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Abstract

Diabetic Retinopathy (DR), a common complication caused by diabetes, manifests through
different lesions that have their particularities. These particularities are explored in the
literature as methods for representation, providing a satisfactory discrimination between
healthy /diseased retinas. However, by being strongly linked to the visual characteristics
of each anomaly, the detection of distinct lesions requires distinct approaches. In this
work, we present a general framework whose objective is to automate the eye-fundus im-
age analysis. The work comprises four steps: image quality assessment, DR-related lesion
detection, screening, and referral. In the first step, we apply characterization techniques
to assess image quality by two criteria: field definition and blur detection. In the second
step of this work, we extend up a previous work of our group which explored a unified
method for detecting distinct lesions in eye-fundus images. In our approach for detection
of any lesion, we explore several alternatives for low-level (dense and sparse extraction)
and mid-level (coding/pooling techniques of bag of visual words) representations, aim-
ing at the development of an effective set of individual DR-related lesion detectors. The
scores derived from each individual DR-related lesion, taken for each image, represent a
high-level description, fundamental point for the third and fourth steps. Given a dataset
described in high-level (scores from the individual detectors), we propose, in the third step
of the work, the use of machine learning fusion techniques aiming at the development of
a multi-lesion detection method. The high-level description is also explored in the fourth
step for the development of an effective method for evaluating the necessity of referral of
a patient to an ophthalmologist in the interval of one year, avoiding overloading medical
specialist with simple cases as well as give priority to patients in an urgent state.
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Resumo

A Retinopatia Diabética (RD), complicacao provocada pela diabetes, se manifesta por
meio de diferentes lesoes que possuem suas especificidades. Estas especificidades sao
exploradas na literatura como estratégia para representacao, proporcionando uma dis-
criminacao satisfatéria entre imagens de pacientes normais e doentes. No entanto, por
estar fortemente atrelada as caracteristicas visuais de cada anomalia, a detecgao de lesoes
distintas exige abordagens distintas. Neste trabalho, apresentamos um arcabouco geral
cujo objetivo é automatizar o procedimento de andlise de imagens de fundo de olho. O
trabalho ¢é dividido em quatro etapas: avaliacao de qualidade, deteccao de lesoes indi-
viduais, triagem e verificacao de necessidade de consulta. Na primeira etapa, aplicamos
diferentes técnicas de caracterizacao de imagens para avaliar a qualidade das imagens por
meio de dois critérios: definicao de campo e deteccao de borramentos. Na segunda etapa
deste trabalho, propomos a continuacao de um trabalho anterior desenvolvido pelo nosso
grupo, no qual foi aplicado um método unificado na tentativa de detecgao de lesoes distin-
tas. No nosso método para detecgao de qualquer lesao, exploramos diferentes alternativas
de representacao em baixo nivel (extracao densa e esparsa) e médio nivel (técnicas de
coding/pooling para sacolas de palavras visuais) objetivando o desenvolvimento de um
conjunto eficaz de detectores de lesoes individuais. As pontuagoes provenientes de cada
detector de lesao, obtidas para cada imagem, representam uma descricao de alto nivel,
ponto fundamental para a terceira e a quarta etapas. Tendo em maos um conjunto de da-
dos descritos em alto nivel (pontuagdes dos detectores individuais), propomos, na terceira
etapa do trabalho, a aplicacao de técnicas de fusao de dados para o desenvolvimento de
um método de deteccao de multiplas lesoes. A descricao em alto nivel também é explorada
na quarta etapa para o desenvolvimento de um método eficaz de avaliacao de necessidade
de encaminhamento a um oftalmologista no intervalo de um ano, visando evitar que o
médico seja sobrecarregado, bem como dar prioridade a pacientes em estado urgente.
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Chapter 1

Introduction

Diabetes mellitus (DM) is a chronic end-organ disease caused by a decrease in insulin
sensitivity or a loss of pancreatic function, depending on the type of diabetes, both leading
to an increase in the blood glucose level. An increased blood sugar level may lead to
damage of blood vessels in all organ systems of the body. The disease has thus attracted
the interest of both the Health-care and Engineering communities.

Currently, diabetes affects 366 million people worldwide or 8.3% of adults. It is esti-
mated that this number will increase to approximately 552 million people (one adult in 10
worldwide will have diabetes), according to the International Diabetes Federation (IDF)!.
The largest increases will take place in the regions dominated by developing economies.
Fig. 1.1 depicts projections of the number of people with diabetes? for each region by
2030.

The World Health Organization (WHO)? projects that diabetes deaths will double
between 2005 and 2030 [91].

The growing prevalence of diabetes creates an increasing prevalence of the complica-
tions related to the disease, including Diabetic Retinopathy (DR). DR occurs in approxi-
mately 2-4% of the population but is greater in indigenous populations according to some
studies [94, 82]. Recent reports have shown that, in the United States, approximately
25,000 people with diabetes go blind every year due to DR [1]. Furthermore, also in the
United States, the number of 40-year or older Americans with DR is projected to triple
from 5.5 million in 2005 to 16 million by 2050 [74]. DR is the main cause of blindness in
the 20 to 74 age group in developed countries, creating the need for systems that screen
diabetic retinopathy in its early stages, so to allow an economically viable management
of the disease [61].

lhttp://www.idf.org/diabetesatlas/5e/diabetes
2Figure extracted from IDF website
3http://www.who.int/diabetes/en/index.html
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2 Chapter 1. Introduction

Map: IDF Regions and global projections of the number of people with diabetes (20-79 years), 2011 and 2030

2011 2030 INCREASE

REGION MILLIONS MILLIONS %
@ Africa 14.7 28.0 90%
® Middle East and North Africa 3z2.8 59.7 83%
@ South-East Asia .4 120.9 9%
South and Central America 25.1 39.9 59%
Western Pacific 131.9 187.9 4£2%
North America and Caribbean 37.7 51.2 36%
Europe 52.6 64.0 22%
World 366.2 551.8 51%

Figure 1.1: Regions and global projections of the number of people with diabetes by 2030.

It is estimated that in 2002, diabetic retinopathy accounted for about 5% of world
blindness, representing almost 5 million people blind. Nowadays, according to the Dia-
betic Programs of the World Health Organization, DR is a leading cause of blindness,
amputation and kidney failure.

