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Resumo

Sistemas de Recuperação de Images baseados no Conteúdo (Content-Based Image Re-

trieval - CBIR) têm como objetivo satisfazer as necessidades dos usuários a partir de

especificações de consulta. Dado um padrão de consulta (e.g., uma imagem de consulta)

como entrada, um sistema CBIR recupera as imagens mais similares em uma coleção

considerando suas propriedades visuais. Como o maior interesse dos usuários diz respeito

às primeiras posições da lista de imagens retornadas, a eficácia desses sistemas é extrema-

mente dependente da acurácia da função de distância adotada.

Entretanto, de forma geral, as abordagens de CBIR analisam apenas pares de imagens

para a geração das listas de resultados, ignorando importantes informações codificadas nos

relacionamentos entre as imagens. Com o objetivo de aumentar a acurácia de sistemas

CBIR, algoritmos de reclassificação (re-ranking) e agregação de listas (rank aggregation)

têm sido propostos. Algoritmos de re-ranking têm sido usados para explorar informação

contextual codificada nos relacionamentos entre as imagens enquanto métodos de rank

aggregation têm sido propostos para combinar resultados produzidos por diferentes des-

critores de imagens.

O objetivo desta tese é investigar novas abordagens para modelar e representar in-

formações contextuais, com o objetivo de usá-las em tarefas de re-ranking e rank aggrega-

tion visando aumentar a eficácia de sistemas de CBIR. As principais contribuições desta

tese são a criação e implementação de cinco métodos de re-ranking e rank aggregation

(Distance Optimization Algorithm, Pairwise Recommendation, Contextual Spaces, RL-

Sim, e Contextual Re-Ranking) e o uso de computação paralela para execução eficiente

de re-ranking em GPUs. A avaliação experimental conduzida considerou diferentes des-

critores de imagens (cor, textura e forma) e várias coleções de imagens. Os resultados dos

experimentos demonstram a eficácia dos métodos propostos. Outras contribuições estão

relacionadas ao uso dos métodos propostos em recuperação multimodal (considerando

aspectos visuais e textuais) e a proposta de novas abordagens para combinar os métodos

de re-ranking e rank aggregation propostos.
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Abstract

Content-Based Image Retrieval (CBIR) systems aims at meeting the user needs expressed

in query specifications. Given a query pattern (e.g., query image) as input, a CBIR

system retrieves the most similar images in a collection by taking into account image

visual properties. Since users are interested in the images placed at the first positions of

the returned ranked lists, accurately ranking collection images is of great relevance.

However, in general, CBIR approaches perform only pairwise image analysis for com-

puting the ranked lists. They compute similarity (or distance) measures considering only

pairs of images, ignoring the rich information encoded in the relationships among images.

Aiming at improving the effectiveness of CBIR systems, re-ranking and rank aggregation

algorithms have been proposed. Re-ranking algorithms have been used to exploit con-

textual information, encoded in the relationships among collection images, while rank

aggregation approaches have been used to combine results produced by different image

descriptors.

The objective of this thesis is to investigate new approaches for modeling and repre-

senting contextual information, aiming their use in re-ranking and rank aggregation tasks

used to improve the effectiveness of CBIR systems. The main contribution of this thesis

consists in the creation and implementation of five image re-ranking and rank aggrega-

tion methods (Distance Optimization Algorithm, Pairwise Recommendation, Contextual

Spaces, RL-Sim, and Contextual Re-Ranking algorithm) and the use of parallel computing

for efficient re-ranking computation on GPUs. The experimental evaluation considered

different image descriptors (e.g., color, texture, and shape) and several datasets. Experi-

ment results demonstrate the effectiveness of the proposed methods. Other contributions

are related to the use of the proposed method in multimodal retrieval tasks, and the

proposal of new approaches for combining the proposed re-ranking and rank aggregation

methods.
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Agradeço à minha famı́lia, pela apoio firme e constante. Aos meus pais Carlos e

Marilena, que me antecederam, dando os incentivos iniciais, me guiando e auxiliando
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Agradeço ao Prof. Ricardo Torres, pelo seu grande exemplo como orientador.

Agradeço pela sua atenção, pela dedicação e pelos inumeráveis ensinamentos. Por ter
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Chapter 1

Introduction

1.1 Motivation

The huge growth of image collections and multimedia resources available and accessible

through various technologies is remarkable. The continuously decrease of storage de-

vices costs and the technological improvements in image acquisition and sharing facilities

have enabled the dissemination of very large digital image collections, accessible through

various technologies.

In this scenario, there is the need of methods for indexing and retrieving these data.

Two common approaches are used to support image searches: the first one is concerned

with the proposal of methods for retrieving images based on textual annotation [54, 59];

the second relies on supporting image searches by taking into account image content

information, using the so-called Content-Based Image Retrieval systems [21].

Image retrieval approaches based on keywords and textual metadata face serious chal-

lenges [28]. Describing the image content with textual descriptions is intrinsically very

difficult, and this task has not been made easier by the growth and diversification of

image collections. Many applications, especially those dealing with large general image

collections face obstacles to obtain textual descriptors, since manual annotation is pro-

hibitively expensive, contextual text is scarce or unreliable, and user needs are impossible

to anticipate [28].

Content-Based Image Retrieval (CBIR) can be seen as any technology that helps to

search and organize digital picture archives by means of their visual content [21]. For

two decades, several CBIR initiatives have proposed the use of image visual properties

(such as, shape, color, and texture) in retrieval tasks. Basically, a CBIR system aims at

meeting the user needs expressed in a query specification (e.g., by defining a query image

as input). The method usually applied to achieve its goal relies on retrieving the most

similar images in a collection by taking into account image visual properties. Collection

1
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images are ranked in decreasing order of similarity, according to a given image descriptor.

An image content descriptor is characterized by [16]: (i) an extraction algorithm that

encodes image features into feature vectors; and (ii) a similarity measure used to compare

two images. The similarity between two images is computed as a function of the distance

of their feature vectors.

Several CBIR approaches have been proposed considering applications on different

areas, such as facial image retrieval [97], biodiversity information systems [19], medical

applications [58], and remote sensing images [24]. Several efforts have been proposed for

improving the effectiveness of CBIR approaches. Example of recent initiatives include the

use of novel image descriptors, matching algorithms, and new approaches for combining

descriptors [29, 51]. A direct way to improve the effectiveness of CBIR systems relies on

using more accurate features for describing images. Another possibility is related to the

definition of similarity (or distance) functions that would be able to measure the distance

between feature vectors in a more effective way.

However, in general, all these approaches perform only pairwise image analysis, that

is, they compute similarity (or distance) measures considering only pairs of images, ignor-

ing the rich information encoded in the relationships among images. On the other hand,

the user perception usually considers the query specification and the query responses in

a given context. Context can be broadly defined as all information about the whole situ-

ation relevant to an application and its set of users. In interactive applications, the use

of context can play an important role [1]. In information retrieval and recommendation

systems, context information includes geographic information, user profiles, and relation-

ships among users and objects that can be used for improving the effectiveness of results.

In a CBIR scenario, relationships among images, encoded in ranked lists and distances

among images, can be used for extracting contextual information [42, 77].

Recently, some CBIR approaches [45, 113–115] have been proposed aiming at improv-

ing the effectiveness of retrieval tasks replacing pairwise similarities by more global affini-

ties that also consider the relation among all the database objects. In other words, some

efforts were put on post-processing the distance/similarity scores, by taking into account

the contextual information available in relationships among images in a given collection.

These methods require no user intervention, training or labeled data, and operate on an

absolutely unsupervised way. It can be very valuable in a very large number of scenarios,

in which training data can be very hard to obtain. Beside that, in a large number of ap-

plications the collection of images are static or almost static (personal image collections,

for example), what can reduce significantly the need of post-processing efforts.

In practice, given a query image and a ranked list computed by a CBIR descriptor,

contextual information can be used for re-ranking images aiming at improving the ef-

fectiveness of the image retrieval task. Contextual information can also be used in rank
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aggregation approaches, in which ranked lists defined by different descriptors are combined

aiming at producing more effective results. The main focus of this thesis is to exploit con-

textual information aiming at improving the effectiveness of CBIR tasks, without the need

of training data.

1.2 Research Challenges

Different resources containing data about relationships among images are available on

CBIR tasks. Given an image collection, the distances among all images in the the collec-

tion can be computed by a CBIR descriptor, producing a distance matrix A. Let N be

the size of the collection, we can assume that there will be available N2 distance values

among images. Based on these distances, a ranked list can be obtained for each collection

image. A ranked list organizes collection images in decreasing order of similarity and,

therefore, N ranked lists can be obtained (with N images each one).

In this scenario, the large amount of data available for analysing the relationships

among images is remarkable. However, despite the large available data, there are several

research challenges related to the transformation of those raw data into useful contextual

information, which can be actually used for improving the effectiveness of retrieval tasks.

In the following, we discuss some of them:

• Heterogeneity of data sources: there are several data sources for analysing rela-

tionship among images: distances/similarity scores, ranked lists, nearest neighbors,

etc. What kind of data can be used for exploiting useful contextual information?

• Contextual information encoding and representation: given a source of in-

formation, how can we process available data in order to extract useful contextual

information?

• Efficiency on contextual information representation: there are a lot of avail-

able data about relationships among images. How to process the minimum amount

of raw data to extract the most useful contextual information for improving the

retrieval effectiveness?

• Combination: given various and different ways to exploit contextual information,

how can we combine those different approaches aiming at further improving the

retrieval effectiveness?

• Efficiency on implementing image re-ranking and rank aggregation meth-

ods: how can we efficiently compute re-ranking and rank aggregation methods?
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• Applications: how can we tailor the methods to different retrieval tasks and ap-

plications?

The work developed in this thesis addresses those important research challenges.

1.3 Thesis Statement

We have discussed the motivations and the great potential of exploiting contextual infor-

mation for CBIR systems. On the other hand, we presented a set of research challenges

involved in this task. Now, we aim to state the main related hypothesis that guides this

thesis:

The effectiveness of Content-Based Image Retrieval systems can be improved

by exploiting contextual information though different unsupervised re-ranking

and rank aggregation methods based on:

• Clustering-Based Distance Optimization;

• Pairwise Recommendation between Ranked Lists;

• Bidimensional Representation related to Context Spaces;

• Similarity among Ranked Lists;

• Bidimensional Representation related to Context Images.

The hypothesis is validated by a large experimental evaluation presented along the

thesis.

1.4 Goals and Contributions

The general objective of this thesis is to investigate new approaches for modelling and

representing contextual information, aiming their use in re-ranking and rank aggrega-

tion tasks employed to improve the effectiveness of CBIR systems. The main goals and

contributions of this thesis are:

• Contextual Re-Ranking Methods: creation and implementation of five image

re-ranking methods. The methods and main concepts in which they are based on

are described in the following:

– Distance Optimization Algorithm (DOA): based on a clustering approach;
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1.5 Organization

This thesis is organized according to the main contributions obtained in our research.

Those contributions were published or submitted to conference and journals. In the

following, we briefly describe the contents of each chapter indicating associated publication

or submission:

• Chapter 2 - Background and Related Work: this chapter presents the ba-

sic concepts of CBIR, formal definitions for the re-ranking and rank aggregation

problems, and discusses related work.

• Chapter 3 - Experimental Protocol: this chapter describes the datasets, the

CBIR descriptors, and the effectiveness measures considered in the experimental

evaluation of the proposed methods.

• Chapter 4 - Distance Optimization Algorithm: this chapter presents the

re-ranking and rank aggregation approaches based on the Distance Optimization

Algorithm (DOA). The content of this chapter can be found in articles published

in the proceedings of the International Conference on Computer Vision Theory and

Applications (VISAPP 2010) [68], in the proceedings of Conference on Graphics,

Patterns and Images (SIBGRAPI 2010) [66], and in the Journal of Visual Languages

and Computing [69].

• Chapter 5 - Pairwise Recommendation: this chapter presents the Pairwise

Recommendation approach for re-ranking and rank aggregation. Its content can be

found in an article accepted for publication in the journal Information Sciences [64].

• Chapter 6 - Contextual Spaces: this chapter discusses the use of Contextual

Spaces for re-ranking and rank aggregation tasks. The content of this chapter can

be found in papers published in the proceedings of the International Conference on

Multimedia Retrieval (ICMR 2011) [71] and accepted for publication in the journal

Multimedia Tools and Applications [75].

• Chapter 7 - RL-Sim Re-Ranking: this chapter presents the RL-Sim algorithm

for re-ranking and rank aggregation tasks. The content of this chapter can be found

in papers published in the proceedings of the International Conference on Computer

Analysis of Images and Patterns (CAIP 2011) [72] and submitted to journal Pattern

Recognition [65].

• Chapter 8 - Contextual Re-Ranking: this chapter describes the Contextual

Re-Ranking and the Contextual Rank Aggregation algorithms. The content of
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this chapter can be found in papers published in the proceedings of Iberoameri-

can Congress on Pattern Recognition (CIARP 2010) [67], in the proceedings of the

International Conference on Image Processing (ICIP 2011) [70] and accepted for

publication in the International Journal of Multimedia Information Retrieval [63].

• Chapter 9 - Efficient Image Re-Ranking Computation on GPUs: this

chapter describes the design of a parallel algorithm for efficient image re-ranking

computation. Its content can be found in a paper accepted for publication in the

International Symposium on Parallel and Distributed Processing (ISPA 2012) [74].

• Chapter 10 - Combining Re-Ranking and Rank Aggregation Methods:

this chapter describes conducted experiments aiming at comparing three different

approaches for combining re-ranking and rank aggregation methods. The content of

this chapter can be found in a paper accepted for publication in the Iberoamerican

Congress on Pattern Recognition (CIARP 2012) [73].

• Chapter 11 - Comparing Re-Ranking and Rank Aggregation Methods:

this chapter presents a comparison among the proposed re-ranking and rank aggre-

gation methods with each other and with state-of-the-art methods proposed in the

literature.

• Chapter 12 - Conclusions: this chapter discusses conclusions and presents pos-

sible extensions to be addressed in future work.

Figure 1.5 illustrates the overall organization of this thesis, considering the main con-

cepts and their relationships. This figure also shows the main contributions and associated

publications. The colors of this figure aims at organizing the meanings of each concept:

in red, the main subjects related to the research; in green, the main contributions of this

thesis; in blue, the related concepts used to address the contributions; and in yellow, the

associated publications.



10
C
h
a
p
ter

1
.

In
tro

d
u
ctio

n

Figure 1.5: Thesis organization, main concepts, and obtained publications.



Chapter 2

Background and Related Work

2.1 Content-Based Image Retrieval

Content-based image retrieval (CBIR) can be broadly defined as any technology that in

principle helps to organize digital picture archives by their visual content. By this def-

inition, anything ranging from an image similarity function to a robust content-based

image annotation engine can be considered as a component of a CBIR system. Consid-

ering the research opportunities related to the specification and implementation of those

systems, researchers from different fields, such as, computer vision, image processing,

machine learning, information retrieval, human-computer interaction, database systems

among others are contributing and becoming part of the CBIR community [21].

2.1.1 Typical Architecture

Basically, a CBIR system aims at meeting the user needs expressed in a query specification

(e.g., by defining a query image as input). Figure 2.1 shows a typical architecture of a

content-based image retrieval system [16]. Two main functionalities are supported: data

insertion and query processing. The data insertion subsystem is responsible for extracting

appropriate features from images and storing them into the image database. In general,

this process is performed off-line. The query processing is organized as follows: the

interface allows a user to specify a query by means of a query pattern and to visualize

the retrieved most similar images. The query-processing module extracts a feature vector

from a query pattern and uses a distance function (such as the Euclidean distance) to

evaluate the similarity between the query image and the database images. Next, it ranks

the database images in a decreasing order of similarity to the query pattern and forwards

the most similar images to the interface module. A formal definition of the image retrieval

model adopted in this work is presented in next section.

11
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Figure 2.1: Typical architecture of a content-based image retrieval system [16].

2.1.2 Image Retrieval Model

Let C={img1, img2, . . . , imgN} be an image collection. Let D be an image descriptor

which can be defined [16] as a tuple (ǫ, ρ), where:

• ǫ: Î → R
n is a function, which extracts a feature vector vÎ ∈ R

n from an image Î.

• ρ: R
n × R

n → R is a distance function that computes the distance between two

images as the distance between their corresponding feature vectors.

In order to obtain the distance between two images imgi and imgj, it is necessary to

compute the value of ρ(ǫ(imgi),ǫ(imgj)). For simplicity and readability purposes, we use

the notation ρ(imgi,imgj) along this thesis.

The distance ρ(imgi,imgj) among all images imgi,imgj ∈ C can be computed to obtain

an N ×N distance matrix A, such that A[i, j] = ρ(imgi,imgj).

Given a query image imgq, we can compute a ranked list Rq in response to the query,

based on the distance matrix A. The ranked list Rq=(img1, img2, . . . , imgN) can be

defined as a permutation of the collection C. A permutation σq is as a bijection from the
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collection C onto the set [N ] = {1, 2, . . . , N}, where N is the cardinality |C| of collection

C. For a permutation σq, we interpret σq(i) as the position (or rank) of image imgi in

the ranked list Rq. Therefore, we can say that, if imgx is ranked before imgy, that is

σq(x) < σq(y), then ρ(imgq,imgx) ≤ ρ(imgq,imgy).

We also can take each image imgi ∈ C as a query image imgq, in order to obtain a set

R = {R1, R2, . . . , RN} of ranked lists for each image of collection C.

2.2 Image Re-Ranking

The definition of appropriate distance measures plays a key role in many multimedia ap-

plications, including classification, clustering, and retrieval tasks. For example, choosing

a good distance measure is often critical to building an effective content-based image

retrieval (CBIR) system. In general, aiming at retrieving the most similar images to a

query image, CBIR systems compute a predefined distance measure between the query

image and an image in database. Traditional distance measures, as the Euclidean dis-

tance, consider the pairwise similarity between any two images. In many situations, these

approaches fail to return satisfactory results, mainly due to the well-known semantic gap

problem [39].

Recently, many studies have demonstrated, both empirically and theoretically, that

a learned measure can significantly improve the effectiveness in classification, clustering,

and retrieval [112]. In special for CBIR systems, there has been considerable research

on improving the distance measures [4, 10, 11, 38, 39, 42, 45, 49, 62, 77, 84, 102, 109, 113–

115, 120, 121]. Promising results have been obtained considering several approaches and

techniques. One of these approaches is called image re-ranking, which is one of the main

focuses of this thesis.

Section 2.2.1 presents a formal definition for the image re-ranking task. Section 2.2.2

discusses related work, considering the image re-ranking problem, distance metric learn-

ing, and correlated areas. For organization purposes, we consider a comprehensive clas-

sification, depending on the availability of the training examples. We categorize the

approaches into three main categories: supervised, semi-supervised, and unsupervised

algorithms.

2.2.1 Image Re-Ranking Definition

Re-ranking can be broadly defined as a process of refining the search results: the re-

ranking methods take an initial ranking and aggregate some information for improving

the effectiveness of the retrieval process. An image re-ranking algorithm takes as input the

distance matrix A and the set of ranked lists R for computing a new and more effective
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distance matrix Â. Therefore, distances among all images contained in the matrix A

are redefined by a more effective distance measure. A re-ranking method that considers

relationships among all images in a collection can be represented by the function fr:

Â = fr(A,R). (2.1)

Given the new distance matrix Â, a new set R̂ can be obtained. R̂ contains the new

ranking positions of all collection images, that is, the collection images are re-ranked.

Note that the main aspect of fr consists in exploiting all relationships encoded in both A

and R. The definition of function fr applied to CBIR scenario is similar to the concept

of global ranking [80] used in information retrieval domain. The re-ranking algorithms

proposed in this thesis consist in different implementations of the function fr.

2.2.2 Re-Ranking Approaches

This section discusses related work to the image re-ranking problem. First, concepts and

approaches related to distance metric learning are presented. The approaches are grouped

into three categories depending on the availability of the training examples: supervised,

semi-supervised, and unsupervised algorithms. In the following, we discuss unsupervised

approaches used by CBIR systems and re-ranking methods.

Supervised Approaches

In supervised learning, training samples are available for the task of inferring a function.

Each training sample is a pair consisting of an input object and a desired output value. As

defined in [125], let the domain of object instances be X , and the domain of labels be Y .

Let P (x, y) be an (unknown) joint probability distribution on instances and labels X ×Y .

Given a training sample {(xi, yi)}
n
i=1, supervised learning trains a function f : X 7→ Y ,

with the goal that f(x) predicts the true label y on future data x.

Supervised distance metric learning approaches attempt to learn metrics that keep all

the data points within the same classes close, and place all the data points from different

classes far apart. In distance metric learning, the label information is usually specified in

the form of pairwise constraints on the data: (1) equivalence constraints, which state that

the given pair are semantically similar and therefore should be close in the learned metric;

and (2) inequivalence constraints, which indicate that the given points are semantically

dissimilar and should not be close in the learned metric [112].

In [109], a supervised distance metric learning with application to clustering is pre-

sented. It considers the situation where a user indicates that certain points in an input

space are considered to be “similar”. The algorithm aims at learning a distance metric
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that respects these relationships, i.e., one that computes small distances between simi-

lar pairs of objects. In other words, given examples of similar pairs of points in R
n, it

learns a distance metric over R
n that respects these relationships when improving dis-

tance measures among points. The Continuous Conditional Random Fields (CRF) has

been proposed in [80] for the learning in global ranking tasks. This model is defined as a

conditional probability distribution over ranking scores of objects. It represents the con-

tent information of objects as well as the relation information between objects, necessary

for global ranking.

In the CBIR domain, a guideline to learn a robust distance measure for similarity

estimation is presented in [117]. A more effective distance measure is learned by training

with different distance measures on each feature element and by selecting iteratively the

most important feature elements for estimation of similarity. In [49], a rank-based distance

metric learning approach is presented. The goal is to learn a distance metric from a

number of training samples with side information, i.e., relevance judgments, based on

rankings. The approach compares the distances of pairwise constraints that are generated

by the same query, aiming at weighting different features.

An approach based on the “learning-to-rank” paradigm is presented in [28]. Different

supervised learning algorithms (Support Vector Machines, Genetic Programming, and

Association Rules) are used to effectively combine multiple CBIR descriptors in order to

improve ranking performance. A set of query images is provided as input to the learning

algorithms. In addition, associated with each query image, a set of sample images is

provided. That set represents the corresponding similarities to the query image. The rel-

evance of an image to the query image is also informed as input (e.g., an image is relevant

if it is truly similar to the query image, otherwise it is irrelevant). This information is

used for training, so that the learning algorithms produce a ranking function that maps

similarities to the level of relevance of collection images for defined query images. When

a new query image is given, the relevance of the returned images is estimated according

to the learned function, by using supervised algorithms.

Semi-Supervised Approaches

As the name suggests, semi-supervised learning is somewhere between unsupervised and

supervised learning. In fact, most semi-supervised learning approaches are based on ex-

tending either unsupervised or supervised learning to include additional information from

the other learning paradigm [125]. Semi-supervised learning refers to the use of both

labeled and unlabeled data for training. The training data consists of both l labeled in-

stances {(xi, yi)}
l
i=1 and u unlabeled instances {xj}

l+u
j=l+1. It contrasts supervised learning

(data all labeled) or unsupervised learning (data all unlabeled) [122, 125]. While labeled

data (x, y) is difficult to collect, unlabeled data x are available in large quantity and are
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easy to obtain.

The semi-supervised learning problem considers the prior assumption of consistency,

which means: (1) nearby points are likely to have the same label; and (2) points on the

same structure (usually referred to as a manifold or a cluster) are likely to have the same

label [120].

Semi-supervised methods have attracted great attention in the past few years. In [123,

124], labeled and unlabeled data are represented as vertices in a weighted graph, with

edge weights encoding information about the similarity between instances. The learning

problem is modeled by a Gaussian random field on this graph, where the mean of the

field is characterized in terms of harmonic functions. In [123], the semi-supervised “Label

Propagation” algorithm is formulated as a process of propagation on a graph, where node

labels are propagated to neighbor nodes according to their proximity. In this process

the labels are fixed on the unlabeled data. Therefore, labeled data act like sources that

disseminate labels through unlabeled data. The Label Propagation algorithm has also

inspired unsupervised approaches on shape retrieval domain [113].

In [38, 39], a semi-supervised distance metric learning approach is presented with focus

on CBIR applications. It aims at learning effective distance metrics by training data and

using unlabeled data when log data are limited and noisy. The training data is obtained

by exploring historical relevance feedback log data. The systems considers an accumulate

feedback information collected in multiple image retrieval sessions possibly conducted by

multiple users for different search targets. This paradigm of utilizing CBIR log data in

an image retrieval task is referred as “Collaborative Image Retrieval” (CIR). The learning

problem is formulated into a convex optimization task.

The semi-supervised approach proposed in [37] aims at learning distance functions by

training binary classifiers with margins, where the classifiers are defined over the product

space of pairs of images. The classifiers are first trained and, in the following, they can

distinguish between pairs in which the images are from the same class and pairs which

contain images from different classes. The distance learning method combines boosting

hypotheses over the product space with a weak learner based on partitioning the original

feature space. It allows incorporate unlabeled data into the training process.

Transductive Learning

There are two variations of semi-supervised learning approaches, namely inductive and

transductive semi-supervised learning. In supervised classification, the training sample is

fully labeled, so the interest is concerned with the performance of developed algorithms on

future test data. However, in semi-supervised classification the training sample contains

some unlabeled data. Therefore, there are two distinct goals: one is to predict the labels

on future test data; and other is to predict the labels on the unlabeled instances in the
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training sample. We may call the first one as inductive semi-supervised learning, and

the latter transductive learning [122]. Note that, although transductive learning is more

commonly used for semi-supervised learning approaches, it designates a behavior opposed

to traditional inductive learning.

The learning by transduction approach was first proposed in [32]. In this problem,

the interest relies on the classification of a particular example rather than a general

rule (function) for classifying future examples, as in supervised inductive learning. An

example of a transductive learning task is relevance feedback in information retrieval.

In relevance feedback, users can provide positive and negative examples for the kinds

of objects in which they are interested. These objects are the training examples, while

the rest of the collection is the test set. The goal is to generalize from the training

examples and find remaining documents in the collection that match the users information

need [18, 20, 30, 44]. The main difference between the transductive setting and the regular

inductive setting consists in that the learner can observe the examples in the test set and

potentially exploit data structure in their distribution. In this context, the term has been

used for designating unsupervised approaches [11, 113].

In [89], an approach that aims at turning transductive and standard supervised learn-

ing algorithms into semi-supervised learners is presented. It constructs a family of data-

dependent norms that allow to capture the structure and reflect the underlying geometry

of the data.

Unsupervised Approaches

In unsupervised learning approach, the “learning” method receives only the domain of

object instances X , that is no training labeled data is available. Since labeled data

usually requires very expensive human labor, whereas unlabeled data is far easier to

obtain, unsupervised learning represents a very attractive solution in many scenarios.

As pointed by [33], although it may seem somewhat paradoxical to imagine what a

method could possibly learn, given that it does not get any feedback from its environment,

it is possible to develop frameworks for unsupervised learning based on the notion that the

machines goal is to build representations of the input space that can be used for decision

making and predicting future inputs. In a sense, “unsupervised learning can be thought

of as finding patterns in the data above and beyond what would be considered pure

unstructured noise” [33]. Two classic examples of unsupervised learning are clustering

and dimensionality reduction.

When dealing with data in high dimensions, a challenging problem is how to reduce

the complexity of a data set preserving information that is important for understanding

the data structure itself. That is also valid for performing tasks such as clustering, classi-

fication, and regression [47]. The dimensionality reduction term designates methods that
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aim at finding meaningful low-dimensional structures hidden in their high-dimensional

observations [96].

The classical techniques for dimensionality reduction, principal component analysis

(PCA) and multidimensional scaling (MDS), aim at discovering the true structure of

data lying on or near a linear subspace of the high-dimensional input space. PCA aims at

finding a low-dimensional embedding of the data points that best preserves their variance

as measured in the high-dimensional input space. Classical MDS finds an embedding

that preserves the interpoint distances, equivalent to PCA, when those distances are

Euclidean [96].

Some approaches rely on modifying not the measure itself, but the space in which

the measure is computed [77]. This includes ISOMAP [96] and Local Linear Embedding

(LLE) [82]. In ISOMAP [96], the geodesic distance between faraway points is estimated

given only input space distances. For neighboring points, input-space distance gives a

good approximation to geodesic distance. Considering faraway points, geodesic distance

can be approximated by adding up a sequence of “short hops” between neighboring points.

These approximations are computed efficiently by finding shortest paths in a graph with

edges connecting neighboring data points [96]. In Locally Linear Embedding (LLE) [82],

an unsupervised learning algorithm computes low-dimensional, neighborhood-preserving

embeddings of high-dimensional inputs. LLE maps the inputs into a single global co-

ordinate system of lower dimensionality. By exploiting the local symmetries of linear

reconstructions, LLE can learn the global structure of non-linear manifolds.

