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Abstract

Information sharing has always been a key issue in any kind of joint effort. Paradoxically,

with the data deluge, the more information available, the harder it is to design and implement

solutions that effectively foster such sharing. This thesis analyzes distinct aspects of sharing

- from eScience-related environments to personal information. As a result of this analysis, it

provides answers to some of the problems encountered, along three axes.

The first, SciFrame, is a specific framework that describes systems or processes involving

scientific digital data manipulation, serving as a descriptive pattern to help system comparison.

The adoption of SciFrame to describe distinct scientific virtual environments allows identifying

commonalities and points for interoperation.

The second axe contribution addresses the specific problem of communication between ar-

bitrary systems and services provided by distinct database platforms, via the use of the so-called

database descriptors or DBDs. These descriptors contribute to provide independence between

applications and the services, thereby enhancing sharing across applications and databases.

The third contribution, Organographs, provides means to deal with multifaceted informa-

tion organization. It addresses problems of sharing personal information by means of exploiting

the way we organize such information. Here, rather than trying to provide means to share the

information itself, the unit of sharing is the organization of the information. By designing and

sharing organographs, distinct groups provide each other dynamic, reconfigurable views of how

information is organized, thereby promoting interoperability and reuse. Organographs are an

innovative approach to hierarchical data management.

These three contributions are centered on the basic idea of building and sharing hierarchical

organizations. Part of these contributions was validated by case studies and, in the case of

organographs, an actual implementation.
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Resumo

Compartilhamento de informação sempre foi um aspecto chave em qualquer tipo de esforço

conjunto. Paradoxalmente, com o dilúvio de dados, a incremental disponibilização de informação

tem dificultado o projeto e implementação de soluções que efetivamente estimulam o compar-

tilhamento. Esta tese analisa aspectos distintos do compartilhamento - desde ambientes rela-

cionados a eScience até informação pessoal. Como resultado desta análise, ela provê respostas

para alguns dos problemas encontrados, ao longo de três eixos.

O primeiro, SciFrame, é um arcabouço especı́fico para descrição de sistemas ou proces-

sos envolvendo manipulação de dados cientı́ficos no formato digital, servindo como um padrão

que auxilia a comparação de sistemas. A adoção do SciFrame para descrição de ambientes

cientı́ficos virtuais permite a identificação de pontos em comum e oportunidades de interopera-

bilidade.

O segundo eixo de contribuição contempla o problema da comunicação entre sistemas ar-

bitrários e serviços oferecidos por bancos de dados, através do uso dos então chamados descri-

tores de bancos de dados ou DBDs. Estes descritores contribuem para desacoplar aplicações

dos serviços, melhorando portanto o compartilhamento entre aplicações e bancos de dados.

A terceira contribuição, Organografos, provê meios para a organização de informação multi-

facetada. Ela contempla problemas de compartilhamento de informação pessoal por intermédio

da exploração da forma como organizamos tais informações. Neste caso, ao invés de tentarmos

prover meios para o compartilhamento da informação propriamente dita, a unidade de compar-

tilhamento é a própria organização da informação. Através do projeto e compartilhamento de

organografos, grupos distintos trocam entre si visões reconfiguráveis de como a informação está

organizada, promovendo assim interoperabilidade e reuso. Organografos são uma abordagem

inovadora para o gerenciamento de dados hierárquicos.

Essas três contribuições estão centradas nas idéias básicas de construção e compartilhamento

de informação organizada hierarquicamente. Parte destas contribuições foi validada por estudos

de caso e, no caso de organografos, por uma implementação de fato.
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Chapter 1

Introduction

eScience focuses in the computer simulations that accelerate scientific discovery, and the high

performance distributed platforms these simulations run on. It now encompasses several branches

of Computer Science. eScience environments are fed by sophisticated instruments that generate

large volumes of complex and heterogeneous data at fast rates. Moreover, the ease to publish

in the Web, associated with the vast amount of scientific data produced every day, caused an

explosive growth in the amount of information available to scientists. Voluminous data with a

fast growth rate are just part of the problem. Heterogeneity is frequently cited as one of the

most complex problems in data sharing. As such, information representation and information

sharing are important issues in eScience. Heterogeneity and volume are at the center of trying

to allow people to work together. This is what motivates this work.

The goal of this thesis was to develop a theoretical framework to help solve some of these

problems. SciFrame was conceived to meet interoperability and data management requirements

that emerged during an effort to design and implement tools within the WebMAPS project [41].

WebMAPS was a multidisciplinary eScience effort involving computer scientists and experts on

agricultural and environmental sciences to develop a platform for agro-environmental planning.

The starting point was the proposal of SciFrame or the Scientific Digital Data Processing

Framework. It is a simplified and standardized vocabulary to describe the design patterns of

digital data processing with three high-level abstractions: Interfacing, Data Management and

Information Management. Although conceived independently, SciFrame is not an original ini-

tiative, it follows the steps of CLRC - Scientific Metadata Model [70] and myGrid [66]. The

difference between SciFrame and these other projects relies on SciFrame’s simplicity, being

designed from a Computer Science perspective.

In an attempt to further specialize SciFrame, focusing in its Data Management component,

we investigated how to define mechanisms through which applications couple with Database

Management Systems (DBMSs) in the emergent scenario of cloud computing. This resulted in

the proposal of database descriptors or DBDs. DBDs are artifacts to capture and match appli-
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cations requirements and database capabilities, in order to allow dynamic binding of services or

seamless data migration in the cloud. The concept of database descriptors was originally pre-

sented by Madnick and Wang [42] in 1988 to describe something similar to a (relational) DBMS

feature set. We extend this concept for new kinds of DBMS and applications, accommodating

it to the Web and Cloud Computing scenarios. The dynamic binding of services described in

chapter 3 is a simplified version of an UDDI-like negotiation framework [14].

SciFrame and DBDs are complementary initiatives to describe information sharing between

systems and processes through concept hierarchies, describing and organizing digital infor-

mation hierarchically. Our subsequent investigation about organization of information led to

questions, such as: Why do the organizational structures we create ourselves seem to become

inadequate as time goes by? Why don’t we share information organization (classification crite-

ria) dissociated from content? How can we improve the way we organize information and what

will be the impact on how we share information? These questions are all associated with the

issue of collaboration and reuse of content, but also with content organization.

In order to attack these questions, we concentrated on issues related to organizing infor-

mation through multi-faceted hierarchical categorization. As a result several limiting factors

related to content organization were identified: the lack of evaluation tools for hierarchies with

ad-hoc and implicit organization criteria; current mechanisms and methods lead to static and

content-driven hierarchies instead of a more flexible dynamic and task-driven approaches; and

finally the incapacity to share organization criteria and apply it automatically to reorganize dif-

ferent content to perform some recurring task. Based on that, organographs were proposed

as a conceptual framework to transform implicit information organization criteria into explicit

parameters, in the context of a particular task. Organographs can be used to evaluate, reorga-

nize and share digital information hierarchies. DBDs can be used in organograph instances to

provide loose and dynamic coupling with external data sources (i.e. hierarchies). Furthermore,

SciFrame can be used to describe aspects of the transformation encapsulated in an organograph

instance.

Given this scenario, the main contributions of this thesis are:

• the proposal of SciFrame: a conceptual framework to describe systems or processes in-

volving scientific digital data manipulation;

• the proposal of Database Descriptors (DBDs): a conceptual framework to capture and

match applications requirements to database capabilities, thus helping to commoditize

data services in the cloud;

• the proposal of Organographs: a conceptual framework to transform implicit organi-

zation information criteria into explicit parameters, in the context of a particular task.

Organographs can be used to evaluate, reorganize and share digital information hierar-

chies.
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• practical validation of a major part of these concepts through the implementation of soft-

ware tools and services.

This thesis is organized as a collection of papers that are most representative of the research

developed. The rest of this text is organized as follows:

Chapter 2 is the paper SciFrame: a conceptual framework to describe data sharing in

eScience, published in the Proceedings of the III Brazilian eScience workshop in 2009. This

chapter provides an integrated perspective of efforts and phases involved in sharing of eScience

data. The SciFrame model is presented through a case study of scientific data manipulation in

WebMAPS. This study illustrates some typical problems related to data sharing, particularly the

problem of distributing large datasets over the Web. The paper points out that SciFrame should

be used as a design pattern, from which scientists can structure and describe their own eScience

efforts.

Chapter 3 is the paper Database descriptors: laying the path to commodity web data ser-

vices, published in the Proceedings of Engineering of Computer-Based Systems (ECBS) in

2010. This chapter introduces the concept of database descriptors (DBDs). DBDs are presented

as the foundational bricks to build dataspaces, allowing applications to switch across DBMSs

in a loosely coupled scenario. DBDs can thus contribute to help to commoditize data services

in the cloud, by supporting dynamic switching between DBMSs and applications. DBDs can

also be seen as a different way of tackling the information integration problem, from a connec-

tivity point of view, in which applications and DBMSs can negotiate their coupling. As already

mentioned in this chapter, DBDs can be seen as a solution within SciFrame to deal with data

management issues.

Chapter 4 is the paper Evaluating, Reorganizing and Sharing Digital Information Hierar-

chies, that has been submitted for publication in the Journal on Data Semantics (JODS). This

chapter presents organographs. It discusses how organographs can be used to evaluate, reorga-

nize and share digital information hierarchies. Moreover, it describes a concrete organograph

use case, where a personal collection of papers is reorganized according to ACM subject head-

ings and evaluated before and after reorganization. We concluded the chapter showing that

content organization can be shared, ad-hoc hierarchies can be refactored into more balanced

hierarchical structures while preserving valid categorical relationships. As pointed out in the

chapter, Organographs differ from proposals such as [25, 55] that are restricted to file manipu-

lation.

Chapter 5 contains conclusions and some directions for future work.

Besides these publications chosen to compose the thesis text, the following papers are also

associated with this work:

• Organographs - Multi-faceted Hierarchical Categorization of Web Documents. Rodrigo

D. A. Senra, Claudia B. Medeiros. Proceeding of the 7th International Conference on
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Web Information Systems and Technologies - WEBIST: 583-588 (2011). This paper

introduces the concept of Organographs.

• A standards-based framework to foster geospatial data and process interoperability. Gilberto

Z. Pastorello Jr., Rodrigo D. A. Senra, Claudia B. Medeiros. Journal of the Brazilian

Computer Society 15(1): 13-25 (2009) This paper covers a few challenges met by the

implementation of WebMAPS.

• Bridging the gap between geospatial resource providers and model developers. Gilberto

Z. Pastorello Jr., Rodrigo D. A. Senra, Claudia B. Medeiros. Proceedings of the 16th Inter-

national Conference on Advances in Geographic Information Systems - ACM SIGSPA-

TIAL: 44 (2008) This paper deals with seamless composition of distributed data sources

and processing solutions to leverage model development.

• O projeto WebMAPS: desafios e resultados. Carla G. N. Macário, Claudia B. Medeiros,

Rodrigo D. A. Senra. Proceedings of 9th Brazilian Symposium on Geoinformatics -

GeoInfo: 239-250 (2007). This paper presents results from the WebMAPS project.

Moreover, the following software tools were developed within the thesis:

• Paparazzi, a software tool to crawl and fetch remote sensed data automatically from

NASA’s Web portal. It was used to collect data for experiments that led to SciFrame,

DBDs, and also used in other PhD and MSc research in LIS.

• WebMAPS, a portal capable of computing and rendering NDVI time profiles for given ge-

ographical regions. The underlying algorithms and implementation of WebMAPS helped

the theoretical work of this thesis, and were also taken advantage of by other PhD and

MSc students in LIS.