According to the U.S. National Eye Institute (NEI)*, the DR has four stages:

e Mild Nonproliferative Retinopathy: This corresponds to the earliest stage of the
disease, in which the microaneurysms (small areas of balloon-like swelling) occurs.

e Moderate Nonproliferative Retinopathy: Second stage of the disease in which the
blood vessels responsible to nourish the retina are blocked.

e Severe Nonproliferative Retinopathy: The third stage of the disease in which there
is the blocking of many more blood vessels, depriving several areas of the retina

‘http://www.nei.nih.gov/health/diabetic/retinopathy.asp



1.1. DR-related Lesions 3

with their blood supply. Because of this poor irrigation, some areas of the retina
send signals to the body to make growing new blood vessels.

e Proliferative Retinopathy: At this advanced stage, the signals sent by the retina for
nourishment trigger the growth of new blood vessels. These new blood vessels are
abnormal and fragile. They grow along the retina and along the surface of the clear,
vitreous gel that fills the inner part of the eye. By themselves, these vessels do not
cause symptoms or vision loss, but they have thin, fragile walls. If they leak blood,
severe vision loss and even blindness can occur.

1.1 DR-related Lesions

Diabetic retinopathy is characterized by the presence of red (microaneurysms and hemor-
rhages) and bright (hard exudates, cotton wool spots) lesions as well as neovascularization.
Drusen are also often observed in the retina, although they are associated especially with
age-related macular degeneration (AMD) and can have similar appearance with the bright
lesions [84].

This section explains the most common anomalies that are related to DR and can
appear in eye-fundus images. Before enumerating the lesions associated with DR, please
refer to Fig. 1.2 for an image depicting the main elements of the retina.

Figure 1.2: Example of a healthy retina with its typical anatomical elements.

o Microaneurysms: Consist of small outpouchings in capillary vessels which appear
as small dots between the visible retinal vasculature [56]. Often occurs as one of the
first signs of diabetic retinopathy [19].
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e Hard Erudates: They are caused by the breakdown of the blood-retinal barrier,
which leads to fluid rich in lipids and proteins to leave the parenchyma, causing
retinal edema and exudation [72]. They have a yellow appearance and occur only
in the occasional retinal image [19]. Fig. 1.3 exhibits an image with hard exudates.

Figure 1.3: Example of a retinal image with Hard Exudates.

e Hemorrhages: They are similar to microaneurysms, but slightly larger and are
found where capillary walls weaken. These may rupture causing intraretinal hem-
orrhages [72]. Superficial and deep hemorrhages are characterized as DR-related
lesion. Fig. 1.4 shows an example of hemorrhages.

Figure 1.4: Example of a retinal image with Hemorrhages.

e Cotton Wool Spots: They appear as fluffy white patches on the retina and are caused
by damage to nerve fibers. An image with cotton wool spots can be seen in Fig. 1.5.
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Figure 1.5: Example of a retinal image with Cotton Wool Spots.

e Drusen: They are bright lesions associated especially with age-related macular de-
generation, which can have similar appearance, as well as from posterior hyaloid
reflexes and flash artifacts, which can sometimes mimic bright lesions in appear-
ance [57]. Fig. 1.6 depicts an image with hard drusen.

Figure 1.6: Example of a retinal image with Drusen.

e Neovascularization: The neovascularization process begins when it is detected the
presence of intraretinal microvascular abnormalities. However, the new vessels are
fragile and grow uncontrollably on the inner surface of the retina. An example of

neovascularization is seen in Fig. 1.7.
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Figure 1.7: Example of a retinal image with Neovascularization.

1.2 Stages of the Work

This section introduces the four stages developed in this work and provides a sneak peek
at the papers published and submitted for each one.

1.2.1 Quality Assessment

Image quality is an important aspect of automated image analysis and the factor that
successful image analysis relies on. Although it is a common task in lesion detection
projects, the manual quality assessment is expensive. Several works have discussed the
assessment of image quality in the literature [20, 33, 45, 54]. However, most of the authors
focus only on the blur detection (evaluating the presence of blurrings caused by motion)
and discard important factors such as field definition.

For this stage, it was developed a method for analyzing image quality regarding motion
blur and field definition. The work resulted in a paper entitled Retinal Image Quality
Analysis for Automatic Diabetic Retinopathy Detection [65], published at the
XXV Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI),
in 2012. The methods and results will be explained in Chapter 2.

Furthermore, it was also developed alternative methods for blur detection which
will be described in Chapter 3. The resulting paper, entitled Quality Control and
Multi-lesion Detection in Automated Retinopathy Classification using a Vi-
sual Words Dictionary [41], was accepted for publishing in the 35th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'), in
2013.
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1.2.2 Quality Improvement

Most of the works related to the DR detection apply diversified pre- or post-processing
image techniques which ensure a correction in blurring artifacts. Furthermore, the use of
image processing techniques improves considerably the results obtained in the classifica-
tion step.

However, we discard the quality improvement task based upon the satisfactory results
achieved for the quality assessment (see Chapters 2 and 3) and the facility in capturing
new eye-fundus images and repeating the process in real-time.

1.2.3 DR-related Lesion Detectors

Due to several lesions related to DR and their diversified characteristics, there are sev-
eral works present in the literature which focus on the detection of individual lesions,
exploiting particular pre- and post-processing methods for each disease. In this stage,
it was developed a series of individual detectors for the most important DR-related le-
sions: hard exudates, superficial hemorrhages, deep hemorrhages, cotton wool spots, and
drusen. An additional classifier able to detect both superficial and deep hemorrhages was
also implemented: red lesions.

Chapter 4 comprises the description of the experiments performed for the detection
of individual DR-related lesions, as well as presents the experimental results for each
anomaly. The development of DR-related lesion detectors represents an essential part of
the paper entitled Advancing Bag-of-Visual-Words Representations for Lesion
Classification in Retinal Images, submitted to a top-tier journal.

1.2.4 Detector Fusion

Given a set of detectors of individual DR-related lesions developed with a method which
provides satisfactory results for the definition of presence/absence of the most common
anomalies, this work involves the use of combining approaches aimed at pointing out
whether an image is normal or has any lesion including possible ones not present during
training.

The classifier fusion was explored for combination of the individual DR-related lesions
and a paper, entitled Data Fusion for Multi-lesion Diabetic Retinopathy Detec-
tion [40], was published in the 25th IEEE International Symposium on Computer-Based
Medical Systems (CBMS)), 2012. Chapter 5 contains the explanation of the methods used
for fusion and results of the cited paper, as well as details and results of more recent
experiments of this work.
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1.2.5 Referral

In order to achieve early detection of DR, helping to stop or slow down its progress, inter-
national guidelines recommend annual eye screening for all diabetic patients. However,
the increasing number of diabetic patients and the decreasing number of ophthalmologists
make this suggested annual examination difficult to be performed sufficiently [22]. This
factors tend to overwhelm the specialist even more during the next years.