There are evidences [47] that nonlinear dimensionality reduction, clustering, and data

set parameterization can be solved within the same framework. The main idea is to define

a system of coordinates with an explicit metric that reflects the connectivity of a given

data set, using Markov random walk on the data. Intrinsic geometry means a set of rules

that describe the relationship between the objects in the data set without reference to

structures outside of them. In this case, intrinsic geometry is defined by the connectivity

of the data points in a diffusion process.

Non-linear dimensionality reduction methods that consider geometrically structures of

datasets [47, 82, 96] are also commonly referred as manifold learning. In [119], an extensive

applications of these methods are presented.

Clustering is another classic example of unsupervised learning. Basically, clustering

is the task of assigning a set of objects into groups (clusters), so that the objects in the

same cluster are more similar to each other than to those objects in other clusters. In this

way, it also depends on the accuracy of the distance measure used to assess the similarity

between two objects. In [36], an unsupervised approach for metric learning in the context

of clustering was proposed. It performs transformations of data which give clean and

well-separated clusters, where clean clusters are those for which membership scores can
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be predicted. In [11], an unsupervised clustering approach was proposed, based on graph

transduction. Following the concepts of semi-supervised methods, the algorithm focuses

on the problem that uses unlabeled data for learning and improving the clustering task.

Unsupervisied approaches were proposed for improving effectiveness of information

retrieval tasks. A definition for the term “global ranking” was proposed in [80]. Basically,

a global ranking approach considers that relations always exist between objects and it is

better to define the ranking model as a function of all the objects to be ranked. In [43],

an approach that explores information of users clicks was proposed for re-ranking in the

web search scenario. Inter-documents similarity are considered in [23] and a clustering

approach is applied for regularizing retrieval scores. In [111], a semi-supervised label

propagation algorithm [123] was used for re-ranking documents in information retrieval

applications.

Unsupervised Learning in CBIR systems

In general, traditional CBIR systems perform only pairwise image analysis, that is,

they compute similarity (or distance) measures considering only pairs of images, ignoring

the rich information encoded in the relations of several images. However, in recent years,

several CBIR approaches [4, 42, 45, 62, 77, 84, 102, 113–115, 121] have been proposed aim-

ing at improving the effectiveness of retrieval tasks replacing pairwise similarities by more

global affinities that also consider the relation among the database objects [115]. Al-

though using a very diverse taxonomy (re-ranking [62, 84], graph transduction [4, 113],

diffusion process [114], affinity learning [115], contextual similarity/dissimilarity mea-

sures [42, 77, 102]), these post-processing methods have in common the fact of all ap-

proaches propose to improve the effectiveness of retrieval tasks by exploiting the infor-

mation about the relationships among database objects on an unsupervised way (with

no training data). Another important common point consists in the iterative behaviour

adopted by various methods [42, 113, 114].

In [113], a graph-based transductive learning algorithm is proposed for shape retrieval

tasks. It learns a better metric through graph transduction by propagating the model

through existing shapes, in a way similar to computing geodesics in dataset manifold.

The method does not require learning the shape manifold explicitly and it does not

require knowing class labels of existing shapes. The better metric is learned by collectively

propagating the similarity measures to the query shape and between the existing shapes

through graph transduction. Although inspired by label propagation algorithm [123],

which is semisupervised, the shape retrieval is treated as an unsupervised problem [113].

In [114], a locally constrained difusion process is proposed for shape retrieval systems.

The work observes that, since differences between shapes in the same class can be very
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large and differences between shapes in different classes can be very small, no pairwise

shape comparison can describe shape dissimilarity correctly. The distance between two

shapes can be correctly described only if it is considered in the context of other shapes

similar to them. The influence of other shapes is propagated as a diffusion process on

a graph formed by a given set of shapes. The weigths of graph edges are defined by

applying a Gaussian to the shape distance. A reversible Markov chain based on the graph

is constructed and used to propagate the influence of shapes. Another approach based on

propagating the similarity information in a weighted graph is proposed in [115] as affinity

learning. Instead of propagating the similarity information in the original graph, it uses

a tensor product graph (TPG) obtained by the tensor product of the original graph with

itself.

Graphs are also used by other approaches. In [45], the underlying structure of the

shape manifold is estimated from the shape similarity scores between all the shapes within

a database. A modified mutual kNN graph is proposed as the underlying representation

used for shape retrieval. A shortest path propagation algorithm is proposed in [102],

which is a graph-based algorithm for shape/object retrieval. Given a query object and a

target database object, it explicitly finds the shortest path between them in the distance

manifold of the database objects. Then a new distance measure is learned based on the

shortest path to replace the original distance measure.

Beside graph methods, context is a term frequently used for designating post-

processing methods that consider relationships among images. In general interactive

applications, the use of context can play an important role. Context can be broadly de-

fined as all information about the whole situation relevant to an application and its set

of users [1]. In CBIR systems, it means that, when humans have to judge the similarity

between two images, they always do so in a given context, i.e., they do not only consider

the two objects to be compared [77].

In [42], a contextual dissimilarity measure is introduced, aiming at improving the

accuracy of image searches based on bag-of-features. The proposed measure takes into

account the local distribution of the vectors and estimates distance updates by modifying

the neighborhood structure. The dissimilarity measure improves the symmetry of the k-

neighborhood relationship by iteratively regularizing the average distance of each vector to

its neighborhood. The method perfoms a global analysis of properties in small overlapping

neighborhoods, resemblimg methods for non-linear dimensionality reduction, inspired by

ISOMAP [96] and LLE [82].

In [77], a family of contextual measures is proposed. The similarity between two

distributions is measured in the context of a third distribution. These contextual measures

are then used to the image retrieval problem. The context is estimated from the neighbors

of a query. Using different contexts, and especially contexts at multiple scales (i.e., broad
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and narrow contexts), provides different views on the same problem and combining the

different views can improve retrieval accuracy.

Clustering approaches are also used by re-ranking methods that exploit contextual

information in CBIR domain. A re-ranking framework for CBIR systems based on con-

textual dissimilarity measures is proposed in [84]. The contexts are modeled using a

clustering algorithm to group similar images from the ranked list. In [62], a re-ranking

algorithm using post-retrieval clustering for CBIR is proposed. In the first step, images

are retrieved using visual features such as color histogram. Next, the retrieved images are

analyzed using hierarchical agglomerative clustering methods and the rank of the results

is adjusted according to the distance of a cluster to a query.

Although there are a significant number of approaches aiming at exploiting the re-

lationships among images for improving the effectiveness of CBIR systems, this area is

relatively new and many research challenges are still open. Several methods [102, 113, 114]

are based on graph or matrices multiplication approaches, which require high computa-

tional efforts. In other cases [45, 62, 113, 114] experimental evaluation considered only one

type of visual property (e.g., shape or color). Efficiency issues are not addressed in the

majority of works and results of different methods are not combined. In this thesis, we

addressed the image re-ranking problem in a general way: proposing different re-ranking

approaches and techniques for combining them, conducting a large experimental evalua-

tion, and using parallel computing for efficient re-ranking computation.

2.3 Rank Aggregation

This section presents a discussion about rank aggregation methods, presenting a formal

definition for the rank aggregation problem and discussing related work.

2.3.1 Rank Aggregation Definition

Basically, rank aggregation approaches aim at combining different rankings in order to

obtain a more accurate one. Let C be an image collection and let D = {D1, D2, . . . , Dm}

be a set of m image descriptors. The set of descriptors D can be used for computing a

set of distances matrices A = {A1, A2, . . . , Am}. As discussed in previous subsection,

for each distance matrix Ai ∈ A, a set of ranked lists Ri = {R1, R2, . . . , RN} can be

computed. Let RA = {R1, R2, . . . , Rm} be a set of sets of ranked lists (one set Ri for

each matrix Ai), the objective of rank aggregation methods that consider relationships

among images is to use the sets A and RA as input for computing a new distance matrix

Âc:



22 Chapter 2. Background and Related Work

Âc = fa(A,RA). (2.2)

Based on the combined distance matrix Âc, a new set of ranked lists can be computed.

The rank aggregation algorithms proposed in this thesis consist in different implementa-

tions of the function fa.

2.3.2 Rank Aggregation Approaches

Another approach for improving CBIR systems consists in using rank aggregation tech-

niques. Different CBIR descriptors produce different rankings. Therefore, it is intuitive

that different descriptors may provide different but complementary information about

images. The main goal of rank aggregation approaches is to combine different rankings

in order to obtain a more accurate one. Recently, rank aggregation is being employed

in many new applications [8, 55], such as document filtering, spam webpage detection,

meta-search, word association finding, multiple search, and similarity search.

More precisely, rank aggregation can be seen as the task of finding a permutation

that minimizes the Kendall-tau distance to the input rankings, where the Kendall-tau

distance is defined as the sum over all input rankings of the number of pairs of elements

that are in a different order in the input ranking than in the output ranking [83]. If the

input rankings are permutations, this problem is known as the Kemeny rank aggregation

problem [83]. The best combinations occur when both systems being combined have good

performance, although it is possible to get improvement when only one of the systems

has good performance [15]. This observation is consistent with the statement that the

combination with the lowest error occurs when the classifiers are independent and non-

correlated [15].

Unsupervised approaches considering retrieval scores [31] or rank positions [13] have

been widely used in information retrieval tasks. In the CBIR domain, the use of ma-

chine learning techniques have been employed aiming at accurately ranking the returned

images. One common approach is to use learning methods to combine information com-

ing from different descriptors. These approaches include techiniques like Support Vector

Machines [28], Genetic Programming [28] and others.

Recently, learning-to-rank approaches are being considered [28]. Their objective is to

use machine learning techniques to combine different CBIR descriptors. Rank aggregation

also can be thought as an unsupervised regression, in which the goal is to find an aggregate

ranking that minimizes the distance to each of the given ranked lists [86]. It also can be

seen as the problem of finding a ranking of a set of elements that is “closest to” a given

set of input rankings of the elements [25, 26, 83].

Rank aggregation techniques can also be exploited for multimedia retrieval, in special
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in multimedia objects that are composed by different media such as text and image. There

has been an explosion of such type of digital content in the last years [8, 12]. Most of

the techniques developed in that context fall in three different categories: early fusion,

late fusion, and transmedia fusion. The early fusion approach consists in representing

the multimedia objects in a multimodal feature space designed via a joint model that

attempts to map image-based features with text-based features. On the contrary, late

fusion and transmedia fusion strategies consists in running the visual and textual experts

independently. Late fusion techniques mainly consist in merging the monomedia similarity

information by means of aggregation functions. In transmedia approaches, the main idea

is to first use one of the modalities (say image) to gather relevant objects and then to

switch to the other modality (text representations) with the aim at aggregating their

results [12].

Different approaches and applications, whether supervised or unsupervised, consider

only scores or positions for producing new rankings. In this work, we exploit not only

information computed by different descriptors, but also the relationship among images.

We propose different unsupervised approaches for combining information from different

descriptors and our re-ranking algorithm for exploiting contextual information.

2.4 Notation

This section summarizes the notation of the main symbols (concepts) used along this

thesis. Table 2.1 presents the symbols used along the thesis and their respective meanings.

Table 2.1: Notation used along this thesis
Symbol Meaning
C Image collection.
D Image descriptor.
ρ Image descriptor distance function.
N Cardinality of collection.
A Initial distance matrix.
R Initial set of ranked lists.

Â Distance matrix after re-ranking.

R̂ Set of ranked lists after re-ranking.
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Experimental Protocol

This chapter aims at describing the experimental protocol used to evaluate the re-ranking

and rank aggregation methods proposed in our work. Section 3.1 discusses the datasets,

descriptors, and measures used for evaluation. Section 3.2 addresses the same issues,

but now considering the multimodal retrieval problem. All experiments were conducted

considering all images in the collections as query images. Results presented in this thesis

represent the average scores.

3.1 Content-Based Image Retrieval

We considered four different datasets, and twelve image descriptors, considering differ-

ent visual properties, involving shape, color, and texture descriptors. In general, post-

processing methods [45, 62, 113, 114] have been evaluated considering only one type of

visual property (usually, either color or shape). Methods proposed in [45, 113, 114] used

shape descriptors, while the method proposed in [62] used a color descriptor.

3.1.1 Descriptors

• Shape: We evaluate the use of our methods with six shape descriptors: Segment

Saliences (SS) [17], Beam Angle Statistics (BAS) [2], Inner Distance Shape Con-

text (IDSC) [52], Contour Features Descriptor (CFD) [68], Aspect Shape Context

(ASC) [53], and Articulation-Invariant Representation (AIR) [35].

• Color: We evaluate our methods for three color descriptors: Border/Interior Pixel

Classification (BIC) [90], Auto Color Correlograms (ACC) [41], and Global Color

Histogram (GCH) [93].

25
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• Texture: The experiments consider three well-known texture descriptors: Local

Binary Patterns (LBP) [60], Color Co-Occurrence Matrix (CCOM) [46], and Local

Activity Spectrum (LAS) [94].

Further details on used image descriptors can be found in [76].

3.1.2 Datasets

• MPEG-7: The MPEG-7 dataset [48] is a well-known shape collection, commonly

used for shape descriptors and post-processing methods evaluation and comparison.

It is composed by 1400 shapes divided into 70 classes of 20 images each. The size

of images range from (50 × 48) to (526 × 408) pixels. Figure 3.1 presents some

examples of images of the MPEG-7 dataset.

Figure 3.1: Examples of MPEG-7 dataset shapes.

• Kimia: We also present experimental results on the Kimia dataset [87]. This

dataset contains 99 shapes grouped into nine classes. The retrieval results are

summarized as the number of shapes from the same class among the first top 1

to 10 shapes, where the best possible result for each of them is 99 (this score is

referenced along the thesis as Kimia score). Shapes of Kimia dataset shapes are

illustrated in Figure 3.2.

• Brodatz: We used the Brodatz [7] dataset, a popular dataset for texture descriptors

evaluation. The Brodatz dataset is composed of 111 different textures of size (512
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ing the precision at those positions, and then averaging the set of precision values

obtained [57]. More formally, let q be a query item and let Nr be the number

of relevant items in a collection for a given query q. Let 〈ri|i = 1, 2, . . . , d〉 be

a ranked relevance vector to depth d, where ri indicates the relevance of the ith

ranked document scored as either 0 (not relevant) or 1 (relevant), the AP is defined

as follows:

AP =
1

Nr

d∑

i=1

(
ri
i

i∑

j=1

rj

)
. (3.1)

The average precision across a series of queries can be averaged, which defines the

Mean Average Precision (MAP) measure. Let Q be the number of queries, the MAP

is defined as follows:

MAP =

∑Q

l=1AP (ql)

Q
. (3.2)

Furthermore MAP also approximates the average area under the precision × recall

curve (see definition below) for a set of queries. In our experiments, the MAP

computation considers all the images in the datasets as query images.

• Recall@40: for the MPEG-7 dataset [48], we use the bullseye score, a measure

broadly used for that collection. It counts all matching objects within the 40 most

similar candidates. Since each class consists of 20 objects, the retrieved score is

normalized with the highest possible number of hits.

This score is also referenced along the thesis as Recall@40 (recall at 40th image).

The recall measure can be basically defined as the fraction of relevant instances that

are retrieved, at a given ranking position.

• Precision × Recall Curve: the precision and recall measures can be used together

for evaluating the effectiveness of retrieval systems. While precision considers the

number of relevant items divided by the total number of retrieved items, the recall

measure can be defined as the number of relevant retrieved divided by the total

number of existing relevant items.

In order to evaluate ranked lists, precision can be plotted against recall after each

retrieved item. This graph is commonly called as precision × recall curve, which

has a classical concave shape. The graph shows the trade-off between precision and

recall. For example, trying to increase recall, typically introduces more non-relevant

items into the results, thereby reducing precision (i.e., moving to the right along
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the curve). Trying to increase precision typically reduces recall by removing some

relevant objects from the ranked lists (i.e., moving to left along the curve) [56].

Figure 3.5 illustrates an example of a typical precision × recall curve.

Figure 3.5: Example of a typical Precision × Recall curve.

For MAP and Recall@40 values, we computed the gain obtained by the re-ranking

algorithm. Let Mb be the value of the measure before the use of the re-ranking algorithm

and let Ma be the value after its use, the gain is computed as follows:

Gain =
Ma −Mb

Mb

. (3.3)

3.2 Multimodal Retrieval

This section presents the image and textual descriptors used for multimodal retrieval.

The multimodal UW dataset [22] is also described.

3.2.1 Descriptors

• Visual Color Descriptors: we consider three color descriptors on experiments: Bor-

der/Interior Pixel Classification (BIC) [90], Global Color Histogram (GCH) [93]

(both already mentioned on Section 3.1.1), and the Joint Correlogram (JAC) [104].
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• Visual Texture Descriptors: for texture we use the Homogeneous Texture Descriptor

(HTD) [105], Quantized Compound Change Histogram (QCCH) [40], and Local

Activity Spectrum (LAS) [94] (the last also considered in Section 3.1.1).

• Textual Descriptors: six well-known textual similarity measures are considered for

textual retrieval: Cosine similarity measure (COS) [3], Term Frequency - Inverse

Term Frequency (TF-IDF) [3], Dice coefficient (DICE) [50], Jaccard coefficient

(JACCARD) [50], Bag of Words representation (BOW) [9], and OKAPI [81].

3.2.2 Datasets

• UW dataset: the UW dataset [22] was created at the University of Washington

and consists of a roughly categorized collection of 1,109 images. The images are

of various sizes and mainly include vacation pictures from various locations. These

images are partly annotated using keywords. On average, for each image the an-

notation contains 6 words (tags). The maximum number of words per image is 22

and the minimum is 1. There are 18 categories: the smallest category contains 22

images and the largest contains 255 images. The average category size is 55. All

dataset images are considered as query images in our experiments. Figure 3.6 shows

some examples of UW dataset [22].

3.2.3 Measures

• Mean Average Precision (MAP): we consider the MAP score, already discussed

in Section 3.1.3.

3.3 Summary

This section summarizes the experimental protocol used along the thesis. Table 3.1

presents, for each dataset, the descriptors and measures used in the experiments.
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Table 3.1: Summary of experimental protocol: Datasets, Descriptors, and Measures.
Dataset Descriptors Type Measures

MPEG-7 [48] SS [17], BAS [2], IDSC [52],
CFD [68], ASC [53], AIR [35]

Shape MAP, Recall@40,
Precision × Recall

Kimia [87] CFD [68] Shape Kimia score
Brodatz [7] LBP [60], CCOM [46], LAS [94] Texture MAP, Precision ×

Recall
Soccer [100] BIC [90], ACC [41], GCH [93] Color MAP, Precision ×

Recall
UW Dataset [22] BIC [90], GCH [93] JAC [104],

HTD [105], QCCH [40], LAS [94],
COS [3], TF-IDF [3], DICE [50],
JACCARD [50], BOW [9],
OKAPI [81]

Color,
Texture,
Textual

MAP
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Distance Optimization Algorithm

In this chapter, we present the Distance Optimization Algotihm (DOA), a post-processing

method that exploits a clustering approach for performing image re-ranking in CBIR tasks.

The algorithm explores the fact that if two images are similar, their distances to other

images and therefore their ranked lists should be similar as well. The main idea of the

algorithm consists in clustering images and then using the created clusters for updating

distances and performing image re-ranking. These steps are repeated in an iterative

manner until a convergence criterion is reached (cohesion measure). Figure 4.1 illustrates

the main steps of the algorithm, that is detailed in Section 4.1. Clusters are created

according to the similarity of images. These similarity scores are computed by special

functions called cluster-similar functions. Two approaches based on the similarity of

ranked lists and distances correlations are proposed to implement cluster-similar functions.

We also demonstrate how the algorithm can be applied to the problem of combining ranked

lists defined by different CBIR descriptors.

We evaluated the proposed method on shape, color, and texture descriptors. Exper-

imental results demonstrate that the proposed method can be applied to several CBIR

tasks and yields better results in terms of effectiveness than various post-processing algo-

rithms recently proposed in the literature.

This chapter is organized as follows. Section 4.1 presents the Distance Optimization

Algorithm. Sections 4.2 and 4.3 detail two important steps of the algorithm: the use of

cluster-similar functions and approaches for updating distances. In Sections 4.4 and 4.5,

we discuss variations and applications of the algorithm. Section 4.6 discusses aspects of

efficiency. Section 4.7 presents the experimental evaluation.

The Distance Optimization Algorithm was first proposed in [68] and extended in [66,

69], exploiting a clustering approach for image re-ranking. An important advantage of

Distance Optimization Algorithm consists in its flexibility. It can be easily tailored to

different CBIR tasks, considering shape, color and texture descriptors.

33
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are created. A cohesion measure is proposed for evaluating the clusters and it is used

as a convergence criterion. Algorithm 4.1 presents the Distance Optimization Algorithm,

illustrated in Figure 4.1.

Algorithm 4.1 Distance Optimization Algorithm

Require: Distance matrix A
Ensure: Optimized distance matrix Ao

1: lastCohesion← 0
2: currentCohesion← computeCohesion(A)
3: while currentCohesion > lastCohesion do
4: Cls← createClusters(A)
5: W ← updateDistances(A,Cls)
6: lastCohesion← currentCohesion
7: currentCohesion← computeCohesion(A)
8: end while
9: Ao ← A

The most relevant steps of Algorithm 4.1 are those related to Lines 4 and 5. In

these steps, the algorithm creates clusters and updates distances among images based on

created clusters. The remaining of the algorithm computes and evaluates the convergence

criterion - cohesion measure.

4.1.1 Impact of DOA on Distance Distribution

Consider the bidimensional space constructed by taking into account pairwise image dis-

tances. Consider the image space R2 defined by the image collection C={img1, img2, . . . ,

imgN} and a distance function ρ : C × C → R, where R denotes real numbers.

We can use this space for analyzing the similarity of collection images with regard

to two arbitrary images imgi, imgj ∈ C (these images are used as reference). Consider a

graphic representation of the image collection C on a Cartesian coordinate system. Let

imgl ∈ C be an image. We can plot a point representing imgl on the plane, considering

its distances to the images imgi and imgj.

Given two reference images imgi and imgj, we can consider a plane where the x axis

represents the values of distances of collection images with regard to image imgi and the

y axis represents the values of distances of collection images with regard to imgj. The

position of an image imgl ∈ C is given by the ordered pair (ρ(imgi, imgl),ρ(imgj, imgl)),

where ρ(imgi, imgl) and ρ(imgj, imgl) are the distances of imgl to the reference images

imgi and imgj, respectively. We can use this same approach to determine the position of

all collection images.
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Figure 4.2 shows the graphic representation of an image collection (MPEG-7

dataset [48]) by taking into account two reference images which are very similar. In

this example we have used the CFD descriptor [68] to compute distances among images.

Note that the distribution of images follows a linear behavior. As the reference images

are similar, their distance to other collection images are similar as well.

Figure 4.2: Bidimensional space representation for two similar images.

Figure 4.3 shows the same representation, now considering two reference images which

are not similar, according to the same descriptor. Note that the two graphic representa-

tions present very distinct characteristics. Our goal is to use this information for image

re-ranking.

We also aim at assessing the impact of Distance Optimization Algorithm on the dis-

tances among images. For this analysis we construct the same graphic of Figure 4.3

(where an image collection is represented in terms of distances of two non-similar images)

after the execution of Distance Optimization Algorithm. This graphic is presented in

Figure 4.4. We can observe very distinct sets of points: (i) points next to x axis (images
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Figure 4.3: Bidimensional space representation for two non-similar images.

similar to image i); (ii) points next to y axis (images similar to image j); (iii) central

points (remaining images). If two images belong to the same cluster, their distance are

updated (decreased).

Figure 4.5 illustrates an example of the use of the Distance Optimization Algorithm

with the CFD [68] shape descriptor. The first row presents the retrieval results for the

CFD [68] shape descriptor (first image as a query). The second row presents retrieval

results for the same shape descriptor after using the Distance Optimization Algorithm.

We can observe that the wrong results are removed from the top positions of the ranked

lists and significant improvements are obtained after the execution of DOA.

4.1.2 Cohesion Measure

The main goal of the cohesion measure is to estimate the quality of clusters. This measure

is used as a convergence criterion of DOA. Its definition is based on the conjecture that,
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Figure 4.4: Impact of the Distance Optimization Algorithm on distances.

Figure 4.5: Impact of Distance Optimization Algorithm on ranked lists.

if a cluster is “good” (cluster of similar images), then images should refer to each other

at first positions of their ranked lists (high cohesion). This conjecture is somehow close

to the cluster hypothesis [101], which states that “closely associated documents tend to be

relevant to the same requests”.

Let Cl = {img1, img2, . . . , imgm} be a set (or a cluster) of m images. Let Rq be the

ranked list of query images imgq ∈ Cl with its m top images. The cohesion of Cl is

computed based on its 2 × K nearest neighbors, considering the ranked lists Rq. It is

defined as follows:

cohesion(Cl) =

∑m

j=0

∑2×K

i=0 (2×K − i)× (2×K/p)× S(imgi, imgj, Cl)

m2
. (4.1)
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The constant p (we use p=10 in our experiments) defines variation of a weight for each

position in the ranked list. The goal is to give high weights to the first positions of the

ranked lists. S function assumes value 1, if Cl contains the image ranked at position i of

the ranked list defined by query image imgj ∈ Cl, or assumes value 0, otherwise.

4.1.3 Clustering Approach

Clustering Algorithm

Our clustering approach can be divided into two main modules: (i) a graph-based al-

gorithm for clustering; (ii) and steps for checking and improving clusters based on the

cohesion measure. Algorithm 4.2 shows the steps for clustering images. The main step

of the algorithm is the function evaluateSimilarity. This function is in charge of creating

an initial set of clusters. We can observe that this step is executed two times, in Lines 2

and 5, with different parameters. The main idea consists in creating clusters based on a

initial parameter P1 and then assessing the quality of created clusters using the cohesion

measure. Clusters that present a low quality according to the cohesion measure are split

and their images are re-processed with a more restrictive parameter P2 (Line 5).

Algorithm 4.2 Clustering Algorithm.

Require: Graph G, Parameters P1 and P2.
Ensure: A set of clusters Cls.
1: Cls← {}
2: Cls← evaluateSimilarity(G(V,E), P1, Cls)
3: Cls← mergeClusters(Cls)
4: Cls← divideClusters(Cls)
5: Cls← evaluateSimilarity(G(V,E), P2, Cls)
6: Cls← mergeClusters(Cls)

The evaluateSimilarity step uses a graph-based approach for making initial clusters.

Let G(V,E) be a directed and weighted graph, where a vertex vi ∈ V represents an image

imgi ∈ C. The weight we of edge e = (vi, vj) ∈ E is defined by the ranking position

of image imgj (vj) at the ranked list of imgi (vi). Algorithms 4.3 and 4.4 show the

main steps for creating clusters by the evaluateSimilarity algorithm. In Algorithm 4.3, an

empty cluster is created and all images are submitted to processImage procedure, detailed

in Algorithm 4.4.

The processImage procedure consists in a recursive algorithm that adds images to

the current cluster. This procedure aims at traversing the graph G that represents a

cluster. As it can be observed in Algorithm 4.4, step 5 considers the top 2 ×K nearest

neighbors of an image. Two images are assigned to the same cluster (one more vertex
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is visited in the graph) only if they are cluster-similar according to a cluster-similar

function, considering a parameter Px (Step 7 of Algorithm 4.4). In this way, the most

relevant decision of the algorithm is related to the cluster-similar function, which must

analyze distance correlation and ranked list similarities for deciding if two images should

be assigned to the same cluster. The parameter Px defines the confidence of the cluster-

similar function results: restrictive Px values lead to small but more precise clusters.

Sections 4.2.1 and 4.2.2 discuss the cluster-similar functions in details.

Algorithm 4.3 Algorithm evaluateSimilarity.

Require: Graph G = (V,E) and parameter P .
Ensure: Set of clusters Cls.
1: Cls = { }
2: for all i such that 0 ≤ i < |V | do
3: currentCluster = { }
4: processImage (imgi,G,Px)
5: Cls← Cls ∪ currentCluster
6: end for

Algorithm 4.4 Algorithm processImage.

Require: Image imgi, Graph G = (V,E), and Px.
1: if alreadyProcessed(imgi) then
2: return
3: end if
4: currentCluster = currentCluster ∪ imgi
5: for all j such that 0 ≤ j < |2×K| do
6: imgj ← σi(j)
7: if clusterSimilar(imgi,imgj,Px) then
8: if not alreadyProcessed(imgj) then
9: processImage(imgj,G,Px)
10: else
11: currentCluster ← currentCluster ∪ clusterOf(imgj)
12: end if
13: end if
14: end for

Improving Clusters

After the execution of evaluateSimilarity procedure (Step 2 of Algorithm 4.2), a set

of initial clusters is produced. In subsequent steps, the distance optimization algorithm
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aims at improving the quality of those clusters. The main idea consists in identifying

situations in which clusters can be improved: (i) images that were not assigned to any

clusters; (ii) clusters that could be merged and; (iii) “wrong” clusters that should be

split and re-processed with a more restrictive cluster-similar function.

