
Felipe Henriques da Silva

“Serial Annotator: Managing annotations of time

series.”

“Serial Annotator: Gerenciando anotações em

séries temporais.”

CAMPINAS

2013

i

ii

University of Campinas

Institute of Computing

Universidade Estadual de Campinas

Instituto de Computação

Felipe Henriques da Silva

“Serial Annotator: Managing annotations of time

series.”
Supervisor:

Orientador(a):
Prof.a Dr.a Claudia Maria Bauzer Medeiros

“Serial Annotator: Gerenciando anotações em

séries temporais.”

MSc Dissertation presented to the Post

Graduate Program of the Institute of Com-

puting of the University of Campinas to

obtain a Mestre degree in Computer Sci-

ence.

Dissertação de Mestrado apresentada ao Pro-

grama de Pós-Graduação em Ciência da Com-

putação do Instituto de Computação da Univer-

sidade Estadual de Campinas para obtenção do

título de Mestre em Ciência da Computação.

This volume corresponds to the fi-

nal version of the Dissertation de-

fended by Felipe Henriques da Silva,

under the supervision of Prof.a Dr.a

Claudia Maria Bauzer Medeiros.

Este exemplar corresponde à versão fi-

nal da Dissertação defendida por Fe-

lipe Henriques da Silva, sob orientação

de Prof.a Dr.a Claudia Maria Bauzer

Medeiros.

Supervisor’s signature / Assinatura do Orientador(a)

CAMPINAS

2013

iii

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 Silva, Felipe Henriques da, 1978-

 Si38s SilSerial Annotator : gerenciando anotações em séries temporais / Felipe

Henriques da Silva. – Campinas, SP : [s.n.], 2013.

 SilOrientador: Claudia Maria Bauzer Medeiros.

 SilDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sil1. Banco de dados. 2. Análise de séries temporais. I. Medeiros, Claudia Maria

Bauzer,1954-. II. Universidade Estadual de Campinas. Instituto de Computação.

III. Título.

Informações para Biblioteca Digital

Título em inglês: Serial Annotator : managing annotations of time series

Palavras-chave em inglês:
Databases

Time-series analysis

Área de concentração: Ciência da Computação

Titulação: Mestre em Ciência da Computação

Banca examinadora:
Claudia Maria Bauzer Medeiros [Orientador]

Renato Fileto

Luiz Fernando Bittencourt

Data de defesa: 10-06-2013

Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

iv

http://www.tcpdf.org

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Serial Annotator: Managing annotations of time

series.

Felipe Henriques da Silva

June 10, 2013

Examiner Board/Banca Examinadora:

• Prof.a Dr.a Claudia Maria Bauzer Medeiros (Supervisor/Orientadora)

• Prof. Dr. Luiz Fernando Bittencourt

Institute of Computing - UNICAMP

• Prof. Dr. Renato Fileto

Department of Informatics and Statistics - UFSC

• Prof.a Dr.a Maria Cecilia Calani Baranauskas

Institute of Computing - UNICAMP (Substitute/Suplente)

• Dr.a Carla Geovana do Nascimento Macario

CNPTIA - EMBRAPA (Substitute/Suplente)

vii

Abstract

Time series are sequences of values measured at successive time instants. They are used

in several domains such as agriculture, medicine and economics. The analysis of these

series is of utmost importance, providing experts the ability to identify trends and forecast

possible scenarios. In order to facilitate their analyses, experts often associate annotations

with time series. Such annotations can also be used to correlate distinct series, or look for

specific series in a database. There are many challenges involved in managing annotations

- from finding proper structures to associate them with series, to organizing and retrieving

series based on annotations. This work contributes to the work in management of time

series. Its main contributions are the design and development of a framework for the

management of multiple annotations associated with one or multiple time series in a

database. The framework also provides means for annotation versioning, so that previous

states of an annotation are never lost. Serial Annotator is an application implemented for

the Android smart phone platform. It has been used to validate the proposed framework

and has been tested with real data involving agriculture problems.

ix

Resumo

Séries temporais são sequências de valores medidos em sucessivos instantes de tempo. Elas

são usadas em diversos domínios, tais como agricultura, medicina e economia. A análise

dessas séries é de extrema importância, fornecendo a especialistas a capacidade de iden-

tificar tendências e prever possíveis cenários. A fim de facilitar sua análise, especialistas

frequentemente associam anotações com séries temporais. Tais anotações também podem

ser usadas para correlacionar séries distintas, ou para procurar por séries específicas num

banco de dados. Existem muitos desafios envolvidos no gerenciamento destas anotações

- desde encontrar estruturas adequadas para associá-las com as séries, até organizar e

recuperar séries através das anotações associadas a estas. Este trabalho contribui para

o trabalho em gerenciamento de séries temporais. Suas principais contribuições são o

projeto e desenvolvimento de um arcabouço para o gerenciamento de múltiplas anotações

associadas com uma ou mais séries em um banco de dados. Este arcabouço também

fornece meios para o controle de versão das anotações, de modo que os estados anteriores

de uma anotação nunca sejam perdidos. Serial Annotator é uma aplicação desenvolvida

para a plataforma Android. Ela foi usada para validar o arcabouço proposto e foi testada

com dados reais envolvendo problemas do domínio agrícola.

xi

Acknowledgements

I would like to thank many people who have helped me through the completion of this

dissertation. Foremost, I would like to express my sincere gratitude to my supervisor,

Professor Claudia Medeiros, for all her support and advices and for inspiring the scientific

researcher in me! Thank you for all the time and patience dispensed to me during the

development of this work. I also wish to thank Professor André Santanchè and the mem-

bers of the Laboratory of Information Systems (LIS) for all helpful advices that guided

my research. The weekly meetings and presentations held by LIS provided important

insights to this work and I only regret not having been able to work closer to you guys.

A very special thanks goes to the researchers from EMBRAPA, in special Alexandre C.

Coutinho and Júlio César D. M. Esquerdo for all the support and for providing essential

data for validation of this work. I would also like to thank the examining committee for

their many suggestions to improve this text.

Finally, I would like to thank the people who give meaning to my life. To my wife Maria

Carolina, thank you for your companionship and love. I would not have accomplished

this work without you. To my daughter Alice, who was born during the development of

this work, thank you for teaching me what unconditional love really means. To my father

and mother in law, Sidnei and Regina, thank you for supporting me, Carolina and Alice

during the long days and nights we spent in your home while I was researching for this

work.

