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Abstract

In 1971, Fulkerson proposed a conjecture that states that every bridgeless cubic graph has

six perfect matchings such that each edge of the graph belongs to precisely two of these

matchings. Fulkerson’s Conjecture has been challenging researchers since its publication.

It is easily verified for 3-edge-colourable cubic graphs. Therefore, the difficult task is to

settle the conjecture for non-3-edge-colourable bridgeless cubic graphs, called snarks.

In this dissertation, Fulkerson’s Conjecture and snarks are presented with emphasis

in their history and remarkable results. We selected some results related to Fulkerson’s

Conjecture, emphasizing their reach and connections with other conjectures. It is also

presented a brief history of the Four-Colour Problem and its connections with snarks.

In the second part of this work, we verify Fulkerson’s Conjecture for some infinite

families of snarks constructed with Loupekine’s method using subgraphs of the Petersen

Graph. More specifically, we first show that the family of LP0-snarks satisfies Fulkerson’s

Conjecture. Then, we generalise this result by proving that Fulkerson’s Conjecture holds

for the broader family of LP1-snarks. We also extend these results to even more general

Loupekine Snarks constructed with subgraphs of snarks other than the Petersen Graph.
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Resumo

Em 1971, Fulkerson propôs a seguinte conjetura: todo grafo cúbico sem arestas de corte

admite seis emparelhamentos perfeitos tais que cada aresta do grafo pertence a exatamente

dois destes emparelhamentos. A Conjetura de Fulkerson tem desafiado pesquisadores

desde sua publicação. Esta conjetura é facilmente verificada para grafos cúbicos 3-aresta-

coloráveis. Portanto, a dificuldade do problema reside em estabelecer a conjetura para

grafos cúbicos sem arestas de corte que não possuem 3-coloração de arestas. Estes grafos

são chamados snarks.

Nesta dissertação, a Conjetura de Fulkerson e os snarks são introduzidos com ênfase

em sua história e resultados mais relevantes. Alguns resultados relacionados à Conjetura

de Fulkerson são apresentados, enfatizando suas conexões com outras conjeturas. Um

breve histórico do Problema das Quatro Cores e suas relações com snarks também são

apresentados.

Na segunda parte deste trabalho, a Conjetura de Fulkerson é verificada para algumas

famı́lias infinitas de snarks constrúıdas com o método de Loupekine, utilizando subgrafos

do Grafo de Petersen. Primeiramente, mostramos que a famı́lia dos LP0-snarks satisfaz

a Conjetura de Fulkerson. Em seguida, generalizamos este resultado para a famı́lia mais

abrangente dos LP1-snarks. Além disto, estendemos estes resultados para Snarks de

Loupekine constrúıdos com subgrafos de snarks diferentes do Grafo de Petersen.
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Chapter 1

Introduction

The mathematician’s patterns, like

the painter’s or the poet’s must be

beautiful; the ideas, like the colors or

the words must fit together in a

harmonious way. Beauty is the first

test: there is no permanent place in

this world for ugly mathematics.

G. H. Hardy

Graph Theory is a very fertile field of mathematics. Graphs are flexible structures

for representing binary relations on an arbitrary set of objects. This characteristic al-

lows graphs to be used in modeling many real-life situations and systems. Graph Theory

presents an enormous diversity of problems to be explored. The great intellectual appeal

of the area, and why not say its aesthetics, have attracted many prominent researchers.

Applicability of Graph Theory to practical problems also creates broad interest in profes-

sionals of other areas. Fulkerson’s Conjecture, which is the main subject of this work, is

a problem of primarily theoretical interest. Before presenting Fulkerson’s Conjecture, it

is necessary to introduce some basic concepts.

A graph G is an ordered triple (V (G), E(G), ψG) composed of a nonempty set of

vertices V (G), a set of edges E(G) disjoint from V (G), and an incidence function ψG that

associates each edge with an unordered pair of not necessarily distinct vertices. A graph

is finite if V (G) and E(G) are finite sets. In this text, all graphs are finite. An element

of G is either a vertex or an edge of G. Let e be an edge of G, and let u and v be vertices

of G. If ψG(e) = {u, v}, then u and v are the ends of e. An edge is incident with its ends,

and vice versa. Two vertices incident with a common edge are adjacent. Similarly, two

edges incident with a common vertex are also adjacent. If ψG(e) = {u, u} = {u}, then

1



2 Chapter 1. Introduction

e is a loop. Distinct edges with the same ends are multiple or parallel. A graph with no

loops and no multiple edges is a simple graph.

In this work, a drawing of a graph G is a graphical representation of G in the plane.

In a drawing of a graph, each vertex is a different point of the plane, and each edge is

a simple curve joining the points that represent its ends. Figure 1.1 shows drawings of

some graphs. Except for the first graph, all graphs of the figure are simple graphs.

Let v be a vertex of G. The degree of v, denoted by dG(v), or simply d(v), is the number

of edges incident with v, loops counted twice. A graph is k-regular if all its vertices have

degree equal to k. Sometimes, the term valency is used for degree and k-valent is used

instead of k-regular. A 3-regular graph is also called a cubic graph. Observe that the last

three graphs of Figure 1.1 are cubic. Cubic graphs became very important in the context

of the Four-Colour Problem, as discussed in Chapter 2.

An edge e of G is a cut edge or bridge if there is a partition of V (G) into two sets U

and W such that e is the only edge with one end in U and one end in W . The leftmost

graph of Figure 1.1 has a bridge.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Figure 1.1: Examples of graphs. The first graph has a loop and parallel edges. The others
are simple graphs.

A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G), E(H) ⊆ E(G),

and ψH is the restriction of ψG to E(H). Graph G is said to contain graph H , and H is

said to be contained in G. If H ⊆ G and V (H) = V (G), then H is a spanning subgraph

of G. Moreover, if spanning subgraph H of G is k-regular, then H is a k-factor of G. A

graph with vertex set X ⊆ V (G) and edge set comprising every edge of G with both ends

in X is an induced subgraph of G, denoted by G[X].

A simple graph is a path if its vertices can be arranged in a (linear) sequence such that

two vertices are adjacent if and only if they are consecutive in the sequence. The first and

last vertices of the sequence are the ends of the path. If x and y are the ends of a path

P , then P is an xy-path or a path from x to y. Moreover, the vertices of V (P ) \ {x, y} are

the internal vertices of P . A cycle on three or more vertices is a simple graph such that

its vertices can be arranged in a cyclic sequence with the same conditions as those of a
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path. A cycle on one vertex is comprised by a single vertex and a loop, and a cycle on two

vertices consists of a pair of vertices joined by two parallel edges. The length of a path or

a cycle is its number of edges. The distance between two vertices u and v of a graph G is

the minimum length of a uv-path contained in G. The girth of G is the minimum length

of a cycle contained in G.

A matching M of a graph G is a subset of E(G) such that, for every pair e, f ∈ M , e

and f are not adjacent. Set M is a perfect matching if every vertex of G is incident with

an edge of M . Figure 1.2 exhibits some examples of matchings. Matchings have attracted

continuous interest in Graph Theory. The first important result in the area, due to Julius

Petersen [74], states that every bridgeless cubic graph has a perfect matching.

Figure 1.2: Examples of matchings. The two rightmost drawings show perfect matchings.

There is a class of Graph Theory problems that use the notion of colouring elements

of a graph. Colouring problems are extremely common and there is a large variety of

them. A k-edge-colouring of a graph G is an assignment of k colours to the edges of G

such that every two adjacent edges receive distinct colours. The chromatic index of G,

denoted by χ′(G), is the least number k for which G has a k-edge-colouring. Suppose an

edge-colouring of G, and let c be one of its colours. The set of edges of G with colour c is

a colour class. Note that every colour class is a matching. Figure 1.3 shows an example

of an edge-colouring.

1
1

1

22

2
3 3

3

Figure 1.3: A 3-edge-colouring of a cubic graph on colours 1, 2, 3.

Notice that the chromatic index of a cubic graph is at least three, since all its vertices

have degree three. Moreover, in a cubic graph with a 3-edge-colouring, each colour class

is a perfect matching.
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A cover of a graph G is a family F of subgraphs of G such that

⋃

H∈F

E(F ) = E(G).

If every subgraph of F is a path, then F is a path cover. Similarly, if every subgraph

of F is a cycle, then F is a cycle cover. A cover of a graph G is uniform if each edge

of G belongs to the same number of subgraphs of the cover. If this number is k, then

the cover is a k-cover. A 1-cover, which is a cover such that any two of its subgraphs

are edge-disjoint, is also called a decomposition. A 2-cover is also called a double cover.

Given a cover F , if E(F ) is a perfect matching for every F ∈ F , then F is a cover by

perfect matchings. The notion of cover is frequent in Graph Theory. For instance, the

Cycle Double Cover Conjecture [44], independently formulated by George Szekeres [85]

and Paul Seymour [82], is a famous unsolved problem. This conjecture states that every

bridgeless graph has a double cover by cycles.

A 3-edge-colouring of a cubic graph is a decomposition by perfect matchings. A cubic

graph G with χ′(G) > 3 does not admit such a decomposition. However, every edge of

a bridgeless cubic graph belongs to a perfect matching, as shown in Section 1.2. Hence,

G admits a cover by perfect matchings. Generalising the fact that every bridgeless cubic

graph with chromatic index three has a 1-cover by perfect matchings, it is natural to

question whether every bridgeless cubic graph has a uniform cover by perfect matchings.

A result due to Jack Edmonds [23], published in 1965, and a result due to Seymour [81],

published in 1979, show that this question has positive answer. As an example, the

Petersen Graph admits a double cover by perfect matchings, as shown in Figure 1.4.

1,2

1,3

1,41,5

1,6

2,3

2,4 2,5

2,6

3,4

3,5

3,6

4,5

4,6

5,6

Figure 1.4: A double cover by perfect matchings. Each number represents a matching.

The above discussion leads to a conjecture published by Delbert Fulkerson [30] in the

Mathematical Programming journal in 1971. Fulkerson’s Conjecture states that every

bridgeless cubic graph admits a double cover by six perfect matchings.
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At the end of the 1970s, a few partial results on Fulkerson’s Conjecture were achieved

[16, 81]. In the 1980s and 1990s, the problem remained mostly unexplored. During the

decade of 2000 to 2010, new partial results and several results on related conjectures were

published [28, 38, 65, 71]. Some of these results are presented in Chapter 3. Due to its

great difficulty, Fulkerson’s Conjecture is one of the most celebrated open problems in

Graph Theory.

In the remaining of this chapter, we give further definitions and results in Graph

Theory, required for a deeper discussion of our problem. Definitions used and not given

in this text can be found in the book Graph Theory, by Bondy and Murty [8]. At the end of

this chapter, we present Fulkerson’s Conjecture in greater detail. Fulkerson’s Conjecture

is restricted to a special class of graphs called snarks, which became important in the

context of the Four-Colour Problem. Chapter 2 provides a brief presentation of the Four-

Colour Problem, establishing the initial motivation for the study of snarks. It includes

a short introduction to topological maps and planar graphs. Then, the first snarks are

presented, followed by descriptions of other families and methods for the construction of

snarks. Chapter 3 presents results, as well as other conjectures, related to Fulkerson’s

Conjecture. The results achieved in this work are described in Chapter 4, and final

conclusions are the subject of Chapter 5.

1.1 Basic concepts

In this section, we introduce the definitions and results explicitly used in this text. The

material presented here is basic and can be found in any textbook of Graph Theory.

Let G = (V (G), E(G), ψG) be a graph. Whenever there is no ambiguity, V (G) may

also be denoted simply by V , E(G) by E, and ψG by ψ. The order of G is the number of

vertices of G, and the size of G is the number of edges of G. Let e be an edge of G with

distinct ends u and v. Then, u and v are neighbours and e is said to link or join u and v.

If G is a simple graph, each edge of G is uniquely identified by its ends. Thus, an edge

e with ends u and v is also denoted by uv or vu, leaving ψG implicit. Many problems in

Graph Theory are solely concerned with or can be reduced to simple graphs. Fulkerson’s

Conjecture is an example of them.

The maximum degree of a graph G, denoted by ∆(G), is the number max{dG(v) : v ∈

V (G)}. The minimum degree of G, denoted by δ(G), is the number min{dG(v) : v ∈

V (G)}. If every vertex of G has even (odd) degree, G is an even (odd) graph.

The following theorems are simple yet fundamental results of Graph Theory, and are

used in this text. They are presented here without proofs.
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Theorem 1.1. Let G be a graph. Then,

∑

v∈V (G)

d(v) = 2|E(G)|.

Theorem 1.2. Let G be a graph. If δ(G) ≥ 2, then G has a cycle.

Theorem 1.3. If a connected graph G has no cycles, then |E(G)| = |V (G)| − 1.

Theorem 1.4. An edge e of a graph G is a bridge if and only if e does not belong to a

cycle of G.

Let G be a graph and let S ⊆ V (G). The graph obtained by deleting the vertices of

S and all their incident edges from G is denoted by G \ S. If S = {v}, then G \ S is also

denoted by G− v. Similarly, if F ⊆ E(G), then G \F is the graph obtained by removing

all edges of F from G. If F = {e}, then G \ F is also written as G − e. In order to

identify nonadjacent vertices u, v ∈ V (G), first remove them and add a vertex w. Then,

for each loop of G incident with u or v, add a loop incident with w; and for each nonloop

e = xy of G, x ∈ {u, v}, add e′ incident with w and y. Edges e and e′ are equivalent. To

contract a nonloop e ∈ E(G), remove e and identify its ends. To shrink a set of vertices

X ⊆ V (G), remove every edge with both ends in X and then identify the vertices of X

into a single vertex. Finally, to suppress a degree-two vertex v ∈ V (G), remove v and add

an edge incident with the two neighbours of v.

The set of all edges of G with exactly one end in X ⊆ V (G) is an edge cut of G and is

denoted by ∂(X). Figure 1.5 shows examples of edge cuts. If X = {v}, then ∂(X) is also

denoted by ∂(v), and it is a trivial edge cut. An edge cut with k edges is a k-edge cut.

Observe that if e ∈ E(G) is a bridge, then {e} is an edge cut of G. A graph G is connected

if ∂(X) 6= ∅ for every X ⊂ V (G). A connected component, or simply a component, of G

is a maximal connected subgraph of G. Note that if ∂(X) is a nonempty edge cut of G,

then G \ ∂(X) has more components than G.

Figure 1.5: Examples of edge cuts.

Theorem 1.5. Let G be an odd graph. If X ⊆ V (G), then |∂(X)| ≡ |X| (mod 2).
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Proof. Let G and X be as stated in the hypothesis, and let H = G[X]. By Theorem 1.1,
∑

v∈V (H) dH(v) = 2|E(H)|. This sum is equal to

∑

v∈X

dG(v) − |∂(X)|. (1.1)

Because every vertex of X has odd degree, term
∑

v∈X dG(v) has the same parity as

|X|. Since expression (1.1) is even, its two terms have the same parity. Henceforth,

|∂(X)| ≡ |X| (mod 2).

1.2 Matchings

Recall that a matching M of a graph G is a subset of pairwise nonadjacent edges of E(G).

The two ends of an edge of M are matched by M or M-matched. If a vertex v of G is

incident with an edge of M , then v is saturated by M or M-saturated. Otherwise, v is

M-unsaturated. Note that M is a perfect matching if every vertex of G is M-saturated.

A matching M∗ of G is maximum if for every matching M of G, |M | ≤ |M∗|. Since each

edge of M is incident with exactly two vertices, the number of vertices saturated by M is

even and equal to 2|M |. The following theorem relates matchings and edge cuts of cubic

graphs.

Theorem 1.6. Let G be a cubic graph and X ⊆ V . Let M be a matching of G such that

every vertex of X is saturated by M . Then |M ∩ ∂(X)| ≡ |∂(X)| (mod 2).

Proof. Let G, X and M be defined as in the hypothesis. Let MX be the set of edges of M

with both ends in X. Thus, |X| = 2|MX |+|M∩∂(X)|. Hence, |X| ≡ |M∩∂(X)| (mod 2).

By Theorem 1.5, |X| ≡ |∂(X)| (mod 2). Thus, |M ∩ ∂(X)| ≡ |∂(X)| (mod 2).

An odd component of a graph G is a connected component of G with an odd number

of vertices. An even component is defined analogously. The number of odd components

of G is denoted by o(G). Graph G is matchable if it has a perfect matching, and G is

hypomatchable if G− v is matchable for every v ∈ V (G). A vertex of a graph is essential

if it is saturated by every maximum matching of the graph.

In this section, we present the characterisation of matchable graphs due to William

Tutte [88]. The proof of Tutte’s Theorem given here was taken from the book of Bondy and

Murty [8]. Other interesting proofs of Tutte’s Theorem are provided by László Lovász [64]

and Ian Anderson [1].

Let M be a matching of G, and S ⊆ V (G). If an odd component of graph G \ S has

all of its vertices saturated by M , then at least one vertex of the component is matched
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with a vertex of S. Moreover, at most |S| vertices of G \ S are matched with vertices of

S. Therefore, if U denotes the set of M-unsaturated vertices of G, then for all S ⊆ V (G),

|U | ≥ o(G \ S) − |S|. (1.2)

If equality holds in (1.2), i.e.,

|U | = o(G \ S) − |S|, (1.3)

then M is a maximum matching and S is a barrier of G.

Lemma 1.7. Let G be a graph with an essential vertex v. Let B be a barrier of G − v.

Then, B ∪ {v} is a barrier of G.

Lemma 1.8. Every connected graph without essential vertices is hypomatchable.

Lemma 1.9. Every graph has a barrier.

Now we are ready to present Tutte’s Theorem.

Theorem 1.10 (Tutte’s Theorem). A graph G has a perfect matching if and only if

o(G \ S) ≤ |S| for all S ⊆ V (G).

Proof. Suppose that G has a perfect matching. By (1.2), o(G\S) ≤ |S| for all S ⊆ V (G).

Conversely, suppose that G has no perfect matching. By Lemma 1.9, G has a barrier B.

Let M be a maximum matching of G. If U denotes the set of vertices of G not saturated

by M , then |U | = o(G \B) − |B|. Thus, o(G \B) = |B| + |U |. Because M is not perfect,

|U | is greater than zero. Therefore, o(G \B) > |B| and the result follows.

In 1891, Petersen [74] provided the first significant result on perfect matchings, which

is presented here as a corollary of Tutte’s Theorem.

Theorem 1.11 (Petersen’s Theorem). Every bridgeless cubic graph has a perfect match-

ing.

Proof. Let G be a bridgeless cubic graph. By Tutte’s Theorem, it is sufficient to show

that o(G \ S) ≤ |S| for every S ⊆ V (G). Let S ⊆ V (G), and let V1, V2, . . . , Vk be the

vertex sets of the odd components of G \ S. By Theorem 1.5, |∂(Vi)| is odd, 1 ≤ i ≤ k.

Since G is bridgeless, |∂(Vi)| ≥ 3. Also, ∂(Vi) ⊆ ∂(S). Therefore, |∂(S)| ≥ 3k. Since each

vertex of S has degree three, |∂(S)| ≤ 3|S|. Thus, 3o(G \ S) = 3k ≤ |∂(S)| ≤ 3|S|.

Theorem 1.12. Every bridge of a cubic graph belongs to every perfect matching of the

graph.
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Proof. Let e = uv be a bridge of a cubic graph G. Let M be a perfect matching of G.

Consider graph G − e, and let Gu be the component of G − e containing u. The sum of

the degrees of all vertices of Gu is even. Since u is the only vertex of Gu with degree two,

this sum is equal to 3(|V (Gu)| − 1) + 2. Thus, |V (Gu)| is odd. At least one vertex of Gu

is matched with a vertex not in Gu. Therefore, e ∈ M , and the result follows.

Theorem 1.13. Every edge of a bridgeless cubic graph belongs to a perfect matching.

Proof. Let G be a bridgeless cubic graph, and let uv be an edge of G. It is sufficient to

show that G′ = G \ {u, v} has a perfect matching M ′ since, in this case, M ′ ∪ {uv} is a

perfect matching of G.

Suppose that G′ does not have a perfect matching. By Tutte’s Theorem, there exists

S ′ ⊆ V (G′) such that o(G′ \ S ′) > |S ′|. Let S = S ′ ∪ {u, v}. By Theorem 1.11, G has a

perfect matching. This implies that o(G \ S) ≤ |S|. Moreover, o(G′ \ S ′) = o(G \ S) = k

since G′ \ S ′ = G \ S. We conclude that

|S| − 2 < k ≤ |S|. (1.4)

By the same reasoning in the proof of Theorem 1.11, 3k ≤ |∂(S)|. Moreover, |∂(S)| ≤

3|S| − 2, since G is cubic, and uv ∈ E(G). Therefore,

3k ≤ |∂(S)| ≤ 3|S| − 2. (1.5)

By (1.4) and (1.5), we conclude that k = |S| − 1 and 3|S| − 3 ≤ |∂(S)| ≤ 3|S| − 2. By

Theorem 1.5, |∂(S)| ≡ |S| (mod 2), which implies that |∂(S)| 6= 3|S| − 3. Therefore,

|∂(S)| = 3|S| − 2.

Let V1, . . . , Vk be the vertex sets of odd components of G \ S. By Theorem 1.5, each

|∂(Vi)| is odd. Since G is bridgeless, each |∂(Vi)| ≥ 3. Suppose there exists Vi with

|∂(Vi)| ≥ 5. Thus,

|∂(S)| ≥ |
k

⋃

i=1

∂(Vi)| =
k

∑

i=1

|∂(Vi)| ≥ 3(k − 1) + 5 = 3k + 2 = 3|S| − 1,

contradicting the fact that |∂(S)| = 3|S|−2. Therefore, |∂(Vi)| = 3 for every i and |∂(S)|−

|
⋃k

i=1 ∂(Vi)| = 1. This implies that there exists exactly one edge of ∂(S) connecting S and

an even component of G \ S, which contradicts the fact that G is bridgeless. Therefore,

G′ has a perfect matching, and the result follows.
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1.3 Graph colourings

Colouring problems are extraordinarily frequent in Graph Theory. Graph colourings were

in great part motivated and developed due to the Four-Colour Problem. In this section,

we present some basic definitions and a few fundamental results related to the idea of

colouring vertices and edges of a graph.

A vertex-colouring of a graph G is an assignment of colours to the vertices of G such

that adjacent vertices receive different colours. In other words, a vertex-colouring of a

graph G is a mapping

π : V (G) → C,

with C a set of colours, such that for all adjacent u, v ∈ V (G), π(u) 6= π(v). If |C| = k,

then π is a k-vertex-colouring. A graph is k-vertex-colourable if it has a k-vertex-colouring.

Only loopless graphs admit vertex-colourings. Set C of colours is commonly taken as

{1, . . . , k}. A vertex-colouring of a graph G can be seen as a partition {V1, . . . , Vk} of

V (G), where colour class Vi is the set of vertices assigned colour i. Vertices in the same

colour class are pairwise nonadjacent.

The chromatic number of a graph G, denoted by χ(G), is the minimum k for which

G admits a k-vertex-colouring. If G is a cycle with odd order or a complete graph, then

χ(G) = ∆(G) + 1. Brooks’ Theorem [10] states that all other connected graphs have

chromatic number bounded by ∆(G).

Recall that an edge-colouring of G is a mapping

π : E(G) → C,

with C a set of colours, such that for all adjacent e, f ∈ E(G), π(e) 6= π(f). Moreover,

recall that the chromatic index χ′(G) of G is the minimum k for which G is k-edge-

colourable. Consider u ∈ V (G), with d(u) = ∆(G). In any edge-colouring of G, the

∆(G) edges incident with u receive distinct colours. Therefore, χ′(G) ≥ ∆(G). Vizing’s

Theorem [90] gives the upper bound for the chromatic index of simple graphs.

Theorem 1.14 (Vizing’s Theorem). For any simple graph G, χ′(G) ≤ ∆(G) + 1.

A simple graph G is Class 1 if χ′(G) = ∆(G). Otherwise, χ′(G) = ∆(G) + 1, and

G is Class 2. The Petersen Graph, depicted in Figure 1.6 with a 4-edge-colouring, is a

very well known Class 2 cubic graph. It is the smallest bridgeless cubic simple graph with

chromatic index greater than three.

Let {M1, . . . ,Mk} be a k-edge-colouring of a graph G. If G is k-regular, then each

vertex of G is incident with an edge of matching Mi, with 1 ≤ i ≤ k. Therefore, a k-edge-

colouring of a k-regular graph is a partition of its edge set into k perfect matchings. The

following lemma is due to Danilo Blanuša [7], Blanche Descartes [21], and Petersen [75].
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Figure 1.6: The Petersen Graph, with a 4-edge-colouring.

It is very useful in the construction of Class 2 cubic graphs, as shown in Chapter 2, and

it is a consequence of Theorem 1.6.

Lemma 1.15 (The Parity Lemma). Let G be a cubic graph with a 3-edge-colouring π, and

let ∂(X), X ⊆ V (G), be an edge cut of G. Denote by mi the number of edges e ∈ ∂(X)

with π(e) = i. Then, mi ≡ |∂(X)| (mod 2) for all i.

Proof. Let G be a cubic graph with a 3-edge-colouring π. Consider an edge cut ∂(X),

X ⊆ V (G). Set Mi = {e ∈ E(G) : π(e) = i} is a perfect matching. Thus, Mi saturates

every vertex of X, and mi = |Mi ∩ ∂(X)|. By Theorem 1.6, mi ≡ |∂(X)| (mod 2).

1.4 Fulkerson’s Conjecture

As it was presented in the beginning of this chapter, a natural question which arises in

the context of edge-colourings of regular graphs is: if a k-regular graph G has χ′(G) > k,

does G admit a uniform cover by perfect matchings? Or, in general: is it true that every

k-regular graph admits a uniform cover by perfect matchings? The answer to this question

is not positive in general, since there are regular graphs with odd number of vertices (e.g.

cycles with odd order). However, the problem can be limited to regular odd graphs, since

these graphs have even order.

The problem of determining whether every regular odd graph has a uniform cover by

perfect matchings can be further restricted to cubic graphs. By Theorem 1.12, a bridge

of a cubic graph belongs to every perfect matching of the graph. Thus, cubic graphs

with a bridge do not have a cover by perfect matchings (and in particular are not 3-edge-

colourable). On the other hand, Theorem 1.13 asserts that every edge of a bridgeless cubic

graph belongs to a perfect matching. Henceforth, every bridgeless cubic graph has a cover

by perfect matchings. As a corollary of a result due to Edmonds [23], every bridgeless
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cubic graph has a uniform cover by perfect matchings. A different form of Edmonds’

result was stated and proved by Seymour [81], and it is discussed in Chapter 3.

This fact naturally leads to a quest for the least integer k such that every bridgeless

cubic graph has a k-cover by perfect matchings. Observe that k > 1. Moreover, a k-cover

by perfect matchings of a cubic graph is composed of exactly 3k perfect matchings.

Problem 1.16. What is the least integer k such that every bridgeless cubic graph has a

k-cover by perfect matchings?

In 1971, Fulkerson [30] exhibited a double cover by six perfect matchings of the Pe-

tersen Graph (Figure 1.7) and posed the question whether every bridgeless cubic graph

would have a double cover by six perfect matchings.1

Conjecture 1.17 (Fulkerson’s Conjecture). Every bridgeless cubic graph admits a double

cover by six perfect matchings.

Seymour [81] claimed that this was first conjectured by Claude Berge, although it was

first published by Fulkerson. For this reason, this conjecture is also called Berge-Fulkerson

Conjecture [50]. It is a very challenging problem for which there are not many partial

results [16, 28, 38, 65, 71, 81].

1,2

1,3

1,41,5

1,6

2,3
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3,6

4,5

4,6

5,6

Figure 1.7: A double cover by six perfect matchings of the Petersen Graph.

Suppose G is a 3-edge-colourable cubic graph. Then, G has a 1-cover by three perfect

matchings. A double cover by six perfect matchings of G can be obtained by duplicating

each perfect matching of the 1-cover. Thus, it remains to verify Fulkerson’s Conjecture

for brigdeless cubic graphs with chromatic index greater than three. These graphs relate

to various important problems in Graph Theory and have a special denomination: snarks.

The interest for these graphs began in the context of the Four-Colour Problem. Snarks

and the Four-Colour Problem deserve special attention and are introduced in Chapter 2.