Function mergeClusters(Clusters) (Step 3 of Algorithm 4.2) checks if there are clus-

ters that could be merged. This step first deals with clusters with only one image. Let

Ri be the ranked list of the image of such a cluster. If the cohesion of the topc images in

Ri are greater than a threshold (thcohesion), then imgj ∈ Ri is added to the cluster that

has more images of Ri.

This function is also in charge of merging small-size clusters. A small-size cluster is

added to a larger cluster, if the cohesion of this new group is greater than a threshold

thcohesion. Furthermore, the new group should have a cohesion greater than the average

cohesion of the initial clusters. Weights are defined by the size of the initial clusters.

If the cohesion of a formed cluster is less than threshold thcohesion, this cluster is split

and the status of its images is set to “non-processed” in the divideClusters(Clusters)

function. These images are processed in steps 5 and 6 of Algorithm 4.2. In this case, a

more restrictive parameter P2 is used in the cluster-similar functions.

4.2 Cluster-Similar Functions

The cluster-similar functions represents the main procedure of our clustering approach.

It decides whether two images should be assigned to the same cluster. We present in next

subsections two different approaches for implementing the cluster-similar functions.

4.2.1 Similarity of Ranked Lists

Definition 1. Let (k, l) be an ordered pair. Two images imgi and imgj are (k, l)-similar,

if wei,j ≤ k and wej,i ≤ l, where ei,j = (imgi, imgj) is the edge between images imgi and

imgj.

Definition 2. Let Op = {(k0, l0), (k1, l1), . . . , (km, lm)} be a set of ordered pairs. Two

images, imgi and imgj, are cluster-similar according to Op, if ∃(ka, la) ∈ Op|imgi and

imgj are (ka, la)-similar.

Figure 4.6 illustrates how to determine if two images are cluster-similar. In this

example, Op = {(1, 8), (2, 6), (3, 5), (4, 4)}. First, it is checked if img1 and img2 are (1, 8)-

similar. In this case, if the image ranked at the first position of ranked list Rimg1 is at one

of the eight first positions of ranked list Rimg2 , images img1 and img2 are (1, 8)-similar.

If not, the second pair of Op is used, and so on.
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Figure 4.6: Example of cluster-similarity between images img1 and img2 with regard to
Op = {(1, 8), (2, 6), (3, 5), (4, 4)}.

In our experiments, we used the first parameter P1 as Op1 = {(1, 8), (2, 6), (3, 5), (4, 4)}

and the second P2 (and more restrictive) as Op2 = {(1, 6), (2, 4), (3, 3)}.

4.2.2 Correlation

Besides the graphic representation discussed in Section 4.1.1, we can use statistical mea-

sures to characterize the distribution of distances among images. Our goal is to measure

the similarity between images imgi and imgj using distances from images imgi and imgj
to other images. In statistics, a measure of association is a numerical index which de-

scribes the strength or magnitude of a relationship among variables [110]. We analyze

this relationship by using Pearson’s Correlation Coefficient:

r =

∑n

i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
. (4.2)

Pearson’s correlation coefficient r for continuous data ranges from -1 to +1, where

r = −1 data lie on a perfect straight line with a negative slope; r = 1 data lie on a perfect

straight line with a positive slope.

As discussed in [113], if the database is large, the computation of post-processing

methods with all N objects may become impractical. A solution is proposed considering

only the distances of K-nearest neighbors given in the ranked lists of images imgi and
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imgj. Note that we consider KNNs of image imgi and KNNs of image imgj for compo-

sition of vectors X and Y (used for Pearson correlation computation). Thus, the size of

these vectors may range from K (when KNNs of imgi and imgj have the same elements)

to 2×K (when all elements of KNNs of imgi and imgj are different).

Given the correlation measure r and a threshold value Θ, we can define a cluster-

similar function based on correlation s : C × C → {0, 1}, where imgi, imgj ∈ C:

s(imgi, imgj) =

{
1, if r ≥ Θ

0, otherwise
.

The cluster-similar function based on distance correlation presents the important ad-

vantage of easy customization of threshold Θ. In this way, for collections with very

different sizes, only the parameter K needs to be changed (for cluster-similar function

based on the similarity of ranked lists all the ordered pairs should be changed). In our

experiments, we used parameters P1, P2 respectively as Θ1 = 0.5 and Θ2 = 0.75.

4.3 Updating of Distances

Given a set of clusters, we aim at exploiting this information for updating the distance

among images. In the next subsections, we present two different methods for updating

distances values.

4.3.1 Update based on Decreasing Distances

A cluster represents a set of similar images. In this way, the simplest strategy for distance

updating consists in decreasing the distances among all images in a cluster. Let λ be a

constant, such that λ < 1. Let Cl = {img1, img2, . . . , imgm} be a cluster. Let imgi,

imgj ∈ Cl be images in the cluster Cl and let ρ(imgi, imgj) be the distance between

images imgi and imgj. The distance updating based only on cluster information consists

in computing a new distance ρ̂(imgi, imgj) = λ × ρ(imgi, imgj).

4.3.2 Update based on Correlation of Distances

The updating approach that uses only the λ constant value to compute new distances

ignores any other information encoded in the relations among images. We aim at com-

bining information of both clusters and correlation to update distances. Our strategy

for that considers the set of ranked lists R={R1,R2,. . . ,RN}. Let Ri ∈ R be the ranked

list produced by matrix A for image imgi. Let Cli be the cluster to which image imgi
was assigned. The update approach is performed by dividing the ranked list Ri in three

segments as follows:
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• Seg1: an image imgj ∈ Seg1, if imgj ∈ Cli, i.e., if images imgi and imgj belong to

the same cluster Cli;

• Seg2: an image imgk ∈ c × KNN of Ri and k /∈ Seg1, i.e., if the index ik of the

image k in ranked list Ri is such that ik < c×K and imgk does not belong to the

same cluster of imgi;

• Seg3: an image l /∈ Seg1 and l /∈ Seg2.

Figure 4.7 illustrates the three segments of a given ranked list Ri according to these

criteria. For each segment of the ranked list, a different update method is performed.

Note that the magnitude of constant c defines the size (c×K) of segment Seg2, which is

updated according to the correlation coefficient.

Figure 4.7: Segmentation of ranked lists in the new distance update approach.

Let ρ(imgi, imgj) be the current distance between the images imgi and imgj, and

ρ̂(imgi, imgj) the distance after the update, the value of an updated distance is computed

for each segment as follows:
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• Seg1: ρ̂(imgi, imgj) = ρ(imgi, imgj)× λ

• Seg2: ρ̂(imgi, imgj) = ρ(imgi, imgj)× (1 + [(1− λ)× (1− r)])

• Seg3: ρ̂(imgi, imgj) = ρ(imgi, imgj)× [1 + (1− λ)]

where r value represents the value of correlation normalized in the interval [0,1].

The central idea behind this approach is to explore the correlation information for

updating distances. When images are in the set Seg1 (same cluster) the distance are

multiplied by constant λ < 1, as initially proposed in Section 4.3.1. However, when

images are in the set Seg2 (fuzzy region on ranked list), an adaptive update is performed:

the value for multiplying distance ranges in the interval [1, 1 + (1 − λ)], depending on

the correlation between images. The remaining images (the set Seg3) are multiplied by a

fixed value greater than 1: 1 + (1− λ), which we name as penalty update.

Note that images in the same cluster have their distances reduced. Otherwise, all

remaining images in the ranked list have their distances increased. The reasons for only

images in the Seg2 set suffer influence of correlation are the same of previous discussed for

the choice of KNN images for correlation computation: the computation of correlation

for updating distances for all images may become impractical for large databases. Remind

that Seg2 considers only c×K neighbors of image imgi.

4.4 Combination of Approaches

The distance optimization algorithm is flexible for combining different approaches for

cluster-similar functions and distance updating process. In this work, we present two

cluster-similar functions and two methods for distances updating. It is possible, for ex-

ample, to combine the cluster-similar function based on ranked list similarities with the

approach for updating distances using correlation.

Since the method based on correlation for updating distances includes the Decreasing

Updating approach, we focused our experiments on using the correlation method. In

this way, in Section 4.7, we present the experimental results of Decreasing Updating only

for shape descriptors. We identified the variations of Distance Optimization Algorithm

(DOA) as follows: (i) DOA-RL-DU: it uses the cluster-similar function based on sim-

ilarity of Ranked Lists (RL) and the Decreasing Updating (DU) method for updating

distances; (ii) DOA-RL-Cor: it uses the cluster-similar function based on similarity of

Ranked Lists (RL) and the Correlation approach (Cor) for updating distances; and (iii)

DOA-Cor-Cor: it uses the cluster-similar function based on Correlation (Cor) and the

Correlation approach (Cor) for updating distance.
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4.5 Using DOA for Rank Aggregation

Rank Aggregation consists in combining many ranked lists from multiple ranking algo-

rithms, in order to obtain a “better” ordering. It can be applied to CBIR context for

combining different descriptors results. In this section, we described our approach based

on the distance optimization algorithm for performing rank aggregation tasks.

The distance optimization algorithm exploits information encoded in distances ma-

trix and ranked lists for creating clusters. The clusters somehow summarizes similarity

information among images. However, different descriptors may lead to different distances

scores among images, and therefore different ranked lists for a given image. Consequently,

it leads to the creation of different clusters when the distance optimization algorithm is

used. We aim at combining cluster information of different descriptors for computing a

unique and more effective distances matrix for all descriptors.

Let D = {D1, D2, . . . , Dd} be a set of image descriptors that can be applied to CBIR

tasks on an image collection C. Let Si = {Cl1, Cl2, . . . , Clc} be a set of clusters obtained

from distance optimization algorithm applied for descriptor Di. Let Clj = {img1, img2,

. . . , imgl} be a cluster such that Clj ∈ Si. We aim at combining the information of all

clusters for computing an unique distance matrix Ac. For that, we use an affinity matrix

Wc, that is computed as follows. If two images imgx and imgy are assigned to the same

cluster for a given descriptor, the affinity between them Wc[x, y] receives an increment.

Algorithm 4.5 outlines the steps for rank aggregation algorithm.

Algorithm 4.5 Rank Aggregation based on Distance Optimization Algorithm

Require: Set of clusters Si for each Descriptor Di, Image collection C
Ensure: Distance Matrix Ac

1: for all (imgx, imgy) ∈ C do
2: Wc[x, y]← 1
3: end for
4: for all Si ∈ S do
5: for all Clj ∈ Si do
6: for all imgx ∈ Clj do
7: for all imgy ∈ Clj do
8: Wc[x, y]← Wc[x, y] + 1
9: end for

10: end for
11: end for
12: end for
13: for all (imgx, imgy) ∈ C do
14: Ac[x, y]← 1/Wc[x, y]
15: end for
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Note that, after all increments, Step 12 performs the final computation of matrix Ac

as an inverse matrix Wc.

4.6 Aspects of Efficiency

The Distance Optimization Algorithm, as other post-processing methods, was originally

designed for an off-line execution. The overall complexity of the DOA algorithm is O(N2)

and the constant associated with the asymptotic notation is very variable, depending on

properties of used datasets, size of clusters, and convergence criterion.

However, the algorithm can be easily extended considering different performance opti-

mizations. For example, the number of iterations can be reduced by changing the conver-

gence criterion. Since the algorithm is executed while the cohesion measure is increasing,

the convergence criterion can be tailored to considering a trade-off between effectiveness

and efficiency. For example, the algorithm could stop when the difference between cohe-

sion presented in current and previous iteration is smaller than a given parameter. Once

the focus of this work is the proposal of the Distance Optimization Algorithm and its

effectiveness evaluation, these optimizations are left for future work.

4.7 Experimental Evaluation

In this section, we present a set of experiments aiming at demonstrating the effectiveness

of the proposed method. We analyzed and compared our method under several aspects

in different experiments:

• Experiment 1 - Cluster-Similar Functions Comparison: Section 4.7.1

presents a comparison considering the two presented cluster-similar functions.

• Experiment 2 - Correlation Impact: Section 4.7.2 presents an analysis of the

effects of correlation on the distance optimization algorithm.

• Experiment 3 - Shape Descriptors: Section 4.7.3 discusses the results of apply-

ing our method for several shape descriptors, considering the well-known MPEG-7

dataset [48]. We also evaluated the algorithm considering rank aggregation tasks.

• Experiment 4 - Texture Descriptors: Section 4.7.4 describes conducted exper-

iments involving texture descriptors.

• Experiment 5 - Color Descriptors: Section 4.7.5 presents the experiment results

for color descriptors.
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• Experiment 6 - General CBIR Tasks: Section 4.7.6 presents the experiment

results for general CBIR tasks involving shape, texture, and color descriptors.

4.7.1 Experiment 1 - Cluster-Similar Functions Comparison

For evaluating the effectiveness of correlation as a cluster-similar function, we conducted

experiments comparing a cluster-similar function based on correlation with a cluster-

similar function based on similarity of ranked lists. Since that cluster-similar functions

determine when an image should be assigned to a cluster, the effectiveness of overall

algorithm depends directly on the accuracy of the results of these functions.

We use the MPEG-7 dataset [48] in the experiments. Since the MPEG-7 dataset

consists of 1400 images divided into 70 shape classes of 20 images each, considering an

image as a query, a perfect cluster-similar function should return “true” for 20 shapes of

its ranked list and “false” for remaining images. Considering each collection image as a

query, a perfect cluster-similar function should return a total of 28,000 (1400 × 20) “true”

values.

We compare cluster-similar functions based on correlation and ranked list similarities,

using the CFD descriptor [68]. We use the following parameters for thresholds: ordered

pairs Op = {(1, 6), (2, 4), (3, 3)} for ranked lists similarities and Θ > 0.25 for distances

correlation function.

The results of cluster-similar function comparison are presented in Table 4.1. As

we can observe, the cluster-similar function based on correlation presents a number of

“true” values much greater than that one observed for the function based on similarity

of ranked lists: for both correct and wrong judgements. When we compare the rela-

tive rate Wrongs/Corrects, the two functions presented similar results, but for the rate

Corrects/Expected, a better performance can be observed for the cluster-similar function

based on correlation.

Table 4.1: Cluster-similar functions comparison on the MPEG-7 dataset.
“True” results for Cluster-
Similar function

Ranked Lists

Similarities

Distances

Correlation

Expected 28,000 28,000

Corrects 2,532 8,294
Wrongs 24 76

Rate Wrongs/Corrects 0.95% 0.91%
Rate Corrects/Expected 9.04% 29.62%
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4.7.2 Experiment 2 - Correlation Impact

We analyzed the impact of using correlation information on updating distances and how

this use affects the distance optimization algorithm. Besides retrieval results (presented

in next section) the convergence of algorithm is a good indicator of this behavior.

Figure 4.8: Convergence: number of clusters per iteration.

Figure 4.8 illustrates the evolution of distance optimization algorithm in terms of

number of clusters by iteration. We consider the two distance updating approaches for

comparison: (i) decreasing distances and; (ii) correlation. We use the cluster-similar

function based on similarity of ranked lists for both distance updating approaches. As we

can observe, the correlation affects the algorithm positively by decreasing the number of

cluster (next to expected number of clusters - 70) and the number of iterations necessary

to reach this value.

4.7.3 Experiment 3 - Shape Descriptors

In this section, we aim at evaluating our method with regard to two different aspects: (i)

comparing the different approaches of cluster-similar functions and distances updating

approaches, and (ii) evaluating the use of our method with several shape descriptors.
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Figure 4.9: Precision vs. Recall: comparing results of distance optmization algorithm
variations

For the experiments, we use the following parameter values for distances updating:

λ = 0.95, K = 20, and c = 6. Regarding other parameters, we use topn = 40, thcohesion =

70, and topc = 10.

We compared three variations of the distance optimization algorithm on the MPEG-7

dataset. Figure 4.9 presents the Precision vs. Recall curves considering the CFD [68]

shape descriptor and variations of distance optimization algorithm. As we can observe,

the approach that uses cluster-similar function based on the similarity of ranked lists and

distances updating based on correlation presents better precision values.

We also evaluate our method considering the MPEG-7 dataset with the so-called

bullseye score. In Table 4.2, we present results of distance optimization algorithm, the

CFD [68] and IDSC [52] shape descriptors, that have been used as inputs.

Finally, we evaluate the use of our methods when applied to other shape descriptors.

The MPEG-7 database is again used in this experiment. Results are presented in Ta-

ble 4.3. Note that the effectiveness gains (shown between square brackets) are always

positive and ranges from +5.40% to +21.00%.
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Table 4.2: Post-processing methods comparison on the MPEG-7 dataset (Recall@40 ).
Algorithm Descriptor Score Gain

CFD [68] - 84.43% -
IDSC [52] - 85.40% -

DOA-RL-DU CFD [68] 92.56% +9.63%
DOA-Cor-Cor CFD [68] 92.90% +9.12%
DOA-RL-Cor CFD [68] 93.62% +10.88%

DOA-RL-Cor - Rank Aggregation CFD [68]+IDSC [52] 96.46% -
DOA-Cor-Cor - Rank Aggregation CFD [68]+IDSC [52] 97.00% -

Table 4.3: Distance Optimization Algorithm applied to shape descriptors on MPEG-7
dataset (Recall@40 ).

Shape Descrip-
tor

Score DOA-RL-Cor DOA-Cor-Cor

SS [17] 43.99% 50.93% [+15.78%] 53.23% [+21.00%]
BAS [2] 75.20% 85.11% [+13.18%] 84.15% [+11.90%]
IDSC [52] 85.40% 90.02% [+5.40%] 90.39% [+5.84%]
CFD [68] 84.43% 93.62% [+10.88%] 92.90% [+10.03%]
ASC [53] 88.39% 90.66% [+2.57%] 93.61% [+5.91%]
AIR [35] 93.67% 97.68% [+4.28%] 98.81% [+5.49%]

4.7.4 Experiment 4 - Texture Descriptors

Our goal is to evaluate the application of our method for several CBIR tasks considering

different visual properties (shape, color, and texture). The evaluation uses three well-

known texture descriptors and compared the effectiveness of retrieval before and after the

execution of the two variations of the distance optimization algorithm proposed in this

work: (i) distance optimization + correlation (for update); (ii) distance optimization +

correlation (for update + cluster-similar function).

We used the Brodatz [7] dataset. Since the Brodatz dataset presents different cate-

gorization characteristics from the MPEG-7 dataset, we changed some parameters of the

distance optimization algorithm: we used thcohesion = 55, topc = 8, and K = 15. For

other parameters, we use the same values as used for the MPEG-7 collection.

Figure 4.10 presents the Precision vs. Recall curve for descriptors CCOM [46] and

LAS [94] before and after execution of the two variations of distance optimization algo-

rithm. We can observe that for LAS [94] descriptor, the distance optimization algorithm

improved approximately 15% on recall at 1.
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Figure 4.10: Distance Optmization applied to Texture Descriptors.

4.7.5 Experiment 5 - Color Descriptors

We evaluate our method for three color descriptors: BIC [90], ACC [41], and GCH [93].

The experiments were conducted on the Soccer dataset [100].

The parameters of the distance optimization algorithm were the same used on the

MPEG-7 dataset. Only the correlation thresholds were changed, since the color de-

scriptors present precision very lower when compared with shape descriptors. Thus it

requires higher correlation thresholds for cluster-similar function. We used Θ1 = 0.25 and

Θ2 = 0.50.

Figure 4.11 presents the Precision vs. Recall curves for descriptors BIC [90] and

ACC [41] before and after the use of the distance optimization algorithm. As we can

observe, except by BIC+UpCorrelation, all curves presented positive gains.

4.7.6 Experiment 6 - General CBIR Tasks

Finally, we evaluate our method in a general way, comparing results for several descriptors

(shape, color, and texture) in different datasets. The measure adopted is Mean Average
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Figure 4.11: Distance Optmization applied to Color Descriptors.

Precision (MAP).

Results are presented in Table 4.4. Except for one result of BIC and GCH color

descriptors, the Distance Optimization Algorithm presented positive effectiveness gains

for all descriptors, ranging from +2.95% to +29.44%. The approach that uses the cluster-

similar function based on correlation presented only positive gains.

We also conducted a paired t-test aiming at evaluating the chance of difference between

the means (before and after executing the proposed re-ranking method considering all

descriptors) being statistical significant. We conclude that there is a 99.9% of chance of

difference being statistical significantly considering the DOA-RL-Cor approach and 99%

considering the DOA-Cor-Cor approach.
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Table 4.4: Correlation Methods Evaluation on Several Content-Based Image Retrieval
Tasks - Mean Average Precision
Descriptor Type Dataset Score

[%]
(MAP)

DOA-RL-Cor DOA-Cor-Cor

SS [17] Shape MPEG-7 37.67% 46.53% [+23.52%] 48.76% [+29.44%]
BAS [2] Shape MPEG-7 71.52% 81.05% [+13.32%] 80.84% [+13.03%]
IDSC [52] Shape MPEG-7 81.70% 86.94% [+6.41%] 87.77% [+7.43%]
CFD [68] Shape MPEG-7 80.71% 91.79% [+13.73%] 91.40% [+13.24%]
ASC [53] Shape MPEG-7 85.28% 88.41% [+3.67%] 91.60% [+7.41%]
AIR [35] Shape MPEG-7 89.39% 93.54% [+4.64%] 95.77% [+7.14%]
GCH [93] Color Soccer 32.24% 30.78% [-4.53%] 33.13% [+2.76%]
ACC [41] Color Soccer 37.23% 42.46% [+14.05%] 45.24% [+21.51%]
BIC [90] Color Soccer 39.26% 38.16% [-2.80%] 44.23% [+12.66%]
LBP [60] Texture Brodatz 48.40% 52.31% [+8.08%] 49.34% [+1.94%]
CCOM [46] Texture Brodatz 57.57% 59.27% [+2.95%] 64.60% [+12.21%]
LAS [94] Texture Brodatz 75.15% 80.36% [+6.93%] 81.17% [+8.01%]
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Pairwise Recommendation

In this chapter we present a new re-ranking method that takes into account relationships

among images for improving the effectiveness of CBIR descriptors. We propose a measure

for analyzing the quality of ranked lists and use the concept of recommendation for model-

ing and handling relationships among images and then for establishing new relationships

among images. The proposed approach based on pairwise recommendation is the main

novelty of the re-ranking algorithm, which is conceptually very different from previous

works [42, 45, 114, 115]. Recommender systems attempt to reduce information overload

by selecting automatically items that match the personal preferences of each user [6, 88].

More formally, “given a collection and an actor, and a set of ratings for objects in that

collection produced by others or the same actor, recommends (produces a subset of that

collection) for that particular actor [34]”.

Our pairwise recommendation approach is inspired by the concept of recommendation,

originally created to consider users ratings. However, our method does not require any

user interaction. The recommendations are simulated based on information encoded in

ranked lists computed by CBIR descriptors. The relationships among images encoded in

ranked lists are used for composing image profiles and then for recommending images,

that is, an image recommends images (that are possibly relevant) to another image. In

this context, a recommendation means that the distance between two images should be

decreased and an image should be moved up in the ranked list of the image that received

the recommendation. Our method also incorporates a simple clustering step for further

improving distances among images that belong to a same cluster. Furthermore, our

approach also can be used for combining different CBIR descriptors (rank aggregation

tasks).

Our strategy opens a new area of investigation, related to the use of recommendation

techniques in re-ranking tasks. Our method is detailed in the next section.

This chapter is organized as follows. Section 5.1 describes the image re-ranking al-

55
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gorithm based on pairwise recommendation. Section 5.2 discusses the cohesion measure.

Section 5.3 describes how recommendations are perfomed. Section 5.4 presents our clus-

tering approach and Section 5.5 the convergence criterion. The rank aggregation approach

is described Section 5.6. Finally, Section 5.7 presents the experimental evaluation.

5.1 The Re-Ranking Algorithm

The main idea of the Pairwise Recommendation re-ranking algorithm relies on the conjec-

ture that images can recommend images found at the first positions of their ranked lists

(that is, their K-nearest-neighbors). In this scenario, recommendation means decreasing

the distance between images: when an image imgi recommends an imgk to an image imgj,

it means that image imgj should have its distance to imgk decreased.

Each recommendation is associated with a different weight (how much the distance

should be decreased). For computing the recommendation weight, we consider the position

of images in ranked lists and the quality of the ranked lists. We use a cohesion measure

for estimating the quality of ranked lists and then sorting the ranked lists. We consider,

in this way, that images with better ranked lists (higher cohesion) have more authority

for making recommendations. After performing all recommendations, ranked lists are

considered for clustering images and additional recommendations are made, given the

obtained clusters.

Once all distances have been updated by recommendations, a re-ranking can be per-

formed based on the new distance matrix At+1 (where t indicates the current iteration)

for generating a new set of ranked lists Rt+1. These steps are repeated in an iterative

manner until a convergence criterion is reached. The employed convergence criterion is

based on the variation of cohesion measure. At each iteration we increment the number K

of neighbors considered for recommendations. Note that after one iteration, more relevant

images are found at first positions of the ranked lists. Non-relevant images are moved out

from the first positions of the ranked lists and therefore K can be increased for consid-

ering more images. In the next iteration, more images (larger K) are considered in the

recommendation process. Finally, when the convergence criterion is reached, a re-ranking

is performed based on the final distance matrix Â. Figure 5.1 illustrates the main steps

of our approach. Algorithm 5.1 outlines our re-ranking method.

The main steps of Algorithm 5.1 are presented in Lines 6, 10, and 13, which refer, re-

spectively, to computing cohesion, to making recommendations, and to clustering images.

These steps are detailed in next sub-sections. Note that, in Line 8, C = {c1, c2, . . . , cN}

is a set of cohesion scores ci computed for each ranked list Ri. Based on C, a set Rc is

computed, where ranked lists are sorted in decreasing order of cohesion. In Line 16, a

re-ranking is performed. Once the distance matrix At+1 is updated, the ranked lists can
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Figure 5.1: Pairwise Recommendation re-ranking method.

Algorithm 5.1 Pairwise Recommendation Re-Ranking

Require: Distance matrix A and set of ranked lists R, K, λ, ǫcohesion
Ensure: New distance matrix Â and new set R̂
1: t← 0
2: At ← A
3: currentCohesion← 0
4: Rt ← R
5: repeat
6: for all Ri ∈ R do
7: ci ← computeCohesion(Ri,Rt)
8: end for
9: Rc = sortRankedListsByCohesion(Rt, C)
10: for all Ri ∈ Rc do
11: At ← performRecommendations(At, Ri, ci)
12: end for
13: for all Ri ∈ Rc do
14: At ← performClusterRecommendations(At, Ri)
15: end for
16: At+1 ← At

17: Rt+1 ← performReRanking(At+1)
18: lastCohesion← currentCohesion
19: currentCohesion← computeAvgCohesion(Rt+1)
20: t = t+ 1
21: K = K + 1
22: until (currentCohesion− lastCohesion) < (currentCohesion× ǫcohesion)
23: Â = At

24: R̂ = Rt
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be computed again, that is, images are re-ranked.

5.2 Cohesion Measure

In this section, we use a normalized cohesion measure for estimating the quality of ranked

lists, similar to that presented in Chapter 4. The objective of this measure is to assess

how “good” a ranked list is. A ranked list is considered “good” when images placed at the

top positions refer to each other at the top positions of their ranked lists. It is somehow

close to the cluster hypothesis [101], which states that “closely associated documents tend

to be relevant to the same requests”.

Our method considers that “high quality” ranked lists are able to make more accurate

recommendations. In this sense, these ranked lists have more authority (defined by the co-

hesion measure) to make recommendations. This approach is analogous to the PageRank

algorithm [61]. Although having different objectives, both PageRank and our cohesion

measure exploit the link structure (hyperlinks references in ranked lists) for obtaining

information about items (pages, images). Basically, the PageRank algorithm assess the

importance of a page by taking into account link structures. In our approach, the cohesion

measure aims at assessing the quality of ranked lists by analyzing how images refer to

each other in their ranked lists.

The computation of cohesion is as follows: Let Ri be a ranked list of an image imgi.

Let Rki={img1, img2, . . . , imgK} be a subset of a ranked list Ri that considers the K

nearest neighbors of imgi. Let imgj ∈ Rki be an image of this subset (one of K-neighbors

of image imgi), and let Rkj be a subset of the ranked list of imgj. Finally, let imgp ∈ Rkj

be an image in the ranked list Rkj. We define the cohesion as follows:

cohesion(Ri, K) =

∑
imgj∈Rki

∑
imgp∈Rkj

s(Rki, imgp)× w(Rkj, imgp)∑
imgj∈Rki

∑
imgp∈Rkj

w(Rkj, imgp)
. (5.1)

The terms s and w are functions. The objective of the function s is to determine if

image imgp (that belongs to subset Rkj) also belongs to subset Rki. The function s is be

defined as follows:

s(Rki, imgp) =

{
1, if imgp ∈ Rki

0, otherwise
. (5.2)

The function w takes as input a position of an image in a ranked list. The goal is to

give high weights to images at the first positions of the ranked lists. In our algorithm we

define w as w(Rkj, p) = 1/σj(p), where σj(p) represents the position of image imgp in the

ranked list Rkj. Note that, if all referenced images are in the subset Rki, the function s

will assume value 1 for all images and therefore cohesion (Equation 5.1) is set to 1. It
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indicates a perfect cohesion, where all considered images refer to each other at the first

positions of their ranked lists.

