Divino César Soares Lucas

“Modeling the Performance Impact of Hot Code
Misprediction in Cross-ISA Virtual Machines”

“Modelagem do Impacto de Erros de Predicao de Codigo

Quente no Desempenho de Mdaquinas Virtuais”

CAMPINAS
2013

11

S

-5 °
Y \ /
UNICAMP
University of Campinas Universidade Estadual de Campinas
Institute of Computing Instituto de Computacao

Divino César Soares Lucas

“Modeling the Performance Impact of Hot Code
Misprediction in Cross-ISA Virtual Machines”

Supervisor:

, Prof. Dr. Guido Costa Souza de Araujo
Orientador(a):

Co-Supervisor: Prof. Dr. Edson Borin

Co-orientador(a):
“Modelagem do Impacto de Erros de Predicao de Codigo
Quente no Desempenho de Mdquinas Virtuais”

MSc Dissertation presented to the Post Dissertacdo de Mestrado apresentada ao Pro-
Graduate Program of the Institute of Com- grama de Pds-Graduagciao em Ciéncia da Com-
puting of the University of Campinas to puta¢do do Instituto de Computag¢do da Univer-
obtain a Master degree in Computer Sci- sidade Estadual de Campinas para obtencao do

ence. titulo de Mestre em Ciéncia da Computacado.

THIS VOLUME CORRESPONDS TO THE FI- ESTE EXEMPLAR CORRESPONDE A VERSAO FI-
NAL VERSION OF THE DISSERTATION DE- NAL DA DISSERTAGAO DEFENDIDA POR DIVINO
FENDED BY DIVINO CESAR SOARES LU- CESAR SOARES LUCAS, SOB ORIENTACAO DE
CAS, UNDER THE SUPERVISION OF PROF. PROF. DR. GUIDO COSTA SOUZA DE ARAUJO.
DR. Guipo COSTA SOUZA DE ARAUJO.

Supervisor’s signature / Assinatura do Orientador(a)

CAMPINAS
2013

111

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computagéo Cientifica
Ana Regina Machado - CRB 8/5467

Lucas, Divino César Soares, 1985-

L962m Modelagem do impacto de erros de predi¢ao de cédigo quente no
desempenho de maquinas virtuais / Divino César Soares Lucas. — Campinas, SP :
[s.n.], 2013.

Orientador: Guido Costa Souza de Aradjo.

Coorientador: Edson Borin.

Dissertagdo (mestrado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Sistemas de computacao virtual. 2. Compiladores (Programas de
Computador). 3. Arquitetura de computador. I. Araujo, Guido Costa Souza
de,1962-. Il. Borin, Edson,1979-. lll. Universidade Estadual de Campinas. Instituto
de Computacao. IV. Titulo.

Informacdes para Biblioteca Digital

Titulo em inglés: Modeling the performance impact of hot code misprediction in Cross-ISA
virtual machines

Palavras-chave em inglés:

Virtual computer systems

Compilers (Computer programs)

Computer architecture

Area de concentracéo: Ciéncia da Computacéo
Titulacao: Mestre em Ciéncia da Computagéo

Banca examinadora:

Guido Costa Souza de Araujo [Orientador]

Fernando Quintao Magno Pereira

Sandro Rigo

Data de defesa: 09-04-2013

Programa de Pés-Graduacéao: Ciéncia da Computagao

TERMO DE APROVACAO

Dissertagdo Defendida e Aprovada em 09 de Abril de 2013, pela

Banca examinadora composta pelos Professores Doutores:

finncanedt TV 6L Brnna

Prof. Dr. Fernando Magno Quintao Pereira
DCC/UFMG

Prof. D¥—S4ndro Rigo
IC / UNICAMP

4/& iAo ﬁ\(e / /
Prof. Dr. duido Costa Souza_(}é Araujo
~1C / UNICAMP

Institute of Computing /Instituto de Computagao
University of Campinas / Universidade Estadual de Campinas

Modeling the Performance Impact of Hot Code
Misprediction in Cross-ISA Virtual Machines

Divino César Soares Lucas!

April 09, 2013

Examiner Board/Banca Examinadora:
e Prof. Dr. Guido Costa Souza de Araijo (Supervisor/Orientador)

e Prof. Dr. Fernando Magno Quintao Pereira
Department of Computer Science - The Federal University of Minas Gerais

e Prof. Dr. Sandro Rigo
Institute of Computing - University of Campinas

e Prof. Dr. Alexandro Baldassin (Suplente)
Institute of Geociences - Paulista’ State University

e Prof. Dr. Rodolfo Jardim de Azevedo (Suplente)
Institute of Computing - University of Campinas

'Financial support: Fapesp scholarship (process 2011/05028-5) 2011-2012.

Vil

Abstract

Virtual machines are systems that aim to eliminate the compatibility gap between two,
possible distinct, interfaces, thus enabling them to communicate. This way, acting like
a mediator, the VM lies at an important position that enable it to foster innovative
solutions for many problems. Such systems usually rely on emulation techniques, such
as interpretation and dynamic binary translation, to execute guest application code. In
order to select the best emulation technique for each code segment, the VM typically
needs to predict whether the cost of compiling the code overcome its future execution
time. This problem, in the common case, reduce to predicting if the given code region
will be frequently executed or not, a problem called Hot Code Prediction. Generally, if
the predictor flags a given code region as hot the VM instantly takes the decision to
compile it. However, a problem came out from this strategy, the predictor response is
only a decision made by means of a heuristic and thus it can be incorrect. Whenever the
predictor flags a code region that will be infrequently executed (cold code) as hot code, we
say that it is doing a hotness misprediction. Whenever a misprediction happens it means
that the technique the VM will use to emulate the code will not have its cost amortized
by executing the optimized code and thus the VM will, in fact, spend more time executing
its own code rather than the guest application code. In this work we measure the impact
of hotness mispredictions in a VM emulating several kinds of applications.

In our analysis we evaluate the threshold-based hot code predictor, a technique com-
monly used to predict hot code fragments. To do so we developed a mathematical model
to simulate the behavior of such predictor and we use it to estimate the impact of mis-
predictions in several benchmarks. We show that this predictor frequently mispredicts
the code hotness and as a result the VM emulation performance becomes dominated by
miscompilations. Moreover, we show how the threshold choice can affect the number of
mispredictions and how this impacts the VM performance. We also show how the compi-
lation, interpretation and steady state execution cost of translated instructions affect the
VM performance. At the end we show that using SPEC CPU 2006 benchmarks to mea-
sure the performance of a VM using the threshold-based predictor can lead to misleading
results.

1X

Resumo

Maquinas virtuais (MVs) sao sistemas que se propoem a eliminar a incompatibilidade entre
duas, em geral diferentes, interfaces e dessa forma habilitar a comunicacao entre diferentes
sistemas. Nesse sentido, atuando como mediadores, uma MV estd em um ponto que a
permite fomentar o desenvolvimento de solugoes inovadoras para varios problemas. Tais
sistemas geralmente utilizam técnicas de emulacao, por exemplo interpretacao ou traducao
dinamica de binarios, para executar o coédigo da aplicacao cliente. Para determinar qual
técnica de emulacao ¢ a ideal para um trecho de cédigo geralmente é necessario que a MV
empregue algum tipo de predicao para determinar se o beneficio de compilar o cédigo
supera os custos. Este problema, na maioria dos casos, resume-se a predizer se o dado
trecho de codigo sera frequentemente executado ou nao, problema conhecido pelo nome
de Predicao de Codigo Quente. Em geral, se o preditor sinalizar um trecho de cédigo
como quente, a MV imediatamente toma a decisao de compila-lo. Contudo, um problema
surge nesta estratégia, a resposta do preditor é apenas a decisao de uma heuristica e é,
portanto, suscetivel a erros. Quando o preditor sinaliza como quente um trecho de cédigo
que nao sera frequentemente executado, ou seja, um codigo que de fato é “frio”, ele esta
fazendo uma predicao erronea de codigo quente. Quando uma predicao incorreta é feita,
ocorre que a técnica de emulacao que a MV utilizara para emular o trecho de cédigo nao
compensara o seu custo e portanto a MV gastara mais tempo executando o seu préprio
codigo do que o cédigo da aplicacao cliente. Neste trabalho, foi avaliado o impacto de
predicoes incorretas de coédigo quente no desempenho de MVs emulando varios tipos de
aplicagoes.

Na anélise realizada foi avaliado o preditor de cédigo quente baseado em limiar, uma
técnica frequentemente utilizada para identificar regioes de codigo que serao frequente-
mente executadas. Para fazer esta andlise foi criado um modelo matematico para simular
o comportamento de tal preditor e a partir deste modelo uma série de resultados puderam
ser explorados. Inicialmente é mostrado que este preditor frequentemente erra a predicao
e, como consequéncia, o tempo gasto fazendo compilac¢oes torna-se o maior componente
do tempo de execugao da MV. Também é mostrado como diferentes limiares de predicao
afetam o nimero de predicoes incorretas e qual o impacto disto no desempenho da MV.

x1

Também sao apresentados resultados indicando qual o impacto do custo de compilagao,
traducao e velocidade do cédigo traduzido no desempenho da MV. Por fim é mostrado
que utilizando apenas o conjunto de aplicacoes do SPEC CPU 2006 para avaliar o desem-
penho de MVs que utilizam o preditor de cédigo quente baseado em limiar pode levar a
resultados imprecisos.

Xlil

Contents

Abstract
Resumo

1 Introduction
1.1 Motivation
1.2 Contributions

2 Related Work
2.1 Hot Code Prediction Approaches
2.2 Hot Code Prediction Implementations
2.3 Virtual Machines Overhead Analysis

3 Threshold-based Hot Code Misprediction Overhead
3.1 The Emulation Cost
3.2 Hot Code Prediction
3.3 Hot Code Misprediction Overhead
3.4 Model Extensions

4 Methodology
4.1 The Model’s Input: Instructions Execution Frequency
4.2 Model’'s Parameters: Interpretation Cost
4.3 Model’'s Parameters: Translation Cost

5 Results
5.1 Benchmark Characterization
5.1.1 Footprint Characterization
5.1.2 Prediction Accuracy
5.1.3 Execution Coverage
5.2 Estimation of the Model Parameters g;, ar and B

XV

ix

xi

10
12

14
14
15
16
18

5.3 The Effect of the Model’s Parameters in the Emulation Overhead 32

5.4 Misprediction Overhead 34
5.5 Misprediction Overhead Characterization 36
6 Conclusions 39
Bibliography 40

Xvil

List of Tables

1.1

5.1
5.2
5.3
5.4
5.5

Example of emulation and misprediction overhead 3
Benchmark characterization - footprint 25
Benchmark characterization - prediction accuracy 27
Benchmark characterization - cover set 28
Measured model’s parameters for g;, arand 8 30
Range of the model’s parameters used in experiments 32

Xix

List of Figures

3.1

5.1
5.2
5.3

5.4
2.5

5.6

Prediction scenarios for the threshold-based predictor 17
Translation cost for SPEC CPU 2006 benchmarks’ functions 31
The effect of model’s parameters in misprediction overhead 33
Misprediction and emulation overhead for Sysmark:Office, SPEC-2006:GCC

and Windows 7 Boot oo 35
Impact of misprediction overhead during the VM maturing cycle 36
Maximum and minimum misprediction overhead for SPEC CPU 2006, Sys-

mark 2012 and OS Boots L 37
The components of the misprediction overhead 38

xx1

Chapter 1

Introduction

Virtual machines (VMs) are systems that act like mediators, enabling the communication
between two possible distinct interfaces. In such sense they are like protocols, however,
the main goal of a VM [42] is to enable a given guest software to execute on a platform,
the host environment, other than that which it was originally meant to run on, the
guest environment. This is accomplished by supporting the guest environment interface
using the host environment. There are plenty of virtual execution environments [2,3,5,
6,13,14,16, 19,24, 46, 48|, some targeted at emulating a sole application (process VMs)
and others at emulating a whole system (system VMs). Besides portability (6,24, 43],
virtual machines can be used for several others purposes like: support to legacy code
execution [16,48], dynamic program optimization [5,13,46], program shepherding [35, 38|
and dynamic program instrumentation [32].

Virtual machines are very versatile, but they come with an inherent price: the em-
ulation cost. Following the VM taxonomy proposed by Smith and Nair [42], regarding
emulation technique, there are two main classes of virtual machines: those that use in-
terpretation and those that use translation.

Interpretation is the simplest and most direct approach. In this kind of emulation,
the VM has routines to emulate the behavior of each instruction in the guest instruction
set architecture (ISA). Since every instruction of the guest software triggers an emulation
routine, this method is typically slow.

