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Resumo

Nesta tese abordamos três problemas de visão computacional: (1) detecção e reconhecimento de
objetos de texto planos em imagens de cenas reais; (2) rastreamento destes objetos de texto em
vídeos digitais; e (3) o rastreamento de um objeto tridimensional rígido arbitrário com marcas
conhecidas em um vídeo digital. Nós desenvolvemos, para cada um dos problemas, algoritmos
inovadores, que são pelo menos tão precisos e robustos quanto outros algoritmos estado-da-
arte. Especificamente, para reconhecimento de texto nós desenvolvemos (e validamos extensi-
vamente) um novo descritor de imagem baseado em HOG especializado para escrita romana,
que denominamos T-HOG, e mostramos sua contribuição como um filtro em um detector de
texto (SNOOPERTEXT). Nós também melhoramos o algoritmo SNOOPERTEXT através do uso
da técnica multiescala para tratar caracteres de tamanhos bastante variados e limitar a sensi-
bilidade do algoritmo a vários artefatos. Para rastreamento de texto, nós descrevemos quatro
estratégias básicas para combinar a detecção e o rastreamento de texto, e desenvolvemos tam-
bém um rastreador específico baseado em filtro de partículas que explora o uso do reconhecedor
T-HOG. Para o rastreamento de objetos rígidos, nós desenvolvemos um novo algoritmo preciso
e robusto (AFFTRACK) que combina rastreamento de características por KLT com uma calibra-
ção de câmera melhorada. Nós testamos extensivamente nossos algoritmos com diversas bases
de dados descritas na literatura. Nós também desenvolvemos algumas bases de dados (publi-
camente disponíveis) para a validação de algoritmos de detecção e rastreamento de texto e de
rastreamento de objetos rígidos em vídeos.
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Résumé

Dans cette thèse, nous abordons trois problèmes de vision par ordinateur: (1) la détection et la
reconnaissance d’objets de texte dans des images de scènes réelles; (2) le suivi de ces objets
de texte dans une vidéo numérique, et (3) le suivi d’objets 3D rigides et arbitraires avec des
amers connus dans une vidéo numérique. Pour chaque problème, nous avons développé des
algorithmes innovants, qui sont au moins aussi précis et robustes que les algorithmes de l’état
de l’art. Plus précisément, pour la reconnaissance de texte, nous avons développé (et largement
évalué) un nouveau descripteur basé sur HOG, et dédié au traitement du texte Roman, baptisé
T-HOG. Nous avons montré sa valeur en tant que post-filtre pour un détecteur de texte existant
(SNOOPERTEXT). Nous avons également amélioré l’algorithme SNOOPERTEXT en dévelop-
pant une approche multi-échelle pour traiter des caractères de taille très différentes tout en
limitant la sensibilité de l’algorithme aux différents artéfacts. Pour le suivi des objets de textes,
nous avons décrit quatre manières de combiner la détection et le suivi, et nous avons développé
un tracker particulier, basé sur un filtre particulaire exploitant le T-HOG. Pour le suivi des
objets rigides, nous avons développé un nouvel algorithme précis et robuste (AFFTRACK) qui
combine le KLT tracker avec une calibration améliorée de la caméra. Nous avons largement
testé nos algorithmes sur plusieurs bases de données de la littérature. Nous avons également
créé plusieurs bases de données (publiquement disponibles) pour l’évaluation des algorithmes
de détection, suivi de textes et de suivi d’objets rigides dans les vidéos.
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Abstract

In this thesis we address three computer vision problems: (1) the detection and recognition
of flat text objects in images of real scenes; (2) the tracking of such text objects in a digital
video; and (3) the tracking an arbitrary three-dimensional rigid object with known markings
in a digital video. For each problem we developed innovative algorithms, which are at least
as accurate and robust as other state-of-the-art algorithms. Specifically, for text classification
we developed (and extensively evaluated) a new HOG-based descriptor specialized for Roman
script, which we call T-HOG, and showed its value as a post-filter for an existing text detector
(SNOOPERTEXT). We also improved the SNOOPERTEXT algorithm by using the multi-scale
technique to handle widely different letter sizes while limiting the sensitivity of the algorithm
to various artifacts. For text tracking, we describe four basic ways of combining a text detector
and a text tracker, and we developed a specific tracker based on a particle-filter which exploits
the T-HOG recognizer. For rigid object tracking we developed a new accurate and robust algo-
rithm (AFFTRACK) that combines the KLT feature tracker with an improved camera calibration
procedure. We extensively tested our algorithms on several benchmarks well-known in the lit-
erature. We also created benchmarks (publicly available) for the evaluation of text detection
and tracking and rigid object tracking algorithms.
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Resumo expandido da tese

Visão computacional pode ser definida como a análise de informações visuais, por exemplo em

imagens digitais, vídeos, para extrair informações simbólicas e quantitativas; tais como forma,

posição e tipo de objetos que aparecem nelas. Nesta tese nós consideramos três problemas de

visão computacional:

(1) a detecção e reconhecimento de objetos planos em imagens de cenas reais;

(2) rastreamento desses objetos de texto em vídeos digitais;

(3) rastreamento de um objeto arbitrário 3D com forma conhecida em um vídeo digital.

Estes problemas são os assuntos das Partes I, II e III desta tese, respectivamente.

No problema (1) o objetivo é localizar os objetos físicos de texto na scena; o que não in-

clui a identificação dos caracteres que compõem aqueles textos, problema este conhecido como

reconhecimento óptico de caracteres ou OCR. Os objetos rastreados no problema (2) não são

conhecidos a priori e são determinados pelo próprio algoritmo de detecção de texto. Como eles

são planos, e tem tamanho e proporção desconhecidos, suas posições no espaço 3D não podem

ser determinadas a partir de suas projeções; portanto, eles são representados somente como re-

giões no domínio da imagem. No problema (3), por outro lado, o objeto de interesse é rastreado

através de um conjunto de marcas planas não coplanares (não necessariamente textuais) cuja

aparência e posição relativa são dadas como entrada. Com essas informações, somos capazes

de determinar, para cada quadro, a posição 3D exata do objeto relativo a câmera.

Reconhecimento e detecção de texto

Na Parte I desta tese, estamos interessados principalmente no problema da classificação

texto/não-texto. Este problema recebe como dado de entrada uma sub-imagem específica de
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uma foto digital ou de um quadro de vídeo. A saída é uma decisão binária que idealmente deve

ser ‘VERDADEIRO’ se a sub-imagem contém textos com caracteres latinos (ou similares) e

‘FALSO’ caso contrário. Veja a Figura 1. Este problema surge em muitas aplicações, como

controle e monitoramento de velocidade de carros baseado em placas de tráfego e sinalização e

construção de diretórios de lojas e serviços por rua.

Figura 1: Classificação de texto: à esquerda a imagem de entrada e uma instância da janela (em
preto) utilizada para classificar as regiões da imagem. Ao centro, a saída de um detector por
janela deslizante usando o classificador T-HOG+SVM, codificado como a cor do pixel central
da janela (tons quentes para saídas positivas e tons frios para saídas negativas). À direita, a
união das 100 janelas com os maiores scores de classificação.

Especificamente, exploramos o uso do histograma das orientações dos gradientes (HOG) [24]

para o problema acima descrito. Classificadores baseados em HOG são utilizados para o reco-

nhecimento de pedestres [24], de objetos sólidos [94], e para a detecção de texto [34, 72, 87, 93].

Nesta tese, descrevemos um novo classificador de texto, Text HOG (T-HOG) [68], que acura-

damente e eficientemente caracteriza textos de uma linha. O T-HOG é uma melhoria do HOG

padrão, otimizado para a tarefa específica de reconhecimento de linhas de texto. Por meio de

uma série extensa de testes, nós mostramos experimentalmente que T-HOG é mais preciso que

o HOG padrão, para reconhecimento de linhas de texto, para uma ampla gama de configurações

de parâmetros.

Mostramos que a combinação de um detector de texto “permissivo”, SNOOPERTEXT [66],

com um classificador T-HOG como filtro de saída supera outros detectores de texto estado-da-

arte descritos na literatura [27], incluindo os vencedores do desafio ICDAR [55]. Incidental-

mente, no decorrer dos testes, detectamos falhas significativas na medida de avaliação utilizada

no ICDAR [57], e então desenvolvemos uma medida mais robusta. Também melhoramos a

eficiência do detector SNOOPERTEXT através de técnicas multiescala que permitem a detecção

de caracteres com tamanhos variados e que o tornam imune à ruídos aleatórios e a variações na

xxii



textura.

O classificador T-HOG pode ser utilizado em diversas aplicações tais como a detecção de

texto, rastreamento de texto, e reconhecimento por OCR. Em particular, nesta tese mostramos

que o T-HOG pode ser utilizado por si só em detecção de texto, através de uma abordagem

janela deslizante (veja a Figura 1), e pode também ser utilizado como um componente de um

algoritmo para rastreamento de texto.

Rastreamento de texto

Em algumas aplicações de detecção de texto, a entrada é um vídeo ao invés de uma imagem

estática. Os exemplos incluem a indexação automática de bibliotecas de vídeos, a construção

de diretórios de negócios a partir de vídeos obtidos por câmeras montadas em veículos, a iden-

tificação de veículos por suas placas, e a geração de descrições de áudio a partir de imagens do

ambiente para ajudar pessoas com problemas de visão. Veja a Figura 2.

Figura 2: Uma aplicação para rastreamento de texto.

Para estas aplicações, não é suficiente aplicar um detector de texto separadamente em cada

quadro. Esta abordagem simplista ignora a coerência temporal entre quadros consecutivos de

um mesmo vídeo, e portanto produz milhares de regiões de texto detectadas que nem sempre

contém a mesma informação textual. Para evitar esta redundância, é necessário rastrear cada

objeto físico de texto através de quadros sucessivos. Além de prover uma saída mais sucinta,

um algoritmo de rastreamento de texto pode explorar a redundância entre quadros para obter re-

sultados mais precisos e consistentes do que os obtidos por detecção de texto quadro-a-quadro.
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Finalmente, um rastreador de texto também pode utilizar técnicas de super-resolução para ex-

trair imagens de texto com uma maior qualidade e resolução que àquelas obtidas a partir de

qualquer quadro único.

Com esta motivação, consideramos na Parte II da tese o problema da detecção de texto e

rastreamento. Este problema recebe como dado de entrada um vídeo digital. A saída consiste

em um conjunto de regiões candidatas a texto para cada quadro do vídeo e a identificação das

regiões em quadros distintos que supostamente pertencem ao mesmo objeto físico de texto. Veja

a Figura 3. Tal como na Parte I, estamos principalmente interessados em textos presentes em

Figura 3: Saída de um algoritmo de rastreamento de texto: regiões de texto detectadas (retân-
gulos) e a informação de rastreamento (setas).

vídeos de cenas urbanas externas ou no interior de prédios.

Nossa contribuição principal para este problema é a descrição e análise de quatro estratégias

para rastreamento de texto, que diferem na maneira como a detecção de texto e o rastreamento

são intercalados. A maioria das soluções existentes para o problema são variações destes quatro

algoritmos.

Outra contribuição nossa é a definição de métricas especiais para avaliar o desempenho de

sistemas de rastreamento de texto. Essas métricas avaliam o sistema com base em três aspectos:

(1) acurácia na detecção de regiões de texto: a habilidade em detectar objetos de texto visí-

veis em um quadro;

(2) acurácia detecção de objetos de texto: a habilidade em detectar os diferentes objetos de

texto ao menos uma vez em algum quadro do vídeo;

(3) acurácia no rastreamento de objetos de texto: a habilidade em identificar regiões que

pertencem ao mesmo objeto de texto em diferentes quadros.
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Nós também desenvolvemos um rastreador especificamente projetado para objetos de texto,

baseado em filtro de partículas e no classificador T-HOG. O classificador T-HOG é utilizado

duas vezes nesse rastreador: por um lado, como uma assinatura da região da imagem, para

avaliar a similaridade entre o conteúdo de duas regiões em quadros sucessivos; e, por outro lado,

como um classificador, para determinar se o conteúdo da região extrapolada tem aparência de

texto.

Finalmente, como parte deste trabalho, nós também desenvolvemos uma base de dados com

seis vídeos reais de cenas urbanas, com as correspondentes anotações XML [62], que esperamos

que sejam úteis a outros pesquisadores que trabalham no mesmo problema.

Rastreamento de objetos 3D

O rastreamento do movimento de objetos rígidos no espaço tri-dimensional é um problema

geral na análise de vídeos com uma ampla gama de aplicações, que incluem a manipulação

e montagem por rôbos, gestão de frotas de veículos e rastreamento, navegação autônoma, e

realidade aumentada (a sobreposição de imagens virtuais em imagens do mundo real, tal como

na Figura 4).

Figura 4: Realidade aumentada.

Para resolver este problema não é necessário um conhecimento completo sobre a forma ou

aparência do objeto; basta rastrear um número suficiente de marcas fixadas sobre o mesmo.

Portanto, na Parte III da tese, nós consideramos o rastreamento de objetos rígidos tridimensio-

nais baseado em marcas (características); mais precisamente, o rastreamento de objetos sólidos

(tais como um caminhão ou um pacote) através de um conjunto de marcas bi-dimensionais co-

nhecidas fixadas sobre a sua superfície. As marcas podem ser intrínsicas ou acidentais (tais
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como letras, rótulos, tomadas de parede, logos, etc.), ou marcas fiduciais fixadas sobre o objeto

especificamente para fins de rastreamento.

Os dados de entrada para este problema são: um vídeo digital e uma lista de marcas a

rastrear, que inclui a posição de cada marca no objeto, bem como, a posição aproximada da

mesma no primeiro quadro. A saída consiste na posição do objeto no espaço, relativa à câmera,

e outros parâmetros de câmera relevantes (tais como o fator de zoom), para cada quadro do

vídeo. Em particular, se o objeto rastreado é fixo no ambiente ou outra estrutura estacionária, a

saída nesse caso é a posição absoluta da câmera em cada quadro. Veja a Figura 5.
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Figura 5: Rastreamento de objetos rígidos através de marcas conhecidas e calibração de câmera.

Nossa principal contribuição a este problema é a descrição de um algoritmo de rastreamento

denominado AFFTRACK [65]. Este algoritmo utiliza uma combinação sinérgica de dois módu-

los principais: um rastreador de marcas (FF), e um calibrador de câmera (CC). O rastreador

determina a posição de cada marca separadamente no próximo quadro, e o calibrador calcula
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a posição da câmera a partir dessas posições. Os parâmetros calibrados da câmera para cada

quadro do vídeo são então utilizados para prever a posição e aparência de cada marca no pró-

ximo quadro. A sinergia entre esses dois módulos permite que AFFTRACK recupere marcas

após oclusões de duração arbitrária.

Um aspecto chave do AFFTRACK é a utilização de pesos de confiança para expressar a

confiabilidade de cada característica em cada quadro. Este peso inicialmente depende da si-

milaridade das marcas identificadas pelo rastreador, e é iterativamente ajustado de acordo com

a consistência global das posições das marcas. Essa classificação “nebulosa” da confiabili-

dade das posições das marcas contrasta com a classificação binária inlier/outlier utilizada na

abordagem RANSAC [30].

AFFTRACK inova em relação a outros rastreadores de objetos 3D descritos na literatura em

vários aspectos: ele permite o rastreamento de objetos em vídeos com zoom variável e variação

na distorção da lente; ele não requer um modelo geométrico completo do objeto; e ele também

não requer a seleção de quadros chave. Em nossos testes, AFFTRACK revelou-se mais robusto

e acurado que rastreadores populares como os incluídos no ARToolKit [40] de H. Kato e na

biblioteca OpenCV [16] da Intel. Nossa esperança é que AFFTRACK seja útil como uma base

para outros algoritmos de visão computacional.

Como sub-produto de nossa avaliação do AFFTRACK, nós também desenvolvemos uma

base de dados com oito vídeos reais e nove vídeos sintéticos [61]. Os gabaritos disponíveis para

os vídeos sintéticos incluem as posições exatas de cada característica e a calibração da câmera

para cada quadro.
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Résumé étendu de la thèse

Un champ important de la Vision par ordinateur porte sur l’analyse de l’information visuelle

des images numériques ou des vidéos, pour en extraire des informations symboliques et quan-

titatives, comme la forme, la position ou le type d’objets qui y apparaissent. Dans cette thèse,

nous considérons trois problèmes de vision par ordinateur:

(1) la détection et la reconnaissance d’objets de texte dans des images de scènes réelles;

(2) le suivi de ces objets de texte dans les vidéos;

(3) le suivi d’objets tridimensionnels rigides et arbitraires avec des amers connus dans une

vidéo numérique.

Ces problèmes sont les sujets des Parties I, II et III de cette thèse, respectivement.

Les objets suivis dans le problème (2) ne sont pas connus à priori et sont déterminés par

l’algorithme de détection de texte. Comme ils sont plats mais de taille et de proportion incon-

nues, leur position dans l’espace 3D ne peut être déterminée à partir de leurs projections. Par

conséquent, ils seront représentés comme des régions du domaine image. Dans le problème (3)

en revanche, les objets d’intérêt sont suivis en considérant un ensemble d’amers plans connus et

non-coplanaires (pas nécessairement textuel) dont les apparitions et les positions relatives sont

données en entrée. Avec cette information, nous sommes en mesure de déterminer, pour chaque

trame, la position 3D complète de l’objet par rapport à la caméra.

Détection et reconnaissance de texte

Dans la Partie I de la thèse, nous nous intéressons principalement au problème de la clas-

sification texte/non-texte. Les données d’entrée dans ce cas sont une sous-image d’une photo

numérique ou d’une trame d’une vidéo numérique. La sortie de l’algorithme est une décision

binaire qui devrait être idéalement ‘TRUE’ si l’image contient un texte avec des caractères

romans et ‘FALSE’ sinon (voir la Figure 6). Ce problème se pose dans de nombreuses applica-

xxix



tions, telles que la surveillance, le contrôle de la vitesse d’un véhicule en fonction des panneaux

de signalisation, ou encore la construction de bases de données concernant les information trou-

vées communément dans des villes (noms de rues, noms de magasins, etc.).

FIG. 6 – Classification de texte : à gauche, l’image d’entrée et la fenêtre (en noir) utilisée pour
classer les régions de l’image. Au centre, la sortie de la classification T-HOG+SVM avec une
fenêtre glissante sur chaque pixel de l’image. Chaque pixel a été codé avec un code couleur:
des couleurs chaudes pour une sortie positive (correspondant à du texte), et des couleurs froides
pour une sortie négative (correspondant à du non-texte). À droite, on présente l’union des 100
fenêtres avec les scores les plus élevés.

Plus précisément, pour la reconnaissance de texte, nous explorons l’utilisation des histo-

grammes de gradients orientés (HOG) [24]. Les HOG classificateurs ont été utilisés pour la

reconnaissance des piétons [24], des objets rigides [94], et pour la détection de texte [34, 72,

87, 93]. Nous décrivons un classificateur dédié au traitement du texte roman, Texte HOG (T-

HOG) [68], qui caractérise efficacement et précisément les lignes de textes en style roman. Le

T-HOG est une amélioration du HOG standard, optimisé pour la tâche spécifique de reconnais-

sance de lignes de texte. Par une série de tests, nous montrons expérimentalement que le T-HOG

est plus précis dans la reconnaissance des lignes de texte que le HOG standard, pour une large

gamme de paramètres.

Le classificateur T-HOG est utile dans de nombreuses applications comme la détection

et le suivi du texte dans des vidéos, et la reconnaissance par OCR. Dans cette thèse, nous

montrons en particulier comment le classificateur T-HOG peut être utilisé tout seul comme

un détecteur de texte, à travers le concept de fenêtre glissante. Il peut aussi être utilisé comme

une composante importante d’un algorithme de suivi de textes. Nous montrons également que

la combinaison d’un détecteur de texte, SNOOPERTEXT [66] avec un classificateur T-HOG en

post-filtrage, surpasse les algorithmes de l’état de l’art pour la détection de texte décrit dans la

littérature [27], y compris ceux de la compétition ICDAR [55]. De plus, lors de l’évaluation de
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notre système, nous avons détecté des faiblesses significatives concernant la mesure standard

utilisée pour comparer les systèmes dans la compétition ICDAR [57], et nous avons développé

une mesure plus robuste.

Suivi du texte

Dans certaines applications de détection de texte, l’entrée de l’algorithme est un flux vidéo

au lieu d’une seule image statique. Dans ce cas, les exemples applicatifs concernent l’indexation

automatique de bibliothèques vidéo, la construction de bases de données d’adresse de rues à

partir de vidéos prises par une caméra installée sur un véhicule, l’identification des véhicules

par leurs plaques d’immatriculation, et la génération de descriptions sonores de l’environnement

pour aider les personnes mal voyantes (voir la Figure 7).

FIG. 7 – Une application pour le suivi de texte.

Pour ces applications, il n’est pas suffisant d’appliquer un détecteur de texte séparément pour

chaque trame. Cette approche simpliste qui ignore la cohérence temporelle entre les images de la

vidéo, détecte généralement des milliers de zones de texte avec une redondance très importante.

Pour éviter ce problème, il est nécessaire de suivre chaque objet physique travers les trames

successives de la vidéo. En plus d’offrir une sortie plus succincte, un algorithme de suivi de texte

peut exploiter la redondance entre les trames pour surpasser, en termes de précision et rappel,

les détecteurs de texte appliqués image par image. Enfin, un tracker de texte peut également

employer des techniques de super-résolution pour extraire des composantes de texte avec une

meilleure résolution et une meilleure qualité que celles obtenues à partir d’une seule trame.
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Fort de cette motivation, nous considérons dans la Partie II de la thèse le problème de dé-

tection et de suivi de composantes textuelle. Les données d’entrée pour ce problème sont des

vidéos numériques. La sortie est un ensemble de régions, contenant possiblement du texte, dans

chaque trame de la vidéo, ainsi que l’identification des régions de texte supposées contenir les

mêmes caractéristiques physiques (voir la Figure 8).

FIG. 8 – La sortie d’un algorithme de suivi de texte montrant les zones de texte détectées
(rectangles) et les informations de suivi (flèches).

Comme dans la Partie I, nous nous intéressons principalement aux zones de texte intégrées

dans les scènes naturelles urbaines ou les scènes d’intérieur de bâtiments. La vidéo est généra-

lement enregistrée par une caméra en mouvement, tenue par la main ou fixée sur un véhicule.

Notre contribution à ce problème est la description et l’analyse de quatre méthodes princi-

pales de suivi de textes, qui diffèrent de la façon dont ils entrelacent la détection et le suivi. La

plupart des solutions existantes au problème ci-dessus sont des variations de ces quatre algo-

rithmes.

Une autre contribution de ce travail, concerne la définition des mesures spécifiques pour

évaluer la performance des systèmes de suivi de texte. Ces mesures évaluent la précision d’un

système basé sur trois aspects:

(1) la détection de zone de texte: la capacité à détecter des objets de texte visibles dans une

trame;

(2) la détection d’objets de texte: la capacité à détecter des objets de texte dans n’importe

quelque part de la vidéo;

(3) suivi des objets de textes: la capacité d’identifier les régions qui appartiennent au même

objet de texte dans différentes trames.

Nous avons également développé un tracker spécialement conçu pour les objets de texte,

basé sur un filtre particulaire exploitant le T-HOG. Le T-HOG est utilisé deux fois dans ce
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tracker: en premier lieu, comme une signature de régions de l’image afin d’évaluer la similitude

entre deux régions dans des trames successives et, en deuxième lieu, comme un classificateur

pour mesurer combien le contenu d’une région prédite ressemble à des informations textuelles.

Finalement, dans le cadre de ce travail nous avons également créé une base de données de

six vidéos de scènes urbaines, avec des annotations XML associées [62], qui, nous l’espérons,

seront utiles à d’autres chercheurs travaillant sur ce problème.

Suivi d’objets 3D

Le suivi du mouvement d’objets rigides dans l’espace 3D est un problème général d’analyse

des vidéos, avec une large gamme d’applications dans des thématiques diverses : robotique (e.g.

navigation autonome, manipulation et assemblage), analyse vidéo (e.g. suivi de véhicules pour

la gestion du trafic), et réalité augmentée (superposition d’images virtuelles sur des images du

monde réel, comme dans la Figure 9).

