manipulation of discrete Morse
complexes.

e an optimal algorithm for extracting a 2-dimensional discrete Morse complex from a
discrete vector field.

e a model of the discrete Morse complex by means of a quad-edge data structure that
allows:
— visualization of the complexes.
— computation of persistent Betti numbers.

— simplification of the complex as used for topological noise removal and hierar-
chies of complexes.
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e a general neighborhood relation which can be easily adapted to different applica-
tions.

e a method for improving correspondences of pairs of points between complex struc-
tured images.

e an approach to evaluating the confidence of such correspondences.

1.5 Thesis Organization

Since many concepts of the topology theory presented in the text comes from a math-
ematical field, computer scientists usually are not familiar with them. We review the
main concepts used in our approach to provide a self contained text. In Chapter 2 and 3,
we review topological and data structure concepts that are used in the remaining of the
discussions. In Chapter 4, we introduce a new algorithm for computing the Morse com-
plexes of images. Chapter 5 introduces a local method for extracting the neighborhood
information from Morse complexes and its application to find correspondences between
images. The conclusions of this thesis and directions for future work are presented in
Chapter 6.



Chapter 2

Cell Complexes and Digital Images

We present in this chapter basic concepts on topology and cells complexes and how they
can be employed to represent digital images. Cell complexes are a way of sampling
functions that can be used in computers. The topological and cell complexes discussions
are based on works such as [36, 61, 101], which may be referred for detailed theoretical
explanations on the topics.

2.1 Basic Concepts on Cell Complexes

We start with some notions about spaces before introducing the type of space we are
interested in, the cell complexes. A space is simply a set of points. In topology, a neigh-
borhood notion is added to a space such that it is possible to determine the connectivity
between points. A set of points X along with a definition for neighborhood informally
defines a topological space. Usually, we are used to metric spaces, that is, a space with
an associated metric that makes it possible to measure the distance between points and
define neighborhoods. The Euclidean space is a metric space. For now, we are interested
in topological spaces and some particular ones used in computations.

Important topological spaces used in computations are the manifolds and the cell
complexes. We are particularly interested in 2-dimensional cell complexes and, therefore,
we present their basics in the following.

A p-cell is the building block to define the discrete domain which is a cell complex. A
p-cell has dimension p. The first three low-order p-cells are the O-cells or nodes, 1-cells
or edges and 2-cells or faces. Even though the secondary names are commonly used in
computer science, we will avoid them. The concept of a face is a different one in topology,
as we will state soon. Therefore, to be consistent with the topology and computational
topology literature, we choose to use the primary names.

Figure 2.1 shows examples of p-cells up to dimension two. It can be noticed that a p-cell

7
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has not a unique geometric shape, for instance, both the triangle and the quadrilateral of
Figure 2.1c are 2-cells. We will drop the superscript of a p-cell o, denoting it a;, whenever
the dimension is clear from the context.

(a) 0-cell (b) 1-cell (c) 2-cell
Figure 2.1: Examples of cells of dimension up to two. Figure adapted from [36].
The boundary of a p-cell consists of cells of dimension less than p that form the limit

of the p-cell. Figure 2.2 presents the boundaries of the cells in Figure 2.1. Only the
boundaries for the cells of dimension 1 and 2 are shown, since a 0-cell has no boundary.

(a) 1-cell boundary (b) 2-cell boundary

Figure 2.2: Examples of boundaries of the cells in Figure 2.1.

The face of a p-cell o? is a cell 7%, with & < p, which is part of the boundary of the
p-cell. The p-cell o” is called a coface of 7%. As such, we can say that the face of a
cell bounds it. The bounding relations of face and coface will be stated as 77 < ¢* and
ol = 7k,

A cell complex K is a finite collection of cells that satisfies the following requirements:
e all the faces of a cell in the complex also belong to the complex, and

e the intersection of any two cell is either empty or a face of both cells.
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A p-complex is a cell complex such that all its cells have dimension less than or equal
to p. Figure 2.3 shows examples of sets of cells that satisfy and that do not satisfy the
conditions of cell complexes. A subcomplex of a cell complex K is a subset of cells L C K
such that L is also a cell complex.

L575 A f

a) Satisfying ) Not satisfying

Figure 2.3: Sets of cell that satisfy (a) and that do not satisfy (b) the cell complex
conditions. Figure adapted from [100]. Figure (b) has a cell without a face and two cells
for which the intersection is not a shared face.

2.2 The Quad-Edge Data Structure

Many topological data structures have been proposed in the literature. Weiler [96] pro-
vides a detailed discussion on the subject of topological representations and operations.
Similar to the edge-based structures reviewed and proposed by [96], the quad-edge, by
Guibas and Stolfi [37], is a data structure that can be easily used to model 2-dimensional
complexes. It provides simple manipulation of the data structure by a few operators and
also is capable of representing the primal and dual representations of a planar subdivision.

We briefly introduce important concepts and operations of the quad-edge that will be
used in the algorithms presented in this thesis. Some terminology of the original paper is
adapted to reflect the names used in topology, namely, vertices, edges and faces are called
0-cells, 1-cells and 2-cells, respectively. For a complete understanding on quad-edges, one
should refer to the original paper [37].

The basic element of the structure is a directed 1-cell e from its origin to its destination
which are 0-cells returned by the functions Org(e) and Dest(e), respectively. Other basic
functions are Left(e) that returns the left 2-cell of e and Right(e) that returns the right
2-cell of e.

The quad-edge data structure is composed of four directed 1-cells, the 1-cell e itself
and three more, as shown in Figure 2.4. The function Sym(e) returns the symmetric 1-cell
which is directed from Dest(e) to Org(e). This 1-cell and the 1-cell e are the primal
1-cells. The other two 1-cells are the dual 1-cells returned by functions InvRot(e) and
Rot(e). The first function returns the 1-cell directed from left to right and the second one
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returns the 1-cell directed from right to left. All the functions consider a counterclockwise
orientation.

InvRot(e)
~ el

—

\ /

e \ \ Sym(e)

/ \

| —

e ™~
Rot(e)

Figure 2.4: The quad-edge data structure is composed of four directed 1-cells: e,
InvRot(e), Sym(e) and Rot(e). Figure adapted from [37].

By considering a sufficiently small disk D around a 0-cell, it is possible to establish
a cyclic ordering of the 1-cells leaving a 0-cell v. The set of 1-cells ordered in such a
manner is called the ring of 1-cells out of v. From this concept, another important 1-cell
function arises. The function Onext(e) returns the next 1-cell with the same origin of e,
which is the counterclockwise 1-cell immediately following e in the ring of 1-cells. The
function Edge(v) returns a 1-cell in the ring of v. A set of functions is derived from the
previously defined ones. The main functions and their results when applied to a 1-cell e
are summarized in Figure 2.5.

Besides these functions, defined in the edge algebra of the quad-edge, a single topo-
logical operation, called splice, is used to connect, split and rearrange the quad-edge
structure.

2.3 Images Treated as Cell Complexes

An image is ordinarily a function f: D — R defined on subset of the discrete lattice,
D={(z,y) €Z*|1 <x < M,1 <y < N} such that a point p of D along with its value
f(p) is called a pixel. An image can be modeled by a regular 2-dimensional cell complex
K. Kovalevsky [47] states that cell complexes have an important role in image processing
since they are the only way of consistently defining the topology of finite sets.

Kovalevsky associates pixels to 2-cells, since both are area related elements. Fig-
ure 2.6a shows an example of image represented as a cell complex with pixels associated
to 2-cells. Alternatively, pixels could be related to 0-cells with 2-cells being polygons
composed by pixels (Figure 2.6b). Both models are dual to each other and the use of one
or another depends on preference or application needs.
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4
lalels: 5 il
Lnext(e) T| Dnext(e)
Sym(e)
Rot(e)
e
Pl - .- sl
Onext(e) '} Rnext(e)

Figure 2.5: The output of the main functions applied to a 1-cell e.

from [37].
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(b)

O-cell (pixel)

11

Figure adapted

Figure 2.6: Two different ways of modeling an image as a cell complex. The two complexes

are duals such that in one (a) pixels are 2-cells and in another (b) the pixels are 0-cells.

We adopt the latter model in most of our future discussions. Therefore, unless stated
differently, an image is a cell complex K with 0-cells related to the pixels over D. The
2-cells are squares or triangles defined by a pixel and some of its closest pixels in D. The

1-cells are faces of the 2-cells.

2.3.1 Implementation

We present here an algorithm to converting an image f: D — R, to a cell complex
modeled by using the quad-edge data structure. The method creates both quadrangular
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2-cell complexes discussed. The two complexes can be easily obtained since we use a
quad-edge data structure that also allows changing from one to another in constant time.
The conversion is performed by Algorithm 2.1, which computes the primal complex as in
Figure 2.6a and its dual as in Figure 2.6b. It is worth recalling that we will mainly use
the latter complex, that is, the dual complex constructed by the algorithm.

Algorithm 2.1: ImageToCelllmage
Input: Image f: D - R
Output: K image cell complex
1 create primal 0-cells set V P
2 create dual O-cells set VD
3 forall the pizel I(x,y) do
4 retrieve primal O-cells vy, Vsw, Uses Une € V P
5 retrieve dual O-cell v, € VD
6
7
8
9

SetFirst1Cell()

SetSecond1Cell()

SetThird1Cell()

SetFourth1Cell()

10 create primal 2-cell f and Set2Cell(f, a)

11 create dual 2-cell f and Set2Cell(g, Rot(a)) if it exists
12 end

Line 1 of Algorithm 2.1 creates the sets VP and VD of primal and dual O-cells.
The four primal O-cells of a pixel f(x,y) are created at coordinates (xz — 0.5,y — 0.5),
(x —0.5,y+0.5), (x + 0.5,y +0.5) and (x + 0.5,y — 0.5), corresponding to the corners of
a unit square. The dual 0-cells are set to coordinates (x,y).

The main loop (Lines 3-14) goes through all the pixels of the input image building 1-
and 2-cells of the cell complex. Figure 2.7a describes the names of the variables of the
algorithm for the primal cells created at each iteration. Figure 2.7b shows the variables
and cells of the dual counterparts. The dual 2-cell ¢ is created whenever a pixel is not
at the boundary of the image, that is, for positions (z,y) such that 1 < x < M and
1 <y < N. Some of the 1-cells at boundaries must also have an invalid or dummy 0-cell.

The first steps of the loop retrieves the primal 0-cells vy, Vsw, Use, Une and the dual
O-cell vy related to a pixel f(x,y). Given the O-cells, the algorithm builds the 1-cells
a, b, c, d following a counterclockwise orientation, consequently, the dual 1-cells (Rot(a),
Rot(b), Rot(c), Rot(d)) have v, as destination O-cell. Setting all 1-cells is a similar task
but with some particularities that will be further described.

Consider edge a, this edge can enter in one of three cases as the algorithm iterates. In
one condition, the vertex vy, does not have a defined outgoing edge, that is, Edge(v,y) =
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Figure 2.7: Cells created and/or adjusted at each iteration of Algorithm 2.1.

NIL. Lines 2 and 4 of Algorithm 2.2 then create the new edge a and make it the outgoing
edge of v,,. Lines 5 and 6 set the dual 1-cell destination and makes its symmetric
the outgoing 1-cell of vy. The internal conditional (Line 3) calls the splice operator to
rearrange the orbit of vy, this is the second case a may enter. In the third case (Lines 8
and 9), an already existing edge a in the orbit of vy, is found to subsequently be used in
the computation of the other 1-cells.

Algorithm 2.2: SetFirst1Cell

1 if Edge(v,,) = NIL or Dest(Edge(v,y)) = vne then

2 create edge a with endpoints vy, and vg,

3 if Dest(Edge(vy)) = vne then Splice(Onext(Edge(vyy)), a)
4 Edge(vny) + a

5 Dest(Rot(a)) < vg

6 Edge(vq) < InvRot(a)

7 else

8 a < Edge(vny)

9 repeat a < Onext(a) until Dest(a) # vy,

10 end

The 1-cell b is created according to Algorithm 2.3. The subtlety of this algorithm is
the correct setting of the orbit of vy, carried out by Lines 2 and 3. The 1-cell ¢ is the
simplest case as shown in Algorithm 2.4. The fourth 1-cell has its particularities since it
may be necessary to treat both the orbit of v, as well as the orbit of v, as shown in
Algorithm 2.5.

At each iteration, primal and dual 2-cells are also created. Figure 2.8a shows a primal
2-cell. The primal 2-cell is related to pixels and therefore created at each iteration. The
dual 2-cell is not always created as already mentioned. If that is not the case, the dual
2-cell closed in pixel f(x,y), corresponding to the dual 0-cell vq (Figure 2.7b), is created
as shown in Figure 2.8b.

Setting the 2-cell to all its 1-cells can be made as shown in Algorithm 2.6. The loop
is executed four times since the 2-cells are squares.
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Algorithm 2.3: SetSecond1Cell

create edge b with endpoints vg,, and vy,

if Edge(vs,) = null then Splice(Sym(a),b)
else Splice(Onext(Sym(a),b)

Edge(vsy) b

Dest(Rot(b)) < vg

Rk W N

Algorithm 2.4: SetThird1Cell

create edge ¢ with endpoints vg, and vy,
Splice(Sym(b), ¢)

Edge(vge) + ¢

Dest(Rot(c)) < vg

W N =

Algorithm 2.5: SetFourth1Cell

if Edge(v,e) = null then

create edge d with endpoints v, and v,
Splice(Sym(c), d)
Splice(Sym(d), a)
Edge(vne)  d

else

d < Onext(Edge(vye))
Splice(Sym(c), d)

end

Dest(Rot(d)) < vg

© 0 N & A W -

[y
o

(a) (b)
Figure 2.8: 2-cells created at each step of the algorithm.

Algorithm 2.1 returns the resulting complex K. It is worth mentioning that it suffices
to return one of the primal edges created. All cells can be retrieved from this single one by
traversing a complex using quad-edge functions. The Locate procedure used by Guibas
and Stolfi [37] to construct a Delaunay triangulation is an example of how to traverse the
data-structure.



