

Instituto de Computação
Universidade Estadual de Campinas

Implementação eficiente em software de curvas

elípticas e emparelhamentos bilineares

Diego de Freitas Aranha1

26 de Agosto de 2011

Banca Examinadora:

• Prof. Dr. Julio César López Hernández (Orientador)

• Prof. Dr. Paulo Sérgio Licciardi Messeder Barreto
Departamento de Engenharia de Computação e Sistemas Digitais (Poli-USP)

• Prof. Dr. Anderson Clayton Alves Nascimento
Departamento de Engenharia Elétrica (UnB)

• Prof. Dr. Ricardo Dahab
Instituto de Computação (UNICAMP)

• Prof. Dr. Marco Aurélio Amaral Henriques
Faculdade de Engenharia Elétrica e de Computação (UNICAMP)

1Financiado por Bolsa CAPES em 2007, Bolsa FAPESP (processo 2007/06950-0) em 2008–2010,
Bolsa Sanduíche CAPES PDEE (processo 5551-09-9) em 2010–2011.

v

Resumo

O advento da criptografia assimétrica ou de chave pública possibilitou a aplicação de crip-
tografia em novos cenários, como assinaturas digitais e comércio eletrônico, tornando-a
componente vital para o fornecimento de confidencialidade e autenticação em meios de co-
municação. Dentre os métodos mais eficientes de criptografia assimétrica, a criptografia de
curvas elípticas destaca-se pelos baixos requisitos de armazenamento para chaves e custo
computacional para execução. A descoberta relativamente recente da criptografia baseada
em emparelhamentos bilineares sobre curvas elípticas permitiu ainda sua flexibilização e
a construção de sistemas criptográficos com propriedades inovadoras, como sistemas ba-
seados em identidades e suas variantes. Porém, o custo computacional de criptossistemas
baseados em emparelhamentos ainda permanece significativamente maior do que os as-
simétricos tradicionais, representando um obstáculo para sua adoção, especialmente em
dispositivos com recursos limitados.

As contribuições deste trabalho objetivam aprimorar o desempenho de criptossistemas
baseados em curvas elípticas e emparelhamentos bilineares e consistem em: (i) implemen-
tação eficiente de corpos binários em arquiteturas embutidas de 8 bits (microcontroladores
presentes em sensores sem fio); (ii) formulação eficiente de aritmética em corpos binários
para conjuntos vetoriais de arquiteturas de 64 bits e famílias mais recentes de processa-
dores desktop dotadas de suporte nativo à multiplicação em corpos binários; (iii) técnicas
para implementação serial e paralela de curvas elípticas binárias e emparelhamentos bili-
neares simétricos e assimétricos definidos sobre corpos primos ou binários. Estas contri-
buições permitiram obter significativos ganhos de desempenho e, conseqüentemente, uma
série de recordes de velocidade para o cálculo de diversos algoritmos criptográficos relevan-
tes em arquiteturas modernas que vão de sistemas embarcados de 8 bits a processadores
com 8 cores.

vii

Abstract

The development of asymmetric or public key cryptography made possible new applica-
tions of cryptography such as digital signatures and electronic commerce. Cryptography
is now a vital component for providing confidentiality and authentication in communica-
tion infra-structures. Elliptic Curve Cryptography is among the most efficient public-key
methods because of its low storage and computational requirements. The relatively re-
cent advent of Pairing-Based Cryptography allowed the further construction of flexible and
innovative cryptographic solutions like Identity-Based Cryptography and variants. Howe-
ver, the computational cost of pairing-based cryptosystems remains significantly higher
than traditional public key cryptosystems and thus an important obstacle for adoption,
specially in resource-constrained devices.

The main contributions of this work aim to improve the performance of curve-based
cryptosystems, consisting of: (i) efficient implementation of binary fields in 8-bit micro-
controllers embedded in sensor network nodes; (ii) efficient formulation of binary field
arithmetic in terms of vector instructions present in 64-bit architectures, and on the
recently-introduced native support for binary field multiplication in the latest Intel mi-
croarchitecture families; (iii) techniques for serial and parallel implementation of binary
elliptic curves and symmetric and asymmetric pairings defined over prime and binary
fields. These contributions produced important performance improvements and, conse-
quently, several speed records for computing relevant cryptographic algorithms in modern
computer architectures ranging from embedded 8-bit microcontrollers to 8-core processors.

ix

Agradecimentos

Gostaria primeiramente de agradecer à minha noiva Fernanda Alcântara Andaló, que
mesmo compartilhando das dificuldades da vida de um doutorando, sempre encontrou
tempo para me escutar, compreender e transmitir carinho. Sua dedicação ao nosso projeto
conjunto de vida me emociona e espero que estejamos próximos de forma definitiva muito
em breve. Agradeço também aos meus bichos de estimação Jaiminho, Peta e Bruno,
que souberam providenciar momentos de distração mesmo sem ter muita consciência do
quanto isso era às vezes necessário.

Meu muito obrigado aos meus pais, José, Maria José, e irmãos, Pablo e Rodrigo, pelo
suporte contínuo e pelo enorme esforço em percorrer um grande trajeto para assistir à
minha defesa. Agradeço também à família Andaló, de minha noiva, pelos votos cons-
tantes de sucesso e à família Wagner pelas refeições esporádicas porém deliciosas que me
ajudaram a atravessar o inverno canadense com saúde e disposição.

Agradeço a todos os membros da banca, pois é uma grande honra receber suas cons-
tribuições; aos meus co-autores, em especial Patrick Longa, Koray Karabina, Francisco
Henríquez-Rodríguez, Darrel Hankerson, Conrado P. L. Gouvêa, Leonardo B. Oliveira e
Jérémie Detrey por sua paciência e generosidade; aos colegas do Laboratório de Crip-
tografia Aplicada da UNICAMP pelas discussões pertinentes; aos colegas do Center for

Applied Cryptographic Research, em especial Márcio Juliato, e companheiros de escritório
da Universidade de Waterloo pelo acolhimento hospitaleiro.

Um agradecimento especial ao Prof. Julio López, um grande orientador que não só me
ajudou a percorrer os caminhos necessários para tornar esta tese possível, como soube me
transmitir de forma eficiente sua paixão por aritmética criptográfica. Agradeço também
ao Prof. Ricardo Dahab, sempre perspicaz em seus inúmeros conselhos, e ao Prof. Alfred
Menezes, pelo exemplo incrível de competência e profissionalismo.

Fico particularmente feliz em agradecer aos meus amigos pela companhia e pela sabe-
doria em desviar estrategicamente o assunto de nossas conversas sempre que eu transpa-
recia demasiada dedicação ao meu tema de pesquisa.

Registro meu reconhecimento à FAPESP, CNPq e CAPES pelo auxílio financeiro e
aos demais que, de alguma maneira, me ajudaram na conclusão deste trabalho: docentes,
funcionários e colegas do Instituto de Computação da UNICAMP.

xi

Sumário

Resumo vii

Abstract ix

Agradecimentos xi

1 Introdução 1

1.1 Justificativa e objetivo . 2

1.2 Metodologia . 3

1.3 Arquiteturas computacionais modernas . 5

1.3.1 Multiprocessamento . 5

1.3.2 Vetorização . 7

1.3.3 Sistemas embarcados . 7

1.3.4 Métricas de desempenho . 7

1.4 Fundamentação matemática . 8

1.4.1 Curvas elípticas . 8

1.4.2 Emparelhamentos bilineares . 10

1.4.3 Problemas subjacentes . 11

1.4.4 Cálculo de emparelhamentos . 12

1.4.5 Algoritmo de Miller . 14

1.4.6 Emparelhamento de Tate . 15

1.4.7 Emparelhamento de Weil . 16

1.4.8 Emparelhamento ηT [1] . 17

1.4.9 Emparelhamento ate [2] . 18

1.4.10 Emparelhamento R-ate [3] . 18

1.4.11 Emparelhamento otimal . 19

1.5 Contribuições . 19

1.5.1 Implementação de criptografia de curvas elípticas 19

xiii

1.5.2 Implementação de criptografia baseada em emparelhamentos bili-
neares . 22

1.5.3 Biblioteca criptográfica . 25
1.6 Organização do documento . 25

2 Efficient implementation of elliptic curve cryptography in wireless sen-

sors 27

2.1 Introduction . 28
2.2 Related work . 29
2.3 Elliptic curve cryptography . 31
2.4 The platform . 32
2.5 Algorithms for finite field arithmetic . 33

