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Abstract

Diabetic Retinopathy (DR), a common complication caused by diabetes, manifests through

different lesions that have their particularities. These particularities are explored in the

literature as methods for representation, providing a satisfactory discrimination between

healthy/diseased retinas. However, by being strongly linked to the visual characteristics

of each anomaly, the detection of distinct lesions requires distinct approaches. In this

work, we present a general framework whose objective is to automate the eye-fundus im-

age analysis. The work comprises four steps: image quality assessment, DR-related lesion

detection, screening, and referral. In the first step, we apply characterization techniques

to assess image quality by two criteria: field definition and blur detection. In the second

step of this work, we extend up a previous work of our group which explored a unified

method for detecting distinct lesions in eye-fundus images. In our approach for detection

of any lesion, we explore several alternatives for low-level (dense and sparse extraction)

and mid-level (coding/pooling techniques of bag of visual words) representations, aim-

ing at the development of an effective set of individual DR-related lesion detectors. The

scores derived from each individual DR-related lesion, taken for each image, represent a

high-level description, fundamental point for the third and fourth steps. Given a dataset

described in high-level (scores from the individual detectors), we propose, in the third step

of the work, the use of machine learning fusion techniques aiming at the development of

a multi-lesion detection method. The high-level description is also explored in the fourth

step for the development of an effective method for evaluating the necessity of referral of

a patient to an ophthalmologist in the interval of one year, avoiding overloading medical

specialist with simple cases as well as give priority to patients in an urgent state.
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Resumo

A Retinopatia Diabética (RD), complicação provocada pela diabetes, se manifesta por

meio de diferentes lesões que possuem suas especificidades. Estas especificidades são

exploradas na literatura como estratégia para representação, proporcionando uma dis-

criminação satisfatória entre imagens de pacientes normais e doentes. No entanto, por

estar fortemente atrelada às caracteŕısticas visuais de cada anomalia, a detecção de lesões

distintas exige abordagens distintas. Neste trabalho, apresentamos um arcabouço geral

cujo objetivo é automatizar o procedimento de análise de imagens de fundo de olho. O

trabalho é dividido em quatro etapas: avaliação de qualidade, detecção de lesões indi-

viduais, triagem e verificação de necessidade de consulta. Na primeira etapa, aplicamos

diferentes técnicas de caracterização de imagens para avaliar a qualidade das imagens por

meio de dois critérios: definição de campo e detecção de borramentos. Na segunda etapa

deste trabalho, propomos a continuação de um trabalho anterior desenvolvido pelo nosso

grupo, no qual foi aplicado um método unificado na tentativa de detecção de lesões distin-

tas. No nosso método para detecção de qualquer lesão, exploramos diferentes alternativas

de representação em baixo ńıvel (extração densa e esparsa) e médio ńıvel (técnicas de

coding/pooling para sacolas de palavras visuais) objetivando o desenvolvimento de um

conjunto eficaz de detectores de lesões individuais. As pontuações provenientes de cada

detector de lesão, obtidas para cada imagem, representam uma descrição de alto ńıvel,

ponto fundamental para a terceira e a quarta etapas. Tendo em mãos um conjunto de da-

dos descritos em alto ńıvel (pontuações dos detectores individuais), propomos, na terceira

etapa do trabalho, a aplicação de técnicas de fusão de dados para o desenvolvimento de

um método de detecção de múltiplas lesões. A descrição em alto ńıvel também é explorada

na quarta etapa para o desenvolvimento de um método eficaz de avaliação de necessidade

de encaminhamento a um oftalmologista no intervalo de um ano, visando evitar que o

médico seja sobrecarregado, bem como dar prioridade a pacientes em estado urgente.
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Chapter 1

Introduction

Diabetes mellitus (DM) is a chronic end-organ disease caused by a decrease in insulin

sensitivity or a loss of pancreatic function, depending on the type of diabetes, both leading

to an increase in the blood glucose level. An increased blood sugar level may lead to

damage of blood vessels in all organ systems of the body. The disease has thus attracted

the interest of both the Health-care and Engineering communities.

Currently, diabetes affects 366 million people worldwide or 8.3% of adults. It is esti-

mated that this number will increase to approximately 552 million people (one adult in 10

worldwide will have diabetes), according to the International Diabetes Federation (IDF)1.

The largest increases will take place in the regions dominated by developing economies.

Fig. 1.1 depicts projections of the number of people with diabetes2 for each region by

2030.

The World Health Organization (WHO)3 projects that diabetes deaths will double

between 2005 and 2030 [91].

The growing prevalence of diabetes creates an increasing prevalence of the complica-

tions related to the disease, including Diabetic Retinopathy (DR). DR occurs in approxi-

mately 2-4% of the population but is greater in indigenous populations according to some

studies [94, 82]. Recent reports have shown that, in the United States, approximately

25,000 people with diabetes go blind every year due to DR [1]. Furthermore, also in the

United States, the number of 40-year or older Americans with DR is projected to triple

from 5.5 million in 2005 to 16 million by 2050 [74]. DR is the main cause of blindness in

the 20 to 74 age group in developed countries, creating the need for systems that screen

diabetic retinopathy in its early stages, so to allow an economically viable management

of the disease [61].

1http://www.idf.org/diabetesatlas/5e/diabetes
2Figure extracted from IDF website
3http://www.who.int/diabetes/en/index.html

1
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Figure 1.1: Regions and global projections of the number of people with diabetes by 2030.

It is estimated that in 2002, diabetic retinopathy accounted for about 5% of world

blindness, representing almost 5 million people blind. Nowadays, according to the Dia-

betic Programs of the World Health Organization, DR is a leading cause of blindness,

amputation and kidney failure.

According to the U.S. National Eye Institute (NEI)4, the DR has four stages:

• Mild Nonproliferative Retinopathy: This corresponds to the earliest stage of the

disease, in which the microaneurysms (small areas of balloon-like swelling) occurs.

• Moderate Nonproliferative Retinopathy: Second stage of the disease in which the

blood vessels responsible to nourish the retina are blocked.

• Severe Nonproliferative Retinopathy: The third stage of the disease in which there

is the blocking of many more blood vessels, depriving several areas of the retina

4http://www.nei.nih.gov/health/diabetic/retinopathy.asp
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• Hard Exudates: They are caused by the breakdown of the blood-retinal barrier,

which leads to fluid rich in lipids and proteins to leave the parenchyma, causing

retinal edema and exudation [72]. They have a yellow appearance and occur only

in the occasional retinal image [19]. Fig. 1.3 exhibits an image with hard exudates.

Figure 1.3: Example of a retinal image with Hard Exudates.

• Hemorrhages: They are similar to microaneurysms, but slightly larger and are

found where capillary walls weaken. These may rupture causing intraretinal hem-

orrhages [72]. Superficial and deep hemorrhages are characterized as DR-related

lesion. Fig. 1.4 shows an example of hemorrhages.

Figure 1.4: Example of a retinal image with Hemorrhages.

• Cotton Wool Spots: They appear as fluffy white patches on the retina and are caused

by damage to nerve fibers. An image with cotton wool spots can be seen in Fig. 1.5.
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Figure 1.5: Example of a retinal image with Cotton Wool Spots.

• Drusen: They are bright lesions associated especially with age-related macular de-

generation, which can have similar appearance, as well as from posterior hyaloid

reflexes and flash artifacts, which can sometimes mimic bright lesions in appear-

ance [57]. Fig. 1.6 depicts an image with hard drusen.

Figure 1.6: Example of a retinal image with Drusen.

• Neovascularization: The neovascularization process begins when it is detected the

presence of intraretinal microvascular abnormalities. However, the new vessels are

fragile and grow uncontrollably on the inner surface of the retina. An example of

neovascularization is seen in Fig. 1.7.
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Figure 1.7: Example of a retinal image with Neovascularization.

1.2 Stages of the Work

This section introduces the four stages developed in this work and provides a sneak peek

at the papers published and submitted for each one.

1.2.1 Quality Assessment

Image quality is an important aspect of automated image analysis and the factor that

successful image analysis relies on. Although it is a common task in lesion detection

projects, the manual quality assessment is expensive. Several works have discussed the

assessment of image quality in the literature [20, 33, 45, 54]. However, most of the authors

focus only on the blur detection (evaluating the presence of blurrings caused by motion)

and discard important factors such as field definition.

For this stage, it was developed a method for analyzing image quality regarding motion

blur and field definition. The work resulted in a paper entitled Retinal Image Quality

Analysis for Automatic Diabetic Retinopathy Detection [65], published at the

XXV Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI ),

in 2012. The methods and results will be explained in Chapter 2.

Furthermore, it was also developed alternative methods for blur detection which

will be described in Chapter 3. The resulting paper, entitled Quality Control and

Multi-lesion Detection in Automated Retinopathy Classification using a Vi-

sual Words Dictionary [41], was accepted for publishing in the 35th Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC ), in

2013.
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1.2.2 Quality Improvement

Most of the works related to the DR detection apply diversified pre- or post-processing

image techniques which ensure a correction in blurring artifacts. Furthermore, the use of

image processing techniques improves considerably the results obtained in the classifica-

tion step.

However, we discard the quality improvement task based upon the satisfactory results

achieved for the quality assessment (see Chapters 2 and 3) and the facility in capturing

new eye-fundus images and repeating the process in real-time.

1.2.3 DR-related Lesion Detectors

Due to several lesions related to DR and their diversified characteristics, there are sev-

eral works present in the literature which focus on the detection of individual lesions,

exploiting particular pre- and post-processing methods for each disease. In this stage,

it was developed a series of individual detectors for the most important DR-related le-

sions: hard exudates, superficial hemorrhages, deep hemorrhages, cotton wool spots, and

drusen. An additional classifier able to detect both superficial and deep hemorrhages was

also implemented: red lesions.

Chapter 4 comprises the description of the experiments performed for the detection

of individual DR-related lesions, as well as presents the experimental results for each

anomaly. The development of DR-related lesion detectors represents an essential part of

the paper entitled Advancing Bag-of-Visual-Words Representations for Lesion

Classification in Retinal Images, submitted to a top-tier journal.

1.2.4 Detector Fusion

Given a set of detectors of individual DR-related lesions developed with a method which

provides satisfactory results for the definition of presence/absence of the most common

anomalies, this work involves the use of combining approaches aimed at pointing out

whether an image is normal or has any lesion including possible ones not present during

training.

The classifier fusion was explored for combination of the individual DR-related lesions

and a paper, entitled Data Fusion for Multi-lesion Diabetic Retinopathy Detec-

tion [40], was published in the 25th IEEE International Symposium on Computer-Based

Medical Systems (CBMS ), 2012. Chapter 5 contains the explanation of the methods used

for fusion and results of the cited paper, as well as details and results of more recent

experiments of this work.





Chapter 2

Retinal Image Quality Analysis for

Automatic Diabetic Retinopathy

Detection

Given that sufficient image quality is a necessary prerequisite for reliable automatic de-

tection systems in healthcare environments, the first step of this project is the assessment

of retinal image quality. In this chapter, we present the methods employed for the quality

assessment of retinal images and present the achieved results. The methods developed

herein resulted in the publication [65].

2.1 Preamble

Diabetes and associated complications including diabetic retinopathy (DR) is increas-

ing with a predicted prevalence tripling by 2050 in the United States [74]. Developing

countries and Indigenous populations are likely to exceed this percentage [81]. In addi-

tion, DR is the leading cause of blindness in developed countries and therefore screening

and targeted case management programs that are economically viable and identify and

implement early treatment are required [61].

Mobile screening of high-risk populations, especially in rural and remote locations is

an effective means of increasing the screening coverage of DR prevention programs [14].

Two-field photography in the hands of photographers with diverse skill levels and irrespec-

tive of using mydriatic or nonmydriatic photography compares favorably to ophthalmic

investigations by specialists in metropolitan clinics [50].

To further enhance rural and remote area screening, automated image analysis pro-

grams have been developed and are now in use as a first line screening for microaneurysms

in Scotland [63]. Several algorithms have been proposed for detecting parts of the retina,

9
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the presence/absence of retinopathy as well as specific lesions from mild nonproliferative

to proliferative retinopathy and maculopathy (see [38] and references therein). An im-

portant aspect of automated image analysis and the factor that successful image analysis

relies on is image quality.

Assessing image quality has been discussed in the literature by a number of authors [20,

33, 45, 54] and represents an important limiting factor for automated DR screening [59].

Image quality is reduced by artifacts in the image such as eye lashes or dust specs on

the lens, only part of the retina is seen, the image is out-of-focus or the image is badly

illuminated or blurred, among others. Image compression is often included with current

software packages, which affects quality as does the resolution, field of view and type of

camera [20]. Not directly related to image quality is retinal epithelial background, which

often makes microaneurysm detection more difficult if the classifier is not trained for the

specific ethnic group [42].

Furthermore, to ensure that automatic screening will be able to identify lesions like

deep and superficial hemorrhages, it is necessary that the retinal images cover the ap-

propriate portion of the retina, making the blood vessels visible. According to [26], the

photographs should be centered on the macular region (See Fig. 1.2). Some authors have

analyzed this aspect of image quality, known as field definition [28].

This chapter proposes methods for verifying these important factors of retinal image

quality: field definition and blur detection. We aim at finding approaches that work well

especially when trained with one type and tested with other types of retinal images. By

introducing and adapting techniques such as visual words, quality analysis by similarity

measures and classifier fusion to this context, we achieve promising classification results.

In particular, for the field definition, our method is able to accurately distinguish between

appropriate and inappropriate retinal images for automated DR screening.