Thus, aiming at referring to a specialist only the patients who really need a consulta-
tion, this work includes a stage for classifying retinal images as referable (to be referred
to a specialist) or non-referable (not to be referred to a specialist) in the interval of one
year. The methods, experiments and results are presented in Chapter 6 and were submit-
ted as a paper entitled Assessing the Need for Referral on Diabetic Retinopathy
Treatment to a top-tier journal.

1.3 Overview

Fig. 1.8 depicts an overview of this work. The first step consists of the quality analysis
(Chapters 2 and 3). The second step focuses on the detection of individual DR-related
lesions (Chapter 4). The third step receives the classification scores extracted in the
second stage to create a multi-lesion detection framework (Chapter 5). Finally, similar to
the third step, the fourth one explores the classification scores to assess the necessity of
referral for a patient (Chapter 6).

Multi-lesion
Outcome

—

Retinal

Image
Qu al ity chapter 5
Assessment
Referral
Outcome
chapter 2
chapter 3 chapter 4 chapter 6

Figure 1.8: Overview of the work.



Chapter 2

Retinal Image Quality Analysis for
Automatic Diabetic Retinopathy
Detection

Given that sufficient image quality is a necessary prerequisite for reliable automatic de-
tection systems in healthcare environments, the first step of this project is the assessment
of retinal image quality. In this chapter, we present the methods employed for the quality
assessment of retinal images and present the achieved results. The methods developed
herein resulted in the publication [65].

2.1 Preamble

Diabetes and associated complications including diabetic retinopathy (DR) is increas-
ing with a predicted prevalence tripling by 2050 in the United States [74]. Developing
countries and Indigenous populations are likely to exceed this percentage [81]. In addi-
tion, DR is the leading cause of blindness in developed countries and therefore screening
and targeted case management programs that are economically viable and identify and
implement early treatment are required [61].

Mobile screening of high-risk populations, especially in rural and remote locations is
an effective means of increasing the screening coverage of DR prevention programs [14].
Two-field photography in the hands of photographers with diverse skill levels and irrespec-
tive of using mydriatic or nonmydriatic photography compares favorably to ophthalmic
investigations by specialists in metropolitan clinics [50].

To further enhance rural and remote area screening, automated image analysis pro-
grams have been developed and are now in use as a first line screening for microaneurysms
in Scotland [63]. Several algorithms have been proposed for detecting parts of the retina,

9
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the presence/absence of retinopathy as well as specific lesions from mild nonproliferative
to proliferative retinopathy and maculopathy (see [38] and references therein). An im-
portant aspect of automated image analysis and the factor that successful image analysis
relies on is image quality.

Assessing image quality has been discussed in the literature by a number of authors |20,
33, 45, 54] and represents an important limiting factor for automated DR screening [59].
Image quality is reduced by artifacts in the image such as eye lashes or dust specs on
the lens, only part of the retina is seen, the image is out-of-focus or the image is badly
illuminated or blurred, among others. Image compression is often included with current
software packages, which affects quality as does the resolution, field of view and type of
camera [20]. Not directly related to image quality is retinal epithelial background, which
often makes microaneurysm detection more difficult if the classifier is not trained for the
specific ethnic group [42].

Furthermore, to ensure that automatic screening will be able to identify lesions like
deep and superficial hemorrhages, it is necessary that the retinal images cover the ap-
propriate portion of the retina, making the blood vessels visible. According to [26], the
photographs should be centered on the macular region (See Fig. 1.2). Some authors have
analyzed this aspect of image quality, known as field definition [28].

This chapter proposes methods for verifying these important factors of retinal image
quality: field definition and blur detection. We aim at finding approaches that work well
especially when trained with one type and tested with other types of retinal images. By
introducing and adapting techniques such as visual words, quality analysis by similarity
measures and classifier fusion to this context, we achieve promising classification results.
In particular, for the field definition, our method is able to accurately distinguish between
appropriate and inappropriate retinal images for automated DR screening.

2.2 Related work

Several methods for retinal image quality analysis are based on edge intensity histograms
or luminosity to characterize the sharpness of the image [45]. In both approaches, the
quality of a given image is determined through the difference between its histogram and
the mean histogram of a small set of good-quality images used as reference.

Retinal morphology-based methods such as detection of blurring and its correlation
to vessel visibility and retinal field definition have been applied for automatic detection
of retinal image quality [33, 29]. The method of image assessment proposed by Fleming
et al. [29], similarly to our work, involves two aspects: (1) image clarity and (2) field
definition. The clarity analysis is based upon the vasculature of a circular area around
the macula. The authors concluded whether or not a given image has enough quality
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using the presence/absence of small vessels in the selected circular area as evidence. The
approach proposed by Fleming et al. requires a segmentation step to find the region of
interest. However, for low-quality images, detecting segmentation failures is trivial.

Niemeijer et al. [54] proposed a method for image quality verification that is compara-
ble to the well-known visual words dictionary classification technique, used extensively in
pattern recognition tasks [89] and also one of the methods we rely upon in this work and
in the following chapters. The purpose of Niemeijer et al. was to identify image structures
that were present in a set of images. Local image structure at each pixel is described using
the outputs of a set of 25 filters. Because the raw features are too numerous to be used
directly in the classification process, a clustering algorithm is used to express the features
in a compact way creating a visual dictionary. Once the visual dictionary is built, the
features of each pixel are mapped onto words and a histogram of word frequencies for
each image is created. These histograms are used to feed a classifier.

Visual words dictionaries constitute one of the approaches proposed to analyze image
quality in this work. However, different to [54] we utilize visual words in the space of
features representing discontinuities in the retina and not directly on every pixel. Second,
our method is based on points of interest which are reasonably robust to some image
distortions (e.g., rotation) and exhibit high repeatability, which allows us to easily find
similar discontinuities in different images. Third, we have used the same method to detect
lesions associated with DR in another work of ours [40]. Finally, the visual words dictio-
nary calculated on the space of features exploits the benefits of an all-in-one classification
algorithm which does not require any pre- or post-processing of the image.

