
Alessandra da Silva Gomes

“Web Metalaboratory”

“Meta-Laboratório na Web”

CAMPINAS

2013

i

ii

Institute of Computing /Instituto de Computação

University of Campinas /Universidade Estadual de Campinas

Web Metalaboratory

Alessandra da Silva Gomes1

June 28, 2013

Examiner Board/Banca Examinadora:

• Prof. Dr. André Santanchè (Supervisor/Orientador)

• Prof. Dr. Ariadne Maria Brito Rizzoni Carvalho

Institute of Computing - UNICAMP

• Prof. Dr. Cećılia Mary Fischer Rubira

Institute of Computing - UNICAMP

• Prof. Dr. César Augusto Camillo Teixeira

Department of Computing - UFSCAR

• Prof Dr. Marco Aurélio Gerosa

Math and Statistics Institute - USP

1Financial support: CAPES scholarship (process 01-P-01965-2012 2 - 1) 2011–2012

vii

Abstract

The amount of scientific data, services and on-line tools available on the Web offer an

unprecedented opportunity to conceive new kinds of laboratories blending resources. Ex-

isting experimental and collected data can substantiate asynchronous laboratories. Com-

bined with mashup enabled software, it is possible to produce hybrid laboratories to

confront, for example, synthetic simulations with observations. This work addresses this

opportunity in the Education context through our metalaboratory, an authoring environ-

ment to produce laboratories by combining building blocks encapsulated in components.

We introduce here the lab composition patterns and the active Web templates as funda-

mental mechanisms to support a lab authoring task. These laboratories can be embedded

and mashed-up in Web documents. This work shows practical experiments of producing

Web virtual and hybrid laboratories.

ix

Resumo

Os dados cient́ıficos, serviços e ferramentas on-line dispońıveis na Web oferecem oportu-

nidades sem precedentes de conceber nos tipos de laboratório mixando recursos. Dados

experimentais e coletados podem substanciar laboratórios asśıncronos. Combinados com

software apto a mashup, é posśıvel produzir laboratórios h́ıbridos para confrontar, por

exemplo, simulações sintéticas com observações. Este trabalho explora esta oportunidade

no contexto da Educação através do nosso meta-laboratório, um ambiente de autoria

para produzir laboratórios pela combinação de blocos de construção encapsulados em

componentes. Introduzimos aqui os padrões de composição de laboratórios e os templates

ativos para Web como mecanismos fundamentais para dar suporte à tarefa de autoria

de laboratórios. Os laboratórios podem ser embutidos e mixados em documentos Web.

Este trabalho mostra experimentos práticos da produção de laboratórios Web virtuais e

h́ıbridos.

xi

Acknowledgements

I would like to thank my advisor, Dr. André Santanchè, for the orientation, patience and

example of a teacher and researcher. I also want to thank him for encouraging me to

realize this work.

To my mother Marilene, sister Dayane, brother Alessandro and nephew Pedro, for

all the love, long talks and for being by my side along this journey. All their emotional

support was fundamental to me.

To my friends, for always listening and encouraging me. For all the laughter, company,

and for helping me to see life in different ways, making me a better person. To my

LIS friends, for the example of dedication, knowledge sharing and for all the criticism,

suggestions and compliments.

To all the teachers of the Institute of Computing for enriching my knowledge in Com-

puter Science and to the employers for always helping me.

To the committee members, for the suggestions and improvements, making this a

better work.

I would like to thank the financial support from Brazilian agencies. In particular,

CAPES (01-P-01965-2012 2 - 1), the Microsoft Research FAPESP Virtual Institute (NavS-

cales project), CNPq (MuZOO Project and PRONEX-FAPESP) and INCT in Web Sci-

ence (CNPq 557.128/2009-9), as well as individual grants from CNPq.

xiii

Contents

Abstract ix

Resumo xi

Acknowledgements xiii

1 Introduction and Motivation 1

1.1 A Brief History . 2

1.2 Main Goal and Contributions . 4

1.3 Specific Goals . 4

1.4 Dissertation Structure . 4

2 Web Metalaboratory: Composition of Laboratories on the Web 7

2.1 Introduction and Motivation . 7

2.2 Related Work . 8

2.2.1 Laboratories and Metalaboratories 8

2.2.2 Mashups on the Web . 10

2.2.3 Componere . 11

2.3 Web Metalaboratory . 12

2.3.1 Metalaboratory / Laboratory Web Components Family 13

2.3.2 Laboratory Composition Patterns 15

2.3.3 Active Web Templates . 15

2.4 Conclusion . 17

3 Autoria Virtual Baseada em Dados do Mundo Real 18

3.1 Introdução . 18

3.2 Arquitetura . 19

3.2.1 Acesso e entrega de dados de sensores 20

3.2.2 Autoria . 20

3.3 Implementação e Experimento . 21

xv

3.3.1 Experimento . 21

3.3.2 Software Intermediário . 22

3.3.3 Integração no Componere . 22

3.4 Conclusões . 23

3.5 Acknowledgments . 24

4 Web-Based Virtual Lab for Taxonomic Description 25

4.1 Introduction . 25

4.2 Taxonomic Description Model . 26

4.3 Implementation . 30

4.3.1 Construction of Lizard Components 30

4.3.2 The Laboratory on Componere . 30

4.4 Related Work . 32

4.5 Conclusions . 32

4.6 Acknowledgments . 33

5 Metalaboratory Technical Aspects 34

5.1 Introduction and Motivation . 34

5.2 Related Work . 35

5.2.1 Laboratories and Metalaboratories 35

5.2.2 Componere . 36

5.3 The Metalaboratory Proposal . 37

5.3.1 Metalaboratory / Laboratory Web Components Family 37

5.3.2 Laboratory Composition Patterns 51

5.3.3 Active Web Templates . 53

5.3.4 Authoring Laboratories . 57

5.4 Conclusion and Future Work . 63

6 Conclusion 64

6.1 Contributions . 64

6.2 Extensions . 65

Bibliography 66

A Description of Metalaboratory Components Classes 70

xvii

List of Tables

4.1 Easy-to-see Descriptors . 26

5.1 Metalaboratory Component Interfaces . 40

5.2 Group 1 – Laboratory Role . 43

5.3 Group 2 – MVC . 43

5.4 Componere/Microformats specification to represent DCC compositions. . . 54

A.1 Description of Metalaboratory Component Classes 70

xix

List of Figures

2.1 Graphical representation of Componere [35] 11

2.2 Composition schema of the damped pendulum lab 13

2.3 Classes of the damped pendulum lab components 13

2.4 Behaviour Reproducer / Simulator Lab Pattern 15

2.5 Metalaboratory Template . 16

3.1 Arquitetura da ferramenta desenvolvida . 19

3.2 Kit utilizado para a execução do experimento 22

3.3 Composição do Experimento . 23

4.1 A Fragment of a SDD file of Varanus Lizards 27

4.2 The Structure of Lizard SDD Base . 28

4.3 The Creation of Lizard Components and Composition Process 29

4.4 The Component Classification for the Lizard Lab 29

4.5 The Model of the Lizard Lab . 31

5.1 Graphical representation of Componere [36] 37

5.2 Basic Structure of a Laboratory Component 39

5.3 Visual Structure of a Laboratory Component 39

5.4 The Metalaboratory Class Diagram . 40

5.5 Metalaboratory Class Diagram - Main Part 42

5.6 Metalaboratory Class Diagram - Visual Support 44

5.7 Metalaboratory Class Diagram - Visual Real World Object 46

5.8 Metalaboratory Class Diagram - Visual Instrument 48

5.9 Metalaboratory Class Diagram - Environment 50

5.10 Composition to simulate a pendulum . 51

5.11 Composition to reproduce a pendulum movement 51

5.12 Behaviour Reproducer / Simulator Lab Pattern 52

5.13 Synchronization Pattern . 52

5.14 Switch / Timer Composition . 53

5.15 Metalaboratory Template . 56

xxi

5.16 Metalaboratory State Machine Diagram 57

5.17 Metalaboratory Workspace Schema . 58

5.18 Metalaboratory Workspace Basic Components 59

5.19 Metalaboratory Workspace Basic Components - Group 1 59

5.20 Metalaboratory Workspace Basic Components - Group 2 60

5.21 Presentation State Activity Diagram . 62

xxiii

Chapter 1

Introduction and Motivation

A scientific method can be seen as an analysis / synthesis cycle. The analysis comprises a

method to observe phenomena in the real world, may involve experiments and results in a

description or model to represent it, which is the beginning of the synthesis. The process

becomes cyclic, since the model, which describes the world, will usually be confronted

with the observations in the world.

There is a set of specialized tools that support the analysis and synthesis stages. In

the analysis side, hardware and software allow to capture data about a phenomenon in the

real world – such as sensors controlled by actuators – and software to send this information

to be analysed by a computer. In the synthesis side, there is specialized software to build,

describe and execute models, such as mathematical modelling or simulation software.

Our research led us to conclude that tools to support analysis tasks are conceived

apart from those for synthesis. However, researches usually need to confront results and

verify if a model is in accordance with a respective observed phenomenon in the real world.

This segmentation of tools makes difficult the integration and comparison of results. This

is the main motivation of this work. We propose an approach that offers the opportu-

nity of confronting analysis and synthesis results through a Web laboratory perspective.

This possibility was once idealized by Cramer and De Meyer [10], who proposed a hy-

brid environment where students have an opportunity of comparison between theory and

experiments, learning how to apply a scientific method to study a phenomenon.

Our research focus in the Education context. Laboratories are essential to evolve

scientific knowledge, but the acquisition of instruments and the maintenance of real lab-

oratories for analysis can be very expensive. Two alternatives are shared: remote or

asynchronous Web laboratories. Asynchronous labs is a notion we propose here, of a lab

which exploits stored (asynchronous) data shared on the Web of experimental and col-

lected data. The synthesis tools, on the other hand, can assume the form of virtual Web

laboratories, also supporting experiments likewise, but built over abstract models. The

1

1.1. A Brief History 2

confront can occur, for example, when remote / asynchronous and virtual experiments

are executed side-by-side in the same environment.

Since labs may vary in configuration, across domains and specializations, we propose

in this work to extend the notion of authoring, enabling users to create customized labs,

by combining primitive building blocks. This is the essence of our metalaboratory.

Our metalaboratory was developed over Componere, a Web environment based on

components aimed at authoring compositions over Web browsers [36]. By handling and

combining visual software components, users can compose laboratories using the meta-

laboratory components primitives through direct manipulation. Working over the Web

makes it possible to embed different types of resources and services inside components,

to be combinable building blocks during the laboratory construction.

1.1 A Brief History

Started by our metalaboratory research idea of enriching multimedia authoring using data

captured from the real world. Since sensors and educational kits as Arduino [32] became

more accessible, we exploited them interacting with multimedia artifacts.

Part of this research involved studying a special type of system in the industrial

context: supervisory systems. Their digital control panels can be developed using an

authoring approach based on software components. Supervisory systems or SCADA (Su-

pervisory Control and Data Acquisition) are systems that allow users to collect data and

send instructions to different types of hardware devices [40]. These systems inspired our

approach to built laboratories with the capacity of reproducing an experiment using data

captured from the real world.

We have implemented and validated this initial proposal by building our first labora-

tory, a remote lab to capture and reproduce the motion of a ball in an inclined plane. It

was built using Componere[36]. The motion was based on data captured and stored for

asynchronous use, from an experiment executed in the real world. This work introduced

the idea of an asynchronous laboratory, a special type of remote laboratory based on

stored data coming from external resources in an asynchronous way.

The next step involved building over Componere a second laboratory in a different

domain: biology. It was a virtual lab for taxonomic description of specimens. It was fully

developed with software components and introduced the idea of description components,

a set of components related to descriptive building blocks to be used during the execution

of the laboratory.

These two previous experiences led us to propose a model to gather the common

components used to built laboratories and an environment where these components will

be used to experimentally build laboratories making concrete the Cramer and De Meyer

1.1. A Brief History 3

idea [10]. It resulted in our proposition of the metalaboratory, a laboratory to build

virtual, asynchronous and hybrid laboratories in an experimental way. We have built a

third laboratory to validate the proposal: a hybrid laboratory to reproduce the motion

of a virtual and a real damped pendulums. Data captured from the real pendulum was

asynchronously reproduced.

Our metalaboratory presents three main contributions: a metalaboratory / laboratory

family of components, laboratory composition patterns, and our active Web template

approach. After observing that the process of laboratory authoring involves a common

group of primitive elements, we defined a set of basic components, the metalaboratory

/ laboratory family of components, which is present in every laboratory composition.

During the composition of laboratories, we observed that it is possible to identify different

types of laboratory patterns, formed by a set of components with their respective

connections. The active Web templates capture these patterns and enable reusing

customizable composition structures.

A relevant contribution developed within this work was the asynchronous laboratory

concept. It is based on the principle of storing data captured during the execution of an

a real world experiment and use them to virtually reproduce the experiment – e.g., as an

animation – several times, whenever it is necessary. Our proposal runs over the Web, we

presented a Web asynchronous lab, but the concept can be applied to any type of external

data used in an asynchronous way.

In order to conceive the main elements of an asynchronous lab architecture, we con-

ducted experiments involving the complete cycle: real world setups with artifacts and

sensors were built; data were captured and stored; asynchronous labs were built and

tested based on these data. However, it is important to emphasize that asynchronous

labs can be built over pre-existing data retrieved, for example, from the Web.

