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Abstract

Environmental sciences studies deal with a large amount of heterogeneous data sources.

In each application or scientific study there is a need for a set of tools to manage the data,

from the capture, processing to data storage. In particular, in environmental applications

there is a need to combine distinct kinds of sensor data from those aboard satellites to

those in ground networks. While the first sources are static and usually processed via

image management, the second kind is dynamic and processed in streams. Solutions for

combining them are usually tailored to a specific problem and geographical region. This

work is concerned with solving some of these problems by enabling the integration of

heterogeneous data sources whether they are static or streams. The proposed solution uses

a pre-processing phase in order to filter the data sources needed for the study, Enterprise

Service Bus (ESB) to enable the integration of different data sources and Complex Event

Processing (CEP) to process the events that emerge from the integrated environmental

data. Events are detected through patterns that are specified by experts and inserted

into the CEP engine. Upon detection of an event pattern, events are disseminated, stored

in a database or sent to other systems. The main contributions of this work are: (i) a

framework to help environmental scientists cope with heterogeneity problems that allows

integration of static and stream data sources in a generic way (as opposed to specific

solutions in the literature), (ii) treatment of environmental data events, and processing

patterns, (iii) application of the aforementioned findings in ecological studies showing how

scientists can use our proposal to acquire data of interest from the available data sources.
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Resumo

Estudos em ciências ambientais lidam com uma grande quantidade de fontes de dados

heterogêneas. Em cada aplicação ou estudo cient́ıfico é necessário um conjunto de ferra-

mentas para gerenciar os dados desde a coleta, processamento até o armazenamento de

dados. Em especial, em aplicações ambientais, existe a necessidade de combinar tipos

distintos de dados de sensores desde aqueles à bordo de satélites até os que se encontram

em sensores terrestres. Enquanto os primeiros são estáticos e normalmente processado

através do gerenciamento de imagens, o segundo é dinâmico e processado em fluxos.

Soluções para combiná-los são usualmente adaptadas a um problema e região geográficas

espećıficos. Este trabalho se preocupa em solucionar alguns destes problemas pela possi-

bilidade de integração de fontes de dados heterogêneas sejam elas estáticas ou em fluxos

de dados. A solução proposta utiliza uma fase de pré-processamento para requisitar e

filtrar as fontes de dados necessárias para o estudo, Enterprise Service Bus (ESB) para

possibilitar a integração de diferentes fontes de dados e Complex Event Processing (CEP)

para o processar os eventos que emergem dos dados ambientais integrados. Eventos são

detectados através de padrões que são desenvolvidos e inseridos na engine de CEP. Após

a detecção de um padrão de evento, eventos são disseminados, armazenados em bases de

dados ou enviados para outros sistemas. As principais contribuições deste trabalho são:

(i) framework para o aux́ılio aos cientistas ambientais lidarem com problemas de hetero-

geneidade e que permite a integração de fontes de dados estáticas e em fluxos de forma

genérica (em oposição a soluções espećıficas encontradas na literatura), (ii) tratamento de

eventos de dados ambientais, e processamento de padrões, (iii) aplicação dos resultados

anteriores em estudos ecológicos mostrando como cientistas podem usar nossa proposta

para adquirir dados de interesse a partir das fontes de dados dispońıveis.
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Chapter 1

Introduction

Environmental data are growing in importance every day. Governments, companies and

citizens are interested in climate changes and how they affect everyday life. New kinds of

data sources are emerging constantly, thus providing new opportunities for scientists to

develop better models. On the other hand, overcoming data heterogeneity has become a

challenge.

In order to accomplish their goals, environmental scientists have to cope with this

heterogeneity. Therefore it is necessary to create strategies to retrieve, integrate and

process data produced for each specific kind of study.

There is plenty of work that deals with environmental data and that handles the

issues of their capture, analysis and storage such as [9, 11, 71, 72]. In acquiring data,

such research aims at sampling, data routing, reliable communication and energy-efficient

acquisition of data. In analyzing data, the focus is in data exploration, classification,

statistics. In storing data, research concentrates in the capacity of data storage and

search in data repositories.

An increasing number of environmental studies must cope with static and dynamic

data, e.g. [4]. Solutions are geared towards specific problems, and particular data sources.

Typically, each study is directed to a given geographic region, having a specific focus (e.g.,

analyzing drought effects). Once region and focus are defined, researchers specify the data

sources of interest and provide an approach that takes advantage of the characteristics of

these sources (e.g. in [4], satellite images, soil water and radiation sensors were combined

to evaluate drought stress and carbon uptake in a specific region of the Amazon forest).

Even when they manage to integrate static and dynamic sources, these approaches are

seldom scalable to other regions, or phenomena, or other kinds of data sources. Our

approach, instead, is generic. To the best of our knowledge, there is no generic approach

on joint integration of stream and static data for environmental sciences.

The goal of this thesis is to help deal with the integration of heterogeneous data via
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a framework to process environmental data. In our solution, data are integrated using

Enterprise Service Bus (ESB) [64], which is an infrastructure focused in integration of

systems that communicate via messages. Data are transformed into messages and treated

as events. Events are retrieved from the data flowing through the ESB and detected

through event patterns which are templates that describe events and their contextual

descriptions, i.e. all the necessary characterization to detect events.

Events have been researched in computational systems for a long time, from operating

systems to real time systems. In particular, we adopted the Complex Event Processing

(CEP) [49] paradigm to process events. CEP provides means to deal with rules and events’

causal relationships, i.e. it provides means to deal with aggregations of events called

complex events. In CEP, an event is an object signifying an activity that a computer can

process [49].

Using our framework, environmental scientists can be alerted about given conditions,

expressed as patterns. Thus, a scientist can detect combinations of events occurring in a

particular order, or if a particular event did not emerge when/where it was expected to

occur.

Taking this scenario into account, the main contributions of this thesis are:

• A framework to help environmental scientists cope with heterogeneity problems that

allows integration of static and stream data sources in a generic way (as opposed to

specific solutions in the literature)

• Treatment of environmental data events, and processing patterns

• Application of the aforementioned findings in ecological studies showing how scien-

tists can use our proposal to acquire data of interest from the available data sources

This thesis is organized as a collection of papers, as follows:

Chapter 2 is the paper Handling and Publishing Wireless Sensor Network Data: a

hands-on experiment, published in the Journal of Computational Interdisciplinary Sci-

ences (JCIS) in 2011 [43]. This chapter presents our first steps in solving heterogeneity

problems in Wireless Sensor Networks (WSNs). It presents some solutions for managing

sensor data using two pillars: Web Services to provide interoperability and components

to provide loose coupling and extensibility. We created a framework that enables the

development of different types of components for queries and data visualization.

A case study was conducted with a WSN that retrieves data from air humidity, light

and temperature, located at the Faculty of Agriculture Engineering (FEAGRI). Data

were collected at about two minutes interval, received and published in Web Services and

accessed and viewed through a client that supports OSGi components developed by us.
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An experiment was carried out using Windows Azure [54] to prove the flexibility of

the framework. The integration of different data sources was straightforward because of

the architectural solutions adopted. This solution, however, was restricted to sensor data.

Chapter 3 is the paper Managing Environmental Data from Sensor Networks, submit-

ted to the 10th International Conference on Web Information Systems and Technologies

(WEBIST 2014) [41]. This chapter presents our first steps in defining environmental event

patterns. Our approach uses Enterprise Service Bus (ESB) and Complex Event Process-

ing (CEP). This study treated primarily sensor data flows as events that are reported to

users, according to user requests.

Environmental events are sensitive to space and time factors. Thus, as will be seen,

the events considered in this thesis take these factors into account and are denoted as a

quadruple: <measured-value, nature, spatial-variable, timestamp> = <v, n, s, t>, where:

• v is the value of the variable captured (e.g. 40 [degrees celsius], 80% [humidity]);

• n the nature of the variable (e.g. temperature, humidity);

• s is the location (coordinates) of the measurement;

• t is a time interval [ts, tf]1 for which v was valid at that location (s). If ts = tf this

is an instantaneous event (e.g., sensor measurement).

In other words, events here have a temporal and a spatial component. An event pattern

is the specification of one or more events concerning the variables being monitored. It is a

description of how an event or a set of events of interest looks like [49]. We define two types

of patterns: simple and composite. Simple ones can be of type value, spatial, temporal

or spatiotemporal, and concern one event; composite patterns comprise a combination of

events.

In value patterns, predicates consider the value of an environmental variable mea-

sured by a sensor, weather station, etc (for example: temperature, humidity, light, solar

radiation, among others). Spatial patterns are based on the spatial properties of events,

considering the value of environmental variables given a spatial context. Temporal pat-

terns are the ones that are concerned with variation of events in time, i.e. when time

plays a major role [21]. Spatiotemporal patterns are patterns specific to the evaluation of

time series of events and spatial trends over time [21]. They combine measured variables,

spatial and time properties.

The combination of different sources from stream and non-stream (stored) data to

produce correlations is mentioned, but not detailed. Chapter 4 gives more insights on

how our framework deals with these kinds of problems.

1ts is the start time and tf is the final or end time.
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Chapter 4 is the paper Patterns in Environmental Event Processing is a technical

report at the Institute of Computing (IC) -UNICAMP [40] and a revised version will be

submitted to an International Journal. This chapter presents a review of our framework

presented in Chapter 3, considering pre-processing aspects before data enters ESB and

an application of the framework in ecological monitoring using events.

Environmental data are by nature much more diverse than those found in enterprise

data. That is, environmental data can come in the form of images, text files, tables,

sensor data flows, etc., which is not the standard expected format to ESB.

Data can be retrieved in two ways: request or receive; and can be filtered in order to

properly enter the framework and be processed by the event processing engine.

This paper presents a real case study combining sensor and satellite data.

Chapter 5 contains conclusions and some directions for future work.

Figure 1.1, transcribed from chapter 4, presents an overview of the framework. This

figure is detailed in that chapter.

In Figure 1.1, data flows from the bottom to the top. Arrows indicate data flow.

First, the framework absorbs data by pushing or pulling data in (1). Filtering (2) is

required before data enter the ESB, since non relevant data could flood unnecessarily

the framework. After this pre-processing phase, data are encapsulated into messages by

channel adapters (3) and some of them are chosen to be detected by event patterns (4).

These event patterns are written by domain experts that can provide means to define

important patterns out of the integrated data. These event patterns are created and

implemented in Event Processing Agents (EPAs) (5), which evaluates events and trigger

a new event if there is a mach between pattern and events in their observation window.

This new triggered event is encapsulated in a new ESB message (6) and sent to the

interested users (7). In order to notify users or store events (8), the output can occur in

two ways: notification or request/reply. Events are sent to subscribed users to receive

notification or sent for storage in databases, file servers, etc. Subsequently, other users

can make a request for these stored data. This request goes through the ESB and recovers

the repository where the data lies.