Figure 5.2 illustrates the computation of the cohesion measure for the ranked list Ri.

Observe, on the left, the ranked list Ri and its subset Rki. On the right, for a given image

imgj ∈ Rki, it illustrates the ranked list Rj (and its subset Rkj). The function s verifies

if an imgp belongs to both subsets Rki and Rkj. Function w, illustrated on the right,

computes a weight given the position of image imgp in the ranked list Rj.

Figure 5.2: Computation of the cohesion measure.

5.3 Performing Recommendations

The basic idea of our recommendation method is: “an image imgi recommends the imgy
to imgx, if imgx and imgy are on the top-K positions of the ranked list of imgi”. In

this context, the recommendation is associated with a decrease of the distances between

two images (imgx and imgy). The recommendations are performed in the same context

where cohesion is computed: considering a subset Rki with the K-nearest neighbors of a

ranked list Ri. Observe that, before recommendations, the cohesion of all ranked lists are

computed and the ranked lists are sorted in a decreasing order of cohesion. In this way,

the recommendations, which represent updates for distance matrix A, are performed first

for ranked lists with higher cohesion. Algorithm 5.2 presents our method for performing

recommendations for a given ranked list Ri.

Variables wx and wy represent the weight given to images imgx and imgy in the
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Algorithm 5.2 Recommendations performing

Require: Matrix A, Ranked list Ri and Cohesion ci
Ensure: Updated matrix A
1: Rki ← KNN(Ri)
2: x← 1
3: for all imgx ∈ Rki do
4: wx ← 1− (σi(y)/K)
5: y ← 1
6: for all imgy ∈ Rki do
7: wy ← 1− (σi(y)/K)
8: w ← ci × wx × wy

9: λ← 1−min(1, L× w)
10: A[x, y]← min(λA[x, y], A[y, x])
11: y ← y + 1
12: end for
13: x← x+ 1
14: end for

recommendation. The weights are computed based on the position of those images in the

ranked lists: for images at first positions of the ranked list, a higher weight is assigned. The

weights associated with the first positions indicate where it is more likely to find the most

similar (relevant) images, that is, positions that represent more reliable recommendations.

These variables are computed in Lines 4 and 7 of Algorithm 5.2, both in the interval [0,1].

In Line 8, the weight w of a recommendation is computed. That represents the reputation

of the recommendation. For computing w, we consider wx, wy and the cohesion ci of

the ranked list Ri. Figure 5.3 illustrates how a recommendation is performed for a given

ranked list Ri. It considers two images imgx, imgy ∈ Rki and takes into account their

positions in the ranked list for computing the weights wx and wy.

In Line 9, a coefficient λ is computed in the interval [0,1]. This coefficient is used

for determining how the distances between imgx and imgy should be decreased. For

computing λ, we multiply the weight w of the recommendation and a constant L. The goal

of constant L is to adjust the “speed” of the convergence of the algorithm. By increasing

the value of L, the distances among images will decrease faster and the algorithm will

be executed in less iterations. However, with a very high value of L 1, the algorithm

can not take advantage of the improvements of the ranked lists along iterations. Note

also that we use a min function in Line 9 to avoid negative values and then to restrict

the coefficient λ to [0,1]. Finally, the value of λ is multiplied by for the current distance

A[x, y] for computing the new updated distance.

1We used L in interval [1,2] in our experiments.
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Figure 5.3: Performing recommendations.

5.4 Clustering Approach

High values of w (or L) can lead to situations where λ = 0 and, consequently, A[x, y]=0.

These situations are associated with recommendations of great confidence. The key idea

of our clustering approach is to exploit these cases to group images and then making

additional recommendations based on created clusters. Let Ri be a ranked list of an

image imgi. A cluster Cli is composed by all images whose distance to imgi is equal to

0. Cli can be defined as follows: {Cli ⊂ Ri | ∀ imgc ∈ Cli, A[i, c] = 0}.

Given a cluster Cli the additional recommendations consists in setting all distances

among all images of Ci to 0. More formally: we aim at ensuring that for each cluster Cli
and for each pair of images imgx, imgy ∈ Cli, we have A[x, y] = A[y, x] = 0.

5.5 Convergence Criterion

In general, an iterative method is said to converge, if the difference between results ob-

tained along iterations decreases, tending to reach an ultimate result. In our case, it is

expected that the proposed re-ranking algorithm converges, improving the quality of the

ranked lists along the iterations, tending to a final ranking.

In Section 5.2, we described the cohesion measure, whose main goal is to estimate the

quality of ranked lists. This measure is also used as a convergence criterion, according to

the following conjecture: “the re-ranking procedure should be iteratively executed while the

quality of ranked lists (measured by cohesion) is increasing”. Therefore, at each iteration,
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the average cohesion of all ranked lists is computed and compared with the one computed

in the previous iteration. The convergence criterion of the re-ranking algorithm is tested

in Line 22 of Algorithm 5.1. The convergence condition checks if the variation of cohesion

is greater than a given threshold. The threshold is computed proportionally to the current

cohesion, using the parameter ǫcohesion. For the convergence criterion, the computation of

cohesion considers the 2×K top positions of ranked lists (initial value of K).

In the following, we present a brief discussion about the method’s convergence. Let C

be an image collection. Let Si be a set of similar images such that S1 ∪ S2 ∪ · · · ∪ Sm = C

and |Si| ≥ K. We consider three hypothetical scenarios, given the effectiveness of CBIR

descriptors:

1. “Highly-effective” descriptor: by using the highly-effective descriptor for collection

C, images found at the top K positions of a ranked list Rki of an image imgi ∈

Si are all similar to each other, that is Rki ⊂ Si. In this scenario, the average

cohesion of ranked lists is very high, since all similar images refer to each other at

the top positions of their ranked lists. Therefore, the recommendations produce

small changes in the ranked lists. In this way, the variation of average cohesion is

very low and the convergence is reached very quickly.

2. “Real-world” descriptor: for a real-word descriptor, the ranked list Rki may include

some incorrect results, that is, some non-similar images are found at the top K

positions of Rki. Let imgj ∈ Rki be an image non-similar to imgi. In that case,

recommendations defined for ranked lists of similar images to imgi can improve

Rki, by moving the non-similar image imgj out of the first positions of Rki. In other

words, when correct results represent the common case, the recommendation method

can improve ranked lists. While these improvements occur, the average cohesion of

ranked lists increase. That process is repeated until convergence is reached.

3. “Non-effective” descriptor: for non-effective descriptors, the created ranked lists

can be seen as a result of a random permutation of images. In that case, the

method convergence would be slow as the number of similar images found at the

top positions of ranked lists are very small.

An experimental analysis of convergence is presented in Section 5.7.4.

5.6 The Rank Aggregation Algorithm

Recently, several methods have been proposed aiming at combining ranked lists produced

by different descriptors. The objective is to produce more effective results [4, 28, 95]. We

propose the use of our re-ranking algorithm for combining descriptors (rank aggregation).
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Let C be an image collection and let D = {D1, D2, . . . , Dm} be a set of CBIR descriptors.

We can use the set of descriptors D for computing a set of distance matrices A = {A1,

A2, . . . , Am}. Our approach for descriptor combination works as follows. The first step

is to combine the set A in a unique matrix Ac. For the matrices combination we use a

multiplicative approach. Every (i, j) position of matrix is computed as follows:

Ac[i, j] = A1[i, j]× A2[i, j]× · · · × Am[i, j]. (5.3)

By multiplying the distances between the same images (say imgi and imgj) considering

different descriptors, high distances obtained by one descriptor will be propagated to the

others, leading to high aggregate values. Another reasoning behind the multiplication

approach is inspired by the Näıve Bayes classifiers [118]. In a general way, the Näıve Bayes

works based on the probability of an instance E be of a class c, given a set of features,

assuming conditional independence among features. In a simplified manner, a Näıve

Bayes classifier assumes that the presence of a particular feature of a class is unrelated

to the presence (or absence) of any other feature. Under the independence assumption,

the probabilities of each feature be of a given class are multiplied. In this case, as an

analogy, the proposed multiplication approach can be seen as the computation of the

probability of images imgi and imgj are non-similar, considering independent features

(CBIR descriptors).

After the multiplication step, once we have a combined matrix Ac, we compute a set

of ranked lists Rc based on this matrix. Then, we perform the Pairwise Recommendation

algorithm now using the matrix Ac and the set Rc.

5.7 Experimental Evaluation

In this section, we present a set of conducted experiments for demonstrating the effec-

tiveness of our method. We analyzed and compared our method under several aspects.

Section 5.7.1 aims at evaluating the impact of different values used for the method pa-

rameters with regard to effectiveness and efficiency criteria. Section 5.7.2 presents results

concerning the use of our method to several shape descriptors, considering the MPEG-7

dataset [48]. Sections 5.7.3 aims at validating the hypothesis that our method can be used

in general image retrieval tasks. In addition to shape descriptors, we conduct experiments

with color and texture descriptors. The objective of the experiments presented in these

sections is to assess the effectiveness of the method considering different visual proper-

ties and different datasets. Section 5.7.4 discusses convergence aspects of the re-ranking

method.

Finally, Section 5.7.5 presents experimental results of our re-ranking method when
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used to combine descriptors in rank aggregation tasks. We conducted experiments for

shape, color, and texture descriptors.

All experiments were conducted considering all images in the collections as query

images. Results presented (in terms of MAP and Recall@40 scores) represent an average

scores considering all queries.

5.7.1 Experiment 1 - Impact of Parameters

The execution of Algorithm 5.1 considers three parameters: (i) K - number of initial

neighbors considered for recommendations; (ii) L - a constant that controls the influence

of weights; and (iii) ǫcohesion - the threshold parameter in the convergence criterion (which

determines the number of T iterations along which the algorithm is executed). In order

to evaluate the influence of different parameter settings on the retrieval scores and for

determining the best parameters values we conducted a set of experiments. We use the

MPEG-7 dataset [48] with the bullseye score measure. For distance computation, we

used the CFD [68] shape descriptor. Retrieval scores are computed ranging parameters

K in the interval [1,15] and T in the interval [1,30] (with increments of 5) for each value

of L. Figures 5.4 and 5.5 show surfaces that represent retrieval scores for L equal to 1

and 2, respectively. We can observe optimal combinations of values for regions close to

K = 8 and T = 15, for which the best retrieval scores are observed. In the following

experiments, parameters are set to K = 8 and ǫcohesion = 0.0125 (threshold that reaches

convergence in about 15 iterations). Note that these parameters were defined considering

a single descriptor/dataset, but they were used in all conducted experiments with good

results.

Figure 5.6 shows the impact of different values of L in the method’s precision. We

fixed the values of K = 8 and T = 15 and computed the retrieval scores for L in the

interval [0,3]. In this case, the best retrieval score was reached for L = 2. The value of

L = 2 indicates that a high weight can be assigned to the recommendations.

Finally, we analyze the impact of parameters K and T on computation time. Fig-

ure 5.7 illustrates a surface representing the variation of computation time as a function

of K and T . We can observe a approximate quadratic behavior for the surface. The com-

putation time of recommendation process increases proportionally to K2× T . Note that,

although the asymptotic complexity of recommendation and clustering steps is quadratic

for parameters K and T , it is linear (O(N)) for the size of collection N , since the recom-

mendations are considered for K << N images.
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Figure 5.6: Impact of parameter L (K=8, T=15).

Shape Descriptors

For the experiments with the shape collection, we used the same descriptors and dataset

considered for previous section, using MAP as score. Results are similar to those obtained

considering bulleyes score, with positive gains ranging from +5.92% to +13.22%.

Texture Descriptors

In this section we aim at validating our method in image retrieval tasks using texture

descriptors. The experiments consider three texture descriptors: LBP [60], CCOM [46],

LAS [94]. We used the Brodatz [7] dataset, for texture descriptors evaluation. For pa-

rameters setting we use (both for texture and color descriptors) the same values used for

shape descriptors (in this experiment, we take L = 1). Our re-ranking method presents

positive gains ranging from +7.27% to 15.44%.

Color Descriptors

We evaluate our method for three color descriptors: BIC [90], ACC [41], and Global

GCH [93]. The experiments were conducted on the Soccer dataset [100]. We can observe

a positive gain for all color descriptors ranging from 0.34% to 8.61% (considering MAP

as score).
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Figure 5.7: Impact of parameters on execution time.

Figure 5.8: Impact of Pairwise Recommendation re-ranking on ranked lists.

5.7.4 Experiment 4 - Analysis of Convergence

This section aims at discussing and experimentally evaluating the convergence of the

proposed re-ranking method.

Figure 5.10 shows the evolution of cohesion measure, whose variation is used as conver-

gence criterion. We considered three different descriptors/datasets: the CFD [68] shape

descriptor on the MPEG-7 dataset, the BIC [90] color descripor on the Soccer dataset,

and LAS [94] texture descriptor on the Brodatz dataset. We can observe a similar behav-

ior for the three curves: at the beginning, the cohesion measure increases quickly and, at

the end, it converges for a constant value. As discussed in Section 5.5, in scenarios with

less effective descriptors, the converge is slower. That can be observed for the BIC [90]

descriptor on the Soccer dataset, which has the lowest effectiveness performance.

Besides cohesion measure, we also consider the difference between ranked lists along

iterations. Intuitively, we consider that an iterative re-ranking algorithm converges if,

after a certain number of iterations, it produces a small number of changes in the gener-

ated ranked lists. More formally, we consider a definition of ε-convergence for rankings
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Figure 5.9: Percentage gains in bulls-eye score for each class of MPEG-7 dataset consid-
ering CFD [68] shape descriptor.

presented in [78]:

Let C={img1, img2, . . . , imgN} be an image collection and let R be a ranked list

R=(img1, img2, . . . , imgN), which can be defined as a permutation of the collection

C. An iterative ranking algorithm that generates a ranked list R(t) at each iteration t,

ε-converges in (at most) T iterations in a metric d(·, ·), if there exists a ranked list R such

that, for every t ≥ T , d(R(t), R) < ε.

A natural distance metric to use for this definition is the Kendall’s tau metric. This

metric turns out to be equal to the number of exchanges needed in a bubble sort to convert

one permutation to the other. The use of this metric for comparing top-k lists is detailed

in [27] and a definition is presented in Equation 7.11.

In this scenario, we have measured the evolution of Kendall’s tau distance between

rankings at each iteration for the three descriptors. For measuring the Kendall’s tau

distance, we considered the 2 × K top images of ranked lists (same size considered for

cohesion measure). Figure 5.11 shows the evolution of average Kendall’s tau distance

between rankings along iterations.

The results obtained by using the Kendall’s tau distance is consistent with the cohesion

measure evolution (Figure 5.10). The Kendall’s tau distance decreases at the same pace

as the cohesion measure increases. A high distance can be observed at first iterations,
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Table 5.2: Pairwise Recommendation Evaluation on Several Content-Based Image Re-
trieval Tasks (MAP).

Image Type Dataset Score Pairwise Gain
Descriptor (MAP) Recomm.

SS [17] Shape MPEG-7 37.67% 39.90% +5.92%
BAS [2] Shape MPEG-7 71.52% 77.65% +8.57%
IDSC [52] Shape MPEG-7 81.70% 86.83% +6.28%
CFD [68] Shape MPEG-7 80.71% 91.38% +13.22%
ASC [53] Shape MPEG-7 85.28% 89.55% +5.01%
AIR [35] Shape MPEG-7 89.39% 94.71% +5.95%

GCH [93] Color Soccer 32.24% 32.35% +0.34%
ACC [41] Color Soccer 37.23% 40.31% +8.27%
BIC [90] Color Soccer 39.26% 42.64% +8.61%

LBP [60] Texture Brodatz 48.40% 51.92% +7.27%
CCOM [46] Texture Brodatz 57.57% 66.46% +15.44%
LAS [94] Texture Brodatz 75.15% 80.73% +7.43%

indicating a lot of changes in the ranked lists. After some iterations, the convergence

criterion is reached (distances get lower values).

The same results were observed for the other descriptors used in the three image

collections. On average, all descriptors converged in 17 iterations.

5.7.5 Experiment 5 - Rank Aggregation

This section aims at evaluating the use of our re-ranking method to combine different

CBIR descriptors. We selected two descriptors for each visual property. Descriptors with

best effectiveness results were selected. Table 5.3 presents the results of MAP score for

these descriptors. We observe significant gains compared with the use of each descriptor

in isolation.

Figure 5.12 illustrates the Precision × Recall curves of shape descriptors CFD [68] and

IDSC [52] using the MPEG-7 dataset. It considers different situations: before and after

using the Pairwise Recommendation Re-Ranking and after the use of the rank aggregation

approaches that uses the Pairwise Recommendation algorithm. For rank aggregation

tasks, we obtain 99.52% considering the bullseye score (95% confidence interval: 99.22%,

99.82%).

Finally, we analyze the impact of our combination method on the distance matrix.

Figure 5.13 illustrates a subset (200 × 200) of distance matrices for the MPEG-7 dataset

considering descriptors CFD [68], IDSC [52], and the combination using the Pairwise
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Figure 5.10: Analysis of convergence - Cohesion measure.

Recommendation algorithm. The dark pixels indicate low distances between images.

In the matrix which represents the combination using the Pairwise Recommendation

algorithm, we can observe very distinct squares that illustrate the low distances among

shapes from the same classes.
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Figure 5.11: Analysis of convergence - Kendall’s tau distance.

Table 5.3: Pairwise Recommendation for Descriptors Combination (MAP).
Descriptor Type Dataset Score[%]

CFD [68] Shape MPEG-7 80.71%
IDSC [52] Shape MPEG-7 81.70%
CFD [68] + IDSC [52] Shape MPEG-7 98.78%

ACC [41] Color Soccer 37.23%
BIC [90] Color Soccer 39.26%
ACC [41] + BIC [90] Color Soccer 42.20%

CCOM [46] Texture Brodatz 63.67%
LAS [94] Texture Brodatz 75.15%
LAS [94] + CCOM [46] Texture Brodatz 79.91%







Chapter 6

Contextual Spaces

In this chapter, we present two novel re-ranking approaches that take into account con-

textual information defined by the K-Nearest Neighbours (KNN) of a query image. We

propose the creation of contextual spaces for analysing the contextual information, i.e.,

for characterizing the local context of a query image defined by its neighbourhood. A con-

textual space is constructed considering the most similar images to a query image. Later,

new distances are computed by taking into account the distances (encoded in those con-

textual spaces) among these neighbours to other collection images. The image collection

is re-ranked based on the new distances and this process is repeated along iterations.

This chapter presents two variations of our re-ranking method: the Contextual Spaces

based on KNN and Contextual Spaces based on Mutual-KNN algorithms. The main

difference between them relies on the method for selecting the K most similar images

which are used for constructing the contextual spaces. As any other general re-ranking

approach, the proposed methods can be applied to any distance matrix, whether those

distances are calculated from a single image descriptor or from some combination of a

number of distances.

The main contributions of this chapter are:

• the definition of the concept of contextual spaces for encoding contextual informa-

tion of images;

• the definition of two new re-ranking algorithms that exploit contextual information

encoded in contextual spaces;

• the evaluation of the proposed algorithms in several CBIR tasks related to the

combination of image descriptors; combination of visual and textual descriptors;

and combination of post-processing (re-ranking) methods.

Different from other methods [66, 68, 69], this approach does not consider the costs

involved with clustering strategies used to update the distances among images. The

75
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contextual spaces proposed here are similar to the context images proposed in [67] to

encode contextual information. One advantage of the proposed approach when compared

to [45, 113, 114] relies on its flexibility in the sense it can be easily tailored to other CBIR

tasks such as: rank aggregation, multimodal retrieval, combination of post-processing

methods.

We conducted a large evaluation protocol involving visual descriptors (considering

shape, color, and texture) and textual descriptors, various datasets, and comparisons

with other post-processing methods. Experimental results demonstrate the effectiveness

of our approaches. The proposed re-ranking algorithms yield better results in terms of

effectiveness performance than various post-processing and rank aggregations methods

recently proposed in the literature.

This chapter is organized as follows: Section 6.1 introduces the re-ranking algorithms

based on contextual spaces. Section 6.2 presents the experimental evaluation.

6.1 The Contextual Spaces Algorithms

This section presents the Contextual Spaces Algorithms. Section 6.1.1 describes the con-

textual spaces representation. Section 6.1.2 presents the re-ranking algorithms. Sec-

tion 6.1.3 discusses the impact of re-ranking algorithms on distances among images. Sec-

tion 6.1.4 describes our rank aggregation method.

6.1.1 Contextual Spaces Representation

Consider the bidimensional space R
2 constructed by taking into account pairwise image

distances defined by function ρ : C × C → R. We can use this space for analyzing the

similarity of collection images with regard to two arbitrary images imgi, imgj ∈ C (these

images are used as reference). Consider a graphic representation of the image collection

C on a Cartesian coordinate system. Let imgl ∈ C be a collection image, we can represent

imgl as a point on the plane, considering its distances to the reference images imgi and

imgj.

Given two reference images imgi and imgj, we can consider a plane where the x axis

represents the distances of collection images with regard to image imgi and the y axis

represents the values of distances of collection images with regard to imgj. The position

of an image imgl ∈ C is given by the ordered pair (ρ(imgi, imgl),ρ(imgj, imgl)), where

ρ(imgi, imgl) and ρ(imgj, imgl) are the distances of imgl to the reference images imgi
and imgj, respectively. We can use this same approach to determine the position of all

collection images.

Figure 6.2 shows the graphic representation of an image collection (MPEG-7
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6.1.2 The Re-Ranking Algorithms

The re-ranking algorithms based on contextual spaces aim at redefining distances among

images by taking into account information encoded in the distance matrix A and in the

set of ranked lists R. Based on the new distances, new ranked lists can be computed.

The main motivation of our re-ranking algorithm relies on the following question:

“Given a query image, what information can similar images provide about other collection

images?”

In our method, this question is answered by exploiting contextual spaces. The rea-

soning behind the use of contextual spaces consists in taking into account relationships

of images in the context of the query (and not only pairwise distances). Given a query

image, a selected set of similar images to the query is considered for constructing the

contextual spaces. In the following, information encoded in these contextual spaces is

used for computing a new distance from the query image to other collection images. In

this way, distances from an image to other collection images are redefined considering the

distances to their similar images.

Since the distances among images are redefined so as to become more effective, the

process is repeated iteratively, aiming at further improving the effectiveness along itera-

tions. Next sections detail two algorithms based on contextual spaces, which differ from

each other mainly on the approach for selecting the similar images that will be used for

constructing the contextual spaces.

Contextual Spaces based on KNN (CS-KNN)

The Contextual Spaces based on KNN algorithm considers the K-nearest neighbours as

similar images for constructing the contextual spaces. Algorithm 6.1 presents the main

steps of the proposed re-ranking algorithm. Let imgi be a collection image (imgi ∈ C).

The response set for K-nearest neighbours KNN(imgi) is formally defined as follows:

KNN(q) = {R ⊆ C, |R| = K ∧ ∀x ∈ R, y ∈ C −R : ρ(q, x) 6 ρ(q, y)}. (6.1)

Given an image imgi ∈ C, for each of its K most similar images imgj ∈ KNN(imgi),

a contextual space is constructed aiming at computing new distances from imgi to other

collection images. New distances are computed by combining information of K contextual

spaces in an unique space, defined by two dimensions: di and dj. Let imgl be another

collection image whose distance to imgi we want to compute. The dimension di represents

the distance between imgi and imgl. The dimension dj represents the distance information

from neighbours imgj ∈ KNN(imgi) to imgl.
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Algorithm 6.1 shows the main steps of the method. For computing a new distance

At+i[i, l] between images imgi and imgl (where t denotes the iteration being executed), the

re-ranking algorithm considers the position of image imgl in this merged space, given by

dimensions di and dj (Line 17 of Algorithm 6.1). Images close to the origin (low distances

between imgi and its neighbors) present the lowest scores.

Basically, at each iteration, given any two images imgi, imgl ∈ C, the distance At+1[i, l]

= ρ(imgi, imgl) is redefined. This is done by using information of contextual spaces defined

for each imgj ∈ KNN(imgi).

Note that, in Line 11 of Algorithm 6.1, the dimension dj (distance from neigh-

bours of imgi) is incremented with weighted distances, computed between each imgj ∈

KNN(imgi) and imgl. In this way, we consider that the elements of KNN(imgi) are

retrieved in increasing order of distances. The concept behind these weights (given by

term K− ck) consists in considering as more relevant, distances from the first neighbours.

In Line 16, the dimension dj is computed dividing the accumulated weighted distances

by the sum of the weights, given by the arithmetic sum. The dimension di is computed

based on the distance from imgi to imgl divided proportionally by the number of neigh-

bors considered in the iteration (Line 15 of Algorithm 6.1). The new distance At+1[i, l] is

computed in Line 17, based on the orthogonal dimensions di (distance from imgi) and dj
(distance from neighbours of imgi).

Once the distances among images are redefined, a set of ranked lists is computed

and the re-ranking algorithm is perfomed again, in an iterative way. At each iteration

t, we increment the number of K neighbors considered for constructing the contextual

spaces (Line 21 of Algorithm 6.1). The motivation behind this increment relies on the fact

that the effectiveness of ranked lists increases along iterations. In this way, non-relevant

images are moved out from the first positions of the ranked lists and K can be increased

for considering more images.

The algorithm has two parameters: the initial number of neighbours Ks to be con-

sidered, and the final number of neighbours Ke. Note that the difference between these

parameters defines the number of iterations of the algorithm (t = Ke −Ks).

Contextual Spaces based on Mutual-KNN (CS-MKNN)

Both Contextual Spaces based on KNN and Contextual Spaces based on Mutual-KNN re-

ranking algorithms aim at redefining distance among images based on contextual spaces.

The main difference between them relies on the method for selecting the K most similar

images which are used for constructing the contextual spaces. The Contextual Spaces

based on Mutual-KNN considers not only the information of nearest neighbours, but also

the mutual reference between images and their neighbours in their ranked lists.

Algorithm 6.2 presents the main steps of Contextual Spaces based on Mutual-KNN
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Algorithm 6.1 Re-Ranking Algorithm: Contextual Spaces KNN

Require: Original distance matrix A; set of ranked lists R; parameters Ks and Ke

Ensure: Processed distance matrix Â; set of ranked lists R̂
1: t← 0
2: At ← A
3: K ← Ks

4: while K ≤ Ke do
5: At+1 ← 0
6: for all imgi ∈ C do
7: for all imgl ∈ C do
8: {Considering contextual spaces}
9: ck ← 0; dj ← 0

10: for all imgj ∈ KNN(imgi) do
11: dj ← dj + A[j, l]× (K − ck)
12: ck ← ck + 1
13: end for
14: {Computing distance ρ(imgi, imgl)}
15: di ← A[i, l]/K

16: dj ← dj/(
K×(K−1)

2
)

17: At+1[i, l]←
√
d2i + d2j

18: end for
19: end for
20: Rt+1 ← performReRanking(At+1)
21: K ← K + 1
22: t← t+ 1
23: end while
24: Â← At

25: R̂ ← Rt
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Figure 6.5: Contextual Spaces based on Mutual-KNN: selection of images for constructing
the contextual spaces.

algorithm. Line 9 refers to the method for selecting the similar images, which is detailed

in the following. Let imgi ∈ C be the image whose the K most similar images we want to

select. The main idea for the selection approach consists in using a λ > K parameter for

filtering a subset of the ranked list and selecting images in this subset which refer to imgi
at the first positions of their ranked list. We describe this approach in the following. Let

pos(imgj, imgi) be the position of imgj in the ranked list of imgi and let pos(imgi, imgj)

be the position of image imgi in the ranked list of imgj. The function pos(imgj, imgi) is

defined as the size of the set of images whose distance to imgi is less than the distance

from imgi to imgj. Figure 6.5 illustrates the ranked lists Ri and Rj, the parameter λ,

and the positions pos(imgj, imgi) and pos(imgi, imgj) in these ranked lists. The image

imgj is considered one of the K most similar images of imgi if:

1. the position pos(imgj, imgi) < λ;

2. the value of pos(imgj, imgi) + pos(imgi, imgj) is one of theK lowest values obtained,

considering the ranked list of image imgi.