FIG. 9 – Réalité augmentée.

Pour résoudre ce problème, il n’est pas nécessaire d’avoir une connaissance complète de la

forme et de l’apparence de l’objet. Il est possible, plus simplement, de suivre un nombre suffi-

sant de caractéristiques fixes sur l’objet. Ainsi, nous abordons dans la Partie III de cette thèse le

problème du suivi d’un objet tridimensionnel rigide basé sur le suivi de caractéristiques parti-

culières. Par exemple, nous proposons une méthode dédiée au suivi d’un objet solide (comme

un camion ou un paquet) en suivant un ensemble de points de référence (amers) connus en deux

dimensions et fixés à la surface de cet objet. Dans ce cas, les amers peuvent être soit intrin-

sèques ou accidentelles (des lettres, des étiquettes, des prises murales, des logos, etc.), ou des

caractéristiques discriminantes propres à l’objet.
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Dans ce contexte de suivi d’objets 3d, les données d’entrée sont une vidéo numérique, une

liste de caractéristiques qu’on cherche à suivre, y compris leur emplacement sur l’objet, ainsi

que la position approximative de la projection de chaque caractéristique dans la première image.

La sortie est représentée par la position de l’objet dans l’espace par rapport à la caméra et par

le réglage d’autres paramètres de la caméra (tels que le facteur de zoom et la distorsion) pour

chaque image. En particulier, si l’objet suivi fait partie d’un bâtiment ou d’une autre structure

stationnaire, la sortie est la position absolue de la caméra pour chaque image. Voir la Figure 10.

Scene model

.
YX

Z

ppaaaaaaaaaaaaaaaaaaaaaa

--[
[

[
[

[
[

[
[

[
[

[
[

[
[

OO
aaaaaaaaaaaaaaaaaaaaaaa

[
[

[
[

[
[

[
[

[
[

[
[

[
[

[

<593,0,638><1130,0,607><1660,0,604> <0,362,603> <0,1085,603>

<0,359,124>
<0,1074,124>

<582,0,123>
<1660,0,123>

Input image

Tracking

Camera calibration

FIG. 10 – Suivi d’objet rigide en utilisant d’amers connus et la calibration de la caméra.

Notre contribution pour résoudre ce problème réside dans la description d’un algorithme

baptisé AFFTRACK [65]. Il correspond à une combinaison synergique de deux procédures prin-

cipales: un tracker de caractéristiques multi-échelle (FF) qui localise la position des caracté-

ristiques (amers) sur chaque image, et une calibration de la caméra (CC) flexible qui calcule
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les paramètres de la caméra à partir de ces positions. Les paramètres de la caméra calibrée pour

chaque image de la vidéo sont utilisés pour prédire la position et l’apparence de chaque élément

dans l’image suivante. La synergie entre ces deux modules permet à AFFTRACK de récupérer

les amers après une occultation de durée arbitraire.

Un aspect clé de AFFTRACK est l’utilisation de poids de confiance pour exprimer la fiabi-

lité de chaque caractéristique sur chaque image. Ces poids dépendent d’abord de la qualité de la

correspondance obtenue par le tracker, et sont ensuite ajustés itérativement selon la consistance

de la position des amers avec le modèle calibré. Ce classement “flou” de la fiabilité de la po-

sition constitue une distinction importante par rapport à la classification binaire “inlier/outlier”

(caractéristique pertinente/intrus) utilisée par l’algorithme standard RANSAC [30].

AFFTRACK présente de meilleurs résultats que les méthodes publiées dans la littérature,

en ce qui concerne la manipulation de vidéos avec un zoom et/ou des distorsions de lentille va-

riables; par ailleurs, il ne demande pas de modèle géométrique complet de l’objet, ni la sélection

d’images clés. Lors de nos tests, AFFTRACK a été plus robuste et plus précis que les trackers

d’objets populaires inclus dans H. Kato’s ARToolKit [40] et dans la bibliothèque OpenCV [16].

Nous espérons qu’AFFTRACK sera utile comme base de mise au point d’autres algorithmes de

vision par ordinateur.

Comme un sous-produit de notre évaluation de AFFTRACK, nous avons également créé

une base de données avec huit vidéos réelles et neuf vidéos générées par ordinateur [61]. La

vérité terrain inclue des coordonnées précises pour chaque caractéristique et les paramètres de

calibration de la caméra dans chaque image.
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Chapter 1

Introduction

Computer vision can be defined as the parsing of visual information, e.g. in digital images,
videos, to extract symbolic and quantitative information; such as the shape, position and type
of objects that appear in them. In this thesis we consider three computer vision problems:

(1) the detection and classification of flat text objects in images of real scenes;

(2) tracking of such text objects in a digital video;

(3) tracking an arbitrary 3D object with known shape in a digital video.

These problems are the topics of parts I, II, and III of this thesis, respectively.
In problem (1), the goal is to locate the physical text objects in the scene; it does not include

the identification of the characters in those texts, which is a separate problem known as optical

character recognition or OCR. The text objects tracked in problem (2) are not known a priori
and are determined by some text detection algorithm that solves problem (1). Since they are
flat, and have unknown size and aspect ratio, their positions in 3D space cannot be determined
from their projections; therefore, they are represented only as regions of the image domain.
In problem (3), on the other hand, the object of interest is tracked by following a set of non-
coplanar flat markings (not necessarily textual) whose appearances and relative positions are
given as input. With this information we are able to determine, for each frame, the full 3D
position of the object relative to the camera.

1.1 Text detection and classification

In part I of the thesis, we are mainly concerned with the text/non-text classification problem.
The input data for this problem is a specific sub-image of a digital photo or video frame. The
output is a binary decision that ideally should be ‘TRUE’ if the sub-image contains a text in
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2 Chapter 1. Introduction

Roman-like characters and ‘FALSE’ otherwise. See Figure 1.1. This problem arises in many
applications, such as monitoring and controlling car speed based on traffic signs and construct-
ing street business directories.

Figure 1.1: Text classification: in left the input image and the window (in black) used to classify
the image regions. In center, the output of the T-HOG+SVM sliding window classifier on every
pixel of the image, encoded as the color of the central pixel (warm tones for positive output,
cold tones for negative). In the right, the union of the 100 windows with highest scores.

Specifically, we explore the use of histogram of oriented gradients (HOG) [24] for the above
problem. HOG-based classifiers have been used for the recognition of pedestrians [24], solid
objects [94], and for text detection [34, 72, 87, 93]. We describe a novel text classifier, Text HOG

(T-HOG) [68], that efficiently and accurately characterizes single-line texts. The T-HOG is an
improvement of the standard HOG, optimized for the specific task of text line classification. By
an extensive series of tests, we show experimentally that T-HOG is more accurate, for text line
classification, than the standard HOG for a wide range of parameters settings.

We show that the combination of a “permissive” text detector, SNOOPERTEXT [66], with
a T-HOG classifier as a post-filter outperforms state-of-the-art text detectors described in the
literature [27], including the winners of the ICDAR challenge [55]. Incidentally, while evalu-
ating this system we detected significant weaknesses of the ICDAR scoring method [57], and
we developed a more robust one. We also improved the efficiency, accuracy and robustness of
the SNOOPERTEXT detector by using the multi-scale technique to handle widely different letter
sizes and to render it immune to small-scale noise and texture.

We expect that the T-HOG classifier will be useful for text detection, text tracking, OCR,
and related applications. In particular, we show how the T-HOG classifier could be used by
itself in a sliding-window text detector, as well as a component of a text tracking algorithm.

1.2 Text tracking

In some text detection applications, the input is a video stream instead of a static image. Ex-
amples include the automatic indexing of video libraries, the construction of street directories



1.2. Text tracking 3

from videos taken by car-mounted cameras, the identification of vehicles by their license plates,
and the generation of audio descriptions of the environment for blind people. See Figure 1.2.

Figure 1.2: An application for text tracking.

For those applications, it is not sufficient to apply a text detector separately to each frame. This
simplistic approach ignores the temporal coherence between video frames, and therefore it will
usually produce thousands of detected text regions with almost, but not always quite, the same
textual information. To avoid this redundancy, it is necessary to track each physical text object
across successive frames. Besides providing more succinct output, a text tracking algorithm
can exploit the redundancy between frames to outperform single-frame text detectors in both
precision and recall. Finally, a text tracker can also use super-resolution techniques to extract
images of the text with much higher resolution and quality than those of any single frame.

With this motivation, in part II of the thesis we consider the text detection and tracking

problem. The input data for this problem is a digital video. The output is a set of candidate text
regions for each video frame and the identification of the regions which supposedly belong to
the same physical text object. See Figure 1.3. As in part I, we are primarily concerned with

Figure 1.3: The output of a text tracking algorithm, showing the detected text regions (rectan-
gles) and the tracking information (arrows).
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text embedded in natural urban scenes or building interiors. The video is typically recorded by
a moving camera, either hand-held or fixed on a vehicle.

Our main contribution to this problem is the description and analysis of four basic text
tracking methods, which differ on how they interleave text detection and tracking. The most
efficient ones incorporate many ideas from SNOOPERTRACK [67], an algorithm for the auto-
matic detection and tracking of text objects — such as store names, traffic signs, license plates,
and advertisements — in videos of outdoor scenes. Most of the existing solutions to the above
problem are variations of these four algorithms.

Another contribution is the definition of special metrics to evaluate the performance of text
tracking systems. These metrics evaluate a system’s accuracy based on three aspects: text region

detection, the ability to detect visible text objects in a frame; text object detection, the ability
to detect text objects somewhere in the video; and text object tracking, the ability to identify
regions that belong to the same text object in different frames.

We also developed a tracker specifically designed for text objects, based on particle filtering
and the T-HOG classifier. The T-HOG is used twice in this tracker: first, as an image region
signature, to evaluate the similarity between the contents of two regions in successive frames;
and, second, as a classifier, to measure how much “text-like” is the contents of a predicted
region.

Finally, as part of this work we also created a benchmark of six videos of urban scenes, with
associated XML annotations [62], which we hope will be useful to other researchers working
on this problem.

1.3 Tracking of 3D objects

Tracking the motion of rigid objects in the tri-dimensional space is a general video analysis
problem with a wide range of applications, including robotics handling and assembly, vehicle
fleet management and tracking, autonomous navigation, and augmented reality (the overlay of
virtual imagery on real-world images, as in figure 1.4).

To solve this problem it is not necessary to have full knowledge of the object’s shape and
appearance; it is enough to track a sufficient number of features fixed on it. Therefore, in
part III of this thesis we address the feature-based tracking of a tri-dimensional rigid object;
namely, the tracking of a solid object (such as a truck or a package) by following a set of
known two-dimensional features attached to its surface. The features can be either intrinsic or
accidental (such as letters, labels, wall outlets, logos, etc.), or fiducial marks attached to the
object specifically for the purpose.

The input data for this problem consists of a digital video, a list of the features to be tracked,
including their placement on the object, as well as the approximate position of the projection of
each feature in the first frame. The output consists of the position of the object in space relative
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Figure 1.4: Augmented Reality.

to the camera and other relevant camera parameters (such as zoom factor) for each frame. In
particular, if the tracked object is part of a building or some other stationary structure, the output
is the absolute position of the camera for each frame. See Figure 1.5.

Our major contribution to this problem is the description of an algorithm nicknamed
AFFTRACK [65]. It is a synergistic combination of two main procedures: a multi-scale fea-

ture finder (FF) that locates the positions of the features (markers) on each frame, and a flexible
camera calibrator (CC) that computes the camera parameters from those positions. The cali-
brated camera parameters for each video frame are used to predict the position and appearance
of each feature in the next frame. The synergy between those two modules allows AFFTRACK

to recover features after occlusions of arbitrary duration.

A key aspect of AFFTRACK is the use of a confidence weight to express the reliability of
each feature on each frame. This weight initially depends on the quality of the match obtained
by the finder, and is then adjusted iteratively according to the feature’s positional consistency
with the calibrated model. This “fuzzy” grading of feature position reliability contrasts with the
binary inlier/outlier classification used by RANSAC [30].

AFFTRACK improves on other object trackers described in the literature, in that it can han-
dle videos with variable zoom and variable lens distortion; it does not require a complete ge-
ometric model of the object; and it does not require the selection of key frames. In our tests,
AFFTRACK was more robust and accurate than the popular object trackers included in H. Kato’s
ARToolKit [40] and in the OpenCV library [16]. We hope that AFFTRACK may be useful as a
building block of other computer vision algorithms.

As a byproduct of our evaluation of AFFTRACK, we also created a benchmark of eight real
and nine computer-generated videos [61], with accurate feature positions and camera calibra-
tions provided for each frame.
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Figure 1.5: Feature-based rigid object tracking for camera calibration.

1.4 Publications

The publications directly related to this thesis (in chronological order), are:

• Integrating Tsai’s Camera Calibration Algorithm with KLT Feature Tracking.
R. Minetto, N.J. Leite and J. Stolfi.
Proceedings of IV Workshop de Visão Computacional. 2008.

• AFFTRACK: Robust Tracking of Features in Variable-Zoom Videos.
R. Minetto, N.J. Leite and J. Stolfi.
IEEE International Conference on Image Processing (ICIP). 2009.

• SNOOPERTEXT: A Multiresolution System for Text Detection in Complex Visual Scenes.
R. Minetto, N. Thome, M. Cord, J. Fabrizio and B. Marcotegui.
IEEE International Conference on Image Processing (ICIP). 2010.
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• SNOOPERTRACK: Text Detection and Tracking for Outdoor Videos.
R. Minetto, N. Thome, M. Cord, N.J. Leite and J. Stolfi.
IEEE International Conference on Image Processing (ICIP). 2011.

• Text Detection and Recognition in Urban Scenes.
R. Minetto, N. Thome, M. Cord, J. Stolfi, F. Precioso, J. Guyomard and N. J. Leite.
IEEE/ISPRS Workshop on Computer Vision for Remote Sensing of the Environment
CVRS-ICCV. 2011.
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Chapter 2

Introduction

In this part of the thesis we consider the text/non-text classification problem. The input data
for this problem is a specific sub-image of a digital photo or video frame of an arbitrary 3D
scene. The output is a binary decision that ideally should be ‘TRUE’ if the sub-image contains
a text in Roman-like characters and ‘FALSE’ otherwise. Algorithms that solve this problem
are important components of other image processing software, such as text detectors and text
trackers.

2.1 Motivation

Text detection of arbitrary text (such as store names, traffic signs, and indoor sign) in pho-
tographs of unstructured 3D scenes is a challenging task in computer vision, with many poten-
tial applications such as traffic monitoring, geographic information systems, road navigation,
and scene understanding. However, no efficient solution yet exists. Most Optical Character
Recognition (OCR) algorithms are designed for scanned documents, and perform very poorly
on photos of 3D scenes [68]. The reasons include extreme text size and font variations, tilted
or curved baselines, strong background clutter and difficult illumination conditions. Much bet-
ter results are obtained by applying a standard OCR algorithm to the output of a generic text
detection algorithm [68].

Text detection has been extensively researched in recent years, but most systems described
in the literature are dedicated to specific contexts, such as automatic location of license plates [8]
or postal addresses in packages [71], or OCR for scanned documents. Relatively few systems
consider the extraction of arbitrary text objects in images of outdoor scenes [27, 35, 77, 57, 91].
Only recently, some benchmarks composed only by outdoor images are publicly available for
this purpose [1, 25].

11



12 Chapter 2. Introduction

2.2 Our solution

Our major contribution in this part is the use of the histogram of oriented gradients (HOG) [24]
for the text/non-text classification problem. HOG-based classifiers have been used for the recog-
nition of pedestrians [24], solid objects [94], and for text detection [34, 72, 87, 93]. Here we
describe a novel text classifier, Text HOG (T-HOG) [68], that efficiently and accurately charac-
terizes single-line texts. We expect that the T-HOG descriptor will be useful for text detection,
text tracking, OCR, and related applications. In particular, we show that the combination of
a “permissive” multi-scale text detector SNOOPERTEXT [66] (described in Section 6.1.1) with
a T-HOG based post-filter outperforms state-of-the-art text detectors described in the litera-
ture [27]. We also show how the T-HOG could be used by itself in a sliding-window text
detector, and as a component of a text tracking algorithm.

Figure 2.1: Image of a urban scene with text objects.

The T-HOG algorithm receives an axis-aligned rectangular sub-image of a digital image
and extracts from it a vector of real attributes, a descriptor that can be fed to any vector clas-
sifier, such as the support vector machine (SVM) [21]. The T-HOG descriptor is based on the
observation of Chen and Yuille [20] that different parts of Roman-like text have distinctive dis-
tributions of edge directions. Dalal and Triggs [24] showed that an effective way of capturing
the spatial distribution of gradient orientations for human recognition is to divide the sub-image
into a rectangular grid of cells, compute a HOG for each cell, and concatenate those HOGs.
They used the term R-HOG (Rectangular HOG) for this composite descriptor.

The T-HOG descriptor is an improvement of R-HOG, optimized for the specific task of
text line classification. It differs from R-HOG by using modified gradient evaluation and nor-
malization methods, as well as a specific cell layout with blurred boundaries. We determine
experimentally the optimal cell tiling for text line classification, which turns out to be a division
of the candidate sub-image into horizontal stripes.

The T-HOG and R-HOG descriptors have several parameters that can be tuned to trade ac-
curacy for descriptor length. (Smaller descriptors are interesting, even if less accurate, because
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they are more computationally efficient and may help us to identify the aspects of the image that
are most relevant for text/non-text discrimination). Finally, we also compare the performances
of both classifiers experimentally for a wide range of parameter settings.

2.3 Statement of the problem

2.3.1 Images and pixels

For this thesis, a digital image is a 2D array of color values (pixels). For monochromatic images,
we assume that each pixel is a real number between 0 and 1. For color images, a pixel consists
of a separate measurement for each color channel (spectral band), e.g. the NTSC standard red
(R), green (G) and blue (B) channels. Usually, pixel values are the result of complicated color
space transformations and filtering, such as de-Bayering [12]. We assume these corrections
have all been applied to the input images.

It is sometimes convenient to convert RGB color images to monochromatic ones. For this
purpose we use the CIE 601-1 luminance formula 0.299 R + 0.587 G + 0.114 B.

The domain of an image with n columns and m rows is the axis-aligned rectangle with
upper left corner at (0, 0) and lower right corner at (n, m). The position of a point in the image
domain can be specified by its frame (or image) coordinates (xf , yf) relative to the upper left
corner of the image, with the Y axis pointing down. This assumption implies that the pixel in
column j and row i (indexed from 0) can be viewed as a unit square with opposite corners, at
coordinates (j, i) and (j + 1, i + 1), and center at (j + 0.5, i + 0.5).

2.3.2 Text objects

For this part of the thesis, a text object is any part of the physical scene carrying a string of two
or more letters that are easily recognizable and readable in the captured image. See Figure 2.1.
We are primarily concerned with texts written in the Roman alphabet or any of its variants, in
plain print-style (rather than cursive or ornate) fonts, with fairly “normal” geometry (straight
baseline, on smooth surfaces that are flat or moderately curved). We exclude isolated characters
since many items of real scenes are quite similar to certain Roman letters like ‘I’, ‘O’, etc.

We assume that the text consists of a single multi-character line, which can be tightly en-
closed by a rectangle in 3D space with a narrow margin all around, as in Figures 2.2(b,c).
Consecutive single character regions and multi-line text blocks, as in Figures 2.2(a,d) should be
joined or split into separate lines or words, respectively.

Finally, our method is designed for texts that contain a normal mix of characters. It may perform
poorly for texts that consist of similar simple letters, such as III.
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(a) (b) (c) (d)

Figure 2.2: Alternative segmentations of text objects: (a) characters, (b) words, (c) lines and (d)
blocks.

2.3.3 Text regions

We assume that the projection of a text object covers only a small portion of the image’s domain.
Therefore we can assume that the projection can be approximated by a parallelogram r, which
can be completely defined by its center pf ∈ R2 and two vectors uf , vf ∈ R2 such that pf±uf±vf

are the corners of r. See Figure 2.3 and 2.4(a).

Figure 2.3: The geometry of a text region.

Note that a text is legible in the image only if the angle θ between its normal direction in
space and the direction of view is not too large. Moreover it is difficult to distinguish an upright
font in oblique projection from a slanted font in a orthogonal projection. For these reasons,
we may as well assume that θ = 0, and therefore that the vectors uf and vf are perpendicular;
meaning that the parallelogram pf ± uf ± vf is a rectangle. See Figure 2.4(b).

Moreover, in some applications the vector us is known to be parallel to the camera’s hori-
zontal axis. In that case, we may also assume that the projected rectangle is aligned with the
image axes, i.e. uf = (|uf |, 0) and vf = (0, |vf |). Indeed, for computational expediency, one
often makes this assumption even in situations which do not quite satisfy this condition. See
Figure 2.4 (c).
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(a) (b) (c)

Figure 2.4: Modeling projected text line objects: by parallelograms (a), general rectangles (b)
and axis aligned rectangles (c).





Chapter 3

Related work

There is an extensive literature on text detection. Recently, some benchmarks [1, 3, 25] and
challenges [55] were organized to give a clear understanding of the current state-of-the-art of
such algorithms. Basically, the algorithms can be classified into top-down and bottom-up ap-
proaches. Top-down strategies [57] generally exhaustively sample all possible sub-regions in an
image, using a sliding window mechanism, looking first for text regions and then for characters.
Bottom-up strategies [19, 57, 27] first identify sub-structures that make up text letters, as con-
nected components or edges and merge these sub-structures to create a text region. However,
an exhaustive review of these algorithms is far outside the scope of this thesis, and the reader
can refer to the survey of Jung et al. [39], that covers some advances in this area.

Comparatively little has been published about text/non-text classification algorithms (our
primary interest in this thesis), although they are often present as components of text detectors.
This problem is often cast as a texture classification problem, and several texture descriptors
have been considered in the literature. For instance, in 2004, Kim et al. [41] described a text
recognizer that decomposes the candidate sub-image into a multi-scale 16 × 16 cell grid and
compute wavelet moments for each block. Then each block is classified as text or not using an
SVM. The ratio of text to non-text outcomes is used to decide if the entire sub-region is text
or non-text. In 2005, Ye et al. [90] described a similar text recognizer with multi-scale wavelet
decomposition but they used more elaborate features including moments, energy, entropy, etc.
In 2004, Chen and Yuille [20] proposed a descriptor that combines several features, including
2D histograms of image intensity and gradient, computed separately for the top, middle and
bottom of the text region, as well as for more complex slices subdivisions of the image– 89
features in total. Recently, some text detectors, such as the one described by Anthimopoulos et

al. in 2010, have used descriptors based on multi-scale local binary patterns (LBP) introduced
by Ojala et al. [70]. Their descriptor has 256 features.

The use of gradient orientation histograms (HOGs) as texture descriptors was introduced
by Dalal and Triggs in 2005 [24], for human recognition. HOG descriptors are used in some

17
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recent text recognizers, such as the one proposed in 2008 by Pan et al. [72]. They partition the
candidate sub-image into 14 cells, as proposed by Chen and Yuille, but compute for each cell a
4-bin HOG complemented by a 2× 3 array of LBP features. Their complete descriptor has 140
features.

Other HOG-based text recognizers have been proposed in 2009 by Hanif and Prevost [34]
for single-line text, and Wang et al. [87] for isolated Chinese and Roman characters as well
as single-line text. Hanif and Prevost’s descriptor has 151 features (16 cells each with a 8-bin
HOG, supplemented by 7 mean difference and 6 standard deviation features over 16 cells). The
descriptor of Wang et al. has 80 features (8 cells with 8-bin HOG and 1 mean difference feature
and 1 standard deviation).

These HOG-based text recognizers, and several others, use vertical cuts as well as horizontal
ones when partitioning the candidate region. The use of vertical cuts was apparently borrowed
from the Dalal and Triggs paper [24] on pedestrian recognition. They may be justifiable for
isolated characters, but they do not appear to be useful for multi-character texts of variable
width. In such texts, the gradient distribution is largely independent of horizontal position;
therefore, a cell layout with vertical cuts increases the size of the descriptor without providing
any additional relevant information.