Although good results for the assessment of diabetic retinal image quality have been
obtained previously, the authors have not paid attention to one crucial factor needed for
an acceptable screening of diabetic retinopathy. The image has to encompass the correct
portion of the retina [26]. An analysis of DR images can fail because of inadequate field
definition. As one exception, Fleming et al. [29] reported retinal image field definition
in their work. In the viewpoint of the authors, an image is defined as having adequate
field definition if it satisfies a series of constraints, that aim at verifying distances between
important elements of the anatomy of the retina, such as the optic disc and fovea (Fig. 1.2).

2.3 Technique for Field Definition

Here, we discuss a simple method for verifying the field definition. In this problem, a good
retinal image for further DR analysis is one image centered on the macula (See Fig. 1.2).

The method we discuss here operates based on the methodology of full-reference com-
parison. In this methodology, a reference image with assured quality is assumed to be
known and quantitative measures of quality for any image are extracted by comparisons
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with the reference [86]. Given that the macular region has a distinguishable contrast in
comparison with the remaining regions, and we are interested in the content of the center
of retinal images, metrics of similarity have shown to be highly suitable for this objective.
We selected a set of images centered on the macular region as well as a set of images
not centered on the macular region (centered on the optic disc or in any other location
on the retina). Then, we calculated similarities between a given image and the reference
images (positive and negative), with respect to their central regions and created a feature
vector for later classification. In the next section, we explain the method employed for
the feature extraction as well as the learning step of the technique for field definition.

2.3.1 Characterization

Wang et al. [86] proposed a new philosophy for comparison of images that considers
image degradation as perceived changes in structural information instead of perceived
errors (visibility of errors). The method, known as Structural Similarity (SSIM) [86] is
calculated according to Eq. 2.3 which we shall define later.

Given that we are interested in assessing if the macula is present in the center of the
image and it is clearly different from other regions of the retina, we use one region of
interest (Rol) of pre-defined size (121 x 121) on the center of the retinal image. Fig. 2.1
depicts some positive (centered on the macular region) and negative (centered on the
optic disc or in other region) Rols.

Figure 2.1: Examples of Rols whose images are centered on the macula (left), centered
on the optic disc (middle), and non-representative (right).

To characterize each retinal image, we measure the structural similarity between the
Rol of the image of interest and the Rols of a set of reference images and calculate their
average. We selected a set of 40 retinal images for reference (20 represent the retina
with good field definition and 20 that would be discarded for not being centered on the
macula). For the group not centered on the macula, we selected 12 Rols centered on the
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optic disc and eight in any other area. The reference images are not used further neither
for training nor for testing.

As we are comparing pixels directly, we investigated if a simple contrast normalization
technique helps to boost classification results. For that, we tested the use of the images in
grayscale as well as in RGB color space with and without the normalization considering
contrast limited adaptive histogram equalization (CLAHE) [66]. CLAHE is suitable to
improve the local contrast of an image.

After comparing each image with the references, its feature vector considering color
images comprises 18 features: three comparison functions from SSIM x three color chan-
nels (RGB) x two sets of reference patches (positive and negative). SSIM was calculated
breaking Eq. 2.3 to three terms: luminance, contrast, and structure according to [86].

2.3.2 Learning

At the end of the characterization process, we have a set of feature vectors representing
the structural similarities with positive and negative reference images. The final classifi-
cation procedure is performed using the Support Vector Machine (SVM) algorithm [16].
Although we could use other classifiers, we opted for SVM classifiers for a number of
desirable traits: their solutions are global and unique; they have a simple geometric in-
terpretation; and they do not depend on the dimensionality of the input space.

We train the classifier with feature vectors calculated from training images containing
positive (images centered on the macular region) and negative (images centered on any
other region of the retina) examples. When training the SVM, we use “grid search” for
fine tuning the SVM parameters based only on the training examples [16].

2.4 Technique for Blur Detection

Although image quality analysis can have several ramifications before arbitrating on the
quality of an image, we focus on two very common problems during image acquisition:
blurring and out-of-focus capture.

2.4.1 Characterization

The method involves a series of different blurring classifiers and classifier fusion to opti-
mize the classification. Next, we present the details of the methods we use for blurring
classification. Basically, we rely upon four descriptors: vessel area, visual dictionaries,
progressive blurring and progressive sharpening. We also explore combinations of them.
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Area Descriptor Given that blurring affects the visibility of the blood vessels, our
first descriptor consists of the measurement of the area occupied by the retinal vessels.
For that, we calculate the image’s edge map using the Canny algorithm [36]. Next, we
measure the area occupied by the vessels counting the quantity of pixels on the edges and
dividing it by the retina’s total number of pixels. Fig. 2.2 depicts retinal images followed
by their respective Canny edge maps.

G
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e

Figure 2.2: Retina with enough quality (left) and with blurring (right) with their respec-
tive Canny edge maps (inverted for visualization purposes).

In the end of the characterization phase, we have an 1-d feature vector whose area
descriptor is the unique feature.

Visual Dictionary Descriptor In this descriptor, each image is characterized by find-
ing stable points of interest (Pols) across multiple image scales that capture image dis-
continuities. We are interested in characterizing an image in order to capture any incon-
sistencies/discontinuities it might have (e.g., blood vessels) in order to classify it.

To build a visual dictionary and define whether a specific retinal image has enough
quality, training images tagged as having quality (no blur) by a medical specialist as well
as images associated with blurring are required. After collecting the training images, the
next step consists of finding the points of interest in all training images. To detect the
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points, we use the Speeded Up Robust Features (SURF) [10] as it is a good feature detector
with reasonable speed.

From the points of interest representing the images with quality as well as blurred
images during training, we randomly select a set of Pols for each group. At this stage, the
number of Pols (k) to be retained as representative of the quality or non-quality images
is decided. We find the k/2 points of interest associated with a high-quality image and
repeat the process to find the k/2 points associated with images with blurring. We refer
to these k points of interest as a visual dictionary. Note that this is different from other
approaches in the literature (e.g., [78, 25]) which normally find a global unique dictionary
and not one per class. In our experience, class-aware dictionaries are more appropriate
for retinal images. The class-aware treatment is explained in detail in Chapter 4

In order to use any machine learning method, the next step is to map the Pols within
each image to the most representative points in the dictionary. For each image, we
associate each one of its Pols to the closest word in the dictionary using Fuclidean distance.
In the end, each training image is represented by a histogram of £ bins which counts the
number of times each Pol in the image was mapped to that word in the dictionary. We
used such histogram as the image’s feature vector. During testing, the process is simple:
we extract the points of interest of the test image and map its Pols to the dictionary
creating its k& dimensional feature vector.