2.5.1 Multiplication . 33
2.5.2 Modular reduction . 37
2.5.3 Squaring . 40
2.5.4 Inversion . 40

2.6 Algorithms for elliptic curve arithmetic . 42
2.7 Implementation results . 43
2.8 Conclusions . 46

3 Efficient Software Implementation of Binary Field Arithmetic Using

Vector Instruction Sets 49

3.1 Introduction . 50
3.2 Platform Model . 51
3.3 Binary Field Representation and Arithmetic 52

3.3.1 Squaring . 53
3.3.2 Square Root . 53
3.3.3 Multiplication . 56
3.3.4 Modular Reduction and Inversion 59

3.4 Experimental Results . 60
3.4.1 Finite field arithmetic . 60
3.4.2 Elliptic curve arithmetic . 64

3.5 Conclusion . 65

4 Software implementation of binary elliptic curves: impact of the carry-

less multiplier on scalar multiplication 67

4.1 Introduction . 68
4.2 Binary field arithmetic . 70

4.2.1 Multiplication . 70

xiv

4.2.2 Squaring, square-root and multi-squaring 71
4.2.3 Inversion . 72
4.2.4 Half-trace . 72

4.3 Random binary elliptic curves . 74
4.3.1 Sequential algorithms for random binary curves 74
4.3.2 Parallel scalar multiplication on random binary curves 76
4.3.3 Side-channel resistant multiplication on random curves 76

4.4 Koblitz elliptic curves . 77
4.4.1 Sequential algorithms for Koblitz curves 78
4.4.2 Parallel algorithm for Koblitz curves 78

4.5 Experimental results . 79
4.6 Conclusion and future work . 82

5 High-speed Parallel Software Implementation of the ηT Pairing 85

5.1 Introduction . 86
5.2 Finite Field Arithmetic . 87

5.2.1 Vector Instruction Sets . 87
5.2.2 Squaring . 89
5.2.3 Square Root . 90
5.2.4 Multiplication . 90
5.2.5 Modular Reduction . 92
5.2.6 Inversion . 93
5.2.7 Implementation Timings . 94

5.3 Pairing Computation . 94
5.3.1 Preliminary Definitions . 95
5.3.2 Related Work . 95
5.3.3 Parallelization . 97
5.3.4 Parallel ηT Pairing . 98
5.3.5 Performance Analysis . 99

5.4 Experimental Results . 101
5.5 Conclusion and Future Work . 103

6 Faster Explicit Formulas for Computing Pairings over Ordinary Curves105

6.1 Introduction . 106
6.2 Preliminaries . 107
6.3 Tower Extension Field Arithmetic . 108

6.3.1 Lazy Reduction for Tower Fields 109
6.3.2 Selecting a Field Size Smaller than the Word-Size Boundary 111
6.3.3 Analysis for Selected Parameters 113

xv

6.4 Miller Loop . 116
6.5 Final Exponentiation . 118

6.5.1 Removing the Inversion Penalty . 119
6.5.2 Computing u-th powers in Gφ6(Fp2) 119

6.6 Computational Cost . 121
6.7 Implementation Results . 122
6.8 Conclusion . 124

7 Parallelizing the Weil and Tate Pairings 125

7.1 Introduction . 126
7.2 Background on pairings . 129

7.2.1 Miller functions . 129
7.2.2 The Tate pairing . 129
7.2.3 The optimal ate pairing . 130
7.2.4 The eta pairing . 130

7.3 Parallelizing the optimal ate pairing . 131
7.4 Optimal Weil pairings . 132

7.4.1 Hess’s Weil pairing construction . 133
7.4.2 The α Weil pairing . 133
7.4.3 The β Weil pairing . 135

7.5 Parallel implementation of the BN pairings 137
7.6 Parallel implementation of the eta pairing 140

7.6.1 Algorithm 1 . 140
7.6.2 Algorithm 2 . 140
7.6.3 Algorithm 3 . 141
7.6.4 Algorithm 4 . 141
7.6.5 Implementation report . 142

7.7 Concluding remarks . 143
7.A Relationship between G1, G2, G̃1 and G̃2 144

8 Conclusões 147

Bibliografia 150

xvi

Capítulo 1

Introdução

A descoberta da criptografia de chave pública [4] revolucionou a forma de se construir
sistemas criptográficos e possibilitou, de forma definitiva, a integração entre teoria cripto-
gráfica e implementação em aplicações reais. Particularmente, trouxe a possibilidade de
se estabelecer serviços criptográficos como sigilo e assinatura irretratável em ambientes
onde não existe qualquer relação de confiança entre os envolvidos ou canal seguro para
distribuição de chaves. O antigo problema da distribuição de chaves converteu-se então
na dificuldade de obtenção de uma chave pública autêntica. Como solução para este novo
problema, um repositório público foi inicialmente proposto como ponto de distribuição de
chaves [4]. Entretanto, não há como um repositório deste tipo fornecer autenticidade, pois
possibilita que atacantes participem em protocolos personificando entidades legítimas. A
autenticação mútua das chaves é crucial para que tais intervenções possam ser detectadas
e evitadas.

O surgimento de infra-estruturas de chaves públicas [5] solucionou o problema de ti-
tuaridade de chaves públicas e impulsionou o comércio eletrônico. Por outro lado, criou
diversos problemas adicionais. Em primeiro lugar, infra-estruturas de chaves públicas
são concebidas para representar entidades do mundo real, suas filiações a organizações
e serviços que fornecem. Os tipos de relações presentes são diversos, o que traz sérios
problemas para o projeto de infra-estruturas que sejam tanto genéricas o suficiente para
representar qualquer tipo de relação, quanto simples o suficiente para terem ampla acei-
tação, possibilidade de padronização e eficiência. Operações de validação de certificados
e revogação de chaves públicas tendem a representar situações extremas [6].

A descoberta de sistemas criptográficos baseados no problema do logaritmo discreto em
curvas elípticas [7, 8] produziu uma nova revolução na área. Ao apresentarem desempenho
superior e exigirem chaves mais curtas para um mesmo nível de segurança que os métodos
tradicionais de criptografia assimétrica, especialmente o algoritmo RSA [9] e variantes
baseadas no problema da fatoração, alguns dos problemas inerentes às infra-estruturas de

1

chaves públicas foram minimizados. Contudo, a dificuldade de gerência e a sobrecarga de
desempenho decorrentes da utilização de certificados ainda impõe obstáculos na adoção de
criptografia assimétrica em ambientes restritos, como computação móvel e em dispositivos
de baixo poder computacional [10].

A busca de alternativas ao paradigma tradicional de infra-estruturas de chave pública
resultou na descoberta de sistemas baseados em identidade. Foram concebidos inicial-
mente por Shamir [11], em 1984, para assinaturas digitais, mas as primeiras realizações
funcionais e eficientes para cifração só foram apresentadas em 2001, por Boneh e Fran-
klin [12], e Sakai, Ohgishi e Kasahara [13], a partir de emparelhamentos bilineares sobre
curvas elípticas. A motivação original para sistemas baseados em identidade era aprovei-
tar a autenticidade de informação publicamente conhecida para simplificar a autenticação
de chaves públicas. Até então, a única aplicação de emparelhamentos bilineares em crip-
tografia era atacar sistemas criptográficos de curvas elípticas [14, 15]. Após a aplicação de
emparelhamentos para concretizar cifração baseada em identidade, uma gama de novos
protocolos com propriedades inovadoras e especiais foi desenvolvida. Isto levou a uma
flexibilização enorme das primitivas criptográficas conhecidas e ampliou os cenários de
aplicação de criptografia assimétrica de forma considerável. Entre os protocolos basea-
dos em problemas sobre grupos bilineares, destacam-se: acordo de chaves eficientes para
múltiplas entidades [16], assinaturas curtas e agregadas [17] e paradigmas alternativos de
certificação implícita [18].