Chapter 4

The T-HOG descriptor

4.1 Descriptor outline

Dalal and Triggs observed that a particular texture can often be characterized by the distribution
of the directions of the image gradient. If the texture consists of simple bi-level shapes (such as
Roman letters) then the orientations of the strongest gradients tell the orientations of the edges
of those shapes.

To capture the spatial variation of edge orientations, Dalal and Triggs divided the input
sub-image into a rectangular grid of (possibly overlapping) cells with nx columns and ny rows,
which they grouped into 2×2 blocks. Within each cell of each block, they computed a histogram
of the gradient directions (HOG), with nb bins. In these histograms the gradient direction of
each pixel is weighted by the gradient’s magnitude and by a Gaussian block weight mask. Their
complete descriptor (R-HOG) is a vector with nxnynb features that is the concatenation of
these nxny HOGs. (Note that up to four overlapping or coincident cells may cover the same
set of pixels, and each will generate a separate HOG, with different block weight functions.)
To reduce the effects of local contrast and brightness variations, the HOGs in each block are
normalized in a specific way.

Our T-HOG descriptor differs from the original R-HOG in some key details. First, we use
different methods to extract the candidate text region, to normalize it for size and contrast, and
to compute its gradient image. Secondly, the cell grid is simplified to a partition into horizontal
stripes (i.e we fix nx = 1). Instead of overlapping blocks and block weight functions, in the
T-HOG the cells are defined by overlapping cell weight functions. As a result, all internal cell
boundaries are blurred, unlike those of the R-HOG. See Figure 4.1. As detailed in chapter 5,
these changes significantly improved the discriminating power for our target objects—single-
line text regions of arbitrary length.
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4.2 Size and contrast normalization

The first step of the T-HOG algorithm is to extract the sub-image and scale it to a fixed height
H , maintaining its original aspect ratio. Since our method is based on analysis of character edge
orientations, the extracted sub-image must include at least one pixel of background all around
the text itself. The height H should be large enough for the characters to remain readable, but
small enough to eliminate most of the noise and other spurious details. For print-style Roman
characters (upper and lower case), we obtained the best results with H between 20 and 25
pixels.

In this step, we also convert the image from color to gray scale, since the human eye-brain
uses almost exclusively the brightness channel to recognize character shapes [29]. We observed
that objects in urban contexts are often obscured by non-uniform illumination and localized
shadows or reflections. To remove these artifacts, we apply to each sample V of the extracted
sub-image a contrast normalization procedure V ← 0.5 + (V −µ)/(3σ), where µ and σ are the
local mean and standard deviation, computed with a doubly binomial weight window of width
2H + 1. (The raw deviation σ is adjusted by σ ←

√
σ2 + ε2, where ε is the assumed standard

deviation of the image sampling noise.)

4.3 The basic HOG descriptor

By definition, the HOG descriptor of an arbitrary image I is a histogram of the gradient direction
θ(∇I), computed at each pixel, quantized into a small number nb of bins. Each pixel gradient
is added to the histogram with “mass” proportional to the gradient magnitude ρ(∇I), so as to
de-emphasize the random noise-related gradient directions that occur in flat parts of the image.
As observed by Dalal and Triggs, if θ(∇I) does not fall at the exact center of a bin, the mass
should be distributed between the two nearest bins by a linear splitting criterion. To compute the
gradient ∇I, we use the simple difference schema recommended by Dalal and Triggs, namely

∇I(x, y) =
1

2
(I(x + 1, y)− I(x− 1, y), I(x, y + 1)− I(x, y − 1))

For this formula, any non-existing pixel (outside the input sub-image) is assumed to be equal
to the nearest existing pixel. Note that we compute the gradient after grayscale conversion and
contrast normalization; whereas Dalal and Triggs compute the gradient in each color channel
and then pick the vector that has largest norm. The magnitude of the gradient is then estimated
by the formula

ρ(∇I)(x, y) =
√

max{0, |∇I(x, y)| − ε2}
Note that this formula is zero if the raw gradient norm |∇I| is smaller than the assumed sampling
noise deviation ε.
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that the gradient orientations are predominantly 0 (or 180) and 90 (or 270) degrees, reflecting
the predominance of vertical and horizontal strokes. Note also that the top and bottom parts
contain a larger proportion of horizontal strokes, so that the gradients there are mostly vertical.
The middle part, on the other hand, contains a larger proportion of vertical strokes and hence
of horizontal gradients. In all three regions there is a small amount of diagonal strokes, due to
letters such as ‘R’ and ‘M’; and to the rounded parts of letters such as ‘R’, ‘D’, and ‘O’. Finally,
note that opposite directions tend to be equally represented, due to the fact that the two edges
of a letter stroke have opposite gradients.

Figure 4.3: From left to right, the 16-bin HOG descriptors of the top, middle and bottom parts of
a text sub-image. The arrows indicate the contribution of specific letter strokes to the histogram.

For comparison, Figure 4.4 shows the HOG descriptors of top, middle and bottom regions
of some non-text images. Note that several of these HOGs are quite distinct from those of
Figure 4.3, and some are significantly unbalanced.

On the other hand, for an image containing an arbitrary single-line, multi-character text, the
expected distribution of gradient orientations is largely independent of the horizontal position
along the line, as long as the segment analyzed is wide enough to include one whole character.
This intuition was confirmed by extensive experimental tests; see Section 5.5.
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top middle bottom

Figure 4.4: Top, middle and bottom 16-bin HOG descriptors of some non-text images.

4.5 Cell weights

If the cells were defined by sharp boundaries, their HOGs would change drastically with small
displacements of the text inside the candidate sub-image, as letter strokes would shift from
one cell to the next. See Figure 4.5. To reduce this problem, the T-HOG cells are defined by
smooth cell weight functions. This choice made the T-HOG more robust to such problems. See
Figure 4.6.

Figure 4.5: Effect of sharp cell boundaries. Two different cropped sub-images of the same text
object. The HOG descriptors of the top, middle and bottom parts of each sub-image using sharp
cell boundaries.

Namely, let xmin, xmax, ymin, and ymax be the minimum and maximum pixel coordinates
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Figure 4.6: Effect of smooth cell boundaries. Two different cropped sub-images of the same
text object. The HOG descriptors of the top, middle and bottom parts of each sub-image using
smooth cell boundaries.

in the sub-image. For each pixel with center coordinates (x, y), we define the relative pixel

coordinates

X(x) =
x− xmin

xmax − xmin

Y (y) =
y − ymin

ymax − ymin

(4.1)

The weight of that pixel relative to a cell Cij in column i and row j of the cell grid is then
defined as wij(x, y) = ui(X(x))vj(Y (y)), where each function ui or vj is 1 at the nominal axis
the respective column or row, and falls smoothly to 0 as one moves away from it. The gradient
of that pixel contributes to the histogram of cell Cij with mass ρ(∇I)(x, y)wij(x, y), rather than
just ρ(∇I)(x, y).

4.5.1 Gaussian cell weights

For the one-dimensional weights ui and vj , we tested different families of functions (Gaussian
bells, Hann windows, Bernstein polynomials, etc). In these experiments, the best results were
obtained with Gaussian bell functions. Specifically, for ny ≥ 2 rows of cells, the vertical weight
function of cells in row j is

vj(Y ) = γ

(

Y, −µ0 +
1 + 2µ0

(ny − 1)j
,

σ0

ny

)

(4.2)

where µ0 = 0.01, σ0 = 0.5, and

γ(z, µ, σ) = exp

(

−(z − µ)2

2σ2

)

(4.3)

Figure 4.7 show these weights for ny = 3. As a special case, if ny = 1, the single vertical
weight function v0 is equal to 1 everywhere. Note that the top edges of the topmost cells and
the bottom edges of the bottommost cells are still sharp. The horizontal weight functions ui are
defined in the same way.
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w00 w01 w02

Figure 4.9: The Dalal and Triggs’s cell weight functions for a single block of 1 × 3 cells, with
the optimal block weight deviations σx = W/2, σy = H/2.

Dalal and Triggs for human recognition (σx = W/4, σy = H/4, corresponding to the default
wtscale = 2). One can obtain R-HOG weights somewhat similar to the T-HOG weights of

w00 w01 w02

Figure 4.10: The Dalal and Triggs’s cell weight functions for a single block of 1× 3 cells, with
the default block weight deviations σx = W/4, σy = H/4.

Figure 4.7 by using 1×ny overlapping blocks with one cell per block, as shown in Figure 4.11.
Comparing the cell weights of Figures 4.7 and 4.11, we observe that the latter assign much

w00 w01 w02

Figure 4.11: The Dalal and Triggs’s cell weight functions for 1 × 3 single-cell blocks, each
with height H/2 and overlapped with stride H/4, with the default block weight deviations
σx = W/4, σy = H/8.

lower mass to pixels along the edges of the sub-image (among other differences). Presumably
for that reason, the R-HOG classifiers with the weights of Figures 4.10 and 4.11 were less ac-
curate than R-HOG with the weights of Figure 4.9, for the same descriptor size; and all three
were worse than T-HOG.

4.6 Normalization

Both algorithms, R-HOG and T-HOG, normalize the resulting descriptor. Dalal and Triggs
use a per-block normalization scheme, which is intended to compensate for spatial variations of
lighting and contrast over the input image. Since the T-HOG algorithm removes those effects
beforehand (see Section 4.2), we simply divide the final descriptor by the sum of all features
plus a constant ǫ (L1 norm).
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4.7 Vector classification and thresholding

Like Dalal and Triggs, we use an SVM classifier [21] to turn the descriptor z ∈ RN into a
real-valued score f(z), such that positive scores mean ‘probably text’ and negative scores mean
‘probably non-text’. The SVM classifier is defined as

f(z) =
M
∑

i=1

αiK(zi, z)− b (4.4)

where K is the kernel, a function from RN × RN to R; the zi are the M fixed support vectors;
the αi are real weights; and b is the bias or decision threshold. Typically the support vectors
and weights are determined by a training procedure, from given representative samples of text
and non-text descriptors.



Chapter 5

Experiments

In this chapter, we describe an extensive set of experiments that we performed in order to deter-
mine optimum values for the various parameters of the R-HOG and T-HOG descriptors, and
to compare their performance in the basic text/non-text discrimination task. These experiments
strongly confirm the advantage of the two main T-HOG innovations, namely the splitting into
overlapping horizontal cells (Section 4.4) with blurred boundaries (Section 4.5).

5.1 Image collections

In our tests, we used single-line text samples derived from three image collections:

1. The 2005 ICDAR challenge collection [55], consisting of 499 color images, captured with
different digital cameras and resolutions, of book covers, road signs, household objects,
posters, etc.

2. A subset of the iTowns Project collection [26], consisting of a hundred 1080×1920 color
images of Parisian façades taken by a camera-equipped vehicle (similar to Google’s Street
View images).

3. The Epshtein et al. benchmark [27] with 307 color images of urban scenes, ranging from
1024× 1360 to 1024× 768 pixels, taken with hand-held cameras.

These image collections are suitable benchmarks for text detectors, but not for text classifiers.
Therefore, we extracted from these image collections six sets of candidate sub-images, as fol-
lows. We processed each image collection, with SnooperText [66], a state-of-the-art text detec-
tor algorithm, tuned for high recall and moderate precision. By visual inspection, we separated
the candidate regions returned by SnooperText into a set of text regions Xi, and a set of non-
text (‘background’) regions Bi, for i = 1, 2, 3. See Figure 5.1. Table 5.1 gives the number of
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sub-images in each set. (For succinctness, we will often omit the index i in the remainder of the
chapter.)

i Image Set Detected Text Non-Text
regions #Xi #Bi

1 ICDAR 4961 1727 3234
2 iTowns 2242 714 1528
3 Epshtein 7518 1502 6016

Table 5.1: Text and non-text samples Xi, Bi used in our tests.

X1 :

B1 :

X2 :

B2 :

X3 :

B3 :

Figure 5.1: Samples of text regions (set Xi) and non-text regions (set Bi) extracted by Snoop-
erText from the ICDAR, iTowns and Epshtein image collections.

5.2 Error rate metrics

To quantify the performance of a binary classifier (R-HOG or T-HOG) with a specific set of
parameters, we adopted a ‘ranking-based’ approach. That is, we evaluate the ability of the
classifier to score text regions higher than non-text regions, regardless of the absolute value of
the SVM score f(z).

Specifically, in our tests we randomly divided the set X (respectively B) into two disjoint
sets, each one with 50% of the elements: a ‘training’ half X ′ (respectively B′) and a ‘testing’
half X ′′ (respectively B′′). The sets X ′, B′ were used to train the SVM. We then applied the
classifier to the complementary sets X ′′, B′′. For several values of the SVM threshold b (see
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Section 4.7), we computed the counts TPb, TNb (correct decisions, positive and negative) and
FPb, FNb (incorrect decisions). From these counts we computed the classification success rates
for the text and non-text regions on each evaluation dataset, namely

τb =
FNb

#X ′′
=

FNb

TPb + FNb

βb =
FPb

#B′′
=

FPb

TNb + FPb

(5.1)

The τb metric (false negative rate) is the complement of the well-known recall metric r; it is
the probability of our algorithm incorrectly rejecting a text-containing region. The βb metric
(false positive rate) is the probability of incorrectly accepting a non-text region. We choose to
use βb instead of the common precision metric because the latter depends strongly on the ratio
#B′′/#X ′′, which is essentially arbitrary.

By adjusting the threshold b, the user can trade one class of errors for the other. In particular,
when b is sufficiently small, the classifier accepts all samples, so that τb = 1 and βb = 0.
Conversely, when b is sufficiently large, all samples are rejected, so τb = 0 and βb = 1.

In order to reduce the sampling error, we repeated the whole procedure L = 10 times for
each pair of datasets X, B resulting in L different random partitions X ′, X ′′ and B′, B′′ for each
set. The raw statistics TPb, TNb, FPb, FNb were averaged over these L runs, for each b.

5.3 DET curve and area metric

We compare classifiers by plotting the decision error trade-off (DET) curve [24, 58], the set of
pairs (τb, βb) for b ∈ [−∞, . . . , +∞]. See Figure 5.2. For an ideal classifier, the DET curve lies
along the bottom and left edges of the unit square [0, 1] × [0, 1]. The better the classifier, the
closer its DET curve should be to this ideal.

In our tests, we observed that, whenever a classifier Ci was significantly better than another
classifier Cj for some threshold b, the same usually happened for most other values of b. In other
words, the entire curve of Ci was closer to the ideal than that of Cj (below and to the left of it).
Therefore, we can use the decision error area (DEA), the area A between the DET curve and the
ideal curve (the shaded region in Figure 5.2), as a single scalar measure of the performance of
a given classifier, independent of the threshold b. The value of A is a monotonically decreasing
function of the classifier’s accuracy, and is zero if the classifier is perfect (i.e., if one can set the
threshold b so that the classifier makes no mistakes). Therefore, we can compare two classifiers
Ci and Cj by comparing the respective decision error areas Ai and Aj .

In order to determine whether the difference Ai−Aj is statistically significant, we compute
mean values µ(Ai) and µ(Aj) and the standard deviations σ(Ai) and σ(Aj) over the L runs.
We then compute Student’s test parameter t(Ci, Cj)

t(Ci, Cj) =
µ(Ai)− µ(Aj)
√

S2

L
+ S2

L

(5.2)
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(a) 6x1 (b) 3x2

(c) 2x3 (d) 1x6

(e) 6fx1 (f) 3hx2

(g) 2x3h (h) 1x6f

Figure 5.4: Some possible arrangements of blocks and cells that result in an R-HOG descrip-
tor with six HOGs. Solid and dashed lines inside the image are cell boundaries; the external
brackets show the blocks.

scriptor size N = nxnynb and number of bins, a single block is always better. Moreover, we
concluded that, for the same descriptor size, the best choice is always nx = 1, that is, a grid of
ny horizontal stripes. These conclusions were confirmed by numerous tests with the other two
datasets and with different bin counts (nb = 6, 12, 18 and 36).

A parallel series of tests with our T-HOG classifier gave entirely similar results, confirming
that nx = 1 is always the best choice for any descriptor size.
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5.6 Performance as function of descriptor size

Having established that the best cell arrangement for R-HOG is always a single block divided
into disjoint horizontal stripes, we performed another series of tests to analyze the influence of
the number of stripes ny and the number of bins per stripe nb on the R-HOG classifier accuracy.
Namely, we tested all combinations of ny = 1, 2, . . . , 8, 12 and nb = 4, 5, . . . , 18, 24, 36, with
nx fixed at 1. Figure 5.6 shows the results of these experiments for N ≤ 250. Configurations
are identified by the notation nx×ny:nb. From these tests, we concluded that a longer R-HOG
descriptor generally gives better results, but the advantage is very small for N greater than 100.
In particular, no improvement was seen when N increased beyond 250. We also concluded that
R-HOG’s accuracy improves dramatically as ny increases from 1 to 3, improves more gradually
until ny is 7 or so, and is practically the same thereafter. These conclusions were found to hold
for all three datasets.

In Figure 5.6 (bottom), the black dots represent the optimal combinations of ny and nb,
the only ones that are worth using for any specified descriptor size N . Configurations that fall
above the solid staircase line (blue dots) are fully dominated by optimal ones, in the sense that
the latter provide equal or better performance with equal or smaller N . There appears to be
no simple formula for the optimal parameters, partly because ny and nb are constrained to be
divisors of N . Furthermore, the optimal configurations for the other two datasets are slightly
different.

A similar series of tests was performed to determine the best combination of ny and nb for
the T-HOG classifier. We found that the optimum combinations for each N were generally the
same as those of R-HOG (see the next section).
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5.7 Comparison of T-HOG vs. R-HOG

Figure 5.7 compares the accuracy of the R-HOG and T-HOG classifiers, in the optimal ny

and nb configurations, for each descriptor size N and for each of the three datasets. As we
can see, the T-HOG significantly outperforms R-HOG in all cases. For example, an T-HOG
with ≈ 20 features has performance similar to R-HOG with 80 or more features. Table 5.2
gives detailed data for two cell grid and bin count combinations (1×4:5, N = 20, and 1×7:9,
N = 63), selected among the optimum combinations of Figure 5.7. According to Student’s

nx×ny:nb Dataset R-HOG T-HOG T-test
µ(A) σ(A) µ(A) σ(A)

ICDAR 0.0109 0.0010 0.0054 0.0007 14.73
1×4:5 iTowns 0.0158 0.0022 0.0082 0.0012 10.19

Epshtein 0.0285 0.0023 0.0151 0.0016 15.10
ICDAR 0.0042 0.0005 0.0029 0.0005 5.81

1×7:9 iTowns 0.0087 0.0013 0.0059 0.0010 5.44
Epshtein 0.0164 0.0022 0.0120 0.0014 6.14

Table 5.2: Statistics of R-HOG and T-HOG classifiers for two optimal cell configurations.

table for 2L − 2 = 18 degrees of freedom, the smallest t value in Table 5.2, 5.44, corresponds
to a risk α < 10−4.

Figure 5.7 shows that the ICDAR-derived dataset is significantly easier than the other two,
for both classifiers. Presumably this is due to the fact that most ICDAR images are digitized 2D
documents, whereas the iTowns and Epshtein images are photos of 3D urban scenes.
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5.9 Limitations

Figure 5.9 shows some false negatives and false positives reported by the T-HOG classifier
(in the 1×7:9 configuration) for the Xi and Bi datasets. False negatives are usually due to
incorrect size or position of the candidate sub-image, or to the text being only one or two
characters long, to obscured or incomplete characters, or to the use of fonts with peculiar stroke
orientation distributions. False positives are typically images with many line-like features in
several orientations.

(a) False negatives

(b) False positives

Figure 5.9: Some errors of the T-HOG+SVM recognizer.
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Applications

In this chapter, we describe two applications of the T-HOG text recognizer, namely, as a post-
filter for the SNOOPERTEXT detector and as the core of a sliding window text detector. A third
application in text tracking will be described in part II of this thesis.

6.1 T-HOG as a post-filter to text detection

The motivating application for text classifiers like T-HOG and R-HOG was the detection of
text objects in photos and videos of arbitrary scenes. Specifically, the idea is to use the classifier
to filter the output of a fast but “permissive” (high-recall, moderate-precision) detector. To
evaluate the suitability of T-HOG in this application, we used the SNOOPERTEXT detector of
Minetto et al. [66] over the whole image, to generate the candidate sub-images for T-HOG.

6.1.1 SNOOPERTEXT overview

SNOOPERTEXT is an improvement of a text detector described in 2009 by Fabrizio et al. [28].
It was developed in the context of the ITOWNS project [26], which aims to build tools for
virtual navigation of urban environments. The main raw data for these tools is a collection of
GPS-tagged high-resolution digital photos of building façades, taken by a set of car-mounted
cameras. A set of images covering a full-hemisphere of 360◦ is taken periodically as the car
travels. The mean viewpoint spacing between sets is about one meter. Each set of images is
assembled offline into a complete immersive panorama. See Figure 6.1.

The purpose of SNOOPERTEXT within this project was to extract (offline) any textual infor-
mation present in the images, such as street and traffic signs, store names, and building numbers
(see appendix A); which could then be combined with the GPS coordinates and street maps to
support applications such as business finders and urban navigation aids.
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The segmentation algorithm used in SNOOPERTEXT is a modified version of Serra’s toggle

mapping [78], a morphological operator for local contrast enhancement and thresholding, using
morphological erosions and dilations to define the local foreground and background levels.
The output of this step is an image where every pixel is classified into three types of regions:
foreground (relatively dark), background (relatively light) or indeterminate (when the original
image is homogeneous in that neighborhood). The thresholding is not symmetrical between
dark and light, so, in order to capture light letters on dark background the segmentation is
repeated on the negative image. See Figure 6.3 (b,c).

(a) (b) (c)

Figure 6.3: (a) An original input image. (b) The toggle segmentation into foreground (dark
grey), background (white) and indeterminate (light grey) pixels. (c) The toggle segmentation of
the negative image.

The foreground regions from both segmentations are then filtered by simple geometric cri-
teria (based on area, width and height). See Figure 6.4(a). For each surviving region, that pass
the geometric filtering, the algorithm extracts three scale- and rotation-invariant shape descrip-
tors: Fourier moments, pseudo-Zernike moments, and an original polar encoding [28]. These
descriptors are fed to three separate SVM classifiers, whose numeric outputs are packed as
a three-vector and fed to a final SVM classifier [21], which outputs a binary letter/non-letter
decision.

The regions classified as letters are then replaced by axis-aligned rectangles, as shown in
Figure 6.4(b); which are then grouped into lines according to geometric criteria defined by Re-
tornaz and Marcotegui [77]. These criteria take into account the distance and vertical alignment
between neighboring regions relative to their height. In this step, isolated letters are discarded,
and each candidate text line is represented by a single axis-aligned rectangle, which is the
bounding box of its component letters. Note that the text lines found in both toggle segmenta-
tions must be combined to generate the candidate text regions. See Figure 6.4 (c). This grouping
step is necessary in order to apply optical character recognition (OCR) to the extracted text, and
it also has the benefit of discarding a large fraction of the false positives (non-letter regions
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classified as letters).
My first contribution to SNOOPERTEXT was the addition of a post-filter to decide whether

the contents of each candidate rectangle does look like a text line. However, in the original
version of SNOOPERTEXT [66] we used as a text post-filter the R-HOG of Dalal and Triggs,
with the parameters values specified by the authors (which were tuned for human recognition).
For this thesis, we used our T-HOG and the R-HOG with different parameters, tuned for text
classification as described in Chapter 5.

(a) (b) (c)

Figure 6.4: (a) The candidate characters regions detected by segmentation and size criteria. (b)
Output of the region classification step with regions classified as letters in green, and non-letters
in red. (c) Text lines resulting from character grouping.

My other contribution to SNOOPERTEXT was the use of multi-scale analysis [38] to effi-
ciently deal with the wide variation of font sizes and textures of the texts found in the ITOWNS

images. Namely, for each image, SNOOPERTEXT first builds a multi-scale image pyramid. The
base (level 0) of the pyramid is the original image, and each level l is a copy of the next lower
one l− 1, reduced to half its width and half its height (so that level l has 1/4l as many pixels as
level 0).