1Bondy and Murty [8] argued that Fulkerson’s enquiry was motivated by questions concerning the
polyhedra defined by the incidence vectors of perfect matchings.



Chapter 2

The Four-Colour Problem and

Snarks

Snarks are a special class of graphs related to important problems in Graph Theory.

Snarks appeared and acquired great importance in the context of one of the most famous

mathematical enigmas, the Four-Colour Problem. In its original version, the problem

deals with colouring geographical maps. In a simple way, a geographical map can be

seen as a drawing that partitions the plane into a number of non-overlapping regions

(countries). A region is delimited by its frontier. Colouring a map involves attributing a

colour to every region of the map. Figure 2.1 shows an example.

Figure 2.1: A colouring of the map of South America.

13
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The Four-Colour Problem consists in determining whether four colours are sufficient

to colour every map such that any two neighbouring regions, that is, two regions sharing

a portion of their frontiers, have different colours. The assertion that four colours suffice

became known as the Four-Colour Conjecture.

The Four-Colour Conjecture: At most four colours are required to colour

every map in a way that any two neighbouring regions have different colours.

Despite its very simple statement, the history of the Four-Colour Problem has made

clear its great difficulty, with many frustrated attempts to solve it and several incorrect

proofs. It puzzled mathematicians for over a century before it was settled. In 1879, Alfred

Kempe [57] published the first wrong proof. In 1880, Peter Tait [87] provided another

one of the most famous incorrect proofs of the conjecture. Although Tait’s proof was

incomplete, it contained a reduction of the problem to a new one: that of 3-edge-colouring

bridgeless cubic graphs. His work gave origin to the term Tait-colouring (3-edge-colouring)

of a cubic graph, as well as to the concept of edge-colouring. Tait’s reduction motivated

the search for bridgeless cubic graphs that do not admit a Tait-colouring, which were

later called snarks. The Petersen Graph, depicted in Figure 2.2 with an optimal edge-

colouring, is the smallest snark and was the first discovered. A more precise definition of

snarks is given and discussed further in this chapter. Fulkerson’s Conjecture, as well as the

Cycle Double Cover Conjecture, Tutte’s 5-Flow Conjecture, and the Petersen Colouring

Conjecture, are some other important problems in Graph Theory related to snarks.
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Figure 2.2: A 4-edge-colouring of the Petersen Graph, which is the smallest snark.

The origin of the Four-Colour Conjecture can be traced back to 1852, when it was

posed by Francis Guthrie [35, 70], a former student of Augustus De Morgan. The problem

became very popular in 1878, when Arthur Cayley [14] asked, at a meeting of the London

Mathematical Society, whether a proof had been given to the statement that no more than

four distinct colours are required when colouring any map [20, 70]. It was not solved until
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1976, almost a hundred years after Cayley’s enquiry, when Kenneth Appel and Wolfgang

Haken [2] announced a computer-assisted proof of the Four-Colour Conjecture.

Appel and Haken’s proof of the Four-Colour Conjecture was received with controversy.

It was not fully accepted, due to its heavy usage of computational resources and the

impossibility of manual verification in a reasonable time, among other reasons. Another

proof, also supported by computers, yet simpler than the first, was published about twenty

years later by Robertson, Sanders, Seymour, and Thomas [77]. Although the conjecture is

now widely accepted as true, scientists continue to puzzle over the Four-Colour Problem,

searching for a simpler and not computer-dependent proof. As an example, more recently a

proof by Georges Gonthier [34] was published, although it is also supported by computers.

Frank Harary [39] said that “the Four Color Conjecture can truly be renamed the ‘Four

Color Disease’, for it exhibits so many properties of an infection. It is highly contagious.”

This chapter starts with a short introduction to maps and plane graphs, including a

few concepts, definitions, and fundamental results necessary for a precise discussion of the

Four-Colour Problem. Section 2.2 briefly presents the early history of the problem, from

its discovery by Guthrie until Tait’s proof. Special attention is given to Kempe’s wrong

proof and Tait’s reduction, since both gave rise to important concepts and techniques

in Graph Theory. As Tait’s work motivated the study of snarks, Section 2.3 describes

the early discoveries of snarks, culminating in the discovery of the first infinite families.

This section also contains a discussion of the meaning of a trivial snark. The last section

presents some of the best-known methods of construction of snarks. There are good texts

with more details on the motivation, history, and construction of snarks [13, 19, 93, 92].

Concerning the history and solution of the Four-Colour Problem, we refer to the books

Four-Colours Suffice: How the Map Problem was Solved, by Robin Wilson [95], and The

Four-Color Problem: Assaults and Conquest, by Thomas Saaty and Paul Kainen [80].

2.1 Maps and plane graphs

The primary aim of this section is to give a precise formulation of the Four-Colour Con-

jecture and to present it as a Graph Theory problem, as well as to show some of its

Graph Theory equivalent formulations. Additional concepts and definitions are necessary

for this task. The initial ideas emerge in a geometrical and topological context. Thus, we

first give a mathematical definition based on the intuitive notion of geographical maps.

We formalize the problem in this context, and then give a formulation in terms of graph-

theoretical elements. In the topological part, we use mostly the ideas and notation from

the book The Four Color Theorem: History, Topological Foundations, and Idea of Proof

of Rudolf and Gerda Fritsch [29]. When changing to the graph-theoretical context, we

use the notation introduced by Reinhard Diestel [22] in his book Graph Theory. We refer
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to these books and to the book The Four-Color Problem of Øystein Ore [73] for detailed

coverings of the Four-Colour Problem and plane graphs.

Before giving a precise definition of a map, some concepts are required. A subset C

of R2 is

(i) an arc if there exists an injective continuous mapping φ : [0, 1] → R
2 such that

C = Im(φ);

(ii) a simple closed curve if there exists a continuous mapping φ : [0, 1] → R
2 for which

C = Im(φ) and such that φ(0) = φ(1) and the restriction of φ to [0, 1) is injective;

(iii) a simple curve if it is either an arc or a simple closed curve.

If C is an arc, then points x = φ(0) and y = φ(1) are the endpoints of C. Arc C links

or joins x and y, and C is said to run between x and y. The interior of C is the set of

points of C that are distinct from its endpoints. If C is a simple closed curve, then φ(0),

which is the same as φ(1), is the only endpoint of C.

Let X be a subset of the plane. A point p is a boundary point of X if each disk centered

at p has nonempty intersection with both X and R
2 \X. The frontier or boundary of X,

denoted by B(X), is the set of all boundary points of X. A point x is an interior point of

X if it belongs to X and is not a boundary point of X. The set X is open if it contains

none of its boundary points. In other words, for each point x ∈ X, there is a disk centered

at x that is contained in X. The set X is closed if it contains all of its boundary points.

The set X is bounded if, for some point x ∈ X, there exists a disk centered at x with

finite radius which completely encompasses X. Otherwise, X is unbounded.

Let X be an open set. The boundary of X is contained in R
2 \ X. The boundary of

X is also the boundary of R2 \X, and R
2 \X is a closed set. Conversely, if X is a closed

set, then R
2 \ X is an open set. A set X ⊆ R

2 is connected if every pair of points of X

is linked by an arc lying entirely in X. A set L is a component of X if L is a maximal

nonempty connected subset of X.

In order to have a precise statement of the Four-Colour Conjecture, we formalize the

notion of a simple geographical map.

A map M is a finite set of arcs such that, for any distinct arcs C1 and C2,

C1 ∩ C2 is either empty or is a common endpoint of C1 and C2.

Every point of an arc C is a boundary point of C, and vice-versa. Thus, C is a closed

set. The border set of M, denoted by C(M), is the union of all arcs of M. The border

set C(M) is a closed set and thus the set R
2 \ C(M) is an open set. The components of

R
2 \ C(M) are the regions or countries of the map M. The frontier of a region of M is

contained in C(M). Since arcs are bounded and M is finite, C(M) is a bounded set. A

corner of M is a point of C(M) which is an endpoint of at least three different arcs of

M. Figure 2.3(a) depicts a map, indicating a corner p which is an endpoint of four arcs.
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The regions of this map are R1, R2, R3, R4, R5, R6, R7, R8, and the external unbounded

region R9. The endpoints of all arcs of the map are indicated in Figure 2.3(b). Notice

that the boundary of region R8 contains three arcs. This is necessary in order to comply

with the definition of maps, which says that a map contains only arcs and two distinct

arcs have at most one common endpoint. Given a border set, the map that originates

this border set is not unique, since different sets of arcs may produce the same border set.

In the example of Figure 2.3(b), the endpoints in the boundary of R8 can been chosen

differently, and yet define the same border set. However, all possibilities are essentially

the same map.

p
R1 R2

R3

R4
R5

R6
R7

R8R9

(a) A map M. (b) The endpoints of M.

(c) A map with bridges.

A

A

A

A

B

B

C

C

D

(d) A 4-colouring of M.

Figure 2.3: An example of a map.

An arc contained in the frontier of precisely one region is a bridge. As an example, we

add a bridge to the map of Figure 2.3(a) by adding an arc linking a point of B(R3)∩B(R7)

to a point of B(R8). Another bridge is created by adding an arc linking a point of

B(R2) ∩B(R9) to a point of R9. The result is shown in Figure 2.3(c). None of the added

arcs divides a region of the map into smaller regions. Thus, the first arc is contained

only in the new frontier of R3, while the second arc is part only of the new frontier of

R9. Bridges do not make sense in geographical maps. Thus, throughout this chapter we
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assume that every map is bridgeless, unless otherwise stated. Note that in a bridgeless

map every endpoint of an arc is also an endpoint of at least another arc.

Two distinct regions of a map M are adjacent if the intersection of their frontiers

contains an arc. The set of all regions of M is denoted by R(M). A colouring of map M

is a mapping ϕ : R(M) → C, with C a set of colours, such that any two adjacent regions

have different colours. If C has k colours, then ϕ is a k-colouring of M and the map M

is k-colourable. Figure 2.3(d) shows a 4-colouring of the map of Figure 2.3(a).

The Four-Colour Conjecture can be precisely enunciated as follows.

Conjecture 2.1 (The Four-Colour Conjecture). Every map is 4-colourable.

A region R of a map is an enclave if its frontier is contained in the frontier of another

region S of the map. Region S encloses region R. Thus, S is the only region adjacent to

R. In Figure 2.3(a), region R3 encloses region R8. Let R be an enclave of a map M such

that S encloses R. Let L be a map whose border set is C(M) \B(R). In L, the region R

does not exist, and the region S is expanded to contain R. Suppose L has a 4-colouring

and let c be the colour of S. We get a 4-colouring of M by extending the 4-colouring of L

by simply assigning to R one of the three colours different from c. Thus, it is enough to

consider maps without enclaves. Hence, throughout the remaining of this chapter, every

map is also assumed to have no enclaves.

A plane graph is a pair (V,E), with V a finite set of vertices and E a finite set of

edges, satisfying the following properties:

(i) V ⊆ R
2;

(ii) every edge is either an arc between two vertices or a simple closed curve containing

exactly one vertex (its only endpoint);

(iii) apart from its endpoints, an edge contains no vertex and no point of another edge.

A plane graph (V,E) defines an abstract graph G on V in a natural way. Terms and

notation defined for graphs are also used for plane graphs. Following Diestel’s notation,

as long as no confusion arises, we use the name G of the abstract graph also for the plane

graph (V,E).

A simple plane graph is a plane graph such that its abstract graph is simple. Note that

in a simple plane graph (V,E), the edge set E has no simple closed curve and different

edges have at most one common endpoint.

Let G be a plane graph. Since G ⊆ R
2 is a union of a finite number of arcs and a finite

number of points, the set G is closed and thus R
2 \G is an open set. The components of

R
2 \G are the faces of the plane graph G. Each face of G is an open subset of R2. Since

the vertex and edge sets of G are finite, and each edge is bounded, G is a bounded set.

Hence, for a point p ∈ G, there is a disk D centered at p such that G ⊆ D. The only

unbounded face of G is the face that contains R
2 \ D. This is the outer face of G. The

other faces of G are its inner faces. The set of faces of G is denoted by F (G).
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A graph is embeddable in the plane, or planar, if it has a drawing in the plane such

that its edges intersect only at their ends. Such a drawing is a planar embedding of the

graph. A planar embedding of a graph G can be regarded as a plane graph, with vertex

set equal to the set of vertices of the drawing and edge set equal to the set of edges of the

drawing. Figure 2.4 exhibits the complete graph on four vertices K4 and one of its planar

embeddings, with faces f1, f2, f3, and f4.

(a)

f1

f2

f3
f4

(b)

Figure 2.4: (a) The planar graph K4 and (b) one of its planar embeddings.

A face is incident with the edges and vertices in its boundary, and vice-versa. Let e

be an edge of a plane graph G. When e is not a bridge, it is incident with precisely two

faces. If e is a bridge, then it is in the boundary of only one face f . In this case, e is

considered to be incident with f twice, and vice-versa. Figure 2.5 depicts a plane graph

whose only bridge is incident twice with the outer face. The degree of a face f , denoted by

d(f), is the number of edges incident with f , bridges counted twice. For example, every

face of Figure 2.4(b) has degree three. This is also true for every face of Figure 2.5, apart

from the outer face, which has degree eight. The above definitions imply the following

equality, similar to that stated by Theorem 1.1 for the vertex degrees of a graph:
∑

f∈F (G)

d(f) = 2|E(G)|. (2.1)

Two faces are adjacent if they are incident with a common edge. Face f2 of the plane

graph of Figure 2.4(b) is adjacent to faces f1, f3, and f4. A face incident with a bridge is

adjacent to itself. The outer face of the plane graph of Figure 2.5 is adjacent to all other

faces and to itself.

Figure 2.5: An example of a plane graph with a bridge.

A face-colouring of a plane graph G is an assigment of colours to the faces of G

such that no two adjacent faces receive the same colour. That is, a face-colouring is a
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mapping π : F (G) → C, with C a set of colours, such that π(f1) 6= π(f2) for all adjacent

f1, f2 ∈ F (G). If |C| = k, then π is a k-face-colouring. A plane graph is k-face-colourable

if it admits a k-face-colouring. If we regard f1, f2, f3, and f4 as colours, then the labelling

of the faces of the plane graph of Figure 2.4(b) correspond to a 4-face-colouring. It is an

optimal face-colouring, since each face is adjacent to all others.

A map M can be regarded as a simple plane graph in the following way. Let V be

the set of points p ∈ R
2 such that p is an endpoint of an arc of M, and let E be the set

of arcs of M. By the definition of map, every arc of E has its endpoints in V , and two

arcs do not intersect but in a possible common point of V . Therefore, G = (V,E) is a

simple plane graph, and it is the associated plane graph of map M. Figure 2.3(b) exhibits

the associated plane graph of the map of Figure 2.3(a). If we suppose that M contains

bridges, then every bridge of M is a bridge in G. Recall that two arcs of a map have at

most one common endpoint, and that the endpoints of an arc do not coincide. Thus, if we

also suppose that M has enclaves, the frontier of each enclave is a 2-regular component

of G. Because we assumed previously that maps have neither bridges nor enclaves, all

associated plane graphs of a map are bridgeless and do not contain 2-regular components.

Lastly, note that each face of G is a region of M, and two faces of G are adjacent if and

only if the two corresponding regions of M are adjacent.

In summary, given a map M, a k-colouring of M naturally defines a k-face-colouring

of its associated plane graph, and vice-versa. Hence, the Four-Colour Conjecture can be

stated as a graph theoretical problem in terms of plane graphs and face-colourings. Fur-

thermore, given a plane graph, the problem can be solved for each connected component

separately.

Conjecture 2.2 (The Four-Colour Conjecture – Face version). Every connected bridgeless

simple plane graph is 4-face-colourable.

Conjecture 2.2 has an equivalent form for all connected bridgeless plane graphs, not

necessarily simple. To see that, suppose Conjecture 2.2 is true and take a connected

bridgeless plane graph G. Subdivision of all multiple edges and loops of G produces a

connected bridgeless simple plane graph G′. This process preserves the faces of G, i.e.,

F (G) = F (G′), and the adjacency relation between them. Thus, a 4-face-colouring of G′

naturally determines a 4-face-colouring of G. Conversely, if every connected bridgeless

plane graph is 4-face-colourable, then Conjecture 2.2 is also true.

Conjecture 2.3. Every connected bridgeless plane graph is 4-face-colourable.

Additionally, we can consider only plane graphs with minimum degree at least three.

To see that, let G be a connected bridgeless plane graph. Consider the suppression of

all degree-two vertices of G. This operation produces a connected bridgeless plane graph
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G′ with minimum degree greater than two, while preserving the faces of G. Therefore, a

4-face-colouring of G′ implies the existence of a 4-face-colouring of G.

Conjecture 2.4. Every connected bridgeless plane graph with minimum degree at least

three is 4-face-colourable.

2.1.1 Dual graphs

Let G be a plane graph. The plane graph G∗ is obtained as follows. For every face f of

G, place a new vertex f ∗ inside f . For every edge e of G, if e is incident with two distinct

faces f and g, then link vertices f ∗ and g∗ by a new edge e∗. Otherwise, if e is incident

with only one face f , then add a loop e∗ containing f ∗. Edge e∗ must intersect just e and

in a single point. The resulting plane graph G∗ is a plane dual of G. Figure 2.6 shows

examples of plane graphs together with their plane duals drawn in thick lines. The dual

of a plane graph G is the abstract graph of a plane dual of G. To simplify notation, the

dual of a plane graph G will also be denoted by G∗. Observe that, if G is connected and

G∗ is its plane dual, then G is also a plane dual of G∗.
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(a) A plane graph and its plane dual. (b) Plane graph of Figure 2.3(b) and its dual.

Figure 2.6: Examples of plane duals.

Pairs of adjacent faces of a plane graph correspond to pairs of adjacent vertices in

its dual. Therefore, a plane graph is 4-face-colourable if and only if its dual is 4-vertex-

colourable. Let G be a plane graph with a dual G∗. Note that G has a bridge e if and

only if e∗ is a loop in G∗. This is illustrated in Figure 2.6(a). Therefore, the dual of a

bridgeless plane graph is a loopless planar graph. For this reason, Conjecture 2.2 is also

equivalent to the statement that every loopless planar graph is 4-vertex-colourable.

Conjecture 2.5 (The Four-Colour Conjecture – Vertex version). Every loopless planar

graph is 4-vertex-colourable.
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2.1.2 Euler’s Formula

For every connected plane graph, there is a simple relation between its number of vertices,

edges, and faces. It was established by Euler and it is known as Euler’s Formula. Its

proof is given here as presented by Bondy and Murty [8].

Theorem 2.6 (Euler’s Formula). If G is a connected plane graph, then

|V (G)| − |E(G)| + |F (G)| = 2.

Proof. By induction on the number of faces of G. If |F (G)| = 1, then G has no cycle. By

Theorem 1.3, |E(G)| = |V (G)| − 1. Thus,

|V (G)| − |E(G)| + |F (G)| = |V (G)| − |V (G)| + 1 + |F (G)| = 2.

Let G be a connected plane graph with |F (G)| ≥ 2. Therefore, graph G has at least one

cycle. Let e be an edge of a cycle of G. By Theorem 1.4, e is not a bridge. Thus, G− e

is a connected graph. Moreover, by removing e from G, the two faces incident with e

become one unique face. Therefore, G− e has |F (G)| − 1 faces. By induction hypothesis,

|V (G− e)| − |E(G− e)| + |F (G− e)| = 2. By construction,

|V (G− e)| = |V (G)|, |E(G− e)| = |E(G)| − 1, and |F (G− e)| = |F (G)| − 1.

Therefore,

|V (G)| − |E(G)| + |F (G)| = |V (G− e)| − |E(G− e)| − 1 + |F (G− e)| + 1 = 2,

and the result follows.

The next statement was proved by Kempe [57, 58], and used by him in an attempt

to prove the Four-Colour Conjecture. Percy Heawood [40] also used it to prove the Five-

Colour Theorem (Theorem 2.12). The proof presented here relies on Euler’s Formula and

is different from the proof given by Kempe.

Corollary 2.7. Every connected bridgeless simple plane graph has a face adjacent to at

most five other faces.

Proof. First, we prove the statement for plane graphs with minimum degree at least three.

Then, we show that this implies the result.

Let G be a plane graph with minimum degree at least three. This implies that
∑

v∈V (G) d(v) ≥ 3|V (G)|. Then, by Theorem 1.1 we have that

2|E(G)| ≥ 3|V (G)|. (2.2)
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Suppose G does not have a face adjacent to at most five other faces. Then, each face

of G is adjacent to at least six other faces, and
∑

f∈F (G) d(f) ≥ 6|F (G)|. Together with

equality (2.1), it implies that

2|E(G)| ≥ 6|F (G)|, and

|F (G)| ≤ |E(G)|/3.

Using this inequality and Euler’s Formula, we have 2|E(G)| ≤ 3|V (G)| − 6, which implies

that 2|E(G)| < 3|V (G)|. This contradicts inequality (2.2). Therefore, G has at least one

region adjacent to at most five regions.

Now, let G be a simple bridgeless connected plane graph. If G is 2-regular, then G has

only two faces and the result follows. Suppose G is not 2-regular. Since G is bridgeless,

it does not have vertices of degree one. Therefore, every vertex of G has degree at least

two. By suppressing all degree-two vertices of G, we obtain a connected bridgeless plane

graph G′ with minimum degree at least three. Moreover, the face sets of G and G′ are

the same. The adjacency relation on the face sets is also the same in both graphs, and

the result follows for G since it follows for G′.

The following result is similar to the previous one, but it is applied to vertices of planar

graphs instead of faces of plane graphs (in other words, it is a dual version of Corollary 2.7).

It is useful when discussing the vertex version of the Four-Colour Conjecture.

Corollary 2.8. Every simple planar graph has a vertex with degree at most five.

2.2 The Four-Colour Problem

The Four-Colour Problem is one of the mathematical problems that has received greatest

attention from scientists. One of the reasons for its enormous appeal is its very simple

statement, which can be well understood even by non-mathematicians, in spite of the

great difficulty of solving it. Before its solution by Appel and Haken was announced,

Harary [39] wrote the following humourous piece of text at the begining of Chapter 12 of

his classic book Graph Theory.

The Four Color Conjecture (4CC) can truly be renamed the “Four Color Dis-

ease” for it exhibits so many properties of an infection. It is highly contagious.

Some cases are benign and others malignant or chronic. There is no known

vaccine, but men with a sufficiently strong constitution have achieved life-long

immunity after a mild bout. It is recurrent and has been known to cause

exquisite pain although there are no terminal cases on record. At least one

case of the disease was transmitted from father to son, so it may be hereditary.
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A letter from De Morgan to Sir William Hamilton [70] on October 23, 1852, and a

note by Frederick Guthrie [35] in the Proceedings of the Royal Society of Edinburgh in

1880 are the two most important sources of information about the origin of the Four-

Colour Problem. They were analysed by Kenneth May [70] in his 1965 article. From

these documents, it is known that, in 1852, Francis Guthrie showed his brother Frederick

Guthrie that four is the greatest number of colours required to colour a map of England

such that neighbouring counties have different colours. In his note, Frederick Guthrie

says that his brother Francis provided a proof of this statement for arbitrary maps, which

Francis himself did not find satisfactory. Francis was a former student of Professor De

Morgan at University College, London, and Frederick was De Morgan’s student at the

time. Frederick reported to De Morgan the fact discovered by his brother. De Morgan

then wrote a letter to Hamilton describing the problem and asking whether it had already

been noticed by anyone. In the letter, De Morgan observes that, in order to draw four

pairwise adjacent regions, thus forcing the use of four colours, one of the regions must

be surrounded by the other three. This fact prevents a fifth region to have a common

boundary with the enclosed one, thus making it impossible to draw five mutually adjacent

regions. Hamilton replied to De Morgan’s letter on October 16, 1852, stating no further

interest in De Morgan’s question.

Brendan McKay [72] discovered that the Four-Colour Problem was published on June

10, 1854, in a letter in the Miscellanea Section of The Athenæum. A photocopy of the

letter appears in McKay’s paper. It is a note of ten lines, where the author describes

the problem, states to have found out empirically that four colours are necessary and

sufficient, and also claims a proof of this fact. The letter is signed “F. G.”, which is not

identified in the magazine but most probably stands for Francis Guthrie. This is the

earliest currently known publication of the Four-Colour Conjecture.

Another appearence of the conjecture in print was discovered by John Wilson [94]. It

was in the April 14, 1860 issue of The Athenæum, in an anonymous review of William

Whewell’s book The Philosophy of Discovery, Chapters Historical and Critical. The au-

thor of the review outlines the Four-Colour Problem, claiming that the fact that four

different colours are enough must have been always known to map-colourers. This claim

is what most probably started the tradition that the Four-Colour Problem was already

known among cartographers. However, this idea was pointed out by May [70] as having

no foundation. John Wilson [94] and Robin Wilson [95] both identify De Morgan as the

author of the anonymous review.

May [70] affirms that De Morgan was not successful in trying to attract other math-

ematicians to attempt a solution to the Four-Colour Conjecture. Also, De Morgan com-

municated the problem to his students and to several other mathematicians, and one of

them brought the problem back almost thirty years later. Indeed, the problem remained
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forgotten until 1878, when Cayley [14], in a meeting of the London Mathematical Society,

asked if anyone knew a proof for the conjecture. In 1879, Cayley [15] published a short ar-

ticle in the Proceedings of the Royal Geographical Society, explaining where the difficulty

in proving the conjecture resides. More on Cayley’s relation to the Four-Colour Problem

can be found in the article Arthur Cayley FRS and the four-colour map problem by Tony

Crilly [20]. After Cayley’s enquiry, the problem gained popularity and, since then, many

mathematicians have tried to solve it. A number of incorrect proofs appeared, some of

them bringing important new concepts.

The first important wrong proof of the Four-Colour Conjecture was published by

Kempe [57] in 1879, shortly after Cayley’s article. A flaw in Kempe’s proof was dis-

covered only eleven years later, in 1890, by Heawood [40]. Although incorrect, Kempe’s

proof introduced an important technique, largely used in other proofs. Heawood himself

used Kempe’s idea to prove that five colours are sufficient to colour any map. Another

important incorrect proof was published in 1890 by Tait [87]. As a consequence of Tait’s

work, the Four-Colour Problem was reduced to an edge-colouring problem. More details

on Kempe’s, Heawood’s, and Tait’s works are provided in the following sections.

The several attempts to solve the Four-Colour Problem motivated the development of

new concepts and techniques in Graph Theory. For instance, the Four-Colour Conjecture

was proved to be equivalent to other mathematical statements, many of them apparently

unrelated to the subject of map colouring. A description of these statements can be

found in the article Thirteen colorful variations on Guthrie’s Four-Color Conjecture, by

Saaty [79], as well as in the book The Four-Color Problem: Assaults and Conquest, co-

authored by Saaty [80].

In 1976, almost a century after Cayley’s enquiry at the London Mathematical Society

meeting, a proof of the Four-Colour Conjecture was announced by Appel and Haken [2].

Appel and Haken’s [3, 4] proof heavily relies on computational resources. This fact con-

tributed to the lack of acceptance among mathematicians. In 1996, Robertson, Sanders,

Seymour, and Thomas [77] announced another proof of the Four-Colour Conjecture, in

great part motivated by the enormous difficulty of manual verification of Appel and

Haken’s proof. This new proof was published the year after its announcement [78] and

was well received by the academic community. It uses the same approach as Appel and

Haken’s proof and is also computer assisted, but it is simpler. After these proofs, the

Four-Colour Problem was finally considered settled. As an example of the continuous in-

terest in the Four-Colour Problem, more recently, a new computer-based proof was given

by Georges Gonthier [33, 34].

In summary, the Four-Colour Conjecture and its equivalent forms finally became the-

orems, as stated below.

Theorem 2.9 (The Four-Colour Theorem – Map version). Every map is 4-colourable.
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Theorem 2.10 (The Four-Colour Theorem – Face version). Every simple connected

bridgeless plane graph is 4-face-colourable.

Theorem 2.11 (The Four-Colour Theorem – Vertex version). Every loopless planar graph

is 4-vertex-colourable.

The next sections describe Kempe’s proof, Heawood’s exposition of its flaw, a reduction

of the problem to cubic maps, and Tait’s reduction to an edge-colouring problem.

2.2.1 Kempe’s wrong proof and Heawood’s counterexample

Kempe [57] published the first famous incorrect proof of the Four-Colour Conjecture in

1879, shortly after Cayley’s note in the Proceedings of the London Mathematical Society.