Translation is a more sophisticated approach that aims at improving the emulation
performance at the price of the VM portability. In this technique, the source representa-
tion of the guest software is translated into code that runs natively on the host ISA. The
performance of the translated code is comparable to native execution and is much faster
than interpretation. However, the cost to perform the translation is high and thus it is
only profitable on code regions that have an execution frequency high enough to offset
the translation overhead.

1.1. Motivation 2

In order to maximize performance, it is necessary to increase the amount of optimized
code which is executed, thus it is important to prevent translation of infrequently exe-
cuted code (cold code) and to translate frequently executed code (hot code) as soon as
possible. To do so, state-of-the-art VMs [5,16,24] rely on hot code prediction to select the
best emulation technique for each code segment being emulated. The virtual machine is
typically provided with a hot code predictor that employs some kind of heuristic to pre-
dict whether a given code region will be frequently executed or not. Until the predictor
flags a region as hot, the VM uses an emulation technique with low startup overheads,
generally interpretation or a quick form of translation, and postpones any code optimiza-
tion. When some code region is flagged as hot, the VM switches to a second stage. In
this stage, the VM constructs a code region (e.g. a trace [5,6,24,46]) containing the hot
code and optimize this region by doing an optimizing translation or further optimizing
previously translated code. After optimization the code is stored in a code cache for
future re-execution.

The aforementioned approach is called a two-stage VM and can be easily extended
to work with multiple stages (multiple levels of hotness) depending on the predictor
being used. A widely used approach to predict hot code is based on execution frequency
thresholds [3,5,6,13,17,24,46,48]. This predictor is very simple: it flags a region as
hot if and only if it reaches a fixed execution frequency threshold, which we will call
in this work Tp. The rationale behind it is: infrequently executed code regions do not
reach the threshold. We call warm code those program regions that do not satisfies this
hypothesis. These are regions that have an accumulated execution frequency sufficiently
high to reach the prediction threshold but its final execution frequency is not high enough
to compensate for the compiling overhead. When the predictor flags a warm code as hot
we call this a hot code misprediction. From now on we will call this predictor the
threshold-based predictor (or simply TBP), and its behavior and how the mispredictions
affect the performance of its corresponding VM are the object of study of this work. In
this work we are only concerned with cross-ISA VMs (a cross-ISA VM is one where the
guest and host interfaces are different), since same-ISA VMs the translation cost can
be negligible because in general only a copy of the guest code is done to “emulate” it.
In the following sections we give an example on how mispredictions can affect the VM
performance and list the contributions of this work.

1.1 Motivation

As discussed before, performing translation or heavy optimizations on cold/warm code
may add a significant overhead to the emulation process as their code execution frequency
may not be sufficiently high to amortize the translation cost. This is typically the case

1.1. Motivation 3

when the hot code predictor misses the prediction.

In the following example, we assume a two-stage virtual machine that employs inter-
pretation to emulate cold code and dynamic binary translation to emulate hot code. The
translator produces faster emulation code than the interpreter, at the cost of the transla-
tion overhead. Therefore, without lack of generality, assume that the VM translator takes
1,000 cycles to translate and one cycle to execute each instruction, while the interpreter
takes 50 cycles to emulate each instruction. As shown in Table 1.1, the interpreter of this
virtual machine (second column) would take 250 cycles to emulate an instruction that
executes H times and 10,000 cycles to emulate an instruction that executes 200 times, a
total of 10250 cycles. Meanwhile the translator (third column) would take 1005 cycles to
emulate an instruction that executes 5 times and 1200 cycles to emulate an instruction
that executes 200 times, a total of 2205 cycles and, 4.65 times faster than the interpreter.

Freq. | Interp. Cost Trans. Cost Opt. Cost Pred. Cost, Tp =6
5 5x50 | 1000 + 5Hx1 5 x 50 5 x 50
200 200 x 50 | 1000 + 200 x 1 | 1000 + 200 x 1 | (6 x 50) 4+ (1000 4+ 194 x 1)
Total 10250 2205 1450 1744

Table 1.1: Example of emulation and misprediction overhead.

Despite the fact that translating all the instructions is better than interpreting, a faster
approach would be to interpret the instruction that executes 5 times and to translate the
instruction that executes 200 times (fourth column). This combination would take a total
of 1450 cycles and would be 7.07 times faster than interpreting and 1.5 times faster than
translating both instructions. According to this example the best emulation technique
depends on the code execution frequency, and combining different techniques may allow
us to improve the emulation time of code with different execution frequencies. However,
since the execution frequency of instructions is not known beforehand, it is important to
predict whether the code will be hot or cold in order to select the best emulation technique
for each instruction (or code segment).

If we apply the TBP with threshold Tp = 6 to the previous example (fifth column),
the VM would spend 250 (5 x 50) cycles interpreting the instruction that executes 5 times,
1300 cycles interpreting and translating the instruction that executes 200 times and 194
cycles executing the translated code. The total emulation time, 1744 cycles, is 20% higher
than the optimal case, in which the cold instruction is interpreted and the hot instruction
is translated beforehand. This extra overhead occurs because, in this approach, hot code
is emulated as if it was cold code (using interpretation) until it is predicted as hot. In
cases where the execution frequency is slightly larger than the threshold, the predictor will
mispredict the code as hot, causing extra overhead due to translation or optimizations on
cold code. As an example, if Tp = 5, the total emulation time for the previous example

1.2. Contributions 4

would be 2695: 1250 (5 x 50 + 1000 + 0) cycles for the instruction that executes 5 times
and 1445 (5 x 50 + 1000 + 195) cycles for the instruction that executes 200 times. This
is 1.86 times slower than the optimal case.

In the next section we present our main contributions in this work.

1.2 Contributions

One major contribution of this work is to show that the threshold-predictor’s hypothesis is
not sufficiently strong to be used for large code footprint applications, particularly in those
that run on interactive environments. Specifically, we show that the maximum expected
overhead due to mispredictions is no more than 10% when executing applications from
SPEC CPU 2006 [22], however, our experiments indicate that applications from Sysmark
2012 [15] are expected to suffer from more than 27% of misprediction overhead. As
we will see in Chapter 2, this predictor has been used in several ISA VMs: Transmeta
CMS [16], HP Dynamo [5], Mojo [13], IA32-EL [6], Star DBT [46], Aries [48] and others.
Other further contributions of this work are the following.

e An analytical model to estimate the misprediction overhead of threshold-based hot
code predictors (Chapter 3). To the best of our knowledge this is the first work to
analytically model the overhead of such predictors.

e A comprehensive evaluation of the TBP in productivity applications with large
code footprint (Chapter 5). We show how using the SPEC CPU2006 benchmarks
to measure VM performance can lead to misleading results. We are not aware of
other work which has quantified how misleading can be the use of SPEC to measure
VM performance.

e We show that as the VM employs more cycles to translate/optimize regions the
misprediction overhead sharply increases (Chapter 5). This result, together with the
next one, indicates that relying only in optimization effectiveness may not suffice to
amortize the translation overhead.

e We show that for large code footprint applications, using TBP may lead to many
mispredictions and, in many cases, the optimized code execution is not capable of
amortizing the mistranslations overhead.

This text is organized as follows. Chapter 2 discusses related work. Chapter 3 presents
the analytical model we use to quantify the hot code misprediction overhead. Chapter 4
presents the methodology we employed to produce our experiments. Chapter 5 shows
the overhead results derived from our analysis of hot code misprediction for SPEC CPU

1.2. Contributions 5

2006, Sysmark 2012 and some operating system boots. Finally, Chapter 6 presents our
conclusions.

Chapter 2

Related Work

In this chapter we present a review of the literature of virtual machines, focusing on three
aspects that are closely related to this work. Initially, we present a review of the current
approaches used to address the prediction and/or detection of frequently executed code
regions. Next, we present several virtual machines and the hot code detection techniques
they use. The third aspect of our review discusses papers that analyze the emulation
overhead in virtual machines.

In describing current and past virtual machines we are mainly interested in analyzing
the role of the TBP in such VMs. Moreover, we intend to show that many current VMs
uses CPU intensive benchmarks, such as SPEC CPU together with the TBP, to report
performance results.

2.1 Hot Code Prediction Approaches

As we will soon see, there are a few hot code prediction techniques and many of them
employ what we call a threshold-based approach to determine if a given code region
will be frequently executed or not. As explained in Chapter 1 this approach consist in
considering a region as hot only when (and if) a given execution frequency counter for
that region reaches a threshold. This concept is usually implemented using execution
sampling or instrumentation counters. In the following paragraphs we describe the most
relevant research in this area.

The work of Duesterwald and Bala [17] settled the basis for a hot code prediction and
region formation technique that would be used by many subsequent virtual machines. In
this work they propose MRET (Most Recent Execution Tail) an instrumentation driven
integrate approach to predict and construct a hot code region. MRET relies on two
assumptions. First, that the target of backward branch instructions are almost always the
start of frequently executed regions and second, that given a control flow graph (CFG) [1]

2.1. Hot Code Prediction Approaches 7

of a region, collecting an arbitrary path of execution in this CFG (during one of its
executions) tends to capture the most frequently executed path in that region. Following
these assumptions MRET assigns execution counters for every basic block that is target of
a backward branch instruction. These counters are incremented every time the basic block
is executed and when its value reaches a certain threshold a region formation algorithm is
started. The constructed region consists of all basic blocks executed after the threshold
has been reached up to the next backward branch instruction (or a maximum number
of BBs). The authors in [17] compare MRET with a path-based approach (registers are
assigned to paths instead of basic blocks) and show that much less space and instructions
are required to store and update counters. As previously stated, this predictor has been
used in several virtual machines, however it has some problems and other approaches
have been proposed to overcome these problems. In the next paragraphs we describe two
problems with MRET and the ways to mitigate such problems.

In some situations, MRET approach to consider the next executed tail (NET) as the
most frequently executed path of a CFG does not hold. For example, in a CFG with two
paths that alternate execution, choosing only one path will end with a path that executes
only half the time. In order to improve the region selection of MRET, Chen et al. [45]
proposed MRET?. The modifications are very simple. After MRET forms the trace the
execution counter is reset and the algorithm wait until the threshold is reached a second
time. When the counter reaches the threshold for the second time a new trace is created.
The new version considers the trace formed by the intersection of the basic blocks of the
two traces as the most frequently executed path. The authors in [45] compare MRET
and MRET? using the SPEC CPU 2000 benchmarks and show that the path completion
rate of MRET? is consistently larger than that of MRET.

Another way of implementing the concept of threshold-based hot code prediction is
through the use of sampling [10]. By using such approach the system is enabled with a
framework that periodically reads hardware registers (e.g. the Program Counter) to collect
samples that identify what code regions the program was executing. After a reasonable
amount of samples are collected the system employs statistical methods to identify what
are the frequently executed code regions. Given the reduced frequency of counter updates
and the smaller number of registers needed to store frequency counters. This approach
results in less space and execution time overhead when compared to instrumentation-based
approaches, However, this approach needs to periodically stop the application execution
to apply statistical inferences to determine the most frequently executed regions.

Other techniques for predicting hot code exists but in general they use a threshold-
based approach (based on sampling or execution frequency) and differ mainly in the way
they propose to create the hot region.

In another effort to reduce the overhead incurred from application profiling, Merten

2.1. Hot Code Prediction Approaches 8

et al. [34] propose a hardware-driven profiling scheme. The proposed approach, called
Branch Behavior Buffer (BBB) is an integrate two-step hot code detection and region
formation technique. The proposed technique is based on branch instruction execution
frequencies and hardware timers. In BBB a hardware table called branch behavior buffer
maintains a summary of all branches executed during a time slice. Branches for which
the execution exceeds a threshold are marked as candidate branches. At the end of each
monitoring interval the set of candidate branches are further analyzed to see if they meet
the requirements needed in order to form a hot code region: 1) be active for a minimum
amount of time (a timer based on branch instructions execution is used) and 2) represent
a minimum percentage of all branches execution. Once a hot spot has been detected, the
hardware triggers a trap to the operating system warning the detection of the new hot
spot. The authors performed experiments with several SPEC CPU 95 benchmarks and
shows that the system is capable of capturing small code regions (hot spots) that represent
a large portion of the dynamic instruction stream. The proposed approach has negligible
profiling overhead, however, it lacks support for multiprocess/multicore systems, rely on
OS support for region formation and its effectiveness is limited to the BBB size.