Our metalaboratory proposal and respective contributions were based on the experi-

ence of building three laboratories: the asynchronous mobile ball lab [17], the taxonomic

virtual lab [20] and the damped pendulum hybrid lab [19]. This hybrid lab allows to

confront experimental data coming from asynchronous labs with theoretical virtual sim-

ulations enabled by Web tools. As far as we know, this is the first initiative to produce

such a metalaboratory: a laboratory for experimental laboratory authoring, enabling to

combine asynchronous and virtual labs in a Web platform.

As our model is based on the experience of three laboratories of two different domains,

we believe that an extension to different scenarios will enrich the proposal. The proposed

environment offers a set of components to build laboratories. In the present stage, the

environment does not offer support to built new components. This task requires program-

ming skills to access the Componere framework and build new components, turning them

available on the metalaboratory environment.

1.2. Main Goal and Contributions 4

1.2 Main Goal and Contributions

The main goal of this work is to conceive a Web based metalaboratory approach for Web

based laboratories authoring, and to design a metalaboratory environment.

1.3 Specific Goals

• To design and implement a metalaboratory / laboratory family of components, that

systematizes the basic laboratory building blocks.

• To produce laboratory composition patterns, which capture common composition

observed when components are composed to form laboratories.

• To conceive an active Web template approach to built laboratories in a metalabo-

ratory environment, representing a generalization of the structure of a laboratory,

to be used as an authoring method that guides the user during the construction of

laboratories.

• To built a metalaboratory prototype to validate our model. This prototype is a

Web environment to build laboratories through an authoring approach by direct

manipulation. The prototype itself is based on components and was developed over

Componere.

• To validate our proposal by creating practical laboratories by using our metalabo-

ratory.

1.4 Dissertation Structure

The work is formed by a compilation of two published works, a paper submitted for

publication and a technical report. We decided that the chapters will not follow the

chronological order of publishing, as our third paper [19] presents a better overview of the

complete work and will be, therefore, the next chapter.

The papers of Chapters 3 and 4 are practical experiments, which, on one hand, sub-

sidized the Chapter 2, and, on the other hand, can be seen as practical applications.

Chapter 2

Contains the paper Web Metalaboratory: Composition of Laboratories on the

Web. To be submitted.

1.4. Dissertation Structure 5

This Chapter summarizes our complete proposal. It departs from the ideas presented

in Chapter 3 and Chapter 4 to propose a general approach to build laboratories in an

experimental way. To validate our proposal, we developed a hybrid laboratory to describe

the motion of a damped pendulum.

Chapter 3

Contains the paper Autoria Virtual Baseada em Dados do Mundo Real. It was

published in the X Workshop of Tools and Applications (WebMedia - 2011) [17].

This Chapter introduces the Componere Mundi, an extension of Componere to support

compositions based on data captured from hardware devices, like sensors. It represents

our first practical experiment of inserting new types of multimedia composition resources

based on external data.

Chapter 4

Contains the paper Web-Based Virtual Lab for Taxonomic Description. It was

published in the XI Workshop of Tools and Applications (WebMedia - 2012) [20].

This Chapter presents a proposal of a virtual laboratory based on visual components

handled by direct manipulation. In this laboratory is proposed the idea of “description

components”, a new resource that allows authoring during the execution of the composed

artifact. In order to validate our proposal, we have implemented a preliminary prototype

with components to describe and to identify living beings. Based on a system called

Varan-ID, an online determination system for monitor lizards, the virtual laboratory

enables describing and identifying monitor lizards of the genus Varanus.

Chapter 5

Contains the technical report Metalaboratory. It will be published in the Institute of

Computing – UNICAMP, July 2013 [18].

This Chapter presents technical details of the metalaboratory proposal. It presents

the complete metalaboratory model with its components family and detailed descriptions

of Web composition patterns and active Web templates. It also presents a prototype of a

metalaboratory environment and a practical case to validate it, an hybrid laboratory to

describe the motion of an object in an inclined plane.

Chapter 6

Presents the conclusions of this work, our contributions and future work.

1.4. Dissertation Structure 6

Appendix A

Presents the documentation that describes the classes presented in this document.

Chapter 2

Web Metalaboratory: Composition

of Laboratories on the Web

2.1 Introduction and Motivation

While laboratories play a fundamental role in Science, we are facing the emergence of a

new data-intensive paradigm, in which “In almost every laboratory, ’born digital’ data

proliferate” [5]. A deluge of this data is available on the Web, becoming possible to

produce remote asynchronous1 laboratories, settled on existing Web data. Not only data

is available on the Web, but also tools and services, which can be in many cases “mashed-

up”. In this paper we explore this opportunity of producing labs, with its foundations on

the Web on top of the Web, in the Education context.

We categorize resources – i.e., data, tools and services – in two groups according to

their role in the scientific method cycle: analysis and synthesis. The cycle goes from

the observation and experimentation in the real world (analysis) to the proposition and

validation of models that describe them (synthesis).

In the analysis/synthesis cycle, the analysis can include experiments in laboratory

or field observations. The synthesis usually involves models that describe the world,

anchored in examples based on everyday observations. It is possible to go from the

analysis to the synthesis, or vice-versa. There are several scenarios in which researchers

wish to compare collected data (analysis) with results from models (synthesis). This is

interesting, for example, to verify if a model is in accordance with a respective description

of an observed phenomena in the real world. However, tools are segmented, making it

difficult the integration and comparison of results.

Laboratories are essential to evolve the scientific knowledge. On one hand, the acqui-

1The term asynchronous here refers to the fact that data from remote labs are not retrieved as soon
as they were produced, but afterwards from archives – in our case, shared through the Web.

7

2.2. Related Work 8

sition of instruments and the maintenance of real laboratories can be very expensive. On

the other hand, there is enough shared data coming from labs around the world, ready to

be exploited. We consider here Web based laboratories to address this problem in many

respects: remote labs can be shared through the Web; asynchronous remote labs can be

produced on top of experimental and collected data stored and shared through the Web;

online tools and services can be “mashed-up” to support lab operations.

This work explores this potential of the Web as a basis to build laboratories. We

propose a metalaboratory approach that treats Web resources as combinable building

blocks to build Web laboratories. In this way, experimental data coming from remote

(synchronous and asynchronous) labs can be confronted with theoretical virtual simula-

tions enabled by Web tools. As far as we know, this is the first initiative to produce such

a metalaboratory: a laboratory to experimentally authoring another laboratory, enabling

to combine remote and virtual labs in a Web platform.

Moreover, we contribute in this work with two techniques envisaged to support lab

authoring, but which can expanded to other contexts: laboratory composition patterns

and Active Web Templates.

The remaining of the paper is organized as follows: Section 2.2 presents the related

work. Section ?? describes our metalaboratory proposal. Section 6 presents our and

conclusions and future work.

2.2 Related Work

Related work comprises laboratories and metalaboratories (section 2.2.1), mashups (sec-

tion ??) and a framework called Componere (section 2.2.3).

2.2.1 Laboratories and Metalaboratories

Laboratories can be classified into three categories: real, virtual and remote [25][30]. Real

laboratories are the classic one, with physical rooms with real equipment and infrastruc-

ture. By means of sensors, actuators, a communication infrastructure and a controlling

software running in a computer, remote laboratories give access to physical resources of

real laboratories. [12] proposes a remote lab to automate a manufacturing cell through

a Programming Logical Controllers (PLC’s). [4] presents a remote web-based lab that

provides access to real instrumentation to debug and test experiments involving Digital

Signal Processors (DSP) without physical and temporal restrictions.

Virtual laboratories can simulate the physical equipments behaviour and all the in-

frastructure of a real laboratory using computational techniques. They can also replicate

experiments of a real laboratory using graphical interfaces offering interactive simulations.

2.2. Related Work 9

[15] presents a virtual lab for Chemical Vapor Deposition to complement a real labora-

tory in the curriculum of a graduation course improving specific aspects of the theoretic

knowledge. [31] presents the design, implementation and usage of a virtual laboratory for

medical image analysis based on grids.

In general, laboratories are designed to provide specialized functionalities according to

their context. We propose here a decomposition of such functionalities of remote and vir-

tual labs in software primitives encapsulated in combinable components. Laboratories are

designed and implemented as compositions of such components, enabling even to combine

synthesis and analysis tools. The process to build a laboratory becomes experimental,

making the composition tool a laboratory to create laboratories – i.e., a metalaboratory.

The term metalaboratory received different interpretations in related work, making it

difficult to achieve an unified definition. The term is used in [23] to describe a tool for

the composition of technologies and services aimed at teaching chemistry. It is defined

as a cluster of laboratories distributed on the network that shares hardware, software,

and knowledge. In [11] the term is used to define a tool for agent based modelling and

simulation, i.e., a virtual laboratory perspective.

A group of related work adopt the interpretation of metalaboratory as an hybrid

laboratory. [34] proposes a hybrid between remote and virtual laboratory to perform

experiments and to compare the results in the engineering field. [2] presents the TriLab, a

union of the three main types of laboratories, real, virtual and remote. It aims at teaching

how to handle chemical equipment. [3] proposes a hybrid of a virtual and a real laboratory

to teach optics, in which the experiments runs in parallel to enable comparative studies.

As we will further detail, all these initiatives address specific scenarios, contrasting with

our approach, which was designed to be flexible, addressing many contexts.

Cramer and De Meyer [10] introduced the proposal of interacting virtual laborato-

ries with real laboratories to bridge theoretical models and experimental data. They

extend the notion of virtual laboratory in order to embrace what we call here the re-

mote laboratories, i.e., the connection with the real world. According to the authors, the

development of a hybrid environment could provide to the students an opportunity of

comparison between theory and experiments, offering the possibility of learning how to

apply the scientific method to the study of a phenomenon. In 1997, they introduced three

new terms: theory based virtual laboratory, experimentally based virtual laboratory and

hybrid virtual laboratory. The first one, represents the space where the user can explore

the theory of a phenomenon by manipulating parameters of an equation and investigat-

ing the respective consequences. The second one, starts from experimental measurements,

captured and stored in digital form, to be accessed by a user interface. Finally, the third

is defined as the combination of both to provide an environment to compare the theory

against the experiments.

2.2. Related Work 10

We will use the term metalaboratory in this work to refer to a laboratory to build

laboratories. It is aligned with Cramer and De Meyer [10] perspective, as it can be applied

to build hybrid laboratories. In order to achieve flexibility and generality, our approach to

implement the metalaboratory is based on primitives represented as combinable software

components, which can be specialized to a given domain.

2.2.2 Mashups on the Web

The Web increasingly proportionates an environment full of different types of information

and services. While some users produce more content – e.g. videos, slides –, others

want to reuse them in their applications. In this context a powerful reuse technique

named mashup appeared. Mashup can be defined as an interactive Web technique able

to combine resources from several origins. It combines “on the fly” content from different

online data sources to build new services or applications [27]. By “on the fly” we mean

that data come from different sources and are integrated in the client side in the moment

the application is running.

Nevertheless, mashups are not easy to implement. The user needs programming skills

to build them. In order to reach the end-user, mashup editors appeared over the last few

years, with a general goal of empowering end-users to build custom Web applications [44].

The basic principle is to enable non-programmers to create functionally rich applications,

by using pre-defined building blocks for: data sources, application logic and user inter-

face. Some examples are projects like Yahoo Pipes (http://pipes.yahoo.com) and IFTTT

(https://ifttt.com/). Because users can put together and customize their own mashups,

the concept of personal environments to consume content became popular. They usually

take a form of dashboards – e.g., NETVIBES (http://www.netvibes.com/) – in which the

user selects components to: receive news, monitor data like stock market, write and view

notes etc. Each user can organize the position, size and format of mashups.

More specialized solutions for specific domains - e.g., business and Education - have

gained attention. In the business context: the development of the Enterprise Mashup

Markup Language (EMML) by the Open Mashup Alliance - OMA (http://www. open-

mashup.org/); the mashup-based personalized environments [21] and the IBM Mashup

Center (http://www.ibm.com/developerworks/lotus/products/mashups). In the Educa-

tional context, there are several proposals for Mash Up Personal Learning Environments

(MUPPLE) [42]. This scenario involving a high diversity of trends requires a generic back-

ing functionality applicable to the different mashup solutions. Our research contributes

in this sense. It is based on the division of tasks between software developers, creating

new component and adapting mashups to components, and user-authors customizing and

plugging these components, providing an strategy to collaboratively explore skills.

2.2. Related Work 11

Usually, strategies to compose mashups are flow-based, differentiating three kinds of

components: data, application logic and user interface [44]. Our approach, on the other

hand, compose lightweight components that unifies data, application logic and interface

in a single model and can be applied to different contexts.

2.2.3 Componere

Componere is a Web authoring system based on components fully running on browsers

[36]. It is based on the concept of multimedia authoring systems, which allow authors to

create multimedia products by using a combination of multimedia primitives [7].

It offers to the authors the possibility of creating their own components library for

specific domains or applications. Some libraries are for biodiversity [36], GIS, e-science

[35] and education.

Figure 5.1 shows the authoring process in the Componere environment. It is orga-

nized in three stages: primitives building, authoring and execution. In the first stage,

primitives are built as components and stored in a library. New components are built by

software developers or end-users according to the type. Software developers are in charge

of those components which require programming. They are based on the Digital Content

Component (DCC) model [36].

Figure 2.1: Graphical representation of Componere [35]

In the authoring stage, the user combines the available primitives to produce com-

positions. Components are the raw material for this stage, which involves customization

and composition of components. The final product of this stage can also be stored in a

library. Finally, in the last stage, the compositions are executed over a browser delivered

“mashed-up” with pages.