2.2 Related work

Several methods for retinal image quality analysis are based on edge intensity histograms

or luminosity to characterize the sharpness of the image [45]. In both approaches, the

quality of a given image is determined through the difference between its histogram and

the mean histogram of a small set of good-quality images used as reference.

Retinal morphology-based methods such as detection of blurring and its correlation

to vessel visibility and retinal field definition have been applied for automatic detection

of retinal image quality [33, 29]. The method of image assessment proposed by Fleming

et al. [29], similarly to our work, involves two aspects: (1) image clarity and (2) field

definition. The clarity analysis is based upon the vasculature of a circular area around

the macula. The authors concluded whether or not a given image has enough quality
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using the presence/absence of small vessels in the selected circular area as evidence. The

approach proposed by Fleming et al. requires a segmentation step to find the region of

interest. However, for low-quality images, detecting segmentation failures is trivial.

Niemeijer et al. [54] proposed a method for image quality verification that is compara-

ble to the well-known visual words dictionary classification technique, used extensively in

pattern recognition tasks [89] and also one of the methods we rely upon in this work and

in the following chapters. The purpose of Niemeijer et al. was to identify image structures

that were present in a set of images. Local image structure at each pixel is described using

the outputs of a set of 25 filters. Because the raw features are too numerous to be used

directly in the classification process, a clustering algorithm is used to express the features

in a compact way creating a visual dictionary. Once the visual dictionary is built, the

features of each pixel are mapped onto words and a histogram of word frequencies for

each image is created. These histograms are used to feed a classifier.

Visual words dictionaries constitute one of the approaches proposed to analyze image

quality in this work. However, different to [54] we utilize visual words in the space of

features representing discontinuities in the retina and not directly on every pixel. Second,

our method is based on points of interest which are reasonably robust to some image

distortions (e.g., rotation) and exhibit high repeatability, which allows us to easily find

similar discontinuities in different images. Third, we have used the same method to detect

lesions associated with DR in another work of ours [40]. Finally, the visual words dictio-

nary calculated on the space of features exploits the benefits of an all-in-one classification

algorithm which does not require any pre- or post-processing of the image.

Although good results for the assessment of diabetic retinal image quality have been

obtained previously, the authors have not paid attention to one crucial factor needed for

an acceptable screening of diabetic retinopathy. The image has to encompass the correct

portion of the retina [26]. An analysis of DR images can fail because of inadequate field

definition. As one exception, Fleming et al. [29] reported retinal image field definition

in their work. In the viewpoint of the authors, an image is defined as having adequate

field definition if it satisfies a series of constraints, that aim at verifying distances between

important elements of the anatomy of the retina, such as the optic disc and fovea (Fig. 1.2).

2.3 Technique for Field Definition

Here, we discuss a simple method for verifying the field definition. In this problem, a good

retinal image for further DR analysis is one image centered on the macula (See Fig. 1.2).

The method we discuss here operates based on the methodology of full-reference com-

parison. In this methodology, a reference image with assured quality is assumed to be

known and quantitative measures of quality for any image are extracted by comparisons



12Chapter 2. Retinal Image Quality Analysis for Automatic Diabetic Retinopathy Detection

with the reference [86]. Given that the macular region has a distinguishable contrast in

comparison with the remaining regions, and we are interested in the content of the center

of retinal images, metrics of similarity have shown to be highly suitable for this objective.

We selected a set of images centered on the macular region as well as a set of images

not centered on the macular region (centered on the optic disc or in any other location

on the retina). Then, we calculated similarities between a given image and the reference

images (positive and negative), with respect to their central regions and created a feature

vector for later classification. In the next section, we explain the method employed for

the feature extraction as well as the learning step of the technique for field definition.

2.3.1 Characterization

Wang et al. [86] proposed a new philosophy for comparison of images that considers

image degradation as perceived changes in structural information instead of perceived

errors (visibility of errors). The method, known as Structural Similarity (SSIM) [86] is

calculated according to Eq. 2.3 which we shall define later.

Given that we are interested in assessing if the macula is present in the center of the

image and it is clearly different from other regions of the retina, we use one region of

interest (RoI) of pre-defined size (121 × 121) on the center of the retinal image. Fig. 2.1

depicts some positive (centered on the macular region) and negative (centered on the

optic disc or in other region) RoIs.

Figure 2.1: Examples of RoIs whose images are centered on the macula (left), centered
on the optic disc (middle), and non-representative (right).

To characterize each retinal image, we measure the structural similarity between the

RoI of the image of interest and the RoIs of a set of reference images and calculate their

average. We selected a set of 40 retinal images for reference (20 represent the retina

with good field definition and 20 that would be discarded for not being centered on the

macula). For the group not centered on the macula, we selected 12 RoIs centered on the
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optic disc and eight in any other area. The reference images are not used further neither

for training nor for testing.

As we are comparing pixels directly, we investigated if a simple contrast normalization

technique helps to boost classification results. For that, we tested the use of the images in

grayscale as well as in RGB color space with and without the normalization considering

contrast limited adaptive histogram equalization (CLAHE) [66]. CLAHE is suitable to

improve the local contrast of an image.

After comparing each image with the references, its feature vector considering color

images comprises 18 features: three comparison functions from SSIM × three color chan-

nels (RGB) × two sets of reference patches (positive and negative). SSIM was calculated

breaking Eq. 2.3 to three terms: luminance, contrast, and structure according to [86].

2.3.2 Learning

At the end of the characterization process, we have a set of feature vectors representing

the structural similarities with positive and negative reference images. The final classifi-

cation procedure is performed using the Support Vector Machine (SVM) algorithm [16].

Although we could use other classifiers, we opted for SVM classifiers for a number of

desirable traits: their solutions are global and unique; they have a simple geometric in-

terpretation; and they do not depend on the dimensionality of the input space.

We train the classifier with feature vectors calculated from training images containing

positive (images centered on the macular region) and negative (images centered on any

other region of the retina) examples. When training the SVM, we use “grid search” for

fine tuning the SVM parameters based only on the training examples [16].

2.4 Technique for Blur Detection

Although image quality analysis can have several ramifications before arbitrating on the

quality of an image, we focus on two very common problems during image acquisition:

blurring and out-of-focus capture.

2.4.1 Characterization

The method involves a series of different blurring classifiers and classifier fusion to opti-

mize the classification. Next, we present the details of the methods we use for blurring

classification. Basically, we rely upon four descriptors: vessel area, visual dictionaries,

progressive blurring and progressive sharpening. We also explore combinations of them.
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Area Descriptor Given that blurring affects the visibility of the blood vessels, our

first descriptor consists of the measurement of the area occupied by the retinal vessels.

For that, we calculate the image’s edge map using the Canny algorithm [36]. Next, we

measure the area occupied by the vessels counting the quantity of pixels on the edges and

dividing it by the retina’s total number of pixels. Fig. 2.2 depicts retinal images followed

by their respective Canny edge maps.

Figure 2.2: Retina with enough quality (left) and with blurring (right) with their respec-
tive Canny edge maps (inverted for visualization purposes).

In the end of the characterization phase, we have an 1-d feature vector whose area

descriptor is the unique feature.

Visual Dictionary Descriptor In this descriptor, each image is characterized by find-

ing stable points of interest (PoIs) across multiple image scales that capture image dis-

continuities. We are interested in characterizing an image in order to capture any incon-

sistencies/discontinuities it might have (e.g., blood vessels) in order to classify it.

To build a visual dictionary and define whether a specific retinal image has enough

quality, training images tagged as having quality (no blur) by a medical specialist as well

as images associated with blurring are required. After collecting the training images, the

next step consists of finding the points of interest in all training images. To detect the
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points, we use the Speeded Up Robust Features (SURF) [10] as it is a good feature detector

with reasonable speed.

From the points of interest representing the images with quality as well as blurred

images during training, we randomly select a set of PoIs for each group. At this stage, the

number of PoIs (k) to be retained as representative of the quality or non-quality images

is decided. We find the k/2 points of interest associated with a high-quality image and

repeat the process to find the k/2 points associated with images with blurring. We refer

to these k points of interest as a visual dictionary. Note that this is different from other

approaches in the literature (e.g., [78, 25]) which normally find a global unique dictionary

and not one per class. In our experience, class-aware dictionaries are more appropriate

for retinal images. The class-aware treatment is explained in detail in Chapter 4

In order to use any machine learning method, the next step is to map the PoIs within

each image to the most representative points in the dictionary. For each image, we

associate each one of its PoIs to the closest word in the dictionary using Euclidean distance.

In the end, each training image is represented by a histogram of k bins which counts the

number of times each PoI in the image was mapped to that word in the dictionary. We

used such histogram as the image’s feature vector. During testing, the process is simple:

we extract the points of interest of the test image and map its PoIs to the dictionary

creating its k dimensional feature vector.

Determining the optimal number of clusters for any given set is still an open prob-

lem and is therefore best determined empirically. In our experiments, we evaluated the

performance of the visual dictionary descriptor with k = 30, 50, 70, 100 and 150. We

avoided bigger dictionaries in order to keep the classification process fast and accurate.

The visual dictionary approach is described in detail in Chapter 4.

Blurring, Sharpening, Blurring + Sharpening descriptors We propose a varia-

tion of the traditional method widely employed in the literature to quantify the visibility of

errors: full-reference method for assessment of quality [86]. In our variation, the reference

image is not defined previously, but each image under analysis is elected as a reference

and compared to progressive transformations of itself.

For the blurring descriptor, we progressively blur the input image with different in-

tensities and measure how much the image can lose the discontinuities that characterize

the blood vessels. It is expected that an image with poor quality be more similar to

its transformed version than a good-quality image in comparison with its transformed

version.

For the sharpening descriptor, we employ different sharpening filters that enhance

edges and provide higher similarity values for good-quality images than for blurred images.
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The sharpening filter is a simple sharpening operator which enhances edges (and other

high frequency components in an image) via a procedure which subtracts a smoothed

version of an image from the input image.

To explore simultaneously the two features, we investigated a Blurring + Sharpening

descriptor to represent retinal images.

Each input retinal image is considered as a reference image and is compared with

its filtered images. For that, we define a filter-bank as a set of rotationally symmetric

Gaussian lowpass filters Gσ(i, j). The set comprises 12 filters with kernel sizes ks × ks
where ks ∈ {3, 5, 7}, and standard deviations σ ∈ {0.5, 1.5, 3.0, 4.5}.

For the blurring descriptor, each resulting image f i
smooth(x, y) is a filtered version of

the original image f(x, y), denoted as

f i
smooth(x, y) =

ks
∑

i,j

Gσ(i, j)f(x+ i, y + j) (2.1)

For the sharpening descriptor, each resulting image f i
sharp(x, y) is calculated as

f i
sharp(x, y) = f(x, y) + λ(f(x, y)− f i

smooth(x, y)) (2.2)

where λ is a scaling constant ∈ [0.0, 1.0]. Here, we fixed the constant, λ = 0.7 without

any further analysis.

For each retinal image, we measured the similarity between the input image f(x, y)

(considered as reference) and each response image f i(x, y) blurred or sharpened according

to the descriptor of interest. We calculated the similarity sim(f(x, y), f i(x, y)) using three

different metrics:

• SSIM: the structural similarity index between two images can be viewed as a quality

measure of one of the images being compared, provided the other image is regarded

as of good quality. We calculated SSIM for 11×11 windows centered on every pixel.

The result is a matrix with the same dimensions as the compared images. We report

the final similarity value as the average of such matrix. The SSIM(R, S) where R

and S are two 11× 11 windows centered on a pixel (x, y) is given by

SSIM(R, S) = (2µRµS + c1)(2σRS + c2)× (2.3)

1/[(µ2

R + µ2

S + c1)(σ
2

R + σ2

S + c2)]

where µR and µS are the average of R and S regions, σ2
R and σ2

S their variances,

σRS their covariance, c1 and c2 are two variables to stabilize the division with weak

denominator. These variables depend upon two constants k ≪ 1 (k1 = 0.01 and

k2 = 0.03) and the image’s dynamic range L which is 255 in our case. The final

values, for c = (k ∗ L)2, are: c1 = 6.5 and c2 = 58.5.
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• SSD: the sum of squared differences is calculated by subtracting pixels between the

reference image f(x, y) and the target image f i(x, y). The differences are squared.

SSD(f(x, y), f i(x, y)) =
1

MN

∑

x,y

[f(x, y)− f i(x, y)]2, (2.4)

where M and N are the number of rows and columns.

• NCC: the normalized cross correlation is defined as

NCC(f(x, y), f i(x, y)) =
1

MN

∑

x,y

f(x, y)f i(x, y)
√

f(x, y)2
√

f i(x, y)2
, (2.5)

where M and N are the number of rows and columns.

For each image, the blurring and the sharpening descriptors have feature vectors with

108 similarity measures: 12 gaussian filters × 3 metrics of similarity × 3 color channels

(RGB). The blurring + sharpening descriptor is the concatenation of the feature vectors

extracted by the blurring and the sharpening descriptors leading to a 216-d feature vector.

2.4.2 Learning

In the end, for each retinal image, we have a set of five feature vectors considering the area

descriptor, visual dictionary descriptor, blurring and sharpening descriptors and their con-

catenation. The final classification procedure is performed using the SVM algorithm [16].

We train the classifier with feature vectors calculated from training images containing

positive (images tagged by a medical specialist as good quality) and negative (images

tagged by a medical specialist as containing blur) examples. When training the SVM,

we use “grid search” for fine tuning the SVM parameters based only on the training

examples [16].