We can formally define the pos function and the Mutual-KNN set as follows:

pos(q, x) = | {R ⊆ C, ∀x ∈ R, y ∈ C −R : ρ(q, x) 6 ρ(q, y)} |, (6.2)
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MKNN(q) = {R ⊆ C,|R| = K ∧ ∀x ∈ R : (pos(q, x) 6 λ ∧ ∀x ∈ R, y ∈ C −R :

(pos(q, x) + pos(x, q)) 6 (pos(q, y) + pos(y, q))}.
(6.3)

We consider that the elements of MKNN(imgi) are retrieved in increasing order of

distances. Once the K most similar images have been selected, a contextual space is

constructed for each selected image, in the same way of Contextual Spaces based on KNN

algorithm. New distances are computed merging information of K contextual spaces in

an unique space, defined by two dimensions: di and dj. The dimension di represents

the distance information from imgi to imgl. The dimension dj represents the distance

information from selected similar images imgj ∈ MKNN(imgi) to imgl.

The new distance is computed based on values of di and dj (Line 17 of Algorithm 6.2).

The dimension dj (distance from neighbours of imgi) is computed as a weighted average

from imgj ∈ MKNN(imgi) to imgl. High weights (given by the term K − cK) will

be assigned to images from set MKNN(imgi) which refer and are referred by image

imgi at the first positions of their ranked lists. The dimension di is computed based on

the distance between imgi and imgl divided proportionally by the number of neighbours

considered in the iteration.

As the Contextual Spaces based on KNN algorithm, at each iteration, given any two

images imgi, imgl ∈ C, the distance At+1[i, l] = ρ(imgi, imgl) is redefined. Once the

distances among images are redefined, a set of ranked lists can be computed and a re-

ranking can be performed again, in an iterative way.

Note that the parameter K (number of images used for constructing the contextual

spaces) is not incremented at each iteration (as in Contextual Spaces based on KNN ).

That happens because the method used for selecting similar images (considering mutual

reference in ranked lists) consider more information than using only the nearest neighbours

and, therefore, can start considering a larger number of neighbours. In this way, the

number of iterations of the algorithm is executed is not related to the size of K.

For Contextual Spaces based on Mutual-KNN, three parameters are considered by the

algorithm: (i) K: the number of similar images used for constructing the contextual

spaces; (ii) λ: the maximum position considered for selecting the similar images; and

(iii) T : number of iterations along which the algorithm is executed.

6.1.3 Impact of Re-Ranking Algorithms on Distances

This section aims at analysing the impact of the proposed algorithms on the distribution

of distances among images in a given dataset. For this analysis, we construct the same

bidimensional representation presented in Section 6.1.1. We considered the MPEG-7
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Algorithm 6.2 Re-Ranking Algorithm: Contextual Spaces Mutual-KNN

Require: Original distance matrix A; set of ranked lists R; parameters K, λ, and T
Ensure: Processed distance matrix Â; set of ranked lists R̂
1: t← 0
2: At ← A
3: while t ≤ T do
4: At+1 ← 0
5: for all imgi ∈ C do
6: for all imgl ∈ C do
7: {Considering contextual spaces}
8: ck ← 0; dj ← 0
9: for all imgj ∈MKNN(imgi) do

10: dj ← dj + A[j, l]× (K − ck)
11: ck ← ck + 1
12: end for
13: {Computing distance ρ(imgi, imgl)}
14: di ← A[i, l]/K

15: dj ← dj/(
K×(K−1)

2
)

16: At+1[i, l]←
√
d2i + d2j

17: end for
18: end for
19: Rt+1 ← performReRanking(At+1)
20: t← t+ 1
21: end while
22: Â← AT

23: R̂ ← RT
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dataset and ASC [53] shape descriptor, after the execution of the Contextual Spaces based

on Mutual-KNN algorithm. Both re-ranking algorithms, Contextual Spaces based on KNN

and Mutual-KNN have similar impact on distances.

Figure 6.7 illustrates the bidimensional representation for two similar images (illus-

trated in Figure 6.6). We can observe a set of points representing similar images to

reference images very close to the origin. The remaining images of the dataset are in very

distinct positions. In fact, considering similar reference images, the algorithm divides

the dataset in two clusters: one for images that are similar to the reference images and

another for non-similar images.

Figure 6.6: Similar reference images.

Figure 6.7: Bidimensional space representation for two similar images after Contextual
Spaces based on Mutual-KNN algorithm execution.
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Figure 6.8: Non-similar reference images.

Figure 6.9: Bidimensional space representation for two non-similar images after Contex-
tual Spaces based on Mutual-KNN algorithm execution.

We can observe the same behaviour for non-similar images. Figure 6.9 illustrates the

bidimensional representation for non-similar images after the execution of the algorithm.

Three distinct sets of points can be distinguished: (i) points next to x axis (images similar

to image i); (ii) points next to y axis (images similar to image j); (iii) central points

(remaining images). Note also that the remaining images are grouped in small sets, when

compared to the distribution of images before the execution of algorithm (Figure 6.4).
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6.1.4 The Rank Aggregation Algorithm

Let C be an image collection and let D = {D1, D2, . . . , Dm} be a set of CBIR descriptors.

We can use the set of descriptors D for computing a set of distances matrices A = {A1,

A2, . . . , Am}. Our approach for combining descriptors works as follows: first, we combine

the set A in a unique matrix Ac. For the matrices combination we use a multiplicative

approach. Each position (i, j) of the matrix is computed as follows:

Ac[i, j] =
m
√

(A1[i, j] + 1)× (A2[i, j] + 1)× · · · × (Am[i, j] + 1). (6.4)

Once we have a matrix Ac, we can compute a set of ranked lists Rc based on this

matrix. Then, we can submit the matrix Ac and the set Rc for our original re-ranking

algorithm. This approach is very similar to that presented in Chapter 5, except for the

constant 1 added to all terms, (aiming at avoiding interferences for very small distances)

and for the square (aiming at mitigating noise).

6.1.5 Aspects of Efficiency

This work has as its focus the presentation of re-ranking algorithm based on Contextual

Spaces and its effectiveness evaluation. The focus in effectiveness is justified by the fact

that the execution of the algorithm is expected to be off-line, as in other post-processing

methods [102]. This subsection aims at briefly discussing some aspects of efficiency and

complexity of the algorithm.

Let C be an image collection with N images, the number of elements in distance

matrix A that should be redefined is equal to N2. The complexity of the distances

computing step is given by (N2 × K × T ) and therefore, the asymptotic computational

complexity is O(N2). The re-ranking step computes a sort operation (O(NlogN)) for

all images (O(N2logN)). Other post-processing methods use matrices multiplication ap-

proaches [113, 114] and graph algorithms [102], both with complexity of O(N3).

Note that the re-ranking algorithm admits several optimizations (left as future work).

A natural optimization consists in redefining only the distances between images at the

top positions of ranked lists. In this way, the distance matrix does not require to be

totally recomputed and the ranked lists does not require to be totally resorted. The re-

ranking algorithm can also be massively parallelized, since there is no dependence between

processing of different distances at a same iteration.
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6.2 Experimental Evaluation

This section presents the set of conducted experiments for demonstrating the effectiveness

of our methods.

Section 6.2.1 presents an analysis of the impact of the parameters of the re-ranking

algorithms. Section 6.2.2 describes conducted experiments on CBIR tasks, considering

color (Section 6.2.2), texture (Section 6.2.2), and shape (Section 6.2.2) descriptors. Sec-

tion 6.2.3 discusses convergence aspects of the re-ranking method. Section 6.2.4 presents

experimental results concerning the use of our methods in rank aggregation tasks. In Sec-

tion 6.2.5, our approach is evaluated in multimodal (textual and visual) retrieval tasks.

6.2.1 Experiment 1: Impact of Parameters

This section describes experiments conducted to evaluate the influence of different param-

eter settings on the retrieval scores. The objective is to determine the best parameters

values to be used with our methods.

We use the MPEG-7 database [48] and the CFD [68] and ASC [53] shape descriptors

for distance computation. We present the experiments for Contextual Spaces based on

KNN and Contextual Spaces based on Mutual-KNN.

Contextual Spaces based on KNN

The execution of Contextual Spaces based KNN (Algorithm 6.1) considers only two pa-

rameters: (i) Ks - initial K; (ii) Ke - end value of K. These two parameters also define

the number of iterations along which the re-ranking algorithm should be executed.

Retrieval scores are computed ranging parameters Ks in the interval [1,5] and Ke in

the interval [1,10]. Results are showed in Figure 6.10. We can observe that the best

retrieval scores increased when parameters converged to regions next to values Ks = 1

andKe = 10. The best retrieval score was reached forKs=2 andKe=9. These parameters

are used in all experiments.

Contextual Spaces based on Mutual-KNN

The Contextual Spaces based on Mutual-KNN (Algorithm 6.2) considers three parameters:

(i) K: number of similar images for constructing the contextual spaces; (ii) λ: maximum

position in ranked lists considered for selecting similar images; and (iii) T : number of

iterations along which the algorithm is executed.

In the first experiment, we used λ = 40. Retrieval scores are computed ranging

parameters K in the interval [1,15] and T in the interval [1,15]. Results are showed in

Figure 6.11. The best retrieval score (94.79%) was reached for K=8 and T=13.
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Figure 6.12: Impact of parameter λ on Contextual Spaces based on Mutual-KNN.

Experiment 2: Color Descriptors

Three color descriptors were used in our experiments: BIC [90], ACC [41], and GCH [93].

The experiments were conducted on the Soccer dataset [100]. In Table 6.1, it can be

observed a positive gain for all color descriptors for both re-ranking algorithms ranging

from +2.26% to +21.06% (considering MAP as score).

Experiment 3: Texture Descriptors

Regarding texture, three texture descriptors were considered: LBP [60], CCOM [46], and

LAS [94]. We use the Brodatz [7] dataset.

Table 6.1 presents the results. We can observe that our re-ranking methods present

positive gains ranging from +1.94% to +6.80%, considering texture descriptors. One

exception is concerned with the use of CS-MKNN with the LBP descriptor. In that case,

the ranked lists produced by LBP have few relevant images at first positions, what impact

the quality of generated contextual spaces and therefore the effectiveness performance of

the re-ranking method.



92 Chapter 6. Contextual Spaces

Table 6.1: Contextual Spaces evaluation on several content-based image retrieval tasks
involving color, texture, and shape descriptors.
Image Type Dataset Score

[%]
CS-
KNN

Gain CS-
MKNN

Gain

Descriptor (MAP)

GCH [93] Color Soccer 32.24% 32.97% +2.26% 33.96% +5.33%
ACC [41] Color Soccer 37.23% 39.35% +5.69% 45.07% +21.06%
BIC [90] Color Soccer 39.26% 43.07% +9.70% 45.00% +14.62%

LBP [60] Texture Brodatz 48.40% 49.34% +1.94% 48.20% -0.41%
CCOM [46] Texture Brodatz 57.57% 61.49% +6.80% 61.44% +6.72%
LAS [94] Texture Brodatz 75.15% 79.67% +6.01% 77.18% +2.70%

SS [17] Shape MPEG-7 37.67% 40.74% +8.15% 42.52% +12.87%
BAS [2] Shape MPEG-7 71.52% 74.71% +4.46% 76.07% +6.36%
IDSC [52] Shape MPEG-7 81.70% 85.87% +5.10% 88.05% +7.78%
CFD [68] Shape MPEG-7 80.71% 90.00% +11.51% 90.41% +12.02%
ASC [53] Shape MPEG-7 85.28% 90.51% +6.13% 91.87% +7.72%
AIR [35] Shape MPEG-7 89.39% 93.16% +4.22% 96.07% +7.47%

Experiment 4: Shape Descriptors

We evaluate the use of our method with five shape descriptors: Segment Saliences

(SS) [17], Beam Angle Statistics (BAS) [2], Inner Distance Shape Context (IDSC) [52],

Contour Features Descriptor (CFD) [68], Aspect Shape Context (ASC) [53] and AIR [35].

We consider the MPEG-7 dataset, described in Chapter 3. Figure 6.13 illustrates an

example of results for a MPEG-7 shape. The figure considers the CFD [68] shape de-

scriptor before and after executing the re-ranking methods. The first row presents the

retrieval results for the CFD [68] shape descriptor (first image as a query). The second

row presents retrieval results for the same shape descriptor after using the Contextual

Spaces re-ranking algorithm.

Results for MAP score are presented in Table 6.1. It can be observed significant gains

for all shape descriptors, ranging from +4.46% to +12.87%. For shape descriptors, we

also consider the bullseye score for the MPEG-7 dataset. Results of bullseye score for

all descriptors are presented in Table 6.2. Note that the effectiveness gains are always

positive and represent very significant improvement of effectiveness, ranging from +5.90%

to +21.10%. Figure 6.14 shows the percentage gain obtained by Contextual Spaces algo-

rithm for the CFD [68] descriptor considering each of 70 shape classes in MPEG-7 dataset.

Note that bullseye score was improved by over 10% on average, and over 30% for some

classes.
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Figure 6.14: Percentage gain in bulls-eye score for each class of MPEG-7 dataset consid-
ering CFD [68] shape descriptor and Contextual Spaces based on KNN algorithm.
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Figure 6.15: Analysis of convergence - Kendall’s tau distance along iterations.

6.2.3 Experiment 5: Analysis of Convergence

This section aims at discussing and experimentally evaluating the convergence of the

proposed re-ranking methods. We consider the difference between ranked lists along

iterations. As discussed in Chapter 5, an iterative re-ranking algorithm converges if, after

a certain number of iterations, it produces a small number of changes in the generated

ranked lists (a formal definition of ε-convergence for rankings is presented in [78]).

In this scenario, we have measured the evolution of Kendall’s tau distance between

rankings at each iteration. The use of Kendall’s tau distance for comparing top-k lists

is detailed in [27] and its definition is presented in Chapter 7. For the experiment, we

considered the ASC [53] shape descriptor on the MPEG-7 [48] dataset and the Contextual

Spaces based on Mutual-KNN. For measuring the Kendall’s tau distance, we considered

the 20 top images of ranked lists. Figure 6.15 shows the evolution of the average Kendall’s

tau distance between rankings along iterations.

Note that the Kendall’s tau distance decreases along the iterations. A high distance

can be observed at first iterations, indicating a lot of changes in the ranked lists. After

some iterations (next to the parameter T = 13) the distances between ranked lists get

lower values, indicating small changes in the ranked lists.
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Table 6.3: Contextual Spaces for rank aggregation (MAP)
Descriptor Type Dataset Method Score

(MAP)
CFD [68] Shape MPEG-7 - 80.71%
IDSC [52] Shape MPEG-7 - 81.70%
ASC [53] Shape MPEG-7 - 85.28%
CFD [68] + IDSC [52] Shape MPEG-7 CS-KNN 98.54%
CFD [68] + IDSC [52] Shape MPEG-7 CS-MKNN 98.47%
CFD [68] + ASC [53] Shape MPEG-7 CS-KNN 98.67%
CFD [68] + ASC [53] Shape MPEG-7 CS-MKNN 99.36%

ACC [41] Color Soccer - 37.23%
BIC [90] Color Soccer - 39.26%
BIC [90] + ACC [41] Color Soccer CS-KNN 42.44%
BIC [90] + ACC [41] Color Soccer CS-MKNN 46.10%

CCOM [46] Texture Brodatz - 57.57%
LAS [94] Texture Brodatz - 75.15%
LAS [94] + CCOM [46] Texture Brodatz CS-KNN 81.94%
LAS [94] + CCOM [46] Texture Brodatz CS-MKNN 84.50%

6.2.4 Experiment 6: Rank Aggregation

This section aims at evaluating the use of our re-ranking methods to combine different

CBIR descriptors. We selected the two best descriptors for each visual property, consid-

ering the effectiveness results of our previous experiments. Table 6.3 presents the MAP

scores obtained considering the use of contextual spaces for rank aggregation. It can be

observed significant gains compared with the results of each descriptor in isolation. For

example, by using CS-MKNN for combining the CFD and ASC descriptors, the effective-

ness MAP score reaches 99.36% (against 80.71% and 85.28%, in the case of using CFD

and ASC, respectively, in isolation).

Figure 6.16 shows the Precision × Recall curves of shape descriptors CFD [68] and

ASC [53] in different situations: before and after using the Contextual Spaces Re-Ranking

methods, and after using it for rank aggregation. Both re-ranking methods improve a

lot the effectiveness performance of the descriptors, while the use of the proposed rank

aggregation methods yield almost perfect results for all queries.

6.2.5 Experiment 7: Multimodal Retrieval

This section presents the evaluation of our method with regard to a multimodal retrieval

task, which considers both visual and textual descriptors. We consider each descriptor
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Figure 6.16: Contextual Spaces based on KNN for shape descriptors on the MPEG-7
dataset.

individually and on rank aggregation tasks. Used descriptors, dataset, are presented in

the following.

Dataset and Descriptors

We considered the UW Dataset and descriptors discussed in Chapter 3 for the experi-

ments. Table 6.4 presents the scores (MAP) for used descriptors (visual and textual) on

the UW dataset. It can be observed that the best descriptor effectiveness score in terms

of MAP reaches 52.26%.

Results

Experiments were conducted for both algorithms Contextual Spaces based on KNN and

based on Mutual-KNN, considering visual, textual, and multimodal retrieval tasks. Two

CBIR scenarios were evaluated: when all descriptors are used; and when only the best

descriptors for each modality are used. Two baselines are considered in the experiments:

the traditional Borda [116] method and the recently proposed Reciprocal Rank Fusion [14].

Table 6.5 presents the MAP results for all conducted experiments. It can be observed

that, except for the combination of all visual descriptors, all the remaining results over-

come the best individual descriptor (52.26%). Observe also that the use of Contextual
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Table 6.4: Descriptors scores (MAP) on UW Database
Descriptor Type Score

(MAP)

GCH [93] Visual - Color 31.75%
BIC [90] Visual - Color 43.46%
JAC [104] Visual - Color 52.26%
QCCH [40] Visual - Texture 17.81%
LAS [94] Visual - Texture 20.44%
HTD [105] Visual - Texture 22.61%

DICE [50] Textual 50.73%
OKAPI [81] Textual 51.68%
BOW [9] Textual 48.84%
COS [3] Textual 41.80%
JACCARD [50] Textual 50.29%
TF-IDF [3] Textual 49.25%

Table 6.5: Contextual Spaces on multimodal retrieval tasks (MAP as score)
Retrieval
Task

Descriptors CS-
KNN

CS-
MKNN

Borda [116] Reciprocal [14]

Visual All visual descriptors 46.11% 47.72% 40.29% 43.29%
Textual All textual descriptors 61.75% 60.87% 53.07% 53.14%
Multimodal All descriptors 67.25% 67.64% 54.89% 59.34%

Visual BIC+JAC 54.94% 60.59% 52.54% 53.00%
Textual DICE+OKAPI 59.13% 61.16% 54.57% 54.31%
Multimodal BIC+JAC +

DICE+OKAPI
70.73% 75.19% 61.91% 63.67%

Spaces yields better results than the baselines methods. The best multimodal retrieval

result (75.19%) presents a gain of +43.88% over the best individual descriptor.
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RL-Sim Re-Ranking

In this chapter, we present the RL-Sim Re-Ranking algorithm, a new post-processing

method that considers the similarity among ranked lists (RankedLists-Similarities) for

characterizing contextual information in CBIR systems. The main motivation of our

re-ranking algorithm relies on the conjecture that contextual information encoded in the

similarity between ranked lists can provide useful information for improving the effective-

ness of CBIR descriptors. In general, if two images are similar, their ranked lists should

be similar as well [68]. It is somehow close to the the cluster hypothesis [101], which states

that “closely associated documents tend to be relevant to the same requests”.

We believe that the modeling of contextual information considering only the similarity

between ranked lists represents an advantage of our strategy. Since the re-ranking method

does not depend on distances or similarity scores, it can be used for different CBIR tasks

and can be easily adapted for other information retrieval tasks (e.g., text or multimodal

retrieval). Beyond that, the re-ranking method can use different similarity/distance mea-

sures among ranked lists, a well-established research area [27, 103, 106]. Therefore, the

re-ranking algorithm can be easily extended using different similarity measures.

Our experimental evaluation demonstrates that the proposed method can improve the

retrieval results of different CBIR tasks, considering different datasets. We evaluated

the proposed method with shape, color, and texture descriptors considering re-ranking

and rank aggregation tasks. Experimental results demonstrate that the proposed method

yields better results in terms of effectiveness performance than various post-processing

algorithms recently proposed in the literature. We also evaluated other aspects of the

proposed algorithm (as efficiency and impact of parameters) in our experimental evalua-

tion.

This chapter is organized as follows. In Section 7.1, we present our approach for

unsupervised distance learning based on the similarity of ranked lists. Section 7.2 discusses

approaches for comparing ranked lists. Section 7.3 presents the RL-Sim Re-Ranking

99
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Algorithm. In Section 7.4, we describe how the proposed algorithm can be used in rank

aggregation tasks. Section 7.5 presents the experimental evaluation.

7.1 Contextual Distance Measure based on Ranked

Lists

In this section, we define a contextual distance measure based on similarity/dissimilarity

of ranked lists. The contextual distance measure represents the basis of our proposed re-

ranking algorithm. According to the formalization presented in Chapter 2, a given image

descriptor D can compute a distance ρ(imgi,imgj) between two images imgi, imgj ∈ C.

Therefore, this distance value considers only the two images imgi, imgj.

In order to compute the ranked lists Ri, Rj for images imgi, imgj, distances from these

images to all other collection images need to be computed. In this way, the ranked lists

represent, by itself, a contextual description of images with regard to the whole dataset.

The images at the top positions of ranked lists often represent the most relevant images,

in the sense that they usually represent the results in which users are interested. In

this scenario, we conjecture that given any two images and their respective ranked lists,

a new and more effective distance measure between the two images can be computed by

considering the images at the top positions of their ranked lists.

The proposed contextual distance measure is based on this conjecture. In the common

case, the top positions of ranked lists contain many images that are similar to the query

image and some “wrong” (non-similar) images. Those images placed at the top positions

usually are similar to each other and, therefore, there are many images in common in

their ranked lists. We can observe that this set of images (similar to the query image

and similar to each other) appears in the ranked lists of all images that compose the set.

The same behavior can not be observed when analysing the top positions of the ranked

lists of non-similar images (the same set of images does not appear at the top positions).

In this scenario, a low contextual distance score is computed, since there are few images

in common at the top positions of ranked lists of non-similar images. The objective of

the proposed re-ranking algorithm is to move the non-similar images down in the ranked

lists, and as a result of this process, the quality of ranked lists is improved. Note that, in

extreme situations, in which the CBIR descriptors completely confuse similar and non-

similar images, there is no contextual information available for improving the ranked

lists.

A new contextual distance measure, defined in the following, is iteratively learned in a

unsupervised setting. That distance measure is able to incorporate the contextual infor-

mation, improving retrieval results. Let us consider the neighborhood set N (i) of an image
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imgi, which contains images similar to imgi according to a given distance, say ρ defined

by the image descriptor. The set N (i) can be obtained, for example, by the well-known

k-Nearest Neighbor approach, where the cardinality of the set is denoted by | N (i) |= k.

In Section 7.2.1, we formally define approaches for obtaining the neighborhood set N .

In the following, we formally define the top positions of a ranked list as a top k list,

according to [27]. We define a ranked list Ri as a permutation of collection C, given by a

bijection σi from the collection C onto the set [N ] = {1, 2, . . . , N}. Similarlly, a top k list τi
is a bijection from a domainN (i) (the members of the top k list) to [k] = {1, 2, . . . , k}. We

say that imgj appears in the top k list τi if imgj ∈ N (i). We interpret τi(j) as the position

(or rank) of image imgj in τi. For the well-known k-Nearest Neighbor approach, we can

say that if img1 is ranked before img2 (τi(1) < τi(2)), then ρ(imgi,img1) ≤ ρ(imgi,img2).

Approaches for computing top k lists are formally defined in Section 7.2.1.

Assume that τi and τj are top k lists computed for images imgi, imgj respectively.

Several similarity (or dissimilarity) measures for comparing τi and τj can be defined [27,

103, 106] (different distance measures are discussed in Section 7.2.2). Let d(τi, τj, k) denote

a given distance measure for comparing top k lists, we define a non-iterative contextual

distance measure ρc(imgi, imgj) based on the comparison of the top k lists, as follows:

ρc(imgi, imgj) = d(τi, τj, k). (7.1)

Based on the conjecture that the contextual distance measure ρc represents a more

effective distance between images, we can recompute the distance among all images in

a collection based on this measure. In this way, a new set of ranked lists (and their

respective top k lists) can be obtained, such that the contextual distance can also be

recomputed. Therefore, this process can be repeated in an iterative manner. Let (t) be a

superscript that denotes the iteration. Let τ
(t)
i be the top k list for image imgi at iteration

t, which is computed based on contextual distance ρ
(t)
c . Let ρ

(0)
c be the contextual distance

at first iteration, which is equal to the distance defined by the image descriptor, such that

ρ
(0)
c (imgi, imgj) = ρ(imgi, imgj) for all images imgi, imgj ∈ C. We can define an iterative

contextual measure as follows:

ρ(t+1)
c (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k). (7.2)

Once the effectiveness of the contextual distance measure improves along iterations,

the effectiveness of ranked lists also improve. Non-relevant images are moved out from

the first positions of the ranked lists and, therefore, k is increased for considering more

images. In this way, a larger k is considered for computation of top k lists along iterations,

as follows:

ρ(t+1)
c (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k + t). (7.3)
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After a given number of T iterations, a new distance ρ̂ is computed based on the

contextual distance measure ρc:

ρ̂(imgi, imgj) = ρ(T )
c (imgi, imgj). (7.4)

Finally, a new distance matrix Â is computed based on ρ̂, such that for all images

imgi, imgj ∈ C we have Âij = ρ̂(imgi, imgj). Based on Â, a new set of ranked lists R̂ is

computed completing the re-ranking process.

7.2 Comparing Ranked Lists

The comparison of ranked lists is the basis of our proposed contextual measure. This

section discusses and formalizes the process of comparison, which can be divided in two

main steps: (i) how to retrieve a neighborhood set for a given image imgi, which is used

to compose a top k list τi; (ii) and how to compute a distance d(τi, τj, k) between two top

k lists τi and τj.

Sections 7.2.1 and 7.2.2 discuss respectively steps (i) and (ii).

7.2.1 Neighborhood Set

This section presents and formally defines two different approaches for computing the top

k lists for a given image: the well-known k-Nearest Neighbors (kNN) method and the

Mutual k-Nearest Neighbors (MkNN).

k-Nearest Neighborhs

Let imgi be a collection image (imgi ∈ C) whose the k most similar images (neighborhood

set) we want to select. Let NkNN(i) be the neighborhood set obtained using the k-nearest

neighbors method, which is defined as follows:

NkNN(i, k) = {R ⊆ C, |R| = k ∧ ∀x ∈ R, y ∈ C −R : ρ(i, x) 6 ρ(i, y)}. (7.5)

Based on the neighborhood set NkNN(i) we also want define the top k list τikNN
using

the k-Nearest Neighbors. Let τikNN
(j) be the position (or rank) of image imgj in τikNN

, we

can say that if imgx is ranked before imgy, that is τikNN
(x) < τikNN

(y), then ρ(imgi,imgx)

≤ ρ(imgi,imgy).

More formally, let’s consider that no distance score is repeated if we compute the

distance between imgi and the images in its neighborhood set NkNN(i, k) (or there is a

pre-processing step for tie breaking distances), such that {∀x, y ∈ NkNN(i, k) : ρ(i, x) =
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ρ(i, y)} = ∅. The top k list τikNN
(j) is a permutation of C, that can also be considered as

a bijection τikNN
: C → [1, . . . , k] defined as follows:

τikNN
(j) = |{j ∈ NkNN(i, k), ∀x ∈ NkNN(i, k) : ρ(i, x) < ρ(i, j)}|+ 1. (7.6)

Mutual k-Nearest Neighborhs

Let τikNN
(j) be the position (or rank) of image imgj in the top k list τikNN

. Let τjkNN
(i)

be the position of imgi in the top k list τjkNN
. It is very common in CBIR systems that

τikNN
(j) 6= τjkNN

(i). However, when the difference between these positions is large, it may

indicate an incorrect position of the image in one of the top k lists.

Based on this observation, we define a Mutual k-Nearest Neighbors method that con-

siders reciprocal positions of images in their ranked lists. In fact, we select the k-Nearest

Neighbors considering c×k neighbors (where c is a constant1). Given a neighborhood set

NkNN(i, c × k), we select the k most similar of this set by taking into account both: (i)

the position of images in ranked list of imgi and (ii) the position of imgi in the ranked list

of these images. We formally define the neighborhood set based on the Mutual k-Nearest

Neighbor as follows:

NMkNN(i, k) = {R ⊆ NkNN(i, c× k), |R| = k ∧ ∀x ∈ R, y ∈ C −R :

τikNN
(x) + τxkNN

(i) 6 τikNN
(y) + τykNN

(i)}.
(7.7)

We also define the top k list τiMkNN
using the Mutual k-Nearest Neighbors:

τiMkNN
(j) = |{j ∈ NMkNN(i, k), ∀x ∈ NMkNN(i, k) :

τikNN
(x) + τxkNN

(i) 6 τikNN
(y) + τykNN

(i)}|+ 1.
(7.8)

7.2.2 Distance Measures between Top k Lists

Given the methods for obtaining neighborhood sets and top k lists, we now discuss how to

compute a distance d(τi, τj, k) between two retrieved top k lists τi and τj. Note that the

distance measure adopted d(·, ·, k) does not depend on the method used for computing

the neighborhood set N and the top k lists τ . Therefore, different combinations can be

used in our re-ranking algorithm.

