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Dissertação devidamente corrigida e defendida

por Vitor de Lima e aprovada pela Banca Exa-

minadora.

Campinas, 12 de Março de 2012.

Prof. Dr. Hélio Pedrini (Orientador)

Dissertação apresentada ao Instituto de Com-

putação, unicamp, como requisito parcial para

a obtenção do t́ıtulo de Mestre em Ciência da

Computação.

i







Instituto de Computação

Universidade Estadual de Campinas

Codificação de Vı́deo

Baseada em Fractais e Representações Esparsas

Vitor de Lima1

Março de 2012

Banca Examinadora:

• Prof. Dr. Hélio Pedrini (Orientador)

• Prof. Dr. João Paulo Papa

Faculdade de Ciências – UNESP/Bauru

• Prof. Dr. Anderson de Rezende Rocha

Instituto de Computação – UNICAMP

1Suporte financeiro de: Bolsa do CNPq (processo 132166/2010-0) 2010, Projeto FAPESP (pro-
cesso 2010/02910-6) 2010–2011 e Universidade Estadual de Campinas 2010–2011.

iv



Resumo

Vı́deos são sequências de imagens estáticas representando cenas em movimento.

Transmitir e armazenar essas imagens sem nenhum tipo de pré-processamento neces-

sitaria de enormes larguras de banda nos canais de comunicação e uma quantidade

massiva de espaço de armazenamento. A fim de reduzir o número de bits necessários

para tais dados, foram criados métodos de compressão com perda. Esses métodos ge-

ralmente consistem em um codificador e um decodificador, tal que o codificador gera

uma sequência de bits que representa uma aproximação razoável do v́ıdeo através

de um formato pré-especificado e o decodificador lê essa sequência, convertendo-a

novamente em uma série de imagens.

A transmissão de v́ıdeos sob restrições extremas de largura de banda tem

aplicações importantes como videoconferências e circuitos fechados de televisão.

Neste trabalho são abordados dois métodos destinados a essa aplicação, decom-

posição usando representações esparsas e compressão fractal.

A ampla maioria dos codificadores tem como mecanismo principal o uso de trans-

formações inverśıveis capazes de representar imagens espacialmente suaves com pou-

cos coeficientes não-nulos. Representações esparsas são uma generalização dessa

ideia, em que a transformação tem como base um conjunto cujo número de elemen-

tos excede a dimensão do espaço vetorial onde ela opera. A projeção dos dados pode

ser feita a partir de uma heuŕıstica rápida chamada Matching Pursuit. Uma aborda-

gem combinando essa heuŕıstica com um algoritmo para gerar a base sobrecompleta

por aprendizado de máquina é apresentada.

Codificadores fractais representam uma aproximação da imagem como um sis-

tema de funções iterativas. Para isso, criam e transmitem uma sequência de coman-

dos, chamada colagem, capazes de obter uma representação da imagem na escala

original dada a mesma imagem em uma escala reduzida. A colagem é criada de tal

forma que, se aplicada a uma imagem inicial qualquer repetidas vezes, reduzindo sua
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escala antes de toda iteração, converge em uma aproximação da imagem codificada.

Métodos simplificados e rápidos para a criação da colagem e uma generalização

desses métodos para a compressão de v́ıdeos são apresentados. Ao invés de construir

a colagem tentando mapear qualquer bloco da escala reduzida na escala original,

apenas um conjunto pequeno de blocos é considerado.

O método de compressão proposto para v́ıdeos agrupa um conjunto de quadros

consecutivos do v́ıdeo em um fractal volumétrico. A colagem mapeia blocos tridi-

mensionais entre as escalas, considerando uma escala menor tanto no tempo quanto

no espaço. Uma adaptação desse método para canais de comunicação cuja largura

de banda é instável também é proposta.
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Abstract

A video is a sequence of still images representing scenes in motion. A video is a

sequence of extremely similar images separated by abrupt changes in their content.

If these images were transmitted and stored without any kind of preprocessing, this

would require a massive amount of storage space and communication channels with

very high bandwidths. Lossy compression methods were created in order to reduce

the number of bits used to represent this kind of data. These methods generally

consist in an encoder and a decoder, where the encoder generates a sequence of bits

that represents an acceptable approximation of the video using a certain predefined

format and the decoder reads this sequence, converting it back into a series of images.

Transmitting videos under extremely limited bandwidth has important applica-

tions in video conferences or closed-circuit television systems. Two different appro-

aches are explored in this work, decomposition based on sparse representations and

fractal coding.

Most video coders are based on invertible transforms capable of representing

spatially smooth images with few non-zero coefficients. Sparse representations are

a generalization of this idea using a transform that has an overcomplete dictionary

as a basis. Overcomplete dictionaries are sets with more elements in it than the

dimension of the vector space in which the transform operates. The data can be

projected into this basis using a fast heuristic called Matching Pursuits. A video

encoder combining this fast heuristic with a machine learning algorithm capable of

constructing the overcomplete dictionary is proposed.

Fractal encoders represent an approximation of the image through an iterated

function system. In order to do that, a sequence of instructions, called a collage, is

created and transmitted. The collage can construct an approximation of the original

image given a smaller scale version of it. It is created in such a way that, when

applied to any initial image several times, contracting it before each iteration, it
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converges into an approximation of the encoded image.

Simplier and faster methods for creating a collage and a generalization of these

methods to video compression are presented. Instead of constructing a collage by

matching any block from the smaller scale to the original one, a small subset of

possible matches is considered.

The proposed video encoding method creates groups of consecutive frames which

are used to construct a volumetric fractal. The collage maps tridimensional blocks

between the different scales, using a smaller scale in both space and time. An im-

proved version of this algorithm designed for communication channels with variable

bandwidth is presented.
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Caṕıtulo 1

Introdução

Um v́ıdeo colorido com resolução de 352× 288 pixels a 30 fps (quadros por segundo)

requer uma largura de banda de aproximadamente 36.5 Mbits por segundo, se trans-

mitido sem nenhum pré-processamento, um valor elevado para uma resolução tão

baixa. Assim, foram criados métodos para transmitir versões aproximadas e mais

simples de sequências de imagens, reduzindo a largura de banda necessária para até

menos de 1% dos requisitos originais.

Esses métodos realizam a chamada compressão com perda, que consiste em apro-

ximar os dados originais segundo um modelo simplificado. O processo capaz de

encontrar parâmetros para esse modelo que aproximam uma determinada sequência

de imagens é chamado de codificação, sendo que estes são ajustados a fim de satisfa-

zer uma restrição seja no tamanho total em bits ocupados por eles, seja na qualidade

resultante da aproximação fornecida pelo modelo. O uso desses parâmetros no mo-

delo, a fim de obter a aproximação dos dados originais, é chamado de decodificação.

Após a codificação, somente os parâmetros desse modelo são transmitidos ao invés

da sequência original.

Neste texto foram abordados dois modelos usados na aproximação dos dados ori-

ginais, os fractais IFS (descritos na Seção 1.1) e as representações esparsas (descritas

na Seção 1.2).
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1.1. Codificação Fractal de Imagem e Vı́deo 2

1.1 Codificação Fractal de Imagem e Vı́deo

Os codificadores fractais constroem um sistema de funções iterativas que descreve

uma aproximação da imagem desejada [15]. Para isso, fazem o casamento entre

blocos semelhantes de duas escalas distintas da mesma imagem. Cada casamento

está sujeito a algumas transformações tanto na geometria dos blocos quanto em seus

pixels.

A união desses casamentos é chamada de colagem, que é constrúıda

particionando-se a imagem original em blocos (chamados blocos moldes) segundo

uma regra pré-definida e procurando para cada bloco particionado na escala reduzida

outro bloco (chamado bloco domı́nio) com o mesmo tamanho e o mais semelhante

posśıvel. A semelhança é medida após o bloco domı́nio passar pelas transformações

em sua geometria e em seus ńıveis de cinza.

O conjunto dos blocos da escala reduzida é chamado de domain pool, eles são

usados como candidatos a serem casados com os blocos molde. Em casos em que esse

conjunto é muito grande por permitir o casamento de um bloco molde em qualquer

outra região da imagem, torna-se necessária a criação de heuŕısticas para evitar

buscas exaustivas lentas. A divisão da imagem é feita por meio de estruturas de

subdivisão do espaço baseadas em árvores semelhantes às quadtrees [46].

A decodificação consiste em criar uma imagem inicial qualquer e, repetidas ve-

zes, aplicar a colagem, reduzir a imagem, aplicá-la novamente até atingir um ponto

fixo. Algumas melhorias a esse processo são usadas neste texto a fim de acelerar a

convergência.

A generalização usada neste texto para a codificação de v́ıdeo consiste em operar

um fractal tridimensional composto por um conjunto de quadros consecutivos [28].

A colagem realiza o casamento entre blocos moldes e blocos domı́nios volumétricos

e tanto o processo de codificação quanto o de decodificação são similares ao caso

bidimensional.

1.2 Representação Esparsa

A decomposição sobrecompleta de sinais baseia-se em representar um sinal como uma

combinação linear de elementos pertencentes a um conjunto chamado dicionário so-

brecompleto. A quantidade de elementos desse conjunto excede a dimensão do espaço

vetorial em que a transformação opera, implicando várias representações posśıveis



1.3. Conceitos Adicionais 3

para um mesmo sinal. As representações mais esparsas dentro de uma certa margem

de erro de representação são as mais úteis nos processos de compressão, entretanto,

encontrar a representação mais esparsa é um problema NP-dif́ıcil [9].

Logo, muitas aplicações usam heuŕısticas para encontrar uma solução aceitável

para a decomposição, sendo uma delas Matching Pursuits [32] e outras heuŕısticas

derivadas desta [41]. Trata-se de uma heuŕıstica gulosa que projeta o dado em todos

os elementos do dicionário e incorpora o elemento que causa a maior redução no

erro de representação. Esse passo é repetido até que o erro total esteja dentro do

desejado.

O método proposto particiona os quadros em blocos de 16×16 pixels, codificando

cada um deles por meio da heuŕıstica Optimized Orthogonal Matching Pursuit [41].