2.3. Web Metalaboratory 12

2.3 Web Metalaboratory

Metalaboratory here refers to an environment to produce tailored laboratories. It is

based on the composition of Web primitives embedded in components, which gives an

experimental perspective to the environment. Authors can select, customize and com-

bine components by direct manipulation, trying alternative scenarios – a laboratory to

experimentally create laboratories: a metalaboratory.

As presented before, [10] proposes an environment to confront theory and experimental

knowledge in hybrid laboratories combining theory based virtual laboratories and experi-

ments based remote laboratories. Our metalaboratory addresses this challenge, expanding

it to comprise the construction of laboratories as an experimental process, which allows

gathering knowledge regarding lab creation and evaluation.

We consider the Web an inherent part of the metalaboratory. While remote labora-

tories can be expensive and hard to scale up, experimental and collected data available

on the Web, coming from third party laboratories, can take a role of asynchronous lab-

oratories. For example, stored images from telescopes can be asynchronous telescopes,

stored data captured from sensors can be reproduced. Moreover, there are several tools

and services available on the Web, to be encapsulated in components boosting the lab

capabilities.

The presentation of our metalaboratory will be based on a practical example, whose

result is showed in Figure 2.2. It puts side-by-side two damped pendulums. The left one

captures and reproduces the movement of a real world pendulum. The right one simulates

a pendulum movement based on an equation. This example shows how our approach is

able to blend in the same Web document different kinds of Web resources, subsidizing the

confront of observations (analysis) and a theoretical model (synthesis).

On one hand, it illustrates our approach to exploit asynchronous labs. We settled

up a hands-on experiment to capture, store and share data of a real damped pendulum

on the Web in XML format. Part of the composition in Figure 2.2 retrieves these data

and reproduces the pendulum movement. On the other hand, the example includes a

simulation driven by a component software in a mashup fashion.

Our approach to conceive a metalaboratory departing from an authoring tool is based

in three elements: a metalaboratory / laboratory Web components family, laboratory

composition patterns and an Active Web template based technique. These three elements

are contributions of this work. Passive Templates for authoring were introduced in our

previous authoring tool. Here we transform it in an active approach and we expand it by

providing templates mixing Web documents and component compositions. In the three

following sections we detail these elements.

2.3. Web Metalaboratory 13

Figure 2.2: Composition schema of the damped pendulum lab

Figure 2.3: Classes of the damped pendulum lab components

2.3.1 Metalaboratory / Laboratory Web Components Family

A metalaboratory is an environment based on Web components to build laboratories

through an authoring approach. Authoring in the hypermedia context involves to de-

sign and structure information in a particular way [16]. More specifically, multimedia

authoring is related to the creation of multimedia artifacts by assembling, synchronizing,

and adding interactivity to media from different sources [28]. In this work. authoring

embraces multimedia and goes beyond, taking as raw material any resource available on

2.3. Web Metalaboratory 14

the Web, encapsulated in a component model and able to be “mashed-up”.

To offer an environment in which the user is free to compose laboratories through

Web components, we start defining a metalaboratory model, by systematizing and reduc-

ing elements observed in virtual and remote laboratories to their primitives constituints.

Figure 2.3 illustrates the main part of the model on a class diagram format. Since the met-

alaboratory is derived from the Componere environment, we adopt its Web components

model – the Digital Content Component (DCC), see Section 5.2.2.

DCCs are organized in OWL classes according to their functionality. Each DCC

class defines the semantics of a component in a taxonomy and the provided/required

interfaces. Our family of metalaboratory components is systematized around a set of

classes illustrated in Figure 2.3. We adopted an UML visual approach to represent OWL

classes. There are two groups of classes (groups inside gray boxes in the figure): those

related to the role of a component in a laboratory – environment, support, instrument

and real world object – and those related to the component profile according to the

Model-View-Controller (MVC) pattern. The classes were designed as complementary

classifications. A component typically specializes one class of each group. Therefore, we

have: visual instrument, real world model etc. A DCC belonging to a class means it

complies to a set of expected interfaces, related to the role of the component and the way

it interacts with the environment and other components.

Instrument DCCs are virtual equivalents of laboratory instruments. Authors can

make them available in a laboratory to perform, for example, measurement tasks. Sup-

port components perform auxiliary control and management tasks. Real world objects

are components that simulate or reproduce the behaviour of objects in the real world.

Environment components virtually represent the space in which the laboratory runs. It

performs tasks and provide information of the environment.

Figure 2.2 shows a diagram illustrating a component-based composition of our practi-

cal case. The diagram notation is inspired in UML, adapted to our composition context.

The flow of execution starts when the user clicks on the switch, which represents a visual

real world object component that is responsible for starting the execution of the exper-

iment. It sends a notification to start the timer, a non visual support component that

is responsible for producing event messages in a prefixed interval, to give rhythm to the

pendulum motion. For each timer cycle, it sends a notification to the movement repro-

ducer component, which collects data from source components and translate them into

pendulum positions. Each pendulum component requests to its data source – i.e., XML-

to-movement converter and formula – the value of the next pendulum position. The

XML-to-movement converter is a model component responsible for retrieving data

in XML format, converting them to the movement reproducer format. The XML proxy

is a controller component responsible for accessing data stored on a remote XML data

2.3. Web Metalaboratory 15

source. The damped pendulum laboratory is available at http://fluidweb.sourceforge.net,

on the link “Metalaboratory”.

2.3.2 Laboratory Composition Patterns

Inside this composition, it is possible to identify patterns to compose laboratories. Figure

2.4 illustrates the behaviour reproducer / simulator lab pattern, which is proposed in

this work. It is based in three tier, which can be executed by one or more components.

Consider a lab able to show the movement of an object – as our example – the model tier

provides data concerning this movement (behaviour) – it can be a data source or producer;

the controller tier consumes data from the model and manages the reproduction of this

movement in the view tier, which in turn provides a visual animated real world object,

apt to display the movement.

Figure 2.4: Behaviour Reproducer / Simulator Lab Pattern

In the model tier we define two patterns specializations. The Asynchronous Lab

Pattern combines a Proxy – a kind of DCC that bridges remote resources providing them

through local interfaces [36] – with a DCC to convert the input format to the expected

by the reproducer. The Virtual Lab Pattern is a DCC which produces simulated

values – in our example a pendulum movement defined by an equation. These patterns

are fundamental to our metalaboratory approach, as they generalize common practices.

Other examples of lab patterns we produced: synchronization pattern to synchronize two

comparable movements(e.g., pendulums); control panel pattern etc. In order to capture

and reuse such patterns, we developed a Web template based methodology.

2.3.3 Active Web Templates

Even tough it is possible to start a new laboratory from scratch, our observations show that

laboratories tend to follow patterns according to their specificity, and that it is important

to reuse not only components but also the composition design. Thus, we developed a

technique based on Active Web templates, which are generalizations of Web documents

2.3. Web Metalaboratory 16

blended with DCC compositions. They capture both, composition patterns and the lab

layouts, in a document.

The Componere approach to blend compositions with documents is based on repre-

senting these compositions by using HTML tags as part of Web documents [36], adopting

Microformats [20]. Figure 2.2 illustrates the instantiation of a switch component and a

connection between two components, repurposing div tags and class attributes. When-

ever the composition is presented to the user in a browser, a client-side Javascript engine

converts Microformats marks in instantiation and connections of Javascript DCCs.

Figure 2.5: Metalaboratory Template

In order to generalize a composition + document structure, our Active Web Template

defines configurable spots by replacing DCCs of the composition with meta-DCCs.

A meta-DCC is at the same time: (i) a surrogate of a future DCC and (ii) a software

unit that will select and tailor this future DCC. As a surrogate (i), it ocupies in the Web

document structure the specific spot where a future DCC will replace it. The software

unit (ii) is triggered during the lab authoring, when a template is instantiated. Each meta-

DCC becomes an active spot, containing an “editor component” specialized in selecting

and tailoring DCCs to that specific part of the composition. Therefore, it is possible

to have meta-DCCs specialized in: selecting data-sources, playing and customizing real

world objects etc.

Figure 2.5 illustrates our three steps approach to produce labs based on Active Tem-

plates. In step (a) a template designer builds a template, usually by taking a pre-existing

lab composition and generalizing it by replacing components by meta-DCCs. In step (b)

an author starts by instantiating an Active Template. Whenever the template is executed,

each meta-DCC is activated inside its position of the document. We call the template ac-

tive since it is a runnable template auto-configurable. It contrasts with passive templates

adopted by other approaches. The author customize the template through these meta-

DCCs. According to their speciality, they allow authors to: select proper data sources,

2.4. Conclusion 17

drag and position components in a canvas space etc. In the last step, an engine converts

the template in a final Web document + composition. The template meta-DCCs give

directions to the engine of the DCCs to be inserted and tailored.

2.4 Conclusion

In this paper we presented our Web metalaboratory approach to produce laboratories by

combining Web building blocks. It explores the opportunity offered by several shared

data sources providing experimental and captured data, to produce asynchronous remote

laboratories. The model enables combining services and tools available on the Web, by

encapsulating them in a component model. This work builds a metalaboratory system

on top of a pre-existing authoring environment, adding four main contributions: (i) a

metalaboratory / laboratory Web components family; (ii) a set of laboratory composition

patterns; (iii) an Active Web template based technique, comprising the new meta-DCCs;

(iv) practical implementations of laboratories built by using this tool. As far as we

know, this is the first initiative to produce this kind of metalaboratory – a laboratory

to experimental laboratory authoring – enabling to combine remote and virtual labs in

a Web platform. As idealized in [3], our environment supports the comparison between

theory and experimental knowledge, through a tool that combines properties of analysis

and synthesis for Science teaching.

Even though we applied our Active Web Template technique to a lab authoring con-

text, its underlying approach can be generalized to be applied to other composition con-

texts.

To validate our model, we built laboratories of different domains. In this paper we

presented a physics virtual lab to study the motion of damped pendulums. In [20] we

present a virtual biology laboratory for taxonomic descriptions and in [17] we present a

remote physics lab to the motion of an object on an inclined plane.

Future work includes the expansion of the authoring tool to provide enhanced support

for template creation; the definition of new template operators to enable more flexible

customization; the expansion of our laboratory component family.

Chapter 3

Autoria Virtual Baseada em Dados

do Mundo Real

3.1 Introdução

O conceito de autoria pode ter interpretações variadas a depender do contexto. No

domı́nio da multimı́dia, autoria remete ao uso de ferramentas que possibilitam compor e

sincronizar mı́dias em uma estrutura narrativa, com o objetivo de produzir apresentações,

material de ensino etc. As ferramentas neste contexto atuam geralmente como integrado-

ras de mı́dias produzidas externamente. Pode-se classificar tais mı́dias em dois grandes

grupos: aquelas capturadas do mundo real por sensores – e.g., filmagens, fotografias,

gravações – e aquelas sintetizadas.

No que tange às mı́dias capturadas – foco deste trabalho – as ferramentas de autoria

usualmente dão ênfase àquelas relacionadas aos tipos fundamentais de mı́dia – v́ıdeo, áudio

e imagem – dada a natureza inerente ao trabalho multimı́dia. Entretanto, a popularização

de sensores de muitas outras naturezas, aptos a ser integrados com computadores – e.g.,

movimento, luminosidade, acelerômetro - traz novas possibilidades para o contexto de

autoria multimı́dia.

Por outro lado, no contexto de controle industrial, que exige a construção de sistemas

que constantemente se relacionam com diversas naturezas de sensores, observa-se uma

prática aplicada à construção de sistemas supervisórios, cuja abordagem é muito próxima

ao prinćıpio da autoria. Tais sistemas utilizam software para supervisionar as variáveis e

dispositivos do sistema f́ısico, conectados por meio de drivers espećıficos [33]. Utilizando

ferramentas gráficas de composição por manipulação direta, com abordagem semelhante

àquela usada pelos sistemas de autoria, o autor pode construir complexas interfaces visuais

de monitoramento.

Inspirado na idéia de sistemas supervisórios, este trabalho apresenta o Componere

18

3.2. Arquitetura 19

Mundi, que explora a combinação de composições multimı́dia na Web criadas por um

sistema de autoria existente, o Componere, com dados capturados do mundo real por

meio de sensores de diversas naturezas. O Componere é um sistema Web baseado em

componentes e concebido para operar diretamente sobre navegadores [36]. Desta forma,

este trabalho tem por objetivo integrar a ferramenta de autoria Componere com prinćıpios

de sistemas supervisórios, permitindo o acesso e apresentação de dados de ambiente,

capturados por dispositivos de hardware. Tal extensão explora o modelo de componentes

do Componere, que permite que os novos recursos se integrem e combinem com outros

recursos de composição multimı́dia.

3.2 Arquitetura

A Figura 3.1 ilustra a arquitetura constrúıda para a ferramenta deste trabalho. A ar-

quitetura é dividida em dois grupos de ações: (i) acesso e entrega de dados de sensores;

(ii) autoria. Cada um deles será descrito em subseções subsequentes.

Figure 3.1: Arquitetura da ferramenta desenvolvida

3.2. Arquitetura 20

3.2.1 Acesso e entrega de dados de sensores

Este grupo de ações está relacionado com as etapas de captura de dados de sensores,

tratamento e distribuição dos através de feeds RSS. Isto envolveu a integração de dispos-

itivos de hardware e módulos de software. Os dispositivos de hardware são responsáveis

por capturar os dados do mundo real e entregar ao módulo de software, que é responsável

por tratar estes dados e distribúı-los através de feeds RSS.

