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Resumo

Um grande esforço tem sido feito para desenvolver sistemas de classificação de imagens ca-

pazes de criar mapas temáticos de alta qualidade e estabelecer inventários precisos sobre o uso

do solo. As peculiaridades das imagens de sensoriamento remoto (ISR), combinados com os

desafios tradicionais de classificação de imagens, tornam a classificação de ISRs uma tarefa

difı́cil. Grande parte dos desafios de pesquisa estão relacionados à escala de representação

dos dados e, ao mesmo tempo, à dimensão e à representatividade do conjunto de treinamento

utilizado.

O principal foco desse trabalho está nos problemas relacionados à representação dos dados

e à extração de caracterı́sticas. O objetivo é desenvolver soluções efetivas para classificação

interativa de imagens de sensoriamento remoto. Esse objetivo foi alcançado a partir do desen-

volvimento de quatro linhas de pesquisa.

A primeira linha de pesquisa está relacionada ao fato de embora descritores de imagens

propostos na literatura obterem bons resultados em várias aplicações, muitos deles nunca foram

usados para classificação de imagens de sensoriamento remoto. Nessa tese, foram testados doze

descritores que codificam propriedades espectrais e sete descritores de textura. Também foi pro-

posta uma metodologia baseada no classificador K-Vizinhos mais Próximos (K-nearest neigh-

bors – KNN) para avaliação de descritores no contexto de classificação. Os descritores Joint

Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) e

Quantized Compound Change Histogram (QCCH), apresentaram os melhores resultados exper-

imentais na identificação de alvos de café e pastagem.

A segunda linha de pesquisa se refere ao problema de seleção de escalas de segmentação

para classificação de imagens de sensoriamento baseada em objetos. Métodos propostos recen-

temente exploram caracterı́sticas extraı́das de objetos segmentados para melhorar a classificação

de imagens de alta resolução. Entretanto, definir uma escala de segmentação adequada é

uma tarefa desafiadora. Nessa tese, foram propostas duas abordagens de classificação multi-

escala baseadas no algoritmo Adaboost. A primeira abordagem, Multiscale Classifier (MSC),

constrói um classificador forte que combina caracterı́sticas extraı́das de múltiplas escalas de

segmentação. A outra, Hierarchical Multiscale Classifier (HMSC), explora a relação hierárquica

das regiões segmentadas para melhorar a eficiência sem reduzir a qualidade da classificação
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quando comparada à abordagem MSC. Os experimentos realizados mostram que é melhor usar

múltiplas escalas do que utilizar apenas uma escala de segmentação. A correlação entre os

descritores e as escalas de segmentação também é analisada e discutida.

A terceira linha de pesquisa trata da seleção de amostras de treinamento e do refinamento

dos resultados da classificação utilizando segmentação multiescala. Para isso, foi proposto um

método interativo para classificação multiescala de imagens de sensoriamento remoto. Esse

método utiliza uma estratégia baseada em aprendizado ativo que permite o refinamento dos

resultados de classificação pelo usuário ao longo de interações. Os resultados experimentais

mostraram que a combinação de escalas produzem melhores resultados do que a utilização

de escalas isoladas em um processo de realimentação de relevância. Além disso, o método

interativo obtém bons resultados com poucas interações. O método proposto necessita apenas

de uma pequena porção do conjunto de treinamento para construir classificadores tão fortes

quanto os gerados por um método supervisionado utilizando todo o conjunto de treinamento

disponı́vel.

A quarta linha de pesquisa se refere à extração de caracterı́sticas de uma hierarquia de

regiões para classificação multiescala. Assim, foi proposta uma abordagem que explora as

relações existentes entre as regiões da hierarquia. Essa abordagem, chamada BoW-Propagation,

utiliza o modelo bag-of-visual-word para propagar caracterı́sticas ao longo de múltiplas es-

calas. Essa ideia foi estendida para propagar descritores globais baseados em histogramas, a

abordagem H-Propagation. As abordagens propostas aceleram o processo de extração e obtém

bons resultados quando comparadas a descritores globais.
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Résumé

Un effort considérable a été fait dans le développement des systèmes de classification des im-

ages avec l’objectif de créer des cartes de haute qualité et d’établir des inventaires précis sur

l’utilisation de la couverture terrestre. Les particularités des images de télédétection combinées

avec les défis traditionnels de classification font de classification de ces images une tâche dif-

ficile. La plupart des problèmes sont liés à la fois à l’échelle de représentation des données, et

ainsi qu’à la taille et à la représentativité de l’ensemble d’apprentissage utilisé.

L’objectif de cette thèse est de développer des solutions efficaces pour la classification in-

teractive des images de télédétection. Cet objectif a été réalisé en répondant à quatre questions

de recherche.

La première question porte sur le fait que les descripteurs d’images proposées dans la

littérature obtiennent de bons résultats dans diverses applications, mais beaucoup d’entre eux

n’ont jamais été utilisés pour la classification des images de télédétection. Nous avons testé

douze descripteurs qui codent les propriétés spectrales et la couleur, ainsi que sept descripteurs

de texture. Nous avons également proposé une méthodologie basée sur le classificateur KNN

(K plus proches voisins) pour l’évaluation des descripteurs dans le contexte de la classifica-

tion. Les descripteurs Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyra-

mid Decomposition (SID) et Quantized Compound Change Histogram (QCCH), ont obtenu

les meilleurs résultats dans les expériences de reconnaissance des plantations de café et de

pâturages.

La deuxième question se rapporte au choix de l’échelle de segmentation pour la classi-

fication d’images basée sur objets. Certaines méthodes récemment proposées exploitent des

caractéristiques extraites des objets segmentés pour améliorer classification des images haute

résolution. Toutefois, le choix d’une bonne échelle de segmentation est une tâche difficile.

Ainsi, nous avons proposé deux approches pour la classification multi-échelles fondées sur le

les principes du Boosting, qui permet de combiner des classifieurs faibles pour former un clas-

sifieur fort. La première approche, Multiscale Classifier (MSC), construit un classifieur fort qui

combine des caractéristiques extraites de plusieurs échelles de segmentation. L’autre, Hierar-

chical Multiscale Classifier (HMSC), exploite la topologie hiérarchique de régions segmentées

afin d’améliorer l’efficacité des classifications sans perte de précision par rapport au MSC. Les
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expériences montrent qu’il est préférable d’utiliser des plusieurs échelles plutôt qu’une seul

échelle de segmentation. Nous avons également analysé et discuté la corrélation entre les de-

scripteurs et des échelles de segmentation.

La troisième question concerne la sélection des exemples d’apprentissage et l’amélioration

des résultats de classification basés sur la segmentation multiéchelle. Nous avons proposé une

approche pour la classification interactive multi-échelles des images de télédétection. Il s’agit

d’une stratégie d’apprentissage actif qui permet le raffinement des résultats de classification par

l’utilisateur. Les résultats des expériences montrent que la combinaison des échelles produit de

meilleurs résultats que les chaque échelle isolément dans un processus de retour de pertinence.

Par ailleurs, la méthode interactive permet d’obtenir de bons résultats avec peu d’interactions de

l’utilisateur. Il n’a besoin que d’une faible partie de l’ensemble d’apprentissage pour construire

des classificateurs qui sont aussi forts que ceux générés par une méthode supervisée qui utilise

l’ensemble d’apprentissage complet.

La quatrième question se réfère au problème de l’extraction des caractéristiques d’un hiérar-

chie des régions pour la classification multi-échelles. Nous avons proposé une stratégie qui

exploite les relations existantes entre les régions dans une hiérarchie. Cette approche, appelée

BoW-Propagation, exploite le modèle de bag-of-visual-word pour propager les caractéristiques

entre les échelles de la hiérarchie. Nous avons également étendu cette idée pour propager des

descripteurs globaux basés sur les histogrammes, l’approche H-Propagation. Ces approches

accélèrent le processus d’extraction et donnent de bons résultats par rapport à l’extraction de

descripteurs globaux.
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Abstract

A huge effort has been made in the development of image classification systems with the objec-

tive of creating high-quality thematic maps and to establish precise inventories about land cover

use. The peculiarities of Remote Sensing Images (RSIs) combined with the traditional image

classification challenges make RSI classification a hard task. Many of the problems are related

to the representation scale of the data, and to both the size and the representativeness of used

training set.

In this work, we addressed four research issues in order to develop effective solutions for

interactive classification of remote sensing images.

The first research issue concerns the fact that image descriptors proposed in the literature

achieve good results in various applications, but many of them have never been used in re-

mote sensing classification tasks. We have tested twelve descriptors that encode spectral/color

properties and seven texture descriptors. We have also proposed a methodology based on the

K-Nearest Neighbor (KNN) classifier for evaluation of descriptors in classification context. Ex-

periments demonstrate that Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable

Pyramid Decomposition (SID), and Quantized Compound Change Histogram (QCCH) yield

the best results in coffee and pasture recognition tasks.

The second research issue refers to the problem of selecting the scale of segmentation for

object-based remote sensing classification. Recently proposed methods exploit features ex-

tracted from segmented objects to improve high-resolution image classification. However, the

definition of the scale of segmentation is a challenging task. We have proposed two multiscale

classification approaches based on boosting of weak classifiers. The first approach, Multiscale

Classifier (MSC), builds a strong classifier that combines features extracted from multiple scales

of segmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits the hierarchi-

cal topology of segmented regions to improve training efficiency without accuracy loss when

compared to the MSC. Experiments show that it is better to use multiple scales than use only one

segmentation scale result. We have also analyzed and discussed about the correlation among

the used descriptors and the scales of segmentation.

The third research issue concerns the selection of training examples and the refinement of

classification results through multiscale segmentation. We have proposed an approach for
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interactive multiscale classification of remote sensing images. It is an active learning strat-

egy that allows the classification result refinement by the user along iterations. Experimental

results show that the combination of scales produces better results than isolated scales in a rel-

evance feedback process. Furthermore, the interactive method achieves good results with few

user interactions. The proposed method needs only a small portion of the training set to build

classifiers that are as strong as the ones generated by a supervised method that uses the whole

available training set.

The fourth research issue refers to the problem of extracting features of a hierarchy of re-

gions for multiscale classification. We have proposed a strategy that exploits the existing rela-

tionships among regions in a hierarchy. This approach, called BoW-Propagation, exploits the

bag-of-visual-word model to propagate features along multiple scales. We also extend this idea

to propagate histogram-based global descriptors, the H-Propagation method. The proposed

methods speed up the feature extraction process and yield good results when compared with

global low-level extraction approaches.
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My wife Flávia has always been by my side, in joy and in sorrow, especially during the four

years required for the accomplishment of this work.

My mother, a constant source of strength, has showed me the value of knowledge, and

encouraged me in this career since the beginning of this journey.

xxiii





List of Abbreviations and Acronyms

ACC Color Autocorrelogram

BIC Border/Interior Pixel Classification

BPT Binary Partition Tree

BoW Bag of visual Words

CBC Color-Based Clustering

CBERS China-Brazil Earth Resources Satellite

CCOM Color Co-Occurrence Matrix

CCV Color Coherence Vector

CGCH Cumulative Global Color Histogram

CM Chromaticity Moments

CSD Color Structure Descriptor

CW -HSV Color Wavelet HSV

GCH Global Color Histogram

GEOBIA Geographic Object-Based Image Analysis

GIS Geographic Information System

GLCM Gray Level Co-Occurrence Matrix

GP Genetic Programming

HMSC Hierarchical Multiscale Classifier

HTD Homogeneous Texture Descriptor

IHMSC Interactive Hierarchical Multiscale Classifier

JAC Joint Auto-Correlogram

KNN K-Nearest Neighbor

LAS Local Activity Spectrum

LBP Local Binary Pattern

LCH Local Color Histogram

LLC Locality-constrained Linear Coding

MLC Maximum Likelihood Classification

MSC Multiscale Classifier

OA Overall Accuracy

xxv





QCCH Quantized Compound Change Histogram

RBF Radial Basis Function

RSI Remote Sensing Image

SAR Synthetic Aperture Radar

SID Invariant Steerable Pyramid Decomposition

SIFT Scale-Invariant Feature Transform

SPOT System for Earth Observation

SV M Support Vector Machines

xxvii





Contents

Resumo xi
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Chapter 1

Introduction

1.1 Motivation

Since the satellite imagery information became available to the civil community in the 1970s,

a huge effort has been made on the creation of high quality thematic maps to establish precise

inventories about land cover use [117]. However, the peculiarities of Remote Sensing Images

(RSIs) combined with the traditional image classification challenges have turned RSI classifi-

cation into a hard task.

The use of RSIs as a source of information in agribusiness, for example, is very common. In

those applications, it is fundamental to know and monitor the land-use. However, identification

and recognition of crop regions in remote sensing images are not trivial tasks. Classification

of RSIs meets some specific issues in agriculture. This work is part of a Brazilian project

involving a cooperative of coffee producers. It aims, among other applications, at finding the

coffee plantations in remote sensing images. Concerning the identification of coffee areas,

the difficulties come from the fact that coffee usually grows in mountainous regions (as in

Brazil). First, this causes shadows and distortions in the spectral information, which make

difficult the classification and the interpretation of shaded objects in the image because the

spectral information is either reduced or totally lost [126]. Second, the growing of coffee is

not a seasonal activity, and, therefore, in the same region, there may be coffee plantations of

different ages, which also affect the observed spectral patterns. However, to be more general,

we did not limit ourselves to this kind of images and we will present other applications, such as

pasture and urban areas recognition.

The common approaches to implement RSI classification systems can be divided into two

groups: pixel-based and object-based methods. Pixel-based methods have always been very

popular for RSI classification [117]. They only use the value of the pixel in each band as a

spectral signature to perform the classification. Indeed, concerning hyperspectral images, it is

possible to associate a detailed spectral signature with each pixel, whose dimensions usually

1
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exploits cartographic information to define region boundaries. The main advantage is that the

use of cartographic data enables a better delineation of user’s interest objects than automatic

segmentation techniques. Its main problem is the lack of available cartographic data. Thus,

most of the papers related to the plot-based approach focus on urban applications.

Regarding the training process, there are many research challenges that concern the labeling

of samples. The most important ones are related to the size and redundancy of the training

set [101]. The size and quality of the training set have a direct impact on the execution time

needed for training and on the final result of the classification. In addition, labeling of samples

often requires visits to the study site, which can add extra costs to the analysis. The training

set must, thus, be carefully chosen, avoiding redundancy patterns, but also ensuring a good

representation of the considered classes. In order to assist users in selecting samples, several

interactive methods have been proposed for dealing with remote sensing data [85, 100, 20, 24,

21, 99, 80, 91].

Typically, the classification process of RSIs uses supervised learning, which can be divided

into three main steps: data representation, feature extraction, and training. Data representation

indicates the objects for classification. Feature extraction provides a mathematical description

for each object (by taking into account, for example, spectral characteristics, texture, shape).

Training learns how to separate objects from distinct classes by building a classifier based on

machine learning techniques (for instance, support vector machines [104], optimum-path for-

est [21], genetic programming [22], and neural networks [77]).

The final quality of the classification depends on the performance of each step as a whole.

For example, the classification result relies on the accuracy of the employed learning techniques.

Regarding the performance of learning algorithms, it is directly dependent on the quality of the

extracted image features. Finally, features are extracted according to the model used for data

representation.

1.2 Research challenges

The research challenges in remote sensing image classification can be arranged into three main

axes as illustrated in Figure 1.2. These axes are based on the following aspects: data represen-

tation, target recognition, and user interaction.

The data representation axis concerns the kind of data which are considered as the samples

in the classification process (e.g., pixels [89], blocks of pixels [22], regions [3], and hierarchy

of regions [10]). In the following, we discuss some of the research challenges related to data

representation:

• Segmentation method: there are several image segmentation strategies in the literature.

The main challenge is to define the appropriate algorithms to segment the RSI into repre-





1.3. Hypothesis, objectives, and contributions 5

• Fusion of classifiers: given a set of classifiers, how to combine them to improve classi-

fication results? Good classifiers may not be correlated. The diversity measured in terms

of the level of agreement of classifiers can be exploited to select and fuse them.

The user interaction axis refers to the challenges that are related to user interactivity over the

classification process: manual, automatic, and semi-automatic. In a manual classification, the

recognition is completely dependent on users’ perceptions and decisions. This process typically

consists of drawing the areas of interest in the RSI by using some software (e.g., Spring [11]).

It often requires visits to the studied place to confirm obtained results. In automatic approaches,

the user indicates the training set samples and some supervised method is used to classify the

remaining samples given a learning process. The semi-automatic classification strategy does

not only use supervised classification but also allows the user to refine the classification process

along iterations.

• Selection of training samples: selecting representative training samples frequently re-

quires to revisit the area under study. An effective strategy to select training samples for

user annotation is important to avoid extra costs. In an interactive approach, the seman-

tic information obtained from each user interaction needs to be associated with extracted

features to improve the classification results. Active learning is a concept developed to ad-

dress these issues. It is a machine learning strategy that allows the system to interactively

query the user and, then, improve the training data.

• Visualization/Annotation: In a typical content-based image retrieval system with rele-

vance feedback, a small set of images is shown to the user at each learning iteration. In

a semi-automatic RSI application, it is desirable to show the entire image because the

spatial relationship among the regions is informative for better user annotation. Since the

image is large, another problem concerns the definition of strategies to call user attention

to the selected regions that should be annotated.

The work developed in this thesis addresses some of those important research challenges.

1.3 Hypothesis, objectives, and contributions

In this thesis, we focus on the data representation and feature extraction problems with the ob-

jective of developing effective solutions for interactive classification of remote sensing images.

This objective was accomplished based on the four validation hypotheses below:

1. Descriptors designed for general use in different applications are useful for classification

of agricultural areas in RSIs.
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2. Multiscale image segmentation may provide more useful information for RSI classifica-

tion than simple image segmentation.