2.4.3 Fusion

It is possible that a series of complementary classifiers are more suited to accurately

assess the quality of retinal images operating over several instances observed in the two

classes of images. For example, analyzing not only one characteristic, but a series as the

area occupied by visible blood vessels, the distributions of positive/negative visual words,

similarities with blurred images and similarities with sharpened images provides a higher

probability of correctly evaluating any retinal image from any camera.

We evaluated two approaches for fusion: at feature-level combining the feature vectors

directly by concatenation and at classifier level by creating a Meta-SVM classifier (or meta-

classification) trained over the outputs of individual classifiers, in this case, the marginal

distances to the decision hyperplane produced by the SVMs.
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2.5 Experiments and validation

This section shows the results for evaluating the quality of an image with respect to field

definition and blurring artifacts as an effective pre-processing before using any classifier

for detecting diabetic retinopathy lesions.

There are many metrics to measure the success of a detection/classification algorithm.

For the purposes of this project, we are interested in per image metrics, such as sensitivity

(number of images tagged as having enough quality over the total number of images with

quality), and specificity (number of images tagged as blurred over the total number of

blurred images). However, for quantifying the performance of the proposed methods, we

calculated the area under the receiver operating characteristic curve (ROC). The area

under the curve (AUC) is an accuracy measurement that explores how well the classifier

is based on its ROC curve. An AUC of 100% represents a perfect test while an area of

50% represents a worthless test.

We organized the experiments in four rounds:

• Round #1 – Single results for field definition. Field definition approach

using single classifiers. We performed all tests on single datasets using 5-fold cross-

validation.

• Round #2 – Cross-dataset results for field definition. Cross-dataset ap-

proach, in which we trained the field definition classifiers in one dataset and test

in another. We evaluated the ability of the field definition system to operate over

images from different acquisition conditions.

• Round #3 – Single results for blur detection. Blur classification using single

classifiers. We also evaluated fusion methods to check if they improved the classifica-

tion results. We performed all tests on single datasets using 5-fold cross-validation.

• Round #4 – Cross-dataset results for blur detection. Cross-dataset ap-

proach, in which we trained the blur classifiers in one dataset and tested in another.

We evaluated the ability of the blur classifiers to operate over images from different

acquisition conditions.

In the 5-fold cross-validation protocol, we split the dataset into five parts, train with

four parts and test on the fifth, repeating the process five times each time changing the

training and testing sets.

2.5.1 Datasets

We performed the experiments for quality analysis using the DR1 and DR2 datasets

annotated by medical specialists.
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The DR1 dataset is from the ophthalmology department of Federal University of São

Paulo (Unifesp), collected during 2010. It comprises 5,776 images with an average reso-

lution of 640 × 480 pixels. 1,300 images have good quality (do not contain blur and are

correctly centered on the macula), 1,392 represent poor quality (blur) and 3,084 are diag-

nosed as images of the periphery (not centered on the macula). Three medical specialists

manually annotated all of the images. The images were captured using a TRC-50X (Top-

con Inc., Tokyo, Japan) mydriatic camera with maximum resolution of one megapixel and

a field of view of 45 degrees.

The DR2 dataset is from the same ophthalmology department, collected during 2011.

One medical specialist graded the images. DR2 comprises 920 12.2MP images decimated

to 867 × 575 for speed purposes and containing 260 images not centered on the macula

(146 centered on the optic disc and 114 not centered on any interesting region) and 660

images centered on the macula (466 good and 194 low quality). The images were captured

using a TRC-NW8 retinographer with a Nikon D90 camera.

For more details and for downloading the datasets, please refer to http://www.recod.

ic.unicamp.br/site/asdr.

2.5.2 Round #1: Single Results for Field Definition

Here, we explore the measures of structural similarity in order to create a classifier able

to analyze a retinal image and evaluate if it comprises the correct portion for diabetic

retinopathy screening (centered on the macula).

We performed four experiments for field definition. In the first experiment, the images

were analyzed in grayscale. The second experiment also was performed with the images

in grayscale, but after an adaptive histogram equalization (CLAHE). Next, we considered

the case of color images with and without histogram equalization.

For all experiments of field definition, we used 40 reference images. All of them were

not considered further for training nor for testing.

Fig. 2.3 and Fig. 2.4 depict the ROC curves for the field definition approach using

5-fold cross-validation protocol of the DR1 and DR2 datasets, respectively.

As we can observe in Fig. 2.4, the method achieves reasonably successful results for

field definition. The experiments using the DR2 dataset present even better results.

The experiment with color images considering histogram equalization provides the best

result, but this result in not statistically different to the others in DR2. However, in the

experiments using the DR1 dataset (Fig. 2.3), that comprises a larger quantity of images

(1,300 positives and 3,084 negatives), we can note a great difference of AUCs between

the different techniques. The method that uses the color images without requiring an

adaptive histogram equalization is the highlight.
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Table 2.2: Blur Detection: AUC for the experiments.
Descriptor/Fusion DR1 DR2 Cross

Area 83.9%±2.4% 87.2%±2.6% 87.1%
Visual words 90.3%±1.2% 90.3%±2.3% 85.6%
Blurring 87.6%±1.3% 90.3%±2.6% 60.8%
Sharpening 88.8%±1.4% 90.4%±3.9% 83.9%
Blurring and Sharpening 89.0%±0.9% 90.2%±3.0% 69.0%
Fusion by Concatenation 90.8%±0.9% 93.5%±1.4% 87.0%
Fusion by Meta-SVM 90.7%±2.3% 95.5%±1.6% 87.6%

Observing the AUCs in Fig. 2.8 and summarized in Table 2.2, we note that the visual

words descriptor presents satisfactory results using the cross-dataset protocol. However,

the simple area descriptor is the highlight in this experiment, showing that the density of

blood vessels may be considered as an acceptable approach to assess the quality of retinal

images.

Fortunately, with this experiment we can show the importance of a cross-dataset

validation protocol. Although the blurring descriptor showed interesting results in the

validation with single datasets, here it failed along with blurring + sharpening combina-

tion. With them, a large number of images from the DR2 dataset was classified at the

same distance to the SVM decision hyperplane. This fact happens because the DR1 has

greater contrast and illumination variation than DR2 dataset and, therefore, the descrip-

tions of the DR2 match to approximate scores given by a classifier trained with DR1.

Consequently, a small amount of operating points are available, as we can see in Fig. 2.8.

This effect might be reverted using image normalization techniques more complex than

CLAHE but we did not investigate this in this chapter.

As we expected, detector fusion with the Meta-SVM method provides the best AUC

with the caveat that in this analysis the Meta-SVM results are not statistically better

than the single classifier using the single area descriptor.

Comparison with State of the Art

Our results are comparable to several prior results. The approach proposed by Niemei-

jer et. al. [54] and explained in Sec. 2.2 provided an AUC of 99.6% operating over a

dataset comprising 1,000 images. Davis et. al. [20] achieved a sensitivity of 100.0% and

a specificity of 96.0% using a dataset comprising 2,000 images. However, no conclusion

can be drawed observing only the final results, since we must consider that the datasets

are different (camera model, acquisition conditions) and the methodologies employed are

distinct. We emphasize that only one dataset is not enough as a validation protocol for a

reliable system.
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95.5% on DR2 dataset).

With the proposed methods for assessment of diabetic retinal images, it is possible to

devise and deploy a system capable of robustly identifying images with low quality and,

afterwards, discard them. A retinal camera equipped with quality assessment methods

would be adequate to analyze eye-fundus images taken in real-time, preventing misdiag-

nosis and posterior retake.





Chapter 3

Quality Control and Multi-lesion

Detection in Automated

Retinopathy Classification

In this chapter, we present another approach employed in this work for quality assess-

ment. The methods employed herein resulted in the publication [40]. Although the paper

also involves the detection of DR-related lesions, this chapter is limited to the quality

evaluation.

3.1 Preamble

Machine learning methods and automated data mining are important for health informat-

ics and have been actively investigated in automated classification of disease, including

diabetic retinopathy [32, 35, 17, 79, 69]. Quality control is an important part of auto-

mated image analysis [28, 65] as is the detection of multiple lesions in images of different

resolutions and ethnic background. This requires algorithms that unify image quality as-

sessment and do not require preprocessing for each type of lesion separately, have a high

accuracy for each type of lesion and, if possible, improve the classification when lesion

types are combined in the classification framework. In this context, we have previously

shown that visual word dictionaries have good accuracy with training of the classifier on

different images to the test images and no preprocessing of the test images used in the

research [42]. This chapter describes further developments using visual word dictionaries

by considering a means of identifying poor quality images.

The rest of the chapter is organized as follows. Section 3.2 presents our method of

visual word dictionaries adapted to determine the quality of an input image. Section 3.3

presents the results for the proposed approach in terms of image quality analysis. Finally,

29
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Section 3.4 concludes the chapter

3.2 Proposed Methodology

The contribution of this chapter is the proposal of the adaptation of the visual words

dictionary methodology to classify whether or not an input image meets the quality

standard required for automatic assessment. Although image quality analysis can have

innumerable ramifications before arbitrating on the quality of an image, in this chapter

we focus on a very common problem during image acquisition: blurring.

3.2.1 Quality selection

Among all types of problems associated with the image acquisition process, one of par-

ticular interest is the detection of blurred images. This chapter focuses on classifying the

quality of an image based on blurring.

For this intent, the general visual words methodology, which was explained in Chap-

ter 2 and whose formal definition is given in Chapter 4, needs to be adapted in order to

capture an important particularity for retinal images: high-frequency information is more

pronounced in the border regions associated with the venous branching pattern.

To capture the behavior such as blurring, the edge map of each training image is first

calculated using the Canny algorithm [36]. Next, the representative patches for the image

are centered using the edge map. Fifty non-overlapping patches (each one with 50×50

pixels) in the edge map are centered in order to capture the differences of such regions.

We analyzed several sizes and quantity of patches and noted that 50 patches of 50×50

pixels were satisfactory to cover the edges of the blood vessels. The use of patches is the

notable difference with respect to the general methodology described in Chapter 2. SURF

is therefore not used directly on the image, rather it is directed to regions on the edge

map that are more important to differentiate blur and non-blur artifacts, namely regions

with edges.

After calculating the points of interest within the selected 50 regions, the most rep-

resentative PoIs have to be found for each training image. For that, K-Means clustering

algorithm is applied to select a specialized visual dictionary for image quality analysis.

In this case, it is selected k/2 regions that represent good quality images and k/2 regions

for low quality images. Fig. 3.1 depicts an example of a retinal image and its Canny edge

map with the 50 patches centered on the localized edges. After generating each image

feature vector, it is normalized using the traditional term-frequency (divide the entries by

total sum of the bins).
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Table 3.1: Blur Detection: AUC for more recent experiments.
Descriptor/Fusion DR2

Area 87.2%±2.6%
Visual words 90.3%±2.3%
Blurring 90.3%±2.6%
Sharpening 90.4%±3.9%
Blurring and Sharpening 90.2%±3.0%
Fusion by Concatenation 93.5%±1.4%
Fusion by Meta-SVM 95.5%±1.6%

3.4 Final Remarks

Many feature descriptors have been proposed in the literature for problems like copy

detection [83] or object localization [77], for example: Gaussian derivatives [31], complex

features [9], SIFT [48], and SURF [10]. Such methods need to capture sufficient image

details, whilst being robust to small deformations or localization errors [10]. Using the

Hessian approximation within the visual word dictionary framework is comparable to and,

in some instances, better than current state-of-the-art interest point detectors. SURF’s

advantage relies on its robustness against rotation, scale change, image noise, change

in brightness across the image and change of view being suitable for adaptation for a

classification framework instead of its usual image matching form.

The extraction of local features in regions associated with the venous branching pat-

tern yielded promising results for analyzing retinal image quality. However, more recent

experiments, whose results are showed in Table 3.1 and methodology was explained in

Chapter 2, showed that the use of edge maps was not suitable for this goal. The table

presents results which outperform this one (except for Area descriptor). Although the

dictionary size is different (150 for complete images and 70 for patches on edge maps), we

have a great difference in AUC (90.3% and 87.4%).





Chapter 4

Advancing Bag-of-Visual-Words

Representations for Lesion

Classification in Retinal Images

This chapter presents an explanation about the methods of bag of visual words as well

as a new technique developed for assignment, that shows be suitable for DR-related

lesion detection. In this chapter, we extend upon a previous work of our group which

explored a unified approach to detect bright (hard exudates) and red (microaneurysms

and hemorrhages) lesions (See Fig. 4.1) [72]. We detect more lesions and substitute the

quantization step, limited to hard-sum, for other alternatives (including this one) which

will be explained herein. The methods developed herein resulted in a paper submitted to

a top-tier journal currently under review.

4.1 Preamble

For progressive diseases, such as the many complications of diabetes mellitus, early di-

agnosis has a huge impact in prognosis, allowing corrective or palliative measures before

irreversible organ damage takes place. In the case of Diabetic Retinopathy (DR), a com-

mon complication of diabetes mellitus, early detection is often crucial to the preservation

of visual function. Therefore, screening patients for the characteristic lesions of DR is an

important prophylactic measure. However, in poor, rural or isolated communities, the

access to healthcare professionals — particularly to specialists — might be too precarious

to ensure such prophylaxis.

In such scenarios, aided diagnosis may be very helpful. Eye-fundus images can be

automatically processed in order to verify if the patient should be referred to an ophthal-

mologist for further investigation. However, in order to be useful, such systems must be
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steps: the coding of the low-level feature vectors using the codebook, and the pooling of

the codes obtained into a single aggregated feature vector [12]. There are several options

for the coding and pooling operations. In this work, we go beyond prior work that have

considered visual words for detecting DR-related lesions in eye-fundus images [72, 42, 40].