Loop regions (roughly speaking the basic blocks between a backward branch and its
target) are frequently the source of hot spots due to its iterative nature. However in
a given loop region many paths may be exercised across multiple iterations, and thus
considering only one path may not be enough to capture all the execution iterations of
the loop. To address this problem Baba et al. [4] proposed a hardware based two-level
hot path detection approach. The two-level translates to two hardware tables. Initially,
“loop” paths are formed using a bit-tracing algorithm. Each time a path is executed a
corresponding entry is updated in a Filter Table incrementing the execution frequency
of that path. Once the execution frequency of a path in the Filter Table reaches a fixed
threshold the path turns to be persisted in a second table called Accumulator Table. This
two level organization enables to capture local hot paths - those in the Filter Table for
which the execution counter has reached a minimum threshold - and global hot paths -
those in the Accumulator Table for which the associated execution counter exceeded a
certain threshold. They show results using SPEC CPU 2000 comparing their technique
with a one-level approach and a two-level unlimited resources approach. Their results
indicate that the technique is superior to a one-level approach and can successfully capture
the same top 5 hottest paths that the unlimited resources implementation does captures.
Although their two-level approach seems effective at filtering infrequently executed paths,
it introduces a further delay in detecting hot paths which consequently increases the
missed opportunity cost [17], that is, the cost of interpreting hot regions until they are
flagged as hot. Another problems with this approach is caused by indirect branches along
the loop paths which may create a huge increase in the number of detected paths, code

2.1. Hot Code Prediction Approaches 9

duplication and resources trashing [39].

The techniques mentioned so far can be viewed as two-phase approaches. In the first
phase the application is profiled to identify hot regions and when these regions are iden-
tified they are optimized. As we will see in the next section, most virtual machines uses
a similar approach if not the same. During its execution a program can go through many
phases [18,40,41] where the application behavior can change drastically, what makes one
questioning if the initial profiling phase used by these hot code predictors are represen-
tative of the whole program execution. To answer this question Wu et al. [47] used Intel
[A-32 EL [6] to investigate how representative the initial profiling phase are of the entire
program execution. They experiment with several execution count thresholds and also
compare the profiling phase data with predictions made using the benchmarks training
input set. They report results for SPEC CPU 2000 benchmarks. The results indicate that
a profiling phase with thresholds ranging from 500 to 2k give results comparable to those
of a profile-guided optimization using training input sets. However they noticed that no
prediction threshold is good enough for all scenarios and that for several programs, due
to phase changes, a single profiling phase does not capture the average program behavior
accurately.

All the prediction techniques just described acts during the program execution and so
they employ “simple” heuristics to make predictions. If we allow the predictions to be
made offline we can use much more sophisticated techniques. In the next paragraphs we
will comment some of these techniques, they are product of more recent research in hot
code prediction and are a rupture with the ad-hoc approach based in thresholds.

Buse and Weimer [9] propose an approach based on Logistic Regression to identify
frequently executed paths in a program. They claim that the program source code contains
enough information to distinguish those paths that have greater probability to be executed
from those that will be infrequently executed. Their technique transform the problem of
detecting hot paths in a classification problem. Statically all paths are obtained and an
information vector (IV) is generated for each path. This information vector contains static
characteristics of each path including number of branch instructions, variable assignments,
object allocations, throw statements, total number of instructions, and many others. After
all paths are enumerated and the IV are collected the paths are feed to a logistic regression
which return the probability of each path being in the set of highly executed paths. Given
the probability of the path being hot, it is possible to determine if a given path is indeed
hot (e.g. above a threshold) and what is the relative frequency among the paths. They
evaluate their technique for SPEC JVM 98 using the F-score [11] measurement to quantify
the “precision” which the technique identifies hot paths. Their experimental results report
that around 86% of the hot paths are correctly classified. They also use Kendall’s tau [20]
distance metric between ranked lists to measure how well is the relative frequency ordering

2.2. Hot Code Prediction Implementations 10

produced by their technique when compared with the real execution count ordering. The
results indicate the technique has a Kendall Tau Distance of 0.25 which means both
ordering are strongly correlated.

The work of Johnson and Valli [27] is very similar to the just described work of Buse
and Weimer. As the aforementioned work, Johnson and Valli proposed an approach that
uses static properties of the program source code to estimate the execution frequency
of program hot spots. The proposed approach differ significantly in three aspects: 1) it
uses Support Vector Machine as the classifier, 2) The code region considered is meth-
ods/functions and 3) the number and type of the static properties. This new approach
rely solely on ten static features (e.g. number of loops, number of call instructions, num-
ber of call sites for the function, number of basic blocks in the function, etc) while the
previous approach relies on more than 20. One disadvantage of this approach is that the
inference machine used is only a binary classifier (outputs hot or cold) while Buse and
Weimer approach returns probabilities and thus can be used to derive relative execution
frequencies. The work is evaluated using SPEC-INT CPU 2000 and UTDSP [30] bench-
marks. They report the precision (percentage of correct classified functions) for two sets:
the hot functions set and the total set (hot and cold functions) for both benchmark suites.
The results indicate that the method is capable, on average, to predict correctly 59% and
84% of the hot methods from SPEC and UTDSP benchmarks, respectively. For the total
set the numbers are 65% and 70% respectively for SPEC-INT CPU 2000 and UTDSP.

Liu and Zhang [31] modeled the hot path prediction problem as a geometrical problem
and used symbolic execution [28] and constraint solving techniques [33] to estimate path
execution frequency. Their technique, like those of Johnson and Valli and of Buse and
Weimer, initially enumerate all paths in the program - in general paths’ scope are limited
to a class or method. However, different from these previous approaches this new tech-
nique does not use static properties of the paths to predict execution frequency, instead
they model each path with a set of constraints and uses constraint solving techniques
to estimate the path execution frequency. Specifically, they use symbolic execution to
identify a set of constraints that represent the conditions upon which a given path would
execute. Given a path, the set of constraints for that path can be used to model a ge-
ometrical figure in a n-dimensional space. The work proposes using constraint solving
techniques to estimate the volume of this figure, and to use this value as an estimative
for the execution frequency of the given path.

2.2 Hot Code Prediction Implementations

There are many works describing the design, implementation and applicability of virtual
execution environments [2,3,5,6,13,14,16,19,24,46,48]. In common, all these systems have

2.2. Hot Code Prediction Implementations 11

in common the fact that they do employ some sort of selective compilation to amortize
the emulation overhead. In many cases, they combine interpretation and compilation and
others involve a multilevel optimization approach.

The FX!32 [24] is a virtual machine that enables transparent execution of 32-bit x86
Windows NT applications on Alpha hosts running Windows NT. FX!32 first interprets
the guest application code regions at the same time that inserts code to gather profile
information. The next time the code is invoked the system uses the profile information
to generate an equivalent Alpha binary code. The system was tested on a 500MHz Alpha
machine running the BY TEMagazine benchmark suite, matching the performance of the
same benchmark running on a 200MHz x86 machine. Since the translation is performed
offline the system does not suffer from hotness misprediction overhead.

Bala et. al [5] describe the design and implementation of Dynamo, a software dynamic
optimization system that is capable of transparently improving the performance of a
HP PA-800 instruction stream as it executes on the processor. To attain this, Dynamo
interprets the guest application code until a start-of-trace criteria is met at which point
it employs Most Recent Executed Tail (MRET) [17] to form a trace, optimize and persist
it for use in future executions. They evaluate the performance of the system with the
SpecInt95 benchmark suite and show that Dynamo can leverage the execution time of a
binary compiled with the HP production compiler at -O0 to that of a binary compiled
with the same compiler at level -O4.

The IA-32 Execution Layer (IA-32 EL) [6] is a dynamic binary translator that enables
the execution of TA-32 applications on Intel Itanium processor systems. The system
employs a two-phase translation approach. Initially, the application code is translated on
a basic-block basis using a minimal set of optimizations, and instrumentation code is used
to detect hot spots. When the instrumentation counter of a basic block reaches a prefixed
threshold it is marked as a candidate hot spot. After many basic blocks are marked as
candidates the system use edge profiling information to form an instruction superblock
that will be further optimized and cached. They measured the system performance using
the Spec CPU 2000 benchmarks and showed that they can reach 65% of native execution
performance.

StarDBT [46] is a multi-platform research binary translator capable of translating
x86 32/64 bits applications to IA 32 bits binaries at a performance comparable to native
execution. StarDBT uses a simple fast translator for cold code translation and once a
workload hot spot is detected, it forms a trace around the code, applies optimizations and
caches the trace. They evaluate the system using the SPEC CPU 2000 and Sysmark 2004
suites. Results show that the system runs comparatively well when compared to other
state-of-the-art binary translators, however for large interactive Windows applications
the overhead can be considerably high. The authors argue that optimizing infrequently

2.3. Virtual Machines Overhead Analysis 12

executed code regions causes the overhead.

As it is apparent from the above mentioned works, the use of a two-phase approach to
binary translation and the SPEC benchmark to measure system performance is frequently
employed. In this work we advance one step further on DBT overhead characterization
by showing that such strategy can lead to misleading results. The SPEC benchmark,
particularly SPEC CPU 2006, is a CPU intensive benchmark where the execution time
of applications is dominated by just a few frequently executed hot spots. As we show
below the use of such suite to measure DBT performance can produce misleading results
because all code regions predicted as hot will be recurrently executed. However, for
large code footprint applications, such as those used in interactive environments, the
profile generated in the first phase can contain lots of false-positive hot spots - that is,
code regions that were routinely executed in the first phase but will soon become rarely
executed.

If we consider VM for high level languages [2,37], several other strategies for translation
emerge, such as multi level optimization and many compilation threads. However, the
Jikes RVM [2] uses a cost benefit model similar to the one we present in Chapter 3
to determine which level of compilation to apply to a given method. The model we
propose differs from the one in Jikes fundamentally because our model is used to assess
the misprediction overhead of the TBP. This model includes aspects not present in the
Jikes model (e.g. the oracle predictor) and also we do not have any assumption regarding
instructions execution frequency.

2.3 Virtual Machines Overhead Analysis

In this section we review several papers which focus on characterizing and mitigating the
emulation overhead in virtual machines. Despite the large number of works using and
proposing virtual machines, just a few papers [8,12,25,47] are specifically focused on
characterizing the overhead of such systems.

Borin and Wu [8] study the overhead of the Intel research dynamic binary translator
StarDBT when emulating the SPEC CPU 2000 benchmarks [21]. They break the DBT
functionality in five main operations: initialization - time spent loading the DBT, cold
code translation - time spent translating code before its first execution, code profiling
- time spent instrumenting and collecting profile information, hot trace building - hot
trace construction using MRET?, and translated code execution - time spent executing
the application binary. To measure the overhead of each of these aspects they develop
new versions of the DBT tailored specifically to measure the overhead of each component.
After a detailed analysis, using the SPEC CPU 2000 benchmarks, they found that return
instructions handling (due to translation of RET instructions) and code duplication (due

2.3. Virtual Machines Overhead Analysis 13

aggressive trace formation and function inlining) represent more than 64% of the total
StarDBT overhead. Their results also show that cold code translation and hot trace
building together account for 34% of the DBT overhead.

Hu and Smith [25] use a Co-Designed virtual machine to study the overhead of an
adaptive dynamic binary translation system. They use a two-phase DBT that performs
simple basic block translation to initial emulation, and a superblock optimizer for emulat-
ing hot spot code - detected when the execution frequency reaches a prefixed threshold.
Given their DBT characteristic (two-phase translation) they model the emulation cost
in terms of the cost to do the initial translation of basic blocks and the optimization
cost of the eventually detected hot spots. After applying their model to the Winstone
2004 benchmarks [44] they show that, in the environment under consideration, the ini-
tial translation of cold code is the major component of the emulation overhead. They
propose two solutions to speed up cold code emulation, both hardware assisted. First
is a modification of the decoding unit, by turning it to a dual mode decoder. In one of
the modes it decodes the native instruction stream (guest application code, x86 in this
case) and in other mode it decodes the internal co-designed VM representation (the VM
code). The Virtual Machine Monitor (VMM) is responsible for switching between the two
modes. The second approach aims at adding a new instruction to the host architecture.
This new instruction would receive two pointers, one to the guest x86 instruction to be
decoded and the other a pointer to where the decoder output is stored. After applying
the strategy to the co-designed baseline virtual machine they show that the VM system
startup performance is significantly improved.

Following the same direction as Hu and Smith research is the work of Chen et al. [12].
They use a binary translation simulator to characterize the overhead of the SPEC2000
integer benchmark suite and show that interpretation is responsible for over 42% of the
overhead of the two-phase DBT simulated, which is in resonance with the result of Hu
and Smith. To mitigate the problem they propose the utilization of a Decoded Instruction
Cache (DICache). The proposed structure for the DICache is similar to an in hardware
L1 cache, it contains a tag field, a field pointing to the interpretation routine and other
two fields to store operand information. They simulated the use of various DICache
configurations and the hit rate averaged at 98.70% reaching an speedup of 1.94x when
running several SPEC CPU 2000 benchmarks.