Determining the optimal number of clusters for any given set is still an open prob-
lem and is therefore best determined empirically. In our experiments, we evaluated the
performance of the visual dictionary descriptor with & = 30, 50, 70, 100 and 150. We
avoided bigger dictionaries in order to keep the classification process fast and accurate.
The visual dictionary approach is described in detail in Chapter 4.

Blurring, Sharpening, Blurring 4 Sharpening descriptors We propose a varia-
tion of the traditional method widely employed in the literature to quantify the visibility of
errors: full-reference method for assessment of quality [86]. In our variation, the reference
image is not defined previously, but each image under analysis is elected as a reference
and compared to progressive transformations of itself.

For the blurring descriptor, we progressively blur the input image with different in-
tensities and measure how much the image can lose the discontinuities that characterize
the blood vessels. It is expected that an image with poor quality be more similar to
its transformed version than a good-quality image in comparison with its transformed
version.

For the sharpening descriptor, we employ different sharpening filters that enhance
edges and provide higher similarity values for good-quality images than for blurred images.
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The sharpening filter is a simple sharpening operator which enhances edges (and other
high frequency components in an image) via a procedure which subtracts a smoothed
version of an image from the input image.

To explore simultaneously the two features, we investigated a Blurring + Sharpening
descriptor to represent retinal images.

Each input retinal image is considered as a reference image and is compared with
its filtered images. For that, we define a filter-bank as a set of rotationally symmetric
Gaussian lowpass filters G, (i,7). The set comprises 12 filters with kernel sizes kg X ki
where k, € {3,5, 7}, and standard deviations o € {0.5,1.5,3.0,4.5}.

For the blurring descriptor, each resulting image f? (x,y) is a filtered version of

mooth

the original image f(z,y), denoted as
ks
Fimoon(@,9) =D Go(i, ) fx + 1,y + j) (2.1)
2

For the sharpening descriptor, each resulting image fsihm(x, y) is calculated as

fsiharp(x7y) = f(x7y) + )\(f(sc,y) - fsimooth<x7y)) (22>

where ) is a scaling constant € [0.0,1.0]. Here, we fixed the constant, A = 0.7 without
any further analysis.

For each retinal image, we measured the similarity between the input image f(x,y)
(considered as reference) and each response image f*(x,y) blurred or sharpened according
to the descriptor of interest. We calculated the similarity sim(f(x,y), f*(x,y)) using three
different metrics:

e SSIM: the structural similarity index between two images can be viewed as a quality
measure of one of the images being compared, provided the other image is regarded
as of good quality. We calculated SSIM for 11 x 11 windows centered on every pixel.
The result is a matrix with the same dimensions as the compared images. We report
the final similarity value as the average of such matrix. The SSIM (R, S) where R
and S are two 11 x 11 windows centered on a pixel (x,y) is given by

SSIM(R, S) = (2MRM5+01)(20'RS—|-02) X (23)
V/[(1h + 1 + 1) (0h + 05 + )]

where pup and pg are the average of R and S regions, 0% and 0% their variances,

ors their covariance, ¢; and ¢y are two variables to stabilize the division with weak
denominator. These variables depend upon two constants & < 1 (k; = 0.01 and
ks = 0.03) and the image’s dynamic range L which is 255 in our case. The final
values, for ¢ = (k * L)?, are: ¢; = 6.5 and ¢y = 58.5.
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e SSD: the sum of squared differences is calculated by subtracting pixels between the
reference image f(z,y) and the target image fi(x,y). The differences are squared.

SSD(f(x,y), f'(x,y MN Z vy) = iy (24)

where M and N are the number of rows and columns.

e NCC: the normalized cross correlation is defined as

NCC(f(ay), Fila,y)) v )/ (@.y)

NZ\/fxy 2/ fi(z,y)?

where M and N are the number of rows and columns.

(2.5)

For each image, the blurring and the sharpening descriptors have feature vectors with
108 similarity measures: 12 gaussian filters x 3 metrics of similarity x 3 color channels
(RGB). The blurring + sharpening descriptor is the concatenation of the feature vectors
extracted by the blurring and the sharpening descriptors leading to a 216-d feature vector.

2.4.2 Learning

In the end, for each retinal image, we have a set of five feature vectors considering the area
descriptor, visual dictionary descriptor, blurring and sharpening descriptors and their con-
catenation. The final classification procedure is performed using the SVM algorithm [16].

We train the classifier with feature vectors calculated from training images containing
positive (images tagged by a medical specialist as good quality) and negative (images
tagged by a medical specialist as containing blur) examples. When training the SVM,
we use “grid search” for fine tuning the SVM parameters based only on the training
examples [16].

2.4.3 Fusion

It is possible that a series of complementary classifiers are more suited to accurately
assess the quality of retinal images operating over several instances observed in the two
classes of images. For example, analyzing not only one characteristic, but a series as the
area occupied by visible blood vessels, the distributions of positive/negative visual words,
similarities with blurred images and similarities with sharpened images provides a higher
probability of correctly evaluating any retinal image from any camera.

We evaluated two approaches for fusion: at feature-level combining the feature vectors
directly by concatenation and at classifier level by creating a Meta-SVM classifier (or meta-
classification) trained over the outputs of individual classifiers, in this case, the marginal
distances to the decision hyperplane produced by the SVMs.



18Chapter 2. Retinal Image Quality Analysis for Automatic Diabetic Retinopathy Detection

2.5 Experiments and validation

This section shows the results for evaluating the quality of an image with respect to field
definition and blurring artifacts as an effective pre-processing before using any classifier
for detecting diabetic retinopathy lesions.

There are many metrics to measure the success of a detection/classification algorithm.
For the purposes of this project, we are interested in per image metrics, such as sensitivity
(number of images tagged as having enough quality over the total number of images with
quality), and specificity (number of images tagged as blurred over the total number of
blurred images). However, for quantifying the performance of the proposed methods, we
calculated the area under the receiver operating characteristic curve (ROC). The area
under the curve (AUC) is an accuracy measurement that explores how well the classifier
is based on its ROC curve. An AUC of 100% represents a perfect test while an area of
50% represents a worthless test.