1.1 Justificativa e objetivo

Apesar das propriedades inovadoras, o desempenho de sistemas criptográficos baseados
em emparelhamentos ainda representa um obstáculo. Tipicamente, o cálculo de um em-
parelhamento bilinear ainda é comparável a uma decifração/assinatura RSA [19], e uma
ordem de magnitude menos eficiente que uma multiplicação de ponto em curvas elíp-
ticas [20, 21]. Isto é natural, visto que os métodos mais estabelecidos de criptografia
assimétrica puderam receber maior esforço de pesquisa, produzindo algoritmos cada vez
mais eficientes. Esforço similar já é consistente em criptografia baseada em emparelha-
mentos [22], resultando em novos algoritmos [23, 1, 3, 24] e novas curvas adequadas à sua
instanciação [25].

Este projeto teve como finalidade desenvolver algoritmos eficientes (seqüenciais e pa-
ralelos) e implementações em software otimizadas para criptografia de curvas elípticas
e criptografia baseada em emparelhamentos. Vários níveis de aritmética são emprega-
dos: [19]: algoritmos para o cálculo do emparelhamento e(P,Q) propriamente dito [23, 1],
aritmética na curva elíptica onde o emparelhamento bilinear encontra-se definido [26], arit-
mética no corpo finito onde a curva elíptica está definida [27] e aritmética nas extensões

2

Figura 1.1: Níveis de aritmética envolvidos no cálculo de um emparelhamento bilinear.

deste corpo finito [28]. Estes níveis de aritmética encontram-se visualmente representados
na Figura 1.1 em uma organização descendente partindo do cálculo do emparelhamento.

O objetivo principal deste trabalho consistiu em tornar estes métodos de criptografia
mais eficientes nas arquiteturas modernas, abrangendo tanto pesquisa algorítmica quanto
pesquisa aplicada de implementação. A implementação exigiu o projeto de técnicas de
otimização de algoritmos em arquiteturas modernas (embarcadas, multiprocessadas) e
concretizou os algoritmos em código funcional eficiente, fazendo o melhor uso possível dos
recursos disponibilizados pelo hardware. Para isso, paralelismo em nível de tarefas e em ní-
vel de dados foram extensamente utilizados, incluindo a aplicação de multiprocessamento
e conjuntos de instruções vetoriais.

1.2 Metodologia

Para atender os objetivos previamente mencionados, a metodologia utilizada compreendeu
os seguintes passos:

1. Levantamento ferramental: pesquisar e experimentar com frameworks, linguagens e
ferramentas para programação em arquiteturas multiprocessadas, incluindo compi-
ladores, bibliotecas, simuladores e profilers.

Como ferramenta principal para programação paralela em arquiteturas homo-
gêneas, a tecnologia OpenMP [29] foi selecionada. O suporte à tecnologia
encontra-se incluído em dois compiladores distintos, o GNU Compiler Collec-

tion, versão 4.2.0 e o Intel C++ Compiler, versão 10.01. O framework OpenMP

3

suporta construções tanto para paralelismo de dados como para paralelismo de
tarefas. A implementação dos algoritmos foi realizada principalmente na lin-
guagem C e as rotinas críticas foram codificadas em Assembly.

2. Análise e seleção de arquiteturas: selecionar arquiteturas modernas relevantes e
analisar características das arquiteturas selecionadas que possam posteriormente
ser utilizadas para otimização das implementações dos algoritmos desenvolvidos.

Dentre as opções de arquitetura multiprocessadas, destacam-se as arquiteturas
Intel Core [30] e AMD K10 [31], que oferecem alto desempenho e as melho-
res ferramentas de desenvolvimento disponíveis. Para ambientes embutidos e
computação móvel, destacam-se as arquiteturas AVR ATmega128 [32] e In-

tel XScale [33]. Não houve tempo suficiente para se explorar o processador
Cell [34] ou processamento em placas gráficas [35], apesar dos mesmos serem
importantes no segmento de computação de alto desempenho.

3. Levantamento bibliográfico: determinar precisamente os componentes da aritmética
em curvas elípticas e para o cálculo de emparelhamentos bilineares que são mais
exigidos. Em busca de aperfeiçoamento das alternativas já propostas, pesquisar
artigos que propõem algoritmos para criptografia de curvas elípticas e baseada em
emparelhamentos. Pesquisar algoritmos relevantes que ainda não foram adaptados
para ambientes paralelos.

4. Desenvolvimento de novos algoritmos: propor otimizações, variantes paralelas de
algoritmos existentes ou novos algoritmos para criptografia de curvas elípticas e
criptografia baseada em emparelhamentos bilineares, abrangendo os níveis de arit-
mética citados anteriormente.

5. Implementação eficiente dos algoritmos: a implementação em software de cada al-
goritmos desenvolvido utilizou a metodologia abaixo.

(a) Detecção de gargalos: detectar porções do algoritmo que correspondem ao
maior custo computacional;

(b) Otimização: elaborar técnicas para otimizar as implementações dos algoritmos,
considerando principalmente os gargalos de desempenho detectados;

(c) Transformações algébricas: investigar os fundamentos matemáticos do algo-
ritmo em busca de modificações que acelerem o tempo de execução de sua
implementação ou permitam a extração de mais paralelismo;

4

(d) Implementação: concretizar os algoritmos em implementações de alto desem-
penho que utilizem os recursos do processador com máxima eficiência.

6. Validação: a partir da análise de complexidade do algoritmo e de sua implementa-
ção concreta, observar e analisar os resultados em termos de tempo de execução,
eficiência na utilização de recursos e escalabilidade. Demonstrar a correção das
otimizações propostas também é desejável.

7. Construção de uma biblioteca em software contendo os algoritmos implementados.
Esta biblioteca é descrita brevemente na seção 1.5.3.

1.3 Arquiteturas computacionais modernas

Tradicionalmente, cada nova geração de processadores de propósito geral obtém ganhos
de desempenho significativos de duas formas: aprimoramentos no processo de fabricação
e mudanças arquiteturais. Estas últimas são comumente relacionadas à extração de para-

lelismo em nível de instruções, ou seja, à execução concorrente de instruções que não pos-
suem dependências de dados. Entretanto, estas otimizações atualmente se deparam com
limitações críticas. A extração de paralelismo em nível de instrução claramente apresenta
um limite superior, e muitas aplicações possuem um alto grau de dependência de dados
que restringe este paralelismo [36]. O aperfeiçoamento do processo de fabricação também
atinge limitações físicas, já que componentes cada vez menores dissipam potência em uma
área cada vez menor [37]. Como obstáculo adicional, o poder de processamento vem cres-
cendo muito mais do que a velocidade da memória, e o acesso à memória já é reconhecido
como o maior gargalo de execução nas arquiteturas atuais [38]. Estas três limitações
provocaram uma mudança radical no projeto de arquiteturas modernas, transportando
a ênfase antes colocada em mecanismos para extração automática de paralelismo para
mecanismos explícitos, na forma de multiprocessamento e vetorização. A disponibilidade
crescente de componentes em áreas cada vez menores tem simultaneamente permitido o
desenvolvimento de sistemas embarcados com poder computacional crescente.

1.3.1 Multiprocessamento

Arquiteturas multiprocessadas de propósito geral são chamadas multi-core. Em uma ar-
quitetura multi-core, diversas unidades de processamento independentes conectam-se ao
sistema de memória, compartilhando opcionalmente recursos do hardware [39]. Apesar
de parecer uma forma barata e escalável de se aumentar desempenho, a introdução de
paralelismo em nível de thread impõe uma mudança de paradigma de programação [40].

5

Enquanto nas máquinas uniprocessadas e seqüenciais, o desempenho dos programas cres-
cia automaticamente a cada nova geração de processadores, em arquiteturas multi-core, o
desempenho dos programas está diretamente relacionado ao grau de paralelismo em nível
de thread que o programa apresenta. Como esse paralelismo é extraído explicitamente e
requer análise profunda do problema e solução sendo tratados, e o modelo de execução em
multithreading é não-determinístico, paralelizar algoritmos é uma tarefa não-trivial [41].