This architecture is generic. The main effort required to adopt it lie in two situations:

(a) adapters and (b) specifying patterns. For every new kind of data source, a specific

adapter needs to be developed. However, once it is created, any application that needs

that kind of data can just reuse that adapter. The second kind of effort (b) depends on

experts to indicate the kind of event of interest, so that patterns can be created.

Based on this figure, chapter contents are the following. Chapter 2 concentrates on

mechanisms for acquiring and processing data from sensor networks (i.e., the data capture

phase, before entering the framework). Chapter 3 concerns the specification of patterns

to be processed via CEP – in part (5) of Figure 1.1. Chapter 4 follows the data cycle
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Figure 1.1: Architecture of the framework.
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from entry to output, showing screen copies of the implementation.

The solutions adopted evolved as the research was conducted. The first results, in

chapter 2, are restricted to getting data from a homogeneous sensor network, and pub-

lishing these data on the Web. Also, this was an experiment on components to customize

user interfaces. Chapters 3 and 4 concern our framework, which is concerned with han-

dling heterogeneous sources. Chapter 3 is focused in dealing with sensor network data,

while chapter 4 generalizes the work to any kind of environmental data sources. Thus,

chapter 3 does not use preprocessing features of the figure.

This thesis gave origin to the following publications:

• I. Koga, C. B. Medeiros, and O. Branquinho. Handling and publishing wireless

sensor network data: a hands-on experiment. In Proceedings IV eScience Workshop

- XXX Brazilian Computer Society Conference. SBC, July 2010 [42].

• I. Koga, C. B. Medeiros, and O. Branquinho. Handling and publishing wireless

sensor network data: a hands-on experiment. Journal of Computational Interdis-

ciplinary Sciences, 2(1):13–22, March, April 2011 [43] – extended version of the

previous publication.

• I. Koga and C. B. Medeiros. Integrating and processing events from heterogeneous

data sources. In Proceedings VI eScience Workshop - XXXII Brazilian Computer

Society Conference, July 2012 [39].



Chapter 2

Handling and Publishing Wireless

Sensor Network Data: a hands-on

experiment

2.1 Introduction

Wireless Sensor Networks (WSN) [2] are a special kind of ad hoc network, composed

of a huge amount of small nodes with low processing capacity, limited power source,

high mobility and higher probability of failures than other kinds of networks due to

communication, power, and/or node failures. Nodes potentially have different types and

functionalities and monitor a wide scale of physical and environmental variables (e.g.

temperature, humidity).

WSNs allow the acquisition of data in difficult conditions, for a wide range of spatial

and temporal resolutions and scales. The sensors can be intimately connected with the

observed phenomena, being kept active during a long time, being deployed everywhere

– under the sea, underground or in space. Ubiquitous and pervasive, they can be also

implanted in our bodies (and thus generate data for eHealth studies) or our home (for

ambient applications).

This possibility of monitoring many phenomena, in various temporal and spatial scales,

produces a large volume of heterogeneous data. Heterogeneity and volume of data, com-

bined with heterogeneity in user requirements, pose many problems. The storage, retrieval

and visualization of data in this kind of setting is a challenge which is associated with the

first Grand Challenge in computer science defined by the Brazilian Computer Society –

Management of large distributed multimedia data volumes [53].

The goal of this work is to contribute towards solving one of the many facets of this

grand challenge, by proposing a practical way of storing and publishing sensor data,

7



2.2. Related Work 8

making possible the extraction of information by different types of users. Each kind of

user profile can determine their special needs, defining what they want from the available

data allowing the extraction of relevant information.

This work is related with ongoing research on the management of sensor data in

eScience – in particular, for biodiversity and environmental studies. We present our

proposal by means of a case study of management of environmental data in an application

related to agriculture.

The publication of sensor data, on the Web, involves issues that go beyond the nature of

the data being collected and are intimately related with problems of the Web itself – such

as data heterogeneity, privacy, volume of data and user requirements. Hence, additionally,

we investigate this proposal under the light of the perspective of Web Science [6].

The main scientific contributions are the following:

• framework that combines distinct technological solutions;

• interoperability to support sensor data publication;

• discussion of sensor networks in the context of Web Science;

• validation of the framework for a real case study, emphasizing extensibility and

flexibility.

The rest of this paper is organized as follows. Section 2 presents a brief overview of

WSN data management. Section 3 presents our approach. Section 4 discusses our case

study and section 5 presents ongoing work.

2.2 Related Work

This paper concers the handling and publication of large volumes of sensor network data.

There is a wide range of open problems in this domain. This paper is concerned with the

issues of flexibility in data publication on the Web and interoperability across networks.

Thus, we concentrate on discussion of work on publication of data in eScience, and some

Web Science issues.

2.2.1 Data publication – interoperability and flexibility issues

Different types of systems are being proposed and deployed to support scientists’ work in

many research areas handling heterogeneous data sources, including sensor data. Biodi-

versity systems are an example of this type of system to support the work of biologists.

Examples are studies in ecology or environmental monitoring. On closed environments,



2.2. Related Work 9

sensor networks are being used in scientific studies concerning health (e.g. patient moni-

toring) or chemistry (experiment monitoring) – see [31].

In all these contexts, there are countless initiatives concerning WSN data management,

that range from network configuration and energy management to data processing and

publication [56, 32, 83, 60]. This paper is concerned with solutions that support the latter

stage – i.e., once data are collected, how to provide flexible mechanisms that will forward

data to be processed and published, hiding low-level details. Our choice of related work

reflects this, concentrating on architectures for sensor data management and publication.

Architectures to support flexibility

Many solutions have been proposed to overcome the problems of heterogeneity and inter-

operability of sensor data management. Chu et. al. [12] created an architecture called

NICTA1 Open Sensor Web Architecture (NOSA) which combines a Service Oriented Ar-

chitecture and WSNs using the services specified in the Sensor Web Enablement [58] from

the OpenGIS Consortium. Figure 2.1, reproduced from [12], shows NOSA and its compo-

nents. There are 4 layers: Sensor Fabric, Application Services, Application Development

and Applications. The first layer deals with sensors and their emulation/simulation, the

second is composed by services that support network management, the third provides the

APIs, tools and configuration and the last has the applications that use the sensor data.

Figure 2.1: NICTA Open Sensor Web Architecture.

1Australia’s Information and Communications Technology (ICT) Centre of Excellence
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In NOSA, sensor data are always processed by entities external to the sensor network.

This can be an advantage in scenarios where the deployment and maintenance of the

sensors are easy. These scenarios consider that sensors will only sense and send data,

without any processing, which consumes more power (most expensive activity in face of

power consumption) [2]. However, in specific scenarios, it could be more appropriate to

use WSN pre-processing capacity before actually sending data. Another disadvantage is

that applications cannot reuse code.

Pastorello Jr [62] also followed a multiple layer approach, but from another perspec-

tive. He dealt with the problem of production and management of WSN data through

a framework that uses software components called Digital Content Components [69] and

scientific workflows to provide management facilities and easy access to the sensor data.

Unlike NOSA, this work does not consider the OpenGIS Consortium standards for WSNs.

However, it has some advantages such as flexibility, letting open the possibilities for de-

velopment of new components for access and management of sensors, regardless of the

sensors’ implementation and technology.

Global Sensor Networks (GSN) [1] is a platform developed in Java that provides an

infrastructure for the integration of technologies of heterogeneous sensor networks using a

set of abstractions and XML. GSN has the advantage of facilitating the WSNs deployment

when it hides its implementation details. On the other hand, it also hides platform specific

parameters that might render each deployment more flexible.

Handling heterogeneity for specific applications

While the previous section concerned generic architetural solutions, other kinds of sensor-

related research propose solutions that are tailored to specific applications, or application

domains. This requires, for instance, designing special purpose databases, or developing

special software.

For instance, the GeoCENS project [48] focus on capturing data from local scale sensor

networks, deployed and operated by individual scientists. These kinds of data are more

likely to remain underutilized and eventually lost. The project deals with challenges like

heterogeneity (there is much more heterogeneity in these deployments), protecting data

ownership (researchers spend time and funding on data collection, so they want to protect

their property), motivation (there should be incentives to motivate people to publish their

data), and provide an intuitive and coherent user interface. For instance, they consider

digital watermarking to protect sensor data and have created a 3D web interface to allow

users to manipulate sensor data in a more intuitive way.

The Southeast Alaska MOnitoring Network for Science, Technology, Education and

Research (SEAMONSTER) [30] was developed and deployed in Alaska to study glaciated

watersheds. It stores all the data measured in a PostGIS database. The SensorWeb En-
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ablement (SWE) protocols from Open Geospatial Consortium (OGC) [65] were used in

SEAMONSTER in order to provide interoperability. Geoserver [59] was used to deliver

dynamically generated geospatial output in their web portal. KML (Keyhole Markup

Language) was adopted for interoperability. KML is an XML language focused on geo-

graphic visualization, including annotation of maps and images. The project developed a

portal to provide temperature, humidity, precipitation and voltage data using openLayers

and accessing Bing from Microsoft to give the node location.

The Life Under Your Feet project was developed and deployed for soil monitoring at an

urban forest in Baltimore [73]. It measures and saves soil moisture and temperature in situ.

Their key requirements for soil ecology sensor systems include fidelity, accuracy, precision,

sampling frequency, fusion with external sources, experiment duration and deployment

size. Their solution, employed at a micro underground scale, is now being ported to a

very different environment – monitoring conditions in Brazil’s rainforest.

Interoperability and publication

The problems faced by all these proposals analyzed in this section range from a micro

perspective (a large amount of sensors in a single network) to a macro one (between

WSNs and between them and the Web). Pastorello Jr proposed components and work-

flows to deal with the heterogeneity problem. GSN was proposed as an infrastructure to

overcome some deployment problems using XML and abstractions implemented in Java.

NOSA encapsulates the operations in a software layer that uses the Sensor Web Enable-

ment standards and grid computing to provide a middleware that provides services that

overrides sensors’ implementation complexity.

On the application side, GeoCENS dealt with the absence of local scale sensor network

data. SEAMONSTER deployed a system that provides some measurements and publishes

it on a simple interface using openLayers and Bing, geared towards specific user needs.

Life Under Your Feet provided soil measurements and its database considers requirements

to provide quality in monitoring sensor networks for scientific data for underground soil

conditions.

In these and other efforts, the idea is to provide several layers of isolation between

the sensor networks and the users. Then, one can customize and develop each layer and

concentrate on the solution of a few problems at a time. As will be seen in section 3, our

proposal combines features from some of the reviewed papers.
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2.2.2 Publishing sensor data on the Web – a few Web Science

concerns

The discussion on Section 2.1 concerned interoperability and publication issues, for eScience

needs. However, most of those projects are concerned with the Web environment, which

is increasingly becoming a prime environment for eScience research.