1We used c = 2 in our experiments.
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Kendal’s Tau Measure

The Kendall’s tau is a distance measure between permutations, used to measure rank

correlation. Its value is equal to the number of exchanges needed in a bubble sort to

convert one permutation to the other [27]. The normalized Kendall’s tau measure is

defined as follows:

dτ (τi, τj, k) =

∑
x,y∈N (i,k)∪N (j,k) K̄x,y(τi, τj)

k × (k − 1)
, (7.11)

where K̄x,y(τi, τj) is a function that determines if images imgx and imgy are in the same

order in compared ranked lists Ri and Rj. This function can be defined as follows:

K̄x,y(τi, τj) =

{
0 if (σi(x) 6 σi(y) ∧ σj(x) 6 σj(y)) ∨ (σi(x) > σi(y) ∧ σj(x) > σj(y)).

1 otherwise

The maximum value of defined Kendall’s tau measure is given by k × (k − 1), which

occurs when N (i, k) ∩N (j, k) = ∅ and σi is the reverse of σj.

Note that, although our goal is to compute the distance between the top k lists τi and

τj, we considered the ranked lists positions σi and σj because we may have an image that

is in only one of the top k lists (for example, imgx ∈ τi and imgx /∈ τj).

7.3 The RL-Sim Re-Ranking Algorithm

The goal of our re-ranking algorithm is to exploit the initial set of ranked lists R =

{R1, R2, . . . , RN} for computing a more effective distance matrix Â and, therefore, a

more effective set of ranked lists R̂. The RL-Sim Re-Ranking Algorithm is based on the

presented contextual measure ρc, which takes into account the similarity between ranked

lists on an iterative way.

An iterative approach is proposed. Let the superscript (t) denote the current iteration,

a new (and more effective) set of ranked lists R(t+1) is computed by taking into account

distances among top k lists. Next, R(t+1) is used for the next execution of our re-ranking

algorithm and so on. These steps are repeated along several iterations aiming at improving

the effectiveness incrementally. After a number T of iterations a re-ranking is performed

based on the final distance matrix Â. Based on matrix Â, a final set of ranked lists R̂

can be computed. Algorithm 7.1 outlines the proposed RL-Sim Re-Ranking Algorithm.

Observe that the distances are redefined considering the function d(τi, τj, k) for the

first λ positions of the each ranked list, such that λ ∈ N and 0 ≤ λ ≤ N . For images

in the remaining positions of the ranked lists, the new distance is redefined (Line 12)
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Algorithm 7.1 RL-Sim Re-Ranking Algorithm

Require: Original set of ranked lists R and parameters ks, T , λ
Ensure: Processed set of ranked lists R̂
1: t← 0
2: R(t) ← R
3: A(t) ← A
4: k ← ks
5: while t < T do
6: for all Ri ∈ R

(t) do
7: c← 0
8: for all imgj ∈ Ri do
9: if c ≤ λ then
10: A(t+1)[i, j]← d(τi, τj, k)
11: else
12: A(t+1)[i, j]← 1 + A(t)[i, j]
13: end if
14: c← c+ 1
15: end for
16: end for
17: R(t+1) ← perfomReRanking(A(t+1))
18: k ← k + 1
19: t← t+ 1
20: end while
21: R̂ ← R(T )



7.4. Rank Aggregation 107

based on the current distances. In these cases, the function d(τi, τj, k) does not need to

be computed, considering that relevant images should be at the beginning of the ranked

lists. In this way, the computational efforts decrease, making this step of the algorithm

not dependent on the collection size N .

In Line 18, at each iteration t, we increment the number of k neighbors considered.

The motivation behind this increment relies on the fact that the effectiveness of ranked

lists increase along iterations. In this way, non-relevant images are moved out from the

first positions of the ranked lists and k can be increased for considering more images. This

strategy is also used by the re-ranking algorithms based Contextual Spaces, presented in

Chapter 6.

Note that the re-ranking algorithm does not depend on specific measures between top k

lists. In this way, an important advantage of our re-ranking algorithm is the possibility of

using different approaches for retrieving the neighboorhood set (we discussed the kNN and

Mutual kNN methods) and different measures for comparing top k lists (we discussed the

intersection and Kendall’s tau measures). Therefore, the proposed RL-Sim Re-Ranking

algorithm can be easily extended in order to consider different and even more complex

approaches to compute the similarity between top k lists.

7.4 Rank Aggregation

Let C be an image collection and let Ds = {D1, D2, . . . , Dm} be a set of CBIR descriptors.

We can use the set of descriptors D for computing a set of distances matrices As = {A1,

A2, . . . , Am}. Our approach for combining descriptors works as follows: first, we combine

the set A in a unique matrix Ac. For the matrices combination we use a multiplicative

approach. Each position (i, j) of the matrix is computed as follows:

Ac[i, j] = (1 + A1[i, j])× (1 + A2[i, j])× . . . (1 + Am[i, j]). (7.12)

Once we have a matrix Ac, we can compute a set of ranked lists Rc based on this

matrix. Then, we can submit the matrix Ac and the set Rc for our original re-ranking

algorithm. This approach is very similar to that presented in Chapter 5, except for the

constant 1 added to all terms, aiming at avoiding interferences for very small distances.

7.5 Experimental Evaluation

This section presents the set of conducted experiments for demonstrating the effective-

ness of our method. We analyzed and compared our method under several aspects. Sec-

tion 7.5.1 presents an analysis of the re-ranking algorithm considering the impact of
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parameters. Section 7.5.2 presents a brief discussion about complexity and efficiency

aspects.

Section 7.5.3 discusses the experimental results for our re-ranking method. It presents

results of the use of our method for several shape descriptors, considering the MPEG-7

dataset [48]. In addition to shape descriptors, we conduct experiments with color and

texture descriptors. Finally, Section 7.5.4 presents experimental results of our method on

rank aggregation tasks.

7.5.1 Experiment 1: Impact of Parameters

The execution of Algorithm 7.1 considers three parameters: (i) ks - number of neighbors

considered when algorithm starts; (ii) λ - number of images of each ranked list that are

considered for redefining distances; and (iii) T - number of iterations along which the

algorithm is executed.

To evaluate the influence of different parameter settings on the retrieval scores and for

determining the best parameters values, we conducted a set of experiments considering the

MPEG-7 [48] dataset. For distance computation, we used the ASC [53] shape descriptor.

Retrieval scores are computed considering the kNN method for the intersection mea-

sure. Parameter ks varies in the interval [1,20] while parameter T varies in the interval

[1,7]. Figure 7.2 illustrates the results of precision scores for different values of parame-

ters ks and T . We observed that best retrieval scores increased along iterations yielding

the best precision score (94.69%) for ks = 15 and T = 3. We used these values in all

experiments involving the intersection measure (for kNN and Mutual kNN ). Analogous

experiments were conducted for the Kendall’s tau measure and very similar values were

obtained: ks = 15 and T = 2. Those values were also used in all experiments involving

the Kendall’s tau measure.

Note that all variations of the algorithm (considering the intersection measure and

the Kendall’s tau measure) presented a very fast convergence reached with few iterations

(T = 2 and T = 3).

We also analyzed the impact of parameter λ on precision. As discussed before, the

objective of λ consists in decreasing computation efforts needed for the algorithm. It

can be seen as a tradeoff between effectiveness and efficiency. In this way, we ranged

λ in the interval [0,N ] (considering the MPEG-7 collection). Results are illustrated in

Figure 7.3. Note that the precision scores achieve the stability for λ = 700 (value used in

our experiments).
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Table 7.2: RL-Sim Re-Ranking using Kendall’s Tau Distance Measure for shape descrip-
tors on the MPEG-7 dataset (Recall@40).

Shape De-
scriptor

Score kNN +
Kendall’s
Tau

Gain Mutual kNN
+ Kendall’s
Tau

Gain

SS [17] 43.99% 52.67% +19.73% 56.06% +27.44%
BAS [2] 75.20% 81.16% +7.93% 83.44% +10.96%
IDSC [52] 85.40% 91.12% +6.70% 92.06% +7.80%
CFD [68] 84.43% 93.12% +10.29% 94.27% +11.65%
ASC [53] 88.39% 93.68% +5.98% 94.56% +6.98%
AIR [35] 93.67% 99.94% +6.69% 99.93% +6.68%

the MPEG-7 dataset. Results of both kNN and Mutual kNN methods are presented. We

can also observe significative gains ranging from +5.98% to +27.44%.

Results for MAP (Mean Average Precision) score are presented in Table 7.3, consider-

ing the insersection measure; and Table 7.4, considering the Kendall’s tau measure. Both

tables present results considering the kNN and Mutual kNN approaches. Positive gains

can be observed for all shape descriptors in all combinations of approaches, ranging from

+2.42% to +26.63%.

In addition to shape descriptors, we conducted experiments with color and texture

descriptors, considering 12 image descriptors in 3 different datasets. Experiments with

color and texture descriptors are described in next sections.

We also conducted a paired t-test aiming at evaluating the chance of difference between

the means (before and after executing the proposed re-ranking method considering all

descriptors) being statistical significantly. We conclude that there is a 99.9% of chance

of difference being statistical significantly considering the intersection measure and 99%

considering the Kendall’s Tau measure.

Color Descriptors

We evaluate our method with three color descriptors: BIC [90], ACC [41], and GCH [93].

The experiments were conducted on the Soccer dataset [100].

Table 7.3 presents the experimental results considering the insersection measure while

Table 7.4 considers the Kendall’s tau measure. Both tables present results considering the

kNN and Mutual kNN approaches. We can observe a positive gain for all color descriptors

for approaches ranging from +2.18% to +23.18% (considering the MAP score).
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Table 7.3: MAP scores for RL-Sim Re-Ranking using Intersection Distance Measure in
different CBIR tasks.
Descriptor Type Dataset Score

(MAP)
kNN +
Intersec-
tion

Gain M-kNN
+ Inter-
section

Gain

SS [17] Shape MPEG-7 37.67% 43.06% +14.31% 47.70% +26.63%
BAS [2] Shape MPEG-7 71.52% 74.57% +4.25% 78.16% +9.28%
IDSC [52] Shape MPEG-7 81.70% 86.75% +6.18% 87.67% +7.31%
CFD [68] Shape MPEG-7 80.71% 88.97% +10.23% 90.78% +12.48%
ASC [53] Shape MPEG-7 85.28% 88.81% +4.14% 90.88% +6.57%
AIR [35] Shape MPEG-7 89.39% 93.54% +4.64% 93.52% +4.62%

GCH [93] Color Soccer 32.24% 33.66% +4.40% 33.84% +4.96%
ACC [41] Color Soccer 37.23% 43.54% +16.95% 44.78% +20.28%
BIC [90] Color Soccer 39.26% 43.45% +10.67% 44.08% +12.28%

LBP [60] Texture Brodatz 48.40% 47.77% -1.30% 48.51% +0.23%
CCOM [46] Texture Brodatz 57.57% 62.01% +7.72% 63.48% +10.27%
LAS [94] Texture Brodatz 75.15% 77.81% +3.54% 78.11% +3.94%

Texture Descriptors

The experiments consider three texture descriptors: LBP [60], CCOM [46], and LAS [94].

We used the Brodatz [7] dataset.

Table 7.3 presents the experimental results considering the intersection measure while

Table 7.4 considers the Kendall’s tau measure. Both tables present results considering

the kNN and Mutual kNN approaches. We can observe that our re-ranking methods yield

positive gains ranging from +0.63% to +10.27%, except for LBP [60], which presents loss

of effectiveness in some cases. The LBP [60] descriptor on the Brodatz dataset represents

the extreme situations, discussed in Section 7.1, in which the CBIR descriptor confuses

classes of images. In these situations, there is no enough contextual information available

in the ranked lists to distinguish the classes, causing the loss of effectiveness. This situation

is contrary to that illustrated in Figure 7.4, in which wrong results contain few images

from different classes.

7.5.4 Experiment 4: Rank Aggregation Evaluation

We evaluate the use of our re-ranking method to combine different CBIR descriptors.

We select two descriptors for each visual property. Table 7.5 presents the MAP scores

observed for the proposed rank aggregation approaches. We can observe that significant

gains are obtained when compared with the results of descriptors in isolation.
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Table 7.4: MAP scores for RL-Sim Re-Ranking using Kendall’s Tau Distance Measure in
different CBIR tasks.
Descriptor Type Dataset Score

(MAP)
kNN +
Kendall’s
Tau

Gain M-
kNN +
Kendall’s
Tau

Gain

SS [17] Shape MPEG-7 37.67% 44.24% +17.92% 46.74% +24.08%
BAS [2] Shape MPEG-7 71.52% 73.25% +2.42% 75.38% +5.40%
IDSC [52] Shape MPEG-7 81.70% 85.93% +8.18% 86.53% +5.91%
CFD [68] Shape MPEG-7 80.71% 88.40% +9.53% 89.50% +9.55%
ASC [53] Shape MPEG-7 85.28% 88.10% +3.31% 89.92% +5.44%
AIR [35] Shape MPEG-7 89.39% 96.27% +7.70% 95.72% +7.08%

GCH [93] Color Soccer 32.24% 32.96% +2.18% 33.76% +4.71%
ACC [41] Color Soccer 37.23% 44.29% +18.96% 46.02% +23.61%
BIC [90] Color Soccer 39.26% 43.76% +11.46% 45.58% +16.35%

LBP [60] Texture Brodatz 48.40% 45.20% -6.61% 45.78% -5.41%
CCOM [46] Texture Brodatz 57.57% 60.30% +4.74% 61.41% +6.67%
LAS [94] Texture Brodatz 75.15% 75.62% +0.63% 76.13% +1.30%

Table 7.5: MAP scores regarding the use of RL-Sim Algorithm for Rank Aggregation
Descriptor Type Dataset Neighbor

Set
Measure Score

(MAP)

CFD [68] Shape MPEG-7 - - 80.71%
ASC [53] Shape MPEG-7 - - 85.28%
CFD [68] + ASC [53] Shape MPEG-7 kNN Intersection 98.75%
CFD [68] + ASC [53] Shape MPEG-7 M-kNN Intersection 98.96%
CFD [68] + ASC [53] Shape MPEG-7 kNN Kendall’s Tau 98.57%
CFD [68] + ASC [53] Shape MPEG-7 M-kNN Kendall’s Tau 98.57%

ACC [41] Color Soccer - - 37.23%
BIC [90] Color Soccer - - 39.26%
BIC [90] + ACC [41] Color Soccer kNN Intersection 44.49%
BIC [90] + ACC [41] Color Soccer M-kNN Intersection 44.16%
BIC [90] + ACC [41] Color Soccer kNN Kendall’s Tau 44.45%
BIC [90] + ACC [41] Color Soccer M-kNN Kendall’s Tau 45.16%

CCOM [46] Texture Brodatz - - 57.57%
LAS [94] Texture Brodatz - - 75.15%
LAS [94] + CCOM [46] Texture Brodatz kNN Intersection 80.26%
LAS [94] + CCOM [46] Texture Brodatz M-kNN Intersection 83.39%
LAS [94] + CCOM [46] Texture Brodatz kNN Kendall’s Tau 80.51%
LAS [94] + CCOM [46] Texture Brodatz M-kNN Kendall’s Tau 81.68%



Chapter 8

Contextual Re-Ranking

In this chapter, we present a new post-processing method that re-ranks images by taking

into account contextual information encoded in ranked lists and distance among images.

We propose a novel approach for retrieving contextual information, by creating a gray scale

image representation of distance matrices computed by CBIR descriptors (referenced in

this thesis as context image). The context image is constructed for the k-nearest neighbors

of a query image and analysed using image processing techniques.

The use of image processing techniques for contextual information representation and

processing is an important novelty of our work. Our method uses distance matrices

computed by CBIR descriptors that are later processed considering their image represen-

tation. The median filter, for instance, which is a well-known non-linear filter often used

for removing noise, is exploited in our approach to improve the quality of distance scores.

Other filters could have been used, but we chose the median filter just because it is the

most suitable for noise removal. Basically, we consider that “wrong” distances can be

considered and represented as “noise” in the context image, and the median filter is used

for filtering this noise out.

In fact, a very large number of image processing techniques can be used for extracting

useful information from context images. We believe that our strategy opens a new area of

investigation related to the used of image processing approaches for analyzing distances

computed by CBIR descriptor, in tasks such as image re-ranking, rank aggregation, and

clustering.

The chapter is organized as follows: Section 8.1 describes the contextual information

representation, while Sections 8.2 and 8.3 describe the re-ranking and rank aggregation

methods, respectively. Experimental design and results are reported in Section 8.4.

115
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8.1 Contextual Information Representation

Let C be an image collection and let D be an image descriptor. The distance function

ρ defined by D can be used for computing the distance ρ(imgi,imgj) among all images

imgi,imgj ∈ C in order to obtain an N ×N distance matrix A.

Our goal is to represent the distance matrix A as a gray scale image and to analyze this

image for extracting contextual information using image processing techniques. For the

gray scale image representation, referenced in this thesis as context image Î, we consider

two reference images imgi, imgj ∈ C.

Let the context image Î be a gray scale image defined by the pair (DI ,f), where DI is a

finite set of pixels (points in N
2, defined by a pair (x, y)) and f : DI → R is a function that

assigns to each pixel p ∈ DI a real number. We define the values of f function in terms

of the distance function ρ (encoded into matrix A) and reference images imgi, imgj ∈ C.

Let Ri = (imgi1 , imgi2 , . . . , imgiN ) be the ranked list defined by the matrix A consid-

ering the reference image imgi as query image; and Rj = (imgj1 , imgj2 , . . . , imgjN ) the

ranked list of reference image imgj. In this way, the axis of context image Î are ordered

according to the order defined by ranked lists Ri and Rj. Let imgix ∈ Ri be an image at x

position of ranked list Ri and imgjy ∈ Rj an image at y position of the ranked list Rj, the

value of f(x, y) (function that defines the gray scale of pixel p(x, y)) is defined as follows:

f(x, y) = ρ̄(imgix , imgjy), where ρ̄ is defined by the distance function ρ normalized in the

interval [0,255].

An example, considering two similar reference images (from the MPEG-7 dataset [48]),

is illustrated in Figure 8.1. The respective gray scale image representing matrix A is

illustrated in Figure 8.3. An analogous example for non-similar images is showed in

Figures 8.2 and 8.4.

The context images can represent a great source of information about the image col-

lection. A single context image contains information about all distances among images

and their spatial relationship defined by the ranked lists of the reference images. In other

words, a single pixel is related to four collection images: the two reference images (that

define the position of the pixel, according to their ranked lists) and the two images whose

distance defines the grayscale value of the pixel. Another important advantage of this

image representation relies on the possibility of using a large number of image processing

techniques.

In this work, our goal is to exploit useful contextual information provided by context

images. Low distance values (similar images) are associated with dark pixels in the image,

while high values (non-similar images) refers to non-black pixels. Considering two similar

images as reference images, the beginning of two ranked lists should have similar images

as well. This behavior creates a dark region at the top left corner of a context image (as
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Figure 8.1: Similar reference images. Figure 8.2: Non-similar reference images.

Figure 8.3: Context image for similar ref-
erence images.

Figure 8.4: Context image for non-similar
reference images.

we can observe in Figure 8.3). This region represents a neighborhood of similar images

with low distances.

The top left corner represents images at the first position of the ranked lists of the two

reference images, whose accuracy is higher than any other region in context image. We aim

at characterizing contextual information by analyzing this region using image processing

techniques. These information will be used by the re-ranking method presented in next

section.

Other regions of context images could also be of interest. Considering similar reference

images, the region close to the main diagonal, for example, contains more dark pixels (low

distances) than the remaining of the image. Once the ranked lists of reference images are

similar, pixels close to the main diagonal represent distances between similar images. The

use of other regions of context images in image re-ranking tasks is left as future work.

8.2 The Contextual Re-Ranking Algorithm

Given an image imgi ∈ C, we aim at processing contextual information of imgi by con-

structing context images for each one of its k-nearest neighbors (based on the distance

matrix A). We use an affinity matrix W to store the results of processing contextual
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Algorithm 8.1 Contextual Re-Ranking Algorithm

Require: Original distance matrix A
Ensure: Processed distance matrix AT

1: t← 0
2: At ← A
3: while t < T do
4: initializeAffinityMatrix(W, 1)
5: for all imgi ∈ C do
6: k ← 1
7: for all imgj ∈ KNN(imgi) do
8: ctxImg ← createContextImage(imgi, imgj, At, L)
9: ctxImg′ ← processContextImage(ctxImg, L)
10: W ← updateAffinityMatrix(ctxImg′,W, k)
11: k ← k + 1
12: end for
13: end for
14: At+1 ← computeDistanceMatrix(W )
15: performReRanking(At+1)
16: t = t+ 1
17: end while

L× L square at the top left corner of context image:

l =
avg(ρ(imgp, imgq))

max(ρ(imgp, imgq))
, (8.1)

with p, q < L.

Next, we use a median filter for determining regions of dense black pixels. The non-

linear median filter, often used for removing noise, is used in our approach aiming at

correcting distances among images. Basically, we consider that “wrong” distances can be

considered and represented as “noise” and the median filter is used to filter this noise

out. More specifically, consider a dense region of black pixels at the top left corner of a

context image. It represents a set of similar images (low distances) at the top positions of

ranked lists of reference images. Consider a white pixel in this region, indicating a high

distance between two images. By taking into account the contextual information given

by the region of the pixel (defined by its position and pixels) and its neighborhood, it is

very likely that the distance represented by this pixel is incorrect. In this scenario, the

median filter replaces the white pixel by a black pixel. Similar reasoning can be applied

to isolated black pixels in white regions. We should note that, in extreme situations, in

which the CBIR descriptors completely confuse similar and non-similar images, there is

less contextual information available in the context images.
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At+1[x, y] =

{
1 + Āt[x, y], if W[x,y] = 1

2× (1/W [x, y]), if W[x,y] > 1.
(8.7)

where Āt is the distance matrix At normalized in the interval [0,1]. When W [x, y] = 1,

i.e., W [x, y] was not updated by Equation 8.2, we use the old distance matrix At for

determining values of At+1. Otherwise (when W [x, y] > 1), values of new distance matrix

At+1 is equal to the inverse of the values found in the affinity matrix W . Since the

smallest increment for W is 1 (and therefore W [x, y] = 2), the largest value of a new

distance in At+1 is 0.5. Therefore, we normalize the new distance values in the interval

[0,1] by multiplying distances by 2. At+1 will have values in the interval [0,2]: (i) in the

interval [0,1], if W [x, y] > 1, and (ii) in the interval [1,2], if W [x, y] = 1. A last operation

is performed on the new distance matrix At+1 for ensuring the symmetry of distances

between images (ρ(x, y) = ρ(y, x)):

At+1[x, y]← At+1[y, x]← min(At+1[x, y], At+1[y, x]). (8.8)

Finally, a re-ranking is performed based on values of At+1 (Line 15 of Algorithm 8.1).

At the end of T iterations, a new computed distance matrix AT and a set of new ranked

list are obtained.

8.3 The Contextual Rank Aggregation Algorithm

The presented re-ranking algorithm can be easily tailored to rank aggregation tasks. In

this section, we present the Contextual Rank Aggregation Algorithm, aiming at combining

the results of different descriptors. The main idea consists in using the same iterative

approach based on context images, but using the affinity matrix W for accumulating

updates of different descriptors at the first iteration.

Algorithm 8.2 outlines the rank aggregation algorithm. We can observe that the

algorithm is very similar to the re-ranking algorithm (Algorithm 8.1). It also considers

an iterative approach and the context images for the contextual information processing.

Note that the main difference relies on lines 8-13 of Algorithm 8.2, that are executed only

at the first iteration, when different matrices Ad ∈ A of different descriptors are being

combined.

8.4 Experimental Evaluation

In this section, we present the set of conducted experiments for demonstrating the effec-

tiveness of our method. We analyzed and evaluated our method under several aspects. In
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Algorithm 8.2 Contextual Rank Aggregation Algorithm

Require: Set of distance matrices A
Ensure: Processed distance matrix AT

1: t← 1
2: while t < T do

3: initializeAffinityMatrix(W, 1)
4: for all imgi ∈ C do

5: for all imgj ∈ KNN(imgi) do

6: k ← 1
7: if t = 1 then

8: for all Ad ∈ A do

9: ctxImg ← createContextImage(imgi, imgj , Ad, L)
10: ctxImg′ ← processContextImage(ctxImg, L)
11: W ← updateAffinityMatrix(ctxImg′,W, k)
12: k ← k + 1
13: end for

14: else

15: ctxImg ← createContextImage(imgi, imgj , At, L)
16: ctxImg′ ← processContextImage(ctxImg, L)
17: W ← updateAffinityMatrix(ctxImg′,W, k)
18: k ← k + 1
19: end if

20: end for

21: end for

22: At+1 ← computeDistanceMatrix(W )
23: performReRanking(At+1)
24: t = t+ 1
25: end while
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8.4.1 Experiment 1: Analysis of Contextual Re-Ranking Algo-

rithm

In this section, we evaluated the Contextual Re-Ranking Algorithm with regard to dif-

ferent aspects. This section analyzes the impact of parameters in effectiveness results,

evaluates the relevance of image processing techniques for the algorithm, and discusses

aspects of efficiency and computational complexity.

Impact of Parameters

The execution of Algorithms 8.1 and 8.2 considers three parameters: (i) K - number of

neighbors used as reference images; (ii) L - size of top left square of context image to be

analyzed; and (iii) T - number of iterations that the algorithm is executed.

To evaluate the influence of different parameter settings on the retrieval scores and

for determining the best parameters values we conducted a set of experiments. We use

the MPEG-7 dataset [48] with the bullseye score. For distance computation, we used the

CFD [68] shape descriptor.

Retrieval scores are computed ranging parameters K in the interval [1,10] and L in the

interval [1,60] (with increments of 5) for each iteration. Figures 8.10, 8.11, 8.12, and 8.13

show surfaces that represent retrieval scores for iterations 1, 2, 3, and 4, respectively. For

each iteration, the best retrieval score was determined.

We observed that the best retrieval scores increased along the first iterations and

parameters converged for K = 7 and L = 25. Figure 8.14 illustrates the evolution of

precision according to the iterations of re-ranking algorithm. The best retrieval score was

reached at iteration T = 5: 95.71%.

Note that these parameters may change for datasets with very different sizes. The

parameter values K = 7, L = 25, and T = 5 were used for all experiments, except for

the Soccer color dataset (described in Scetion 10.5.1). Since this dataset is smaller than

others, we used K = 3.

Impact of Image Processing Techniques

In this section we aim at evaluating the impact of the image processing techniques in the

effectiveness results. For the experiments, we consider the MPEG-7 [48] dataset (with

Recall@40 score), the CFD [68] shape descriptor and the parameters values defined in

Section 8.4.1. We evaluated the method with regard to the follows aspects:

• Median filter: we have disabled the median filter (considering only the threshold-

ing). The retrieval score obtained was 93.94%.
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Other steps of the algorithm have different complexities. The matrices A and W are

recomputed (O(N2)) at each iteration. The re-ranking step computes a sort operation

(O(NlogN)) for all images (O(N2logN)). However, these steps admit optimizations: once

the updatings for matrix W impact a small subset of positions (depending on the size L2

of context image), the matrices do not require to be totally recomputed and the ranked

lists do not require to be totally sorted again. The Contextual Re-Ranking algorithm can

also be massively parallelized, since there is no dependence between processing of different

context images at a same iteration.

We evaluated the computation time of Contextual Re-Ranking algorithm for the

MPEG-7 dataset (N = 1400), using the parameters defined in Section 8.4.1 (K = 7,

L = 25 and T = 5), executing in a AMD Opteron 6168 (1.9GHz - 12 cores) and using a

Java implementation. This execution took approximately 155 s. Next chapter discusses

an efficient and parallel implementation of the Contextual Re-Ranking algorithm.

8.4.2 Experiment 2: Re-Ranking

In this section, we present a set of experiments conducted for demonstrating the effec-

tiveness of our method. We compared results for several descriptors (shape, color, and

texture) in differents datasets. The measure adopted is Mean Average Precision (MAP).

Table 8.1 presents results for 12 image descriptors in 3 different datasets. As we can

observe in Table 8.1, the Contextual Re-Ranking method presents positive effectiveness

gains for all descriptors (including shape, color, and texture). The gains ranged from

+1.37% to +18.90%, with 8.57% on the average. We conducted a paired t-test and con-

clude that there is a 99.9% of chance of difference between the means (before and after

the re-ranking) being statistically significant. Next subsections present the descriptors

and datasets used for shape, color and texture experiments.