Chapter 3

Threshold-based Hot Code
Misprediction Overhead

In this chapter we formalize several aspects related to hot code prediction. Initially, we
define cost functions that estimate interpretation and translation costs associated with
the emulation of an arbitrary instruction in an abstract VM. Subsequently, we introduce
the concept of an oracle hot code predictor and present a formalization of a TBP. Fi-
nally, we show all possible scenarios that may happen when using a TBP and propose
a mathematical model to estimate the hot code misprediction overhead when using such
predictor.

3.1 The Emulation Cost

We can estimate the cost to interpret an instruction I that executes n times using the
following linear equation on n:

C[(n) = a5 + ﬁln (31)

where a; is the cost of any necessary preprocessing (e.g. pre-decoding) required to
execute /. Once preprocessed, the interpreter takes f; cycles to emulate the instruction
every time it is executed. If no pre-decoding techniques are used, a; is equal to zero.

Similarly, we can estimate the cost to emulate an instruction /I with dynamic binary
translation using the following equation.

CT(TL) = ar + Brn (32)

where constant «p represents the non-recurrent cost to translate (compile), optimize
and cache instruction I, and constant (7 is the cost paid each time the translated code

14

3.2. Hot Code Prediction 15

is executed to emulate the instruction I.

As we will see in Chapter 4, the parameters «;, 8, ar and 1 are not constants along
all benchmarks. However through the rest of this text, except otherwise noted, we will
use average values for them.

One of the goals of a VM designer is to apply the most cost effective emulation tech-
nique for each code region. A common approach to achieve this is to use a two-phase
strategy. In the first phase, the system uses a low-overhead startup technique (interpreta-
tion) but as soon as the code is predicted as hot it switches to a low-overhead steady-state
technique, i.e. binary translation. Inequality 3.3 defines the point where translation have
a lower cost than interpretation:

CT(TL) < C[(TL)
arp + fBrn < ar + B
Brn — B < ar — ar (—1)

Bin — Brn > ar — ap (3.3)
n(Br — Pr) > ar —ar
ar — Qg
n>————
Br — Pr
When the total execution frequency of the instruction is greater than ST—L. it is

better to emulate it with dynamic binary translation, rather than using int(f;pfgtation.
Instructions whose final execution frequency does not reach this point should be instead
interpreted. We use Ty as an equivalent for % + 1, that is, the minimum number of
times an instruction should execute to amortize its compilation cost.

Note that inequality 3.3 requires that we know in advance how many times each
instruction will be executed in order to determine the best technique to emulate them.
Therefore, it cannot be used by a VM monitor to choose one particular method prior to
emulation, but only to assess performance losses after emulation. In order to choose which
technique to use for emulation, as pointed out earlier, a mechanism that predicts whether
a given instruction will be frequently executed is used. We discuss such predictors in the
next section.

3.2 Hot Code Prediction

In order to define a baseline and exemplify what would be a perfect predictor we define
an oracle predictor, i.e. a predictor that, before any execution of an instruction I, knows
whether it is better to translate or to always interpret I. The behavior of such predictor
can be formalized as:

3.3. Hot Code Misprediction Overhead 16

translate if I, >Ty

Predo(I) =4 . i
redora(1) {mterp?”et if I,, <Ty

where [, represents the instruction final execution frequency, and Ty, as stated before,
is the execution frequency for which translation is cheaper than interpretation. As the
oracle predictor knows a priori the instruction final execution frequency, the cost of
emulating the instruction using this predictor will be the cost of always interpreting the
instruction or the cost to translate and always execute the translated code. Thus the cost
of emulating an instruction [using this predictor can be formulated as:

Ci(L) if I, < T

We can express the behavior of the TBP formally in terms of the following formula:

Costora(I) = {

interpret if I, <Tp

Predr,, (1) =
redru (1) { translate if 1,, > Tp

where Tp is the prediction threshold and I,, means the current execution frequency of
I. When using the TBP, we do not know anything about the instruction final execution
frequency, thus every time the instruction is executed we must consult the predictor.
When the code is flagged hot, we pay the cost to translate it, but until that happens (if
it indeed happens) we are paying the interpretation cost. Thus the threshold-predictor
cost to emulate an instruction / that have final execution frequency I, is given by:

CI(]n) if In <Tp
CUTp) + Co(l, — Tp) if I, > Tp

In the next section we discuss all possible scenarios that can happen when using the
TBP and how the cost of such predictor compares to the oracle cost.

Costrn(I) = {

3.3 Hot Code Misprediction Overhead

Figure 3.1 shows all six possible cases, based on the range of values the final instruction
frequency n can assume (the horizontal black bar), when using the TBP. We model the
misprediction overhead for each one of these cases below when compared to a perfect
oracle predictor.

Notice that, depending on the values assigned to ar, 87, and ay, By, the value com-
puted for Ty (from equation 3.3) may become greater or smaller than Tp. Cases 1(a-c)
cover the scenarios for which T is greater or equal than T, and cases 2(a-c) cover the
scenarios for which T is smaller than Tp.

3.3. Hot Code Misprediction Overhead 17

R T
0 1p H 0 0 Ty ' 00

M=% P %

lc) ¢ ' + } + '
C)O Tp Ty 00 0 TH Tp 00

Figure 3.1: Prediction scenarios for the TBP. Black bar shows final instruction frequency.

Case 1la: No misprediction happens. The code is not flagged as hot and it is indeed
cold.

Case 1b: Code is mispredicted as hot. Code is marked as frequently executed
(n > Tp), but the frequency of the instruction is smaller than T (thus it is cold).
The overhead is calculated as follows:

Overheady, = (C1(Tp) + Cr(n —Tp)) — Cr(n)

Case 1c: The prediction is correct, but during runtime, until the instruction fre-
quency reaches Tp it will be mistakenly flagged as cold. Therefore, there is a cost
incurred due to the delay for the correct prediction, as follows:

Overhead;. = (C1(Tp) + Cr(n —Tp)) — Cp(n)

Case 2a: No misprediction happens. The code is not flaged as hot and it is indeed
cold.

Case 2b: Code is mispredicted as cold. The misprediction overhead is calculated
as follows:

Overheadsy, = Cr(n) — Cr(n)

Case 2c: The prediction is correct, but during runtime, it was incorrectly predicted
as cold for all values n < Tp before reaching the correct prediction. Therefore, there
is a penalty calculated as follows:

Overheads, = (C1(Tp) + Cr(n —Tp)) — Cp(n)

There are four scenarios in which the TBP may incur a misprediction cost. Notice
that these equations are just another way to formulate the misprediction cost of the TBP

3.4. Model Extensions 18

in relation to an oracle predictor. If we group the costs of all scenarios we can obtain the
same result using Costry, (1) — Costorq(I).

For a given benchmark B, we can sum the cost per instruction when using the TBP
and calculate the total overhead in relation to the oracle-predictor using the following
formula:

> rep Costrne (1)
21 Costora(l)

We have used this model to characterize the overhead of several SPEC2006 [22], Sys-
mark 2012 [15] benchmarks and operating systems boot processes. In the next chapter we

Overheadopg =

(3.4)

describe the methodology we used to estimate the parameters (ay, 8r, ar and fr) based
on this model.

3.4 Model Extensions

Although it is known that some VM employ a multi gear and/or multi threaded compi-
lation strategy, the overhead model just presented consider only one optimization gear
and compilation thread. However note that such multi-geared /threaded virtual machines
are more common for high level languages (e.g: Java [2]) and are an exception for ISA
level virtual machines, which are the focus of this work. Nevertheless the model could
be extended to consider multiple levels of optimization and multiple compilation threads,
however we let this extension as a future work.

Another subtlety in our model is the choice of the granularity of the selected code
region. We chose the instruction level granularity as a mean to abstract away the details
of the region formation technique employed by the VM. But again, the model could be
modified to consider a specific code region.

Chapter 4

Methodology

The input data of our analytical model is the execution frequency n for each instruction
executed in the benchmark together with a set of parameters to specify the emulation
costs.

To determine reasonable values for the model parameters, oy, 5y, ar, and Sr (equa-
tions 3.1 and 3.2), we used the Bochs emulator (version 2.5.1) [43] and the Low Level
Virtual Machine (LLVM) (version 3.0) [29]. The Bochs x86 system emulator was used
to collect the instructions’ execution frequencies of the benchmarks and to estimate the
parameters oy and ;. LLVM was used to perform the compilation of several code frag-
ments from which we estimated the translation cost of an instruction, ar. Finally, the
translated instruction emulation performance, 7, was estimated by running compiled
code generated by LLVM.

Notice that we are not the only group that uses a combination of tools to start up our
VM environment. HQEMU [23] and Harmonia [36] are examples or modern VMs that
use QEMU [7] together with LLVM [29] to build up a VM infrastructure. Therefore, we
expect the values we measure for translation to be very close to those of such systems,
although the overhead model does not apply to them directly - as they employ multi
threaded/geared compilation and do not use interpretation.

4.1 The Model’s Input: Instructions Execution Fre-
quency

We used the Bochs infrastructure to profile the execution frequency for instructions of the
SPEC CPU2006 [22], Sysmark 2012 [15], and the boot process of Windows 7, Windows

XP, and Debian 5 Linux. This information was used as input to our model, enabling us
to study in details the impact of the misprediction overhead on each of those benchmarks.

19

4.2. Model’s Parameters: Interpretation Cost 20

We built a Bochs instrumentation code to collect the instruction execution frequency,
where each instruction is identified using a combination of its linear address plus the first
byte of its instruction opcode. This approach was used because only a given linear address
is not enough to identify an instruction instance, as the guest operating system uses the
same range of addresses for several processes. Notice that Bochs is a system VM capable
of running a full guest operating system.

The Sysmark 2012 suite is composed of a set of scenarios, each one intended to sim-
ulate a typical PC-user session, ranging from photo edition to web design and system
management. In each scenario many applications may execute concurrently.

Notice that Sysmark frequently restarts the computer in order to assure the system is
in a known and stable state. Therefore, if we collect the instruction execution frequency
during the execution of the entire scenario we also collect unwanted profile information
from the operating system boot and idle periods within the execution of the scenarios.
To address this problem, we collect profile information for each interval of 100 million
executed instructions and attach to each profile a screenshot from the Bochs virtual
screen. After the session is finished, we visually inspect the screenshots and group all
intervals that actually belong to a Sysmark scenario.

Reproducibility: It is tricky to repeat the execution profile of an entire system. For
the experiments that employed Bochs, we configured it to execute in a deterministic way.
This was accomplished by using a volatile hard disk, in which all changes to the disk are
discharged as soon as Bochs quits executing, and by carefully configuring the clock system,
to prevent synchronization with the host system and to enforce the guest system to always
boot with the same time and date. The emulated virtual machines were configured with
2GB of RAM and a virtual hard disk of 15GB. Sysmark benchmarks used Windows 7 and
SPEC CPU2006 used Debian Linux.

4.2 Model’s Parameters: Interpretation Cost

Estimating interpretation start-up cost a; and steady-state cost ;: Bochs is
known for its high portability and mature code base, an ideal candidate for characteriza-
tion of a virtual machine that uses interpretation as its emulation technique.

To measure the cost of instruction pre-decoding and interpretation, «; and [;, we
changed Bochs to report the number of instructions pre-decoded, the number of instruc-
tions interpreted and the total amount of cycles spent in the pre-decoder and interpreter
routines. The number of host machine cycles spent in emulation was obtained with the
help of Intel Core2 hardware performance counters via the RDTSC instruction [26]. The
ratio of the number of z86 cycles spent in pre-decoder routines over the number of pre-

4.3. Model’s Parameters: Translation Cost 21

decoded instructions gives a;. The ratio of the number of 286 cycles spent in the interpreter
routines over the number of interpreted instructions gives ;. Each benchmark yields a
different a; and f;, providing a range of reasonable a; and (; values for our model.

4.3 Model’s Parameters: Translation Cost

LLVM was chosen to estimate the translation cost parameters because it can be seem as
a powerful VM that translates LLVM bit-codes into host binaries. LLVM bitcodes are
a low-level program representation that is close to machine instructions and has its own
ISA, the LLVM virtual ISA [29]. Therefore, it is a good candidate to estimate dynamic
translation and optimization costs between different ISAs.

All SPEC CPU2006 benchmarks, with exception of benchmarks written in Fortran,
were compiled to LLVM bitcode. Fortran is still not supported by the LLVM frontend.
Two programs had its execution time measured. The first one was LLVM opt, responsible
for reading an input LLVM bitcode, transforming the code using target independent
optimizations and outputting optimized bitcode. The latter was the LLVM llc, the LLVM
compiler backend that converts LLVM bitcode to x86 assembly language. This is usually
the process a VM needs to perform to translate code using the source ISA to the target
ISA. In this scenario, the source ISA is the LLVM bitcode and the target ISA is x86.