This work was developed within the NavScales project (FAPESP-Microsoft Research

Virtual Institute) and the MAPAGRI project (Embrapa-SEG 02.11.01.004.00). It was

also partially financed by the MuZOO (CNPq) project, and by CNPq and CAPES.

xiii

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

1 Introduction and Motivation 1

2 Basic Concepts and Related work 5

2.1 Time Series . 5

2.2 Annotations . 6

2.3 Annotations in relational databases . 8

2.4 Temporal databases and database versioning 11

2.5 Conclusions . 12

3 Framework for managing annotations of time series 13

3.1 Annotation storage . 13

3.2 Database model . 17

3.3 Architecture . 20

3.4 Query possibilities . 24

3.5 Conclusions . 28

4 Serial Annotator: Implementation aspects 29

4.1 Technologies used and database implementation details 29

4.1.1 Android framework . 29

4.1.2 Database implementation details 31

4.2 Presenting Serial Annotator . 31

4.2.1 Inserting a time series . 31

4.2.2 View time series annotations . 33

4.2.3 View annotation history . 35

xv

4.2.4 Editing an annotation . 36

4.2.5 Associating a new annotation with a time series 37

4.2.6 Querying annotations . 39

4.3 Tests and validation . 39

4.4 Conclusions . 42

5 Conclusions and Future Work 43

5.1 Conclusions . 43

5.2 Future work . 44

Bibliography 46

xvii

List of Tables

2.1 Comparison among annotation storage schemas 10

3.1 Time Series storage example . 15

3.2 Annotation associated with multiple time series storage example 16

3.3 Annotation versioning example . 20

xix

List of Figures

1.1 Time series examples . 1

1.2 Annotated electrocardiogram example - reproduced from [24] 2

1.3 Annotated time series - agriculture domain 3

2.1 Annotating an image - reproduced from [31] 7

2.2 Annotations with multiple granularities - reproduced from [9] 8

2.3 Annotation table - reproduced from [9] . 9

2.4 Annotation correlation . 10

3.1 Time series annotations . 14

3.2 Annotations associated with intervals . 14

3.3 Annotating multiple time series with the same annotation 15

3.4 Two annotations with the same content . 16

3.5 Different annotations in the same interval 17

3.6 Database conceptual model . 18

3.7 Framework architecture . 21

3.8 Query result - annotation content . 25

3.9 Query result - annotation content (annotation intervals only) 26

3.10 Query result - annotation content set . 27

4.1 Android architecture, reproduced from [12] 30

4.2 Database model (implementation) . 31

4.3 CSV file example . 32

4.4 Inserting a time series . 33

4.5 View time series annotations . 34

4.6 View annotations associated with multiple time series 35

4.7 View annotation history . 36

4.8 Edit annotation . 37

4.9 Associate annotation with a time series . 38

4.10 Associate annotation with multiple series 38

4.11 Query annotations . 39

xxi

4.12 Storage overhead experiment . 41

4.13 Query performance experiment . 42

xxiii

Chapter 1

Introduction and Motivation

Time series are sequences of observations of an object along time. Such series are used in

various domains of knowledge. They can be used to represent, for instance, the amount

of rainfall measured by a sensor, the heart rate measured on electrocardiograms, or the

value of shares in the stock exchange. The graphical representation of a time series (of

a single numeric measure) usually has the observation timestamps on the x axis and the

measured values on the y axis. Figure 1.1 provides some time series examples.

(a) Dow Jones market price - reproduced

from [23]

(b) Electrocardiogram - repro-

duced from [24]

(c) Temperature variation in Morning-

ton (Australia) - reproduced from [25]

Figure 1.1: Time series examples

1

2

Time series are often produced as continuous streams and therefore their storage in

databases presents some challenges, given the need to store large volume of data and to

handle frequent updates. Furthermore, due to their nature, queries over such databases

are not based on an exact match, but on the similarity among the series in question [11].

In the last decade, several studies have addressed time series data analysis. Examples

include work involving series mining e.g., search for similar series, search for patterns

within the series, search for subsequences. Such work often requires dimensionality re-

duction and segmentation [11]. However, as efficient as these solutions may be, they do

not completely solve the problems of analysis and interpretation of the resulting series,

which are extremely complex and specific to the domain in question. One solution to

alleviate this problem is to associate annotations with series (e.g., [20]).

Annotations are a type of metadata, or data about data. They are used to provide fur-

ther information on data that may be relevant for its analysis. Although annotations are

usually represented in textual form, they may also be represented with other media such

as audio or images. Figure 1.2 provides an example of an annotated electrocardiogram. If

annotations can be efficiently stored and associated with series, then series management

and retrieval can be improved. In the example, doctors looking for a particular heart

behavior in electrocardiograms can combine series mining with queries on annotations.

Figure 1.2: Annotated electrocardiogram example - reproduced from [24]

The same analysis difficulties can be observed in the agriculture domain, as shown in

figure 1.3. This figure shows an example of a situation, which we will subsequently use in

our case study. The y axis corresponds to the variation of NDVI (Normalized Difference

Vegetation Index) values. Roughly speaking, NDVI is a numerical value that indicates the

3

“greenness” of a region 1. The time series in the figure is annotated with many kinds of

information. Note that without the annotations it would be very difficult for a non-expert

to acquire useful information from this time series.

Figure 1.3: Annotated time series - agriculture domain

Up to now, related work has not dealt directly with the management of annotations

associated with time series, although several papers deal with the storage of annotations

in a relational database (e.g., [9, 2]). Furthermore, there is also related work dealing

with annotation processing, based on the concept of one annotation per time series [20].

This dissertation investigates issues related with annotations and their management. As a

result, a database-centered framework that supports creation and management of annota-

tions for use on multiple series (for both static series and streams) has been designed and

implemented. This dissertation deals with textual annotations only, which still represent

the great majority of annotations of time series.

The series analyzed and used on the validation of this work originate from the agricul-

tural domain and were provided by experts from EMBRAPA2. Agriculture is of extreme

importance for any country, and in Brazil it was responsible for 22% of the GNP in 2011

[13]. Time series are continuously generated by agricultural data sensors and satellites.

The proper analysis of such series and their annotations will help experts in their re-

search. Even though the main focus of this work is the agricultural domain, the proposal

is generic enough to be applied to other domains, as long as textual annotations are used.

The main contributions of this work are the following:

1For more details on NDVI, see chapter 4
2Brazilian Agricultural Research Corporation

4

1. The design and implementation of a framework to support the management of mul-

tiple annotations associated with one or more series, that allows insertion, deletion,

update and versioning of such annotations.

2. Validation of this framework via a smart phone application, tested with real data

and annotations. This application deals seamlessly with both historical and stream

data, which can be directly input via, e.g., wireless communication network.