Shape Descriptors

We evaluate the use of our method with six shape descriptors considering the MPEG-7

dataset [48]: BAS [2], SS [17], IDSC [52], CFD [68], ASC [53], and AIR [35]. Results of

bullseye score for all descriptors are presented in Table 8.2. Note that the effectiveness

gains are always positive and represent very significant improvements of effectiveness,

ranging from +5.29% to +16.80%, with 10.56% on average. Figure 8.15 presents the

percentage gain obtained by Contextual Re-Ranking algorithm for CFD [68] descriptor

considering each of 70 shape classes in the MPEG-7 dataset. Note that the bullseye score

was improved over 30% for several classes.

The iterative behavior of the Contextual Re-Ranking algorithm can be observed in

results illustrated in Figure 8.16. The figure shows the evolution of rankings along the
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Table 8.1: Contextual Re-Ranking Evaluation in Content-Based Image Retrieval Tasks.
Descriptor Type Dataset Score

(MAP)
Contextual
Re-Ranking

Gain

SS [17] Shape MPEG-7 37.67% 44.79% +18.90%
BAS [2] Shape MPEG-7 71.52% 76.60% +7.10%
IDSC [52] Shape MPEG-7 81.70% 87.39% +6.96%
ASC [53] Shape MPEG-7 85.28% 89.82% +5.32%
CFD [68] Shape MPEG-7 80.71% 92.76% +14.93%
AIR [35] Shape MPEG-7 89.39% 94.49% +5.71%

GCH [93] Color Soccer 32.24% 33.02% +2.42%
ACC [41] Color Soccer 37.23% 39.86% +7.06%
BIC [90] Color Soccer 39.26% 43.04% +9.63%

LBP [60] Texture Brodatz 48.40% 49.06% +1.37%
CCOM [46] Texture Brodatz 57.57% 63.67% +10.60%
LAS [94] Texture Brodatz 75.15% 78.48% +4.43%

Table 8.2: Contextual Re-Ranking for Shape Descriptors on the MPEG-7 dataset (Re-
call@40).

Shape Score [%] Contextual Gain
Descriptor Re-Ranking

SS [17] 43.99% 51.38% +16.80%
BAS [2] 75.20% 82.43% +9.61%
IDSC [52] 85.40% 91.84% +7.54%
ASC [53] 88.39% 93.07% +5.29%
CFD [68] 84.43% 95.71% +13.36%
AIR [35] 93.67% 99.80% +6.54%











Chapter 9

Efficient Image Re-Ranking

Computation on GPUs

In the past few years, there have been considerable research to improve the distance

measures in CBIR systems, using contextual information. Re-ranking approaches have

been proposed to improve the effectiveness of search tasks, replacing pairwise similarities

by more global affinity measures that consider the relationships among the collection

images. The goal of these methods is to mimic the human behavior on judging the

similarity among objects by considering specific contexts.

The usefulness of CBIR systems depends on both the effectiveness and the efficiency of

the retrieval process. While the effectiveness is related to the quality of retrieved images,

the efficiency is related to the time spent to obtain the results. Both are indispensable

for useful and real world systems. Aiming at computing the relationship among images,

re-ranking algorithms often consider all distances among images in a given dataset, which

represent a large computational effort. Typically, image re-ranking algorithms assume

O(N2) to O(N3) complexity, which poses a great challenge on efficiently executing the

re-ranking methods.

The computation of re-ranking algorithms can be parallelized using Graphic Process-

ing Units (GPUs) devices. Despite the fact that these distances can be computed con-

currently in multi-core machines and the execution is likely to achieve linear speedups,

current multi-core machines are still limited to a couple of cores, which limit the maxi-

mum available parallelism. GPUs, on the contrary, are capable of executing up to 1600

threads at the same time, two orders of magnitude higher than state-of-the-art multi-core

CPUs. Graphic Processing Units (GPUs) have evolved into massive parallel architectures

capable of executing hundreds of operations per cycle. These devices are no longer used

exclusivelly for graphics processing. In fact, GPU hardware and programming models

are constantly being improved to enable general purpose applications to execute on it.
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General Purpose Graphic Processing Units (GPGPUs), as it is known, is already present

on several of the Top 500 high performance computing systems list. Despite the computa-

tional power, its execution and programming models are different from traditional General

Purpose Processors (GPPs), which renders simple recompilation techniques useless when

porting applications from GPPs to GPGPUs.

In this chapter, we address the image re-ranking performance challenges by designing

and implementing a re-ranking algorithm that takes advantage of the massive amount of

parallelism at GPUs. We propose a parallel GPU-based solution which can speed up the

Contextual Re-Ranking algorithm computation (described in Chapter 8).

The chapter is organized as follows: Section 9.1 discusses General Purpose computing

on GPUs. Section 9.2 describes the proposed parallel solution for re-ranking computing.

Finally, experimental design and results are reported in Section 9.3.

9.1 General Purpose computing on GPUs (GPG-

PUs)

Graphics Processing Units (GPUs) are power efficient massively parallel computing de-

vices. GPUs are fast emerging parallel processors due to their high computation power

and low price. The massive data processing capability of the GPU has been attracting

researchers to exploit it for general purpose computing [85]. In this way, once specially de-

signed for computer graphics, today’s GPUs are general-purpose parallel processors with

support for accessible programming interfaces, as OpenCL (detailed in Section 9.2.1).

Iterative algorithms are at the core of several scientific applications, which have tradi-

tionally been parallelized and optimized for large multi-processors, either based on shared

memory or clusters of interconnected nodes. Gunarahne et al. [98] proposed a GPU-

based solution for iterative statistical applications. Three iterative statistical algorithms

(K-Means, Multi-Dimensional Scaling (MDS), and PageRank) were designed and imple-

mented using OpenCL. A GPGPU approach with a large number of processing units for

on-line machine learning was proposed by Webers [108]. The work considers the Stochas-

tic Gradient Descent algorithm, discussing a parallel solution, its performance gain, and

variations in accuracy. A study on efficient execution of PageRank algorithm on AMD

GPUs is presented by Wu et al. [107]. They analyze the characteristic of the sparse matri-

ces used in PageRank, and introduce a fast sparse matrix-vector multiplication (SpMV)

implementation using a modified Compressed Sparse Row (CSR) format.

Strong and Gong [92] discuss how to efficiently organize a collection of images based

on their similarities. The objective is to facilitate photo browsing and searching. The

proposed approach first generates a feature vector for each image in the collection. The
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feature vectors are then used to train a Self Organizing Map (SOM) on the GPUs. An

image retrieval approach using GPUs is proposed by Pham et al. [79], applying the Facto-

rial Correspondence Analysis (FCA). FCA is a method for analyzing textual data, which

is adapted to images using SIFT local descriptors. FCA is used to reduce dimensions and

to limit the number of images to be considered during the search. Two algorithms on

GPU for image retrieval using FCA are proposed.

Given that both image re-ranking and GPGPUs are recent approaches, to the best

of our knowledge, there is no study about the use of GPUs for efficient image re-ranking

computation.

9.2 GPU Acceleration of the Contextual Re-Ranking

Algorithm

This section discusses the design of a parallel implementation of the Contextual Re-

Ranking algorithm. A briefly presentation of the OpenCL standard, used for this imple-

mentation, is presented in the following.

9.2.1 OpenCL

OpenCL is a new industry standard for task-parallel and data-parallel heterogeneous com-

puting on a variety of modern CPUs, GPUs, DSPs, and other microprocessor designs [91].

This trend toward heterogeneous computing and highly parallel architectures has created

a strong need for software development infrastructure in the form of parallel programming

languages and subroutine libraries that can support heterogeneous computing on multi-

ple vendors hardware platforms. In OpenCL, a program is executed on a computational

device, which can be a CPU, GPU, or another accelerator. GPU devices typically contain

one or more compute units (processor cores). These units are themselves composed by one

or more single-instruction multiple-data (SIMD) processing elements (PE) that execute

instructions in lock-step.

A kernel is a function declared in an OpenCL program and is executed on an OpenCL

device. The kernels are computing functions dynamically compiled and scheduled for

execution by calling a C runtime library. Parallel executions of a kernel are invoked on

a device by a command. Each instance of a kernel running on a compute unit is called

a work-item. A work-item is executed by one or more processing elements as part of a

work-group executing on a compute unit. OpenCL maps the total number of work-items

to be launched onto an n-dimensional grid, called as ND-Range.
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9.2.2 Parallel Contextual Re-Ranking

The Contextual Re-Ranking algorithm presents great potential for parallelization, as a

large number of context images (N × K) are created at each iteration and they do not

depend on each other for processing. The re-ranking step (the re-sort of N ranked lists)

also can be computed in a parallel way for each ranked list. However, the parallelization of

the algorithm presents several challenges (e.g., concurrent accesses to the affinity matrix

W ) that may require the design of synchronization approaches.

The re-ranking algorithm could be designed in a single OpenCL kernel, repeatedly

executed at each iteration. However, some steps must be completed in a predefined

order. This occurs for example when the affinity matrix W and the distance matrix

A are computed. The matrix W should be completely computed before starting the

computation of A.

In a parallel implementation of the re-ranking algorithm, some barriers should be

respected to ensure the correct data dependence when executing the algorithm. Although

barriers are available in OpenCL for synchronization, they only provide synchronization

among kernels in a same work-group. Global synchronization can be obtained using

atomic operations in global memory or using different kernels through the dispatch queue.

In this way, the need for global synchronization between steps of the algorithm is the

main motivation for dividing the algorithm in different kernels. As an initial point, the

re-ranking algorithm was divided into three OpenCL kernels and three segments of serial

code. Figure 9.1 illustrates the overall design of the parallel algorithm. In the following,

we described the proposed kernels and the segments of serial code:

• Context Images Processing: given the distance matrix At and the set of ranked

lists Rt, this kernel processes a context image. It constructs a context image, ap-

plies the image processing procedures (thresholding and filtering) and obtains the

resulting black pixels. Based on these pixels, it computes the increment values that

are used later to update the matrix W . Two dimensions of work items are created

to compute this kernel, in a total of N ×K work items.

• Distances Computation: based on the current distance matrix At and the affinity

matrix W , computed by the previous kernel, this kernel computes a new distance

matrix At+1 for the next iteration. Each cell of the matrix can be computed in-

dependently from others. In this way, N × N work items (one for each cell) are

created, divided into two dimensions.

• Sort of Ranked Lists: based on the new distance matrix At+1 (computed for

the next iteration), a new set of ranked lists Rt+1 can also be computed. A single

dimension is considered and N work items are created - one for each ranked list.
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Figure 9.1: Parallel project of the Contextual Re-Ranking Algorithm.

Although the kernels represent the majority of the computational effort needed by

the re-ranking algorihthm, there are some gaps between them. These gaps, which were

also considered when designing the algorithm, represent segments of code that should be

synchronized and executed in a serial way.

The first kernel, for example, processes context images computing the increments of

the matrix W . However, these increments are produced by different threads and the

concurrent writing in matrix W may produce loss of increments. In this way, the kernel

uses a list of increments for storing the increments without concurrent access among

different threads and returns this list to the host device. In the host device, the list is

sequentialy adressed to increment the matrix W . This process is illustrated in Figure 9.2.

Other steps, as the initialization of matrix W and normalization of matrix A, are also

computed in the host device. The initialization of matrix W consists in assigning the
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Figure 9.2: Update model using list of increments.

value 1 to all positions of the matrix. Although this step could be computed in parallel

by the first kernel, it has a non-compatible number of work items. While the first kernel

has N × K work items, the initialiation requires N × N (one for each cell) or N (on

for each row). Therefore, this step is serially computed. The normalization of matrix A

consists in the computation of the min value between correspondent positions of matrix.

This step is serially computed because it involves different positions of the matrix A and

it should be globally synchronized if computed in parallel.

9.2.3 Optimizations

The existence of serial segments of code always represents bottlenecks, where no gains

can be obtained by parallelization. In this section, we present strategies for exploiting

parallelization even in segments initialy designed for being executed in a sequential way.

The first segment considered for optimization is concerned with the processing the

increments of matrix W . The list of increments is sequentially checked and processed in

the matrix W . In addition to the sequential processing of the list of increments, other

negative implications related to memory storage and data transferring are expected. To

ensure the inexistence of concurrent access over the list of increments, a predefined number

of list elements (maximum of possible increments) are reserved for each work item. In

this way, since the number of effective increments is often very lower than the maximum

possible, a large portion of memory needed to store the list is wasted. Another negative

impact is the fact of the whole list (including wasted elements) is transferred back to
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the host device. Considering this characteristics, the ideal implementation computes the

increments direct in the matrix W . As discussed in previous section, the inexistence of

global synchronization (and lock engines) in OpenCL motivates the use of the list of the

increments, once concurrent writing in matrix W can cause loss of increments.

However, in the common case, the matrix W is very sparse and the number of in-

crements for each context image is lower than the maximum possible. This behavior

indicates a low probability for concurrent increments in the same positions of the matrix

W . In this scenario, we propose to change the initial implementation in order to reduce

concurrent writing in matrix W and to enable direct increments on the matrix W . The

direct increments on the matrix W are illustrated in Figure 9.3.

Figure 9.3: Update model with increments direct on Matrix W.

The number of work items and dimensions configurations of the first kernel also were

changed. We consider a single dimension with N work items, such that the K context

images produced for a given image are processed in a unique work item. In this situa-

tion, in which different context images likely have increments in common cells, they are

processed in a single work item avoiding loss of increments.

Removing the synchronization mechanism and allowing direct updates on matrix the

W increases the performance of the algorithm. It is important to notice that concurrent

accesses to the same elements ofW may lead to the loss of some increments. Theoretically,

this loss of information may affect the accuracy of the re-ranking algorithm. However, as

we show in Section 9.3.3, a very low impact on the accuracy of the algorithm was observed

in practice.

The second situation where the parallelization is not exploited is the normalization

of the matrix A. This step is sequentially processed because it computes the min value

between transposed positions of matrix, involving different work items (one for each po-
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sition of the matrix) and causing synchronization problems. We aim at parallelizing even

the normalization of the matrix, decreasing the segments of serial code. In this case, we

propose a dynamic programming based strategy. Instead of two dimensions and N × N

work items, with one for each position of the matrix, we use a single dimension with N

work items. Let x be the global identifier of a work item. This work item is responsable

for computing the distances of imgx to imgy, where y > x. In this way, the kernel can

compute the matrix A in positions Axy, Ayx and the min value between them whithout

synchronization.

9.3 Experimental Evaluation

This section presents the experiments conducted aiming at assessing the impact of the

proposed parallel strategies in both effectiveness and efficiency. We also compare segments

of the algorithm considering executions in different languages (C/C++ and OpenCL) and

different devices (CPU/GPU).

9.3.1 Experimental Setup

The hardware environment is composed by the devices:

• CPU: AMD Opteron 6168 1.9GHz - 12 cores

• GPU: ATI FirePro V7800

The software environment is given by:

• Operating System: Linux 2.6.32-33 - Ubuntu 10.04

• OpenCL SDK: OpenCL 1.1 AMD-APP-SDK-v2.4

We use the MPEG-7 [48] dataset and the CFD [68] shape descriptor for main experi-

mental evaluations.

9.3.2 Performance Results

We conducted a set of experiments aiming at evaluating the performance of the Contextual

Re-Ranking algorithm with regard to different aspects:

• Parallel and serial implementations: we considered equivalent implementations of

the re-ranking algorithm in OpenCL and C/C++ for experimental evaluation.
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Table 9.1: Performance comparison for different kernel implementations - No optimiza-
tions, using list of increments

Language/Device Measure Time (s) Context Image
Processing

Distances
Computing

Sorting
Ranked Lists

Serial Code

Serial C/C++ Total Time 7.3661± 0.0125 0.2359± 0.0006 0.9766± 0.0067

∼ 1.9808 ±0.0047
OpenCL CPU

Computing Time 0.7329± 0.0057 0.1388± 0.0059 0.0508± 0.0018
Memory Transf. 0.8030± 0.0030 0.1355± 0.0033 0.1403± 0.0032
Total Time 1.7058± 0.0100 0.2877± 0.0065 0.2111 ± 0.0030

OpenCL GPU
Computing Time 0.3466± 0.0052 0.0234± 0.0001 2.9105± 0.0014
Memory Transf. 0.7491± 0.0007 0.0600± 0.0004 0.0588± 0.0002
Total Time 1.0992 ± 0.0057 0.0861 ± 0.0006 2.9709 ± 0.0014

Table 9.2: Performance comparison for different kernel implementations - Optimizations
and increments direct on Affinity Matrix W

Language/Device Measure Time (s) Context Image
Processing

Distances
Computing

Sorting
Ranked Lists

Serial Code

Serial C/C++ Total Time 6.1602± 0.0120 0.4049± 0.0027 0.9683± 0.0001

∼ 0.1290± 0.0045
OpenCL CPU

Computing Time 0.6451± 0.0029 0.0532± 0.0015 0.0499± 0.0014
Memory Transf. 0.1909± 0.0030 0.1418± 0.0025 0.1380± 0.0048
Total Time 0.8534± 0.0054 0.2145± 0.0042 0.2068 ± 0.0040

OpenCL - GPU
Computing Time 0.5059± 0.0014 0.0574± 0.0001 2.7927± 0.0249
Memory Transf. 0.0845± 0.0023 0.0541± 0.0001 0.0539± 0.0001
Total Time 0.5926 ± 0.0011 0.1130 ± 0.0001 2.8481± 0.0248

• Different segments of code: we considered the division of re-ranking algorithm in

three kernels, measuring independently the run time of each one.

• Different devices: the parallel executions were performed in CPU and GPU devices.

• Optimizations: we evaluated our parallel implementation considering the proposed

optimizations.

We measured the run time repeating 5 executions and computing the average time with

correspondent 95% confidence intervals. Table 9.1 presents the results for the initial par-

allel implementation, which does not include the optimizations discussed in Section 9.2.3.

The best performance, for each kernel/segment code is presented in bold. We can observe

that the context image processing kernel, which represents the major computational effort

of the algorithm, presents a significantly performance increase. The speedup from serial

implementation (7.3661 s) to OpenCL GPU (1.0992 s) in this kernel is 6.7×. Table 9.2

presents the results for the optimized version of the algorithm. We can observe that both

serial and memory transfers times decreased significantly.

We also considered the execution of the optimized implementation of the algorithm

combining the best combination of kernels and devices in which they are executed. The

first two kernels (context images processing and distance computation) are computed in

OpenCL GPU and the third kernel (sort of ranked lists) is computed using OpenCL CPU.

Table 9.3 presents the results for the best combination of kernels, summing up parallel and
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Table 9.3: Best Combination of Kernels/Devices - Total Run Time

Kernel/Segment Code Language/Device Run Time (s)
Context Image Processing OpenCL - GPU 0.5926± 0.0011
Distances Computing OpenCL - GPU 0.1130± 0.0001
Sorting Ranked Lists OpenCL - CPU 0.2068± 0.0040

Serial Code Serial C/C++ 0.1290± 0.0045

Sub-Total 1.0414

OpenCL Environment - 0.8995± 0.0416

Total 1.9409

serial run time. We also report the OpenCL environment creation time. Although very

significant for the considered execution, the OpenCL environment represents a fixed time

that does not increase when increasing the datasets. Considering the total elapsed time

of the optimized version (1.9409 s), including the OpenCL environment time, the speedup

to the C/C++ serial version (7.6624 s) is 3.9×. Considering only the memory transfers

and the computing time (1.0414 s), the speedup is 7.4×. For comparison, the original

Java implementation [67] takes 155 s when performing the re-ranking algorithm, which

represents a speedup of 79.9× considering the OpenCL environment time and 148.9×

considering only the computing time and memory transfers.

9.3.3 Effectiveness Analysis

In this section, we evaluate the impact of the optimization strategy on the effectiveness

of the re-ranking algorithm, since there can be loss of increments on the matrix W and

consequently effectiveness variations. We aim at assessing the impact of this approach on

the final effectiveness of the CBIR system. We consider the same CBIR descriptors and

datasets used in the evaluation of Contextual Re-Ranking algorithm.

Table 9.4 presents a comparison of the serial C/C++ with the optimized implementa-

tion in OpenCL. The experiments were performed on the GPU, since it is more susceptible

to synchronization issues due to the large number of threads. An average of 5 executions

were considered. As we can observe, the variations of effectiveness results are very small.

The use of the optimized version is then justified by the significant gains in performance.
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Table 9.4: Contextual Re-Ranking Effectiveness Evaluation - MAP.
Descriptor Type Dataset Score

(MAP)
CR-R
Serial
C/C++

CR-R
OpenCL
GPU

SS [17] Shape MPEG-7 37.67% 44.79% 44.87%
BAS [2] Shape MPEG-7 71.52% 76.60% 76.59%
IDSC [52] Shape MPEG-7 81.70% 87.39% 87.60%
ASC [53] Shape MPEG-7 85.28% 89.82% 90.12%
CFD [68] Shape MPEG-7 80.71% 92.76% 92.98%

GCH [93] Color Soccer 32.24% 33.02% 32.70%
ACC [41] Color Soccer 37.23% 39.86% 39.99%
BIC [90] Color Soccer 39.26% 43.04% 42.80%

LBP [60] Texture Brodatz 48.40% 49.06% 49.32%
CCOM [46] Texture Brodatz 57.57% 63.67% 63.69%
LAS [94] Texture Brodatz 75.15% 78.48% 79.16%





Chapter 10

Combining Re-Ranking and Rank

Aggregation Methods

As we have been discussed, in the past few years, there has been considerable research

on exploiting contextual information for improving the distance measures and re-ranking

images in CBIR systems [42, 45, 62, 77, 84, 114, 115]. Another approach for improving

CBIR systems is based on rank aggregation techniques [4, 12, 28]. Promising results have

been obtained considering several approaches and techniques, including those proposed

in this thesis.

However, although a lot of efforts have been employed to develop new re-ranking and

rank aggregation methods, few initiatives aim at combining the existing methods. Besides

that, in the same way that different CBIR descriptors produce different and complemen-

tary rankings, results of re-ranking and rank aggregation methods can also be combined

to obtain more effective results. In this chapter, we propose three novel approaches

for combining re-ranking and rank aggregation methods aiming at improving the effec-

tiveness of CBIR systems. We discuss how to combine (i) re-ranking algorithms; (ii)

rank aggregation algorithms, and both (iii)re-ranking and rank aggregation algorithms.

We conducted a large evaluation protocol involving shape, color, and texture descriptors

datasets and comparisons with baseline methods. Experimental results demonstrate that

our combination approaches can further improve the effectiveness of CBIR systems.

This chapter is organized as follows. Section 10.1 presents our approach for com-

bining re-ranking methods. Section 10.2 presents the combination of re-ranking using

rank aggregation methods. The combination of rank aggregation methods is discussed

in Section 10.3. Section 10.4 presents the re-ranking and the rank aggregation methods

considered in experiments. Section 10.5 presents the experimental evaluation.
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10.4.2 Rank Aggregation Methods

This section briefly describes the rank aggregation approaches considered in our experi-

mental evaluation.

Contextual Rank Aggregation

The Contextual Rank Aggregation (CRA) algorithm aims at combining the results of

different descriptors. The main idea consists in using the Contextual Re-Ranking [67]

algorithm, discussed in Chatper 8, but using the affinity matrix W for accumulating

updates of different descriptors at the first iteration.

RL-Sim Rank Aggregation

We used the multiplication approach with the RL-Sim Algorithm, proposed in Chapter 7.

The distance matrices are first combined and later submitted to the RL-Sim Re-Raking

algorithm.

Set Rank Aggregation (SetRA)

In this section, we propose a simple method to be used as a second layer rank aggregation

in the agglomerative approach, presented in Section 10.3. We consider the strategy of

modeling the ranked lists as sets of different sizes. This strategy is also used by the

RL-Sim [72] algorithm, discussed in Chapter 7. We use the same function ψ described in

Chapter 7 for computing the similarity between ranked lists. We refer to this method as

Set Rank Aggregation (SetRA) along the chapter.

The main idea is to compute the similarity between ranked lists, defined by each

distance matrix being combined, and sum up these similarity scores in order to obtain a

new combined score. Let m be the number of matrices being combined and Rix be the

ranked list produced by matrix Ai for image imgx and Riy for image imgy, then the new

combined similarity score ψc is computed as follows:

ψc(imgx, imgy, K) =
m∑

i=1

ψ(Rix , Riy , K). (10.1)

The new combined distance is computed using the Equation 10.1.

10.5 Experimental Evaluation

This section presents a set of conducted experiments for demonstrating the effectiveness

of our combination approaches. We analysed our approaches under several aspects and
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compared our results with other methods from the literature. Section 10.5.1 describes

the datasets and descriptors used. Section 10.5.2 presents the experimental results con-

cerning the cascading re-ranking methods. Section 10.5.3 presents results for combination

of re-ranking methods, and Section 10.5.4 presents the evaluation of aglomerative rank

aggregation approach.

10.5.1 Descriptors and Datasets

Shape

We use the MPEG-7 dataset [48], considering the MAP and the bullseye score as effective-

ness measures. We consider six shape descriptors: SS [17], BAS [2], IDSC [52], CFD [68],

ASC [53], and AIR [35].

Color

We evaluate our method for three color descriptors: BIC [90], ACC [41], and GCH [93].

The experiments were conducted on the Soccer dataset [100].

Texture

The experiments consider three texture descriptors: LBP [60], CCOM [46], and LAS [94].

We used the Brodatz [7] dataset.

10.5.2 Cascading Re-Ranking

This section discusses the use of our cascading approach for combining re-ranking meth-

ods. The main goal of this experiment is to validate that our proposed approach can be

used with different re-ranking methods. In this way, we considered the MPEG-7 dataset,

which has available various baselines.

We considered four different re-ranking approaches: the Mutual kNN Graph [45], the

Distance Optimization Algorithm, presented in Chapter 4, the Contextual Re-Ranking,

presented in Chapter 8, and RL-Sim algorithm, presented in Chapter 7. We also consid-

ered the Contextual Re-Ranking and RL-Sim applied to all algorithms.

Table 10.1 presents the results for Recall@40 measure. We can observe that the gains

are positives for all combinations, ranging from +0.11% to +1.99% . The positive gains

shows that, even with contextual information already exploited by the first re-ranking

employed, the second re-ranking can further improve the effectiveness when combined by

our cascading approach.
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Table 10.1: Cascading Re-Ranking Methods on the MPEG-7 dataset (Recall@40).
Descriptor Score Re-Ranking Algorithm 1 Score Re-Ranking Algorithm 2 Cascade

Score
Gain

CFD [68] 84.43% Distance Optimization 92.56% Contextual Re-Ranking 93.39% +10.61%
CFD [68] 84.43% Distance Optimization 92.56% RL-Sim Re-Ranking 94.40% +11.81%
IDSC [52] 85.40% Mutual kNN Graph [45] 93.40% Contextual Re-Ranking 93.68% +9.70%
IDSC [52] 85.40% Mutual kNN Graph [45] 93.40% RL-Sim Re-Ranking 94.09% +10.18%
CFD [68] 84.43% RL-Sim Re-Ranking 94.13% Contextual Re-Ranking 94.23% +11.61%
CFD [68] 84.43% Contextual Re-Ranking 95.71% RL-Sim Re-Ranking 95.94% +13.63%

10.5.3 Combining Re-Ranking methods with Rank Aggregation

This section presents the evaluation of our approach for combining re-ranking with rank

aggregation algorithms. We consider the Contextual Re-Ranking (CRR) [67] and the RL-

Sim [72] re-ranking algorithms, discussed in Section 10.4.1 and the Set Rank Aggregation

presented in Section 10.4.2. We aim also at evaluating the use of the proposed approach for

different descriptors and datasets. We considered three datasets and twelve descriptors,

including shape, color, and texture descriptors.

Table 10.2 presents the MAP scores for the RL-Sim [72] and Contextual Re-

Ranking [67] algorithms in isolation (as baselines), and considering their combination.

As we can observe, for almost all descriptors our combination approach presents a higher

MAP score than both baselines, with significant gains. Exceptions are the LBP [60] and

LAS [94] descriptors, in which the RL-Sim [72] presents low gains. However, we should

note that, even for those cases, our combination approach presents a MAP score higher

than the worst re-ranking methods (in fact, close to the average result between the two

methods).

Our approach also presents a higher average score when compared with both re-ranking

algorithms. The combination score (67.72%) represents a gain of +2.48% for the Con-

textual Re-Ranking [67] algorithm (66.08%) and +3.67% for the RL-Sim [72] algorithm

(65.32%). The last column presents the effectiveness gains considering the original de-

scriptor score, with a significant average gain of +11.52%.