We organized the experiments in four rounds:

e Round #1 — Single results for field definition. Field definition approach
using single classifiers. We performed all tests on single datasets using 5-fold cross-
validation.

e Round #2 — Cross-dataset results for field definition. Cross-dataset ap-
proach, in which we trained the field definition classifiers in one dataset and test
in another. We evaluated the ability of the field definition system to operate over
images from different acquisition conditions.

e Round #3 — Single results for blur detection. Blur classification using single
classifiers. We also evaluated fusion methods to check if they improved the classifica-
tion results. We performed all tests on single datasets using 5-fold cross-validation.

e Round #4 — Cross-dataset results for blur detection. Cross-dataset ap-
proach, in which we trained the blur classifiers in one dataset and tested in another.
We evaluated the ability of the blur classifiers to operate over images from different
acquisition conditions.

In the 5-fold cross-validation protocol, we split the dataset into five parts, train with
four parts and test on the fifth, repeating the process five times each time changing the
training and testing sets.

2.5.1 Datasets

We performed the experiments for quality analysis using the DR1 and DR2 datasets
annotated by medical specialists.



2.5. Experiments and validation 19

The DR1 dataset is from the ophthalmology department of Federal University of Sao
Paulo (Unifesp), collected during 2010. It comprises 5,776 images with an average reso-
lution of 640 x 480 pixels. 1,300 images have good quality (do not contain blur and are
correctly centered on the macula), 1,392 represent poor quality (blur) and 3,084 are diag-
nosed as images of the periphery (not centered on the macula). Three medical specialists
manually annotated all of the images. The images were captured using a TRC-50X (Top-
con Inc., Tokyo, Japan) mydriatic camera with maximum resolution of one megapixel and
a field of view of 45 degrees.

The DR2 dataset is from the same ophthalmology department, collected during 2011.
One medical specialist graded the images. DR2 comprises 920 12.2MP images decimated
to 867 x 575 for speed purposes and containing 260 images not centered on the macula
(146 centered on the optic disc and 114 not centered on any interesting region) and 660
images centered on the macula (466 good and 194 low quality). The images were captured
using a TRC-NWS retinographer with a Nikon D90 camera.

For more details and for downloading the datasets, please refer to http://www.recod.
ic.unicamp.br/site/asdr.

2.5.2 Round #1: Single Results for Field Definition

Here, we explore the measures of structural similarity in order to create a classifier able
to analyze a retinal image and evaluate if it comprises the correct portion for diabetic
retinopathy screening (centered on the macula).

We performed four experiments for field definition. In the first experiment, the images
were analyzed in grayscale. The second experiment also was performed with the images
in grayscale, but after an adaptive histogram equalization (CLAHE). Next, we considered
the case of color images with and without histogram equalization.

For all experiments of field definition, we used 40 reference images. All of them were
not considered further for training nor for testing.

Fig. 2.3 and Fig. 2.4 depict the ROC curves for the field definition approach using
5-fold cross-validation protocol of the DR1 and DR2 datasets, respectively.

As we can observe in Fig. 2.4, the method achieves reasonably successful results for
field definition. The experiments using the DR2 dataset present even better results.
The experiment with color images considering histogram equalization provides the best
result, but this result in not statistically different to the others in DR2. However, in the
experiments using the DR1 dataset (Fig. 2.3), that comprises a larger quantity of images
(1,300 positives and 3,084 negatives), we can note a great difference of AUCs between
the different techniques. The method that uses the color images without requiring an
adaptive histogram equalization is the highlight.
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Figure 2.3: DR1 field definition using 5-fold cross-validation.

As mentioned, there is not a considerable difference between the experiments with and
without adaptive histogram equalization using the DR2 dataset. The reason is that the
images from DR2 present small variations in illumination. The images from DR1 dataset
exhibit a high variation of illumination making the CLAHE insufficient to distinguish
them and improve classification.

2.5.3 Round #2: Cross-dataset Results for Field Definition

Conventional detectors usually build a classifier from labeled examples and assume the
testing samples are generated from the same distribution. When a new dataset has a
different distribution from the training dataset (e.g., different acquisition conditions), the
performance may not be as expected.

In this round, we validated the field definition approaches considering the problem
of cross-dataset field definition testing, which aims at generalizing field definition models
built from a source dataset to a target dataset. We refer the DR1 as the source dataset
(training), and the DR2 as the target dataset (testing). We emphasize that the two
datasets were collected in very different environments with different cameras, at least one
year apart and in different hospitals.
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Figure 2.4: DR2 field definition using 5-fold cross-validation.
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Table 2.1: Field definition: AUC for the experiments.

Method DR1 DR2 Cross
Grayscale 87.6%+0.7% | 95.5%+1.3% | 84.7%
Grayscale (CLAHE) | 81.6%+0.6% | 95.9%+1.2% | 83.2%
RGB 92.5%40.7% | 95.5%+1.1% | 75.5%
RGB (CLAHE) 90.6%+0.9% | 96.0%+0.8% | 75.6%
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For this round, we trained the classifiers with DR1 dataset (3,064 images located on
the periphery of the retina, 1,280 images centered on the macula and 40 images removed
and used as reference), and tested with DR2 dataset (260 images not centered on the

Y

interest region and 660 images centered on the macular region).

Fig. 2.5 presents the ROC curves achieved by the method under the cross-dataset

validation.

As discussed in the previous section, the high variation of the illumination in DR1 in

comparison with DR2 makes the histogram equalization technique unable to improve the
results. Table 2.1 summarizes the results for field definition for the single and cross-dataset

tests.
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Figure 2.5: Cross-dataset validation for field definition using DR1 as training and DR2
as testing sets.

Comparison with State of the Art

In a previous work, Fleming et al. [29] introduced the first automatic field definition
study. The authors obtained 95.3% for sensitivity and 96.4% for specificity. Our results
for field definition are somewhat comparable to the previous results (96% AUC, and 93%
sensitivity and 92% specificity using DR2 and RGB-CLAHE). However, Fleming at al.
used a different dataset with 1,039 retinal images and did not evaluate the algorithms in
a cross-dataset scenario.

2.5.4 Round #3: Single Results for Blur Detection

In the third round, we performed experiments to verify the descriptors and classifiers to
separate good-quality images from blurred ones. We explored several descriptors, each one
trying to take full advantage of the differences observed between poor and good-quality
images, aimed at providing a series of blur classifiers. In this experiment, we developed
classifiers that work in parallel, assuming competitive operation and contributing equally
to the final decision.
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Fig. 2.6 and Fig. 2.7 depict the results for DR1 and DR2 datasets.