Although Kempe uses a process he called patching, his proof is essentially a mathematical

induction. We present an adapted version of the proof, making the induction explicit,

based on the work of Timothy Sipka [83]. Kempe’s proof relies on Corollary 2.7 as an

essential argument in the inductive step. In 1880, Kempe [58] published an article where

he claims to present a simpler version of his proof. Both versions of Kempe’s proof contain

the same incorrect argument.

We start by describing an observation made by Kempe that plays an important role

in his proof. Consider a map with a 4-colouring on colours red, green, blue and yellow.

Select any two of these colours, say blue and yellow. Let R be a region coloured blue.

There is a maximal closed connected subset X of the plane such that X is the union of

regions coloured blue or yellow and their boundaries, and such that X contains R. The

bicoloured set of all regions contained in X is a blue-yellow chain. Let S be a region

coloured either blue or yellow, and not contained in X. Since X is maximally connected,

S is not adjacent to any region of X. Thus, if we interchange the colours of the regions

of X, by turning the blue regions yellow and the yellow regions blue, we end up with a

different 4-colouring of the map, this time with R coloured yellow.

Kempe’s proof is by induction on the number of regions of a map. All maps with

at most four regions are 4-colourable. Let M be a map with n regions, where n > 4.

Induction hypothesis states that every map with less than n regions has a 4-colouring. Let

R be a region of M such that R is adjacent to at most five other regions. The existence of

R is asserted by Corollary 2.7. Name these regions R1, . . . , Rk, with k ≤ 5, in cyclic order

as shown in Figure 2.7. Take a point v of R. For each corner y lying in the boundary of

R, add an arc C linking v and y such that C do not intersect any other arc. Then, remove

all arcs contained in the boundary of R. This process is illustrated in Figure 2.7. Denote

the resulting map by M′. In M′, region R does not exist and each of regions R1, . . . , Rk

is expanded. All other regions are the same in both maps. Thus, M′ has n − 1 regions.



2.2. The Four-Colour Problem 27

By induction hypothesis, map M′ has a 4-colouring. Suppose regions R1, . . . , Rk together

have at most three different colours. This is always true when R is adjacent to at most

three regions. To construct a 4-colouring of map M, transfer the colouring of M′ to M

by assigning the colour of each region of M′ to the corresponding region of M. There

is at least one colour that is not assigned to any of R1, . . . , Rk. Assign this colour to R.

The resulting assignment is a 4-colouring of map M.

R

R1 R2

R3

R4

R5

v

R1 R2

R3

R4

R5

Figure 2.7: Reduction of the number of regions of a map by one.

Now suppose R1, . . . , Rk have four different colours. Two cases must be considered.

Case 1: k = 4. Let the colours of R1, . . . , R4 be red, blue, green, and yellow, re-

spectively. Transfer the colouring of M′ to M, as illustrated in Figure 2.8(a). Suppose

R1 (red) and R3 (green) are contained in different red-green chains. By interchanging

the colours of the regions of the chain containing R1, we end up with an assignment of

colours where none of R1, . . . , R4 has colour red. Then, it is enough to assign red to R.

Now, suppose R1 and R3 are in the same red-green chain. If R2 and R4 are in the same

blue-yellow chain, then this chain has a nonempty intersection with the red-green chain.

But this is impossible, since the two chains use different colours. Thus, R2 and R4 are in

distinct blue-yellow chains. Similarly to the previous case, we interchange the colours of

the regions of one of these chains to obtain a 4-colouring for M.

Case 2: k = 5. One colour is assigned to two of R1, . . . , R5, while each of the other

three colours appears in exactly one region. Transfer this colouring to M, as shown in

Figure 2.8(b). Suppose the colours are assigned to R1, . . . , R5 as in the figure, with blue

assigned to R2 and R5. If R1 and R4 are contained in different green-red chains, or R1

and R3 are contained in different green-yellow chains, we proceed as in Case 1. Thus,

suppose that:

(i) R1 and R4 are in the same green-red chain, and

(ii) R1 and R3 are in the same green-yellow chain.

In this case, Kempe argumented that:

(iii) the green-red chain prevents R3 and R5 from being in the same blue-yellow chain,

(iv) the green-yellow chain prevents R2 and R4 from being in the same blue-red chain.
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R

R1 R2

R3

R4

red blue

green
yellow

(a) Case 1.

R

R1 R2

R3

R4

R5
red

blue

blue

green

yellow

(b) Case 2.

Figure 2.8: The two cases of Kempe’s proof.

Supposing this is always valid, interchange colours in the blue-red chain containing R2 and

interchange colours in the blue-yellow chain containing R5. Thus, the regions adjacent

to R are coloured green, red, and yellow, leaving colour blue available for R. This case

completes the proof.

The process introduced by Kempe of interchanging the colours of regions in bicoloured

chains is an important technique employed in many other proofs. This idea is used not

only in colouring regions of a map, but also in colouring vertices and edges of a graph.

The bicoloured chains are known as Kempe chains.

In Case 2, Kempe did not consider that the interchange of colours in one chain may

modify another chain. In 1890, thus eleven years later, Heawood [40] exhibited a map in

which Kempe’s process does not work. Figure 2.9(a) shows the map used by Heawood.

Notice that, in this map, the blue-red chain containing R2 has a red region adjacent to a

yellow region of the blue-yellow chain containing R5. Suppose we interchange colours in

the blue-red chain containing R2. After that, as shown in Figure 2.9(b), the blue-yellow

chain containing R5 is modified, thus being the same blue-yellow chain containing R3. By

interchanging colours in this chain, region R will still be adjacent to a region coloured

blue, thus not reducing the number of colours of R1, . . . , R5. Another way of exposing the

flaw in Kempe’s proof is the following. Consider the blue-red chain containing R2 and the

blue-yellow chain containing R5. Now, interchange colours in each of these chains. As a

result, there will be two adjacent regions coloured blue (the regions above R1).

Using Kempe’s technique, Heawood also proved that five colours are sufficient to colour

any map. Or, equivalently, that any loopless planar graph is 5-vertex-colourable. The

proof presented here is due to Harary [39]. It shows an example of the use of Kempe

chains in a vertex-colouring context.

Theorem 2.12 (The Five-Colour Theorem). Every loopless planar graph is 5-vertex-

colourable.
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Figure 2.9: Heawood’s map before (a) and after (b) interchanging colours in the blue-red
chain containing R2.

Proof. Note that it is enough to show that every simple planar graph is 5-vertex-colourable,

since multiple edges do not play any special role in vertex-colourings. The proof is by

induction on the number of vertices. The result trivially follows for every simple planar

graph with at most five vertices.

The inductive hypothesis states that every simple planar graph with less than n ver-

tices is 5-vertex-colourable. Let G be a simple planar graph with n vertices. By Corol-

lary 2.8, G has a vertex v with degree at most five. Consider the planar graph G− v. By

the induction hypothesis, G− v has a 5-vertex-colouring. In this colouring, if some of the

five colours is not assigned to any of the neighbours of v, then it is enough to assign this

colour to v. Thus, we only have to consider the case when the degree of v is five and five

colours are used for the neighbours of v. Let {1, 2, 3, 4, 5} be the set of colours used. Label

the vertices adjacent to v as v1, v2, v3, v4, and v5 cyclically about v (see Figure 2.10(a)).

Adjust the colours so that vertex vi is assigned colour i, with 1 ≤ i ≤ 5.

v

v1

v2

v3v4

v5

(a)

v

v1

v2

v3v4

v5

(b)

Figure 2.10: Steps in the proof of Five-Colour Theorem.
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Let G13 be the subgraph of G − v induced by the vertices assigned colours 1 or 3.

Suppose v1 and v3 belong to different components of G13 (each component is a Kempe

chain). Exchange the colours of the vertices of the component of G13 containing v1. This

results in a 5-vertex-colouring of G−v such that no vertex adjacent to v is assigned colour

1. Extend this colouring by assigning 1 to v, resulting a 5-vertex-colouring of G.

On the other hand, suppose that v1 and v3 belong to the same component of G13.

Therefore, there exists a path in G − v from v1 to v3 with each vertex assigned either

colour 1 or 3 (see Figure 2.10(b)). This path, together with path v1vv3, forms a cycle

enclosing either both vertices v4 and v5, or vertex v2. Let G24 be the subgraph of G − v

induced by the vertices assigned colour 2 or 4. Then, v2 and v4 do not belong to the same

component of G24. Interchange the colours of the vertices of the component of G24 that

contains v2. This produces a 5-vertex-colouring of G− v with no neighbour of v assigned

colour 2. Therefore, a 5-vertex-colouring of G is obtained by assigning colour 2 to v.

2.2.2 Reduction to cubic plane graphs

Cayley [14] showed that the Four-Colour Problem can be reduced to cubic maps. Saaty [79]

stated that William Story [84] used Kempe’s work to show the same reduction. Here, we

present the proof of this equivalence given in Harary’s book Graph Theory [39].

Theorem 2.13. Every bridgeless plane graph is 4-face-colourable if and only if every

bridgeless cubic plane graph is 4-face-colourable.

Proof. If every bridgeless plane graph is 4-face-colourable, then every bridgeless cubic

plane graph is 4-face-colourable. It remains to prove the converse. To do that, consider

the complete graph on four vertices K4 and an edge e ∈ E(K4). Let K ′
4 = K4−e, as shown

in Figure 2.11. Now, suppose that every bridgeless cubic plane graph is 4-face-colourable

and let G be an arbitrary bridgeless plane graph. Since G is bridgeless, it has no vertex

of degree one. For every vertex v of G such that d(v) 6= 3, we proceed as follows.

If d(v) = 2, let e and f be the edges incident with v. Subdivide e with a new vertex x

and f with a new vertex y. Then, remove v, take a copy of K ′
4, and identify each x and y

with a different degree-two vertex of K ′
4. This operation is shown in Figure 2.12(a). We

say that the vertices of K ′
4 added in the process are associated with v, and observe that

all of them have degree three.

Now, suppose v has degree d > 3. Denote the edges incident with v cyclically by

e1, . . . , ed. Then, subdivide each ei with a new vertex xi, and remove v. We say that ver-

tices x1, . . . , xd are associated with v. Finally, add d edges so as to have cycle x1x2 . . . xdx1.

This process is illustrated in Figure 2.12(b) for d = 5. Observe again that every newly

added vertex has degree three.
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Figure 2.11: Graph K4 − e, with e ∈ E(K4).
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Figure 2.12: Conversion of a bridgeless plane graph into a cubic bridgeless plane graph.

After proceeding on G as described above, we end up with a bridgeless cubic plane

graph G′. By hypothesis, G′ has a 4-face-colouring. For every v ∈ V (G) with dG(v) 6= 3,

shrink the vertices associated with v in G′. This process restores G from G′. Observe

that the shrinking operation eliminates two faces of G′ if dG(v) = 2, or one face of G′

if dG(v) > 3. Moreover, if dG(v) = 2, then two faces are expanded, which are the faces

incident with v in G. These faces are adjacent in both G′ and G. Otherwise, if dG(v) > 3,

then dG(v) faces get expanded, which are also the faces incident with v in G. Two of

these faces are adjacent in G′ if and only if they are adjacent in G. Thus, by restricting

a 4-face-colouring of G′ to the faces of G, we get a 4-face-colouring of G.

2.2.3 Tait’s reduction to edge-colouring

In the context of snarks, a work by Tait is of special interest. Tait was first told about

the Four-Colour Conjecture by Cayley, and had his attention recalled to the problem

after reading the article [58] published in 1880 containing Kempe’s wrong proof of the

Four-Colour Theorem. In the same year, Tait [86] published a note in the Proceedings

of the Royal Society of Edinburgh containing what he claimed to be another proof of the

Four-Colour Theorem, later shown incorrect. In this note, Tait observes that his process
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also shows that every bridgeless cubic plane graph is 3-edge-colourable. In another note

published in 1880, Tait [87] shows that the statement that every bridgeless cubic plane

graph is 3-edge-colourable follows from the Four-Colour Theorem. He also says that this

statement is elementary and that its proof, without using the Four-Colour Theorem, is

easily given by induction. In summary, by proving the theorem below, Tait thought he

had given a new proof of the Four-Colour Theorem, simpler than Kempe’s proof.

In the first part of the next proof, we use Tait’s [87] technique so as to obtain an edge-

colouring of a plane graph from a face-colouring of the same graph. In the second part of

the proof, we do the reverse process: obtain a face-colouring from a given edge-colouring.

However, we use a different set of colours, which makes the proof technically simpler. The

second part of the proof is essentially the same presented by Harary [39].

Theorem 2.14 (Tait’s Theorem). A bridgeless cubic plane graph is 4-face-colourable if

and only if it is 3-edge-colourable.

Proof. Let G be a bridgeless cubic plane graph. Suppose G has a 4-face-colouring π on

colour set C, with C = {A,B,C,D}. Let D = {α, β, γ} and let t : C×C → D be a mapping

such that

t(A,B) = t(B,A) = t(C,D) = t(D,C) = α;

t(A,C) = t(C,A) = t(B,D) = t(D,B) = β;

t(A,D) = t(D,A) = t(B,C) = t(C,B) = γ.

Let θ : E(G) → {α, β, γ} be defined as

θ(e) = t(π(f), π(g)),

where f, g are the faces incident with e. We claim that θ is a 3-edge-colouring of G. To

see that, let e1 and e2 be adjacent edges of G. Let fi and gi be the faces incident with ei,

for i = 1, 2. Since G is cubic, we can assume that g1 = g2. By construction,

θ(e1) = t(π(f1), π(g1)) 6= t(π(f2), π(g1)) = t(π(f2), π(g2)) = θ(e2).

Therefore, θ assigns distinct colours to e1 and e2.

Conversely, suppose G has a 3-edge-colouring θ : E(G) → B, with B = {(0, 1),

(1, 0), (1, 1)}. For (p, q), (r, s) ∈ B ∪ {(0, 0)}, define

(p, q) + (r, s) = ((p+ r) mod 2, (q + s) mod 2).

We construct a 4-face-colouring π of G as follows. Choose a face f0 and make π(f0) =

(0, 0). For every f ∈ F (G), take an arc Cf ⊆ R
2 joining an interior point of f0 and an
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interior point of f such that Cf does not contain any vertex of G. Let e0, . . . , ek be the

sequence of edges that intersect Cf . Set π(f) =
∑k

i=0 θ(ei).

To prove that π is a 4-face-colouring, we need an intermediary result. Let C be a

simple closed curve not containing a vertex of G. Suppose e0, . . . , ek is the cyclic sequence

of edges that intersect C. We show that
∑k

i=0 θ(ei) = (0, 0). To see this, consider the

bounded region R ⊆ R
2 with boundary C, and let ek+1, . . . , el be the edges contained in

R. If v ∈ V (G), with ∂(v) = {e1
v, e

2
v, e

3
v}, then h(v) = θ(e1

v)+θ(e2
v)+θ(e3

v) = (0, 0). Denote

by VC the set of vertices contained in R. Therefore,
∑

v∈VC
h(v) = (0, 0). Notice that, in

this sum, each edge contained in R is considered twice, and each edge that intersects C

is considered once. Thus,

∑

v∈VC

h(v) = [θ(e1) + · · · + θ(ek)] + [(θ(ek+1) + θ(ek+1) + · · · + θ(el) + θ(el)]

= θ(e1) + · · · + θ(ek),

since for every b ∈ B, b+ b = (0, 0). Therefore, θ(e1) + · · · + θ(ek) = (0, 0), as claimed.

Take f ∈ F (G). Let C be another arbitrary arc running between an interior point of

f0 and an interior point of f such that C does not contain any vertex of G. By what we

just proved, the sum of the colours of the edges intersecting C ∪ Cf is (0, 0). Hence, the

sum of the colours of the edges that intersect C is π(f).

Now we are ready to show that π is a 4-face-colouring. Take adjacent f1, f2 ∈ F (G),

with e ∈ E(G) incident with f1 and f2. We show that π(f1) 6= π(f2). Let C be an arc

between an interior point of f0 and an interior point of f2 such that C does not contain

any vertex of G. Moreover, suppose e is the last edge that intersects C. Let e0, . . . , ek

be the sequence of edges that intersect C, with ek = e. Observe that π(f1) =
∑k−1

i=1 θ(ei)

and, thus, π(f2) = π(f1) + θ(e). Because θ(e) 6= (0, 0), π(f1) 6= π(f2).

Tait was incorrect when he affirmed that the statement that every bridgeless cubic

plane graph is 3-edge-colourable can be easily proved. Actually, this is a problem as

difficult as the Four-Colour Problem, since they are equivalent. Nevertheless, Tait revealed

a very important equivalent formulation of the Four-Colour Conjecture. Furthermore, his

ideas led to the concept of edge-colouring, which is largely used in Graph Theory.

Theorem 2.15. Every bridgeless plane graph is 4-face-colourable if and only if every

bridgeless cubic planar graph is 3-edge-colourable.

Proof. By Tait’s Theorem (Theorem 2.14) and by Theorem 2.13.

Thus, the Four-Colour Conjecture gained a new equivalent formulation.

Conjecture 2.16 (Four-Colour Conjecture – Edge version). Every bridgeless cubic planar

graph is 3-edge-colourable.
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Finally, the Four-Colour Theorem can be enunciated in the same way.

Theorem 2.17 (Four-Colour Theorem – Edge version). Every bridgeless cubic planar

graph is 3-edge-colourable.

In face of this reduction, the existence of a bridgeless cubic planar graph that is not

3-edge-colourable would disprove the Four-Colour Conjecture. This motivated the pursuit

of such a graph. To find a bridgeless cubic graph with chromatic index four was a very

difficult task at the time. The next sections give more details on these special graphs,

which are called snarks.

2.3 Early history of snarks

As described in the previous section, a work by Tait on the Four-Colour Conjecture showed

that it is equivalent to the statement that every bridgeless cubic planar graph is 3-edge-

colourable. This equivalence motivated a search for bridgeless cubic planar graphs with

chromatic index four, since the existence of such a graph would disprove the Four-Colour

Conjecture. On the other hand, a proof that every bridgeless cubic graph with chromatic

index four is not planar would prove the conjecture. In 1948, Blanche Descartes [21] (a

pseudonym used by mathematicians Rowland Brooks, Arthur Stone, Cedric Smith and

William Tutte) wrote:

I wonder why problems about map-colourings are so fascinating? [sic] I

know several people who have made more or less serious attempts to prove

the Four-Colour Theorem, and I suppose many more have made collections

of maps in the hope of hitting upon a counter-example. I like P. G. Tait’s

approach myself; he removed the problem from the plane so that it could be

discussed in terms of more general figures. He showed that the Four-Colour

Theorem is equivalent to the proposition that if N is a connected cubical net-

work, without isthmus, in the plane, then the edges of N can be coloured in

three colours so that the colours of the three meeting at any vertex are all dif-

ferent. (. . . ) It was at first conjectured that every cubical network having no

isthmus could be “three-coloured” in this way, but this was disproved (. . . ).

I have often tried to find other cubical networks which cannot be three-

coloured. I do think that the right way to attack the Four-Colour Theorem

is to classify the exceptions to Tait’s Conjecture and see if any correspond to

networks in the plane.

The first discoveries of non-3-edge-colourable bridgeless cubic graphs were very few and

sporadic. Rufus Isaacs [42] expressed the great difficulty he experimented when seeking
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these graphs. Motivated by this difficulty, Martin Gardner [31] proposed calling these

graphs snarks. Gardner’s inspiration came from Lewis Carrol’s [12] nonsense poem The

Hunting of the Snark, which describes the voyage of a crew chasing a fantastic, rare and

unconceivable creature named snark. Lewis Carrol is the pen name of Charles Lutwidge

Dodgson, an English writer and mathematician, best-known for his very famous book

Alice’s Adventures in Wonderland.

In order to avoid trivial cases, which are explained later in this chapter, Gardner

defined a snark as follows.

A snark is a bridgeless cubic graph with chromatic index four and without

cycles of length two or three.

Besides having two-length and three-length cycles, other properties of cubic graphs were

also considered trivial by Isaacs [42]. These properties are discussed in Section 2.3.2.

The next subsection presents the first four discoveries of snarks, namely: the Petersen

Graph (1898), the Blanuša Snark (1946), the Descartes Snarks (1948), and the Szekeres

Snark (1973). Whenever possible, we describe the constructions of these snarks provided

by their discoverers. The first infinite families of snarks were found by Issacs [42] in

1975. One of them contains all snarks previously found. These families are presented in

Section 2.3.3.

2.3.1 First discoveries

The first discovery of a snark was made by Petersen [75] in 1898. The snark found by

him became known as the Petersen Graph, and it is usually denoted by P . It was the

first counterexample to the conjecture that states that every bridgeless cubic graph is 3-

edge-colourable, mentioned by Blanche Descartes [21]. The Petersen Graph had appeared

before, although in a different context, in an 1886 article written by Kempe [59]. Here we

describe its construction as given by Petersen.

Petersen showed a result equivalent to the Parity Lemma (Lemma 1.15), which he used

to construct the Petersen Graph. To see his construction, consider a cycle C = 12345,

with each vertex also incident with an edge not in C, as shown in Figure 2.13(a). The

edges not in C form an edge cut of a cubic graph G. Suppose G has a 3-edge-colouring

on colours blue, red, and green. By the Parity Lemma, three edges of the edge cut are

coloured blue, while one edge is coloured red and the last edge is coloured green. Thus,

there are only two ways of colouring the edges of the edge cut: either the three blue edges

are incident with consecutive vertices of C, or not. Figure 2.13(b) shows the first case,

together with a 3-edge-colouring of C, while Figure 2.13(c) shows the second case, where

a 3-edge-colouring of C is not possible. Therefore, in any 3-edge-colouring of G, the three

edges with the same colour are always incident with three consecutive vertices of C.
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Figure 2.13: Construction of the Petersen Graph.

Now suppose the remaining vertices of G induce another cycle C ′ = 1′3′5′2′4′. More-

over, the two cycles are joined by edges 11′, 22′, 33′, 44′, and 55′, as in Figure 2.14. Assume

that G has a 3-edge-colouring. The three edges of edge cut {11′, 22′, 33′, 44′, 55′} which

have the same colour are incident with consecutive vertices in cycle C. Without loss of

generality, suppose that these vertices are 1, 2, and 3, that is, edges 11′, 22′, and 33′ have

the same colour. By construction of the graph, the edges with the same colour are not

incident with consecutive vertices in cycle C ′, a contradiction.

1

2

34

5
1’

2’

3’4’

5’

(a) A common drawing. (b) Drawing from Petersen’s note.

Figure 2.14: The Petersen Graph.

Figure 2.15 shows other drawings of the Petersen Graph. The depiction of Fig-

ure 2.15(a) is due to Kempe [59], while the drawing of Figure 2.15(c) is due to Danilo

Blanuša [7]. Isaacs [42] gave a simple proof of the fact that the Petersen Graph is the

smallest snark.
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Figure 2.15: Other drawings of the Petersen Graph.

The second snark was found by Blanuša [7] in 1964 and is called Blanuša Snark. It

has 18 vertices and two of its drawings are shown in Figure 2.16. It is clear from these

figures that the Blanuša Snark can be obtained from two copies of the Petersen Graph.

Blanuša observed that his graph has no cycles of length less than five and also that it does

not have nontrivial edge cuts with less than four edges. These observations anticipate the

concerns about the additional properties considered trivial by Isaacs [42] when searching

for non-Tait-colourable graphs.

(a) (b)

Figure 2.16: The Blanuša Snark (a) as depicted in Blanuša’s article and (b) in one of its
common drawings.
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The proof that the Blanuša Snark is not 3-edge-colourable is given in Section 2.3.3. An

operation known as dot product is shown to generate non-3-edge-colourable cubic graphs.

The Blanuša Snark is a particular case of graphs obtained from this operation.

In the article quoted in the beginning of this section, Descartes [21] described a trivial

modification performed on the Petersen Graph to produce non-Tait-colourable bridgeless

cubic graphs. This modification consists of removing a vertex from P and adding new

edges and vertices to obtain a different bridgeless cubic graph. The graph of Figure 2.17

appears in Descartes’ article as an example of such a trivial modification.

Figure 2.17: An example of a trivial modification of the Petersen Graph. The bold edges
form a 3-edge cut.

Every trivial modification of the Petersen Graph has a nontrivial edge cut of size

three. Descartes also proved the Parity Lemma (Lemma 1.15) and observed that the

edges of every nontrivial 3-edge cut have different colours in any 3-edge-colouring of a

cubic graph. It implies that these cuts play the same role as a trivial edge cut. Thus,

Descartes constructed snarks without nontrivial 3-edge cuts.

We reproduce Descartes’ construction. Denote the Petersen Graph by P , and denote

the graph of Figure 2.18 by L. Associate with every vertex v ∈ V (P ) a 9-cycle Cv. Let

∂(v) = {e, f, g} and define {P e
v , P

f
v , P

g
v }, a partition of V (Cv) such that each part has

three vertices. For every edge e ∈ E(P ), with e = uw, add a copy Le of L. Join cycles Cu

and Cw to Le as follows. Identify the vertices of P e
u with vertices a, b, and c of Le, and

identify the vertices of P e
w with vertices a′, b′, and c′. Each 9-cycle is joined with exactly

three copies of L, and each vertex of the resulting graph has degree three. The new graph

has 210 vertices and is a Descartes Snark. Notice that it is not specified how to make the

partition of the vertices of each 9-cycle. Hence, this procedure does not lead to a unique

graph. An example is exhibited in Figure 2.19. Every Descartes Snark has no edge cut

with less than four edges and no cycle of length less than five.
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Figure 2.18: Graph L used in Descartes construction.

Figure 2.19: A Descartes Snark.
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Theorem 2.18. Every Descartes Snark is non-3-edge-colourable.

Proof. Let G be a Descartes Snark. Suppose G has a 3-edge-colouring π with colour set

{1, 2, 3}. Let L = {Le : e ∈ E(P )}, where Le is the copy of graph L (see Figure 2.18)

replacing edge e. Define mapping φ : L → {0, 1, 2, 3} in the following manner. If any two

of the edges of Le incident with vertices a, b, and c have the same colour, let φ(Le) be

the colour of the third edge. Otherwise, set φ(Le) = 0. Note that, if the three considered

edges have the same colour c, then φ(Le) = c. Moreover, if φ′ is defined analogously to

φ, but using the colours of the eges of Le incident with a′, b′, and c′ instead, then φ′ = φ.

Note that if φ(Le) = 0 for some e ∈ E(P ), then the three edges of Le incident with a,

b, and c have different colours, and the same is true for the three edges of Le incident with

a′, b′, and c′. In this case, by identifying a, b, and c, and identifying a′, b′, and c′, while

preserving the colours of the edges of Le, we obtain a copy of P with a 3-edge-colouring.

Therefore, φ(Le) 6= 0 for all e ∈ E(P ).

Let v ∈ V (P ), with ∂P (v) = {e, f, g}. By construction, G has a 9-cycle Cv, and Le,

Lf , Lg are the copies of L connected to Cv. Suppose that for two of Le, Lf , Lg, say

Le and Lf , φ(Le) = φ(Lf) = x. Since x 6= 0, by construction of φ and by the Parity

Lemma, φ(Lg) = 0. Hence, φ(Le), φ(Lf), and φ(Lg) are different. In this case, a 3-edge-

colouring of P is obtained by assigning φ(Le) to each e ∈ E(P ). Therefore, G is not

3-edge-colourable.

The fourth discovery of a snark was made by Szekeres [85] in 1973. Initially, he

defined the Petersen Graph P as the graph with vertex set {0, . . . , 9} and edge set

{01, 12, 23, 34, 40, 56, 67, 78, 89, 95, 05, 17, 29, 36, 48}. Graph H is obtained from P by re-

moving edges 23 and 78, as shown in Figure 2.20. Szekeres constructed the Szekeres Snark

as follows. Take graphs H0, H1, H2, H3, and H4 isomorphic to H . For each Hi, let θi be

an isomorphism from H to Hi. For every j ∈ V (H), denote vertex θ(j) ∈ V (Hi) by xi,j .

Add edges {xi,2x(i+1) mod 5,3} and {xi,7x(i+2) mod 5,8}, with 0 ≤ i ≤ 4, adding precisely one

edge between each pair of graphs Hi. The Szekeres Snark is shown in Figure 2.21. This

snark can also be obtained by the dot product operation, described in Section 2.3.3.