In this context, which also touches our work, we should also look at associated issues,

in Web Science.

The term Web Science was first introduced by Berners-Lee in [6]. It has since given

origin to large international research efforts, including The Web Science Trust [79]. In

Brazil, the theme motivated a National Institute of Science and Technology (INCT) in

Web Science – the Brazilian Institute for Web Science Research [24].

Formally, research in Web Science is concerned with the Web as the primary object of

interest. Thus, rather than considering the Web as a medium for collaboration, commu-

nication and socializing, it studies the Web itself. In our work, this means among others

concentrating in two issues:

• the effects of data publication on the Web and its impact on the long tail of data

e.g., see [48];

• the use of Web Services as a basis for interoperability.

Long tail concerns are becoming increasingly popular among eScientists. The idea is

to access data collected by thousands of individual researchers, but which are difficult to

find. Publication of these data on the Web makes sure they become public, but does not

ensure their accessibility, nor their visibility (both of which Web Science concerns [6]).

Data publication via Web Services increases accessibility, since service interfaces must

follow specific standards. However, these same standards sometimes hamper particular

needs. For instance, services do not allow updates. Also, since they have been conceived

to enhance interoperability, they may hide information that would be useful to an end-

user – e.g., sampling frequency or data quality provided by a sensor gateway. Thus one

must consider extending services, to provide more flexibility.

Visibility is even more complicated. Since, as shown in section 3, we use components

to display sensor data coupled to services, additional semantics must be conceived for

publication. This is subject of future work.

2.3 Proposed Solution

We are concerned with interoperability and publication flexibility, as two facets of the

first Grand Challenge. Our solution is based on two aspects:
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• Web services – to provide interoperability between applications, WSNs, data servers

and user applications;

• Components – to support reuse and loose coupling, and to allow multiple user-

friendly visualizations of sensor data.

Figure 2.2 gives a high level view of our proposal. It has three main components (or

layers): WSNs (on the left), data servers (on the right), and user applications. Data

communication among components is supported by Web Services. Specific functionalities

are implemented by software components. Each WSN is assumed to connect to an access

point. Each access point runs a Data Load service that sends (pushes) the raw data to a

central data server.

Figure 2.2: Architecture of the solution.

The data server (right side of the figure) implements two Web Services: a Receive

service and a Publication service. The Receive service formats the data received from each

Data Load service into standard tuples, and stores them in a database. The Publication

service publishes basic methods that execute SQL queries on the database.

User requests are treated as follows: Distinct query parameters and visualization re-

quests are implemented as components that invoke the Publication service. Storage and

visualization thus follow two independent pipelines. In the “push” pipeline, Data Load

pushes data into the Receive service. In the “pull” pipeline, software components re-

quest data from the Publication service. Hence, different applications can build their own

components and this provide user-tailored visualizations.

This solution has the following merits. First, it takes advantage of Web Services to

provide access interoperability. Second, since it is based on components, it is extensible
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– e.g., components can also be developed at the WSN access point side to preprocess the

data before it is sent to the server – e.g., providing fusion facilities. Alternatively, as in

our case, services can be developed at the server side to integrate and customize data

according to distinct application requirements. Also, different servers can be installed to

support, for instance, distinct needs or to integrate data from different networks.

The use of software components makes possible the development of user-specific com-

ponents to access and visualize WSN data. This is shown in Figure 2.3 where we have

distinct components for accessing and visualizing data, separating this in a Model-View-

Controller pattern [45]. Here, one access component can be used by many visualization

components and also one visualization component can use many access components.

Figure 2.3: Components to request published data and visualize it.

In order to provide a first prototype for visualization of sensor data, we used the

FLAVOR framework [44]. FLAVOR was developed to support flexible design and con-

struction of software components to visualize measurements of network traffic. We point

out that such measurements can be treated as time series – and thus FLAVOR was used

to visualize our sensor measurements. As new requirements to access and visualize WSN

data appear, FLAVOR may need to be progressively extended.

Our solution combines aspects from NOSA and Pastorello’s work (see section 2). From

the latter, it adopts the philosophy of components to encapsulate functionality and in-

crease modularity. From NOSA, it uses aspects of publication using Web Services, thereby

increasing interoperability. Moreover, we treat the heterogeneity problem at the storage

level, standardizing the format to store sensor data. Thus, the role of components is to

provide distinct visualization formats, including simultaneous views of multiple sensors.

Our infrastructure uses OSGi [74] as the software component standard. The OSGi

defines a standard and component oriented environment that provides a Java framework
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which supports the deployment of extensible components called bundles.

OSGi provides standard primitives that allow applications to be constructed through

small, reusable and collaborative components. It manages the installation and update of

bundles in a dynamic and scalable way. It also provides resources for one to take advantage

of the dynamic load of code, that is, it allows the dynamic deployment of components in

the environment without the need of restarting the entire application. [52]

Using OSGi, our environment can be updated at execution time (without the need of

restarting). For instance we can add new functionalities at the WSN client, preprocessing

the data before sending it to the data server. This new functionality can be added

seamlessly by just installing a new component at the WSN client, without the need of

stopping and restarting the application and without the need of interrupting the data

flow from the WSN to the data server.

Our solution also provides flexibility for multiple kinds of queries – e.g., involving

aggregation, interpolations or transformations. There are two ways of doing that: adding

new methods at the Publication service or implementing new components at the user

application level. The former is done by adding new methods to the service that will map

to the PostgreSQL queries. The latter can be implemented as a chain of components that

implement such functions on top of basic invocations of the Publication service (i.e., our

solution differs from others, since instead of changing the service we add components).

In such a case, a request for an aggregation over a period of time for “n” temperature

measurements can be translated into an execution of a sequence of components – the first

component will request from the Publication service data and the second will compute

the aggregation.

2.4 Case Study: a hands-on experiment

Our case study concerns managing data from a WSN deployed at the Faculty of Agricul-

ture Engineering (FEAGRI) at UNICAMP. Sensor data are collected at an access point

installed at FEAGRI, to be processed at the Laboratory of Information Systems (LIS),

at the Institute of Computing. For this experiment, we were concerned with basically

three issues – sensors heterogeneity, data publication and processing. To create a test

case of heterogeneous sensors, we collect data from sensors sensing air humidity, light and

temperature. Even though we had a small amount of sensors, we had to deal with 3 types

of measurement, each with different frequency of data acquisition and units.

All the sensors send data to a local base station which is connected to a computer (the

access point) that has a web service (the Data Load service). This service, developed by

us, sends the measured sensor data to a server located at LIS. This WS server (Receive

Service) at LIS then stores the data in an appropriate way in a PostgreSQL database. In
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our specific implementation, data are collected at about 2 minute intervals. Finally, data

are published through another WS (Publication Service).

Since our concern in this first stage was in interoperability and publication flexibility,

our data records are very simple and store a minimum of information. Figure 2.4 shows a

short list of records in the raw sensor data database. This table has 6 attributes: record

id, sensor id, value, timestamp (when measure was taken), and network id. The last

attribute, named value2, indicates whether this sensor is capturing more than one value.

This particular table is a snapshot of a humidity measurement in june 23rd, 2010. Record

379 shows an outlier at Universal Time 13:12:46 where it measured 78.4, while all other

measurements for the same time period had values between 33.2 and 33.4. The publica-

tion of these data must take this into consideration – here, this was probably due to some

sensor malfunction. For temperature measurements, our extension to FLAVOR consisted

Figure 2.4: Measurement of humidity from sensor 6 on june 23rd, 2010.

in creating two components: TempSensorAccess and TemperatureSensorTabularView, re-

spectively the access and the visualization components for accessing the temperature

sensor data available. Figure 2.5 shows an example of visualization of temperature data,

using a table format. An alternative means of visualizing the sensor data appears in

Figure 2.6. This was developed using a distinct software, but using the same underlying

data stored in PostgreSQL. Such flexibility in handling data is only possible because of

our architectural choices.

There were several difficulties in deploying the first sensors, ranging from engineer-

ing problems to defining a storage format for data. For instance, the setting up of the

communications infrastructure and the calibration of sensors took more than one year.
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Figure 2.5: Application visualizing Temperature sensor data in a data table.

Figure 2.6: Another view of some of the data presented in Figure 2.5.
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Web Services was one of the many solutions discussed for communication between

layers. Again, service specification and implementation was time consuming. However,

once the services were running and the network was deployed, the extension of access

and visualization alternatives is proving to be relatively straightforward, because of the

architectural solution adopted.

2.5 Publishing data in the cloud

To attest the flexibility of our approach, we conducted another experiment using cloud

computing [81] – in our case, Microsoft Windows Azure [54]. This was accomplished in a

very straightforward way: we just had to modify our Receive service to store the WSNs

data into the local dabatase and into the cloud. In more detail, this, was performed as

follows:

1. the data that came from the WSNs continued to flow to the local database in the

same predetermined frequency (i.e., about every 2 minutes);

2. the data that came from the WSNs into the cloud were stored according to the real

collection frequency of the WSNs (i.e., one or more data points per minute), without

the need to reduce sampling frequency to save storage space

The applications querying the data from the data server infrastructure continued to

access the Publication service, getting the data of interest without any need of code

modification. At the same time, we developed another application, to query the cloud

database and display the data. Again, this just required a simple access to the cloud

service to get data from there.

Figures 2.7 and 2.8 show charts of temperature and humidity, respectively, from the

cloud (a) and from the local database (b). The underlying databases are different (Post-

GreSQL in our server, SQL Server in the cloud) and the data volume is different (one

or more values per minute in the cloud, one value per 2 minutes in our local server).

However, at the visualization/application end, the graphs are presented at 5 minute av-

erage intervals, thereby showing the same curves. The final visualization is nevertheless

different because two distinct rendering algorithms were used, one for each application.

Extending the problem to run in another platform was simple and straightforward,

thanks to our infrastructure choices. We just had to update the Receive Service we provide

for the clients to store data and create another application to access the cloud, for the

same basic visualization. We point out that our goal was not to compare the performance

of the two experiments (with and without the cloud). Rather, the idea here was to check

the extensibility and flexibility of our solution.
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Figure 2.7: Temperature data in the cloud (a), and in the local database (b).

Figure 2.8: Humidity data in the cloud (a), and in the local database (b).
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2.6 Conclusions and ongoing work

This paper presented our proposal to process and visualize sensor network data. Our

approach is based on combining Web Services (to provide interoperability among sensor

networks, data servers and user applications) and components (to provide flexibility in

data preprocessing and visualization). Since OSGi was used as the component standard,

we can dynamically update an application at execution time without the need to restart

the entire application. New functionalities (components) can be added or removed without

breaking the data flow from the WSN to the data server or restart the user visualization

application. As a consequence, the features that are not involved in the update will not

be affected and the new ones can be instantaneously run.