The rest of this work is organized as follows: Chapter 2 presents the basic concepts and

reviews related work describing the state of the art with respect to annotation manage-

ment in relational databases. Chapter 3 presents the proposed framework, highlighting the

database model and algorithms. Chapter 4 describes implementation aspects, presents the

smart phone application and discusses the framework validation using real data. Chapter

5 presents conclusions and future work possibilities.

Chapter 2

Basic Concepts and Related work

This work focuses on the management of annotations associated with time series stored in

a database. Section 2.1 gives an overview of some research lines dealing with time series.

Section 2.2 broadens the concept of an annotation and reviews related work. Section 2.3

gives an overview of work related to annotations stored in a relational database. At last,

section 2.4 gives a brief overview of temporal databases.

2.1 Time Series

A time series can be formally defined as a sequence of tuples < vi, ti >, where vi is

the value of some variable measured at timestamp ti. This definition can be extended

to arbitrary objects, forming tuples < Si, ti >, where Si is the state of the object at

timestamp ti.

The usage of temporal data, and in particular, time series, has increased over time,

leading to several kinds of research in the field of time series data analysis. However, be-

cause of their numerical and continuous nature, time series analysis and query processing

over these series are complex subjects. In [17, 18], Lin et al. describe areas in which time

series research has concentrated:

• Indexing: Design index structures to speed up similarity search.

• Grouping: Find natural groups within the time series in a database, given some

similarity measure.

• Classification: Given a time series Q, classify it according to predefined classes.

• Summarization: Given a time series Q, create a description (textual or graphical)

that retains all its characteristics but is concise enough to fit in a single presentation

screen or page.

5

2.2. Annotations 6

• Anomaly detection: Given a time series Q, and a model of what should be a “nor-

mal” behavior, find sections of Q that contain anomalies (also called surprising,

interesting, or unexpected patterns).

Note that these topics are concerned with time series data mining, in which the ma-

jority of research concentrates on pattern searching [17, 21, 22, 7]. A detailed survey on

time series data mining can also be found in [11].

As will be seen, this dissertation is not concerned with research in time series them-

selves. Rather, its focus is on the management of annotations of series, to enhance their

interpretation, comparison and retrieval. Thus, this section aims at giving only a brief

overview on the concept of time series and on research in this area.

2.2 Annotations

To annotate means to attach data to some other piece of data [27] - similar to metadata.

Annotations describe a resource (digital or not) considering its characteristics. An an-

notation has many purposes. It may be used to explain something, provide additional

information, or improve information retrieval. Annotations are also often used to describe

characteristics that are hard to be observed using the media format of the annotated ob-

ject. An address or the name of a building, for instance, cannot be derived from a picture

of the building. Another frequent use for annotations is to help information exchange

among experts, or to attach semantics to objects. To accommodate all these different

purposes, several formats of annotations have been proposed in the literature. Annota-

tions may be, for instance, in form of text, voice comments, videos or images. Figure 2.1

shows a tool used to associate drawing annotations with the image of a vehicle. A survey

and comparison on this and several other tools used to annotate different media formats

can be found in [31]. This dissertation concentrates on textual annotations.

A more formal definition for an annotation has been proposed by Euzenat in [10],

where an annotation can be viewed as a function that relates a document to its formal

representation, enabling the interpretation of document content. Using such an annota-

tion schema, it would be possible to reconstruct the annotated content, assuming that

background knowledge is available and a formal terminology (e.g., ontology) is used on

the annotations.

Besides specifying this formal annotation concept, Euzenat [10] also indicates that

without clear guidelines, annotations risk producing incoherent information. In order

to avoid this problem, the author recommends answering a set of questions before the

annotation process begins, so that the expert can create annotations in close relation to

their use.

2.2. Annotations 7

(a) Drawing with a pen (b) Visualizing the annotation

Figure 2.1: Annotating an image - reproduced from [31]

The usage of formal annotations is necessary for the concept of Semantic Web intro-

duced by Berners-Lee in [3]. Here, annotations must be interpreted not by humans, but by

machines, which must be capable to analyze the annotations and infer useful information.

To achieve this, annotations must use controlled vocabularies or metadata fields from on-

tologies [36]. These so-called semantic annotations (as opposed to free text annotations)

allow for greater interoperability, since they may be interpreted by any computational

system that known the controlled vocabulary.

In order to associate an annotation with Web content, there are several free-text

annotation systems that may be used. Some of these systems use schemas based on the

Annotea annotation schema [33, 15]. Annotea is a Web-based shared annotation system

based on a general-purpose open Resource Description Framework (RDF) infrastructure.

RDF is a W3C standard language for representing information about resources in the

Web [29]. Annotea allows only simple free-text annotations.

An annotation can be created manually [16], semi-automatically [14], or automatically

[8]. Another way to create annotations is through “crowdsourcing”, that is, creating anno-

tations based on contributions from a large group of people or from an online community.

In [35] Wu et al. show that a global semantic model can be statistically inferred from

informal annotations collected from web blogs and social bookmarks (called social anno-

tations). These informal annotations can be any strings that the user deems appropriate

for the web resource. The term folksonomy is coined to refer to these informal social

tags and categories in social bookmarks. The authors also show that the semantics that

emerge from folksonomies can then be used to search for semantically-related content,

even if the content is not tagged by the query tags and does not contain any of the query

keywords.

Another problem faced by annotation systems is the propagation of annotations dur-

ing data processing. That is, if a system has an input data set I, where some items

2.3. Annotations in relational databases 8

have associated annotations, it is not straightforward to determine how these annotations

should be propagated to the output set O. A solution to this problem was proposed by

Amiguet-Vercher et al. [1], where the proper mapping from input to output annotations

is described as a clustering problem.

As already mentioned, in this work, annotations are considered to be a textual rep-

resentation of the annotated content. They may provide further information, clarify the

object being annotated or provide some kind of communication among experts analyzing

the same object.

This section covered the importance of the annotation process and the variety of

possibilities for annotating content. The next section will cover work related to textual

annotations associated with entries in relational databases.

2.3 Annotations in relational databases

In the context of relational databases, annotation is an information linked to data items

inside the database. Data can be annotated at multiple granularities, e.g., annotating

an entire table, an entire column, a subset of the tuples, a few cells, or a combination of

these. Figure 2.2 shows annotations with such multiple granularities. In this figure, for

instance, annotation A1 is associated with all cells in the entire first row while annotation

A4 is associated with all cells in the last two columns.