A exploração com sucesso do paralelismo também requer conhecimento da organização
das unidades de processamento e da hierarquia de memória [42]. Quanto à organização
das unidades de processamento, pode-se classificar as arquiteturas multiprocessadas em:

• Homogêneas: as unidades de processamento são idênticas e contam com os mesmos
recursos. A extração de paralelismo torna-se mas simples, mas a divisão do problema
deve produzir tarefas com as mesmas características;

• Heterogêneas: as unidades de processamento são especializadas para execução de
tarefas com naturezas distintas. Permite-se tipicamente um maior controle do fluxo
de execução mas pode-se introduzir dificuldade na exploração de paralelismo.

Já quanto à organização da hierarquia de memória, há a divisão em duas vertentes:

• Acesso uniforme: níveis inferiores de memória cache são compartilhados e o acesso
à memória é uniforme a partir de um barramento único. Esta abordagem pressiona
os níveis inferiores de memória cache, pois a ocupação é disputada por unidades de
processamento distintas.

• Acesso não-uniforme: cada unidade ou subconjunto de unidades de processamento
conta com memórias dedicadas de rápido acesso e latências variadas a porções dis-
tintas da memória global. Esta abordagem promete escalabilidade da hierarquia de
memória, mas exige afinidade de tarefas por unidade de processamento;

Estas organizações definem o espectro de abordagens utilizadas no projeto de arqui-
teturas multiprocessadas modernas. A arquitetura Core [30] da Intel é composta por
unidades de processamento idênticas e acesso uniforme à memória. A arquitetura Opte-
ron [43] utiliza unidades de processamento também idênticas, mas acesso não-uniforme
à memória. A arquitetura UltraSparc T1 [44] da Sun emprega 8 unidades homogêneas e
acesso uniforme, mas cada unidade é superescalar e capaz de executar 4 threads distintas,
totalizando 32 threads simultâneas. O processador Cell [34] da IBM é um exemplo típico
de arquitetura heterogênea que dispõe de um processador de propósito geral e 8 unida-
des de processamento adicionais especializadas em aritmética de alto desempenho. Esta
especialização naturalmente impõe acesso não-uniforme à memória.

6

Os mesmos princípios regem o projeto de arquiteturas multiprocessadas no segmento
de computação embutida. A heterogeneidade muitas vezes manifesta-se na presença de
co-processadores [45, 33] e o acesso não-uniforme à memória é empregado a partir de
memórias de rascunho locais [46] ou transferências explícitas de dados por um canal de
comunicação dedicado [47].

1.3.2 Vetorização

As arquiteturas modernas também contam com instruções especializadas para processa-
mento de múltiplos objetos de dados simultaneamente. Essas instruções são classificadas
como SIMD (Simple Instruction - Multiple Data) [48], e são extremamente úteis na otimi-
zação de programas com alta densidade aritmética. Instruções vetoriais são outro recurso
para exploração de paralelismo de dados, mas com uma granularidade muito mais fina
do que o multiprocessamento. Conjuntos de instruções vetoriais bastante difundidos e
presentes em arquiteturas modernas são MMX [49], SSE [50, 51] e AVX [52]. Há um
incentivo ainda maior para a utilização de instruções dessa natureza, visto que a latência
de execução dessas instruções tem diminuído a cada nova geração de processadores.

1.3.3 Sistemas embarcados

A disponibilidade farta de transístores têm também provocado uma expansão das funcio-
nalidades possíveis em sistemas dedicados de pequeno porte. Esta tendência tecnológica é
geralmente descrita através do termo Internet of Things [53], que captura precisamente a
noção de um conjunto de inúmeros dispositivos distintos, cada um com sua função, interli-
gados por um substrato compartilhado de comunicação. Sistemas embarcados ocupam os
segmentos de menor custo do espectro de arquiteturas modernas e muitas vezes executam
funções importantes que carecem naturalmente de serviços de segurança como autenti-
cação e confidencialidade. Exemplos diretos de sistemas embarcados que desempenham
funcionalidade crítica são nós de uma rede sensores [54] e etiquetas RFID(Radio-Frequency

IDentification) [55].

1.3.4 Métricas de desempenho

A métrica tradicional para comparar o desempenho de diferentes implementações é a con-
tagem direta de ciclos, desde que as implementações sejam executadas em plataformas
representantes da mesma microarquitetura. A contagem de ciclos é tipicamente realizada
através de um simulador de arquiteturas embarcadas ou pela leitura de registradores es-
peciais nas arquiteturas de maior porte. Cabe a ressalva de que, dada a complexidade
dos processadores atuais, envolvendo múltiplos componentes funcionando em paralelo a

7

freqüências oscilantes de processamento, registrar a passagem de cada ciclo torna-se um
problema complexo. A alternativa encontrada recentemente pelos fabricantes para man-
ter razoavelmente a noção convencional de ciclo foi estabelecer o ciclo como uma medida
de tempo real correspondente ao inverso da freqüência nominal do processador [56]. Há,
portanto, que se ter o cuidado de realizar tomadas de tempo em ciclos com o proces-
sador ocioso e funcionando em sua freqüência nominal. Este procedimento simples foi
utilizado para obtenções de resultados experimentais na maioria dos trabalhos apresenta-
dos nesta tese, com exceção da microarquitetura Intel Westmere. Esta microarquitetura
possui suporte autônomo à gerência de freqüência do processador, podendo a freqüência
inclusive superar a freqüência nominal (overclocking). Esta funcionalidade depende de
diversos efeitos, como temperatura e a quantidade de trabalho distribuído entre as várias
unidades de processamento, tornando difícil a determinação precisa da freqüência atual
de execução e potencialmente distorcendo as tomadas de tempo. Foi possível contornar
este obstáculo apenas a partir do desligamento desta funcionalidade na configuração das
máquinas utilizadas para tomadas de tempo.

1.4 Fundamentação matemática

Nesta seção, apresentamos as áreas de criptografia de curvas elípticas e baseada em empa-
relhamentos bilineares, a fundamentação matemática para o Algoritmo de Miller [57, 58],
empregado no cálculo de emparelhamentos, e a aplicação deste algoritmo para o cálculo
de emparelhamentos bilineares propostos na literatura.

1.4.1 Curvas elípticas

Uma curva elíptica sobre um corpo K é definida pela equação de Weierstraβ:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.1)

onde a1, a2, a3, a4, a5, a6 ∈ K, com discriminante ∆ 6= 0. Se K̄ é o fecho algébrico de K e
L é uma extensão algébrica K ⊂ L ⊂ K̄, o conjunto de pontos L-racionais em E é:

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {∞},

onde ∞ é o ponto no infinito.
Curvas elípticas fornecem uma regra geométrica para a adição de pontos. Sejam

P = (x1, y1) e Q = (x2, y2) pontos distintos racionais sobre uma curva elíptica E. A soma
R = P + Q é definida como a reflexão sobre o eixo x do ponto R′ de intersecção entre a

8

(a) Adição de pontos R = P +Q; (b) Duplicação de ponto R = 2P ;

Figura 1.2: Adição e duplicação geométrica de pontos em curvas elípticas.

curva E e a linha que passa por P e Q. Quando P = Q, toma-se a intersecção R′ entre
a curva E e a tangente à curva E no ponto P . A figura 1.2 apresenta as regras para
adição e duplicação de pontos em sua forma geométrica. O conjunto de pontos E(K)

em conjunção com a regra de adição forma o grupo abeliano (E(K),+) com o ponto no
infinito ∞ como elemento de identidade.

O número de pontos da curva E(K), denotado por #E(K), é chamado de ordem da
curva sobre o corpo K. A condição de Hasse afirma que #E(Fqk) = qk + 1 − t, onde
|t| ≤ 2

√
qk é chamado de traço de Frobenius. Curvas em que a característica q divide t

são chamadas de curvas supersingulares.
A partir de substituição de variáveis, a equação (1.1) pode ser simplificada dependendo

da característica q do corpo K [59]:

• Se q 6= 2, 3 primo, a curva elíptica é dita curva prima e tem equação:

E(Fq) : y
2 = x3 + ax+ b; (1.2)

• Se q = 2 e a1 6= 0, a curva elíptica é dita curva binária ordinária e tem equação:

E(F2m) : y
2 + xy = x3 + ax2 + b; (1.3)

• Se q = 2 e a1 = 0, a curva elíptica é dita curva binária supersingular e tem equação:

E(F2m) : y
2 + cy = x3 + ax+ b. (1.4)

9

Dado um ponto elíptico P ∈ E(Fq) e um número inteiro l, a operação lP , chamada
multiplicação de ponto por escalar, é definida pela relação de recorrência:

lP =





∞, se l = 0;

(−l)(−P) se l ≤ −1;
(l − 1)P + P se l ≥ 1.