• the design and implementation of Organicer, a tool to validate the organographs concept.



Chapter 2

SciFrame: a conceptual framework to

describe data sharing in eScience

2.1 Introduction

Computer Science has introduced a revolution in scientific research, and is recognized, nowa-

days, as being essential to the advance of science. The term eScience [21] was introduced in the

end of the 90’s. While it originally focused in the computer simulations that accelerate scien-

tific discovery, and the high performance distributed platforms these simulations ran on, it now

encompasses several branches of Computer Science. Indeed, these platforms are fed by sophis-

ticated instruments – e.g., telescopes, satellites, medical devices – which generate large volumes

of complex and heterogeneous data at fast rates. These data should be processed by scientists

using suites of complex algorithms and computational tools, and novel visualization methods.

Interpreted results are fed back to the network, to become part of eScience data available.

As such, information representation and information sharing are both essential components

of eScience. In fact, the World Wide Web – the most visible face of the Internet – was motivated

by the need to communicate information among researchers. However, the ease to publish in the

Web, associated with the vast amount of scientific data produced every day, caused an explosive

growth in the amount of information available to scientists.

Voluminous data with a fast growth rate are just part of the problem. Heterogeneity is fre-

quently cited as one of the most complex problems in data sharing. In eScience, it is aggravated

by the inherent multidisciplinarity - besides the usual problems of variety in data acquisition,

modeling, storage, processing and publication, all of which responsible for heterogeneity, there

exists the issue that the scientists that participate in any given project have very distinct profiles

and work contexts.

Another problem is how information is represented so that sharing can be facilitated. A

white paper, a spreadsheet or a raster image are all valid representation formats, but not nec-

5



2.2. SciFrame: A Conceptual Model to describe Information Sharing 6

essarily self-sufficient or complete. For instance, a white paper may lack details about the raw

data used in an experiment, a spreadsheet may not inform from where or when the data were

gathered, or a raster image might omit details about the sensors used for data capture. Com-

pleteness criteria depend not only on data producers, but also on the consumer’s intent. This

has prompted research on metadata, annotations and ontologies to enhance data characterization

and provenance.

Sharing of data is just part of the problem – scientists also need to share models, which

are defined in terms of sequences of operations, usually as scientific workflows – e.g., [48].

This paper does not directly cover workflows and models, concentrating on data aspects. We

do, however, indicate several challenges associated with such workflows, which are closely

connected with the second Grand Challenge of SBC – the management of models.

The goal of this paper is to exploit the many facets of the problem of sharing scientific digital

data. This research is directly connected with the first Grand Challenge of SBC: management

of large multimedia data volumes [44]. Our main contributions to the Challenge concern the

proposal of a conceptual model to be used as background to support an integrated analysis of

these issues. Moreover, SciFrame can be used as high-level design pattern from which scientists

can structure and describe their own work. The use of this model is exemplified through a real-

world case of scientific data sharing. We conclude the paper with references to research efforts

that try to tackle some of these issues.

2.2 SciFrame: A Conceptual Model to describe Information

Sharing

According to Longworth [39], the stages in human learning can be described by the following

information ladder also known as the DIKW model: Data → Information → Knowledge →

Understanding → Insight → Wisdom.

While the rightmost stages belong to the domains of cognition, psychology and philosophy,

the first three steps are directly related to the first SBC Grand Challenge, and to SciFrame. The

terms data, information and knowledge have various definitions and can be used for overlap-

ping concepts. However, in the context of SciFrame, we adopt the following definitions: Data

is a structured collection of typed values, represented in digital form. The important distinction

between data and information is that the latter has explicit semantics. Information is a set of

inter-related data, bound to semantics and useful for some purpose. From a Semiotics point-

of-view, data are symbols and information occurs when data are used to refer to something.

Knowledge represents the cognitive dimension of the information’s consumer, linking informa-

tion from the process domain to information present in the “out-of-process world”. From the

DIKW model, knowledge is created by using the information for action.
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Figure 2.1: SciFrame - Scientific Digital Data Processing Framework

In this section we define a conceptual framework that describes systems or processes involv-

ing scientific digital data manipulation – the Scientific Digital Data Processing Framework, or

SciFrame for brevity. SciFrame is depicted in Figure 2.1, and it is divided into three high-level

abstractions: Interfacing, Data Management and Information Management. This overall struc-

ture and its elements are well known and compose a long-time adopted pattern. Nevertheless,

this pattern lacked a cohesive definition in a standardized vocabulary, that we try to remedy

here.

Let us consider an eScience process that involves some kind of scientific data manipulation.

Interfacing defines the process boundaries and comprehends all digital data exchange between

the process itself and external entities, either human or artificial. The Interfacing element has

two subdivisions: acquisition and publication. Acquisition represents the obtention of data: in

digital form, with a known structure, from a known source, through a given media. This stage

represents the process input. Publication stands for suitable data representations that allow

proper communication with external entities. Data are published in digital form, with a known

structure, via a given media. This stage represents the process output. The acquisition and

publication elements of a given eScience process are potentially independent from each other.

When two processes are interacting, the acquisition element of one is coupled to the publication

element of the other [53].

One way to define their data exchange pattern is to determine which role takes initiative in

the transaction. A PUSH pattern occurs when the data provider initiates the data exchange, and
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conversely a PULL pattern occurs when the data consumer takes the initiative. Data exchange

can be divided into three stages: discovery, extraction and transference. Discovery represents

the acquisitor’s concern with identifying suitable data publishers given a set of information

needs. On the other hand, publishers are concerned with making themselves well-known to

potential acquisitors. Extraction represents the problem of extracting the information from a

chosen data provider/publisher. Transference represents the problem of moving data from the

publisher into the data management facilities of the consumer.

SciFrame makes the distinction between Information Management and Data Management.

Information Management is responsible for higher-level information manipulation, analysis and

synthesis. Data Management is responsible for lower-level data manipulation for persistence

purposes.

The Data Management element is subdivided into storage and manipulation elements

where: Storage is responsible for data persistence (caching inclusive). Manipulation provides

support for the basic interactions with the storage element. These interactions are called CRUD,

an acronym for the operations: create, retrieve, update and delete. We have also included the

index interaction. Therefore, we shall refer to it as CRUDI.

In the context of Information Management, an eScience process can be examined and mod-

eled according to two main axes: data description and data transformation. Transformation

corresponds to a finite number of operations that the process applies to the stored data, in order

to change its contents or structure. We present an informal set of definitions for the operations.

Augmenting adds information to the data present. Fusing generates new information by coa-

lescing part of the data present. Filtering decreases the amount of information by discarding

data. Summarizing decreases the amount of data by classifying, clustering or generalizing data.

Searching locates information inside data. Mining extracts unperceived information from data.

The last two, searching and mining, can be seem as idempotent transformations, considering

that the status of the data is not altered. Transformation can occur at any time, but when it takes

place immediately after acquisition, it is often called pre-processing. The Description element

is orthogonal to the Transformation element. It corresponds to the gathering and organization of

information about the process data elements, documenting their nature, structure and purpose.

It is also encompasses the roles of annotation and schematization. As an example, provenance

is one of the most important types of description, fundamental in the eScience context to ensure

the shared data elements’ quality and usefulness.

We acknowledge that SciFrame requires a more complete and formal characterization of

the interactions and dependencies of its constituent elements. However, due to restrictions

in this paper’s length, we chose to present a case study instead. The case study illustrates a

typical example of a scientific application with a strong focus on information and data sharing,

evidentiating the role of SciFrame as a generic pattern to describe eScience research.
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2.3 Case Study: Crop Monitoring in WebMAPS

In order to illustrate SciFrame’s applicability, we present a real-world scenario from the WebMAPS

eScience project [41]. This is a multidisciplinary effort involving computer scientists and ex-

perts on agricultural and environmental sciences to develop a platform for agro-environmental

planning. The case study concerns an eScience process within WebMAPS, and shows that shar-

ing scientific data presents challenges that are not found in other kinds of data sharing (e.g., in

industrial or business contexts).

An important problem in agro-environmental planning is monitoring crop behavior. One of

the earliest studies [72] about deriving crop condition from solar radiation has shown that there

is a strong correlation between radar measurements (backscatter) and leaf area index (LAI).

LAI determines the amount of energy available to the plant for photosynthesis which in turn

drives the plant development and subsequent yield.

One of the tools used by experts to monitor crop behavior is based on Normalized Dif-

ference Vegetation Index (NDVI). Informally, this index represents the healthiness (“green-

ness”) of a given vegetation cover. It is computed as the difference between the red (RED) and

near-infrared (NIR) bands of multispectral images, given by the formula: NDV I = (NIR −

RED)/(NIR+RED). There are several vegetation indexes proposed, such as: Perpendicular

Vegetation Index [60], the Soil-Adjusted Vegetation Index (SAVI) [26], the Atmospherically

Resistant Vegetation Index (ARVI) [31] and the Global Environment Monitoring Index [54].

Choosing amongst them is part of the problem – distinct scientists favor different indexes, which

result in incompatible analyses. However, NDVI remains the most well-known and used index

to detect live green plant canopies from multispectral remote sensing data.

One of the processes in WebMAPS corresponds to a tool that generates NDVI profiles. Each

profile is a time series of average NDVI measurements, which represents the vegetation’s health

(biomass status) in a particular region for a given time period (crop’s phenological cycle). NDVI

profiles characterize the spatio-temporal behavior of specific crops. They allow experts to mon-

itor the evolution of the crop, detect (and prevent) anomalies and forecast crop yield.

The management of spatio-temporal data series is a problem common to many eScience do-

mains, which is one of the reasons for our choosing this case study. Table 2.1 gives an overview

of the process that generates NDVI profiles, summarized under our SciFrame conceptual model.

Some processing details were omitted, but it serves the purpose of illustrating SciFrame’s ap-

plication.

For instance, although the NDVI formula is mathematically simple, satellite image pre-

processing is complicated and requires extensive data correlation. Perturbing factors should

be detected and mitigated in order to avoid negative influence in the computed NDVI. They

include: (i) high level of water vapor and aerosols; (ii) soil moisture; (iii) angular geometry

of illumination and observation at the time of the measurements; (iv) sensor-dependent data
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Table 2.1: NDVI profile generation described with SciFrame

Data Management

Storage organize and persist input raster images and their textual metadata

organize and persist composite NDVI profiles

Manipulation index and fetch regions from images

Information Management

Description spatial regions of interest are described in Well-Known Text notation (WKT),

raster images in HDF format have embedded textual metadata

Transformation eliminate clouds by generating composite images (data gaps removal)

detect and mitigate perturbing factors

calculate NDVI time series

filter out noise using HANTS (Harmonic Analysis of Time Series)

Interfacing

Acquisition Discovery elect adequate remote sensing data products and providers available in the Web

Extraction identify a path to data products in the provider’s Web portal

Transference download products (raw multispectral satellite images) via HTTP or FTP

Publication publish NDVI profiles as 2D scatter plots (average NDVI vs time) in WebMAPS

portal

calibration. These issues represent nested processes in NDVI profile generation. Though not

described in this paper, we point out that they have a SciFrame’s description of their own.

2.3.1 Practical Pitfalls

Consider a scientist in charge of studying sugarcane crops in Ariranha County in São Paulo state

(Brazil). The goal is to analyze sugarcane yields using year 2001 as benchmark, when it was

the top producer county, yielding approximately 5.15 million tons/year. This scientist decided

to use a NDVI profile as an estimator [11], based on previous studies of NDVI correlation to

crop yields.