Para capturar dados do ambiente são utilizados sensores, que são dispositivos de

medição capazes de transformar grandezas f́ısicas, referentes a fenômenos ocorrendo em

determinada região do espaço-tempo, em grandezas lógicas [38]. Estes sensores, unidos a

algum circuito analógico/digital, podem enviar dados a um computador ou a outro dis-

positivo de hardware programável por meio de uma interface de comunicação (e.g., USB,

RS232).

O software desenvolvido recebe os dados que foram enviados pelo dispositivo de hard-

ware e os trata. Visto que os sensores estão sujeitos a rúıdos, é feito um tratamento dos

dados recebidos para se reduzir ao máximo a taxa de erros.

A arquitetura está sendo projetada para que possam ser usados diferentes filtros.

Neste primeiro protótipo foi usado um filtro digital passa-baixas média móvel, que tem a

função de reduzir as frequências altas, produzindo uma homogeneização geral dos dados

de acordo com os valores definidos para a janela de convolução [9]. Dentre os diversos

tipos de filtros digitais passabaixas, o filtro média móvel possui o objetivo de calcular a

média de um número de pontos do sinal de entrada, produzindo novos pontos no sinal de

sáıda em sistemas discretizados [1]. Optou-se pela utilização de um passa-baixas média

móvel por sua simples implementação e rápido tempo de resposta quando aplicado a um

conjunto de dados discretos [1].

Com os dados devidamente filtrados, é feita a geração de feeds. Foram adotados os

RSS feeds pela facilidade de acesso e flexibilidade de uso através da Web. O sistema de

assinatura e sindicância de feeds está amplamente dispońıvel em ferramentas Web. Desta

forma, o usuário poderá não apenas utilizar os dados para o software de autoria proposto,

como também através de ferramentas Web.

Optou-se pelo o Really Simple Syndication (RSS) por ser o padrão de feeds mais di-

fundido na Web. O software, por meio de uma API, armazena os dados filtrados em um

arquivo RSS localizado no servidor. Os dados ficarão então dispońıveis para posterior-

mente serem acessados.

3.2.2 Autoria

Os dados publicados como RSS feed são acessados e apresentados por componentes espe-

cializados, aptos a serem manipulados e compostos pelo sistema de autoria Componere.

3.3. Implementação e Experimento 21

Para tanto, fez parte da implementação deste protótipo a criação de componentes em

JavaScript que acessam os dados dos sensores, como também um componente para a

apresentação dos dados. O componente especializado no acesso aos dados utiliza o XML-

HTTPRequest que possui o objetivo de enviar requisições HTTP ou HTTPS para um

servidor web e carregar os dados de resposta diretamente no script [41], neste caso dados

RSS.

Seguindo a arquitetura do Componere que é independente de plataforma e navegador

– conforme detalhado em [36] – os componentes são escritos 100 % em JavaScript. Um dos

componentes atua como Proxy, acessando os dados remotos do servidor e os entregando

localmente para os demais componentes, que realizam operações locais de apresentação

dos dados e se integram com outros componentes do ambiente de autoria.

3.3 Implementação e Experimento

Para se testar a arquitetura proposta, um experimento foi implementado. O experimento

selecionado foi o estudo do movimento acelerado de um cilindro que desce por um plano

inclinado. O objetivo do experimento foi capturar dados de um cilindro real rolando

em um plano inclinado e o reproduzir em uma animação em navegador Web, usando o

Componere como suporte para a sua construção.

Do ponto de vista do software, a implementação para este experimento envolveu três

etapas: a programação da placa microprocessadora, o desenvolvimento de um software

intermediário entre a placa e o arquivo RSS e a integração dos componentes da simulação

da queda do cilindro no Componere.

3.3.1 Experimento

O experimento envolveu um computador, uma placa microprocessadora seeeduino, um

sensor de posição ultra-sônico, um protoboard, cabos, uma mesa inclinada e uma garrafa

pet cheia. A Figura 3.2 ilustra a montagem do experimento criado.

O sensor ultra-sônico captura os diferentes valores referentes a posição do cilindro

(garrafa pet) na medida em que ele desliza sobre um plano inclinado. A garrafa foi

posicionada próxima ao sensor em uma das extremidades da mesa inclinada e, ao ser

liberada, rolou até a outra extremidade.

A captura dos dados foi realizada através de um circuito montado com a placa seee-

duino ligada ao sensor ultra-sônico. O software implementado envolveu o desenvolvimento

de um módulo em C, que roda dentro da placa. Ele identifica os valores que foram cap-

turados pelo sensor ultra-sônico e os transmite para a interface de sáıda da placa (USB).

3.3. Implementação e Experimento 22

Figure 3.2: Kit utilizado para a execução do experimento

Optou-se pela utilização da placa seeeduino, pois esta é baseada no projeto Arduino,

uma plataforma de hardware livre de baixo custo com entradas e sáıdas analógicas e

digitais embutidas [32].

3.3.2 Software Intermediário

O software intermediário tem por objetivo estabelecer a ponte entre a placa seeeduino e a

publicação de feeds. Ele foi implementado em Java e faz uso de duas APIs de comunicação:

uma para permitir o acesso aos dados do buffer de entrada via USB e uma outra para

enviar os dados ao arquivo RSS.

3.3.3 Integração no Componere

A integração com o ambiente de autoria Componere envolveu a construção de com-

ponentes especializados, para acesso aos dados de sensores e a reprodução do movi-

mento do cilindro na forma de uma animação. O software está dispońıvel online em:

http://fluidweb.sourceforge.net/hundred/html-examples/

Este endereço dá acesso a diversos exemplos de composição feitas no Componere. Para

visualizar especificamente o software implementado neste trabalho clique em “Moving

Object”. O cenário criado foi formado por uma rampa - simbolizando o plano inclinado -

e um ćırculo - representando a base do cilindro que em queda.

A arquitetura do Componere se baseia em componentes como blocos de construção

básicos das composições. A ferramenta de autoria subsidia a customização e conexão de

componentes, no processo de construção de composição. A Figura 3.3 ilustra a composição

de componentes para o experimento realizado. Dois deles, o Proxy RSS e o Cilindro Móvel

foram implementados como parte deste projeto.

Conforme ilustra a figura, a Chave de Ativação está ligada ao Proxy RSS. Ela é

responsável por dar ińıcio ao processo de recuperação de dados dos sensores e sua re-

3.4. Conclusões 23

Figure 3.3: Composição do Experimento

produção. O componente Proxy RSS recupera dados dos sensores em formato RSS gera-

dos e os entrega localmente para o componente Cilindro Móvel.

Na medida que o componente Cilindro Móvel recebe os eventos RSS com as leituras do

sensor ele posiciona o cilindro na tela, gerando uma animação que reproduz o movimento

do cilindro original.

Dado que o Componere é um sistema ainda em processo de desenvolvimento, a ferra-

menta que permite a edição interativa da composição por manipulação direta ainda não

está conclúıda. Deste modo, a descrição da composição é feita através de tags HTML e

pode ser inserida diretamente dentro de páginas, sem a necessidade de se escrever código

em JavaScript (vide detalhes em [36]). Para ter acesso a especificação da composição

basta clicar no link “Source HTML” no rodapé do sistema online.

3.4 Conclusões

Este trabalho apresentou nosso protótipo da ferramenta Componere Mundi que integra o

conceito de sistemas supervisórios com a ferramenta de autoria Web Componere.

Foram implementados e integrados como partes desta ferramenta: (i) um módulo de

software em C executado na placa microprocessadora; (ii) o módulo de capturar dados

do mundo real e publicação em RSS; (iii) componentes para o Componere, para acesso

aos dados em RSS e sua reprodução em uma animação. Foi realizado um experimento

prático capturando e reproduzindo o rolamento de um cilindro em um plano inclinado.

Comparado com outras abordagens de captura e apresentação de dados de sensores –

tais como a de supervisórios (e.g., LabVIEW - http://www.ni.com/labview/), ou sistemas

especializados (e.g., Lego Mindstorms - http://mindstorms.lego.com) – nossa abordagem

tem a vantagem de permitir a integração dos dados de sensores com o restante dos recursos

de autoria na Web providas pelo Componere. Por exemplo, os dados de movimento

capturados podem ser sincronizados com o movimento simulado de um cilindro baseado

em uma equação. Isto permite comparar dados sintetizados com dados capturados.

Os trabalhos futuros incluem: a finalização no desenvolvimento do módulo de autoria

por manipulação direta; a construção de uma biblioteca de componentes especializados;

3.5. Acknowledgments 24

a integração de componentes de arquiteturas de supervisório na atual arquitetura.

3.5 Acknowledgments

This work was partially funded by CAPES, CNPq, FAPESP, CAPES-COFECUB (AMIB

project) and INCT in Web Science (CNPq 557.128/2009-9).

Chapter 4

Web-Based Virtual Lab for

Taxonomic Description

4.1 Introduction

Virtual laboratories simulate physical equipments and the infrastructure of a physical lab-

oratory by using computational techniques. They can represent experiments by graphical

interfaces and offer interactive simulations.

Virtual labs can be tooled to afford learning experiences comprising exercices, theorical

explanations, and interactive assistants that explain experiments step by step. In many

cases, they can be used any time and from anywhere. This kind of laboratories are also

known as simulated laboratories or e-laboratories [25].

By handling and combining visual software components, users can describe specimens

in a virtual laboratory. This paper presents our work of such a tool involving the de-

scription of living beings. In this work we investigate a specific kind of Biology virtual

laboratory to support taxonomic description of specimens, in which the basic lab elements

are virtualized as visual software components.

This is an ongoing work and, in order to validate our proposal, we have implemented a

preliminary prototype with components to describe monitor lizards of the genus Varanus.

The lab is based on a system called Varan-ID.

Varan-ID is an online determination system for monitor lizards. It is based on a

morphological knowledge base of a group on carnivorous lizards, the genus Varanus. The

system is based on the idea that not only experts are involved with monitor lizards.

Students, curious, breeders, keepers are either interested in this subject, but may not

have the necessary knowledge to work with the specimen. The process of identification in

the Varan-ID system is based on descriptors.

In this paper we present a prototype of our virtual web laboratory to describe and to

25

4.2. Taxonomic Description Model 26

identify living beings. It is based on visual components handled by direct manipulation,

which play roles of building blocks for descriptions and lab tools. Therefore, when a

user inserts a component that represents a tail in the composition, he/she will add a

related tail descriptor in the lizard description. The entire lab runs over the web on top of

the Componere authoring environment[36], which explores the Rich Internet Application

(RIA) approach to provide an interactive interface.

The remaining of the paper is organized as follows: Section 2 presents a taxonomic

description model of the context of the developed tool. Section 3 presents implementation

details of the tool. Section 4 presents future works and conclusions.

4.2 Taxonomic Description Model

The starting point for designing our lab was the software Xper2 (http://lis-upmc.snv.jussieu.

fr/lis/?q=en/resources/ software/xper2/). This tool supports the identification and de-

scription of specimens. It follows the character/character state (C,CS) [26] approach,

organized in three phases:

(i) to define descriptors and possible states;

(ii) to relate descriptors/states to species;

(iii) to identify a given specimen by recognizing values for each descriptor.

The Varan-ID system was developed over the Xper2. Its descriptors are organized

in two distinct groups, easy-to-see descriptors and expert descriptors. Table 1 shows an

example of some easy-to-see descriptors and their respective states.

Table 4.1: Easy-to-see Descriptors
Lizard
Part

Descriptor States

Tail transversal section of the
tail

roundish or laterally com-
pressed

Head position of nostrils between
eyes and tip of snout

same distance from eyes
than from tip of snout or
nearer the tip of snout than
the eyes or nearer the eyes
than the tip of snout

Tongue tongue coloration red, light pink or whitish or
blue, purple or black

Our tool is able to interact with Xper2 by accessing SDD files it can export. The

Structure Descriptive Data format (SDD) is an open standard endorsed by the TDWG

4.2. Taxonomic Description Model 27

(Taxonomic Database Working Group) and DELTA (Descriptive Language for Taxonomy)

for representing taxonomic descriptions in a XML format (http://wiki.tdwg.org/SDD/).

Figure 4.1 shows a diagram representing a fragment of a SDD file containing data to

describe Varanus lizards. The hexagons represent elements, the rectangles represent texts

and the ovals represent attributes. The CategoricalCharacter element defines a descriptor

and possible states. In this example it defines the tongue coloration element and three

possible states: red, light pink or whitish and blue, purple or black.

Figure 4.1: A Fragment of a SDD file of Varanus Lizards

The States element aggregates all possible states: StateDefinition elements. As can

be seen in the diagram, the Representation element can be applied in many levels of the

schema, containing textual and multimedia descriptions. This element is formed by a la-

bel, a detailed description (Detail) and references to multimedia resources (MediaObject)

In our tool we map these SDD description blocks in the following way:

(i) each CategoricalCharacter becomes a description component;

(ii) the set of states that the CategoricalCharacter can assume is transformed in a set of

possible states that the component can assume;

(iii) every time the description component assumes a state it provides a visual feedback.

These description components transform the task of describing specimens in selecting

and customizing components, which are combined in compositions.

Our resulting composition reflects another part of the SDD representation, illustrated

in Figure 4.2. Besides the Representation element, described before, the diagram shows

the summary data of the lizard. This element contains the element Categorical that repre-

sents the description of a given specimen (a lizard in the example), specifying Categorical

4.2. Taxonomic Description Model 28

Figure 4.2: The Structure of Lizard SDD Base

Characters – referenced by the Categorical element – and setting values to it, through

the State element. In this example, the categorical character ”tongue coloration” assumes

the state ”red”. Since each composition specifies the description of a given specimen, the

resulting composition can be mapped to a SDD structure presented in Figure 4.2 and

vice-versa.