O primeiro quadro é codificado por inteiro, enquanto nos quadros subsequentes é

codificada a diferença entre eles e seu predecessor. O dicionário sobrecompleto usado

nas decomposições foi criado por uma generalização do algoritmo k-means, chamada

K-SVD [1].

1.3 Conceitos Adicionais

Representar o sinal usando aproximações mais simples é apenas uma parte do pro-

cesso de codificação. Os coeficientes e estruturas resultantes dessa aproximação pre-

cisam ser transmitidos, porém, ainda possuem algumas redundâncias estat́ısticas.

As técnicas apresentadas nesta seção foram criadas a fim de explorar as correlações

entre os dados e a entropia deles a fim de reduzir ainda mais a quantidade de bits

necessária.

Codificação Aritmética

Dada uma sequência de ocorrências de śımbolos, cada uma delas assumindo n pos-

sibilidades distintas (chamadas de si), a entropia de Shannon [50] demonstra um

limite inferior H de bits necessários para transmitir cada ocorrência, definida como

H = −
n−1
∑

i=0

p(si) log2 p(si) (1.1)

em que p é uma função de probabilidade da ocorrência de cada śımbolo.
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Um método conhecido para representar esse tipo de sequência foi proposto por

Huffman [22], porém, a principal restrição dessa abordagem é o uso de um número

inteiro de bits para codificar cada śımbolo, ou seja, em vários casos onde o termo

log2 p(si) não é inteiro, há uma diferença entre o limite inferior H e o tamanho obtido

por esta codificação.

A codificação aritmética [43] representa toda a sequência como um único número

de tamanho variável. De acordo com a codificação desse número é posśıvel atingir um

tamanho extremamente próximo à entropia, entretanto, a um custo computacional

maior se comparado à codificação de Huffman.

O algoritmo para a construção desse número começa delimitando um valor

máximo e um mı́nimo para ele. A partir de então, o algoritmo procede recursi-

vamente da seguinte forma: a cada ocorrência a ser codificada, o intervalo entre o

máximo e o mı́nimo é dividido em subintervalos, cada um deles tem seu tamanho

(ou seja, a distância entre seus extremos) proporcional a cada p(si). O intervalo cor-

respondente à ocorrência atual é escolhido e seus extremos são usados na codificação

da próxima ocorrência. Detalhes da implementação de um codificador aritmético

rápido podem ser vistos em [45].

Codificação de Golomb-Rice

A codificação de Golomb [19] representa números inteiros não-negativos sem conhe-

cimento prévio de um limite superior para o seu valor. Um número N é codificado

utilizando-se um parâmetro M para dividi-lo em duas partes: q e r, em que q é o

resultado da divisão de N por M , sendo usualmente representado por codificação

unária (isto é,uma sequência de uns seguida de um zero), e r é o resto da divisão de

N por M , tal que seu valor está limitado entre 0 e M − 1 e pode ser codificado por

métodos que exigem um limite superior, como a codificação binária ou aritmética.

Valores que não são exclusivamente positivos ou nulos podem ser mapeados pela

função T , cuja imagem é o conjunto dos inteiros não-negativos, sendo

T (v) =

{

2v se v ≥ 0

−2v − 1 se v < 0
(1.2)

No caso em queM é uma potência de 2, tem-se a codificação de Golomb-Rice [42].

Nela, q é representado pela codificação unária e r pela codificação binária usando

log2 M bits.
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Codificação Adaptativa

Codificadores usualmente possuem parâmetros a serem ajustados (por exemplo,

histogramas da ocorrência de śımbolos no caso dos codificadores aritméticos e o

parâmetro M no caso da codificação Golomb). A eficiência da transmissão dos dados

depende fortemente do ajuste desses parâmetros. Assim, muitos métodos envolvem

a atualização periódica deles baseada nos dados transmitidos.

A regra de atualização varia conforme a complexidade do método, sendo me-

nos frequente conforme mais elaborada a codificação. Codificadores simples, como

o Goulomb-Rice, podem ser atualizados a cada śımbolo recebido (por exemplo,

mantendo o parâmetro M como a média de todos os dados anteriores como feito

no LOCO-I [58]), porém, a manutenção dos histogramas usados pela codificação

aritmética é custosa. Logo, regras complexas de atualização foram propostas [45].

Codificação Contextual

Além de atualizar periodicamente os parâmetros de cada codificador, também é

posśıvel manter um conjunto de codificadores. Cada codificador é escolhido de acordo

com algum critério extráıdo dos dados transmitidos. Esse critério e seu respectivo

codificador tem o nome de contexto.

Assim como no caso da codificação adaptativa, a quantidade de contextos depende

da complexidade de cada codificador. No caso do LOCO-I [58], o uso do Golomb-

Rice permite a existência de uma quantidade enorme de codificadores, enquanto

a quantidade de contextos adaptativos no caso de codificadores aritméticos nunca

passa das dezenas.

Predição e Reśıduo

A transmissão de dados muitas vezes requer a representação de coeficientes com

vários valores posśıves (por exemplo, a média de alguma subregião de uma imagem).

A codificação de algo que pode assumir tantas possibilidades necessita de cuidado

dado que, dependendo da probabilidade de cada valor, a entropia é muito alta.

Para reduzir a entropia desse tipo de dado, preditores são usados. Eles são

funções cujo domı́nio é um subconjunto dos dados transmitidos e a imagem é uma

boa estimativa do valor do dado sendo transmitido.

Um exemplo de predição apresentado no LOCO-I [58] é percorrer a imagem da
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esquerda para a direita e de cima para baixo, usando a vizinhança de cada pixel

sendo transmitido para ajustar um plano tridimensional. Esse plano tridimensional

é usado como predição do valor deste pixel.

A diferença entre a predição e o valor real dos dados é chamada de reśıduo. A

transmissão do reśıduo apresenta vários problemas, como definir quais seus valores

máximo e mı́nimo e o codificador a ser usado.

Heuŕıstica de Controle de Qualidade e Tamanho

Codificar um v́ıdeo ou imagem consiste em representar esses sinais usando algum

modelo cujos parâmetros ocupam uma certa quantidade de bits. Geralmente, a

representação obtida por esse modelo pode ser refinada ou simplificada conforme a

quantidade de parâmetros e a precisão destes, formando assim uma relação entre

tamanho total usado pelo modelo e a distorção entre o resultado da representação

com a imagem original.

É importante controlar o processo de codificação, seja respeitando uma restrição

de tamanho e tentando obter a menor distorção posśıvel ou respeitando uma restrição

de distorção minimizando o tamanho. Vários métodos com diferentes complexidades

existem para conseguir isso, incluindo alguns baseados em otimização [39].

Os métodos baseados na codificação fractal precisam subdividir a imagem em

blocos. Assim, quanto mais densa a subdivisão, maior o tamanho dos parâmetros do

modelo. Alguns codificadores usam a heuŕıstica de limiarização [16, 59]. Ela consiste

em dividir a imagem em uma grade uniforme de blocos e subdividir recursivamente

cada um deles até que a distorção destes esteja abaixo de um limiar pré-determinado.

Ou seja, esse algoritmo é capaz de controlar a distorção, entretanto, não limita nem

minimiza o tamanho.

Outra heuŕıstica [47] divide a imagem em uma grade uniforme, inserindo todos

os blocos resultantes em uma fila de prioridade ordenados pela distorção. A repre-

sentação da imagem é incrementalmente refinada a cada passo do algoritmo por meio

da subdivisão do bloco com a maior distorção. É posśıvel controlar o tamanho da

solução, pois este aumenta apenas um pouco a cada passo. Não há garantia de que

esse processo obtém uma solução ótima, pois para tanto seria necessário o uso de

otimização, algo com custo computacional bastante elevado.
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Transformada de Nı́veis de Cinza

Obter uma aproximação de um bloco molde a partir de um bloco domı́nio requer

o uso de uma transformada que altere os ńıveis de cinza. Uma delas, proposta por

Øien e Lepsøy [38], é dada por

G(D) = α(D − D̄J) + r̄I (1.3)

em que G é a transformada de ńıveis de cinza, D é o bloco domı́nio subamostrado,

D̄ e r̄ são as médias dos blocos domı́nio e molde, respectivamente. J denota uma

matriz preenchida somente com valores iguais a 1 e com as mesmas dimensões do

bloco molde e α é o parâmetro de escala.

A transformada proposta anteriormente por Jacquin [25] tentava determinar uma

constante aditiva e um coeficiente multiplicativo para o bloco domı́nio através de

mı́nimos quadrados. Ao comparar essas duas transformadas, a Equação 1.3 possui

várias vantagens que aceleram a convergência. A média do bloco domı́nio é calcu-

lada durante o processo de decodificação ao invés de ser parte dos coeficientes da

transformada e a média do bloco molde é forçada ao seu valor correto já na primeira

iteração, como detalhado por Pi et al. [40]. É posśıvel construir uma imagem pre-

enchida apenas com as médias dos blocos moldes e usá-la como imagem inicial na

decodificação [34], reduzindo ainda mais o número de iterações necessárias e evitando

o aparecimento de artefatos.

Decodificação Rápida de Fractais

Um decodificador fractal usa duas imagens, uma versão contráıda do sinal onde estão

os blocos domı́nios e outra versão na escala original onde ficam os blocos molde. A

cada iteração, a colagem é aplicada e a imagem resultante é contráıda para ser usada

no próximo passo.

O método proposto por Hamzaoui [21] usa apenas uma imagem a fim de eco-

nomizar espaço de memória e acelerar a convergência. O conteúdo de cada bloco

molde é sobrescrito com seu respectivo domı́nio contráıdo e transformado, assim os

blocos moldes vizinhos são afetados por essa alteração durante a mesma iteração,

não sendo necessário esperar até que ocorra a contração da imagem toda, como no

outro método.
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Transcodificação

A transcodificação [24] é um processo pelo qual o formato de transmissão, a resolução

(seja temporal ou espacial), o tamanho em bits ou a qualidade de um v́ıdeo são

alterados sem a necessidade de se recodificar o sinal, trabalhando somente com o

sinal comprimido. Neste texto é descrito um método para a alteração do tamanho

total em bits de um v́ıdeo a fim de se obedecer uma certa restrição na largura de

banda do canal de comunicação usado na transmissão.