The basic SNOOPERTEXT algorithm described above is applied separately to each level
of the pyramid. At each level, the algorithm only looks for letters with a fixed narrow range
[α .. α + δ] of area sizes, which corresponds to the size range

[

4lα .. 4l(α + δ)
]

in the original
image. The parameter δ is chosen so that there is some overlap between two consecutive scales
l and l + 1, namely α + δ > 4α. Segmented regions whose area fall outside the interval
[α .. α + δ] are ignored since they will probably be found in other levels. See Figure 6.5.

The multi-scale approach allows SNOOPERTEXT to use a structuring element of fixed (and
modest) size in each morphological operation, with significant speed gains. Note that the cost
of processing the whole image pyramid, for letters of any size, is then less than 1+1/4+1/16+

1/64+ · · · = 4/3 times the cost of processing the original frame only for letters within the fixed
range [α .. α + δ].



6.1. T-HOG as a post-filter to text detection 47

Level 0 Level 1 Level 2

Figure 6.5: Multi-scale text detection by SNOOPERTEXT on an ICDAR challenge image.

Another advantage of this multi-scale approach is that it makes the segmentation algorithm
insensitive to letter texture (high frequency details that are much smaller than the letters) which
could break each letter into many separate regions. See Figure 6.6.

6.1.2 Metrics for text detection

The standard metrics to compare text detectors systems used in the literature are based on the
ICDAR 2005 measure of similarity [57] between two rectangles r, s, defined as

m(r, s) =
S(r ∩ s)

S(r ∪ s)
(6.1)
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Level 0 Level 1 Level 2

Figure 6.6: Letter texture supression by SNOOPERTEXT’s multiscale processing. Note that the
letters of ‘SIGNO’ are oversegmented in levels 0 and 1 but correctly segmented in level 2.

where S(·) is the area of the smallest rectangle enclosing the set ·. The function m(r, s) ranges
between 0 (if the rectangles are disjoint) and 1 (if they are identical). The metric m is extended
to a set of rectangles Z by the formula

m(r, Z) = max{m(r, s′) : s′ ∈ Z} (6.2)

and the similarity between two sets is given by

m(R, Z) =
∑

r∈R

m(r, Z) (6.3)

From this indicator one derives the ICDAR precision p and recall r scores [57]

p =
m(T,G)

#T
r =

m(G, T )

#G
(6.4)
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where G is the set of manually identified text regions in the input images, and T is the set of
text regions reported by the detector. For ranking purposes, the ICDAR 2005 committee used
the f -score [57] which is the harmonic mean of precision and recall,

f = 2/(1/p + 1/r) (6.5)

Metrics averaging

There are several ways of averaging these metrics over a multi-image database. The approach
used by the ICDAR 2005 scoring program (method I) is to evaluate p, r and f separately for
each image, and then compute the arithmetic mean of the f -scores over all images. Another
approach (II) is to compute p and r for each image, then take the arithmetic means of all p and
r values, and compute f from these means. A third approach (III) is to compute p, r globally,
as if all images were concatenated in a single big image, and f from the results. These points
must be considered when comparing f values reported by different authors.

We note that the approach I, and, to a lesser extent, approach II, suffer from higher sampling
noise and negative bias compared to approach III. For instance, if the number of legible text
regions varies substantially from frame to frame, the average computed by approaches I and II
will be very different from approach III, and therefore, may not measure the real accuracy of
the algorithm being tested. See Figure 6.7. The approach III was used to compare text tracking
algorithms in part II of this thesis.

6.1.3 Tests and results

We compared the performance of SNOOPERTEXT without post-filter, and with either the T-
HOG or the R-HOG as the post-filter. We also compared them with several state-of-the-art
detectors described in the literature. Specifically, we compared with the published scores of
the detectors that entered the ICDAR 2003 and 2005 Challenges [56] also compared with the
detectors of Yi and Tian [91], H. Chen et al. [19] and Epshtein et al. [27], which had the highest
f -scores reported in the literature (as of 2011).

Two critical parameters of SNOOPERTEXT are the minimum size A (in pixels) of the de-
tected character regions in each scale, and the minimum number of characters (GOC) that a
text-line must contain. We found that the optimal values of these parameters, when SNOOPER-
TEXT was used without post-filter, were A = 50 and GOC = 3 (that is, only lines with 3 or
more characters were reported). These settings are denoted “ST3” in what follows.

When SNOOPERTEXT was used in combination with the R-HOG or T-HOG as a post-filter,
we found that the optimum parameters were A = 25 and GOC = 2 (which increase the recall
but significantly reduce the precision). We denote these settings by “ST2”. For the T-HOG and
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(a) (b)

Legible objects: 19 Legible objects: 3
Detected: 19 Detected: 2

False positives: 0 False positives: 4
p = 1.0, r = 1.0 and f = 1.0 p = 0.33, r = 0.66 and f = 0.44

Figure 6.7: Impact of the score averaging method exemplified with a collection consisting of
two images (a) and (b) with hypothetical detector outputs shown as rectangular outlines. If the
scores are averaged by approach I we get p = 0.66, r = 0.83 and f = 0.72. By approach II we
get p = 0.66, r = 0.83 and f = 0.74. However if we use approach III then we have p = 0.84
(21/25) and r = 0.95 (21/22) and f = 0.89. In this example we assumed perfect geometrical
matching (m(r, s) = 1) for the regions that were detected.

R-HOG, we used the optimal parameters specified in Section 5.4, with the cell arrangement
nx = 1, ny = 7 and nb = 9, resulting in a descriptor of size N = 63. See Figure 6.8.

The results, for each of the three image collections, are shown in Tables 6.1–6.3. All p

and r scores were computed with the ICDAR scoring program [55]. The scores in the fI and
fII columns were averaged by approaches I and II, respectively. We cannot show the fIII scores
because the per-frame counts needed to compute it were not available for the compared systems.

Note that T-HOG is a more effective post-filter for SNOOPERTEXT than R-HOG; and that
the best combination (ST2+T-HOG) is much better than the best results of SNOOPERTEXT

without post-filter (ST3). Note also that the combination ST2+T-HOG is at least as effective as
the best published methods on the ICDAR dataset, and outperforms the Stroke Width Transform
(SWT) [27] of Epshtein et al. on their own dataset.

To confirm the results of Section 5.5, we tested the ST2+T-HOG combination with a smaller
descriptor (nx = 1, ny = 4, nb = 5, N = 20). The f -score was about 1 to 2% lower, on
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ICDAR image collection
System p r fI fII

ST2+T-HOG 0.73 0.61 0.65 0.67
ST2+R-HOG 0.70 0.62 0.64 0.66

Yi and Tian [91] 0.71 0.62 0.62 0.66
H. Chen et al. [19] 0.73 0.60 — 0.66
Epshtein et al. [27] 0.73 0.60 — 0.66

ST3+T-HOG 0.72 0.57 0.62 0.64
ST3+R-HOG 0.72 0.57 0.62 0.64

Hinnerk Becker† 0.62 0.67 0.62 0.64
ST3 0.64 0.59 0.59 0.61

Alex Chen† 0.60 0.60 0.58 0.60
ST2 0.42 0.65 0.47 0.51

Ashida† 0.55 0.46 0.50 0.50
HWDavid† 0.44 0.46 0.45 0.45

Wolf† 0.30 0.44 0.35 0.36
Qiang Zhu† 0.33 0.40 0.33 0.36
Jisoo Kim† 0.22 0.28 0.22 0.25

Nobuo Ezaki† 0.18 0.36 0.22 0.24
Todoran† 0.19 0.18 0.18 0.19

Full† 0.01 0.06 0.08 0.02

Table 6.1: Performances of various text detectors on the “testing” subset of the ICDAR image
collection. The competitors of the ICDAR 2003 and 2005 Challenges are marked with †. For
this table, the T-HOG and R-HOG classifiers were trained on the output of the ST2 detector
applied to the ICDAR “training” subset.

average, for the three image collections. We also tested the ST2+T-HOG combination with the
sub-image divided into vertical stripes (nx = 7, ny = 1, nb = 9, N = 63); the f -score was
about 5 to 7% lower.
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iTowns image collection
System p r fI fII

ST2+T-HOG 0.72 0.50 0.56 0.59
ST2+R-HOG 0.70 0.49 0.54 0.58
ST3+T-HOG 0.72 0.43 0.51 0.54
ST3+R-HOG 0.72 0.43 0.51 0.54

ST3 0.49 0.43 0.43 0.46
ST2 0.24 0.53 0.31 0.33

Table 6.2: Performances of the SNOOPERTEXT detector, with and without HOG post-filtering,
on the whole iTowns image collection. For this table, the R-HOG and T-HOG classifiers were
trained on the X1 ∪X3 and B1 ∪B3 datasets.

Epshtein image collection
System p r fI fII

ST2+T-HOG 0.59 0.47 0.49 0.52
ST2+R-HOG 0.55 0.44 0.46 0.49
ST3+T-HOG 0.64 0.39 0.46 0.49

Epshtein et al. [27] 0.54 0.42 — 0.47
ST3+R-HOG 0.62 0.37 0.43 0.46

ST3 0.46 0.42 0.41 0.44
ST2 0.19 0.54 0.25 0.28

Table 6.3: Performances of the SNOOPERTEXT detector, with and without HOG post-filtering,
and of the Epshtein et al. detector on the whole Epshtein image collection. For this table, the
R-HOG and T-HOG classifiers were trained on the X1 ∪X2 and B1 ∪B2 datasets.
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Figure 6.8: Output of the SNOOPERTEXT detector with A = 25 and GOC = 2 (left), and the
same output after filtering with the T-HOG recognizer (right) on images from Epshtein and
iTowns collections.
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6.2 T-HOG as a text detector

Any text recognizer can also be used on its own as a sliding-window text detector. Namely,
the recognizer is applied to a sufficiently large set of sub-regions of the input image, and the
sub-regions with the largest scores are returned as the output.

Figure 6.9 shows the result of such a text detector, using the T-HOG+SVM recognizer, with
a window of fixed size (24 by 72 pixels) sliding over the whole image. Note the high selectivity
of recognizer. For this test, we trained the SVM classifier using the set U of positive “ground-
truth” sub-regions provided by the ICDAR Challenge team [55], and a set V of negative random
sub-regions of the ICDAR images, disjoint from the set U and about three times its size.

Text of variable size can be detected by running this algorithm on several reduced versions
of the input image, in multi-scale fashion. See Figure 6.10. However, this brute-force approach
to text detection is extremely expensive, since the number of windows that need to be analyzed
is very large. For this reason we did not bother to evaluate its accuracy or compare it to other
detectors.

6.3 Concluding remarks

The combination SNOOPERTEXT + T-HOG outperformed state-of-the-art text detection sys-
tems described in the literature. However, there is still plenty of room for improvement. For
example, some failures of our system are due to incorrect placement of the bounding boxes.
Therefore, we need to improve the grouping step to only generate text words or text lines out-
comes, depending on which metric is used. For example, the ICDAR metric penalizes text line
outputs (they must be split into separate words for a higher performance).

Concerning T-HOG as a text detector, there are some ideas to apply it on a regular sparsely
grid, spanning the whole image, to save computational time.

Finally, the system SNOOPERTEXT + T-HOG combined with an OCR was successfully
applied in a real database of high-resolution geo-referenced street images of the iTowns
project [26]. The semantic data, automatically extracted from the images with our system,
was used to build a real Geographic Information System (GIS) search engine application, that
locates streets by textual queries (see appendix A). In this aspect, code optimizations are impor-
tant to save time because, depending on the complexity of the image, e.g. number of segmented
regions, the total execution may take more than one minute.
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Figure 6.9: Left: Images from ICDAR dataset. Center: the output of the T-HOG+SVM sliding
window classifier, encoded as the color of the central pixel (warm tones for positive output,
cold tones for negative). The white rectangle at the top left corner shows the size of the sliding
window. Right: the union of the 100 windows with highest scores.
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Figure 6.10: Text detection in a multi-scale fashion.
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Chapter 7

Introduction

In this part of the thesis we consider the text tracking problem. Specifically, we consider the
integration of text detection and tracking algorithms to identify which text regions in successive
frames correspond to the same physical text object.

As in part I, we are primarily concerned with text embedded in natural urban scenes or
building interiors. The video is typically recorded by a moving camera, either hand-held or fixed
on a vehicle. The input data for this problem is a digital video. The output is a set of candidate
text regions for each video frame and the identification of the regions which supposedly belong
to the same physical text object.

7.1 Motivation

The automatic identification and tracking of text in videos is essential in many applications,
such as the automatic indexing of video libraries, construction of street directories from videos
taken by car-mounted cameras, identification of vehicles by their license plates, etc.

For those applications, it is not sufficient to apply a text detector separately to each frame.
This simplistic approach ignores the temporal coherence between video frames, and therefore
it will usually produce thousands of regions with almost, but not always quite, the same textual
information. To avoid this redundancy, it is necessary to track each physical text object across
successive frames. In addition, by exploiting the redundancy between frames, a text tracking
algorithm can often be more accurate than a single-frame text detector in both precision and
recall. Finally, tracking also allows the use of super-resolution techniques to extract text images
with much higher resolution and quality that could be obtained from any single image.
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7.2 Our contributions

Our major contribution to this problem is the description of four text tracking algorithms
(TRACK1 to TRACK4) and an analysis of their strengths and weaknesses. (The most efficient
ones are improvements of the SNOOPERTRACK algorithm, published in 2011 by Minetto et

al [67]). Such algorithms consist of variations of how detection and tracking can be integrated.
Most of the existing solutions to this problem are variations of these four algorithms.

Another contribution is the definition of special metrics to evaluate the performance of text
tracking systems. These metrics evaluate a system’s accuracy based on three aspects: text region

detection, the ability to detect visible text objects in a frame; text object detection, the ability
to detect text objects somewhere in the video; and text object tracking, the ability to identify
regions that belong to the same text object in different frames.

We also developed a tracker specifically designed for text objects, based on particle filtering
and the T-HOG classifier. The T-HOG is used twice in this tracker: first, as an image region
signature, to evaluate the similarity between the contents of two regions in successive frames;
and, second, as a classifier, to measure how much “text-like” is the contents of a predicted
region.

Finally, as part of this work we also created a benchmark of six videos of urban scenes, with
associated XML annotations [62], which we hope will be useful to other researchers working
on this problem.

7.3 Statement of the problem

We assume that the input video V is a list of n images (frames) V(0), V(1), . . . , V(n−1) with
common domain D. We define a text region in a video frame as a region of D that contains the
projection of a text object. We denote by r(i)[j] the text region number j detected or tracked
in frame V(i). As in part I, we will restrict our research to text lines whose projections are
mostly horizontal. Therefore we assume that each text region r is a rectangular axis-aligned
box, represented by its center r.pf and axis vectors r.uf (horizontal) and r.vf (vertical). See
Section 2.3.

By text tracking we mean recover the text regions in each frame by identifying which regions
in successive frames correspond to the same physical text object. We represent this information
as a list T (0), T (1), . . . , T (m) where each T (i) is a list of presumed text regions in frame V(i), and
a list π(1), π(2), . . . , π(m) where each π(i) is a relation between T (i−1) and T (i). Specifically, a
pair (r(i−1)[j], r(i)[k]) is in the relation π(i) iff the regions r(i−1)[j] ∈ T (i−1) and r(i)[k] ∈ T (i)

are believed to be projections of the same text object. See Figure 7.1.
This output representation is adequate for the algorithms that we discuss here, which can

follow a text object only along an unbroken sequence of consecutive frames. A tracker that can
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Figure 7.1: The output of a text tracking algorithm, showing the detected text regions r(i)[j]
(rectangles) and the tracking relations π(i) (arrows).

recover an object after losing it for one or more frames would have to output additional relations
π(ij), between the sets of regions detected in non-consecutive frames V(i) and V(j).

The transitive, reflexive, and symmetric closure of the union of all the relations π(i) is an
equivalence relation π∗ that partitions the set of all text regions in all frames into one or more
classes; each class constitutes the presumed trajectory of a physical text object along the video.

The algorithms that we consider in this thesis are such that every relation π(i) is one-to-one,
that is, each region in one frame is related to at most one region in the next frame. Therefore
each class of the π∗ relation will be a list of regions, one from each frame, spanning one or more
consecutive frames.

7.4 Challenges

The integration of text detection and object tracking algorithms is a non-trivial problem, consid-
ering that both algorithms are prone to several failures. Depending on how they are combined,
these failures may multiply instead of canceling out.

As we discussed in part I, common failures modes of text detection algorithms include: false

negatives (failure to detect a text object that is legible in the frame); false positives (mistaking a
non-text region for a text one); splitting of a single text line into several regions; and joining of
distinct text lines into a single region.

Tracking algorithms are also subjected to several kinds of errors, including drift, jitter and
loss which are described below. Tracking generally requires comparing some part of a frame
with some template image that represents the expected appearance of the text object, as gathered
from previously processed frames. The occurrence and severity of tracking errors depend on
the approach used for updating the template image. In the variant called recursive tracking, the
template is the projection of the text object as located in the previous frame. In fixed-template
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tracking, on the other hand, the same template image is used for all frames of the video. An
intermediate strategy is key frame tracking, where the template is extracted from a selected key

frame of the video itself, and used for all subsequent frames until the next key frame.

7.4.1 Tracking jitter

In both recursive and fixed-template trackers, the regions reported for the same text object in
successive frames exhibit random-looking variations in size and position, called jitter, due to
image noise or inaccuracies in the algorithm itself. See Figure 7.2.

Figure 7.2: Tracking jitter in three consecutive frames.

7.4.2 Tracking drift

In addition to jitter, recursive trackers may also incur in substantial drift, that is, a cumulative
error in the reported size and position of the text object. The reason is that any errors made
in one frame are incorporated into the template and therefore affect the tracking in subsequent
frames. See Figure 7.3. Eventually the drift may grow to the point that the text object is lost,
or the tracker begins to follow an unrelated text object. These errors may be further magnified

Figure 7.3: Tracking drift in recursive tracking.

(and perpetuated) by the motion prediction methods that trackers use to estimate the position of
the object on the next frame.
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Fixed-template and key-frame trackers are usually free from cumulative drift, because the
reported position in each frame is not affected by any errors made in the previous frame – unless
those errors are so large that they cause the tracker to entirely miss the text object on the next
frame.

7.4.3 Tracking loss

Tracking algorithms can fail completely when the text object’s position and appearance change
substantially between consecutive frames. Such changes may be due to sudden variation of
lighting conditions (see Figure 7.4), or to large and sudden changes in the relative position of
camera and object in tri-dimensional space, or excessive perspective deformations.

Figure 7.4: Tracking loss due to lighting changes.

These problems can be alleviated by using template-location algorithms that are insensitive to
affine deformations and photometric changes; and/or by extending the search range. However,
these changes make the tracker more expensive and may actually increase the occurrence of
tracking losses.

However, even with some tracking losses, e.g. due to hard photometric changes, the com-
bination detection and tracking in videos is generally more robust than to apply a text detector
separately to each frame. See Figure 7.5. This is why exploiting the temporal coherence be-
tween sucessive frames is essential.

Figure 7.5: Text detection loss.
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Related work

There is a vast literature on how to combine detection and tracking. The survey of Yilmaz
et al. [92] covers several state-of-the-art systems up to 2006. Such systems are tailored for
many types of features, such as faces, vehicles, people, etc. Several approaches have been
considered, a popular one is called detection-before-tracking. In this approach the objects of
interest are detected at some frame separately; then, the tracked objects in distinct frames are
paired with the observations provided by the detector. Bugeau et Pérez in 2007 [9] described
some advantages and limitations of track-before-detect algorithms. Another approach is called
tracking-before-detection. Tracking-before-detection algorithms are specially designed to track
targets which are difficult to detect in static images, but can be identified by their motion over
several frames. In these algorithms, several candidate trajectories are generated and evaluated
over several sucessive frames. Accumulators are often used to detect the existence of the tar-
gets, since they would be rarely detected by using fixed thresholds. Such algorithms are useful
in various surveillance scenarios such as tracking aircrafs or vehicles in infrared radar images.
There is also another class of algorithms based on the tracking-by-detection approach. In such
algorithms the target is described by a set of features (e.g. SIFT [52] features, HOG [24] fea-
tures, SURF [11] features, etc). Another set of features is used to describe the background, and a
binary classifier trained over the chosen features is used to separate the target from background
in successive frames.

Concerning text detection and tracking in videos little have been published. A survey up to
2004, published by Jung et al. [39], cover some of these works. However, many authors who
worked on this problem considered mainly the detection of text artificially inserted into videos
of real scenes, such as sub-titles, advertisements, movie credits, etc. Therefore, they usually
made rather restrictive assumptions on the text, such as, constrained position, uniform motion,
and known font shape and size [36], which do not hold for images of scene-embedded text
objects.

A pioneering system for detection and tracking of text embedded on real scenes was de-
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scribed in 1998–2000 by Huiping-Li et al. [47, 48]. They used a multi-scale detector that
scanned each level of the image pyramid with a sliding window of 16 × 16 pixels. Each win-
dow was classified as text or non-text with a neural network operating on the high-frequency
wavelet coefficients. The result was a bitmap with value 1 at every “text-like” position of the
window. The regions in the bitmap were then merged, bounded and filtered in order to gener-
ate candidate text regions. Tracking was performed by linear motion prediction followed by a
translation adjustment to minimize the total squared pixel error relative to the previous frame.
Their method allowed gradual changes of the text’s projection, but tended to fail when the text
object moved in front of complex backgrounds. The text detector was applied only at a selected
set of key-frames, with forward tracking used in the intervening frames. The process begins
again at each key-frame; they do not attempted to merge the tracked regions with those detected
at the next key-frame.

In 2002, Lienhart and Wernicke [50] were apparently the first to use bidirectional tracking
for text objects. Like Huiping-Li et al. they identified text lines by a multi-scale sliding window
detector trained with a neural network, but operating on gradient features rather than wavelet
coefficients. Their detector too produced a binary classification map tool, from which the text
candidates were extracted. The text detector was applied only to selected key-frames, and for-
ward and backward tracking was used on the intervening frames. In their system, tracking was
performed by exhaustive search around the previous region position without motion prediction,
to minimize the difference in a specific image descriptor. This descriptor summarizes the spatial
distribution of pixel values in the candidate region [50]. The template used during the track-
ing is changed every few frames, thus allowing for gradual deformation. The text detector was
applied only to selected key-frames, and forward and backward tracking was used on the inter-
vening frames. They do not specify how the detected, forward-tracked, and backward-tracked
regions were merged.

In 2007, Merino et al. [60] apparently introduced particle-filter tracking for text objects.
They used a text detector based on the tree of connected components of León et al. [44]. The
character regions are identified in the component tree based on size, energy and texture. They
defined a text region as a list of SIFT features [52, 53] obtained from those characters, with
specific relative positions apart from a single rotation and translation applied to the entire text
region. Tracking was performed by a particle filter using particle weights computed from geo-
metric similarity of the relative features position in the text line complemented by SIFT match-
ing of each single feature.

Another particle-filter based text tracker was described in 2008–2009 by Tanaka and
Goto [33, 80]. Their system did not use the multi-scale techniques sliding window approach;
instead they partitioned the frame into blocks of 16 × 16 pixels, and classified each block as
text or non-text using discrete-cosine-transform (DCT) features [7]. Text-like blocks were then
grouped into text regions. This classification was performed on every frame. The particle-filter
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tracker operates on individual text-containing blocks; the motion of each block was then pre-
dicted to the next frame and evaluated by the L1 distance between the pixel intensity histograms
in each color channel. Each text region was then assumed to be located near the majority of its
tracked blocks.

In 2010, Zhi Li et al. [49] introduced binary search as a way of further reducing the text
detection cost. Their text detector was applied initially at key-frames. Like Huiping-Li et

al. [47, 48] and Lienhart and Wernicke [50] they used high-frequency wavelet coefficients and
and image descriptors to summarize the spatial distribution of pixel values in order to find the
text line regions. Instead of tracking each new text region over successive frames, they applied
the text detector to a few additional intervening frames between two key-frames, in binary
search fashion, to determine the first and the last occurrence of the text line. To compare text
candidates in different frames, they used the mean L1 metric over the text region. However,
while the range of frames that a text appear may be enough for some applications, this approach
may spend the same amount of time to determine all the occurrences of a text region if it was
necessary.