In order to automatically derive SDD Categorical Characters to description compo-

nents, a process was created to get all information on the SDD file and use it to fetch

the respective description components, customizing them with the respective values. Fig-

ure 4.3 illustrates the creation process of lizard components and their use during a com-

position. A proxy reader component accesses a SDD file (step 1). This information is

delivered to a component generator that creates all the description components (step 2

and 3) – lizard description components in the example. Therefore, the categorical element

will be used to identify a specimen characterization – a lizard in the example – to generate

its respective composition. The State element will generate the value that the parameter

assume.

The author customizes and combines components, building a composition, whose pa-

rameters are recorded by the Settings component (step 4). When the author clicks in the

Candidate button it triggers the Result component (step 5), which in turn retrieves the

parameters from the Setting component (step 6), and uses the proxy component to fetch

data from XML files in the base (step 7); which uses the HTTPXMLRequest API (step

8).

In our proposal, a description component is one type of the available components.

Another type comprises tool components, a group that will be responsible to support the

authoring process. The classification based on this two types of components is illustrated

4.2. Taxonomic Description Model 29

Figure 4.3: The Creation of Lizard Components and Composition Process

in Figure 4.4.

Figure 4.4: The Component Classification for the Lizard Lab

Our lab is designed to afford any kind of description component for living beings.

4.3. Implementation 30

However, in our prototype we have produced only description components representing

each part of the Varanus lizard. They are visual components derived from Varan-ID easy-

to-see descriptors. The tool components can be visual or not. For example, the button

is a visual component that starts the execution process. The table is a visual component

that contains data organized as rows and cols. The proxy is a non visual component that

brings data stored in a database to the composition.

As mentioned before, our laboratory is built over the Componere environment. In

the original Componere authoring environment all components play the role of building

blocks. Our lab, on the other hand, introduces this new kind of component - the tool

component - to assist the authoring task itself.

4.3 Implementation

The implementation of the proposed laboratory involved two steps: the construction

of description components and the construction of the laboratory on Componere. As

mentioned before, this first prototype is focused on a specific practical scenario involving

the identification of Varanus lizards, based on the Varan-ID database.

4.3.1 Construction of Lizard Components

The Varan-ID base is composed by 7 knowledge bases: the Main base, V. indicus-group

base, V. prasinus-group base, V. timorensis-group base, V. gouldii-group base, V. salvator-

group base, and the Australian spiny-tailed base. Each base can be exported as an SDD

file. To build the components, we analysed the available descriptors in these bases.

A component builder engine was developed to extract information from the exported

database and to use them to build each one of the lizard components.

There are two ways to build Componere compositions. The first is by using a javascript

code to instantiate and to connect components. The second is by embeding compositions

in HTML pages through microformats based specifications [36]. During the authoring

process the laboratory uses the first dynamic approach. Resulting compositions can be

further materialized as HTML embedded compositions.

4.3.2 The Laboratory on Componere

As mentioned before, Componere is a framework based on javascript components that

works over web browsers.

Thus, the Lizard Lab is an environment totally based on javascript, mainly directed

to beginners in the monitor lizard identification process. An overview of the system is

4.3. Implementation 31

illustrated in Figure 4.5.

Figure 4.5: The Model of the Lizard Lab

The environment is organized in four areas: description components, settings, com-

position and result area. The description components area is where the components

representing parts of the lizard are placed. Each one is independent and has its own set

of parameters to be configured.

In order to produce a description the author drags description components to the

Composition Area where they are customized and connected. Each description component

has two basic main actions: close and configure. The first will remove the component of

the composition. The second will open a dialog box with the parameters to be configured.

Whenever a component is changed, the Settings area (displayed in Figure 4.5) stores and

shows a log of the values assigned to descriptors. Figure 4.3 illustrates this relation in the

process.

During the description/identification process the author can access the base containing

available descriptions of existing species – lizard in this case – whose descriptor/states

match with those already assigned in the lab. For example, if the author assigns a specific

tongue color and tail shape, the system will record these settings in the Settings area;

whenever the author clicks in the “Candidates” button, available in the environment (see

Figure 4.5), the system fetches and presents all lizards in the base which have the informed

tongue color and tail shape. The steps to execute this process is illustrated in Figure 4.3.

This technique to present progressive candidates is based in Xper2 approach to describe

specimens.

The prototype is available at http://fluidweb.sourceforge.net. The page has many

experiments using different kind of software components. To access the work proposed in

this paper, click on the link “Lizard Prototype”.

4.4. Related Work 32

4.4 Related Work

Our work combines two approaches: virtual laboratories and tools to describe and identify

specimens.

According to [25, 30] the laboratories can be classified in three categories: real, remote

and virtual. Real labs are physical rooms, having concrete equipments and infrastructure.

Remote labs enable access to physical resources of real labs by networks – as the Internet

– through a simulation software, which replicates the remote environment. Virtual labs

have the goal of offering a simulation environment to support virtual experiments. Our

proposal can be considered a mixture of the three contexts, since it is a virtual lab that

grabs data from the real world and is built over the web.

Laboratories usually offer specialized resources according to the context they are in-

serted. [13] proposes an educational environment for electronics and electrical engineering.

[14] presents an environment for genetics learning. [15] presents a virtual lab of Chemical

Vapor Deposition aimed to complement a physical laboratory in the undergraduate course

curriculum. [31] proposes a virtual laboratory for medical digital analysis based on grids.

The tool to describe specimens – as Xper2, detailed before, and Lucid (http://www.

lucidcentral.org) – are designed for specialists and does not follow a laboratory approach.

As far as we know, there is no such a tool combining the characteristics of virtual labo-

ratories and biology description/identification tools.

4.5 Conclusions

In this paper we present our virtual laboratory based on virtualized visual components.

In other to validate it, we have implemented a prototype of the virtual lab to describe

monitor lizards of the genus Varanus based on a system called Varan-ID. The environ-

ment allows direct manipulation of visual components that work as basic elements of an

authoring process, to support the identification and description of living beings. These

basic elements derives from descriptions present on the Varan-ID database. The proposed

tool runs over the web on top of the Componere framework.

The main contribution of this paper is our unified approach to produce a virtual lab

for taxonomic description, combining the perspective of tools to describe specimens with

the virtual laboratory model. It involved the design of a new component based description

approach, in which components work as basic descriptive building blocks.

Future works include to expand the laboratory features, enabling it to better integrate

with real world resources, i.e., fetching images and other kinds of media of real world spec-

imens, including them in the description process. We are also working to generalize the

process of building description components, enabling smooth expansion to new descriptors

4.6. Acknowledgments 33

and other domains.

4.6 Acknowledgments

This work was partially funded by CAPES, CNPq, FAPESP, CAPES-COFECUB (AMIB

project) and INCT in Web Science (CNPq 557.128/2009-9).

Chapter 5

Metalaboratory Technical Aspects

5.1 Introduction and Motivation

Sciences teaching – for example, chemistry, physics and biology – should not be disso-

ciated from Science foundations. Therefore, it involves going beyond the presentation

of results achieved by Science and systematized in disciplines, giving to the learner the

opportunity of knowing the scientific method adopted to achieve such results. The cycle

including observation and experimentation in the real world (analysis) to the proposi-

tion and validation of models that describe them (synthesis) can be considered the most

relevant aspect to learn this method.

Taking a laboratory perspective, the analysis can include experiments in laboratory or

field observations. The synthesis usually involves models that describe the world, anchored

in examples based on everyday observations. It is possible to go from the analysis to the

synthesis, or vice-versa. There are several scenarios in which researchers wish to compare

collected data (analysis) with results from models (synthesis). This is interesting, for

example, to verify if a model is in accordance with a respective description of an observed

phenomena in the real world.

This notion of hybrid laboratory was idealized by [10]: an environment where it is

possible to confront theory and experimental knowledge by combining virtual laboratories

(theoretical models) with remote laboratories (real world experiments).

In the Education context, there are specialized tools for analysis and synthesis tasks.

On the analysis side, a combination of hardware and software takes the form of kits

that are able to collect, interpret and validate data from real world – e.g., Arduino and its

Processing language [32]. In the synthesis side, there are specialized software to implement

and execute scientific models, for example, based on: mathematical modeling – e.g.,

Modellus [29] –, simulation programs – e.g., Interage Simulations [37] – and virtual labs.

However, tools are segmented and it is difficult to integrate and compare results.

34

5.2. Related Work 35

In parallel, we are facing the emergence of a new data-intensive paradigm, in which

“In almost every laboratory, ’born digital’ data proliferate” [5]. A deluge of this data

is available on the Web, becoming possible to produce remote asynchronous1 laborato-

ries, settled on existing Web data. This notion of asynchronous labs and the respective

technique to implement them arose as consequence of this work.

Not only data is available on the Web, but also tools and services, which can be in

many cases “mashed-up”. This work exploits this potential of the Web as a basis to

build laboratories. We propose a metalaboratory approach that treats Web resources as

combinable building blocks to build Web laboratories.

Departing from an existing authoring environment, the Componere [36], we contribute

in this work with three techniques envisaged to support lab authoring, but which can ex-

panded to other contexts: a metalaboratory family of components, laboratory composition

patterns and Active Web Templates.

The remaining of the document is organized as follows: Section 5.2 presents the re-

lated work. Section 5.3 describes our metalaboratory proposal. Section 5.4 presents our

conclusions and future work.

5.2 Related Work

Related work comprises laboratories and metalaboratories (section 5.2.1) and a framework

called Componere (section 5.2.2).

5.2.1 Laboratories and Metalaboratories

Laboratories can be classified into three categories: real or physical, virtual and remote

[25][30]. Real laboratories are the classic one, with physical rooms with real equipment

and infrastructure. Remote laboratories use physical resources of real laboratories through

sensors, actuators and a communication infrastructure, transferring to computers the task

of controlling experiments, capturing, transforming and storing data. The term remote

here refers to computers connected to lab equipment, but apart from them. Therefore,

“remote” can refer to a computer in a lab which interacts with equipments inside the

same physical lab. Remote labs can be applied, for example, in manufacturing cells [12]

or perform experiments in Digital Signal Processors (DSPs) through the Web [4]. Virtual

laboratories can simulate the physical equipments behaviour and all the infrastructure of

a real laboratory using computational techniques. They can be applied to Chemistry [15]

and Medicine [31].

1The term asynchronous here refers to the fact that data from remote labs are not retrieved as soon
as they were produced, but afterwards from archives – in our case, shared through the Web.

5.2. Related Work 36

The term metalaboratory received different interpretations in related work, making

difficult to achieve an unified definition. The term is used in [23] to describe a tool for the

composition of technologies and services aimed at teaching chemistry. In [11] the term is

used in a virtual laboratory perspective. A group of related work adopt the interpretation

of metalaboratory as an hybrid laboratory [34] [2] [3].

Cramer and De Meyer [10] introduced the idea of interacting virtual laboratories with

real laboratories to bridge theoretical models and experimental data. Authors present an

interesting perspective of a symbiotic connection between real world and virtual models,

comparing it with the way our brain works producing models over the observable world.

We will use the term metalaboratory in this work to refer to a laboratory to build

laboratories. It is aligned with Cramer and De Meyer [10] perspective, as it can be

applied to build hybrid laboratories.

5.2.2 Componere

Our metalaboratory is built over a pre-existing authoring environment called Componere,

which is a Web authoring system based on components fully running on browsers [36]. It

is based on the concept of multimedia authoring systems, which allow authors to create

multimedia products by using a combination of multimedia primitives [7].

Figure 5.1 shows the authoring process in the Componere environment. It is orga-

nized in three stages: primitives building, authoring and execution. In the first stage,

primitives are built as components and stored in a library. New components are built by

software developers or end-users according to the type. Software developers are in charge

of those components which require programming. They are based on the Digital Content

Component (DCC) model [36].

There are two types of DCCs: Passive DCCs and Process DCCs. The first one encap-

sulate contents, like images, videos and texts in a Complex Digital Object (CDO) format.

The second one encapsulates executable software that handles the Passive DCCs. This

structure provides independence of the content from a given implementation, fostering

the management, sharing and reuse of components.

In the authoring stage, the user combines the available primitives to produce com-

positions. Components are the raw material for this stage, which involves customization

and composition of components. The final product of this stage can also be stored in a

library. Finally, in the last stage, the compositions are executed over a browser.

5.3. The Metalaboratory Proposal 37

Figure 5.1: Graphical representation of Componere [36]

5.3 The Metalaboratory Proposal

Our metalaboratory is an environment to produce tailored laboratories, treating software

components as combinable building blocks. It offers the possibility of building three types

of laboratories: virtual, remote(synchronous and asynchronous) and hybrid. Virtual labs

are defined as environments where the experiments will be driven by simulations based

on computational models – e.g., math models. It uses synthetic (virtual) data.

In remote labs, experiments are based on data from an external online (synchronous)

or off-line (asynchronous) source – e.g., data captured from a sensor which can be stored

in a file. It offers the possibility of studying a phenomena by making a bridge between

the real and virtual worlds.

Finally, a hybrid lab is an environment where virtual and remote experiments are put

together. It offers the possibility of studying how results of the real world differ from

results of synthetic models and how to abstract synthetic models from real world data.