3. Active learning is an effective approach for interactive RSI multiscale classification as it

enables the user to refine the classification results and it reduces the training data simul-

taneously.

4. The propagation of features from the finer scales to the coarser ones along the hierarchy of

segmented regions may be more efficient and effective than the use of features extracted

from each scale individually.

The first hypothesis concerns the use of successful image descriptors, which are developed

for different purposes, in RSI classification tasks. It comes from the fact that image descriptors

proposed in the literature achieve good results in various applications, but many of them have

never been used in remote sensing classification tasks.

Our contribution concerning the first hypothesis comprises the evaluation of descriptors

in the context of remote sensing image classification. We have tested twelve descriptors that

encode spectral/color properties and seven texture descriptors for classification and retrieval

tasks of coffee and pasture targets. To evaluate descriptors in classification tasks, we also

propose a methodology based on the KNN classifier. Experiments demonstrate that Joint

Auto-Correlogram (JAC) [118], Color Bitmap [63], Invariant Steerable Pyramid Decomposi-

tion (SID) [125] and Quantized Compound Change Histogram (QCCH) [44] yield the best re-

sults. These contributions were published in the International Conference on Computer Vision

Theory and Applications (VISAPP) [28], in 2010.

The second hypothesis is related to the need for classification techniques of RSIs able to

deal with images with high spatial resolution. Several recently proposed methods exploit fea-

tures extracted from segmented objects. A common problem is the definition of the scale of

segmentation. Moreover, by using a single segmentation scale, how could we insure the quality

of this segmentation? We want to discover if the combination of multiple segmentation scales

can achieve better results than using a single segmentation scale in isolation. Another important

question is: how to perform multiscale classification without excessive computational costs?

Finally, given classification results obtained with coarser segmentation, is it possible to refine

the results by using finer segmentation scales?

The second contribution of this thesis, which refers to the second hypothesis, includes two

boosted-based approaches for multiscale classification of remote sensing images. The first ap-

proach, Multiscale Classifier (MSC), builds a strong classifier that combines features extracted

from multiple scales of segmentation. The other, Hierarchical Multiscale Classifier (HMSC),

exploits the hierarchical topology of segmented regions to improve training efficiency with-

out accuracy loss when compared to the MSC. We have shown that it is better to use multiple
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scales than use only one segmentation scale result. We also analysed and discussed about the

correlation among the used descriptors and the scales of segmentation. The MSC and HMSC

approaches were published in the IEEE Transactions on Geoscience and Remote Sensing [25]

(TGRS), in 2012. The correlation analysis was published in the International Conference on

Pattern Recognition (ICPR) [23], in 2012.

The third hypothesis considers user interactions to aid both the refinement of classification

results through multiscale segmentation and the selection of training examples. Some research

questions are: how to select regions for the user feedback? How to take advantage of multiple

scales without spending excessive time in training? Is it possible to achieve acceptable results

with few user interactions?

The third contribution of this thesis is an approach for interactive multiscale classification

of remote sensing images. We proposed an active learning strategy and adapted the HMSC to

allow the classification result refinement by the user along interations with the system. The

experimental results showed that the combination of scales produces better results than isolated

scales in a relevance feedback process. Furthermore, the interactive method achieved good re-

sults with few user interactions. The proposed method needs only a small portion of the training

set to build classifiers that are as strong as the ones generated by a supervised method that uses

the whole training set. This contribution was reported in an article accepted for publication

in the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

(JSTARS) [26].

The fourth hypothesis refers to the problem of extracting features of a hierarchy of regions

for multiscale classification. Our strategy relies on exploiting the existing relationship among

the regions in a hierarchy. The challenge is how to use this information to speed up the feature

extraction process without the quality of the generated representation.

Our contribution regarding the fourth hypothesis is an approach for efficient and effec-

tive feature extraction from a hierarchy of segmented regions. This approach, called BoW-

Propagation, exploits the bag-of-visual words model to propagate features along multiple scales

by taking into account the hierarchical relation among the regions of different scales. We also

extended this idea to propagate histogram-based global descriptors, the H-Propagation. Exper-

iments using the BoW-Propagation approach for feature extraction of arbitrary-shaped regions

are presented in the International Conference on Pattern Recognition (ICPR) [29], in 2012.

The H-Propagation was accepted for publication in the proceedings of the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) [30], in 2012.

1.4 Organization of the text

This thesis is outlined according to the hypotheses. It is organized in eight chapters, including

this introduction.
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In Chapter 2, we review the state-of-the-art on region-based and interactive classifi-

cation for remote sensing images. We also introduce background concepts related to the

hierarchical segmentation method proposed by Guigues [42] and bag of visual words.

In Chapter 3, we present the remote sensing image datasets used in the experiments. We

also explain how the experimental results are evaluated by using well-known classification

measures.

In Chapter 4, we present the evaluation of descriptors in the context of remote sensing

image classification.

In Chapter 5, we propose two boosting-based approaches for multiscale classificaton

of remote sensing images. The first approach, Multiscale Classifier (MSC), builds a strong

classifier that combines features extracted from multiple scales of segmentation. The other,

Hierachical Multiscale Classifier (HMSC), exploits the hierarchical topology of segmented

regions to improve training efficiency without accuracy loss when compared to the MSC. In this

chapter, we also present a correlation analysis among the used descriptors and the scales of

segmentation.

In Chapter 6, we propose an approach for interactive multiscale classification of remote

sensing images. We proposed an active learning strategy and adapted the HMSC to allow the

classification result refinement by the user along interations.

In Chapter 7, we present an approach for efficient and effective feature extraction from

a hierarchy of segmented regions. The approach, BoW-Propagation, exploits the bag-of-

visual words model to propagate features along multiple scales by taking into account the hier-

archical relation among the regions of different scales. We also extended this idea to propagate

histogram-based global descriptors, the H-Propagation approach.

Finally, in Chapter 8, we present our conclusions and future perspectives.



Chapter 2

Related Work and Background

In this chapter, we present related work, and the background concepts related to image rep-

resentation and description necessary to understand the approaches we have proposed in this

thesis. Section 2.1 presents related work. Section 2.2 presents the Guigues’ segmentation al-

gorithm, which we have used to obtain hierarchy of regions. Section 2.3 presents the low-level

descriptors used along this thesis. Finally, Section 2.4 introduces basic concepts of the BoW

approach.

2.1 Related Work

A study of published works between 1989 and 2003 examined the results and implications

of RSI classification research [117]. According to this study, despite the high number of ap-

proaches in that period, there was not significative improvement in terms of classification re-

sults. Most of the proposed methods were pixel-based. These methods try to estimate the

probability of each pixel to belong to the possible classes employing statistic measures based

on spectral properties. The Maximum Likelihood Classification (MLC) [89] has remained as

one of the most popular methods for RSI classification.

The improvements in sensor technologies increased the accessibility to high-resolution and

hyperspectral imagery. As a result, new approaches were developed to make better use of the

available data [62]. Two main research approaches to address those issues can be observed in

the literature. The first one, which is more related to high-resolution images, focuses on data

representation and feature extraction [57, 124, 48, 77, 114, 51, 104]. The other approach, more

associated with pixel-based classification methods, is focused on issues related to the selection

of samples for training and the inclusion of the user in the classification process [100, 99, 101,

85, 80, 20, 91].

In the next two subsections, we discuss each of these approaches. Concerning the first one,

we highlight proposed methods for classification based on regions. Regarding the second ap-

9
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proach, we point out proposed techniques related to interactive classification of remote sensing

images.

2.1.1 Region-based Classification Methods

Initially, advances towards the classification of high-resolution data focused on the use of the

neighborhood of the pixels in the analysis, which included texture descriptors [62].

More recently, many studies [57, 124, 48] have considered information encoded in regions

(group of pixels) for RSI classification tasks. Gigandet et al. [38] proposed a classification

algorithm for high resolution RSIs combining non-supervised and supervised classification

strategies. In this method, regions were classified by using Mahalanobis distance and Sup-

port Vector Machines (SVM). Lee et al. [57] created a region-based classification method for

high resolution images that exploited two approches: MLC with region means, and MLC with

Gaussian Probability Density Function. Both works presented better results than pixel-based

classifiers. Yu et al. [124] also proposed a method to classify RSI based on regions. The image

segmentation and classification were performed by using evolution of fractal networks and non-

parametric K-Nearest Neighbor (KNN), respectively. Another recent work in this research area

has been developed by Katartzis et al. [48]. They proposed a region-based RSI classification

method that uses Hierarchical Markov Models.

The growth of classification approaches based on regions has been analyzed in [4]. Accord-

ing to Blaschke et al., the goal of GEOBIA is to outline objects within images that are useful. It

combines, at the same time, image processing and features of Geographic Information Systems

(GIS) aiming to use spectral and contextual information seamlessly. The paper shows that the

growth in the number of new approaches is accompanied by the increase of the accessibility to

high-resolution images and, hence, the development of alternative techniques to the classifica-

tion based on pixels. As pointed out by the authors, the growth in research involving GEOBIA

was motivated in part by the use of commercial software eCognition [3]. The software has al-

lowed research involving classification of regions, enabling the inclusion of data from different

scales by using an approach supported on the KNN classifier.

These new trends have encouraged research studies that compare techniques based on pixels

and/or regions [48, 126, 7, 72], and propose new segmentation techniques that support the

classification of regions in RSIs [37, 115, 59, 8].

Likewise, new researches that take advantage of the use of multiple scales of data have

been carried out [77, 114, 51, 102, 104, 107]. Both Ouma et al. [77] and Wang et al. [114]

proposed approaches that use multiscale data for land cover change detection. In [77], Ouma

et al. presented a technique for multi-scale segmentation with an unsupervised neural network

for vegetation analysis. Wang et al. [114], on the other hand, proposed an approach for change

detection in urban areas. The method relies on the fusion of features from different scales based
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on a combination of means for each pixel in the used scales. The result is a new image which

corresponds to the combination of the scales.

Like Wang et al. [114], Kim et al. [51] used the eCognition software to create the multi-

scale segmentation. The objective, however, was to perform multi-class classification. In the

segmentation process, the size of the regions is controlled by a scale parameter. For each scale,

a different set of classes is defined according to a hierarchy between the classes of each scale.

Thus, for each level, a different classification is performed. It includes structural knowledge

and high semantic contents. The result of the coarsest scales is used for the classification of the

most specific classes, restricting the regions that belong to the same subtree in the hierarchy.

Valero et al. [107] proposed a region-based hierarchical representation for hyperspectral im-

ages based on Binary Partition Tree (BPT). They show that the proposed Pruning BPT method

can be suitable for classification. Furthermore, they mention that by using different prunings

based on the same idea the method can be also used for filtering and segmentation purposes.

Tzotsos et al. [102, 104] used multiple scales for RSIs classification. In [102], they pro-

posed a classification based on SVM with Gaussian Kernel that uses multi-scale segmentation.

One single segmentation result is used for the extraction of objects by combining segments

of various sizes. The size of the selected objects is controlled by a scale parameter as well.

In [104], the authors proposed a method for the fusion of scales by nonlinear scale-space filter-

ing. This technique avoids the use of parameters to control the creation of objects selected for

classification.

2.1.2 Interactive Classification Methods

Several recent approaches handle the RSI classification problem by exploiting the user interac-

tions [85, 100, 20, 24, 21]. The main purpose of these methods is to help the user to build a

representative training set, improving classification results along iterations. According to Tuia

et al. [101], in high-resolution imagery, the selection of training data can be easily done on the

image. However, several neighboring pixels can be included in the selection, carrying the same

spectral information. Consequently, the training set may be highly redundant. Furthermore, the

labeling of training samples may require visits to the studied places, as those samples may be

linked to geographical references. That adds extra costs to the classification process.

Most of the proposed methods are SVM-based [20, 80, 100, 99]. In these approaches, active

learning plays a key role. It provides an interactive way to build training sets that correctly

represent the boundaries of separation between classes, avoiding redundancies.

Pasolli et al. [80] proposed a classification method based on active learning for SVMs. The

idea relies on classifying the samples as significant and non-significant, according to a concept

of significance which is proprer to the theory of SVMs. Thus, a significance space is built, which

is used to select samples to be displayed to the user. Demir et al. [20] investigated and tested
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different active learning techniques in order to reduce the redundancy in the training set for

pixel-based applications. Based on their analysis, it was proposed a new query function, called

MCLU-CBD (Multiclass-Level Clustering with Uncertainty Based Diversity). This function

uses the k-means clustering method in the kernel space and selects the most informative samples

at each iteration according to the identification of the most uncertain sample of each cluster.

Tuia et al. have proposed strategies to perform active learning in remote sensing appli-

cations by using SVMs [100, 112, 99]. In [112], they proposed an active learning approach

to minimize the redundancy of the sampled pixels and maximize the speed of convergence to

an optimal classification accuracy. In [100], they presented two active learning algorithms for

semi-automatic definition of training samples in RSI classification. They show that the training

set can be 10% reduced by using the proposed method. In [99], they improve their method by

applying sample clustering to the SVM margin samples.

Rajan et al. [85], on the other hand, proposed an approach based on active learning that can

be applied to any classifier since this classifier is able to work with decision bounds. They apply

the principle of selecting data points that most change the existing belief in class distributions.

Santos et al. [24, 21] have also recently proposed two interactive methods for classification

of RSIs. In [24], they proposed an interactive framework based on relevance feedback, called

GPSR. That framework allows the classification of RSIs and the combination of distances from

feature descriptors by using genetic programming (GP). In [21], they propose a new framework

(GOPF ) that integrates the Optimum-Path Forest classifier [78] and GP to perform interactive

classification combining different types of features.

It is worth mentioning that none of the above cited methods are proposed to work on regions.

The methods proposed in [85, 100, 80, 20] are based on feature extracted from pixels, some of

them specifically focused on the classification of hyperspectral images [85, 80]. The methods

proposed in [24, 21], in turn, use features extracted from regular blocks of pixels.

2.2 Hierarchical Segmentation

Lately, many multiscale segmentation methods have been proposed for remote sensing pur-

poses [103, 37, 115, 59, 58, 8, 2, 54]. In this work, we use the scale-set representation intro-

duced by Guigues et al. [42]. It builds a hierarchy of regions or a single suite of partitions. As

the optimal partitioning of an image depends on the application, this method proposes to keep

all partitions obtained at all scales, from the pixel level until the complete image.

Basically, we use the Guigues’ approach because it is hierarchical (essential for our pro-

posal) and it has a strong theoretical foundation. Anyway, the proposed approach for interactive

multiscale classification is general and can exploit any other hierarchical region-based segmen-

tation method.
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Among other applications, this method has been successfully used in tasks of multiscale seg-

mentation of remote sensing images by Trias-Sanz et al. [98]. They justify the use of Guigues’s

algorithm by the fact that it makes both the segmentation criterion and the scale parameter

explicit. We concisely introduce the algorithm below.

Let image I be defined over a domain D, a partition P is a division of D into separate

regions. A partition P2 is finer than a partition P1 if each region R of P2 is included in one and

only one region of P1. The scale-set representation consists in defining a set of partitions Pλ of

D, indexed by a scale parameter λ, such that if λ1 ≤ λ2 then P2 is finer than P1. The transition

between Pi and Pi+1 is obtained by merging some adjacent regions of Pi into larger regions

by optimizing a criterion. The criterion we use corresponds to Mumford-Shah energy [70],

which approximates the color image by a piecewise constant function, while minimizing the

edge lengths:

E(P ) =
∑

Ri∈P

ED(Ri) + λEC(Ri) (2.1)

where ED is the distance with the piecewise constant model and EC is the length of the contour.

The compromise between both constraints is defined by the parameter λ. For small values

of λ, the image is over-segmented, the approximation of each region by a constant is perfect, but

the total length of all edges is very large. On the contrary, when λ is large, the partition contains

few regions (until only one), then the approximation of each region by a constant is poor, but the

total length of all edges is very small. The set of partitions has a structure of a hierarchy H of

regions: two elements of H , which are not disjoint, are nested. A partition Pλ is composed by

the set of regions obtained from a cut in the hierarchy H at scale λ (see Figure 2.1). Guigues et

al. showed that this algorithm can be performed with the worst case complexity in O(N2logN),

where N is the size of the initial over-segmentation.

The Guigues’ algorithm is a merging process, which iteratively merges neighbouring re-

gions by minimizing an energy criterion. It starts at pixel level, or after a watershed process,

aiming to obtain regions more reliable to compute the energy. It stops when all regions are

merged.

Figure 2.1 shows the segmentation structure obtained by Guigues’ algorithm. The hierarchy

of regions is drawn as a tree and the vertical axis is the scale axis (in logarithmic representation).

A cut in scale λ retrieves a partition Pλ.

To automatically select partitions at different scales, Guigues et al. proposed the use of

a dichotomous cutoff-based strategy, which consists of successively splitting the hierarchy of

regions into two. Each division is a dichotomous cut and creates a partition at the defined scale.

Let Λ be the maximum scale in hierarchy H , i.e., the one in which the image I is represented

by a single region, the cut-scale λc is defined by λc = Λ/2n, where n is the order of each

division in the hierarchy. Figure 2.2 presents some cuts extracted from the hierarchy illustrated
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in Figure 2.1.

λc = Λ/21 λc = Λ/22 λc = Λ/23 λc = Λ/24

λc = Λ/25 λc = Λ/26 λc = Λ/27 λc = Λ/28

λc = Λ/29 λc = Λ/210 λc = Λ/211 Image

Figure 2.2: Some cuts of the scale-sets and the original image.

The highest scale of the hierarchy shown in Figure 2.1 is Λ = 1.716. Thus, the first cut is

defined at the scale λc = 0.858, the second one, at the scale λc = 0.429, and so on.

2.3 Low-Level Descriptors

In this thesis, we have used nineteen low-level image descriptors. It encodes color/spectral

properties (Section 2.3.1) and texture (Section 2.3.2).