We explore several combinations of alternatives for the extraction of low-level features,

and the creation of mid-level features pointing out important choices we might perform

for boosting lesion detection in eye-fundus images.

Given the achievements that we shall detail in the next sections, we can anticipate the

sparse technique associated with the semi-soft assignment represents an important break-

through in comparison with the state-of-the-art, improving both the speed and accuracy

of the methods specially regarding the detection of difficult lesions such as cotton-wool

spots and drusen.

We organized the remainder of this chapter in four subsections. Section 4.2 presents the

state of the art in two parts, one dedicated to DR-related lesion detection (Section 4.2.1)

and one dedicated to the BoVW model (Section 4.2.2). In Section 4.3 we discuss the

proposed scheme, starting with a discussion of the BoVW representation for DR-lesions

(Section 4.3.1), an explanation of the proposed Semi-soft coding (Section 4.3.2) and the

class-aware codebook creation (Section 4.3.3). The experiments are in Section 4.4, which

starts with a detailed description of the datasets and protocols (Section 4.4.1) and finishes

with the results (Section 4.4.2), including the statistical design, employed in the evalu-

ations. Finally, in Section 4.5, we conclude the chapter and point out future research

directions.

4.2 Related work

This section presents the state of the art dedicated to DR-related lesions and BoVW

model.

4.2.1 Diabetic Retinopathy

Diabetes mellitus is a chronic end-organ disease that affects the circulatory system, in-

cluding the retina, where it triggers Diabetic Retinopathy (DR). DR is the major cause

of blindness in Europe and the U.S, in people of working age. It is a silent disease, whose

symptoms often appear at late stages, when damage is already widespread [64].

According to the International Diabetes Federation1, that prevalence may reach as

much as 552 million people by the year 2030. Since the number of ophthalmologists is not

growing at the same rate, there is a concern that medical personnel will be unable to cope

1http://www.idf.org/diabetesatlas/5e/diabetes



38Chapter 4. Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images

with the staggering amount of patients. Therefore, an automated and accurate screening

tool can be, in the near future, an important adjunct in diabetes clinics, helping to refer to

ophthalmology specialists only those patients in need of further attention [34, 29]. That

may be particularly important for poor, isolated or rural communities, where the full-time

presence of an ophthalmologist is unfeasible and costly.

The literature on aided diagnostics for DR tends to be specialized for each types of

lesion [76, 39, 29, 30, 80, 88]. The results obtained are satisfactory for use as screening

tools devoted for specific lesions. For instance, for white lesions detection, sensitivities

range from 70.5 to 95.0% and specificities from 84.6 to 98.8% [30, 80, 88]; for red lesions

detection, sensitivities range from 77.5 to 85.4% and specificities from 83.1 to 90.0%

[76, 39, 29].

That specialization is a limitation found in many works: in general, a method devel-

oped for one lesion cannot be directly applied to detect another lesion, preventing the

development of a general framework to detect any kind of DR-related lesion. Since there

are several different DR-related lesions, a unified detection framework would be very de-

sirable. It is worth noting, however, that some efforts are already being made towards

this direction. Li et al. [46] have implemented a system for providing a management of

diabetic eye disease in real time that focuses on the two major lesions associated with

diabetes: microaneurysms and hard exudates. However, the framework does not exploit

a unique technique for the detection of both lesions. After the detection process, the

automated diagnosis is given by content-based image retrieval approaches.

Another common limitation of specific-lesion schemes is the need for complex and ad

hoc pre- and post-processing of the retinal images, depending on the lesion of interest,

and conditions of acquisition, fields of view and even ethnicity of the patients [34, 19].

The preprocessing, considering the analysis of retinal images, often includes resolution

and color normalization, segmentation for detection of blood vessels, and detection and

removal of the optical disk [29, 4]. Morphological operators [36] are often employed [30,

80, 88]. The post-processing step in eye-fundus images may include the identification of

the retinopathy stage (mild, moderate and severe) based on the counting of the number

of discontinuities, and the disposal of any response whether it does not attend a minimum

criterion of reliability.

Sinthanayothin et al. [76] have developed a method for the detection of both bright

and red lesions. They used several preprocessing techniques that begin with a conversion

of the color space from RGB to IHS, contrast enhancement in the intensity band, and

conversion back to the original color model. Thereafter, a recognition of the retinal

elements according to the lesion of interest is performed. For the exudate detection (bright

lesion), the authors performed a recursive region growing segmentation (RRGS) step for

identifying similar pixels, which satisfy some criteria, such as gray level, within a region to
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determine the location of a boundary. The median intensity of the background (resulting

region with more pixels) was set as a threshold to differentiate exudate from non-exudate

pixels. The detection of hemorrhages and microaneurysms is performed in the green color

channel as it contains more information and greater contrast for red lesions. In order

to sharpen the edges against the red-orange background, the authors applied the Moat

Operator technique. Then, they classified the retinal images using the same method for

bright lesions, employing RRGS and thresholding.

The variety of methods for the detection of diabetic retinopathy is not restricted to

the detection of specific lesions. Some methods aim at the identification of the current

stage of the disease. Nayak et al. [52], for example, have used morphological operations

and texture analysis for the extraction of features to be used as input for an automatic

classification algorithm with neural networks. The features are related to the area of blood

vessels, area of hard exudates and texture. The neural network classifies the images in one

out of three classes: two for disease-related (non-proliferative retinopathy and proliferative

retinopathy) and the normal class.

Yun et al. [95] have also used morphological operations and neural networks for the

identification of the DR different stages. The process begins with contrast improvement,

histogram equalization, morphological operations and binarization. After preprocessing

the images by means of the morphological operations, the features are extracted counting

the pixels contained in the perimeter and the area for each RGB layer, resulting in six fea-

tures. Four groups are identified: normal retina, moderate non-proliferative retinopathy,

severe non-proliferative retinopathy and proliferative retinopathy. The work developed

by Nayak et al., as well as the paper of Yun et al. achieved a sensitivity of 90.0% and a

specificity of 100.0%.

Recent works are becoming more general and bypassing the need of pre- and post-

processing. Rocha et al. [72] have proposed a unified framework for detection of both hard

exudates and microaneurysms. The authors have introduced the use of bags of visual

words (BoVW) representations for DR-related lesion detection, creating a framework

easily extendible to different types of retinal lesions. However, the BoVW model employed

in that work is very simple and chosen without any theoretical or experimental design

analyses opening the opportunity for substantial improvements, which we explore in this

chaper. Furthermore, in this chapter, the evaluation of the alternative combinations for

the BoVW is performed in a more statistically rigorous experimental design supporting

all our claims and decisions.

We have also investigated fusion schemes for obtaining decisions from the evidences

of specific anomaly detectors [40] (Chapter 5 presents the details of such work). The

decision process for referring or not a patient from individual lesion classifiers has also

been a topic of study. Niemeijer et al. [57] have combined different detectors for specific



40Chapter 4. Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images

lesions into a single automatic decision scheme. Chapter 6 contains an advanced method

employed in this work for the referral problem.

4.2.2 BoVW Representations

Representations based upon the aggregation of encoded local features have become a sta-

ple of the image classification literature. The technique has been definitely popularized

by the work of Sivic and Zisserman [78], who have made explicit an analogy with the tra-

ditional bag-of-words representation used in Information Retrieval [8]. In their formalism,

we reinterpret the local image descriptors as “visual words” by associating them to the

elements of a codebook, which is aptly named a “visual dictionary”. If we count the vi-

sual words for a given image, we obtain a histogram named bag-of-visual-words (BoVW),

which is then used as a mid-level representation.

Learning the codebook is a challenge for BoVW representations. The traditional

way involves unsupervised learning over a set of low-level features from a training set

of images. K-means clustering, for example, can be used on a sample of those features

and the k centroids be employed as codewords. There is also considerable variation

throughout literature on the size of the codebook, ranging from a few hundred codewords

until hundreds of thousands. Schemes could be employed to find the best size for each

lesion detector [58].

The metaphor of “visual word” should not be taken too literally. While textual words

are intrinsically semantic, visual words are usually appearance-based only. Moreover,

the BoVW model has been considerably extended since the seminal work of Sivic and

Zisserman. New ways of encoding the local descriptors using the codebook have been

proposed, as well as new ways of aggregating the codes obtained. That stretches the

metaphor of “visual word” too much, and a more formal model has been promoted by

Boureau et al. [12], making explicit the operations of coding and pooling. Therefore,

the BoVW formalism has evolved into a meta-model for which myriads of variations are

possible, according to the combinations of low-level descriptor, codebook learning, coding

and pooling.

The coding and pooling operations can be conveniently understood in the matrix

form proposed by Precioso and Cord (see Fig. 4.2, adapted from [68, 7]). We suppose

the codebook already given, as an indexed set of vectors, sampled or learned from the

low-level feature space, C = {ci}, i ∈ {1, . . . ,M}, where ci ∈ R
d. Then, for a given image,

we start with the set of local descriptors X = {xj}, j ∈ {1, . . . , N}, where xj ∈ R
d is

a local feature and N is the number of salient regions, points of interest, or points in a

dense sampling grid. We call z the final BoVW vector representation [12, 7].

The coding step transforms the low-level descriptors into a representation based upon
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Figure 4.2: The BoVW model illustrated in a convenient matrix form, highlighting the
relationships between the low-level features xj, the codewords cm of the visual dictionary,
the encoded features αm, the coding function f and the pooling function g.

the codewords, hopefully one better adapted to the specific task, one that preserves all

relevant information, while discarding noise. Coding can be modeled by a function f :

R
d → R

M , f(xj) = αj that takes the individual local descriptors xj and maps them

onto individual codes αj. The classical BoVW model employs the “hard assignment” of

a low-level descriptor to the closest codeword, and can be modeled by:

αm,j = 1 if m = argmin
k

‖ck − xj‖
2

2 else 0 (4.1)

where αm,j is the mth component of the encoded descriptor.

Recent literature [12, 85], however, suggests that “soft” coding schemes, which allow

degrees of association between the low-level descriptors and the elements of the codebook

work better, avoiding both the boundary effects and the imprecisions of hard assign-

ment [85].

The pooling step takes place after the coding, and can also be represented by a function

g: {αj}j∈1,...,N → R
M , g({αj}) = z. The classical BoVW corresponds to a “counting of

words” (called sum-pooling) and can be modeled as:

g({αj}) = z : ∀m, zm =
N
∑

j=1

αm,j (4.2)

That simplistic pooling has also been criticized, and taking the maximum activation of

each codeword (in a scheme aptly named max-pooling) is often much more effective [13]:

g({αj}) = z : ∀m, zm = max
j∈{1,...,N}

αm,j (4.3)
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The vector z ∈ R
M obtained from pooling is the BoVW representation, used for

classification. Those vectors are often normalized: for example, in the classical BoVW

scheme, ℓ1-normalization is often employed to turn a vector of occurrences into a vector

of relative frequencies.

4.3 Proposed Methodology

In this section, we present in detail the proposed scheme for DR-related lesions detection,

as well as the alternatives considered, and which will be evaluated in Section 4.4. The

scheme is based upon two steps (i) a mid-level BoVW-based representation; and (ii) a

maximum-margin SVM classification.

For the classification model, we have employed a maximum-margin Support Vector

Machine (SVM) [18] with Gaussian kernel as the final BoVW classifier. The classifier

parameters C (the margin “hardness”, an inverse regularization parameter) and γ (the

standard deviation of the kernel) were found by cross-validation, using the standard Lib-

SVM’s built-in grid-search fine-tuning algorithm [16].

The representation, which is the main contribution of this chapter, is dissected in the

next three subsections.

4.3.1 BoVW-based representation

As seen in Section 4.2.2, a BoVW-based representation rests upon several choices. In this

section, we explain in detail our particular implementation, as well as the variations we

have considered in our experiments for detecting different DR-related lesions in eye-fundus

images.

The factors we consider here are:

• Low-level feature extraction: the mid-level BoVW features are based upon the

low-level features, whose choice has great impact on performance. Two treatments

are usual: sparse features, based upon the detection of salient regions, or points-

of-interest; and dense features, sampled over dense grids of different scales;

• Choice of codebook: a challenging step, the codebook learning is usually per-

formed by a k-means clustering over features chosen at random from a training

set of images. We evaluate an alternative class-aware treatment, described in

Section 4.3.3;

• Coding: besides the traditional hard assignment, we have tested one of the soft

assignments proposed by Gemert et al. [85], and a new semi-soft assignment, es-
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pecially conceived for the DR-related lesion detection application, described in Sec-

tion 4.3.2.

We highlight that BoVW-based representations have already been proposed in the

literature [72, 40, 65]. However, the methods discussed in those papers do not stretch out

the several choices associated with BoVW-based representations nor do they present any

elaborate discussion on the rationale for using the representations proposed therein.

For the low-level feature extraction, we employ SURF descriptors [10]. Compared to

the obvious alternative, SIFT [48], SURF has shown superior results in previous evalua-

tions on DR-related lesion detection [72, 40, 65], besides being faster. SURF takes advan-

tage of the integral images technique to allow the accelerated computation of rectangular

convolution masks. The salient-region detector is based upon an integer approximation

of the Hessian matrix, while the extracted descriptors are based upon sums of 2D Haar

wavelet responses, both of which can be computed extremely fast with integral images.