1.4 Organização do Texto

Esta dissertação está organizada como segue. Os próximos quatro caṕıtulos apresen-

tam os artigos que foram publicados ou submetidos durante o peŕıodo de vigência

do mestrado. Finalmente, o último caṕıtulo apresenta as conclusões do trabalho.



Caṕıtulo 2

A Very Low Bit-Rate Minimalist

Video Encoder Based on Matching

Pursuits

2.1 Prólogo

O artigo [8], apresentado nesta seção, foi parte do 15th Iberoamerican Congress on

Pattern Recognition (CIARP’2010) e publicado pela Springer-Verlag.

Nele é apresentado um método baseado na representação sobrecompleta de sub-

blocos com 16 × 16 pixels de cada quadro do v́ıdeo, uma abordagem simplificada

semelhante à encontrada no padrão JPEG. Cada bloco é decomposto como uma

combinação linear de elementos do dicionário sobrecompleto criado por Aharon et

al. [1], obtido pela aplicação do algoritmo K-SVD em um conjunto de imagens na-

turais.

Esse dicionário é não-separável, ou seja, os elementos não são o produto externo de

dois vetores unidimensionais. Isto causa um aumento na complexidade da execução

da heuŕıstica de Matching Pursuits, logo, utilizou-se uma unidade de processamento

gráfico a fim de atingir uma velocidade de compressão em tempo real.

A maioria das abordagens anteriores era baseada na convolução de cada elemento

do dicionário sobrecompleto com todo o quadro. Além do custo computacional su-

perior, que força o uso de dicionários separáveis, essa convolução adiciona um grau

de liberdade a mais a cada termo da decomposição, que é a posição onde o ele-

9
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mento do dicionário precisa ser encaixado, introduzindo um parâmetro dif́ıcil de ser

comprimido.

A qualidade de imagem nos exemplos testados foi aceitável, sendo comparável

ao padrão H.263 nas sequências apresentadas. A complexidade computacional do

método, a dificuldade em melhorar a quantização dos coeficientes e a codificação

sem perda dos parâmetros gerados dificultaram o progresso dessa pesquisa.

2.2 Abstract

This work proposes and implements a simple and efficient video encoder based on

the compression of consecutive frame differences using sparse decomposition through

matching pursuits. Despite its minimalist design, the proposed video codec has

performance compatible to H.263 video standard and, unlike other encoders based

on similar techniques, is capable of encoding videos in real time. Average PSNR and

image quality consistency are compared to H.263 using a set of video sequences.

2.3 Introduction

Video compression at very low bit-rates is needed for applications that operate using

low bandwidth communication channels, for instance, video transmission in mobile

equipments. Some techniques that have been suggested for such applications include

hybrid-DCT coding [6], wavelet-based coding [21], model-based coding [2], and fractal

coding [12].

Extreme compression rates demanded by low bit-rate video applications require

unusual video encoding techniques. One possible approach is the matching-pursuit

video coding, however, it involves a very time-consuming encoding process [16] due to

its exhaustive image scan in order to find patterns that can be represented efficiently.

The approach proposed in this paper is extremely simple and capable of compress-

ing video sequences in real time. The video encoder compresses only the difference

between two consecutive frames through matching pursuits. No motion compensa-

tion algorithm [10] is used in the process and the quantization is performed by round-

ing the coefficients to the nearest integer. An innovation of the proposed method

is the subdivision of the frame into blocks and application of matching pursuit to

each block instead of scanning the entire image looking for regions that have relevant
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characteristics that can be compressed and then applying matching pursuits to those

regions.

A dictionary generated by K-SVD algorithm [1] is used to create sparse decompo-

sitions of the processed frame sub-blocks, which are compressed by a context-adaptive

arithmetic encoder [19].

Compared to H.263 video codec [11], which has a motion compensation algorithm,

more sophisticated quantizers and mechanisms for rate-distortion optimization, the

proposed method achieves compatible PSNR values, as demonstrated in the experi-

ments using well-known benchmark video sequences at several average bit rates per

second.

The text is organized as follows. Section 2.4 describes the main algorithms used in

the proposed solution, as well as reviews of some relevant encoders based on matching

pursuits found in literature. Details of the proposed methodology are presented and

discussed in Section 2.5. Experimental results obtained with our video codec are

shown in Section 2.6. Finally, conclusions of the work and future directions are

presented in Section 2.7.

2.4 Related Work

This section briefly describes some relevant concepts and techniques related to the

proposed video encoder.

2.4.1 Matching Pursuits

Transforms, such as DCT [5], decompose signals as a linear combination of mutually

orthogonal elements belonging to a predetermined basis. This basis contains a min-

imum number of elements sufficient to express any vector belonging to a particular

vector space.

A possible generalization for such type of transform involves using more than

the minimum required number of elements within the basis, thus forming an over-

complete dictionary, In this case, a single vector has several possible decompositions

and, for data compression purpose, the most interesting decompositions are those

that have the largest possible number of linear coefficients equal to zero.

Finding such decompositions is a NP-hard problem [7], so that matching pur-

suits [13] is a greedy heuristic for finding a very sparse decomposition of a signal
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using low processing time. Given an overcomplete dictionary D = {gγ}γ∈Γ, a signal

f to be decomposed and a threshold of the decomposition error ǫ, Algorithm 1 deter-

mines which elements of D and linear coefficients are used in a sparse decomposition

of f . Term Rk is the signal residue not yet represented by the chosen bases until

step k.

Algorithm 1 Matching pursuit algorithm.

R0f = f
n = 0
repeat

i = argmaxk∈Γ〈R
nf, gk〉

Rn+1 = Rnf − 〈Rnf, gi〉gi
n = n+ 1

until n < nmax OR |Rn+1f | < ǫ

2.4.2 Optimized Orthogonal Matching Pursuits

A more powerful heuristic for searching for sparse signal representations using over-

complete dictionaries was employed in the proposed video codec, known as optimized

orthogonal matching pursuit [18].

At each step of the encoding process, after choosing an element gi of the dictionary

by the same criterion of the conventional matching pursuit, such search heuristic

orthogonalizes the entire dictionary with respect to gi. Therefore, the chosen element

in the following step is orthogonal to all elements used previously. The heuristic

ensures more sparse representations at a higher computational cost.

2.4.3 K-SVD

A well generated overcomplete dictionary ensures more sparse decompositions, pro-

vides a higher convergence speed in matching pursuits, is capable of representing only

psychovisually significant features and ignores minor irrelevant details. It is possi-

ble to develop such dictionaries through machine learning algorithms [20], among

them the K-SVD, which is a generalization of the algorithm for solving the K-means

problem.
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Two alternating steps are performed during its execution. In the first step, data

from the training set is decomposed according to the initial overcomplete dictionary

to be optimized using any algorithm capable of doing it. In the second step, each

element of the dictionary is replaced by a new one, calculated to minimize the error of

each data from the training set that used it in its sparse decomposition, as described

in Algorithm 2.

Algorithm 2 K-SVD algorithm.

Input: initial set Y = {yi}
N
i=1 of training signals, an initial dictionary D with

normalized columns, a target sparsity T and the total number of iterations k.
Output: an approximate solution tominD,X{||Y−DX||2F} subject to ∀i, ||xi||0 ≤ T
and ∀j, ||Dj||2 = 1.
for n = 1 to k do

∀i, xi = argminγ{||yi −Dγ||22} subject to ||γ||0 ≤ T
for each column j in D do

Dj = 0
I = {indices of the signals in Y whose decompositions use Dj}
E = YI −DXI

{d, g} = argmind,g ||E − dgT ||2F subject to ||d||2 = 1
Dj = d
Xj,I = gT

end for

end for

2.4.4 Matching Pursuit Video Coding

The absolute majority of video codecs based on matching pursuits [3, 15, 22, 23] have

their origins in [16]. The method uses an inner-product search to decompose motion

residual signals over an overcomplete dictionary of 2D separable Gabor functions.

Despite the high computational cost of such search, the approach avoids artificial

block edges and presents both better perceptual image quality and higher PSNR than

DCT-based methods for low bit rates video coding. However, the dictionary must

be efficiently built to allow fast inner-product computation between its elements and

various regions of the residue.

The proposed encoder avoids performing costly searches working similarly to

DCT-based coders, where the difference between two consecutive frames is parti-
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tioned into non-overlapping blocks that are independently coded using matching

pursuits. This allows encoding parallelization of the sub-blocks, however, it does not

prevent artifact appearance at the intra-block edges.

2.5 Proposed Video Codec

Initially, the encoder calculates the difference between the frame to be processed and

the previous uncompressed frame. If the norm of this subtraction is greater than

a certain threshold, the entire frame is used in the next step, otherwise only the

difference between these two frames is used.

The image generated in the previous step is then subdivided into blocks of 8×8

pixels without overlapping. Each block is decomposed as a sparse linear combina-

tion of the dictionary elements through the Optimized Orthogonal Matching Pursuit

algorithm [18]. The average bit rate is controlled by manually varying the error

threshold ǫ used in the algorithm.

The overcomplete dictionary used in our encoding method is the same used by

Elad and Aharon [9] for image denoising. The learned dictionary contains 256 ele-

ments and was trained using K-SVD algorithm using a number of several photographs

as a training set.

In the final step, a flag is coded to indicate whether what is being transmitted is

only the difference between two consecutive frames or an entire frame.

For each block of the current frame decomposed in the previous step, its sparse

representations are transmitted through an arithmetic encoder using four distinct

symbols, each one containing its proper adaptive context. The first symbol indicates

the number of elements of the dictionary used in the decomposition of that block.

For each used element, sign and magnitude of the linear coefficient associated with

that element and its index are transmitted in different symbols.

2.6 Experimental Results

The proposed video codec was implemented on a graphics processing unit (GPU)

with CUDA [17]. Our codec was compared to the implementation of the H.263 video

standard present in the open-source libavcodec library [4].
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Several video sequences were used in the experiments [14]. Results for three video

samples are reported in this work. The videos have resolution of 176×144 pixels and

10 frames per second with subsampled chrominance (format 4:2:2).

All videos were compressed both with our codec and H.263 at different average

rates of kilobits per second. The comparison was based on peak signal-to-noise ratio

(PSNR) value, expressed by

PSNR = 10 log10

(

2552

MSE

)

(2.1)

where MSE is the mean squared error between the resulting image after compression

and uncompression steps and the original image.