A multiplicação de ponto é a operação fundamental utilizada por protocolos baseados
em curvas elípticas. Este operação pode ser calculada em diferentes sistemas de coordena-
das [60, 61, 21] e com diferentes algoritmos, dependendo se há ou não conhecimento prévio
do ponto a ser multiplicado [62, 63, 64, 65]. Os Capítulos 2, 3 e 4 discutem brevemente
a escolha de algoritmos para multiplicação de ponto. Informações detalhadas para estes
algoritmos podem ser encontradas em [59, 66].

Seja n = #E(Fqk). A ordem de um ponto P ∈ E é o menor inteiro r > 0 tal que
rP =∞. Temos que r|n. O conjunto de pontos de torção r de E, denotado por E(K)[r],
é o conjunto de pontos cuja ordem divide r, ou seja, o conjunto {P ∈ E(K)|rP = ∞}.
Destas definições, segue que 〈P 〉, o grupo de pontos gerado por P , é um subgrupo de
E(K)[r], que por sua vez é um subgrupo de E(K)[n]. Dizemos que o subgrupo 〈P 〉 tem
grau de mergulho k se k é o menor inteiro tal que r|qk − 1 [23].

1.4.2 Emparelhamentos bilineares

Sejam G1 e G2 grupos cíclicos aditivos e GT um grupo cíclico multiplicativo tais que
|G1| = |G2| = |GT |. Seja P o gerador de G1 e Q o gerador de G2. Um mapeamento
e : G1 × G2 → GT é dito um emparelhamento bilinear admissível [12] se satisfaz as
seguintes propriedades:

1. Bilinearidade: dados (V , W) ∈ G1 ×G2, temos

e(P,Q+ Z) = e(P,Q) · e(P,Z) e e(P + V,Q) = e(P,Q) · e(V,Q).

Conseqüentemente, para quaisquer a, b ∈ Z|GT |, temos:

e(aV, bW) = e(V,W)ab = e(abV,W) = e(V, abW) = e(bV, aW).

2. Não-degeneração: e(P,Q) 6= 1GT
, onde 1GT

é a identidade do grupo GT .

3. Eficiência: O mapeamento e pode ser calculado eficientemente, ou seja, tem com-
plexidade polinomial.

10

Tipicamente, G1 e G2 são subgrupos do grupo de pontos de uma curva elíptica sobre
o fecho algébrico de um corpo finito Fq e GT é um subgrupo do grupo multiplicativo de
um corpo finito relacionado a Fq (uma de suas extensões, por exemplo). Esta definição
genérica define um emparelhamento assimétrico [67]. A instanciação mais comum de um
emparelhamento assimétrico é escolher G1 como um subgrupo de pontos na curva elíptica
E(Fq), G2 como um subgrupo de pontos na curva elíptica E(Fqk) e GT como o subgrupo
de raízes da unidade em F∗

qk
.

Se E é uma curva supersingular definida sobre Fq com grau de mergulho k > 1 e r
é um divisor primo de #E(Fq), o emparelhamento simétrico associado com E é o mapa
bilinear ê : G1 ×G1 → GT definido por e(P1, ψ(P2)), onde ψ é um mapa de distorção. O
mapa de distorção é um homomorfismo de G1 em G2 cuja função é garantir que 〈P 〉 e
〈ψ(P)〉 sejam conjuntos linearmente independentes [67].

1.4.3 Problemas subjacentes

Um conjunto de problemas clássicos dos quais se tem evidência de intratabilidade são
utilizados explicitamente ou implicitamente por sistemas criptográficos de chave pública:

Problema do Logaritmo Discreto (Discrete Logarithm Problem – DLP): Seja G um
grupo cíclico finito e g um gerador de G. Dado 〈g, ga〉, com escolha uniformemente
aleatória de a ∈ Z|G|, encontrar a.

Problema Diffie-Hellman Computacional (Computational Diffie Hellman Problem –

CDHP): Seja G um grupo cíclico finito e g um gerador de G. Dado 〈g, ga, gb〉 com escolha
uniformemente aleatória de a, b ∈ Z|G|, encontrar gab ∈ G.

O algoritmo mais eficiente para cálculo de logaritmos discretos [68] é uma variação do
algoritmo de cálculo de índices [69] e apresenta complexidade sub-exponencial. Para um
grupo de pontos em curva elíptica, o DLP consiste em obter a a partir do resultado da
operação de multiplicação de ponto aP . Existem evidências de que a técnica de cálculo
de índices não possa ser estendida para grupos de pontos em curvas elípticas e, assim, a
complexidade do problema DLP em curvas elípticas (Elliptic Curve Discrete Logarithm

Problem – ECDLP) mantém-se estritamente exponencial [70].

A derivação de problemas análogos aos problemas ditos convencionais, no contexto de
emparelhamentos bilineares, é direta:

Problema Diffie-Hellman Bilinear (Bilinear Diffie-Hellman Problem – BDHP): Seja
G1, G2,GT grupos adequados à instanciação de um emparelhamento bilinear admissível e
e sejam P um gerador de G1 e Q um gerador de G2. Dado 〈P, aP, bP, cP,Q, aQ, bQ, cQ〉,
com escolhas uniformemente aleatórias de a, b, c ∈ Z|GT |, calcular e(P,Q)abc ∈ GT [66].

Pode-se perceber que a intratabilidade do BDHP implica a dificuldade do DLP em
G1, G2 e GT , visto que o cálculo de logaritmos discretos em GT fornece um oráculo para

11

o cálculo do ECDLP. Assim, a dificuldade do ECDLP nos grupos aditivos deve ser tal
que o cálculo subexponencial do DLP em GT permaneça difícil [71].

1.4.4 Cálculo de emparelhamentos

Por ser uma área de pesquisa nova, a criptografia baseada em emparelhamentos apresenta
uma infinidade de opções do ponto de vista algorítmico. A escolha de parâmetros e
algoritmos ainda encontra-se particularmente longe de consolidação. Desta forma, os
trabalhos publicados na literatura refletem uma extensa experimentação com diversas
escolhas de parâmetros, a fim de encontrar um ponto ótimo entre a escolha da curva e o
desempenho da aritmética [25].

São conhecidos dois algoritmos para o cálculo de emparelhamentos bilineares: o algo-
ritmo de Miller [57, 58] e as redes elípticas [72], tendo o primeiro recebido significativa
atenção na literatura. Duas das instanciações de emparelhamentos consideradas mais efi-
cientes são o emparelhamento ηT [1], uma modificação do emparelhamento de Tate [22]
para curvas supersingulares definidas sobre um corpo finito binário; e o emparelhamento
R-ate [3] sobre curvas ordinárias primas. Entretanto, diversas famílias de curvas são
adequadas para instanciação de emparelhamentos, apresentando características distintas
que influenciam o desempenho da aritmética empregada para o cálculo de emparelhamen-
tos. Uma dessas características é o grau de mergulho da curva que controla diretamente o
tamanho do corpo finito subjacente à curva e o grau da extensão do corpo utilizado na arit-
mética. Na literatura, já foram relatadas as descobertas de curvas com graus de mergulho
diversos, como curvas MNT (k = 3, 4, 6) [73], curvas BN (k = 12) [74] e mais recentemente,
curvas com grau de mergulho significativamente maior (k = 8, 16, 18, 32, 36, 40) [75]. O
grau de mergulho representa um compromisso direto entre complexidade da aritmética na
extensão do corpo e eficiência na aritmética do corpo base, sendo estes níveis de aritmética
estimados como os mais solicitados durante o cálculo de um emparelhamento [19].