There are many directions for continuing this work, that range from solving issues

such as detecting faulty sensors to providing users with a wide range of visualization

and filtering options. Another direction involves extending the sensor data database with

additional information – e.g. on quality – such as adding attributes discussed by [73].

At the same time, we need to concern ourselves with the Web Science issue of visibility.

It is not enough to publish data on the Web: indeed, means must be found to ensure that

these data are found and correctly interpreted. One possibility is to register the Publica-

tion Services, in which the registration is enhanced with enough semantic information –

e.g., with ontological annotations. This kind of solution is part of our ongoing research.



Chapter 3

Managing Environmental Data from

Sensor Networks

3.1 Introduction

There are several challenges in managing environmental data. Researchers have to deal

with different types of data from many sources and captured with a wide range of spatial

and temporal resolutions. To yield good research results, scientists have to overcome

many issues such as heterogeneity and large volume of data.

Sensor networks are growing in importance, as data providers enable means to measure

different types of environmental variables. However, they present several levels of het-

erogeneity, i.e. they can be produced by different manufacturers, having different sensor

models that can make measurements at different time intervals.

Research in sensor networks treats problems under different perspectives. At the

sensor layer, research concentrates in acquiring and processing data with the lowest ener-

gy consumption. At the network layer, main concerns involve routing of data through

the best route considering node errors, low-level signal, etc. At the application layer, in

which we are concerned, challenges involve means to acquire, integrate and assess data.

Our approach to manage sensor-based environmental data integrates these data sources

using two mechanisms. The first is Enterprise Service Bus (ESB), a distributed infras-

tructure that uses messages and open standards to provide integration of systems [10].

The second consists in treating data provided as events, processed using Complex Event

Processing (CEP) [18, 50]. CEP offers means to deal with rules and events’ relation-

ships, providing ways to create multi-layered architectures of events and their multiple

sensor-based data.

This paper concentrates in proposing and exemplifying distinct event patterns to an-

alyze geospatial environmental sensor data. The rest of the paper is organized as follows.

21
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Section 3.2 provides some basic definitions we use throughout the paper. Section 3.3 men-

tions work that intersects ours. Section 3.4 presents some background of our framework

for environmental data management detailed in [39]. Section 3.5 details the event patterns

covered in the framework. Section 3.6 presents a short example involving environmental

monitoring and pattern detection and finally, section 3.7 concludes the paper.

3.2 Basic Concepts

This section provides some of the concepts we use throughout the paper in order to clarify

and standardize definitions.

An ESB is an infrastructure focused in integration of systems that communicate via

messages. It provides routing, invocation, mediation and other capabilities to facilitate

communication between systems. Therefore if a new system is added to this infrastructure

it has only to provide an adapter that fits its message format to couple with other systems

that are already coupled with the ESB. An adapter is a piece of software that provide

connection between the provider/consumer and the ESB.

According to Rademakers and Dirksen [64] some of the core functionalities of an ESB

include location transparency (the service consumer does not need to know where the

provider is), transport protocol conversion (an ESB should be capable of converting dif-

ferent transport protocols), message transformation (e.g., from SOAP to an custom XML

format), message routing (where the message comes from and where to send it), message

enhancement (add additional data to the incoming message), security and monitoring and

management.

An event is “a thing that happens, especially one of importance” [17]. It is a notable

thing that has significance in a context in a system. In CEP, an event is an object signi-

fying an activity with three aspects (Form, Significance and Relativity) that a computer

can process. The form is the representation of the event (e.g., an object with its prop-

erties describing an event). The significance is the description of what an event signifies

(e.g., a string with the event’s description). The relativity is the relation of the event with

others such as time period and causality (e.g. an array with the ids of other events that

it aggregates) [49]. To process events, event processing agents (EPA) monitor a system’s

execution to detect patterns and process events.

A complex event is an aggregation of events [49]. It is created using event patterns

rules or aggregation rules since they aggregate set of events. A complex event provides

an aggregated event from among a cloud of low-level events.

Events can be matched by an event pattern that is a template that describes the event

and all the appropriate context descriptions such as causal dependencies, timing, etc.

Event Patterns can produce aggregations of events, creating a hierarchy with a sequence
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of levels. Each level has its own rules that specify how one can infer the higher layer

events from lower level events. For instance, in environmental studies, an event may be a

sudden drop in temperature. A more complex event, for instance ‘frost’, can be defined

as a combination of ‘drop in temperature’ events within a window in space and time, and

so on. CEP allows specifying (and checking for) such a hierarchy of events.

3.3 Related Work

There are several reports of deployment of sensor networks for monitoring and analysis of

environmental data in the literature. Most of this research relates to the aforementioned

sensor layer which deals with problems such as energy efficiency, reliability and capac-

ity. Once sensor layer issues are solved, research tends to focus on application specific

problems.

One example is the National Ecological Observatory Network (NEON) [38] which in-

tegrates a network of observatories to gather data on ecological biosphere. Despite the

fact that they mention that their prototype systems are working towards event specifica-

tion, detection and response capabilities [28], to the best of our knowledge, there is no

evidence that they are dealing with events the same way as we do, i.e. providing means

for researchers to insert event patterns and receive notifications when there is a match.

FLUXNET [5], another example, uses a network of micrometeorological towers to

measure exchanges of CO2, water vapor, and energy between terrestrial ecosystems and

the atmosphere. This network aims at integrating networks into a global effort.

Global Lake Ecological Observatory Network (GLEON) [25], yet another example,

aims at the observation of lakes to understand the processes involved and effects of climate

and land-usage change in a global fashion. They deal with sensor stream data management

using the RBNB DataTurbine, which is a middleware that provides means to integrate

heterogeneous instruments and services [77]. This middleware provides a set of features

to accomplish sharing of datasets in real-time between different sites with authorized

users. Although GLEON provides integration facilities, it does not focus in dealing with

event processing. This approach is similar to our use of ESB for integration, but without

considering pattern identification.

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI)

Hydrologic Information System (HIS) [15] provides an infrastructure that relies on service

oriented architecture (SOA) for sharing hydrologic data, i.e. publication, discovery and

access of hydrologic data. A desktop software that can be used to access, visualize and

analyze hydrologic data published in CUAHSI called HydroDesktop [3] was also developed.

While providing useful features to overcome challenges (e.g. integration and sharing of

data sources), CUAHSI-HIS is only focused on Hydrological studies.
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Hughes et. al. [34] developed and deployed a middleware system to support environ-

mental monitoring based on wireless sensor network (WSN). Their software component

infrastructure, named LooCI [33], provides event processing at the WSN level, where each

node acts as a broker, consuming and producing events. In summary, their work deals

with events and integrates WSN stream data at the sensor level (i.e., before leaving the

network). We instead, are concerned with processing data only after they arrive at the

framework, and perform event processing at a different application level. Our framework

integrates stream and static data using a filtering/pre-processing phase before data en-

ter the ESB. Once data are encapsulated into ESB messages, they are integrated and

processed within the framework as events.

All these efforts concentrate on processing and integrating the data to allow the usage

of the associated variables. Although they provide means to share datasets from their

measurement sites, they do not provide means to deploy and detect generic patterns

through these datasets, i.e. they do not provide ways to efficiently acquire only essential

datasets/events for the researchers experiment.

While these initiatives treat data integration problems using database-like approaches,

we are more concerned with the events captured by the sensors, as a step that follows

integration processes. So, rather than only integrating the data streams, we process the

streams looking for events that are reported to users, according to user requests. Related

work that intersects ours in terms of event detection includes, for instance [18], [13],

[27]. These papers provide good solutions in different aspects in dealing with sensor data,

integration and events. On the other hand, they do not provide a solution capable of

integrating static and dynamic types of data.

As will be seen next, we process sensor data in two different steps. First, using ESB,

we integrate sensor data sources, but at the same time consider other kinds of data

as integration inputs, therefore differentiating ourselves from intersection efforts such as

NEON or FLUXNET.

Next, we treat these integrated data as sources of event streams, looking for patterns

and generating higher level semantics. Again in this point, we distinguish our efforts from

those that process events in sensor network data streams.

3.4 The Data Management Framework

Environmental sciences are among the research fields being transformed by the ability to

retrieve observations at high spatial and temporal granularity through the deployment of

in situ sensor network technologies [7]. However, to make sense of the data collected is

not a trivial task. As outlined by [76], there are several challenges in this context due to

data complexity, spatial and temporal context sensitivity, data heterogeneity and volume,
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among others.

Environmental studies usually involve spatiotemporal factors which present several

other challenges. Our proposal is based on the following premises: (a) sensor data are

treated as event streams, and hence data of interest can be processed as events; (b)

heterogeneous streams can be jointly processed using an ESB platform, which also enables

the inclusion of data from arbitrary (non-sensor based) sources.

Figure 3.1, adapted from [39], shows an overview of the framework. It uses ESB and

CEP to facilitate the integration of data providers and consumers. Data from providers

and to consumers are input and output, using ESB adapters, i.e. a piece of software that

provides connection between the provider (or consumer) and the ESB. Once providers

are connected via ESB into our framework, they can input data. These data enter the

framework and are encapsulated into a standard event format, defined by us. Data can

go through filtering, routing, translation (to the standard event format), transformation,

aggregation and event pattern detection. At the end, data are translated back into formats

expected by consumers and disseminated to them.

Figure 3.1: Architecture of the framework

A key issue in our framework is the possibility to detect patterns. Patterns can help

acquire knowledge about environmental observations and can be tailored to distinct user

needs. In our framework, patterns are described in Event Processing Language (EPL),

deployed and processed using an Event Processing Engine called Esper [20]. For details

on issues concerning the ESB and framework internals, the reader is referred to [39]. This

paper emphasizes the management of environmental data and patterns.

Another key issue is that since this framework is based on events and presents a
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homogeneous input (provider) and output (consumer) interface. Other solutions may

input events, but do not necessarily output events.

Finally, ESB provides location transparency, i.e., the consumer does not need to worry

about where the producer is. This provides independence of consumers from producers,

which is another advantage of this proposal.

3.5 Environmental Data and Event Patterns

3.5.1 Overview and basic definitions

In our work events are represented as event objects which are instances of event types.

Event types are abstract representation of real instances of an event. For example, consider

a stream of measurements coming from a temperature sensor. All the measurements

reported share the same kind of information structure which can be defined as an event

type [21]. In this paper, we use the term event object and event as synonyms. As will be

seen, our events are encapsulated in Java objects.