Average PSNR values for all frames and three color channels of the tested video

sequences are shown in Table 2.1.

Akiyo Salesman Hall Monitor
kbps H.263 MP H.263 MP H.263 MP

15 30.70 30.71 29.41 28.74 29.54 29.07
20 31.67 31.73 30.01 29.38 30.22 30.18
30 33.60 33.38 31.21 30.55 31.60 32.11
40 35.20 34.66 32.29 31.55 32.88 33.56
50 36.54 35.77 33.18 32.30 34.06 34.80

Table 2.1: Average PSNR (in decibels) obtained by using the proposed codec (MP)
and H.263.

Despite the extreme simplicity of the proposed approach, its performance is very

similar to H.263 video standard. The lack of a motion compensation algorithm

prevented effective use of statistical redundancy present in the consecutive video

frames.

Another important characteristic of the presented approach is its consistency in

the video frame quality. As can be seen in Figures 2.1, 2.2 and 2.3, PSNR value

of each frame changed abruptly when compressed by H.263, however, it is kept

almost constant by the proposed algorithm. This is mainly due to the rate control

mechanism of H.263.
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Figure 2.1: Comparison of per-frame PSNR values between the proposed encoder
and H.263 for Akiyo sequence at 50 kbps.

2.7 Conclusions and Future Work

A video encoder is proposed to compress the difference between two consecutive

frames through the matching pursuit approach using a dictionary previously trained

by K-SVD method.

Unlike other video codecs based on matching pursuits, the proposed approach is

able to encode video in real time and has performance compatible to H.263 when

tested for some video sequences used in standard benchmarks.

Future directions for work include the implementation of refined motion compen-

sation methods, a filter for removing blocking artifacts, a better quantization scheme

of the sparse decomposition coefficients and other forms of prediction residue coding

using both matching pursuits and dictionaries created by K-SVD. Such changes can

significantly improve the resulting image quality.
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Figure 2.2: Comparison of per-frame PSNR values between the proposed encoder
and H.263 for Salesman sequence at 50 kbps.
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Fractal Image Encoding Using a

Constant Size Domain Pool

3.1 Prólogo

O artigo [6], apresentado nesta seção, foi parte do VI Workshop de Visão Computa-

cional (WVC’2010) e publicado nos anais do evento.

Um novo método de construção de colagens é proposto e comparado com o método

sem busca de Furao and Hasegawa [3]. Ao invés de usar apenas uma possibilidade

para o casamento entre blocos molde e domı́nio, uma quantidade constante de 9

candidatos é considerada. Isso implica uma leve melhoria na qualidade de imagem

e um aumento considerável no custo computacional, porém, na mesma ordem de

grandeza dos métodos rápidos anteriormente propostos.

A estrutura de subdivisão binária foi usada na criação dos blocos moldes em que,

ao invés de dividir recursivamente cada região em 4 partes, elas são divididas pela

metade na direção vertical ou horizontal, como proposto por Wu et al. [17]. Para o

controle de tamanho e distorção, utilizou-se a heuŕıstica apresentada na Seção 1.3.

Outras caracteŕısticas interessantes da abordagem proposta são o uso da co-

dificação aritmética, o preditor usado nos valores médios dos blocos moldes e os

métodos de aceleração da decodificação das Seções 1.3 e 1.3.

As Figuras 3.1 e 3.2 mostram comparações entre o método proposto e o método

sem busca. É posśıvel perceber que há artefatos menos impactantes e menos distorção

na geometria da cena.
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(a) Codificador proposto (b) Codificador sem busca

(c) Original

Figura 3.1: Comparação entre a abordagem proposta e o método sem busca a 0.08
bpp.
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(a) Codificador proposto (b) Codificador sem busca

(c) Original

Figura 3.2: Comparação entre a abordagem proposta e o método sem busca a 0.08
bpp.
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3.2 Abstract

Image compression techniques play an important role in data reduction and trans-

mission. This work proposes a fractal image encoder based on a small domain pool

with constant size constructed from the neighborhood of each range block and an

efficient spatial subdivision data structure. This method is compared to a searchless

algorithm using well-known grayscale images. The proposed approach is capable

of performing fast compression and decompression, while maintaining high visual

fidelity and operating at low bit-rates.

3.3 Introduction

Most fractal image encoders are characterized by extremely slow encoding times

(taking a few hours to encode a single image) and fast decompression [5]. This

is caused by the fact that constructing a fractal to approximate the content of an

image is much more complex than displaying it [11]. Unfortunately, they are not

competitive with other encoders based on transform coding both in encoding speed

and rate-distortion performance.

A fractal encoder outputs a transform called collage that, given a downsampled

version of the original image, it can create an approximation of the signal in its

original scale. The usual method to create this is based on numerous searches for

similar blocks between the image in these two scales which can be accelerated by

specially designed heuristics [5].

A fast method for constructing a collage, called searchless fractal compression,

was proposed by Furao and Hasegawa [3]. Each block in the original scale (called

range block) is associated to a single block in the higher scale (called domain block).

If the similarity between these two blocks is acceptable, the range block is encoded,

otherwise, it is partitioned and the process is applied to the resulting sub-blocks. The

encoders based on this concept are faster by orders of magnitude when compared to

other fractal encoders employing more complex fractal-based algorithms, taking less

than one second to encode an image instead of hours.

This work proposes a fast method for encoding images that is not as restrictive

as the searchless encoders while keeping the encoding speed approximately at the

same order of magnitude and improving the image quality at similar bit rates.

The next sections are organized as follows. Section 3.4 presents a brief review
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of fractal coding and searchless methods. The proposed method is described in Sec-

tion 3.5. Experimental results comparing the proposed method against a searchless

encoder are presented in Section 3.6. Finally, the conclusions of the work are given

in Section 3.7.

3.4 Background

This section presents a brief review of fractal image coding and the searchless fractal

encoders.

3.4.1 Fractal Coding

Fractal image encoders [5] generate a transform as output, called collage, that ap-

proximates the original image given a downsampled version of it. This transform is

created in such way that when applied several times to any image, it will converge

to an approximation of the original signal. Based on this property, starting with

an arbitrary image, the decoder only needs to apply the collage and downsample its

results repeatedly until it converges to the desired output.

Most fractal encoders construct the collage through a subdivision of the image

into blocks (range blocks) that are matched against higher scale blocks (domain

blocks) in the downsampled image by means of costly searching algorithms. This

process makes the encoding process extremely expensive, specially when compared

to the decoding time.

The collage can apply any affine transform to map a domain block into a range

one. The collage also changes the intensities of the pixels contained in the domain

blocks by using a transform such as the one proposed by Øien and Lepsøy [8], shown

in Equation 3.1, where G is the resulting pixel intensity, D is the intensity in the

domain block, D̄ is the mean intensity of the pixels in the domain block, r̄ is the

mean intensity of the pixels in the range block and α is a parameter determined by

a least squares estimation.

G(D) = α(D − D̄) + r̄ (3.1)
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3.5 Proposed Method

This paper proposes a new method for encoding the relationship between the domain

and range blocks in images that is not as restrictive as the searchless methods, but

is not as complex as the classical brute force or heuristic algorithms [2].

A more flexible domain pool with a larger selection of possible domain blocks

is created to avoid the necessity of the searchless encoders to split certain regions

of the image several times until they reach the desired reconstruction quality. This

selection avoids such excessive use of subdivisions and also can reduce the number

of bits used to encode the image.

For each range block with dimensions a× b located at (x, y), there are 9 possible

domain blocks that can be used to represent it. The position of these blocks can be

expressed as

x′ = x− a+ px × a/2

y′ = y − b+ py × b/2
(3.2)

where px and py must be equal to 0, 1 or 2. All possible domain blocks given by

this equation are illustrated in Figure 3.4. These candidate domain blocks have

dimensions equal to 2a×2b and only one of them is chosen as the definitive mapping

by testing which one of them has the lowest error when compared to the original

range block, after having its gray values properly transformed by Equation 3.1.

If the range block must be split to achieve a lower reconstruction error, then it

is divided into two equally sized sub-blocks. However, to do so, it must decide in

which direction this subdivision will be performed. The heuristic used to choose

how to properly partition a block tries to encode both sub-blocks separately without

actually subdividing them, but by evaluating the two possible directions that can be

used to split the original block. The direction resulting in the lowest estimated error

is chosen.

The encoder initially subdivides the image into a uniform grid of blocks with 64×

64 pixels. The rate-distortion heuristic proposed by Saupe et al. [13] is used for rate

control, the blocks are inserted into a priority queue to sort the range blocks according

to their sum of squared differences (SSD) instead of the mean squared difference

(MSE), this replacement was proposed by Fisher and Menlove [1] to improve both

the PSNR and the perceptual quality of the resulting image. At each iteration of the

decoder, the range block with the largest SSD is subdivided into two blocks, which
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inspired method proposed by Hamzaoui [4], which uses only one image during the

iterations overwriting each range block with its updated contents. The use of these

methods assures that the decoding process converges in 4 iterations or less, instead

of the usual 8 to 10 iterations used by other fractal decoders.

Finally, the image is post-processed by the same deblocking filter proposed by

Fisher and Menlove [1] that adapts itself according to the size of the range block,

ignoring the ones with smaller areas and using more aggressive parameters in the

larger ones.

3.6 Experimental Results

Searchless Constant-Sized Domain Pool
Images

encoding time decoding time encoding time decoding time

Baboon 21.9 19.2 100.6 19.3
Barbara 21.0 19.0 92.3 19.2
Boat 20.3 18.8 94.5 19.2
Goldhill 21.6 19.0 98.0 19.2
Lena 21.6 19.2 99.3 19.5
Peppers 21.4 19.0 99.3 19.3

Table 3.2: Average encoding and decoding time in miliseconds of the proposed and
the searchless method for the benchmark images.

All experiments were conducted on an Intel Core 2 Duo E6750 processor, 2.66

GHz with 3GB of RAM running the Linux operating system. The method was

implemented in C++ programming language using only integer values and running

on a single thread.