Figure 2.2: Annotations with multiple granularities - reproduced from [9]

Storing annotations in relational databases presents some architectural questions. The

main ones are: where should the annotation be stored and how should it be linked to the

annotated data.

Despite their importance, annotations are not supported by most database systems.

In [4], Bhagwat et al. present an early study addressing annotation management, where

a very simple schema was developed. In this schema, annotations are stored together

2.3. Annotations in relational databases 9

with the annotated data irrespective of the annotation granularity. This raises storage

problems, as a single annotation must be replicated through all annotated space. If, for

instance, an annotation is associated with all cells in a column, as many annotations as

the number of lines in the annotated column will be created. Although very simple, this

schema presents a first evolution on annotation storage and has been used as a benchmark

for further annotation management schemas. It is also important to note that this naive

storage schema facilitates annotation propagation through database operations.

A more sophisticated annotation management schema can be found in [9], where the

problem of multiple granularity levels is better addressed. The authors propose that each

annotation should be linked to the annotated cells through a mapped space. Annotations

are also stored on separate tables called annotation tables that have a predefined structure.

Figure 2.3 provides an example of an annotation table.

Figure 2.3: Annotation table - reproduced from [9]

Note that annotation A1 is associated with all cells in the first row, that is, the

annotation extends from the first column in the first row (1,1) to the sixth column in the

first row (6,1). In the same way, annotation A4 is associated with all cells in the last two

columns, that is, the annotation extends from the fifth column in the first row (5,1) to

the sixth column in the fourth row (6,4).

Another work dealing with annotations in relational databases is that of Aoto et

al. [2], in which the main focus is the propagation of the annotation when a database

operation is performed. In order to correctly propagate annotations, the authors propose

that instead of associating an annotation directly with the annotated data, annotations

should be associated dynamically, by means of data correlations. Correlations are then

recomputed after database operations are performed, applying the annotation on the new

data. An example of such an annotation schema can be observed in figure 2.4, where the

annotation “Discomfort” is associated with relations where the attribute Temperature has

values larger then 30 or smaller then 15.

2.4. Temporal databases and database versioning 11

“how” of every update of data [6, 5], which creates complex structures for provenance and

makes it unsuitable for storage as textual annotations. Provenance data can also be used

to enhance security in a system [28]. It would be possible, for instance, for a system to

have a policy where only the author of an annotation can update it, or where the author

cannot review his/her own annotations. In this work, data provenance can be related

either to time series or to annotations. For time series, provenance is considered to be

the information related to the originator of the series, that is, which sensor, satellite or

entity created the series. For annotations, only the author name and annotation modi-

fication storage time (transaction time) are considered as provenance of the annotation

themselves.

Annotations can be stored in many kinds of formats and systems besides relational

databases. XML files, for instance, can store set-valued attributes and could be more

suitable for annotation storage. XML has also the advantage of being more computer-

processable, allowing for interoperability. RDF triples offer also another means to store

annotations (e.g., [31]). However, there is an associated complexity to convert from/to

XML/RDF file structures while performing database operations. For simplicity reasons,

this work deals only with annotations stored in relational databases.

2.4 Temporal databases and database versioning

In a collaborative system, it is common for experts to modify annotations created by other

experts. This means that the annotation content changes over time. Such modifications

are usually performed due to errors on previous annotations or to changes in the under-

standing of the observed phenomenon. Usually, however, it is important for experts to

analyze previous contents of an annotation as they may provide insights on the observed

phenomenon along time. Thus, it is important to preserve old annotation contents in the

database. As will be seen, this work preserves annotation history taking advantage of

research in temporal databases.

The work of Snodgrass [30] presents an overview of the main concepts of temporal

databases. Snodgrass defines four database types depending on the given temporal entries,

which are: valid time (the time range when an entry is valid) and transaction time (the

time when the information was stored):

1. Snapshot database: No temporal information stored.

2. Rollback database: All past states of the database are stored and indexed by the

transaction time. Queries can be performed on any previous state of the database.

2.5. Conclusions 12

3. Historical database: Uses valid time, recording a single historical state per re-

lation. While rollback databases can roll back to a previous snapshot relation,

historical databases can represent current knowledge about the past [30].

4. Temporal database1: Combination of the previous two approaches, using both

valid time and transaction time.

In the proposed framework, when an annotation is stored, the transaction time is

stored with it. This leads to a rollback database approach, since it is possible to perform

queries over previous annotations’ states. However, annotations are seen as static labels,

created by experts usually (in our case study) while they are working at external locations.

While these annotations may be changed by other experts later on, this is not the best

approach if experts want to collaborate over annotations. Managing this collaboration

may be a complex task when multiple annotators and multiple sites are involved. To

alleviate this problem, collaborative annotation frameworks have been proposed (e.g.,

[34, 19]). Such frameworks allow discussions among experts before the annotation is

stored. Future extensions of this work shall consider using ideas from these frameworks

to enhance collaboration among experts.

Last but not least, literature on temporal databases contemplates a third kind of

time, user-defined time, in which users define their own time units based on application

semantics - e.g., seasons of the year, specific holidays and so on. In agriculture, users can

mark events according to activities - e.g., harvest, seeding and so on. This work does not

consider these kinds of issues, although user-defined time values can also be treated as

textual annotations.

2.5 Conclusions

This chapter presented the main concepts necessary to understand the framework pro-

posed to manage annotations associated to time series. The next chapter presents the

proposed framework.

1The term Temporal database is used by Snodgrass in [30]. However, the combination
of Historical and Rollback databases is also known as Bi-temporal database.

Chapter 3

Framework for managing

annotations of time series

This chapter presents the framework proposed to manage, in a database, annotations

associated with time series. Section 3.1 describes the proposed method to associate an-

notations with time series and section 3.2 describes the data structure and database

schema. The framework architecture is presented in section 3.3. Section 3.4 shows some

query possibilities offered by the proposed framework.

3.1 Annotation storage

The proposed framework aims to solve two problems related to annotation storage:

• How to store multiple annotations associated with a time series.

• How to store annotations associated with multiple time series.

This section will go through the fundamentals behind the proposed methodology for

annotation storage.

Whenever an expert annotates a section of a time series, (s)he is in fact annotating

both an interval and a set of values the time series assumes in that interval. If the expert

associates multiple annotations with a time series as illustrated in figure 3.1, then there

is a set of annotated intervals and values. In this figure, annotation A1 is associated with

interval [t1, t2] and values [v1, v2], while annotation A2 is associated with interval [t3, t4]

and values [v3, v4].

13

3.2. Database model 19

to provide provenance together with other context information which can help

experts judge whether results are trustworthy.