Our approach to conceive a metalaboratory departing from an authoring tool is based

in three elements: a metalaboratory / laboratory Web components family, laboratory

composition patterns and an active Web template based technique. In the following

sections we detail these elements.

5.3.1 Metalaboratory / Laboratory Web Components Family

In the following sections we will present the concepts of components and the component

family of the metalaboratory.

5.3. The Metalaboratory Proposal 38

Metalaboratory Components

Our approach aims to support the composition of laboratories through composition of

components. Szyperski [39] presents a definition of software component: “A software com-

ponent is a unit of composition with specified contractual interfaces and explicit context

dependencies. A software component can be deployed and is subject to composition by

third parties”. To [43] component is “an independently deliverable unit that encapsulates

services behind a published interface and that can be composed with other components”.

A software component integrates data and functions and implements interfaces, which

can be interpreted as an implementation of specifications of services that are provided to

or required from other components [6]. Interfaces make explicit the protocol to exchange

data among components. A component can have multiple interfaces [24].

Our environment is based on Componere and its DCC model [36]. DCCs comply with

the principles of software components presented before, but expand them to afford content

components. They are internally organized as complex objects and externally they act

like software components.

This work contributed in reviewing the DCC framework running in the Javascript

platform, originally proposed and implemented in [36]. The javascript language has some

design limitations, which hampered the proper application of the DCC component model.

Two highlights are:

• Javascript lacks a namespace mechanism. It makes difficult to limit the scope of

variables. This is a central issue to reuse third party code in components.

• The language does not provide primitives to selectively load code modules.

For these reasons, the new framework adopted the YAHOO YUI as its bases. The YUI

provides a set of improvements in the Javascript fundamental operations, plus a library

of modules and widgets. Among the improvements adopted in this work, we highlight:

• A library to support namespace management.

• A mechanism to manage dynamic module loading.

• Dependency management among modules.

Besides the language improvements, our framework encapsulated as components (DCCs)

several widgets provided by the library.

DCCs declare through interfaces externally configurable properties, operations and

events. Our laboratory components family departed from a basic DCC configuration,

presented in Figures 5.2 and 5.3, which was extended for all components. Figure 5.2

5.3. The Metalaboratory Proposal 39

Figure 5.2: Basic Structure of a Laboratory Component

Figure 5.3: Visual Structure of a Laboratory Component

presents some basic interfaces implemented by components. Figure 5.3 presents a com-

ponent diagram and the symbols to represent interfaces.

In Figure 5.3, the dashed box represents a DCC, the headed pin and semi-circle headed

pins represents the provided / required interfaces, respectively. This pair of interfaces will

be plugged by a connector to work together. A component that implements a required

interface requests services to the component that is connected to it. A component that

implements a provided interface executes the requested services and delivers the results

to the requester.

The diamond headed pin and semi-diamond headed pin represent the publish / sub-

scribe interfaces, respectively. It is detailed in the IPUBLISHER and the ISUBSCRIBER

interfaces (upper). Components that implements the IPUBLISH interface are the pub-

lishers and sends to subscribers messages when a determined event occurs, interested

subscribes request subscription by the subscribe method. Components that implements

the ISUBSCRIBE interface are subscribers. These components register their interest in

an event and will only receive messages of this particular event through the notify method.

Table 5.1 presents a description of the methods.

Over the defined basic structure, new operations can be defined according to the role

a component will play. For instance, a component that will contain a video can declare

operations like play, stop and pause.

5.3. The Metalaboratory Proposal 40

Table 5.1: Metalaboratory Component Interfaces
Operations Interface Definition

subscribe() IPUBLISHER Register all the components that
are interested in the messages
posted by the publisher

notifySubscribers() IPUBLISHER Send a message to the registered
subscribers

notify() ISUBSCRIBER Receive the delivered messages
start() IACTIVATOR Starts the action of a component
stop() IACTIVATOR Stops the action of a component

getPresentation() IWIDGET Returns an object with the visual
appearance of the component

updatePresentation() IWIDGET Implements a refresh operation of
the appearance

Metalaboratory / Laboratory Components Family

In order to systematize the laboratory production, we define a family of metalaboratory

and laboratory components, aimed to capture atomic functionalities of a lab.

Figure 5.4: The Metalaboratory Class Diagram

DCCs are organized in OWL classes according to their functionality. Each DCC

class defines the semantics of a component in a taxonomy and the provided/required

interfaces. Our family of metalaboratory components is systematized around a set of

classes illustrated in Figure 5.4. We adopted an UML visual approach to represent OWL

classes. There are two groups of classes (groups inside gray boxes in the figure):

• Group 1: related to the role of a component in a laboratory – environment,

support, instrument and real world object

5.3. The Metalaboratory Proposal 41

• Group 2: related to the component profile according to the Model-View-Controller

(MVC) pattern.

The classes were designed as complementary classifications. A component typically

specializes one class of each group. Therefore, we have: visual instrument, real world

model etc. A DCC belonging to a class means it complies to a set of expected interfaces,

related to the role of the component and the way it interacts with the environment and

other components.

In order to detail each group of the family, Figure 5.5 expands Figure 5.4. The numbers

in the figure link to subsequent figures with more details.

5
.3

.
T

h
e

M
eta

la
b

o
ra

to
ry

P
ro

p
o
sa

l
42

Figure 5.5: Metalaboratory Class Diagram - Main Part

5.3. The Metalaboratory Proposal 43

Table 5.2: Group 1 – Laboratory Role
Component Description

Instrument Virtual equivalents of laboratory instruments. Authors
can make them available in a laboratory to perform, for
example, measurement tasks.

Support Perform auxiliary control and management tasks.
Real world objects Components that simulate or reproduce the behaviour

of objects in the real world.
Environment Virtually represent the space in which the laboratory

runs. It performs tasks and provide information of the
environment.

Table 5.3: Group 2 – MVC
Component Description

Model Represents the components that deals with different application
data, such as files, formulas, or structured / raw data.

View Manages outputs and user inputs through the application interface.
Responsible for visual presentation of data.

Controller Mediates the relation between model and view, and acts in tasks
for controlling the whole process.

The MVC pattern has the goal of separating user input from data access and business

logic in three roles: model, view and controller [8].

Visual support represents components that have visual characteristics and plays

support roles, such as buttons or tables (see Figure 5.6).

5
.3

.
T

h
e

M
eta

la
b

o
ra

to
ry

P
ro

p
o
sa

l
44

Figure 5.6: Metalaboratory Class Diagram - Visual Support

5.3. The Metalaboratory Proposal 45

Visual real world objects (see Figure 5.7) are components that have visual charac-

teristics and plays real world objects roles. For instance, an animated ball or a pendulum.

5
.3

.
T

h
e

M
eta

la
b

o
ra

to
ry

P
ro

p
o
sa

l
46

Figure 5.7: Metalaboratory Class Diagram - Visual Real World Object

5.3. The Metalaboratory Proposal 47

Visual instruments (see Figure 5.8) can be managed by the user inside a lab, as a

virtual instrument. For example, a magnifier will amplify a given image and the ruler can

be used to measure objects.

5
.3

.
T

h
e

M
eta

la
b

o
ra

to
ry

P
ro

p
o
sa

l
48

Figure 5.8: Metalaboratory Class Diagram - Visual Instrument

5.3. The Metalaboratory Proposal 49

Environment (see Figure 5.9) is an independent set of DCCs that represent and man-

age “virtual spaces”, in which other DCCs will run. A complete list with metalaboratory

and laboratory components family is presented in Appendix A.

5
.3

.
T

h
e

M
eta

la
b

o
ra

to
ry

P
ro

p
o
sa

l
50

Figure 5.9: Metalaboratory Class Diagram - Environment

5.3. The Metalaboratory Proposal 51

5.3.2 Laboratory Composition Patterns

Inside a composition, it is possible to identify patterns to compose laboratories. Consider

the composition to simulate the motion of a pendulum, illustrated in Figure 5.10:

Figure 5.10: Composition to simulate a pendulum

The first component (MODEL) represents a formula aimed to calculate positions of a

pendulum. The second component (CONTROLLER) retrieves each position calculated

by the formula and trigger a position update in the Pendulum (VIEW). Its rhythm

is defined by a Timer component. By replacing the model (FORMULA) by a data

source, captured from a real world pendulum (Figure 5.11) the composition reproduces

asynchronously a real pendulum, instead of a synthetic one. The data is retrieved by a

pair of components: XML Proxy retrieves data from a XML remote source; XML-to-

Movement Converter converts the data to pendulum positions. These examples allow

to recognize our reproducer / simulator lab pattern.

Figure 5.11: Composition to reproduce a pendulum movement

5.3. The Metalaboratory Proposal 52

Figure 5.12 illustrates the behaviour reproducer / simulator lab pattern, which is

proposed in this work. It is based in three tiers, which can be executed by one or more

components. The model tier provides data concerning the movement (behaviour) – it

can be a data source or producer; the controller tier consumes data from the model and

manages the reproduction of the movement in the view tier, which in turn provides a

visual animated real world object, apt to display the movement.

Figure 5.12: Behaviour Reproducer / Simulator Lab Pattern

In the model tier we define two pattern specializations. The Asynchronous Lab

Pattern combines a Proxy with a DCC to convert the input format to the expected

by the reproducer. The Virtual Lab Pattern is a DCC which produces simulated

values – in our example a pendulum movement defined by a formula. These patterns are

fundamental to our metalaboratory approach, as they generalize common practices.

Figure 5.13: Synchronization Pattern

Consider a synchronization of the pendulums of Figure 5.10 and Figure 5.11; as il-

lustrates Figure 5.13. The figure shows an example of our synchronization pattern. The

5.3. The Metalaboratory Proposal 53

basic idea is connecting all synchronization movements to the same timer. Other exam-

ples of lab patterns we produced is a control panel pattern. In order to capture and reuse

such patterns, we developed a Web template based methodology.

5.3.3 Active Web Templates

Even tough it is possible to start a new laboratory from scratch, our observations show that

laboratories tend to follow patterns according to their specificity, and that it is important

to reuse not only components but also the composition design. Thus, we developed a

technique based on Active Web templates, which are generalizations of Web documents

blended with DCC compositions. They capture both, composition patterns and the lab

layouts, in a document.

Active Web templates are an evolution of the existing approach, defined by Com-

ponere, to blend compositions in HTML. Therefore, we start by summarizing the main

aspects of this approach.

Blending Compositions with Web Documents

In Componere, components become active elements, which can be inserted, customized

and connected by tags in a HTML document. Microformats[22] are adopted to provide

a smooth integration with the HTML structure. The pre-existing HTML div element

and the attributes class and name are used to describe a DCC instance inside the Web

document. Table 5.4 summarizes the main elements of the Componere / Microformats

specification used to represent DCC instances and connections.

Consider the simple composition of Figure 5.14 in which a Switch component is

connected to a Timer component. When the user clicks in the Switch it triggers the

start of the Timer.

Figure 5.14: Switch / Timer Composition

As illustrated in the top of the components, each DCC receives an instance identifier

in the composition: START_SWITCH for the Switch and ANIMATED_TIMER for the Timer.

5.3. The Metalaboratory Proposal 54

Table 5.4: Componere/Microformats specification to represent DCC compositions.

HTML element purpose attr purpose

<div class="dcc"> instantiates a DCC in
the composition

<div class="property"> defines the value of a
DCC property

name name of the property

div’s content value of the property
<div class="connector"> connects two DCCs name name of the connec-

tion
<div class="component"> addresses a compo-

nent instance involved
in the connection – the
connection is directed
from the first declared
DCC to the second
one

name role of the DCC in the
connection

div’s content identity of the DCC

The following HTML fragment represents an instantiation of the Timer DCC in the

composition of Figure 5.14:

<div class="dcc">

<div class="property" name="type">

http://purl.org/dcc/dccdb/timer</div>

<div class="property" name="id">

Animation_timer</div>

<div class="property" name="frequency">

1000</div>

</div>

The property type refers to the type of the DCC – it is specified as a URI-based unique

identifier. The property id indicates the unique id of the instance in the composition.

The property frequency sets the timer frequency.

A connector is an independent element that refers to the two DCC instances involved

in the connection. The following HTML fragment connects an instance of a Switch DCC

and the Timer DCC, as illustrated in Figure 5.14.

<div class="connector" name="start">

5.3. The Metalaboratory Proposal 55

<div class="component" name="action">

Start_switch</div>

<div class="component" name="animation">

Animation_timer</div>

</div>

Whenever the composition is presented to the user in a browser, a Javascript engine

(100% running in the browser) converts the Microformats marks in Javascript code, which

instantiates the DCCs and connects them. This approach enables mixing elements of a

Web page and a composition and are the basis to build active Web templates. We define a

three phases technique to produce laboratories from templates, illustrated in Figure 5.15.

From Active Web Documents to Active Web Templates

Active Web templates will be generalizations of common compositions + pages structure.

A composition inside a template is like a regular composition, replacing configurable spots

by a special kind of component we call meta-DCC. Templates can also have constant

DCCs, which represent its pre-defined not variable spots, which are not designed to be

replaced, even though, they can be further deleted and customized. The active Web

template is meant to be executed during the second phase – authoring phase – illustrated

in Figure 5.1. When a template is executed, the meta-DCCs provide personalized spaces

to select and customize DCCs. Different kinds of meta-DCCs are programmed to support

tailored authoring.