The proposed approach is compared to a searchless encoder using the standard

grayscale benchmark images Baboon, Barbara, Boat, Goldhill, Lena, and Peppers,

with 512 × 512 pixels. The metric used to compare the original and the decoded

images is the peak signal-to-noise ratio (PSNR), which can be calculated as:

PSNR = 10 log10

(

2552

MSE

)

(3.3)

where MSE is the mean squared error between the compared images. The resulting
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PSNR for each image using both methods at different bit-rates is shown in Figures 3.6

and 3.7.

The searchless encoder used in the comparisons is based on exactly the same base

code from the constant size domain pool encoder, but assigning a fixed value for px
and py of each range block, it is extremely similar, but not exactly equal to the one

proposed by Wu et al. [17]. This allows a fair comparison between the two proposed

domain-range mappings, avoiding possible differences in the implementation.

Both encoders were compared by varying Nit from 100 to 10000 iterations. The

rate-distortion curves show that the proposed method maintains a lower distortion

in the compressed images at the same rates even though there are fewer range blocks

in the transmitted data, since each block uses a larger amount of bits.

Table 3.2 presents the average encoding and decoding times for each image. Al-

though the proposed domain pool is nine times larger if compared to the searchless

method, the total encoding time is only increased by a factor of five since there are

fewer range blocks. The number of range blocks, as shown in Table 3.3, is smaller

because they are subdivided less frequently and consequently they cover larger areas.

Number of Range Blocks
Images

searchless proposed method

Baboon 6005 4223
Barbara 5807 4025
Boat 5708 4025
Goldhill 6005 4223
Lena 5708 4025
Peppers 5708 4124

Table 3.3: Number of range blocks generated at 0.20 bpp for each tested image.

3.7 Conclusions and Future Work

This paper proposed a novel domain pool for fractal coding which is an intermediary

between the searchless encoders and the usual methods employing brute force or

heuristics in a large domain pool.

Due to the smaller number of encoded range blocks, the proposed method out-

performs the searchless encoder even though the latter uses less bits to encode each
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block. The additional complexity of the larger domain pool has a significant perfor-

mance impact, however, the encoder still takes approximately 100 ms to encode a

512× 512 image compared to several minutes of the original fractal encoders based

on large domain pools.

It is important to note that px and py parameters are transmitted without any

form of optimized compression and the domain block is chosen by exhaustive search,

which causes a major decrease in the rate-distortion performance and an increase in

the encoding time of the proposed approach. Future experiments will analyze possible

heuristics to choose the proper domain block and compress its relative position.

Other proposals for future work include the use of a pyramidal algorithm during

the image decoding [14], a more efficient method for the quantization and coding

of r̄ parameter, improvements on the heuristics and data structures used in spatial

subdivision, and the use of rate-distortion optimization methods to choose between

different domain pools and quantizers [9].
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Caṕıtulo 4

Fast Low Bit-Rate 3D Searchless

Fractal Video Encoding

4.1 Prólogo

O artigo [3], apresentado nesta seção, será parte do 24th Conference on Graphics,

Patterns and Images (SIBGRAPI’2011).

Um método de compressão especializado em cenas com muito movimento com-

primidas a taxas de bits por segundo muito baixas é proposto. Grupos de 32 quadros

consecutivos são unidos em um fractal volumétrico, que é codificado por meio de uma

estrutura espacial capaz de dividir cada bloco molde na horizontal, vertical ou no

sentido temporal. Boa parte de sua implementação é extremamente semelhante ao

artigo anterior, porém, generalizada para três dimensões e usando apenas um único

elemento no domain pool.

A abordagem proposta tem um custo computacional reduzido no processo de

codificação, pois não usa Rate-Distortion Optimization [13].

Em situações com pouco movimento ou com alto bit-rate, o codificador x264 pos-

sui ampla vantagem, dado que ele não funciona adequadamente em taxas extremas

de compressão devido ao seu compensador de movimento que requer uma grande

quantidade de dados para representar a diferença entre cada quadro.

Por outro lado, em cenas com grande quantidade de movimento a taxas de com-

pressão extremas, o método proposto possui maior qualidade perceptual.
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4.2 Abstract

Video encoding techniques play an important role in data reduction. Fractal com-

pression has received considerable attention in the past decades. While early meth-

ods presented prohibitively large encoding times, recent searchless fractal encoders

reduced this problem. A fast 3D purely fractal video encoder based on a flexible

adaptive spatial subdivision data structure is proposed in this work. The method

completely avoids any kind of search for a matching domain block and is capable

of performing fast compression and decompression with high visual fidelity. Exper-

imental results show that the developed approach outperforms the state-of-the-art

x264 video encoder at very low bit rates in high motion video sequences in both

structural dissimilarity measure and encoding time.

4.3 Introduction

Earlier compression methods based on fractal coding [7] suffered from extremely

slow encoding times to find an appropriate representation of the image content.

Their performance was inferior than more conventional approaches based on invert-

ible transforms, such as the discrete cosine transform (DCT). The main problem is

that fractal encoders must find a transform that constructs an approximation of the

original image, given the image itself, by looking for similar blocks between differ-

ent regions using either brute force or a heuristic to reduce the number of elements

considered in the search.

Ten years after the introduction of the original fractal encoding method, other

methods were proposed by Furao and Hasegawa [5] and Wu et al. [20] aiming to

completely avoid any kind of search by imposing a fixed relationship between a

block of the original image (called a range block) and its correspondent similar block

(called a domain block). This solution produced results comparable to the original

JPEG standard and even surpassed it in higher compression ratios while being faster

than most of the state-of-the-art encoders.

This paper proposes a fast low bit-rate 3D searchless fractal video compression

method for encoding chunks of consecutive frames based on [5, 20]. According to the

experimental results, it is perceptually superior to the state-of-the-art x264 [21] at

high compression ratios in video sequences with large amount of motion. Addition-

ally, it also presents an encoding time lower than that of x264.
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An encoder that can operate at extreme compression ratios is needed by appli-

cations that require either low bandwidth communication channels, such as sensor

networks and mobile devices, or that must transmit multiple video streams simulta-

neously, such as surveillance equipments.

The text is organized as follows. Section 4.4 presents a brief review of fractal en-

coding and related work available in the literature. The proposed method is described

in Section 4.5. Experimental results and a comparison between the proposed method

and another fractal encoder are presented in Section 4.6. Finally, the conclusions of

the work are given in Section 4.7.

4.4 Background

This section initially reviews fractal image and video encoding, including searchless

techniques, then describes heuristics for fast rate-distortion and structural dissimi-

larity measure.

4.4.1 Fractal Image Coding

Unlike other compression algorithms, fractal encoders [7] do not explicitly store an

approximation of the image, but they create and transmit a collage, which is a

series of instructions that indicate how to partition the image and, for each resulting

partitioned region (called a range block), how to generate its content given another

block with larger dimensions (called domain block) of the same image. To generate

the range blocks, the collage resizes the domain block, applies an affine transform

(such as rotation or mirroring), and modifies the gray level values using an equation

such as the one proposed by Øien and Lepsøy [12]

G(D) = α(D − D̄I) + r̄I (4.1)

where G is the gray level transform, D is the downsampled domain block, D̄ is the

mean value for the domain block, r̄ is the mean value for the block in the original

scale (the range block), I denotes a matrix filled with ones, and α is the scaling

parameter.

The collage is capable of transforming the image into itself given its definition,

but it is also capable of transforming any arbitrary signal into an approximation of
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4.4.3 Fractal Video Coding

The first fractal video encoder was proposed by Hurd et al. [6], which encodes each

frame by using blocks from the previous frame as a domain pool either at the same

scale as the range blocks or at higher scales, making it a generalization of the usual

motion compensation techniques. This approach was later refined by Fisher et al. [4]

through the use of quadtrees. More advanced variations of these algorithms were

designed later [8, 23].

Another extension of the fractal coding for video sequences was proposed by Lazar

and Bruton [10] and Li et al. [11]. In these methods, a chunk of consecutive frames

is grouped into a single volumetric image where the x and y axes are the spatial

position and the z axis is the time when that pixel value occurred. The collage

consists of a spatial subdivision of that volume and, for each resulting range block,

the position and the parameters necessary to transform the volumetric domain block.

The proposed method is based on this specific generalization of the fractal methods

to encode video sequences.

A fast volumetric encoder was later proposed by Chabarchine and Creutzburg [1]

for real-time video encoding by simplifying the gray scale transform to use a constant

α parameter, resampling every frame to 64×64 pixels, grouping 16 consecutive frames

and dividing them into blocks of 16 × 16 × 16 voxels. Each block is represented by

an octree and the only possible domain block for each range block is its parent block

on the spatial subdivision. The volume is subdivided until a target error threshold

is reached. This method is simple and fast, however, its rate-distortion performance

is extremely poor.

The volumetric video compression approach [1] was refined by Yao andWilson [22]

through a hybrid method that employs both vector quantization and collages to

approximate the original signal. Such hybrid method can encode videos at low bit

rates achieving a fair visual quality while being as fast as some MPEG-2 encoders.

Unfortunately, this implementation suffers from convergence problems during the

decoding stage.

4.4.4 Fast Rate-Distortion Heuristic

Every fractal encoding method must decide how to partition the image into regions

that have a similar domain block and the total number of regions must satisfy the
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restriction on the number of bits set by the user. Most encoders (such as the one

described in Section 4.4.2) subdivide each region recursively until a certain thresh-

old for the collage error is reached. This heuristic tries to guarantee a minimum

reconstruction quality for the resulting decoded image, but it is difficult to efficiently

satisfy any restriction on the total size of the collage.

A solution to this problem was proposed by Saupe et al. [15] after investigating

optimal partitions in fractal encoding. In this method, the image is divided into a

uniform grid, where each region has its collage error calculated and inserted into a

priority queue. At each iteration, the region with the highest error is removed from

the queue and subdivided, then its subregions are inserted into the queue.

The size of the collage increases slightly at each iteration, so it is possible to

achieve a certain size by stopping the heuristic after a certain number of iterations,

resulting in an approximation of the desired size. The heuristic is also intuitive since

the most distorted regions of the image have priority over the other ones.