0
1

2 3

4

5

6

78

9

Figure 2.20: Graph H defined by Szekeres.
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Figure 2.21: The Szekeres Snark.

2.3.2 Trivial snarks

In the context of 3-edge-colourings, some snarks are commonly considered trivial varia-

tions of other snarks. In this section, we present a formalization of this idea.

The Four-Colour Conjecture motivated the study of bridgeless cubic graphs. Respec-

tively to edge-colourings, there is another essential reason for not considering cubic graphs

with bridges. Let G be a cubic graph with a bridge e. Recall that a 3-edge-colouring is

a partition of E(G) into three disjoint perfect matchings. By Theorem 1.12, e belongs

to every perfect matching of G. Thus, G does not have three pairwise disjoint perfect

matchings. Therefore, every cubic graph with a bridge is non-3-edge-colourable. Unless

otherwise stated, every cubic graph considered in this subsection is bridgeless.

In a 3-edge-colouring, cycles of length at most four and nontrivial edge cuts with size

at most three do not play any special role. In order to see this, consider initially cycles

of length at most four. Let G be a bridgeless cubic graph with a cycle C of length two,

and let e and f be the edges with only one end in V (C). In every 3-edge-colouring of G,

the same colour is assigned to e and f , as illustrated in Figure 2.22(a). As indicated in

the figure, if C, e, and f are replaced by a single edge, resulting a smaller cubic graph H ,

then G is 3-edge-colourable if and only if H is 3-edge-colourable. If cycle C has length

three, then in any 3-edge-colouring of G, each edge of ∂(C) has a different colour. As

depicted in Figure 2.22(b), the vertices of C can be shrinked to produce a graph with the
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same chromatic index of G. Suppose now that the length of C is four. By the Parity

Lemma, there are just two cases to be considered for a 3-edge-colouring of G, illustrated

in Figure 2.23. In both of them, C can be replaced by two edges, as shown in the figure,

without changing the chromatic index of G.
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Figure 2.22: Configurations with cycles of length two and three.
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Figure 2.23: Configurations with cycles of length four.

Before proceeding with the analysis of 2-edge and 3-edge cuts, we introduce two simple

operations described by Isaacs [42]. Let G1 and G2 be cubic graphs. Let e1 = u1v1 ∈

E(G1) and e2 = u2v2 ∈ E(G2). The first Isaacs’ operation builds a graph G composed

of G1 − e1 and G2 − e2, connected by edges u1u2 and v1v2. Note that G has a 2-edge

cut comprised of edges u1u2 and v1v2. For the second Isaacs’ operation, let v1 ∈ V (G1)

and v2 ∈ V (G2), with x1, y1, z1 the neighbours of v1, and x2, y2, z2 the neighbours of v2.

This operation produces a new graph G comprised of G1 − v1, G2 − v2, and edges x1x2,

y1y2, and z1z2. In this case, G has the 3-edge cut {x1x2, y1y2, z1z2}. Both operations are

illustrated in Figure 2.24.
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Figure 2.24: Isaacs’ operations for constructing trivial cubic graphs.

Theorem 2.19. Let G1 and G2 be cubic graphs. Let G be a graph obtained from G1 and

G2 applying one of Isaacs operations. Thus, G is 3-edge-colourable if and only if G1 and

G2 are 3-edge-colourable.

Proof. Let G1, G2, and G be defined as in the hypothesis. Suppose G has a 3-edge-

colouring. If G is obtained with the first Isaacs operation, then, by the Parity Lemma,

the two edges of edge cut {u1u2, v1v2} of G have the same colour c. By restricting the

3-edge-colouring of G to the edges of Gi, for i = 1, 2, and assigning colour c to edge uivi,

we have a 3-edge-colouring of Gi. If G is constructed with the second Isaacs operation,

then the Parity Lemma asserts that each edge of edge cut {x1x2, y1y2, z1z2} of G has a

different colour. Also in this case, we restrict the 3-edge-colouring of G to the edges of Gi,

for i = 1, 2. Then, we assign the colours of x1x2, y1y2, z1z2 respectively to xivi, yivi, zivi.

The result is a 3-edge-colouring of Gi.

Conversely, suppose G1 and G2 each has a 3-edge-colouring. Assume that G is con-

structed with the first Isaacs operation. We permute the colours of the edges of G1 and G2

so that u1v1 and u2v2 have the same colour c. Then, we transfer the colours of the edges

of G1 and G2 to the equivalent edges of G, and assign colour c to both edges u1u2, v1v2.

The result is a 3-edge-colouring of G. Now, assume that G is constructed with the second

Isaacs operation. In this case, we permute the colours of the edges of G1 and G2 so that

each of x1v1, y1v1, and z1v1 has respectively the same colour as x2v2, y2v2, and z2v2. By

transfering the colours of the eges of G1 and G2 to the equivalent edges of G, we get a

3-edge-colouring of G.

The next proposition shows that nontrivial edge cuts of size at most three in a cubic

graph are cyclic edge cuts. This relation is useful for defining nontrivial snarks.

Proposition 2.20. If G is a cubic graph, then every nontrivial edge cut of G with at

most three edges is a cyclic edge cut.
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Proof. Let G be a cubic graph with a nontrivial k-edge cut ∂(X), X ⊆ V (G) and k ≤ 3.

Let H be a connected component of G \ ∂(X). At most three edges of ∂(X) are incident

with vertices of H . By Theorem 1.2, it suffices to show that there is a subgraph of H

with minimum degree at least two.

Suppose just one edge of ∂(X) is incident with a vertex of H . Thus, every vertex

of H has degree at least two. If exactly two edges of ∂(X) are incident with vertices

u, v ∈ V (H), u 6= v, then every vertex of H has degree at least two. If u = v, then v has

degree one in H , but every vertex of H − v has degree at least two.

As the last case, suppose three edges of ∂(X) are incident with vertices of H . Since

∂(X) is nontrivial, these edges are incident with more than one vertex of H . If they

are incident with three different vertices, then every vertex of H has degree at least two.

Thus, consider that the three edges of ∂(X) are incident with two vertices u and v of H .

Without loss of generality, suppose u is incident with two edges of ∂(X). In H , u has

degree one and v has degree two. First, suppose u and v are not adjacent. Thus, H − u

has two vertices of degree two while all other vertices have degree three. Suppose u and

v are adjacent. In this case, v is the only degree-one vertex of H − u. Therefore, every

vertex of H \ {u, v} has degree at least two.

As a consequence of Proposition 2.20, a cubic graph is cyclically 4-edge-connected if

and only if all its edge cuts with less than four edges are trivial.

Considering what is discussed in this section, we provide a more detailed classification

of cubic graphs with chromatic index four. A snark is defined as a bridgeless cubic graph

with chromatic index four. If a snark has a nontrivial k-edge cut, k ≤ 3, or a cycle of

length at most four, then it is a trivial snark. Otherwise, it is a nontrivial snark. In the

light of Proposition 2.20, we can restate this definition as follows.

A nontrivial snark is a cyclically 4-edge-connected cubic graph with chromatic

index four and girth at least five.

The Petersen Graph, the Blanuša Snark, the Descartes Snarks and the Szekeres Snark

are nontrivial snarks.

Recall that the Four-Colour Theorem is equivalent to the statement that every planar

bridgeless cubic graph is 3-edge-colourable. This statement, in turn, is equivalent to the

assertion that every snark is nonplanar. To show that every snark is nonplanar, it is

enough to verify that every nontrivial snark is nonplanar. For this reason, the search for

snarks is usually restricted to nontrivial cases.

Conjecture 2.21 (Four-Colour Conjecture – Snark version). Every nontrivial snark is

nonplanar.

Theorem 2.22 (Four-Colour Theorem – Snark version). Every nontrivial snark is non-

planar.
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2.3.3 Isaacs snarks

After a very slow progress in finding new snarks, an article published by Isaacs [42]

in 1975 changed dramatically the history of the discoveries. Isaacs found two infinite

families of snarks: the Flower Snarks and the BDS Class. According to John Watkins [92]

and Mark Goldberg [32], Flower Snarks were independently discovered by Grinberg, but

never published. Goldberg also pointed that Grinberg presented Flower Snarks at the

Symposium on Graph Theory held in Vaivary, Latvia, in 1972.

The BDS Class is constructed by an operation called dot product. According to Isaacs,

the letters in BDS stand for Blanuša, Descartes and Szekeres, whose snarks belong to this

family and inspired its construction. Isaacs defined an additional family, called Q Class,

and described one new member of this class, known as Double Star Snark. In what follows,

we describe Isaacs’ infinite families of snarks and the Double Star Snark.

Flower Snarks

Isaacs described a sequence of snarks {Jk}, k odd and k ≥ 3, known as Flower Snarks. Let

T be the graph shown in Figure 2.25(a). In graph T , v is the central vertex and x, y, and z

are the vertices adjacent to v. For k an odd integer, k ≥ 3, Flower Snark Jk is constructed

using T1, T2, . . . , Tk, k copies of T . For each Ti, let its vertices be vi, xi, yi, and zi. Graphs

T1, . . . , Tk are linked by two cycles: C0 = z1z2 . . . zk and C1 = x1x2 . . . xky1y2 . . . yk, as

indicated in Figure 2.25(b). Common drawings of J5 and J7 are shown in Figure 2.26.

Graph J3 is a trivial snark, since its cycle C0 has length three. It is worth noting that the

contraction of C0 in J3 produces the Petersen Graph.

v

x
y

z

(a) (b)

Figure 2.25: Construction of Flower Snarks.

Theorem 2.23. The Flower Snarks are not 3-edge-colourable.

Proof. We describe Isaacs’ proof [42]. Let Jk be a Flower snark. Let Yi = V (Ti), Ti ⊆ Jk,

with 1 ≤ i ≤ k. Let edge cut ∂(Yi) be partitioned into two sets: ∂−(Yi), comprising the

three edges with one end in Yi and another end in Yi−1, and ∂+(Yi), comprising the three

edges joining Yi and Yi+1. In order to see that Jk is not 3-edge-colourable, suppose it has
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v1
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z3 v4

x4
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z4

v5
x5

y5

z5

Figure 2.26: The Flower Snarks J5 and J7.

a 3-edge-colouring with colour set {1, 2, 3}. There are three cases to analyse, depending

on the colours of the edges of ∂−(Y1).

Case 1. The three edges of ∂−(Y1) receive the same colour. In this case, it is not possible

to assign distinct colours to the three edges of E(T1).

Case 2. The three edges of ∂−(Y1) are coloured with only two colours, say 1 and 2, with

colour 1 used twice. By inspection, we conclude that edges of ∂+(Y1) receive colours 2

and 3, with colour 3 used twice. Had we considered 2, 3, 3 as the colours of the edges of

∂−(Y1), the inspection would yield colours 1, 1, 2 for the edges of ∂+(Y1). Thus, the edges

of the sequence ∂−(Y1), ∂
−(Y2), ∂

−(Y3), . . . , ∂
−(Yk), receive alternately colours 1, 1, 2 and

2, 3, 3. Since k is odd, the edges of ∂−(Yk) and the edges of ∂−(Y1) receive the same

colours 1, 1, 2, resulting in a pair of adjacent edges with the same colour.

Case 3. The three edges of ∂−(Y1) are coloured with distinct colours. For the edges in

each ∂−(Yi) and ∂+(Yi), consider the following cyclic order: the edge incident with xi, the

edge incident with yi, and the edge incident with zi.

Suppose the edges of ∂−(Yi) have colours 1, 2, 3 in cyclic order. This implies that

the edges of ∂+(Yi) also have colours 1, 2, 3 in cyclic order, up to shifts, as illustrated in

Figure 2.27. Therefore, if the edges of ∂−(Y1) have colours 1, 2, 3 in cyclic order, then the

edges of ∂+(Yk) also have colours 1, 2, 3 in cyclic order. Observe that T1 and Tk are joined

by edges x1yk, y1xk, and z1zk, as illustrated in Figure 2.28. Thus, the edges of ∂−(Y1)

have colours 1, 2, 3 in reverse cyclic order, contradicting the hypothesis that the edges of

∂−(Y1) have colours 1, 2, 3 in cyclic order.
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Figure 2.27: Case 3: Two ways of colouring the edges incident with Ti.
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vk

Figure 2.28: Edges connecting Tk and T1.

Dot product (BDS Class)

The second infinite family of snarks described by Isaacs [42] is the BDS Class. As already

mentioned, this family contains the Blanuša Snark, the Descartes Snarks and the Szekeres

Snark. Each graph of this class is the result of successive applications of an operation

called dot product. Let U and W be any cubic graphs. Remove from U two non-adjacent

edges e1 = u1v1 and e2 = u2v2. Remove from W two adjacent vertices x1 and x2, with

x1 also adjacent to w1 and z1, and x2 also adjacent with w2 and z2. The dot product

U ·W is a cubic graph obtained by linking vertices u1 and v1 with w1 and z1, and linking

vertices u2 and v2 with w2 and z2, after removing e1 and e2 from U and x1 and x2 from

W . Figure 2.29 illustrates the operation.

U W U · W

e1
u1 u1

v1 v1
x1

w1 w1

z1 z1

e2
u2 u2

v2 v2
x2

w2 w2

z2 z2

Figure 2.29: Isaacs’ dot product.

Theorem 2.24. If U and W are non-3-edge-colourable cubic graphs, dot product U · W

produces a non-3-edge-colourable cubic graph.
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Proof. Let U and W be non-3-edge-colourable cubic graphs. Suppose that U · W has

a 3-edge-colouring π : E(U · W ) → C. Let the vertices and edges of U , W , and U · W

be denoted as in Figure 2.29. Let EC be the edge cut {u1w1, v1z1, u2w2, v2z2} of U · W .

By the Parity Lemma, each colour c ∈ C is assigned to an even number of edges of EC .

Therefore, either the four edges of EC have the same colour, or two of them have one

colour, while the other two have another colour.

Suppose that all edges of EC have the same colour c. Thus, by restricting π to E(U)

and assigning c to edges u1v1 and u2v2 of U , we have a 3-edge-colouring of U , contradicting

the fact that U is non-3-edge-colourable. Hence, the edges of EC have colours c1 and c2.

If u1w1 and v1z1 have colour c1, while u2w2 and v2z2 both have colour c2, then a 3-edge-

colouring of U is obtained, similarly to the previous case. Thereby, assume that u1w1 and

v1z1 have different colours c1, c2, as well as u2w2 and v2z2. In this case, we construct a

3-edge-colouring of W by restricting π to E(W ), then transferring the colours of u1w1 and

v1z1 respectively to x1w1 and x1z1, transferring the colours of u2w2 and v2z2 respectively

to x2w2 and x2z2, and assigning to x1x2 the colour of C \ {c1, c2}. We conclude that, in

any case, a 3-edge-colouring of U ·W cannot exist.

Due to the high symmetry of the Petersen Graph P , there are only two essentially

different ways of choosing two non-adjacent edges: either the two edges are adjacent to

a common third edge, or not. These ways are shown in Figure 2.30(a). Still by the

symmetry of P , there is only one way of choosing two adjacent vertices, as illustrated

in Figure 2.30(b). Hence, there are only two manners of performing the dot product on

two copies of the Petersen Graph [91]. One of these, where the first operand of P · P is

modified as indicated in the leftmost drawing of Figure 2.30(a), yields the Blanuša Snark,

as noted by Isaacs. This snark, shown in Figure 2.16, is also known as the First Blanuša

Snark. When modifying the first operand of P · P as indicated in the rightmost drawing

of Figure 2.30(a), the result of P ·P is the Second Blanuša Snark, depicted in Figure 2.31.

(a) (b)

Figure 2.30: The Petersen Graph as the first (a) and as the second (b) operand of the dot
product P · P . Dashed lines are removed edges and white vertices are removed vertices.
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Figure 2.31: The Second Blanuša Snark.

Isaacs, as well as Uldis Celmins and Edward Swart [18], Myriam Preissmann [76], and

Watkins [91, 92], observed that P · P has two possible results. Preissmann showed that

the two Blanuša Snarks are the only nontrivial snarks on 18 vertices. In Stanley Fiorini

and Robin Wilson’s book [26], it is stated that Fiorini, using a computer-generated list

by Bussemaker et al. [11], has shown that nontrivial snarks of order 12 or 14 do not exist.

Later, Celmins and Swart [18] gave a proof of the same fact, while Jean-Luc Fouquet [27]

showed that a nontrivial snark on 16 vertices does not exist. Furthermore, Fiorini and

Wilson claimed that it can be shown that there are nontrivial snarks of any even order

greater than 16.

The discovery of the Second Blanuša Snark is sometimes credited to Blanuša. How-

ever, in his 1946 paper [7], we only found evidence of the First Blanuša Snark, and the

piece of information given by Isaacs [42] and Watkins [92] provides evidence that the

Second Blanuša Snark was not known until the definition of the dot product. There is

some difficulty in providing more precise information, since Blanuša’s paper is written in

Croatian and it has only a summary in French. On the other hand, the credit given to

Blanuša by some authors may be justified by the fact that the Second Blanuša Snark is

a simple variation of the first.

The Szekeres Snark, exhibited in Figure 2.21, is a result of the sequence of dot products

P5 · (P4 · (P3 · (P2 · (P1 · P0)))), where P0, . . . , P5 are copies of P . Let Gi = Pi ·Gi−1, with

1 ≤ i ≤ 5, where G0 = P0. There are multiple ways of carrying out this sequence of

products. To produce the Szekeres Snark, in each product the first operand Pi is modified

as indicated in Figure 2.32(a). For the second operand, consider edges e1, . . . , e5 shown

in Figure 2.32(b). When performing Pi ·Gi−1, 1 ≤ i ≤ 5, remove the ends of ei from Gi−1

and preserve the labels of edges ei+1, . . . , e5 in Gi. For every i, let vout
i be the end of ei in

the outermost cycle of Figure 2.32(b), and let vin
i be the end of ei in the innermost cycle.

In each product, vertices a and b are joined respectively to vin
i+3 and vin

i+2, and vertices c

and d are joined respectively to vout
i+4 and vout

i+1. Indexes greater than five are taken modulo

five. The Szekeres Snark is the result of the last product, P5 ·G4.
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Figure 2.32: Construction of Szekeres Snark.

The Q Class and the Double Star Snark

Isaacs [42] described another class of snarks, called Q Class, which we do not describe

here. This family includes the Petersen Graph, the Flower Snark J5, and the Double Star

Snark, depicted in Figure 2.33. The Double Star Snark is constructed as follows. Take two

copies of J5, remove cycle C0 = z1z2z3z4z5 from each of them, and denote the resulting

graphs by J ′
5 and J ′′

5 . Then, add edges v′
1v

′′
1 , v′

3v
′′
2 , v′

5v
′′
3 , v′

2v
′′
4 , and v′

4v
′′
5 .
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(a) A drawing by Isaacs. (b) A drawing by Celmins [16].

Figure 2.33: The Double Star Snark.

2.4 Additional constructions of snarks

In the previous section, we described the first discoveries of snarks. These discoveries are

summarised in Table 2.1.

After Isaacs’ remarkable paper, many other families and methods for constructing

snarks were described. Some of them are presented here. Examples not covered here
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Snarks Order Author Year
Petersen Graph 10 Petersen 1979

First Blanuša Snark 18 Blanuša 1946
Descartes Snarks 210 Descartes 1948
Szekeres Snark 50 Szekeres 1973
Flower Snarks 4(2k + 1), k ≥ 1 Grinberg 1972

Isaacs 1975
BDS Class (dot product) – Isaacs 1975

Double Star Snark 30 Isaacs 1975

Table 2.1: First discoveries of snarks

are: the square product operation, due to Cavicchioli et. al. [13]; two infinite families,

due to Jonas Hägglund [37]; constructions described by Celmins and Swart [18]; and

constructions described by Watkins [91, 92], including a generalization of the Szekeres

Snark. There are also works that present algorithms for generating snarks of a given

size, such as the algorithm by Brinkmann et al. [9], which was used to generate all non-

isomorphic snarks with up to 36 vertices.

2.4.1 Generalised Blanuša Snarks

Watkins [91, 92] generalised the construction of First and Second Blanuša Snarks, defining

two infinite families of generalised Blanuša Snarks. Let B1 = {B1
1 , B

1
2 , B

1
3 , . . . } be the first

family of generalised Blanuša Snarks and let B2 = {B2
1 , B

2
2 , B

2
3 , . . . } be the second family

of generalised Blanuša Snarks. The first member of B1 is the First Blanuša Snark, while

the first member of B2 is the Second Blanuša Snark.

In order to construct the first family, we consider the drawing of the Petersen Graph

shown in the left of Figure 2.34. The First Blanuša Snark B1
1 is the result of product P ·P

performed as indicated in Figure 2.34. In this figure, the leftmost drawing shows the first

operand, and the middle drawing shows the second operand. In order to construct B1
1 ,

remove edges u1v1 and u2v2 from the first operand, remove vertices x1 and x2 from the

second operand, and add edges u1w1, v1z1, u2w2, v2z2. The rightmost drawing of the figure

shows graph B1
1 . Finally, assign labels u1, u2, v1, v2 to vertices of B1

1 as in the figure. Each

member B1
i of B1, with i > 1, is obtained by the dot product B1

i−1 · P , with B1
i−1 playing

the role of P in the construction of B1
1 . Then, add edges u1w1, v1z1, u2w2, v2z2, and assign

labels u1, u2, v1, v2 to vertices of B1
i as in Figure 2.35.

The construction of family B2 is similar to the construction of family B1. The left-

most drawing of Figure 2.36 shows the depiction of the Petersen Graph considered when

building the first member B2
1 of B2. Figure 2.37 shows the scheme of a member B2

i of B2.
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Figure 2.34: Construction of the First Blanuša Snark.
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Figure 2.35: Generalised Blanuša Snark B1
i of the first family B1.
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Figure 2.36: Construction of the Second Blanuša Snark.
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. . .

Figure 2.37: Generalised Blanuša Snark B2
i of the second family B2.
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2.4.2 Loupekine Snarks

In 1976, Feodor Loupekine proposed a construction of two infinite families of snarks, using

other known snarks. We present Loupekine’s construction as described by Isaacs [43].

Let G be a nontrivial snark. A subgraph B(G) of G is obtained by removing a path of

three vertices from G. Graph B(G) is a block and it is used in the construction of a new

snark. Since the girth of G is at least five, B(G) has five different vertices with degree

two, named u, v, w, x, y relatively to the vertices of the removed path. These vertices are

called border vertices. Figure 2.38 illustrates this operation for the Petersen Graph P . By

the symmetries of the Petersen Graph, all blocks constructed in this way are isomorphic.
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(c) A block Bi.

Figure 2.38: Construction of a block from the Petersen Graph.

Let G1, G2, . . . , Gk be snarks. We construct a cubic graph GL
k using blocks B(Gi),

1 ≤ i ≤ k. Denote each block B(Gi) by Bi, and attach index i to its vertex names, as in

Figure 2.38(c). For each i, add a pair of edges linking each vertex of {ui, vi} to a different

vertex of {xi+1, yi+1}. In this section, indexes greater than k are taken modulo k. The

resulting graph GB is the block subgraph of GL
k . Figure 2.39(a) shows an example.

Notice that GB has exactly k vertices with degree two: w1, . . . , wk. Let GC be a graph

with k vertices of degree one, namely z1, . . . , zk, and all other vertices of degree three.

The edge incident with zi is denoted by ez
i . Graph GC is the central subgraph of GL

k . An

example of a central subgraph is depicted in Figure 2.39(b). For each i, identify vertices

wi and zi. The resulting graph is GL
k .

Isaacs [43] showed that, if k is odd, then GL
k is a snark. If k is even, with k ≥ 6,

an additional constraint on subgraph GC is necessary. This constraint is described in

Isaacs’ report. These two families of snarks, one with odd k ≥ 3 and the other with even

k ≥ 6, are Loupekine’s families, which are called Loupekine Snarks. A Loupekine Snark

with an odd number of blocks is an L-snark. Figure 2.40 shows examples of Loupekine’s

construction with k odd. Notice that GB and GC form a decomposition of an L-snark.

Let G be an L-snark such that each connected component of GC is isomorphic to one

of graphs K2 and S3, where K2 is the complete graph with two vertices, and S3 is the
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(a) A graph GB.
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(b) A graph GC .

Figure 2.39: Examples of block subgraph and central subgraph.
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(a) An L1-snark.
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(b) An L0-snark.

Figure 2.40: Examples of L-snarks.

star with three vertices of degree one. Graph G is an L1-snark. Examples are depicted in

Figure 2.40. Suppose that each connected component of GC is connected to consecutively

indexed blocks. Then, G is an L0-snark, as in Figure 2.40(b). Now, suppose G is an

L-snark such that each of its blocks is isomorphic to B(P ), depicted in Figure 2.38(b).

Then, G is an LP -snark. An L1-snark that is also an LP -snark is called an LP1-snark.

Moreover, an L0-snark that is also an LP -snark is called an LP0-snark1. Figure 2.41

shows examples of LP -snarks.

1The names of subfamilies of Loupekine Snarks used here were taken from L. Vaux’s work [89].
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(a) An LP1-snark. (b) An LP0-snark.

(c) The smallest L-snark.

Figure 2.41: Examples of Loupekine Snarks constructed from the Petersen Graph.

2.4.3 Goldberg Snarks

In 1981, Mark K. Goldberg [32] described a method for constructing Class 2 graphs with

maximum degree three. Using Goldberg’s method, it is also possible to construct snarks.

As an example, Goldberg constructed the family of Flower Snarks. His method is more

general than Loupekine’s construction, and every L-snark can be obtained by this method.

A graph G is edge-colour-critical if every graph obtained by removing an edge of G

has chromatic index less than χ′(G). Another important result provided by Goldberg is

the disproval of the Edge-Colour-Critical Graph Conjecture [5, 48], which says that every

edge-colour-critical graph has an odd number of vertices. Goldberg used his method to

produce an infinite family of edge-colour-critical graphs, each with an even number of

vertices. Each of these graphs has maximum degree three and chromatic index four.
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We do not describe Goldberg’s method. Instead, we present the family of Goldberg

Snarks, built with his method. Each Goldberg Snark is also an LP -snark, which is a

Loupekine Snark constructed with blocks derived from the Petersen Graph. Thereby, we

use Loupekine’s construction to describe Goldberg Snarks.

Let {Gk}, with k odd and k ≥ 3, be the family of Goldberg Snarks. For each k, where

k ≥ 5, graph Gk is the LP -snark whose central subgraph has vertex set {s1, s2, . . . , sk} ∪

{z1, z2, . . . , zk} and edge set {s1s2, s2s3, . . . , sk−1sk, sks1}∪{s1z1, s2z2, . . . , skzk}, as shown

in Figure 2.42(a). A drawing of block B(P ) used in this construction is shown in Fig-

ure 2.42(b). For all i, 1 ≤ i ≤ k, blocks Bi and Bi+1 are linked by edges {vixi+1, uiyi+1},

with indexes greater than k taken modulo k, and vertices zi and wi are identified. Fig-

ure 2.43 depicts Gk. Construction of G3 differs only in the central subgraph, which is

isomorphic to the star S3, with vertex set {s, z1, z2, z3} and edge set {sz1, sz2, sz3}. Gol-

berg Snark G3 is the smallest Loupekine Snark, exhibited in Figure 2.41(c).
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z4

zk

(a) Central subgraph.
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(b) Block B(P ).

Figure 2.42: Construction of Goldberg Snark Gk, k ≥ 5.

x3 x4x1 x2 xk

s1 s2 s3 s4 sk

u1 u2 u3 u4 uk

v1 v2 v3 v4 vk

y1 y2 y3 y4 yk

r1 r2 r3 r4 rkt1 t2 t3 t4 tkz1 z2 z3 z4 zk

Figure 2.43: Goldberg Snark Gk, with k ≥ 5.
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2.4.4 Kochol’s superposition

In 1993, Martin Kochol [61, 63] described a method called superposition for constructing

new snarks from other ones. In order to describe Kochol’s method, some preliminary

definitions and results are necessary. We adopt the same notation used by Kochol [63].

A multipole is a triple M = (V (M), E(M), S(M)), where V (M), or simply V , is a set

of vertices, E(M), or E, is a set of non-loop edges, and S(M), or S, is a set of semiedges.