2.3.1 Color Descriptors

This section presents the low-level color descriptors we have used in the experiments along this

thesis.
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Global Color Histogram (GCH) [94]

This is one of the most commonly used descriptors. It uses an extraction algorithm which

quantizes the color space in a uniform way and it scans the image computing the number of

pixels belonging to each color (bin). The size of the feature vector depends on the quantization

used. In this work, the color space was split into 64 bins, thus, the feature vector has 64 values.

Color Coherence Vector (CCV) [81]

Like GCH, the CCV is recurrent in the literature. It uses an extraction algorithm that classifies

the image pixels as “coherent” or “incoherent” pixels. This classification takes into considera-

tion whether the pixel belongs or not to a region with similar colors, that is, coherent regions.

Two color histograms are computed after quantization: one for coherent pixels and another for

incoherent ones. Both histograms are merged to compose the feature vector. In our experiments,

the color space was quantized into 64 bins.

Color Autocorrelogram (ACC) [45]

The role of this descriptor is to map the spatial information of colors by pixel correlations at

different distances. It computes the probability of finding in the image two pixels with color

C at distance d from each other. For each distance d, m probabilities are computed, where m

represents the number of colors in the quantized space. The implemented version quantized the

color space into 64 bins and considered 4 distance values (1, 3, 5, and 7).

Border/Interior Pixel Classification (BIC) [18]

This descriptor has presented good results in image retrieval and classification tasks (e.g., [28],

[22], and [24]). The first step of the feature vector extraction process relies on the classification

of image pixels into border or interior ones. When a pixel has the same spectral value in the

quantized space as its four neighbors (the ones which are above, below, on the right, and on the

left), it is classified as interior. Otherwise, the pixel is classified as border. Two histograms are

computed after the classification: one for the interior pixels and another for the border ones.

Both histograms are merged to compose the feature vector. The implemented version quantized

the color space into 64 bins. We used the dlog function distance in our experiments, as well as

the L1 distance.

Cumulative Global Color Histogram (CGCH) [92]

This descriptor is very popular in the literature and is very similar to the GCH descriptor. The

main difference in the extraction algorithm is that the value of each bin is cumulated in the next
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bin. This makes the last bin have the sum of all the previous bins plus the actual bin. In our

experiments, the color space was quantized into 64 bins and the L1 distance function was used.

Local Color Histogram (LCH) [94]

LCH is one of the most popular descriptors that is based on fixed-size regions to describe image

properties. Its extraction algorithm splits the image into fixed-size regions and computes a

color histogram for each region. After that, the histograms of each region are concatenated to

compose one single histogram. The implemented version splitted the image into 16 regions

(4x4 grid) and quantized the RGB color space into 64 bins. This generated feature vectors with

1024 values. The L1 distance function was used.

Joint Auto-Correlogram (JAC) [118]

This descriptor follows the same principle used by ACC. However, its extraction algorithm

computes the autocorrelogram for more than one image property. The properties considered

are: color, gradient magnitude, rank, and texturedness. Color is extracted in RGB color space

and the other properties are extracted from the gray level image. The joint autocorrelogram

indicates, for each distance considered, the probability of simultaneously occurring the four

properties considered. The implemented version used the HSV color space quantized into 64

bins, 5 bins for the other three properties, a 5× 5 pixel neighborhood and 4 distance values (1,

3, 5, and 7). The L1 distance function was used.

Color-Based Clustering (CBC) [17]

CBC is a method for feature extraction based on image segmentation . The method decomposes

the image into disjoint connected components. Each region has a minimum size and a maximum

color difference. A region is defined by its average color in the CIE Lab color space, by its

horizontal and vertical center, and by its size in relation to the image size. The distance function

is a combination of L2 distance and Integrated Region Matching (IRM) functions.

Color Bitmap [63]

This descriptor analyzes image color properties globally and locally. Its extraction algorithm

computes the mean and the standard deviation of each of the R, G, and B channels indepen-

dently. After that, the image is split into m blocks and the mean of each block is computed for

each channel. If the block mean is greater than the image mean, the correspondent feature vec-

tor position receives 1; otherwise, it receives 0. The implemented version used 100 blocks. The

distance was computed in two steps: L2 function for the mean and standard deviation values;

and Hamming distance for the binary values.
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Color Structure (CSD) [67]

This is one of the color descriptors used in the MPEG-7 standard. The CSD extraction algo-

rithm uses the HMMD (hue, max, min, diff) color space and scans the image with a 8x8 pixels

structuring element. A histogram h(m) is incremented if the color m is inside the structuring

element, where m varies from 0 to M − 1 and M is the color space quantization. The imple-

mented version quantized the space in 184 bins as suggested in [67] and used the L1 distance

function.

Color Wavelet HSV (CW-HSV) [106]

This descriptor considers image color properties in the wavelet domain. Its extraction algorithm

uses the HSV color space quantized into 64 bins and computes a global color histogram for the

image. After that, the Haar wavelet coefficients are hierarchically computed. This is done

recursively by dividing the histogram in the middle: if the sum of the values from the first

half are greater than the sum of the values from the second half, the correspondent feature

vector position receives 1; otherwise, 0. The process is repeated until the last possible level

of division, what leads to 63 bits in the feature vector. The distance function is used is the

Hamming distance.

Chromaticity Moments (CM) [79]

This descriptor characterizes the image by chromaticity values. Its extraction algorithm first

converts the image to the CIE XYZ color space. The chromaticity values (x, y) are computed

as x = X
X+Y +Z

and y = Y
X+Y +Z

. After that, two features are computed: the trace, that indicates

the presence or not of each (x, y) value, and the histogram of chromaticities. The trace and

the histogram are used to define the chromaticity moments. In the implemented version, 6

moments were used, leading to 12 values in the feature vector. The distance function cumulates

the modular differences between the corresponding moments.

2.3.2 Texture Descriptors

This section presents the low-level texture descriptors we have used in the experiments along

this thesis..

Invariant Steerable Pyramid Decomposition (SID) [125]

In this descriptor, a set of filters sensitive to different scales and orientations is used. The image

is first decomposed into two sub-bands using a high-pass and a low-pass filter. After that,

the low-pass sub-band is decomposed recursively into K sub-bands by band-pass filters and
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into one sub-band by a low-pass filter. Directional information about each scale is captured at

each recursive iteration. The mean and standard deviation of each sub-band are used as feature

values. To obtain the invariance to scale and orientation, circular shifts in the feature vector

are applied. The implemented version uses 2 scales and 4 orientations, which leads to a feature

vector with 16 values.

Unser [105]

This descriptor is based on co-occurrence matrices, still one of the most widely used descriptors

to encode texture in remote sensing applications. Its extraction algorithm computes a histogram

of sums Hsum and a histogram of differences Hdif . The histogram of sums is incremented

considering the sum, while the histogram of differences is incremented by taking into account

the difference between the values of two neighbor pixels. As well as gray level co-occurrence

matrices, measures such as energy, contrast, and entropy can be extracted from the histograms.

In our experiments, eight different measures were extracted from histograms and four angles

are used (0◦, 45◦, 90◦, and 135◦). The final feature vector is composed of 32 values.

Quantized Compound Change Histogram (QCCH) [44]

This descriptor uses the relation between pixels and their neighbors to encode texture infor-

mation. This descriptor generates a representation invariant to rotation and translation. Its

extraction algorithm scans the image with a square window. For each position in the image, the

average gray value of the window is computed. Four variation rates are then computed by tak-

ing into consideration the average gray values in four directions: horizontal, vertical, diagonal,

and anti-diagonal directions. The average of these four variations is calculated for each window

position. They are then grouped into 40 bins and a histogram of these values is computed.

Local Binary Pattern (LBP) [76]

LBP is a simple texture descriptor that is invariant to rotation and variations in the gray scale

values. Its extraction algorithm defines a window with radio R and a quantity of neighbors P

and scans the image counting the quantity of positive and negative variations between the gray

values of the neighbor pixels and the central pixel of the window. For gray scale invariance,

only the signal of the variation is considered, being 1 for positive and 0 for negative variation.

After that, the number of 0/1 and 1/0 transitions are computed, what guarantees the rotation

invariance. If the number of transitions is less than 2, the LBP value for that window position is

equal to the quantity of 1 signals in the neighborhood. Otherwise, the LBP value is P +1. After

all the image is scanned, a histogram of LBP values is computed. In our experiments, R = 1

and P = 8 values. The distance function used was the L1 distance.
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Homogeneous Texture Descriptor (HTD) [119]

This descriptor is one of the texture descriptors from the MPEG-7 standard. Its extraction

algorithm applies a set of filters sensitive to different scales and orientations. The output of

each filter is an image from which the average and standard deviation values are computed. The

commonest filters used are Gabor filters. In the implemented version, Gabor filters sensitive to

4 scales and 6 orientations were used, leading to a feature vector with 48 values. The distance

function computes the difference between each correspondent average and standard deviation

values.

Color Co-Occurrence Matrix (CCOM) [52]

This descriptor is a variation of Gray Level Co-Occurrence Matrix (one of the commonest

approaches for texture analysis and classification of RSIs [124, 62, 51]). CCOM extracts the

feature vector by first quantizing the color space and then scanning the image to compute the

co-occurrence matrix W (cp, cq, d). For each pair of image pixels p, q with distance d between

themselves, W (cp, cq, d) is incremented by one, where cp is the color of pixel p in the quantized

space, cq is the color of pixel q in the quantized space, and d is the distance between them. The

feature vector stores the positive values of the matrix that are below a superior threshold, leading

to a variable size feature vector. The implemented version quantizes the RGB color space into

216 bins and uses d equal to 1. The distance function computes the differences between the

corresponding W values.

Local Activity Spectrum (LAS) [96]

This descriptor captures texture spatial activity in four different directions separately: horizon-

tal, vertical, diagonal, and anti-diagonal. The four activity measures are computed for a pixel

(i, j) by considering the values of neighboring in the four directions. The values obtained are

used to compute a histogram that is called local activity spectrum. Each component gi is quan-

tized independently. In our experiments, each component was non-uniformly quantized into 4

bins, leading to a histogram with 256 bins. Distance is computed by L1 function.

2.4 Bag of Visual Words

In this work, we use the notion of global and local descriptor that is normally employed in

content-based image retrieval. Global descriptors [14] rely on describing an object (image or

region, for example) by using all available pixels. Local descriptors [68], in turn, are extracted

from predefined points of interest in the object. Hence, if an object has more than one point

of interest in its interior, it can be described by more than one feature vector. A very effective
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2.4.4 Pooling

The pooling step is the process of summarizing the set of local descriptions into one single

feature vector. Average and max pooling are popular strategies employed, with an advantage to

the latter [5].

Average pooling can be formally defined as follows:

hj =
(
∑N

i=1 αi,j)

N
(2.3)

Max pooling is given by the following equation:

hj = max
i∈N

αi,j (2.4)

In both equations, N is the number of points in the image and j varies from 1 to k.

2.4.5 BoWs and Remote Sensing Applications

The bag-of-visual-words (BoW) model has been used [116, 121, 93], evaluated [9], and adapted

for remote sensing applications [46, 34, 122] in several recent works.

Weizman and Goldberger [116] proposed a solution based on visual words to detect urban

regions. They apply a pixel-level variant of the visual words concept. The approach is com-

posed of the following steps: build a visual dictionary, learn urban words from labeled images

(urban and non-urban), and detect urban regions in a new image. Xu et al. [121] proposed a

similar classification strategy based on bag of words. The main difference is that their approach

builds the visual vocabulary in patch-level by using interest-points detectors and local descrip-

tors. In [93], Sun et al. used visual dictionaries for target detection in high-resolution images.

Another approach focused on high resolution images is described in [46]. Huaxin et al. [46]

proposed a local descriptor which encodes color, texture, and shape properties. The extracted

features are used to build a visual dictionary by using k-means clustering.

Chen et al. [9] evaluated 13 different local descriptors for high resolution image classifica-

tion. In their experiments, the SIFT descriptor obtained the best results.

Feng et al. [34] proposed a BoW-based approach to synthetic aperture radar (SAR) image

classification. The proposed method starts by extracting Gabor and GLCM features from seg-

mented regions. The dictionary is built by using the clonal selection algorithm (CSA), which

is a searching method. Yang et al. [122] also proposed an approach based on bag of words

for synthetic aperture radar (SAR) image classification. Their approach relies on a hierarchical

Markov model on quadtrees. For each tile in each level of the quadtree, a vector of local visual

descriptors is extracted and quantized by using a level-specific dictionary.
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Experimental Protocol

This chapter describes the experimental protocol used to validate the methods proposed in this

work. Section 3.1 describes the datasets used. Section 3.2 presents the measures used to evalu-

ate the classification results obtained in the performed experiments.

3.1 Remote Sensing Image Datasets

We have used three different remote sensing image datasets to perform experiments in this work.

We refer in this text to each dataset according to the target or region of interest: COFFEE,

PASTURE, and URBAN areas. Table 3.1 presents a brief overview about each image. The

datasets are described in details in the following sections.

3.1.1 COFFEE Dataset

This dataset is a composition of scenes taken by the SPOT sensor in 2005 over Monte Santo

de Minas county, in the State of Minas Gerais, Brazil. This area is a traditional place of coffee

cultivation, characterized by its mountainous terrain. In addition to common issues in the area

Table 3.1: Remote sensing images used in the experiments.

PASTURE COFFEE URBAN

Terrain plain mountainous plain

Satellite CBERS SPOT QuickBird

Spatial res. 20m 2.5m 0.6m
Bands comp. R-IR-G IR-R-G R-G-B

Acquisition date 08–20–2005 08–29–2005 2003

Location Laranja Azeda Basin, MS Monte Santo County, MG Campinas,SP

Dimensions (px) 1310× 1842 14017× 13488 9079× 9486

25
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(a) (b)

Figure 3.2: COFFEE data with (a) a subimage from the original RSI and (b) the ground truth

that indicates the regions corresponding to coffee crops.

3.1.2 PASTURE Dataset

The PASTURE image (Figure 3.5(a)) is a cutout of an RSI captured by CBERS satellite that

corresponds to the Laranja Azeda Basin in the State of Mato Grosso do Sul, Brazil. This image

is from a plain region, without major distortions in the terrain. Because of that, there are no

many interferences in the spectral pattern and the classification is considered easy.

The PASTURE ground truth (Figure 3.5(b)) was created by agricultural specialists by us-

ing the Spring software [11]. First, the PASTURE image was segmented by applying a region

growing algorithm [39]. After the segmentation, each object was classified by using the Bhat-

tacharya algorithm with 90% certainty. The PASTURE ground truth image was revised by the

agricultural researches after visiting the region.

3.1.3 URBAN Dataset

This dataset is a Quickbird scene taken in 2003 from Campinas region, Brazil. It is composed by

three bands that correspond to the visible spectrum (red, green, and blue). We have empirically

created the ground truth based on our knowledge about the region. We considered as urban

the places which correspond to residential, commercial, or industrial regions. Highways, roads,

native vegetation, crops, and rural buildings are considered non-urban areas. Figure 3.2 (a)

illustrates the URBAN image. Figure 3.2 (b) indicates the urban areas in the URBAN image.

Figure 3.6 illustrates the multi-scale segmentation by using the Guigues’ algorithm (Sec-
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λ0 (original RSI) λ1 λ2

λ3 λ4 λ5

Figure 3.3: One of the tested subimages and the results of segmentation in each of the selected

scales for the COFFEE dataset.

tion 2.2) for one of the subimages used in the experiments from URBAN dataset.

3.2 Measures

In our experiments, we have used evaluation measures in terms of values stored in confusion

matrices [61]. Table 3.2 presents a confusion matrix for m classes constructed with both refer-

ence and the classified data for all pixels in the studied RSI.

The three evaluation measures used along this thesis are: overall accuracy, kappa index (κ),

and tau index (τ ). A comparison of measures can be found in [36]. In our experiments, we

assess the results quality for region-based classification at pixel level.

Overall accuracy [13] is the most popular accuracy measure. It is computed as follow:

OA =

m
∑

i=1

xii

N
× 100 (3.1)
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λ0 (original RSI) λ1 λ2

λ3 λ4 λ5

Figure 3.6: One of the tested subimages and the segmentation results in each of the selected

scales for the URBAN dataset.

Table 3.2: Confusion matrix with xij representing the number of pixels in the classified (ob-

served) image category i and the ground truth (reference) cover category j. Adapted from [61].

Reference

1 2 . . . m Total

Observed

1 x11 x12 . . . x1m x1+

2 x21 x22 . . . x2m x2+
...

...
...

. . .
...

...

m xm1 xm2 . . . xmm xm+

Total x+1 x+2 . . . x+m
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where m is the number of rows in the confusion matrix, xii is the number of pixels observations

in main diagonal (row i and column i).

The Kappa index κ [12, 13] is a measure of aggreement between the reference data and the

classifier result. It is computed by:

κ =

N
m

∑

i=1

xii −
m

∑

i=1

(xi+ × x+i)

N2 −
m

∑

i=1

(xi+ × x+i)

(3.2)

where r is the number of rows in the confusion matrix, xii is the number of observations in row

i and column i; xi+ and x+i are the marginal totals of row i and column i, respectively; and N

is the total number of observations.

In general, negative Kappa means that there is no agreement between classified data and

reference data. Kappa value equals to 1.0 means “perfect agreement”. Experiments in different

areas show that Kappa could have various interpretations and these guidelines could be different

depending on the application. Table 3.3 illustrates a possible interpretation, suggested in [55]:

Table 3.3: Possible interpretations for kappa values.

Kappa index Interpretation

κ = 1 Perfect agreement

0.8 < κ < 1.0 Almost perfect agreement

0.6 < κ ≤ 0.8 Substantial agreement

0.4 < κ ≤ 0.6 Moderate agreement

0.0 < κ ≤ 0.4 Poor agreement

κ ≤ 0 No agreement

The Tau index [49, 65] indicates the percentage of extra pixels correctly classified when

compared to the expected by using a random classifier. Like Kappa, the better the classification

performance, the higher the Tau index. It is given by:

τ =
P0 − Pr

1− Pr

(3.3)

where

P0 =
1

N

m
∑

i=1

xii Pr =
1

N2

m
∑

i=1

(xi+ × xii) (3.4)





Chapter 4

Evaluation of Descriptors for RSI

Classification

This chapter presents an evaluation of image descriptors for RSI retrieval and classification.