O cálculo de um emparelhamento bilinear pelo Algoritmo de Miller emprega teoria
de divisores de pontos em curvas elípticas. Esta seção esboça as principais definições e
fornece uma forma contemporânea do algoritmo.

Divisores

Um divisor é uma soma formal de pontos na curva E(F̄q):

D =
∑

P∈E
dP (P), (1.5)

onde dP é um inteiro e (P) é um símbolo formal. O grau de um divisor é a soma de seus
coeficientes não-nulos deg(D) =

∑
P∈E dP . Divisores podem envolver símbolos formais

12

para vários pontos na curva elíptica, mas limita-se o enfoque a divisores de funções, por
possuírem poucos símbolos. O divisor de uma função f(x, y) = 0 contém apenas os termos
dP (P) tais que P = (x, y) está na curva E(x, y) = 0 e na função f(x, y) = 0, ou seja, os
pontos em que E e f se encontram. Para qualquer ponto P na curva elíptica tal que E e
f não têm intersecção, dp = 0. O suporte de um divisor D é o conjunto de pontos com
coeficientes não-nulos supp(D) = {P ∈ E|nP 6= 0}.

Uma estrutura de grupo abeliano aditivo é definida no conjunto dos divisores pela
soma dos coeficientes correspondentes em suas somas formais. Assim:

∑

P∈E
mP (P) +

∑

P∈E
nP (P) =

∑

P∈E
(mP + nP)(P)

nD =
∑

P∈E
(ndP)(P). (1.6)

Funções racionais sobre uma curva elíptica

Uma função f(x, y) em um corpo finito Fq é dita racional se f pode ser escrita como a
razão entre polinômios P (x, y) e Q(x, y) em Fq. Um função racional está sobre uma curva
E(Fq) se f(x, y) = 0 e E(x, y) = 0 têm ao menos uma solução em comum. Utiliza-se a
notação P ∈ f ∩ E para um ponto P = (x, y) que satisfaz esta condição.

Seja f(x, y) uma função racional sobre E(x, y) = 0. Para um ponto P ∈ f ∩ E, P é
chamado zero se f(P) = 0 e pólo se f(P) =∞. Para todo ponto P ∈ E(Fq), existe uma
função racional u com u(P) = 0 tal que toda função racional não-nula f pode ser escrita
como f(P) = uds(P) para algum inteiro d e uma função racional s, tal que s(P) /∈ {0,∞}.
A função u é chamada uniformizador e pode ser qualquer reta ax+ by + c = 0 que passa
por P sem ser tangente a E em P . Define-se a ordem de f em P , denotada por ordP (f)
como d. Se P é um zero da função f , então ordP (f) > 0 e P tem multiplicidade ordP (f).
Se P é um pólo de f , então a ordP (f) < 0 e P tem multiplicidade −ordP (f) [76].

Divisor de uma função racional

O divisor de uma função racional f é chamado divisor principal :

div(f) =
∑

P∈E
ordP (P). (1.7)

Sabe-se que deg(D) = 0 e
∑

P∈E dPP = ∞ se e somente se D é principal. Dois
divisores C e D são equivalentes (C ∼ D) se a diferença C − D é um divisor principal.
Para avaliar uma função racional f em um divisor D com suporte disjunto ao suporte de
div(f), calcula-se [76]:

13

f(D) =
∏

P∈supp(D)

f(P)nP . (1.8)

Seja P ∈ E(Fq)[r] e seja DP um divisor equivalente a (P) − (∞). O divisor rDP é
principal e existe uma função fr,P tal que div(fr,P) = rDP = r(P)− r(∞) [23].

1.4.5 Algoritmo de Miller

O Algoritmo de Miller [57, 58] constrói fr,P em estágios e avalia esta função sobre um
divisor D ∼ (Q)− (∞) utilizando um método recursivo.

Primeiramente, seja P ∈ E(Fq)[r] e Q ∈ Fqk . Seja D o divisor (Q+R)−(R) equivalente
a (Q) − (∞). Para qualquer inteiro c, existe uma função de Miller fc,P com divisor
(fc,P) = c(P)− (cP)− (c− 1)(∞). Então, para quaisquer inteiros a, b, com gaP,bP a linha
entre os pontos aP e bP , temos que [23]:

fa+b,P (D) = fa,P (D) · fb,P (D) ·
gaP,bP (D)

g(a+b)P,−(a+b)P (D)
. (1.9)

Para calcular 〈P,Q〉r = fr,P (D), o Algoritmo de Miller utiliza esta relação para cons-
truir e avaliar aplicações de funções de Miller no divisor D, como mostrado no Algo-
ritmo 1.1.

Algoritmo 1.1 Algoritmo de Miller [57, 58].

Entrada: r =
∑log2(r)

i=0 ri2
i, P,D ∼ (Q)− (∞).

Saída: fr,P (D).
1: T ← P
2: f ← 1
3: for i = ⌊log2(r)⌋ − 1 downto 0 do
4: T ← 2T
5: f ← f 2 · gT,T (D)

g2T,−2T (D)

6: if ri = 1 then
7: T ← T + P
8: f ← f · gT,P (D)

gT+P,−(T+P)(D)

9: end if
10: end for
11: return f

Considerando que gT,P (D) = l((Q+R)− (R)) = l(Q+R)
l(R)

, com l a linha que passa por T

e P na adição T +P ; e gT,T (D) = v(Q+R)
v(R)

, com v a vertical que passa por T na duplicação
2T , pode-se reescrever o Algoritmo de Miller na forma do Algoritmo 1.2.

14

Algoritmo 1.2 Algoritmo de Miller [57, 58].

Entrada: r =
∑log2 r

i=0 ri2
i, P,Q+R,R.

Saída: 〈P,Q〉r.
1: T ← P
2: f ← 1
3: for i = ⌊log2(r)⌋ − 1 downto 0 do
4: T ← 2T
5: f ← f 2 · l(Q+R)v(R)

v(Q+R)l(R)

6: if ri = 1 then
7: T ← T + P
8: f ← f · l(Q+R)v(R)

v(Q+R)l(R)

9: end if
10: end for
11: return f

1.4.6 Emparelhamento de Tate

O emparelhamento de Tate de ordem r é o mapa:

er : E(Fq)[r]× E(Fqk)[r]→ F∗
qk

er(P,Q) = fr,P (D)(q
k−1)/r, (1.10)

para algum divisor D ∼ (Q) − (∞). Se escolhemos R com coordenadas em um sub-
corpo de Fqk , a potência com expoente (qk − 1)/r elimina todos os fatores l(R), v(R)
no Algoritmo 1.2. Isto acontece porque (q − 1)|(qk − 1)/r e, pelo pequeno Teorema de
Fermat, a(q−1) = 1. Fazendo R = ∞ no Algoritmo 1.2, temos ainda que er(P,Q) =

fr,P (Q)
(qk−1)/r [23].

Para um emparelhamento simétrico, pode-se escolher o mapa de distorção de forma
que a coordenada x de ψ(P) esteja em um subcorpo de Fqk . Assim, os fatores v(Q)
também serão eliminados pela exponenciação final [1].

Para um emparelhamento assimétrico, quando o grau de mergulho k é par, pode-se
assumir que a extensão Fqk é construída como uma extensão quadrática sobre Fqd , d = k/2.
Desta forma, a potência (qk − 1) pode ser fatorada como (qd − 1)(qd + 1)/r e calcula-se
(1
v(Q)

)q
d−1 como o conjugado (v̄(Q))q

d−1. Como Q é agora um ponto com coordenadas
na extensão quadrática de Fqd , pode-se restringir Q à forma (xQ, yQ) = ((a, 0), (0, b)),
a, b ∈ Fqd . Assim, o fator v̄(Q) é agora um elemento do subcorpo Fqd também eliminado
pela exponenciação final. Observa-se que, mesmo restringindo a forma do ponto Q, ainda
é possível realizar aritmética na curva E(Fqk), pois o conjunto de pontos Q neste formato
pode ser mapeado para um grupo isomórfico no twist da curva E. O twist de grau d

15

Et(Fq) de uma curva E(Fq) é dado por y2 = x3 + z2ax + z3b para todo não-resíduo z de
grau d.