A meta-DCC is at the same time: (i) a surrogate of a future DCC and (ii) a software

unit that will select and tailor this future DCC. As a surrogate (i), it ocupies in the Web

document structure the specific spot where a future DCC will replace it. The software

unit (ii) is triggered during the lab authoring, when a template is instantiated. Each meta-

DCC becomes an active spot, containing an “editor component” specialized in selecting

and tailoring DCCs to that specific part of the composition. Therefore, it is possible

to have meta-DCCs specialized in: selecting data-sources, playing and customizing real

world objects etc.

The presentation of our active Web template proposal will be based on a practical

example, illustrated in Figure 5.15. It puts side-by-side two balls moving on an inclined

plane. The left one captures and reproduces the movement of a real world movement and

the right one simulates the movement based on a mathematical equation.

Figure 5.15 illustrates our three steps approach to produce labs based on active Web

Templates. Step (a) shows the initial structure of the active Web Template. A tem-

plate designer builds this template, usually by taking a pre-existing lab composition and

generalizing it by replacing components by meta-DCCs. In step (b) an author starts by

5.3. The Metalaboratory Proposal 56

Figure 5.15: Metalaboratory Template

instantiating an active Web template. Whenever the template is executed, each meta-

DCC is activated inside its position of the document. We call the template active since it

is a runnable auto-configurable template. It contrasts with passive templates adopted by

other approaches. The author customize the template through these meta-DCCs. Accord-

ing to their speciality, they allow authors to: select proper data sources, drag and position

components in a canvas space etc. In the last step (c), an engine converts the template

in a final Web document + composition. The template meta-DCCs give directions to the

engine of the DCCs to be inserted and tailored.

The active Web template of Figure 5.15 is organized in four areas – head, instruments,

control panel and composition – further detailed:

HEAD – Contains a regular DCC (not a meta-DCC) of a label to be customized by

the author. In this case, a meta-DCC is not necessary since the type of DCC is pre-defined

and the author will only customize its properties.

COMPOSITION – Has an unique wide meta-DCC of the class Canvas. It delim-

itates an area and allows freely drag and drop new DCCs inside this area during the

authoring process. Components can be positioned in any part of the Canvas. When the

template is converted in a composition, the wide Canvas meta-DCC is replaced by the

DCCs dragged into it.

CONTROL PANEL – Defines a set of controlling DCCs organized in a panel. It

presents two pre-defined DCCs – the Button and the XML Proxy – plus a set of

meta-DCCs, which will select and customize future DCCs playing a control role.

INSTRUMENTS – Has a set of meta-DCCs, where the author can select and cus-

tomize DCCs that will work as instruments in the laboratory, during the execution.

In the HTML point of view, an active Web template is represented by using the same

Microformats approach, detailed in the previous subsection. Meta-DCCs are represented

by a special <div class = "metadcc">. The rest of the configuration is equivalent to

5.3. The Metalaboratory Proposal 57

a DCC. The example of Figure 5.15 is organized in four HTML areas, delimited by divs

and layouted by CSS.

This example show how meta-DCCs and DCCs are adopted to define pre-defined and

configurable areas in the template, as well as their interaction with the HTML and CSS

constraints. A template defines a skeleton of work in the authoring process, however,

authors are free to insert, delete and reconfigure any available component and connec-

tion. When the author finishes the authoring process, meta-DCCs will be replaced by

customized DCCs. Unused meta-DCCs will be deleted. The composition becomes the

actual laboratory.

In the next section we will present step-by-step how metalaboratory is executed with

our proposal of laboratory pattern and active Web templates.

5.3.4 Authoring Laboratories

A laboratory authoring cycle by using a metalaboratory is illustrated in Figure 5.16, as

a state machine diagram. It is formed by three states: loading workspace, authoring and

presentation.

Figure 5.16: Metalaboratory State Machine Diagram

The first state occurs in the metalaboratory environment start-up. The second stage

involves composing a virtual, asynchronous or hybrid laboratory. Finally, the last state

can be triggered when the artifact is ready to be executed by the end user. In the following

sections we present details about each stage.

Loading Workspace

If the laboratory to be built is a composition of components, the authoring tool (metal-

aboratory) is itself also a composition of components. Therefore, the first stage involves

loading components, connecting them in a composition and running the result.

Figure 8 illustrates the metalaboratory workspace. It is formed by two main areas, a

shelf of components and connections (left) and a composition area (right), which contains

a laboratory template and a execution button. On the shelf (top), the user can select the

components that will be inserted on the composition. It presents two comboboxes. In the

first one, the user selects a DCC or meta-DCC to be inserted in the template. The second

5.3. The Metalaboratory Proposal 58

Figure 5.17: Metalaboratory Workspace Schema

combobox defines the template area to insert the DCC. The first combobox is filled by

the components available in the component repository. The second is based on the areas

of the template.

In the area below the shelf, the user can select the type of connection that will bind two

components. It has three comboboxes. In the first combobox, the user selects the type

of the connector. In the other two comboboxes, the user selects which components will

be binded. The two types of connectors available for selection represent the approaches

to connect DCCs: publish / subscribe and provided / required interfaces. The other two

comboboxes show the components that were already inserted on the template. On the

composition area, the user builds the active Web Template.

The workspace is formed by DCC compositions illustrated in Figures 5.18, 5.19, 5.20.

They are specializations of environment – shelf, composition template –, visual support –

comboboxes, buttons, meta-DCCs –, controller – XML proxy –, and model – component

access.

Figure 5.18 shows the main components of the metalaboratory workspace, structured

in MVC layers. The shelf component is responsible for managing the components

and connections available in the new components area and the new connections

area. The composition area is responsible for managing the composition process in

5.3. The Metalaboratory Proposal 59

Figure 5.18: Metalaboratory Workspace Basic Components

conjuction with the template area, which handles templates over compositions. The

execute template button triggers the process in which the composition is dispatched

to the engine component, which generates the laboratory.

Figure 5.19: Metalaboratory Workspace Basic Components - Group 1

Figure 5.19 show the components that are related to the new components area

component. The new components area is responsible for requesting to the component

5.3. The Metalaboratory Proposal 60

access the available components and to the template area the areas available in the

template. It delivers the result to the component combobox and template area

combobox, respectively. The component access requests to the XML proxy data

about the components available for composition, which are stored in a XML repository.

The component access maps the available components to an internal representation

and delivers them to the new components area.

The insert component button is responsible for requesting to the new compo-

nents area the selected component and the target template area and for delivering this

information to the composition area.

Figure 5.20: Metalaboratory Workspace Basic Components - Group 2

Figure 5.20 shows the components that are related to the new connection area com-

ponent. It requests to the composition area, through the shelf area, the components

instantiated and places them in both component comboboxes. The available connections

are directly placed on the connection combobox.

The connection button is responsible for requesting to the new connection area

the selected connection and components for delivering this information to the composi-

tion area.

The Authoring State.

The second state is the authoring. Here the author will transform personal knowledge into

multimedia compositions. A process that allows the development of narrative structures

based on different types of media [7].

5.3. The Metalaboratory Proposal 61

The authoring state offers the infrastructure to build a laboratory based on the tem-

plate methodology. This task involves composing laboratories by using components that

are already created, stored on the component repository, and available on the shelf.

Through meta-DCCs, authors are free to insert, delete and configure the available com-

ponents and connections.

Figure 5.17 shows the workspace environment. In order to build a laboratory, the

user selects, for instance, a mobile ball component. By clicking on the insert button

component, the selected component can be inserted in an available meta-DCC of the

template area. To do this, the shelf area component delivers an instance of the selected

component of the composition area. The composition area delivers the instance to

the defined template area.

Many authoring systems offers two possibilities of artifact creation: by direct manip-

ulation or using an authoring languages. In the first case, the software offers a graphical

interface where the media elements can be composed on a interactive way to produce

a presentation. In the second case, the software offers a particular authoring scripting

language to construct or enrich the composition. Adobe Flash with the Action Script

language and Adobe Director with the Lingo are some examples. Our approach can be

associated with the first case, but has elements of the second one, as it is possible to

author compositions in HTML.

At this moment, the authoring stage do not allow the creation of new components

through the graphical interface. As the metalaboratory runs over Componere, it is possible

to construct and store components directly on the framework. When the user finishes the

authoring process, the composition becomes the actual laboratory and the artifact will

be ready to run as a presentation in the next state.

The Presentation State.

The presentation represents the final state of the metalaboratory execution. It occurs

when the user ends the laboratory composition and starts its execution.

When the user clicks on the execute template button, an engine that converts the

composed template into the laboratory is started. The flow of this execution is presented

in the activity diagram of Figure 5.21. The engine is responsible for saving the template

structure with the composition into a new HTML file.

As detailed in Figure 5.21, the engine starts by creating the HTML file, that will be

the laboratory. After opening and enabling the file to be written, the engine will write in

the file the template structure. Each area of the template example – head, instruments,

composition, control panel – will be a div element.

The next step is to identify all the components that were parts of the authoring and

their respective location in the template. The engine requests this information to the

5.3. The Metalaboratory Proposal 62

Figure 5.21: Presentation State Activity Diagram

meta-DCCs in the template, the components instances.

The engine will replace meta-DCCs by DCCs in the template, connecting them and

removing the meta-DCCs. The engine saves the file in the server side and open it on a

new tab of the browser as a laboratory, ready to be used. In this process, a Javascript

engine converts the Microformats marks in Javascript code, which instantiates the DCCs

and connects them. During the execution, only visual components will be visible and

available for interaction.

During the execution, the components interacts in the composition by basically two

strategies: service-oriented or actor-oriented. A service-oriented occur when a component

has a call-response behaviour. Thus, it waits for requests, executes the respective tasks

and sends back responses with the results. An actor-oriented component runs as an

independent process, interacting with the environment by exchanging messages and when

an event occur, the component send a message notifying the destination component.

The user can at any moment return to the metalaboratory workspace to change the

5.4. Conclusion and Future Work 63

template and to save a new version of the laboratory. This characteristic represents the

experimental aspect of the construction of a laboratory, which makes the metalaboratory

itself an environment of experimentation.

5.4 Conclusion and Future Work

We presented here our metalaboratory, an environment to build laboratories through

authoring, with an experimental approach. In this environment, virtual, asynchronous and

hybrid laboratories can be built by combining components through direct manipulation.

We have developed a metalaboratory environment based on a composition of software

components. Metalaboratory components can encapsulate different types of content. The

model is based on our proposal of metalaboratory family of components, where the de-

veloped components are grouped according to the role they play. That proposal aims

to offer a classification and organization of components, facilitating the construction of

laboratories.

The metalaboratory environment was developed over the Componere, an authoring

environment. It adds to Componere three new features: the family of components, the

lab composition patterns and the meta-DCCs for the construction of artifacts based on

an active template method. The metalaboratory itself is based on components.

As far as we know, this is the first initiative to produce this kind of metalaboratory

– a laboratory to experimentally build laboratories – enabling to combine asynchronous

and virtual labs in the same environment.

To validate our proposal, we built laboratories in different domains. In [20] we present a

virtual biology laboratory for taxonomic descriptions. In [17] we present an asynchronous

physics lab to work on the motion of an object on an inclined plane. In [19] we present a

hybrid physics lab to study the motion of damped pendulums. In this work, we expand

the laboratory of [17] to a hybrid lab, to present how a laboratory is constructed in the

metalaboratory environment.

Future work include the expansion of the authoring tool to provide enhanced support

for template creation; the definition of new template operators to enable more flexible cus-

tomization; the expansion of our laboratory component family; the possibility of creating

new components inside the metalaboratory environment.

Chapter 6

Conclusion

There are many solutions to support the construction of scientific knowledge. We intro-

duced here the notion of metalaboratory as a laboratory environment to produce labora-

tories, in an experimental way, using building blocks. As far as we know, none of related

work offers the support that our metalaboratory proposes, plus the possibility of placing

analysis and synthesis results in a same environment.

Our approach adopts the Web as the basis of the metalaboratory, encapsulating the

rich Web content and services.

6.1 Contributions

The challenge of this work was to propose a model to create virtual, asynchronous, and

hybrid experiments using a single environment that follows a laboratory approach. Our

metalaboratory specializes the authoring process to support laboratory creation.

To validate the metalaboratory proposal, we introduced the asynchronous laboratory

approach in a practical experiment. This was our first laboratory, used to test the archi-

tecture of accessing asynchronous data. It involved the execution of an experiment based

on data captured by sensors during a real world experience, and stored for asynchronous

access.

The second laboratory applied our model in a virtual lab for taxonomic description. It

validated our model in a different context, the Biology. The entire laboratory was devel-

oped with components. In this case, we introduced the model of description components.

From the development of the asynchronous and virtual laboratories, we proposed

the concepts: family of components, composition patterns and active Web templates.

Those ideas were validated in a third laboratory, a hybrid lab on the Physics context,

which placed side-by-side two equivalent setups that are based in different sources of

asynchronous and virtual data.

64

6.2. Extensions 65

6.2 Extensions

The metalaboratory model was based on our experience with the construction of virtual

and asynchronous laboratories, inserted in the Biology and Physics domains, respectively.

The construction of laboratories in other domains may indicate new classes of components

as members of the components family.

Based on the developed laboratories, we identified the existence of a pattern for the

construction of virtual laboratories and another for asynchronous laboratories. The con-

struction of laboratories in other domains can also lead to the identification of other types

of composition patterns, improving the proposal of this work.

We implemented a metalaboratory authoring tool prototype. This prototype can be

enhanced to provide better graphical interface to create active Web templates.

Bibliography

[1]

[2] M. Abdulwahed and Z.K. Nagy. Developing the trilab, a triple access mode (hands-

on, virtual, remote) laboratory, of a process control rig using labview and joomla.