In order to do that, first of all, this scientist needs the georeferenced perimeter of every farm

growing sugarcane in Ariranha County. Georeferencing means to establish an appropriate set

of coordinates defining accurately the region’s location on the Earth’s surface. Here we face

a common barrier in eScience – data availability. Georeferenced boundaries may be hard to

obtain in practice, due to the lack of reliable boundary databases. This may be circumvented by

a ground survey with GPS measurements, which requires the farmers agreement. We are not

concerned here with confidentiality issues. Data privacy and security are valid open problems

in eScience data sharing that are out of the focus of this proposal.

In addition to the spatial regions of interest, the scientist must collect remote sensed imagery

covering the county’s area (aprox. 133 km2) during the target years. NASA’s MODIS sensor

is a reasonable data source. One of its derived products is “MOD13Q1 - Vegetation Indices

16-Day L3 Global 250m”. This dataset is delivered by NASA already pre-processed, with 11

pre-calculated vegetation indexes, including NDVI. MOD13Q1 is distributed as files encoded

in NASA’s HDF-EOS format [57], each covering an area of 5,760,000 km2 with average size
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of 500 Mbytes.

This means that a 2-year long NDVI time series covering Ariranha County’s area (532 pixels

per MOD13Q1 image) requires 46 images. The data volume amounts to roughly 47.8 Kbytes.

However, due to distribution granularity (in 500 Mb files), this scientist will have to download

23 Gbytes. Therefore, 99.99979% of the downloaded data is useless considering the target

study. In the worst case where a single satellite image snapshot (swath) does not entirely contain

the region of interest, the waste is doubled.

Moreover, to download the 46 files (92 in the worst case scenario), the scientist will have to

fill out a NASA web form (maybe several times) specifying product, swath (region of interest)

and time interval. The estimated delivery delay can range from a day to a week, depending on

the available network throughput. Nevertheless, that is still a straightforward process. Each web

portal providing remote sensed imagery implements a different acquisition workflow. Some

portals demand a round of e-mail exchanges prior to data release. Other portals arrange the files

in hierarchies, forcing the user to browse through several pages before reaching the target links.

After all data are obtained, there remains the issue of compatibility with the scientist’s pro-

cessing environment. For instance, computing time and storage space may be required to con-

vert NASA’s HDF-EOS format into more widespread input formats such as GeoTIFF [61],

NetCDF [59], HDF4, or HDF5 [19].

Once the satellite data are converted and stored, several other issues remain. For instance,

the acquired images may present gaps in the region of interest (e.g., clouds) that could be com-

pensated by additional processing (e.g., by acquiring images from other providers, or executing

complex data manipulation procedures). Image noise has to be taken into account.

Once all preprocessing is finished to the scientist’s satisfaction, the profiles can be generated.

Again, this presents many challenges. For instance, just as they may choose distinct vegetation

indexes, research groups may adopt different procedures to generate profiles, which in turn may

result in differences in profiles. Notice that each processing strategy chosen will compound

the obstacles to sharing profile data. Hence, in order to share the published profiles with other

groups, an appropriate description of the entire profile generation process must be provided –

e.g., indicating the source images used, the scientific workflow selected to create the profile,

and so on. This kind of discussion falls into the general problem of provenance in eScience.

These are just a small sample of problems involved in sharing eScience data.

2.4 Conclusions

The first Grand Challenge of SBC involves the management of multimedia data, which includes

scientific data. There are many issues concerning the latter that need to be investigated using

specific procedures, given some of their peculiarities. This paper is a step towards this direction,

providing an integrated perspective of efforts and phases involved in sharing of eScience data.
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The SciFrame model, conceived with this in mind, was presented through a case study of sci-

entific data manipulation in WebMAPS. This study illustrates some typical problems related to

data sharing, particularly the problem of distributing large datasets over the Web. We concluded

the paper pointing out that SciFrame should be used as a design pattern, from which scientists

could structure and describe their own eScience efforts.



Chapter 3

Database descriptors: laying the path to

commodity web data services

3.1 Introduction

We are interested in supporting seamless switching between applications and DBMSs. In the

context of this paper, applications are any software artifact, and databases refer to Database

Management Systems (DBMS). When an application switches from using a DBMS to another,

data may also have to be migrated and transformed. We attack the problem in two stages.

This paper is concerned with the first stage - mechanisms to support dynamic coupling - and

assumes that, once this is achieved, appropriate mechanisms will be devised to migrate data,

when needed (the second stage).

Today, applications are still conceived to be tightly coupled to a given DBMS instance.

Such a tight coupling is the most feasible solution to implement, since such systems differ in

terms of model, operations and interface. For instance, an application written to use a relational

database must be refactored to use a different DBMS. When the underlying data models are

different, the way data is structured and handled is radically different, such as an XML storage

or an Object-oriented database. Even if two DBMSs support the same model, they may differ

on the capabilities supported, such as temporal or spatial facilities, and the DBMSs may offer a

different feature set.

The term feature set, in this paper, refers to a set of properties that include: data model,

functional capabilities, access methods and API, performance and configuration settings. Ap-

plications can only switch from one DBMS to another if the target DBMS offers a feature set

compatible to what is required by the application.

Relational DBMS already achieved a good degree of interchangeability through successful

standardization efforts such as Open Data Base Connectivity (ODBC) from the X/Open consor-

tium, or ISO’s ANSI-SQL proposed in 1989 (and revised in 1992). However, there is room for

13
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improvement. The software industry continuously improves its products with extensions that

transcend the relational model and fall out of the standardization efforts. As a consequence,

applications that depend on non-standard extensions become enslaved to a particular product.

Success in designing and building DBMS database products will certainly introduce ad-

ditional interoperability issues. For example, given a Web application in the emergent cloud

computing scenario [5], as the user base demands scalability, the solution may be to switch

from a single multi-purpose database to several special-purpose database-as-a-service (DaaS)

approaches.

Several research efforts have been undertaken towards more flexible coupling between ap-

plication requests for data and DBMS. Examples of such efforts include: n-tiered architectures,

database federations, Web services and cloud computing. Each such initiative is based on some

set of standards that determine, for example, how to invoke operations or how to encapsulate

data.

There are two basic scenarios to be considered. In the first scenario, an application requests

data from several DBMS, and may need further data from another DBMS of a different nature,

i.e. with a widely different feature set. In the second scenario, the application wants to switch

from the initial set of DBMS to another (potentially different) set of DBMS. Here, it may have

to depend on additional preprocessing operations – e.g., data conversion and migration from the

original set to a new one.

These two scenarios introduce many research challenges. For instance, how to choose an

adequate DBMS amongst several vendors? If changes in DBMS involves data migration, what

is the effort and schedule involved? Would there be any collateral effects due to compatibility

mismatches? And the bottom line – could all of these questions be answered and the migration

be carried out automatically and seamlessly?

In order to attack this problem we propose the use of database descriptors (DBDs), which

are data structures that describe the feature set of a DBMS and the requirements applications

have in terms of DBMS support. From a high level point of view, an application A can switch

from DBMS X to DBMS Y if, desiderata DBDA is compatible with feature DBDY .

In more detail, this paper proposes DBDs as a mechanism to describe the nature and capa-

bilities of DBMS and application requirements. DBDs could be used to verify and validate the

matching between application requirements and database capabilities, and ultimately be used

as the foundation for dynamic negotiation and autonomous binding between applications and

databases.

This paper is organized as follows. Section 3.2 introduces DBDs. Section 3.3 discusses

situations in which they are needed. Section 3.4 provides a use case. Section 3.5 discusses a

few major trends in related work. Section 3.6 concludes the paper.
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3.2 Database Descriptors

The concept of database descriptors was originally presented by Madnick and Wang [42] in

1988 to describe something similar to a (relational) DBMS feature set. We extend this concept

for new kinds of DBMS and applications, moreover accomodating it to the Web scenario.

The main goal behind constructing DBDs is to enforce a loose coupling between Applica-

tions and DBMS, that could help to: (i) ensure DBMS product/vendor independence, (ii) pro-

vide seamless cross-database migration, and (iii) support Applications and DaaS in the Cloud.

Some of these goals depend on strategies to solve the schema integration problem. In this paper

we are not focused on the data integration issue. Our main interest is to explore a mechanism

that allows capability verification, validation and negotiation amongst applications and DBMS.

3.2.1 Basic Definitions and Architecture

We devise two types of database descriptors: desiderata descriptor and feature descriptor. The

desiderata descriptor specifies what a client application needs (requirements) from a DBMS.

The feature descriptor specifies the DBMS feature set. As we pointed out earlier, it refers to

a set of properties that include: data model, functional capabilities, access methods and API,

performance and configuration settings.

Figure 3.1: Database Descriptor Architecture

Assuming that DBDs are already available, there are many possible interaction patterns

between applications and DBMSs. Figure 3.1 presents a generic architecture that serves as a

reference for discussing interaction patterns.

The first step is taken when a given DBMS reifies its feature set as a feature descriptor.

Considering that the feature descriptor is in digital form, it could be stored anywhere: as a file
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in the filesystem, as data in some DBMS or published in a Web page. We advocate the creation

of registries in the Web. A descriptor registry consists of a publicly accessible repository spe-

cialized in storing DBDs. For instance, a minimal registry could be materialized as a Web page

with links to pure-XML pages describing DBDs. Step 1 in Figure 3.1 illustrates DBMSs X and

Y registering DBDX and DBDY in a given registry.

The second step is taken when an application produces a desiderata descriptor that reflects

its expectations in terms of a DBMS. The purpose of the desiderata descriptor is to be matched

against the feature descriptors found in a registry. One possible approach is to make applica-

tions themselves responsible for discovering registries and carrying out the descriptor matching

process.

We have chosen to introduce another element in the architecture called the negotiator, who is

responsible for mediating the negotiation process, in which applications ”negotiate” switching

across DBMSs. Therefore, the negotiator can be an independent software artifact (such as a

server), dwelling on the Web, and shared by potentially many applications. On the other hand,

the negotiator can be a software module (such as a code library) embedded in the application

or in the descriptor registry. Although we will refer to negotiator as an entity independent from

the application to highlight its role, the architecture proposed is generic and accommodates

different implementations.

We will not explore in this paper the trade-offs among the options to implement negotiators,

either embedded in the application, in the registry or as an independent external mediator. We

leave this topic to be explored in the future.

Step 2 in Figure 3.1 depicts application App presenting its desiderata descriptor DBDApp

to the negotiator. The negotiator should discover the available registries and run the descriptor

matching algorithm (see Section 3.2.4) against them. This is represented by step 3. After the

matching process, the resulting collection of feature descriptors is ranked by similarity with the

desiderata descriptor and returned back to App in step 4. The process concludes with dynami-

cally binding application and DBMS.

3.2.2 DBD Structure

The desiderata and the feature descriptors both share a common structure, composed by three

distinct parts: metadata, dimensions, dimensional values.

The metadata part describes the descriptor itself, and we propose the adoption of a Dublin

Core (DC) [1] subset. The following DC fields should be mandatory: identifier, format, date,

creator, title and type.

The dimensions part are the DBMS properties described by the DBD, such as: connectivity,

data model, type system, indexing resources, DDL/DML support, security, provenance, ver-

sioning, replication, scalability, etc. For each dimension mentioned in the DBD, there should
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be an associated dimensional value, which composes the third part.

The desiderata DBDs could have additional dimensions that express limitations or trade-

offs from the application perspective, for example: prioritize up-to-date information, prioritize

low latency for data delivery, enforce size constraints for result sets, determine quality of data

(e.g., accuracy or completeness). Other (non-functional) requirements include privacy, security,

costs, legal issues.