2.4. Topological Operations 15

Algorithm 2.6: Set2Cell
Input: 2-cell 7 and one of its 1-cells «
Input: a edge (2-cell)
b+ «
repeat
Left(B) < 7
[ = Onext(3)

until 5 = «

[ N I

2.4 Topological Operations

We introduce here some basic topological operations on cell complexes. The star of a cell
is particularly interesting since it defines a neighborhood notion. Actually, it is the same
as the smallest neighborhood of a cell ¢ in a complex K.

Definition 2.1. The star of a subcomplex L C K contains all cofaces of L, St(L) =
{ao € K | o = 7 € L}. The closure of L is the smallest subset of K containing L,
Cl(L) ={r € K| 7= «e¢€ L}. Thelink of L is the boundary of its star, Lk(L) =
CI(St(L)) — St(CI(L) — {0}).

We are particularly interested in the application of the star and the link to 0-cells
(pixels) of image cell complexes such as the one in Figure 2.6b. Figure 2.9 shows examples
of each operation. The star and the link are applied to 0-cells and the closure is applied
to the star of a 0-cell since the closure of the pixel is the pixel itself.

St(a) —=— .
; . —— CI(St(a%))

Lk(@o)—>1» o @

Figure 2.9: Example of star, closure and link. The operations are applied to the 0-cells
in the center of the highlighted areas. In the case of the closure, first a star is applied to
the 0-cell and then the closure is applied to the result of the star.

These functions can be easily computed by using the quad-edge data structure. The
star requires to traverse the ring or 1-cells of a 0-cell storing the 1-cells and the 2-cells
returned by the function Left at each 1-cell. For the closure, it also suffices to store all
the faces of cells in the star. The link can be obtained by listing the 1-cells which are faces
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of all 2-cells in the star and removing those that are shared by two 2-cells in the star. The
remaining edges as well as their O-cells belong to the link. Since quad-edge functions take
constant time and a constant number of them is computed for each cell in the topological
operations (star, closure and link), then the previous computations can be performed in
linear time on the cardinality of the sets St(L), C1(L) and Lk(L).
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Discrete Morse Theory

The discrete Morse theory, formulated by Forman [30, 31, 32|, is an adaptation to discrete
structures of the Morse theory [64]. We will present here the basics on the theory and
the concepts will be used in the next chapter for the construction of the discrete Morse
complex. The topological space for the discrete Morse theory is a cell complex [52].

Definition 3.1. A discrete Morse function on a cell complex K is a function f: K — R
satisfying, for all o? € K :

= o? | ()
1

(")}
qNt <o [ fTY) = f(o”

</ <1
> fle")} <1 (32)
such that 4 is the set cardinality.

Definition 3.1 states that, for every o € K, f takes a value less than or equal to f(o?)
in at most one coface of o” and takes a value greater than or equal to f(oP) in at most
one face of oP. Figure 3.1a shows an example of a discrete Morse function. The function
of Figure 3.1b is not a discrete Morse function since the 2-cell with value 4 and the 1-cell
with value 0 are not valid according to the definition.

Definition 3.2. Given a discrete Morse function f, a cell o € K is critical of index p if

Hr =0 | f(77H) < f(o")} =0 (3.3)
HNT <o [ ST = f(eP)} =0

Definition 3.2 states that a cell o? € K is critical if all cofaces take strictly greater
values in f and all faces are strictly lower in f [76]. In a two dimensional cell complex,
minima are 0O-cells, saddles are 1-cells and maxima are 2-cells. Figure 3.2 shows examples
of critical cell of a discrete Morse function. The 0-cell of value 0 is a minimum and the
1-cell of value 5 is a saddle.

17
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(b) invalid

Figure 3.1: Example of a function that is (a) a valid Morse function and (b) a function
that is not a Morse function. Figure adapted from [51].

Figure 3.2: Example of critical cells (saddle and minimum) of a discrete Morse function.
Figure adapted from [51].

Definition 3.3. A discrete vector field, V', is a collection of pairs {a? < [PT1} of cells
in K such that each cell is in at most one pair in V. A discrete Morse function defines
a discrete vector field by pairing o < BPT1 whenever f(SPT) < f(aP).

A pair of < 8P can be thought of as a discrete tangent vector leaving o and oriented
by APT!. Pictorially, the vector is represented by an arrow from of to AP*!. Figure 3.3
shows an example of discrete vector field of the Morse function of Figure 3.1a. Every cell
belongs to a pair in the vector field, except for critical cells (Figure 3.2).

Figure 3.3: Example of a discrete Morse vector field. All cells are paired except for critical
cells.

An important concept related to vector fields is that of flow, which in the discrete
Morse theory is called a V-path.
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Definition 3.4. A V-path is a sequence of cells:

p p+l _p _p+l p p+1  p
o, oo ah T Ak, L okt Al (3.5)
where o, o’ e V, oPTt = oF. ., and of £af |, foralli=1 r—1
79 W » g i+1> 7 i+1> T Ly ey .

A V-path is a non-trivial closed V-path if a? = of for r > 2. Forman [30] presents
V' without non-trivial closed paths as the discrete analogue of the continuous gradient
vector field. Figure 3.4 shows a V-path in a discrete vector field.

Figure 3.4: Example of a V-path.

The counterpart of the integral curves limited by critical points are V-paths such that

1 o
of and the coface aP™ = a?, ofT] # aP*! are critical cells.

3.1 Computation of the Discrete Morse Vector Field

We present here some additional topological concepts and notions on simple homotopy
theory [17, 97]. The theory presented by Forman makes use of the simple homotopy
and the related concepts are used by Robins [76] to produce an algorithm to computing
discrete vector fields. The following discussion is based on these works.

Definition 3.5. Given a discrete Morse function f on a complex K and anyt € R, a
level subcomplex K (t) is defined as

K(f) = Uf(o)<t Ua=r 0. (36)

The subcomplex K (t) is composed by all cells 7 with f(7) < t as well as all of their
faces. A sequence of subcomplexes K (¢;) for increasing values ¢; defines a filtration of the
complex K.

Definition 3.6. A filtration of a complex K is a nested sequence of subcomplexes, () =
KO)CK(1)CK(2)C...CK(m)=K.

Figure 3.5 shows a subset of level sets from a filtration of an example complex.
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1 1R
LEE

Figure 3.5: Six level subcomplexes of a complex K.

Definition 3.7. Let a?~! < aP be cells of a complex K. If o=t has no other cofaces, then
K\{aP~t, aP} is called an elementary collapse. The inverse of a collapse is an expansion.

Lemma 3.1. If there are no critical cells o with f(o) € [a,b], then K(a) collapses to
K(b).

Lemma 3.1 (Theorem 3.3 of Forman’s [30]) relates the simple homotopy theory with
the level subcomplexes. It says that a complex K (a) collapses to a subcomplex K (b) by a
finite sequence of elementary collapses. Forman shows that a complex K with a discrete
Morse function is homotopy equivalent! to a complex with exactly one cell of dimension
p for each critical cells of K of dimension p.

These results were translated by Robins et al. [76] into an algorithm that computes the
vector field V' of a complex K by simple homotopy expansions and pairings. Algorithm 3.1
shows how the computations are done by using the quad-edge to model the vector field.
The method requires distinct values for the function f: K — R for each pixel so that
the values can be ordered in increasing order and produce a filtration of K. To ensure
unique values, the function can be perturbed as explained in [76]. The sorting to produce
a filtration of a complex with n cells can be computed in O(nlogn) or, alternatively, if
the range of the values is properly limited, a linear sorting algorithm can be used. The

!Spaces that can be deformed continuously into one another.
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Algorithm 3.1: ComputeVectorField

Input: Cell complex K.
Output: Cell complex K with paired cells and set of critical cells C.

1 forall the ¢ € K ordered by f(o°) do

2 | if LowerStar(c") = {0°} then

3 | Insert ¢ into C

4 else

5 S+ a! € LowerStar(¢”) such that G(a') is minimal

6 Pair(c”) + 8

7 add all other 1-cells of LowerStar(c”) to PQy

8 add v € LowerStar(¢?), v = 8 and Unpaired(y) = 1, to PQ,

9 while PQy # 0 or PQ1 # () do

10 while PQ; # () do

11 remove 7 from the front of PQ,

12 if Unpaired(y) = 0 then

13 ‘ add v to PQy

14 else

15 Pair(UnpairedFace(y)) < v

16 Remove UnpairedFace(7y) from PQy

17 add 0 € LowerStar(a), (0 = v or § > UnpairedFace(y)) and
Unpaired(d) = 1, to PQ4

18 end

19 end

20 if PQy # () then

21 remove v from the front of PQ

22 insert 7 into C

23 add 0 € LowerStar(a), 6 > v and Unpaired(d) = 1, to PQ;

24 end

25 end

26 end

27 end

complexity of Algorithm 3.1 is O(N) [76], where N is the number of disjoint lower stars
of a complex K.

Algorithm 3.1 processes the levels sets produced by the ordering of the values f(o?)
for each pixel 0 € K. Each iteration considers a pixel ¢° in the ordering and its neigh-
borhood, which is given by its lower star (LowerStar(c”)). The lower star is formed by
the cells 7 in the star (Definition 2.1) for which f(7) < f(0°). The algorithm uses two
priority queues, PQ)y and P(Q)q, to control the cells that are paired in the vector field V.

We introduce a function Pair to set and retrieve the pairs in V. Given a cell § of
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K, if the cell is in a pair of § < vy or 7 < § in V, the function Pair(f) returns the cell
v; otherwise it returns NIL, which means the cell is critical. This reflects the idea of a
vector field presented in Definition 3.3. The function Unpaired(S) returns the number of
faces of a cell § that are neither paired in V' nor inserted into the set of critical cells C.
When a single face is unpaired, UnpairedFace(/3) returns the face. The algorithm requires
an ordering of the faces in each lower star. Robins et al. implemented a lexicographic
ordering by listing the values of f for the O-cells of cell in decreasing order.
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Figure 3.6: Results of the computation of the vector field of a complex at different itera-
tions of the Algorithm 3.1. The resulting vector field contains all cells paired except for
critical cells.

For a complete discussion on the algorithm, one should refer to the original paper [76].
Our interest is in the resulting vector field V' of K. Figure 3.6 shows the result of the
algorithm for each level set of Figure 3.5. At each level set, it is possible to notice the
critical cells as unpaired cells while the other cells are paired. The level set of Figure 3.6a
shows that only one 0-cell is not paired, therefore, it is a minimum of the function.
Figure 3.6a depicts two new critical 0-cells. At the level sets shown in Figures 3.6¢, 3.6d
and 3.6e, three critical 1-cells (saddles) are unpaired. The complete vector field of K is
shown in Figure 3.6f and a critical 2-cell (maximum) is identified.
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Discrete Morse Complex of Images

In this chapter we present a method to build the discrete Morse complex of images.
We have already mentioned that approaches for Morse complexes have been proposed in
works such as [6, 26, 99]. These are approaches adapt smooth notion of the Morse theory
to discrete data and produce the so called Morse-Smale complexes. However there are
difficulties because of saddle points of multiple types and spurious critical points created
because of intersections of integral curves.

The discrete Morse theory [30] is another construction studied, for example, in [46, 54].
The problem of saddles does not occur in the discrete Morse complex since there is only
one type. However, the V-paths (counterparts of integral curves in the smooth case) still
can be an issue. Algorithms for images were presented in [76], but their approach is not
suitable for visualizations or the computation of hierarchies of Morse complexes. As in
the previous works, the data structures and their influences are not a primary concern
and it is difficult to adapt their algorithms to topological data structures (see Section 2.2).
The breadth-search based algorithm does not maintain the necessary information to deal
with merge and branch cases that we will describe in this chapter.

We will show there are ways of computing a 2-dimensional discrete Morse complex
and maintain the consistency of a quad-edge data structure. We base our approach on
Forman’s theory [30] and on the algorithm of Robins et. al [76] to compute the discrete
Morse vector field (Algorithm 3.1). Our approach determines the paths between critical
cells, in a discrete vector field, starting from saddle critical cells. It is shown that such
an approach is optimal since it only processes cells that are in a path, opposed to the
breadth-search that considers cells even if they are not in any path. It is also possible to
deal with merging and branching cases properly and produce a consistent representation of
the quad-edge model. We also present algorithms to deal with such cases for visualization
purposes. Finally, we model a complex so that topological computations such as persistent
homology [4, 9, 18, 67, 93] and simplification of topological features [60, 75, 91] can be

23
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easily computed.

In summary, the main contributions of this chapter are: an algorithmic approach to
the construction and manipulation of discrete Morse complexes; an optimal algorithm
for extracting a 2-dimensional discrete Morse complex from a discrete vector field; and a
model of the discrete Morse complex by means of a quad-edge data structure (that allows
visualization of the complexes; computation of persistent Betti numbers and simplification
of the complex as used for topological noise removal and hierarchies of complexes).

The discrete Morse complex construction described in Section 4.1 is applied to exper-
imental images in Section 4.2 to show a real application of the method and its usefulness
for important topological computation, namely the persistent homology and simplification
of Morse complexes to produce hierarchical representations.

4.1 Algorithms

We present here a detailed discussion on each step of our method to acquire the V-paths
that result in the discrete Morse complex. The initial sections provide discussions on how
to extract the paths. After the extraction of all paths in a discrete Morse complex, we show
how to deal with particular cases of merging and branching paths, producing a complex
that is suitable for visualization tasks. At last, we show how to compute a simplified
discrete Morse complex that can also be used for efficient topological computations.

4.1.1 Some Considerations

In the method, we will basically work with two complexes. The first one is the complex
K for the input image along with its vector field V. The second complex is the discrete
Morse complex M in construction. Both of them are modeled using the quad-edge data
structure.

The two complexes will be referred to in the discussion stating the correspondence
between their cells. In order to avoid confusion when we are talking about cells in K or
about cells in M, from now on, we will use Greek letters for cells in K and Latin letters
for cells in M. Particularly, we will use v? or u” to denote a 0-cell in M and e to denote
a l-cell in M. A cell v will correspond to a p-cell in K and e will denote a boundary
relation between cells in K.