– series_info: Further information that can be associated with a time series.

• TimeSeries table: This table stores all time series in the database.

– series_id: Foreign key from TimeSeriesMap table. It is the id of the time

series.

– timestamp: This is the timestamp of a time series value. This attribute, to-

gether with the series_id, form the primary key of this table.

– value: This is the value of the time series associated with the timestamp.

• Annotations table: This table stores all annotations associated with any time

series stored in the database.

– annotation_key: Primary key within the Annotations table.

– annotation_id: The annotation id. This uniquely identifies an annotation in

the database. This could not be the primary key, since annotations may have

multiple versions and all versions share the same annotation id.

– version: The annotation version. Each annotation starts at version 1. The ver-

sion is increased whenever a modification is done on that annotation. Deleting

the annotation changes the annotation contents to some predefined value and

also increases its version. This means that a deleted annotation can be re-

stored if an expert chooses to do so. The only way to completely remove an

annotation is to delete the series associated with it.

– annotated_series: Set of foreign keys from the TimeSeriesMap table. These

are the ids of all time series with which this annotation is associated.

– range_start: The start of the time range for which this annotation is valid.

This is a timestamp value.

– range_end: The end of the time range for which this annotation is valid. This

is a timestamp value.

– author: The author who created or modified the annotation.

– store_time: The timestamp when this version of the annotation was stored in

the database (transaction time).

– annotation: The annotation contents.

3.3. Architecture 20

Note that this database adds versioning to the annotations. After an annotation is

stored, its states are never lost. Instead, new versions are added to the database. The same

does not happen with time series. Changes to time series values are not supported once

they are stored. New values may be appended to a time series, but it is still considered the

same series and not a new version of it. This structure is related to a rollback database

model as introduced by Snodgrass in [30]. Since the transaction time of annotations

is stored, it is possible for an expert to restore (rollback) an annotation to any of its

previous states. Table 3.3 illustrates the storage of an annotation containing three versions

associated with the time series with id = 1. Note that the versioning schema allows for

collaboration between experts. In more detail, the annotation contents show that John

discusses with Bob about the actual meaning of the series for the range [2,20].

Annotations

id version
annotated_

series

range_

start

range_

end
author

store_

time
annotation

1 1 1 2 20 John 12450702 corn

1 2 1 2 20 Bob 12450864
Update,

this is rice

1 3 1 2 20 John 12451022

New analysis

shows this is

indeed corn

Table 3.3: Annotation versioning example

3.3 Architecture

The framework architecture is depicted in figure 3.7. Full arrows correspond to data flow

and dashed arrows correspond to service invocations and responses.

3.3. Architecture 21

Figure 3.7: Framework architecture

The framework is composed of 3 layers:

• Interface: Provides access to the framework services to either end users or external

services.

• Modules: Provides all services needed to process time series and annotations.

– Time series processing module: Processes and stores time series. Also

responsible for appending new data to existing time series.

– Annotation processing module: Processes and stores annotations, associ-

ating them to the given time series in the database.

– Query processing module: Handles all query requests that come through

the interface layer. Handles queries for time series, annotations, or both.

• Persistence: Receives requests from the modules layer to store or retrieve data on

the database where annotations and time series are stored.

The following use cases will provide a better understanding of the framework:

1. Storing a time series: In order to store a time series, the framework may receive as

input a file containing the entire time series or, alternatively, continuous updates of

3.3. Architecture 22

time series values to be appended to a given series. In the first case, a file containing

a time series is input through the interface layer. This file goes through the Time

Series processing module, that requests the persistence layer to create an id for

the new time series in the database. This id will then be used to store all <value,

timestamp> tuples from the time series file. In the second case, an event arrives

through the interface, containing the time series id (as stored in the database) and

a set of <value, timestamp> tuples. The Time Series processing module will then

obtain the time series id from the database and request the persistence layer to

append all <value, timestamp> tuples to it.

2. Annotating stored time series: The interface provides facilities for an expert to

annotate stored series. The expert may create, delete, and update annotations. To

create a new one, (s)he must select one or more series, indicate the time interval

to be annotated and provide the annotation content and author name. This infor-

mation is passed to the Annotation processing module that requests the persistence

layer to store the annotation associated to that time series. Annotation modification

or deletion is processed as follows: The expert requests to see one or more series

and their associated annotations. The Query processing module returns this infor-

mation and displays it to the expert. The expert selects the desired annotation and

performs the modification or deletion. The Annotation processing module receives

the information and requests the persistence layer to create a new version for that

annotation id.

3. Storing an annotated time series: In this case, the time series must be stored in

a file together with its annotations. This file goes through the Time series processing

module in the same way as in the “Storing a time series” use case. This time however,

the module will also retrieve the annotations from the file (see algorithm 1) and will

forward them to the Annotation processing module. Both modules request the

persistence layer to store the time series and associated annotations.

4. Querying for an annotation: In order to query for annotations, the interface

will provide means to search for annotation content, authors, and annotations on a

specific time series set. Section 3.4 presents further details on query possibilities.

Algorithm 1 shows the pseudo code to retrieve annotations from a file containing an

annotated time series:

3.3. Architecture 23

Algorithm 1 Annotated time series processing
Input: Let F be a file containing a time series and its annotations. Each line shall contain

a tuple in the form: <timestamp, value, annotation>, where the annotation item may

be empty.

Output: Time series are stored in the database and annotations are forwarded to the

processAnnotations algorithm (algorithm 2).

1: i← 0

2: for all line ∈ F do

3: timeSeries[i].timestamp← line.timestamp

4: timeSeries[i].value← line.value

5: annotation[i].timestamp← line.timestamp

6: annotation[i].content← line.annotation

7: i← i + 1

8: end for

9: id← storeTimeSeries(timeSeries)

10: {Call algorithm 2 passing annotation(containing a set of annotation tuples) as A and

id as S.}

After the time series <timestamp, value> tuples are retrieved from the file, a call is

made to the persistence layer to store the series (line 9 of algorithm 1). When this happens,

the persistence layer assigns an id to the time series. Once the file processing finishes

and the time series is stored, the annotations can be further processed as illustrated in

algorithm 2. Algorithm 2 does not receive the start and end of the time interval of each

annotation, therefore the role of algorithm 2 is to find the start and the end of the time

interval of the input annotations. After the annotation interval is found, a call is made

to the persistence layer to store each annotation, together with the corresponding time

interval.

3.4. Query possibilities 24

Algorithm 2 Process annotations
Input: Let A be a set of annotation tuples in the form <timestamp, content> and S the

id of the time series the annotation is associated with.