Seven descriptors that encode texture information (see Section 2.3.2) and twelve color descrip-

tors (see Section 2.3.1) that can be used to encode spectral information were selected. We

perform experiments to evaluate the effectiveness of these descriptors in retrieval sessions and

classification tasks. The evaluation methodology is presented in Section 4.1. The experimental

results are presented in Section 4.2.

4.1 Descriptor Evaluation Methodology

We performed experiments to evaluate and compare the descriptors considering their effective-

ness performance. For this purpose, we designed two experiments: one for retrieval effective-

ness evaluation and another for overall accuracy classification.

Two image databases were created to evaluate image descriptors based on the PASTURE

and COFFEE datasets. One of them can be classified as “easy recognition” (PASTURE im-

age) while the other as “hard recognition” (COFFEE image). Section 3.1 provides more detais

regarding these images.

In the experiments, one image is represented by a tile of the original RSI. The size of the

tile was fixed according to the common extension value of a region of interest. COFFEE crops

are normally in small parcels on the same farm. We defined that 75 × 75 meters is a good

value to the size of the tile. For PASTURE parcels, that are larger, the chosen value was 400×

400 meters. The dimension of partitions are fixed in the experiments. We used 30×30 pixels to

tile the COFFEE image and 20× 20 pixels for the PASTURE image. The number of partitions

for the PASTURE and COFFEE images was 5980 and 6400, respectively.

33
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To evaluate retrieval effectiveness, Precision × Recall curves were used. Precision quan-

tifies the percentage of relevant images present in the retrieved results. Recall is a measure

that represents the percentage of the relevant images that are retrieved. A Precision × Recall

curve indicates the variation in Precision values as the rate of relevant images from the database

(Recall) changes. Intuitively, the higher the curve, the better the effectiveness.

The Precision× Recall curves were computed based on the average values obtained for each

query image in each database. We used 340 and 100 queries from the PASTURE and COFFEE

image sets, respectively for all the color and texture descriptors presented in Sections 2.3.1 and

2.3.2, respectively. We have used the EVA tool to perform these experiments [82].

To compute the overall accuracy of each descriptor, we implemented a variation of the K-

Nearest Neighboor (KNN) classifier. First of all, a set of tiles from the database was randomly

selected to be used as training set. The set, corresponding to 10% of the database size, is

composed of relevant and non-relevant samples in the same proportion in the full database. To

classify one tile, each descriptor was used to compute the distance between the given tile and

all the training set tiles. Based on the descriptor distances, the training set is ranked and the

first K tiles are weighted inversely proportional to their position in the rank. Finally, the sum of

the weights for each class (relevant or non-relevant) is computed. The largest sum indicates the

class of the input tile. To test the classification effectiveness of the descriptors, 100 tiles were

used for each dataset.

4.2 Experimental Results

Figures 4.1, 4.2, 4.3, and 4.4 show the Precision × Recall curves for color and texture de-

scriptors in the databases used. From Figure 4.1, we can see that good descriptors considering

retrieval effectiveness are Color Bitmap, and ACC. From Figure 4.2, it is possible to see that

JAC presents the highest Precision values even for small values of Recall and for Recall equal

to 1. Analyzing Figure 4.3, we notice that SID has the highest Precision values for all values of

Recall among texture descriptors. Considering curves for the COFFEE database in Figure 4.4,

it is possible to see that the descriptors present similar Precision values and these values are

around 32% to 40% when Recall reaches 10%. In general, SID presents a small advantage.

After analyzing the curves for color and texture descriptors, we can say that color descriptors

are slightly better than texture descriptors for the databases used. For example, in the PASTURE

database, for Recall equal to 10%, the highest Precision value for color descriptors is around

62% (JAC) and for texture descriptors is near 47%. For Recall equal to 1, color descriptors

achieve Precision of 25% (Color Bitmap) and texture descriptors achieve almost 23%. Con-

cerning the COFFEE dataset, for Recall equal to 10%, the highest curve of a color descriptor

reaches 61% (JAC) while the highest curve of a texture descriptor reaches almost 40% (SID).

For Recall equal to 1, there is almost no difference in the Precision values.
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Figure 4.1: Precision × Recall curves for color descriptors, considering the PASTURE dataset.
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Figure 4.2: Precision × Recall curves for color descriptors, considering the PASTURE dataset.
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Figure 4.3: Precision × Recall curves for texture descriptors, considering the PASTURE

dataset.
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Figure 4.4: Precision × Recall curves for texture descriptors, considering the PASTURE
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Figure 4.5: Overall accuracy classification of each descriptor for the COFFEE dataset, using

KNN with k equal to 1, 3, 7 and 10.

According to the results for the COFFEE database presented in Figure 4.5, one can observe

that some descriptors achieve high overall accuracy values. The color descriptors BIC, ACC,

CBC, Color Bitmap, and JAC are the best ones reaching more than 60% of overall accuracy

for any k. JAC produced the highest accuracy values, being the only one with values over 70%

(72% for k = 1, 79% for k = 3, and 73% for k = 7 and k = 10). With regard to the texture

descriptors, QCCH, SID, and LAS yield the highest accuracy values, 52% for k=3. For k values

different than 3, the texture descriptors presented accuracy below 48%. The CCOM descriptor

does not reach 25% of accuracy in any of the experiments in the COFFEE dataset.

According to the results for the PASTURE database (Figure 4.6), we can see that some

descriptors yield good accuracy values. The color descriptors JAC, Color Bitmap, and CBC

reach near or more than 60% of overall accuracy. The JAC descriptor is again the descriptor

with the highest accuracy value, reaching 78% for k=3 and being over 65% for all k values. The

texture descriptors yield lower accuracy values when compared with most of color descriptors.

QCCH, SID, and Unser are the only texture descriptors to reach accuracy above 50%. For k=3,

QCCH reaches 58% of accuracy; SID, 55%; and Unser, 53%. The CCOM descriptor yields the

lowest accuracy values, being below 25% for all k values.
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Figure 4.6: Overall accuracy classification of each descriptor for the PASTURE dataset, using

KNN with k equal to 1, 3, 7 and 10.

4.3 Conclusions

We can point JAC as the best color descriptor. However, JAC generates large feature vectors

and therefore, it is slower to be used in practical applications. If storage and time requirements

are not critical, JAC is the best choice. Other descriptors with high effectiveness are CBC

and Color Bitmap. CBC has complex extraction and distance function. Color Bitmap can be

a good choice among the color descriptors, as it balance simple algorithms and relative good

effectiveness. Among the texture descriptors, QCCH and SID yield the highest accuracy values,

being SID computationally more complex than QCCH for feature extraction.

We take aforementioned analysis into account to select the descriptors employed in the

other experiments described in this thesis. However, we also consider some other aspects like

extraction time, size of the produced feature vector, and implementation simplicity. These

aspects, which are essential for the multiscale approaches proposed in the next chapters, are

extensively analysed and reported for all the tested descriptors in [83].

Hence, we have selected the following color descriptors: ACC, BIC, CCV, and GCH. Al-

though JAC (Joint Auto-Correlogram) presents the best results in our experiments, we have
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replaced it by ACC (Color Auto-Correlogram) because the above mentioned drawbacks of us-

ing JAC. BIC was selected because it presents reasonable accuracy for the COFEEE dataset,

which is high resolution and the most used one in this thesis. BIC has presented good results

in many other applications [83, 14] as well. Moreover, BIC is easy to implement. GCH and

CCV are well-known descriptors and also easy to implement. Their extraction time and feature

vector size are positive aspects for multiscale tasks.

Concerning texture, we have selected QCCH, SID, and Unser descriptors. SID and QCCH

achieve the best results in the COFFEE dataset. The Unser descriptor exploits the coocurrence

matrix indexes, which are widely used features in remote sensing applications.





Chapter 5

Multiscale Training and Classification

based on Boosting of Weak Classifiers

5.1 Introduction

Regardless of the data representation model adopted in supervised classification of RSIs, both

the training input and the result of the classifier can be expressed as sets of pixels. In spite of

that, data representation cannot only rely on pixels, because their image characteristics are not

usually enough to capture the patterns of the classes (regions of interest). In order to bridge

that semantic gap, multiscale image segmentation can play an important role. As pointed out

by Trias-Sanz et al. [98], most of the image segmentation methods use threshold parameters

to create a partition of the image. These methods usually create a single-scale representation

of the image: small thresholds give segmentation with small regions and many details, while

large thresholds preserve only the most salient regions. The problem is that various structures

can appear at different scales and this segmentation result can be difficult to obtain without

prior knowledge about the data or by using only empirical parameters. It is difficult to define

the optimal scale for segmentation. Some parts of an image may need a fine segmentation,

since the plots are small, whereas, in other parts, a coarse segmentation is sufficient. For this

reason, the main drawback of classification methods based on regions is that they depend on

the segmentation method used. Bearing this in mind, many researchers have exploited multiple

scales of data [77, 114, 51, 102, 104, 107].

Allied to the problem of finding the best scale of segmentation, there is the problem of

selection/combination of extracted features. In addition to this, several studies show that the

combination of features improve classification results [22, 24].

We propose a kind of boost-classifier adapted to multiscale segmentation, taking advantage

of various region features computed at various levels of segmentation. To build multiscale clas-

sifiers, we propose two approaches for multiscale analysis of images: the Multiscale Classifier

41
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(MSC) and the Hierarchical Multiscale Classifier (HMSC). The MSC is based on the Adaboost

algorithm [87], which builds a strong classifier from a set of weak ones. The HMSC is also

based on boosting weak classifiers, but it relies on a sequential strategy of training, according to

the segmentation hierarchy of scales (from the coarsest to the finest). In the proposed work, we

employ two types of weak learners: Support Vector Machine (SVM) and Radial Basis Function

(RBF). The RBF approach is based on the distances provided by the used descriptors. We have

also analyzed the correlation between the used descriptors at different scales.

Instead of choosing any particular scale, which is usually not enough to represent all regions

of interest, we segment the image using Guigues algorithm (see Section 2.2). The choice of the

most relevant regions and of the most discriminative features between relevant and non-relevant

samples is done by the machine learning. Our method differs from the others in four main

aspects. First, it does not rely on particular scale and, thus, it can capture the information from

different parts and scales of the image. Then, it exploits the results of auxiliary scales to improve

classification. Furthermore, it combines classification results from different scales rather than

fusing features. Last, it assigns the same set of classes for all scales, producing a single final

result, instead of producing a distinct classification result per scale.

The use of the proposed method only depends on the used descriptors. Thus, the proposed

method can be used to classify any image/region, given that the descriptors are suitable for the

target image/region. It is important to clarify that the method will better work for images with

some noise and higher resolutions, in which representative features can be extracted from both

small and large regions.

This chapter is divided into four sections. Section 5.2 introduces the proposed approaches

for multiscale training and classification. Experimental results concerning the proposed aproaches

are presented in Section 5.3. In Section 5.4, we present a correlation analysis among the de-

scriptors and each scale of segmentation. Finally, in Section 5.5, we present our conclusions.

5.2 Multiscale Training and Classification

In the next sections, we describe the basic ideas of our approach, as well as the major processing

steps for multiscale classification. In Section 5.2.1, we introduce the concepts and the general

functioning of the proposed approach. In Sections 5.2.2 and 5.2.3, the two approaches that we

propose for training classifiers using several scales are presented. Finally, in Section 5.2.4, we

describe the weak classifiers used in the proposed method.

5.2.1 Classification Principles

The aim of RSI classification is to build a classification function F (p) that returns a classifica-

tion score (+1 for relevant, and −1 otherwise) for each pixel p of a RSI. Let us note that, even
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histogram) is less accurate for large or very small regions.

5.2.2 Multiscale Training

The Multiscale classifier (MSC) aims at assigning a label (+1 for relevant class, and −1 oth-

erwise) to each pixel p of P0 taking advantage of various features computed on regions of

various levels of the hierarchy. To build multiscale classifiers, we propose a learning strategy

based on boosting of weak learners. This strategy is based on AdaBoost algorithm proposed by

Schapire [87], which builds a linear combination MSC(p) of T weak classifiers ht(p):

MSC(p) = sign
( T

∑

t=1

αtht(p)
)

(5.1)

The proposed algorithm repeatedly calls weak learners in a series of rounds1 t = 1, . . . T .

Each weak learner creates a weak classifier that decreases the expected classification error of

the combination. The algorithm then selects the weak classifier that most decreases the error.

The strategy consists in keeping a set of weights over the training set. These weights can be

interpreted as a measure of the difficulty level to classify each training sample. At the beginning,

all pixels have the same weight, but in each round, the weights of the misclassified pixels are

increased. Thus, in the next rounds the weak learners are forced to focus on hardest samples.

We will note Wt(p) the weight of pixel p in round t, and Dt,λ(R) the misclassification rate of

region R in round t at scale λ given by the mean of the weights of its pixels:

Dt,λ(R) =
(

1

|R|

∑

p∈R

Wt(p)
)

(5.2)

Algorithm 1 presents the proposed Multiscale Training process. Let Yλ(R), the set of labels

of regions R at scale λ, be the input dataset. We divide this set into training (Y t
λ(R)) and

validation sets (Y v
λ (R)). In a serie of rounds t = 1, . . . T , for all scales λ, the weight of each

region Dt,λ(R) is computed (line 3). This piece of information is employed to select the regions

to be used for training the weak learners, building a subset of labeled regions Ŷt,λ (line 6). The

subset Ŷt,λ is used to train the weak learners with each feature F at scale λ (line 9). Each

weak learner produces a weak classifier ht,(F ,λ) (line 10). The algorithm then selects the weak

classifier ht that most decreases the error Errht
on the validation set Y v

λ (line 12). The level of

error of ht is used to compute the coefficient αt, which indicates the degree of importance of ht

in the final classifier (line 13). The selected weak classifier ht and the coefficient αt are used to

update weights W(t+1)(p) which can be used in the next round (line 14).

The classification error of classifier h is:

1Despite the term “iterations” be more common, we use the term “rounds” that is typically applied to refer to

the main loop present in boosting-based methods.
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Algorithm 1 Multiscale Training

Input:

Yλ(R) = labels of regions R at scale λ (Yλ = Y t
λ ∪ Y t

λ , where Y t
λ is the training set and

Y v
λ is the validation set)

Initialize:

For all pixels p, W1(p)← 1
|Y0|

, where |Y0| is the number of pixels in the image level

1 For t← 1 to T do

2 For all scales λ do

3 For all R ∈ Pλ do

4 Compute Dt,λ(R)
5 End for

6 Build Ŷt,λ ⊂ Y t
λ (a training subset based on Dt,λ(R))

7 End for

8 For each pair feature/scale (F , λ) do

9 Train weak learners using features (F , λ) and training set Ŷt,λ.

10 Evaluate resulting classifier ht,(F ,λ) on the validation set Y v
λ by computing

Err(ht,(F ,λ), Wt,λ)) (Equation 6.3)

11 End for

12 Select weak classifier ht, the one with minimum error

Err∗ = argminht,(F,λ)
Err(ht,(F ,λ), Wt,λ)

13 Compute αt ←
1
2
ln

(

1+rt

1−rt

)

with rt ←
∑

p cY0(p)ht(p)

14 Update Wt+1(p)←
Wt(p) exp (−αtY0(p)ht(p))

∑

p

Wt(p) exp (−αtY0(p)ht(p))

15 End for

Output: Multiscale Classifier MSC(p) (Equation 5.1)
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Err(h, W ) =
∑

p|h(p)Y v
0 (p)<0

W (p) (5.3)

where Y v
0 is the validation set (the label of each pixel in the image).

The training is performed on the training set labels Y t
λ , which is the learning at a single scale

λ. The weak learners (linear SVM, for example) use the subset Ŷt,λ for training and produce

a weak classifier ht,(F ,λ). The training/validation set labels Y0 are the labels of pixels of image

I , and training/validation sets labels Yλ with λ > 0 are defined according to the proportions of

pixels belonging to one of the two classes (for example, at least 80% of one region).

The idea of building the subset Ŷ is to force the classifiers to train with the most difficult

samples. The weak learner should allow the most difficult samples to be differentiated from the

other ones according to their weights. Thus, the strategy of creating Ŷ is directly dependent on

the configuration of the weak classifier and may contain all regions, since the classifier considers

the weights of the samples.

5.2.3 Hierarchical Training

The Multiscale Training presented in Section 5.2.2 creates a classifier based on the linear com-

bination of weak classifiers. In this case, both the selection of scales and features, and the

weights of each weak classifier are obtained by a strategy based on AdaBoost. Although this

approach provides the selection of the most appropriate scales to the training set, it does not

ensure the representation of all scales in the final result. In addition, the cost of training with

each scale is proportional to the number of regions it contains. However, the coarse scales are

not always selected, which means that training time can be reduced if we avoid this analysis.

In order to overcome these problems, we propose a hierarchical multiscale classification

scheme. The proposed strategy is presented in Figure 5.2. It consists of individually selecting

the weak classifiers for each scale, starting from the coarsest one to the finest one. Thereby,

each scale provides a different stage of training. At the end of each stage, only the most difficult

samples are selected, limiting the training set used in the next stage. In each stage, the process

is similar to the one described in Algorithm 1. However, the weak learners are trained with only

the features related to the current scale. For each scale, the weak learner produces a set Hλ of

weak classifiers.