Some authors have worked specifically on the text tracking problem, separate from text de-
tection. In 2005, Myers and Burns [31], and in 2010, Na and Wen [69] developed text trackers
to handle more complex geometric text transformations such as rotation, perspective and scale
changes. They represented a text region as a parallelogram or as a general convex quadrilat-
eral. Myers and Burns described an approach using bi-dimensional affine transformations to
track planar text regions that can undergo arbitrary 3-D rigid motion and scale changes. They
used normalized correlation to track blocks of 15 × 15 pixels and RANSAC [30] to ensure
tracking consistency. Na and Wen [69] used SIFT features and SIFT matching to handle such
transformations.

Finally, several authors considered the problem of text detection and tracking in compressed
videos [22, 23, 32, 51, 76, 95] by exploiting characteristics of the MPEG encoding to speed up
both tasks. Most of these methods are designed for artificially inserted text. They generally
used the discrete-cosine-transform coefficients of the MPEG encoding for text detection, and
the MPEG motion vectors for text tracking [23]. Although these methods are faster, the tracking
often suffers because MPEG motion vectors are chosen for maximum compression rather than
modeling the true motion.





Chapter 9

Tracking Strategies

Text tracking algorithms can be classified according to the way that text detection and tracking
are integrated. In this chapter we describe and analyze four increasingly complex strategies
TRACK1–TRACK4. See Figure 9.1.

Figure 9.1: Four basic text tracking strategies.

These four algorithms depend on a text detection procedure to find the text objects to be
tracked. The detector may be applied to the entire domain D of each frame, or to a proper
subset of D, defined by a binary mask (bitmap) with the same domain D.

These four strategies seem to represent most of the systems described in the literature. One
exception is the system of Zhi Li et al. [49], which differs from TRACK4 by using binary search
instead of bidirectional tracking between the key-frames.

9.1 Detection and matching

The most obvious text tracking strategy is to run a text detection algorithm on each frame of the
video, independently, and then run a matching algorithm to find the tracking relations between
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the regions detected in successive frames. This strategy is outlined by the TRACK1 algorithm
below.

Algorithm 1 TRACK1 (V(0), V(1), . . . , V(n−1))

1. π(0) ← {};
2. T (0) ← TEXTDETECT (V(0),D(V(0)));

3. For each i ∈ {1, 2, . . . , n− 1} do

4. T (i) ← TEXTDETECT (V(i),D(V(i)));

5. (E, λ)← PREDICT (T (i−1), π(i−1),D(V(i)));

6. π(i) ← MATCH (T (i), E, λ, V(i−1), V(i));

7. Return T, π.

The input to the algorithm is a video V with n frames V(0), V(1), . . . , V(n−1). The outputs
of the algorithm are a list of text regions T (i), for each frame V(i), i ∈ {0, . . . , n − 1}; and
the inferred tracking relations π(i) ⊆ T (i−1) × T (i) between frames V(i−1) and V(i), for each
i ∈ {1, . . . , n− 1}. In order to simplify the exposition, we assume that T (i) is empty if i < 0 or
i ≥ n, and π(i) is a empty relation if i ≤ 0 or i ≥ n.

The procedure TEXTDETECT is an arbitrary text detection algorithm (such as the sliding
T-HOG of Section 6.2, or the SNOOPERTEXT described in Section 6.1.1) that operates only
over the domain D of the frame. Each call to TEXTDETECT (steps 2 and 4) produces a list
of rectangular text regions in the given frame V(i). The call to PREDICT (step 5) predicts the
position of each text region t from the set T (i−1) in the next frame V(i), given its position
s = [π(i−1)]−1(t) in the previous frame V(i−2). It returns a list E of predicted text regions in
frame V(i), and the tracking relation λ ⊆ T (i−1) × E. The procedure PREDICT is detailed in
Section 9.1.1.

The call to MATCH (step 6) looks for matches between the set E of predicted regions and the
set T (i) of regions detected in frame V(i). It returns the final tracking relation π(i) ⊆ T (i−1)×T (i).
The MATCH procedure is detailed in Section 9.1.2.

Observe that in TRACK1 algorithm the final reported regions T (i) are always those regions
found by the detector; the predicted regions in E are used only to build the tracking relations
π(i).

9.1.1 Motion prediction

The procedure PREDICT is given a set F of regions that were detected in some frame J and
predicts their positions in the next frame I. For simplicity we assume that the procedure is a
simple linear extrapolation that uses the text regions F and the positions of those text objects in
the previous frame K, which are obtained through a tracking relation ξ between frames K and J
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(see chapter 10 for more sophisticated prediction methods). It also requires the domain D of the
next frame I. The procedure returns the set E of successfully predicted text regions for frame I,
and the tracking relation λ between F and E. See Figure 9.2.

Figure 9.2: Frames, sets and tracking relations.

Algorithm 2 PREDICT (F, ξ,D)

1. λ← {}; E ← {};
2. For each f ∈ F

3. g ← ξ−1(f);

4. If g 6= ∅ then

5. e← 2f − g;

6. else

7. e← f ;

8. If e ⊆ D then

9. E ← E ∪ e;

10. λ← λ ∪ {(f, e)};
11.
12. Return E, λ.

In step 3, the procedure uses the relation ξ to get the region g corresponding to f in the previous
frame K. If there is no such region, the predicted region e is the same as f (step 7). Otherwise e

(step 5) is obtained from regions f and g. Here we assume a simple linear prediction applied to
all text region parameters (pf .x, pf .y, uf .x, vf .y) of g and f disregarding the contents of those
regions. If e falls inside the image domain D (step 8), it is included in the list E (step 9), and
the relation λ is updated (step 10).

In forward tracking, the image K, J and I are consecutive frames V(i−2), V(i−1) and V(i) of
the video.

9.1.2 Matching
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The procedure MATCH compares a set of regions D detected in some frame V(i) (I) with a
set of predicted regions E for the same frame. It requires the previous frame

V(i−1) (J) and a pairing λ between the set F of regions in J and the set E. It outputs a
tracking relation π that pairs the regions of F with regions in D.

The relation π is basically a subset of the given relation λ, with every predicted region
replaced by the matching detected region, excluding regions of E that cannot be matched.

Algorithm 3 MATCH (D, E, λ, J, I)

1. π ← {};
2. P ← SIMILARITYMATRIX(D,E, J, I);

3. α← HUNGARIANALGORITHM(P );

4. For each (e ∈ E)

5. d← α(e);

6. If d 6= ∅ then

7. f ← λ−1(e);

8. π ← π ∪ {(f, d)};
9.

10. Return π;

In step 2, the procedure builds a similarity matrix P with one row for each region of D and one
column for each region of E. The entry in row d and column e is a real number between 0 and 1

that measures the likelihood of region d and region e being projections of the same text object.
Each value of P is computed according equations (10.4) and (10.17) and takes into account the
geometry of the two regions and their contents, respectively.

In step 3, the Hungarian Algorithm [43] is used to compute an optimal partial matching
between E and D (using P ) returned as a list of pairs α ⊆ E ×D. The composition of λ and
α gives the desired relation π between regions of F and those of D. See Figure 9.3.

Figure 9.3: Tracking relation composition.
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9.1.3 Analysis

The text tracking systems of Merino et al. [60] and Tanaka and Goto [33, 80] are similar to this
approach, that is, full frame-to-frame detection and matching.

Observe that the procedure PREDICT used by TRACK1 performs a simple linear prediction
and does not consider the contents of the predicted regions. For that reason the predicted regions
are usually less reliable than the detected regions T (i). That is the reason why the final reported
regions T (i) are always the detected ones rather than the predicted ones. Therefore, the accuracy
and robustness of TRACK1 are completely dependent on those of the text detector.

The experiments in Chapter 11 shows the most common problem faced in this approach,
that continuous detection on every frame is sometimes impossible due to noise, compression
artifacts, cluttered background. Whenever the text detector fails in one frame the trajectories
are broken. In such case, the TRACK1 strategy starts a new trajectory in the next frame as
if the previous text object had disappeared and a new text object had came into view. Such
inconvenience was also reported by Merino results [59].

On the other hand, the advantage of this approach is that it detects a text object as soon
as it appears, and can track it until it would become unrecognizable or occluded. Another
advantage of this algorithm is that it can cope, by setting the MATCH routine according, with
large and unpredictable displacements of text regions between frames, which are common in
videos taken with hand-held cameras and/or low frame rate. Finally, the cost of TRACK1 is
usually dominated by the cost of text detection.

9.2 Complementary detection and forward tracking

In order to reduce the cost of the algorithm, one could replace the PREDICT procedure of
TRACK1 by a more sophisticated tracking procedure, that looks at the contents of the predicted
region and adjusts it so that it can matches the contents seen in previous frames. In that case,
the output of the tracker is usually more accurate and reliable than a detector could provide to
the same region. Therefore, it is better to use the successfully predicted regions in T (i), and run
the text detector only in those parts of the frame where the prediction produced no results.

This strategy is implemented by the TRACK2 algorithm below.

Algorithm 4 TRACK2 (V(0), V(1), . . . , V(n−1))

1. π(0) ← {};
2. T (0) ← TEXTDETECT (V(0),D(V(0)));

3. For each i ∈ {1, . . . , n− 1} do

4. (E, π(i))← TRACKREGIONS (T (i−1), V(i−1), V(i),D(V(i)));

5. X (i) ← UNITEREGIONS (E);

6. D← TEXTDETECT (V(i),D(V(i)) \ X (i));
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7. T (i) ← E ∪D;

8. Return T, π.

The TRACKREGIONS routine, described in Section 10.1, is used in step 4 to find, for each
region in T (i−1), its apparent position in frame V(i). These positions, which are all pairwise
disjoint and contained in the frame domain D(V(i)), are returned in the set E. The procedure
also returns the relation π(i) that pairs the regions of E with those in T (i−1).

In step 5, the domain D of each frame V(i) is divided into two regions: the union X (i)

(UNITEREGIONS procedure) of all successfully predicted parallelograms in E with an extra
safety margin and its complement (D(V(i))\X (i)). This subset could be represented for instance
by a bitmap with the same domain D as the frame.

Except for the first frame V(0), the text detection (step 6) is applied only to the subset
D(V(i)) \ X (i) of V(i), the ignored region X (i) is assumed not to contain any new text. We
assume that the text detector returns a set of pairwise disjoint regions contained in the subset
D(V(i)) \ X (i) of the frame domain.

In this strategy there is no intersection between the successfully predicted regions E and the
detected regions D; therefore the final set T (i) is merely the union of both sets D and E (step 7),
and the tracking relation π(i) is the pairing produced by TRACKREGIONS (step 4).

9.2.1 Analysis

One advantage of TRACK2 is the reduction of computational cost, since the text detection is
performed only on some parts of the frame.

The correctness and completeness of the tracking relations obtained by TRACK2 depends
strongly on the accuracy of the tracking algorithm. Therefore, the TRACKREGIONS procedure
must take into account the contents of the current and the predicted regions, and adjust the
position of the latter accordingly. Indeed, the main advantage of this strategy is the robust pre-
diction of those detected regions instead a simple geometric prediction as used by the TRACK1
algorithm.

Likewise TRACK1, this algorithm can also detect objects as soon as they appear, and track
them as long as they remain visible.

9.3 Detection on key frames with forward tracking

For many common scenes, the legible text regions cover only a small fraction of each frame,
and most of the non-text areas are repeated on several successive frames. Strategies TRACK1
and TRACK2 waste a considerable amount of time running the detector repeatedly over those
parts. Thus, for increased efficiency we may consider running the text detection only on a given
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set K of key frames, and rely exclusively on the tracking procedure for all the other frames.
This strategy is implemented by the TRACK3 algorithm below.

Algorithm 5 TRACK3 (V(0), V(1), . . . , V(n−1), K)

1. π(0) ← {};
2. T (0) ← TEXTDETECT (V(0),D(V(0)));

3. For each i ∈ {1, 2, . . . , n− 1} do

4. (T (i), π(i))← TRACKREGIONS (T (i−1), V(i−1), V(i),D(V(i)));

5. If i ∈ K then

6. X (i) ← UNITEREGIONS (T (i));

7. D← TEXTDETECT (V(i),D(V(i)) \ X (i));

8. T (i) ← T (i) ∪D;

9.
10. Return T, π.

In this strategy, text detection is applied in steps 2 and 7 only to the key frames specified by
the given set K ⊆ {0, . . . , n− 1} of frame indices. At those frames, the TEXTDETECT routine
is applied to the area D(V(i)) \ X (i) not covered by the predicted regions (step 7). Note that
index 0 is implicitly included in K. The key frames can be chosen by regular sampling with a
fixed step, or by more sophisticated heuristics that take into account object and camera motion,
frame disparity, or other criteria.

The routine TRACKREGIONS is the same used in TRACK2 algorithm and described in Sec-
tion 10.1. It is used in every frame except V(0) (step 4). In step 8 any detected region is added
to the set T (i), as new text objects. The procedure also returns the tracking relation π(i) that
associates regions in frame V(i−1) and V(i).

The TRACK3 algorithm is a minor improvement of the original SNOOPERTRACK [67]
algorithm of Minetto et al.. SNOOPERTRACK, like TRACK3, applied the text detector
(SNOOPERTEXT) only on key-frames and used a particle filter (TRACKREGIONS routine) to
follow the detected objects. However, it applied the text detector to the whole domain D(V(i))

of the key-frame, instead of the subset D(V(i)) \ X (i). It then used the MATCH procedure of
TRACK1 to pair up the detected and tracked regions in that key-frame. Whenever it found a
matching pair, SNOOPERTRACK would keep in the set T (i) the average of the detected and the
tracked region geometries. Unpaired regions of either set were also kept in T (i).

The TRACK3 algorithm turns out to be more accurate than SNOOPERTRACK because (as
observed in Section 9.2) our tracker is more accurate and reliable than our detector (see some
common text detection failures in Section 11.6.1) at the task of recovering the sucessive oc-
curences of the same text regions across the video frames. Therefore, by skipping the MATCH

procedure, the TRACK3 strategy avoided the complexity of the pairing, avoided many errors
introduced by the detector and does not waste time computing it.
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9.3.1 Analysis

The TRACK3 strategy is similar to the system of Huiping-Li et al. [47, 48]. However, unlike us,
they do not attempt to merge the tracked regions with those detected at the next key-frame.

The only advantage of this strategy over TRACK2 is speed, since it does not run the detector
on frames that are not in K. However its reliability strongly depends on the choice of the key
frames. Increasing the step between key frames reduces cost but may result in loss of text objects
that appear and disappear in the interval between those frames, or happen to be momentarily
undetectable (due to perspective, light reflections, shadows, etc) at the key frames. Another
major disadvantage is that a text region that becomes detectable between two key frames will
not be detected until the next key frame. Because of these delays, the reported trajectories will
often be shorter than those that would be determined by TRACK2.

9.4 Detection on key frames with bi-directional tracking

To avoid the late text detection problem of TRACK3, one could apply the tracking procedure
backward in time to the new regions detected in a key frame, in order to recover them in the
preceding non-key frames. This idea is implemented by the TRACK4 algorithm bellow.

Algorithm 6 TRACK4 (V(0), V(1), . . . , V(n−1), K)

1. π(0) ← {};
2. T (0) ← TEXTDETECT (V(0),D(V(0)));

3. For each i ∈ {1, 2, . . . , n− 1} do

4. (T (i), π(i))← TRACKREGIONS (T (i−1), V(i−1), V(i),D(V(i)));

5. X (i) ← UNITEREGIONS (T (i));

6. If i ∈ K then

7. D← TEXTDETECT (V(i),D(V(i)) \ X (i));

8. T (i) ← T (i) ∪D;

9. π(i+1) ← ∅;
10. For each j ∈ {i− 1, i− 2, . . . , 0}While D 6= ∅ do

11. (D,λ)← TRACKREGIONS (D, V(j+1), V(j),D(V(j)) \ X (j));

12. X (j) ←X (j)∪ UNITEREGIONS (D);

13. T (j) ← T (j) ∪D;

14. π(j+1) ← π(j+1) ∪ λ−1;

15.
16.
17. Return T, π.

In this strategy, whenever the text detection routine is executed in step 7, a tracking back-
ward in time is started (steps 10–14) on the new text objects found. The TRACKREGIONS
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routine is the same used in strategies TRACK2 and TRACK3 (described in section 10.1), but us-
ing the previously computed bitmaps D(V(i)) \ X (i) to exclude the area covered by previously
detected or tracked regions.

In step 8, the new detected regions of frame V(i) are added to the set T (i). In step 11,
we excluded from D(V(j)) those frame regions X (j) where objects were found by the forward
tracking. In step 12 we save the regions found by the backward tracking in X (j). Note that with
this step the regions in D will not be considered again in a future backward tracking.

In steps 13 and 14, the set T and the tracking relation π are updated with all successfully
regions tracked backwards.

9.4.1 Analysis

This algorithm has most of the efficiency of TRACK3, since the detection is still applied only
to a subset of the key frames. Note that the tracking prediction, both forward and backward,
usually examines only a small fraction of the frames domain.

The advantage of this strategy is that it can recover the first detectable occurrence of a given
text object by tracking it backward in time.

However, it still has the other drawbacks of TRACK3, e.g. the problem of key frame set
definition. Another potential problem is the inability of backward tracking in a real time appli-
cation.

Finally, note that even TRACK2 can have benefits of using backward tracking, since an
image region just scanned by a text detector may contain a text region.
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Frame-to-frame tracking of a text object

In this chapter we describe the core of the text tracking routine used in the TRACK2, TRACK3
and TRACK4 algorithms, namely the TRACKREGIONS procedure. It receives a set T (i) of text
regions in some frame V(i), and a subset D of the latter’s domain. For each region in T (i),
it locates its apparent position and shape in V(i+1), and returns a set T (i+1) of those regions,
which will be all pairwise disjoint and contained in D. It also returns a relation π(i) that pairs
each region of T (i) with the corresponding one in T (i+1). The simple linear extrapolation is not
adequate because it gets easily confused by random camera orientation jitter. Therefore, we
have adopted the particle-filter (bootstrap) technique [37, 73].

10.1 Particle filter

The particle-filter tracker maintains a population of candidate sub-regions (“particles”) for
each text object being tracked. Each particle represents a possible motion state of the object.
For each new frame, the particles are propagated independently based on some transition model.
The algorithm then evaluates all these candidates, assigning a probability weight for each one
based on some observation model (color model, HOG model, etc). Finally it resamples those
candidates, replicating each one according its probability. It is expected, that the set of particles
contains more weight at locations where the object being tracked is more likely to be. The
general scheme of the particle filter technique is illustrated in Figure 10.1.

More precisely, for each text object r∗ in T (i), TRACKREGIONS keeps an associated
population of particles (“candidates”). Each particle is an object state, that is, a list
r̂(i) = (r(i), r(i−1), . . . , r(i−k+1)) of k candidate text regions, one in each of the last k frames
V(i), V(i−1), . . . , V(i−k+1). The final region r(i) of the state is a region in frame V(i). For each
particle r̂(i), the procedure uses a Kalman-style predictor to compute the probability distribution
PK of the corresponding text region in frame V(i+1) (the transition model), and then draws a
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The Kalman prediction algorithm produces a probability distribution PK(r(i+1)|r̂(i)) for the
feature’s region r(i+1) in the next frame V(i+1). The distribution PK is a multivariate Gaussian,
whose mean is a fixed linear function of the current state r̂(i) and whose covariance matrix is
fixed for all frames and features.

That is, let r̆(i) be the geometric parameters of r(i), linearized as a 4-element vector

r̆(i) = (r(i).pf .x, r(i).pf .y, r(i).uf .x, r(i).vf .y) = (r̆(i).x, r̆(i).y, r̆(i).u, r̆(i).v) (10.1)

Then, the mean of the distribution PK(r(i+1)|r̂(i)) is the 4-vector

µ̆(i+1) = A0r̆
(i) + A1r̆

(i−1) + · · ·+ Akr̆
(i−k) (10.2)

and
PK(r(i+1)|r̂(i)) = exp[−(r̆(i+1) − µ̆(i+1))⊤M−1(r̆(i+1) − µ̆(i+1))] (10.3)

where Ao, A1, . . . , Ak and M are fixed 4× 4 matrices, which are parameters of the model, and
should be determined by previous statistical analysis of the correct regions in representative
videos.

For this thesis, we assume that each of the parameters r̆(i).x, r̆(i).y, r̆(i).u and r̆(i).v have
independent Gaussian distributions. In other words, we assume that the coefficients matrices
A0, A1, . . . , Ak and the covariance matrix M are diagonal matrices. Therefore, we can separate
the 4-dimensional Gaussian distribution PK of equation (10.3) into the product of four one-
dimensional Gaussians:

PK(r(i+1)|r̂(i)) = γ(r̆(i+1).x, µ̆(i+1).x, σx)

γ(r̆(i+1).y, µ̆(i+1).y, σy)

γ(r̆(i+1).u, µ̆(i+1).u, σu)

γ(r̆(i+1).v, µ̆(i+1).v, σv) (10.4)

where γ is the standard Gaussian distribution (equation 4.3) and where each component of the
mean µ̆(i+1) is computed separately by the formula:

µ̆(i+1).x = A0.x r̆(i).x + A1.x r̆(i−1).x + · · ·+ Ak.x r̆(i−k).x (10.5)

µ̆(i+1).y = A0.y r̆(i).y + A1.y r̆(i−1).y + · · ·+ Ak.y r̆(i−k).y (10.6)

µ̆(i+1).u = A0.u r̆(i).u + A1.u r̆(i−1).u + · · ·+ Ak.u r̆(i−k).u (10.7)

µ̆(i+1).v = A0.v r̆(i).v + A1.v r̆(i−1).v + · · ·+ Ak.v r̆(i−k).v (10.8)

In our experiments we used k = 2 (a second-order auto-regressive model), therefore we have

µ̆(i+1).x = A0.x r̆(i).x + A1.x r̆(i−1).x (10.9)

µ̆(i+1).y = A0.y r̆(i).y + A1.y r̆(i−1).y (10.10)

µ̆(i+1).u = A0.u r̆(i).u + A1.u r̆(i−1).u (10.11)

µ̆(i+1).v = A0.v r̆(i).v + A1.v r̆(i−1).v. (10.12)
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10.1.2 Observation model

In this thesis, the probability PO is assumed to be proportional to an observation score SO,
which is the product of two factors,

PO(r(i+1)) ∝ SO(r(i+1)) = ST (r(i+1), V(i+1))SC(r(i+1), V(i+1), z∗) (10.13)

The factor ST (r(i+1), V(i+1)) measures how much “text-like” is the contents of r(i+1) in the
current frame V(i+1). Similarly, classification scores has also been used in other particle filter
based trackers, such as those proposed by Chateau et al. [18] in 2007 and Breitenstein et al. [17]
in 2010. The second factor SC(r(i+1), V(i+1), z∗) measures the similarity between the contents
of region r(i+1) in the frame V(i+1) and that of some “template” z∗ associated to the object r∗.

If the maximum score SO of any particle is below a fixed threshold, the procedure assumes
that the text object r∗ was lost, and drops its from the tracked set. In the published version
of SNOOPERTRACK [67] algorithm, we built and updated a spatiotemporal descriptor for each
tracked region. That is, only the PC term was used in the observation model. The PT term,
averaged over the last few frames (by an affine combination), was used to decide whether the
object r∗ should continue to be tracked, according to a fixed threshold.

Contents classification

For the classification score ST (r, I) we used an estimate of the probability PT (r, I) of a region r

in some frame image I being a text region, based only on its contents. For that purpose, we use
the SVM score f(z) of the T-HOG descriptor z ∈ RN (defined in Section 4.7) extracted from
the contents of r in I. There are several ways for mapping the scores f(z) produced by an SVM
to probabilities, as discussed by Platt [74]. We have observed that the T-HOG/SVM classifi-
cation scores f(z) of text and non-text regions have approximately Gaussian distributions with
fixed means µ+, µ− and deviations σ+, σ−, respectively. Therefore we estimate the probability
PT by the Bayes formula

PT (r, I) =
pT γ̄(f(z), µ+, σ+)

pT γ̄(f(z), µ+, σ+) + (1− pT ) γ̄(f(z), µ−, σ−)
(10.14)

where pT is the a priori probability that r is indeed a text region, and γ̄ is the standard Gaussian
probability distribution

γ̄(z, µ, σ) =
1

σ
√

2π
γ(z, µ, σ) =

1

σ
√

2π
exp

(

−(z − µ)2

2σ2

)

(10.15)

Statistical analysis of the training set X, B (see Chapter 11) gave the parameters µ+ =

1.88, µ− = −2.30, σ+ = 1.17 and σ− = 0.93. The a priori probability pT was assumed to be
0.5.
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Contents similarity

The score SC(r, I, z∗) measures the similarity between the contents of a region r in frame I and
a “template” z∗ for the text object r∗, extracted from the occurrences of r∗ in previous frames.