4.4.5 Structural Dissimilarity

Most comparisons between video and image encoders are based on metrics derived

from the sum of squared differences (SSD) or the mean squared error (MSE). The

SSD and the MSE between two images A and B with size W ×H is given by

SSD(A,B) =
W−1
∑

x=0

H−1
∑

y=0

(Ax,y − Bx,y )
2 (4.3)

MSE(A,B) =
SSD(A,B)

W ×H
(4.4)

A critical issue with the MSE is that it does not measure the resulting image

quality directly and it can attribute similar scores to images with large differences

in psychovisual quality. As illustrated in Figure 4.3, the psychovisual quality degra-

dation between the images is measured by the SSIM, while the MSE does not reflect

that fact, as indicated in the figure captions.

The structural similarity index (SSIM) [18] was proposed as a metric to compare

images which correlates more appropriately with the human perception. It maps two

images into an index in the interval [−1, 1], where higher values are given to more
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(a) Original image (SSIM=1.0, MSE=0) (b) Multiplied by 1.072 (SSIM=0.995837,
MSE=145.96)

(c) Subtracted by 12 pixels (SSIM=0.994981,
MSE=143.97)

(d) Compressed by JPEG (SSIM=0.742805,
MSE=142.91)

Figure 4.3: Several distorted versions of the same image with different perceptual
qualities and approximately the same MSE.

similar pairs of images, calculated as

SSIM(A,B) =
(2µAµB + c1)(2σAB + c2)

(µ2
A + µ2

B + c1)(σ2
A + σ2

B + c2)
(4.5)

where µA, µB, σ
2
A and σ2

B are the averages and variances of A and B, σAB is the

covariance between A and B, and both c1 and c2 are predefined constants. This

metric is calculated as the average of the score between several blocks using a sliding

window of 11× 11 pixels.
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The structural similarity scores are also shown in Figure 4.3. In this example, it

is possible to notice that the image with the lowest MSE is the least similar to the

original. In addition, all three images have almost the same MSE, but the structural

similarity is more coherent to what one would expect from a comparison metric.

The structural dissimilarity is a derived metric from the structural similarity that

results in more distinct values, since a small variation in the original SSIM indicates

a large difference in image quality. It is given by

DSSIM(x, y) =
1

1− SSIM(x, y)
(4.6)

4.5 Proposed Method

The proposed 3D video encoder constructs a volumetric image composed of 32 con-

secutive frames and transmits a collage that is used to reconstruct them (using the

same definition as the volumetric encoders described in Section 4.4.3). This image

is divided into a uniform grid of blocks with 16 × 16 × 16 voxels and each one of

these blocks has its own spatial subdivision tree. In this binary tree, each block has

two subblocks with equal volume which are created splitting their parent into half in

the horizontal, vertical or temporal direction. The blocks are subdivided according

to the heuristic presented in Section 4.4.4, using the SSD of the collage error as the

distortion metric.

The SSD was chosen as the distortion metric since the MSE disregards the size of

the block, giving the same score to equally distorted blocks with large differences in

volume. The SSIM was not created to evaluate volumetric images, it must be calcu-

lated using sliding windows since it cannot properly compare two isolated subblocks

of an image and, contrary to other usual metrics, it is impossible to estimate the final

SSIM of the image given the SSIM of each range block. In the case of using SSD,

the final score is the sum of the score of all the encoded blocks. Given these obser-

vations, if the SSIM was employed the heuristic would not estimate which block can

result in the largest reduction of distortion, since the distortion metric itself cannot

be efficiently measured in either the entire image or the range blocks.

This heuristic requires a given volumetric block to be encoded and split in case

it is chosen during an iteration. The block encoding method uses a relationship

between range and domain blocks similar to the one used in bidimensional searchless

fractal encoders, but generalized to three dimensions. For each range block with
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Decision Table for the Quantization of r̄

Volume Quantization step Number of used bits

1 16 4

2 16 4

4 16 4

8 8 5

16 8 6

32 4 6

64 4 6

128 2 7

256 2 7

≥ 512 1 8

Table 4.1: Quantizers applied according to the volume of the range block.

2 bits in the worst case, along with r̄, which is quantized according to the range block

volume as shown in Table 4.1. For range blocks with one or more dimensions smaller

than 2 pixels, the only transmitted parameter is r̄. Along with these parameters,

the spatial subdivision tree for each block in the initial uniform subdivision is coded

by a sequence of symbols pointing to the decoder, in a depth-first order, whether

a certain region was subdivided or not and in which direction it was split. The α

parameter and the binary decision symbols in the spatial subdivision tree have their

own high order adaptive contexts, one for each possible value of ⌊log V ⌋, where V

is the total volume of the encoded block. The direction which each block is split is

encoded by another set of 3 high order adaptive contexts chosen according to the

direction used to split its parent.

The r̄ parameter is encoded as a difference between a quantized prediction calcu-

lated as the average of r̄ of the neighboring blocks located at the top, to the left and

behind the encoded block and the real quantized value. This difference is encoded

by the Adaptive Goulomb-Rice code described in [19], using one context for each

possible ⌊log V ⌋ in the same manner as the other parameters.

4.6 Experimental Results

All experiments were conducted on an Intel Core 2 Duo E6750 processor, 2.66 GHz

with 3GB of RAM running Linux operating system. The method was implemented
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using the C++ programming language without any additional optimizations.

The proposed approach is compared to the state-of-the-art H.264 encoder, called

x264 [21], using the standard grayscale benchmark sequences ’Foreman’, ’Car phone’,

’Bus’, ’Football’, ’Akiyo’, ’Miss America’, ’Bowing’, and ’Hall monitor’ in the CIF

format [2]. The length of each sequence is shown in Table 4.2.

Sequence # Frames

Foreman 300
Carphone 457
Bus 150
Football 260
Akiyo 300
Hall monitor 300
Bowing 300
Miss America 179

Table 4.2: Number of frames for the used video sequences.

The x264 was configured to closely match the behavior of the proposed encoder

by forcing it to insert a keyframe at every 32 frames and compiling it without any

CPU specific optimizations. The command line used to invoke this encoder was

x264 --tune ssim --preset medium --profile baseline

--keyint 32 --bitrate ’target bitrate’

The video sequences in the following experiments were encoded at low bit rates,

which implies that the results had high distortions when measured by Equation 4.3.

As shown in [18], the ambiguity of the metrics derived from the SSD from a perceptual

point of view is high and becomes even larger as the distortion increases. It is

important to observe that both α and r̄ are quantized (i.e. they must assume one

of a small set of possible values instead of being continuous) which causes a mean

shift and a contrast change in every range block, even though the effect of these

quantizations is perceptually negligible. In order to ensure a proper comparison

between both methods, the mean structural dissimilarity for both encoders is used

in the experiments. This metric is widely accepted for its simplicity and reasonably
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(a) A frame from the ’Foreman’ sequence en-
coded by x264

(b) The same frame encoded by the proposed
method

Figure 4.5: Differences in the accuracy of frame prediction in both methods at 50
kbps.

accuracy, being employed in the design of several image encoders, such as [9], and

has a built-in implementation in the x264.

The bit rate was varied to closely match the same values in both encoders. As

observed in Figure 4.6, the proposed encoder outperforms the x264 codec at very low

bit rates in these high motion sequences. This is due to the motion compensation

algorithm of the H.264 encoder cannot operate properly in these conditions given

that an accurate prediction of each frame would require a large amount of bits. An

example of this case is shown in Figure 4.5, where the motion of smooth regions is

ignored or poorly represented by the x264, then generating temporal artifacts. In

this sequence, the proposed method accurately represents most of the moving regions,

causing high distortions only on instantaneous movements such as eye blinking. The

’Car phone’ and ’Foreman’ sequences have transitions between high and low motion

scenes giving an advantage to x264 at bit rates larger than 60 kbps.

The Figure 4.7, which are related to scenes with a static background and one or

two moving objects, show that in these cases the highly efficient transform coding

of the x264 has a significant advantage over the proposed fractal encoder and the

motion compensation is achievable due to the localized motion of a few regions in

each frame.

The total encoding time of the proposed method is remarkably low as evidenced
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in Figures 4.8 and 4.9. Both methods, the proposed fractal encoder and the x264

codec, were implemented in high level languages without excessive optimizations to

ensure a fair comparison between them. The proposed method takes between one

third and one fifth of the total time needed by the x264 to encode the same content.

4.7 Conclusions and Future Work

This paper proposed a 3D searchless fractal video encoder that is comparable to the

x264 encoder [21] at very low bit rates. As it has been observed from the experimental

results, while the proposed encoder outperformed the x264 in the high motion video

sequences, for scenes with a static background and few moving objects, the x264

presented advantage over the proposed method. Furthermore, contrary to most

fractal-based methods, it presents a very low encoding time even when compared to

x264 for all tested sequences.

Suggestions for future enhancements in the proposed approach include a better

lossless encoding of the gray level parameters and of the symbols used in the spatial

subdivision, the use of fractal interpolation to encode the content at a lower frame

rate and super-sample it to the original rate, the implementation of more complex

gray level transforms such as the one used in [17] and, finally, the use of rate-distortion

optimization methods [13] to choose which quantizers to use and which regions must

be split.
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Caṕıtulo 5

Fast Adaptive Transcoding Based

on a 3D Low Bit Rate Fractal

Video Encoder

5.1 Prólogo

O artigo [15], apresentado nesta seção, foi submetido ao periódico IEEE Transactions

on Multimedia.

Baseado no método de compressão do artigo anterior, uma adaptação simples

da heuŕıstica descrita na Seção 1.3 permitiu que o v́ıdeo fosse pré-processado de

tal forma a poder ser traduzido em tempo real para várias taxas-alvos de bits por

segundo. Outros métodos semelhantes não conseguem ser rápidos na tradução ou

fornecem uma quantidade pequena de taxas de bits por segundo posśıveis.

Outras mudanças incluem o uso do método de construção de colagems proposto

no artigo Fractal Image Encoding Using a Constant Size Domain Pool, desta vez

generalizado para v́ıdeos por meio de um domain pool de 27 elementos. Os blocos

moldes são divididos pela metade por um plano de corte que minimiza, para ambos

os sub-blocos, o produto entre o volume e a variância destes.