We do not perform these experiments for Sysmark 2012 and Boot processes since we
do not have the source code for the benchmarks or because LLVM does not have support
to compile the source.

Estimating translation start-up cost a;: We collected data for simulating two sce-
narios. First we measure the number of cycles needed to perform a crude compilation
without applying any kind of optimization, as in a basic binary translation process be-
tween two different ISAs. Second, we show data representing another scenario of a virtual
machine capable of applying several expensive optimizations, as an estimate of the over-
head incurred in time-consuming JIT engines.

We use an auxiliary program also available in the LLVM suite, the LLVM extract, to
separate a single function from the rest of a LLVM bitcode file. After generating a LLVM
bitcode file for each one of the 71261 functions of all the selected SPEC CPU2006 bench-
marks, we run all llc passes that are activated by using the “-O0” flag in opt command
line, to collect data for the first scenario. To collect data for the second scenario we run
all opt passes that are activated by the “-02” flag.

Nevertheless, when measuring the cost of compiling each function, care must be taken
to eliminate the time spent loading the LLVM tools into memory, initializing, and finaliz-
ing them, as this overhead is usually absent from a virtual machine system already loaded

4.3. Model’s Parameters: Translation Cost 22

into memory. We did not count this overhead because we timed each pass separately in-
stead of measuring the whole run time of the compilation process. Also, the llc assembly
printer pass was not counted because this pass is used to write the x86 code in memory
to an assembly text form, a useless task in JIT. The bitcode writer pass on the LLVM
opt program was also not counted for the same reason.

The ratio az is then estimated by the number of 286 cycles required to compile a
function over the number of LLVM instructions in this function. Each function has a
different ap, providing a range of reasonable ag values for our model.

Estimating translation steady-state cost fr: To estimate Sr (the number of host
cycles spent per guest instruction to emulate the source program after binary translation),
we measured the number of LLVM instructions executed by the selected SPEC programs
using the SPEC reference input and also the number of 286 cycles needed to run SPEC
x86 native programs using the same inputs. The [r parameter is then estimated by the
ratio of 286 cycles over the number of LLVM instructions. FEach benchmark yields a
different [, providing a range of reasonable fr values for our model.

Variability of fr: [r can change depending on the optimizations used to generate the
LLVM bitcode guest executable and the x86 native executable.

The more optimized is the guest program, the higher is fr (lower performance gain
with translation). This simulates the scenario in which a VM translates guest binaries that
are already optimized. In this case, there is little performance gain by applying dynamic
binary optimization, since most optimization opportunities were already explored. This
rises Or in comparison with a VM translating an unoptimized guest code with plenty of
optimization opportunities.

The higher is the level of optimization used to generate the x86 native version, the
lower is fr (better performance gain with translation). This simulates the scenario in
which a powerful dynamic binary translation and optimization engine is used to translate
guest into native code.

We measured 7 using an optimized LLVM bitcode (“-02”) as guest binary because,
in general, programs are already optimized to a certain degree, illustrating a common sit-
uation for VMs. To generate the native binary, we used no optimizations. This simulates
the scenario of VMs that are unable to apply optimizations when performing just-in-time
compilation.

Chapter 5

Results

In this chapter we present several results we gathered from applying the aforementioned
overhead model to three sets of benchmarks: SPEC CPU 2006, Sysmark 2012 and
Linux/Windows boot processes. Initially, in section 5.1, we characterize the dynamic be-
havior of the three sets of benchmarks. Next, in section 5.2, we show the results achieved
when using Bochs and LLVM to estimate the model’s parameters - these values are used
in the remaining experiments. In section 5.3 we show how each model’s parameters in-
dividually affect the misprediction overhead. Following in the same line as section 5.3,
section 5.4 shows how interaction between model’s parameters affect the emulation and
misprediction overhead. We also show in section 5.4 how the VM performance is affected
by hotness misprediction during its maturing cycle - these results helps the VM designer
to understand which characteristic of the VM (translation speed, translated code quality)
influence most the misprediction overhead. Finally, in section 5.5 we fix a reasonable VM
configuration and quantify what would be the misprediction overhead of such virtual ma-
chine. Moreover, we also show how different values of the prediction threshold affect the
VM performance and what is the major component of the VM overhead. These results
illustrate how using SPEC CPU2006 benchmarks to measure VM performance can lead
to misleading results and also how the VM optimizations effectiveness are limited by the
miscompilations overhead, for large code footprint applications.

During the experiments three Sysmark 2012 scenarios did not complete their execution
and we preferred to omit their partial results. Also, for all experiments in this chapter
we used a zero pre-decoding cost given that in our results, it showed negligible impact on
the misprediction overhead.

Although we used Bochs and LLVM to measure interpretation and translation costs,
in fact we use these values only to determine a range of values to be considered in our
experiments, see Table 5.5, and not to model a virtual machine built on basis of Bochs
and LLVM. Therefore the results we show in this chapter were not specifically designed

23

5.1. Benchmark Characterization 24

to model a specific VM, but rather to provide insights on how the misprediction overhead
can affect the performance of an arbitrary VM. The range of values we use to gather these
results totalize over 125000 configurations, so we do expect that these configurations cover
a large extent of all DBT design space. Please note, that even if the DBT costs (ar and
pr) are out of this range, it is reasonable to expect that the trends shown in the graphs
will not change.

5.1 Benchmark Characterization

5.1.1 Footprint Characterization

Table 5.1 shows the static and dynamic foot print of the three sets of benchmarks we
studied. The second column of the table shows the number of static instructions touched
(in terms of the number of entries in the profiling hash) ! during the execution of the
benchmark; The third column shows the number of executed instructions; The fourth
column shows the average instruction reuse, that is the average number of times a static
instruction is executed (Dynamic / Static).

In general, the three sets of benchmarks have well distinctive results. SPEC bench-
marks have, on average, the smaller static code footprint however they show the largest
dynamic footprint, specifically for floating point benchmarks (those below - including -
GemsFDTD). As a consequence, SPEC is the suite with the greatest reuse rate, two and
three orders of magnitude greater than Sysmark and Boot, respectively. These numbers
show that SPEC benchmarks have a few kernels that are intensively executed.

Sysmark static code footprint is on average the largest among the three suites. However
its dynamic footprint is around the half of the SPEC. This means that Sysmark has a
“sparse” set of benchmarks, that is it exercises a large portion of code, but they execute
only a few times, as it can be seen from its reuse rate.

The Boot processes have a relatively short static footprint when compared with Sys-
mark benchmarks. However, they have a footprint almost twice the average size of SPEC’s
footprint. The average Boot dynamic footprint is the smallest between all suites, this was
expected since they execute for just a few moments. These results represent the very
nature of boot processes, which start many services that just do setup configurations and
yield.

'Remember that the hash key are composed by instruction virtual address plus its opcode.

5.1. Benchmark Characterization

Benchmark Static Dynamic Reuse
Boot-Debianb 5,647,259 8,430,140,502 1,492
Boot-Win7 2,877,855 8,761,034,864 3,044
Boot-WinXP 2,053,038 3,482,653,943 1,696
Average: 3,526,051 6,891,276,436 2,077
Sysmark-Dfa 11,859,140 928,600,000,000 78,302
Sysmark-Office | 40,061,419 | 2,076,000,000,000 51,820
Sysmark-SM 6,435,727 659,800,000,000 102,521
Average: 19,452,095 | 1,221,466,666,667 77,548
Perlbench 565,866 | 1,174,498,915,877 | 2,075,577
Bzip2 329,669 622,138,498,199 | 1,887,161
Gee 446,808 139,680,385,253 312,618
Mecf 87,515 397,198,364,446 814,740
Gobmk 422,433 632,742,235,219 | 1,497,852
Hmmer 260,448 | 1,070,579,320,160 | 4,110,530
Sjeng 2,938,619 | 2,522,292,164,736 858,325
Libquantum 3,251,529 | 3,019,153,761,811 928,533
H264ref 589,358 582,575,758,631 988,492
Omnetpp 863,018 777,865,080,056 901,331
Astar 229,132 830,206,756,540 | 3,623,268
Xalancbmk 642,284 | 1,227,732,404,699 | 1,911,510
GemsFDTD 2,906,935 | 2,365,916,358,814 813,886
Bwaves 3,181,906 | 2,812,226,149,567 883,818
CactusADM 4,087,989 | 3,010,658,688,745 736,464
Calculix 3,078,574 | 8,407,849,901,883 | 2,731,085
Dealll 878,394 | 2,324,156,407,892 | 2,645,915
Gamess 3,785,573 | 3,759,850,605,357 993,205
Gromacs 3,726,997 | 2,287,675,495,659 613,812
Lbm 4,023,221 | 3,521,533,338,229 875,301
Leslie3d 2,513,050 | 1,464,027,332,954 582,569
Mile 1,639,467 | 1,431,939,793,309 873,417
Namd 401,790 | 2,889,914,269,920 | 7,192,598
Povray 1,218,271 | 1,251,910,800,210 | 1,027,612
Soplex 1,720,213 552,549,201,778 321,209
Sphinx3 977,453 | 2,891,495,518,759 | 2,958,193
Tonto 3,280,610 | 2,974,540,011,001 906,703
Zeusmp 3,760,594 | 2,530,006,867,800 672,767
Average: 1,850,276 | 2,052,604,085,268 | 1,597,803

25

Table 5.1: Benchmark Characterization - static and dynamic footprint size and code reuse

5.1. Benchmark Characterization 26

5.1.2 Prediction Accuracy

Table 5.2 shows the prediction accuracy when using the threshold based hot code predictor
to emulate the three suites of benchmarks. For this experiment we have fixed §; =
70, ar = 150k and pBr = 1.5 which produces an Ty = 2190 according to Equation 3.3.
The second column in Table 5.2 shows the number of correct predictions (i.e. when the
instruction final execution frequency is greater than Ty.) for both cases we consider,
Tp = 100 and Tp = 1000. The third and fourth column shows the total number of
predictions and the number (and percentage) of incorrect predictions made when Tp =
100, respectively. The fifth and sixth columns, have the same meaning of the third and
fourth columns but for Tpr = 1000.

The first interesting thing to notice is that the number of correct predictions does not
change when we increase the prediction threshold from 100 to 1000. Since the predictions
are correct only when the instruction final execution frequency crosses Ty, increasing Tp
does not affect the number of correct predictions. So this number will be the same for
whenever Tp < Tg.

Increasing the prediction threshold (7), however, does in fact greatly decrease the
number of predictions and the number of incorrect predictions made. With a prediction
threshold greater, fewer instructions reaches the threshold so fewer predictions are made.
Those instructions that do not reach the new threshold are instructions that were previ-
ously being mispredicted, so the number of mispredictions decrease with an increase in
the prediction threshold. One may argue that we could increase the threshold so as to
eliminate the misprediction overhead, however increasing the threshold exacerbate other
sources of overhead. This point will be further explained in Section 5.3.

Another observation about these results is that the prediction accuracy for a given
threshold seems to be independent of particular characteristics of the benchmarks. For
example, considering Tp = 100 the greatest difference between the average percentage of
incorrect predictions is 8% (Boot and Sysmark). However considering only the percentage
of correct/incorrect predictions as an estimate for misprediction overhead is misleading
since the benchmarks have very different footprints.