The terms relative to vertices and edges used in the context of graphs are equally applied

to multipoles. In this sense, a multipole is an extension of a graph. A semiedge is incident

with either a vertex or another semiedge. A semiedge that is incident with a vertex v is

denoted by (v), and v is also said to be incident with semiedge (v). Two mutually incident

semiedges form an isolated edge. The degree of a vertex v of a multipole M , denoted by

dM(v) or d(v), is the cardinality of set {e ∈ E(M) ∪ S(M) : e is incident with v}. A

multipole M is cubic if every vertex of M has degree three. Figure 2.44 shows examples

of cubic multipoles.

Figure 2.44: Examples of cubic multipoles, each with four semiedges.

Let M = (V,E, S) be a multipole and let e = uv be an edge of M . To cut edge

e means to remove it from M and add two semiedges (u) and (v). Figure 2.45 shows

an example where two edges of a multipole are cut, thus adding four semiedges. This

operation can also be performed on a graph, thus creating a multipole. Let s = (u) and

t = (v) be semiedges of M . To join s and t means to remove them from M and add

a new edge with ends u and v. Figure 2.45 also illustrates this operation, which can be

performed on semiedges of different multipoles, thus creating a new unique multipole.

e u

u

v

v
ff

ww zz

(u)(u)

(v)(v)

(w) (z)
cut e

join e

cut f

join f

Figure 2.45: Cutting edges (from left to right) and joining semiedges (from right to left)
of a multipole.



58 Chapter 2. The Four-Colour Problem and Snarks

Let C be the set of colours {(0, 1), (1, 0), (1, 1)}. A 3-edge-colouring of a multipole M

is a mapping ρ : E(M) ∪ S(M) → C satisfying the following conditions:

• ρ(e1) 6= ρ(e2) for any adjacent e1, e2 ∈ E(M) ∪ S(M);

• ρ(s1) = ρ(s2) for any mutually incident s1, s2 ∈ S(M).

The addition of two elements (a, b) and (c, d) of C ∪ {(0, 0)} is defined as

(a, b) + (c, d) = ((a+ c) mod 2, (b+ d) mod 2).

For any X ⊆ S(M), let

ρ(X) =
∑

e∈X

ρ(e).

The Parity Lemma (Lemma 1.15) can be restated in the following form.

Lemma 2.25. Let M = (V,E, S) be a cubic multipole with a 3-edge-colouring. If mc

denotes the number of semiedges of M with colour c, then mc ≡ |S| (mod 2).

For c ∈ C and an integer k greater than zero, the sum
∑k

i=1 c is equal to (0, 0) when k

is even, and is equal to c when k is odd. Moreover, the addition (0, 1) + (1, 0) + (1, 1) is

equal to (0, 0). Lemma 2.25 is equivalent to the following statement.

Lemma 2.26. Let M = (V,E, S) be a cubic multipole and let ρ be a 3-edge-colouring of

M . Then, ρ(S) = (0, 0).

Proof. Let M be a cubic multipole. In order to see that Lemma 2.25 implies Lemma 2.26,

notice that mc, as defined in the statement of Lemma 2.25, has the same parity for every

colour c. To show the converse, it is sufficient to consider the case when mc does not

have the same parity for every colour c. In this case, the sum ρ(S(M)) is not equal to

(0, 0).

LetM = (V (M), E(M), S(M)) be a multipole with a partition of S(M) into n pairwise

disjoint nonempty sets S1, S2, . . . , Sn. Sets Si, with 1 ≤ i ≤ n, are the connectors of

multipole M . Figure 2.46 shows a multipole with two connectors. A superedge is a

multipole with two connectors, while a supervertex is a multipole with three connectors.

The following two statements are corollaries of Lemma 2.26.

Corollary 2.27. If M = (V,E, S) is a multipole with two connectors S1 and S2, and ρ

is a 3-edge-colouring of M , then ρ(S1) = ρ(S2).

Proof. Since M has a 3-edge-colouring, then, by Lemma 2.26, ρ(S) = (0, 0). Thus,

ρ(S1) + ρ(S2) = (0, 0). This can happen only if ρ(S1) = ρ(S2).

Corollary 2.28. Let M = (V,E, S) be a multipole with three connectors S1, S2 and S3.

Let ρ be a 3-edge-colouring of M such that ρ(Si) 6= (0, 0) for each i ∈ {1, 2, 3}. Then,

ρ(S1), ρ(S2), and ρ(S3) are pairwise distinct.
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S1 S2

Figure 2.46: A multipole with two connectors.

Proof. Suppose that for two connectors of M , say S1 and S2, ρ(S1) = ρ(S2). Then,

ρ(S1) + ρ(S2) = (0, 0). Hence, ρ(S) = ρ(S1) + ρ(S2) + ρ(S3) = (0, 0) + ρ(S3). By

hypothesis, ρ(S3) 6= (0, 0). Therefore, ρ(S) 6= (0, 0), contradicting Lemma 2.26.

Let G be a cubic graph with two nonadjacent vertices u and v. Denote by Gu,v

the superedge constructed in the following manner. First, cut the edges of ∂(u) and

remove vertex u and its incident semiedges. Denote by S1 the set of semiedges created.

Repeat the operation for vertex v and make S2 the new set of semiedges obtained. The

resulting multipole, together with connectors S1 and S2, is superedge Gu,v. The multipole

of Figure 2.46 is a superedge Pu,v obtained from the Petersen Graph.

A multipole M = (V,E, S) with connectors S1, . . . , Sn is proper if ρ(Si) 6= (0, 0) for

every 3-edge-colouring ρ of M , and for each i, with 1 ≤ i ≤ n. The following lemma

introduces a way of constructing proper superedges.

Lemma 2.29. Let G be a snark. Let u, v ∈ V (G), u and v nonadjacent. Then, multipole

Gu,v is a proper superedge.

Proof. Let S1 and S2 be the connectors of Gu,v. Suppose Gu,v is not a proper superedge.

Thus, there exists a 3-edge-colouring ρ of Gu,v such that for one of the connectors of Gu,v,

say S1, ρ(S1) = (0, 0). By Corollary 2.27, we have that ρ(S2) = ρ(S1). Since S1 has

three semiedges, each semiedge has a different colour. Similarly for S2. Thus, ρ induces a

3-edge-colouring of G, contradicting the hypothesis that G is a snark. We conclude that

Gu,v is a proper superedge.

Let M and N be multipoles. Let S be a connector of M and let T be a connector

of N . If |S| = |T |, we can associate S and T by saying that they are paired, and we

join S and T by joining each semiedge of S with a semiedge of T . Let G be a loopless

cubic graph. Associate with each edge e of G a superedge E(e), and with each vertex

v of G, a supervertex V(v), such that for all e ∈ E(G) and v ∈ V (G), with e incident

with v, a connector of E(e) is paired with a connector of V(v). Moreover, each connector

must be paired with exactly one other connector. Join every two paired connectors. The
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resulting cubic graph is a superposition of G, denoted by G(V, E). Figure 2.47 illustrates

examples of superposition. If E(e) is proper for every e ∈ E(G), then G(V, E) is a proper

superposition. Theorem 2.30 shows that this method can be used to construct snarks.

(a) A supervertex
and two superedges.

(b) Superpositions of the Petersen Graph.

Figure 2.47: Examples of superposition.

Theorem 2.30. Let G be a snark. Then, every proper superposition G(V, E) is a snark.

Proof. Let G be a snark, and Let G(V, E) be a proper superposition of G. Suppose that

G(V, E) has a 3-edge-colouring ρ. Let e ∈ E(G), and let S1 and S2 be the connectors

of E(e). By Corollary 2.27, ρ(S1) = ρ(S2). Let θ(e) = ρ(S1). Since E(e) is a proper

superedge, θ(e) 6= (0, 0). Let v ∈ V (G), and let e1, e2, e3 be the edges incident with v.

By Corollary 2.28, θ(e1), θ(e2), and θ(e3) are pairwise distinct. Therefore, θ is a 3-edge-

colouring of G, contradicting the hypothesis that G is a snark.

Each Descartes Snark [21], presented in Section 2.3, is a special case of superposition.

Let P be the Petersen Graph. For each v ∈ V (P ), let VD(v) be a supervertex composed

of a cycle of length nine, with a semiedge incident with each vertex of the cycle. The set

of semiedges is partitioned into three parts of size three, each part being a connector of

VD(v). For every e ∈ E(P ), let the proper superedge ED(e) be a copy of the multipole of

Figure 2.46. Then, each Descartes Snark is a superposition P (VD, ED). This superposition

has the same general structure as the illustration in the right of Figure 2.47(b).

Using superposition, Kochol constructed infinite families of cyclically 4-edge-connected

and cyclically 5-edge-connected snarks with arbitrarily large girth. With these families,

he disproved the Girth Conjecture, a conjecture by Jaeger and Swart [46] which says that

every snark has girth at most six. More precisely, Kochol proved the following theorems.
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Theorem 2.31 (Kochol [63]). For any given c ≥ 5, there exists an infinite family of

cyclically 5-edge-connected snarks with girth c.

Theorem 2.32 (Kochol [63]). Let G be a cyclically 4-edge-connected cubic graph of order

n and with girth c ≥ 4. Then, there exists a cyclically 4-edge-connected snark T (G) of

order 12n+ 10 and with girth c.

Kochol also constructed infinite families of cyclically 6-edge-connected snarks [60, 62],

although these families do not contain graphs with arbitrarily large girth. The Flower

Snarks Jk, k ≥ 5, are cyclically 6-edge-connected as well. Jaeger and Swart [47] conjec-

tured that a snark with cyclic edge-connectivity greater than six does not exist. This

conjecture is mentioned by Kochol and it remains open.

Conjecture 2.33 (Jaeger and Swart). There is no cyclically 7-edge-connected snark.





Chapter 3

Fulkerson’s Conjecture and related

results

Research on cubic graphs has been very much motivated by the Four-Colour Problem.

Moreover, other important problems, such as the Cycle Double Cover Conjecture, have

contributed to increase the interest in cubic graphs. Matchings in cubic graphs have

received special attention. The earliest remarkable result in this subject is Petersen’s

Theorem (Theorem 1.11), which states that every bridgeless cubic graph has a perfect

matching. Another fundamental result, stronger than Petersen’s Theorem, asserts that

every edge of any bridgeless cubic graph belongs to a perfect matching (Theorem 1.13).

Several results and conjectures about matchings in cubic graphs were published after

Petersen’s Theorem. One of the most celebrated problems in this field was proposed by

Fulkerson [30] in 1971, in the following quote:

“can one assign pairs of colors from six colors to the edges of such a [3-

connected cubic] graph so that all six colors appear at each vertex, i.e., does

such a graph have a “Tait bicoloring” in six colors? The Petersen graph does”

(see Figure 3.1).

Fulkerson was the first to publish this question. For this reason, the conjecture that

its answer is positive is usually called Fulkerson’s Conjecture. Seymour [81] claims that

Claude Berge had posed the conjecture before, although he never published it. Thus, it

is also referred to as the Berge-Fulkerson Conjecture [50].

Conjecture 3.1 (Berge-Fulkerson Conjecture). Every bridgeless cubic graph has six per-

fect matchings such that every edge belongs to exactly two of them.

Fulkerson’s Conjecture is considered a very challenging open problem in Graph Theory.

Not much progress has been done towards its solution. The conjecture is satisfied by cubic

63
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Figure 3.1: Figure taken from Fulkerson’s paper [30], exhibiting what Fulkerson called a
Tait bicolouring of the Petersen Graph with six colors.

graphs with chromatic index three, as discussed in Section 1.4. As detailed in Section 3.2,

a necessary condition for a k-regular graph G to be k-edge-colourable is that |∂(X)| ≥ k,

for every X ⊆ V (G) with |X| odd. This fact motivates the next definition. A graph G

is an r-graph if it is r-regular and |∂(X)| ≥ r, for all X ⊆ V (G) with |X| odd. In 1965,

Edmonds [23] provided a result which implies that every r-graph has a uniform cover by

perfect matchings. In 1979, Seymour [81] gave a different proof of this fact, and proposed

a generalization of Fulkerson’s Conjecture, stating that every r-graph has a k-cover by

perfect matchings with k = 1 or k = 2. Seymour provided another result closely related

to Fulkerson’s Conjecture, shown in Section 3.2.

Still in 1979, Celmins proved that Fulkerson’s Conjecture holds for an infinite class

of snarks. This class comprises the Petersen Graph, the Flower Snarks, the Double Star

Snark, and other snarks obtained from them by successive applications of Isaacs’ dot

product. Celmins’ results are detailed in Section 3.2.

In 1994, Genghua Fan and André Raspaud [25] showed that the statement of Fulk-

erson’s Conjecture implies that every brigdeless graph G admits a cover by three even

subgraphs G1, G2, G3, with |E(G1)| + |E(G2)| + |E(G3)| ≤ 22
15

|E(G)|. They proved that

this upper bound is tight over all bridgeless graphs, and conjectured that every bridgeless

cubic graph has three perfect matchings such that no edge belongs to all of them.

More recently, some results and other conjectures related to Fulkerson’s Conjecture

have appeared. For instance, Giuseppe Mazzuoccolo [71] showed that a conjecture formu-

lated by Claude Berge in the beginning of years 1990, which was believed to be weaker

than Fulkerson’s Conjecture, is actually equivalent to it. Berge’s Conjecture states that

every bridgeless cubic graph has a cover by five perfect matchings. Furthermore, Hao et.

al. [38] provided necessary and sufficient conditions for a bridgeless cubic graph to satisfy

Fulkerson’s Conjecture. Additionally, Jean-Luc Fouquet and Jean-Marie Vanherpe [28]
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provided other sufficient conditions. The results by Hao and by Fouquet and Vanherpe

can be used, for example, to verify Fulkerson’s Conjecture for classes of snarks.

In the next section we show that no trivial snark is a minimum counterexample to

Fulkerson’s Conjecture. In Section 3.2, we introduce the mentioned results due to Sey-

mour and Celmins. Section 3.3 presents some equivalent formulations of Fulkerson’s

Conjecture, such as Berge’s Conjecture, as well as other related conjectures. Section 3.4

presents alternative ways of investigating Fulkerson’s Conjecture by means of necessary

and sufficient conditions discovered by Hao et al. and by Fouquet and Vanherpe.

3.1 Fulkerson’s Conjecture and trivial snarks

Recall from Section 2.3.2 that a snark is a trivial snark if it has a nontrivial edge cut of

size at most three, or a cycle of length at most four. Moreover, recall that some simple

operations can be applied to a trivial snark to produce a smaller nontrivial snark. In this

section, it is shown that no trivial snark is a minimum counterexample to Fulkerson’s

Conjecture.

Let G be a minimum counterexample to Fulkerson’s Conjecture. Suppose that G is a

trivial snark. We consider the following cases.

Case 1: G has a 2-edge cut ∂(X), X ⊆ V (G).

Suppose ∂(X) = {x1x2, y1y2}, with x1, y1 ∈ X and x2, y2 ∈ V (G) \ X. Note that

x1 6= y1 and x2 6= y2 since G is bridgeless. Define G1 as G[X] plus edge x1y1, and G2

as G[V (G) \X] plus edge x2y2. Fulkerson’s Conjecture holds for G1 and G2. We claim

that G also satisfies Fulkerson’s Conjecture. In order to see that, let {M1
i , . . . ,M

6
i } be

a double cover by perfect matchings of Gi, for i = 1, 2. Suppose xiyi ∈ M1
i ,M

2
i . Let

M j = M j
1 ∪ M j

2 , for 1 ≤ j ≤ 6. Then, replace x1y1 and x2y2 in both M1 and M2

by x1x2 and y1y2. Thus, {M1, . . . ,M6} is a double cover by perfect matchings of G, a

contradiction.

Case 2: G has a nontrivial 3-edge cut ∂(X), X ⊆ V (G).

Suppose ∂(X) = {x1x2, y1y2, z1z2}, with x1, y1, z1 ∈ X and x2, y2, z2 ∈ V (G) \ X. Define

G1 as G[X] plus vertex v1 and edges v1x1, v1y1, v1z1, and define G2 as G[V (G) \ X] plus

vertex v2 and edges v2x2, v2y2, v2z2. Fulkerson’s Conjecture holds for G1 and G2. To

see that it also holds for G, let {M1
i , . . . ,M

6
i } be a double cover by perfect matchings of

Gi, for i = 1, 2. Without loss of generality, suppose vixi ∈ M1
i ,M

2
i , viyi ∈ M3

i ,M
4
i , and

vizi ∈ M5
i ,M

6
i . Let M j = (M j

1 \ ∂G1
(v1)) ∪ (M j

2 \ ∂G2
(v2)), for 1 ≤ j ≤ 6. Then, add x1x2

to M1,M2, add y1y2 to M3,M4, and add z1z2 to M5,M6. This process yields a double

cover by six perfect matchings of G.
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Case 3: G has a k-cycle, with k = 2, 3.

In this case, G has a nontrivial k-edge cut comprised by the edges incident with vertices

of the k-cycle. Therefore, G can be analysed as in the previous cases.

Case 4: G has a 4-cycle C.

Let G′ be the graph obtained from G by replacing C with two edges e, f as illustrated in

Figure 3.2. Since G is a minimum counterexample, G′ satisfies Fulkerson’s Conjecture.

Therefore, e and f together belong to either two, three, or four matchings. Considering

each case separately, as depicted in Figure 3.2, it is possible to show that G satisfies

Fulkerson’s Conjecture, a contradiction.

1,2 1,2 1,2 1,2

1,2

1,2

1,2

1,2

1,2

1,21,2

1,2 1,2

1,3

1,3

1,3

2,4

3,4

3,4

3,4

3,43,4

3,4

3,4

5,6

5,6

5,6

5,6

5,65,6

Figure 3.2: A 4-cycle of a trivial snark. Each 1, . . . , 6 indicates a distinct perfect matching.

From the above discussion we conclude that it is sufficient to consider only nontrivial

snarks when investigating Fulkerson’s Conjecture.

3.2 Early results

In 1979, Seymour [81] and Celmins [16] published some of the first partial results directly

related to Fulkerson’s Conjecture. Seymour also proposed a generalisation of Fulkerson’s

Conjecture. Celmins showed that an infinite class of snarks constructed with the dot

product operation satisfies Fulkerson’s Conjecture. The current section details part of

these authors’ work.

We start by discussing Seymour’s contribution. His work is described in an extensive

paper, with many intermediate and related results. We selected those which are most

relevant and directly related to the subject of this text.

Let G be an r-regular graph and suppose G is r-edge-colourable. Let X ⊆ V (G), with

|X| odd. Take a perfect matching M of G and denote by MX the intersection between
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M and the edge set of G[X]. The number of MX-saturated vertices is equal to 2|MX |.

Since |X| is odd, there is at least one MX -unsaturated vertex x ∈ X. Therefore, since

M is a perfect matching, M saturates x through an edge of ∂(X). Given that G has r

pairwise disjoint perfect matchings, ∂(X) has at least r edges. This discussion motivates

the following definition.

A graph G is an r-graph if it is r-regular and |∂(X)| ≥ r for all X ⊆ V (G),

with |X| odd.

Thus, a necessary condition for an r-regular graph to be r-edge-colourable is that it be

an r-graph. However, this condition is not sufficient. For instance, the Petersen Graph is

a 3-graph, although it is not 3-edge-colourable.

Proposition 3.2. If G is an r-graph, with r > 0, then |V (G)| is even.

Proof. Let G be an r-graph, with r > 0. Suppose |V (G)| is odd. Thus, |∂(V (G))| ≥ r.

Since r > 0, |∂(V (G))| > 0, a contradiction.

Proposition 3.3. A cubic graph is bridgeless if and only if it is a 3-graph.

Proof. Let G be a bridgeless cubic graph. Let X ⊆ V (G), with |X| odd. By hypothesis,

|∂(X)| > 1. By Theorem 1.5, |∂(X)| is odd. Therefore, |∂(X)| ≥ 3. Conversely, let G

be a 3-graph. Suppose that G has a bridge. Thus, |∂(X)| = 1 for some X ⊆ V (G). By

Theorem 1.5, |X| is odd, a contradiction.

The next theorem generalises Petersen’s Theorem (Theorem 1.11) for every r-graph.

Theorem 3.4. If G is an r-graph, with r > 0, then G has a perfect matching.

Proof. Let G be an r-graph, r > 0. Let S ⊆ V (G) and V1, . . . , Vk be the vertex sets

of the odd components of G \ S. Edge cuts ∂(V1), . . . , ∂(Vk) are pairwise disjoint and,

since G is an r-graph, |∂(Vi)| ≥ r, for 1 ≤ i ≤ k. Moreover,
⋃k

i=1 ∂(Vi) ⊆ ∂(S). Thus,

kr ≤ |∂(S)|. Since G is r-regular, |∂(S)| ≤ |S|r. Therefore, k ≤ |S|. By Tutte’s Theorem

(Theorem 1.10), G has a perfect matching.

Consider a perfect matching of a graph G as a function f : E(G) → {0, 1} where

f(e) = 1 if and only if e belongs to the perfect matching. In this case, addition and

subtraction of perfect matchings are naturally defined as addition and subtraction of

functions. If k is an integer, then k denotes the constant function that associates k to

every edge of G. Using this terminology, Seymour provided the following formulation of

Fulkerson’s Conjecture.

Conjecture 3.5. For any bridgeless cubic graph, constant function 2 can be obtained by

addition of perfect matchings.
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A p-multiple edge-colouring of an r-graph G is a p-cover by perfect matchings of G.

Note that the cover has exactly pr perfect matchings. A p-multiple edge-colouring of an

r-graph G can be seen as a special edge-colouring where each edge receives p different

colours from a set of pr colours and any two adjacent edges do not receive the same colour.

For every r-graph G, let P(G) be the set of integers p > 0 such that G has a p-

multiple edge-colouring. Denote by p∗(G) the smallest member of P(G). If G is r-edge-

colourable, then p∗(G) = 1. If P is the Petersen Graph, then p∗(P ) = 2. Fulkerson’s

Conjecture statement is equivalent to the assertion that p∗(G) = 1 or 2 for every 3-graph

G. Seymour conjectured that p∗(G) = 1 or 2 for every r-graph G. This assertion became

known as the Generalised Berge-Fulkerson Conjecture.

Conjecture 3.6 (Generalised Berge-Fulkerson Conjecture). If G is an r-graph, then there

exist 2r perfect matchings of G with the property that every edge of G belongs to exactly

two of them.

Seymour proved that every r-graph admits a uniform cover by perfect matchings.

He argued that this result is a corollary of the Matching Polytope Theorem due to Ed-

monds [23]. In what follows, we present Seymour’s proof.

Lemma 3.7. Let G be an r-graph. If G has a p-multiple edge-colouring, then G has a

kp-multiple edge-colouring, for every positive integer k.

Proof. Let G be an r-graph. Suppose that G has a p-multiple edge-colouring M =

{Mi : 1 ≤ i ≤ rp}. Let k be a positive integer, and let

M′ = {Mij : 1 ≤ i ≤ rp and 1 ≤ j ≤ k},

where Mij is a copy of Mi. Every edge of G is in kp members of M′, and |M′| = k(rp) =

r(kp). Thus, M′ is a kp-multiple edge-colouring of G.

Theorem 3.8 (Edmonds [23], Seymour [81]). If G is an r-graph, then G has a p-multiple

edge-colouring for some integer p > 0.

Proof. Let G be an r-graph. Recall that P(G) is the set of integers p > 0 such that G

has a p-multiple edge-colouring. The proof is by induction on |V (G)| and r, and considers

three cases.

Case 1: There exists a perfect matching M such that G \M is an (r − 1)-graph.

By induction hypothesis, G \ M has a p-multiple edge-colouring M. Let M1, . . . ,Mp be

p copies of M . Hence, M ∪ {M1, . . . ,Mp} is a p-multiple edge-colouring of G.

Case 2: There is a nontrivial edge cut ∂G(S), with |∂G(S)| = r and |X| odd.

Let S1 = S and S2 = V (G) \ S1. By Proposition 3.2, |S2| is also odd. Let G1 be obtained
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from G by shrinking S2 into a vertex v1. Since |∂G(S1)| = r, v1 has degree r. Moreover,

shrinking S2 preserves the degrees of vertices of S1. Therefore, G1 is r-regular. Take

X ⊆ V (G1), with |X| odd. If v1 /∈ X, then ∂G1
(X) = ∂G(X). Thus, |∂G1

(X)| ≥ r. If

v1 ∈ X, then ∂G1
(X) = ∂G((X − v1) ∪ S2). Since |X| and |S2| are odd, |(X − v1) ∪ S2|

is also odd. In this case, |∂G1
(X)| ≥ r as well. Therefore, G1 is an r-graph. Define G2

similarly to G1.

By the induction hypothesis, P(G1) 6= ∅ and P(G2) 6= ∅. Choose p1 ∈ P(G1) and

p2 ∈ P(G2). Let p = p1p2. By Lemma 3.7, p ∈ P(G1) ∩ P(G2). Define p-multiple

edge-colourings M1 for G1 and M2 for G2 as

M1 = {M ij
1 : 1 ≤ i ≤ r, 1 ≤ j ≤ p} and M2 = {M ij

2 : 1 ≤ i ≤ r, 1 ≤ j ≤ p}.

Let ∂G(S) = {e1, . . . , er}. Denote by ei
k the edge of Gk equivalent to ei, for k = 1, 2 and

1 ≤ i ≤ r. Adjust notation so that ei
k ∈ M ij

k .

Let M ij = M ij
1 ∪M ij

2 , replacing each edge ei
k by its equivalent ei. Let M = {M ij : 1 ≤

i ≤ r, 1 ≤ j ≤ p}. Every M ij is a perfect matching of G, and each edge of E(G) is

contained in precisely p matchings of M. Thus, M is a p-multiple edge-colouring of G.

Case 3: Case 1 and Case 2 do not apply.

By Theorem 3.4, G has a perfect matching M . We construct a p-multiple edge-colouring

M of G, for some integer p > 0, such that M ∈ M.

For every X ⊆ V (G), |X| odd, such that |M ∩ ∂G(X)| > 1, define

tX =
|∂G(X)| − r

|M ∩ ∂G(X)| − 1
. (3.1)

Given that |M ∩ ∂G(X)| > 1, ∂G(X) is not trivial. Because Case 2 does not apply,

|∂G(X)| > r. Thus, tX > 0. Since Case 1 does not apply, there exists S ⊆ V (G), with

|X| odd, such that |∂G\M (S)| < r − 1, which implies |∂G(S)| − |M ∩ ∂G(S)| < r − 1.

Since |∂G(S)| ≥ r, we conclude that |M ∩ ∂G(S)| > 1. Hence, tS is well defined and,

additionally, tS < 1. Thus, let

t∗ = min{tX : X ⊆ V (G), |X| odd, |M ∩ ∂G(X)| > 1}. (3.2)

Since tS < 1, we conclude that 0 < t∗ < 1.

We claim that |∂G(X)| − r ≥ t∗(|M ∩ ∂G(X)| − 1), that is,

|∂G(X)| − t∗|M ∩ ∂G(X)| ≥ r − t∗, for every X ⊆ V (G), |X| odd. (3.3)

If |M ∩ ∂G(X)| > 1, then (3.4) follows by the definition of tX and t∗. Otherwise, |M ∩

∂G(X)| ≤ 1, which implies t∗(|M ∩ ∂G(X)| − 1) ≤ 0. Since |∂G(X)| − r ≥ 0, (3.4) is

satisfied.
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Let x and y be non-negative integers such that t∗ = x/y. Note that x 6= 0 and x < y.

Let r′ = ry − x. We construct a graph G′ from G by replacing each edge of E(G) \ M

by y parallel edges, and each edge of M by y − x parallel edges. We show that G′ is an

r′-graph.

Let v ∈ V (G′). Since v has degree r in G and M is a perfect matching, the degree of

v in G′ is (r − 1)y + (y − x), that is, r′. Therefore, G′ is r′-regular. Consider S ⊆ V (G′),

with |S| odd. Thus,

|∂G′(S)| = y|∂G(S) \M | + (y − x)|M ∩ ∂G(S)|

= y|∂G(S)| − y|M ∩ ∂G(S)| + (y − x)|M ∩ ∂G(S)|

= y|∂G(S)| − x|M ∩ ∂G(S)|

= y|∂G(S)| − yt∗|M ∩ ∂G(S)|

= y · (|∂G(S)| − t∗|M ∩ ∂G(S)|). (3.4)

Therefore, by (3.4),

|∂G′(S)| ≥ y(r − t∗) = yr − yt∗ = ry − x = r′.