Output: The annotations are stored in the database together with the corresponding

time intervals.

1: i← 0

2: {x will store the content and interval of the annotation currently being processed

inside the loop below.}

3: x.content← NULL

4: x.intervalStart← 0

5: x.intervalEnd← 0

6: for all annotation ∈ A do

7: if x.content 6= annotation[i].content then

8: {New annotation found. Mark the end of the interval of the previous one, if any.}

9: if x.content 6= NULL then

10: x.intervalEnd← annotation[i− 1].timestamp

11: storeAnnotation(x, S)

12: end if

13: x.intervalStart← annotation[i].timestamp

14: x.content← annotation[i].content

15: end if

16: i← i + 1

17: end for

3.4 Query possibilities

This section presents examples of queries that are possible with the proposed framework.

Some of these queries have been discussed with EMBRAPA experts. The queries are

organized by input. Each input has a set of possible outputs.

1. Input: annotation content

1.1. Output: all annotations which have the given content.

1.2. Output: all series that have that annotation content among its annotations,

considering all annotation versions (i.e., past contents of annotations are also

returned).

1.3. Output: all series that have that annotation content among its current anno-

tations (i.e., considers only the current content of an annotation, ignoring its

3.5. Conclusions 28

4.3. Output: the name of all authors that have created annotations associated with

the time series.

4.4. Output: all provenance information associated with the time series.

5. Input: time series id and a time interval

Same outputs as in 4.1, 4.2 and 4.3, but returning values within the given time

interval only.

6. Input: sets of time series ids

Same outputs as in 4.1, 4.2 and 4.3, but returning only annotations associated with

each and every series in the set.

7. Input: sets of series ids and a time interval

Same outputs as in 4.1, 4.2 and 4.3, but returning only annotations associated with

each and every series in the set and within the given time interval.

8. Input: time series source name

8.1. Output: the names of all time series generated by that source (same prove-

nance).

8.2. Output: all annotation contents associated with time series generated by that

source.

It must be pointed out that, as will be seen in chapter 4, only queries 1.1, 1.3 (without

the graphical comparison), 1.7, 4.2, 4.4 and 6 (only the outputs related to 4.2) have been

implemented in this work. The remaining queries may be implemented by extensions of

this work.

3.5 Conclusions

This chapter presented the specification of the framework proposed to manage annotations

associated with time series in a database. It also presented the proposed database model

and core algorithms within the architecture. The next chapter presents implementation

aspects of this framework and discusses the framework validation using real data.

Chapter 4

Serial Annotator: Implementation

aspects

This chapter presents the implementation aspects of this dissertation. Section 4.1 presents

the technologies used and a few implementation details. Section 4.2 presents the smart

phone application. Section 4.3 presents the tests performed to validate the framework,

using data from the agricultural domain. Finally, 4.4 presents some conclusions.

4.1 Technologies used and database implementation

details

4.1.1 Android framework

The framework was implemented on a mobile device running the Android platform. Since

the main focus of this application is the agricultural domain, and in this domain there

is extensive work in external locations, having an application running on a mobile device

or a tablet facilitates the adoption of the application, allowing for better information

exchange and analysis.

The architecture of the Android platform can be visualized in figure 4.1.

29

4.1. Technologies used and database implementation details 30

Figure 4.1: Android architecture, reproduced from [12]

The Android OS can be referred to as a software stack of different layers, where each

layer is a group of several program components. Together it includes operating system,

middleware, and important applications. Each layer in the architecture provides different

services to the layer just above it. A complete explanation of all Android framework

components can be found at [12]. This section will provide some details on a few of these

components in order to provide better understanding of the implementation in section

4.2:

• Applications: This is the layer where all applications live. They communicate

with the Android framework using components of the Application Framework layer.

Considering the components of our framework depicted at figure 3.7, the interface

layer and part of the modules layer lie in the Android application layer.

• Content Providers: Content providers lie within the Application Framework.

They manage access to a structured set of data. Content providers are the stan-

dard interface that connects data in one process with code running in another pro-

cess. Considering the components depicted at figure 3.7, the persistence layer is

implemented through a content provider. This content provider will connect the

application with the underlying SQL database.

4.2. Presenting Serial Annotator 34

series graphic to zoom on it. At the bottom of this screen, all annotations associated with

the series are displayed in a list. When an annotation is selected, the annotation time

interval is highlighted on the time series chart, as shown in figure 4.5(c).

(a) Select time series (b) Time series displayed (c) Annotation selected

Figure 4.5: View time series annotations

It is also possible to view annotations associated with multiple time series. To do that,

the user may simply select multiple series at once and click on the view button. Figure

4.6 shows this flow.

4.2. Presenting Serial Annotator 38

(a) Series selected (b) Select annotation in-

terval

(c) Interval selected (d) Add annotation info

Figure 4.9: Associate annotation with a time series

It is also possible to associate an annotation with multiple time series. To do that,

the user may simply select multiple series at once and click on the annotate series button.

Figure 4.10 shows this flow.

(a) Multiple series se-

lected

(b) Select annotation in-

terval

(c) Interval selected

Figure 4.10: Associate annotation with multiple series

4.3. Tests and validation 40

structure reflects near-infrared light [26]. By analyzing the reflected sunlight in a target

area, it is possible to determine the vegetation density in that area. With the NDVI

values, experts are also capable of identifying different kinds of crops. More than 400

time series with such information were provided, consisting of data collected between

2000 and 2011. Each series contains 281 tuples. In order to evaluate the framework with

a larger series, the real series were concatenated over and over to build a test series with

120 thousand tuples.

Section 2.3 presented related work on annotations stored in relational databases. Our

work makes a similar validation as performed by [9], that is, our schema for time series

annotations was compared to the straightforward schema described in [4], where annota-

tions are stored on each cell independently. In the straightforward schema, the number

of annotation contents stored is the same as the number of time series tuples, even if the

annotation contents are all equal (in the case of a single annotation associated with the

entire time series).

In every experiment execution, all time series tuples were annotated, that is, the

series may be annotated with a single annotation, i.e., the annotation interval is the

entire series, or the series may be annotated with 120 thousand annotations, i.e., each

annotation interval has a single tuple.

Two experiments have been performed:

• Storage experiment: This experiment compares the space needed (in Mb) to store

a time series with all its associated annotations in our schema and in the straight-

forward schema. Figure 4.12 shows the experiment results. The space required in

the straightforward schema is constant, since it stores annotations as an attribute in

the time series table (annotations stored together with the annotated data). In our

schema, the space required remains approximately constant until 10,000 annotations

are inserted. After that, storage increases rapidly as too much space gets consumed

in order to link the annotations to their associated time interval in the time series

(annotations stored separated from the annotated data). This deterioration is how-

ever not a problem in the majority of cases, since it is unlikely that a single time

series is associated with such a number of annotations. For the general annotation

use case, our schema achieves around 30% storage savings when compared with the

straightforward case.