For the sparse features treatment we employ both the detector and descriptor, as

implemented in SURF version 1.0.9, released by Bay et al. [10]. For the dense features

treatment, we employ only the descriptor, densely sampled on grids of scales of radii 12,

19, 31, 50, 80, 128 pixels, corresponding approximately to the scales of interest of the

lesions and groups of lesions, measured by hand in a sample of the images, that is, using

a few selected images with lesions, we analyzed them directly and measured the average

number of pixels related to the lesions. Those scales correspond both to the σ of the

Gaussian window of SURF, and to the sampling step of the dense grid. Therefore, there

is about 50% overlap between consecutive samples in the grid.

SURF has some sensitivity parameters, that we tuned so that 400 (empirically defined)

points of interest (PoIs) are detected on average per image, after changing the threshold

(different for each dataset) and filtering the points over the external edges of the retinas.

We also adjusted the parameters to get an extended descriptor with 128 dimensions and

to operate using the double image resolution. These modifications are not considered

pre-processing steps since they are common to all images and are made simply to ensure

a minimum number of points of interest per analyzed image.

For the codebook learning, in the first step, we select the candidate local descriptors

within the regions of interest marked by a medical specialist in the set of training images.

We have a set of 19,170 candidate points for normal images and an average of 2,820 points

within regions marked as having lesions. Then, we employ k-means clustering for k =

250 in two turns, one for each class, resulting in a set of 500 centroids (a value which was

known to work well from previous works of our group [72]). We allow k-means to run for

at most 200 rounds (each stage represents the choice of new candidate centroids and their

associated distortion) or until convergence (the distortion for different groups are small),

which comes first. The 500 cluster centroids are then used as codewords. The class-aware
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treatment is explained in detail in Section 4.3.3.

For most comparisons we perform in this chapter, we set the size of the codebook

to 500 codewords, but due to the counter-intuitive result that the dense extraction per-

formed worse than the sparse, we have explored a larger dictionary of 1,500 words for

that treatment, in order to evaluate if there was a correlation between the extraction of

more features and the need for larger samples in the dictionary.

For the coding step, we test three treatments:

• Hard assignment: associates each descriptor fully and only to its closest code-

word in the visual dictionary, as explained in equation 4.1. The advantage of those

schemes is the sparsity of the codes; the disadvantages, already mentioned, are

that they are subjected to imprecisions and noise, when the descriptors fall in re-

gions close to the limit between the codewords in the feature space. This scheme

was explored in previous work for detecting DR-related lesions in eye-fundus im-

ages [72, 42, 40].

• Soft assignment: there are several “soft” schemes, all trying to cope with the

deficiencies associated with the hard assignment treatment. The one we employ is

called codeword uncertainty [85] and is generally considered the most effective:

αm,j =
Kσ(‖cm − xj|‖2)

∑

c∈C Kσ(‖c− xj|‖2)
, (4.4)

where Kσ is the Gaussian kernel. We employ σ = 45, a value derived observing a

population of distances between pairs of SURF descriptors in a very large dataset

of images. This treatment was never explored in the DR-related lesion detector

literature.

• Semi-soft assignment: soft assignment solves the boundary effects of hard assign-

ment, but creates codes which are too dense. A “semi-soft” scheme is often more

desirable. One such scheme, designed specially for the DR-related lesion detection,

is described in Section 4.3.2.

For the pooling step, we forgo the traditional sum-pooling (Eq. 4.2), and employ the

more recent max-pooling, described in Eq. 4.3). The pooling step is considered one of the

most critical for the performance of BoVW representations, and max-pooling is considered

an effective choice [12, 13, 7].

In all cases, we employ an ℓ1-normalization in the final BoVW vector.

4.3.2 Semi-soft coding

The semi-soft coding tries to combine the advantages of both hard and soft assignments,

i.e., avoiding the boundary effects of the former, and the dense codes of the latter. The
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main idea is to perform a soft assignment, but just to the few codewords which are the

closest to the descriptor, keeping all others at zero. That general idea can be translated

into many designs. The one we propose here is based upon two simple principles:

• only the closest codeword is activated;

• the activation is proportional to the inverse of the distance between the codeword

and the descriptor.

Therefore, the generated codes are very sparse. On the other hand, the effect of

the descriptors is “felt” even at relatively long distances (compared to exponential, or

power-law decays). The scheme has the advantage of requiring no parameters.

The coding function can be described as:

αm,j =

{

1

‖cm−xj‖2
if m = argmink ‖ck − xj‖2

0 otherwise,
(4.5)

4.3.3 Class-aware codebook

Rocha et al. [72] have proposed employing a “double codebook”, extending the usual

scheme in a class-aware fashion, especially adapted for DR-related lesions. That is possible

because, in addition to the training images being annotated for each lesion, also the

regions where the lesions appear are identified (usually two to five per image from affected

patients).

The idea of using the class-aware codebook is to ensure that the appearances char-

acteristic of the lesions are well-represented during the coding phase, instead of counting

on luck alone. Selection of feature vectors is usually employed for general-purpose visual

recognition – but in those tasks, recognition does not hinge in such subtle differences as is

the case for DR-related lesions. The scheme can be employed for both dense and sparse

low-level descriptors, and is illustrated for the latter case in Fig. 4.3.

The class-aware scheme works by creating two independent codebooks, one from de-

scriptors sampled from regions marked as containing lesions, and one from descriptors

outside those regions (which includes images from healthy patients). Then, two indepen-

dent k-means clusterings are performed, each with k corresponding to half the size of the

desired codebook. After the clustering is finished, the two sets of centroids are simply

concatenated, generating a codebook of the desired size.

As we cited before for the codebooks creation, the k-means procedure was executed

in at most 200 rounds or until convergence, one time for each class.
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Figure 4.3: Regions of interest marked by a medical specialist (dashed black regions) and
the points of interest extracted in the sparse technique (blue circles). Points of interest
falling within the regions marked by the specialist are further considered for creating the
BoVW representation of a lesion while points found in normal images are used for the
BoVW representation of images of healthy patients. In the class-aware codebook, both
representation are combined.
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4.4 Experiments

4.4.1 Data, protocol and metrics

We performed the experiments using three different retinal image datasets annotated by

medical specialists:

• DR1 dataset, provided by the Department of Ophthalmology, Federal University

of São Paulo (Unifesp). Each image was manually annotated by three medical

specialists and all the images in which the three annotations agree were kept in the

final dataset. The images were captured using a TRC-50X (Topcon Inc., Tokyo,

Japan) mydriatic camera with maximum resolution of one megapixel (640 × 480

pixels) and a field of view (FOV) of 45 degrees.

• DR2 dataset, from the same source, after discarding the poor quality images [65].

The dataset was captured using a TRC-NW8 retinograph with a Nikon D90 camera,

creating 12.2 megapixel images, which were then reduced to 867 × 575 pixels for

accelerating computation.

• Messidor dataset, captured in three different French ophthalmologic departments.

There are three subsets, one for each department. The images were captured using

a Topcon TRC-NW6 non-mydriatic retinograph with a 45 degrees field of view, at

the resolutions of 1, 440× 960, 2, 240× 1, 488 or 2, 304× 1, 536 pixels.

Both DR1 and DR2 datasets are publicly available2. The Messidor dataset is also

available to the scientific community, after a registration is fulfilled3. Statistics about the

three datasets are given in Table 4.1.

All experiments were performed using a cross-dataset protocol, an important precau-

tion in the design, since in clinical practice the images that need to be classified seldom

will be acquired in the exact same conditions (camera, resolution, operator, FOV) than

the images used for training. We emphasize that the datasets were collected in very differ-

ent environments with different cameras, at least one year apart and in different hospitals.

We have employed the entire DR1 as the training dataset. The DR2 and Messidor were

then employed for testing.

The cross-dataset protocol poses experimental design challenges, because of the differ-

ent standards used in the annotations of the three datasets. In DR1, images are annotated

with the specific tags deep and superficial hemorrhage. In DR2, only the general red le-

sion tag is employed. In Messidor, the images are annotated not only for the presence

2http://www.recod.ic.unicamp.br/site/asdr
3http://messidor.crihan.fr
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Table 4.1: Annotation occurrences for the three datasets
Lesion DR1 DR2 Messidor
Hard Exudates (HE) 234 79 654
Superficial Hemorrhages (SH) 102 — —
Deep Hemorrhages (DH) 146 — —
Red Lesions (RL)* — 98 226
Cotton-wool Spots (CS) 73 17 —
Drusen (D) 139 50 —
Other lesions, excluding above — 71 —

All lesions** 482 149 654
Normal (no lesions) 595 300 546
All images 1,077 520 1,200
* “Red Lesion” is a more general annotation that encom-
passes both SH and DH, besides microaneurysms.

** The lesions do not sum to this value because an image
can present different types of lesion at once.

of the lesions, but also for the severity, evaluating the number of microaneurysms and

hemorrhages (red lesions), the presence or absence of neovascularization (not evaluated

in this work), and the proximity of the exhudates to the macula. In order to make the

cross-dataset classification possible, and the joint statistical analysis of the two sets of

experiments (DR2 and Messidor) feasible equivalences were found between the datasets,

as detailed in Table 4.2.

Table 4.2: Composition of the cross-dataset training and test

Train Test
Lesion DR1 DR2 Messidor
Hard Exudates (HE) 234 79 654
Superficial Hemorrhages (SH) 102 — —
Deep Hemorrhages (DH) 146 — —
Red Lesions (RL)* 180 98 226
Cotton-wool Spots (CS) 73 17 —
Drusen (D) 139 50 —
* The annotations SH and DH are added to form the
training set in DR1, summing 180 images due to the
overlap.

To allow quantifying precisely the performance of the proposed method and enabling

reliable comparisons, we employ receiver operating characteristic curves (ROCs), which
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plot the compromise between specificity (few false positives) and sensitivity (few false

negatives). Whenever we needed to quantify performance as a single scalar, we have

employed the area under the ROC curve (AUC). Since the classifier can trade specificity

for sensitivity, the AUC gives a better overall performance measure than any particular

point of those two metrics.

4.4.2 Results

The detailed results are presented in Tables 4.3 and 4.4, which show, respectively for

the DR2 and Messidor datasets, the AUCs obtained for each lesion.

Row-by-row results of Tables 4.3 and 4.4 suggest the best configuration of the BoVW

for each lesion (and dataset): the results tend to favor the semi-soft coding on sparse

features, except for the drusen, which tend to favor dense features. The Messidor dataset,

which has some very challenging images (patients with very early DR signs, showing very

few lesions) also tends to favor dense features, but works well under the sparse features /

semi-soft coding scheme.

However, such local, case-by-case analysis, fails to account for random effects. A

less näıve analysis must take into account all results across BoVW parameters, datasets

and lesions. Our goal is to obtain an overall best configuration for the BoVW, if such

configuration can be found with confidence.

To perform the global analysis, we run a factorial analysis of variance (ANOVA) on

the following factors (and levels):

(1) low-level feature extractor (Sparse, Dense),

(2) density of the sparse extractor/dictionary size of the dense extractor (Low, High),

(3) coding (Soft, Semisoft, Hard), with repeated measures for each Lesion (HE, RL, CS,

D), and

(4) test dataset (DR2, Messidor).

All errors are measured within-subjects. Unfortunately, we immediately face an ob-

stacle brought by the different annotation standards between DR2 and Messidor: the

former has annotations for all four levels of lesion, but the latter only has annotations

for hard exudates (HE) and red lesions (RL). Because it is challenging to perform (and

to interpret) such unbalanced experimental designs, we have decided to perform two sep-

arate balanced studies: one considering only DR2 and all four lesions; another for both
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Table 4.3: AUCs in %, for Training with DR1, Testing with DR2

Sparse features Dense features
Hard Semi-soft Soft Hard Semi-soft Soft

Hard Exhudates (HE) 93.1 97.8 95.5 94.5 95.6 95.6
Red Lesions (RL) 92.3 93.5 87.1 89.1 90.6 89.9
Cotton-wool Spots (CS) 82.1 90.8 84.9 84.5 90.4 90.3
Drusen (D) 66.5 82.8 62.6 84.1 82.5 75.5

Table 4.4: AUCs in %, for Training with DR1, Testing with Messidor

Sparse features Dense features
Hard Semi-soft Soft Hard Semi-soft Soft

Hard Exhudates (HE) 64.4 70.3 66.2 70.5 70.0 70.0
Red Lesions (RL) 77.4 83.1 76.6 85.2 85.1 82.5

test sets, but only HE and RL lesions. To remove the strong scaling effect of the lesions

and datasets, we independently standardize each subject (lesion, dataset combination),

subtracting its average AUC and dividing by its standard deviation.

The analysis on the DR2 subset finds an important interaction effect: the combination

between the choice of Low-level Features and Coding (p = 0.007). The main effect of

Coding alone just fails significance (p = 0.062), and all other effects and interactions are

non-significant. An examination of Table 4.3 reveals why the factors are significant only

in interaction, since the two low-level feature extractors seem to work better with different

coding schemes. The synergy between sparse feature extraction and semi-soft coding for

DR-lesion classification can be better appreciated in the box-plot of Fig. 4.4, that shows

the within-subjects standardized AUCs for the six combinations of feature extraction and

coding. The analysis on the subset with both test datasets and only HE and RL lesions

shows similar results, with significant interaction between low-level feature extraction and

semi-soft coding (p = 0.011).