Finalmente, pode-se eliminar a última contribuição do laço de Miller, pois necessaria-
mente esta contribuição ao acumulador irá estar em um subcorpo [23]. O Algoritmo 1.3
apresenta a especialização do Algoritmo de Miller para o cálculo do emparelhamento de
Tate [19].

Algoritmo 1.3 Emparelhamento de Tate [19].

Entrada: r =
∑log2 r

i=0 ri2
i, P,Q.

Saída: er(P,Q).

1: T ← P
2: f ← 1
3: s← r − 1
4: for i = ⌊log2(s)⌋ − 1 downto 0 do
5: T ← 2T
6: f ← f 2 · lT,T (Q)
7: if si = 1 then
8: T ← T + P
9: f ← f · lT,P (Q)

10: end if
11: end for
12: return f (qk−1/r)

1.4.7 Emparelhamento de Weil

O emparelhamento de Weil [58] é definido classicamente como:

ew : E(Fqk)[r]× E(Fqk)[r]→ F∗
qk

er(P,Q) =
fr,Q(DP)

fr,P (DQ)
, (1.11)

para divisores DP ∼ (P) − (∞) e DQ ∼ (Q) − (∞). Uma das funções de Miller pode
ser acelerada escolhendo o acumulador P ∈ E(Fq)[r], quando é comumente chamada de
Miller leve, em contraste à função com acumulador Q ∈ E(Fqk)[r] chamada de Miller

completa [77]. A princípio, não há exponenciação final como no emparelhamento de Tate,
mas introduzir um expoente (qk − 1) permite eliminar as linhas verticais, como no caso
anterior. O emparelhamento de Weil é examinado no Capítulo 7.

16

1.4.8 Emparelhamento ηT [1]

O emparelhamento ηT , proposto por Barreto et al. em 2004 é uma especialização do em-
parelhamento de Tate exclusiva para curvas supersingulares sobre corpos de característica
pequena (2 ou 3). Esta especialização aplica o método eta desenvolvido por Duursma e
Lee para curvas hiperelípticas [78]. Restringindo a definição para curvas supersingulares
binárias da forma y3 + y = x3 + x+ b, este emparelhamento define o mapa:

ηT : E(F2m)[r]× E(F2km)[r]→ F∗
2km ,

ηT (P,Q) = fT,P (Q)
(2km−1)/r, (1.12)

O Algoritmo de Miller pode ser também especializado para o cálculo do emparelha-
mento ηT . Para isso, é preciso explorar a forma simples dos divisores de funções em curvas
supersingulares e embutir a definição do mapa de distorção associado no cálculo do empa-
relhamento. O Algoritmo 1.4 descreve o método proposto por [79] para calcular a fórmula
fechada do emparelhamento apresentada em [1]. Este emparelhamento é revisitado nos
Capítulos 5 e 7.

Algoritmo 1.4 Emparelhamento ηT em curva supersingular binária
Entrada: P = (xP , yP), Q = (xQ, yQ) ∈ E(F2m)[r].
Saída: ηT (P,Q) ∈ F∗

24m .
Nota: δ = b se m ≡ 1, 7 (mod 8), δ = (1 − b) caso contrário; α = 0 se m ≡ 3
(mod 4), α = 1 caso contrário; β = b se m ≡ 1, 3 (mod 8), β = (1 − b) caso contrá-
rio.

1: yP ← yP + 1− δ
2: u← xP + α, v ← xQ + α
3: g0 ← u · v + yP + yQ + β
4: g1 ← u+ xQ, g2 ← v + x2P
5: G← g0 + g1s+ t
6: L← (g0 + g2) + (g1 + 1)s+ t
7: F ← L ·G
8: for i← 1 to m−1

2
do

9: xP ←
√
xP , yP ←

√
yP , xQ ← x2Q, yQ ← y2Q

10: u← xP + α, v ← xQ + α
11: g0 ← u · v + yP + yQ + β
12: g1 ← u+ xQ
13: G← g0 + g1s+ t
14: F ← F ·G
15: end for

16: return F (22m−1)(2m+1±2
m+1

2)

17

1.4.9 Emparelhamento ate [2]

O emparelhamento ate proposto por Hess et al. em 2005 permuta os argumentos do em-
parelhamento de Tate e generaliza o emparelhamento eta para curvas não-supersingulares
com traço de Frobenius pequeno. Seja πq : E → E o endomorfismo de Frobenius definido
por πq(x, y) = (xq, yq). Seja G1 = E[r] ∩ Ker(πq − [1]), G2 = E[r] ∩ Ker(πq − [q]),
T = t − 1. Seja N = gcd(T k − 1, qk − 1), T k − 1 = LN . O emparelhamento ate é o
mapa [2]:

aT : G1 ×G2 → F∗
qk

aT (Q,P) = fT,Q(P)
cT (qk−1)/N , (1.13)

onde cT =
∑k−1−i

i=0 qi ≡ kqk−1 (mod r). O emparelhamento ate é bilinear e não-degenerado
se r não divide L. O Algoritmo 1.5 apresenta a especialização do Algoritmo de Miller
para o cálculo do emparelhamento ate [19].

Algoritmo 1.5 Emparelhamento ate [19].

Entrada: t =
∑log2 t

i=0 ti2
i, Q, P.

Saída: aT (Q,P).

1: T ← P
2: f ← 1
3: s← t− 1
4: for i = ⌊log2(s)⌋ − 1 downto 0 do
5: T ← 2T
6: f ← f 2 · lT,T (P)
7: if ti = 1, i 6= 0 then
8: T ← T + P
9: f ← f · lT,Q(T)

10: end if
11: end for
12: return f (qk−1/r)

1.4.10 Emparelhamento R-ate [3]

O emparelhamento R-ate, proposto por Lee, Lee e Park em 2008 é, por sua vez, uma
generalização do emparelhamento ate que aprimora sua eficiência. Este emparelhamento
calcula um emparelhamento bilinear a partir da razão entre dois emparelhamentos bi-
lineares e requer duas aplicações do Algoritmo de Miller com um número pequeno de
interações [3]. Para uma escolha cuidadosa de inteiros a, b, A,B, com A = aB + b, o
emparelhamento R-ate é o mapa [3]:

18

ea : E(Fk
q)[r]× E(Fq)[r]→ F∗

qk

ea(Q,P) = fa,BQ(P) · fb,Q(P) ·
gaBQ,bQ(P)

gAQ(P)

ea(Q,P) = (f · (f · laQ,Q(P))
q · lπ(aQ+Q)(P)

(qk−1)/r. (1.14)

1.4.11 Emparelhamento otimal

Pode-se perceber que a principal otimização aplicada ao Algoritmo de Miller é a diminui-
ção do número de iterações do laço principal do algoritmo. Vercauteren [24] estabelece
que qualquer emparelhamento cujo laço de Miller pode ser truncado para log2(r)/φ(k) é
chamado de emparelhamento otimal e prova ainda que log2(r)/φ(k) iterações é uma cota
mínima para qualquer emparelhamento não-degenerado em curvas elípticas sem endomor-
fismos eficientemente computáveis que não sejam potências de Frobenius. Neste sentido,
os emparelhamentos ηT e R-ate são otimais. O emparelhamento ate otimal estudado no
Capítulo 6 é outro exemplo de emparelhamento otimal.

1.5 Contribuições

Esta seção apresenta uma relato não-cronológico dos resultados obtidos durante a execu-
ção deste trabalho, organizados em duas partes: implementação de criptografia de curvas
elípticas e de criptografia baseada em emparelhamentos. Estas contribuições foram dispo-
nibilizadas na forma de uma biblioteca de software descrita ao final da seção. Nem todos
os trabalhos discutidos nessa seção estão incluídos na tese, mas decidiu-se por divulgá-los
para manter um relatório do progresso do autor.