We denote an event as a quadruple: <measured-value, nature, spatial-variable, times-

tamp> = <v, n, s, t>, where:

• v is the value of the variable captured (e.g. 40 [degrees celsius], 80% [humidity]);

• n the nature of the variable (e.g. temperature, humidity);

• s is the location (coordinates) of the measurement;

• t is a time interval [ts, tf]1 for which v was valid at that location (s). If ts = tf this

is an instantaneous event (e.g., sensor measurement).

An event pattern, pattern for short, here, is the specification of one or more events

concerning the variables being monitored. A more general pattern definition that is

suitable to our work is: a description of how an event or a set of events of interest looks

like [49].

A pattern can involve a single variable – e.g., precipitation – at a given location or

set of locations, in a given moment or period of time. It may also involve more than

one variable – e.g., precipitation, temperature and solar radiation – again with varying

spatio-temporal attributes. Pattern detection can serve to alert about given conditions, or

point out variations in collections of events. Thus, looking for patterns enables a scientist

to detect some combinations of events occurring in a particular order, or if a particular

event did not emerge when/where it was expected to occur.

1ts is the start time and tf is the final or end time.



3.5. Environmental Data and Event Patterns 27

Pattern elements Patterns are expressed as combinations of predicates over value,

nature, space and time. We use the term predicate as the property that a subject can

have [66], i.e. if we have a statement like “x > 5”, the variable x is the subject while the

“is greater than 5” is the predicate. Once a value is assigned to a variable, e.g. x = 10,

it becomes a proposition and has a truth value (true or false). The proposition will have

to return true in order to match a predicate.

The notation used for predicates that forms a pattern is: V(x), N(x), S(x), T(x)

applied to respectively the value, the nature, the space and the time component of event

x.

3.5.2 Event Patterns

Patterns can be simple or composite. Simple ones are patterns that concern one event

and may be of type Value, Spatial, Temporal and Spatiotemporal. Value patterns only

consider the value in the predicate. Spatial patterns consider values over a spatial distri-

bution. Temporal patterns focus in variations of values in time. Spatiotemporal patterns

regard variations in value over time and spatial distributions. Composite patterns com-

prise combinations of two or more simple patterns. Patterns are run against sliding

windows defined by the users.

Here we present a description and the notation of these patterns.

Some examples are given in order to subsequently present how they detect events. The

examples concern Events 1 through 6 which provide measurements of temperature, rain

and humidity in the cities of Campinas and São Paulo, at date and time 11 December 2012

07:00 pm, 12 December 2012 07:00 pm, 13 December 2012 08:00 am and 13 December

2013 09:00 am depicted in Table 3.5.2. In what follows, the notation x.v, x.n, x.s, x.t

refers respectively to the value, nature, space and time components of event x. The

spatial component contains the name and coordinates of the city.

Value pattern

In value patterns, predicates consider only the value of an environmental variable mea-

sured by a sensor, weather station, etc (for example: temperature, humidity, light, solar

radiation, among others). Consider patterns:

• P1(x) : [x.v > 10◦C ∧ x.n ε temperature] – detects temperature above 10◦C

• P2(x1, x2) : [x1.v > 10◦C ∧ x1.n ε temperature ∨ x2.v ≥ 90% ∧ x2.n ε humidity] –

detects temperature above 10◦C or humidity above 90% regardless of time or space

variables
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Table 3.1: Event Examples

If applied to the set of events of Table 3.5.2, pattern P1 will match events 2, 7 and 8.

Pattern P2 will match events 2, 7, 8 and 6.

Spatial patterns

Spatial patterns are based on the spatial properties of events, considering the value of

environmental variables given a spatial context. For example, temperature measured in

a place near the city of Campinas. Consider patterns:

• P1(x) : [x.v > 10◦C ∧ x.n ε temperature ∧ x.s = Campinas ] – detects temperature

above 10◦C in the city of Campinas

• P2(x1, x2): [x1.v > 10◦C ∧ x1.n ε temperature ∧ x1.s = Campinas ∧ x2.v > 20◦C

∧ x2.n ε temperature ∧ x2.s = São Paulo] – detects temperature above 10◦C in

Campinas and temperature above 20◦C in São Paulo.

If applied to the set of events of Table 3.5.2, pattern P1 will match event 7. Pattern

P2 will match Event 7 and Event 8.

Temporal patterns

Temporal patterns are the ones that are concerned with variation of events in time, i.e.

when time plays a major role [21]. They consider the value of environmental variables and

temporal assumptions about them. They can be applied, for instance, after filtering data
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from a certain region (e.g., using a spatial pattern). For example, temperature measured

in the last decade or rain rate in the last month. Consider patterns:

• P1(x) : [x.v = 10◦C ∧ x.n ε temperature ∧ x.t < 12 December 2012 ] – detects

temperature equals 10◦C when date is before 12 December 2012

• P2(x1, x2): [x1.v > 10 mm ∧ x1.n ε rainfall ∧ x1.t = 11 December 2012 ∨ x2.v <=

0 mm ∧ x2.n ε rainfall ∧ x2.t = 12 December 2012 ] – detects rain above 10 mm

when date and time is equals 11 December 2012 and rain less than or equals 0 mm

when date and time is equal 12 December 2012.

If applied to the set of events of Table 3.5.2, pattern P1 will match Event 1, and

pattern P2 will match Event 4, Event 9 and Event 10.

Spatiotemporal patterns

Spatiotemporal patterns are those specific to the evaluation of spatial trends over time

[21]. They combine measured variables, spatial and time properties. For example, rain

measured in the last decade in the state of São Paulo. Consider patterns:

• P1(x): [x.v = 10◦C ∧ x.n ε temperature ∧ x.s = Campinas ∧ x.t = 11 December

2012 07:00 pm] – detects temperature equals 10◦C in the city of Campinas when

date and time is equals 11 December 2012 07:00 pm

• P2(x1, x2): [x1.v > 8◦C ∧ x1.n ε temperature ∧ x1.s = Campinas ∧ x1.t = 11

December 2012 ∧ x2.v > 0 mm ∧ x2.n ε rain ∧ x2.s=São Paulo ∧ x2.t = 11 December

2012 ] – detects temperature above 8◦C in Campinas while there is rain in São Paulo

in the same day.

If applied to the set of events of Table 3.5.2, pattern P1 will match Event 1, and

pattern P2 will match Event 1 and Event 4.

All the aforementioned patterns execute considering a sliding windows defined by

pattern creator. Thus, if a scientist wants to detect environmental patterns considering

time, the more appropriate sliding window will be time-based, or if the number of events

are more important, an event-number-based window will be more appropriate.

As outlined in section 3.4, there is a possibility to combine data from different sources

and detect patterns from them. Since patterns detailed here are generic, i.e. they are not

tied to a specific data type or source, they can be used to detect variations in different

types of environmental variables that comes from stream and non-stream sources. This

combination can produce different correlations, e.g. given a region where we usually

find some meteorological measurements, produce a notification event when measurements

diverge from the expected value by a given factor.



3.6. Example of Pattern Detection 30

3.6 Example of Pattern Detection

Floods are one of the most frequent natural disasters that cause damage worldwide.

Flood-prediction is not a trivial task [46].

Suppose that a given region, e.g. a national park or a protected area (PA), is being

monitored as concerns environmental variables temperature, humidity and rainfall so that

for some given specific conditions (e.g. flood) animals in that region may be due to special

treatment (e.g. be evacuated). Event processing occurs in two levels:

• filtering – forward to pattern matching only data from rain sensors within that

region

• pattern matching – find a sequence of rain sensor events that, over a period of time

defined by researchers indicate that a flood could occur

The spatiotemporal pattern that follows assume the sensor data were already selected by

the filtering phase, e.g. using a buffer operator around the region and type of measure-

ment.

False positives should not be tolerated, since an evacuation of an area can be costly.

Thus, we insert 2 rain (x1 and x2) and 2 river level (x3 and x4) predicates in the pattern to

be deployed in four different regions of a polygon comprising the region to be protected.

Then, the pattern to be considered is the following:

P (x1, x2, x3, x4): [x1.v > threshold rain ∧ x1.n ε rain, x2.v > threshold rain ∧

x2.n ε rain, dist(x1.s, x2.s) > 1 km, x3.v > threshold river level ∧ x3.n ε river level,

x4.v > threshold river level ∧ x4.n ε river level ]

This pattern takes 2 rain sensors and 2 river level sensors that can inform if the levels

of rain or river go above a given threshold (threshold rain and threshold river level,

user-given). The distance between x1 and x2 was considered to be above 1 km. If this

pattern is evaluated to true, a flood event is generated and an alert is triggered.

We know that in a real operation scenario a flood alert has to be calculated using a

combination of affected population, vulnerability and the size of the flood to provide a risk

score [46]. However, in this example, we show the use of patterns to provide the required

data in near real-time, combining user-given values with rain and river level stream data.

This approach enables researchers to define patterns and receive notifications as fast as

data are being received.

3.7 Conclusions and Future Work

This paper presented our work in specifying patterns of events to capture specific environ-

mental conditions from sensor networks in space and time. Patterns are used to construct



3.7. Conclusions and Future Work 31

queries that are posed against sensor data that is collected, standardized and stored in

our framework. This work needs to be extended with other case studies, e.g. investigating

more adapters.

We are investigating extending this work to composite patterns over sensor data com-

bined with data on species observations (e.g., from collection catalogues). In environmen-

tal monitoring studies, it is possible, for example, to model regions where an endangered or

rare specimen may occur by looking at the specimen occurrence database and determine

if a weather condition pattern is met when applied to other regions. Thus, integrating

species occurrence databases and meteorological databases can point out important cor-

relations such as detection of the weather conditions where a specimen occurred or detect

regions likely to find a species given spatiotemporal patterns.



Chapter 4

Patterns in Environmental Event

Processing

4.1 Introduction

Environmental monitoring applications allow scientists to detect otherwise unobserved

situations, which can be of interest to their studies [26]. These applications support

observations in spatial and/or temporal granularities not available using static or historical

sources. However, such dynamic data have to be combined with static sources.

If these applications open new possibilities in research, scientists on the other hand

have to deal with many obstacles concerning the quality and management of the data used

(and produced by) their studies. The data management cycle (e.g. acquisition, analysis

and storage) presents many challenges, e.g., [61].

In acquiring data, the scientist has to deal with different types of data from various

sources. While many studies are concerned with static data sources (e.g. historical files),

there is an increasing interest in adopting dynamic sources (typically from sensors). As

sensors become popular due to many reasons (e.g. lowering prices), data providers are

increasingly publishing real-time stream data; this aggravates the issues of heterogeneity.