O preditor das médias dos blocos molde usa como predição a média ponderada

de blocos vizinhos já transmitidos, sendo que o peso é a área de contato com o bloco

sendo transmitido.
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5.2 Abstract

Video transmissions usually occur at a fixed or at a small number of predefined bit

rates. This can lead to several problems in communication channels whose bandwidth

can vary along time (e.g. wireless devices). This work proposes a video encoding

method for solving such problems through a fine rate control that can be dynamically

adjusted with low overhead. The encoder uses fractal compression and a simple rate

distortion heuristic to preprocess the content in order to speed up the process of

switching between different bit rates. Experimental results show that the proposed

approach can accurately transcode a preprocessed video sequence into a large range

of bit rates with a small computational overhead.

5.3 Introduction

Most video streaming services use a reliable point-to-point channel to transmit videos

and usually the bit rate is fixed or can be changed only to a few different possibilities,

which might cause visual interruptions during the transmissions if the available band-

width of the channel is variable. This behavior frequently occurs in wireless commu-

nication. Therefore, if the video server could adapt itself to the client’s bandwidth,

the user would have both the best possible quality given the available bandwidth

and the least amount of interruptions.

A proposed solution to this problem is called transcoding, which converts the

video stream into another one satisfying a given constraint. Most of the proposed

methods [9] are extensions to well-known DCT-based video encoders and are capable

of changing the frame rate, bit rate, spatial resolution or the standard used in the

transmission. Another approach is Scalable Coding [23], based on transmitting a

single stream divided into layers that can be acquired separately according to the

available bandwidth.

This work proposes an approach that compresses the video at the maximum de-

sired transmission rate and includes some extra data. This data is used to transcode

the compressed video to a large range of bit rates. The target bit rate of this process

can be dynamically adjusted with low overhead and the transcoding algorithm is

near optimal in a sense that it must only read the compressed file, execute a binary

search in a table to find the correct operating parameters and write the resulting

transcoded file.
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To the best of our knowledge, the proposed approach is the first transcoding

method based on fractal video encoding. It relies exclusively on changing the re-

sulting bit rate, taking advantage of the spatio-temporal independency of the fractal

codes to avoid any changes to the frame rate or the spatial resolution.

In order to reduce the complexity of the algorithm, the encoding is extremely

simplified when compared to other fractal-based approaches while still maintaining

an acceptable rate-distortion performance. Perceptual quality comparisons with the

x264 state-of-the-art encoder are presented.

This paper is organized as follows. The video encoder, described in Section 5.5,

is based on volumetric and searchless fractal methods reviewed in Section 5.4. Ex-

perimental results with well-known video sequences are presented in Section 5.6 and,

finally, the conclusions and future work appear in Section 5.7.

5.4 Background

This section presents a brief review of fractal image encoding (Section 5.4.1), the

searchless method for constructing collages (Section 5.4.2), a restricted domain pool

proposed earlier[16] (Section 5.4.3), some related fractal video encoders available

in the literature (Section 5.4.4), a searchless fractal video encoding method (Sec-

tion 5.4.5), a heuristic to control the encoding process (Section 5.4.6) and a percep-

tual quality metric used in image comparisons (Section 5.4.7).

5.4.1 Fractal Image Encoding

Fractal image encoders transmit a fractal that approximates the original image. The

first of such methods was proposed in the seminal paper by Jacquin [10], where the

method creates and transmits an operator, called collage, capable of reconstructing

an approximation of the original image given a subsampled version of it. During the

decoding process, the collage is applied to an arbitrary initial image, the result is

subsampled and this process is repeated until the image converges to a fixed point.

At first glance, this could imply that the subsampled image must be transmitted,

however, the collage is constructed in such way that when applied several times to any

image with the correct dimensions, it converges to almost the same approximation

that would be achieved if it was applied to the original subsampled image.
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The usual process used to construct the collage partitions the image into blocks

(called range blocks) and each one of them is matched with a same-sized block in the

subsampled image (called domain block) after being transformed by a prespecified

function. This match is done either by exhaustive search or through the use of

specialized heuristics. In general, the matching process is very time consuming;

therefore, most fractal methods have extremely slow and complex encoding processes,

but the decoding is usually significantly faster.

The collage can rotate, flip or mirror the domain blocks and apply a transform

into ther gray level values, such as the one used by Tong and Pi [24]

G(D) = α(D − D̄J) + r̄J (5.1)

where G is the gray level transform, D is the downsampled domain block, D̄ is the

mean value for the domain block, r̄ is the mean value for the block in the original

scale (the range block), J denotes the unit matrix, and α is a scale parameter.

5.4.2 Searchless Fractal Encoding

The searchless fractal image coding was introduced by Furao and Hasegawa [5] as a

less complex alternative algorithm for constructing collages. In this approach, each

range block has only one candidate domain block to be matched. If this match-

ing does not achieve the desired reconstruction quality, the range block is divided

into four blocks (which can be seen as a tree-based decomposition) and the process

continues recursively until the range blocks reach a certain minimum size.

The only candidate domain block to be matched against a range block with

dimensions a and b and located at (x, y) has the following coordinates

x′ = x− a/2

y′ = y − b/2
(5.2)

where its dimensions are 2a and 2b. This relationship is shown in Figure 5.1. In order

to simplify the encoding process, the domain blocks are transformed by Equation 5.1,

without any additional processing. Therefore, each range block can be encoded only

by its α and r̄ coefficients.

This approach was refined by Wu et al. [27] by dividing each range block in half

either in the vertical or horizontal direction and without imposing any limits to the
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size of the range blocks. The smaller blocks have their r̄ parameter more coarsely

quantized than the larger ones, and blocks with only one or two pixels are forced to

have their α equal to zero.

5.4.3 Domain Pool with Constant Size

A modification proposed to the fast searchless encoders described in Section 5.4.2

was presented by Lima et al. [16]. Instead of matching each range block to a single

domain block, one of nine different range-domain mappings is chosen. For a range

block with dimensions a × b located at (x, y), the blocks in its domain pool have

dimensions equal to 2a× 2b and their positions are given by

x′ = x− a+ px × a/2

y′ = y − b+ py × b/2
(5.3)

where both px and py must be equal to 0, 1 or 2. All possible domain blocks given

by this equation are illustrated in Figure 5.1.

5.4.4 Fractal Video Encoding

The first fractal video encoder was proposed by Hurd et al. [8] by creating a collage

that transforms the previous frame into the next one. This transform could use

either blocks from the original scale or from a subsampled version of the frame. This

method is very similar to the motion compensation usually found in most video

encoders. This approach was enhanced by Fisher et al. [4] by varying the size of each

used range block through a quadtree. Refined methods based on these concepts were

proposed by Kim et al. [11] and Zhu et al. [30].

The fractal video encoding method proposed by Lazar and Bruton [13] and Li et

al. [14] used tridimensional collages that transform a subsampled version of a volume

formed by consecutive frames into the original signal by matching volumetric range

and domain blocks. Due to the extra dimension, this causes the encoding process to

be even more time consuming when compared to the image encoders.

A faster variation of this volumetric approach was proposed by Chabarchine and

Creutzburg [1] by using a simpler gray scale transform, an extremely restricted do-

main pool for each range block and a simple spatial subdivision structure. This
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control.

The heuristic initially divides the image into a uniform partition of blocks with

the same size and inserts them into a priority queue which sorts the blocks according

to their mean squared error (MSE). At each iteration, the heuristic takes the block

with the highest MSE, divides it into two sub-blocks which are properly encoded

and inserted again into the queue Q. This heuristic is intuitive since the most poorly

represented regions of the image have priority over others and the size of the encoded

data increases slightly at each step allowing a fine rate control.

Algorithm 3 The Rate-Distortion heuristic proposed by Saupe et al. [22]

1: Subdivide the image into an initial uniform grid of range blocks
2: Insert the resulting blocks in the priority queue Q sorting them through their

MSE
3: i = 0
4: repeat

5: Remove the block with the largest MSE from Q
6: Subdivide it into two new blocks
7: Insert these new blocks into Q
8: i = i+ 1
9: until The desired size is reached or i < iupper

This algorithm has three critical properties. It is incremental, therefore the rate

control is achieved by stopping the algorithm at a certain iteration that generates a

compressed data with the desired size or at a certain constant number of iterations

iupper (more complex optimization methods for rate control require the content to

be encoded using several schemes and just one of them is selected). The heuristic

does not prune the tree and spends computational effort only on the range blocks

which are subdivided. Finally, to reach a certain rate constraint, the heuristic passes

through a set of solutions with a wide range of different target rates until it stops.

5.4.7 Structural Dissimilarity

Most comparisons between video and image encoders are based on metrics derived

from the sum of squared differences (SSD) or the mean squared error (MSE). The
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SSD and the MSE between two images A and B with size W ×H are given by

SSD(A,B) =
W−1
∑

x=0

H−1
∑

y=0

(Ax,y − Bx,y )
2 (5.5)

where Ax,y and Bx,y are the intensity of a pixel located at (x, y) in A and B, respec-

tively.

MSE(A,B) =
SSD(A,B)

W ×H
(5.6)

A critical issue with the MSE is that it does not measure the resulting image

quality directly and it can attribute similar scores to images with large differences

in psychovisual quality, as illustrated in Figure 5.3. It is possible to notice that the

MSE does not reflect the image quality, while the psychovisual quality degradation

between the images is measured more accurately than the structural similarity index

(SSIM) is considered. Specifically, all three images have almost the same MSE,

but the structural similarity is more coherent to what one would expect from a

comparison metric.

The SSIM [25] was proposed as a metric for comparing images which correlates

more appropriately with the human perception. It maps two images into an index

in the interval [−1, 1], where higher values are given to more similar pairs of images,

calculated as

SSIM(A,B) =
(2µAµB + c1)(2σAB + c2)

(µ2
A + µ2

B + c1)(σ2
A + σ2

B + c2)
(5.7)

where µA, µB, σ
2
A and σ2

B are the averages and variances of A and B, σAB is the

covariance between A and B, and both c1 and c2 are predefined constants. This

metric is calculated as the average of the score between several blocks using a sliding

window of 11× 11 pixels.