5.1.3 Execution Coverage

Table 5.3 shows the size of the 85%, 90% and 95% coverage set for the three benchmarks
suites we studied. More specifically, the second column of Table 5.3 shows the size of the
static footprint of each benchmark, i.e. the number of different static instructions that
executed at least once; the third column shows the number of static instructions (and
its percentage) that is needed to cover 85% of the dynamically executed instructions; the
fourth and fifth columns have the same meaning as the third, except that they show values

5.1. Benchmark Characterization

Tp = 100 Tp = 1000
Benchmark CPreds TPreds IPreds | TPreds IPreds
Boot-Debianb 167,468 683,339 515,871 (75%) 242,939 75,471 (31%)
Boot-Win7 181,166 621,491 440,325 (71%) 257,849 76,683 (30%)
Boot-WinXP 94,448 409,681 315,233 (77%) 146,004 51,556 (35%)
Average: 74% 32%
Sysmark-DFA 893,064 2,810,450 | 1,917,386 (68%) | 1,204,290 311,226 (26%)
Sysmark-Office | 3,982,460 | 11,312,255 | 7,329,795 (65%) | 5,299,491 | 1,317,031 (25%)
Sysmark-SM 701,084 | 2,213,504 | 1,422,510 (64%) | 1,068,006 | 276,922 (26%)
Average: 66% 26%
Perlbench 69,442 | 134,384 | 64,942 (48%) 78,434 8,992 (11%)
Brip2 19,607 50,455 | 30,848 (67%) | 24,314 4,707 (19%)
Gec 123,750 | 208,011 | 85,161 (41%) | 143,284 | 19,534 (14%)
Mcf 18,621 74,101 | 55,480 (75%) | 25,300 6,679 (26%)
Gobmk 62,709 131,311 68,602 (52%) 73,048 10,339 (14%)
Hmmer 20,123 52,242 32,119 (61%) 27,940 7,817 (28%)
Sjeng 75,500 | 356,978 | 281,388 (79%) | 110,602 | 35,012 (32%)
Libquantum 70,100 384,090 313,990 (82%) 111,931 41,831 (37%)
H264ref 30,407 | 112,126 | 72,620 (65%) | 51,885 | 12,388 (24%)
Omnetpp 43,155 | 132,050 | 89,795 (68%) | 57,469 | 14,314 (25%)
Astar 14,194 13,020 | 28,835 (67%) 18,416 1,222 (23%)
Xalancbmk 68,211 134,523 66,312 (49%) 77,942 9,731 (12%)
GemsFDTD 82,833 375,398 292,565 (78%) 130,069 47,236 (36%)
Bwaves 71,233 380,712 309,479 (81%) 109,872 38,639 (35%)
CactusADM 99,608 499,112 399,504 (80%) 156,277 56,669 (36%)
Calculix 127,485 433,755 306,270 (71%) 169,292 41,807 (25%)
Dealll 70,408 170,849 100,441 (59%) 86,721 16,313 (19%)
Gamess 134,824 493,494 358,670 (73%) 182,693 47,869 (26%)
Gromacs 101,579 458,498 356,919 (78%) 146,627 45,048 (31%)
Lbm 99,879 493,582 393,703 (80%) 155,865 55,986 (36%)
Leslie3d 66,288 308,826 242,538 (79%) 97,444 31,156 (32%)
Milc 55,014 | 217,155 | 161,241 (74%) 77,018 | 21,104 (27%)
Namd 33.126 81,067 | 48,841 (60%) 39.271 6,145 (16%)
Povray 54,866 | 174,242 | 119,376 (69%) | 74,130 | 19,264 (26%)
Soplex 67,526 234,885 167,359 (71%) 88,785 21,259 (24%)
Sphinx3 53050 | 147,622 | 93,672 (63%) | 65,797 | 11,847 (18%)
Tonto 164,143 | 493,792 | 329,649 (67%) | 215,116 | 50,973 (24%)
Zeusmp 116,052 489,899 373,847 (76%) 166,381 50,329 (30%)
Average: 63% 25%

27

Table 5.2: Benchmark Characterization - prediction accuracy of the threshold based pre-
dictor with T = 100 and Tp = 1000

5.1. Benchmark Characterization 28

Benchmark Static Cov-85% Cov-90% Cov-95%
Boot-Debiand | 5,647,250 | 35,300 (0.63%) | 63,242 (1.12%) | 128,181 (2.27%)
Boot-Win7 2,877,855 | 42,603 (LAS%) | 65,150 (2.26%) | 127,953 (4.45%)
Boot-WinXP 2,053,038 29,932 (1.46%) 49,032 (2.39%) | 102,568 (5.00%)
Average: 1.19% 1.92% 3.92%
Sysmark-DFA | 11,859,140 | 3,010 (0.03%) | 10,083 (0.09%) | 37,433 (0.32%)
Sysmark-Office | 40,061,419 | 115,604 (0.29%) | 203,876 (0.51%) | 447,792 (1.12%)
Sysmark-SM 6,435,727 | 6,261 (0.10%) | 12,851 (0.20%) | 37,452 (0.58%)
Average: 0.14% 0.26% 0.67%
Perlbench 565,866 1,533 (0.27%) 2,710 (0.48%) 5,439 (0.96%)
Bip2 329,669 520 (0.16%) 670 (0.20%) | 1,061 (0.32%)
Gec 116,308 | 5,067 (1.34%) | 10,201 (2.30%) | 20,352 (4.55%)
Mecf 87,515 206 (0.24%) 299 (0.34%) 451 (0.52%)
Gobmk 422,433 4, 513 (1.07%)) 914 (1.40%) 8 410 (1.99%)
Hmmer 260,443 68 (0.03%) 72 (0.03%) 76 (0.03%)
Sjeng 2,038,610 | 1 902 (0.06%) | 2 442 0.08%) | 3 486 (0.12%)
Libquantum 3,251,529 32 (0.00%) 42 (0.00%) 90 (0.00%)
H264ref 589,358 1,460 (0.25%) 2,198 (0.37%) 4,450 (0.76%)
Ommetpp 863,018 | 1,773 (021%) | 2,184 (0.25%) | 2,963 (0.34%)
Astar 929,132 219 (0.10%) 263 (0.11%) 323 (0.14%)
Xalancbmk 642,284 | 1,510 (0.24%) | 2,368 (0.37%) | 3,677 (0.57%)
GemsFDTD 2,906,935 2,220 (0.08%) 3,117 (0.11%) 4,373 (0.15%)
Bwaves 3,181,906 289 (0.01%) 501 (0.02%) 1,195 (0.04%)
CactusADM 4,087,989 1,555 (0.04%) 1,647 (0.04%) 1,738 (0.04%)
Calculix 3,078,574 155 (0.01%) 270 (0.01%) 899 (0.03%)
Dealll 878,304 612 (0.07%) | 1,256 (0.14%) | 2,527 (0.20%)
Gamess 3,785,573 | 1,450 (0.04%) | 2,261 (0.06%) | 4,904 (0.13%)
Gromacs 3,726,997 1,000 (0.03%) 1,666 (0.04%) 3,095 (0.08%)
Lbm 4,023,221 | 1,023 (0.05%) | 2,089 (0.05%) | 2,256 (0.06%)
Leslie3d 2,513,050 351 (0.01%) 372 (0.01%) 393 (0.02%)
Milc 1,639,467 649 (0.04%) 852 (0.05%) 1,287 (0.08%)
Namd 101,790 | 2,453 (0.61%) | 2,730 (0.68%) | 3,006 (0.75%)
Povray 1,218,271 | 1,600 (0.14%) | 2,510 (0.21%) | 4,564 (0.37%)
Soplex 1,720,213 | 1,039 (0.06%) | 1,341 (0.08%) | 2,194 (0.13%)
Sphinx3 077,453 175 (0.02%) 280 (0.03%) 565 (0.06%)
Tonto 3,280,610 6,889 (0.21%) 10,037 (0.31%) 15,662 (0.48%)
Zeusmp 3,760,594 7,520 (0.20%) 8,905 (0.24%) 10,480 (0.28%)
Average: 0.20% 0.29% 0.47%

Table 5.3: Benchmark Characterization - size of the static instruction set covering 85%,
90% and 95% of the dynamic instruction stream.

5.2. Estimation of the Model Parameters 3, ar and PBr 29

for 90% and 95%, respectively.

The first thing we noticed is that a small percentage of static instructions covers 95%
of executed instructions. As we noticed in other experiments (not shown here), this is
mainly due to numerous instructions that seldom execute, and to other instructions that
are highly executed.

As it can be seen from the averages, the boot processes are those that require a
large footprint to cover the execution stream. This is due to the way the boot works,
that is, spanning multiple services and thus causes many hash table entries to be filled.
SPEC benchmarks are those that require fewer static instructions to cover the dynamic
stream. Also interesting to notice that as we step from 85% to 90% and 95%, the SPEC
benchmarks are those where the static footprint increases the less - which shows that
SPEC has many instructions that are highly executed.

In terms of percentage, Sysmark benchmarks need a comparatively short static foot-
print to cover the dynamic stream, however it has the largest static footprint among the
benchmark suites considered. For example, Office requires 1.12% of its static instructions
to cover 95% of its execution, however quantitatively this is greater than the whole static
footprint of a few SPEC benchmarks.

5.2 Estimation of the Model Parameters 3;, ar and

Br

Steady-state interpretation cost 3;: Column [; of Table 5.4 shows the average cost,
in cycles, for interpreting instructions of the SPEC CPU 2006 benchmarks. For example,
when running the benchmark 400.perlbench, Bochs took, on average, 48 host cycles to
interpret each guest instruction. The average number of cycles to interpret instructions
of floating point benchmarks is higher due to the elevated cost of emulating floating point
instructions via software. In order to accommodate for these discrepancies, our overhead
model assumes that the interpretation cost ; varies from 30 to 220 host cycles.

Start-up translation cost ap: Column ar of Table 5.4 shows the average cost, in
cycles, to translate each LLVM bitcode instruction from C and C+4 SPEC CPU2006
benchmark programs to x86 code. For example, LLVM took, on average, 91952 host
cycles to translate (compile) each guest LLVM instruction of the 400.perlbench program
to x86 instructions.

However, the parameter ap suffers a variability that is more complex than the other
parameters in the model. The execution times (ar) of the algorithms used for code
optimization and generation run a number of steps that is far from trivial. The algorithms’

5.2. Estimation of the Model Parameters 3, ar and PBr 30

Integer Benchmarks Floating Point Benchmarks
Benchmark Br ar Br || Benchmark Br ar Br
400.perlbench 48 | 91952 | 1.02 || 470.lbm 85 | 41315 | 2.11
401.bzip2 40 | 94429 | 1.40 || 482.sphinx3 117 | 60468 | 1.31
403.gcc 48 72546 | 1.58 || 433.milc 141 | 102610 | 3.50
429 . mcf 42 | 26652 | 3.18 || 444.namd 144 | 96285 | 1.51
445.gobmk 48 | 66671 | 1.83 || 447.dealll 64 | 177565 -
456.hmmer 95 | 53780 | 1.47 || 450.soplex 65 | 148678 | 2.80
458.sjeng 40 | 89039 | 1.56 || 453.povray 92 73341 | 2.25
462.libquantum | 31 | 115724 | 1.64 || 434.zeusmp 122 - -
464.h264ref 40 56832 | 1.29 || 435.gromacs 173 - -
471.omnetpp 59 | 175220 | 5.28 || 436.cactusADM | 209 - -
473.astar 44 | 110029 | 2.48 || 437.leslie3d 213 - -
483.xalancbmk | 38 | 173994 | 4.38 || 454.calculix 128 - -
- - - - || 459.GemsFDTD | 133 - -
- - - - || 465.tonto 94 - -
- - - - || 481.wrf 108 - -
- - - - || 410.bwaves 103 - -
- - - - || 416.gamess 106 - -

Table 5.4: Measured cost for (f;) interpretation, (ar) compilation and (fr) native exe-
cution. Dashes mark Fortran benchmarks for which we do not have ar and [r values,
with exception of dealll for which profiling failed to produce correct output and thus to
extract Or. All costs are in cycles per instruction.

complexity in time does not always depend solely on the number of instructions, but also
on the program control flow information and data dependences among instructions. For
worklist-based algorithms, the worst case time and average case time may differ greatly,
making it hard to have an analytical model to compute its run time. For this reason, we
model the translation cost (a7) by a wide range of values.

Our goal in measuring ay is to determine the minimum number of cycles per instruc-
tion, using an LLVM-based VM, to translate the program fragment. We show that, even
in this situation, there is still a considerable misprediction overhead. Nevertheless, we
also provide information on a virtual machine geared at optimizing code.

For each one of the 71261 C and C++ SPEC CPU2006 functions compiled, we calcu-
lated ap using the ratio of the number of cycles necessary to compile the whole function
over the number of LLVM instructions in the function, in order to estimate good lower
and upper bounds for the ar. Figure 5.1 presents a histogram where each bin shows
the percentage of functions in a given range for ap, considering a first scenario where
no optimizations are enabled. That is, the abscissa represents different costs to trans-
late a function while the Ordinate represent the percentage of functions which had the
translation cost between two adjacent (to the left) ticks of the x-axis.

The histogram confirms that «p varies significantly, depending on several parame-

5.2. Estimation of the Model Parameters 3, ar and PBr 31

8%
7%
6%
5%
4%
3%
2%
1%
0%

10000
20000
30000
40000
50000
60000
70000
80000
90000
210000
220000
230000
240000
250000
260000
270000
280000
290000
300000
310000
320000
330000
340000
370000
380000
390000
400000

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

350000
360000
410000
420000
430000

Figure 5.1: Histogram showing the percentage of total SPEC CPU2006 functions sharing
a given range of the cost ar, in cycles. The Abscissa represent the cost to translate the
function.

ters of the compiled function. For instance, the LLVM instruction selection pass, which
dominates the compilation time in this scenario for several functions, was very fast in a
perlbench function composed entirely of 35 stores. This function had one of the lowest arr.
On the other hand, functions with a single instruction often have the highest ar because
it pays a high price to prepare data structures for compiling a single LLVM instruction.