4.3. Tests and validation 41

Figure 4.12: Storage overhead experiment

• Query performance experiment: This experiment compares the performance of

a query in our schema and in the straightforward schema. The query used in this

experiment represents a request to “return all annotations with a given content”.

This query was chosen since it is one of the most common queries for the domain in

question (agriculture). Query processing time was measured using SQLite command

line shell with CPU timer measurements enabled [32]. The results are measured in

milliseconds and represent the mean value of 10 executions. Figure 4.13 shows the

experiment results. The query performance in the straightforward schema is almost

constant (larger than 80ms), since it needs to go over all 120 thousand annotation

contents, regardless of the number of annotations. In our schema, query performance

is much better (under 10ms) up to 60,000 annotations and increases up to values

close to those of the straightforward schema when the number of annotations equals

the number of time series values. Therefore, for the general annotation use case, our

schema achieves an order of magnitude better performance when compared with the

straightforward case.

4.4. Conclusions 42

Figure 4.13: Query performance experiment

4.4 Conclusions

This chapter presented the implemented application, showing use cases and highlighting

implementation aspects. It also showed how the proposed framework behaves when com-

pared to the straightforward schema from [4]. Chapter 5 presents conclusions and future

work possibilities.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation handled the problem of managing, within a database, annotations associ-

ated with time series. It presented the design of a framework to manage these annotations

in a relational database and the database model used. Unlike other approaches in the

literature, which only allow one annotation associated with an entire time series, the pro-

posed framework makes it possible to associate an annotation with parts of time series.

It also supports associating an annotation with multiple time series simultaneously.

The main idea behind the proposed framework is the association of an annotation

only with its respective time interval, instead of associating it with the series values.

Annotations are also stored apart from the annotated data, which requires less storage

space. The framework also allows the versioning of annotations, much demanded by

experts, since they can review and restore previous annotations states.

Serial Annotator is a smart phone application used to validate the framework. It has

been implemented and tested with real data provided by EMBRAPA experts. The appli-

cation has also been handled to EMBRAPA so that it could be tested on real situations

and was deemed a suitable tool for agricultural field research. Since it runs on a smart

phone, it allows experts to analyze data and create annotations while working in external

locations.

The results of the validation tests executed with the application showed that it out-

performs the benchmark schema, requiring less storage and presenting better performance

for the execution of at least one of the most common query scenarios.

43

5.2. Future work 44

5.2 Future work

There are several theoretical and implementation-wise extensions to this work. Some of

them appeared during reviews with peers and EMBRAPA experts. This section presents

these ideas as possible extensions of this work:

• Semantic annotations: This work was based on free textual annotations, that

is, there is no formal vocabulary for annotations. This creates inconsistencies and

makes it almost impossible for the annotations to be interpreted by machines. The

usage of semantic annotations, where the annotations use a formal vocabulary based

on classes of specific ontologies, would allow the interpretation and interoperability

of these annotations across systems.

• Disassemble annotations: Since the proposed framework deals with textual an-

notations, it is possible that a stored annotation represents multiple annotations.

For instance, the annotation “corn,rice” is, in fact, a combination of annotations

“corn” and “rice”. This creates a problem for query processing, as a query for

“corn” would also return results of type “rice”. Future extensions of this work could

therefore focus on means to disassemble multiple annotations.

• Collaborative annotations: In the proposed framework, annotations are seen as

static labels. If an expert changes an annotation, a new version is created. This is

not ideal when experts want to collaborate over annotations, since many pointless

versions of the annotation would be created just to store the expert discussions. Fu-

ture extensions of this work shall consider using ideas from related work mentioned

in section 2.4 to enhance collaboration among experts.

• Automatic annotations based on patterns: As mentioned in section 2.1, most

research on time series concentrates on data mining. Future extensions of this work

could deal with data mining in order to allow for automatic annotation of time

series based on pattern similarity. That is, given a time series S, which has an

associated annotation A on a time interval (t1,t2), and given that in this interval

the time series has the pattern P, annotate all time series in the database which

have a pattern similar to P with annotation A in the corresponding time interval.

• Improve stream capabilities: The smart phone application described in section

4.2 has the capability of receiving stream time series data from other sources (ap-

plications, sensors) in the smart phone. However, this interface has yet to be tested

with a real streaming data source. The interface uses the Android framework In-

tents [12] to capture incoming data storage requests, and may therefore not be able

to cope with a high data incoming rate.

5.2. Future work 45

• Inter-annotation association: The proposed annotation storage methodology

does not allow the same annotation to be associated with different time intervals.

This creates a limitation when two annotations in different time series have a causal-

ity relationship. That is, suppose that time series S1 has pluviometric values for a

specific geographic position and that time series S2 has NDVI values for the same

position. Since rain will directly affect the NDVI value, annotations in S1 are likely

to be related to annotations in S2 that appear some time in the future. For instance,

the annotation “heavy rain” in S1 may be related to annotation “crop increase” in

S2. It would be reasonable for an expert to create only one annotation contem-

plating both observations in the two series, but this is not possible in the current

framework. The Annotea project [33, 15] has a solution to relate annotations and

might be used to solve this problem.

• Additional queries: Many of the queries listed in section 3.4 could not be im-

plemented in the smart phone application due to time constraints. Most of those

queries have been discussed with EMBRAPA experts and are considered to be es-

sential in future versions of the application. It is also possible that further queries

(not listed in section 3.4) will be specified when the application is put to use in the

field.

• Non-textual annotations: There are several formats of annotations in the liter-

ature, as mentioned in section 2.2. Another extension possibility would be to use

non-textual annotations. This would require, among others, changing the proposed

model.

Bibliography

[1] Amiguet-Vercher, J., Apers, P., and Wombacher, A. The Identification

problem: A description. In Proceedings of the 8th World Congress on Services

(Hawaii, USA, 2012), pp. 33–40.

[2] Aoto, R., and Shimizu, T. Propagation of Multi-granularity Annotations. In

Proceedings of the 22nd International Conference on Database and Expert Systems

Applications (Toulouse, France, 2011), vol. 6861, pp. 589–603.

[3] Berners-lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific

American Magazine (2001), 34–43.