Since a 0-cell v in M can correspond to any p-cell in K we will introduce a function
Index(v) that returns the dimension of the cell in K related to v. A superscript will also
be used whenever we need to state the dimension of the cell in K corresponding to v.
Therefore, v? is a O-cell in M related to a p-cell in K. Figure 4.1 shows two complexes K
and M and the corresponding cells. The O-cells in M can be regular or critical according
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to the cells they correspond in K. Also the index p of a 0-cell v? is related to the dimension
of the cell in K. The 1-cells explicitly model the boundary relation between cells. The
symbols @, @& and ® will henceforth denote critical 0-cells in M related to 0-, 1- and 2-
cells which are also critical in K. If not critical, the 0-cell will be drawn with the symbol

O.

£—O04—04—04—04¢—04—0

e critical O-cell v° (minimum)
i<— regular 0-cell v!

«~—— regular 0-cell v°

: : % critical 0-cell v* (saddle)
— . Lﬂ\ critical 0-cell v? (maximum)
: : % : regular 0-cell v?

otsoesi—otseto—omd  l-cell e (boundary relation)

>0 —>@¢— 04— ¢—O0¢—O
O— 0o—r0—>P

Figure 4.1: Complex K with M placed over it. The O-cells of M correspond to any type
of cells K while the 1-cells of M explicitly model the boundary relations between cells.
The 0-cells of M inherit the properties of cells in K. The index p of a cell v in M is
related to the dimension of the corresponding cell in K. Also, the 0-cells can be regular
or critical.

Before presenting the algorithms, we introduce alternative definitions of V-paths to
reflect the explicitly modeled paths used in the algorithms. In two dimensions, a discrete
Morse complex can have two types of V-paths: (0, 1)-paths and (1,2)-paths. We denote
such paths as QV-paths of the complex M. Definitions for both cases are presented next.

Definition 4.1. Given a (0,1)-path in V (see Definition 3.4), a2, al,a9, ..., al 1,2, a

)y Her—19 o
(0,1)-path in M, leaving v}, is a sequence of 0-cells (denoted by vz{o’l}) and 1-cells (denoted
by arrows):
vpg =) — v =) ==l =
0

79

where v) — v} are the cells related to a pair

1 0 0 0 o . 1 o
i = iy oand o # oy, foralli = 1,...,r —1; and vy is related to a critical cell

al = af, ot # ajg.

of € Vvl is related to of , such that
a

Notice form this definition that the (0, 1)-path leaves a 1-cell and arrives to a 0-cell,
in K, making explicit the connections of endpoints and following the intuitive notion of
a flow going downwards from a saddle to a minimum cell. In a similar way, a (1, 2)-path
is presented in Definition 4.2, but now the path leaves a 2-cell towards a 1-cell of K, that
is, follows from a maximum to a saddle.

Definition 4.2. Given a (1,2)-path in V (see Definition 3.4), al,a?, ad, ... ;a2 |, al, a

r’

(1,2)-path in M, arriving to v}, is a sequence of O-cells (denoted by vi{m}) and 1-cells
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(denoted by arrows):

2 1 2 1 2 1
Vg U] U] DUy = U U

where v} — v? are the cells related to a pair o, of € V; v}, is related to o}, such that
oF = oy and of # ajy, foralli=1,...,r —1; and v} is related to the cell o® = o,

a? £ ol

From the definitions of paths, we acquire the precedent and subsequent O-cells of
another O-cell. We add these relations to the 0-cells in M so that the functions Prev(v)
and Next(v) return the previous and next O-cells of v in a path.

4.1.2 Extraction of QV-Paths

The algorithm for extracting the QV-paths connecting critical cells is based on searching
the paths out of 1-cells. Such an approach allows optimal computation of the paths and
also maintaining the quad-edge data structure consistent. The latter is possible since the
approach make it straight forward to deal with mergings of (0, 1)-paths and branchings
of (1,2)-paths to maintain a consistent ordering in the rings of 1-cells of the quad-edge.
The former happens because the algorithms consider only paths that may connect critical
cells.

Initialize V-paths of a 1-cell

The first step of the method initializes QV-paths out of a saddle in K, identifying all
possible V-paths and including them in the resulting complex M. At most four V-paths
can be expected to go out of a 1-cell, as soon will be stated.

Lemma 4.1. A 1-cell has exactly two 0-cell faces.
Lemma 4.2. A 1-cell has at most two 2-cell cofaces.
Lemma 4.3. A 1-cell has at most four V -paths leaving or arriving.

Lemmas 4.1 and 4.2 are intuitive from the definitions of a cell and a cell complex. For
mathematical approaches on the results, one should refer to combinatorial texts on cell
complexes such as [2]. An 1-cell may not have two 2-cell cofaces if it is in the boundary of
the cell complex. Alternatively, one can think as it has two faces, one in the complex and
one is the complement of the complex. Lemma 4.3 follows from the two previous lemmas.

From these results it is now possible to initialize the QQV-paths related to a 1-cell.

1

Algorithm 4.1 receives a critical 1-cell " of K and creates all QQV-paths arriving and

leaving a O-cell vl € M related to a'. Figure 4.2 shows an example of how the algorithm
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Algorithm 4.1: InitVPaths

Input: Critical 1-cell o*
Output: {(ala Ua)? (507 Uﬁ)a (707 U’Y)a (027 UU), (7-27 UT>}
create O-cell v, € M for 1-cell ot
B < at

70 <+ a® < ot such that a® # °
o? —a?=al

72 + a? = o' such that o? # o2
create O-cell vg € M for 0-cell 3°
create O-cell v, € M for 0-cell »°
create O-cell v, € M for 2-cell o
create O-cell v, € M for 2-cell 72
create 1-cell e; from v, to vg
create 1-cell ep from v, to v,
create 1-cell e3 from v, to v,
create 1-cell ey from v, to v,
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works. The input 1-cell o, has two faces, 3° and 7°; and also two cofaces, 0 and 72
(Figure 4.2a).

The algorithm creates the O-cells in M related to each of in K as well as the four
1-cells that model the boundary relations, this can be observed in Figures 4.2b, 4.2¢, 4.2d
and 4.2e. At the end, the ring of 1-cells (see Section 2.2) out of v, is adjusted (Figure 4.2f).
The algorithms returns pairs with cells created in M and the cells related to them in the
complex K.

As stated before, the symbols ©, @ and ® denote critical 0-cells in M and the symbol
o depicts not critical cells. In Figure 4.2 only v, is depicted differently since this is the
only critical cell, a saddle.

Recall Definitions 4.1 and 4.2 of QV-paths. It is useful to perceive how the resulting
paths agree with the definitions given. Let v, be v} in Definition 4.1, two QV-paths of
the form vy — v} are now in the complex M, with v} being vs in one path and v, in
another. Both paths are related to a trivial V-path of the form af in V' (Definition 3.4).

A similar reasoning can be done for the (1, 2)-paths, leading to two paths of the form
vZ — vi. However, as the extraction of the paths is further discussed and algorithms
are presented, it will become clear it is more convenient to think of (1,2)-paths as being
computed in a backwards fashion. In such a manner, one could think of v, to be v} and
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Figure 4.2: Given a critical 1-cell in V' (a), Algorithm 4.1 creates the QV-paths out of it
(b)-(e) and arranges them in the ring of edges out of the vertex related to the 1-cell (f).

v, and v, to be v2_; in Definition 4.2. Therefore, two paths of the form v?_; — v} are

obtained. Both paths are related to a trivial V-path of the form a? in V' (Definition 3.4).

Algorithm 4.1 takes constant time. All operations to create cells take constant time.
The retrieval of faces and cofaces also take O(1) since it suffices using O(1) quad-edge
operations: Orig, Dest, Left, Right (see Section 2.2). The Splice operation also has
O(1) time [37]. We consider that with the creation of O-cells their attributes are properly
set (index p of vP| if it is critical and the next and previous 0-cells).

Expanding QV-paths

The next step after initializing the QQV-paths is to expand the paths until a termination
condition is found. Now it will be shown that there is only one way of growing a particular
QV-path. Algorithms will be presented to show how to compute such expansions of (0, 1)-
and (1,2)-paths.

From the previous discussion it can be noticed that (0, 1)-paths are initialized so to
grow in a forward manner while (1,2)-paths are to be grow backwards. Therefore, after
the initialization step, the following types of paths were present in the complex M: (0, 1)-
paths of the form v} — v? and (1, 2)-paths of the form v | — v}

Expanding forward a (0, 1)-path means to grow the initial QV-path to v§ — v? —

1 0

vi — 1) (related to a path a? af,a) in V), maintaining a path according to Defini-

tion 4.1. Likewise, expanding backwards a (1, 2)-path means to grow the initial QV-path
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tov: , — vl | — v? | — v} (related to a path a?_|,al_;,a? in V), also maintaining a
path according to Definition 4.2. Therefore, the expansion of the QV-paths is basically
obtained by considering a pair o’ < o' or a pair a! < a?, in the input vector field V, as

well as the another face or coface of a! that is not paired with it.

Definition 4.3. Given a (0,1)-path v} — o) — ... = vi_, — V), and its re-
lated V-path of,al,... a} 5, a) |, the expanding triple of the path is the set of cells
{af_1, a1, aQ} such that of 1, cp_y €V and aj_; = af, of)_, # o, that allows grow-

ing the QV-path to v§ — o) — ... = vj_y = v)_; — vi_; — V) with related V-path
0 1 1 0 1 0
Q1) Qs e vy A9y Q15 A1, A

Take, for example, the (0,1)-path v, — vz in Figure 4.2b. The three cells in the
expanding triple are the cells shown in Figure 4.3 following the V-path out of 5°. These
cells are all needed to expand the QQV-path out of vg. The endpoints of a expanding triple

will be indexed with an “0” or a “d” to make it explicit where the flow enters the path and
where it goes to. Therefore, in the example of Figure 4.3, the expanding triple comprises

the cells 82, g and /9.

Figure 4.3: Expanding triple of a (0, 1)-path.

Definition 4.4. Given a (1,2)-path vi,, — vi, — ... = V2| — v, its related V-path
oy Qpyns - @2 y b and of . related to vi,,, the expanding triple of the path is the
set of cells {ai, ap, 1,041} such that a0, € V and af = oy, of # iy, that
allows growing the QV -path to (0,1)-path vi — vj 4 — Vi = Vpo — ... = V2 = v}
1

re

1 2 1 2 2
related to a V-path oy, Qg 1, Qo Qiyos -y Q1

Consider the example of the (1,2)-path v, — v, in Figure 4.2d. The cell o2 in K is
related to v, in M (see Figure 4.2a). The expanding triple is composed by the cells o2,
ol and o3, as shown in Figure 4.4.

Lemma 4.4. A (0,1)-path v} — v? — v — v) — ... = v}_| — V) has no expanding
triple if the 0-cell, a® € K, related to v} is critical.
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Figure 4.4: Expanding triple of a (1, 2)-path.

Proof. 1f a° is not critical then by definition it is paired in V. A pair af < 8} in a V-path
is always followed by a O-cell o, ; which is a face of 3} other than af (Definition 3.4). This
face must also exist since by Lemma 4.1 every 1-cell has two faces. If a is critical then
it is not paired in the vector field and, therefore, no expanding triple can be found. [

2 1 2 1 2 1
Lemma 4.5. A (1,2)-path vi — vi, — Vi, — Vjsg — ... — Vi_; — v, has no

expanding triple if one of two conditions is true:

1. the cell a2, related to v?, is critical;

2. the cell ai is paired with a 1-cell, o' € V, which has no coface in K other than o?.

Proof. Condition 1. If a? is critical, then it is not paired in V and therefore no expanding
triple out o can be found. Condition 2. If o2 is not critical, then it is paired in V, with
a l-cell, o', according to Definition 3.3. The 1-cell is in K since all the faces of a cell
must be in K. Given the pair cell o, if its two cofaces are in K (see Lemma 4.2), then a
expanding triple for the path is found since there is coface ai_; # ai. Otherwise, if there
is no other coface other than o, then no expanding triple can be found. U

Lemma 4.6. The expanding triple of a (0,1)-path is unique.

Proof. It v} — ¥ — ... = v}_, — v)_, with related V-path of,af, ..., a}_,,ad_; is the
(0, 1)-path that have a expansion, suppose the expanding triple is not unique. Let’s call
two of these expansions

0 1 1 0 1 0
Q5 Qs ey Qg Ay, By, O, (4.1)
and
0 1 1 0 1 0
Qpy Qg e ey Qg0 15 V15 Vi (4.2)

If Bi_, # ~i_, it means there are pairs af_; < 8}_; and a)_; < yi_; in V. However,

by definition, any cell is paired once in V. Consequently o} ;, = 8}, = ~}_;. The
paths can still be different if 3 # ~2. However, by Definition 3.3, and knowing that
aj_, = B, = yi_y, the l-cell aj_; should have three faces: af ;, 8Y and 4. That’s
not possible, what means ) = 79. Therefore, the expanding triple of a (0, 1)-path is
unique. [
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Lemma 4.7. The expanding triple of a (1,2)-path is unique.

Proof. If vi 4 — vj 5 — ... = v2_; — v} with related V-path aj.,, af .5, ..., a2, is
a (1,2)-path that have a expansion, suppose the expanding triple is not unique. Let’s call

two of these expansions

1 2 1 2 2 1
Brt1s Bior1s Qpras Vpegs - -+ Xy, O (4.3)

and
1 2 1 2 2 1
7k+17 7k+17 ak+2> Ozk+2, cee O, QG (4'4)

If 87,1 # 7i,1 then the 1-cell o), should have three cofaces: o ,,, O, and 77, ;. That’s
not possible, what means 87, = v2,,. Since o}, = i, = 7441, the paths can differ if
the pairs 8., Sz, and iy, Viy, are in Vo and L, # 7i,,. By definition of V any cell
is paired once and since (7., = 77, then 85, = v4,,. Therefore, the expanding triple
of a (1, 2)-path is unique. O

Algorithm 4.2 shows how to retrieve a expanding triple given a cell a in the input
vector field V. The algorithm sets the input cell as the origin cell and then retrieves
the 1-cell paired with o, in V, and the another face of this 1-cell, which will be the
destination O-cell. The function Pair (see Section 3.1) used in the algorithm returns the
pair of a cell in the vector field. Lines 1 and 2 of both algorithms are clearly O(1). Lines
3 also can be computed in constant time once a 1-cell has exactly two faces and therefore
at most one comparison suffices to get the correct face.