The hierarchical multiscale classifier (HMSC) is a combination of the set of weak classi-

fiers Sλ(p) selected for each scale λ:

HMSC(p) = sign
(

∑

λi

Sλi
(p)

)

= sign
(

∑

λi

T
∑

t=1

αt,λi
ht,λi

(p)
)

(5.4)

where T is the number of rounds for each boosting step.
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SVM-based weak learner

This SVM trainer is based on a specific feature type F and a specific scale λ. Given the training

subset labels Ŷλ, the strategy is to find the best linear hyperplane of separation between RSI

regions according to their classes (relevant and non-relevant regions), trying to maximize the

data separation margin. These samples are called support vectors and are found during the

training. Once the support vectors and the decision coeffients (αi, i = 1, . . . , N ) are found, the

SVM weak classifier can be defined as:

SV M(F ,λ)(R) = sign
( N

∑

i

yiαi(fR · fi) + b
)

(5.6)

where b is a parameter found during the training. The support vectors are the fi such that αi > 0,

yi is the support vector class and fR is the feature vector of the region.

The training subset Ŷt,λ is composed of n labels from Yλ with values of Dt,λ(R) larger or

equal to 1
|Y0|

. This strategy means that only regions considered as the most difficult ones are

used for the training. For the first round of the boosting, the regions which compose the subset

Ŷ0,λ are randomly selected.

The weakness of the linear SVM classifier is due to our strategy of creating subsets instead

of providing all regions of a partition for training. It decreases the power of the produced

classifier. Moreover, in our experiments the dimension of the feature space is smaller than the

number of samples, which theoretically guarantees the weakness of linear classifiers.

RBF-based weak learner

The RBF approach is based on the distances provided by the used descriptors. It consists in

selecting a target region that best separates the other regions between both classes for a specific

image descriptor D̂ and a specific scale λ. The distances are normalized with the sigmoid

function.

The RBF-based weak learner tests all training regions (i.e, Ŷλ = Yλ) as targets in the classi-

fication task. The exception are the regions that have already been used as targets.

RBF(Rt,D̂,λ)(R) =







y, if d(Rt, R) ≤ l

−y, otherwise
(5.7)

where d(Rt, R) is the distance between target region Rt and region R using descriptor D̂ and l

is a threshold value.
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5.3 Multiscale Classification Experiments

In this section, we present the experiments that we performed to validate our method. We have

carried out experiments in order to address the following research questions:

• Is the set of used descriptors effective for object-based RSI classification task?

• Is the multiscale classification results effective in RSI tasks?

• Are the proposed weak learners effective in the RSI classification problem?

• Can the hierarchical strategy for multiscale classification improve the results?

• Are the proposed methods effective in the RSI classification problem when compared

with a baseline?

In Section 5.3.1, we describe the basic configuration of our experiments. In Section 5.3.2,

we compare the used descriptors through the proposed MSC exploiting a single-scale segmen-

tation. In Section 5.3.3, we compare the combination of multiple scales approach against indi-

vidual scales combining descriptors through the MSC approach. In Section 5.3.4, we compare

the proposed weak classifiers Linear SVM and RBF. In Section 5.3.5, we present the results for

the HMSC approach and the comparison with MSC. Finally, in Section 5.3.6, we compare the

proposed approaches against a baseline based on the SVM classifier.

5.3.1 Setup

We extracted different features from the COFFEE dataset (see Section 3.1.2) by using four color

and three texture descriptors. The color descriptors are: Global Color Histogram (GCH), Color

Coherence Vector (CCV), Color Autocorrelogram (ACC), and Border/Interior Pixel Classifi-

cation (BIC). The texture descriptors are: Invariant Steerable Pyramid Decomposition (SID),

Unser, and Quantized Compound Change Histogram (QCCH). These descriptors were pre-

selected based on previous results, as reported in Section 4.3.

To facilitate the experimental protocol, we divided the dataset into a grid of 3 × 3, gen-

erating 9 subimages with dimensions equal to 1000 × 1000 pixels. In the experiments, we

used 9 different sets of 1 million pixels each, to be used for training and classification (testing

stage). The results of the experiments described in the following sections are obtained from all

combinations of the 9 subimages used (3 for training, 3 for validation, and 3 for classification).

To analyze the results, we computed the overall accuracy and Kappa index for the classified

images (for more details, see Section 3.2).

The experiments were carried out on a 2.40GHz Quad Core Xeon with 32 GB RAM.
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5.3.2 Comparison of Descriptors

The result of classification is directly related to the quality of the features extracted from the

image. In this sense, the objective of this experiment is to compare descriptors in region-based

classification tasks. To do so, we used the MSC approach with linear Support-Vector Machines

in an intermediate scale of segmentation (λ2). Table 5.1 presents the overall accuracy and Kappa

results for each descriptor.

Table 5.1: Classification results for the used descriptors at λ2 scale.

Descriptor Overall Acc. (%) Kappa (κ)

Color

ACC 78.60 ±1.88 0.7238 ±0.029

BIC 79.92 ±2.04 0.7447 ±0.033

CCV 77.38 ±2.72 0.7011 ±0.046

GCH 77.64 ±2.71 0.7056 ±0.045

Texture

QCCH 69.94 ±4.21 0.5503 ±0.086

UNSER 68.72 ±3.67 0.5255 ±0.078

SID 68.63 ±3.76 0.5215 ±0.078

BIC yields the best results among all the descriptors. BIC takes into account the spatial

distribution of colors, which in a way encodes both color and texture. QCCH achieves a small

highlight among the texture ones. The results present a small difference between GCH and

CCV. In fact, we observed that their classification results are correlated.

The great difference between the color and texture descriptors classification rates was ex-

pected. This fact is consistent with those results obtained in [28] and [98]. Anyway, we believe

that the combination of texture and color descriptors can improve the results.

5.3.3 Multiscale versus Individual Scale

In this section, we compare the classification results obtained by using individual scales against

the combination of scales by using the MSC approach presented in Section 5.2.2 with 10 rounds.

In this experiments, we used all descriptors referenced in Section 4.3. Table 5.2 presents the

classification results. Table 5.3 presents the time spent for training and classification.

According to the results, one can observe that the combination of scales (
⋃5

i=1 λi) is slightly

better than the best individual scale (λ4). We can conclude that the proposed method MSC

not only found the best scale but also could improve the result by adding other less significant

scales.

Concerning time, the combination is longer to train when compared to scale λ2, but not

longer than scale λ1 alone. The same effect can be observed for the classification time.
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Table 5.2: Classification results using individual scales and the combination.

Scale Overall Acc. (%) Kappa (κ)

λ1 79.07 ±1.60 0.7298 ±0.028

λ2 79.90 ±2.04 0.7441 ±0.033

λ3 80.43 ±2.11 0.7519 ±0.033

λ4 81.04 ±1.70 0.7625 ±0.026

λ5 80.31 ±1.23 0.7494 ±0.020
⋃5

i=1 λi 82.28 ±1.60 0.7800 ±0.025

Table 5.3: Time spent on classification using individual scales and the combination.

Scale Training Time (s) Classification Time (s)

λ1 44454.54 103.98

λ2 9163.32 36.99

λ3 1272.69 14.59

λ4 349.27 8.56

λ5 84.85 6.25
⋃5

i=1 λi 24939.34 38.52

5.3.4 Comparison of Weak Classifiers (Linear SVM × RBF)

In this section, we compare the weak learners presented in Section 5.2.4. We performed ex-

periments with 10 rounds for SVM-based and 50 rounds for RBF-based weak learners. This is

the amount of rounds which normally stabilizes the results using each of the weak learners. In

other words, after 10 rounds for SVM and 50 rounds for RBF, the selected weak learner typi-

cally gets very small weights and does not interfere in the final classification. Table 5.4 presents

the classification results. Table 5.5 presents training/classification times.

Table 5.4: Classification results comparing the MSC approach using RBF and SVM-based weak

learners.

Weak Learners Overall Acc. (%) Kappa (κ)

RBF 77.78 ±3.68 0.6957 ±0.082

Linear SV M 82.28 ±1.60 0.7800 ±0.025

We can observe that MSC with SVM-based weak learners produces better results than with

RBF-based. Moreover, the RBF-based weak learner spends more time in both training and clas-

sification stages. However, it is necessary to point out that, in these experiments, the distances

between regions using the descriptors are computed during the classification stage. If distances
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Table 5.5: Time spent on classification using the MSC approach with RBF and SVM-based

weak learners.

Weak Learners Training Time (s) Classification Time (s)

RBF 31030.987 327.01

Linear SV M 24939.34 38.52

are previously computed, RBF-based weak learners are an alternative since they can be easily

implemented.

5.3.5 Hierarchical Multiscale Classification

In this section, we present the results of the proposed Hierarchical Multiscale Classification

approach. Table 5.6 presents the overall accuracy and Kappa index for HMSC and MSC ap-

proach. Time is presented in Table 5.7. We used 10 rounds for MSC and 50 rounds for HMSC

(10 rounds for each scale). To maintain the detection time of the classifier HMSC equivalent

to the MSC, the weak learners with very low weights are excluded from the final classifier: the

threshold on the weights is 0.01. This reduces the final classifier to a combination between 10

and 15 weak learners.

Table 5.6: Classification results comparing the HMSC against MSC.

Method Overall Acc. (%) Kappa (κ)

HMSC 82.69 ±1.68 0.7875 ±0.024

MSC 82.28 ±1.60 0.7800 ±0.025

Table 5.7: Time spent on classification for MSC and HMSC.

Method Training Time (s) Classification Time (s)

HMSC 13637.62 39.06

MSC 24939.34 38.52

Both methods produce similar values of accuracy. The most important point concerns the

training time. As the hierarchical approach does not use all regions of all scales, training time is

considerably reduced (almost half time) because the training focuses only on the most difficult

regions.

Figure 5.3 (a) shows a subimage used in these experiments and Figure 5.3 (b) illustrates the

same image with coffee crops, which are the regions of interest in focus. Figures 5.4 (a) and (b)

illustrate an example of results obtained with both methods HMSC and MSC.
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(a) (b)

Figure 5.3: The image used for classification in Figure 5.4 (a) and the same image with coffee

crops highlighted (b).

Although producing almost the same accuracy rates, the main difference in these examples is

that HMSC produces less false positives than MSC (HMSC produces also more false negatives).

We assume that the HMSC is more efficient to recognize coffee crops.

Table 5.8: Accuracy analysis of classification for the example presented in Figure 5.4 (TP =

true positive, TN = true negative, FP = false positive, FN = false negative).

Method TP TN TP+TN FP FN FP+FN

MSC 194,378 670,493 864,871 64,228 70,901 135.129

HMSC 167,293 705,196 872,489 29,525 97,986 127.511

We observed that most of the classification errors are related to the confusion caused by

recently planted coffee crops. These regions usually appear in light blue in the composition of

colors displayed (see Figure 5.3).

5.3.6 Comparison with a baseline

Although they are very used in image classification [69], SVMs are so far less used in remote

sensing community than other classifiers (e.g., decision trees and variants of neural networks).

However, in recent years there has been a significant increase in SVM-based works that achieves

very good results in remote sensing problems. Tzotsos et al. [102] have proposed and evaluated

SVMs for object-oriented classification. They proposed an approach that uses SVMs with a
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(a) (b)

Figure 5.4: A result obtained with the proposed methods: MSC (a) and HMSC (b). Pixels

correctly classified are shown in white (true positive) and black (true negative) while the errors

are displayed in red (false positive) and green (false negative).

Gaussian kernel to classify the regions obtained by a multiscale segmentation process. This

approach outperforms the results of the eCognition software [3]. Therefore, we used SVM with

Gaussian kernel applied to an intermediate segmentation scale obtained by the Guigues’ method

as baseline with BIC descriptor. As the baseline was not designed to use the validation set, we

performed these experiments with two settings: 3 subimages for training and 3 for classification;

6 subimages for training and 3 for classification. Table 5.9 displays the results.

Table 5.9: Classification results comparing the MSC, HMSC and the baselines. SV M +
Gaussian Kernel (3,3) is the baseline trained with 3 subimages. SV M + Gaussian Kernel
(6,3) is the same baseline trained with 6 subimages.

Method Overall Acc. (%) Kappa (κ)

SV M + Gaussian Kernel (3,3) 77.47 ±2.64 0.7054 ±0.044

SV M + Gaussian Kernel (6,3) 80.09 ±1.58 0.7478 ±0.025

MSC (linear SV M learner) 82.28 ±1.60 0.7800 ±0.025

HMSC (linear SV M learner) 82.69 ±1.68 0.7875 ±0.024

As it can be noticed, both MSC and HMSC overcome the results of the baseline. This shows

that the combination of descriptors and scales using the strategies proposed in this work can be

a powerful tool for classification of remote sensing images.
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5.4 Multiscale Correlation Analysis

In Section 5.3, we show that the combination of features at different scales improves the classi-

fication results, but these results still lack more explanation about how to select the best scales

and descriptors. In this context, the objective of this section is to address such questions.

We have carried out experiments by using support vector machines (SVMs) with no kernels

for each descriptor at scale λi. In the experiments with the MSC, we used “weakened” SVMs as

weak learners. More details about the implementation of SVMs as weak learners can be found

in Section 5.2.4. The protocol is the same as described in Section 5.3.1.

In Section 5.4.1, we present the correlation analysis of classifiers at different scales. In

Section 5.4.2, we propose an approach to select classifiers on each scale based on the accuracy

and correlation of them.

5.4.1 Correlation Analysis

The first study is concerned with the analysis of the accuracy of classifiers at different segmen-

tation scales. The second study is the correlation analysis of each pair of classifiers. In these

experiments, a classifier is defined for a descriptor and a segmentation scale. We use Cor [53]

to assess the correlation of two classifiers ci and cj:

COR(ci, cj) =
ad− bc

√

(a + b)(c + d)(a + c)(b + d)
(5.8)

where a is the percentage of pixels that both classifiers ci and cj classified correctly in the

training set, b and c are the percentage of pixels that cj hit and ci missed and vice versa, and d

is the percentage of pixels that both classifiers missed.

Classifier Accuracy for Different Segmentation Scales

Figure 5.5 and Figure 5.6 show the overall accuracy and the tau index for each SVM classifier

implemented using each descriptor/scale. We observe a large difference between the accuracy

results (Figure 5.5) with color and texture descriptors for almost all scales. Among the color

descriptor accuracies, we have no significant difference, although BIC presents the highest val-

ues at all scales. Among the texture ones, they present almost the same accuracies at all scales

except for QCCH that presents its best results at the coarser scales.

Regarding the tau indexes (Figure 5.6), which is more discriminative than overall accuracy,

we observe that BIC achieves the best results for all scales. GCH also yields the best result at

the coarser scale λ5.

Among the texture descriptors, all of them are almost random at the finest scales (λ1 and λ2).

QCCH presents the best results at the intermediate scale λ3. The texture descriptors present their
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Figure 5.5: Overall accuracy for each descriptor at segmentation scales λ1, . . . , λ5.

best results at the coarsest scales λ4 and λ5. At the coarsest scales, QCCH and Unser present

better results than SID.

The main conclusion of this experiment is that color descriptors are very important at all

scales while texture features can contribute only at the coarsest ones.

Classifier Correlation for Different Segmentation Scales

In this section, we analyze the correlation of each pair of classifiers at the segmentation scales.

Figure 5.7 shows the correlation scores considering the different descriptors and scales. We

have observed that the correlation among the descriptors presents minor differences depending

on the training set. We report in this section the commonest patterns observed in the experi-

ments. Note that the correlation among the finest scales is large (scales λ1 and λ2), while the

correlation among the coarsest scales (λ4 and λ5) is small. As expected, the overall correlation

between scales with regions of different sizes is low. This suggests that the use of different

scales improves the classification of RSI according to what have been reported in the literature.

Region A is related to the anti-correlation among QCCH-based classifiers at low scale and

classifiers created using other descriptors. Region B refers to the low correlation of ACC-based

classifiers at intermediary scales with other ones. That suggests that ACC-based classifiers are

good candidates to be combined. Region C refers to the high correlation observed among the

classifiers created with texture descriptors, mainly when fine scales (small regions) are con-

sidered. Finally, the region labeled with D refers to the high correlation score observed for
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Figure 5.6: Tau index for each descriptor at segmentation scales λ1, . . . , λ5.

CCV and GCH descriptors. Classifiers based on those descriptors are not good candidates to be

combined.

Figure 5.8 presents the correlation coefficient (see Equation 5.8) of each pair of descriptors

at the segmentation scales λ1, . . . , λ5. Note that the smaller the segmentation scale, the higher

the correlation between the descriptors. The finest scales are composed by more homogeneous

and smaller regions. In such scenario, global descriptors as those used in our experiments

have less visual patterns to encode. This may be one of the reasons why region-based methods

have presented better results than traditional pixel-based classification in the literature when

high-resolution RSIs are considered. One exception occurs with ACC. For this descriptor, its

correlation with other descriptors decreases until the intermediate scale (scale λ3). From that

scale on, the observed correlation increases. We can also observe that CCV and GCH are very

correlated at all scales. QCCH is not well correlated with other descriptors at scale λ1. That is

expected given its poor accuracy performance at that scale (see Figure 5.5).

In face of the results above, most promising combination would involve the classifiers im-

plemented with color descriptors, at all scales. Some examples are ACC and BIC at λ4, and

BIC and GCH at λ5. With regard to texture descriptors, one should consider only the created

classifiers considering scales with large regions.

Finally, with this experiment we can conclude that combining descriptors improves the clas-

sification results, but some descriptors contribute more than others and that depends on the scale.

Furthermore, we assume that low correlated classifiers are good candidates to be combined as









5.5. Conclusions 61

Table 5.11: Weak classifiers chosen by the MSC for each round t considering 10 automatically

selected classifiers and all 35 classifiers.