Computer Applications in Engineering Education, 2010.

[3] J.P. Agrawalkand and Y.E. Cherner. A classroom/distance learning engineering

course on optical networking with virtual lab. In Computational Technologies in

Electrical and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 In-

ternational Conference on, pages 73–77. IEEE, 2008.

[4] F. Barrero, S. Toral S., and Gallardo. edsplab: remote laboratory for experiments

on dsp applications. Internet Research, 18(1):79–92, 2008.

[5] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,

323(5919):1297–1298, 2009.

[6] F. Bronsard, D. Bryan, W. Kozaczynski, E.S. Liongosari, J.Q. Ning, Á. Ólafsson,

and J.W. Wetterstrand. Toward software plug-and-play. In ACM SIGSOFT Software

Engineering Notes, volume 22, pages 19–29. ACM, 1997.

[7] D.C.A. Bulterman and L. Hardman. Structured multimedia authoring. ACM

Transactions on Multimedia Computing, Communications, and Applications (TOM-

CCAP), 1(1):89–109, 2005.

[8] S. Burbeck. How to use model-view-controller (mvc). ParcPlace Systems Inc., see

http://stww.cs.uiuc.edu/users/smarch/st-docs/mvc.html, 1992.

[9] Eduardo Cerqueira, Ronei Poppi, and Lauro Kubota. Utilização de filtro de trans-

formada de fourier para a minimização de rúıdos em sinais anaĺıticos. Workshop de

Teses e Dissertações - CBComp, 23(5), 1999.

[10] P. G. Cramer and G. De Meyer. The philosophy of the virtual laboratory, 1997.

66

BIBLIOGRAPHY 67

[11] D. Morrison D. and Brian. Metalab: supporting social grounding and group task

management in cscl environments through social translucence. In Diversity in Com-

puting Conference, 2005 Richard Tapia Celebration of, pages 20–22. IEEE, 2005.

[12] O.G. Bellmunt D.M., Miracle S.G., Arellano A., Sumper A.S., and Andreu. A dis-

tance plc programming course employing a remote laboratory based on a flexible

manufacturing cell. IEEE Transactions on Education, 49:278 – 284, May 2006.

[13] M. Duarte and B. P. Butz. An intelligent universal virtual laboratory (uvl). IEEE

Transactions on Education, 51(1):2 – 9, 2008.

[14] K. M. Breakey et al. Genetics education. Genetics, 179:1151 – 1155, 2008.

[15] M. Koretsky et al. Enhancement of student learning in experimental design using a

virtual laboratory. IEEE Transactions on Education, 51:76–85, 2008.

[16] Athula Ginige, David B. Lowe, and John Robertson. Hypermedia authoring. IEEE

Multimedia, 2(4):24–35, 1995.

[17] Alessandra Gomes and André Santanchè. Autoria virtual baseada em dados do

mundo real. X Workshop of Tools and Applications (WebMedia), 2011.

[18] Alessandra Gomes and André Santanchè. Metalaboratory technical aspects. To be

submitted to Institute of Computing – UNICAMP (Technical Report), 2013.

[19] Alessandra Gomes and André Santanchè. Web metalaboratory: Composition of

laboratories on the web. Submitted to the International Workshop on Lightweight

Integration on the Web (ComposableWeb), 2013.

[20] Alessandra Gomes, André Santanchè, and Fabiani Souza. Web-based virtual lab for

taxonomic description. XI Workshop of Tools and Applications (WebMedia), 2012.

[21] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth. Enterprise mashups:

Design principles towards the long tail of user needs. In IEEE International Confer-

ence on Services Computing, volume 2, pages 601–602. IEEE, 2008.

[22] R. Khare. Microformats: The Next (Small) Thing on the Semantic Web? IEEE

Internet Computing, 10(1):68–75, 2006.

[23] A. Laganà, A. Riganelli O., Gervasi P., Yates K., Wahala R., Salzer E., Varella, and

J. Froehlich. Elchem: a metalaboratory to develop grid e-learning technologies and

services for chemistry. Computational Science and Its Applications–ICCSA 2005,

pages 69–102, 2005.

BIBLIOGRAPHY 68

[24] K.K. Lau and Z. Wang. Software component models. Software Engineering, IEEE

Transactions on, 33(10):709–724, 2007.

[25] J. Ma and J. V. Nickerson. Hands-on, simulated, and remote laboratories: A com-

parative literature review. ACM Comput. Survey, 38(3):1–24, 2006.

[26] Paula Mabee, Michael Ashburner, Quentin Cronk, Georgios V. Gkoutos, Melissa

Haendel, Erik Segerdell, Chris Mungall, and Monte Westerfield. Phenotype ontolo-

gies: the bridge between genomics and evolution. Trends in Ecology and Evolution,

22(7):345 – 350, 2007.

[27] Duane Merrill. Mashups: The new breed of web app.

http://www.ibm.com/developerworks/web/library/x-mashups/index.html, 2009.

[28] Jan Mikáč, Cécile Roisin, and Bao Le Duc. An export architecture for a multimedia

authoring environment. In ACM Symposium on Document Engineering, pages 16–19.

Citeseer, 2008.

[29] Modellus. Modellus – interactive modelling with mathematics.

http://modellus.fct.unl.pt/, May 2012.

[30] Zorica Nedic, Jan Machotkd, and Andrew Najhlsk. Remote laboratories versus vir-

tual and real laboratories. Frontiers in Education, 2003. FIE 2003. 33rd Annual, 1:1

– 6, 2003.

[31] S. Olabarriaga, T. Glatard, and P.T de Boer. A virtual laboratory for medical image

analysis. IEEE Transactions on Information Technology in Biomedicine (TITB),

14(4):979–985, 2012.

[32] Arduino Project. What is arduino? http://arduino.cc/en/Guide/Introduction, 2011.

[33] Fernando Ranieri. Sistema supervisório de parâmetros de máquinas elétricas via

tcp/ip e painel eletrônico de mensagens. Dissertacao de Mestrado. Universidade

Federal de Sao Carlos., 2007.

[34] X. Cao S. and Zhu. ieelab practice: A hybrid remote laboratory for distance education

in electrical engineering. In Computer Science and Education (ICCSE), 2010 5th

International Conference on, pages 592–596. IEEE, 2010.

[35] André Santanchè and Peter Baumann. Component-based web clients for scientific

data exploration using the dcc framework. In Procs. of Int’l Conf. on Geographic

Information Science, pages 1–5.

BIBLIOGRAPHY 69

[36] Andre Santanche, Matheus Mota, Diego Costa, Nicolas Oliveira, and Christianne O.

Dalforno. Componere autoria na web baseada em componentes. WebMedia, pages

91–98, 2009.

[37] Interage Simulation. Interage simulation. http://www.cienciamao.if.usp.br/, May

2012.

[38] Lizet Suaréz and Ricardo Gudwin. Análise do conhecimento sensorial segundo a per-

spectiva da semiótica computacional. Workshop de Teses e Dissertações - CBComp,

pages 91–98, 2002.

[39] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond object-oriented

programming. Addison-Wesley, 2002.

[40] C. Szyperski, D. Gruntz, and S. Murer. SCADA: Supervisory Control and Data

Acquisition, ISA-The Instrumentation, Systems, and Automation Society. Addison-

Wesley, 2002.

[41] Anne van Kesteren. W3c candidate recommendation.

http://www.w3.org/TR/XMLHttpRequest/, 2011.

[42] F. Wild, F. Moedritscher, and S. Sigurdarson. Designing for change: mash-up per-

sonal learning environments. e-Learning Papers, 9, 2008.

[43] A.C. et al. Wills. Objects, components and frameworks with uml: The catalysis

approach. 1999.

[44] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup development.

Internet Computing, IEEE, 12(5):44–52, 2008.

Appendix A

Description of Metalaboratory

Components Classes

This appendix presents a description of each class of the metalaboratory model and in

which practical case it was implemented.

Table A.1: Description of Metalaboratory Component

Classes

Class Definition Implementation

Action Represents an action that a component

can have

All the laboratories

Brush Visual Instrument that changes the

color of a selected component.

Not implemented

Button Visual Support that triggers an event

it is clicked

Taxonomic Laboratory

Candidates

Presentation

Specialization of Environment that

manages the presentation of the identi-

fication process – lizards in our exam-

ple.

Taxonomic Laboratory

ComboBox Visual Support widget that stores a

list and trigger an event when an item

is selected

Metalaboratory Prototype

Component

Descriptor

Visual Real World Object that

stores the descriptions of each living

being – lizards in the example.

Taxonomic Laboratory

70

71

Composition Area Environment that manages the de-

scription of the living beings compo-

nent parts – lizards in our example.

Taxonomic Laboratory and

Metalaboratory Prototype

Control Area Environment that manages compo-

nents, which controls the execution of

a laboratory.

Metalaboratory Prototype

Controller Responsible for controlling tasks and

bridging View and Model classes

All laboratories

Data Access Controller that accesses and delivers

data from Model.

All laboratories

Description Space Environment that manages the de-

scription of the living beings parts –

lizards in our example.

Taxonomic Laboratory

Environment Support that is responsible for man-

aging a virtual space including all the

components that are inserted in its area

All laboratories

File Proxy Data access that accesses a file con-

tent.

All laboratories

Formula Model that calculates a predefined for-

mula

Damped Pendulum Labora-

tory and Mobile Ball Con-

front Laboratoty

Image Visual Support that stores an image

and can trigger an event when it is

clicked

All laboratories

Instrument Visual component that enables mea-

surements of components during the

execution

Metalaboratory Prototype

Lamp Visual Real World Object that sim-

ulates a lamp changing from ON to

OFF when it is clicked

Metalaboratory Prototype

Magnifier Visual Instrument that applies zoom

in and out in a visual component when

it is clicked

Not implemented

Mobile Ball Visual Real World Object that il-

lustrates a ball moving according to

some role.

Mobile Ball Laboratory and

Mobile Ball Hybrid Labora-

tory.

Model Represents data according to a model All laboratories

72

Movement

Reproducer

Action that reproduces the motion of

an object.

Mobile Ball Laboratory,

Mobile Ball Hybrid Lab-

oratory and Damped

Pendulum Laboratory

Pendulum Visual Real World Object that sim-

ulates a pendulum object.

Damped Pendulum Labora-

tory

Physical

Environment

Action that manages the motion of an

object.

Mobile Ball Laboratory,

Mobile Ball Hybrid Lab-

oratory and Damped

Pendulum Laboratory

Protractor Visual Instrument that shows the

angle of an object.

Not implemented

Real World Object Responsible for simulating or reproduc-

ing the behaviour of an object of the

real world.

All laboratories

Role Represents the role that will be applied

to an Action.

All laboratories

Ruler Visual Instrument that measures the

size of an object

Not implemented

Search Engine Action that searches for living be-

ings candidates during the identifica-

tion process – lizards in our example

Taxonomic Laboratory

Shelf Environment responsible for storing,

selecting and delivering components to

another environment component.

Taxonomic Laboratory and

Metalaboratory Prototype

Support Responsible for giving assistance by

controlling or managing components.

All laboratories

Switch Visual Real World Object that

changes its state from ON to OFF

when it is clicked, producing an event.

Mobile Ball Laboratory,

Mobile Ball Hybrid Labo-

ratory, Damped Pendulum

Laboratory

Table Visual Support that stores and shows

data in rows and cols.

Taxonomic Laboratory

Text Visual Support that stores and shows

text information

All laboratories

73

Timer Visual Support that generate events

in a fixed frequency rate.

Mobile Ball Laboratory,

Mobile Ball Confront Labo-

ratory, Damped Pendulum

Laboratory

View Responsible for managing the user in-

put and the output through a visual

component

All laboratories

Visual Instrument Represents components that have vi-

sual characteristics and plays instru-

ment roles.

Not implemented

Visual Real World

Object

Represents components that have vi-

sual characteristics and plays real world

objects roles.

All laboratories

Visual Support Represents components that have vi-

sual characteristics and play support

roles.

All laboratories

Web Proxy Data Access that accesses a Web file

content.

Taxonomic Laboratory, Mo-

bile Ball Laboratory

	Abstract
	Resumo
	Acknowledgements
	Introduction and Motivation
	A Brief History
	Main Goal and Contributions
	Specific Goals
	Dissertation Structure

	Web Metalaboratory: Composition of Laboratories on the Web
	Introduction and Motivation
	Related Work
	Laboratories and Metalaboratories
	Mashups on the Web
	Componere

	Web Metalaboratory
	Metalaboratory / Laboratory Web Components Family
	Laboratory Composition Patterns
	Active Web Templates

	Conclusion

	Autoria Virtual Baseada em Dados do Mundo Real
	Introdução
	Arquitetura
	Acesso e entrega de dados de sensores
	Autoria

	Implementação e Experimento
	Experimento
	Software Intermediário
	Integração no Componere

	Conclusões
	Acknowledgments

	Web-Based Virtual Lab for Taxonomic Description
	Introduction
	Taxonomic Description Model
	Implementation
	Construction of Lizard Components
	The Laboratory on Componere

	Related Work
	Conclusions
	Acknowledgments

	Metalaboratory Technical Aspects
	Introduction and Motivation
	Related Work
	Laboratories and Metalaboratories
	Componere

	The Metalaboratory Proposal
	Metalaboratory / Laboratory Web Components Family
	Laboratory Composition Patterns
	Active Web Templates
	Authoring Laboratories

	Conclusion and Future Work

	Conclusion
	Contributions
	Extensions

	Bibliography
	Description of Metalaboratory Components Classes