The template could be defined in several ways: it could be simply the content of the text
region r∗ in the first frame where r∗ was detected. In our implementation, the template is a
T-HOG descriptor of that first region, which is compared to the T-HOG descriptor of region r

in frame I.
To measure the similarity of two descriptors z′ and z′′(k) ∈ RN , we use Bhattacharyya’s

similarity coefficient

dB(z′(k), z′′(k)) =

[

1−
N
∑

k=1

√

z′(k) z′′(k)

]1/2

(10.16)

We are assuming that both descriptors are normalized to unit sum. We also assumed that the
square of Battacharyya’s distance between the T-HOG descriptors of two projections of the
same text has an exponential probability distribution. Therefore, we used

SC(r, I, z∗) = exp

(

−dB
2(z′, z′′)

σ2

)

(10.17)

where z′ is the T-HOG of r in I, z′′ the T-HOG of z∗, σ2 is the standard deviation of dB
2. In

our experiments we set 1/σ2 = 20.
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Experiments

In this chapter we compare the text tracking schemes described in Chapter 9.

11.1 Video dataset

To evaluate the algorithms we used 6 real videos from urban scenes, listed in Table 11.1. Fig-
ures 11.1 and 11.2 show some sample frames. These videos were taken with a hand-held camera
under natural lighting, and therefore are affected by natural noise, perspective distortion, blur-
ring, illumination changes, shadows, highlights and occlusions. In videos v3 and v6, some text
lines entered the frame gradually across it edges. In the remaining videos, one or more text
objects are followed by the camera so that they are visible in all frames, except for temporary
occlusions.

Video #XMLs #Text Objs. Resolution (pixels)

v1 800 2 640× 480
v2 1089 2 640× 480
v4 400 3 640× 480
v5 1250 1 640× 480
v3 206 18 640× 480
v6 1600 38 640× 480

Table 11.1: Text tracking video datasets.

11.2 Output file format

We manually annotated the videos to produce the reference solution (“groundtruth”), consisting
of a set of text regions G(i) for each frame V(i) and a tracking relation ̺(i) that connects images
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(a) v1 - ship identification under perspective changes (b) v2 - store name suffering deformation changes

(c) v4 - boat identification zooming-out (d) v5 - store name going under lighting changes

(e) v6 - camera fixed in car recording stores façades

Figure 11.1: Sample frames from our text tracking dataset.

of the same object between successive frames. On each video frame we marked all text lines
that could be clearly read and had at least two letters.

For evaluation purposes, the output of each text tracking algorithm, as well as the reference
solution, was saved as an XML file, whose structure is similar to that of the ICDAR chal-
lenge [55, 57] reference solutions.

Each frame is represented by an <image> field. Each text region in that frame is encoded
as a <taggedRectangle> sub-field of <image>. The region’s geometry is represented by
its parameters x, y (pf), w (uf .x) and h (vf .y). Each region also has: an integer parameter id,
which uniquely identifies the corresponding text object throughout the whole video; a string
parameter text which contains the part of the text that is visible in the frame; and a fractional
parameter vfr, between 0.0 and 1.0, which indicates how much of the text line’s vertical extent
lies between the top and bottom edges of the frame. The text and vfr fields are non-empty only
in the reference file. See Figure 11.2.



11.3. Metrics 87

πi

Ti = 182

oo //

<?xml version="1.0" encoding="UTF-8"?>

<tagset>

<image>

<imageName>000182</imageName>

<resolution x="640" y="480"/>

<taggedRectangles>

<taggedRectangle x="149.0" y="0.0" w="118.0" h="19.0" id="9" text="Cloud" vfr="0.5"/>

<taggedRectangle x="4.0" y="4.0" w="263.0" h="55.0" id="10" text="RIPHERIQUE" vfr="1"/>

<taggedRectangle x="22.0" y="101.0" w="125.0" h="36.0" id="11" text="RIQUE" vfr="1"/>

<taggedRectangle x="14.0" y="144.0" w="85.0" h="36.0" id="12" text="EUR" vfr="1"/>

<taggedRectangle x="319.0" y="200.0" w="26.0" h="14.0" id="13" text="BAR" vfr="1"/>

<taggedRectangle x="498.0" y="179.0" w="44.0" h="17.0" id="14" text="TABAC" vfr="1"/>

<taggedRectangle x="314.0" y="259.0" w="73.0" h="30.0" id="15" text="Royal" vfr="1"/>

<taggedRectangle x="391.0" y="251.0" w="157.0" h="30.0" id="16" text="Cambronne" vfr="1"/>

<taggedRectangle x="336.0" y="334.0" w="38.0" h="16.0" id="17" text="CAFE" vfr="1"/>

<taggedRectangle x="380.0" y="329.0" w="92.0" h="20.0" id="18" text="RESTAURANT" vfr="1"/>

</taggedRectangles>

</image>

</tagset>
Ti

Figure 11.2: Example of a reference XML tracking output file. Video v3.

11.3 Metrics

We evaluated the accuracy of each text tracking algorithm on three aspects: text region detec-

tion, text object detection and text object tracking.

11.3.1 Region detection accuracy

Region detection accuracy refers to the ability of the algorithm to detect the visible text objects
in each frame. Note that in many applications it is not enough to detect the object once, but
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it is necessary to detect it in all frames where it appears. Observe, that for TRACK2, TRACK3
and TRACK4 the region detection accuracy reflects the performance of the TEXTDETECT pro-
cedure, as well as that of the PREDICT or TRACKREGIONS.

To measure the region detection accuracy we compare each set T (i) of detected regions with
the corresponding reference set G(i), using averaging approach III described in Section 6.1.2.
Namely, the precision (p) and recall (r) scores for text region detection are given by

p =

n−1
∑

i=0

m(T (i), G(i))

n−1
∑

i=0

#T (i)

r =

n−1
∑

i=0

m(G(i), T (i))

n−1
∑

i=0

#G(i)

(11.1)

where m is the region set similarity function defined by formula (6.3). The f -score is the
harmonic mean of p and r, as in formula (6.5).

Observe that the above metrics do not take into account the possibility of text occlusions
and give partly visible texts the same importance as fully visible ones. One could use the fields
<text> and <vfr> to reduce the weights of such regions. However, in the videos considered
here, the vast majority of the legible texts are totally visible in most frames and therefore the
above adjustments would have little effect.

11.3.2 Object detection accuracy

In some applications it is sufficient to detect each text object in at least one frame. For those
situations, we define a separate set of metrics to evaluate the accuracy of each text tracking
algorithm in detecting the occurrences of the text objects (as opposed to text regions).

We will denote by G∗ the set of all distinct text objects that are listed in the reference file
(basically, the set of all distinct id parameter values) and by T ∗ the set of text objects implied by
the computed tracking relations π(1), π(2), . . . , π(n). For each object r∗ (in G∗ or T ∗) we denote
by ri the corresponding text region in frame i (or nil if the object is not visible in that frame).

An object r∗ in one object set R∗ (groundtruth or estimated, respectively) is assumed to be
present in the region sets Z(0), Z(1), . . . , Z(n−1) (estimated or groundtruth, respectively) if and
only if there is some region z in some set Z(i) which matches the corresponding region r∗i . More
precisely

m(r∗, Z) = max{m(r∗i , Z
(i)) : i = 0, . . . , n− 1} (11.2)

where m(r∗i , Z
(i)) is the region matching function defined by formula (6.2). The extension of

equation (11.2) to a set R∗ is

m(R∗, Z) =
∑

r∗∈R∗

m(r∗, Z) (11.3)
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Finally, the precision (p) and recall (r) scores for text object detection are given by

p =
m(T ∗, G)

#T ∗
r =

m(G∗, T )

#G∗
(11.4)

and the f -score is also defined by formula (6.5).
Suppose that only some slice of a text object is visible in some frame, e.g. because it is

partially occluded or it will enter in the frame gradually. Also suppose that this slice is perfectly
detected. If the reference file contains that partial region annotated, then that object will be
considered 100% detected in the video. To avoid this effect, one should exclude partially text
occurrences from the reference file. On the other hand, if a text object r∗ is always entirely
detected into two or more regions, while it is given as a single region in the reference file (or
vice-versa) then the recall score m(r∗, Z) for that object will be much less than 1. This last
observation is also valid to the region detection accuracy metric and the ICDAR score metric
(see Section 6.1.2).

11.3.3 Text tracking accuracy

For text tracking applications, an essential aspect of the algorithm is how accurately it iden-
tifies regions in successive frames as belonging to the same object. A tracking failure occurs
whenever two regions that belong to the same text object in successive frames V(i−1), V(i) do
not appear in the tracking relation π(i).

Metrics for tracking accuracy were discussed by Smith et al. [79] in 2005. For this thesis, we
evaluate the tracking accuracy by comparing each tracking relation π(i) to the reference relation
̺(i). For this purpose, we define a geometric similarity measure m((r, r′), (s, s′)) for two pairs
of regions, where r, s are supposed to be in one frame and r′, s′ in the next frame. We use the
geometric mean of the region similarities, namely

m((r, r′), (s, s′)) =

{

1 if m(r, s) ≥ τ and m(r′, s′) ≥ τ

0 otherwise
(11.5)

where τ is a threshold and m(r, s) and m(r′, s′) are computed by formula (6.1). As in Sec-
tion 6.1.2, we extend formula (11.5) to a pair (r, r′) and a set of pairs λ ⊆ Z × Z ′ by

m((r, r′), λ) = max{m((r, r′), (s, s′)) : (s, s′) ∈ λ} (11.6)

The extension for two sets of pairs σ ⊆ Y × Y ′ and λ ⊆ Z ×Z ′ (tracking relations), analogous
to equation (6.3), is then

m(σ, λ) =
∑

(r,r′)∈σ

m((r, r′), λ) (11.7)
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Therefore, the tracking precision (p) and recall (r) scores are given by

p =

n−1
∑

i=1

m(π(i), ̺(i))

n−1
∑

i=1

#π(i)

r =

n−1
∑

i=1

m(̺(i), π(i))

n−1
∑

i=1

#̺(i)

(11.8)

The f -score is computed from p and r according to formula (6.5).

11.4 Settings

In all tests with TRACK2, TRACK3 and TRACK4, we used the same particle-filter tracker, de-
scribed in Section 10.1, with linear Kalman prediction. The number of particles was fixed at
100. The tracker was set to use the T-HOG for content classification and similarity. How-
ever, the experimental analysis of Section 5.5, that led us to use nx = 1 for text recognition,
is not relevant for this last use of the T-HOG, that is, contents similarity by region signature.
Indeed, a division into 6 × 6 cells was more effective in this role than the 1 × 7 arrangement
that was optimal for text recognition. The latter arrangement yields a descriptor that is very
sensitive to vertical displacements of the candidate region, but largely insensitive to horizontal
displacements. As a consequence, the path computed by the tracker has substantial jitter in the
horizontal direction. By using an equal number of vertical and horizontal cuts, we obtain a
descriptor that is sensitive to both vertical and horizontal displacements of the candidate region.

In our experiments, we combined each text tracking algorithm with two text detectors,
IDEAL and SNOOPERTEXT [66]. The output of the IDEAL detector is the groundtruth set G(i)

restricted to the sub-domain parameter D. Tests with this detector evaluate the best possible
performance of the text tracking algorithm proper. SNOOPERTEXT is the state-of-the-art de-
tector discussed in Section 6.1.1. Tests with this detector illustrate the typical performance and
failure modes of each tracking algorithm in real applications. The SNOOPERTEXT algorithm
was set to use STC=3 (see Section 6.1).

We did not attempt to tune the parameters for individual videos. The same settings, either
in detection and tracking, were used in all strategies and in all videos discussed here.
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11.5 Results

Tables 11.2 and 11.3 summarized the results of our four tracking strategies using the IDEAL

and SNOOPERTEXT detectors, respectively. The algorithm’s accuracy was measured with the
metrics described in Section 11.3 and the ICDAR score described in Section 6.1.2.

TRACK1 TRACK2 TRACK3 TRACK4
Region detection accuracy

Video p r f p r f p r f p r f
v1 1.00 1.00 1.00 0.94 0.92 0.93 0.93 0.88 0.91 0.94 0.89 0.91
v2 1.00 1.00 1.00 0.83 0.86 0.84 0.84 0.82 0.83 0.88 0.88 0.88
v4 1.00 1.00 1.00 0.80 0.86 0.82 0.80 0.86 0.83 0.80 0.87 0.83
v5 1.00 1.00 1.00 0.92 0.92 0.92 0.93 0.89 0.91 0.93 0.93 0.93
v3 1.00 1.00 1.00 0.76 0.79 0.77 0.82 0.64 0.72 0.81 0.75 0.78
v6 1.00 1.00 1.00 0.57 0.66 0.61 0.77 0.53 0.63 0.77 0.66 0.71

ICDAR detection score
Video p r f p r f p r f p r f

v1 1.00 1.00 1.00 0.93 0.92 0.92 0.89 0.88 0.88 0.92 0.89 0.90
v2 1.00 1.00 1.00 0.85 0.86 0.85 0.82 0.82 0.82 0.88 0.88 0.88
v4 1.00 1.00 1.00 0.80 0.85 0.82 0.81 0.86 0.83 0.82 0.87 0.83
v5 1.00 1.00 1.00 0.93 0.93 0.93 0.91 0.90 0.90 0.93 0.93 0.93
v3 1.00 1.00 1.00 0.76 0.78 0.77 0.80 0.65 0.70 0.81 0.75 0.77
v6 1.00 1.00 1.00 0.69 0.73 0.70 0.70 0.61 0.64 0.80 0.73 0.75

Object detection accuracy
Video p r f p r f p r f p r f

v1 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
v2 1.00 1.00 1.00 0.87 1.00 0.93 0.81 1.00 0.89 0.89 1.00 0.94
v4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
v5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
v3 1.00 1.00 1.00 0.88 1.00 0.94 0.93 1.00 0.97 0.94 1.00 0.97
v6 1.00 1.00 1.00 0.75 1.00 0.85 0.93 1.00 0.96 0.93 1.00 0.96

Text tracking accuracy
Video p r f p r f p r f p r f

v1 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.94 0.97 1.00 0.95 0.98
v2 1.00 1.00 1.00 0.98 1.00 0.99 0.98 0.92 0.95 1.00 0.99 1.00
v4 1.00 1.00 1.00 0.93 1.00 0.96 0.93 1.00 0.96 0.92 1.00 0.96
v5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.98 1.00 0.99 1.00
v3 1.00 1.00 1.00 0.85 0.86 0.85 0.94 0.73 0.83 0.92 0.86 0.89
v6 1.00 1.00 1.00 0.52 0.68 0.59 0.91 0.62 0.74 0.89 0.77 0.83

Table 11.2: Performance of the tracking algorithms using the IDEAL detector. The boldface
values are the maxima in each row among TRACK2, TRACK3 and TRACK4.
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TRACK1 TRACK2 TRACK3 TRACK4
Region detection accuracy

Video p r f p r f p r f p r f
v1 0.63 0.49 0.55 0.48 0.79 0.59 0.76 0.78 0.77 0.75 0.80 0.77
v2 0.64 0.58 0.61 0.72 0.84 0.77 0.80 0.74 0.77 0.80 0.75 0.77
v4 0.77 0.56 0.65 0.83 0.79 0.81 0.84 0.76 0.80 0.86 0.81 0.84
v5 0.89 0.37 0.52 0.52 0.65 0.58 0.93 0.75 0.83 0.93 0.84 0.88
v3 0.80 0.52 0.63 0.64 0.56 0.60 0.72 0.38 0.50 0.72 0.49 0.58
v6 0.67 0.29 0.40 0.46 0.38 0.42 0.62 0.24 0.34 0.66 0.34 0.45

ICDAR detection score
Video p r f p r f p r f p r f

v1 0.51 0.49 0.48 0.48 0.79 0.59 0.73 0.78 0.75 0.72 0.80 0.75
v2 0.61 0.59 0.60 0.75 0.84 0.78 0.75 0.74 0.75 0.76 0.75 0.76
v4 0.67 0.56 0.59 0.77 0.76 0.76 0.73 0.71 0.72 0.82 0.80 0.81
v5 0.36 0.36 0.36 0.52 0.65 0.56 0.77 0.76 0.76 0.85 0.84 0.85
v3 0.80 0.52 0.62 0.64 0.57 0.60 0.72 0.39 0.50 0.72 0.48 0.58
v6 0.49 0.38 0.41 0.50 0.48 0.47 0.47 0.35 0.37 0.56 0.42 0.45

Object detection accuracy
Video p r f p r f p r f p r f

v1 0.61 0.97 0.75 0.12 0.97 0.21 0.27 0.94 0.42 0.28 0.98 0.44
v2 0.70 1.00 0.82 0.49 0.98 0.65 0.88 0.97 0.92 0.85 0.96 0.90
v4 0.73 0.86 0.79 0.78 0.97 0.87 0.95 0.95 0.95 0.99 0.99 0.99
v5 0.85 0.99 0.91 0.15 0.98 0.26 0.98 0.98 0.98 0.99 0.99 0.99
v3 0.74 0.90 0.81 0.62 0.91 0.74 0.81 0.72 0.76 0.81 0.72 0.76
v6 0.56 0.70 0.62 0.45 0.68 0.54 0.67 0.48 0.56 0.69 0.50 0.58

Text tracking accuracy
Video p r f p r f p r f p r f

v1 0.92 0.32 0.47 0.56 0.92 0.70 0.90 0.92 0.91 0.87 0.92 0.90
v2 0.97 0.62 0.76 0.85 0.99 0.91 0.98 0.89 0.93 0.96 0.89 0.93
v4 0.98 0.66 0.79 0.97 0.92 0.94 0.98 0.89 0.94 0.99 0.93 0.96
v5 1.00 0.25 0.40 0.56 0.69 0.62 1.00 0.81 0.89 1.00 0.91 0.95
v3 0.98 0.48 0.65 0.79 0.69 0.74 0.90 0.46 0.61 0.91 0.60 0.73
v6 0.82 0.27 0.40 0.44 0.41 0.42 0.65 0.26 0.37 0.79 0.40 0.53

Table 11.3: Performance of the tracking algorithms using the SNOOPERTEXT detector. The
boldface values are the maxima in each row among all four algorithms.
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11.6 Discussion

As Table 11.2 shows, if the text detector is fast and very accurate, then TRACK1 is the best of
all four strategies. In our test videos, the simple motion prediction we used allowed the text to
be correctly matched in all frames. However, this is not true for practical text detectors which
are still very far from the ideal, as shown in Table 11.3.

In realistic situations, TRACK4 was the best strategy overall. Some examples of its output
are shown in Figures 11.3 and 11.4. Note that TRACK3 also performed very well and is an
alternative if we consider real-time applications. Some problems of both strategies in videos v3
and v6 are due to over-segmentation problems (see Section 11.6.3).

The TRACK1 and TRACK2 algorithms are much more computationally expensive than
TRACK3 and TRACK4. Typically, running SNOOPERTEXT on a single frame takes 30 times
longer than running TRACKREGIONS.

The cost of TRACKREGIONS (≈ 1–2 seconds per object) can be significantly reduced (≈
0.2–0.9 milliseconds [67] per frame), with small loss of precision, by using the SNOOPER-
TRACK [67] observation model that compute only one T-HOG classification per object. The
observation model used in this section, equation (10.13), compute one T-HOG classification
per particle. Moreover, there is still plenty of room for improvement, since our algorithms were
coded in JAVA and without any optimization.
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(a) Video v1. Frames 0, 330 and 680.

(b) Video v2. Frames 17, 743, 768 and 839.

(c) Video v4. Frames 0, 110 and 280.

(d) Video v6. Frames 1290, 1304, 1310, 1320, 1330 and 1340.

Figure 11.3: Examples of tracking by TRACK4 strategy. The labels indicates the text occur-
rences found by TRACK4 so far. Note that only at video v2 in (b) the same text projection of
‘BISTRO’ and ‘ROMAIN’ received two different labels (due to a total occlusion).
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(a) Video v3. Frames 0, 100 and 118.

(b) Video v6. Frames 1107, 1126 and 1130.

Figure 11.4: Examples of tracking failures by TRACK4 strategy. In (a), some text lines were
lost due to excessive tilting. In (b), the tracking was able to follow region ‘20’ even while it was
partially occluded by the pole, but lost region ‘19’.

11.6.1 Impact of text detection errors

Text regions are identified in a frame in two ways, either by using the text detector, at least
once, or by using a tracker. It turns out that the latter is substantially more accurate than the
former both in precision and recall. Therefore, it is not surprising that the region detection score
generally improves from TRACK1 to TRACK4.

Observe that the regions missed by the detector (false negatives) directly impact the region
recall of TRACK1, whereas the other three algorithms will often correct a detector’s failure by
tracking the text after it was detected in some previous frame.

On the other hand, the recall score for the object detection accuracy metric is better in
TRACK1 and TRACK2, specially in videos v3 and v6, because some objects that were missed
by strategies TRACK3 and TRACK4 were found by those two methods. See Figure 11.5. This is
explained because TRACK1 and TRACK2 scans most of the pixels in every frame, thus, a region
lost by TRACK3 and TRACK4 due to irregular illumination, partial occlusions, or perspective is
more likely to be found due to this scanning.

Furthermore, detection errors also impact the tracking accuracy. The low tracking recall
scores of TRACK1 are mainly due to the detector returning very different text regions for the
same object in successive frames, either by including background pixels, by losing parts of
the text, by improper joining and splitting of text regions, or by complete detection failure. See
Figure 11.6. Such errors often cause the MATCH procedure to fail, so that a single text trajectory
is often split into several separate trajectories. These problems typically occurs in any algorithm
that relies on the text detector to define the regions, such as the tracker of Merino et al. [59].
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Figure 11.5: Effect of irregular illumination: at left, strategies TRACK3 and TRACK4 had only
two chances, and failed, to detect the word ‘CORREIOS’ at key-frame 840 (top) and 870 (bot-
tom), while strategies TRACK1 and TRACK2 detected some part of this word at frame 860
(middle). Note (at right) the variation in the illumination.

Figure 11.6: TRACK1 outputs using the SNOOPERTEXT detector. Examples of tracking failures
due to over bounding (top), video v3; improper splitting/joining and under bounding (middle),
video v2; and detection failure (bottom), video v5.

11.6.2 Impact of false positive detections

In general, false positives returned by the detector directly affect the region and object detection
precision of TRACK1 and TRACK2. Moreover, TRACK2 may start track the false positives,
thus magnifying their impact. See Figure 11.7 (a). This explains its lower precision score for
region detection. This problem is compensated in TRACK3 and TRACK4, see Figure 11.7 (b),
because false positives can only be found on the key frames. As a result, their precision scores
for region detection is even higher than those of TRACK1.
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(a) TRACK2

(b) TRACK4

Figure 11.7: Effect of false positives: (a) tracking of several false positives by the TRACK2
strategy; (b) strategy TRACK4 found and tracked only a subset of these false positives.

11.6.3 Impact of over-segmentation

The low scores precision scores of TRACK2 in both tables, specially on videos v3 and v6, are
partly due to over-segmentation of text regions. Specifically, text lines that enter the frame
gradually are often fragmented into separate regions containing 2-3 letters each. This splitting
occurs because parts of the text that were detected in previous frames are identified by tracking
and hence excluded from the scope of the text detector. Therefore, each group of 2-3 charac-
ters is detected as soon it becomes visible, and then is tracked independently of other blocks.
See Figure 11.8(c). The same problem occurs when text objects are temporally occluded by
foreground objects (tree, poles, etc) or obscured by shadows or highlights.

The over-segmentation also affect the tracking, since we have less information available to
match the region.