MSC10 MSC35

Classifier Weight Classifier Weight

0 BIC,λ3 0.73 BIC,λ3 0.73

1 BIC,λ5 0.21 BIC,λ5 0.21

2 Unser,λ4 0.10 Unser,λ4 0.10

3 Unser,λ5 0.02 GCH,λ4 0.10

4 BIC,λ5 0.16 BIC,λ5 0.16

5 ACC,λ2 0.25 GCH,λ5 0.18

6 Unser,λ5 0.08 ACC,λ3 0.20

7 ACC,λ1 0.07 CCV,λ2 0.15

8 BIC,λ1 0.21 ACC,λ5 0.14

9 BIC,λ5 0.12 GCH,λ5 0.08

5.5 Conclusions

The proposed approaches for multiscale image analysis are the Multiscale Classifier (MSC)

and the Hierarchical Multiscale Classifier (HMSC). The MSC is a boosting-based classifier that

builds a strong classifier from a set of weak ones. The HMSC is also based on boosting of weak

classifiers, but it adopts a sequential strategy of training, according to the hierarchy of scales

(from the coarsest to the finest). The experimental results indicate that the BIC descriptor is

presently the most powerful descriptor to detect regions of coffee. The MSC results show that

the combination of scales increases the power of the final classifier. The HMSC results, in turn,

demonstrate that it is possible to speed up the training time and keep the quality of the final

classifier.

In this chapter, we also have performed experiments to analyse the correlation among de-

scriptors and the segmentation scales. Coarser scales offer great power of description while

the finer ones can improve the classification by detailing the segmentation. Another branch of

studies confirmed that the use of different descriptors is important. However, the descriptors do

not contribute equally at all scales.





Chapter 6

Interactive Classification of RSIs based on

Active Learning

6.1 Introduction

In this chapter, we present the proposed method for interactive classification of remote sens-

ing images considering multiscale segmentation. Our aim is to improve the selection of train-

ing samples using the features from the most appropriate scales of representation. Figure 6.1

gives an overview of the architecture used in our approach for interactive classification. This

kind of architecture is very common in information retrieval systems with relevance feed-

back [31, 88, 27, 21, 35]. The framework is composed of three main processing modules:

segmentation, feature extraction, and classification. Segmentation and feature extraction are of-

fline steps. When an image is inserted into the system, the segmentation is performed, building

a hierarchical representation of regions. Feature vectors from these regions are then computed

and stored.

The interactive classification starts with the user’s annotation. He/she selects a small set

of relevant and non-relevant pixels. Using these pixels as training set, the method builds a

classifier to label the remaining pixels. Although the training set is at the pixel level, the training

is performed by using features extracted from the segmented regions for each considered scale.

At the end of the classification step, the method selects regions for possible feedback. When the

result of the classification is displayed, the user feeds the system by labeling the region with the

correct class. These steps are repeated until the user finishes the process. The final classification

is a multiscale result combining all scales of segmentation.

For the training stage, we propose a kind of boost-classifier adapted to the segmentation,

which takes advantage of various region features. In each iteration, this method builds a strong

classifier from a set of weak ones. The weak classifiers are SVMs (Support Vector Machines)

with a linear kernel, each trained for one feature descriptor of one scale of segmentation. We use

63
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Given a set of labeled pixels as training set Y0 and features extracted from regions of various

scales, our method aims at producing a classifier to label the remaining pixels. Moreover, the

method uses an active learning strategy based on user interaction to increase the training set

and, hence, the classification results. Algorithm 2, which presents the proposed interactive

classification process, will be further explained in the next section.

Algorithm 2 The interactive classification process.

1 Annotation of the initial training set Y0 = label of pixels (see Section 6.2.3)

2 Build a classifier F0(p) using multiscale training (see Section 6.2.1)

3 Classify image I by using F0(p)
4 i← 1
5 while user is not satisfied do

6 Select uncertain regions Qi in the classified image (see Section 6.2.2)

7 Annotation of the selected regions Qi (see Section 6.2.3)

8 Update the training set Yi ← Yi−1
⋃

Qi

9 Build a classifier Fi(p) using multiscale training (see Section 6.2.1)

10 Classify image I by using Fi(p)
11 i← i + 1
12 end while

Algorithm 2 starts the process with the definition of the training set Y0 annotated by the

user (line 1). We consider that, in a real scenario, the samples indicated by the user may not

be always representative. The training set is used to build a multiscale classifier F0(p) (line

2). This approach is based on the boosting of weak classifiers (see Chapter 5). The multiscale

classifier F0(p) is used to classify the whole image I (line 3). The feedback process starts

using this initial classification result. In the loop, the user can stop the classification process

or continue the classification refinement process (line 5). For selection of regions displayed

for user annotation, also known as active learning, we exploit the notion of separating border

in AdaBoost, which is originally proposed in [120]. In the refinement iterations, the following

steps are performed: selection of the most uncertain regions in each scale λ (line 6); annotation

of the selected regions by the user (line 7); update of the training set by adding the new labeled

regions to Yi (line 8); multiscale training by using the new set Yi (line 9); reclassification of the

whole image I by using Fi(p) (line 10).

The proposed approach is designed to assist specialists, who are our final users. Our ap-

proach expects the user to have reasonable knowledge about the region and the targets of inter-

est. A way to create a stopping criterion is to define some validation points (it can be pixels)

in the image as usually done by experts to assess the quality of supervised classification in

practical situations. A validation point is a well-known place in the scene which is not used to

train and can be used to evaluate classification results. When the method achieves acceptable
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accuracy in the validation points, the user can stop the interactive process. Another option is to

previously determine a number of iterations. It is important to clarify that, besides seeing the

regions selected for annotation, the user can also check the classification results.

We explain in details each step of the process in the following sections. In Section 6.2.1, we

present the multiscale classification based on boosting. The active learning process is explained

in Section 6.2.2. In Section 6.2.3, we present how user annotation is carried out.

6.2.1 Multiscale Training/Classification

We adapted hierarchical multiscale classifier (HMSC), presented in Section 5.2.3 to perform

multiscale training between each user interaction. The main difference is that this version of the

HMSC does not consider the use of a validation set, since the training data is very small.

In each stage/scale, the proposed method repeatedly calls weak learners in a series of rounds

t = 1, . . . T . Each weak learner creates a weak classifier that decreases the expected classifica-

tion error of the combination. The algorithm then selects the weak classifier that most decreases

the error.

For each scale λ, the weak learner produces a set Sλ of weak classifiers {ht,λ}. The multi-

scale classifier (F ) is a combination of the set of weak classifiers Sλ(p) selected for each scale

λ:

F (p) = sign
(

∑

λi

Sλi
(p)

)

= sign
(

∑

λi

T
∑

t

αt,λi
ht,λi

(p)
)

(6.1)

The strategy of building a multiscale classifier consists in keeping a set of weights over the

training set. These weights can be interpreted as a measure of the level of difficulty to classify

each training sample. At the beginning, the pixels have the same weight, then in each round,

the weights of misclassified pixels are increased. Thus, in the next rounds the weak learners

focus on difficult samples. We will note Wt(p) the weight of pixel p in round t, and Dt,λ(R) the

misclassification rate of region R in round t at scale λ given by the mean of the weights of its

pixels:

Dt,λ(R) =
(

1

|R|

∑

p∈R

Wt(p)
)

(6.2)

Algorithm 3 presents the boosted-based training used in each stage described in Figure 5.2.

Let Yλ(R), the set of labels of regions R at scale λ, be the training set. In a series of rounds

t = 1, . . . T , for scale λ, the weight of each region Dt,λ(R) is computed (line 3). This piece

of information is used to select the regions to be used for training the weak learners, building

a subset of labeled regions Ŷt,λ (line 5). The subset Ŷt,λ is used to train the weak learners with

each feature F at scale λ (line 6). Each weak learner produces a weak classifier ht,(F ,λ) (line 8).
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The algorithm then selects the weak classifier ht that decreases the error Err(h, W ) the most

(line 10). The level of error of ht is used to compute the coefficient αt, which indicates the

degree of importance of ht in the final classifier (line 11). The selected weak classifier ht and

the coefficient αt are used to update the weights of the pixels W(t+1)(p) which can be applied

in the next round (line 12).

Algorithm 3 The boosted-based training.

Given:

Training labels Yλ(R) = labels of some regions R at scale λ

Initialize:

For all pixels p, W1(p)← 1
|Y0|

, where |Y0| is the number of pixels in the image level

1 For t← 1 to T do

2 For all R ∈ Pλ do

3 Compute Dt,λ(R)
4 End for

5 Build Ŷt,λ (a training subset based on Dt,λ(R))
6 For each feature type F do

7 Train weak learners using features (F , λ) and training set Ŷt,λ.

8 Evaluate resulting classifier ht,(F ,λ): compute Err(ht,(F ,λ), W )) (Equation 6.3)

9 End for

10 Select the weak classifier ht whose Err = argminht,(F,λ)
Err(ht,(F ,λ), Wt,λ)

11 Compute αt ←
1
2
ln

(

1+rt

1−rt

)

with rt ←
∑

p cY0(p)ht(p)

12 Update Wt+1(p)←
Wt(p) exp (−αtY0(p)ht(p))

∑

p

Wt(p) exp (−αtY0(p)ht(p))

13 End for

Output: Classifier Sλ(p)

The classification error of classifier h is:

Err(h, W ) =
∑

p|h(p)Y0(p)<0

W (p) (6.3)

The training is performed on the training set labels Yλ corresponding to the same scale λ.

The weak learners (linear SVM, for example) use the subset Ŷt,λ for training and produce a weak

classifier ht,(F ,λ). The training set labels Y0 are the labels of pixels of image I , and training sets

labels Yλ with λ > 0 are defined according to the rate of pixels belonging to one of the two

classes (for example, at least 80% of one region).
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The idea of buiding the subset Ŷ is to force the classifiers to train with the most difficult

samples. The weak learner should allow the most difficult samples to be differentiated from the

other ones according to their weight. Thus, the strategy of creating Ŷ is directly dependent on

the configuration of the weak classifier and may contain all regions, since the classifier considers

the weights of the samples.

At the end of each stage, we withdraw the easiest samples. Let Wi be the weights of the

pixels after training with scale λi. We denote Di(Ri+1) the weight of region Ri+1 ∈ Pλi+1
,

which is given by:

Di(Ri+1) =
(

1

|R|

∑

p∈R

Wi(p)
)

(6.4)

where Wi(p) is the weight of pixel p ∈ R concerning scale λi.

The set of regions Y̆i+1 to be used in the training stage with scale λi+1 is composed by the

regions Ri+1 ∈ Pλi+1
with mean Di(Ri+1) > 1

2|Y0|
. This means that the regions that ended a

training stage with distribution equal to half the initialization value 1
|Y0|

are discarded from one

stage to another in the hierarchical training (see Figure 5.2).

6.2.2 Active Learning

Active learning is a machine learning approach which aims at obtaining high classification

accuracy using very few training samples [40]. It attempts to overcome the training sample

selection by asking queries in the form of unlabeled instances to be labeled by the user. The

main challenge is to find the most “informative” samples, i.e., once added to the training set,

the ones which lead the system to build the best classification function.

Active learning is widely used in the literature, even in remote sensing community, in ap-

plications based on SVM [100]. These approaches exploit the notion of minimum marginal

hyperplane in SVMs, to select representative samples. The general strategy consists in select-

ing the unlabeled samples that are closer to the separation margin.

Nevertheless, many approaches have been proposed to perform active learning in boosting-

based methods [120, 50, 64, 123]. We adopted the active learning strategy (active AdaBoost)

proposed by Lee et al. [120]. They proposed a geometrical representation of AdaBoost output.

In this representation, each sample is a point in a version space. Each point is based on the label

provided by each weak learner. Therefore, each weak classifier corresponds to a dimension in

this space.

Let S be the output of Algorithm 3. S = 0 can be interpreted as a separating hyperplane in

the version space. The strategy proposed by Lee et al. consists in maximizing the distance of the

samples to the separating hyperplane by selecting the most uncertain samples in each feedback
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iteraction. We adapt this idea to our problem, by computing for each scale λ, the closest sample

(corresponding for a region) to the hyperplane.

Let Sλ(p) be the output of training at scale λ, the distance of pixel p to separating hyperplane

g(p) is:

g(p) = |
∑

λi

Sλi
(p)| = |

∑

λi

T
∑

t

αt,λi
ht,λi

(p)| (6.5)

The distance of region R ∈ Pλ to the separating hyperplane g(R) is given by:

g(R) =
(

1

|R|

∑

p∈R

g(p)
)

(6.6)

Thus, the region corresponding to the minimal distance to the separating hyperplane g−
λ for

scale λ is defined as:

g−
λ = argmin

R∈Pλ

g(R) (6.7)

Equation 6.6 gives a measure of the degree of doubt to classify an unlabeled region. Fig-

ure 6.2 shows an example of classification with different classification levels. In this figure,

the white regions represent the class of interest (coffee), while the black represents non-interest

regions. The redder the region, the closer to the decision function, i.e., the more interesting for

user feedback.

6.2.3 User Interaction

Our system is strongly interactive. This means that the user is in control of the classification

by introducing new examples and counter-examples to the supervised classifier at each feed-

back step. The classification is performed on regions of various scales, but the final result is a

classification of pixels.

At first, the user has to indicate a few areas of each class. Let us remind that we have two

classes, one is the class of interest (i.e., coffee) and the other one is the rest of the image (non-

coffee). There are different alternatives to label pixels, from which the system is going to obtain

the first region samples. The most naı̈ve way is to label pixels as belonging to one class or to

the other. It is surely a laborious and time-consuming strategy to get enough region samples

to start the classification. However, this strategy can be used at the end of the classification

process to refine the final classification. Another commonly used approach is to draw rectangles

or polygons on the image, whose class is known for sure (examples and counter-examples).

Another tool often provided to users is a brush, with which users can identify the target classes

by painting regions on a RSI.
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For all cases, the system has to translate the sets of pixels labeled by the user into a set of

regions. This can be achieved by a majority vote scheme: if a region is covered by a certain

percentage (for example more than 80% for the coarse scale) of pixels indicated by the user as

belonging to one class, the region is used as example of this class.

Surely when the image is segmented, it is faster to directly annotate regions as examples or

counter-examples for the current query [41]. In the simulation of interaction we present in the

experiment section, we cannot use the regions, since our system works with several scales of

segmentation. Therefore, we use rectangles drawn from inside regions whose label is known for

sure. During the feedback iterations, intermediate results of classification are displayed to the

user. The method selects a region at each scale. The number of regions may be lower than the

number of scales if there is an intersection between the selected regions at two or more scales.

In these cases, the coarsest region is selected. In our approach, the user annotates requested

regions by scratching/brushing the pixels of each class as illustrated in Figure 6.3.

Figure 6.3 (a) illustrates the regions selected to be annotated. The user annotates the pixel

classes by scratching/brushing the regions. Figure 6.3 (b) shows an example of annotation. In

this example, positive samples are in green and negative samples are in red. The labels are then

propagated to the other pixels of the selected regions as in Figure 6.3 (c). The remaining region

pixels receive the same label of the nearest pixel annotated by the user.

6.3 Experiments

In this section, we present the experiments performed to validate our method. They were carried

out to address the following research questions:

• Is the proposed multiscale approach for interactive classification effective in RSI classifi-

cation tasks (Section 6.3.2)?

• Is the interactive method more effective than supervised classifiers built on a large training

set (Section 6.3.3)?

We used a similar protocol as described in Section 5.3. The results of the experiments

described in Section 6.3.2 were obtained considering all combinations of the five images used,

training with three of them and testing in the same three images. The results of the experiments

described in Section 6.3.3 were obtained considering all combinations of the 5 used subimages

(3 for training and 2 for testing). In the experiments, we also used 5 subimages from the

COFFEE and URBAN datasets.

We considered five different scales to extract features from λ1 (the finest scale) to λ5 (the

coarsest one). We selected the scales according to the principle of dichotomic cuts (see Sec-

tion 2.2). For the COFFEE dataset, at λ5 scale, subimages contain between 200 and 400 regions
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Table 6.1: Accuracy analysis of classification for the example presented in Figure 6.5 (TP =

true positive, TN = true negative, FP = false positive, FN = false negative).

Feedback Step TP TN FP FN

9 117,322 688,431 51,737 142,510

10 119,225 722,912 17,256 140,607

40 167,255 712,611 27,557 92,577

while, at scale λ1, they contain between 9, 000 and 12, 000 regions. For the URBAN dataset,

at λ5 scale, subimages contain between 40 and 100 regions while, at scale λ1, they contain

between 4, 000 and 5, 000 regions.

In the experiments, the ground truth for unlabeled regions are used to simulate the user

annotations. A similar strategy was adopted in [24, 21], as well as in content-based image

retrieval methods based on relevance feedback [35]. The initial annotation was simulated by

randomly selecting a small set of contiguous pixels from the training set. In the remaining steps,

we used all pixels in the selected regions as user annotations, which is the process described in

Section 6.2.3.

6.3.1 Interactive Classification Example

In this section, we present an example of a result of the proposed method for interactive classi-

fication. Figure 6.4 presents the results for one of the tested images from the COFFEE dataset

compared to the original image and the ground truth. This image is composed of several regions

of coffee, pasture, native forest, and some lakes.

As the method begins with a very small training set, the “Initial Result” is visually different

from the ground truth. One reason is that the training set may not have been large enough to

correctly classify regions. With the gradual increase in the training set, the results improve until

the fourth iteration (OA=83.55% κ=0.8031). Between the fifth and the ninth feedback steps,

we can note many variations in the results due to confusion between: 1) “new coffee” crops and

pasture; and 2) “mature coffee” and native forest. The result is improved and becomes more

stable from the tenth feedback step on. Although the improvements are smaller, they continue

along the iterations, as it can be seen from the results of feedback steps 20, 30, 40, and so on.

To better illustrate the results, Figure 6.5 presents an error analysis (false positive and false

negative samples) for the result in feedback steps 9, 10, and 40. Table 6.1 presents the accuracy

values.