Algorithm 4.2: GetO1ExpandingTriple
Input: o € V
Output: o, o' and of

1+«

2 ol + Pair(a?)

3 o « % < o' such that 5% # o

Retrieving the expanding triple in a (1,2) is a similar computation except that the
notion of origin and destination may seem inverted. But actually it will be agreeing with
the flow and the backward nature already pointed out. Algorithm 4.3 show how to get the
triple of cells to expand a (1,2)-path. The same reasoning as in the previous algorithm
can be used here to argue that all lines take constant time to be computed.

A expanding triple of a cell « in K together with its related cell v € M are all that is
needed to expand a path. Algorithms 4.4 and 4.5 compute, respectively, the extensions of
a (0,1)- and of a (1, 2)-path. Both cases are similar, however we maintain the algorithms
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Algorithm 4.3: Get12ExpandingTriple
Input: a? € V
Output: o2, o' and o3

103+ a

2 a! « Pair(a3)

3 a2 < (% = o' such that 32 # a3

Algorithm 4.4: Expand01Path
Input: O-cell v € M; expanding triple a,, o' and ag € K
Output: t and aq
1 create 0-cell u € M for 1-cell o'
2 create O-cell t € M for O-cell agq
3 create 1-cell ey from v to u
4 create 1-cell es from u to ¢
5 Splice(Sym(ey), es)
6
7
8
9

e < PrevInRing(ey,v)
Splice(e, e;)

e < PrevInRing(Sym(es), )
Splice(e, Sym(ez))

separated to be consistent with the choices of directions of growth for the two types of
paths and to make it easy to comprehend the differences.

The connection of the two new edges e; and es is accomplished computing the splice
operator (lines numbered 5). A new function is introduced in these algorithms to help
to adjust the rings of 1-cells out of origin and destination O-cells. The function, called
PrevInRing receives as input a O-cells v and a 1-cells e; which will be inserted into the
ring of v. The function returns the edge e, already in the ring of v, such that it is the one
to precede the new edge e; in the ring of v. The Splice function in lines 6 and 8 make the
adjustments.

Almost all the lines of Algorithms 4.4 and 4.5 clearly take constant time and the new
function PrevInRing can also be expected to run in constant time. The 1-skeleton of a
2-complex is a planar graph. From graph theory the average degree of such a graph is
expected to be less than 6 [38]. Likewise, it is possible to count the average degree of a
2-cell by considering the dual of a cell complex. Again, the 1-skeleton is a planar graph
and the same results apply. The number of 1-cells in the rings of 0-cells of M is less than
6 in average. Therefore, the algorithms are expected to be O(1).

As state at the beginning of this section, expanding a (0, 1)-path vj — v? — v} —

.= Vp_y — vp_; and a (1,2)-path vi,, — vi,s — Vi, — ... = v, — v} means
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Algorithm 4.5: Expand12Path
Input: 0-cell v € M; expanding triple a,, o' and aq € K
Output: ¢t and «,

create O-cell u € M for 1-cell at
create O-cell t € M for 2-cell a,
create 1-cell e; from u to v
create 1-cell ey from ¢ to u
Splice(e1, Sym(es))

e < PrevInRing(Sym(e; ), v)
Splice(e, Sym(ey))

e < PrevinRing(es, t)

Splice(e, e)

© 00 N & ok~ W N

obtaining the longer paths v} — v} — v{ — ... = vl 5, = v} | — vi_; — o and

Vi = Vg = Vpiq = Upay = Uiy — ... — v — v}, That’s exactly what the previous
algorithms do. Consider again the paths obtained after the initialization steps, those were
of the form vj — v) and v2_; — v}. Now, given the paths shown in Figures 4.2b and 4.2d,
the vertices vg and v, and the expanding triples of Figures 4.3 and 4.4, the application of
the algorithms produce paths of the form v} — v} — vf = v and v2 , - vl | — 02 | —
v} as shown in Figures 4.5a and 4.5b.
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Figure 4.5: One step expanded QV-paths obtained with the expanding triples of the
initial (0, 1)- and (1, 2)-paths of Figures 4.2b and 4.2d.

Stop Conditions

The paths must be expanded until a stop condition is met. From Lemmas 4.3 and 4.4, a
path can not be expanding any further when:

e the last cell a® of a (0, 1)-path is a critical cell;
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e the last cell a? of a (1,2)-path is a critical cell;
e the last cell a? of a (1,2)-path has only one coface in K.

From these conditions it possible to expand a whole (QV-path. However some addi-
tional stop conditions will be introduced. These are based on the fact that V-paths can
merge or branch. Considering these cases is important to maintain the consistence of the
quad-edge data structure.

Consider a particular O-cell a” in a complex K and suppose it is paired with a 1-cell
in the vector field V' of the complex. Let also a® be a face of k 1-cells in a complex K.
Except for the 1 cell which is paired with a°, each one of the other 1-cells either is paired
(with a O-cell or a 2-cell) or is a critical 1-cell. If [ < k of these 1-cells are paired with a
0-cell, then there are [ V-paths containing the cell a® and therefore at least | paths merge

0

into a’. Figure 4.6 shows an example of cell at which V-paths merge. The 0-cell o in

Figure 4.6 is paired with one 1-cell and has five other cofaces of which three are paired

NN
N

NN

with a 0-cell.

Figure 4.6: Example of a 0-cell shared by three V-paths.

Now let a? be a 2-cell in K paired in V with one of its 1-cell faces. If the o? has
k 1-cell faces then these cells may be paired with a 0-cell, paired with a 2-cell or be a
critical cell. If | < k of them are paired with 2-cells, the V-path containing o? will have
[ V-paths out of it, in other words, the path branches into [ V-paths. Figure 4.7 show a
V-path which branches into two V-paths.

- -

-— -

Figure 4.7: Example of a 2-cell shared by two V-paths.
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These examples show that that VV-paths can merge or branch according to their type.
In the case of the two dimensional complexes it is possible to say that: (0,1)-paths can
merge but can’t branch and (1,2)-paths can branch but can’t merge. From the examples
it has been shown that (0, 1)-paths merge in a 0-cell and (1,2)-paths branch in a 2-cell.
Now the following complete the statements.

Lemma 4.8. (0,1)-paths in V' do not merge in a 1-cell.

Proof. Given two V-paths, suppose these paths merge. Suppose the paths merge in a
1-cell, then there exists a pair o < «} in the first path and a pair 6? < 6]1 in the second
path such that oj = 3j and of # 3. But that means the intersecting 1-cell is paired
twice in V', which is not possible by definition. O

Lemma 4.9. (0,1)-paths in V' do not branch.

Proof. Suppose a (0, 1)-path branches, that is, the path either becomes two (or more)
in a O-cell or in a 1-cell. If the path becomes two in a 0-cell then this 0-cell must have
been paired twice in the vector field V. However, that’s not possible by definition. If the
branching occurs in a 1-cell of the path, this cell, by definition, belongs to a pair a® < o'
in the path. The face o is common to both paths, therefore, the 1-cell should have two
other faces that are not common to the paths. That’s absurd since a 1-cell has exactly 2
faces. Therefore, a (0, 1)-paths in V' do not branch. O

Lemma 4.10. (1,2)-paths in V' do not merge.

Proof. Suppose a (1,2)-path merges. A merging means that along the path either two
(or more) paths become one in a 1-cell or in a 2-cell. If the paths become one in a 1 cell
al, then besides the coface it is paired in V| it must have two other cofaces belonging to
the different paths. That is not possible since 1-cells have at most 2 cofaces. If the paths
merge in a 2-cell, then this cell should be paired twice in V', but that is not possible by
definition. O

Lemma 4.11. (1,2)-paths in 'V do not branch in a 1-cell.

Proof. 1f a path branches at a 1-cell then this cell is paired twice in V', but that is not
possible by definition. O

Both the merge and branch cases give rise to new stop cases in which a QV-path
stops being expanded if it arrives at a cell in a path already processed. Figure 4.8 depicts
what happens when two (0, 1)-paths merge. Consider the two paths shown Figure 4.8a.
Suppose the path ending at the 0-cell v is being currently processed and the other path
is a QV-path already processed. When the current path is expanded from v, the two
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paths merge as in Figure 4.8b. From that point on, the expansion of the current path is
exactly the same as the one previously expanded, which is a consequence from the fact
that (0, 1)-paths do not branch (see Lemma 4.9). In such a case, the expansion can be
stopped.

NN

!
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| | O

(a) (b)
Figure 4.8: Example of QV-paths that merge.

Likewise, it is simple to deal with branch cases. In Figure 4.9a, two (1,2)-paths are
shown, one previously processed and one expanded up to the O-cell v. Notice that since
(1,2)-paths are traversed in a backwards fashion, algorithmically the branch case of (1, 2)-
paths is similar to the merge case of (0, 1)-paths. Actually, with the backwards expanding
process, a branching case of a (1,2)-path becomes a merge (or pseudo-merge) case and
makes it possible to deal with both cases the same way. With the expanding triple from
v the path reaches a vertex already processed (Figure 4.9b) and the path from this point
on is the same (consequence of Lemma 4.10). Therefore, no more expansion is needed to
be computed.
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Figure 4.9: Example of QV-paths that branch.

The expanding triple algorithms are modified to incorporate the stopping conditions.
Algorithms 4.6 and 4.7 show the modified versions with stopping conditions. In Algo-
rithm 4.6, line 1 tests if the input cell is critical or is in a path already processed, that is,
the current path will merge with a previous path. If the condition is true the expanding
triple is returned NIL.

Line 1 of Algorithm 4.7 tests the same conditions of critical and already processed
path, that is, the current path will branch (merge algorithmically as already argued) with
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Algorithm 4.6: GetO1ExpandingTriple
Input: o € V
Output: o, o' and f
if o is critical or already processed then
| al <+ al + o+ NIL
else
al +— «a
at < Pair(a?)
al + (% < o' such that 8 # o
end

i =~ L SN VU R

a previous path. Line 7 tests the stopping condition when a 1-cell has only one coface in
the complex. All the new tests and operations clearly also take constant time, therefore,
the O(1) complexity for obtaining a expanding triple is maintained.

Algorithm 4.7: Get12ExpandingTriple
Input: o2 €V

Output: o?, o' and o3

if o is critical or already processed then
| al+al +a% <+ NIL

else

al

al + Pair(a?)

a? «+ ? = o' such that 5% # o3
if a2 = nil then

| a2« a'«a}« NIL

end

© 00 N o oA~ W N =

10 end

Given the new algorithms, a path can be fully extracted as show in Algorithm 4.8.
The algorithm has as input a cell of the complex K and the corresponding cell of the
complex M. These are from one pair of cells of a QV-path initialized in Algorithm 4.1.
The algorithm will expand the path from these cells until a stop condition is met. The
stop conditions are tested in the while loop by checking if the expanding triple is valid,
which means no cell has value NIL. While a expanding triple is found and processed,
the last cells of the path are updated and a new expanding triple is searched for. The
dimension of a p-cell o is given by the function dim, dim ¢ = p. This functions is tested
in the algorithm to guide what type of path is being processed.
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Algorithm 4.8: ProcessQVPath
Input: A € K and vy, € M
Output: last O-cell v created in M

1 V< Uy

2 a4 A

3 if dima = 0 then

4 | {aw, o' aq} + GetO1ExpandingTriple(a)

5 else

6 | {ao, o', aq} + Getl2ExpandingTriple(a)

7 end

8 while expanding triple {a,, at, aq} is valid do

9 if dima = 0 then

10 | {(X\,v\)} + Expand01Path(v, ao, @', ovg)
11 else

12 | {(X\,vz)} + Expand12Path(v, oo, @', ovq)
13 end

14 U 4 Uy

15 a4 A

16 if dima = 0 then

17 | {a, ot aq} + GetO1ExpandingTriple(a)
18 else

19 | {aw,at, aq} « Get12ExpandingTriple(a)
20 end

21 end

From the previous discussion, most lines of the algorithm take constant time to be
computed. The loop of line 8 is executed O(L) times which is the length of a V-path.
Therefore the algorithm is linear on the size of the V-path.

The paths of a discrete Morse complex are exactly the QQV-paths with critical cells as
endpoints. From previous discussions we know that there are (1,2)-paths that do not end
at a critical 2-cell. That follows from the second condition of Lemma 4.5 which happens
when a path arrives at the boundary of the complex K and a 1-cell has only one coface.

Therefore, to obtain only the paths of the Morse complex it suffices removing a (1, 2)-
path if one of its endpoints is not a critical cell. Algorithm 4.9 performs the removal of
the path. The input of the algorithm is the last O-cell expanded of the QV-path. The
QV-path is traversed from the input vertex towards the another endpoint (loop of line
2). Along the traversal, the final cells of path are deleted. When the initial O-cell vertex
is reached the process stops since the 0-cell is a saddle point. All cells of the QV-path
where removed. Remember from Section 2.2 that Edge(v) returns a 1-cell e adjacent to
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v. The algorithm performs O(1) operations and the loop is executed once for each vertex
in the path, therefore the algorithm is linear on the size of the path.

Algorithm 4.9: RemoveQVPath
Input: v,2 € M

Output: Complex M without path ending in v,
Vo < Vg2

repeat

e < Edge(v,)

vg « Orig(e)

if v, = vq then vq < Dest(e)
delete v,

delete e

Vo < Uq

until v, is not critical
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It is now possible to extract all QV-paths in a discrete Morse complex. The loop of
line 1 goes through all saddles of the input complex. Line 2 and the conditionals take
constant time while the other functions called are linear on the size of the paths. If the
complex has N saddles, the algorithm takes O(NL).

Since the paths extracted can merge or branch, we call the complex an “entangled
complex”. In the following section, we will consider these cases to produce a disentangled
complex, that is, a complex without united paths.

4.1.3 Disentangled Complex

In applications such as visualization of the Morse complex it is often important that cases
like merging and branching do not occur. In the following it will be shown how to deal
with such situations, separating merged and branched paths to keep them independent
of each other.

It has been previously seen that QV-paths can merge or branch at a given 0-cell along
their extent. We will call such 0-cell a knot.