We also considered the bullseye score (Recall@40 ) for shape descriptors on the MPEG-

7 dataset. Table 10.3 present the effectiveness results considering the Recall@40 mea-

sure. Similar results to MAP measure can be observed. Our combination approach also

presents better average scores (86.69%) than both re-ranking algorithms. Note that the

RL-Sim [72] algorithm yields better average Recall@40 scores than the Contextual Re-

Ranking [67] algorithm. The contrary occurs considering the MAP scores (Contextual

Re-Ranking [67] yields better MAP scores in Table 10.2). However, our combination

approach presents better scores considering both measures.

[!ht]
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Table 10.2: Re-Ranking with Rank Aggregation Combination on CBIR Tasks (MAP).
Image De-
scriptor

Type Dataset Score Re-Ranking 1:
RL-Sim

Re-Ranking 2:
Contextual Re-

Ranking

Rank Aggre-
gation: SetRA

Gain

SS [17] Shape MPEG-7 37.67% 43.06% 44.79% 47.33% +25.64%
BAS [2] Shape MPEG-7 71.52% 74.57% 76.60% 78.31% +9.49%
IDSC [52] Shape MPEG-7 81.70% 86.75% 87.39% 88.66% +8.52%
CFD [68] Shape MPEG-7 80.71% 88.97% 92.76% 92.94% +15.15%
ASC [53] Shape MPEG-7 85.28% 88.81% 89.82% 90.62% +6.26%
AIR [35] Shape MPEG-7 89.39% 93.54% 94.49% 97.15% +8.68%

GCH [93] Color Soccer 32.24% 33.66% 33.02% 33.78% +4.78%
ACC [41] Color Soccer 37.23% 43.54% 39.86% 46.60% +25.17%
BIC [90] Color Soccer 39.26% 43.45% 43.04% 47.27% +20.40%

LBP [60] Texture Brodatz 48.40% 47.77% 49.06% 47.93% -0.97%
CCOM [46] Texture Brodatz 57.57% 62.01% 63.67% 64.20% +11.52%
LAS [94] Texture Brodatz 75.15% 77.81% 78.48% 77.89% +3.65%

Average 61.34% 65.32% 66.08% 67.72% +11.52%

Table 10.3: Re-Ranking and Rank Aggregation Combination for Shape Descriptors on
the MPEG-7 dataset (Recall@40).

Shape
Descriptor

Score Re-Ranking 1:
RL-Sim

Re-Ranking 2:
Contextual Re-

Ranking

Rank Aggrega-
tion: SetRA

Gain

SS [17] 43.99% 53.15% 51.38% 54.69% +24.32%
BAS [2] 75.20% 82.94% 82.43% 83.51% +11.06%
IDSC [52] 85.40% 92.18% 91.84% 92.16% +7.92%
CFD [68] 84.43% 94.13% 95.71% 95.98% +13.67%
ASC [53] 88.39% 94.69% 93.07% 93.80% +6.12%
AIR [35] 93.67% 99.90% 99.80% 99.99% +6.75%

Average 78.51% 86.17% 85.71% 86.69% +10.42%

10.5.4 Agglomerative Rank Aggregation

This section presents the evaluation of our proposed Agglomerative Rank Aggregation Ap-

proach, introduced in Section 10.3. We selected two descriptors with the best effectiveness

scores for each visual property (e.g., shape, color, and texture). For shape descriptors,

we do not consider the AIR [35] descriptor because this descriptor presents a very high

effectiveness score by itself. Table 10.4 presents the MAP score of our combination ap-

proach. For comparison, we also present the MAP score for descriptors in isolation and

combined with first-layer rank aggregation method, considering the RL-Sim [72] and the

Contextual Rank Aggregation (CRA) [70] algorithms. We can observe that significant

gains are obtained by our combination approach when compared with the results of the

descriptors and with the first-layer rank aggregation method.
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Table 10.4: Aglomerative Rank Aggregation Combination for CBIR Tasks (MAP).
Descriptor Type Dataset First Layer - Rank

Aggregation
Second Layer - Rank
Aggregation

Score
(MAP)

CFD [68] Shape MPEG-7 - - 80.71%
ASC [53] Shape MPEG-7 - - 85.28%
CFD [68] + ASC [53] Shape MPEG-7 RL-Sim - 98.75%
CFD [68] + ASC [53] Shape MPEG-7 CRA - 98.77%
CFD [68] + ASC [53] Shape MPEG-7 RL-Sim + CRA Set Rank Aggregation 99.41%

ACC [41] Color Soccer - - 37.23%
BIC [90] Color Soccer - - 39.26%
BIC [90] + ACC [41] Color Soccer RL-Sim - 44.49%
BIC [90] + ACC [41] Color Soccer CRA - 42.14%
BIC [90] + ACC [41] Color Soccer RL-Sim + CRA Set Rank Aggregation 49.00%

CCOM [46] Texture Brodatz - - 57.57%
LAS [94] Texture Brodatz - - 75.15%
LAS [94] + CCOM [46] Texture Brodatz RL-Sim - 80.26%
LAS [94] + CCOM [46] Texture Brodatz CRA - 81.63%
LAS [94] + CCOM [46] Texture Brodatz RL-Sim +CRA Set Rank Aggregation 83.70%





Chapter 11

Comparing Re-Ranking and Rank

Aggregation Methods

This chapter summarizes the experimental results presented along this thesis, presenting

various comparisons considering the proposed re-ranking and rank aggregation methods.

First we present an effectiveness comparison among the proposed methods, using different

datasets, descriptors, and measures. In the following, we compared our approaches with

various state-of-the-art methods using previous results reported for well-known datasets.

The proposed methods present better effectiveness performance when compared with

various methods recently proposed in the literature.

11.1 Comparison of the proposed Re-Ranking Meth-

ods

This section summarizes the experimental results of the proposed re-ranking methods

presented along this thesis, considering the MPEG-7, Soccer, and Brodatz datasets. Ta-

ble 11.1 presents the MAP scores for the proposed methods (and their respective varia-

tions), considering shape, color, and texture descriptors. The best effectiveness result for

each descriptor is presented in bold. We can observe that, for each image descriptor, the

best effectiveness result is obtained by a different re-ranking method. It indicates that

there is no agreement about the best method for all descriptors, but that each re-ranking

method can be the most appropriate for a given specific descriptor. It occurs because each

re-ranking method processes the contextual information considering different strategies

and, therefore, providing different and complementary views of the same problem. That

confirms our claims related to the usefulness of using combination strategies to further

improve the effectiveness of re-ranking approaches.
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Table 11.2 presents the bullseye scores (Recall@40 ) for the proposed re-ranking meth-

ods considering shape descriptors on the MPEG-7 dataset. We can observe that the

RL-Sim re-ranking method presents the best scores for five out of six descriptors, consid-

ering this measure. Note, however, that the RL-Sim method has not achieved such good

results considering the MAP score.
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Table 11.1: MAP scores for proposed re-ranking methods in different CBIR tasks.
Descriptor Type Dataset Score

(MAP)
DOA

RL-Cor
DOA

Cor-Cor
Pairwise

Recom-

mend.

Context

Spaces

kNN

Context

Spaces

MkNN

RL-Sim

kNN
Intersec-
tion

RL-Sim

M-kNN
Intersec-
tion

RL-Sim

kNN
Kendall’s
Tau

RL-Sim

M-kNN
Kendall’s
Tau

Context

Re-

Ranking

SS [17] Shape MPEG-7 37.67% 46.53% 48.76% 39.90% 40.74% 42.52% 43.06% 47.70% 44.24% 46.74% 44.79%
BAS [2] Shape MPEG-7 71.52% 81.05% 80.84% 77.65% 74.71% 76.07% 74.57% 78.16% 73.25% 75.38% 76.60%
IDSC [52] Shape MPEG-7 81.70% 86.94% 87.77% 86.83% 85.87% 88.05% 86.75% 87.67% 85.93% 86.53% 87.39%
CFD [68] Shape MPEG-7 80.71% 91.79% 91.40% 91.38% 90.00% 90.41% 88.97% 90.78% 88.40% 89.50% 92.76%

ASC [53] Shape MPEG-7 85.28% 88.41% 91.60% 89.55% 90.51% 91.87% 88.81% 90.88% 88.10% 89.92% 89.82%
AIR [35] Shape MPEG-7 89.39% 93.54% 95.77% 94.71% 93.16% 96.07% 93.54% 93.52% 96.27% 95.72% 94.49%

GCH [93] Color Soccer 32.24% 30.78% 33.13% 32.35% 32.97% 33.96% 33.66% 33.84% 32.96% 33.76% 33.02%
ACC [41] Color Soccer 37.23% 42.46% 45.24% 40.31% 39.35% 45.07% 43.54% 44.78% 44.29% 46.02% 39.86%
BIC [90] Color Soccer 39.26% 38.16% 44.23% 42.64% 43.07% 45.00% 43.45% 44.08% 43.76% 45.58% 43.04%

LBP [60] Texture Brodatz 48.40% 52.31% 49.34% 51.92% 49.34% 48.20% 47.77% 48.51% 45.20% 45.78% 49.06%
CCOM [46] Texture Brodatz 57.57% 59.27% 64.60% 66.46% 61.49% 61.44% 62.01% 63.48% 60.30% 61.41% 63.67%
LAS [94] Texture Brodatz 75.15% 80.36% 81.17% 80.73% 79.67% 77.18% 77.81% 78.11% 75.62% 76.13% 78.48%

Table 11.2: Recall@40 scores for proposed re-ranking methods in shape retrieval tasks.
Descriptor Score

(Re-
call@40)

DOA

RL-Cor
DOA

Cor-
Cor

Pairwise

Recom-

mend.

Context

Spaces

kNN

Context

Spaces

MkNN

RL-Sim

kNN
Intersec-
tion

RL-Sim

M-kNN
Intersec-
tion

RL-Sim

kNN
Kendall’s
Tau

RL-Sim

M-kNN
Kendall’s
Tau

Context

Re-

Ranking

SS [17] 43.99% 50.93% 53.23% 54.36% 48.50% 53.27% 53.15% 57.58% 52.67% 56.06% 51.38%
BAS [2] 75.20% 85.11% 84.15% 84.03% 80.53% 81.54% 82.94% 85.87% 81.16% 83.44% 82.43%
IDSC [52] 85.40% 90.02% 90.39% 92.21% 90.44% 90.91% 92.18% 92.62% 91.12% 92.06% 91.84%
CFD [68] 84.43% 93.62% 92.90% 96.15% 93.02% 93.00% 94.13% 95.33% 93.12% 94.27% 95.71%
ASC [53] 88.39% 90.66% 93.61% 94.66% 93.28% 95.03% 94.69% 95.75% 93.68% 94.56% 93.07%
AIR [35] 93.67% 97.68% 98.81% 99.36% 99.75% 99.92% 99.90% 99.87% 99.94% 99.93% 99.80%
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11.2 Comparison of the proposed Rank Aggregation

Methods

This section summarizes the results of the rank aggregation methods, presented along

this thesis. Table 11.3 presents the MAP scores for the combination of two image descrip-

tors for each visual property (shape, color, and texture), considering the various rank

aggregation methods. The results of each image descriptor, in isolation is also presented.

We can observe very significant gains for all rank aggregation methods in comparison

with image descriptors in isolation. In general, the rank aggregation methods yield very

close results. The best effectiveness result for each visual property was achieved by the

Contextual Spaces rank aggregation method.

Table 11.3: MAP scores for proposed Rank Aggregation methods in general CBIR tasks.
Descriptor Type Dataset Rank Aggregation

Method
Variation Score

(MAP)

CFD [68] Shape MPEG-7 - - 80.71%
ASC [53] Shape MPEG-7 - - 85.28%

CFD [68] + ASC [53] Shape MPEG-7 Pairwise Recommend. - 99.34%
CFD [68] + ASC [53] Shape MPEG-7 Contextual Spaces kNN 98.67%
CFD [68] + ASC [53] Shape MPEG-7 Contextual Spaces M-kNN 99.36%
CFD [68] + ASC [53] Shape MPEG-7 RL-Sim kNN - Intersection 98.75%
CFD [68] + ASC [53] Shape MPEG-7 RL-Sim M-kNN - Intersection 98.96%
CFD [68] + ASC [53] Shape MPEG-7 RL-Sim kNN - Kendall’s Tau 98.57%
CFD [68] + ASC [53] Shape MPEG-7 RL-Sim M-kNN - Kendall’s Tau 98.57%
CFD [68] + ASC [53] Shape MPEG-7 Contextual Re-Ranking - 98.77%

ACC [41] Color Soccer - - 37.23%
BIC [90] Color Soccer - - 39.26%

BIC [90] + ACC [41] Color Soccer Pairwise Recommend. - 42.20%
BIC [90] + ACC [41] Color Soccer Contextual Spaces kNN 42.44%
BIC [90] + ACC [41] Color Soccer Contextual Spaces M-kNN 46.10%
BIC [90] + ACC [41] Color Soccer RL-Sim kNN - Intersection 44.49%
BIC [90] + ACC [41] Color Soccer RL-Sim M-kNN - Intersection 44.16%
BIC [90] + ACC [41] Color Soccer RL-Sim kNN - Kendall’s Tau 44.45%
BIC [90] + ACC [41] Color Soccer RL-Sim M-kNN - Kendall’s Tau 45.16%
BIC [90] + ACC [41] Color Soccer Contextual Re-Ranking - 42.14%

CCOM [46] Texture Brodatz - - 57.57%
LAS [94] Texture Brodatz - - 75.15%

LAS [94] + CCOM [46] Texture Brodatz Pairwise Recommend. - 79.91%
LAS [94] + CCOM [46] Texture Brodatz Contextual Spaces kNN 81.94%
LAS [94] + CCOM [46] Texture Brodatz Context Spaces M-kNN 84.50%
LAS [94] + CCOM [46] Texture Brodatz RL-Sim kNN - Intersection 80.26%
LAS [94] + CCOM [46] Texture Brodatz RL-Sim M-kNN - Intersection 83.39%
LAS [94] + CCOM [46] Texture Brodatz RL-Sim kNN - Kendall’s Tau 80.51%
LAS [94] + CCOM [46] Texture Brodatz RL-Sim M-kNN - Kendall’s Tau 81.68%
LAS [94] + CCOM [46] Texture Brodatz Contextual Re-Ranking - 81.63%
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11.3 Comparison with other Re-Ranking Ap-

proaches

We also evaluated our proposed methods in comparison with other state-of-the-art re-

ranking and post-processing methods. We consider several results reported in the liter-

ature, considering two well-known datasets, MPEG-7 and Kimia99, and various shape

descriptors. Regarding to our re-ranking methods, we selected some combinations of

methods and shape descriptors presented in this thesis. Table 11.4 presents these results

for the MPEG-7 dataset. The third column presents the scores for the combination of

shape descriptor and re-ranking method. The fourth column presents the gains in re-

lation to the use of each descriptor in isolation. Note that results of our methods (in

bold) present comparable effectiveness performance when compared with several other

post-processing methods recently proposed in the literature.

Table 11.4: Re-Ranking methods comparison on the MPEG-7 dataset (Recall@40).
Algorithm Shape Descriptor Score Gain

Shape Descriptors
Data Driven Generative Models (DDGM) [99] - 80.03% -
Contour Features Descritpor (CFD) [68] - 84.43% -
Inner Distance Shape Context (IDSC) [52] - 85.40% -
Shape Context (SC) [5] - 86.80% -
Aspect Shape Context (ASC) [53] - 88.39% -
Articulation-Invariant Representation (AIR) [35] - 93.67% -

Re-Ranking and Post-Processing Methods
Graph Transduction (LP) [113] IDSC [52] 91.00% +6.56%
DOA [RL+DU] CFD [68] 92.56% +9.63%
DOA [Cor+Cor] CFD [68] 92.90% +10.03%
Contextual Spaces [MKNN] CFD [68] 93.00% +10.15%
Contextual Spaces [KNN] CFD [68] 93.02% +10.17%
Contextual Re-Ranking ASC [53] 93.07% +5.29%
Contextual Spaces [KNN] ASC [53] 93.28% +5.53%
Locally Constrained Diffusion Process [114] IDSC [52] 93.32% +9.27%
Shortest Path Propagation [102] IDSC [52] 93.35% +9.31%
Mutual kNN Graph [45] IDSC [52] 93.40% +9.37%
DOA [RL+Cor] CFD [68] 93.62% +10.88%
Locally Constrained Diffusion Process [114] IDSC [52]+St. I [95] 93.80% +9.84%
RL-Sim Re-Ranking [kNN+Intersection] ASC [53] 94.69% +7.13%
Locally Constrained Diffusion Process [114] IDSC [52]+St. II [95] 94.85% +11.07%
Contextual Spaces [M-kNN] ASC [53] 95.03% +7.51%
RL-Sim Re-Ranking [M-kNN+Intersection] CFD [68] 95.33% +12.91%
Locally Constrained Diffusion Process [114] IDSC [52]+St. I&II [95] 95.60% +11.94%
Contextual Re-Ranking CFD [68] 95.71% +13.36%
RL-Sim Re-Ranking [M-kNN+Intersection] ASC [53] 95.75% +8.33%
Locally Constrained Diffusion Process [114] ASC [53] 95.96% +8.56%
SetRA (CRR + RL-Sim[kNN+Intersection]) CFD [68] 95.98% +13.68%
Pairwise Recommendation CFD [68] 96.15% +13.88%
Contextual Re-Ranking (CRR) AIR [35] 99.80% +6.54%
RL-Sim Re-Ranking [M-kNN+Kendall’s tau] AIR [35] 99.93% +6.68%
RL-Sim Re-Ranking [kNN+Kendall’s tau] AIR [35] 99.94% +6.69%
Tensor Product Graph [115] AIR [35] 99.99% +6.75%
SetRA (CRR+RL-Sim[kNN+Intersection]) AIR [35] 99.99% +6.75%
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Table 11.5: Re-Ranking and post-processing methods comparison on the Kimia99 dataset.
Algorithm Descriptor 1o 2o 3o 4o 5o 6o 7o 8o 9o 10o

CFD [68] - 99 98 98 99 97 90 86 86 68 56
IDSC [52] - 99 99 99 98 98 97 97 98 94 79

DOA [RL+DU] CFD [68] 98 99 99 99 98 99 99 97 98 99
Graph Transduction [113] IDSC [52] 99 99 99 99 99 99 99 99 97 99
Mutual kNN Graph [45] IDSC [52] 99 99 99 99 99 99 99 99 99 99
Pairwise Recommendation CFD [68] 99 99 99 99 99 99 99 99 99 99

Table 11.5 presents the comparison on the Kimia99 dataset, with the results of our

proposed methods in bold. Recall that scores are calculated as the sum of correctly

retrieved shapes from all classes within the first 10 objects. Therefore the best resulting

score for each of them is 99. Note that the maximum retrieval score was reached by the

Pairwise Recommendation method.

11.4 Comparison with other Rank Aggregation Ap-

proaches

Our rank aggregation methods are also compared with other approaches on the MPEG-

7 dataset. Results are presented in Table 11.6. Three baselines are considered: the

traditional Borda [116] method, usually used as baseline in several works; the recently

proposed Reciprocal Rank Fusion [14] method; and the Co-Transduction [4] method,

recently proposed for CBIR applications. In the case of Borda and Reciprocal Rank

methods, the same descriptors, which are used by some of our methods, were combined.

We can observe that several proposed rank aggregation methods outperform the baselines.

11.5 Other aspects

In addition to effectiveness, we also compared the proposed re-ranking methods with

regard to other aspects as asymptotic complexitiy, efficiency, and number of parameters.

For asymptotic complexity, we only consider the step of updating distances, since the

sorting of ranked lists is the same for all methods. For efficiency, we consider the execution

time of an execution for the MPEG-7 dataset using a Java implementation of for each

method. The experiments were performed on a machine with Intel Xeon 2.40GHz - 16

cores and Linux Ubuntu 10.04.

Table 11.7 presents the results. Except for DOA, all proposed re-ranking algorithms

consider only three parameters, which were experimentally defined. The Pairwise Rec-
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Table 11.6: Rank Aggregation methods comparison on the MPEG-7 dataset (Recall@40).
Algorithm Shape Descriptor Score

Shape Descriptors
Data Driven Generative Models (DDGM) [99] - 80.03%
Contour Features Descritpor (CFD) [68] - 84.43%
Inner Distance Shape Context (IDSC) [52] - 85.40%
Shape Context (SC) [5] - 86.80%
Aspect Shape Context (ASC) [53] - 88.39%
Articulation-Invariant Representation (AIR) [35] - 93.67%

Rank Aggregation Methods
Borda [116] CFD [68]+IDSC [52] 91.06%
Borda [116] CFD [68]+ASC [53] 93.51%
Reciprocal Rank Fusion [14] CFD [68]+IDSC [52] 94.98%
Reciprocal Rank Fusion [14] CFD [68]+ASC [53] 96.25%

DOA [RL+Cor] CFD+IDSC 96.46%
DOA [Cor+Cor] CFD+IDSC 97.00%
Co-Transduction [4] IDSC [52]+DDGM [99] 97.31%
Co-Transduction [4] SC [5]+DDGM [99] 97.45%
Co-Transduction [4] SC [5]+IDSC [52] 97.72%
Contextual Spaces [kNN] CFD [68]+IDSC [52] 98.95%
Contextual Re-Ranking CFD [68]+IDSC [52] 98.95%
Contextual Spaces [kNN] CFD [68]+ASC [53] 99.03%
Contextual Spaces [M-kNN] CFD [68]+IDSC [52] 99.15%
RL-Sim Re-Ranking [kNN+Intersection] CFD [68]+IDSC [52] 99.31%
Contextual Re-Ranking CFD [68]+ASC [53] 99.38%
RL-Sim Re-Ranking [kNN+Intersection] CFD [68]+ASC [53] 99.44%
RL-Sim Re-Ranking [M-kNN+Intersection] CFD [68]+IDSC [52] 99.49%
SetRA (CRA + RL-Sim[kNN+Intersection]) CFD [68]+ASC [53] 99.50%
Pairwise Recommendation CFD [68]+IDSC [52] 99.52%
Contextual Spaces [M-kNN] CFD [68]+ASC [53] 99.56%
RL-Sim Re-Ranking [M-kNN+Intersection] CFD [68]+ASC [53] 99.65%

ommendation and RL-Sim algorithms present a low asymptotic complexity (O(N)). Re-

garding to execution time, the most efficient methods are the Contextual Spaces and the

Pairwise Recommendation. However, we should note that the execution time results can

only provide a rough comparison, since the methods were not optimally implemented.

We can observe, for example that execution times presented in Chapter 9 (considering

optimized implementation of Contextual Re-Ranking method) is much smaller than those

in presented in Table 11.7.

11.6 Discussion

The objective of this section is to discuss, in a general way, the advantages and dis-

advantages of proposed methods considering the presented experimental results. As we

mentioned before, given properties and obtained results, there is no clear definition of the

best re-ranking method for all situations. However, we can identify scenarios in which a

given method can be considered the most appropriate one.

For example, the RL-Sim re-ranking algorithm yields very high effectiveness perfor-
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Table 11.7: Comparison of re-ranking methods regarding various criteria.
Method Complexity Execution

Time
Number of
Parameters

DOA [Cor-Cor] O(N2) 778 s 7
Pairwise Recommendation O(N) 75 s 3
Contextual Spaces [kNN] O(N2) 40 s 3
RL-Sim [kNN+Intersection] O(N) 167 s 3
Contextual Re-Ranking O(N2) 138 s 3

mance for several descriptors, in special considering the Recall@40 measure on the MPEG-

7 dataset. Thus, it may be a good option for situations in which effectiveness is the most

important aspect. However, it presents a large execution time.

On the other hand, the Pairwise Recommendation algorithm is very simple, presents

a low execution time, and a low asymptotic complexity. Its good efficiency performance

does not affect its effectiveness. The method also yields significant gains for various

descriptors. Therefore, the method may be indicated for large datasets and situations in

which efficiency is indispensable.

Considering rank aggregation tasks, the Contextual Spaces algorithm presents the best

MAP scores considering all datasets (shape, color, and texture) and very high Recall@40

scores on the MPEG-7 dataset.



Chapter 12

Conclusions

12.1 Contributions

This thesis developed research aiming at exploiting contextual information for improving

the effectiveness of CBIR systems. Several research challenges were addressed and various

contributions were proposed.

The main contributions of this thesis is the creation, modeling, and implementation

of five re-ranking and rank aggregation methods that exploit contextual information:

• Distance Optimization Algorithm: a cluster-based approach for image re-

ranking. Two cluster-similar functions and two distances updating approaches are

proposed, based on the similarity of ranked lists and the correlation of distances. A

rank aggregation approach based on the cluster information were also proposed.

• Pairwise Recommendation: a novel re-ranking approach based on the concept

of recommendation for modeling and handling relationships among images. Our

strategy opens a new area of investigation, related to the use of recommendation

techniques in re-ranking tasks.

• Contextual Spaces: we have presented the concept of contextual spaces and two

variations of re-ranking approaches based on this concept. The main idea of the

methods consists in exploiting information encoded in ranked lists and distances

among images for constructing contextual spaces and, based on them, re-computing

the distances among images.

• RL-Sim Re-Ranking: a new re-ranking method that considers the similarity

between ranked lists for encoding contextual information in CBIR systems. We

believe that the modeling of contextual information considering only the similarity

163
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between ranked lists represents an advantage of our strategy, since it can use different

similarity/distance measures among ranked lists, a well-established research area [27,

103, 106].

• Contextual Re-Ranking: a new re-ranking method based on the use of image

processing techniques for contextual information representation and processing. The

use of image processing techniques is an important novelty of our work. We believe

that our strategy opens a new area of investigation related to the use of image

processing approaches for analyzing distances computed by CBIR descriptor, in

tasks such as image re-ranking, rank aggregation, and clustering.

We conducted a large set of experiments and experimental results demonstrated the

effectiveness of our methods in several image retrieval tasks based on shape, color and

texture descriptors. The proposed methods achieves very high effectiveness performance

when compared with state-of-the-art post-processing and rank aggregation methods on

the well-known MPEG-7 dataset. Similar results were observed for color and texture-

oriented datasets.

In addition to the development of re-ranking and rank aggregation methods other

contributions were also presented:

• Combination: we have presented three novel combination approaches for re-

ranking and rank aggregation methods. The main idea of our work consists in

exploiting complementary rankings obtained by different methods in order to ob-

tain more effective results.

• Parallel Computation of Image Re-Ranking: we accelerate the computation of

the Contextual Re-Ranking algorithm, designing a parallel implementation using the

OpenCL standard and GPUs. Various important issues were addressed during the

design of the parallel algorithm, as the need for global synchronization in OpenCL

and the concurrent access on data structures. Experimental results demonstrate that

very significant speedups can be achieved by the OpenCL parallel implementation.

• Multimodal Retrieval: we evaluated our methods considering multimodal re-

trieval tasks, considering textual and visual descriptors. Relevant gains were ob-

tained in comparison with traditional rank aggregation approaches.

12.2 Future Work

Considering the diversity of the research work presented in this thesis, several extensions

are possible:
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• Relevance Feedback: the use of re-ranking and rank aggregation approaches

jointly with relevance feedback techniques, aiming at further improving the effec-

tiveness of retrieval tasks.

• Collaborative Image Retrieval: the use of re-ranking approaches (in special the

Pairwise Recommendation method) for performing collaborative image retrieval, in

which the training data is obtained by exploring historical relevance feedback log

data, collected in multiple image retrieval sessions.

• Distance Optmization Algorithm: investigation of new cluster-similar functions

and distance updating approaches.

• Contextual Spaces: the use of geometrical properties for extracting more infor-

mation from contextual spaces; the use of contextual spaces for other tasks, such as

clustering.

• RL-Sim Re-Ranking: investigation of other different measures between top k

lists and the combination of results obtained from different measures.

• Contextual Re-Ranking: the use of other image processing techniques, as dy-

namic thresholding and other filtering approaches; the analysis of other regions of

context images; the use of context images for other applications (for clustering and

computing the similarity between ranked lists, for example).

• Combination: the use of all proposed re-ranking and rank aggregation methods in

combination approaches. Investigation of new techniques using iterative approaches

for combining re-ranking and rank aggregation methods.

• Parallel Computation of Image Re-Ranking: parallelization of all re-ranking

methods, investigation of tuning approaches, simultaneous execution of kernels in

CPU and GPU devices, and the use of proposed parallel algorithm in web scale

image datasets.

• Multimodal Retrieval: evaluation of all proposed re-ranking methods on multi-

media retrieval tasks, considering visual and textual descriptors.

• Large Datasets: evaluation of the proposed re-ranking and rank aggregation meth-

ods considering web scale datasets.

Figure 12.1 illustrates the main concepts covered in this thesis, the contributions and

associated publications. Finally, it highlights in gray possible extensions mentioned along

this chapter.
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185, 2006.

[17] Ricardo da S. Torres and Alexandre X. Falcão. Contour Salience Descriptors for

Effective Image Retrieval and Analysis. Image and Vision Computing, 25(1):3–13,

2007.

[18] Ricardo da S. Torres, Alexandre X. Falcão, Marcos A. Gonçalves, João P. Papa,
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