Desiderata descriptors could also include a fourth algorithmic part that specifies criteria

for matching against feature descriptors. This algorithmic part can be represented by code

embedded in the DBD, or it could be just a textual reference to some algorithm well known

by the negotiators (further explained in Section 3.2.4). Once more, the trade-offs derived from

these implementation choices are left for the future.

3.2.3 DBD Representation

The wide spectrum of the dimensions exemplified in Section 3.2.2 suggests that the DBD rep-

resentation format should be extensible. We assume that distinct DBD instances will have a

different collection of dimensions. As a result, the representation format and the matching al-

gorithms should cope with partial information and heterogeneous structures. Given these con-

straints, XML might be a sound technological choice for representing DBDs. XML satisfies the

heterogeneity condition but it is not sufficient for DBD representation, as explained by Wilde et

al [74].

We propose, therefore, that DBDs be represented by the semantic annotations of [40, 50].

Annotation Units. An annotation unit a is a triple < s,m, v >, where s is the subject being

described, m is the label of a metadata field and v is its value or description.

Annotation. An annotation A is a set of one or more annotation units.

Semantic Annotation Units. A semantic annotation unit sa is a triple < s,m, o >, where s

is the subject being described, m is the label of a metadata field and o is a term from a domain

ontology.

Semantic Annotation. A semantic annotation SA is a set of one or more semantic annota-

tion units.

In fact, annotation units describe data using natural language; semantic annotations use

ontology classes and can be processed by a machine. Since semantic annotations rely on on-

tologies, they provide the necessary interoperability basis to accommodate the needs of DBDs.

However, there still remains the need to define the notion of compatibility, which is discussed

next.
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3.2.4 Matching DBDs

An application can couple to a DBMS if the former’s desiderata descriptor matches the latter’s

feature descriptor. In an ideal world, both DBDs should be the same (i.e., identical metadata,

dimensions and values). However, this restricts application-DBMS coupling. Thus, we have

to look for more flexible matching criteria – e.g., borrowing notions from (i) programming

languages or from (ii) content-based retrieval mechanisms in image databases.

In the first case (i), we can use an analogy from interface matching, where a subroutine

invocation (message in object-oriented jargon) should match one function or procedure (resp.,

method) considering its context (i.e., namespace) and signature (i.e., name and parameters).

Similarly, we can consider DBDs to represent signatures, where the dimension values are on-

tology terms.

Moreover, if we use semantic annotations, then matching can be performed using onto-

logical relations. Borrowing from Santanche [62], two DBD values (A and B) are considered

equivalent if they refer to the same concept in an ontology (equal URIs), or if they point to two

concepts related by OWL equality relationships (equivalentClass or sameAs). Moreover, A is

said to be more general than B if A subsumes B and conversely B is more specific than A. For

instance, if B is OWL subClass of A, or B is related with A through the partOf property (B

partOf A), then A subsumes B. Consider A and B vertices of a graph, whose edges are proper-

ties. The subsumption relationship between A and B is a path formed by one or more edges.

Therefore, the similarity rank value between A and B is inversely proportional to the number of

edges which connect A and B in a subsumption relationship.

In the second case (ii), one can consider an analogy between DBDs and descriptors of im-

ages. From a high-level perspective, image similarity mechanisms are based on the notions of

feature descriptor and distance function [67]. A feature descriptor is typically a set of values,

organized according to some structure, that summarizes a given object (here, an image). Vectors

are the most common structure used, and feature descriptors are therefore often called feature

vectors. Two objects are considered similar if the distance between their descriptors is below

some threshold. Similarity depends on the features selected – thus, distance functions are inti-

mately associated with the algorithms used to create the vectors. Examples of distance functions

involve Manhattan (also known as L1) and Euclidean – L2. If we borrow from this second kind

of domain, then DBDs are our image feature descriptors and we can devise different distance

functions (e.g., edit distance for each string in an annotation unit) to compare two DBDs.

We propose the adoption of the first definition, which borrows from interface matching in

programming languages. Nevertheless, we point out that other matching mechanisms can be

used.
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3.3 DBD Example

Figure 3.2 exemplifies, from a high level point of view, a hypothetical DBD for an RDF DBMS.

This example represents the feature DBD whose identifier is DBD1 (created in Dec 18, 2009 by

Claudia). The dimensions and values indicate that the 2PL concurrency protocol is used, there is

no versioning, storage uses RDF format, and the query language supported is RDQL. In order to

represent DBD1 we have chosen the RDF data model rendered in XML markup language, which

is acceptable in such a simple example. Posterior and more complete versions of DBD1 could

be rendered in more expressive semantic languages, e.g. an OWL dialect (FULL/DL/Lite),

depending on the need to express more accurately the identities, relationships and restrictions

on the DBD dimensions.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:dbd="http://www.lis.ic.unicamp.br/purl/DBD">

<rdf:Description rdf:about="http://www.lis.ic.unicamp.br/purl/DBD/DBD1">

<!-- metadata -->

<dc:creator>Claudia Bauzer Medeiros</dc:creator>

<dc:description>Hypothetical DBD for an RDF DBMS</dc:description>

<dc:identifier>DBD1</dc:identifier>

<dc:format>application/rdf+xml</dc:format>

<dc:type>

<rdf:Description>

<dbd:Type>Feature DBD</dbd:Type>

</rdf:Description>

</dc:type>

<dc:title>Descriptor of an RDF DBMS</dc:title>

<dc:date>2009-12-18</dc:date>

<dc:language>EN</dc:language>

<!-- dimensions and values -->

<dbd:concurrency>Two phase lock</dbd:concurrency>

<dbd:versioning>unsupported</dbd:versioning>

<dbd:storage>RDF triples</dbd:storage>

<dbd:DML>

<rdf:Bag>

<rdf:li>RDQL</rdf:li>

<rdf:li>SPARQL</rdf:li>

</rdf:Bag>

</dbd:DML>

</rdf:Description>

</rdf:RDF>

Figure 3.2: Feature DBD Example using annotations

Figure 3.3 presents a desiderata descriptor that matches with the feature DBD exemplified

in Figure 3.2. We point out that these examples are artificial, in the sense that feature and

desiderata descriptors were both created by the same people. However, they serve the purpose

of illustrating the look-and-feel of DBDs.

There are many other domains where DBDs are applicable. We just point out a few exam-

ples, to illustrate their utility. In Online Transaction Processing Systems (OLPTs) applications

should require support for lots of small concurrent transactional workloads (e.g. debit/credit).

In Digital Libraries, applications may demand for corpora text-indexing and, for more sophis-

ticated libraries, multimedia indexing. In Web Portals there is an increasing demand for mul-

timedia delivery (audio, image and video streaming) and the basic operation is to serve pages.

Scientific Grid applications are interested in accessing voluminous data cubes and in number
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<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:dbd="http://www.lis.ic.unicamp.br/purl/DBD">

<rdf:Description rdf:about="http://www.lis.ic.unicamp.br/purl/DBD/DBD1">

<!-- metadata -->

<dc:creator>Rodrigo Dias Arruda Senra</dc:creator>

<dc:description>Desiderata DBD for an hypothetical application</dc:description>

<dc:identifier>DBD2</dc:identifier>

<dc:format>application/rdf+xml</dc:format>

<dc:type>

<rdf:Description>

<dbd:Type>Desiderata DBD</dbd:Type>

</rdf:Description>

</dc:type>

<dc:title>Desiderata descriptor of an hypothetical application</dc:title>

<dc:date>2010-01-05</dc:date>

<dc:language>EN</dc:language>

<!-- dimensions and values -->

<dbd:concurrency>Two phase lock</dbd:concurrency>

<dbd:storage>RDF triple store</dbd:storage>

<dbd:DML>RDQL</dbd:DML>

</rdf:Description>

</rdf:RDF>

Figure 3.3: Desiderata DBD Example

crunching.

In each of these situations, applications frequently may have to migrate from one DBMS to

another, and in all cases DBDs have to capture and express the applications’ requirements and

the DBMS capabilities in each of those domains.

3.4 Use Case

This section presents a hypothetical use case for DBDs. It is based on two real life projects in

agro-environmental planning - the WebMAPS [51, 52] and the eFarms [40] projects, both con-

ducted at the Laboratory of Information Systems of the Institute of Computing at UNICAMP.

The task to accurately create feature and desiderata DBDs is far from trivial. However,

manually performing a compatibility analysis between an application and cloud DBMS ser-

vices, and designing and executing a migration plan is not trivial either, not to mention time

consuming. The purpose of this use case is to illustrate a concrete scenario where DBDs are

useful, and show some of the difficulties involved in devising and applying DBDs. The DBD

negotiation process presents its own set of relevant research challenges that fall out the scope of

this use case discussion.

Consider a web application designed to support crop monitoring. This application handles

three types of data: satellite images, farm/county geometries (coordinate sets), and time series

of temperature and pluviosity measurements. Suppose the images and geometries are stored

in the filesystem (as NetCDF and Shapefiles respectively), while the temporal series are stored

in a relational database. The first prototype has been tested, and the application must now be

released on the Web to end-users (farmers and agronomers). User demand is expected to scale

from dozens to thousands of active sessions within a month’s period.



3.4. Use Case 21

Consider furthermore that we decided to adapt this application to use Internet-scale com-

puting platforms, but we must choose from the available cloud computing storage services such

as: Amazon’s SimpleDB, S3 and Relational; Microsoft SQL Azure; or Google Data Services:

Docs, Base and DataStore/BigTable.

The first challenge in this use case is to convey feature DBDs for these storage services – one

just needs to compare such services to see that there are countless factors to take into account.

There are, in fact, many dimensions to consider to properly describe each service – e.g., volume

restrictions, pricing, scalability, data model, security. Comparing Amazon’s SimpleDB and S3,

both services provide: high availability, low latency, a key-value data model, a REST-based API

and an access control lists (ACLs) security model. On the other hand, these two services differ

in terms of volume restrictions and pricing. For example, S3 focuses on large raw data items

(i.e. BLOBs), while SimpleDB focuses on small textual items (described by textual attributes)

with implicit indexing. Considering that the pricing model mimics the data model and the

latter is different amongst services, then the pricing model becomes harder to be compared

automatically amongst services.

All of Google’s Data Services provide: high availability, low latency and a REST-based API,

though they differ in terms of data model, access restrictions and specific APIs. Google Docs is

adequate to store textual documents and spreadsheets. Google Base is similar to Amazon’s S3

– it is a web storage service for structured content as a set of descriptive attributes. Differently

from S3, Google Base has no access restriction mechanisms, all items published are always

publicly available. Google DataStore is a non-relational key-value-based web service DBMS

that is part of the App Engine development stack, and it is more adequate for request-oriented

applications (optimized for read operations). BigTable is a sparse, distributed, persistent multi-

dimensional sorted map. It is the technology that lies underneath the DataStore service, and

was built with access restrictions that prevent careless or malicious users from causing a query

overload. For instance, no query can use an inequality operator (<,<=, >=, >, ! =) on more

than one property (a.k.a field) and the result sets are limited to 1000 entries.

Microsoft SQL Azure Database is a cloud-based relational database service built on SQL

Server technologies. It provides a highly available, fault tolerant, scalable, multi-tenant database

service. Amazon Relational Database Service (Amazon RDS) is a similar service, based on

MySQL technology. These relational DBMS in the cloud are cost-efficient, resizable (in capac-

ity), managed by the respective service providers (for time-consuming database administration

tasks).