Definition 4.5. A knot is a 0-cellv € M such that it is not critical and its degree (number
of paths arriving and leaving) is greater than two.

Figure 4.10a shows a knot v where paths merge, it has degree three (deg(v) = 3) and
is not critical. A knot of branching paths is shown in Figure 4.10b.

If a knot is present it means that & paths have a common subpath that occurs after a
merging case or before a branching case. The objective of this section is to disentangle all
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Algorithm 4.10: ExtractQQVPaths

Input: K image cell complex; V vector field
Output: Discrete Morse complex M

forall the o' € K such that o is critical do

1
2 | {(B8%vs), (0", vy), (6%, 05), (T2, v,)} + InitVPaths(at)
3 v < ProcessQVPath(5°, vs)
4 v < ProcessQVPath(1°, v,)
5 v < ProcessQVPath(o?, v,)
6 if v is not critical then
7 | RemoveQVPath(v);
8 end
9 | v+ ProcessQVPath(72, v,)
10 if v is not critical then
11 | RemoveQVPath(v);
12 end
13 end
o K K
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Figure 4.10: Examples of knots for (0,1)- and (1, 2)-paths in a complex M.

knots so that the k paths are separated along their common subpath and are maintained
independent of each other. In other words, we want to produce a discrete Morse complex
for which all paths do not have knots along their extent.

The algorithm developed in this section can be thought of as a method that pushes
forward (backward) a knot along the common subpath of merging (branching) paths. The
knots are pushed forward (backward) until reaching a critical endpoint. Algorithm 4.11
performs the basic operation. It works locally at a knot separating the paths one step
forward (backward). The algorithm receives as input a knot vy, the 0O-cell to which v,
is pushed towards, and the type of path ((0,1)-path or (0,2)-path) it is in. The type of
path is used as a flag to know if the knot should be pushed forward or backward.

The edge e; between v; and v, is the common subpath to be separated into the k
paths entangled in v;. In the case of Figure 4.11a three paths merge in vy, the knot will
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Algorithm 4.11: DisentangleKnot

Input: Knot vy, vy which is the 0-cell vy is pushed towards, ¢ path type (¢t = 0 if
(0,1)-path or ¢t = 1 if (1,2)-path).
Output: Complex M with a knot removed

1 e < l-cell e such that Orig(e) = vy and Dest(e) = v
2 €9 < Oprev(Sym(e;))

3 ¢ < Onext(e;)

4 €54 e

5 repeat

6 v3 + Dest(e)

7 Splice(e, e1)

8 create 0-cell v in M close to vy
9 Orig(e) «+ v
10 if ¢t =0 then
11 | create 1-cell e, from v to vy
12 else

13 | create 1-cell e, from vy to v
14 end

15 create edge e, from v to vy

16 Splice(e, e,,)

17 Splice(Sym(e,,), €2)

18 e < Onext(e;)

19 es < Onext(ey)
20 until e = ¢;
21 delete v
22 delete ¢

be pushed forward to v, along the edge e;. The loop of line 5 separates, at each iteration,
one of the k paths. Initially, the path is disconnected from the ring of 1-cells of v; (line
7). A new 0-cell v is then created to substitute v; in the path and to be the 0-cell through
which the path passes. The 1-cell e, is created to reconnect the path to vy. At the end
of the loop all paths are disentangled by one step. Figure 4.11b shows the result for the
example path. A new application of Algorithm 4.11 will disentangle the paths one step
further, getting the paths of Figure 4.11c.

The interesting points for analyzing the complexity in this algorithm is the loop of line
5 and the operation of line 1. In both case, the execution involves traversing the rings of
1-cells. As already discussed in Section 17, this rings in a planar graph are expected to
have average degree of 6. Therefore, we can argue that the algorithm is expected to be

O(1).
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Figure 4.11: Example of untangling knots of a merged path.

It suffices to continue pushing forward (backward) the knot vertices to fully separate
paths. The resulting paths are then disjoint. For visualization purposes and to maintain
the planarity of the complexes, the geometrical position of the paths can be perturbed
infinitesimally so that they are positioned parallel to each other. Figure 4.11d shows the
result of disentangling the knots.

Similar to the approach to extract the QV-paths, we proceed from saddles in M and
follow all of its paths disentangling the knots until another critical cell is found. The
computation is performed by Algorithm 4.12. The outer loop of line 1 goes through all
critical saddles and the loop of line 4 processes all paths leaving or arriving at the saddles.
Finally, the loop of line 11 traverses a path searching for knots and disentangling them.
The functions Next and Prev respectively return the next and the previous 0-cell following
a given O-cell in a QV-path (see Section 4.1.1). The first one is used for (0, 1)-paths and
the second one for (1,2)-paths.

The loop of line 11 traverses the whole path and takes linear time on the length of
the path since each operation inside the loop take constant time. The loops of line 1 and
4, together, process all the paths and therefore are linear on the number of paths. If the

number of saddles is N and each saddle can have up to 4 paths, the algorithm takes time
O(NL).
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Algorithm 4.12: DisentangleComplex

Input: complex M.

Output: Complex M with all knots removed
for all saddles v € M do

1
2 | e+« Edge(v!)

3 ef e

4 repeat

5 vy < Dest(e)

6 if dim(v;) = 0 then

7 ‘ t<+0

8 else

9 ‘ <1

10 end

11 while v is not critical do
12 if ¢t =0 then

13 | vy < Next(vy)

14 else

15 | w3 < Prev(v)

16 end

17 if deg(vy) > 2 then

18 | DisentangleKnot (vy, va, t)
19 end

20 V1 < V2

21 end

22 e < Onext(e)

23 until e = ¢

24 end

4.1.4 Simplified Morse Complex

Even though the complex obtained in the previous section can be used for simple visual-
izations tasks, it is not efficient for many practical tasks such as computing numbers of
Betti, persistent homology or hierarchies of the complex. For such tasks one would desire
to obtain the critical cells connected by (QV-paths in constant time, without having to
traverse all the path. We present in this section a simplified version of our discrete Morse
complex such that the 1-cells connect only critical cells and the in between cells of the
QV-paths are stored in a list attributed to the 1-cells. With such a complex we obtain
the objective of a model that is easy to manipulate with local operations but that is also
appropriate for visualizations.

The algorithm works on subpaths as the one depicted in Figure 4.12. The subpath is
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formed by the set of cells {e, vy, v9,v3,€1,e2}. The 1-cell e has as origin a saddle in M.

GBNO\)UQ
I € €1 O\Ug oﬁ@(—O(—o(—"EB
T eggﬁo I
° % T
o
! p I
—>o [0}
No\f‘ﬂ)(—o OQ/S?
Xg \o (\O/ié/
o]
! Lo

D—>0—0—>@¢—0¢—0D
Figure 4.12: Simplification kernel for a subpath of a QV-path.

We call such set of cells a simplification kernel. Given a 1-cell e, Algorithm 4.13
retrieves the kernel according to the type of the path which is reflected in the index of
the O-cell v; retrieved by the function Index in lines 2 and 5. The algorithm clearly takes
constant time to retrieve the kernel.

Algorithm 4.13: SimpKernel
Input: 1-cell e
Output: {Ul, V9, V3, €1, 62}
vy < Dest(e)
if Index(v;) =0 then
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e; < l-cell e, such that Orig(e,) = v9 and that Dest(e,) = v;
ey < 1-cell e, such that Orig(e,) = vo and that Dest(e,) = v

-
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Given the kernel, Algorithm 4.14 simplifies the subpath. The cells v; and vy as well
as e and ey are removed from the complex and the 1-cell e is connected to v3. The result
of the simplification on the complex of Figure 4.12 is shown in Figure 4.13a. The loop of
line 9 is the costly part of the algorithm. It traverses the ring of 1-cells of v3 which we
already argued is expected to be computed in constant time in average.

The process of finding kernels and simplifying them must be repeated until the 1-cell
e finally connects critical 0-cells. Since the origin of e is already a critical cell (a saddle)
it suffices to check if is destination is also a critical cell. If so, there is no need to search
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Algorithm 4.14: SimplifyKernel
Input: vy, v9, v3, €; and es.
Output: Complex M with simplified kernel
ez < Oprev(Sym(ey))
e4 < Oprev(Sym(ez))
delete e
delete e,
delete v9
Splice(es, e4)
e < Edge(vs)
€ <= ¢€
repeat
| Orig(e) < v3
until e = ¢
delete v
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for more kernels of the path. The endpoints of e in Figure 4.13a still are not both critical,
therefore a new kernel is found and simplified. The result is the edge e of Figure 4.13b
that connects critical cells and the process stops.

53} @ &
1< va£2Y3 !
. Ulg 02 @¢—o0¢—o0«D : @¢—o0¢—o0«D
T e I T o —° I
o B T o % T
o o
! /1 il /1 f
J—o © Y=o ©
~o0 0= ~o0 0=
THPg—o ok ok ~Sge—o 0— 8
x; \O \O/ik/ X{,} \O \O/ik/
\ | X \ | X
o o Xg o o Xg
\ | \ | |
D—>0—>0—>0@¢«—0¢—0—D P—0—>0—0@¢—0¢—0D

(a) (b)

Figure 4.13: Simplification of kernel in Figure 4.12 and the acquisition of a new kernel(a).
The simplified path is shown in (b) connecting critical cells.

If the destination of e is not a critical cell, than we can argue that a kernel can be found.
Consider a (0,1)-path u} — v — u} - u) — ... = u! | — u¥ as in Definition 4.1. The
saddle in the origin of e is u} and the destination is u{ in the path. By the definition, the
subpath u) — ul — 49 should be present in the path. These are exactly the cells needed
to form the kernel, v; and vy come from a pair in the vector field and v3 come from a
face that must also be in the path. After the simplification performed by the algorithm,
a new kernel is searched from u9. It must also be in a pair and have a face in the path,
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consequently forming a new kernel. We can keep going in this process until u? is reached.
This must be a critical cell in M and also our stop condition. The same thought can be
applied to a (1,2)-path.

Algorithm 4.15 goes through all paths simplifying the complex. The outer loop (line
1) and the loop of line 4, together, are used to visit all paths. The inner loop (line 5)
traverses a path doing the simplifications. Line 7 stores the points of the QV-path in a
list of cells which is an attribute of the 1-cell e. Therefore, the path can still be retrieved
when needed.

Algorithm 4.15: SimplifyComplex
Input: Complex M.
Output: Complex M simplified
for all saddles v € M do
e + Edge(v?)
€y ¢
repeat
while Dest(e) is not critical do
{v1,v9,v3, €1, €3} < SimpKernel(e)
Insert vy and vy into list of cells of e; SimplifyKernel(vy, v, v3, €1, €2)

end
e < Onext(e)
until e = ¢
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The inner loop takes linear time on the size of the path. Therefore, similar to what
happens in the algorithm of the previous section, for disentangling a path, the algorithm
also takes O(NL) time. Therefore, the adding all the steps of the method until getting
the final complex results in a O(N L) algorithm. The resulting complex for our example is
shown in Figure 4.14. In this final complex, retrieving the neighborhood information of a
critical cell, such as which other critical cells are connected to it, can be done in a simple
way. For example, the critical cells connected by a path are retrieved in constant time,
there is no need to follow the whole extent of the path. This is important to compute
operations such as the star of a cell (informally, the set of cells formed by the cell itself
and its cofaces), often used in topological computations.

4.2 Experimental Results

This section presents experimental results showing that the constructed discrete Morse
complex is useful for analysis of image functions and for important topological computa-
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Figure 4.14: The resulting discrete Morse complex.

tions, such as the persistence of critical points [16, 33, 65, 66| and simplification (not to
be confused with the simplification of Section 4.1) of the topological structure to reduce
noise or produce a hierarchical representation [60, 81, 91].

The following results are similar in power when compared against Morse-Smale [6, 26,
99] and discrete Morse methods for these computations. However, as it is also based on
the discrete theory, particular cases such as multiple saddles and also spurious critical
points due to intersections of integral curves are not a difficulty. It also presents an
improvement in the 2-dimensional computation of the V-paths, when compared with the
breadth-search approach developed by Robins et al. [76] and, as the former techniques,
the proposed method is also suitable for producing proper visualizations of topological
structures.

We use a set of elevation functions comprising one synthetic image and four real terrain
elevation data [90]. The elevation values are represented by 2-byte unsigned integers. The
information on the image set is given in Table 4.1. Initially, the images are converted to a
2-dimensional quadrangular complex with pixels as the 0-cells, as described in Section 2.3.

Table 4.1: Images used in the experiments. The second column shows the dimensions of
the images and the columns three to five shows the number of cells of each dimension in
the respective cell complexes.

Complex (number of cells)

Image Dimensions  0-cells 1-cells 2-cells

Sine 256 x 256 65536 130560 65025

Crater Lake 336 x 459 154224 307653 153430
Cumberland 1201 x 1201 1442401 2882400 1440000
Death Valley 1201 x 1201 1442401 2882400 1440000
Mars 936 x 949 888264 1774643 886380

The synthetic elevation function is a sample of h(z,y) = sinx + siny multiplied by an
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Table 4.2: Number of critical points of the images.

Morse Complex

Image Minima Saddle Maxima
Sine 49 84 36
Crater Lake 355 713 359

Cumberland 058 23138 15081
Death Valley 27964 46319 18356
Mars 568 4293 3726

exponential g(z,y) = exp (_z;$%2)7 with 2 and y in the interval [—40, 40] and 0 = 6. The
image is shown in Figure 4.15a and its resulting discrete Morse complex in Figure 4.15b.
The result shows that our algorithm produces quadrangular 2-cells formed by critical
points of minima and maxima always adjacent to saddles, as it is expected for a Morse

complex for such a function.

(a) (b)

Figure 4.15: Discrete Morse complex of the synthetic sinusoidal image. The 2-cells of the
complex are formed by a minimum a maximum and two saddles. Minima and maxima
are always adjacent to saddles.

All other image complexes had their discrete Morse complexes computed using the
algorithms in Section 4.1. Table 4.2 presents the number of critical points of each type in
the resulting discrete Morse complexes.