A comparison with Rocha et al.’s paper [72], in which the class-aware scheme is

proposed for the detection of bright and red lesions exploiting the classical hard-sum

approach, makes it evident that our technique proposed for feature extraction may be

suitable for DR-related lesion detection. The authors reached AUCs of 95.3% and 93.3%

respectively for bright and red lesions, while our respective results are 97.8% and 93.5%

for testing with DR2. The authors do not present detectors for additional lesions as we

do in this work for cotton-wool spots (AUC = 90.8%) and drusen (AUC = 82.8%).

A crucial factor which has to be noted is the validation protocol. We performed

the training and testing using distinct datasets, exploring the cross-validation protocol

which is more robust than the 5-folds cross-validation used by the authors. Despite using
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This chapter focused on the detection of Diabetic Retinopathy related lesions. Sev-

eral studies have obtained satisfactory results for the detection of DR-related lesions in

the literature. However, in previous works, the detection of different anomalies normally

relied upon the use of distinct approaches based on specific properties of each lesion.

This renders the detection of DR an expensive method, since it requires the execution of

multiple detection procedures each one with specific parameters that need to be set up

and learned. On the other hand, recent advances in DR-related lesion detection using

approaches based on bags of visual words addressed the need of pre- and post-processing

operations. However, such approaches employed some techniques without any theoreti-

cal or experimental design analyses opening several opportunities for contributions and

advances.

In this chapter, we explored recent advances regarding bags of visual words related

literature including its formalization and stretched out possible combinations we might

perform for detecting DR-related lesions in eye-fundus images. We explored several combi-

nations of alternatives for the extraction of low-level features, and the creation of mid-level

representations pointing out important choices when designing a unified framework for

detecting DR lesions.

Our main contribution in this work is the proposal of a new coding scheme called

semi-soft, which explores the advantages of the most traditional hard sum coding (sparse

coding) as used in prior work for DR lesion detection [72] and soft assignments (which

better deal with imprecisions and noise). As we showed in the experiments with a detailed

experimental design evaluation through ANOVA, the semi-soft coding associated with

sparse feature extraction provides a good balance for designing an efficient and effective

DR-related lesion detector with results that outperform the ones in the literature. In

addition, the proposed combination also provides excellent results for two hard-to-detect

DR lesions: cotton-wool spots and drusen.

At least for the particular problem of DR-related lesion detection, the sparse feature

extraction + semi-soft coding combination defies the status-quo established by the Com-

puter Vision literature for general object recognition problems in which it is stated that

soft assignment + dense sampling is the way to go.

The discovery of the best method that showed to be very effective for detection of DR-

related lesions opens the opportunity for deploying the sparse technique with semi-soft

coding to other applications. A possible future work consists of identifying the precise

location of the lesion, as well as the size and quantity, and defining the DR severity

degree of a patient further classifying the images as related to DR cases in early, mild,

proliferative and severe stages.



Chapter 5

Data Fusion for Multi-lesion

Diabetic Retinopathy Detection

This chapter contains the explanation of the methods used in this work for fusion, as well

as outcomes achieved for multi-lesion detection. The methods developed herein resulted

in the publication [40] and also in the paper submitted to a top-tier journal, detailed in

the Chapter 4).

5.1 Preamble

In health care, the early diagnosis of disease has been important for maintaining optimal

health and reducing costs associated with treatment, and has contributed to improve the

patients’ quality of life. Diabetic retinopathy, if not discovered and treated in time, can

lead to the complete loss of sight. Identifying DR early through systematic screening and

implementing timely treatment are important steps to prevent blindness [51].

Developing a unified framework that can identify different retinal lesions has been

published using a visual words dictionary model [42]. However, this model creates a

large set of visual words, which increases with the number of lesions that are identified.

Therefore the lesion detectors need to be combined to optimize the classification. Detector

fusion has been applied in areas such as face and object detection [27]. Specifically within

the field of multi-lesion detection associated with DR, some methods have been applied [4]

but require further development for the DR model.

The most common fusion methods can be classified into three levels: (1) abstract (each

classifier outputs the class label for each input pattern); (2) rank (each classifier outputs a

ranking list of possible classes for each input pattern); and (3) measurement (each classifier

outputs a score, probability or confidence level for each input pattern) [93]. Among the

abstract fusion methods, majority voting is the most discussed. On the measurement

53
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level ‘sum’, ‘product’, ‘max’, ‘min’, ‘average’, ‘median’, ‘OR’ and ‘AND’ methods [67] are

commonly employed. Fusion methods on the rank level, such as Borda Count, may not

be suited for classifying DR.

The current chapter presents a visual words framework that is able to identify DR-

related lesions based upon the identification of the most common ones: hard exudates,

deep hemorrhages, superficial hemorrhages, drusen, and cotton wool spots. Acharya et

al. [4] reported multi-lesion detection in DR using mathematical morphology and support

vector machine classification to detect exudates, hemorrhages, and microaneurysms.

Our main approach expands upon this and our previous work [40] and consists in

investigating fusion of different detectors to identify the presence of DR. Points of interest

are combined into visual words and a visual dictionary [78] that is able to identify specific

anomalies within the retina is created.

Our work contains a set of classifiers that act in cooperation to solve a pattern recog-

nition problem [43, 37], followed by several methods for classifier fusion. This kind of

approach is intuitive since it imitates our nature to seek several opinions before making

a crucial decision [73]. Two fusion methods were evaluated: OR and meta-classification.

Section 5.2 presents related work for automatic DR-related lesion detection based on

classifier combination. Section 5.3 introduces our method based on classifier fusion for

detecting different retinal pathologies. Section 5.4 reports the experiments and results.

Finally, Section 5.5 presents final remarks.

5.2 Related work

Combining multiple classifiers is a standard practice in medicine. Examples of use of

fusion methods are breast cancer prediction [71] and lung cancer detection from computed

tomography scans [92].

Dimou et al. [24] evaluated the use of an ensemble of eight classifiers based on 15

different fusion strategies to provide accurate diagnosis of different types of cancer based

on the available predictors. The authors demonstrated that a variety of different classifier

fusion techniques can be used to augment the diagnostic performance of individual models

in the context of practical biomedical applications.

There are not many reports that focus particularly on the problem of fusion meth-

ods for DR detectors. Niemeijer et al. [55] applied classifier fusion methods to combine

several detectors of microaneurysms in retinal images. The authors used two basic ap-

proaches for the fusion: static combination rules (sum, product, and maximum) and

meta-classification. The results indicated, in some cases, that combining detectors for

the same lesion does not necessarily result in better performance compared to the best

individual detector. However, in our case, we propose the fusion of classifiers special-
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ized in specific but most common lesions, aiming the development of a robust screening

framework.

5.3 Proposed Methodology

We propose to apply detector fusion to a multi-lesion detector algorithm based on a visual

words dictionary [78]. This method is characterized by the approach in which detectors

operate in parallel and are combined to obtain a result related to the presence of any

DR-related lesion.

Visual dictionaries, which were detailed in Chapter 4, constitute a robust representa-

tion approach in which each image is treated as a collection of regions. In this represen-

tation, the only important information is the appearance of each region [89, 6].

The objective when creating a visual dictionary is to learn, from a training set of

examples, the generative model that selects the most representative regions for a given

problem. The number of selected regions must be large enough to distinguish relevant

changes in the images, but not so large as to distinguish irrelevant variations such as

noise [15].

5.3.1 Fusion of detectors

According to [90], there is not a single classifier that can be considered optimal for all

problems. There are also no clear guidelines for choosing a set of machine learning methods

for a specific task and it is rare to have complete knowledge of the data distribution and

details of how the classification algorithm behaves. Therefore, it becomes difficult to

classify a retinal image according to the presence of DR with a single method. Certainly,

it is difficult or impossible to find a good single classifier trained to detect only one lesion

but able to detect any evidence of diabetic retinopathy. Therefore multiple detectors

have to be implemented. Currently, it is common that different pre- and post-processing

procedures are required for each detector, making multi-lesion detection difficult and not

very accurate [57, 1].

For this step, we have a set of detectors for six individual DR-related lesions: hard

exudates, superficial hemorrhages, deep hemorrhages, cotton wool spots, drusen and red

lesions (superficial hemorrhages or deep hemorrhages). The assignment approach explored

for the development of the detectors is the semi-soft, explained in Chapter 4.

After creating a set of detectors, there are numerous methods for combining classifiers.

The principal approach for combining classifiers is classifier fusion, which considers that

all classifiers contribute to the final decision, assuming competitive classifiers [44]. In this

work, we investigated two classifier fusion methods: OR and meta-classification.
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OR

Included in the commonly used ensemble strategies, the logic OR is a fusion method of

parallel architecture that labels as positive the data classified as positive in at least one

classifier. Consequently, data is labeled as negative only if all the classifiers label it as

negative. This method tends to obtain high sensitivity and low specificity.

Meta-classification

Meta-learning, employed in Chapter 2 for quality assessment, can be loosely defined as

learning from information generated by different learners. In our work, we concentrate on

learning from the output of inductive learning systems such as the SVM [11]. The output

is defined as decision score. Meta-classification, in this case, means learning from the

classifiers produced by the learners and the predictions of these classifiers on training data.

A classifier (or concept) is the output of an inductive learning system and a prediction (or

classification) is the predicted class generated by a classifier when an instance is supplied.

Moreover, the training data presented to the learners initially are also available to the

meta-classifier if warranted [15].

For obtaining the decision score dmi for a particular feature vector representing an

image for one detector, we calculate the distance of feature vector representing such

image to the decision hyperplane representing the detector. Fig. 5.1 depicts an example

considering a linear classifier. This particular example shows a 2-D feature space.

The scores given by each classifier feeds an SVM as features. In this strategy, we are

actually using a two-level classification with individual classifiers at the first level and a

higher-level meta-classifier to learn over the individual classifiers combination.

5.4 Experimental results

In this section, we present the experiments we have performed to validate our approach.

For this chapter, we use the individual DR-related lesion detector which provided bet-

ter results as showed in Chapter 4. As we concluded, the novel semi-soft coding/pooling

BoVW representation highlighted over the other.

Given the implemented DR-related lesion detectors, and considering the method of

sparse feature extraction with semi-soft assignment, here we present details about the

technique employed for the development of a final detector whose objective is to point

out whether an image is normal or has any lesion including possible ones not present

during training.

As we cited before, the individual detectors were trained previously (see Chapter 4)

using DR1 dataset. Given the detector models obtained, we test and extract a high-level
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5.5 Final Remarks

A key topic of our research was that we prioritized the detection of the most common

manifestation related to the disease. Given the method that provides the best results for

all lesions, the sparse with semi-soft assignment as was demonstrated in the Chapter 4, we

performed here a fusion technique to verify whether the patient is normal or has lesion.

For this, we employed the simple method of fusion with OR and obtained promising

result of 88.6% considering the detection of the most common DR-related lesions. Using

the more complex fusion technique of meta-classification, which seeks a pattern based

upon the scores returned by each individual DR-related lesion detector, we achieved a

satisfactory AUC of 89.3%.



Chapter 6

Assessing the Need for Referral on

Diabetic Retinopathy Treatment

The methods developed herein resulted in the paper submitted to a top-tier journal cur-

rently under review.

6.1 Preamble

The development of computational systems that support specialists in diverse areas of

health care has been the focus of several studies [72, 40, 3, 60, 49]. The use of com-

putational methods that aid in the diagnosis of disease have contributed significantly to

improve the quality of life of patients. In this context, several computational systems

have been proposed (e.g., [72, 40, 3]) for dealing complications related to a major health

care problem nowadays: Diabetes Mellitus.

A factor that creates interest for automated screening systems is the small number of

medical specialists available, in contrast to the growing number of cases of retinopathy [21].

The development of a unified screening system that identifies several different DR-

related lesions simultaneously has been conducted using a bag-of-visual-words model

(BoVW) based upon visual dictionaries [42, 40, 72]. However, this model needs a vi-

sual dictionaries for each type of lesion, and hence, there is a detector for each one of

those types of lesion. In order to make decision such as the level of DR progression (from

mild to severe), or the need for referral, one must combine those lesion detectors somehow.

In a previous study, we provided a set of five detectors for individual DR-related lesions

and evaluated the performance of three different methods of fusion: logical-OR, majority

vote, and meta-classification [40]. Chapter 5 also presented the results achieved for fusion

with OR and meta-classification, aiming at the identification of any DR-related lesion.

As we have mentioned, due to the shrinking ratio of medical specialists/cases of
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retinopathy, a computational system suitable for detecting the presence of DR-related

lesions in eye-fundus images is of considerable importance for the treatment. Several al-

gorithms have been proposed for analyzing the presence/absence of retinopathy, as well

as for detecting specific lesions from mild nonproliferative to proliferative retinopathy and

maculopathy [38]. However, in many cases, the simple presence of a specific DR-related

lesion does not represent, by itself, a reason for the patient be referred to a specialist.

The presence of one or two microaneurysms, for example, may not warrant an ophthalmic

specialist consultation.

In this chapter, we propose a method that can be used for assessing the need for

referral, especially in remote and rural areas. The method captures retinal images from

mydriatic or non-mydriatic cameras (cameras that require or not a dilatation of the pupils

before the capture, respectively), evaluates the images in real-time, and suggests whether

or not the patient requires a review by an ophthalmic specialist within one year after

the screening. The method consists of: (1) detecting individual anomalies [72] and ex-

tracting the appropriate assessment scores (clarified in Chapter 4), and (2) classifying the

image as referable/non-referable automatically by means of meta-classification techniques

built upon the outputs of several lesion-detectors. Different from [72], we also explore

alternatives for the bag-of-visual-words (BoVW) based lesion detectors, an important ex-

perimental work because the performance of BoVW depends critically on the choices of

coding and pooling the low-level local descriptors aiming at characterizing the properties

and signs related to each kind of lesion of interest.