The TRACK3 and TRACK4 strategies are less sensitive to this problem because the detector
is run only at key-frames, so new texts are often detected when they are already totally visible.
See Figure 11.8.
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(a) Key-frame: 990 (b) Key-frame: 1020

Frame: 997 Frame: 1001 Frame: 1006 Frame: 1020

(c) TRACK2

Frame: 997 Frame: 1001 Frame: 1006 Frame: 1020

(d) TRACK3

Frame: 997 Frame: 1001 Frame: 1006 Frame: 1020

(e) TRACK4

Figure 11.8: Impact of over-segmentation in video v6: (c) TRACK2 strategy splits the word
“MOVELEIRO” into 2-3 characters slices as it entered in the scene; (d) in the TRACK3 and
TRACK4 strategies, the over-segmentation did not occur because the detector was run only on
key-frames (a,b). In the intervening frames, TRACK3 missed the text completely (d) while
TRACK4 recovered it by tracking backwards (e).
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11.6.4 Impact of backward tracking

Tables 11.2 and 11.3 demonstrate the advantages of backward tracking (TRACK4 strategy) over
simple forward tracking (TRACK3 strategy). In general, considering both tables, the use of
backward tracking improves the tracking accuracy f -score by ≈ 5%, the ICDAR f -score by
≈ 5%, and the region detection f -score by ≈ 4%. In particular, considering only videos v3
and v6 where the text objects frequently enter in the frame gradually, the backward tracking
improves the tracking f -score by ≈ 11%, the ICDAR f -score by ≈ 9%, and the region f -score
by≈ 8%. It also improves the detection scores of objects that are temporally occluded/obscured
(as in Figure 11.9), and in all cases where a text object has been lost and then found again.

Frame: 0 Frame: 951 Frame: 990 Frame: 1065 Frame: 1170
(a) TRACK3

Frame: 0 Frame: 951 Frame: 990 Frame: 1065 Frame: 1170
(b) TRACK4

Figure 11.9: Impact of backward tracking in video v5 with temporary text occlusions. Using
the SNOOPERTEXT detector, both TRACK3 and TRACK4 found the text ‘ZARA’ in frame 0
and tracked it forward until frame 951, where it was lost due to glare. The text detector found it
again, 219 frames later, in key-frame 1170. The TRACK4 was then able to recover it in frames
1065–1169 by backward tracking from that key-frame.

11.7 Concluding remarks

Apart from the detector’s accuracy, there are some key-points to improve in our text tracking
strategies: connection of over-segmented text regions; use of general rectangles, instead of only
axis aligned rectangles; exploit the spatial coherence of text motions as would be produced by
camera motion; and text label unification in situations of total occlusions.

The camera motion, estimated by e.g. optical flow, as described by Minetto et al. [63], may
also lead to significant reduction in time in TRACK2 strategy by excluding from the set D any
pixels from the background that were scanned by the detector in the previous frame and remain
visible in the current frame.
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Tracking of 3D Rigid Objects
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Chapter 12

Introduction

In this part of the thesis we consider the feature-based tracking problem of a tri-dimensional

rigid object. Namely, the tracking of a solid object (such as a building, truck, package, etc.) by
following a set of known two-dimensional features attached to its surface. In some cases the
entire object of interest may be a single feature. We consider features that are mostly flat, rigid,
opaque, and firmly attached to the object of interest along the time.

The features can be either intrinsic or accidental (such as letters, labels, wall outlets, logos,
etc.), or fiducial marks attached to the object specifically for the purpose. See Figure 12.1.

Figure 12.1: Trackable features (a) accidental and (b) intentional.

The input data for this problem consists of a digital video, a list of the features to be tracked,
their positions on the object, and the approximate position of the projection of each feature in
the first frame. The output consists of the position of the object in space relative to the camera
and other relevant camera parameters (such as zoom factor) for each frame.

103
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12.1 Motivation

Tracking the motion of rigid objects is a general video analysis problem with a wide range of
applications, including robotics handling and assembly, vehicle fleet management and tracking,
autonomous navigation. For example, the camera calibration of a scene by real time tracking of
two-dimensional physical markers is the core of most software for building augmented reality
(AR) applications (overlay of virtual imagery on the real world). See Figure 12.2.

Figure 12.2: Augmented Reality.

12.2 Our contributions

Our major contribution to this problem is the development of an algorithm nicknamed
AFFTRACK [65]. AFFTRACK uses a synergistic combination of two main procedures, a multi-
scale feature finder (FF) that locates the positions of the features (markers) on each frame, and
a flexible camera calibrator (CC) that computes the camera parameters from those positions.

A key aspect of AFFTRACK is the use of a confidence weight to express the reliability of
each feature on each frame. These weights are initially computed from the quality of the match
returned by the feature finder, and then iteratively adjusted by the calibrator depending on the
consistency between the feature’s reported position and the position of all other features [64].
Thus, instead of RANSAC’s [30] binary accept/reject criterion, our algorithm uses a “fuzzy”
classification of outliers similar to that of MLESAC [82].

Another key aspect of AFFTRACK is that the camera parameters calibrated in previous
frames are used to guess the location and shape of each feature in the next video frame, as
required by the feature finder. Whenever a feature has been successfully located, our algorithm
adjusts its expected appearance to account for changes in the lighting and contrast.

AFFTRACK does not require the features to be visible or successfully identified in all frames
(not even on the first one), as long as those that are visible are sufficient to determine the
camera’s unknown parameters. As a result of the two-way interaction between the FF and the
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CC, it can usually recover a feature that was occluded or mis-identified by the finder, as soon
as it becomes visible again. Increasing the number of tracked features beyond the theoretical
minimum generally improves the reliability and accuracy of the calibration.

Our emphasis is on robustness, accuracy, and flexibility within the stated goals, rather than
speed. Nevertheless the algorithm is quite efficient, because the accurate guessing of feature po-
sitions, provided by the calibrator, allows the finder to use smaller templates and windows. We
hope that AFFTRACK will be useful in many real-world applications. Moreover, our weighted
camera calibration module can be used in any system where some confidence about the data is
available. AFFTRACK may also be useful as a building block of other computer vision algo-
rithms.

Our AFFTRACK implementation (in C) and the test datasets used in this part are available
at our site [61].

12.3 Statement of the problem

As in Part II, the input is a video V, assumed to consists of a sequence of n images
V(0), V(1), . . . , V(n−1) with common domain D, equally spaced in time; and a list of m two-
dimensional features. Each feature is defined by a canonical image M[k], a mask W[k],
and the feature’s object geometry, namely, a point ps[k] ∈ R3, and two orthogonal vectors
us[k], vs[k] ∈ R3 that define the feature’s position, orientation and size on the object; where
k = 0, 1, . . . ,m− 1. See Figure 12.3 (a–c).

(a) (b) (c) (d)

Figure 12.3: The object geometry parameters of a feature in 3D space (a), its canonical image
(b), its mask (c), and its image geometry (d).

The parameters ps[k], us[k], vs[k] are assumed to be relative to the object’s own coordinate sys-
tem (see Section 14.1) and are therefore independent of the camera and object positions in
space. The canonical image M do not need to be particularly accurate; generally it is assumed
to be a frontal projection of the feature under ideal lighting conditions. The common domain of
M and W is assumed to be the rectangle ps ± us ± vs on the object’s surface.
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becomes occluded at any point, the feature finder may return some meaningless location within
its search window. These errors are often very large and do not follow the normal distribution
of errors due to camera noise.

In many camera calibration algorithms, all data pairs are assumed to have the same impor-
tance, which makes the result very sensitive to outliers in the data set D. A substantial error in
the reported position of a single feature may lead to a totally incorrect parameter vector C, or
even to failure of the calibration algorithm.





Chapter 13

Related work

The integration of feature tracking and camera calibration for 3D object tracking has been
described in several recent articles, some of which are covered in the survey by Lepetit and
Fua [45].

We mention in particular the tracker by Vaccheti et al. [85] which attempts to solve approxi-
mately the same problem as we do here. An advantage of their algorithm is that it automatically
identifies trackable features by SIFT-like methods [52, 53] and extracts their template images
from the video itself. However, their algorithm requires a complete geometric model of the
object. It also requires the selection of certain key frames along the video, where the features
to be tracked are all visible and the object’s pose is approximately known. AFFTRACK only
requires the features positions on the object, and does not require key-frame selection. While
our algorithm requires the user to provide canonical images and object positions of the features
beforehand, it does not require complete object models, it does not need also more than one
camera to treat occlusions as in the work of Black et al. [14], or key frame selection, and can
track an object in the presence of occlusions, video noise, and finder failures for an indetermi-
nate number of frames, without any long-term drift.

Our algorithm can also handle video shots with variable-zoom and variable radial distortion
unlike the work of Koller et al. [42] that needs these parameters fixed during a session.

Our algorithm is more general than H. Kato’s widely used ARToolKit [40]. Besides al-
lowing changes in focal length, AFFTRACK does not require that the features have a specific
and easily-recognized shape as ARToolKit does. In fact, our algorithm can reliably track and
use even features that have been reduced to a single-pixel dot. As in the work of Ababsa et

al. [6], our algorithm also allows features to be located on different planes, with arbitrary orien-
tations. Indeed, it relies on the presence of non-coplanar features to resolve certain calibration
ambiguities (such as focal length vs. camera distance) that arise when using a single 2D pattern.

Another popular tracker is the implementation of the KLT algorithm [15] included in the
OpenCV library [16] as the routine cvCalcOpticalFlowPyrLK. Although it is only a 2D feature
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tracker, its output (the locations of the feature on each frame) can be fed to any camera cali-
brator, such as R. Tsai’s algorithm [83], to create a 3D tracker. As we show in Chapter 18,
this solution suffers from unavoidable drift that frequently leads to permanent tracking failure
of moving objects.

In these solutions outliers are often handled by the RANSAC approach [30, 86]. Namely,
the calibration is repeated a certain number M of times, each time using only a randomly chosen
small subset of the data and choosing the best one. For each calibrated parameter vector C, the
RANSAC method counts the features whose reported positions match the predicted positions
within a prescribed tolerance; and chooses the parameter set C that maximizes this count. While
this approach is fairly robust, it may be rather expensive: the number M of trials needed to
succeed with probability p is log(1− p)/ log(1− (1− ǫ)k), where ǫ is the probability of a data
pair being an outlier, and k is the minimum number of data pairs needed for calibration (which
is 7 for the full Tsai algorithm). For p = 99.5% and ǫ = 30%, we get M = 61. Note that in a
video with N frames, we must have (1−p) < 1/N to have a reasonable chance of tracking over
the whole video. Moreover, the RANSAC approach gives the same importance to all data pairs
which pass the acceptance test, independently of their quality, and ignores completely points
that barely fail that test.



Chapter 14

Camera model

For most video and photo cameras, the geometric correspondence between a 3D object and
a 2D photograph of it can be approximated quite well by the composition of a rigid scene-

to-camera coordinate transform, a perspective projection onto the plane of the sensor array,
a radial distortion that is symmetric around the camera’s optical axis, and a sensor sampling

mapping that relates coordinates on the projection plane to indices into the pixel array. For these
steps, we use mathematical models and notation similar to those of Roger Tsai’s paper [83]. All
coordinates are in millimeters unless said otherwise.

14.1 Scene and camera coordinates

We assume a Cartesian scene coordinate system that is used to describe both the object of
interest and the position of the camera relative to it. Depending on the application, the object of
interest may be fixed (e.g. a building) or mobile (e.g. a vehicle); in the second case the scene
coordinate system moves with the object.

We also use a camera coordinate system where the camera’s equivalent pinhole lens is at
the origin, the X axis points to the camera’s left, the Y axis points to the camera’s down, and
the Z axis (the optical axis of the lens) points forward. See Figure 14.1.

In both systems, we assume that the coordinates are measured in millimeters. The scene-
to-camera mapping is a rigid transformation that takes scene coordinates ps = (xs, ys, zs) of a
point to its camera coordinates pc = (xc, yc, zc). It is given by
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(14.1)

The 4× 4 scene-to-camera matrix above will be denoted by S in what follows. The lower right
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Figure 14.1: The scene coordinate system (xs, ys, zs) and the camera coordinate system
(xc, yc, zc).

3 × 3 sub-matrix R of S is an orthonormal (rotation) matrix that determines the orientation of
the camera axes relative to the scene axes. The column vector T = (Tx, Ty, Tz) contains the
camera coordinates of the scene system’s origin. The corresponding vector V = (Vx, Vy, Vz) in
the inverse matrix S−1 contains the scene coordinates of the camera.

14.2 Projected coordinates

We also use a projection coordinate system lying on the projection plane that ideally contains
the sensor array. Its origin lies on the camera’s Z axis and its X and Y axes are parallel to the
camera’s X and Y axes. The perspective projection that takes camera coordinates (xc, yc, zc) to
(undistorted) projected coordinates pu = (xu, yu), on the sensor plane, is

(xu, yu) =
f

zc

(xc, yc) (14.2)

where the parameter f is the focal length of the lens which determines how the projected size
of an object depends on its distance from the camera. A larger value of f is what distinguishes
telephoto lenses from macro lenses, or high zoom settings from low zoom settings.

The radial distortion is a common lens artifact that causes lines that are straight in reality
appear curved on the projection. It can be viewed as a mapping between the ideal undistorted
projection plane coordinates pu = (xu, yu), as would be produced by a pinhole camera, and the
distorted projected coordinates pd = (xd, yd) of the point as imaged by the real camera. We use
the mapping

pd =
1

√

1 + 2κr2
u

pu pu =
1

√

1− 2κr2
d

pd (14.3)
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where r2
u = x2

u + y2
u, r2

d = x2
d + y2

d, and κ is a parameter that controls the amount of radial
distortion. This mapping agrees to fourth order on r with the widely used Tsai formula, pu =

(1 + κr2
d)pd, but has the advantage that it can be inverted by negating κ and swapping pu, pd, as

shown; whereas in Tsai’s model the mapping from pu to pd requires solving a cubic equation.
A pinhole camera has κ = 0; the value of κ is positive for “pincushion” distortion, and negative
for “barrel” distortion. Note that the coefficient κ may vary along the video when using lenses
with variable zoom and/or variable focus.

Our formulas, like Tsai’s, assume that the camera’s Z axis is the optical axis of the lens.
They can model the actual lens distortion only to the third order on the projected coordinates;
that is, the approximation error is proportional to the fourth power of xu/Ru and yu/Ru when
Ru is the image’s radius on the projection plane.

14.3 Sensor coordinates

Each element of the sensor array measures the light that falls on a certain region of the projec-
tion plane. The digital image is then the 2D array of light measurements extracted from those
sensors.

The sensor sampling mapping relates (distorted) projected coordinates (xd, yd) to image
coordinates (xf , yf). It is determined by the position of the sensor chip relative to the lens’s
optical axis, by the spacing of the sensor elements, and by the order in which the samples are
read out. Typically the sensor sampling mapping can be well described by the formulas

(xf , yf) = (Cx +
xd

dx

, Cy +
yd

dy

) (xd, yd) = (dx(xf − Cx), dy(yf − Cy)) (14.4)

where (Cx, Cy), are the image coordinates of the camera’s optical axis (in pixels), and dx, dy,
are the effective spacings of the pixels (in millimeters) on the sensor array. In some cameras,
one has Cx = nx/2 and Cy = ny/2. (We do not include Tsai’s “horizontal uncertainty factor”
sx in this mapping, since it is redundant with dx and is largely irrelevant for modern digitally-
scanned sensor elements.). Finally, in most cameras, each scanline is captured at a different
moment, either sequentially (progressive scanning) or with even or odd scanlines interleaved
(interlaced scanning). We assume that the distortions due to those gradual scanning methods
have been removed or are negligible.

14.4 Camera parameters

By camera parameters we mean the tuple C of all the coefficients that appear in formulas (14.1–
14.4), namely S, pf , κ, Cx, Cy, dx, and dy. For a given video, some of these parameters (such
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as nx and ny) are known; some may be unknown, but known to be constant over all frames; and
some may vary from frame to frame.

14.5 Feature projection

In general, the appearance of a feature on a digital image I is distorted by the perspective
projection, so that the rectangle ps±us±vs becomes a convex quadrilateral. However, assuming
that the feature covers only a small fraction of the frame’s domain, the perspective projection
can be adequately modeled by an affine map A from the domain of M into the domain of I;
which is a first-order local approximation of the object-to-sensor coordinate transformation,
defined by equations (14.1–14.4). Therefore, as observed in the statement of the problem, the
projection can be approximated by a parallelogram, defined by its center pf and two vectors
uf , vf such that pf , pf + uf and pf + vf are the projections of ps, ps + us and ps + vs on the image
plane. In other words, the domain of M and W gets mapped to the parallelogram pf ± uf ± vf .
The parameters pf , uf and vf are expressed in pixels, in the image or frame coordinate system.

14.6 Photometric parameters

The appearance of a feature in an image is also affected by changes in lighting, lens aperture,
exposure time, etc. For a monochromatic image, these photometric factors can be approximated
to first order by the formula v ≈ αu + β where u is the pixel value in the canonical image M

and v is the corresponding pixel value in the image I. The parameter α is the feature’s relative

contrast and β is its black level for that image.

14.7 Blurring

The feature’s appearance in the frame is usually blurred due to imperfect focusing, light scatter-
ing and diffraction, sensor-to-sensor leakage, de-noising and de-Bayering [12] filtering, etc. As
a first approximation, we can model these effects by convolution of the ideal (infinitely sharp
and detailed) image with a 2D Gaussian kernel of some radius σ, the blurring parameter. Note
that the local geometric parameters (A), photometric parameters (α, β), and blurring parameter
(σ) are usually different for each feature in the same frame, and for the same feature in different
frames. In this thesis, we ignore the effect of bluring since it usually has little effect on the
feature finder’s performance.



Chapter 15

The AFFTRACK algorithm

In this chapter, we describe the AFFTRACK algorithm. Namely, the integration of the Camera
Calibration (CC) and Feature Finder (FF) algorithms. The core of AFFTRACK is outlined as the
algorithm 7 below. Its steps are described in detail in what follows.

Algorithm 7 AFFTRACK CALIBRATION FOR A FRAME I

1. Get an approximate camera calibration C′ for this frame.

2. For each each feature index k do

3. Get its estimated frame position p′f [k] and initial visibility weight w′[k].

4. Get provisional photometric parameters α′[k], β′[k].

5. Obtain the deformed template G′[k] and masks V′[k].

6. If the feature is expected to be visible then

7. Run the FF to get its adjusted position p′′f [k] and its confidence weight w′′[k].

8. else

9. Otherwise set w′′[k] to zero.

10.
11. Run the CC to compute the final parameter tuple C for this frame.

12. For each each feature index k do

13. Compute the final feature position pf [k] and shape vectors uf [k], vf [k].

14. Generate the definitive feature template G[k] and mask V[k].

15. Recompute α[k], β[k].

16. Return C.

When necessary, we will use the superscript (i) to refer to the values computed by AFFTRACK

(Algorithm 7) on frame number V(i) (counting from 1). We will discuss first the general case
i ≥ 3. The first two frames require special handling, as explained in Sections 15.10 and 15.11.
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15.1 Initial camera parameters

In step 1, we obtain an initial estimate C′ of the camera parameters for this frame. Except for
the first frame, we set C′(i) to the calibrated parameters C(i−1) that were computed in step 11
for the previous frame. (We have tried more sophisticated camera extrapolation algorithms, but
found that the advantage of more accurate C′ was negated by increased sensitivity to errors.)

15.2 Initial feature positions

In step 3, we obtain an initial estimate for the position p′f [k] of each feature. Except for the
first two frames, we use linear extrapolation of the feature’s motion in the two previous frames:
namely, we set pf

′(i)[k] to 2pf
(i−1)[k]−pf

(i−2)[k]; or, if i = 2, to pf
′(i−1)[k]. This extrapolation is

necessary because the feature finder is likely to fail if the initial guess p′f is off from the correct
position by more than a fraction of the template’s diameter. In typical videos, the position of
a feature on successive frames often changes by much more than this tolerance. Therefore,
simply setting pf

′(i)[k] to pf
(i−1) is is not a satisfactory solution. On the other hand, our tests

indicate that higher-order extrapolation [88] (using three or more previous frames) is not worth
the trouble. Note that this extrapolation uses the final positions pf

(j) computed in step 13 from
the calibrated parameters C(j), rather than the positions pf

′′(j)[k] returned by the feature finder
in step 7. Besides making the algorithm less sensitive to finder errors, this detail allows us to
provide an estimate pf

′[k] even for features that were occluded, out-of-frame, or misplaced by
the feature finder on previous frames. In this step, we set the initial confidence weight w′[k]

of each feature to 1 if the feature’s guessed position p′f [k] is inside the frame’s domain, and 0
otherwise.

15.3 Photometric parameters

In step 4, we obtain estimates α′[k], β′[k] for the photometric coefficients of each feature. Ex-
cept for the first frame, we use the coefficients α(i−1)[k], β(i−1)[k] that were computed for the
previous frame in step 15.

15.4 Template projection

In step 5, we obtain the template G′[k] for each feature, deformed according to the estimated
camera parameters C′, and the corresponding mask image V[k]. Except for the first frame,
here too we use the templates and masks G(i−1) and V(i−1) computed for the previous frame in
step 14.
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15.5 Feature location

In step 7, the feature finder (described in Chapter 16) is called for each feature whose estimated
position p′f is within the frame I (that is, which has w′[k] > 0). The finder is given the frame
image I, the geometrically and photometrically corrected template α′[k]G′[k] + β′[k], the cor-
responding mask V′[k], and the guessed position p′f [k]. It returns a found position p′′f [k], and a
weight w′′[k] that quantifies the realiability of p′′f [k].

15.6 Weighted calibration

In step 11, the camera calibrator (described in Chapter 17) is called to compute the final camera
parameters C for the current frame, from the known object positions ps[k] of all features and
their frame positions p′′f [k], returned by the finder in step 7. The calibrator also uses the con-
fidence weights w′′[k] provided by the finder, so that features that were most clearly identified
will have more influence on the calibration. In particular, features that were expected to be
invisible get w′′[k] = 0 and are automatically excluded from the calibration.

15.7 Final feature positions

In step 13, the parameter tuple C calibrated in step 11 is used to compute the final position
pf [k] of each feature in the current frame, from its object position ps[k]. These positions will
be used to predict the feature positions in following frames, in step 3. In this step we also
re-compute the frame geometry vectors uf [k] and vf [k] for each feature. We assume that the
features are small relative to the scene-to-camera distance, so we compute these vectors from
the object shape vectors us[k], vs[k], by numerical differentiation of the object-to-sensor map
equations (14.1–14.4). Namely, we map the object points ps + us and ps− us to frame points af

and bf , and then we set uf ← (af − bf)/2. Ditto for vf .

15.8 Recomputing the synthetic templates

In step 14, we recreate the perspective-deformed template G[k] of each feature and its mask V[k]

from the canonical template M[k] and its mask W[k], using the shape vectors uf [k] and vf [k]

obtained in step 13. See Figure 15.1. The affine deformation A[k] usually turns the rectangular
domain of M[k] into a paralellogram. To account for this fact, we also compute a mask V[k],
with the same size as G[k], that defines the valid pixels of the latter. See Figure 15.1(c). This
mask is obtained by deforming a mask W that is 1 over all valid pixels of the canonical template
M.
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(a) M (b) G (c) V (d) αG + β (e) I

Figure 15.1: (a) canonical template; (b) deformed template; (c) deformed weight mask; (d)
photometrically corrected deformed template; (e) feature occurrence in frame.

15.9 Adaptive photometry correction

Finally, in step 15, we re-estimate the photometric coefficients α[k] and β[k] of each feature.
If the official position pf [k] is inside the frame I, the parameters are obtained by linear regres-
sion of the deformed template G[k], translated to the position pf [k], against the frame image I.
Specifically, we perform least-squares fitting [75] of the model I(x′, y′) = αG(x, y) + β, where
(x, y) is a point of G, (x′, y′) is the corresponding point of I, and each data point is weighted by
the mask value V(x, y). If the point pf [k] is outside the frame, we simply set α[k] ← α′[k] and
β[k] ← β′[k]. In either case, these parameters are used to estimate the photometric parameters
for the next frame, in step 4.

This method may yield very wrong values of α[k] and β[k] if the feature is within the present
frame but occluded by some foreground object. These wrong parameters may cause the finder
to fail when the feature becomes visible again. At that point, the finder is likely to assign a
low confidence for the mark, so that the calibrator will ignore it for that frame. However, the
algorithm will then predict the correct position pf for that feature, and the values of α[k] and
β[k] will then be correctly obtained, so that the feature will be fully recovered in the next frame.