To analyze data, scientists have to select the kinds of data they want to treat, and

aggregate the different data sources. Since there are intrinsic heterogeneity issues and

static and stream data involved, this type of task increases in complexity as the number

of data sources grows.

Storage is yet another concern, since research data does not fit completely in one type

of format (e.g. relational database table or spreadsheet) or media. Stream data are often

useful for a short period of time, but storing this type of data may also be useful for

forecasting and long term analysis.

There is plenty of work that deals with environmental data and that handles the

32
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issues of their capture, analysis and storage such as [3, 9, 11, 71, 72]. In acquiring data,

such research aims at sampling, data routing, reliable communication and energy-efficient

acquisition of data. In analyzing data, the focus is in data exploration, classification,

statistics. In storing data, research concentrates in the capacity of data storage and

search in data repositories.

An increasing number of environmental studies must cope with static and dynamic

data. Solutions are geared towards specific problems, and particular data sources. Typ-

ically, each study is directed to a given geographic region, having a specific focus (e.g.,

analyzing drought effects). Once region and focus are defined, researchers specify the data

sources of interest and provide an approach that takes advantage of the characteristics of

these sources (e.g. in [4], satellite images, soil water and radiation sensors were combined

to evaluate drought stress and carbon uptake in a specific region of the Amazon forest).

Even when they manage to integrate static and dynamic sources, these approaches are

seldom scalable to other regions, or phenomena, or other kinds of data sources. Our ap-

proach, instead, is generic. To the best of our knowledge, there is no generic approach for

joint integration of stream and static data for environmental sciences.

The generic nature of our solution is supported by the combination of two technologies:

• On the capture side, our proposal integrates data sources using Enterprise Service

Bus (ESB), a combined infrastructure that provides integration between systems

[10, 70]. Static and stream data sources are integrated using so-called ESB adapters.

Data are materialized in messages and treated as events, using Complex Event

Processing (CEP) [18, 50] which provides means to deal with rules and events’

causal relationships. We thereby provide ways to create a multi-layered architecture

of events, corresponding to multiple kinds of data aggregations;

• On the analysis perspective, it allows identification of patterns of interest, using an

event-based paradigm. Once patterns are detected, we use ESB adapters to dissem-

inate the results to different destinations. Ingested data are moreover maintained

in an object-relational database for subsequent processing of historical data and

patterns that compare the present to the past.

This paper shows how our framework deals with the aforementioned problems and how

it can help scientists in managing their environmental data to extract useful information.

The rest of the paper is organized as follows. Section 4.2 provides some basic definitions

we use throughout the paper. Section 4.3 provides some related work that deals with

environmental data. Section 4.4 presents an overview of our framework for environmental

data management. This framework is detailed in [39]. Section 4.5 provides examples of

use of event patterns. Section 4.6 presents our implementation showing the practical use

of our framework and patterns, and section 4.7 concludes the paper.
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4.2 Basic Concepts

This section provides some of the concepts we use throughout the paper in order to clarify

and standardize definitions.

An ESB is an infrastructure focused in integration of systems that communicate via

messages. It provides routing, invocation, mediation and other capabilities to facilitate

communication between systems. Therefore if a new system is added to this infrastructure

it has only to provide an adapter that fits its message format to couple with other systems

that are already coupled with the ESB. An adapter is a piece of software that provide

connection between the provider/consumer and the ESB.

According to Rademakers and Dirksen [64] some of the core functionalities of an ESB

include location transparency (the service consumer does not need to know where the

provider is), transport protocol conversion (an ESB should be capable of converting dif-

ferent transport protocols), message transformation (e.g., from SOAP to an custom XML

format), message routing (where the message comes from and where to send it), message

enhancement (add additional data to the incoming message), security and monitoring and

management.

An event is “a thing that happens, especially one of importance” [17]. It is a notable

thing that has significance in a context in a system. In CEP, an event is an object signi-

fying an activity with three aspects (Form, Significance and Relativity) that a computer

can process. The form is the representation of the event (e.g., an object with its prop-

erties describing an event). The significance is the description of what an event signifies

(e.g., a string with the event’s description). The relativity is the relation of the event with

others such as time period and causality (e.g., an array with the ids of other events that

it aggregates) [49]. To process events, event processing agents (EPA) monitor a system’s

execution to detect patterns and process events.

A complex event is an aggregation of events [49]. It is created using event patterns

rules or aggregation rules since they aggregate set of events. A complex event provides

an aggregated event from among a cloud of low-level events.

Events can be matched by an event pattern that is a template that describes the event

and all the appropriate context descriptions such as causal dependencies, timing, etc.

Event Patterns can produce aggregations of events, creating a hierarchy with a sequence

of levels. Each level has its own rules that specify how one can infer the higher layer

events from lower level events. For instance, in environmental studies, an event may be a

sudden drop in temperature. A more complex event, for instance ‘frost’, can be defined

as a combination of ‘drop in temperature’ events within a window in space and time, and

so on. CEP allows specifying (and checking for) such a hierarchy of events.
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4.3 Related Work

There are countless studies that involve static data sources in environmental sciences (see,

for instance, several papers in EOLSS [80]). They concern issues that cover the entire

data life cycle and distinct analyses and models that such data feed. We concentrate on

related work in sensor streams, a relatively more recent research domain. We recall that

our approach allows considering both kinds of data within a single framework.

As data streams are becoming more and more popular on the Web, lots of work in

processing and publishing environmental data have appeared. Platforms such as Cosm

[14] facilitate sharing data streams on the web.

This, in turn, has prompted research on detecting errors in the stream. An event may

contain faulty information (e.g., due to sensor malfunctioning), and a sequence of such

events may lead experts to wrong conclusions. Conversely, correct values may be treated

as errors (e.g., outliers when extreme conditions actually occur). For instance, the work

of Gupchup [26] comments that 45% of sensor measurements are misclassified as faults.

That work also shows that simply tuning fault-processing algorithms is not enough, since

tuning may inversely not recognize actual errors. Our work assumes that stream errors

are treated before entering the ESB. We point out that our emphasis is on providing users

with tools to detect events.

While the above concern the quality of stream data, other researchers deal with specific

kinds of data items. For instance, research conducted by Rundel [67] provides many

examples of ecological data acquisition using terrestrial, soil and aquatic sensor networks.

It points out that integration of sensor data can reveal previously unobserved phenomena.

In the same spirit, Hart and Martinez [29] provide more than 40 different types of

environmental sensor network deployments. They point out that environmental sensor

networks, i.e. sensor networks specifically tuned to an environmental application, will

be key to provide new approaches in the study of environmental processes. However,

there are some problems to overcome in dealing with automatic data gathering such as

different sources of data and formats. Several efforts are concerned with these problems

such as Open Archives Initiative1 [47], Geographic Markup Language (GML) [63], Sensor

Model Language (SensorML) [8], Ecological Metadata Language (EML) [22]. They all

are creating standards to facilitate the data exchange, integration and interoperability

between systems.

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI)

Hydrologic Information System (HIS) [15] provides an infrastructure that relies on service

oriented architecture (SOA) for sharing hydrologic data, i.e. publication, discovery and

access of hydrologic data. A desktop software that can be used to access, visualize and

1http://www.openarchives.org
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analyze hydrologic data published in CUAHSI called HydroDesktop [3] was also developed.

While providing useful features to overcome challenges (e.g. integration and sharing of

data sources), CUAHSI-HIS is only focused on Hydrological studies.

Hughes et. al. [34] developed and deployed a middleware system to support environ-

mental monitoring based on wireless sensor network (WSN). Their software component

infrastructure, named LooCI [33], provides event processing at the WSN level, where each

node acts as a broker, consuming and producing events. In summary, their work deals

with events and integrates WSN stream data at the sensor level (i.e., before leaving the

network). We instead, are concerned with processing data only after they arrive at the

framework, and perform event processing at a different application level. Our framework

integrates stream and static data using a filtering/pre-processing phase before data en-

ter the ESB. Once data are encapsulated into ESB messages, they are integrated and

processed within the framework as events.

Similar to these studies, we are interested in the integration and processing of data

from distinct kinds of sources, but unlike them, we are also concerned in detecting event

patterns from static and stream data.

A few papers explore non-standard kinds of sensors. One such example of event

processing for environmental monitoring is the work of Sakaki et al. [68]. In this work,

they developed a system using events of Twitter messages to detect earthquakes with high

probability and much faster than Japan Meteorological Agency (JMA). They consider

a Twitter user as a sensor and process the message to only take relevant earthquakes

notifications into account. This work has similarities with ours considering the use of

event detection, but on the other hand they do not provide combination of events or

stream data with other sources of data, i.e. possibility to access Web Services, files,

databases like us.

4.4 The Data Management Framework

Environmental studies usually involve spatiotemporal factors which present several chal-

lenges, including spatial and temporal variability. Our work is specifically concerned with

data integration and pattern detection, i.e. it identifies patterns out of data that are

fed into our framework from different sources. Our proposal is based on the following

premises: (a) data from heterogeneous sources are absorbed by our framework, thanks to

the ESB features; (b) data are filtered with the focus to retrieve only interesting data;

(c) all such data are then treated as event streams, and hence events of interest can be

processed using event patterns.

Figure 4.1 shows an overview of the framework that we have implemented, where

data flow from the bottom (providers) to the top (consumers) being encapsulated into
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messages and treated by CEP in the middle. It uses ESB to facilitate the integration of

data providers and consumers. To use ESB in environmental studies, it is important to

have a pre-processing phase since ESB are usually applied to enterprise applications where

data granularity is not usually as diverse as found in this context. In our approach, a

pre-processing phase consists in ingesting and extracting interesting data to be submitted

to event pattern detection.

Data from providers and to consumers are input and output, using ESB adapters.

Once providers are connected via the ESB into our framework, the framework can absorb

data (1) by pushing or pulling data, i.e. in (1) our framework acts as a client by receiving

data from providers or continually requesting new data.

At the same time data are collected, filtering (2) is required before data enter the

ESB, since non relevant data could flood our framework unnecessarily. This filtering

consists in selecting data sources and the items of interest from such sources. We may, for

example, extract moisture and temperature from a set of meteorological stations, recover

just a piece (region) of a satellite image or issue a query to retrieve data for the year

2012 from a database. This is particularly interesting to tailor the framework to specific

contexts. For instance in environmental applications, it is usual to consider temporal

series of satellite images, where just part of each image may be needed. This initial

preprocessing would save data traffic within the ESB. As well, this phase can eliminate

data that do not meet minimum quality requirements.

After the pre-processing, data are encapsulated into messages (3) by channel adapters.

Here is where the data are standardized to flow through the ESB. In our framework, these

messages are presented in Java objects. Temperature and humidity data are transformed

into real numbers, satellite images can become descriptors, link to the image file and

variable values, result of queries to databases can be transformed into a set of numbers

and strings.