From the feedback steps 9 to 10, one can notice a great reduction in the number of false pos-

itives (red pixels). Most of the removed pixels correspond to areas of natural vegetation. This

indicates that the confusion between natural vegetation and mature coffee is reduced. Com-
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(a) (b)

(c)

Figure 6.5: A result obtained with the proposed method in feedback steps 9 (a), 10 (b), and 40

(c) for the experiment presented in Figure 6.4. Pixels correctly classified are shown in white

(true positive) and black (true negative) while the errors are displayed in red (false positive) and

green (false negative).
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paring Figure 6.5 (b) and Figure 6.5 (c), we note that the classification seems to go through a

refining process. Visually, it is possible to see small difference between the results in feedback

steps 10 and 40. However, in Table 6.1, we can observe that the number of pixels corresponding

to coffee regions significantly increased (from 119,225 to 167,255).

As far as time is concerned, experiments with the COFFEE dataset showed that the proposed

method takes around 50s for each training step using one scale and the combination of the seven

weak classifiers. The proposed method needs less than one hour to perform 10 steps using five

scales. Considering that 10 feedback steps is a good number to get a satisfactory result of

classification, one hour is not much if compared with the time usually spent to perform manual

mapping of large areas [101]. Furthermore, the steps to evaluate each descriptor in the method

is easily parallelizable and, hence, the training time in each interaction can be reduced in a real

scenario.

Regarding the URBAN dataset, the IHMSC needs 12s to train on each scale since it has less

regions.

6.3.2 Multiscale versus Individual Scale

In this section, we compare the classification results obtained by using individual scales against

the combination of scales by using the IHMSC approach presented in Section 6.2.1 with 20

rounds for each scale. We used IHMSC to perform the individual scales experiment with 100

rounds. In these experiments, we tested all descriptors referenced in Section 4.3. The initial

training set is a rectangle composed by 10, 000 pixels with both classes.

Figure 6.6 presents the Kappa× Feedback Steps curves for the COFFEE dataset. Figure 6.7

shows the Overall Accuracy × Feedback Steps curves for the COFFEE dataset.

According to the results for the COFFEE dataset, one can observe that the combination

of scales presents better results than individual ones. We can note that intermediate scales

(λ4, λ3) use more iterations to converge, but achieve better results after many feedback steps.

Concerning the coarser scale (λ5), it quickly obtains good results, but there is no improvement

after 14 feedback steps. In this scenario, regions of interest for training in the coarse scales are

more quickly exhausted. We conclude that the HMSC method yields reasonable results with

few feedback steps. It is even able to improve them later as it allows the refinement of the

training set along iterations.

Figures 6.8 and 6.9 present the Kappa × Feedback Steps curves and Overall Accuracy ×

Feedback Steps curves, respectively, for the URBAN dataset.

We can observe that, for the URBAN dataset, multiscale training achieves results that are

better the ones for individual scales, except for the two first feedback steps in which the training

set is too small. Coarse scales produce better results than finer ones. Which means that the

features extracted from finer scales can not properly represent the urban areas. However, it is
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Figure 6.6: Kappa index for each iteration of feedback for the COFFEE dataset considering five

scales and the multiscale classification approach.
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Figure 6.7: Overall accuracy for each iteration of feedback for the COFFEE dataset, considering

five scales and the multiscale classification approach.
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Figure 6.8: Kappa index for each iteration of feedback for the URBAN dataset, considering five

scales and the multiscale classification approach.
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Figure 6.9: Overall accuracy for each iteration of feedback for URBAN dataset, considering

five scales and the multiscale classification approach.
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not difficult to understand this phenomenon. Urban areas are complex targets since they are

composed by smaller objects with specific characteristics. If we use a fine scale, small objects

(e.g., trees) can be present in both urban and non-urban areas. This fact makes the classification

task more difficult.

6.3.3 Interactive versus Supervised Classification Strategy

In this section, we present experiments that compare the proposed method for interactive clas-

sification with a traditional supervised approach that uses the whole available training set. For

this reason, the experiments of this section (including the interactive method) were performed

using all combinations of the five images from our dataset: three images as training set and two

images for testing. The difference is that the supervised method uses all the available train-

ing images to learn while the same information is used to simulate the user annotations in the

interactive approach.

It is important to note that in a real situation the user would typically annotate and classify

regions present in the same image scenes like in the experiments reported in Section 6.3.2.

We used two supervised methods as baselines. The first method is the HMSC with no

user interactions using 100% of the pixels available for training (3,000,000 of pixels in this

experiments). The other method is based on Tzotsos et al. [102]. They proposed a method that

uses SVMs with RBF kernels to classify the regions obtained from a multiscale segmentation

process. That approach outperforms the results obtained by using the software eCognition [3].

Therefore, we used SVM + RBF kernels applied to an intermediate segmentation scale defined

by the Guigues method as baseline. The BIC descriptor was used in this baseline.

Figure 6.10 presents the classification results for the baselines and the Kappa × Feedback

Steps curves using the COFFEE dataset. This figure also includes the histogram of the per-

centage of the training set used in each feedback step by the proposed interactive method.

Figure 6.11 presents the same classification results using the COFFEE dataset, but using the

Overall Accuracy. The interactive HMSC training set starts with two rectangles composed of

5, 000 pixels for each class (coffee and non-coffee). It corresponds to 0.33% of the training set.

According to the results of Figures 6.10 and 6.11, HMSC has Kappa equal to 0.77 and

overall accuracy equal to 82%. SVM has Kappa equal to 0.71 and overall accuracy equal to

77%. The interactive method starts with Kappa index equal to 0.15 and overall accuracy equal

to 57%. After 20 iterations, the results converge to Kappa index equal to 0.76 and overall

accuracy equal to 81%.

One can note that the interactive HMSC obtains similar results to the SVM baseline af-

ter 5 feedback steps. After 20 feedback steps, interactive HMSC obtains results close to the

supervised HSMC. Therefore, these experiments show that by using about 1% of the pixels in

the training set, we can obtain results close to SVM. By using a little bit more than 5% of the
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Figure 6.10: Kappa index for the HMSC and SVM and Kappa × Feedback Steps curves for

interactive HMSC using the COFFEE dataset. The histogram represents the percentage of the

training set used in the interactive method.
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Figure 6.11: Overal Accuracy results for the HMSC and SVM and Overal Accuracy× Feedback

Steps curves for interactive HMSC using the COFFEE dataset. The histogram represents the

percentage of the training set used in the interactive method.
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Figure 6.12: Kappa index for the HMSC and SVM and Kappa × Feedback Steps curves for

interactive HMSC using the URBAN dataset. The histogram represents the percentage of the

training set used in the interactive method.

training set, the interactive method can achieve the same results as the HMSC trained with the

whole set.

Figure 6.12 presents the classification results for the baselines and the Kappa × Feedback

Steps curves using the URBAN dataset. Figure 6.13 presents the same classification results

using the URBAN dataset, considering the Overall Accuracy.

In general, the conclusions for the URBAN dataset are similar to the results obtained for

the COFFEE dataset. With few iterations, the IHMSC achieves classification results as good as

the SVM baseline. With some more feedback steps, by using 15% of the training set, the inter-

active approach achieved almost the same accuracy (88%) obtained by the HMSC supervised

approach.



6.3. Experiments 85

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0  5  10  15  20  25  30

 0

 10

 20

 30

 40

 50

O
v
e

ra
ll 

A
c
c
u

ra
c
y
 (

%
)

T
ra

in
in

g
 S

e
t 

S
iz

e
 (

%
)

Feedback Step

Interactive HMSC
HMSC

SVM
#Samples

Figure 6.13: Overal Accuracy results for the HMSC and SVM and Overal Accuracy× Feedback

Steps curves for interactive HMSC using the URBAN dataset. The histogram represents the

percentage of the training set used in the interactive method.
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6.4 Conclusions

We have shown in this chapter that interactive classification based on active learning can be a

good alternative to the selection of a suitable training set for high resolution remote sensing

analysis. We proposed a method for interactive classification of remote sensing images consid-

ering multiscale segmentation: the interactive HMSC (Hierarchical Multiscale Classifier). The

objective is to improve the selection of training samples by using the features from the most

appropriate scales of representation.

The experiments showed that the combination of scales produce better results than isolated

scales in a relevance feedback process. The interactive HMSC achieves more than 80% of

accuracy with 10 iterations in both used datasets, overcoming the baseline based on SVM. By

using a little bit more than 5% of the training set for the COFFEE dataset and 10% for the

URBAN dataset, the interactive method can achieve the same results as the supervised HMSC

trained with the whole set.
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In this chapter, we propose an approach based on the Bag-of-visual-Word (BoW) model [90]

to extract features from hierarchy of segmented regions [42]. Our approach is based on process-

ing only the image pixels in the base of the hierarchy (the finest regions scale). The features

are quickly propagated to the upper scales by exploiting the hierarchical association among re-

gions at different scales. The strategy starts by creating a visual dictionary based on low-level

features extracted from the pixel level (the base of the hierarchy). The low-level feature space

is quantized, creating the visual words, and each region in the base of the hierarchy is described

according to that dictionary. The features are then propagated to the other scales. At the end,

all regions in the hierarchy are represented by a bag of visual words.

The use of visual dictionaries is very effective for visual recognition [90, 108, 5, 109]. It

offers a powerful alternative to the description of objects based only on global [83] or on local

descriptors [68]. The main drawback of global descriptors – e.g., color histograms (GCH) –

is the lack of precision in the representation, which captures few details about the object of

interest. Local descriptors, in turn, normally create a large number of features per image or

object, which makes it costly to assess the similarities among objects.

In this scenario, representations based on visual dictionaries provide, at the same time, a

more precise representation than global descriptions and a more general and simple represen-

tation than pure local descriptions. The increase in precision is the result of employing local

descriptors and the increase in generality is the result of vector-quantizing the space of local de-

scriptions. Furthermore, the bag-of-visual-word model solves the problem of multiple feature

vectors as only one vector is used to describe each object.

Considering a hierarchical topology of regions, there is a natural logical relationship in the

visual properties among regions from different scales. Using the example presented in Fig-

ure 7.1, the visual properties of a leaf are not only present in the tree but also in the entire

forest. Hence, it is logical to have visual properties from leaves present in the feature vectors

that describe trees and forests. By employing a bag-of-visual-word representation, the propa-

gation of such features to other levels of the hierarchy becomes straightforward. The pooling

strategies used to pool the local features and generate the bag-of-visual-word representation

can be successively applied for each level of the hierarchy. Therefore, the low-level feature

extraction needs to be performed only at the finest scale of the hierarchy.

The problem of using a simple scale for object-based classification is the dependence on the

quality of the segmentation result. If the segmentation is not appropriate to the objects of study,

the final result of classification may be harmed. The multiscale interactive approach, presented

in Chapter 6, solves this problem, but the refinement of the classification result depends on the

hierarchy created by the Guigues’ algorithm (see Section 2.2).

A good solution is an interactive system that allows both the improvement and the modifi-

cation of the hierarchy according the user interactions. Regions may arise or be extinct from

the top scales of the hierarchy in each interactive step. It would require feature extraction in
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runtime. That would be intractable if we use many low-level global descriptors. However, the

propagation approaches we have proposed in this chapter solve this problem. When the hier-

archy is changed, the strategy is to recompute the feature vectors of new regions, starting from

the basis to the top of the hierarchy.

The rest of this chapter is organized as follows. Section 7.2 details the approaches for

hierarchical feature propagation. Section 7.3 present the experimental results. The conclusions

and final remarks of this chapter are given in Section 7.4.

7.2 The Hierarchical Feature Propagation

In this section, we present two approaches for hierarchical feature propagation. The first, called

BoW-propagation, is based on the Bag-of-Word concept. The other, H-propagation, is an adap-

tation of the BoW-propagation to propagate low-level features based on histograms from fine

scales to the coarsest ones.

7.2.1 BoW-propagation

This approach exploits the bag-of-word concept to iteratively propagate the features along the

hierarchy from the finest regions to the coarsest ones. Figure 7.2 illustrates each step of the

proposed approach in an example using three scales.

We used the term interest points to indicate the points that are used to extract low-level

features at the pixel level. We have chosen dense sampling to ensure the representation of

homogeneous regions in the dictionary. By using interest-points detectors, the representation

of homogeneous regions is not always possible since it tends to select only points in the most

salient regions.

Let Pλx
and Pλy

be partitions obtained from the hierarchy H at the scales λx e λy, respec-

tively. We consider that Pλx
> Pλb

, i.e, Pλx
is coarser than Pλy

. Let R ∈ Pλx
be a region from

the partition Pλx
. We call subregion of R the region R̂ ∈ Pλy

such that R̂ ⊆ R.

The set Γ(R), which is composed of the subregions of R in the partition Pλy
, is given by:

Γ(R) = {∀R̂ ∈ Pλy
|p ∈ R ∩ p ∈ R̂} (7.1)

where p is a pixel. The set of subregions of R in a finer scale are all the regions R̂ that have all

pixels inside R̂ and inside R.

The principle of BoW-propagation is to compute the feature histogram hR, which describes

region R, by combining the histograms of subregions Γ(R):

hR = f{hR̂c
| R̂c ∈ Γ(R)} (7.2)
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where f is a combination function.

Algorithm 4 presents the proposed feature extraction and propagation approach. The first

step is to extract low-level features from the interest points obtained from a dense sampling

schema (line 1). Then, the feature space is quantized, creating a visual dictionary Dk, where k

is the dictionary size (line 2). The low-level features are assigned to the visual words (line 3).

After this step, each interest point is described by a BoW, which is represented by a histogram.

The “first propagation” consists in computing the BoWs hR of each region R ∈ Pλ1 based on

the interest points (lines 4 to 6). The “main propagation loop” is responsible for propagating

the features to other scales (lines 7 to 10). For all regions R from a partition Pλx
, the BoW hR

is computed based on the Γ(R) BoWs, which is described by Equation 7.2 (line 9).

Algorithm 4 BoW-Propagation

1 Extract low-level features from the interest points

2 Create the visual dictionary Dk

3 Assign the low-level features to visual words

4 For all R ∈ Pλ1 do

5 Compute the BoW hR based on the interest points inside R
6 End for

7 For i← 2 to n do

8 For all R ∈ Pλi
do

9 Compute the BoWs hR based on the Γ(R) BoWs (Equation 7.2)

10 End for

11 End for

In the first propagation (lines 4–6), the BoW hR is obtained by pooling the features from

each point inside the region R. The dense sampling scheme shown in Figure 7.3 (a) highlights

in red the points considered for pooling. Figure 7.3 (b) shows only the internal points selected

and their influence zones. In this example, although we used a circular extraction area for each

point, any topology can be used. It is important to clarify that the influence zones outside the

region have a very few impact in the final BoW since the radius of the circumference is very

small. Anyway, the external influence zone can also be exploited depending on the application.

Figure 7.4 illustrates a schema to represent a segmented region by using dense sampling

through a bag of words. The low-level features extracted from the internal points are assigned

to visual words and combined by a pooling function.

In the loop defined in lines 7–10, the BoW hR is computed by combining the BoWs of the

subregions Γ(R), which is given by Equation 7.2. The combination function f has the same

properties of the pooling function. The idea consists in using the same operator either in the

pooling or in the combination steps.

Figure 7.5 illustrates an example by using the combination function f to compute the BoW
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7.2.2 H-propagation

The histogram propagation (H-propagation) consists in estimating the feature histogram repre-

sentation of a region R, given the low-level histograms extracted from the R subregions Γ(R).

Algorithm 5 presents the proposed H-propagation. It works simililarly to the proposed

Algorithm 4 for the BoW-propagation.

Algorithm 5 H-Propagation

1 Extract low-level feature histograms from the regions in the finest scale λ1

2 For i← 2 to n do

3 For all R ∈ Pλi
do

4 Compute the histogram hR based on the Γ(R) histograms

5 End for

6 End for

H-propagation does not quantize the low-level feature space to create a visual dictionary.

Another difference, when compared with BoW-propagation, is that H-propagation propagates

histogram bins instead of the probabilities of visual words. BoW-propagation is suitable for

propagating low-level local features. H-propagation, in turn, is designed only for global de-

scriptors based on histogram representations.

An important issue is the definition of the propagation function f in the case of low-level

histograms. Contrarily the propagation of visual words, we use the average function instead of

the max function. It is expected that with the average propagation, the quality of the histograms

be the same as that performed by the extraction directly from the pixels at all scales of the

hierarchy.

7.3 Experiments

In this section, we present the experiments that we performed to validate the proposed approach.

We have carried out experiments in order to address the following research questions:

• Are the propagation approaches as effective as the extraction using global descriptors?

• Is the BoW-propagation suitable for both texture and color feature extraction?

• Is it useful to quantize global color descriptors like BIC in a BoW-based model?

• Is it possible to achieve the same accuracy results of global descriptors by propagating

features with the H-Propagation approach?
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We have used two datasets in our experiments: COFFEE and URBAN. We used linear

SVMs to evaluate the classification results.

We designed the experimental protocol to address those questions in the context of texture

and color descriptors. In Section 7.3.1, we present the experimental results concerning texture

features. In Section 7.3.2, we present the results comparing different strategies to encode color

features from a hierarchy of segmented regions.

7.3.1 Texture Description Analysis

SIFT BoW-Propagation: Study of Parameters

In this section, we present an study of parameters for the BoW-Propagation strategy by using

the SIFT descriptor in a intermediary scale of segmentation for the COFFEE dataset. Results

are shown in Table 7.1.

Table 7.1: Classification results for BoW representation parameters with SIFT descriptor

(S=Sampling; DS=Dictionary Size; F=Propagation Function).