[4] Bhagwat, D., Chiticariu, L., Tan, W.-C., and Vijayvargiya, G. An anno-

tation management system for relational databases. The VLDB Journal 14, 4 (Oct.

2005), 373–396.

[5] Chapman, A. P., Jagadish, H., and Ramanan, P. Efficient Provenance Stor-

age. In Proceedings of the ACM SIGMOD International Conference on Management

of Data (Vancouver, Canada, 2008), pp. 993–1006.

[6] Cheney, J., Chiticariu, L., and Tan, W.-C. Provenance in Databases: Why,

How, and Where. Foundations and Trends in Databases 1, 4 (2007), 379–474.

[7] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E.

Querying and Mining of Time Series Data: Experimental Comparison of Represen-

tations and Distance Measures. In Proceedings of the VLDB Endowment (Auckland,

New Zealand, 2008), pp. 1542–1552.

[8] Duchenne, O., Laptev, I., Sivic, J., Bach, F., and Jean, P. Automatic

Annotation of Human Actions in Video. In Proceedings of the 12th International

Conference on Computer Vision (Kyoto, Japan, 2009), no. Section 3, pp. 1491–1498.

46

BIBLIOGRAPHY 47

[9] Eltabakh, M. Y., Aref, W. G., Elmagarmid, A. K., Ouzzani, M., and

Silva, Y. N. Supporting Annotations on Relations. In Proceedings of the 12th In-

ternational Conference on Extending Database Technology (Saint-Petersburg, Russia,

2009), no. 1, pp. 379–390.

[10] Euzenat, J. Eight Questions about Semantic Web Annotations. IEEE Intelligent

Systems 17, 2 (2002), 55–62.

[11] Fu, T.-c. A review on time series data mining. Engineering Applications of Artificial

Intelligence 24, 1 (2011), 164–181.

[12] Google. Android developers web site. http://http://developer.android.com/,

2012. [Online; accessed 17-November-2012].

[13] IBGE. Agronegocio - Portal Brasil. http://www.brasil.gov.br/sobre/economia/

setores-da-economia/agronegocio/, 2012. [Online; accessed 10-October-2012].

[14] Ivanov, I., Vajda, P., Goldmann, L., Lee, J.-S., and Ebrahimi, T. Object-

based Tag Propagation for Semi-Automatic Annotation of Images. In Proceedings

of the 11th International Conference on Multimedia Information Retrieval (Philadel-

phia, USA, 2010), ACM Press, pp. 497–506.

[15] Kahan, J., and Koivunen, M.-r. Annotea : An Open RDF Infrastructure for

Shared Web. In Proceedings of the 10th international conference on World Wide Web

(New York, USA, 2001), pp. 623–632.

[16] Lesaffre, M., and Tanghe, K. The MAMI Query-By-Voice Experiment: Col-

lecting and annotating vocal queries for music information retrieval. In Proceedings of

the 4th International Conference on Music Information Retrieval (Baltimore, Mary-

land, USA, 2003), pp. 65–71.

[17] Lin, J., Keogh, E., Wei, L., and Lonardi, S. Experiencing SAX: a novel

symbolic representation of time series. Data Mining and Knowledge Discovery 15, 2

(Apr. 2007), 107–144.

[18] Lin, J., and Li, Y. Finding Approximate Frequent Patterns in Streaming Medi-

cal Data. In Proceedings of the 23rd International Symposium on Computer-Based

Medical Systems (CBMS) (Perth, Australia, 2010), IEEE, pp. 13–18.

[19] Ma, X., Lee, H., Bird, S., and Maeda, K. Models and Tools for Collabora-

tive Annotation. In Proceedings of the 3rd International Conference on Language

Resources and Evaluation (Las Palmas, Spain, 2002).

BIBLIOGRAPHY 48

[20] Macario, C. G. N. Anotação Semântica de Dados Geoespaciais. PhD thesis,

Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil, 2009.

[21] Mariote, L. E. Mineracao de series temporais de dados de sensores. Master thesis,

Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil (2008).

[22] Mariote, L. E., Medeiros, C. B., Torres, R. S., and Bueno, L. M. TIDES

- a new descriptor for time series oscillation behavior. Geoinformatica 15, 1 (June

2011), 75–109.

[23] Marketoracle. The great depression. http://www.marketoracle.co.uk, 2012.

[Online; accessed 5-April-2012].

[24] Medicalmingle. Normal ECG. http://www.medicalmingle.com, 2012. [Online;

accessed 5-April-2012].

[25] Mornpen. About the Mornington Peninsula. http://www.mornpen.vic.gov.au/,

2012. [Online; accessed 5-April-2012].

[26] Nasa. Normalized Difference Vegetation Index (NDVI). http://www.brashttp:

//earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_

vegetation_2.php, 2012. [Online; accessed 21-December-2012].

[27] Oren, E., Möller, K. H., Scerri, S., Handschuh, S., and Sintek, M. What

are Semantic Annotations? Technical Report, DERI Galway (2006).

[28] Park, J., Nguyen, D., and Sandhu, R. A Provenance-based Access Control

Model. In Proceedings of the 10th Annual International Conference on Privacy,

Security and Trust (Paris, France, July 2012), pp. 137–144.

[29] RDF. RDF. http://www.w3.org/RDF/, 2013. [Online; accessed 22-June-2013].

[30] Snodgrass, R., and Ahn, I. Temporal Databases. IEEE Computer 19, 9 (1986),

35–42.

[31] Sousa, S. R. Gerenciamento de Anotações Semânticas de Dados na Web para Apli-

cações Agrícolas. Master thesis, Universidade Estadual de Campinas (UNICAMP),

Campinas, SP, Brasil (2010).

[32] SQLite. SQLite Home page. http://www.sqlite.org/, 2012. [Online; accessed

17-November-2012].

[33] W3C. The Annotea Project. http://www.w3.org/2001/Annotea/, 2013. [Online;

accessed 22-June-2013].

BIBLIOGRAPHY 49

[34] Weng, C., and Gennari, J. H. Asynchronous Collaborative Writing through

Annotations. In Proceedings of the Conference on Computer Supported Cooperative

Work (Chicago, USA, 2004), ACM Press, pp. 578–581.

[35] Wu, X., Zhang, L., and Yu, Y. Exploring Social Annotations for the Seman-

tic Web. In Proceedings of the 15th International Conference on World Wide Web

(Edinburgh, Scotland, 2006), pp. 417–426.

[36] Zonta, G. P. J., Daltio, J., and Medeiros, C. B. Multimedia Semantic

Annotation Propagation. In Proceedings of the 10th International Symposium on

Multimedia (California, USA, Dec. 2008), pp. 509–514.