Another challenge in this use case is to materialize the desiderata DBD that describes our

hypothetical crop monitoring web application’s DBMS needs. There are two options: build a

single desiderata DBD, or build three separate DBDs – one for each type of data handled by the

application, assuming that it will be easier to find DBMSs that will handle some, but not all data

types. In the former option, a single DBD would be expressing the wish to integrate different
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data sources in a single DBMS. In the latter option, three separate desiderata DBDs might

suggest that data sources will be kept within isolated repositories. Moreover, it is important

to reify several application requirements, such as access patterns (read and write) and indexing

needs, relationships between its data types, and data model used by the data structures to be

persisted.

3.5 Related Work

As pointed out in the introduction there are several initiatives to foster interoperability between

applications and DBMS, from n-tiered architectures, passing through database federations, and

reaching web services and cloud computing.

DBDs provide a basis for self-describing DBMS, and as such can be seen as a means of

structuring (unstructured) facilities of these DBMS. As such, they can be used within the so

called UIMA (Unstructured Information Management Architecture) 1. Unstructured informa-

tion may be contrasted with the information in classic relational databases where the intended

interpretation for every data field is explicitly encoded in the database by column headings –

similar to a schema. Unstructured information represents the largest, most current and fastest

growing source of knowledge available to businesses and governments worldwide. For unstruc-

tured information to be processed by applications that rely on specific semantics, it must be

first analyzed to assign application-specific semantics to the unstructured content. The added

headings structure provides an initial support to deriving such semantics. By the same token,

DBDs provide a high level description of a DBMS (and of application requirements), in which

attributes (dimensions) can be used to derive semantics.

We believe that DBDs are specially well suited to the cloud computing scenario [77]. The

Open Cloud Manifesto [2] states that: (i) The challenges to cloud adoption are addressed

through open collaboration and the appropriate use of standards. (ii) Cloud providers must not

use their market position to lock customers into their particular platform. (iii) Cloud providers

must use and adopt existing standards. In this scenario, DBMS can be seen as a special kind of

provider within the cloud, and DBDs can describe their features, thereby enabling applications

to look for the appropriate databases, with help from the repositories.

The Claremont Report on Database Research [4] states that a significant long-term research

goal is to transition from managing schemata-based structured data to the managing of struc-

tured, semi-structured and unstructured data spread over many repositories in the enterprise and

on the Web. This is referred to as the challenge of managing dataspaces. Again, DBDs can be

seen as a kind of high level descriptor of dataspaces.

Federations and integration are two facets of the problem of enabling applications to access

1http://docs.oasis-open.org/uima/v1.0/os/uima-spec-os.html
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heterogeneous data sets. Federations [7, 24, 30] allow applications to access distinct DBMS via

some kind of mediation layer, which concentrates the ”intelligence” needed to transform an ap-

plication request into a sequence of requests to federation members. The integration approach,

on the other hand, assumes that data or schemata have to be adapted, in order to provide a uni-

fying view to all applications. In the same vein, Haas has introduced a model for information

integration [22, 23] that consists of four phases: Understanding, Standardization, Specification,

Execution. The Execution phase is divided in: Materialization (ETL, replication), Virtualization

(Federation), and Search. We believe that DBDs are orthogonal to all of these phases, mean-

ing that they could be used to describe them as a whole or separately. Our initial focus is not

on schema integration, nor data cleansing, nor self-tuning [36] DBMS – rather, DBDs offer a

means for DBMS self-description. In this sense, they can be used by mediators in a federation.

Last but not least, web services [12,14] are another means to allow flexibility in application

execution. Web services can encapsulate a DBMS, and serve as a layer that receives requests

for data and returns the appropriate data. In this sense, instead of looking for the appropriate

feature DBD, an application could look for appropriate services, and request for data invoking

these services, according to standard protocols (e.g., SOAP). Finding the appropriate services

would also require looking for service directories (as opposed to looking for matching DBDs

in a DBD registry). This offers the advantage of not requiring the specification of feature and

desiderata DBDs, nor requires negotiation; on the other hand, this demands extending web ser-

vice capabilities beyond those normally found – e.g., to accomodate versioning or concurrency

requests.

3.6 Conclusions and future directions

This paper presented the concept of database descriptors (DBDs). DBDs could be the founda-

tional bricks to build dataspaces, becoming an indispensable tool to allow applications to switch

across DBMSs, in a loosely coupled scenario.

DBDs can thus contribute to help to commoditize data services in the cloud, by supporting

dynamic switching between DBMSs and applications. Moreover, they can also be seen as a

different way of tackling the information integration problem, from a connectivity point of

view, in which applications and DBMSs can negotiate their coupling.

This work is part of our initiatives towards interoperability in an eScience context. Future

directions include: to create a catalog of concrete feature descriptors, to design a descriptor

negotiation framework, to do a proof-of-concept implementation, with real DBMS products

and services.



Chapter 4

Evaluating, Reorganizing and Sharing

Digital Information Hierarchies

4.1 Introduction

The data deluge is a reality and is here to stay [8]. This presents challenges at several levels –

from storage, to retrieval and visualization. This paper is concerned with the problem of digital

information organization, as a means to cope with these issues. Knowing that organization is

a heavily overloaded term, we define it as a pattern – the logical structure present in the way

information is partitioned into components. In this paper, we restrict our analysis to the topic

of hierarchical organization of digital information. Hierarchical organizations are a pervasive

approach towards understanding and filtering information, inside and outside the digital world.

We are particularly interested in the hierarchical organization of digital information, because it

is a widespread pattern used to organize any kind of digital content: e.g., files, emails, book-

marks, databases, applications.

We define a hierarchy for organizing digital objects as a directed acyclic graph (DAG)

H(V,E). V is a finite set of nodes representing information units (IUs). E is a finite set of

directed edges, where each edge ek ∈ E represents a relation of subordination between two

nodes vi, vj ∈ V so that eij = {vi, vj} ≡ vi → vj . IU nodes can be any digital artifact per-

forming either the role of aggregator vagg ∈ V (e.g. folder, mailbox, or web site) or the role of

content vcnt ∈ V (e.g. file, email message or web page). Notice that an IU can assume either

or both roles depending on the context of use. Figure 4.1 depicts the notation we adopted to

describe hierarchies, making explicit the distinction between aggregator and content roles.

We furthermore define the context in which a hierarchy is created/used as a synonym of the

task which a given user (or group) performs when organizing information. For instance, email

messages are organized by subject for the task/context of “reading only priority topics”, or they

are organized by author for the task/context of “gathering someone’s point of view”.

24



4.1. Introduction 25

Figure 4.1: Specialized graph notation to describe hierarchies.

The utility of hierarchies to humans is restricted by our information processing limits. In

1956, George Miller published the famous 7±2 rule [46], showing that our limits of absolute

judgment (i.e. categorization) are far narrower than our limits on relative judgment (pairwise

comparison). For instance, given a single sensory dimension (e.g. size) and a large set of

objects, humans have an ample spectrum of discrimination (fine grain discretization) of these

objects along that single dimension. On the other hand, when an object is given in isolation, we

are capable to categorize it in approximately just 7 sensory dimensions.

Given these cognitive restrictions, the usefulness of hierarchies is evident: they reduce the

information space into more general chunks. Any hierarchical content management system

provides aggregators (e.g. folders and directories) so that users can build their own hierarchies.

The problem is that even with the adoption of hierarchies, the digital information space we

handle is unmanageable. Manual organization of our files and data is error-prone, not only

because of their volume, but also because it is hard to balance between redundancy (i.e. copies

created in distinct folders for easy access) and consistency (i.e. keep copies in sync). One

explanation for this phenomenon is that as the volume of information grows, the quality of

manually created static ad hoc hierarchies decreases. Tools and environments to help content

organization ultimately lead to the same problems because they are configured and manipulated

by us following the hierarchical paradigm. Even digital libraries, which support more flexible

retrieval facilities, are not free from cluttered or faulty criteria imposed by digital librarians and

developers.

Our contributions concerns the following factors related to hierarchical organizations: (i)

content is innately multi-faceted. (ii) while building a hierarchy, the creation of a new aggregator

node or a new edge (i.e. categorization of content) is guided by a particular content’s facet
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relevant for a given task; (iii) the semantics and rationale behind a given organization (i.e.

the task the user had in mind while choosing content facets and structuring aggregators) is

not usually made explicit and materialized, thus the organization’s structure is not subject to

sharing or reuse; (iv) the hierarchical organization of content does not change in response to

context changes (i.e. when the user has to perform a different task than the one the hierarchy

was created for). These will be examined in detail in section 4.2. The perception of these factors

led us to reason about improving hierarchical organization, ultimately seeking more effective

content management. Thus, the main contributions are the following:

• discussion of challenges concerning hierarchical organization of digital content, contrast-

ing with related work – sections 4.2, 4.3 and 4.4

• formalization organographs – an approach to meet these challenges 4.5

• validation via an implementation, for a specific case study – 4.6.

We point out that the conceptual framework we propose in this paper is not restricted to

textual content, but this paper is focused in this type of content.

4.2 Limiting Factors Leading to Poor Hierarchical Organi-

zation

We point out some factors that are responsible for poor hierarchical organization. First, the

categorization principle behind a given hierarchical organization is often hidden. In other words,

does not exist explicit metadata associated to a given hierarchy that: (i) explains the existing

aggregators (i.e. defining hierarchical levels) and their subordination relationships; (ii) states

categorization criteria indicating to which hierarchical level(s) a content belongs; (iii) serves as

input for coherence validation mechanisms or automatic categorization tools. For example, in

our email or filesystems, folders are created manually in an ad hoc fashion with just a label to

serve as a clue for the categorical intent of such aggregator. At creation time, a single folder

label seems sufficient as a categorization dimension because we are immersed in some task (e.g.

separate professional emails from personal ones). Since content is inherently multi-faceted, the

act of placing an IU (e.g. file) inside an aggregator node (e.g folder) is equivalent to choosing

one facet of a multi-faceted object because it is relevant in the context of the current task.

That leads to the second factor, that we often mistake the transient relationship between

information unit and aggregator for a permanent bond between content and category. The very

nature of categorization is to abstract away many facets (i.e. properties) in favor of a few facets

that together reduce the uncertainty among alternatives. Through categorization, we build ab-

stractions from concrete IUs, by filtering out some facets and making others more evident.
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This filtering process is guided by the relevance of the chosen facets for some task we have in

mind. Therefore, we believe computational systems for information organization should shift

the content-driven approach to a task-driven one. Traditional relational database management

systems are good examples of the content-driven approach, where the database schema (i.e.

content structural organization) is the first-class citizen and queries (i.e. context) are an af-

terthought. In opposition, NoSQL databases are an example of a context-driven approach, were

the rigidity of structure is sacrificed in favor of task flexibility.

Third, aggregators’ relations (i.e. the set of edges E) are static. Suppose a person has a body

of information organized hierarchically. There comes a time when this person is faced with a

new task, for which different facets would provide better filtering to build adequate abstractions.

At this time, the hierarchical organization built previously for a prior task may be inadequate for

the new task’s information retrieval purposes. For example, instead of separating professional

from personal email, we may want to cluster all messages from someone who is both a close

friend and co-worker.

Another factor is the mixing of subsumptive containment with compositional containment

in the same hierarchy. In subsumptive containment, IUs are subordinate to each other from

general-to-specific or is-A relationships. In compositional containment, IUs are subordinate

to each other from part-of or has-A relationships. This is one of the factors that leads to in-

voluntary content duplication within a single hierarchy, because the same content IU might be

subordinated to different aggregators – one subsumptive and the other compositional.