The complexes are employed in two important computations over Morse complexes:
the persistence of critical points and hierarchical decompositions of the complexes through
cancellation of low persistent topological features. These topological features are 0-cycles
and 1-cycles which, in a 2-dimensional space, related to connected components and holes
in the level sets of the images. The number of cycles in the level sets are along with their
persistence give the called persistent Betti numbers. The persistent Betti numbers were
computed by using the algorithm for pairing cells described by Zomorodian [100]. The
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algorithm requires a total ordering of the critical points in the Morse complex which was
obtained by assigning the grayscale value of each critical cell to the corresponding point
in the Morse complex. Cells of lower dimension precede cells of higher dimension if they
have a same grayvalue. The persistence is defined as the difference of grayvalues between
the paired cells (creator and destroyer).

The image in Figure 4.15b depicts in different colors the persistence of each critical
point in the discrete Morse complex of the sinusoidal image (Figure 4.15a). The color scale
varies from blue to red, representing low persistence and high persistence. Intermediate
value are shown in yellow and green intensities. The critical points of higher persistence are
in the center of the image and the persistence circularly decays from these points to points
in the boundaries of the image. This effect is due to the exponential function multiplied
to the sinusoidal function. The O-cycles and 1-cycles of the image are summarized in the
graphs of Figure 4.16. The cycles are sorted by persistence and it can be noticed that the
persistence increases following an exponential behavior, as expected.
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Figure 4.16: Graphs showing for each 0- and 1-cycle their respective persistence in the
sinusoidal image. The sorted persistence of the cycles grows exponentially, except for the
last 0-cycle which has infinite persistence.

The graphs of cycles versus persistence for the real images are shown in Figure 4.17.
The persistence axis is shown in logarithmic scale so that the values can be better ana-
lyzed. These graphs show a common characteristic: a small amount of cycles with high
persistence and a great amount of cycles with very low persistence. These very low per-
sistent cycles may be due to topological noise of the data. A important task is then the
removal of such topological noise, as explored in [6] and [26]. Cleaning the topological
noise may be interesting for better understanding the function or phenomena being stud-
ied. The data-structure of our complex allows easy and fast manipulation of the complex
for simplifications. We implemented the operation as described in [26].

The graphs of Figure 4.18 present an alternative view for the distribution of cycles
according to their persistence and level sets of the Death Valley image. The horizontal
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Figure 4.17: Persistence of cycles for real elevation terrain images. The most persistent
cycles are present in the right portion of the graphics. It is possible to notice that the
majority of cycles have a very small persistence value. That can be due to noise or non-
relevant topological features. For instance, the number of cycles with persistence less
than 10 in all graphs represents the greatest part of the features, which suggests that the
persistence can be used for compression or noise removal.
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axis are thresholds of the elevation values and consequently represent the level sets of the
image function. The lines show the number of cycles with persistence greater than or
equal to some specific value for all level sets.

0-cycles
1-cycles

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Threshold Threshold

(a) (b)

Figure 4.18: Number of cycles for different level set of the image Death Valley. Each line
shows the number of cycles with persistence greater than or equal to a specific value of
persistence (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024).

It can be noticed that noisy topological features are mostly concentrated in low persis-
tent points. By suppressing low persistent features the discrete Morse complex becomes
cleaner and a lot less denser. This effect is reflected in the hierarchy of simplified discrete
Morse complexes shown in Figure 4.19.

The persistence values range from 0 to 1225 (except for one infinite persistent 0-
cycle). The Death Valley is a mountain region with a few valleys. It has several fine
details, as can be seen from the amount of critical cells in the digital elevation model
(DEM) of Figure 4.19a. The most important details are present in the mountains, even
though there are also some details in the valleys. Some of those details might have been
produced due to noise in the acquisition process. For example, the valley in the left portion
of the image has a dense concentration of critical cells, as can be noticed in Figure 4.19b,
which may probably be due to noise or non-relevant features. As the hierarchy progresses,
these points will be removed. The hierarchies of Figures 4.19i and 4.19j show complexes
where such features have been removed, the valleys become smoother, whereas details
of the mountains have been preserved. Further steps in the hierarchy could have been
considered, however, in detriment of topological feature preservation.

A hierarchy for the Crater Lake image is shown in Figure 4.20. As the simplification
progresses, topological features of low prominence are removed from the image function.
In the initial complexes, the island in the middle of the lake does not stand out since there
are many low persistence features around it. These features are completely removed by
thresholding critical cells with persistence less than 32. The number of cells necessary to
capture the topology of the image is again massively reduced.
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(b) all critical points  (c) persistence > 0  (d) persistence > 1  (e) persistence > 2

(f) persistence >4  (g) persistence > 8  (h) persistence > 16 (i) persistence > 32

(j) persistence > 64 (k) persistence > 128 (1) persistence > 256 (m) persistence > 512

Figure 4.19: Hierarchy of a discrete Morse complex for different persistence values. Only
points with persistence larger than a persistence threshold are maintained in the complex.
The complex is greatly simplified and topological noise is removed. As the hierarchy
progresses, fine details and noise are removed. Close to a persistence threshold of 32,
the valleys become almost free of noise whereas relevant features in the mountains are
preserved in the complex.
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(b) all critical points (c¢) persistence > 0 (d) persistence > 1 (e) persistence > 2 (f) persistence > 4

(g) persistence > 8 (h) persistence > 16 (i) persistence > 32 (j) persistence > 64 (k) persistence > 128

Figure 4.20: Hierarchy for the Crater Lake image discrete Morse complex. The island in
the middle of the lake, as well as other important features, stands out from noise in the
complex as the hierarchy progresses. The persistence values range from 0 to 360 (except
for one infinite persistent 0-cycle).

Furthermore, we have computed the hierarchy for a face image, as shown in Figure 4.21.
Initially, there is a high concentration of feature areas with non-relevant details. The
hierarchy shows that such details are removed as the levels in hierarchy are traversed,
whereas features located in the eyes, nose and mouth stand out. This example shows
how the simplification of the complexes can be used to capture significant topological
information of images and suggests that it can be useful for image classification. The
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image is taken from the AT&T Laboratories Cambridge [72].

(e) persistence >4 (f) persistence > 8 (g) persistence > 16 (h) persistence > 32

Figure 4.21: A hierarchy of discrete Morse complexes computed for a face image. When
considering coarser levels of the hierarchy, features in the eyes, nose and mouth stand out
from other features. The persistence ranges from 0 to 138.



Chapter 5

Neighborhood-of-Interest Points
Using the Morse Complex

The correspondence or matching of image interest points is a basic step in computer
vision that is used to find corresponding locations in different images for tasks such as
image stitching, image registration, scene reconstruction, object detection and recogni-
tion [7, 48, 58, 62, 70, 85, 98]. A well explored advantage of the correspondence of interest
points is that it allows matching in the presence of occlusions and changes in scale and
orientation [84]. Furthermore, more reliable matching of images can be computed [21]
and might be used to compute denser correspondences [55|. However, the approach may
fail [71] depending on the image nature, acquisition method, noise corruption, and trans-
formations between images.

We investigate in this chapter the correspondence of interest points, which is part of
a project in collaboration with the Computer Science Department at the University of
California, Davis [83]. The method is intended to be used for establishing a denser set of
correspondences to further construct 3D models and merge point clouds produced from
images acquired at different time steps (video frames).

The considered images are challenging and the application has some requirements to
be satisfied, whenever possible:

1. the matches should be spread all over the images;

2. it should be possible to measure the confidence of a match being correct.

The basic stages for corresponding interest points between images include interest
point detection, description, and matching. Interest points are usually considered as
independent elements described by some limited local information, basically, the appear-
ance of patches of pixels surrounding the point location [84]. The limited local information
clearly is not able to discriminate between interest points in some cases. The difficulty

95
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arises from patches related to two interest points not having enough dissimilarity between
them. Examples of such cases occur in smooth regions, repeated patterns and symme-
tries. Therefore, images with different regions of high similarity often incur in problems
of discrimination due to the limited information to compute descriptors.

Besides such difficulties, many other may occur. For example, for the tested underwa-
ter images, which are the main subject of study here, besides the morphological nature
of the regions in the images, which may create highly similar structures, noise may be
present due to particles in the water and the acquisition may produce distortions and
illumination differences.

Commonly, the correspondences of images are computed by pairwise comparison of
their interest point local descriptors, such as performed by the k-nearest neighbor al-
gorithm [62, 84]. This approach is computationally efficient and suitable for real-time
applications or for problems that deal with massive amounts of data. However, the dif-
ficulties arising from point detection and description are propagated and not properly
handled at the matching stage. Figure 5.1 shows some examples of incorrectly matched
points.

Figure 5.1: Examples of incorrect matches computed due to regions of high similarity. The
descriptor by itself is not able to discriminate between some regions. The zoomed regions
show the pixel level texture similarities that produce close descriptors and consequently
difficulties for the correspondence of interest points.

Cases of incorrect correspondences are very common and there are some different levels
in which it is possible to consider ways of eliminating them. At the early detection step,
it is possible to threshold the detected interest points by using a measure of importance
or of how salient the interest point is. In such a manner, it is possible to avoid detecting
interest points in highly homogeneous regions. At the matching level, approaches such
as the one used in the Scale-Invariant Feature Transform (SIFT), the SIFT-ratio [59],
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perform a comparison of similarity between the k-closer matches of an interest point
(usually k is 2) and, therefore, when they are too similar in terms of descriptors, the
matches are removed. At another level, approaches such as RANdom SAmple Consensus
(RANSAC) [29] use a model fitting to find a transformation such that outliers are removed
from the correspondence set.

It is clear that all these approaches reduce the number of correspondences obtained
without trying to correct the matches. In fact, the initial number of correspondences
invariantly suffers a drastic reduction. Figure 5.2 shows an example of correspondences
obtained through the application of interest point thresholding and SIFT-ratio. A set of
good matches is acquired and can be useful in many applications, such as registration.
However, the correspondences are sparse and not in agreement with the requirements of
spread matches stated in our problem.

Figure 5.2: Examples of output matches obtained through SIFT method. Incorrect corre-
spondences are filtered out, however, the number of correspondences is drastically reduced
and many regions do not contain any paired points.

A region growing approach is presented in [13] for correspondence verification. The
method outperforms the selection of SIFT. However, it is still not a corrective method.
A small number of correspondences may not be enough for obtaining denser matches for
some images, such as the ones considered in this chapter.

Alternatively, the structural relations between interest points can be introduced to
obtain more global information. Such relations are commonly modeled by using graphs
and allow the exploration of structural arrangements to better discriminate regions
in images. Successful applications to find or discriminate sparse number of interest
points [14, 42, 45, 94] have been reported. However, finding correspondences within
dense sets of points using graphs is still a challenging problem. Algorithms for this pur-
pose are computationally expensive and sensitive to noise in the data [49, 74, 95]. Much
of the efforts to solve correspondences using graphs deal with complete or very large
graphs [8, 20, 25, 34, 74, 80|, which makes the limitations of graph matching even more
severe.

We present an approach based on the topology of functions, given by discrete Morse
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complexes, to defining locally meaningful connectivity of interest points. We have devised
and tested the method for obtaining correspondences in images and to demonstrate its
contributions:

e a general neighborhood relation which can be adapted to different applications.
e a manner of avoiding incorrect correspondences in high similarity images.
e an approach to evaluating the confidence of a correspondence being correct.

The matching algorithm developed is conceptually similar to pixel-based seed-growing
methods such as [13, 15, 43, 55] that have been proved useful. These are, however, mostly
post-processing steps used after the matching of interest points. Our algorithm differs
in its objective as it is used to compute more correct correspondences through interest
point-based growing.

The remaining of this chapter is organized as follows. The proposed topological neigh-
borhood is formulated in Section 5.1. In Section 5.2, the matching algorithm is developed.
Experimental results are presented and discussed in Section 5.3.

5.1 Local Morse Context

In this section, we define image interest points in terms of critical Morse cells and, mainly,
introduce the Local Morse Context (LMC) operator to obtain the local neighborhood
relation between these interest points.

5.1.1 Morse Complex and Critical Cells

As described in Chapter 3, minima and maxima are Morse critical cells. In computer vi-
sion, such features are usually obtained from a derivative of the input image function [63].
In the same manner, we use a derivative of the input image, the Laplacian of the Gaussian
(LoG) [84], modeled as an image cell complex (see Section 2.3), to construct the discrete
Morse complex (Chapter 4). Figure 5.3 illustrates the process. Given the input image,
the LoG of it is computed and used to obtain the discrete Morse complex.

Critical cells of maxima and minima are analogous to the maxima and minima points
usually detected as interest points of images. For that reason and to be in accordance
with the developed method, interest points will denote Morse critical cells and we will
use both terms interchangeably in the remaining of the text. Critical Morse cells can also
be saddles, however, they are not stable to perturbations in the input function and are
not used as interest points. Therefore, given the discrete Morse complex M, of an image,
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Figure 5.3: Example of LoG and DMC of an image.

with n critical cells of, k = 1,...,n, we define the interest points to be the set of minima
and maxima,

C={d]af e Mwithp={0,2},k=1,...,n}. (5.1)

Usually, an image interest point is a pixel for which the neighborhood relation is
defined over its closest pixels in the discrete lattice (such as a 4- or 8-neighborhood).
Such relations do not allow an easy determination of which interest points are close to
each other. By using the discrete Morse complex, it is possible to define the neighborhood
as a relation over closest interest points. The computation of such a relation is the topic
of the next section.

5.1.2 Local Morse Context

The Local Morse Context (LMC) is a relation over discrete Morse complexes for acquir-
ing information regarding the neighborhood of interest points. In order to understand
the computation of the LMC, one should recall the definitions of star, closure and link
presented in Section 2.4.

The main concepts of the proposed method are presented next. Given an interest
point oy € C' (see Section 5.1.1), the star of order i (or i-th iterated star) of ay, St;(a),
is a recursion

Qp ifi=0
St(CI(St;—1(ax))) otherwise.