1.0 T
0.9 e gl
0.8 j
0.7 :
5. 0.6 :
e .
2 :
- .
205 ;
c .
% :
0.4 3
O.3pgf Fririe ¥—¥ Area descriptor (A) (AUC = 83.9%)
A—A 150 visual words (B) (AUC = 90.3%)
0.2 i < Blurring descriptor (C) (AUC = 87.6%)
! > Sharpening descriptor (D) (AUC = 88.8%)
0.1 by i ¥—r Blurring and Sharpening descriptor (E) (AUC = 89.0%) |
G Fusion by concatenation (A, B, C, D and E) (AUC = 90.8%)
+~—  Meta-SVM fusion (A, B, C, D and E) (AUC = 90.7%)

1 1 T T T T T
0'8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 - Specificity

Figure 2.6: DR1 blur classification using 5-fold cross-validation.

Table 2.2 summarizes the results. The ROC curves as well as the areas under the
curves reflect that interesting results are obtained for blur classification. We observe in
the table that, for single classifiers, the best result using the DR1 dataset was achieved
by the visual words approach (a dictionary size of 150 words was previously defined as
the best number of words for the dictionary and not shown here). For the DR2 dataset,
the visual words approach also presents good results but are outperformed by classifiers
trained with the blurring and sharpening descriptors. The blurring, sharpening and the
blurring + sharpening descriptors provide acceptable results in both datasets.

As expected, the more exciting results were provided by the fusion methods. As
discussed before, exploring not only one evidence of incoherence, but several complemen-
tary information of poor and good-quality images, gives more chances of obtaining better
results. In our case, the ensemble method that uses only the concatenation of the fea-
ture vectors provides the highest result for DR1 (AUC = 90.8%), followed closely by the
Meta-SVM fusion method (AUC = 90.7%).

Here, it is important to emphasize that the ensemble by concatenation operates on
large feature vectors making the method highly sensitive to the curse of dimensionality,
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Figure 2.7: DR2 blur classification using 5-fold cross-validation

and presents limitations for classification for specific classifiers and specific machines [72].
In addition, it is often necessary to deal with complicated normalization techniques to
put different features in the same domain [72]. Conversely, the Meta-SVM fusion method
is less subject to such limitations, since it only adds a new level of classification on a
response vector composed of five classification scores (distances to the decision hyperplane)
provided by the individual classifiers.

For the DR2 dataset, the highest AUC was obtained with a large difference using
the Meta-SVM fusion method (AUC = 95.5%), followed by the fusion by concatenation
technique (AUC = 93.4%).

2.5.5 Round #4: Cross-dataset Results for Blur Detection

The last round of experiments explored the cross-dataset validation to evaluate how the
classifier models built from a source dataset (DR1) to a target dataset (DR2) generalize.

For this round, we trained the classifiers with DR1 (1,392 images with poor quality
and 1,300 images with good quality) and tested the classifiers with DR2 dataset (194
retinal images with enough quality and 660 images with no quality). Fig. 2.8 depicts the
resulting ROC curves.
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Table 2.2: Blur Detection: AUC for the experiments.

Descriptor/Fusion DR1 DR2 Cross
Area 83.9%+2.4% 87.2%+2.6% 87.1%
Visual words 90.3%+1.2% | 90.3%+2.3% | 85.6%
Blurring 87.6%+1.3% 90.3%+2.6% 60.8%
Sharpening 88.8%+1.4% 90.4%+3.9% 83.9%
Blurring and Sharpening 89.0%+0.9% | 90.2%+3.0% | 69.0%
Fusion by Concatenation | 90.8%+0.9% | 93.5%+1.4% | 87.0%
Fusion by Meta-SVM 90.7%+2.3% | 95.5%+1.6% | 87.6%
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Observing the AUCs in Fig. 2.8 and summarized in Table 2.2, we note that the visual
words descriptor presents satisfactory results using the cross-dataset protocol. However,
the simple area descriptor is the highlight in this experiment, showing that the density of
blood vessels may be considered as an acceptable approach to assess the quality of retinal
images.

Fortunately, with this experiment we can show the importance of a cross-dataset
validation protocol. Although the blurring descriptor showed interesting results in the
validation with single datasets, here it failed along with blurring 4+ sharpening combina-
tion. With them, a large number of images from the DR2 dataset was classified at the
same distance to the SVM decision hyperplane. This fact happens because the DR1 has
greater contrast and illumination variation than DR2 dataset and, therefore, the descrip-
tions of the DR2 match to approximate scores given by a classifier trained with DR1.
Consequently, a small amount of operating points are available, as we can see in Fig. 2.8.
This effect might be reverted using image normalization techniques more complex than
CLAHE but we did not investigate this in this chapter.

As we expected, detector fusion with the Meta-SVM method provides the best AUC
with the caveat that in this analysis the Meta-SVM results are not statistically better
than the single classifier using the single area descriptor.

Comparison with State of the Art

Our results are comparable to several prior results. The approach proposed by Niemei-
jer et. al. [54] and explained in Sec. 2.2 provided an AUC of 99.6% operating over a
dataset comprising 1,000 images. Davis et. al. [20] achieved a sensitivity of 100.0% and
a specificity of 96.0% using a dataset comprising 2,000 images. However, no conclusion
can be drawed observing only the final results, since we must consider that the datasets
are different (camera model, acquisition conditions) and the methodologies employed are
distinct. We emphasize that only one dataset is not enough as a validation protocol for a
reliable system.
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Figure 2.8: Cross-dataset validation for blur classification using DR1 as training and DR2
as testing sets.

2.6 Final Remarks

The assessment of diabetic retinal image quality presented in this chapter shows promising
results. Several studies have obtained satisfactory results for image quality verification
in the literature. However, these have only focused on image quality as a generalized
approach and have not paid attention to field definition, which is one crucial factor for an
effective automatic screening of diabetic retinopathy. In addition, cross-dataset validation
is hardly performed.

In the approach we discuss in this chapter, image quality was defined by two aspects:
field definition and blur analysis. For field definition, we proposed the use of structural
similarity measures to evaluate the quality of retinal images. We obtained an AUC of
96.0% using color images and the DR2 dataset.

For blur analysis, we explored several descriptors, each one taking full advantage of
the specific variations between poor and good-quality images. Furthermore, we aimed at
providing a series of blur classifiers that work in parallel, assuming competitive opera-
tions and contributing equally to the final decision. We also evaluated the use of fusion
techniques and the best result was reached with the Meta-SVM fusion method (AUC =
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95.5% on DR2 dataset).