4.3 Related Work

As mentioned before, our proposal applies to any kind of digital content, but this paper concen-

trates on exploiting textual content. In this context, our research is connected to architectures

and algorithms for text categorization, clusterization and information extraction. Our survey in

this section serves as a basis for understanding our proposal and its implementation. According

to Qi’s taxonomy of classification problems [56], our research interests lie within hierarchical,

multi-class, topical (subject) and functional classifications. Text categorization, text clustering

and information extraction are the foundations upon which we seek to evaluate, reorganize and

ultimately share digital hierarchical information. In a recent article, Blei [9] confirms the up-to-

dateness of our goals, in which he proposes probabilistic topic models to enhance the way one

organize, browse and understand information. Blei uses latent dirichlet allocation to compute

hidden variables (i.e. topic structure) from the observed variables (i.e. words of the documents),

based on the bag-of-words assumption where the order of the words is unimportant.

Our ultimate goal is to convey shareable organization criteria. Popitsch et al [55] propose

an ad-hoc file sharing based on Linked Data principles, allowing users to interlink, annotate

and browse files mounted from multiple file systems as web resources. Fernandes et al. [17]
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describes an ontology-based knowledge system for creating and sharing users’ personal ob-

jects, where users specify a local ontology to organize and publish their personal objects in

community of practices. Hua et al. [25] propose SmartStore – a decentralized semantic-aware

metadata organization, which exploits semantics of files’ metadata to aggregate correlated files

into semantic-aware groups by means of information retrieval tools. Spyns et al. [69] describe

approaches to ontology engineering, as related to the description of knowledge about a given

domain. In addition, research about folksonomies and social tagging [35] is also relevant to our

work, given the effectiveness of collaborative tagging systems for describing resources [75].

4.3.1 Text Classification or Categorization

Text classification or categorization is a sub-domain of information retrieval, whose literature

dates back to the ’60s. It consists in the activity of labeling natural language texts with thematic

categories from a predefined set. In the first 30 years, the main approach to text categorization

was based on the knowledge engineering paradigm, where expert classification knowledge is

manually encoded in a set of rules. From the ’90s until now, the machine learning paradigm

gained increasing popularity. Machine learning consists in a general inductive process to au-

tomatically build text classifiers by learning features of interest from a pre-classified document

set.

Schutze et al. [63] demonstrated that statistical classifiers could perform better that relevance

feedback, a result that fostered automated text classification. Later, Sebastiani [64] presented

approaches to automated text classification that fall within the cost-effective machine learning

paradigm, also discussing the important sub-problems of document representation, classifier

construction, and classifier evaluation. On the issue of performance, Sebastiani concluded that:

“Boosting-based classifier committees, support vector machines, example-based methods, and

regression methods deliver top-notch performance.” in comparison to batch linear classifiers

(e.g. Rocchio [29]) and probabilistic classifiers (e.g. Naive Bayes [43]). These results were

confirmed by similar experimental findings reported by Yang and Liu [76]. In Sebastiani’s

survey, we single out the work of [16], [34] and [73], because they explored the hierarchical

structure of the category set.

Kiritchenko et al. [32] dealt with hierarchical categorization, and introduced the notion of

consistent classification. Gates and Teiken [20] described a system for the construction of

taxonomies which yielded high accuracy for automated categorization systems. Dekel et al. [15]

formulated the hierarchical classification task as an optimization problem with varying margin

constraints, and described new online and batch algorithms for solving it.

Pant and Srinivasan [49] surveyed categorization approaches that could be applied to topical

web crawling. Qi et al. [56] provided a survey on the more recent and specific problem of web

page classification, that posed different choices on the matter of document representation.



4.3. Related Work 29

4.3.2 Text Clusterization

In the field of Text Clusterization, we are interested in conceptual clustering as a means towards

evaluation and reorganization of digital information hierarchies – see section 4.5. As defined

by Michalski [45], conceptual clustering is an unsupervised machine learning task where a set

of object descriptions are grouped on clusters by an evaluation function. Each of these clusters

should aggregate objects that fit the same conceptual description, thus becoming a mechanism

for data summarization. Real world approaches to conceptual clustering made the assumption

that not all inputs would be available a priori. That led to the development of incremental object

assimilation as described by Fisher [18]. Incremental algorithms consume a stream of objects,

always adapting to changes in context.

Moreover, the conceptual clustering task differs from classification because besides dis-

covering an appropriate class for an uncategorized object, it must also discover an appropriate

concept for the class. Cluster quality depends on the adequacy and coverage of the concept

assigned to a cluster in relation to the objects that belong to the cluster. This differs from a

numerical taxonomy [68], where cluster quality is only based on the nature of the objects and

their similarities. Therefore, solutions for conceptual clustering might be used to evaluate and

reorganize hierarchies automatically.

Jain et al. [28] introduce the five relevant aspects of any clustering technique, namely: data

representation, distance measure, cluster construction algorithm, data abstraction and evaluation

criteria. Mishra [47] provides a more in depth description of algorithms for classical clustering

objectives. Typical clustering methods are: self-organizing maps [33], agglomerative-divisive

hierarchical clustering [38] and partition-based clustering [6]. Bloehdorn et al. [10] discuss how

ontologies can be used to improve results on text clustering and classification tasks.

4.3.3 Information Extraction

Information Extraction (IE) plays a key role in the reduction of dimensionality of textual doc-

ument representation prior to classification or clustering. The literature about IE is extensive,

being present in areas such as natural language processing, machine learning, databases and

ontologies. Named entity recognition is a subproblem of IE in which specific parts of free text

should be located and categorized. Examples of named entities are person, organization, date,

phone number, and currency. The usual approach for named entity extraction is to code wrap-

pers, specialized software that is either rule-based or mining-based. In the former, a domain

expert creates a set of explicit rules (e.g. regular expressions) to identify patterns that match

with named entities. In the latter, a supervised machine-learning algorithm is trained over an

annotated dataset to recognize the same patterns.

Laender et al. [37] presents a short survey of web extractors, introducing a taxonomy

for classifying the studied tools according to the technique employed for wrapper generation.
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Crescenzi et al. [13] present an unsupervised learning algorithm for wrapper generation re-

stricted to recognize prefix markup languages usually found in HTML pages. Irmak et al. [27]

propose a novel framework for the detection of semi-structured entities (e.g. phone, date and

time) over 5 different languages with high precision and recall. Turmo et al. [71] present an in

depth survey about adaptive IE, concerned with applying machine learning to increase domain

independence for IE applications.

4.4 Exploiting Hierarchies

Our methodology and framework support three important aspects of hierarchical organization:

(i) they allow the dynamic reconfiguration of a hierarchy, reorganizing aggregators on the fly,

according to the user’s work context; (ii) they allow users to explicitly define their content

clustering criteria, thereby rendering hierarchies shareable and reusable; (iii) they provide eval-

uation metrics whereby the coherence and consistency of a hierarchy can be measured and

distinct hierarchical organizations can be compared, so users can evaluate the suitability of a

given organization to their goals. Let us now examine in more detail each of these aspects.

Our first goal is to allow users to evaluate the coherence and suitability of their hierarchi-

cally organized content. In order to achieve this, we need to define coherence and suitability.

We say that a hierarchy H(V,E) is coherent if every edge e ∈ E satisfies a predicate that repre-

sents explicitly one of the categorization criteria for a given task. The task T defines the context

under which hierarchy H was created.

Let ecntij ∈ E denote an edge that links an aggregator node vaggi ∈ V to a content node

vcntj ∈ V , and eaggkw ∈ E denote an edge that links two aggregator nodes vaggk , vaggw ∈ V . Then,

the validity of the relations (i.e. of the set of edges E) is defined by two boolean predicates:

• a categorical predicate FCat(e
cnt
ij ) ≡ FCat(v

agg
i , vcntj ) returns true if the content node vcntj

is a child of the aggregator node vaggi , under the corresponding categorization criterion or

false otherwise.

• a hierarchical predicate FHil(e
agg
ik ) ≡ FHil(v

agg
i , vaggk ) returns true if there is a direct

subordination relation (e.g. compositional such as holonymy/meronymy, subsumptive

such as hyperonym/hyponym) between nodes vaggi and vaggk , otherwise returns false.

Thus, in the scope of a given task T , a hierarchy H is coherent if all edges are valid, i.e., the

pre-defined predicates FCat and FHil are true for all edges in the DAG H(V,E). If any of these

predicates fails, then the hierarchy is said to be incoherent.

A hierarchy H is suitable for a given task T if:

1. it is coherent;
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2. it is stable: every time T is performed, there are no changes in V agg (i.e. the set of all

aggregator nodes) and no changes in Eagg, though changes in leaves V cnt (i.e. the set of

all content nodes) and their respective edges Ecnt are allowed;

3. there is strong similarity between siblings, i.e. given a similarity function σ(vi, vj) in

the context of the task T , if vi and vj are siblings then σ(vi, vj) > ε, where ε is a lower

threshold to consider two nodes similar;

4. there are no unintentional duplicate nodes;

5. cardinalities in H lie within cognitive limits (the 7±2 rule [46] is a suggestion, actual

limits should be user configurable), meaning that there are not too many siblings under

the same vagg nor too long paths from the root to any given node.

The result of the evaluation process can be used to improve H without changing V cnt.

Moreover, it can be used to check the suitability of H to a task T .

Our second goal is to allow users to dynamically reconfigure hierarchies in response to task

switching. In this case, users are concerned with their own organizations for their own pur-

poses, without sharing in mind. Regular filesystem folders, application menus and navigational

hyperlink structure of web sites are examples of different degrees of rigidness and immutabil-

ity. For example, a researcher’s email database can be used to: elaborate a project proposal,

compile the biography of a colleague, re-engineer a course’s pedagogical program or compile

material for a book. Each of these tasks can be performed upon the same corpus of information

units (i.e. content nodes), and yet each task can profit from a different hierarchical organization.

Why should one task be privileged in detriment of others ? Instead of creating a single concrete

hierarchy, we seek to organize content in a way that dynamically specified hierarchies (e.g. as

‘views’ in relational databases) can be built on-the-fly for the task in context. This means re-

defining the sets Eagg and Ecnt. This reorganization may also change V agg by discarding or

introducing nodes. Usually V cnt remains the same, but may be reduced in the process due to

discarded content nodes irrelevant to the present task.

Our third and last goal is to allow users to share the way they organize information by

making their (now multiple) hierarchization criteria explicit. Three aspects need to become

explicit: (i) FCat that represents the relation between aggregator nodes and their subordinate

content nodes (i.e. the set Ecnt); (ii) FHil that represents the relations of subordination in a

hierarchy of aggregator nodes (i.e. the set Eagg); (iii) and an identifier for the task T that acts

as a namespace contextualizing the relations (i) and (ii). If these three aspects can be specified

unambiguously, we have a digital artifact that is explicit and shareable.
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4.5 Organographs

An ‘organograph’ [65] is an artifact to make explicit how to organize information in the context

of a particular task. In more detail, an organograph forg is a graph transformation function that

takes an input hierarchy Hin(V,E) and produces an output hierarchy Hout(V
′, E ′).

4.5.1 Applicability

There are three scenarios to apply organographs: evaluation, reorganization and sharing. Con-

sider two acquaintances: Alice and Bob. In the first scenario, Alice evaluates if some hierarchi-

cal collection of hers (Halice) is indeed well-organized with respect to a task. By well-organized

we mean: Halice(V,E) adheres to the organizational criteria Alice had in mind, the structure of

Halice lies within reasonable cognitive limits, similar content is grouped together, any duplica-

tion in V scattered around Halice is intentional, not accidental.