The rest of the chapter is organized as follows. Section 6.2 presents the related work on

image analysis. Section 6.3 explains our method of employing BoVW for creating individ-

ual detectors (individual lesion characterization), as well as the normalization techniques

explored in this chapter and the meta-classification method used for combining the output

of the individual detectors. Section 6.4 presents the results for the proposed approach both

in terms of lesion detection as well as the referable/non-referable classification. Finally,

Section 6.5 concludes the chapter.

6.2 Related work

The existence of a DR-related lesion does not necessarily indicate a vision-threatening

lesion that requires a referral. The presence of microaneurysms, that characterize a mod-

erate non-proliferative DR type, does not indicate an urgent consultation, but an indica-

tion of a follow up between three months and 12 months depending on the number and

location of the microaneurysms. On the other hand, the presence of neovascularization

indicates proliferative retinopathy and if not under treatment, needs urgent referral for

management by an ophthalmologist [38]. Other retinal lesions that may require attention
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are the cotton wool spots, especially if there are more than five [87].

A nurse-managed primary care clinic is an essential step to ensure a satisfactory cost

reduction as well as the opportunity of screening, assessment and treatment reaching

remote communities. Nurse-led screening programs are designed to verify the presence of

any DR-related lesion, as well as to identify the lesion and whether referral is required.

Screening programs for diabetic retinopathy have been developed in many countries

such as the Netherlands [3], United Kingdom [60] and Australia [49]. In the Netherlands,

the EyeCheck project [3] has been in operation since 2001 and more than 30,000 people

with diabetes have been screened regularly between 2001 and 2010. Abràmoff et al. [3]

reported a comparative study of the performance of automated DR detection using the

EyeCheck, algorithm compared to the algorithm applied in the Challenge2009, winner of

the 2009 Retinopathy Online Challenge Competition [70]. Evaluating the performance

of the system based on retinal images of 16,670 patients, the results showed that the

performance of the Challenge2009 algorithm (AUC = 82.0%) is statistically equivalent to

the performance of the EyeCheck algorithm (AUC = 84.0%) [2].

The EyeCheck algorithm is based on a pixel feature classification, that is, the candidate

pixels that appear to be in a red lesion. These candidate pixels are clustered in candidate

lesions, from which features are extracted. These are processed with a k-NN classifier to

assign a probability and to indicate the likelihood that the lesion is a red lesion [2]. The

Challenge2009 algorithm uses a parametric template defined for microaneurysms. The

algorithm detects the microaneurysms by locally matching a lesion template in sub-bands

of wavelet transformed images, and searching for the best adapted wavelet within the

lifting scheme framework [70]. Both the EyeCheck and Challenge2009 algorithms focus

on the detection of specific lesions and require pre- and post-processing. In contrast to

the these two algorithms, we highlight here that our method does not need any pre- and

post-processing of images.

In the United Kingdon, the National Screening Committee (UK NSC) recommends a

systematic population screening program to be offered annually to all people with type

1 and type 2 diabetes aged 12 or over [53]. In 2010–2011, 79% of people in England

aged 12 and over identified with diabetes actually attended a retinopathy screening. In

2011–2012, this percentage increased to 81% [53, 60]. People with diabetes are invited

to visit a screening venue and retinal images are captured and then graded by experts.

Each image is graded for severity by a primary grader, followed by a different secondary

grader. The grading outcomes for retinopathy include R0, R1 (both asked to return

annually), R2 and R3 (which are referred for treatment within 13 weeks and 2 weeks,

respectively) [60]. The disadvantage of the method stems from the fact that the manual

grading puts a considerable burden on the health care system. Our method aims at

presenting an automatic DR lesion detection [72, 40] and, assessing the necessity of a
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subsequent referral.

Several studies aimed at providing automated DR screening for the use by primary

health care providers in rural Australian communities [49]. Luckie et al. [49] proposed

the identification of proliferative retinopathy (characterized by new vessel growth). The

authors exploited wave transformation, mathematical morphology operations, and fractal

analysis to provide an automated assessment of images to detect vascular proliferation

from one image of the macular (posterior pole) region. However, the technique requires

an extensive stage of preprocessing.

Decencière et al. [22] developed a strategy to fuse a set of heterogeneous information

in order to get a response about the necessity of a referral. The descriptors employed

by the authors are: one pathological score per lesion (microaneurysms, exudates and

hemorrhages), one signature-based pathological score (a proposed solution which relies

on wavelet-based image characterizations to detect the signs of DR, and of other retinal

pathologies), six quality metrics, up to nine demographic information fields and up to 18

diabetes-related information fields (age, weight, diabetes type, etc.). The heterogeneous

information were fused with the algorithm for association rule mining, Apriori [5].

Our method, based on visual dictionaries is able to identify one or more different

lesion types in retinal images with a unified framework. The main novelty of the current

research is in the characterization of lesions using visual dictionaries and classification in

referable/non-referable images, explained in the Section 6.3.

6.3 Proposed Methodology

In this section, we present the method employed to decide if a patient is to be referred

to an ophthalmologist within one year after the screening. Our approach consists of

(1) training detectors for individual DR-related lesions, and (2) using the scores from

those detectors to train a meta-classifier that labels the retinal images as referable or

non-referable. The individual detectors are based on the bags-of-visual-words (BoVW)

model, for which we evaluated several possibilities of coding and pooling [12] which were

explained in the Chapter 4. The meta-classification can be interpreted as the creation of

a high-level feature vector of scores, for which we test three possibilities of normalization.

6.3.1 Detection of Individual DR-related Lesions

Individual DR lesions are detected using a bags-of-visual-words (BoVW) model [78, 25,

12].

As previously mentioned, the visual dictionaries are used to transform the low-level

local feature vectors extracted by SURF into mid-level BoVW feature vectors. First,
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there is a step of coding in which the low-level feature vectors are given a representation

in function of the dictionary. Then, for one image, all encoded vectors are aggregated in

a pooling step (using operators such as sum, average and max).

The choice of the coding and pooling schemes has a strong impact on the performance

of the BoVW representation [12]. Traditionally [78], BoVW models employed hard as-

signment for the coding (each local vector was assigned to its closest visual word in the

dictionary, normally using Euclidean distance), and sum for the pooling. This is equiva-

lent to create a histogram that counts the occurrences of local vectors according to their

distances to the visual words. We have used this form of representation in a previous

work in order to design individual lesion detectors [72].

More recently, however, both the hard-assignment and the sum-pooling have been

questioned [12]. Soft assignments [47, 62, 85] have been proposed to alleviate, among

other issues, the problem of boundary effects in the choice of the visual word (since

a local descriptor can be more or less equidistant to several visual words). In those

schemes, instead of activating the closest visual word completely, the scheme may activate

several visual words, activate the visual words partially, or do both things. Similarly, the

performance of pooling schemes different than the usual sum or average has been shown

in several applications [12]. When soft assignment is used, the use of max pooling is

especially interesting: in that case, the final mid-level vector used the maximum of each

visual word activation by the local features.

In this chapter, we contrast two schemes: the common hard-sum (hard-assignment

coding / sum pooling) and the more recent soft-max (soft assignment / max pooling).

Both feature vectors were normalized by term-frequency (tf), which is known to result in

good performances [40].

The final classification step for the individual lesion detectors is based upon a two-

class Support Vector Machine (SVM) [11] classifier, which employs the mid-level BoVW

feature vectors for training and classification. In this step, we have a binary classifier

trained for each individual lesion.

6.3.2 High-level Feature Extraction

In order to decide on the referral for the patient, the information provided by each indi-

vidual lesion detector is insufficient, because the lesions can be minor, they can be just a

few, or they may not indicate there will be future deterioration of visual function.

Thus, our aim is at combining the evidences of the individual detectors in a meta-

classification step that allows the decision-making of refer or not the patient to a doctor.

This step can be interpreted as the creation of a characterization scheme based upon the

classification scores of individual lesion detectors. The meta-classification is made possible
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by a new annotated dataset (not used in the training of any lesion detector), with images

from patients tagged as referable/non-referable by an expert. That is essential for training

the meta-classifier.

Here, our goal is to have a very high selectivity (very few false negatives), while also

keeping high specificity (few false positives): the former is important to ensure that no

patient in need stays without care, the latter is important to avoid swamping the health-

care professionals with unneeded referrals.

For training the decision scheme, we proceed as follows:

1. extraction of the low-level SURF feature vectors from the training images;

2. creation of the visual dictionaries for the lesions from the annotated images of the

lesion training sets;

3. extraction of the mid-level BoVW feature vectors using the visual dictionaries;

4. training of the independent lesion detectors, each with its lesion training set;

5. after training individual lesion detectors, we need to train a referable/non-referable

classifier. For that, we:

(a) extract the high-level feature vectors from the scores of the lesion detectors

(step 4) on a training set of referable/non-referable tagged images;

(b) train a meta-classifier with the high-level feature vectors from the referral/non-

referral image training set.

For deciding on the referral for one particular patient, the procedure is: (1) extraction

of the low-level SURF feature vectors from the retinograph images of this patient; (2) ex-

traction of the mid-level BoVW feature vectors; (3) extraction of the high-level feature

vectors from the scores of the individual SVM lesion detectors; (4) final decision based on

the high-level feature vector (outcomes of the individual lesion detectors).

6.3.3 Normalization

Several problems in computer vision have benefited from fusion of several algorithms

and/or sensors, with fusion in the score level being among the most used fusion approaches.

Choosing the most appropriate normalization technique for the obtained scores before the

fusion is a fundamentally difficult task due to the heterogeneity of the distributions of

scores obtained from different data sources [75].

To verify whether the normalization methods improve on the classification outcome,

we applied two simple normalization techniques: term-frequency, and z-scores (a.k.a.,
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standard normalization). The first technique is widely used in text retrieval, where each

document is represented by a vector of word frequencies [78]. Term-frequency is expressed

as the division of the number of occurrences of word i in document d (nid) by the total

number of words in the document d (nd). The second method, z-scores, is an adaptive score

normalization based upon the Gaussian distribution. The normalized score is produced

by subtracting the arithmetic mean µ of the set of scores from an original score, and

dividing it by the standard deviation σ of the set of scores [75].

6.3.4 Meta-classification

As described in Section 6.3.2, individual detectors were developed for a different dataset, in

order to describe the images whose aspect “necessity of referral” is known. In other words,

the purpose is the development of a meta-classification system in which, in the first level,

we have anomaly detectors that operate in parallel and provide an alternative (higher-

level) description for each image (distances to the decision classification hyperplanes, for

instance); and, in the second level, we have a classifier, trained with positive and negative

images with respect to being referable or not.

Fig. 6.1(a) depicts an overview of the first level of the referable vs. non-referable ap-

proach, that consists of developing detector models for the DR-related lesions. Fig. 6.1(b)

shows the referable vs. non-referable scheme which involves the creation of a high-level

description, training the set of referable/non-referable tagged images, and testing step.

6.4 Validation and Experiments

Here, we cite the datasets used in the development of the system and describe the protocol

of validation employed in the meta-classification, as well as the results obtained for each

experiment.

6.4.1 Datasets

We performed the experiments using two different datasets tagged by medical specialists:

DR1 and DR2. Please refer to Section 4.4.1 for more information about the datasets.

However, in this chapter, we are interested in the DR2 dataset labeled over other aspect:

the necessity of a referral. Table 6.1 reveals the annotation occurrences for DR2 dataset.

6.4.2 5 × 2-Folds Cross-Validation

In this chapter, we have used the 5× 2-folds cross-validation protocol [23]. The protocol

consists of repeating the process of two-fold cross-validation five times. In each step,
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Table 6.1: Annotation occurrences for DR2 dataset
Need be referred DR2
Positive 98
Negative 337

the dataset is randomly divided in two groups. The first group is used as training set

and the second group as test set. Then, the groups are switched. We use the 5 × 2-

folds cross-validation because it shows to be slightly more powerful than other validation

protocols [23].

6.4.3 Experiments

Here, we present the results for evaluating retinal images whether the patient needs to

be referred to an ophthalmologist or not within one year. There are several metrics to

measure the performance of an algorithm for detection/classification.

The experiments are divided in two parts:

1. Part #1. Experiments for detecting individual anomalies. Here, we use a cross-

dataset validation, training the classifiers with DR1 and testing with DR2.

2. Part #2. Experiments for determining the necessity of referral using the scores

obtained for the images from the DR2 dataset and the lesion classifiers trained on

DR1 dataset.

Experiments - Part #1

The initial identification of lesions was conducted in previous research and published in [72,

40]. In previous work, we explored only the hard-sum as mid-level feature extraction. Here

our objective is to create a framework that is able to assign a score to retinal images and

testing the detectors with the DR2 dataset. Therefore, we also explore alternatives to the

mid-level feature extraction such as the soft-max.

For the binary classification technique, we used the SVM classifier. We searched for

the best SVM parameters during training using the standard LibSVM’s grid search fine

tuning algorithm [16].

Table 6.2 shows the results obtained by the individual detectors. The results indicate

that the soft-max technique has a considerable advantage compared to hard-sum for de-

tecting white lesions (hard exudates and cotton wool spots), except for drusen. Hard-sum

performed better for red lesion detection (deep hemorrhages and the complete set of red

lesions). This complementary results goes in line with recent studies in the Computer
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Vision literature which hints at the interesting properties and results of soft-max tech-

niques [12, 47, 62, 85]. Note that the results correspond to those presented in the Table 4.3

for hard and soft, and for the respective lesions.