S DS F O.A. (%) Kappa (κ) Tau (τ )

6

102 avg 73.69± 2.77 0.25± 0.04 0.38± 0.04
max 72.71± 2.73 0.22± 0.04 0.38± 0.03

103 avg 71.24± 3.46 0.24± 0.06 0.42± 0.03
max 70.80± 3.19 0.25± 0.05 0.44± 0.03

104 avg 73.48± 3.00 0.19± 0.04 0.30± 0.03
max 73.40± 3.48 0.32± 0.06 0.48± 0.04

4

102 avg 72.93± 2.82 0.22± 0.04 0.35± 0.04
max 73.22± 2.53 0.21± 0.04 0.34± 0.04

103 avg 71.32± 2.96 0.24± 0.05 0.41± 0.03
max 71.68± 2.91 0.29± 0.05 0.46± 0.03

104 avg 73.74± 2.73 0.21± 0.04 0.32± 0.03
max 72.66± 3.74 0.33± 0.06 0.49± 0.04

We have used a very dense sampling in the experiments, by overlapping circles of radius 4

and 6 pixels [108], as in the remote sensing images the use of some interest regions can be very

small. The difference in classification is very small between the two sampling scales, however

we have noticed that the number of regions represented in the finest regions scale is larger for

the circles of radius 4. This happens because in COFFEE dataset there are very small regions.

The SIFT features extracted from each region in the dense sampled images were used to

generate the visual dictionary. We have tested dictionaries of 102, 103, and 104 visual words.

If very few differences among feature vectors need to be encoded, a large visual dictionary is
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recommended. However, if some small differences in local textures must be ignored, smaller

dictionaries can be useful. We have used soft assignment in these experiments (σ = 60). The

results in Table 7.1 show that larger dictionaries are more representative, specially considering

Kappa and Tau measures.

We have also evaluated the impact of different pooling/propagation functions. Average pool-

ing tends to smooth the final feature vector, because assignments are divided by the number of

points in the image. If we have many points in the image strongly assigned to some visual

words, this information is going to be kept in the final feature vector. However, if only a few

points have large visual words associations, they can become very small in the image feature

vector. This effect is good to remove noise, but it can also eliminate rare visual words, which

could be important for the image description. Average pooling tends to work badly with very

soft assignments and large dictionaries, due to the fact that points may have a low degree of

membership to many visual words, and computing their average is going to generate a too soft

vector. We can see this phenomenon in the low values of Kappa and Tau measures for the

dictionary of 104 words in Table 7.1.

Max pooling captures the strongest assignment of each visual word in the image. Therefore,

if only one point has a high degree of membership to a visual word, this information will be hold

in the image feature vector. Max pooling tends to present better performance for larger dictio-

naries with softer assignments. In our experiments, max pooling presents better performances

with the largest dictionaries.

BoW Propagation vs BoW Padding

A strategy used to extract texture from segmented regions is based on their bounding boxes.

It consists in filling the outside area between the region and its box with a pre-defined value

to reduce the interference of external pixels in the extracted texture pattern. This process is

known as padding [60] and the commonest approach is to assign zero to the external pixels

(ZR-Padding).

We perform experiments to investigate the impact of the segmentation in the feature extrac-

tion. Table 7.2 presents the results comparing BoW with ZR-Padding and BoW with Propaga-

tion for the COFFEE dataset. Table 7.3 presents the results comparing BoW with ZR-Padding

and BoW with Propagation for the URBAN dataset.

Table 7.2: Classification results comparing BoW-ZR-Padding and BoW-Propagation for the

COFFEE dataset.

Method O.A. (%) Kappa (κ) Tau (τ )

ZR-Padding 64.39± 1.78 0.00± 0.02 0.27± 0.02
Propagation 72.66± 3.74 0.33± 0.06 0.49± 0.04
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Table 7.3: Classification results comparing BoW-ZR-Padding and BoW-Propagation for the

URBAN dataset.

Method O.A. (%) Kappa (κ) Tau (τ )

ZR-Padding 48.00± 4.18 −0.01± 0.04 0.28± 0.03
Propagation 63.55± 2.56 0.24± 0.02 0.44± 0.01

As we can observe, the BoW-Propagation strategy yields better results than the ZR-Padding.

We can say that in these experiments, the padding strategy caused a loss of 8.37% in the accu-

racy of the BoW descriptor for the COFFEE dataset. Concering the URBAN dataset, this loss

was of 15.55%. Regarding Kappa index, ZR-Padding produces results with no agreement when

compared with the ground truth.

SIFT BoW Propagation vs Global Descriptors

Tables 7.4 and 7.5 present the classification results for the BoW-Propagation with SIFT and

three successful global texture descriptors (see Chapter 4) for the COFFEE and URBAN datasets,

respectively.

Table 7.4: Classification results comparing SIFT BoW-Propagation with the best tested Global

descriptors for the COFFEE dataset.

Method O.A. (%) Kappa (κ) Tau (τ )

BoW 72.66± 3.74 0.33± 0.06 0.49± 0.04
QCCH 70.36± 2.71 0.14± 0.03 0.31± 0.02

SID 69.35± 2.52 0.01± 0.02 0.13± 0.03
Unser 69.77± 3.11 0.16± 0.04 0.34± 0.03

Considering the COFFEE dataset, the BoW propagation yields slightly better overall accu-

racy than global descriptors. The difference is more perceptible regarding the Kappa and Tau

indexes. The BoW descriptor achieves 0.3289 of agreement while the best global descriptor

(Unser) achieves Kappa index equals to 0.1636. Observing Tau index, BoW yields results al-

most 50% better than a random classification, while Unser produces classification 34% better

than the random.

For the URBAN dataset, the Unser descriptor presents the best results, with Tau index equal

to 0.55. BoW propagation yields the second best results, which is more perceptible by observing

Tau index (it achieves 0.44).
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Table 7.5: Classification results comparing SIFT BoW-Propagation with the best tested Global

descriptors for the URBAN dataset.

Method O.A. (%) Kappa (κ) Tau (τ )

BoW 63.55± 2.56 0.24± 0.02 0.44± 0.01
QCCH 50.21± 5.15 0.02± 0.01 0.06± 0.03

SID 63.45± 1.46 0.17± 0.01 0.39± 0.02
Unser 74.88± 2.92 0.44± 0.03 0.55± 0.02

Table 7.6: Classification results for BIC descriptor using BoW-Propagation, Histogram Propa-

gation and, global feature extraction for the COFFEE dataset at segmentation scale λ3.

Method O.A. (%) Kappa (κ) Tau (τ )

BoW-Propagation 73.41± 2.76 0.25± 0.03 0.36± 0.02
H-Propagation 79.97± 1.76 0.46± 0.02 0.54± 0.02

Global Descriptor 80.07± 1.81 0.47± 0.02 0.54± 0.02

7.3.2 Color/Spectral Description Analysis

In this section, we have tested the proposed approaches for color feature propagation. We have

selected BIC descriptor since it produced the best results in the previous results of this thesis that

considered segmented regions. We compare the propagation approaches against BIC low-level

feature extraction.

BIC BoW-Propagation was computed by using: max pooling function, dictionary size of 103

words, and soft assignment (σ = 0.1). We have extracted low-level features from a dense sam-

pling by overlapping squares with 4× 4 pixels, as shown in Figure 2.3 (a). BIC H-Propagation,

in turn, was computed by using the avg pooling function.

Table 7.6 presents the classification by using BIC descritptor with BoW-Propagation, His-

togram Propagation, and low-level extraction (Global Descriptor) for the COFFEE dataset.

Concerning the results for the COFFEE dataset, H-Propagation and the Global Descriptor

present the same overall accuracy (around 80%). The same can be observed for kappa and tau

indexes. BoW-Propagation yields results slightly worse than the other two approaches for the

three computed measures.

Table 7.7 shows classification results for the URBAN dataset by using BIC descritptor with

BoW-Propagation, Histogram Propagation, and Global Descriptor.

Regarding the URBAN dataset, H-Propagation and Global Descriptor obtained the same

overall accuracy, Kappa, and Tau (∼ 70%, 0.31, and 0.47, respectively). The BoW-Propagation

approach yields slightly worse results than the other methods concerning overall accuray and

Kappa index. The Tau index was the same (0.47).
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Table 7.7: Classification results for BIC descriptor using BoW-Propagation, Histogram Propa-

gation and, global feature extraction for the URBAN dataset at segmentation scale λ3.

Method O.A. (%) Kappa (κ) Tau (τ )

BoW-Propagation 67.03± 2.65 0.26± 0.03 0.47± 0.02
H-Propagation 69.86± 4.76 0.31± 0.05 0.47± 0.04

Global Descriptor 69.63± 3.33 0.31± 0.04 0.47± 0.03

7.4 Conclusions

The proposed propagation approaches revealed be suitable for saving time on feature extraction

from a hierarchy of segmented regions.

Concerning texture, BoW-propagation with SIFT was very promising for encoding features.

On the COFFEE dataset, it obtained the best results compared with three global texture descrip-

tors. For the URBAN dataset, the BoW-Propagation with SIFT yields the second best result,

lower than the results using Unser descriptor.

Regarding color features, BOW-Propagation seems to be promising, but it requires the setup

parameters are better studied. However, H-Propagation shows that it is possible to compute low-

level features based only on the hierarchy basis. The features can be propagated without losses

in terms of representation quality.





Chapter 8

Conclusions and Future Work

This thesis addresses remote sensing image classification challenges. Many of them are related

to the representation scale of the data, and to both the size and the representativeness of used

training set.

In this thesis, we have presented contributions in four main research topics that concerns

those remote sensing image classification challenges.

In Chapter 4, we presented a comparative study of image descriptors for the classification

and recognition of RSI regions. Twelve color descriptors and seven texture descriptors were

compared considering effectiveness issues. The effectiveness was measured by precision-recall

curves and overall accuracy. JAC and Color Bitmap presented the best results among the color

descriptors evaluated, while SID was the best texture descriptor. We also proposed a methodol-

ogy to evaluate image descriptors in classification problems by using the KNN classifier. It is

worth mentioning that there is no work in the literature that applies more descriptors than this

study for remote sensing image classification.

The main contributions presented in Chapter 5 are two multiscale classification approaches.

The proposed approaches for multiscale image analysis are the Multi-Scale Classifier (MSC)

and the Hierarchical Multi-Scale Classifier (HMSC). The MSC is a boosting-based classifier

that builds a strong classifier from a set of weak ones. The HMSC is also based on boosting

of weak classifiers, but it adopts a sequential strategy of training, according to the hierarchy of

scales (from the coarsest to the finest). In this work, we adopted two configurations of weak

learners: SVM and RBF. The SVM approach, which yields best results, is based on the SVM

classifier with linear kernel. The other one is based on the distances provided by Radial Basis

Function. The MSC results show that the combination of scales increase the power of the final

classifier. We have also discussed about the correlation among descriptors and the segmentation

scales. Experiments show that coarsest scales offer great power of description while the finest

ones can improve the classification by detailing the segmentation.

The MSC and HMSC approaches differ from the other studies found in the literature in sev-
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eral aspects. First of all, if we consider that there is an ideal scale to represent the objects, we

consider the cases in which it is not known and, hence, it can not be defined by empirical param-

eters. Moreover, even if the optimal scale is known, we can not assure that the use of auxiliary

scales does not improve the classification accuracy. Another aspect is that our approach does

not propose the fusion of features, but the combination of the classification results at different

scales. Finally, our proposal uses different scales to classify the image by assigning the same

set of classes at all scales, producing a single final result, i.e, a single model for all classification

problems. Our work also differs from others that use a set of classes for each scale and consider

semantic information to produce a classification result for each scale.

An interactive approach for interactive multiscale classification of remote sensing images is

presented Chapter 6. The strategy, interactive HMSC, improves the selection of training sam-

ples by using the features from the most appropriate scales of representation. During a feedback

step, for each considered scale, the method selects the regions that are the closest to the sep-

arating border. It is also the first interactive method proposed in the literature that consider

multiple scales instead of pixel-based information. The experiments showed that the combina-

tion of scales produces better results than isolated scales in a relevance feedback process. The

interactive HMSC achieves more than 80% of accuracy with 10 iterations in both used datasets,

overcoming the baseline based on SVM. By using a little bit more than 5% of the training set

for the COFFEE dataset and 10% for the URBAN dataset, the interactive method can achieve

the same results as the supervised HMSC trained with the whole set.

Chapter 7 deals with the problem of extracting features from a hierarchy of segmented re-

gions. We have proposed the BoW-Propagation, which is a strategy based on the bag-of-visual-

word model to propagate features from the finest scales to the coarsest ones in the hierarchy.

We have also adapted this strategy to propagate histogram-based low-level features along the

hierarchy of segmented regions. This new approach is called H-Propagation. These approaches

are suitable for saving time on feature extraction from a hierarchy of segmented regions. To the

best of our knowledge, these are the first approaches that deal with the propagation of features

in a hierarchy of regions. Moreover, experiments using BoW-propagation with SIFT was very

promising for encoding texture features. For color features, BOW-Propagation seems to be

promising, but it requires many setup parameters. Experiments using H-Propagation show that

it is possible to quickly compute low-level features and have a high-quality representation at the

same time.

8.1 Future Work

The contributions presented in this thesis focus primarily on solving problems associated with

spatial resolution. However, the proposed solutions make us reflect on the treatment of many

other kind of datasets that also contain large amount of data and of high dimensionality. There-
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fore, in addition to dealing with multiscale classification, future work includes processing of

hyperspectral images, multitemporal data, and combination of data from different sensors. The

approaches proposed in this thesis can be useful for solving problems with such data. The

challenge here is how to extend these approaches for those kinds of data.

Concerning feature extraction, the management of large amount of data from hyperspectral,

multitemporal and multi sensors also requires new approaches. Thus, other possible research

venues are:

• Spatio-temporal feature extraction. This is a topic of great interest not only for the re-

mote sensing community [84], but also in research areas such as Phenology [1]. Some

challenges are: how to extract representative features? How to deal with the high dimen-

sionality of the data?

• Feature extraction from hyperspectral images for object-based classification. Color de-

scriptors used in this thesis are designed to extract features in three channels. In our

experiments, we have selected the most informative bands from our datasets according

to the interest targets. However, extracting features from all bands may improve classifi-

cation results. But, how to adapt those descriptors? How to deal with both spectral and

spatial aspects? How to avoid the curse of dimensionality?

• Combination of features from multiple sensors. It may involve selection of spectral bands

from each sensor. A challenge consists in to adjust and to maintain the georeference

among different spatial resolutions.

From the point of view of user interactivity, possible extensions include:

• Active learning techniques for multiscale classification. In this thesis, we have selected

one region per segmentation scale to require user annotation in each interaction. We ques-

tion what are the best strategy to make use of the user indications. The use of clustering

techniques may be a good option.

• Visualization and annotation of regions by the user. The way the user can interact with a

multiscale classification system should still be better exploited. We intend to implement

an interface as proposed in this thesis and test it with real users. Other ways of annotation

should be tested as well (e.g., by means of polygons, rectangle corners).

• Interactive multiscale classification and segmentation. The classification method pro-

posed in this thesis considers the use of a hierarchy of coherent regions. In other words,

the method depends on the quality of the segmentation. We wonder if the results may be

improved by changing the hierarchy structure along the interactions. This would allow

not only the multiscale interactive classification, but also interactive multiscale segmen-

tation.
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elli. A relevance feedback method based on genetic programming for classification of

remote sensing images. Information Sciences, 181(13):2671–2684, 2011.

[25] J. A. dos Santos, P.H. Gosselin, S. Philipp-Foliguet, R. da S. Torres, and A. X. Falcão.

Multiscale classification of remote sensing images. Geoscience and Remote Sensing,

IEEE Transactions on, 50(10):3764–3775, 2012.

[26] J. A. dos Santos, P.H. Gosselin, S. Philipp-Foliguet, R. da S. Torres, and A. X. Falcão.

Interactive multiscale classification of high-resolution remote sensing images. Selected

Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2013. To

appear.

[27] J. A. dos Santos, R. A. C. Lampareli, and R. da S. Torres;. Using relevance feedback for

classifying remote sensing images. In XIV Brazilian Remote Sensing Symposium, pages

7909–7916, Natal, RN, Brazil, Abril 2009.

[28] J. A. dos Santos, O. A. B. Penatti, and R. da S. Torres. Evaluating the potential of

texture and color descriptors for remote sensing image retrieval and classification. In The

International Conference on Computer Vision Theory and Applications, pages 203–208,

Angers, France, May 2010.

[29] J. A. dos Santos, O. A. B. Penatti, R. da S. Torres, P-H. Gosselin, S. Philipp-Foliguet, and

A. X. Falcão. Improving texture description in remote sensing image multi-scale classifi-

cation tasks by using visual words. In International Conference on Pattern Recognition,

Tsukuba, Japan, November 2012.



112 BIBLIOGRAPHY

[30] J. A. dos Santos, O. A. B. Penatti, R. da S. Torres, P-H. Gosselin, S. Philipp-Foliguet,

and A. X. Falcão. Remote sensing image representation based on hierarchical histogram

propagation. In Geoscience and Remote Sensing Symposium, IEEE International, Mel-

bourne, Australia, 2013. to appear.

[31] S. S. Durbha and R. L. King. Semantics-enabled framework for knowledge discovery

from earth observation data archives. Geoscience and Remote Sensing, IEEE Transac-

tions on, 43(11):2563 – 2572, nov. 2005.

[32] F. Faria, J. A. dos Santos, R. da S. Torres, and A. Rocha. Automatic classifier fusion for

produce recognition. In SIBGRAPI 2012, Ouro Preto-MG, Brazil, August 2012.

[33] F. Faria, J. A. dos Santos, R. da S. Torres, A. Rocha, and A. X. Falcão. Automatic

fusion of region-based classifiers for coffee crop recognition. In Geoscience and Remote

Sensing Symposium, IEEE International, Munique, Germany, July 2012.

[34] J. Feng, L. C. Jiao, X. Zhang, and D. Yang. Bag-of-visual-words based on clonal se-

lection algorithm for sar image classification. Geoscience and Remote Sensing Letters,

8(4):691 –695, July 2011.

[35] C. D. Ferreira, J. A. dos Santos, R. da S. Torres, M. A. Gonçalves, R. C. Rezende, and
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