In this first scenario (compiling with no optimizations), 90% of all functions have ar
greater or equal to 36,000 cycles. The average ar was 154,000 cycles. Therefore, if code
regions are assumed to include entire functions, we expect that a VM that translates
a guest ISA to a different host ISA will pay at least 36,000 host cycles per translated
instruction to translate the majority of the hot regions. The third column of Table 5.4
shows the averages for this first scenario, for each benchmark.

The second scenario enables all “-O2” optimizations. In this case, LLVM takes at least
145,000 cycles for 90% of all functions. The average ar was 1,073,000 cycles. In the next
section, we present a study using ar in the range of 30,000 cycles up to 850,000 cycles
because we focus in the fastest cases with respect to both scenarios. For greater values,
the misprediction overhead is even bigger.

Steady-state translation cost $r: Column Sr of Table 5.4 shows the average cost, in
cycles, for emulating each LLVM bitcode instruction using C and C++ SPEC CPU2006
benchmark programs after translating them to native code. For example, the host machine
took, on average, 1.02 cycles to emulate each guest LLVM instruction in the 400.perlbench
program. In contrast, the cost of emulating the same benchmark with interpretation in
Bochs was 48 host cycles, on average, showing the benefits of paying a high start-up cost
for translation.

As explained in Chapter 4, there are two scenarios for measuring (7, but Table 5.4
shows only the first and more important one, namely the one for a VM which does not
apply optimizations. In this case, the generated code quality is poorer and the average

5.3. The Effect of the Model’s Parameters in the Emulation Overhead 32

Parameter Start End
Prediction Threshold (7p) 25 3000
Interpretation (f;) 30 220
Compilation (ar) 30,000 | 850,000
Execution (0r) 0.5 3.0

Table 5.5: Range of interpretation, compilation and execution cost experimented. All
costs are in cycles per instruction.

Or measured among selected SPEC CPU2006 benchmarks is 2.25 host cycles per target
instruction. The second scenario illustrates a VM that generates good quality native code
by optimizing it, and the average Sy measured in this situation is 1.11 host cycles per
target instruction. The code is, on average, slightly more than twice faster.

Based on the aforementioned results, we selected three ranges of for the £;, ar and
Br parameters, which are summarized on Table 5.5.

5.3 The Effect of the Model’s Parameters in the Em-
ulation Overhead

Figure 5.2 shows how the misprediction overhead vary in the three sets of benchmarks
for each model’s parameter. In each row of figures the varying parameter is shown on the
x-axis. Except for the respective parameter on the x-axis, the other model’s parameters
are set this way: Tp = 1000, g; = 70, ar = 150000 and (7 = 1.5.

As it can be noticed from Figure 5.2 the parameter that most affects the misprediction
overhead is the prediction threshold (7p) followed by az, 5 and Sr. We do not show
results for a; since it showed little impact on the overhead. Although these last three
parameters does not affect the prediction behavior, they are used for calculating the
hotness threshold (Ty) that is used by the oracle predictor to predict what is and what
is not a hot region.

Analyzing the graphics of the effect of the threshold predictor on the misprediction
overhead, one can clearly see that by increasing the threshold we can drastically reduce
the misprediction overhead in some cases (e.g. Sysmark and Boots). When we increase
the prediction threshold it becomes closer to the hotness threshold (Tp) and thus it is
more likely that it will cross Ty, also the number of predictions greatly decrease and thus
the number of mispredictions. However increasing Tp also increases the amount of time
we need to wait until flag a region as hot and thus the system expends more time executing
unoptimized code. We see that, at some point, if we further increase the threshold the
misprediction threshold start to increase. This is a consequence of the emulation process

5.3. The Effect of the Model’s Parameters in the Emulation Overhead 33

Misprediction Overhead Misprediction Overhead Misprediction Overhead

Misprediction Overhead

—@— Debian 5 —@— Win 7 —F— Win XP
300%
250%
200%
150% 0\
100% %
50%
SN SISS
TESTIPESESHS

Prediction Threshold (Tp)

(a) Boot Processes

‘_._ Debian 5 —@— Win 7 —— Win XP ‘

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Interpretation Cost (3r)

(d) Boot Processes

|+ Debian 5 —@— Win 7 —G— Win XP ‘

120%
110%
100%
90%
80%
0%
60%
50%
40%
35%
20%
10%
0%

Translation Cost (ar)

(g) Boot Processes

|+ Debian 5 —@— Win 7 —G— Win XP ‘

50%
40% 8\\&\5\8\5\
35%
20%
10%
0% —3 3 B S) S
< ~ ~ LY ~ o3

Steady State Execution Cost (1)

(j) Boot Processes

Misprediction Overhead

Misprediction Overhead

ion Overhead

g
g
E
£
o]
E

6%

5% R\
4% X
3%

2%

prottoottitesd

Gobmk
Soplex
Perlbench
H264Ret
Gamess
Baip2
Omnetpp
Mot
Sjeng
Povray
Astar
Mile
Namd

Hunmer

1%

0%

Prediction Threshold (Tp)

(b) SPEC CPU2006

5%

4%

2%

1%

AR ARREARY

Soplex
Perlbench
H264Ref

Baip2
Omnetpp
Met

Hunmer

0%

DI SRS SS VDT,
SNNNNNSS

Interpretation Cost (37)

(e) SPEC CPU2006

Prétteottttett

gobmk
Soplex
Perlbench
H264Ret
Gamess
Brip2
Omnetpp
Mef

Namd

Translation Cost (ar)

(h) SPEC CPU2006

5%

4%

3%

Prottootttteset

1%

gobmk
Soplex
Perlbench
H264Rof
Gamess
Baip2
Omnetpp
Mot
Sjong
Povray

Hunmer

0%

Steady State Execution Cost (31)

(k) SPEC CPU2006

Misprediction Overhead

ediction Overhead

Mi

Misprediction Overhead

Misprediction Overhead

40%

=

35%
30%

25%
ot ™\

15% \ e
10% \\‘*‘//'/:
5%

0%

=

N NN NN
NEIRSSSSSL NISES
$ &

N VS >§@§~3§

Prediction Threshold (Tp)

(c) Sysmark 2012

—4+— DFA —m— SV —e— Of

35%
30%
25% o*

20%

e / -

10% M
5%

Interpretation Cost (37)

(f) Sysmark 2012

40%
35%
30%
25%
20%
15%
10%

Translation Cost (ar)

(i) Sysmark 2012

40%

35%
30%
25%
20%

Ny
5% \\‘\%

0%

0.5
1,
15
2

Steady State Execution Cost (1)

(1) Sysmark 2012

Figure 5.2: Misprediction Overhead for Sysmark 2012, SPEC CPU2006 and Windows 7
Boot in Function of Each Model Parameter

5.4. Misprediction Overhead 34

being dominated by interpretation rather than translation. We will show further results
on this last point in Section 5.5.

From Figures 5.2¢-5.2i and Figures 5.2d-5.2f we can see the effect of ar and [5; on the
misprediction overhead, respectively. In all benchmarks increasing any of these parameters
also increase the emulation cost. For the misprediction overhead, we see that in general
the overhead increases as the parameter values increase, however there is a region that the
overhead in fact decreases! To understand why this happens notice that both parameters
do not affect how the threshold-based predictor predicts code, they only affect (linearly)
the amount of cycles required for emulation. However these parameters do affect the
behavior of the oracle predictor since they are used to calculate Ty and thus to decide
which region is in fact hot! The effect of these parameters in the oracle emulation cost is far
from linear since it is dependent on the amount of instructions which have the execution
frequency in a given range (0 — Ty). In other words, the slope is due to increase/decrease
of the number of instructions predicted as hot/cold when the hotness threshold changes.

The effect of the parameter 87 on the misprediction overhead is show in Figures 5.2j-
5.21. As shown, the misprediction overhead decreases when we increase fr, this is due
to the same reason we explained for the ar and ;. The lines are smooth because Sr
only slightly affect the calculation of Ty. The decrease in the misprediction overhead
may suggest, at first, that we have a more efficient emulation process, however this is
misleading; the emulation cost increases when we increase fr, leading to slow emulation.

5.4 Misprediction Overhead

Figures 5.3a-5.3¢ show the minimum misprediction overhead for the Windows 7 boot, Sys-
mark 2012 (Office Productivity scenario) and SPEC CPU 2006 403.gcc (with reference
input), respectively. These figures show how the overhead changes with the translation
start-up cost (ar), and the translation steady-state cost (fr). For all points in these
graphs, the parameters ; and Tp, are unconstrained inside their respective ranges (Ta-
ble 5.5). Thus these figures reveal the minimum misprediction overhead regardless of the
specific values of these parameters. For example, consider a VM emulating the Windows 7
boot process enabled with a TBP, moreover assume that the translation start-up cost (ar)
is 300,000 host cycles (per translated instruction) and the steady-state cost (fr) is 1.5
host cycles (per emulated guest instruction). In this scenario even using the best thresh-
old value and Interpretation cost, the execution would still suffer from 40% misprediction
overhead.

Notice that the three figures have the same pattern, and, in fact, all benchmarks we
experimented present this same behavior. As it can be seen, if the compilation cost ar
increases, the misprediction overhead also increases. This is an intuitive trend, since the

5.4. Misprediction Overhead 35

Misprediction Overhead

Misprediction Overhead

mulation Cost

Ej

(d) Windows 7 Boot (e) Sysmark - Office (f) SPEC - 403.gcc

Figure 5.3: Misprediction and Emulation Overhead for Sysmark 2012 (Office), SPEC
CPU2006 (403.gcc) and Windows 7 Boot.

main source of overhead of the TBP in relation to the oracle predictor is due to warm
code translation; once the translation cost increases the overhead also increases. Also
notice that the misprediction overhead decreases as the steady-state execution cost (f7)
increases. This is not unexpected, the higher is the cost to translate, the higher is the
total emulation cost, even for the oracle predictor. Hence, the misprediction overhead
becomes a smaller share of the total emulation time.

Figures 5.3d-5.3f show surfaces representing the minimum emulation cost, in host
cycles, for a VM emulating the aforementioned benchmarks and parameter values. Here
notice that, as expected, for the three benchmarks, the emulation cost is minimal when
the translation and execution costs are minimum. These surfaces are shown to illustrate
how the emulation cost contrasts with the misprediction overhead. Notice that although
smaller values of ar and [gives the minimum emulation cost, this is not a common case
scenario for a VM. In the next paragraph we present two scenarios to illustrate how the
misprediction overhead can severely affect the VM performance.

Figure 5.4 shows an example of how the development of a virtual machine can be
severely affected by the misprediction overhead. We use our measured values for [r
and ar to build two scenarios where the VM is improved by adding more sophisticated
optimizations. The first scenario considers the best cases, in other words, the lowest values
for fr and ar of our experiments. The second case considers the average measured values,
as described in Chapter 4. The figure shows the trajectory on the overhead surface when
the VM progressively supports more sophisticated optimizations and better code quality

5.5. Misprediction Overhead Characterization 36

<<\ Overhead
-o— Best Case
—— Average Case i

NN

Overhead

Figure 5.4: Trend lines for the evolution of VM in terms of generated code quality and
their consequent misprediction overhead.

is generated. We presented a range of ar values in this work, but here two trend lines
are presented. The first uses our measured average values and the second uses ar values
for which 90% of all measurements are guaranteed to be greater than. The latter is a
conservative estimate, since there is a high probability the VM will have higher overheads
than those delimited by this curve. These curves explain how a good predictor increases
in importance as the VM quality improves. In the second scenario, our results suggest
that in a virtual machine that uses time-consuming optimizations to produce faster code
the misprediction overhead is more relevant, since the mistranslation cost becomes more
expressive in relation to the faster translated code.

5.5 Misprediction Overhead Characterization

Figure 5.5 shows the misprediction overhead of all three sets of benchmarks if we consider
a system that can produce a reasonably fast code in a moderate amount of time. The
parameters used to draw these results were: a; = 0, §; = 70, ar = 150,000, and S = 1.5
and two prediction thresholds Tp = 25 and Tp = 1,000. There is a noticeable discrep-
ancy between the results of SPEC and the other benchmarks. Considering a prediction
threshold of 25 the maximum overhead measured in SPEC was achieved by 403.gcc with
nearly 10% of misprediction overhead, with the same threshold the minimum overhead
among the OS boots and Sysmark benchmark was 270% and 27%, respectively.