Consider S ⊆ V (G), with |S| odd and |M ∩ ∂G(S)| > 1, such that tS = t∗. By (3.1),

we have |∂G(S)| − t∗|M ∩ ∂G(S)| = r − t∗. Therefore, by (3.4), |∂G′(S)| = yr − yt∗ = r′.

By Case 2, G′ has a p′-multiple edge-colouring M′, for some integer p′ greater than zero.

Construct a p′y-multiple edge-colouring of G as follows. For each M ′ ∈ M′, replace every

edge of M ′ by its parallel edge of E(G). The result is a collection of perfect matchings

of G such that each edge of E(G) \M is contained in exactly p′y perfect matchings, and

each edge of M is contained in exactly p′(y − x) perfect matchings. By adding p′x copies

of M to this collection, we get a p′y-multiple edge-colouring of G.

Seymour’s main result related to Fulkerson’s Conjecture states that for every 3-graph

G, the constant function 2 can be obtained by addition and subtraction of perfect match-

ings of G. In order to prove this result, stated as Corollary 3.13, additional definitions

and auxiliary results are needed. First, we show that P(G) is eventually periodic. De-

note by pT (G) the period of P(G). Then, we prove that pT (G) is at most two. Finally,

Corollary 3.13 is presented as a consequence of this last fact.

The following lemma is a well known property of a greatest common divisor, and it is

used in the proof of Lemma 3.10.

Lemma 3.9. Suppose that S is a non-empty set of positive integers, with the property

that if p, q ∈ S, then p + q ∈ S. Let d be the greatest common divisor of the members of

S. Then, S consists of all positive multiples of d, except for a finite number of them.
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Lemma 3.10. Let G be an r-graph. Then, P(G) is eventually periodic. Moreover, P(G)

has period pT (G) at most two, if and only if P(G) contains all even integers greater than

n0, for n0 sufficiently large.

Proof. Let G be an r-graph. Notice that, if positive integers p and q belong to P(G),

then so does p + q. Moreover, by Theorem 3.8, P(G) 6= ∅. Thus, by Lemma 3.9, P(G)

is eventually periodic and its period pT (G) is equal to the greatest common divisor of all

its members.

Suppose pT (G) ≤ 2. If pT (G) = 1, then P(G) contains all sufficiently large integers,

and the result follows. Thus, we assume that pT (G) = 2. Because pT (G) is the greatest

common divisor of all members of P(G), every member of P(G) is even, and the result

follows.

Conversely, suppose that P(G) contains all sufficiently large even integers. It is

straightforward to see that pT (G) ≤ 2.

For a graph G, let Ω(G) be the set of non-zero mappings w : E(G) → {−1, 0,+1}

such that for every v ∈ V (G),
∑

∂(v) w(e) = 0. Moreover, graph G(w) is obtained from

G by removing every edge e with w(e) = −1, and adding a new edge parallel to every

edge e with w(e) = +1. Notice that, for every v ∈ V (G), the degree of v is the same

in G and G(w). The next lemma relates 3-graphs and Ω(G), and it is used in the proof

of Theorem 3.12. Lemma 3.11 has a very long proof, which can be found in Seymour’s

paper.

Lemma 3.11. Let G be a 3-graph which is not the Petersen Graph. Then, one of the

following holds:

(i) G has a nontrivial k-edge cut, with k ≤ 3;

(ii) G has a cycle of length at most four;

(iii) there exist w1, w2, w3 ∈ Ω(G), such that w1 +w2 +w3 = 0 and G(w1), G(w2), G(w3),

G(−w1) are 3-graphs.

Theorem 3.12 (Seymour). If G is a 3-graph, then P(G) is eventually periodic, with

period pT (G) at most two.

Proof. The proof is by induction on the number of vertices. By Lemma 3.10, P(G) is

eventually periodic, and it suffices to show that P(G) contains all sufficiently large even

integers. If |V (G)| ≤ 4, then the theorem is true. Thus, we assume that |V (G)| ≥ 6 and

that the theorem is true for all 3-graphs with less than |V (G)| vertices.

Case 1: G is not connected.

Let G1 be a connected component of G, and G2 = G \ V (G1). Thus, G1 and G2 are 3-

graphs and both |V (G1)| and |V (G2)| are less than |V (G)|. By the induction hypothesis,
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each of P(G1) and P(G2) has period at most two. Hence, by Lemma 3.10, each of

P(G1) and P(G2) contains all sufficiently large even integers. Thus, this is also true for

P(G1) ∩ P(G2). We show that

P(G1) ∩ P(G2) ⊆ P(G). (3.5)

Suppose p ∈ P(G1) ∩ P(G2). Let {M i
j : 1 ≤ j ≤ 3p} be a p-multiple edge-colouring

of Gi, for i = 1, 2. Thus, {M1
j ∪ M2

j : 1 ≤ j ≤ 3p} is a p-multiple edge-colouring of G.

Therefore, p ∈ P(G). Thus, P(G) contains all sufficiently large even integers and, by

Lemma 3.10, pT (G) ≤ 2.

Case 2: G has a 2-edge cut.

Let X1 ⊆ V (G), ∂(X1) = {e1, e2}, and X2 = V (G) \ X1. Let G1 be the graph obtained

by shrinking X2 and contracting e2. Define G2 analogously. Because G is bridgeless, Gi

is also bridgeless, for i = 1, 2. Moreover, |V (Gi)| < |V (G)| and Gi is cubic. Thus, by the

induction hypothesis, pT (Gi) ≤ 2. We prove that pT (G) ≤ 2 by showing that

P(G1) ∩ P(G2) ⊆ P(G).

Let p ∈ P(G1) ∩ P(G2) and {M i
j : 1 ≤ j ≤ 3p} be a p-multiple edge-colouring of Gi,

i = 1, 2, such that the edge of Gi equivalent to ei belongs to M i
j for 1 ≤ j ≤ p. Make

Mj = M1
j ∪ M2

j , replacing each edge not in E(G) by its equivalent edge of E(G). Then,

{Mj : 1 ≤ j ≤ 3p} is a p-multiple edge-colouring of G.

Case 3: G has a nontrivial 3-edge cut.

Let X1 ⊆ V (G), ∂(X1) = {e1, e2, e3} a nontrivial edge cut, and X2 = V (G) \X1. Let G1

be obtained by shrinking X2, and G2 obtained by shrinking X1. Because G is bridgeless,

G1 and G2 are also bridgeless. Moreover, |V (Gi)| < |V (G)| and Gi is cubic, for i = 1, 2.

Thus, by the induction hypothesis, pT (Gi) ≤ 2. Let p ∈ P(G1) ∩ P(G2) and {M i
j : 1 ≤

j ≤ 3p} be a p-multiple edge-colouring of Gi. Let ei
1, e

i
2, e

i
3 be the edges of Gi respectively,

equivalent to edges e1, e2, e3 of G. Note that {ei
1, e

i
2, e

i
3} is a trivial edge cut of Gi. Thus,

since M i
j is a perfect matching, it contains precisely one of ei

1, e
i
2, e

i
3. Adjust notation so

that

ei
1 ∈ M i

1, . . . ,M
i
p; ei

2 ∈ M i
p+1, . . . ,M

i
2p; ei

3 ∈ M i
2p+1, . . . ,M

i
3p.

Make Mj = M1
j ∪M2

j , replacing each edge not in E(G) by the equivalent edge of E(G).

Then, {M1
j ∪M2

j : 1 ≤ j ≤ 3p} is a p-multiple edge-colouring of G.

Case 4: Previous cases do not apply and G has a cycle of length at most four.

Let C be a 4-cycle of G, with E(C) = {f1, f2, f3, f4} and ∂(C) = {e1, e2, e3, e4} as shown

in Figure 3.3. Construct G′ modifying G as follows. Remove edges e2 and e4. Because G
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has no 3-edge cut, the resulting graph is bridgeless. Now, contract edges f4, e1 and edges

f3, e3. This process is illustrated in Figure 3.3. Note that, after contractions, f1 and f2

have no common end, otherwise G has a 3-cycle.

e1e1e1

e2e2 e2e3e3

e4e4 f1f1

f2

f3f3

f4

Figure 3.3: Case 4.

Graph G′ is cubic and bridgeless. Therefore, by the induction hypothesis, pT (G′) ≤ 2.

We prove that pT (G) ≤ 2 by showing that

P(G′) ⊆ P(G).

Let p ∈ P(G′) and {Mi : 1 ≤ i ≤ 3p} be a p-multiple edge-colouring of G′ such that

f1 ∈ Mi, f2 ∈ Mi 1 ≤ i ≤ t0,

f1 ∈ Mi, f2 /∈ Mi t0 + 1 ≤ i ≤ t1,

f1 /∈ Mi, f2 ∈ Mi t1 + 1 ≤ i ≤ t2,

f1 /∈ Mi, f2 /∈ Mi t2 + 1 ≤ i ≤ 3p.

Both f1 and f2 belong to p perfect matchings. Thus, t1 = p and t2 − t1 + t0 = p. Thus,

t2 = 2p − t0. Each Mi is a matching in G. To derive a perfect matching of G from Mi,

we extend Mi by adding edges of E(C) ∪ ∂(C) to saturate the vertices of C that are not

Mi-saturated as follows:

{Mi ∪ {f3, f4} : 1 ≤ i ≤ t0}

∪ {Mi ∪ {f4, e3} : t0 + 1 ≤ i ≤ p}

∪ {Mi ∪ {f3, e1} : p+ 1 ≤ i ≤ 2p− t0}

∪ {Mi ∪ {e1, e3} : 2p− t0 + 1 ≤ i ≤ 2p}

∪ {Mi ∪ {e2, e4} : 2p+ 1 ≤ i ≤ 3p}.

Therefore, p ∈ P(G) and the result follows.

Case 5: Previous cases do not apply.

The Petersen Graph has a double edge-colouring, as shown in Figure 1.7, Section 1.4.
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Thus, if G is the Petersen Graph, then {2, 4, 6, . . .} ⊆ P(G) and, by Lemma 3.10, the

result follows. We assume that G is not the Petersen Graph.

By previous cases, we know that every nontrivial edge cut of G has at least four

edges, and that every cycle has length at least five. Hence, by Lemma 3.11, there exist

w1, w2, w3 ∈ Ω(G) such that w1 + w2 + w3 = 0 and G(w1), G(w2), G(w3), and G(−w1)

are all 3-graphs. Each of G(w1), G(w2), G(w3), and G(−w1) has 2-cycles. Therefore, by

Case 2, the theorem is true for all these graphs and, by Lemma 3.10, P(G(w)) contains

all sufficiently large even integers, for every w ∈ {w1, w2, w3,−w1}.

First, we prove the following statements:

(i) if p ∈ P(G(w1)) ∩ P(G(−w1)), then 2p ∈ P(G);

(ii) if p ∈ P(G(w1)) ∩ P(G(w2)) ∩ P(G(w3)), then 3p ∈ P(G).

Suppose p ∈ P(G(w1)) ∩ P(G(−w1)). Let M+ be a p-multiple edge-colouring of G(w1)

and let M− be a p-multiple edge colouring of G(−w1), defined as

M+ = {Mi+ : 1 ≤ i ≤ 3p} and M− = {Mi− : 1 ≤ i ≤ 3p}.

For eachMi+, replace every edge e ∈ Mi+\E(G) by the edge of E(G) parallel to e inG(w1).

Denote by M ′
i+ the perfect matching of G obtained this way. Proceed similarly for each

Mi− to obtain M ′
i−. Thus, M′

+ = {M ′
i+ : 1 ≤ i ≤ 3p} is a collection of perfect matchings

such that each e ∈ E(G) is in exactly (1+w1(e))p of them, while M′
− = {M ′

i− : 1 ≤ i ≤ 3p}

is a collection of perfect matchings such that each e ∈ E(G) is in exactly (1 − w1(e))p of

them. Therefore, M′
+ ∪ M′

− is a 2p-multiple edge-colouring of G. Thus, 2p ∈ P(G), as

claimed.

Statement (ii) is proved in a similar way. Suppose p ∈ P(G(w1)) ∩ P(G(w2)) ∩

P(G(w3)). Let Mi = {Mi,j : 1 ≤ j ≤ 3p} be a p-multiple edge-colouring of G(wi), for

i = 1, 2, 3. In each Mi,j , replace every edge e not in E(G) by the edge of E(G) parallel to

e in G(wi). Denote the resulting perfect matching of G by M ′
ij . Thus, M′

i = {M ′
ij : 1 ≤

j ≤ 3p} is a collection of perfect matchings such that each e ∈ E(G) belongs to precisely

(1 + wi(e))p of them. Because w1(e) + w2(e) + w3(e) = 0 for every e ∈ E(G), we have

that (1 + w1(e))p + (1 + w2(e))p + (1 + w3(e))p = 3p. Therefore, M′
1 ∪ M′

2 ∪ M′
3 is a

3p-multiple edge-colouring of G, and 3p ∈ P(G), as claimed.

Now, (i) and (ii) are used to conclude the case. Let Q = P(G(w1)) ∩ P(G(w2)) ∩

P(G(w3)) ∩P(G(−w1)). By construction, Q contains all sufficiently large even integers.

Let p ∈ Q. By statements (i) and (ii), 2p, 3p ∈ P(G). By Lemma 3.9, pT (G) divides 2p

and 3p. Hence, 2p/pT (G) is an integer, and so is 3p/pT (G) = 2p/pT (G) + p/pT (G). Thus,

pT (G) divides p. Therefore, pT (G) divides every p ∈ Q. Let q, q + 2 ∈ Q. Then, q/pT (G)

and (q + 2)/pT (G) = q/pT (G) + 2/pT (G) are integers. Hence, pT (G) ≤ 2.

Now, we are ready to establish Seymour’s result related to Fulkerson’s Conjecture.
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Corollary 3.13 (Seymour). For every 3-graph G, constant function 2 is obtained by

addition and, possibly, subtraction of perfect matchings of G.

Proof. Let G be a 3-graph. By Theorem 3.12, there exist p, p+ 2 ∈ P(G). Let q = p+ 2.

Consider Mp a p-multiple edge-colouring of G, and Mq a q-multiple edge-colouring of G.

Consider each perfect matching as a function. By adding all perfect matchings of Mp,

we get constant function p, and by adding all perfect matchings of Mq, we get constant

function q. Then, q − p results in constant function 2.

We now describe Celmins’ results supporting Fulkerson’s Conjecture. These results

were published in a technical report from 1979 [16].

Denote the Double Star Snark by Q. Let B be the family of snarks comprising

the Petersen Graph, the Double Star Snark, and the nontrivial Flower Snarks, i.e.,

B = {P,Q, J5, J7, J9, . . . }. Celmins showed that every graph of B satisfies Fulkerson’s

Conjecture. It is already known that the conjecture is true for the Petersen Graph. Fig-

ure 3.4 exhibits the double cover by perfect matchings of Q defined by Celmins.
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Figure 3.4: A double cover by perfect matchings of the Double Star Snark.

In Section 2.3.3, we construct each Flower Snark Jk, with k odd and k ≥ 3, from

k copies of graph T shown in Figure 2.25(a). Celmins’ proof that Flower Snarks satisfy

Fulkerson’s Conjecture relies on a recursive construction of this family. Consider the trivial

snark J3 and the link graph JL exhibited in Figure 3.5. Flower Snark Jk, with k ≥ 5, is

obtained from Jk−2 as follows. Choose an integer i such that 1 ≤ i ≤ k. Consider copies
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Ti and Ti+1 of T contained in Jk−2 (indexes greater than k are taken modulo k). Label

vertices of Ti and Ti+1 with a, . . . , f as indicated in Figure 3.5(a). Then, remove edges

ab, cd, and ef , and denote the resulting graph by J−. Add a copy of JL and identify each

vertex a, . . . , f of JL with a vertex of same label of J−. The result is Flower Snark Jk.

a b

c d

e f

(a) Trivial snark J3.
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(b) Link graph JL.

Figure 3.5: Celmins’ recursive construction of Flower Snarks.

Using the recursive construction just described and the covers of J3 and JL shown

in Figure 3.6, it is possible to obtain double covers by perfect matchings for all Flower

Snarks. Figure 3.6(c) exhibits the double cover obtained for J5. Observe that each edge

e removed from J3 has the same label as the link graph edges whose ends are identified

with the ends of e.

Theorem 3.14 (Celmins). The Petersen Graph, the Double Star Snark, and the nontriv-

ial Flower Snarks satisfy Fulkerson’s Conjecture.

The drawings of Flower Snarks and the Double Star Snark presented in this section

were taken from Celmin’s technical report, and they are more symmetric than Isaacs’

drawings presented in Section 2.3.3. However, Isaacs drawings are more common and also

more attractive.

In the same work, Celmins showed that snarks obtained by successive applications of

dot product on members of family B satisfy Fulkerson’s Conjecture. It is interesting to

note that the Szekeres Snarks and the generalised Blanuša Snarks belong to this extended

family.

Theorem 3.15 (Celmins). Let family B be comprised by the Petersen Graph, the Dou-

ble Star Snark, and the nontrivial Flower Snarks. Every snark obtained by successive

applications of dot product on members of B satisfies Fulkerson’s Conjecture.

The complete proofs of Theorem 3.14 and Theorem 3.15 can be found in Celmins’

technical report [16] or in his PhD thesis [17]. To conclude this section, we present some

interesting properties, described by Celmins, of the members of family B.
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(c) Cover of J5 obtained from C3 and CL.

Figure 3.6: Celmins’ construction of double covers by perfect matching of Flower Snarks.
Each number indicates a perfect matching.

A cycle pair of a cubic graph G is a pair {C1, C2} of vertex disjoint cycles of G such

that V (G) = V (C1) ∪ V (C2). An odd cycle pair is a cycle pair such that each cycle has

odd length. An even cycle pair is similarly defined. Let e and f be nonadjacent edges of

G. An (e, f)-odd cycle pair of G is an odd cycle pair such that one cycle contains e and

the other contains f . An (e, f)-even cycle pair is analogously defined.

Theorem 3.16 (Celmins). Let B be the family of snarks comprised by the Petersen

Graph, the nontrivial Flower Snarks, and the Double Star Snark. Every G ∈ B has an

(e, f)-odd cycle pair for any nonadjacent edges e, f ∈ E(G).

Theorem 3.16 is important to several results in Celmins’ work. In particular, it is

extensively used in the proof of Theorem 3.15.
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Celmins [17] described another interesting property of family B. To present this

property, some definitions are needed. Take a cubic graph G. Let e1, e2 ∈ E(G) be

nonadjacent edges. Subdivide e1 by a new vertex v1, subdivide e2 by a new vertex v2, and

add edge v1v2. The resulting graph is an edge-added version of G. On the other hand, an

edge-suppressed version of G is obtained by removing an edge uv from G and suppressing

vertices u and v.

A snark G is delicate if all edge-added and edge-suppressed versions of G are 3-edge-

colourable. A delicate snark can be seen as a snark as close to be 3-edge-colourable as

possible.

Theorem 3.17. Let B be the family of snarks comprised by the Petersen Graph, the

nontrivial Flower Snarks, and the Double Star Snark. Every snark of B is delicate.

Proof. Let G ∈ B, with nonadjacent e, f ∈ E(G). By Theorem 3.16, G has an (e, f)-odd

cycle pair. Let G+ be an edge-added version of G obtained by subdividing e and f . The

subdivision of e replaces it by two adjacent edges, and similarly for f . Hence, G+ has

an even cycle pair {C1, C2}. Now, construct a 3-edge-colouring of G+ by assigning two

colours alternately to the edges of C1 and C2, and assigning a third colour to the edges

not in E(C1) ∪ E(C2).

Let e ∈ E(G), with e = uv, ∂(u) = {e, eu, fu} and ∂(v) = {e, ev, fv}. Since G is a

nontrivial snark, eu and ev are not adjacent. By Theorem 3.16, G has an (eu, ev)-odd cycle

pair {Cu, Cv}, with eu ∈ E(Cu) and ev ∈ E(Cv). Let G− be the edge-suppressed version

of G obtained by removing e and suppressing u and v. The suppression of u replaces

eu and fu by a single edge, and similarly for v. Therefore, G− has an even cycle pair.

Construct a 3-edge-colouring of G− in the same way it was done for G+.

Celmins proposed the search for other delicate snarks as a research problem. We do

not have any news about progress on this problem. However, some authors have published

works related to the number of odd cycles contained in 2-factors of cubic graphs.

Problem 3.18. Are the Petersen Graph, the Double Star Snark and the nontrivial Flower

Snarks the only delicate snarks?

3.3 Related conjectures

Fulkerson’s Conjecture is a very general and fundamental problem. In fact, this conjecture

is related to several other important problems in Graph Theory. In this section, we present

some conjectures related to Fulkerson’s Conjecture. We start by presenting well-known

Conjecture 3.19, about uniform covers by even subgraphs [24]. We also demonstrate its

equivalence with Fulkerson’s Conjecture.
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Conjecture 3.19. Every bridgeless cubic graph has a 4-cover by six even subgraphs.

Theorem 3.20. Fulkerson’s Conjecture and Conjecture 3.19 are equivalent.

Proof. Suppose Fulkerson’s Conjecture is true. Let G be a bridgeless cubic graph with

a double cover by perfect matchings F = {M1, . . . ,M6}. Let Gi = G \ Mi for every

i ∈ {1, . . . , 6}. Since Mi is a perfect matching, Gi is 2-regular. Thus Gi is an even

subgraph of G. Let G = {G1, . . . , G6}. Consider e ∈ E(G). The fact that e belongs to

exactly two matchings of F implies that e belongs to exactly four even subgraphs of G.

Therefore, G is a 4-cover by six even subgraphs of G.

Now, suppose that Conjecture 3.19 is true. Let G be a bridgeless cubic graph with

a 4-cover by even subgraphs G = {G1, . . . , G6}. Without loss of generality, assume that

Gi, 1 ≤ i ≤ 6, has no vertex of degree zero. Thus, Gi is 2-regular. We show that

V (Gi) = V (G). Note that |E(Gi)| = |V (Gi)|. Moreover, since G is a 4-cover, 4|E(G)| =
∑6

i=1 |E(Gi)| =
∑6

i=1 |V (Gi)|. By Theorem 1.1, 2|E(G)| = 3|V (G) and, thus, 4|E(G)| =

6|V (G). Hence,
∑6

i=1 |V (Gi)| = 6|V (G)|. Since Gi ⊆ G, each term of the sum is at

most |V (G)|. Therefore, |V (Gi)| = |V (G)|. In this case, Mi = E(G) \ E(Gi) is a perfect

matching of G. Let F = {M1, . . . ,M6}. Since each e ∈ E(G) belongs to exactly four

even subgraphs of G, e belongs to exactly two perfect matchings of F . Therefore, F is a

double cover by perfect matchings of G.

In 1988, Jaeger [45] generalised Conjecture 3.19 to all bridgeless graphs, as stated in

Conjecture 3.21, and showed that the two conjectures are actually equivalent. We give a

demonstration of this fact.

Conjecture 3.21 (Jaeger [45]). Every bridgeless graph has a 4-cover by six even sub-

graphs.

Theorem 3.22. Conjecture 3.19 and Conjecture 3.21 are equivalent.

Proof. If Conjecture 3.21 is true, then so is Conjecture 3.19. Suppose that Conjecture 3.19

is true. Let G be a bridgeless graph. Construct G′ by suppressing every degree-two vertex

of G. Each vertex of G′ has degree at least three. Let v ∈ V (G′) with degree d. Label the

edges of ∂(v) with e1, . . . , ed. Subdivide each ei with a new vertex vi, remove v, and add

d edges to form cycle v1v2 . . . vdv1. Call it a derived cycle, denoted by Cv. This operation

is illustrated in Figure 3.7. Observe that every new vertex vi has degree three.

Denote by G′′ the bridgeless cubic graph obtained from the previously described oper-

ation. By hypothesis, G′′ has a 4-cover by six even subgraphs G′′ = {G′′
1, . . . , G

′′
6}. Return

to graph G′ by contracting each derived cycle Cv = v1v2 . . . vd to vertex v. Let G′′
i ∈ G′′.

Let G′
i be the subgraph of G′ obtained from G′′

i by contracting all derived cycles. Sup-

pose that G′′
i contains edges of a cycle Cv derived from v ∈ V (G). Since every vertex of
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v

e1

e2

e3

e4
e5

v1

v2

v3

v4v5

Figure 3.7: Conversion of a bridgeless graph into a cubic bridgeless graph.

V (Cv) ∩ V (G′′
i ) has degree two in G′′

i , after contraction of E(Cv) ∩E(G′′
i ) the degree of v

is even in G′
i. Therefore, G′

i is an even subgraph of G′. Moreover, each edge of G′ belongs

to exactly four of G′
1, . . . , G

′
6. Thus, we have a 4-cover by six even subgraphs of G′.

Now, return to G by subdividing edges of G′ with each degree-two vertex of G. Let

Gi be the subgraph of G obtained from G′
i in this process. The subdivision of an edge

preserves the degrees of the ends of the subdivided edge, and introduces a new vertex

of degree two. Therefore, Gi is an even subgraph of G. Furthermore, each edge of Gi

obtained from a subdivision is contained in exactly four of G1, . . . , G6, since the original

subdivided edge was contained in four of G′
1, . . . , G

′
6. Therefore, {G1, . . . , G6} is a 4-cover

by six even subgraphs of G.

In 1983, Bermond, Jackson, and Jaeger [6] proved that every bridgeless graph has a

4-cover by seven even subgraphs, which is a weaker version of Conjecture 3.21.

Theorem 3.23 (Bermond, Jackson, Jaeger [6]). Every bridgeless graph has a 4-cover by

seven even subgraphs.

Ury Jamshy and Michael Tarsi [49] showed that if every bridgeless graph has a cover

by even subgraphs with length at most 21
15

|E(G)|, then the Cycle Double Cover Conjecture

is true. The following result asserts that the statement of Fulkerson’s Conjecture implies

that every bridgeless graph has a cover by even subgraphs with length at most 22
15

|E(G)|.

Theorem 3.24 (Fan and Raspaud [25]). If Fulkerson’s Conjecture is true, then every

bridgeless graph G has a cover C by three even subgraphs and the length of C is at most
22
15

|E(G)|.

If Fulkerson’s Conjecture is true, then any five perfect matchings taken from a double

cover by six perfect matchings of a bridgeless cubic graph constitute a cover of the graph.

In the beginning of years 1990, Berge conjectured that every bridgeless cubic graph has

a cover by five perfect matchings [50]. Berge’s Conjecture was long believed to be weaker

than Fulkerson’s Conjecture. Nevertheless, in 2011, Mazzuoccolo [71] showed that the

conjectures actually are equivalent.

Conjecture 3.25 (Berge’s Conjecture). Every bridgeless cubic graph has a cover by five

perfect matchings.
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Theorem 3.26 (Mazzuoccolo). Fulkerson’s Conjecture and Berge’s Conjecture are equiv-

alent.

In studying a hard problem, it is common to consider different and possibly easier

versions of the problem. Related to Fulkerson’s Conjecture, in 1994, Fan and Raspaud [25]

proposed an alternative approach, involving the study of sets of simultaneously disjoint

perfect matchings. They proposed the so-called Fan-Raspaud Conjecture in a paper where

they investigated the relation between Fulkerson’s Conjecture and problems of covers by

even subgraphs.

Conjecture 3.27 (Fan-Raspaud Conjecture [25]). Every bridgeless cubic graph has per-

fect matchings M1, M2, and M3, such that

M1 ∩M2 ∩M3 = ∅.

If Fulkerson’s Conjecture is true, then so is Conjecture 3.27, since any three of the

six perfect matchings provided by Fulkerson’s Conjecture would have empty intersection.

Some results supporting the Fan-Raspaud Conjecture were published [51, 52, 68, 69].

Section 3.4 gives more details on the relation between the Fan-Raspaud Conjecture and

Fulkerson’s Conjecture.

Thomáš Kaiser and André Raspaud [51] published a weaker version of the Fan-

Raspaud Conjecture, stated here as Conjecture 3.28. Although Conjecture 3.28 was

already known before this publication, its origin is not clear. Before stating this con-

jecture, an additional definition is required. A subgraph H of a graph G is a parity

subgraph of G if V (H) = V (G) and the degree of each vertex of V (G) has the same parity

in G and H .