The i-th order local Morse link (LML) of «y is defined to be the link of the i-th iterated
star of ay,

LML;(ay) = {7 | 7 € Lk(St,_1 (ax))}- (5.3)

The LML is defined over the (i — 1)-th closure of the star since the link itself is defined
over the star of a subcomplex (Definition 2.1), therefore, the i-th star is implicitly applied
by the link.
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The i-th order local Morse context of a critical cell «, is defined as the set of minimum
and maximum critical cells in the LMLs up to order ¢,

LMC;(ay) = {77 | 7" € LML;j(ow), p= 0,2, j = 1....,i}. (5.4)

Figure 5.4 illustrates the computation of a second order local Morse context (LMC,)
given a particular critical cell @ in M. The second column shows the iterated stars of
order 0 and 1, of «, while the third column presents their links, namely LML; and LMLs,.
The selection of maxima and minima is performed next, producing the sets shown in
the fourth column. Finally, the union of the two sets of the fourth column produces the
LMCs, as can be seen in the rightmost image. Notice that the LMC is a nested operator,
that is,

Figure 5.4 shows the LMC; in the lighter region inside the darker rectangle related to the
LMC,.

Figure 5.4: Example of computing the LMC; of a maximum critical cell a. Increasing the
order augments the number of critical points in the set and expands the neighborhood.

The order of the LMC controls the extent of the neighborhood to be used. The higher
is the order, the larger is the number of connected points and the region covered by the
neighborhood. Therefore, more global information is captured as the order increases.
Figure 5.4 shows how the LMCs of order 1 (first row of fourth column) and 2 (fifth
column), computed for a critical cell a, influence in the region covered around a.

The neighborhood given by the LMC makes it possible to explore the local structural
information to characterize a pattern and /or increase the information of a local descriptor.
Since the LMC is computed over a Morse complex, the neighborhood is based on the
topology of a function and, therefore, it is expected to be independent of geometrical
transformations that may be applied to the function.
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5.2 Image Matching Using the LMC

This section presents how the LMC can be used to correspond points in pairs of images.
Initially, we show a method for corresponding points within two LMCs, which is the core
step for obtaining the correspondences between images. The correspondence of LMCs is
used to guide the matching and, as a consequence, it helps to avoid incorrect matches due
to similarities (as explained in the introduction).

5.2.1 Matching of LMCs

Given a critical cell oy, of a Morse complex M; and a critical cell 3, of a Morse complex
Mo, let their LMCs be LMC;(ay) and LMC;(/;), as illustrated in Figure 5.6. Clearly ay
and [; are corresponding points as can be noticed by the high similarity of the regions
depicted in Figures 5.5a and 5.5b. It can also be noticed that, as expected, the LMCs
are very similar, suggesting that the correspondence of LMCs can be formulated as the
correspondence of structured data. The task becomes a graph matching problem which
is well known and have various proposed solutions [20, 34, 89].

° - ° ..
© R o ° M
Ko £
@ ®© © © @ ® © © "
O]
E
— i - =

Figure 5.5: Example of a pattern between two related critical cells. Missing or added
critical cells are likely to occur.

The standard solution of graph matching is carried out by means of graph isomor-
phisms or subgraph isomorphism if the graphs have different sizes. However, these meth-
ods can only find a solution if there is a perfect match [88]. In real world applications,
finding isomorphisms is unfeasible because identical structures are very unlikely to occur
due to noise and distortions present in the data.

There are many factors that may introduce noise and inaccuracy to image data. Such
issues are also a problem between LMCs. The LMCs of two corresponding regions, in
different images, should not be expected to be the same. The number of critical cells
between LMCs will probably be different. Taking one of the LMCs as a base for com-
parison, some of its critical cell may be missing in the second LMC or some cells that do



62 Chapter 5. Neighborhood-of-Interest Points Using the Morse Complex

not appear in it could be added to the second LMC. In Figure 5.5, one minimum point is
missing in the second set and one maximum point appears in the second set, but not in
the first.

Noisy or inconsistent cases are also a concern of various applications and extensively
studied [8, 20, 34, 74, 79, 87]. Usually, the matching constraints are relaxed in search of
non-exact correspondences. The problem is known as inexact graph matching [20, 34].
We solve our problem with a method based on eigendecomposition approaches [78, 80, 89],
specifically the one proposed by Scott and Longuet-Higgins [78], that provides an elegant
solution with one-to-one correspondences and no explicit iterations.

Suppose LMC;(ax) has m interest points, o., r = 1,...,m; and LMC;(;) has n
interest points 75, s = 1,...,n. Let d,s = dist(desc(o,),desc(7s)) be the Euclidean
distance between the descriptors (desc) of o, and 7,. Individually, each feature can be
described by some local measure such as in HOG [23], HSC [77], SURF [3] or SIFT [58].

b

The method computes an m X n matrix G with pairwise affinities

2

—d
Grs = exp (ﬁ) (5.6)

of interest points, where the parameter ¢ controls the degree of proximity between de-
scriptors and it is suggested to be 4 in [80]. Perfect matches (d,.s = 0) have affinity value
1. The farther the distance between descriptors, the more the affinity approaches 0.

A singular value decomposition (SVD) is performed to factorize G as

G=UDV" (5.7)

where U is an m x m orthogonal matrix, D is a m x n diagonal matrix and V7 is the
transpose of an n x n orthogonal matrix V. Every element of the principal diagonal of D
is replaced by 1 to create the matrix £. The association matrix is computed as

P=UEVT (5.8)

such that the rows of P index the interest points in LMC;(ax) and the columns index the
interest points in LMC;(5;).

If P, is the largest element both in row r and column s, then a strong correspon-
dence will be achieved. However, if P, is the largest element in its column but not in
its row, or, similarly, in row but not in column, then multiple points compete for the
match and the correspondence is weak. Correspondences in the LMCs are obtained by
retrieving the strong correspondences of P. The numbers in Figures 5.6a and 5.6b show
the correspondence between the two LMCs in our example.

The SVD computation can be performed in O(mn?) [86]. Therefore, the choice of low
order LMCs is important if fast computations are required.
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Figure 5.6: Corresponding points between LMCs, the correspondences are represented
with numbers.

5.2.2 Image Match

Let C; and C; be the sets of interest points of two images I and J and also let S be a set
with some correctly matched pairs (ax, 5;), called seeds, such that oy € C; and g, € C.
Assume S is given (we show one way to compute it in Section 5.3). These sets are the
inputs for Algorithm 5.1, which computes all the correspondences from C} to C'; starting
from the initial matches in S. The key idea is to increase the number of matchings at
each iteration from matches already computed.

Algorithm 5.1: LMCImageMatching
Input: Set of interest point C; from image I; set of interest point C; from image
J, set of seeds S.
Output: Putative matches.

1 Q<+ S

2 while Q) is not empty do

3 extract match (ay, f;) from @

4 compute correspondences (o, 7s) for o, € LMC(a) and 74 € LMC(p)
5 for each (0,,7s) do

6 if dist(desc(o,), desc(7s)) < dist(desc(o,), desc(pair(o,))) then
7 if (o,,pair(o,)) € @ then

8 | remove (o, pair(o,)) from Q

9 end

10 pair(o,) < 75

11 Q<+ QU (o, Ts)

12 end

13 end

14 end

An auxiliary queue @ is initialized in line 1 of the algorithm with the seeds in S. In the
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example of Figure 5.7a, the set of seeds starts with three correspondences. Line 3 removes
one putative match (ay, §;) from @ and line 4 computes the correspondences of the interest
points in their LMCs (see matching of LMCs in Section 5.2.1). The correspondences in
the LMCs provide new matches (o,,75) in the neighborhoods of «y and ;. In the loop
of line 5, the new matches are checked against possible previous matches of the same
interest points. The loop goes through all (o, 75) obtained checking whether the distance
(dist) between the descriptors (desc) of o, and 7y is closer than the descriptors of o,
and a possible match previously found for it (line 6). The previous match is retrieved by
the function pair. If the descriptors of o, and 7, are closer, then pair(o,) will be set to
75 and the putative match (o,,7) will be inserted into the queue (lines 10 and 11). In
such a way, new matches will be computed from the LMCs of ¢ and 7 in a subsequent
iteration of the outer loop of line 2. The condition in line 7 tests if a previous match of
o is in the queue and, if so, it is removed in line 8.

From the set of seeds, the number of correspondences grows until all interest points are
matched, that is, until the queue ) becomes empty. The matching of LMCs, performed
in line 4, enforces that interest points in a neighborhood of I are matched in the corre-
sponding neighborhood of J. Therefore, the LMC guides the acquisition of new matches
in Algorithm 5.1.

Figures 5.7b, 5.7c and 5.7d depict different iterations in the growing process: initial,
intermediary and final. The initial steps of Figure 5.7b show that the matches follow local
restrictions. In such a manner, it is possible to avoid many incorrect matches as when
using only the information of descriptors to perform the correspondences. Figure 5.7c
shows that the growing fronts from different seeds meet at some point. If the seeds were
correctly initiated, and consequently the matches grew correctly, then the matches at the
boundary of the fronts would agree and the growing process would stop due to the test
of line 6. However, if the matches do not agree, one front will take over another front,
correcting the previous matches. That can happen if one of the seeds is not a true match.
In such a case, the matches will be corrected by the front of the correct seed. That means
that the set S does not necessarily need to contain only correct matches, but at least one.
When the all fronts meet and no better matches are found, the process ends as shown in
Figure 5.7d.

5.3 Experimental Results

In this section, we present experimental results that show the effectiveness of the LMC
to improve the matching of interest points and also to compute a score that characterizes
correct and incorrect matches. The latter result is applied in the selection of seeds for
Algorithm 5.1 and it is part of the setup of parameters for the algorithm.
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(a) (b)
(c) (d)

Figure 5.7: Correspondences growing from initial seed set (a). The LMC locally guides
the matches (b-c¢) until all interest points have correspondences established.

5.3.1 Datasets and Ground Truth

Two datasets were used to evaluate our method. The first dataset contains synthetic
stereo pairs at three different baseline separations and ground truth disparity maps. The
dataset is made available by the University of Alberta and was proposed in the paper [69].
The second dataset consists of pairs of underwater images taken from the bottom of
lakes in Antarctica and they are part of a project between the Computer Science and
Geology Departments of the University of California, Davis [83], with whom we have
been collaborating.

The first dataset is used as a reference set of images since it is known in the literature
to evaluate methods on stereo image pairs and also because the disparity maps make it
possible to directly evaluate the correctness of obtained matches. The set is interesting
to test the requirements of our method stated in the beginning of this chapter. The
synthetic images are built with different types of textures that contain repeated patterns
and similar regions.

The second dataset, due to several reasons, is more challenging in terms of matching
interest points. These are non-calibrated images depicting ridged and peaked morpholo-
gies found on the bottom of lakes that create complex structural formations. In many
cases, similar structures can be found all over the images, making it difficult for local
descriptors to capture the differences between some regions. Besides the morphological
nature of the regions in the images, many other difficulties arise from the acquisition of
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underwater images, such as distortions, illumination differences, and noise produced by
particles in the water. A subset of images from both datasets is shown in Figure 5.8.

(f)

Figure 5.8: Examples of synthetic (a)-(c) and underwater images (d)-(f) used in our
experiments.

Unlike the synthetic pairs, which have an available ground truth, the pairs of under-
water images do not have a known ground truth characterizing matches in the images.
Therefore, based on [62], which addresses a similar problem, we estimate a ground truth
using homography matrices [39]. Given a pair of images to be matched, a set of visually
confirmed matches is chosen and used to compute a homography matrix H. In such a
way, given an interest point p in one image, it is possible to estimate its corresponding
point ¢ in the second image by computing the homographic transformation of p, that is,
q= Hp.

The tested datasets are composed of 90 pair of synthetic images and 21 pairs of un-
derwater images. Both sets were subdivided into subsets of validation images (9 synthetic
pairs and 6 underwater pairs), used to set parameters; and of test images (81 synthetic and
16 underwater images) pairs, used to measure the quality of the matchings. The Morse
complexes and interest points were obtained following the description in Section 5.1.1.
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5.3.2 Evaluation Metrics

In order to evaluate our results, we use metrics based on the number of correct and
false matches, namely recall and 1-precision, since they are widely employed for similar
evaluations [44, 62].

Given the Morse interest points for all of the images in a dataset, two interest points
a and 8 are considered a match if the distance between their descriptors (Chi-squared
distance in our experiments) is below a threshold ¢. A match is true positive if the
interest points correspond to the same physical location (as determined by a ground
truth), whereas a match is false (positive) if the matched interest points correspond to
different physical locations.

The correct correspondence of physical locations is determined by the overlap er-
ror [62]. Suppose A and B are the regions around « and (3, respectively, for which the
descriptors are computed. The overlap of A and B is defined by the ratio of the intersec-
tion and union of the regions €g = 1 — (ANTB)/(AUTB) under a transformation 7'
The transformation 7' is the disparity for the synthetic image pairs and the homography
matrix for the underwater image pairs. As in [62], we assume that a match is correct if
€s < 0.5, so that the area covered by two corresponding regions is less than 50 percent of
the region union.

Recall and 1-precision are defined as [44]:

number of true positives

(5.9)

recall = "
total number of positives

and
number of false positives

(5.10)

1-precision = .
P total number of matches (correct or false)
The total number of positives for the given dataset is computed by comparing the overlap
error of all interest points. The recall versus 1-precision graphs are obtained by varying
the value of ¢.

5.3.3 Method Setup

In this section, we discuss how to tune the following parameters of the matching algorithm:
(i) order of the LMC used to grow matches; (ii) order of the LMC to score matches and
select seeds; (iii) number of seeds.

We used the histogram of oriented gradients (HOG) [23], a well known descriptor, to
describe each interest point of the images. However, the proposed method is not attached
to a specific descriptor.
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Order of LMC to grow matches

This test evaluates the choice of the LMC order to grow the number of matches in Algo-
rithm 5.1. The order is chosen to maximize the confidence of the resulting matches. For
these tests, the seeds for Algorithm 5.1 were visually chosen so that the algorithm grows
from true matches.

The results for the four orders studied are shown in Figure 5.9, both for synthetic
and underwater datasets. The LMC of order 1 achieves the best results for this test.
This behavior can be expected since the local restriction to grow is loosened as the order
increases, allowing farther points to be matched. At lower orders, the local restriction
is stronger, meaning that points that are close to one region of the base image should
correspond to close points in the related region of the pair image. In this case, the LMC
works as a neighborhood analogous to 4-pixel, 8-pixel or 16-pixel neighborhood of an
image, except that in the LMC the neighbors are interest points instead of pixels.
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Figure 5.9: LMC order influence on growing the number of matches. The lower orders
have a higher recall value. Therefore, the LMC-based algorithms performs better if the
neighborhood considered to grow matches is smaller, the search for new correspondences
in related regions between images is more restrict.