15.10 Processing of frame 2

The second frame of the video (i = 2) is processed as described above, except that in we cannot
perform the linear extrapolation of feature positions that is normally done in step 3. In that
case, step 3 we simply set the guessed feature positions p′f

(2)[k] to the final positions pf
(1)[k]

computed for the first frame. In all the other steps, this case is like the general case.

15.11 Processing of frame 1

For the first frame of the video (i = 1), the user must explicitly provide approximate positions
p′f [k] and the corresponding confidence weights w′[k] for a sufficiently large subset of the fea-
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tures. In that case, we first skip steps 1–10, and set pf
′′[k] to the user given positions. Next we

run steps 11–15 to get a calibrated camera parameter record C for that frame, as well as official
positions pf [k], template images G[k], V[k], and parameters α[k] and β[k] for all features that
are expected to be visible in the frame. Then we run the whole AFFTRACK algorithm (proce-
dure 7) again on the first frame, using those computed values for C′ in step 1, for G′[k] and
V′[k] in step 5, for p′f [k] in step 3, and for α′[k], β′[k] in step 4.

15.12 Additional iterations

In theory, after computing the official parameters pf [k], G[k], V[k], α[k] and β[k] in steps 13–15,
we could repeat step 7 to obtain improved feature positions, and then steps 11–15 to improve
the calibration. However, our tests indicate that this iteration does not improve the accuracy to
a significant extent.





Chapter 16

The feature finding algorithm

The tracker used in this part of the thesis is an implementation of the Kanade-Lucas-Tomasi
(KLT) algorithm [81], applied independently to each feature. Its inputs are three images —
the feature template G, the corresponding mask V, and the frame I — and a guessed position
p′f = (x′

f , y
′
f) for the center of G in I. It should return an adjusted position p′′f = (x′′

f , y
′′
f ) near p′f

such that the sub-image H(p′′f ) of I, with the same size as G and centered at p′′f , is most similar
to the template G. Note that the template G is assumed to incorporate the necessary geometric
and photometric adjustments.

The KLT algorithm works at several scales of resolution [15], where the feature position
found at each scale is used as a starting guess for the search at the next finer scale. The Lucas-
Kanade (LK) algorithm [54] is used at each scale of the KLT algorithm to compute the precise
position p′′f of template G in the frame I, given its approximate position p′f .

16.1 Discrepancy function

The quality of the match is measured by the mean quadratic discrepancy function E(p). The E

function for a given placement p = (x, y) of G in I can be defined by

E(p) =

∫ ∫

D

(G(q)− I(p + q))2 dq (16.1)

where the double integral spans the domain D of G.
The abrupt edges of the window D have an exaggerated influence in equation (16.1) and

tend to increase the number of local minima. To minimize these problems, we used the variant
E function defined by Lucas and Kanade [54], which uses a weighting function — in our case
the feature mask V. Namely, we replace formula (16.1) by

E(p) =

∫∫

D
V(q)(G(q)− I(p + q))2 dq

∫∫

D
V(q) dq

(16.2)
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with initial guess p′f/2
m. Then at each lower level i = m − 1, m − 2, . . . , 0, the LK algorithm

is applied using as initial guess the optimum placement p′′f found at the scale i + 1, multiplied
by 2.

16.5 Confidence weight

The finder also returns its estimate w′′ of the probability that pf
′′ is a meaningful result — that is,

not an outlier. Ideally, E(p′′f ) is zero for a perfect match. However, image noise and interpolation
errors will result in a positive discrepancy E(p′′f ) even at the correct position. Assuming that
these errors can be modeled by additive Gaussian of variance σ2, the expected value for E(p′′f ),
at the true placement p′′f , will be proportional to σ2. Therefore, we set w′′ = exp(−r2/2), where
r2 = (E(p′′f ) + ǫ2)/σ2/(α2 + ǫ2). The denominator α2 is meant to reduce the confidence when
the apparent contrast α of the feature in the image I is low. The parameter ǫ is a safety term
added to avoid division by zero (set to 0.005 in our tests). We also set pf

′′ to zero if the tracker
failed to converge at any level.



Chapter 17

The camera calibrator

AFFTRACK’s calibrator takes a list D of m data pairs as input, where each pair consists of
the world coordinates ps[k] of a point on the scene, its apparent coordinates p′′f [k] in the frame
image, and a confidence weight w′′[k], for k = 1, . . . ,M . It outputs the parameter tuple C =

(S, f, κ, Cx, Cy, dx, dy) that provides the best fit to that data.

For most cameras, the parameters Cx, Cy, dx, dy are fixed, and usually known from the man-
ufacturer’s specifications; although the parameters Cx and Cy may need one-time calibration to
account for minor mis-alignments of the lens relative to the sensor array. In cameras with fixed
lenses, the values of f and κ are also fixed and need to be calibrated only once for all videos
with the same camera. Such cameras have only six degrees of freedom, namely the rotation an
translation components of the matrix S; or only three, if the camera’s position V is fixed. On
the other hand, in movable cameras with variable zoom, both f and κ are variable, so there are
eight parameters that need to be determined for each frame.

Besides the calibration data D, the calling program should also specify a range of permitted
values for each parameter of C. If the range is trivial (reduced to a single value), the parameter
is effectively fixed at that value, and is automatically excluded from the calibration. At present,
our procedure requires that the values of nx, ny, dx, and dy be fixed in this way. The procedure
can be used to calibrate any reasonable subset of the remaining 16 parameters (S, f , κ, Cx and
Cy). However, the sub-matrix R of S is constrained to be a rotation matrix, so there are only 10
degrees of freedom in C.

There is also a partial redundancy between the focal length f and the mean distance z̄c from
the camera to the scene: the effect of doubling f while halving z̄c can be hardly noticeable,
especially if the field of view is very narrow. This is a serious difficulty in the calibration of any
camera with a variable zoom lens.
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17.1 Rough calibration

The calibration begins by computing the matrix S and focal length f for a camera that is located
very far from the scene and which best matches the given data. For such a camera, the scaling
factor f/zc in the perspective projection formula (14.2) is essentially the same value µ for all
points. Such a camera therefore performs a parallel (rather than conical) projection, so that the
undistorted coordinates pu[k] are affine functions of its object coordinates ps[k]. That is,

pu[k] = Mps[k] + b (17.1)

where M is some 2 × 3 matrix and b is some 2-vector. The procedure therefore looks for the
matrix M and vector b that best fit the available data in the weighted least square sense. Namely,
it computes the M and b that minimize the quadratic undistorted projection error metric

P (M, b) =
n
∑

k=1

w[k](pa
u[k]− po

u[k])2 (17.2)

where pa
u[k] is computed from ps[k] by formula (17.1), while po

u[k] is computed from pf [k] by
inverting formula (14.4) and then applying formula (14.3), with Cx, Cy, and κ fixed at the
midpoint of the respective client-specified ranges. The best-fitting M and b can be found by
standard linear least-squares fitting. In order to avoid large numbers in the matrix and reduce
the order of the system, we replace the object coordinates ps[k] by p∗s [k] = ps[k]− p̄s, where p̄s

is the barycenter of all object coordinates ps[k], weighted by the corresponding w[k]. Similarly,
we replace the undistorted coordinates pu[k] by p∗u[k] = pu[k] − p̄u, where p̄u is the barycenter
of all pu[k].

Noting that the terms
∑n

k=1 w[k]p∗u[k] = 0 and
∑n

k=1 w[k]Mp∗s [k] = 0, it is easy to check
that

P (M, b) =
n
∑

k=1

w[k] | (p∗u[k] + p̄u)− A(p∗s [k] + p̄s)− b |2 (17.3)

=
n
∑

k=1

w[k] | p∗u[k]−Mp∗s [k] |2 +
n
∑

k=1

w[k] | p̄u −Mp̄s − b |2 (17.4)

Moreover, as M and b minimize P (M, b), we conclude that b = p̄u −Mp̄s, since the first term
depends only on M and this choice cancels the second term. Therefore, the problem is reduced
to the minimization of the first term and we can determine the latter by solving a 6× 6 system
instead of an 8× 8 system.

If the camera did perform an orthogonal projection with correct dx, dy parameters, the two
rows ra and sa of the matrix M should be orthogonal vectors with the same length µ. However,
since the affine model (17.1) ignores the distortions of conical projection, and may use incorrect
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values of Cx, Cy, dx, dy, and κ, the two rows of M may not be quite orthogonal and may have
different lengths. Therefore, we compute two orthogonal unit vectors Xs, Ys and a magnitude
µ so that ra ≈ µXs and sa ≈ µYs. See Figure 17.1.

Figure 17.1: Orthogonalization of ra e sa.

We then compute a third unit vector Zs = Xs × Ys, and take Xs, Ys, Zs as the rows of the
camera’s rotation matrix R. Next we compute the parameters Tx, Ty so that the barycenter p̄s of
the features projects onto the barycenter of the undistorted coordinates, that is

Tx =
p̄u[x]

µ
−Xs · p̄s Ty =

p̄u[y]

µ
− Ys · p̄s (17.5)

Finally we set Tz to an arbitrary value much larger than the distance |ps[k]− ps[j]| between any
two features, and then set the focal distance f that provides the approximately correct value of
µ, namely, f = µ(Tz + Rp̄s).

If the data includes at least four non-coplanar points ps[k], this method usually yields a
reasonable approximation to the camera matrix R, even in the worst case when the camera has
a wide field of view and is close to the features (Tz comparable to ρs). This method fails when
all the feature positions ps[k] are coplanar. In that case, there are infinitely many affine models
that minimize P (M, b). We will not discuss this case here.

17.2 Calibration refinement

The rough camera parameter vector C, obtained as described in Section 17.1, is then adjusted so
as to achieve the best fit between the parameters C and the data pairs D. The goodness of the fit is
quantified by a (mean quadratic) error function Q(D, C). This function can be defined in several
ways. The sensor-space error, for example, measures the discrepancy between the given sensor
coordinates pf of each data point and the sensor coordinates predicted by mapping its object
coordinates ps according to the equations (14.1–14.4) with the proposed parameters C. The
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focal length f by log(f/z̄c) where z̄c is the mean z coordinate of the features in the camera’s
system. Note that the ratio f/z̄c defines the overall spread of the target points on the frame
image, and that its effect is roughly orthogonal to that of the camera’s position.

17.3 Iterative weight adjustment

After finding the parameters C that minimize the error function (17.6), we recompute the confi-
dence weights w[k] by Bayesian classification. Specifically, we assume that the frame position
errors ef [k] = pf [k] − p′′f [k] are two-dimensional Gaussian variables, with different variances
σi for inliers and σo for outliers. The input weights w′′[k] are taken to be the a priori proba-
bilities of the points being inliers. We use Bayes’s formula to compute w[k] as the a posteriori
probability of p′′f [k] being an inlier.

17.4 Effect of input weights

Because the discrepancy function Q incorporates the weights w[k] provided by the feature
finder, those data pairs which resulted from more precise template matching will have more
influence on the calibrated parameters C. In particular, setting w[k] to zero excludes the data
pair p′′f [k] from the calibration. This should be the case, for example, whenever the point p′′f [k]

expected to be occluded or outside the current frame.
We have found that the weights provided by the feature finder, based on the match quality,

are enough to ensure robust calibration, even without RANSAC-like outlier rejection. Note also
that any outlier rejection can be emulated by setting w[k] to 1 for the accepted data pairs, and
to 0 for the rejected ones. Compare the calibration results with uniform weights (Figure 17.2)
against the calibration with finder confidence weights (Figures 17.3, 17.4, and 17.5) to the same
dataset. On the other hand, the weights w[k] allow the calibrator to use all information present
in the given apparent positions pf [k] — even the few extra bits provided by features that were
on the borderline between inliers and outliers. Conversely, it makes the calibrator less sensitive
to low-quality data pairs that would barely pass the inlier acceptance criterion.









Chapter 18

Experiments

18.1 Datasets

We tested AFFTRACK on eight real and nine computer-generated videos [61], summarized in
Table 18.1. Note that these videos are different of those used in the text tracking problem
(v1-v6) of part II.

18.1.1 Real videos

The real videos v01–v08 were shot with hand-held consumer-grade digital video recorders
(Canon Optura 40 or Sony DSR-40) with variable zoom. They were recorded in MPEG format
at either 320× 240 or 640× 480 resolution, 14.98 or 29.99 frames per second, and “standard”
image quality setting. The videos were converted to separate PGM frames with ffmpeg [2].
In videos v01–v06, the object to be tracked was a test stage consisting of two perpendicular
boards, measuring 285 × 337 × 261 mm, each bearing an array of 3 × 4 “butterfly” fiducial
marks measuring 27 × 38 mm. The camera-to-stage distance varied between 1 and 3 meters.
In videos v06–v08, the object was a room with 12 fiducial marks, measuring 210 × 297 mm,
attached on two perpendicular walls. The camera moved between 3 to 6 meters from the walls.
In both cases the fiducial marks were laser-printed patterns on white paper. In some videos,
some of the marks were occluded and/or shadowed by moving foreground objects or humans.

18.1.2 Synthetic videos

The synthetic videos v09–v17 were produced with POV-Ray [4] from various 3D models
(including a virtual version of the stage, above, and a realistic office model v16 and v17), at
the same simulated frame rate. The resolution was 640 × 480 to ARToolKit except for v09
and v14 with were 320 × 240. In some of the videos, the frame images generated by POV-
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Video Source S n T m Notes.

v01 Optura 320× 240 338 22.5 24 [e, z]
v02 Optura 320× 240 270 18.0 8 [a,e,z]
v03 Optura 320× 240 301 20.1 8 [a,e,o]
v04 Optura 320× 240 244 16.3 24 [e,o,z]
v05 Optura 320× 240 130 08.6 24 [e,o,z]
v06 Optura 320× 240 233 15.6 28 [a,e]
v07 Sony 640× 480 639 20.3 12 [e,o,z]
v08 Sony 640× 480 441 14.0 10 [e,o,z]
v09 POV-Ray 320× 240 501 33.4 24 [z]
v10 POV-Ray 640× 480 501 33.4 8 [a]
v11 POV-Ray 640× 480 501 33.4 8 [a,e,o]
v12 POV-Ray 640× 480 251 16.8 32 [a,e]
v13 POV-Ray 640× 480 251 16.8 28 [a,o]
v14 POV-Ray 320× 240 501 33.4 24 [e,o,z]
v15 POV-Ray 640× 480 501 33.4 8 [a]
v16 POV-Ray 640× 480 501 33.4 26 [o,z]
v17 POV-Ray 640× 480 501 33.4 26 [o,z]

Table 18.1: Characteristics of test videos: frame size S in pixels, number of frames n, duration
T in seconds, number of features m. Notes: [a] scene includes ARToolKit compatible patterns;
[e] frames affected by natural or artificial noise, distortion and blurring; [o] with occlusion of
some features; [z] with variable zoom.

Ray were modified by radial distortion, mixing with 5% Gaussian noise, Gaussian blurring, and
conversion to and from JPEG format at 85% quality, to simulate the lower image quality of real
videos.

18.2 Processing

The videos were processed with (1) our integrated AFFTRACK algorithm (2) with H. Kato’s
ARToolKit tracker [40], and (3) with the recursive tracker included in the OpenCV library [16]
followed by R. Willson’s implementation of Tsai’s camera calibrator [83, 89]. ARToolKit could
be used only on those videos which included its special patterns and were shot with fixed focal
length (with note [a] but not [z] in Table 18.1). The outer corners of each ARToolKit pattern
were treated as four separate features in the other two trackers. For AFFTRACK and OpenCV,
the frame coordinates of each feature on the first frame (only) were picked by hand.
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18.3 Evaluation

The results of the tests are summarized in Table 18.2. For each program, we classified each

AFFTRACK ARToolkit OpenCV
Video P q̄ P q̄ P q̄

v01 100 — — — 100 —
v02 100 — 100 — 100 —
v03 100 — 50 — 44 —
v04 100 — — — 4 —
v05 100 — — — 0 —
v06 100 — 100 — 4 —
v07 100 — — — 16 —
v08 100 — — — 13 —
v09 100 0.131 — — 92 2.362
v10 100 0.547 100 0.878 45 2.490
v11 100 0.762 93 0.843 10 3.562
v12 100 0.629 100 1.410 50 4.412
v13 100 0.352 99 1.298 3 4.349
v14 100 0.621 — — 20 2.024
v15 100 0.647 0 85.935 26 3.716
v16 100 0.625 — — 99 2.434
v17 100 0.707 — — 41 2.092

Table 18.2: Calibration and tracking results: percentage P of successfully calibrated frames,
and root-mean-square frame position error q̄ in the successful frames.

frame as ‘success’ or ‘failure’ according to whether the calibration produced minimally usable
parameters or not. For the synthetic videos, for which the true camera parameters Ĉ(i) were
known, we considered frame i to be a success if the root mean square error

q(i) =

[

1

m

m
∑

1

w[k]|pf
(i)[k]− p̂f

(i)[k]|2
]1/2

(18.1)

was less than 8 pixels, where p̂f [k] is the position of feature k implied by ps[k] and Ĉ(i). For
the real videos, we visually classified as ‘failure’ every frame for which the image positions
computed by any two of the programs disagreed by more than 8 pixels in the RMS sense, and
counted all other frames as ‘successes’.
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sides being prone to runaway drift, the OpenCV tracker also tends to fails permanently when-
ever any feature becomes occluded.

The ARToolKit tracker is also sensitive to occlusion, but usually recovers once the features
become visible again. On the other hand, ARToolKit locates each target independently so it
often matches the wrong pattern (see Figure 18.1(a)), and/or the correct pattern in the wrong
orientation. Such pattern orientation errors are the reason for ARToolKit’s large q̄ on video
v15.

In video v04, as the ruler swept over each feature, the AFFTRACK finder began returning
incorrect positions p′′f [k]. However, the large discrepancy E[k] of these false matches resulted in
a low confidence weight w′′[k], so that data pair was effectively ignored by the calibrator. In the
next frame, the initial guess for the feature’s position was computed from the TCC-calibrated
parameter C, rather than from the KLT output, so it was essentially correct, even though the
feature was not visible. So, AFFTRACK is resilient to occlusions as long as a sufficient number
of features remain visible and can promptly recovered them once the features became visible
again. See Figure 18.2 (top). This is true even when the occluding object has markings identical
to the tracked features, as in Figure 18.2 (bottom).

Figure 18.2: Frames from video v05 showing AFFTRACK’s robustness to occlusion (top) and
frames from video v04 showing AFFTRACK’s resistance to feature confusion (bottom).

We also tested the performance of AFFTRACK under common problems as lens distortion
and image noise. As shown in Figure 18.3, even with small fiducial marks and partial object
occlusion, our algorithm was able to calibrate the whole video without failures.
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Figure 18.3: Frames from the synthetic video v13 showing occlusion with similar marks over
the airplane in addition with camera distortion effect (see the table lines) and artificial noise to
simulate a real scenario.

Finally, we used the AFFTRACK’s algorithm to calibrate a real scenario with human occlu-
sions, see Figure 18.4(top). As in Augmented Reality applications, we artificially inserted a
virtual lamp in the roof of the room. See Figure 18.4(bottom). Note that the lamp positions are
changed according to the camera position.







Chapter 19

Conclusions

In this thesis, we worked on three computer vision problems: the detection and classification of
flat text objects in images of real scenes; the tracking of such text objects in a digital video; and
the tracking an arbitrary rigid 3D object with known shape in a digital video.

19.1 Text detection and classification

In Part I of this thesis, we investigated the use of the histogram of oriented gradients (HOG) for
text classification. In this part, we reported extensive experiments with the Dalal and Triggs’s
multiple HOG descriptor (R-HOG) and SVM classification for the text/non-text discrimination
problem. These experiments showed that the optimum cell configuration, for any descriptor
size, consists of non-overlapping horizontal bands, in a single weighting and normalization
block. Splitting the sub-image by vertical cuts is never cost-effective. In retrospect, this con-
clusion makes sense, given the nature of the ‘object’ to be recognized – a single line of text of
arbitrary contents and length. The experiments also showed that conflating opposite gradient
orientations slightly degrades the R-HOG performance for text classification.

We then defined another multiple HOG descriptor, the T-HOG, whose cells have fuzzy
boundaries defined by overlapping Gaussian weight functions. With another exhaustive series of
experiments, we confirmed that the best cell arrangement for the T-HOG+SVM text recognizer
is also a stack of horizontal bands. In these experiments we also determined the best values for
the number of cells ny and the number of bins nb, for each descriptor size N = ny × nb.
In particular, we found that increasing N beyond 100 has practically no effect on recognition
accuracy. Those tests also showed that the T-HOG+SVM classifier consistently outperforms
R-HOG+SVM at text/non-text discrimination, for any descriptor size N .

In the last chapter of Part I, we described the use of T-HOG+SVM in two text-related
applications. First, we described and improved a text detector (SNOOPERTEXT) by using the
multi-scale technique to handle widely different letter sizes and to render it immune to small-
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scale noise and texture. Second, we investigated the use of T-HOG as a post-filter for a high-
recall, low-precision version of the SNOOPERTEXT; we showed that T-HOG is better than R-
HOG for this application, and that the combination T-HOG+SVM is at least as good as the best
text detectors reported in the literature (an application of SNOOPERTEXT + T-HOG to locate
streets by textual queries in a real geographic information system is discussed in appendix A).
Third, we described a sliding-window text detector based on the T-HOG classifier, and we gave
anecdotal evidence of its accuracy.

19.2 Text tracking

In Part II of this thesis, we considered the problem of tracking the projected image of a text ob-
ject over successive frames of a video. We described and discussed four text tracking algorithms
which represent most of the solutions to this problem. Many ideas of these four algorithms are
from our SNOOPERTRACK, an algorithm for the automatic detection and tracking of text ob-
jects in videos of outdoor scenes. We evaluated the performance of these four strategies on
six videos from real urban scenes, which are available for download [62]. For these tests, we
developed new separate metrics for detection and tracking accuracy.

The four algorithms differ on how the text detector is combined with the text tracking proper.
If one had a fast and completely accurate text detector, the best scheme would be to run it on
every frame, and then find the best partial pairing among the regions found in successive frames.
However, the detection accuracy f -score of existing text detectors on outdoor videos is still
between 50-70%. It that case, we found that the best strategy was to run the detector only at
some key frames (about once per second) and use bi-directional tracking to locate the texts in
the intervening frames.

For this part of the thesis, we developed a text tracking procedure that uses the particle-filter
approach. We used the T-HOG descriptor to evaluate each candidate region (particle), both to
compute a “text-like” score via SVM and as an image fingerprint to evaluate the similarity of
region contents across frames.

19.3 Feature-based rigid object tracking

Finally, in Part III of this thesis, we considered the problem of tracking a rigid tri-dimensional
object by following a set of non-coplanar bi-dimensional features attached to it at known relative
positions. Our main contribution in this part was an algorithm, which we called AFFTRACK,
that appears to be significantly more accurate and robust than other published methods.

AFFTRACK is a synergistic combination of the KLT feature tracker with an improved ver-
sion of Tsai’s camera calibration algorithm. The two procedures are integrated so that infor-
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mation flows in both directions: the calibrator provides reliable predictions of feature positions
and deformations to the feature finder, while the latter provides to the former the adjusted fea-
ture positions and estimates of their reliability. As a result, AFFTRACK can track an object
in the presence of occlusions, video noise, and tracking failures for an indeterminate number
of frames, without any long-term drift. AFFTRACK can also handle video shots with variable
zoom (and therefore with variable radial distortion).

Our camera calibration procedure uses real-valued confidence weights to allow a robust cal-
ibration even in the presence of outliers (occasional widely incorrect feature positions). These
weights initially measure the quality of the match returned by the feature finder, and are then
iteratively adjusted according to the consistency between the feature’s reported position and the
position of all other features. This “gradual” approach to outlier handling contrasts with the
sharp inlier/outlier classification used by RANSAC.

To test the AFFTRACK algorithm we compiled a benchmark of 17 videos, annotated with
the true feature positions and (when available) the true camera position and orientation for each
frame. This benchmark is also available for public download [61].
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