In the second scenario, Alice is satisfied with Halice to perform task T1. However, when

Alice needs to perform some other task T2, she finds out that Halice is unsuitable because

(V agg
in , Eagg

in ) do not provide adequate clustering of V cnt
alice for the exploratory needs of T2.

In the third scenario, suppose Alice and Bob are both researchers with intersecting interests.

Bob gives Alice free access to his content collection Hbob, but Alice wants to reorganize Bob’s

content collection V cnt
bob using (V agg

alice, E
agg
alice) and then browse it as if it was her own.

Evaluation

In the first scenario, we are interested in evaluating the organizational quality of Hin.

As an example, let MAX SIBLINGS and LONGEST PATH respectively be upper thresh-

olds for the outdegree of an aggregator node and the length from the root to the farthest leaf in a

hierarchy. These constraints are inspired by the 7±2 cognitive rule [46]. Let 0 ≤ σ(vcnti , vcntj ) ≤

1 be a function that computes the similarity of two content nodes in a hierarchy. Let ε be a lower

bound threshold of similarity for which if σ(v1, v2) ≥ ε then v1 and v2 are considered similar.

The evaluation of Hin(V,E) could indicate the following issues in need of repair:

• ∃v ∈ V agg where outdegree(v) > MAX SIBLINGS;

• ∃path(root, vagg) where length(p) > LONGEST PATH;

• ∃vcnti , vcntj for which siblings(vi, vj) ∧ (σ(v1, v2) < ε);

• ∃σ(vcnti , vcntj ) > ε then vcnti and vcntj are considered duplicates, even if they are not bit-

by-bit identical.
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We point out that intentional duplicates are not considered an organizational error. In case

of poor evaluation results, an appropriate forg can be tailored to transform Hin into a different

Hout that yields better evaluation results for the same criteria.

Reorganization

In the second scenario, consider a hierarchy Hin built for task T1 that needs to be reorganized

or refactored to become suitable to perform task T2. So, it suffices to construct the organo-

graph forg that captures the needs of T2, where Hout(V
′, E ′) = forg(Hin(V,E)) is the desired

refactored hierarchy. The challenge is to translate semantic aspects of T2 into the mechanisms

available for specifying an organograph that will effectively transform Hin into Hout.

We illustrate this with a concrete example: a collection of papers (i.e. articles) is organized

by topic → author → year → papers. This hierarchy is useful to the task of identifying the re-

cent publications of some author under a given topic. Now, suppose the new task is to find what

a given author is recently writing about. It would be more appropriate to have the collection

reorganized as author → year → topic → papers. In this particular example, forg preserves

the nodes but defines a new set of edges while transforming Hin → Hout. The transformation

encapsulated in forg can express any composition of basic operations on nodes and edges, such

as to preserve, discard or create them. The portion of Hin that is preserved or changed in Hout

is dictated by the task transition T1 → T2.

Sharing

In the third case, two or more groups of people that need to perform the same task T3 share

either the structural organization (Hagg) or content (Hcnt). Sharing can be seem as a particular

case of reorganization, where (V agg
out , E

agg
out ) comes from a different collection than the one that

provided V cnt
out .

In other words, consider two distinct user groups, where Group1 owns H1(V1, E1) and

Group2 owns H2(V2, E2). Now, Group1 wants access to V cnt
2

. Sharing means that Group1
needs to create a graph Hout to access V cnt

2
. The organograph to be constructed needs to

consider both V cnt
2

and aggregates Eagg
1 and V agg

1 , and construct Ecnt
out , using a categorization

algorithm such as the ones discussed in Section 4.3.

Section 4.6 provides a concrete detailed example to illustrate this scenario. Notice that if

the groups share the same unchanged collection (i.e. both structural organization and content

H(V,E) are shared), then organographs are not necessary because no reorganization takes place

(i.e. forg is an identity transformation).
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Figure 4.2: Framework for instantiation of forg

4.5.2 Organograph Instantiation

In order to apply organographs to transform hierarchies, we need to describe their instantiation

and execution.

The instantiation of an organograph consists of defining a name, a purpose and a transfor-

mation. The name can be any textual label; ideally, the name should be an Uniform Resource

Identifier (URI), solving the problems of protocol, unicity, location and identification. The

purpose is a textual description documenting for what tasks this organograph is suitable, and

optionally containing semantic annotations and markup to be ‘understandable’ by both humans

and machines. The transformation forg comprises FHil and FCat, thereby also including navi-

gational and feature extraction mechanisms.

FHil defines how to build Eagg
out , establishing the structural relationships for V agg

out . In a valid

organograph, FHil must cover every vaggi ∈ V agg ⊂ Hout.

FCat establishes how to build Ecnt
out . FCat can be defined by choosing a combination of

suitable pre-existing classifiers and information extraction algorithms. These information ex-

tractors will be used to single out the relevant facets from V cnt
in . FCat may not consider all

content nodes in Hin – i.e., the organograph will select the information relevant for the task at

hand. The classifiers will categorize those extracted facets into appropriate categories that cor-

respond one-to-one with V agg
out nodes. If the nature of the chosen classifiers is supervised, then

the respective knowledge derived from training sets must also be specified and encapsulated in

the organograph. This feature allows users to share their categorization schemes by using their
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own collections as examples, not necessarily sharing their content as well.

As a result of this creation process, the actual instantiation of forg can be defined as a 4-tuple

<URI, description, FCat, FHil >. This tuple represents the core structure of an organograph

instance. For the sake of simplicity, we assume that forg embeds a proper traversal mechanism

(iterator) suitable to traverse the input hierarchy (Hin) given its location (i.e. URI). This traver-

sal parameter can be factored out in a concrete implementation, leading to greater flexibility and

decoupling the nature of the transformation from the content itself. There are many possible

choices for the actual specification of an organograph, such as: XML, RDF or even a new do-

main specific language (DSL). Discussing tradeoffs and suitability of each choice lies outside

the scope of this paper.

Figure 4.2 portrays a possible set of experts and algorithms needed to create organographs.

It shows that in several cases many experts must combine suites of algorithms to be invoked

in the required transformations. Such diversity of roles and algorithms is an evidence of how

regular users could benefit from organographs instead of performing ad-hoc and manual cate-

gorizations (where a single person ought to perform all roles simultaneously). One benefit of

using organograph instances is to empower users with this collective expertise applied to their

own organizational needs. For instance, experts in Machine Learning (ML) provide classifier

algorithms to be used in the definition of FCat. Domain experts provide ontologies from which

FHil and V agg
out can be derived. Specialists in Natural Language Processing (NLP) provide infor-

mation extraction tools, and the algorithms to compose the similarity comparison function σ .

Moreover, crawlers and iterators are required to render content uniformly accessible, consider-

ing that it can be stored in all sorts of repositories or databases. The final role is the organograph

creator, who assembles several of these components into forg to transform Hin → Hout in the

context of task T .

4.5.3 Organograph Execution

The execution of an organograph instance is the act of transforming one hierarchy into another.

The input hierarchy Hin is specified by a URI, solving the location problem for local and remote

hierarchies transparently. Notice that Hin can be any digital artifact for which the concepts of

aggregators and content nodes can be mapped forming a DAG, such as: a local filesystem

subtree, a remote filesystem storage in the cloud, a Website, a mailbox, a collection in a NoSQL

database. The choice of traversal mechanism is not only a requirement for the organograph to

be able to browse the input hierarchy Hin, it is also a means for the organograph user to define

the information subset of interest.

The output hierarchy Hout produced by the execution of forg must be published somewhere.

Therefore, we adopt another URI parameter to specify the publish location of Hout.

All of those presuppose the existence of an execution engine, capable of: (i) understanding
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Figure 4.3: Organograph Execution

the specification of the organograph; (ii) traversing Hin through the given traversal mechanism;

(iii) performing the transformations specified by the algorithms encapsulated in forg; (iv) ex-

porting Hout to the desired output URI;

Figure 4.3 sketches the execution of an organograph. First, the user chooses a source hierar-

chy Hin. A proper iterator is used to visit all nodes belonging to V cnt
in , each of which is assigned

a unique ID. Information extractors select only the facets considered relevant in the context of

task T . Next, FHil defines the edges Eagg
out that connect V agg

out , and FCat defines the edges Ecnt
out .

The execution of forg is depicted as a workflow that produces as a result the output hierarchy

Hout. This workflow will invoke the appropriate algorithms, as defined by the experts – see

Figure 4.2

4.6 Experiment: Using ACM’s CCS98 to reorganize a pri-

vate collection of papers

We now present an experiment that illustrates the use of organographs as a means to convey

reusable organizations. Our goal was to test the organograph conceptual framework through

a concrete implementation. We started from an input collection of computer science papers
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Figure 4.4: Original paper collection Hinitial with ad-hoc organization

(Hinitial), gathered and organized 1 by the first author of this paper in an ad hoc fashion. This

collection was transformed into another collection Hmine, where all content nodes (scientific

papers) were transformed into a uniform textual format. Our goal is to reorganize the papers

from Hmine (i.e. V cnt
mine) by topic, according to the ACM Computing Classification System –

CCS98 [3]. Let Hacm denote ACM CCS98; the output reorganization will reuse just V agg
acm and

Eagg
acm.

In order to conduct this experiment, we developed a tool, which we called Organicer, that

supports visualization of hierarchies, their evaluation (by computing several metrics on a hier-

archy) and the construction of organographs (by offering a suite of different algorithms that can

be invoked and composed to execute forg).

4.6.1 The Organicer Platform

We have implemented a web-based software tool, called Organicer, that served as platform to

perform the experiment. Organicer allows the user to fetch digital collections from URIs, and

execute organographs to reorganize and visualize them. The tool has a plugin-based architec-

ture to ease the development of extensions, such as new collection iterators, machine learning

1The input collection was organized prior and unaware of this experiment.
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Figure 4.5: Collection Hmine (after transformation from Hinitial)

algorithms and visualization renders.

Organicer is implemented in the Python programming language, and reuses external mod-

ules (provided by third parties) for: (i) numerical computations, plotting and statistics (NumPy,

SciPy and Matplotlib); (ii) natural language processing (NLTK); (iii) topic modeling algorithms

(LSI and LDA in Gemsim [58]); (iv) visualization algorithms (InfoViz and D3 javascript toolk-

its);

In this experiment, Organicer used two iterators: one for the local file system holding the

input collection of papers, and another to fetch and parse CCS98 definition directly from the

Web. Using the plugin architecture we foresee the creation of iterators to allow the reorganiza-

tion of web pages and files stored in the cloud (e.g. data containers such as: Google Docs/Drive,

Dropbox, Evernote, Delicious).

4.6.2 Transforming Hinitial into Hmine

The original paper collection Hinitial, depicted in figure 4.4, contained |V agg| = 420 directo-

ries and |V cnt| = 1739 pdf files. It was transformed into Hmine through an organograph that

converted V cnt
pdf → V cnt

txt , and preserved V agg, Eagg, Ecnt if possible. Invalid content (i.e., files

that could not be converted) were discarded, thereby eliminating edges from the original hier-
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Figure 4.6: Collection Hacm derived from ACM CCS98

archy. Notice that this kind of reorganization only eliminates edges and content leaves from a

hierarchy, it does not really re-organize the collection.

Three conversion mechanisms (pdftotext, pdfbox, pypdf) were evaluated, they had the same

performance, failing to convert 416 pdf nodes (24% of original V cnt) - the set of discarded

nodes became V cnt
discarded. This set was linked to a subset of Ecnt that was also removed. Tran-

sitively, the set Ecnt
discarded was linked to a subset V agg representing empty directories that were

removed as well. The result, hierarchy Hmine, depicted in figure 4.5, contained |V agg
mine| = 72

and |V cnt
mine| = 1323. All 1323 V cnt

mine nodes were manually annotated to reliably identify the the

paper. These annotations would be used later in the experiment to cross-validate the classifica-

tion.