Conjecture 3.28. Every bridgeless cubic graph has two perfect matchings M1 and M2,

and a parity subgraph with edge set J , such that

M1 ∩M2 ∩ J = ∅.

Conjecture 3.28 has another formulation due to Edita Mácǎjová and Martin Škoviera.

Conjecture 3.29 (Mácǎjová and Škoviera). Every bridgeless cubic graph has perfect

matchings M1 and M2, such that M1 ∩M2 does not contain an odd edge cut.

Fulkerson’s Conjecture, as well as the Fan-Raspaud Conjecture and Conjecture 3.28,

are true for cubic graphs with chromatic index three. The oddness of a cubic graph G

is the minimum number of odd cycles in a 2-factor of G. Note that cubic graphs with

chromatic index three have oddness zero, while bridgeless cubic graphs with chromatic

index four have even oddness and different from zero. Kaiser and Raspaud [51] showed
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that Conjecture 3.28 is true for bridgeless cubic graphs with oddness two. Later, Mácǎjová

and Škoviera [68] improved this result by proving that Fan-Raspaud Conjecture holds for

every bridgeless cubic graph with oddness two.

Máčajová and Škoviera [69] proposed a structured way of looking at these conjectures.

Conjecture 3.30 (k-Perfect-Matching Conjecture). Let k be an integer with 3 ≤ k ≤ 6.

Then every bridgeless cubic graph contains a family of k perfect matchings such that any

three of them have empty intersection.

This is a way of approaching the conjectures in apparent order of ascending difficulty.

However, it is already known that the statements for k = 5 and k = 6 are equivalent. An

interesting question is whether equivalence occurs among other values of k.

In order to finalize this section, consider an interesting and natural special case of

Fulkerson’s Conjecture proposed by Roland Häggkvist [36] in 2007. A Hamiltonian cycle

of a graph is a cycle that contains all vertices of the graph. A graph is Hamiltonian

if it contains a Hamiltonian cycle. Note that every Hamiltonian cubic graph is 3-edge-

colourable: two colours are assigned alternately to the edges of a Hamiltonian cycle, while

a third colour is assigned to the remaining edges. Therefore, all Hamiltonian cubic graphs

satisfy Fulkerson’s Conjecture. A graph G is hypohamiltonian if G− v is Hamiltonian for

every v ∈ V (G).

Conjecture 3.31 (Häggkvist). Every hypohamiltonian cubic graph admits a double cover

by six perfect matchings.

Using Kochol’s superposition, Máčajová and Škoviera [66, 67] constructed cyclically

5-edge-connected and cyclically 6-edge-connected hypohamiltonian snarks. This family

could be a starting point for investigating Conjecture 3.31.

3.4 Alternative approaches

More recently, some results on Fulkerson’s Conjecture have appeared. In 2009, Hao et

al. [38] provided necessary and sufficient conditions for a cubic graph satisfying Fulkerson’s

Conjecture. These conditions are stated in Lemma 3.32. Using this lemma, Hao et al.

proved that Goldberg Snarks and Flower Snarks satisfy Fulkerson’s Conjecture. In order

to prove Lemma 3.32, some intermediate results are necessary.

If G is a graph, then G-suppressed is the graph obtained from G by removing all its

2-regular components and suppressing all its remaining degree-two vertices.

Lemma 3.32 (Hao et al. [38]). A cubic graph G admits a double cover by six perfect

matchings if and only if G has disjoint matchings MA and MB such that MA ∪MB is the
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edge set of a union of disjoint cycles and both (G\MA)-suppressed and (G\MB)-suppressed

are 3-edge-colourable.

As an example, Figure 3.8 shows matchings MA and MB of Flower Snark J5 satisfying

conditions stated in Lemma 3.32. Observe that in this case J5 \ MA and J5 \ MB are

isomorphic.
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Figure 3.8: Lemma 3.32: Flower Snark J5 with matchings MA and MB in solid and dashed
heavy lines, and 3-edge-colourings of (J5 \MA)-suppressed and (J5 \MB)-suppressed.

In 2011, Fouquet and Vanherpe [28] published a different proof of Lemma 3.32. Their

proof provides more details on the relation between Fulkerson’s Conjecture and Fan-

Raspaud Conjecture (Conjecture 3.27). Lemma 3.32 is an immediate corollary of Theo-

rem 3.34 and Theorem 3.37.

Throughout this section, a Fulkerson cover of a cubic graph is a double cover by six

perfect matchings. An FR-triple of a cubic graph G is a triple of perfect matchings of G,

T = (M1,M2,M3), such that M1 ∩M2 ∩M3 = ∅.

Set Ti ⊆ E(G), with 0 ≤ i ≤ 2, is the set of the edges of G that belong to exactly i perfect

matchings of T .

Proposition 3.33. Let G be a bridgeless cubic graph with an FR-triple T . Then,

(i) T0 and T2 are disjoint matchings;

(ii) T0 ∪ T2 is the edge set of a 2-regular graph;

(iii) ∀v ∈ V (G), either ∂(v) ⊆ T1, or each edge of ∂(v) belongs to one of T0, T1, T2.

Proof. Let G and T be as stated in the hypothesis. Let v ∈ V (G). Suppose that an

edge of ∂(v) belongs to T0. Since v is saturated by the three matchings of T , one of the

two remaining edges of ∂(v) belongs to T1, while the other belongs to T2. Now, suppose

that an edge of ∂(v) belongs to T2. Thus, one of the two remaining edges incident with v

belongs to T1, while the other belongs to T0. We conclude that each v ∈ V (G) is incident



84 Chapter 3. Fulkerson’s Conjecture and related results

with an edge of T0 if and only if v is incident with an edge of T2, and that no two edges

of ∂(v) are both in T0 neither in T2. The result follows.

Two FR-triples T and T ′ are compatible if

T2 = T ′
0 and T0 = T ′

2.

Theorem 3.34. A bridgeless cubic graph has a Fulkerson cover if and only if it has two

compatible FR-triples.

Proof. Let G be a bridgeless cubic graph with a Fulkerson cover F = {M1, . . . ,M6}. Let

T = {M1,M2,M3} and T ′ = {M4,M5,M6}. Because no edge of G belongs to three

perfect matchings of F , both T and T ′ are FR-triples. The edges of T0 do not belong

to any of M1,M2,M3. Since F is a Fulkerson cover, each edge of T0 belongs to exactly

two of M4,M5,M6. Conversely, each edge of G belonging to exactly two of M4,M5,M6

does not belong to any of M1,M2,M3. Thus, T0 = T ′
2. It is similarly shown that T ′

0 = T2.

Therefore, T and T ′ are compatible.

Conversely, suppose that G is a bridgeless cubic graph with compatible FR-triples T

and T ′. Let F = T ∪ T ′. Let e ∈ E(G). If e ∈ T0, then e ∈ T ′
2. Hence, e belongs to

exactly two perfect matchings of F . In case e ∈ T2, it implies that e ∈ T ′
0 and, thus, e

also belongs to exactly two perfect matchings of F . As the last case, suppose e ∈ T1.

Note that E(G) = T0 ∪ T1 ∪ T2 = T ′
0 ∪ T ′

1 ∪ T ′
2. Since T0 ∪ T2 = T ′

0 ∪ T ′
2, we conclude

that T1 = T ′
1. Hence, e belongs to exactly two perfect matchings of F . Therefore, F is a

Fulkerson cover of G.

Proposition 3.35. Let G be a bridgeless cubic graph with an FR-triple T . Then, (G\T0)-

suppressed is 3-edge-colourable.

Proof. Consider G a bridgeless cubic graph with an FR-triple T = (M1,M2,M3). Let G′

be (G \ T0)-suppressed. By Proposition 3.33, a vertex of G is incident with an edge of T2

if and only if it is incident with an edge of T0. Thus, every degree-two vertex of G \ T0 is

incident with an edge of T2. Since G′ does not have vertices of degree two, the edges of

T2 do not belong to E(G′). Then, every edge of G′ is either an edge of T1 or a new edge

added by suppression of degree-two vertices.

Considering these two cases, we construct a mapping π : E(G′) → {1, 2, 3} as follows.

If e ∈ E(G′) ∩ T1, set π(e) = i, where e ∈ Mi. Suppose e ∈ E(G′) \ T1, with e = xy. By

construction of G′, there exists an (x, y)-path P in G\T0 such that the internal vertices of

P have degree two. In G′, both x and y have degree three. Proposition 3.33 implies that

the edges of P belong to T1 and T2 alternately. Consider an edge f = uv of E(P ) ∩ T2.

Let fu ∈ T1 ∩ ∂G(u) and let fv ∈ T1 ∩ ∂G(v). Edge f belongs to two perfect matchings

of T . Consequently, both fu and fv belong to the remaining perfect matching of T , say
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Mi. Therefore, all edges of E(P ) ∩ T1 belong to Mi, in particular the first and last edges

of P . Thus, set π(e) = i.

By construction of π and by the fact that M1,M2,M3 are perfect matchings, π is a

3-edge-colouring of G′.

Lemma 3.36. Let G be a bridgeless cubic graph with disjoint matchings MA and MB,

such that MA ∪MB is the edge set of a 2-regular subgraph of G and (G \MA)-suppressed

is 3-edge-colourable. Then, G has an FR-triple T with T0 = MA and T2 = MB.

Proof. Let G, MA and MB be defined as in the hypothesis. Denote (G \MA)-suppressed

by G′. Let {M ′
1,M

′
2,M

′
3} be a 3-edge-coloring of G′. We modify M ′

1,M
′
2,M

′
3 to produce

an FR-triple of G. Notice that the vertex set of G′ is the set of degree-three vertices of

G \ MA. Initially, let Mi = M ′
i \ (E(G′) \ E(G)), for i = 1, 2, 3. Notice that M1,M2,M3

are matchings of G \ MA. We add edges to M1,M2,M3 to produce perfect matchings of

G.

Let e ∈ E(G′) \E(G) and let Pe be the path of G \MA replaced by e. The edges of Pe

alternately belong to MB. Moreover, the first and last edges of Pe do not belong to MB,

since they are incident with degree-three vertices in G \MA. Suppose e ∈ M ′
i . Then, add

to Mi every edge of E(Pe) \ MB, and add every edge of E(Pe) ∩ MB to both matchings

of {M1,M2,M3} \ Mi. Then, every vertex of Pe is saturated by the three matchings

M1,M2,M3.

For every 2-regular component C of G \MA, proceed as follows. Every vertex of C is

MB-saturated. Thus, C is an even cycle. For every e ∈ E(C), add e to M1 and to M2

if e ∈ MB. Otherwise, add e to M3. Thus, every vertex of C is saturated by the three

matchings M1,M2,M3.

Now, since V (G \ MA) = V (G), every vertex of V (G) is saturated by M1, M2, and

M3. Notice that no edge was assigned to more than two of M1,M2,M3. Therefore,

T = (M1,M2,M3) is an FR-triple of G. Moreover, the edges of MA were not assigned

to any matchings, and each edge of MB was assigned to exactly two matchings. Thus,

T0 = MA and T2 = MB.

Theorem 3.37. Let G be a bridgeless cubic graph. Graph G has disjoint matchings

MA and MB, such that MA ∪ MB is the edge set of a 2-regular subgraph of G, and both

(G \ MA)-suppressed and (G \ B)-suppressed are 3-edge-colourable, if and only if G has

two compatible FR-triples.

Proof. Conversely, suppose G, MA and MB defined as in the hypothesis. Since (G \MA)-

suppressed and (G \ MB)-suppressed are 3-edge-colourable, by Lemma 3.36, G has an

FR-triple T with T0 = MA and T2 = MB, and an FR-triple T ′ with T ′
0 = MB and

T ′
2 = MA. Moreover, given that T0 = MA = T ′

2 and T2 = MB = T ′
0, T and T ′ are

compatible.
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Let G be a bridgeless cubic graph with compatible FR-triples T and T ′. By Proposi-

tion 3.35, (G \ T0)-suppressed and (G \ T ′
0)-suppressed are 3-edge-colourable. Moreover,

by Proposition 3.33, T0 and T2 are disjoint matchings of G and T0 ∪ T2 is the edge set

of a union of disjoint cycles. Since T and T ′ are compatible, T ′
0 = T2. Thus, the result

follows by making MA = T0 and MB = T2.

In the same work, Fouquet and Vanherpe provided another set of sufficient conditions

for a bridgeless cubic graph satisfying Fulkerson’s Conjecture.

Let M be a perfect matching of a bridgeless cubic graph G. A set X ⊆ E(G) is an

M-balanced matching if there exists a perfect matching MX such that X = M ∩ MX .

Let M = {A,B,C,D} be a set of pairwise disjoint M-balanced matchings. Thus, G has

perfect matchings MA, MB, MC , MD such that

A = M ∩MA, B = M ∩MB, C = M ∩MC , D = M ∩MD.

Figure 3.9 shows examples of M-balanced matchings for the Petersen Graph, the Flower

Snark J5, and the Blanuša Snarks.

A

BC

D

(a)

A

B

C

D

(b)

A

B
C

D

(c)

A B

CD

(d)

Figure 3.9: A perfect matching M , in bold dashed lines, and four pairwise disjoint M-
balanced matchings A,B,C,D.

Since graph G \M is 2-regular, it can be seen as a union of disjoint cycles. Family M

is an F-family for M if the following conditions are satisfied.

1. For every odd cycle C of G \M and every X ∈ M, X saturates exactly one vertex

of C.
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2. For every even cycle C of G \M , if a matching of M saturates a vertex of C, then

C has four vertices such that one of the following is true:

(a) the four vertices are saturated by the same matching of M;

(b) two of them are saturated by one matching of M, while the remaining two are

saturated by another matching of M.

3. For every cycle C of G \ M with four vertices saturated by matchings of M as

determined in the previous items, the subgraph of G induced by these four vertices

has a perfect matching.

Fouquet and Vanherpe proved, by construction of a Fulkerson cover, that every bridge-

less cubic graph with a perfect matching M and an F-family for M satisfies Fulkerson’s

Conjecture.

Theorem 3.38 (Fouquet and Vanherpe [28]). Let G be a bridgeless cubic graph. If G

has a perfect matching M and an F-family M for M , then G has a Fulkerson cover.

The families exhibited in Figure 3.9 are examples of F-families. Fouquet and Van-

herpe exhibited F-families for the Petersen Graph, the Szekeres Snark, the two families

of generalised Blanuša Snarks, and the Flower Snarks. Moreover, they described condi-

tions under which the result of a dot product on two snarks has an F-family. Using these

results, they defined a family of snarks derived from members of {P, J5, J7, J9, . . .}. The

family constructed by them is contained in the family defined by Celmins [16], and de-

scribed in Section 3.2. Proving that these graphs have an F-family is a different approach

to prove Fulkerson’s Conjecture. An interesting approach would be to investigate the

relation between the results by Celmins and by Fouquet and Vanherpe.

Additionaly, Fouquet and Vanherpe observed that they do not know any F-family for

the Goldberg Snarks. The search for an F-family for these snarks or the disproval of its

existance is also an interesting problem. A more general question arises naturally: is the

existence of an F-family a necessary condition for a snark to have a Fulkerson cover?

We close this section with the three just mentioned questions.

Problem 3.39. What is the relation between Celmins’ result (Theorem 3.15 and Theo-

rem 3.16) and Fouquet and Vanherpe’s result?

Problem 3.40. Do the Goldberg Snarks have an F-family?

Problem 3.41. If a snark G satisfies Fulkerson’s Conjecture, does G have an F-family?





Chapter 4

Results

This chapter presents the results we achieved while investigating Fulkerson’s Conjecture

considering some of the constructions of snarks presented in Chapter 2. The results are

organized by the classes of snarks considered. Before presenting them, we introduce a few

concepts and definitions.

Let G be a graph with ∆(G) ≤ 3, and let L be an index set with |L| = 6. A Fulkerson

cover is a family F = {Ml : l ∈ L} of matchings of G such that each edge of E(G) belongs

to exactly two members of F . By this definition, every vertex of G with degree three is

saturated by the six matchings of F . As a consequence, if G is cubic, then every matching

of F is perfect.

Proposition 4.1. A cubic graph satisfies Fulkerson’s Conjecture if and only if it admits

a Fulkerson cover.

Let G be a graph such that ∆(G) ≤ 3, with a Fulkerson cover F = {Ml : l ∈ L}.

Denote by L(2) the set of two-element subsets of L. Function λ : E(G) → L(2), defined as

λ(e) = {l ∈ L : e ∈ Ml,Ml ∈ F}, is induced by Fulkerson cover F . By this definition, λ

satisfies the following property.

F1 For all adjacent e, f ∈ Dom(λ), λ(e) ∩ λ(f) = ∅.

Function λ can be seen as a labelling of the edges of G, where each e ∈ E(G) has λ(e) as

its label. Furthermore, if L is considered a set of colours, then λ can be seen as a special

colouring where each edge receives two different colours. By property F1, λ conforms with

the general concept of colouring in the sense that adjacent edges do not have the same

colour. This discussion motivates our next definitions.

A Fulkerson function of G, ∆(G) ≤ 3, is a function λ : E ′ → L(2) satisfying F1, where

E ′ ⊆ E(G) and |L| = 6. The image of λ is a set of unordered pairs of elements of L. An

unordered pair {p, q} is also denoted by pq or p,q. A Fulkerson colouring is a Fulkerson

function with domain E(G).

89
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Proposition 4.2. Fulkerson covers and Fulkerson colourings are equivalent.

Proof. Let G be a graph with ∆(G) ≤ 3. Suppose that G has a Fulkerson cover F =

{Ml : l ∈ L}, with L = {1, . . . , 6}. Let λ : E(G) → L(2) be the function induced by F . By

definition, λ satisfies property F1. Moreover, |L| = 6 and Dom(λ) = E(G). Thus, λ is a

Fulkerson colouring.

Now, suppose thatG has a Fulkerson colouring λ : E(G) → L(2). Let F = {Ml : l ∈ L},

with each Ml = {e ∈ E(G) : l ∈ λ(e)}. By F1, each Ml is a matching. By construction,

every edge e ∈ E(G) belongs to exactly two of these matchings. Therefore, F is a

Fulkerson cover of G.

In this work, we use the terms Fulkerson cover and Fulkerson colouring indistinctly.

Next lemma shows how to construct a Fulkerson colouring for a cubic graph G by making

the union of Fulkerson functions of G. Figure 4.1 shows an example of application of

Lemma 4.3.

Lemma 4.3. Let G be a cubic graph and let X ⊆ V (G). If λ1 and λ2 are Fulkerson

functions of G, with Dom(λ1) ∪ Dom(λ2) = E(G) and Dom(λ1) ∩ Dom(λ2) = ∂(X), such

that λ1(e) = λ2(e) for all e ∈ ∂(X), then λ1 ∪ λ2 is a Fulkerson colouring of G.

Proof. Let G be a cubic graph, with X ⊆ V (G). Let G1 = G[X], G2 = G[V (G) \ X],

and L = {1, . . . , 6}. Consider λ1 and λ2 as stated in the hypothesis. Let λ = λ1 ∪ λ2. By

definition, λ is a function from E(G) to L(2). Consider adjacent e, f ∈ E(G). Thus, both

e and f belong to Dom(λi), for some i ∈ {1, 2}. Since λi is a Fulkerson function and is a

restriction of λ, λ satisfies F1. Therefore, λ is a Fulkerson colouring of G.

4.1 Generalised Blanuša Snarks

The first and second families of generalised Blanuša Snarks are defined in Section 2.4.1.

Recall that every member of these families is a result of repeated applications of the dot

product using the Petersen Graph P . In 1979, Celmins [16] verified Fulkerson’s Conjecture

for a family of snarks generated by applications of the dot product. This family includes

both generalised Blanuša Snarks families. In 2011, Fouquet and Vanherpe [28] showed

that generalised Blanuša Snarks satisfy Fulkerson’s Conjecture, using the F-family, as

presented in Chapter 3.

In this section, we give a different proof that both families of generalised Blanuša

Snarks satisfy Fulkerson’s Conjecture. The proof consists of recursively labelling the

edges of the members of each family so as to construct a Fulkerson colouring.



4.1. Generalised Blanuša Snarks 91
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(a) Fulkerson function λ1.
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(c) Fulkerson colouring λ1 ∪ λ2.

Figure 4.1: Example of Lemma 4.3. Edge cut ∂(X) is indicated by thick edges.

Theorem 4.4. Every graph of the first family of generalised Blanuša Snarks has a Fulk-

erson colouring.

Proof. Let Bf = {Bf
1 , B

f
2 , B

f
3 , . . . } be the first family of generalised Blanuša Snarks.

Moreover, let Bf
0 be a copy of the Petersen Graph as depicted in Figure 4.2(b), and let

B = {Bf
0 } ∪ Bf . We prove, by induction on i, that every Bf

i ∈ B, with i ≥ 0, has a

Fulkerson colouring λi.

Graph Bf
0 has a Fulkerson function λ0 exhibited in Figure 4.2(b), where the pair of

labels of each edge e represents λ0(e). Also, Bf
0 has four vertices a, b, c, and d, as indicated

in the figure, such that edges ac and bd are adjacent to edge ab. Moreover, observe that

λ0(ac) = {3, 5} and λ0(bd) = {2, 5}.

Let i be an integer, i ≥ 0. By the induction hypothesis, graph Bf
i has vertices a, b, c,

and d, with edges ac and bd adjacent to edge ab, and Bf
i has a Fulkerson function λi such

that λi(ac) = {3, 5} and λi(bd) = {2, 5}. Suppose that every edge e of Bf
i is labelled with

λi(e). Let BL be the link graph depicted in Figure 4.2(a), with vertices a, a′, b, b′, c, c′, d,

and d′ indicated. The figure also exhibits a Fulkerson function λL of BL. In order to

construct Bf
i+1 with a Fulkerson colouring λi+1, first remove edges ac and bd from Bf

i .

Add a copy of BL and identify each of vertices a, b, c, and d of BL with the vertex of same

name of Bf
i . The resulting graph is Bf

i+1. Figure 4.2 shows an example of this operation

when i = 0. The labels of Bf
i and of BL are preserved in this operation. Notice that the

edges incident with a, b, c, and d removed from Bf
i have exactly the same labels of the

edges aa′, bb′, cc′, and dd′ of BL, respectively. Therefore, the obtained labelling of Bf
i+1 is
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a Fulkerson colouring λi+1. To complete the proof, rename the vertices of Bf
i+1 as follows:

call vertices a′ and b′ respectively as c and d, preserve the names of vertices a and b, and

remove all other vertex names. Thus, we have a copy of Bf
i+1 with vertices a, b, c, and d

such that edges ac and bd are both adjacent to edge ab and that λi+1(ac) = {3, 5} and

λi+1(bd) = {2, 5}.
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(c) Function λ1 of B
f
1 constructed from λ0 and λL as in Theorem 4.4.

Figure 4.2: Construction of a Fulkerson function for the First Blanuša Snark.

Theorem 4.5. Every graph of the second family of generalised Blanuša Snarks has a

Fulkerson colouring.

Proof. Let Bs = {Bs
1, B

s
2, B

s
3, . . . } be the second family of generalised Blanuša Snarks, and

let B = {Bs
0} ∪ Bs, with Bs

0 the copy of the Petersen Graph shown in Figure 4.3(b). The

proof is similar to the proof of Theorem 4.4, replacing function λ0 of Bf
0 with function

λ0 of Bs
0 depicted in Figure 4.3(b), and using function λL of link graph BL depicted

in Figure 4.3(a). Also note that, in this case, λ0(ac) = {3, 4} and λ0(bd) = {1, 6}.

Figure 4.3(c) depicts Fulkerson function λ1 constructed for the first member Bs
1 of Bs.
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(c) Function λ1 of Bs
1 constructed from λ0 and λL as in Theorem 4.5.

Figure 4.3: Construction of a Fulkerson function for the Second Blanuša Snark.

4.2 Loupekine Snarks

In the current section, we first prove that every LP0-snark verifies Fulkerson’s Conjecture.

This proof uses a technique similar to that used in Section 4.1, although it does not rely on

a recursive construction. We also prove that LP1-snarks satisfy Fulkerson’s Conjecture,

by using a different technique. The later result is more general than the first one, since

every LP0-snark is an LP1-snark. At the end of the section, it is shown how the technique

applied to the LP1 family can be extended to prove that Fulkerson’s Conjecture is satisfied

by other families of Loupekine Snarks. We start by showing some properties of LP0-snarks

which are useful in the proof of Theorem 4.8.

Let G be an L1-snark, as defined in Section 2.4.2. A gadget of G is a subgraph of

G composed by a connected component of GC , plus the blocks attached to it and the

edges between them. A gadget of G is an m-gadget if it comprises m blocks, m = 2, 3.

Figure 4.4 marks gadgets of L1-snarks. An edge is a block link if its ends lie in different

blocks of the same gadget. Every edge of G not in a gadget is a gadget link. Two gadgets

connected by gadget links are adjacent.

Proposition 4.6. Let G be the graph comprised of blocks Bi and Bi+1, and edges yiui+1

and xivi+1, shown in Figure 4.5(a). Let H be the graph comprised of blocks Bj and Bj+1,

and edges ujxj+1 and vjyj+1, shown in Figure 4.5(b). Graphs G and H are isomorphic.
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(a) An L1-snark. (b) An L1-snark which is an L0-snark.

Figure 4.4: Two L1-snarks. Only vertices u, v, w, x, y of each block and vertices of central
subgraphs are represented. Each graph has two 2-gadgets and one 3-gadget. Thick lines
represent gadget links.
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(a) Parallel block links.

rj tj

uj

vj

wj

xj

yj

rj+1 tj+1

uj+1

vj+1

wj+1

xj+1

yj+1

(b) Crossing block links.

Figure 4.5: Isomorphic graphs, each comprised by two adjacent blocks and their links.

Proof. Let φ be a bijection from V (G) to V (H) defined as: φ(xi) = yj;φ(yi) = xj;φ(ui) =

vj;φ(vi) = uj;φ(ri) = tj;φ(ti) = rj;φ(wi) = wj; and for all zi+1 ∈ V (Bi+1), φ(zi+1) =

zj+1. The result follows by inspection of the adjacency relations in both graphs.

Corollary 4.7. Every gadget of an LP0-snark is isomorphic to one of the graphs of

Figure 4.6.

(a) A 2-gadget. (b) A 3-gadget.

Figure 4.6: Gadgets of an LP0-snark.
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Proof. The result follows by applying Proposition 4.6 on each gadget with crossing block

links. Note that this process may cross or uncross pairs of gadget links.

Theorem 4.8. Every LP0-snark satisfies Fulkerson’s Conjecture.

Proof. Let G be an LP0-snark comprised of l gadgets G1, . . . , Gl. Recall that each gadget

can be a 2-gadget or a 3-gadget, and that adjacent gadgets are connected by gadget

links (see Figure 4.4(b)). Adjust notation so that gadgets Gi, Gi+1 are adjacent, for all

i ∈ {1, . . . , l}, with indexes greater than l taken modulo l.

Let Gi be a gadget of G. By Corollary 4.7, Gi is isomorphic to one of the graphs of

Figure 4.6. Figure 4.7 exhibits Fulkerson colourings of these graphs, with L = {1, . . . , 6}.

If Gi is a 2-gadget, then we assign to every edge of Gi the labels of the corresponding

edge of the graph of Figure 4.7(a). If Gi is a 3-gadget, we proceed analogously using the

graph of Figure 4.7(b). For all j ∈ L, let M i
j be the set comprised of the edges of E(Gi)

with label j. We conclude, by inspection, that each M i
j satisfies the following properties:

(a) M i
j , 3 ≤ j ≤ 6, is a perfect matching;

(b) every border vertex of Gi (white vertices in Figure 4.7) is M i
1-unsaturated and M i

2-

unsaturated.
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Figure 4.7: Fulkerson colourings of LP0-snark gadgets.

For all j ∈ L, let Mj =
⋃l

i=1 M
i
j . Since gadgets are pairwise vertex-disjoint, Mj is a

matching. Moreover, by construction, every edge of each gadget is contained in exactly

two of these matchings. In order to complete the proof, it is necessary to assign each
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gadget link to two of these six matchings. By (a), M3,M4,M5,M6 are perfect matchings

ofG. By (b), all border vertices ofG areM1-unsaturated andM2-unsaturated. The border

vertices are the ends of the gadget links. Since gadget links are pairwise nonadjacent, it

is enough to assign each of them to M1 and M2.