Order of LMC to score matches

The second test we performed was to choose an order of the LMC to score matches and
consequently estimate correct and incorrect matches. This is another application of the
LMC we introduce and apply directly to choose seeds for our matching algorithm.
Given two matched interest points oy € M; and 3, € M,, we intend to estimate if
they are a correct match. The distance between their local descriptors, as in SIFT-ratio,
is a weak measure due to the limited information of local descriptors. The LMCs of two
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matched points, however, have relational information that can be used to increase the
knowledge of how reliable their matching is.

If ap and f; are correctly matched, it is expected that their LMCs share similar
structural relations, since the corresponding regions of the images are the same. Therefore,
given a correspondence of the points in their LMCs, it is possible to obtain a measure of
how similar the two patterns are. We propose to compute a matching score as

score( A, 75) = 8{(Ar, 75) | Pr(\;) = Pr(7s)} (5.11)

where (A, 75) are corresponding cells between LMCs that have values Pr(A,) and Pr(7y)
for some property on the structural patterns. The symbol f denotes set cardinality so that
the score counts the number of corresponding cells that agree with respect to property Pr.
The property can be some invariant characteristic shared by the images in one application.
Notice that the range of score values is dependent on the number of points in the LMCs.
Taking Figure 5.10 as an example, we need to find a property that holds for the
pairs of images from our dataset. The images considered in this work present perspective
transformations which do not preserve angles and ratios of lines linking interest points.
Let the central circles be a matched pair of points (ay, ;) to be scored. The other circles
are interest points in the LMCs such that the numbers define their correspondences.
Consider also the horizontal lines based on «; and ;. Due to the nature of the stereo
pairs, the points in the contexts may have significant horizontal displacements relative to
the central point. However, the distances from corresponding points in the LMCs to the
horizontal lines are expected to be similar (see vertical, solid lines in Figure 5.10).

Figure 5.10: Geometrical property for score where corresponding points in a pair of LMCs
have similar distances to the horizontal lines.

We use this fact to score matches. Given a match pair (ay, §;), we define its score as
score(ayg, B))=t{ (o, 7s) | disp(ay, 0, ) — disp(F, 75) < ¢} (5.12)

where disp(ag,0,) (disp(f;,7s)) is the vertical difference from the points o, (75) in the
LMC of ay, (/) to the horizontal lines of ay, (5;). The difference between displacements is
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Table 5.1: Best scores for each order of LMC. For each order of LMC, the best score was
chosen, that is, a correspondence scored with this or a greater value is mostly probable to
be correct (fifth column) and the probability of finding such a correspondence is also high
(fourth column). Higher orders perform better in this case. We find out that an order of
3 and score 11 are good choices for measuring the confidence of correspondences.

Dataset Order Score Number of matches True positives

(from total of matches)

1 2 0.81 0.94

. 9 5 0.84 0.95
Synthetic 3 9 0.85 0.96
4 13 0.85 0.96

1 2 0.44 0.75

2 7 0.56 0.91

Underwater g 11 0.59 0.91
4 15 0.60 0.91

signed to differentiate between points lying below and above the horizontal lines. The con-
stant ¢ controls how much the vertical distance can differ between corresponding points.
For our images, we have found that ¢ = 3 leads to satisfactory results. In our example,
except from interest points identified with values 3 and 8, the displacements of five in-
terest points are approximately the same. Therefore, the score for the matching (o, 5;)
equals 5 and it suggests that the matching is probably a correct one. This is the behavior
studied in the following tests.

The validation images were matched using a 1-NN algorithm and all pairs of matched
points were scored using orders 1 to 4 for the LMC. An adequate choice of the score
is achieved when the number of correct matches becomes significantly larger than the
number of incorrect matches and also the number of correct matches is not too small.

Therefore, for each order we chose the score which returned a considerable amount
of matches with great probability of being a correct one. The results are summarized in
Table 5.1, which shows the best score (column 3) for each order of LMC (column 2) for
the two datasets. Column 3 shows the number of matches from the total expected to have
a score equal to or greater than the chosen score, and column 4 shows the probability of
having a correct match given that the score is equal to or greater than the chosen score.

The scores become more discriminative as the order increases. Orders 3 and 4 are
highly discriminative, however, the results are very similar both for the number of matches
and the probability of a good match. We use order 3 to compute scores, since it achieves
similar behavior when compared to order 4 with less points in the LMC. The chosen score
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was 11 since the number of correct matches is substantially superior than the incorrect
matches and it is a good score for both synthetic and underwater cases (from the score
of 9 of the synthetic images there is only a small reduction in the number of matches to
0.84).

The score measure is specific for the types of images considered in our work. Other
types of images would need another metric for the score or a more general measure could
be pursued by exploring the structure of LMCs differently, possibly a measure based on
graph edition distances [34].

Number of Seeds

We use the previous results to compute seeds for Algorithm 5.1. We intend to choose
k seeds such that the resulting matches are optimized. Particularly, the k seeds should
be mostly correct seeds, so they were randomly chosen from matches agreeing with our
previous choice of order 3 and score 11. The influence of number k of seeds is shown in
Figure 5.11. The matching results become better as the number of seeds increases, but
the gain practically stabilizes after 10 seeds. From 20 to 25 seeds, the difference is very
small, which means that about 20 seeds suffice for the images in our dataset.
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Figure 5.11: Relation between the number of seeds and number of matches. The number
of correctly corresponded points increases with the number of randomly chosen seeds, but
converges near 20 seeds.

5.3.4 Matching Results

In this section, we show that our structural approach is more robust to find matches than
an approach without structural information (1-NN). To select the seeds for our method,
we randomly choose an interest point in one image and match it in the second image
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using the 1-NN approach. The score for the match is computed by using LMC of order
3 and, if it is greater than or equal to 11, the match will be kept as a seed. The process
is repeated until a set of 20 seeds (ideal number from the previous section) is acquired.
The seeds computed in such a manner are the inputs for Algorithm 5.1.

The graph of Figure 5.12 shows the average results for all the test images. The nearest
neighbor and LMC matching algorithms are performed using three different descriptors:
a simple histogram of gray values (referred to as HGV), HOG descriptor and SIFT de-
scriptor. We show that the LMC-guides matching is able to improve the results for weak
descriptors (HGV) and strong descriptors (HOG, SIFT). When using the LMC-based
match, the respective curve for a given descriptor is pushed towards the top-left cor-
ner to a greater degree when compared to the nearest neighbor matching and the same
descriptor.
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Figure 5.12: Average results for all the test images using HGV, HOG and SIF'T descriptors.
The recall of the LMC-based matching is higher, independent of the descriptor, when
compared to the results obtained using the 1-NN matching. The conflicts of descriptors
are avoided with the LMC neighborhood restriction, allowing to obtain more correct
correspondences.

The HGV is considered to obtain a baseline for the results. Since the descriptor is
weak, many incorrect correspondences are expected, specially for the challenging images
such as the ones from the underwater dataset. The lines of the matching driven by the
LMC show the improvement in correct matches when compared to the nearest neighbor
approach.

The HOG and SIFT descriptors, as expected, improve the results for both methods
(ours and nearest neighbor) when compared to the HGV. However, the LMC method
still is able to obtain further improvement for the matches. Such a behavior reflects the
properties of the structure-based matching carried out by our method. The number of
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correct matches increases since conflicts of descriptors (interest points in different regions
of an image but with close descriptors) are avoided with the neighborhood restriction to
grow matches. Such behavior can be noticed in Figure 5.13, the solid lines show examples
of matches that were correctly computed using the LMC-based algorithm while incorrectly
corresponded with 1-NN.

Figure 5.13: Examples of interest points correctly corresponded due to the use of the
LMC (solid lines) but incorrectly corresponded by using the nearest neighbor approach
(dashed lines).

The results show that LMC is a neighborhood relation that can be used to support
image processing tasks. The correspondence of the images tested shows a particular
case in which exploring the LMC helps traditional approaches. The correspondence algo-
rithms described is limited to the types of images and transformations in the experimented
datasets. Rotations between images could also be evaluated with the current method since
the matching between LMCs is not dependent on the image type and the score could be
adapted to consider the direction of the central points in LMCs to find the horizontal
base line. Scale transformations is still a challenge that would require further studies on
computing multiscale Morse complexes and neighborhood relations.

The complexity of the correspondence algorithm can be divided into three steps: the
construction of a heap for the 1-NN used to find seeds; the process of actually finding
seeds and the matching given by Algorithm 5.1. The heap construction can be done in
linear time on the number of interest points. The results on score and seeds suggest that
we have more than a 50% chance of finding a seed at each random run of the 1-NN.
This expectation has been confirmed by our experiments and, therefore, for 20 seeds we
expect the process to run in O(klogn) with k& approximately 40 and n features in a LMC.
Finally, the computation of correspondences empirically suggests a linear time algorithm
for small orders of the LMC. As the order increases, however, the constant multiplying the
linear function can produce drastic augments on the computational time. The method is
bounded by the SVD algorithm and, therefore, would take O(mn?) time if we had LMCs
with all the interest points in the images, m in the first image and n in the second.






Chapter 6

Conclusions and Future Work

In this thesis, we have presented algorithms for computing the discrete Morse complex
of 2-dimensional images. The complex is modeled by the quad-edge data structure. We
have also presented a topological operator, the Local Morse Context (LMC), to obtain
neighborhoods of interest points.

The presented method is optimal since only paths in a vector field that may lead to
paths in a Morse complex are processed. The algorithms properly deal with merging and
branching cases and produce a consistent representation of the quad-edge model of the
complex. The proposed simplified complex is easy to manipulate and useful to compute
local topological operations. Furthermore, the model used for the complex is suitable
for visualization tasks. Therefore, the way the complexes are modeled allows efficient
numerical and graphical computations.

Theoretical and applied results have been presented to show the effectiveness of the
method. The proposed complex is suitable for the computation of persistent Betti num-
bers [99], removal of topological noise [93] and acquisition of hierarchies of the discrete
Morse complex [6, 26].

The LMC has been applied to find correspondences between interest points of stereo
image pairs and to compute a measure for quantifying the confidence of matched points.
This measure, denominated score, is effective for selecting matched pairs as seeds from
which the number of matches is grown.

The matching algorithm explores the LMC neighborhood to produce correspondences
in images agreeing with local proximity restrictions. As a consequence, the use of LMC
avoids incorrect matches when the limitations of local descriptors do not allow a discrim-
ination between various interest points. Finally, the LMC makes it possible to explore
the topological relations between interest points in a general way that can be used for
different types of images and applications.

Computational topology is a challenging field in computer science with many open
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research possibilities involving algorithmic methods, modeling and applications in compu-

tational geometry, graphics, robotics, structural biology, and chemistry. Some directions

for future work are listed below:

a)

d)

Algorithms: the nature of the developed algorithms suggests that parallelizations
can be performed to improve computations. All the algorithms we introduced for
constructing the discrete Morse complexes are based on local computations, involv-
ing a cell, its faces or cofaces, and just a few other cells connected to the previ-
ous ones. Therefore, a speed up in the algorithms is expected to be achieved by
treating these computations simultaneously for different paths and treating prop-
erly cases such as merges and branches. The extension of the algorithms and data
structures for 3-dimensional images or even n-dimensional functions would be a
challenging task. An extension and a generalization of the quad-edge are proposed
in the works [24, 56]. Images in 3-dimensions are obtained, for instance, in phys-
ical simulations such as fluid dynamics, and from medical imagery such as tissue
sections.

Persistent homology applications: the persistent homology computed over Morse
complexes is another point of future studies. Taking medical imagery again as an
example, the persistent homology can be useful in the discrimination of patterns and
classification of cells (here, as a biological concept) for computer-aided diagnosis.
These types of microscopic images usually present variations in molecules that are
important for the identification of diseases. The topological structure captured by
persistent homology diagrams seems to be helpful in such case since it represents the
prominence of a feature and can quantify features across different scales simultane-
ously. Nonetheless, a recurrent problem in such images is the presence of noise due
to the acquisition process. The theory of persistence homology deals with noise [93].
Cohen-Steiner et al. [18] show that the persistence diagram is stable (noise is not
a problem to capture the most important topological features), providing a useful
tool in the analysis of noisy signals.

Multiscale neighborhood: the discrete Morse complexes presented are computed at
a specific scale. Similar to what we have discussed in the paper [22], a pyramid of
images [82], such as the pyramid of Gaussians [57], can be used for computing Morse
complexes at various scales. However, this would not be an efficient computation.
We intend to study how to compute and model different scales of the Morse com-
plexes such that the neighborhood can be generalized to multiple scales and applied
to the correspondence of images under scale transformations.

General scoring correspondences: the presented score measure is dependent on the
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definition of a geometrical property shared by the type of images being studied. It
is interesting to produce a type of score measure that does not need adaptation for
every other type of image that may arise. This measure could be influenced by the
graph matching algorithm. For example, if the score is a measure computed for the
k-most similar correspondences between LMCs. In such a case it is important to we
should guarantee that LMCs have at least k interest points and that k is enough to
produce a good measure.

Inter LMCs correspondences: the literature of graph matching is very extensive.
We have considered a method that works based on complete graphs so that the
1-cells connecting critical cells are not taken into consideration. There are some
graph matches based on edition distances that are worth being experimented. The
1-cells introduce restrictions on how the points can be corresponded and, therefore,
the correspondence between LMCs is stronger. Another consideration about graph
matches is the associated time cost, which should also be investigated so that LMCs
of higher orders can be used.

Descriptors based on LMCs: an interesting investigation topic is how to produce
topological descriptors based on the LMCs. Topological descriptors based on per-
sistence, such as barcodes, have been proved useful for some image processing ap-
plications. These are commonly descriptors for the images as a whole or for shapes.
For the LMCs, the descriptor should consider the local point persistence.

LMC order estimation: we intend to apply automatic optimization methods so that
the orders of LMCs can be learned from the images.
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