4.6.3 Initial evaluation

By choosing CCS98 we gained a well-thought hierarchical content organization that is accepted

by the scientific computing community, and suitable for the task of topical classification of the

computing literature. Moreover, we can use the ACM classification (i.e. index terms) from the

ACM Digital Library service, and cross-validate the performance of the classification algorithm

encapsulated in the organograph.
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Table 4.1: Statistics about the structure of the hierarchies computed by Organicer

Hmine Hacm

|V agg|: total agreggator nodes 72 369

|V cnt|: total content nodes 1323 1323

max |Eagg| 42 15

mean |Eagg| (µ) 0.98 0.99

std. deviation |Eagg| (σ) 5.13 2.66

longest path in H(V,E) 4 4

µ: mean path in H(V,E) 2.35 3.46

σ: std. deviation path 0.84 0.92

Table 4.6.3 compares the structural statistics between Hmine and Hacm, showing that ACM

CCS98 provides a more balanced content distribution. Organicer allows visual inspection of

these results by rendering the hierarchies in each stage with an hyperbolic tree layout. Fig-

ure 4.4 represents the original paper collection. Figure 4.5 shows Hmine. Figure 4.6 shows the

aggregation nodes of Hout and Hacm – both have the same visual representation, because we

did not plot V cnt nor Ecnt.

4.6.4 Sharing the organization of Hacm – reorganization of Hmine

The experiment consisted in reorganizing the ad hoc Hmine paper collection by topic, according

to the ACM CCS98, represented by Hacm. To do this, we built an organograph forg to transform

Hmine into Hout, satisfying the following: V agg
out ⊆ V agg

acm and Eagg
out ⊆ Eagg

acm and V cnt
out ⊆ V cnt

mine.

The code in Algorithm 1 gives an overview of the organograph used to construct this exper-

iment. We have used the Python language syntax because it is terse and resembles pseudocode.

Lines 2-18 define the organograph forg, while lines 20-22 represent the organograph execution.

Line 5 obtains the definition of ACM CCS98. Lines 6-11,17 define the FCat component, while

line 15 defines the FHil.

We point out that this example shows one possible materialization of the organograph built

for this specific experiment. Other implementation materializations can be conceived, though

alternatives for representation and coding of organographs are not discussed here.

forg was built to apply a Naive Bayes classifier over the titles in Hmine papers.

Our approach tried to imitate what a user does while fetching a document from the web and

immediately save it in a local folder. Our assumption for this scenario is that many classification

actions performed by users are carried out without deep analysis of the paper contents, and often

just the title is examined. The classifier considered 11 classes corresponding to the 11 first-level

topics from ACM CCS98. The training set for each class (e.g. B. Hardware) was the union of

labels from its children nodes in Hacm. The leaves in Hacm contained additional classification
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Algorithm 1 Possible materialization of forg
01 @organograph

02 def forg_ccs98(self, input, output):

03 self.id = new_uuid() # ff7d8e21-4226-11e2-b2f1-109add6b426c

04 self.description = "docs by ACM CCS98"

05 ccs98 = extract("http://www.acm.org/about/class/1998/ccs98.xml")

06 trainset = []

07 for category,words in nlp_clean_titles(ccs98.Vcnt.paths):

08 for w in words:

09 trainset.append((make_feature(w), category))

10

11 classifier = NaiveBayes(trainset)

12

13 out = collection(output)

14 # FHil - implicitly defines out.Vagg

15 out.Eagg = ccs98.Eagg.Level[:1]

16 # FCat - implicitly defines out.Vcnt

17 out.Ecnt = classifier.classify(input)

18 return out

19

20 # Organograph Execution

21 Hin = collection("file:///some/local/dir/docs")

22 Hout = forg_ccs98(input=Hin, output="rodsenra@dropbox:/any_folder")
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Table 4.2: Accuracy of forg classification according to ACM DL

Class -self -self-A -self-A-D-I-G-K

A. General Literature 0.39 - -

B. Hardware 0.37 0.38 0.72

C. Computer Systems Organization 0.37 0.39 0.72

D. Software 0.38 0.42 -

E. Data 0.37 0.46 0.72

F. Theory of Computation 0.40 0.41 0.75

G. Mathematics of Computing 0.37 0.39 -

H. Information Systems 0.28 0.29 0.11

I. Computing Methodologies 0.34 0.35 -

J. Computer Applications 0.37 0.39 0.72

K. Computing Milieux 0.34 0.39 -

All 0.37 0.39 0.72

terms that were used to train the classifier.

However, we still needed to validate if the Ecnt
out computed by forg represented a correct

categorization. In order to do that, we wrote a web crawler to fetch from the ACM Digital

Library all relevant metadata (namely, classification terms) from each paper in Hmine, given

its title as input. Therefore, we used ACM DL’s own classification scheme to automatically

evaluate the accuracy of the classification performed by forg.

The experiment was configured with V cnt
mine = 1323, for which the crawler succeeded to

retrieve only 520 indexed papers (39%) from ACM DL. Table 4.2 presents three scenarios

for variations in forg. Each value represents the classification accuracy calculated as the ra-

tio between successful classifications divided by the total number of documents. For example,

Column 1 shows that the total accuracy of the experiment was 0.37 but it increased to 0.40 by

removing the class F. Column 2 removes class A for all test cases increasing the accuracy in all

of them. Column 3 represents an improvement with total accuracy of 0.72 when some ambigu-

ous classes (i.e. A,D,I,G and K) are removed. Notice that in ACM DL, many documents are

classified in multiple classes, thus removing ambiguous classes did not decreased the total num-

ber of documents classified. The results in table 4.2 show that we could build organographs with

a simple classification scheme, and use them to identify classes that mostly contributed to mis-

classifications. The removal of such ambiguous classes resulted in quantitative improvements

in classification accuracy.

Some limiting factors to increase accuracy in this experiment were: the small training set,

the classification algorithm, the feature set (considering document titles), and finally high se-

mantical overlap in the classes. Nevertheless, our goal with this experiment was to validate the

idea of browsing some collection (V cnt
mine) with a different organization structure (V agg

acm).
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4.7 Conclusion

In this paper we have modeled hierarchies of digital information as DAGs with two types of

nodes and edges: aggregators (V agg, Eagg) and contents (V cnt, Ecnt). We used this notation to

describe problems related to evaluation, reorganization and sharing of such hierarchies.

We have identified several limiting factors related to content organization: there is a lack

of evaluation tools for hierarchies with ad-hoc and implicit organization criteria; current mech-

anisms and methods lead to static and content-driven hierarchies instead of a more flexible

dynamic and task-driven approaches; and finally the incapacity to share organization criteria

and apply it automatically to reorganize different content to perform some recurring task.

We presented organographs as a conceptual framework to transform implicit organization

information criteria into explicit parameters, in the context of a particular task. We discussed

how organographs can be used to evaluate, reorganize and share digital information hierarchies.

Furthermore, we presented a concrete organograph use case, where a personal collection of

papers is reorganized according to ACM subject headings and evaluated before and after reor-

ganization. Our results show that content organization can be shared, and ad-hoc hierarchies

can be refactored into more balanced hierarchical structures while preserving valid categorical

relationships between content and aggregator nodes. This paper concentrated on (re)organizing

and sharing content by managing the hierarchies that describe it. Even though all examples

given in this text concentrate on filesystem hierarchies, aggregators also represent any other

metaphor for aggregative (eg. containment) or subsumptive (eg. generalisation) hierarchical

connector.

Future research steps include: enhance the palette of components from which to build

organographs; lower the barrier of organograph specification and execution to be accessible

to non-technical users; and test the concept with different media (i.e. images, audio, video).

Moreover, we seek validation of organographs in a wider audience. We hope to achieve the

latter goal making our tools Web available and gathering feedback from the community.
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Conclusions

5.1 Contributions

This work touched several Computer Science fields, all of which try to attack database inter-

operability and data integration in eScience, crossing the border into content management and

personal information management. All results had the same backbone: sharing as a means to

transform data into information and then into knowledge.

SciFrame presented an integrated perspective of efforts and phases involved in sharing of

eScience data, as well as an uniform vocabulary to describe the concepts involved. We used

SciFrame to describe WebMAPS – a case study in scientific data sharing, with emphasis on the

problem of distributing large datasets over the Web. Our recommendation to data dissemination

services was the adoption of RESTful oriented services that allow fine grained data distribution

as well as bulk transferences.

The search for interoperability motivated us to find solutions to the problem of binding ap-

plications to data services in the cloud. Our approach was to borrow from the field of image

processing the idea of descriptors, which were adapted into a mechanism to match applica-

tion requirements with data services capabilities. However, the proposed mechanism still lacks

experimental validation.

The perception that inter-people information sharing simplified to oneself information shar-

ing matches the problem of personal information organization led to the proposal of organographs.

Organographs transform implicit organization information criteria into explicit parameters that

can be changed according to task context changes. We performed experimental validation of

organographs by developing Organicer – an organograph-based extensible platform that can be

used to evaluate, reorganize and share digital information hierarchies. We tested Organicer with

a concrete example, where a personal collection of papers is reorganized according to ACM

subject headings and evaluated before and after reorganization. Our results show that content

organization can be shared, ad-hoc hierarchies can be refactored into more balanced hierarchi-

44
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cal structures while preserving valid categorical relationships between content and aggregator

nodes.

Our main contributions were:

• SciFrame – a conceptual framework to describe and compare systems or processes in-

volving scientific digital data manipulation;

• the proposal of Database Descriptors (DBDs) – a conceptual framework to capture and

match application requirements to database capabilities, helping the coupling between

application and data services in the cloud;

• the design of Organographs – a conceptual framework to make organization information

criteria explicit and bound to a particular task; Organographs can be used to evaluate,

reorganize and share digital information hierarchies. DBDs can be used in organograph

instances to provide loose and dynamic coupling with external data sources (i.e. hierar-

chies). SciFrame can be used to describe aspects of the transformation encapsulated in an

organograph instance.

• development of software tools and algorithms (in Organicer, WebMAPS and Paparazzi)

that supported experimentation and validation for some of the proposed ideas.

5.2 Extensions

There are many possible extensions to this work. From a theoretical point of view, examples

are:

• SciFrame: formalize the description of SciFrame as a traditional design pattern, en-

hancing the details about the information management operations. Explore if there is

an alignment between the concepts present in SciFrame with corresponding concepts in

CLRC [70].

• DBDs: compile a comprehensive vade mecum of database capabilities to enrich DBDs

expressivity, and explore comparison algorithms that rank DBDs according to a priori-

tized set of capabilities. Another extension is to formalize DBDs, perhaps exploring the

notion of semantic annotations.

• Organographs: draw a parallel between the underlying mathematical model of Organographs

and Category Theory, and formalize a language to express instances of Organographs.

Formal representations of forg for particular domains should also be exploited.

From a practical point of view, we suggest:
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• SciFrame: create an online catalog of eScience systems using SciFrame’s schema. Design

and implement metrics to evaluate the advantages of using SciFrame.

• DBDs: conduct experiments with concrete data services using DBDs to rebind applica-

tion to services through dynamic negotiation.

• Organographs: validate Organographs with other media types, such as: audio, images and

video. An example of such an extension would be to take advantage of image descriptors

in organizing images as content. Moreover, enhance the palette of components from

which to build organographs by incorporating other information extractor and classifier

algorithms, and exploit user interactions with the system.
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