Once data are available in the ESB, it is necessary to choose the data to be processed

(4) by the event patterns, i.e. for each type of study, scientists are interested in a certain

type of data and will create event patterns considering the messages they want to observe.

For example, given all messages flowing in the ESB, a scientist may be interested only

in temperature data from a local sensor network deployed in a given region. For event

detection, each ESB message is treated as an event and submitted to CEP mechanisms.

Event patterns are created and implemented in EPAs. Each EPA will evaluate events

and trigger a new event if the event set satisfies the pattern. Patterns can help identify

distinct events in environmental observations. Once an expert specifies a pattern, the

framework is able to detect it and perform some action, e.g., notify user(s) or store data for

later analysis. In our framework, patterns are described in the Event Processing Language

(EPL) [19], deployed and processed using the Esper [20] Event Processing Engine.
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Figure 4.1: Architecture of the framework.
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After the translation of messages into events (4), event pattern detection is performed

in (5). Once an event pattern is found, an event is produced and encapsulated in a

new ESB message (6). The ESB then takes care of sending this encapsulated event to

interested users (7), e.g. scientist A or B.

In order to notify users or store events (8), the output can occur in two ways: noti-

fication or request/reply. Events are sent to subscribed users (e.g. Scientists) to receive

notification or sent for storage in databases, file servers, etc. Subsequently, other user can

make a request for these stored data. This request goes through the ESB and recovers

the repository where the data lies.

In environmental studies, it is possible that two scientists are interested in studying

certain types of variables in different ways. They can use our framework defining different

events and event patterns they want to detect, e.g. scientist A is interested in detecting

rain and temperature below 10 degrees celsius from a local sensor network deployed in

region R1 whereas scientist B is interested in receiving a piece of a satellite image deployed

in region R2 when temperature sensors from the region R2 are above 20 degrees celsius.

Scientist A has to consider messages flowing in the ESB of type rain and temperature

from the sensor network deployed in region R1 and create an event pattern to detect

temperature < 10 and rain = true. Scientist B will have to consider messages created

from pieces of satellite images and measurements from temperature sensors deployed in

region R2 and specify an event pattern to detect when those temperature sensors are

above 20 degrees celsius.

We point out that we do consider factors such as data quality, or degree of fuzziness

of spatial information. We are aware that these are very relevant issues to be taken

into account when processing environmental data. For the purpose of this work, and its

implementation, the following hypotheses are made:

• data quality can be inferred from metadata associated with data sources (e.g., spatial

coverage, precision, accuracy and others), and only data items that meet a certain

quality level are allowed through the filtering phase;

• fuzziness can be partially dealt with EPAs, using some of the operations on events

proposed in [21] in particular translation2. The analysis and processing of fuzzy

environmental data is in itself an open problem, and a thorough treatment of this

issue is outside of the scope of this research.

2Other EPA operations include, among others, project, aggregate, and compose
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4.5 Environmental Patterns

Patterns are used to detect significant variations or behaviors in a particular type of study.

This section exemplifies some of the environmental patterns described in [41]. In that

paper, we specify generic patterns that can be combined and extended to capture arbitrary

combinations of events. Patterns are specified against data, which are basically treated

as streams of events that take into account spatio-temporal nature of environmental data.

Events have the form:

<measured-value, nature, spatial-variable, timestamp> = <v, n, s, t>, where:

• v is the value of the variable captured (e.g. 40 [degrees celsius], 80% [humidity]);

• n the nature of the variable (e.g. temperature, humidity);

• s is the location (coordinates) of the measurement;

• t is a time interval [ts, tf]3 for which v was valid at that location (s). If ts = tf this

is an instantaneous event (e.g., sensor measurement).

Values can be retrieved in different ways. Numerical flows from meteorological stations

(e.g. temperature and humidity readings) are encapsulated in integer or double values;

stored data can be retrieved from databases, e.g. information on species. Information can

also be extracted from satellite images, which are cut in polygons and transformed into

values of radiation or calculated indices such as Normalized Difference Vegetation Index

(NDVI)4. These values can be taken in several different ways, i.e. from the pixel at the

centroid of the polygon, an average of all pixel values inside the polygon, the maximum or

minimum value of the pixels in the polygon among other possibilities that are application

specific. If it is possible, a link to the original file or image is kept in order to trace

provenance.

We consider two types of patterns: simple and composite. The former denotes pat-

terns for one event, the latter are patterns comprising combinations of events. We also

classify event patterns as Value, Spatial, Temporal and Spatiotemporal patterns. Value

patterns only consider the value in the predicate. Spatial patterns consider values of pred-

icates over a spatial distribution. Temporal patterns focus in variations of predicates in

time. Spatiotemporal patterns combine all of the aforementioned patterns, i.e. combine

measured variables, spatial and time properties.

Let us now exemplify each kind of pattern using an example. We point out that we

write the patterns, in this section, in an informal logic-like rule language, for readability

3ts is the start time and tf is the final or end time.
4NDVI – helps in assessing the level of green vegetation using spectral reflectance measurements

acquired in the visible and near-infrared regions.
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sake. Our actual patterns are implemented in EPL, an SQL-like domain specific language

provided by Esper – see section 4.6.

Many kinds of frogs only croak when it rains and spawn their eggs in temporary

ponds5. Rain is not the only necessary condition for them to reproduce, the ponds must

have enough water. In other words, rain must fall in sufficient volume to create a pond.

There is a need to know how many inches of rain in an area need to fall for ponds to

form. This varies with soil type (in clay, it would be easier and in sand it would be more

difficult).

Estimating soil wetness is not a trivial task. There are techniques to use remote

sensing to compute soil moisture such as the work of Jackson [36]. He showed that it is

possible to use passive microwave remote sensing to measure soil moisture, parameterizing

an algorithm with surface, type of soil, vegetation indices, etc. The work of [82] showed

that in a geographically homogeneous region, it is feasible to compute soil moisture from

scanning multichannel microwave radiometer (SMMR) considering some restrictions such

as dense vegetation and extreme hydrological conditions.

Given these facts, we can adopt some premises to derive a pattern: (1) soil moisture

is computed from satellite images, (2) rainfall measurements come from weather stations,

(3) frog species and their information come from a database. Let us assume the following

composite pattern P for frog reproduction:

Pfrog reproduction(sm, rain):

[ sm.v > 80% ∧ sm.n ε soil moisture ∧ November < sm.t < January ∧ s.v in southeast

of Brazil ∧

rain.v = true ∧ rain.n ε rainfall ∧ November < rain.t < January ∧ rain.s in southeast

of Brazil ]

where sm is soil moisture, rain is rainfall, t is the month timestamp and s is region

location.

Since this pattern has value, space and time predicates, it is a spatiotemporal pattern

that considers a moisture event (sm), a rain event (rain), ranging over a time period t in

a region s. From this composite pattern we can derive the other simple types of pattern:

• value patterns – Pfrog reproduction(sm) : [sm.v > 80% ∧ sm.n ε soil moisture ];

Pfrog reproduction(rain) : [rain.v = true ∧ rain.n ε rainfall]

• spatial pattern – Pfrog reproduction(rain) : [rain.s in southeast of Brazil]

• temporal pattern – Pfrog reproduction(sm) : [November < sm.t < January]

5We thank Dr. Felipe Toledo, from the Institute of Biology, for this and other examples.
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In the event processing engine, the aforementioned patterns are executed over a slide

window, i.e. some pre-determined (e.g. 10 repeated events) characteristic will trigger the

creation of a frogs reproducing event.

4.6 Implementing and checking patterns – examples

with real data

Our tests take advantage of sensor data streams that have been made available to us by

Cooxupé, the largest coffee cooperative in the world. These data come from 14 weather

stations at different locations in the states of Minas Gerais and São Paulo, Brazil. Figure

4.2 is a screen copy from our system that shows where these stations are deployed. This is

a screen copy that illustrates how our system can show, upon user request, the geographic

location of the data sources being processed. Two weather stations were selected using

polygons in order to visualize their measurements.

Figure 4.2: Weather Stations deployment - selected 2 stations

Each weather station continuously collects at least 26 different types of measurements

as shown in Table 4.1. Twelve of the 14 stations provide 28 types of measurement, and

2 stations (located at the cities of Guaxupé and Alfenas) provide 26 (excluding internal

equilibrium moisture content and weather station internal air density).
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Table 4.1: Cooxupé Weather station measurements.
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Figure 4.3 shows the steps performed to collect sensor data. Our framework is indi-

cated in the figure (bottom right), shown as running in our LIS laboratory. This figure

illustrates an example of our pre-processing implementation effort, i.e., the kind of mod-

ules that had to be developed to get data, before it entered the framework. In (A),

Cooxupé deployed 14 weather stations and at each station there are sensors (B) that

collect data at one hour intervals. The Cooperative’s data collecting center (C) fetches

data from the stations at 15 minute intervals to prevent synchronization problems, and

stores them in a flat table, which is then incrementally retrieved by us. These data are

integrated into our framework (D) at our Laboratory of Information Systems (LIS) using

the FTP adapter from Mule ESB [55] and patterns are identified using the Esper [20]

CEP engine. In (E), an expert can write a pattern and insert it into our framework which

will notify a subscriber. There is also a possibility to retrieve historical data.
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Figure 4.3: Steps of data collecting, processing and storage of our case study.

Figure 4.4 shows part of a screen copy of our system, with measurement charts of

temperature, humidity and rain for the station located at the city of Campos Gerais.

Experts can visualize data from specific stations by clicking on the map (see Figure 4.2)

and see the variations of the desired variables.

Such interaction and visualization facilities are common to many monitoring systems.

We differentiate ourselves from related work in the ability to support in our system pattern

specification and detection, as well as combination of heterogeneous data sources. We pro-

ceed by showing examples of where such patterns can help the analysis of environmental

conditions to help in biodiversity studies.
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Figure 4.4: Measurements over 24 hours - variables selected for visualization
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Figure 4.5 is a screen copy of our system showing some EPL statements. The first EPL

detects temperature above 23.0 degrees celsius considering a data window of 20 elements,

i.e. get consecutive values of 20 measurements. The second EPL detects if there was

rain considering weather station at Campos Gerais and a data window of 10 elements.

The first is a value pattern since it is not concerned with time or space (even though

the values are implicitly linked to space and time). The CooxupeData qualifier in the

queries restricts data to those collected by Cooxupé weather stations, the second query

furthermore is limited to the station in Campos Gerais, thus implicitly imposing a spatial

predicate.

Figure 4.5: Pattern definition window.