Table 6.2: AUCs for individual detectors
DR-related Lesion Hard-sum Soft-max

Hard Exudates 93.1% 95.5%
Superficial Hemorrhages 88.8% 88.7%
Deep Hemorrhages 90.0% 86.5%
Red Lesions 92.3% 87.1%
Cotton Wool Spots 82.1% 84.9%
Drusen 66.5% 62.6%

Experiments - Part #2

In the second part of the experiments, we evaluated the referable/non-referable meta-

classifier we propose. For that, we extracted the scores for the classification of the retinal

images, generating a high-level description. This process is performed through the fusion

by meta-classification, where the outputs of a series of individual lesion classifiers are used

as input to a new classifier at a higher level. We explore how this meta-classifier performs

when fed with normalized and non-normalized classification scores from the first level.

• Without Normalization: The experiments without normalization explore the raw

scores generated by the individual lesion detectors to distinguish between referable and

non-referable images. As explained in 6.3.1, we describe each image with the visual word

dictionaries previously constructed for each DR-related lesion, feed the respective lesion

detector with the created feature vector, and obtain the score. This procedure is repeated

for each lesion, creating a final feature vector of six dimensions (each dimension refers to

the output of an individual lesion detector). Then, we run the meta-classification with

the discussed cross-validation protocol. Figs. 6.2 and 6.3 depict the results for hard-sum

and soft-max, respectively. Note that, in general, the soft-max yielded the best results.

• Normalization with term-frequency: For comparison purposes, after the creation of

the feature vectors based on the classification scores of individual lesion detectors, we

applied two normalization techniques. The first technique is the term-frequency, common

in text retrieval. With the final feature vectors constructed, we proceed with the clas-

sification as explained earlier. Figs. 6.4 and 6.5 show the ROC classification results for

hard-sum and soft-max, respectively.

• Normalization with z-score: As a last normalization technique, we employed the

z-score technique in this work. Given the six scores of a specific retinal image, to obtain

the final feature vector, we begin calculating the arithmetic mean µ and the standard























Chapter 7

Conclusions

In this work, presented as a mixed format of papers’ collection, we proposed a general

framework to automate the retinal image analysis. Our contribution is a set of methods

which ranges from the crucial step immediately after the capture of an image until the

verification of presence/absence of any diabetic retinopathy related lesion, as well as the

evaluation of the necessity of referral of a patient to a medical specialist.

Our work yields a considerable contribution to the Computer Vision literature with

the proposal of sparse feature extraction + semi-soft coding combination, which works

particularly well for the DR-related lesion detection challenge.

Sufficient quality is a necessary prerequisite on input images for reliable automatic

detection systems in several healthcare environments. Image quality assessment rep-

resents an important limiting factor for automated DR screening. The assessment of

retinal image quality is a critical step to obtain satisfactory and reliable outcomes in a

screening system. Chapters 2 and 3 discussed a set of proposed approaches, explor-

ing the existing techniques in the literature for image quality evaluation and presenting

innovations in this context.

In the main work performed for the quality analysis, we discussed image quality re-

garding two aspects: field definition and blur analysis. For field definition, we proposed

the use of structural similarity measures to evaluate the quality of retinal images. The

method deployed for blur detection involves a series of different blurring classifiers, relying

upon four descriptors: vessel area, visual dictionaries, progressive blurring and progres-

sive sharpening. The main breakthrough for this step was the use of classifier fusion to

optimize the classification. This tactic gave us an interesting result: to ensure that a sat-

isfactory percentage of poor quality images will be discovered (⋍ 90.0%), we can establish

that only 10.0% of the enough quality images will be unnecessarily retaken. The quality

assessment constitutes a key step of a robust DR-related lesion screening system because

it helps preventing misdiagnosis and posterior retake.

81
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Detection of individual DR-related lesions is one of the most important topics

of this work. Many works have focused on the detection of individual lesions, aiming at

facilitating the attendance in rural and remote communities. The individual DR-related

lesion detectors were implemented as a projection to the development of a more complex

approach to represent retinal images, in a high-level assignment stage. This strategy

provided us a robust representation method for the eye-fundus images and opened the

opportunity to contribute deeply to the Medical literature, for both multi-lesion detection

and for referral.

The results achieved for individual DR-related lesion detection, as well as a minutely

explanation of the bag of visual words representation (explored in all steps of our general

work), are contained in Chapter 4. In that chapter, we explored several alternatives for

the extraction of low-level features, and the creation of mid-level representations point-

ing out important choices when designing a unified framework for detecting DR lesions.

The high-level features, characterized by the scores extracted of each DR-related lesion

detection, constitutes our fundamental tool for the next steps.

A considerable contribution of this step was the proposal of a new coding scheme

called semi-soft, which explores the advantages of the most traditional hard-sum and

soft-max coding/pooling assignments. With a detailed experimental design evaluation

through analysis of variance (ANOVA), we showed that the semi-soft coding associated

with sparse feature extraction provided a good balance for designing an efficient and

effective DR-related lesion detector with results that outperform the ones in the literature.

Based upon the scores associated to the detection of the most common DR-related

lesion, we developed an accurate multi-lesion detector which showed to be effective for

the detection of all the considered lesions. The strategy deployed for the multi-lesion de-

tector construction was the fusion of individual lesion detectors. We used two techniques,

logical OR and meta-classification. This latter provided us the most satisfactory result.

A description of the multi-lesion detector was shown in Chapter 5.

Finally, aimed at providing a tool which allows to save the time of the ophthalmologists

and to guarantee that patients who need urgent referral have priority, we took advantage

of the same classification scores extracted from the individual DR-related lesion detectors

and use them as high-level features for evaluating whether or not a patient needs to be

referred to an ophthalmologist. Some works have been developed with this objective

exploring distinct methods, and our method showed considerable advantages over them.

Our method, described in Chapter 6, can be used for assessing the need for referral,

especially in remote and rural areas. The method captures retinal images from non-

mydriatic or mydriatic cameras, evaluates the images in real-time, and suggests whether

or not the patient requires a review by an ophthalmic specialist within one year after

the screening. We have achieved important results with the proposed methodology. For
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example, for a sensitivity of 90.0%, we have a specificity of 85.0%, which means that

the specialist time may be saved in 85.0% (only 15.0% of the attended patients will be

normal).

In closing this work, we would like to emphasize that there is still important researches

to be done in DR image analysis. For instance, identifying the precise location of the

lesion, as well as the size and quantity, and defining the DR severity degree of a patient

further classifying the images as related to DR cases in early, mild, proliferative and severe

stages.
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detection of diabetic retinopathy. Ophthalmology, 117(6):1147–1154, 2010.
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Ingénierie, Cergy-Pontoise, France, June 2008.

[26] Karen M. Facey, National Health Service in Scotland, and Health Technology Board

for Scotland. Health Technology Assessment: Organisation of services for diabetic

retinopathy screening. Health Technology Board for Scotland, 2002.

[27] Pedro F. Felzenszwalb, Ross B. Girshick, and David McAllester. Cascade object

detection with deformable part models. In IEEE Intl. Conference on Computer

vision and Pattern Recognition, pages 2241–2248. IEEE, 2010.

[28] Alan D. Fleming, Sam Philip, Kate A. Goatman, John A. Olson, and Peter F. Sharp.

Automated assessment of diabetic retinal image quality based on clarity and field

definition. Investigative Ophthalmology & Visual Science, 47(3):1120–1125, 2006.

[29] Alan D. Fleming, Sam Philip, Kate A. Goatman, John A. Olson, and Peter F. Sharp.

Automated microaneurysm detection using local contrast normalization and local

vessel detection. IEEE Transactions Medical Imaging, 25:1223–1232, 2006.

[30] Alan D. Fleming, Sam Philip, Keith A. Goatman, Graeme J. Williams, John A.

Olson, and Peter F. Sharp. Automated detection of exudates for diabetic retinopathy

screening. Physics in Medicine and Biology, 52(24):7385–7396, 2007.



88 BIBLIOGRAPHY

[31] Luc M. J. Florack, Bart M. Ter Haar Romeny, Jan J. Koenderink, and Max A.

Viergever. General intensity transformations and differential invariants. Journal of

Mathematical Imaging and Vision, 4(2):171–187, 1994.

[32] G. G. Gardner, David L. Keating, Tom H. Williamson, and Alex T. Elliott. Auto-

matic detection of diabetic retinopathy using an artificial neural network: a screening

tool. British Journal of Ophthalmology, 80(11):940–944, 1996.

[33] Luca Giancardo, Fabrice Meriaudeau, Thomas P. Karnowski, Edward Chaum, and

Kenneth Tobin. New Developments in Biomedical Engineering, chapter Quality As-

sessment of Retinal Fundus Images using Elliptical Local Vessel Density, pages 201–

224. InTech, 2010.

[34] Luca Giancardo, Fabrice Meriaudeau, Thomas P. Karnowski, Yaqin Li, Kenneth To-

bin, and Edward Chaum. Microaneurysm detection with radon transform-based clas-

sification on retina images. In Intl. Conference of the IEEE Engineering in Medicine

and Biology Society, pages 5939–5942, 2011.

[35] Michael H. Goldbaum, Pamela A. Sample, Kwokleung Chan, Julia Williams, Te-

Won Lee, Eytan Blumenthal, Christopher A. Girkin, Linda M. Zangwill, Christopher

Bowd, Terrence Sejnowski, et al. Comparing machine learning classifiers for diag-

nosing glaucoma from standard automated perimetry. Investigative Ophthalmology

& Visual Science, 43(1):162–169, 2002.

[36] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 2nd edition, 2006.

[37] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern recognition:

A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–

37, 2000.

[38] Herbert F. Jelinek and Michael J. Cree. Automated Image Detection of Retinal

Pathology. Taylor & Francis, 2010.

[39] Herbert F. Jelinek, Michael J. Cree, David Worsley, Alan P. Luckie, and Peter

Nixon. An automated microaneurysm detector as a tool for identification of dia-

betic retinopathy in rural optometric practice. Clinical and Experimental Optometry,

89(5):299–305, 2006.

[40] Herbert F. Jelinek, Ramon Pires, Rafael Padilha, Siome Goldenstein, Jacques

Wainer, and Anderson Rocha. Data fusion for multi-lesion diabetic retinopathy

detection. In IEEE Intl. Computer-Based Medical Systems, pages 1–4, 2012.



BIBLIOGRAPHY 89

[41] Herbert F. Jelinek, Ramon Pires, Rafael Padilha, Siome Goldenstein, Jacques

Wainer, and Anderson Rocha. Quality control and multi-lesion detection in auto-

mated retinopathy classification using a visual words dictionary. In Intl. Conference

of the IEEE Engineering in Medicine and Biology Society, 2013.

[42] Herbert F. Jelinek, Anderson Rocha, Tiago Carvalho, Siome Goldenstein, and

Jacques Wainer. Machine learning and pattern classification in identification of in-

digenous retinal pathology. In Intl. Conference of the IEEE Engineering in Medicine

and Biology Society, pages 5951–5954, 2011.

[43] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combin-

ing classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(3):226–239, 1998.

[44] Ludmila I. Kuncheva. Combining pattern classifiers: Methods and algorithms. IEEE

Transactions on Neural Networks, 18(3):964–964, 2007.

[45] Marc Lalonde, Langis Gagnon, and Marie-Carole Boucher. Automatic visual quality

assessment in optical fundus images. Proceedings of Vision Interface, pages 259–264,

2001.

[46] Yaqin Li, Thomas P. Karnowski, Kenneth W. Tobin, Luca Giancardo, Scott Morris,

Sylvia E. Sparrow, Seema Garg, Karen Fox, and Edward Chaum. A health insurance

portability and accountability act–compliant ocular telehealth network for the re-

mote diagnosis and management of diabetic retinopathy. Telemedicine and e-Health,

17(8):627–634, 2011.

[47] Lingqiao Liu, Lei Wang, and Xinwang Liu. In defense of soft-assignment coding. In

IEEE Intl. Conference on Computer Vision, pages 2486–2493, 2011.

[48] David G. Lowe. Distinctive image features from scale-invariant keypoints. Intl.

Journal of Computer Vision, 60(2):91–110, 2004.

[49] Alan P. Luckie, Herbert F. Jelinek, Michael J. Cree, R. Cesar, J. Leandro, C. Mc-

Quellin, P. Mitchell, et al. Identification and follow-up of diabetic retinopathy in rural

health in australia: an automated screening model. Investigative Ophthalmology &

Visual Science, 45(5):5245, 2004.

[50] David Maberley, Andrew Morris, Dawn Hay, Angela Chang, Laura Hall, and Naresh

Mandava. A comparison of digital retinal image quality among photographers with

different levels of training using a non-mydriatic fundus camera. Ophthalmic Epi-

demiology, 11(3):191–197, 2004.



90 BIBLIOGRAPHY

[51] Quresh Mohamed, Mark C. Gillies, and Tien Y. Wong. Management of diabetic

retinopathy. JAMA: the Journal of the American Medical Association, 298(8):902–

916, 2007.

[52] Jagadish Nayak, Praveena S. Bhat, Udyavara R. Acharya, Choo M. Lim, and Manju-

nath Kagathi. Automated identification of diabetic retinopathy stages using digital

fundus images. Journal of Medical Systems, 32(2):107–115, 2008.

[53] NHS Diabetic Eye Screening Programme. Online, May 2013.

http://diabeticeye.screening.nhs.uk.
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