The structural dissimilarity (DSSIM) is a derived metric from the structural

similarity that results in more distinct values, since a small variation in the original

SSIM indicates a large difference in image quality. It is given by

DSSIM(x, y) =
1

1− SSIM(x, y)
(5.8)
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(a) Original image (SSIM=1.0, MSE=0) (b) Multiplied by 1.072 (SSIM=0.995837,
MSE=145.96)

(c) Subtracted by 12 pixels (SSIM=0.994981,
MSE=143.97)

(d) Compressed by JPEG (SSIM=0.742805,
MSE=142.91)

Figure 5.3: Several distorted versions of the same image with different perceptual
qualities and approximately the same MSE.

5.5 Proposed Method

The video encoder described in this section can be separated into two different mod-

ules. Section 5.5.1 describes a heuristic used to decide the number, the position and

the volume of the range blocks and Section 5.5.2 describes how to encode volumetric

blocks of pixels using fractal codes and how to split them.
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5.5.1 Rate-Distortion Heuristic

The proposed method is based on the heuristic created by Saupe et al. [22] for image

compression with some adjustments to enable fast transcoding of the compressed

data and replacing the mean squared error (MSE) by the sum of squared differences

(SSD), therefore, the total volume of each block contributes to the distortion measure.

Initially, a group of consecutive frames is preprocessed by encoding it at a relative

high bit rate by using a predefined iupper value. It is subdivided into a uniform grid

of range blocks with 16 × 16 × 16 pixels, which are encoded and inserted into the

priority queue.

The rate-distortion heuristic creates a new pair of range blocks at each iteration

which replaces the one taken from the queue. Instead of destroying this parent

block, the algorithm then keeps all the range blocks created during the entire process

marking them with the number of the iteration in which they were created.

At every ∆i iterations, the group of frames is encoded by the arithmetic encoder

several times to generate a table that associates how many iterations must be con-

sidered to satisfy each desired maximum rate. This reencoding process has a very

low overhead since the rate-distortion heuristic creates, at each step, several versions

of the same content with different bit rates and distortions.

The transcoder reads this encoded group of frames, uses the table to choose a

maximum number of iterations itarget that achieves the desired bit rate, and rewrites

the file ignoring every block that was created after itarget and discarding both the

iteration number associated with each block and the encoding parameters of the

unused blocks.

The entire process is applied independently to each group consecutive frames

allowing the target rate to be completely different for each part of the video during the

transcoding. Therefore, then the target rate can fluctuate during the transmission

of the video. Some encoders use Rate-Distortion Optimization [19] to adjust the

rate of each group of frames in order to minimize the total distortion, but since it

is impossible to preview the bandwidth of the transmission channel, this approach

cannot be used in such a case.
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set to zero.

All the required symbols and parameters are encoded using a context-adaptive

arithmetic coder [21]. Each range block is encoded by its α parameter, which occupies

2 bits in the worst case, along with r̄, which is quantized according to the range block

volume as shown in Table 5.1. For range blocks with one or more dimensions smaller

than 2 pixels, the only transmitted parameter is r̄.

Along with these parameters, the spatial subdivision tree for each block in the

initial uniform subdivision is encoded by a sequence of symbols pointing to the

decoder, in a depth-first order, whether a certain region was subdivided or not, which

direction it was split and the coordinate of the splitting plane. The α parameter and

the binary decision symbols in the spatial subdivision tree have their own high order

adaptive contexts, one for each possible value of ⌊log V ⌋, where V is the total volume

of the encoded block. The direction in which each block is split is encoded by another

set of 3 high order adaptive contexts chosen according to the direction used to split

its parent.

The r̄ parameter is encoded as the difference between a quantized prediction and

the real quantized value. The prediction is calculated as the average of r̄ of the neigh-

boring blocks located at the top, to the left and behind the encoded block weighted

by their area of contact. This difference is encoded by the Adaptive Goulomb-Rice

code described in [26], using one context for each possible ⌊log V ⌋ in the same manner

as the other parameters.

Volume 1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Quantization step 16 16 16 8 8 4 4 2 2 1 1 1 1
Number of used bits 4 4 4 5 5 6 6 7 7 8 8 8 8

Table 5.1: Uniform quantizers applied according to the volume of the range block.

The intermediary representation created by the encoder and supplied to the

transcoding process encodes the iteration number in which each block was created

using the same Adaptive Goulomb-Rice code as r̄ and it stores the r̄ and α for every

block, including the ones that were split by the rate-distortion heuristic (which are

not included in the final stream sent to the decoder).

The decoding process is accelerated by three different and complementary meth-

ods. The initial volumetric image that is used in the first iteration of the decoder is

composed by filling each range block with its mean (for more details, see [17]). The
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used pixel intensity transform is the one proposed by Øien and Lepsøy [18] with ad-

ditional proofs and details given by Pi et al. [20]. Each iteration is applied according

to the Gauss-Seidel inspired method proposed by Hamzaoui [7], which uses only one

image during the iterations to overwrite each range block with its updated contents.

The use of these methods assures that the decoding process converges in 4 iterations

or less, instead of the usual 8 to 10 iterations used by other fractal decoders.

5.6 Experimental Results

The video sequences were encoded on an Intel Core 2 Duo E6750 processor, 2.66 GHz

with 3GB of RAM running the Arch Linux operating system. The method was im-

plemented using the C++ programming language without any SIMD optimizations

and compiled by GCC using the -O3 flag.

Each group had at most 32 frames in it because of precision limits in the con-

struction of the integral volumes and to ensure that every range block in the initial

partition had at least one element in its domain pool.

The proposed approach is compared to the state-of-the-art H.264 encoder, called

x264 [28], using the standard grayscale benchmark sequences ’Foreman’, ’Car phone’,

’Bus’, ’Football’, ’Akiyo’, ’Hall monitor’, ’Bowing’, and ’Miss America’ in the CIF

format [2]. Table 5.2 presents, for each sequence, the number of frames, the average

encoding time needed to generate the intermediate file used by the transcoder1, the

resulting file size of this initial encoding, and the final file size at the maximum

available bit rate in the preprocessed file (i.e. without any extra data used by the

transcoding process).

The video sequences in the following experiments were encoded at low bit rates,

which implies that the results had high distortions when measured by Equation 5.5.

As shown in [25], the ambiguity of the metrics derived from the SSD from a perceptual

point of view is high and becomes even larger as the distortion increases. It is

important to observe that both α and r̄ parameters are quantized (i.e. they must

assume one of a small set of possible values instead of being continuous), which causes

a mean shift and a contrast change in every range block, even though the effect of

these quantizations is perceptually negligible.

1It is important to mention that this process is executed only once and each intermediate file is
stored and used when necessary.
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Sequence # Frames Time (s) Size (KB) Size without aditional data (KB)
Foreman 300 5.8 390.5 194.7
Car phone 457 6.1 392.6 200.6
Bus 150 5.4 382.6 188.0
Football 260 5.5 387.1 193.5
Akiyo 300 5.0 336.8 170.5
Hall monitor 300 5.2 366.7 187.7
Bowing 300 5.0 343.0 175.6
Miss America 179 5.8 315.9 149.1

Table 5.2: The number of frames for the video sequences, the encoding time of the
proposed method and the size of each encoded file with and without the extra data
used by the transcoding process.

In order to ensure a proper comparison between both methods, the mean struc-

tural dissimilarity is used in the experiments. This metric is widely accepted for its

simplicity and reasonably accuracy, being employed in the design of several image

encoders, such as [12], and has a built-in implementation in the x264.

The bit rate was varied to closely match the same values in both encoders. As

observed in Figures 5.5 and 5.6, the proposed encoder outperforms the x264 codec at

very low bit rates in high motion sequences. The motion compensation algorithm of

the H.264 encoder cannot operate properly in these conditions given that an accurate

prediction of each frame would require a large amount of bits.

The x264 was configured to closely match the behavior of the proposed encoder

by forcing it to insert a keyframe at every 32 frames and compiling it without any

CPU specific optimizations. The command line used to invoke this encoder was

x264 --tune ssim --preset medium --profile baseline

--keyint 32 --bitrate ’target bitrate’

The Rate-Distortion heuristic, described in Section 5.5.1, was configured to use

125000 iterations for each entire sequence and ∆i was set to 1000 iterations. The

encoding process shown in Table 5.2 is executed only once and generates the com-

pressed video combined with extra data to allow the fast transcoding of the sequence.

As shown in the last column of the table, the overhead of the extra data is quite

large, almost doubling the size of the compressed video.
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Caṕıtulo 6

Conclusões

O codificador baseado em Matching Pursuits do artigo A Very Low Bit-Rate Mi-

nimalist Video Encoder Based on Matching Pursuits [11] se mostrou competitivo

com um padrão destinado a aplicações de videoconferência, o H.263, entretanto, a

qualidade de imagem obtida não justificou o custo computacional extremamente ele-

vado. Outros problemas sérios desta abordagem são dificuldades na quantização dos

coeficientes, no controle da taxa de bits resultante e na construção do dicionário.

O método fractal rápido proposto em Fractal Image Encoding Using a Constant

Size Domain Pool [31] é levemente superior em qualidade aos métodos sem busca e

causa menos artefatos visuais, entretanto, apresenta um custo computacional maior.

Apesar disso, o tempo de codificação permanece na mesma ordem de grandeza de

outros métodos eficientes. O método de construção de colagens com busca em um

domain pool de tamanho constante foi reutilizado no quarto artigo.

O codificador de v́ıdeo apresentado em Fast Low Bit-Rate 3D Searchless Fractal

Video Encoding [10] é competitivo com o estado da arte tanto no tempo de codificação

quanto, em casos em que há muito movimento e uma alta taxa de compressão, na

qualidade perceptual da imagem.

No quarto artigo [30] é proposto um codificador capaz de alterar a taxa de trans-

missão do v́ıdeo em tempo real após o pré-processamento dos dados. Ele inclui um

conjunto maior de candidatos nos casamentos entre blocos moldes e domı́nios. O

algoritmo de subdivisão do espaço particiona os blocos de forma a minimizar o pro-

duto entre a variância e o volume das subdivisões resultantes. As médias dos blocos

moldes são estimadas por meio de um algoritmo mais complexo.

Trabalhos futuros incluem o uso de Rate Distortion Optimization [39] para con-
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trolar tanto o tamanho resultante do arquivo codificado quanto a poda dos blocos

da árvore de subdivisão do espaço e a quantização de todos os coeficientes. Métodos

mais elaborados de quantização também poderiam ser usados nos coeficientes de

cada molde.
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