Let us now go back to our frog example. Consider the pattern for frogs’ reproduc-

tion mentioned in section 4.5. First, frogs and their habitat regions are retrieved from

databases, e.g. [23, 57]. Then satellite images, e.g. from National Oceanic and Atmo-

spheric Administration (NOAA)6, are selected: only the regions where the species of frog

of interest can be found are taken into account. The soil moisture in such regions can be

calculated using techniques from [36, 82]. The value that goes into the framework is the

minimum soil moisture computed (since we want to be sure that ponds were formed) and

information from satellite images and frogs’ habitats, i.e. timestamp and location of the

event.

Rainfall measurements are gathered from weather stations; again, only measurements

from regions where frogs live are retrieved. Thus, our framework can produce soil mois-

ture, rainfall measurements and type of frogs events from each region and send these

information for event processing.

6An United States Department of Commerce scientific agency focused on the conditions of the oceans
and the atmosphere.
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Figure 4.6: Frogs reproduction pattern detection.

Figure 4.6 shows the steps to perform this task. In step (1) data are acquired from

databases (frogs data), satellite images and weather stations. Data can come from real-

time streams from the Internet or sensors, or stored repositories such as databases, Web

Services or files. Step (2) relies on the knowledge of an expert to create a pattern useful

to the domain, e.g. a frog expert wants to verify time and locations in which a specific

kind of frog may reproduce.

Patterns rely on the assumption that data are integrated via adapters into the frame-

work and encapsulated in messages. Once this is accomplished, the event processing

engine can detect the pattern. In (3), an action can be performed following detection of

the event pattern such as notification, storage of results, or others.

Considering this approach, we created an EPL statement, shown in Figure 4.7, to

estimate what frogs are prone to reproduce for a region. To do this, we put together the

computed values of soil moisture from satellite images, weather station meteorological

measurements and frogs’ information stored in a database (FrogsDB).

The pattern’s spatial extent is restricted to locations where frogs live in southeast

of Brazil. For these locations, soil moisture is computed from satellite images and rain

measurements are provided by Cooxupé stations. The pattern takes minimum values of

rain and soil moisture from the frogs’ database and compares to the events that flow into

the framework. The current month (a system variable which stores the current month)

must be between November and January, i.e. the time period where usually there is rain

in southeast of Brazil.

This query does not take any window into consideration. Furthermore, an event will

be raised by the framework each time the pattern has a match. Since it is difficult to find

a match in this type of event, we want to verify each time these characteristics match

with the minimum requirements of the different species of frog to reproduce in the months

between November and January.
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Figure 4.7: Frogs’ reproduction EPL.

Let us now explain the details of Figure 4.7. Lines 1 and 2 define what needs to be

investigated: species name and location. Lines 3 to 8 depict the sources of events, i.e.

soil moisture values computed from satellite images, meteorological station data (line 5)

from Cooxupé stations, frogs database. Lines 6 through 8, in particular, extract from

that database the minimum values to be considered. Lines 10 and 11 compare these

minimum values with these computed over satellites images. Lines 14 and 15 take the

Cooxupé meteorological station data, for a given location, and compare those data to data

obtained from the frogs database, to check if minimum rain rate is reached. Lines 12 and

16 verify if the soil moisture and rain events, respectively, occur in November, December

or January (10, 11 and 0).

If the pattern has a match (i.e. soil moisture, rain greater than the minimum rate from

frogs database and the current month is between November and January), it will raise an

event that will contain the frog species name, location and when Cooxupé meteorological

station event occurred, i.e. attributes defined in line 2. This information can inform

where and when a specific frog species is prone to reproduce.

4.7 Conclusions

A framework to provide environmental sciences data integration and pattern detection was

shown in this paper. This framework was designed and implemented focusing on the need

of environmental scientists to detect important events out of the highly heterogeneous

data environment they work with.

Considering data collection frequency at the sensor level. Many sensors collect data at

short intervals, but only transmit at specific rates to save energy. Thus, users are notified
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based on data transmitted. It might be interesting to estimate collection rate and make

the user aware that more data might be available if transmission rates increased.

Although the framework brings together facilities to integrate and process events,

experts are needed to depict appropriate patterns. Experts have to carefully examine data

that comes from different sources to define the ideal patterns for their scientific studies.

Moreover, pre-processing and filtering require development of specific algorithms, that

take the nature of the data into account.

As future work, we suggest the use of data mining and machine learning techniques

to assist scientists in discovering and creating patterns in the framework.

Extracting and deploying patterns in the framework is useful, but having a repository

of patterns where experts could exchange patterns would be useful for reproducibility of

their findings. One key issue in the specification of this repository is the use of semantics

in event handling – e.g. [75].



Chapter 5

Conclusions and Extensions

5.1 Main Contributions

This PhD research addressed some Computer Science issues involving data management

– more specifically, handling heterogeneity in environmental data. The focus of this work

was to provide means to help environmental scientists cope with heterogeneity.

Aiming at overcoming challenges in environmental data management, experiments

were performed in storage and publication of sensor data, extracting information for

different types of users.

The publication of sensor data, on the Web, involves issues that go beyond the nature

of the data being collected and are intimately related with problems of the Web itself –

such as data heterogeneity, privacy, volume of data and user requirements.

From our first attempt in solving environmental data management challenges we had

some contributions.

A review in architectural solutions to cope with heterogeneity and interoperability

in sensor data management was performed. We examined generic solutions, aimed at

retrieval and processing of sensor data without specifying the application domain such as

[1, 12, 62] and other solutions that are targeted to specific applications such as GeoCENS

[48], focused in local scale sensor networks, SEAMONSTER [30], developed to study

glacier watersheds and Life Under Your Feet [73], which was developed for soil monitoring.

Nevertheless, all these efforts provide isolation layers between the sensor network and

users, enabling the development of custom layers in order to overcome problems in each

layer at a time.

Envisioning link the best of each proposal and provide a more flexible architecture,

we initially developed a solution based on Web services and components. The former

provides means for different systems to communicate, increasing the accessibility and the

latter enables creation of customizations to access and visualize sensor data.

50
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Continuing our work, following our concern with the Web Science issue of visibility:

data has to be found and correctly interpreted; we verified which alternatives could be

used to accomplish our goals.

In chapter 3, we built the foundation of our solution to this kind of problem. We

figured out that integrating data sources and treating data as events proved to be a good

alternative to work on. We defined the notation of event patterns (descriptions of events of

interest), how it can be retrieved and classified them in simple or composite (combinations

of simple patterns).

This approach allows the generic management of data sources (static and dynamic,

from different regions and considering different phenomena). It integrates data using ESB

adapters and ESB messages are treated as events that are extracted from the sources using

CEP which enables the creation of hierarchies of event patterns.

In chapter 4, we pointed out that the majority of the studies in environmental sciences

concentrate in dealing with static sources and we focused our work in combining both

static and stream data in a single framework. To properly import the concepts of the CEP

and ESB to environmental sciences context, we introduced a pre-processing phase before

data enter the ESB, since ESB is generally applied to enterprise applications where data

granularity is not usually as diverse as found in this context. For example: satellite images

may be cut to consider only regions to be studied or measurements from meteorological

stations may be filtered to consider air humidity from a specific region.

After pre-processing, data are encapsulated in messages to flow through the ESB. For

each type of study, scientists will create event patterns to match the phenomena they

want to observe. Each event pattern will be deployed inside the framework and if there is

a match it will trigger the creation of a new event and an action will be performed (e.g.

notify users, store data for later analysis).

The final patterns notation we developed is of the form:

<measured-value, nature, spatial-variable, timestamp> = <v, n, s, t>, where:

• v is the value of the variable captured (e.g. 40 degrees celsius, 80% humidity);

• n the nature of the variable (e.g. temperature, humidity);

• s is the location (coordinates) of the measurement;

• t is a time interval [ts, tf]1 for which v was valid at that location (s). If ts = tf this

is an instantaneous event (e.g., sensor measurement).

We classify event patterns as Value, Spatial, Temporal and Spatiotemporal patterns.

Value patterns only consider the value in the predicate. Spatial patterns consider values of

1ts is the start time and tf is the final or end time.



5.2. Extensions 52

predicates over a spatial distribution. Temporal patterns focus in variations of predicates

in time. Spatiotemporal patterns combine all of the aforementioned patterns, i.e. combine

measured variables, spatial and time properties. This framework presents additional

advantage to users. They can adapt patterns dynamically, and therefore test distinct

hypotheses when checking for environmental conditions.

Our main contributions are:

• Considering data collection frequency at the sensor level. Many sensors collect data

at short intervals, but only transmit at specific rates to save energy. Thus, users are

notified based on data transmitted. It might be interesting to estimate collection

rate and make the user aware that more data might be available if transmission

rates increased;

• A framework to help environmental scientists cope with heterogeneity problems that

allows integration of static and stream data sources in a generic way (as opposed to

specific solutions in the literature);

• This framework presents an additional advantage to users. They can adapt patterns

dynamically, and therefore test distinct hypothesis when checking for environmental

conditions;

• Treatment of environmental data events, and processing patterns;

• Application of the aforementioned findings in ecological studies showing how scien-

tists can use our proposal to acquire data of interest from the available data sources.

5.2 Extensions

There are many possible extensions to this work involving theoretical and practical pro-

posals. Examples of some of these extensions are:

• Investigation and specification of easier means to build and deploy new event pat-

terns inside the framework. In this direction experts can use data mining techniques

such as [16, 35, 37, 78];

• Pattern management: extracting and deploying patterns in the framework is useful,

but having a repository of patterns where experts could exchange patterns would

be useful for reproducibility of their findings. One key issue in the specification of

this repository is the use of semantics in event handling – e.g. [75];
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• Performance and security/privacy issues must be addressed in order to use this

framework. Integrating multiple data sources with a large amount of data flows

can generate performance problems. Scalability studies must be performed to allow

the framework to handle large amounts of data. Similarly, sensitive data can flow

through the framework; it must be ready to use mechanisms of data security such

as data encryption;

• Investigation of data provenance and data quality applications in the framework is

another possible extension. Recording data processing from the input to the output

can allow traceability and provide means for experts to detect errors and may allow

determination of data quality – e.g. as in [51];

• Considering data collection frequency at the sensor level. Many sensors collect data

at short intervals, but only transmit at specific rates to save energy. Thus, users are

notified based on data transmitted. It might be interesting to estimate collection

rate and make the user aware that more data might be available if transmission

rates increased.
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[33] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. D. Cid, S. Michiels, C. Huygens,

and W. Joosen. Looci: a loosely-coupled component infrastructure for networked

embedded systems. In Proceedings of the 7th International Conference on Advances

in Mobile Computing and Multimedia, pages 195–203. ACM, 2009.



BIBLIOGRAPHY 57

[34] D. Hughes, J. Ueyama, E. Mendiondo, N. Matthys, W. Horré, S. Michiels, C. Huy-
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