The boot processes and interactive applications (such as those of Sysmark 2012) ex-

5.5. Misprediction Overhead Characterization 37

‘Il Tp =25 |:||:| Tp = 1000 ugf\u,\é\o A;g\u &
L M

40 %
35 %
BT
D5 O [e
DO T e
LB o frorrrerre e e e e et
O Do [

Boot-Win7 —[

B frrveeererenrireneneneneneen B o B . .
0% - - k= = - N
) n (2] n 3 — w Q 2] A 1] “6 = = ko] a “C‘/ o o] o, -} > bo » [2¢] o “;_“ ~ o, 0 < S ()
§ ¢ 2 2 £ =2 2 o g gog oo ERE S = F AT @ oz o%o2 g g 2 [N O
= > = 5 2 3 ¢ 5 Z & g 2 9 £ g 5 & & 3 72 £ 8 2 B E 9 n oo
» 3 N o P g ¢ a8 g ¥ 3 L & <4 3 & %8 5§ 5 2 a2 £ 3 2 ® o &
< :@m & 5 8 3 U o & © & - z, & & 5 m o0 = & o £ A)
@ o & R S o 2 E = o g £ T A n g8 ¢ -
7 ©) S & g I g
0o [0 S 0 g o 8
= > w > 8
| nowmoog
2} >
n

Figure 5.5: Maximum misprediction overhead for SPEC CPU2006 and minimum mispre-
diction overhead for several OS boots and Sysmark 2012 benchmark.

ercise a larger code footprint when compared to SPEC CPU2006 scenarios. This char-
acteristic leads to an increase in the number of warm code regions and, consequently an
increase in the hot code misprediction overhead.

One could argue that this overhead can be reduced if a greater value for the prediction
threshold is used. Figure 5.5 shows the maximum (for SPEC) and minimum (for OS boot
and Sysmark 2012) misprediction overhead if we use a prediction threshold of 1000. The
overhead is reduced for all benchmarks, notably for OS boots and Sysmark, this result
support the argument that the overhead seen when Tp = 100 is due to a large amount of
warm code. However, more important is to note that even with a Tp = 1000 the average
minimum overhead for OS boots and Sysmark 2012 is 36% and 8%, respectively!

This huge difference among the results illustrates that using only SPEC CPU2006
benchmarks when measuring the performance of a VM that employs the TBP may lead
to misleading results.

To support our previous arguments, we show in Figure 5.6 the misprediction overheads
quantified in Figure 5.5, in terms of two components: the Warm Code and Hot Code
overhead, which refers to cases 1b and 1c of Figure 3.1, respectively. We notice that due
to the parameters we used, the cases 2(a)-(c) of Figure 3.1 do not occur.

For Tp = 25 the overhead is predominantly due to warm code translation (over 99%)
and the delay caused by late hot code detection is minimum. However, when Tp» = 1000
is used, the increase in the number of interpreted regions together with a decrease in the
number of warm code translation, makes the interpretation cost the major component of
the overhead - for all benchmarks the warm code translation cost is below 50% of the
overhead.

5.5. Misprediction Overhead Characterization 38

‘I I 25-Warm DD 1000-Warm

100 %
90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
10 %

2 o 0 e o =2 & o o o ,

S f% % £Ef g EELYTEERETELTEG GG LEGERuLgoz oy

2 28 8 3 & 2 O s & g 2 o g = E S e 8 8 4 £ 82 BB o5 20X 20

w 3 8N v B § g ® 3 g 3 i -1 S s % 8 5 L a2 s 3 28 /8 2 4R 4 &

< :m &2 8 5 00 5§ E" 7 E Z £ 2 f w2 H 25 77 g %0

Q] <} U 2oz I o £ E 7R w A 8 L L E 2%

o 9] - o @8 « = S ¢ % & g %

Gl s 5

2 . e Ao 5 B Zg

A m » 0 g

0 >

0

Figure 5.6: Hotness misprediction overhead split in two components: warm and cold code
translation overhead. The bars show the warm code translation overhead (when Tp = 25
and Tp = 1000, they complement represent cold code translation overhead.

Chapter 6

Conclusions

In the last two decades virtual execution environments have gained increasing attention
from both the Industry [16,19,37] and Academia [2,14,46]. This interest has been fostered
by the versatility of such environments, which through the decoupling of two distinct
interfaces enables innovative design [16], portability [6,16,24,48]| and efficient resource
usage [5,13], among others. However, in order for these environments to become a reliable
alternative for end-user scenarios, a careful study of the behavior of such VMs is required.

This work characterized a widely used threshold based technique to predict hot code
and showed that it can lead to misleading results on understanding VM performance. We
developed a mathematical model to estimate the misprediction overhead incurred from a
widely used approach to predict hot code on VMs. Our results showed that using only
SPEC CPU 2006 benchmarks to report VM performance can lead to incorrect results —
while SPEC benchmarks may suffer from up to 10% of hotness misprediction overhead,
Sysmark benchmarks may suffer from at least 27% of overhead. We also show that, as
VM spend more cycles optimizing the translated code, the overhead due to hot code
mispredictions becomes more relevant. We decompose the misprediction overhead and
show that its major component is translating warm code and that this overhead can
be exacerbated in large code footprint applications, such as those found in interactive
environments.

39

Bibliography

1]

2]

3]

[5]

A.V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques,
& Tools. Pearson, 2007.

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Coc-
chi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The jalapeno virtual machine. IBM
Systems Journal, 39(1), 2000.

E. Altman, M. Gschwind, S. Sathaye, S. Kosonocky, A. Bright, J. Fritts, P. Ledak,
C. Agricola, and Z. Filan. BOA: The architecture of a binary translation processor.
IBM Research Report, 21665, 2000.

T. Baba, T. Masuho, T. Yokota, and K. Ootsu. Design of a two-level hot path
detector for path-based loop optimizations. In Proceedings of the third conference on

TASTED International Conference: Advances in Computer Science and Technology,
2007.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimiza-
tion system. In Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, 2000.

L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and Y. Zemach.
[A-32 execution layer: a two-phase dynamic translator designed to support [A-32
applications on itanium-based systems. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, 2003.

F. Bellard. QEMU - Quick EMUlator. http://www.qemu.org/, 2012. [Accessed
November 11th, 2012].

E. Borin and Y. Wu. Characterization of DBT overhead. In Proceedings of the 2009
IEEE International Symposium on Workload Characterization, 2009.

40

BIBLIOGRAPHY 41

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. P. L. Buse and W. Weimer. The road not taken: Estimating path execution
frequency statically. In Proceedings of the 31st International Conference on Software
Engineering, 2009.

H. Chen, W. Hsu, J. Lu, P. Yew, and D. Chen. Dynamic trace selection using perfor-
mance monitoring hardware sampling. In Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization,
2003.

T. Y. Chen, F. Kuo, and R. Merkel. On the statistical properties of the f-measure.
In Proceedings of the Fourth International Conference on Quality Software.

W. Chen, D. Chen, and Z. Wang. An approach to minimizing the interpretation
overhead in dynamic binary translation. The Journal of Supercomputing, 61(3),
2012.

W. K. Chen, S. Lerner, and R. C. D. M. Gillies. Mojo: A dynamic optimization
system. Proceedings of the 3rd Workshop on Feedback-Directed and Dynamic Opti-
mazation, 2000.

C. Cifuentes and M. Van Emmerik. UQBT: adaptable binary translation at low cost.
Computer, 33(3), 2000.

BAP Co. Sysmark 2012 suite.

J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and
J. Mattson. The transmeta code morphing software: using speculation, recovery, and
adaptive retranslation to address real-life challenges. 2003.

E. Duesterwald and V. Bala. Software profiling for hot path prediction: less is more.
SIGPLAN Notices, 35(11), 2000.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting pro-
gram behavior and its variability. In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques, 2003.

K. Ebcioglu and E. R. Altman. DAISY: dynamic compilation for 100In Proceedings
of the International Symposium on Computer Architecture, 1997.

E. J. Emond and D. W. Mason. A new rank correlation coefficient with application
to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 2002.

BIBLIOGRAPHY 42

21]

[22]

[23]

[28]

[29]

[30]

31]

[32]

J. L. Henning. SPEC CPU2000: measuring CPU performance in the new millennium.
Computer, 2000.

J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer Ar-
chitecture News, 2006.

D. Hong, C. Hsu, P. Yew, J. Wu, W. Hsu, P. Liu, C. Wang, and Y. Chung. HQEMU: a
multi-threaded and retargetable dynamic binary translator on multicores. In Proceed-

ings of the Tenth International Symposium on Code Generation and Optimization,
2012.

R. J. Hookway and M. A. Herdeg. Digital FX!32: Combining emulation and binary
translation. Digital Technical Journal, 9(1), 1997.

S. Hu and J. E. Smith. Reducing startup time in co-designed virtual machines. In
Proceedings of the International Symposium on Computer Architecture, 2006.

Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, volume 2:
instruction set reference edition.

S. Johnson and S. Valli. An approach to predict hot methods using support vector
machines. In Proceedings of the 16th International Conference on Advanced Com-
puting and Communications., 2008.

J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7), 1976.

C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program anal-
ysis transformation. In Proceedings of the International Symposium on Code Gener-
ation and Optimization, 2004.

C. Lee. Utdsp benchmark suite. http://www.eecg.toronto.edu/~corinna/DSP/
infrastructure/UTDSP.html, 2013. [Accessed January 17th, 2013].

S. Liu and J. Zhang. Program analysis: from qualitative analysis to quantitative anal-
ysis. In Proceedings of the 33rd International Conference on Software Engineering,
2011.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Janapa
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the Programming language design and
implementation, 2005.

BIBLIOGRAPHY 43

33]

[34]

[35]

[36]

[37]

[38]

[39]

[43]

F. Ma, S. Liu, and J. Zhang. Volume computation for boolean combination of lin-
ear arithmetic constraints. In Proceedings of the 22nd International Conference on
Automated Deduction, 2009.

M.C. Merten, A.R. Trick, C.N. George, J.C. Gyllenhaal, and W.W. Hwu. A
hardware-driven profiling scheme for identifying program hot spots to support run-

time optimization. In Proceedings of the 26th International Symposium on Computer
Architecture, 1999.

J. Moreira, D. César, G. Aratjo, E. Borin, and S. Rigo. Asynchronous program
flow verification through binary instrumentation on QEMU. In Proceedings of the
Workshop on Architectural and MicroArchitectural Support for Binary Translation,
2012.

G. Ottoni, T. Hartin, C. Weaver, J. Brandt, B. Kuttanna, and H. Wang. Harmonia:
a transparent, efficient, and harmonious dynamic binary translator targeting the intel
architecture. In Proceedings of the 8th ACM International Conference on Computing
Frontiers, 2011.

M. Paleczny, C. Vick, and C. Click. The java hotspot server compiler. In Proceedings
of the Symposium on JavaTM Virtual Machine Research and Technology, 2001.

F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A low-overhead practical
information flow tracking system for detecting security attacks. In Proceedings of the
International Symposium on Microarchitecture, 2006.

R. Rosner, M. Moffie, Y. Sazeides, and R. Ronen. Selecting long atomic traces
for high coverage. In Proceedings of the 17th annual international conference on
Supercomputing, 2003.

T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find
periodic behavior and simulation points in applications. In Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation Techniques, 2001.

T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In Proceedings
of the Annual international symposium on Computer architecture, 2003.

J.E. Smith and R. Nair. Virtual machines: wversatile platforms for systems and
processes. Morgan Kaufmann, 2005.

Open Source. Bochs - the cross platform [A-32 (x86) emulator. http://bochs.
sourceforge.net/, 2013. [Accessed January 17th, 2013].

BIBLIOGRAPHY 44

[44] PC Magazine VeriTest. Business WinStone Benchmark. http://www.veritest.
com/benchmarks/bwinstone/.

[45] B. C. Wang, H. Zheng, M. Jr. Breternitz, and Y. Wu. Two-pass mret trace selection
for dynamic optimization, 2010.

[46] C. Wang, S. Hu, H. Kim, S. Nair, M. Breternitz, Z. Ying, and Y. Wu. StarDBT: An
efficient multi-platform dynamic binary translation system. volume 4697 of Lecture
Notes in Computer Science. 2007.

[47] Y. Wu, M. Breternitz, J. Quek, O. Etzion, and J. Fang. The accuracy of initial pre-
diction in two-phase dynamic binary translators. In Proceedings of the International
Symposium on Code Generation and Optimization, 2004.

[48] C. Zheng and C. Thompson. PA-RISC to TA-64: transparent execution, no recom-
pilation. Computer, 33(3):47 —52, 2000.