In order to prove that LP1-snarks satisfy Fulkerson’s Conjecture, a Fulkerson colouring

is constructed for an arbitrary LP1-snark. Before that, some notation is introduced and

useful properties of Fulkerson functions of LP -snarks are shown.

Let Bi be a block of an LP -snark G, as defined in Section 2.4.2. Figure 4.8 shows Bi

together with edge cut ∂(V (Bi)) = {eu
i , e

v
i , e

w
i , e

x
i , e

y
i }, also denoted by ∂Bi

. The edges of

∂Bi
and their ends ui, u

′
i, vi, v

′
i, wi, w

′
i, xi, x

′
i, yi, y

′
i are named as shown in the figure. The

extended block B+
i is the graph with vertex set V (Bi) ∪ {u′

i, v
′
i, w

′
i, x

′
i, y

′
i} and edge set

E(Bi) ∪ ∂Bi
. For simplicity, indices are omitted whenever they are clear in the context.

ui

vi

wi

xi

yiu′

i

v′

i

w′

i

x′

i

y′

i

ew
i

ex
i

e
y
ieu

i

ev
i

Bi

Figure 4.8: The edges of ∂Bi
and its end vertices in the graph B+

i .

Let π : E ′ → L(2), with E ′ ⊆ E(G) and |L| = 6. Let L = {L1, L2, L3} be a partition of

L with each part of cardinality two. Consider edges eu, ev, ew, ex, ey of an extended block

B+ of G and the following properties.

P1 π(ew) ∈ L.

P2 π satisfies exactly one of:

(a) π(ex) = π(ey) ∈ L

(b) π(ex), π(ey) /∈ L;

π(ex) and π(ey) are disjoint; and

π(ex) ∪ π(ey) = Li ∪ Lj , Li, Lj ∈ L.

P3 π satisfies exactly one of:

(a) π(eu) = π(ev) ∈ L;

(b) π(eu), π(ev) /∈ L;

π(eu) and π(ev) are disjoint; and

π(eu) ∪ π(ev) = Li ∪ Lj , Li, Lj ∈ L.
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Let λ : E ′ → L(2), with E ′ ⊆ E(G), be a Fulkerson function of G. Function λ is (B+,P1)-

strong if it satisfies property P1 considering the edges of B+. Furthermore, (B+,P2)-

strong and (B+,P3)-strong are analogously defined.

Let B+ be an extended block and let L = {a, b, c, d, e, f}. Figure 4.9 exhibits four

different Fulkerson functions Λj : E(B+) → L(2), with 1 ≤ j ≤ 4, called models. These

models are later used in the construction of a Fulkerson colouring for an LP1-snark. The

next proposition relates properties P1, P2, and P3 to models Λ1,Λ2,Λ3,Λ4.

Proposition 4.9. Let L = {ab, cd, ef}. Each model Λ1,Λ2,Λ3,Λ4 is (B+,P1)-strong,

(B+,P2)-strong, and (B+,P3)-strong, where B+ is an extended block of an LP -snark.

Moreover, the following statements are true:

(i) Λ1 satisfies P2(a) and Λ1(ew) = Λ1(ex);

(ii) Λ2 satisfies P2(a) and Λ2(ew) ∩ Λ2(ex) = ∅;

(iii) Λ3 satisfies P2(b) and Λ3(ew) ⊂ (Λ3(ex) ∪ Λ3(ey));

(iv) Λ4 satisfies P2(b) and Λ4(ew) 6⊂ (Λ4(ex) ∪ Λ4(ey)).

Proof. By inspection of Figure 4.9.

a,b

a,b
a,b

a,b

a,b

c,e

c,e

c,e

c,e

d,f

d,f
d,f

d,f

B

(a) Model Λ1.

a,b

a,c a,f

a,f
b,d b,e

b,e

c,d

c,d

c,e
c,ed,f

d,f

B

(b) Model Λ2.

a,b

a,c

a,d

a,e

a,f

b,c

b,d

b,e

b,f c,e

c,f d,e

d,f

B

(c) Model Λ3.

a,b

a,b
a,b

a,b

a,b

c,e

c,e
c,e

c,e

d,f

d,f
d,f

d,f

B

(d) Model Λ4.

Figure 4.9: Fulkerson functions Λj : E(B+) → L(2), 1 ≤ j ≤ 4, with L = {a, b, c, d, e, f}.

The following lemma is used in the constructive proof of Theorem 4.12.
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Lemma 4.10. Let B+ be an extended block of an LP -snark, with ∂B = {eu, ev, ew, ex, ey}.

Let L = {1, 2, 3, 4, 5, 6} and L = {12, 34, 56}. If λ : {ew, ex, ey} → L(2) is a (B+,P1)-

strong and (B+,P2)-strong Fulkerson function, then there exists a Fulkerson function

λ+ : E(B+) → L(2) which is (B+,P3)-strong and such that λ is a restriction of λ+.

Proof. Let B+, L, and L be defined as in the hypothesis. Let λ : {ew, ex, ey} → L(2)

be a Fulkerson function which is (B+,P1)-strong and (B+,P2)-strong. We construct a

Fulkerson function λ+ : E(B+) → L(2) using one of the models in Figure 4.9. Then, we

show that λ+ is (B+,P3)-strong and that λ is a restriction of λ+.

By P1, λ(ew) ∈ L, and, by P2, λ satisfies either P2(a) or P2(b). Suppose λ satisfies

P2(a). Thus, we have to consider two cases: either λ(ew) = λ(ex) or λ(ew) ∩λ(ex) = ∅. If

λ satisfies P2(b), it is also necessary to consider two cases: either λ(ew) ⊂ (λ(ex) ∪ λ(ey))

or λ(ew) 6⊂ (λ(ex) ∪ λ(ey)). Notice that, by Property 4.9, each model Λ1,Λ2,Λ3,Λ4 falls

into exactly one of these four cases. Using the appropriate model Λj, we define a function

λ+ : E(B+) → L(2) such that λ is a restriction of λ+. It is done by finding a suitable

bijection φ from {a, b, c, d, e, f} to L.

Let ϕ(pq) = φ(p)φ(q). Bijection φ must satisfy the following: ϕ maps {ab, cd, ef}

to L, and ϕ(Λj(e)) = λ(e). Then, λ+ is defined as λ+(e) = ϕ(Λj(e)), for e ∈ E(B+).

Since each of Λ1,Λ2,Λ3,Λ4 is (B+,P3)-strong, λ+ also is (B+,P3)-strong. Figure 4.10

exhibits an example of a function λ, a bijection φ, and a function λ+ for the extended

block B+.

3,4

3,4

3,4

(a) Function λ : {ew, ex, ey} → L(2).

a

b

c

d

e

f

1

2

3

4

5

6

L

(b) Bijection φ based
on λ (a) and on Λ1.

3,4

3,4

3,4

3,4

3,4

1,6

1,6
1,6

1,6
2,5

2,5

2,5

2,5

(c) Function λ+ : E(B+) → L(2).

Figure 4.10: Construction of a Fulkerson function λ+ for an extended block.

Definition 4.11. Let G be an LP -snark with k blocks. The sequence {Gj}, 0 ≤ j < k, of

subgraphs of G is defined as

Gj =

{

GC ∪G[{x1, x
′
1, y1, y

′
1}], j = 0

Gj−1 ∪ B+
j , 1 ≤ j < k

.

Figure 4.11 shows examples of subgraphs in the sequence {Gj} of an LP1-snark G.
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(f) Subgraph G6.

Figure 4.11: LP1-snark G with 7 blocks and its subgraphs G0, G1, G2, G3, G6 as established
in Definition 4.11.



100 Chapter 4. Results

Theorem 4.12. Every LP1-snark has a Fulkerson colouring.

Proof. Let G be an LP1-snark with k blocks. Let L = {1, 2, 3, 4, 5, 6}. We construct a

Fulkerson colouring λ : E(G) → L(2). For this purpose, let L = {12, 34, 56} be a partition

of L.

First, we construct a Fulkerson colouring λC for central subgraph GC such that

λC(ew
k ) = 12. Graph GC is 3-edge-colourable, since its connected components are iso-

morphic to K2 and S3. Then, there exists a 3-edge-colouring λC : E(GC) → L such that

λC(ew
k ) = 12. Notice that λC is a Fulkerson colouring of GC .

As a second step, we prove, by induction on j, that there exists a Fulkerson colouring

λj for subgraphs of sequence {Gj}, 0 ≤ j < k, such that:

(i) λj(e
w
i ) = λC(ew

i ), 1 ≤ i ≤ k;

(ii) λj(e
x
1) = λj(e

y
1) = 12;

(iii) λj is (B+
j+1,P2)-strong.

For j = 0, define function λ0 as: λ0(e) = λC(e) if e ∈ E(GC), λ0(e) = 12 if e ∈ {ex
1 , e

y
1}.

It is clear that λ0 satisfies conditions (i) and (ii). Since λ0(e
x
1) = λ0(e

y
1) = 12 and 12 ∈ L,

λ0 is (B+
1 ,P2)-strong. Thus, λ0 satisfies condition (iii). Moreover, ex

1 and ey
1 are not

adjacent to any other edge of E(G0). We conclude that λ0 is a Fulkerson colouring of G0.

For j > 0, suppose that there exists a Fulkerson colouring λj−1 : E(Gj−1) → L(2)

satisfying (i), (ii), and (iii). By (i) and by the construction of λC , function λj−1 is (B+
j ,P1)-

strong. By (iii), λj−1 is (B+
j ,P2)-strong. Thus, we apply Lemma 4.10 by letting λ be

the restriction of λj−1 to {ew
j , e

x
j , e

y
j }. Let λ+ : E(B+

j ) → L(2) be the Fulkerson function

obtained from Lemma 4.10. Let λj = λj−1 ∪ λ+. By Lemma 4.3, with X = V (Bj), we

conclude that λj is a Fulkerson colouring of Gj.

Since λj−1 satisfies (i) and (ii), and {ew
i : 1 ≤ i ≤ k]} ∪ {ex

1, e
y
1} ⊆ Dom(λj−1), λj

satisfies (i) and (ii). Observe that {eu
j , e

v
j } = {ex

j+1, e
y
j+1}. By Lemma 4.10, λ+ is (B+

j , P3)-

strong. Moreover, P2 is essentially the same statement as P3, but applied to ex
j+1 and

ey
j+1. Therefore, λj satisfies (iii). This completes the induction.

Now, consider subgraph Gk−1 and its Fulkerson colouring λk−1 : E(Gk−1) → L(2) pre-

viously constructed, satisfying conditions (i), (ii), and (iii). Figure 4.12 shows a represen-

tation of G with Gk−1. Note that E(Gk−1) = E(G) \ E(Bk).

Let Fk−1 = {Ml : l ∈ L}, where each Ml is the set {e ∈ E(Gk−1) : l ∈ λk−1(e)}.

Remark that, by F1, Ml is a matching. Let X be the set of degree-three vertices of Gk−1.

Note that every v ∈ X is Ml-saturated, and ∂(X) = ∂Bk
. Therefore, by Theorem 1.6,

|Ml∩∂Bk
| is odd and, thus, |Ml∩∂Bk

| ≥ 1. By construction of λk−1, λk−1(e
x
1) = λk−1(e

y
1) =

λk−1(e
w
k ) = 12. Therefore, |M1 ∩ ∂Bk

| ≥ 3 and |M2 ∩ ∂Bk
| ≥ 3. Moreover, considering the
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Figure 4.12: Decomposition of G into Gk−1, in the shaded part, and Bk, in bold lines.

fact that |∂Bk
| = 5, we conclude that

|Ml ∩ ∂Bk
| = 3, l = 1, 2 (4.1)

|Ml ∩ ∂Bk
| = 1, l = 3, 4, 5, 6. (4.2)

By construction, λk−1 is (B+
k ,P2)-strong. By P2 and by (4.2), {λk−1(e

x
k), λk−1(e

y
k)} is

either {35, 46} or {36, 45}, satisfying P2(b). Since λk−1(e
w
k ) = 12, we have that λk−1(e

w
k ) 6⊂

(λk−1(e
x
k) ∪ λk−1(e

y
k)). Therefore, by Property 4.9(iv), it is possible to use model Λ4

(Figure 4.9(d)) to define a Fulkerson function λ+
k : E(B+

k ) → L. Figure 4.13 exhibits two

examples. The other two possibilities, obtained by exchanging λk−1(e
x
k) and λk−1(e

y
k), are

very similar. Let λ = λk−1 ∪ λ+
k . By Lemma 4.3, with X = V (Bk), we conclude that λ is

a Fulkerson colouring of G.
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1,2
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1,2

3,5
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3,5

3,5
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(a) λ+
k (ex

k) = 35 and λ+
k (ey

k) = 46
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1,2

1,2

1,2

3,6

3,6

3,6

3,6

4,5

4,5
4,5
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(b) λ+
k (ex

k) = 36 and λ+
k (ey

k) = 45

Figure 4.13: Fulkerson function λk : E(B+
k ) → L based on model Λ4.

Corollary 4.13. Every LP -snark with a 3-edge-colorable central subgraph has a Fulkerson

colouring.
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Recall from Section 2.4.3 that the family of Goldberg Snarks [32] can be obtained by

Loupekine’s construction1. Every Goldberg Snark is also an LP -snark. Moreover, the

central subgraph of a Goldberg Snark is 3-edge-colourable. Thus, Corollary 4.13 implies

that Goldberg Snarks verify Fulkerson’s Conjecture, as an alternative to the proofs given

by Hao et. al. [38], and by Fouquet and Vanherpe [28].

4.2.1 Application to additional families of Loupekine Snarks

The technique used to show that every LP1-snark satisfies Fulkerson’s Conjecture can be

adapted to show that the conjecture is verified by other families of Loupekine Snarks. For

this purpose, we generalise the construction of a block B(G), as sketched in Figure 4.14.

In the graphs of Figure 4.4, only vertices u, v, w, x, y of each block are represented. Thus,

each graph of the figure is the sketch of an L1-snark whose blocks are derived from

arbitrary snarks.

(a) A snark G.

u

v

w

x

y

(b) A block B(G).

ui

vi

wi

xi

yi

(c) Indexed block Bi.

Figure 4.14: Construction of a generic block.

Let B+ be the extended block obtained from a block B, sketched in Figure 4.15.

Let L = {a, b, c, d, e, f}. Consider the labels of edges eu, ev, ew, ex, ey in the models of

Figure 4.9. Using these labels in the extended block of Figure 4.15, we define the generic

models Λj
∂ : ∂B → L(2), with 1 ≤ j ≤ 4, shown in Figure 4.16.
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Figure 4.15: A generic extended block B+
i .

It is possible to generalise Theorem 4.12 to families of L1-snarks other than LP1-

snarks. Let B be a set of non-isomorphic blocks. An LB-snark is a Loupekine Snark such

1It is also worth reminding that Goldberg’s construction [32], which encompasses the so-called Gold-
berg Snarks family, is more general than Loupekine’s construction.



4.2. Loupekine Snarks 103

a,b

a,b

a,bc,e

d,f
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c,d
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d,f

(b) Model Λ2
∂ .

a,b

a,ca,e

b,db,f

(c) Model Λ3
∂ .

a,b

a,b

a,b c,e

d,f

(d) Model Λ4
∂ .

Figure 4.16: Generic models Λj
∂ : ∂B → L(2), 1 ≤ j ≤ 4, with L = {a, b, c, d, e, f}.

that each of its blocks is isomorphic to a block of B. Furthermore, an LB1-snark is an

LB-snark which is also an L1-snark.

For each B ∈ B, suppose that there exist Fulkerson functions Λj : E(B+) → L(2), with

L = {a, b, c, d, e, f} and 1 ≤ j ≤ 4, such that generic model Λj
∂ is a restriction of Λj .

Thus, we have four models for each block of B. Under these conditions, to prove that

every LB1-snark admits a Fulkerson colouring, it is enough to use these models in the

constructions of Lemma 4.10 and Theorem 4.12. Moreover, analogously to Corollary 4.13,

this process shows that every LB-snark with a 3-edge-colourable central subgraph has a

Fulkerson colouring.

As an example, consider Bf = {Bf
1 , B

f
2 , . . . } the first family of generalised Blanuša

Snarks, described in Section 2.4.1. Take Bf
i ∈ Bf , and consider path abc, as shown in

Figure 4.17(a). Define block Bi as the subgraph of Bf
i obtained by removing a, b, and

c, as depicted in Figure 4.17(b). Observe that Bi is uniquely defined, since abc is a fixed

path in Bf
i . Let BBlanuša be the family of blocks {B1, B2, B3, . . . }.

a

b

c

(a) A generalised Blanuša Snark B
f
i .

u
v

w

x
y

(b) Block Bi obtained from Blanuša Snark B
f
i .

Figure 4.17: Construction of a block of family of blocks BBlanuša.

Lemma 4.14. Every extended block B+
i , with Bi ∈ BBlanuša, admits Fulkerson functions

Λj
i : E(B+

i ) → L(2), with L = {a, b, c, d, e, f} and 1 ≤ j ≤ 4, such that Λj
∂ is a restriction

of Λj
i .

Proof. The proof is by induction on i. Let Λ1
1, Λ2

1, Λ3
1, Λ4

1 be the Fulkerson functions

from E(B+
1 ) to L(2) exhibited in Figure 4.18, with L = {a, b, c, d, e, f}. By inspection of
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Figure 4.16 and Figure 4.18, we see that Λj
∂ is a restriction of Λj

1, 1 ≤ j ≤ 4. Figure 4.18

also exhibits Fulkerson functions Λ1
L,Λ

2
L,Λ

3
L,Λ

4
L for link graph BL.

Suppose that B+
i−1 admits Fulkerson functions Λj

i−1, 1 ≤ j ≤ 4, as stated in the

hypothesis. Extended block B+
i can be constructed by attaching a copy of link graph

BL to B+
i−1: remove edges uu′ and yy′ from B+

i−1, and identify each vertex u, u′, y, y′ of

B+
i−1 with vertex of same name in BL, preserving the labels of the edges of E(B+

i−1) and

BL. Note that the edges incident with vertices u, u′, y, y′ have the same labels in B+
i−1

and in BL. Thus, the labeling of B+
i just constructed represents a Fulkerson function

Λj
i : E(B+

i ) → L(2). Moreover, notice that Λj
i (e) = Λj

i−1(e), for every e ∈ ∂Bi
. Thus, by

induction hypothesis, Λj
∂ is a restriction of Λj

i . At last, in block B+
i just constructed,

remove the labels of vertices y′ and u′, and rename vertices r and t of the copy of BL

respectively to y′ and u′, while keeping the labels of vertices u and v.

Theorem 4.15. Every Loupekine Snark such that each of its blocks is isomorphic to a

block of BBlanuša ∪{B(P )} and its central subgraph is 3-edge-colourable admits a Fulkerson

colouring.

We extend the class of L-snarks which we know that satisfy Fulkerson’s Conjecture

with another example. Consider the Flower Snarks introduced in Section 2.3.3. Let BJ
k ,

k odd and k ≥ 5, be the block derived from Jk by removing vertices a, b, c as illustrated

in Figure 4.19. Let BF lower = {BJ
5 , B

J
7 , B

J
9 , . . . }. Figure 4.20 shows extended block BJ+

5

and link graph JL, used in Lemma 4.16 to construct BJ+
k+2 from BJ+

k .

Lemma 4.16. Every extended block BJ+
k , with BJ

k ∈ BF lower, admits Fulkerson functions

Λj
k : E(BJ+

k ) → L(2), with L = {a, b, c, d, e, f} and 1 ≤ j ≤ 4, such that Λj
∂ is a restriction

of Λj
k.

Proof. The proof is by induction on k. Consider Fulkerson functions Λj
5 : E(BJ+

5 ) → L(2),

with 1 ≤ j ≤ 4, exhibited in Figure 4.21. By inspecting the figure, we conclude that Λj
∂

is a restriction of Λj
5. Note that, in each function Λ1

5, Λ3
5, and Λ4

5, the labels of edges r1r2,

s1s2, and t1t2 are, respectively, ce, ab, and df . Also, note that in function Λ2
5, the labels

of these same edges are, respectively, cd, cf , and de.

Let k odd, k ≥ 5. By the induction hypothesis, there exist Fulkerson functions

Λj
k : E(BJ+

k ) → L(2), with 1 ≤ j ≤ 4, such that:

(i) Λj
∂ is a restriction of Λj

k;

(ii) in BJ+
k , for each function Λ1

k, Λ3
k, and Λ4

k, the labels of edges r1r2, s1s2, and t1t2 are,

respectively, ce, ab, and df ;

(iii) in BJ+
k , the values of Λ2

k for edges r1r2, s1s2, and t1t2 are, respectively, cd, cf , and

de.
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Figure 4.18: Models Λ1
i , Λ2

i , Λ3
i , and Λ4

i for the blocks of BBlanuša. Models for B+
1 and BL

are provided.
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a b c

(a) Flower Snark Jk.
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(b) Block BJ
k .
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(c) Extended block BJ+
k .

Figure 4.19: Flower Snark Jk (a), block BJ
k (b), and extended block BJ

k (c).
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Figure 4.20: Extended block BJ+
5 (a) and link graph JL (b).

In order to construct BJ+
k+2, join JL to BJ+

k : remove edges r1r2, s1s2, and t1t2 from

BJ+
k , and identify each vertex r1, s1, t1, r2, s2, t2 of JL with vertex of same name of BJ+

k . To

construct Λj
k+2, where j ∈ {1, 3, 4}, use Fulkerson function Λj

k of BJ+
k and the Fulkerson

function of JL exhibited in Figure 4.22(a). Similarly, to construct Λ2
k+2, use Fulkerson

function Λ2
k and the Fulkerson function of JL exhibited in Figure 4.22(b). Observe that in

all cases each edge e removed from BJ+
k has the same label as the new edges of JL incident

with the ends of e. Thus, Λ1
k+2, Λ2

k+2, Λ3
k+2, and Λ4

k+2 are Fulkerson functions. Finally,

we adjust the names of vertices of BJ+
k such that conditions (ii) and (iii) are satisfied for

k + 2.

Theorem 4.17. Every Loupekine snark such that each of its blocks is isomorphic to one

of the blocks of BF lower ∪ BBlanuša ∪ {B(P )} and its central subgraph is 3-edge-colourable

admits a Fulkerson colouring.
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Figure 4.21: Fulkerson functions Λ1
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Figure 4.22: Fulkerson functions of link graph JL.





Chapter 5

Conclusions

Fulkerson’s Conjecture has been an open problem for more than 40 years. Although

partial results have been published, a complete solution for this problem seems to be far

from being achieved. The conjecture is restricted to snarks, increasing the importance of

this class of graphs, which is related to important problems in Graph Theory.

In this work, we present developments of Fulkerson’s Conjecture since it was stated.

We selected some remarkable results, emphasizing their reach and connections with other

conjectures. We also present equivalences between Fulkerson’s Conjecture and other con-

jectures, expecting to impart the generality of the former. The intent of the first part of

this dissertation is to give a full picture of the progress of Fulkerson’s Conjecture.

In the second part of this work, we verify Fulkerson’s Conjecture for selected infinite

families of snarks. Initially, we prove the result for the two families of generalised Blanuša

Snarks1. Then, we show that the family of LP0-snarks, constructed with Loupekine’s

method, also satisfies Fulkerson’s Conjecture. Using a different technique, we generalise

this result by proving that Fulkerson’s Conjecture holds for every LP1-snark. We extend

these results to an even broader class of snarks constructed with Loupekine’s method.

More specifically, let B be the infinite set of blocks comprising the block derived from

the Petersen Graph, a set of blocks derived from the first family of generalised Blanuša

Snarks, BBlanuša, and a set of blocks derived from the Flower Snarks, BF lower, as defined

in Section 4.2.1. We show that every Loupekine Snark constructed with blocks of B (a

snark may contain different blocks) and with a 3-edge-colourable central subgraph satisfies

Fulkerson’s Conjecture. In fact, this result can be extended for any set of blocks provided

that for each block there exist four Fulkerson colourings satisfying certain conditions (see

Section 4.2.1, Figure 4.16). Table 5.1 presents a non-exhaustive list of classes of snarks

known to satisfy Fulkerson’s Conjecture.

We conclude this dissertation by mentioning a few conjectures and problems.

1Although this fact was already known, we prove it here using a different technique
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Author Class Year
Celmins [16] Flower Snarks; Double Star Snark; dot prod-

uct successively applied on the Petersen Graph,
Flower Snarks and Double Star Snark (includes
generalised Blanuša Snarks and the Szekeres
Snark)

1979

Hao et al. [38] Flower Snarks; Goldberg Snarks 2009
Fouquet, Vanherpe [28] Flower Snarks; generalised Blanuša Snarks; Szek-

eres Snark; dot product successively performed
under certain conditions on the Petersen Graph
and Flower Snarks

2011

Karam, Campos [53] Loupekine Snarks: LP0-snarks 2012
Brinkmann et al. [9] Snarks of order n ≤ 36 2013

Karam, Campos [54, 55] Loupekine Snarks: LP1-snarks and LB-snarks
with a 3-edge-colourable central subgraph

2013

Karam, Sasaki [56] Subfamilies of two families of snarks constructed
by Jonas Hägglund [37]

2013

Table 5.1: Classes of snarks known to satisfy Fulkerson’s Conjecture.

If a cubic graph G is 3-edge-colourable, then G is bridgeless (or, equivalently, G is a

3-graph). Since a 3-edge-colouring of G is a 1-cover by perfect matchings, the statement of

Fulkerson’s Conjecture can be interpreted as a claim that every bridgeless cubic graph is

very close to be 3-edge-colourable, if it is not so. In the same spirit, the Generalised Berge-

Fulkerson Conjecture can be seen as a claim that every r-graph, r ≥ 3, is very close to be

r-edge-colourable. The problem of determining the chromatic index of an arbitrary graph,

and in particular of a cubic graph, is NP-complete [41]. This fact probably eliminates

the existence of a polynomially checkable property implying that a cubic graph is 3-edge-

colourable. Problem 5.1 was proposed by Seymour [81], restricting the edge-colouring

problem to r-graphs. We wonder whether this restriction makes the problem any easier.

Problem 5.1. What is a necessary and sufficient condition for an r-graph to be r-edge-

colourable?

A natural continuation of the work presented in this dissertation is the investigation of

Fulkerson’s Conjecture in the light of other constructions of snarks, such as Goldberg’s [32]

and Kochol’s [63] methods. This approach, however, achieves limited progress, since it

often requires the use of ad hoc techniques. On the other hand, Fulkerson’s Conjecture

can be approached in many other ways. We now suggest a few.

Máčajová and Škoviera [68, 69] showed that every bridgeless cubic graph with oddness

at most two has three simultaneously disjoint perfect matchings. This is a special case of
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the Fan-Raspaud Conjecture. Inspired by this result, it is natural to consider the following

special case of Fulkerson’s Conjecture.

Conjecture 5.2. Every bridgeless cubic graph with oddness at most two satisfies Fulker-

son’s Conjecture.

Conjecture 5.2 could be studied considering the fact that the Cycle Double Cover

Conjecture is true for cubic graphs with oddness at most four [96]. Furthermore, it can

be interesting to generalise Conjecture 5.2 to other oddness values.

Fouquet and Vanherpe [28] showed that a bridgeless cubic graph satisfies Fulkerson’s

Conjecture if and only if it has two compatible FR-triples (see Section 3.4). Motivated

by Máčajová and Škoviera’s result, Conjecture 5.2 could be approached in the following

form.

Conjecture 5.3. Every bridgeless cubic graph with oddness at most two has two compat-

ible FR-triples.

Jaeger and Swart [47] conjectured that every snark has cyclic edge-connectivity at

most six (Conjecture 2.33). In case this conjecture is true, a possible approach to Fulk-

erson’s Conjecture would be to show that a minimal counterexample is cyclically 7-edge-

connected.

Conjecture 5.4. A minimal counterexample to Fulkerson’s Conjecture is cyclically 7-

edge-connected.

We conclude by stating the problem of generalising Seymour’s Theorem 3.12. This

problem is related to the Generalised Berge-Fulkerson Conjecture (Conjecture 3.6).

Problem 5.5. Is P(G) eventually periodic, with period at most two, for every r-graph

G, r ≥ 3?
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[65] E. Máčajová and M. Škoviera. Fano colourings of cubic graphs and the Fulkerson

Conjecture. Theoretical Computer Science, 349(1):112–120, 2005. Graph Colorings,

Workshop on Graph Colorings 2003.
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