With the proposed methods for assessment of diabetic retinal images, it is possible to
devise and deploy a system capable of robustly identifying images with low quality and,
afterwards, discard them. A retinal camera equipped with quality assessment methods
would be adequate to analyze eye-fundus images taken in real-time, preventing misdiag-
nosis and posterior retake.






Chapter 3

Quality Control and Multi-lesion
Detection in Automated
Retinopathy Classification

In this chapter, we present another approach employed in this work for quality assess-
ment. The methods employed herein resulted in the publication [40]. Although the paper
also involves the detection of DR-related lesions, this chapter is limited to the quality
evaluation.

3.1 Preamble

Machine learning methods and automated data mining are important for health informat-
ics and have been actively investigated in automated classification of disease, including
diabetic retinopathy [32, 35, 17, 79, 69]. Quality control is an important part of auto-
mated image analysis [28, 65] as is the detection of multiple lesions in images of different
resolutions and ethnic background. This requires algorithms that unify image quality as-
sessment and do not require preprocessing for each type of lesion separately, have a high
accuracy for each type of lesion and, if possible, improve the classification when lesion
types are combined in the classification framework. In this context, we have previously
shown that visual word dictionaries have good accuracy with training of the classifier on
different images to the test images and no preprocessing of the test images used in the
research [42]. This chapter describes further developments using visual word dictionaries
by considering a means of identifying poor quality images.

The rest of the chapter is organized as follows. Section 3.2 presents our method of
visual word dictionaries adapted to determine the quality of an input image. Section 3.3
presents the results for the proposed approach in terms of image quality analysis. Finally,

29
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Section 3.4 concludes the chapter

3.2 Proposed Methodology

The contribution of this chapter is the proposal of the adaptation of the visual words
dictionary methodology to classify whether or not an input image meets the quality
standard required for automatic assessment. Although image quality analysis can have
innumerable ramifications before arbitrating on the quality of an image, in this chapter
we focus on a very common problem during image acquisition: blurring.

3.2.1 Quality selection

Among all types of problems associated with the image acquisition process, one of par-
ticular interest is the detection of blurred images. This chapter focuses on classifying the
quality of an image based on blurring.

For this intent, the general visual words methodology, which was explained in Chap-
ter 2 and whose formal definition is given in Chapter 4, needs to be adapted in order to
capture an important particularity for retinal images: high-frequency information is more
pronounced in the border regions associated with the venous branching pattern.

To capture the behavior such as blurring, the edge map of each training image is first
calculated using the Canny algorithm [36]. Next, the representative patches for the image
are centered using the edge map. Fifty non-overlapping patches (each one with 50x50
pixels) in the edge map are centered in order to capture the differences of such regions.
We analyzed several sizes and quantity of patches and noted that 50 patches of 50x50
pixels were satisfactory to cover the edges of the blood vessels. The use of patches is the
notable difference with respect to the general methodology described in Chapter 2. SURF
is therefore not used directly on the image, rather it is directed to regions on the edge
map that are more important to differentiate blur and non-blur artifacts, namely regions
with edges.

After calculating the points of interest within the selected 50 regions, the most rep-
resentative Pols have to be found for each training image. For that, K-Means clustering
algorithm is applied to select a specialized visual dictionary for image quality analysis.
In this case, it is selected k/2 regions that represent good quality images and k/2 regions
for low quality images. Fig. 3.1 depicts an example of a retinal image and its Canny edge
map with the 50 patches centered on the localized edges. After generating each image
feature vector, it is normalized using the traditional term-frequency (divide the entries by
total sum of the bins).
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Figure 3.1: Input image with its Canny edge map as well as the 50 50x50-selected image
regions centered on the edges (small squared regions) and the calculated SURF Pols
within each region (green circles), followed by a highlighted patch.

3.3 Results

This section shows the results for evaluating the quality of an image for automatic screen-
ing. All the experiments reported herein consider a 5-fold cross-validation protocol in
which the data set is divided into five parts, train with four parts and test on the fifth,
repeating the process five times each time changing the training and test sets.

3.3.1 Dataset

The experiments were conducted on the DR2 dataset from the Ophthalmology Depart-
ment of the Federal University of Sao Paulo for which we have quality assessment grading
performed by one medical specialist. DR2 comprises 660 12.2MP images decimated to
867 for speed purposes divided into 466 good and 194 low quality images captured using a
TRC-NWS8 mydriatic camera with a D90 camera for image capture. For more details and
for downloading the data set, please refer to http://www.recod.ic.unicamp.br/site/
asdr.
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3.3.2 Image Quality

Fig. 3.2 depicts the results for image quality analysis. In this case, a good-quality im-
age is one with no blurring. Note that the dictionary needs 70 words for a reasonable
performance resulting in an AUC of 87.4%, in this case. For a dictionary with 30 words,
the AUC is 86.4% while for 50 words the AUC is 85.7% and for 100 it is 81.1%. These
are promising results, considering that this was a first attempt for solving image quality
assessment, and that explores only one approach.
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Figure 3.2: Image quality analysis considering 50, 50x50-regions per image from DR2
data set and various dictionary (most representative regions) sizes.

Table 3.1 shows, for comparison purposes, more recent experiments previously pre-
sented in Chapter 2. The column brought to this chapter presents the results achieved
with the same dataset and validation protocol. We can observe that extraction of local
features in patches on edge maps outperforms only the experiment with Area descriptor.
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Table 3.1: Blur Detection: AUC for more recent experiments.

Descriptor/Fusion DR2
Area 87.2%+2.6%
Visual words 90.3%+2.3%
Blurring 90.3%42.6%
Sharpening 90.4%+3.9%

Blurring and Sharpening 90.2%+3.0%
Fusion by Concatenation | 93.5%+1.4%
Fusion by Meta-SVM 95.5%+1.6%

3.4 Final Remarks

Many feature descriptors have been proposed in the literature for problems like copy
detection [83] or object localization [77], for example: Gaussian derivatives [31], complex
features [9], SIFT [48], and SURF [10]. Such methods need to capture sufficient image
details, whilst being robust to small deformations or localization errors [10]. Using the
Hessian approximation within the visual word dictionary framework is comparable to and,
in some instances, better than current state-of-the-art interest point detectors. SURF’s
advantage relies on its robustness against rotation, scale change, image noise, change
in brightness across the image and change of view being suitable for adaptation for a
classification framework instead of its usual image matching form.

The extraction of local features in regions associated with the venous branching pat-
tern yielded promising results for analyzing retinal image quality. However, more recent
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