1.5.1 Implementação de criptografia de curvas elípticas

A primeira etapa do trabalho consistiu na implementação de corpos e curvas elípticas
binárias em sensores em fio. O baixo poder computacional dos sensores torna inviável
a utilização de algoritmos convencionais de criptografia de chave pública (RSA/DSA,
por exemplo) e, até recentemente, primitivas de segurança como sigilo, autenticação e
integridade em RSSFs eram alcançadas apenas através de técnicas de criptografia simé-
trica [80, 81]. Atualmente, criptografia de curvas elípticas [8, 7] e criptografia baseada
em emparelhamentos [10] têm sido apontadas como alternativas promissoras aos métodos
convencionais de criptografia assimétrica em redes de sensores [82], por exigir requisitos

19

menores de processamento e armazenamento para o mesmo nível de segurança. Estas ca-
racterísticas estimulam a busca de algoritmos cada vez mais eficientes para implementação
nestes dispositivos.

Durante a execução desta etapa, foram detectadas otimizações para aritmética de cur-
vas elípticas sobre corpos binários, ampliando os seus limites de eficiência e viabilidade
de aplicação. Particularmente, os resultados experimentais demonstram que o desempe-
nho de curvas elípticas sobre corpos binários pode equiparar-se ao desempenho de curvas
sobre corpos primos em implementações cuidadosas que consideram as características da
plataforma. Este resultado contraria a observação de que dispositivos tão escassos em
recursos não são suficientemente equipados para implementação de criptografia de curvas
elípticas definidas sobre corpos binários [82, 83].

Como resultados obtidos decorrentes desta etapa, pode-se citar os trabalhos [84, 85, 86]
que implementam curvas elípticas em microcontroladores AVR ATmega128 de 8 bits :

1. D. F. Aranha, D. Câmara, J. López, L. Oliveira, R. Dahab. Implementação efici-

ente de criptografia de curvas elípticas em sensores sem fio. 8o. Simpósio Brasileiro
em Segurança da Informação e de Sistemas Computacionais (SBSEG 2008), 173–
186, Gramado, Brasil, 2008;

2. D. F. Aranha, J. López, L. Oliveira, R. Dahab. Efficient implementation of elliptic

curves on sensor nodes. Conference on Hyperelliptic curves, discrete Logarithms,
Encryption, etc. (CHiLE 2009), Frutillar, Chile, 2009;

3. D. F. Aranha, R. Dahab, J. López, L. Oliveira. Efficient implementation of elliptic

curve cryptography in wireless sensors. Advances in Mathematics of Communicati-
ons, vol. 4, no. 2, 169–187, 2010.

Os dois primeiros aprimoram o estado-da-arte de implementações de criptografia de
curvas elípticas em redes de sensores sem fio. Nós sensores representam um extremo
no espectro de arquiteturas modernas, por terem recursos particularmente limitados e
natureza descartável. Aproveitando as características peculiares da plataforma alvo, par-
ticularmente a configuração da hierarquia de memória, foi possível desenvolver otimizações
para aritmética nos corpos finitos F2163 e F2233 e curva elípticas associadas, produzindo as
implementações mais eficientes de quadrado, multiplicação, inversão e redução modular
já publicadas para esta plataforma. A aritmética eficiente no corpo permitiu o cálculo
de uma mutiplicação de ponto 61% mais rápida que a melhor implementação de curvas
elípticas sobre corpos binários e 57% mais rápida que a melhor implementação para o
caso primo, considerando o mesmo nível de segurança. O terceiro trabalho consolida estes
resultados e é apresentado como Capítulo 2 desta tese.

20

O segundo conjunto de resultados trata da implementação de corpos binários em con-
juntos de instruções vetoriais. Em particular, havia interesse em se aproveitar explicita-
mente instruções de permutação de bytes que codificam implicitamente acessos simultâ-
neos a tabelas de constantes. Cronologicamente, este estudo foi iniciado com a implemen-
tação de um corpo razoavelmente grande (F21223) para o cálculo do emparelhamento ηT
em arquiteturas de 64 bits. Posteriormente, verificou-se que as mesmas otimizações eram
aplicáveis a corpos muito menores e foi desenvolvida uma formulação da aritmética com
granularidade de 4 bits que emprega vastamente as instruções de permutação, produzindo
inclusive um novo ainda que ineficiente algoritmo de multiplicação. Esta formulação foi
complementada com um estudo detalhado dos impactos algorítmicos da disponibilidade
repetina de suporte nativo à multiplicação em um corpo binário recentemente introdu-
zida na arquitetura Intel [87]. A aceleração significativa da operação de multiplicação
forçou uma reavaliação de estratégias de implementação para a operação de halving em
curvas elípticas binárias e de paralelizações da operação de multiplicação de ponto. Estes
resultados são apresentados nos artigos a seguir [88, 89]:

1. D, F. Aranha, J. López, D. Hankerson. Efficient Software Implementation of

Binary Field Arithmetic Using Vector Instruction Sets. 1st International Conference
on Cryptology and Information Security (LATINCRYPT 2010), 144–161, Puebla,
Mexico, 2010.

2. J. Taverne, A. Faz-Hernández, D. F. Aranha, F. Rodríguez-Henríquez, D. Han-
kerson, J. López.Software Implementation of Binary Elliptic Curves: Impact of the

Carry-less Multiplier on Scalar Multiplication. 13th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2011), em publicação.

O primeiro trabalho é apresentado como o Capítulo 3 desta tese e obtém ganhos de
desempenho em 8%-84% para diversas operações em um corpo binário. Esta formulação
eficiente da aritmética permitiu aprimorar o estado da arte [90] para multiplicação de
ponto em 27%-30%, desconsiderando o modo de operação em lote [61]. O custo médio de
uma multiplicação de ponto em modo lote no nível de segurança de 128 bits foi superado
em 10% apenas no segundo trabalho, após a introdução de suporte nativo à multiplicação
em um corpo binário. Este último trabalho, apresentado como Capítulo 4, apresenta
ainda resultados experimentais para implementações seriais e paralelas da operação de
multiplicaçao de ponto nos níveis de segurança de 112, 128 e 192 bits.

21

1.5.2 Implementação de criptografia baseada em emparelhamen-

tos bilineares

Em seguida, buscou-se estudar protocolos úteis para o fornecimento de serviços de segu-
rança em redes de sensores sem fio. Um exemplos com estas características é o proto-
colo Sakai-Ohgishi-Kasahara [13] para acordo de chaves não-interativo, providenciando o
acordo autenticado de chaves simétricas entre nós sensores sem exigir qualquer comuni-
cação, o que permite importante economia de energia. Outro exemplo é o emprego de
assinaturas digitais para transmissão autenticada de mensagens entre um nó específico
da rede de sensores e um usuário ou aplicação final. Esta linha de pesquisa produziu os
resultados abaixo [91, 92, 93]:

1. D. F. Aranha, L. B. Oliveira, J. López, R. Dahab. NanoPBC: implementing

cryptographic pairings on an 8-bit platform. Conference on Hyperelliptic curves,
discrete Logarithms, Encryption, etc. (CHiLE 2009), Frutillar, Chile, 2009;

2. L. B. Oliveira, D. F. Aranha, C. P. L. Gouvêa, Danilo F. Câmara, M. Scott,
J. López, R. Dahab. TinyPBC: Pairings for Authenticated Identity-Based Non-

Interactive Key Distribution in Sensor Networks. Computer Communications, vol.
34, no. 3, 485–493, 2011;

3. L. B. Oliveira, A. Kansal, C. P. L. Gouvêa, D. F. Aranha, J. López, B. Priyantha,
M. Goraczko, F. Zhao. Secure-TWS: Authenticating Node to Multi-user Communi-

cation in Shared Sensor Networks. The Computer Journal, em publicação.

A intersecção entre este trabalho e os trabalhos acima consistiu principalmente na
contribuição de implementações otimizadas dos algoritmos criptográficos envolvidos na
plataforma AVR ATmega128. Os dois primeiros trabalhos obtém uma aceleração de até
61% no cálculo do emparelhamento ηT [1] sobre curvas supersingulares binárias a partir
de uma generalização das técnicas previamente desenvolvidas para a implementação de
corpos binários. O terceiro trabalho compara a implementação de diversos esquemas de
assinatura sobre curvas elípticas e emparelhamentos bilineares, fornecendo um panorama
completo da relação entre tempo de execução, consumo de memória e consumo de ener-
gia para o cálculo de assinaturas digitais. Os esquemas implementados foram ECDSA,
Schnorr [94] sobre curvas elípticas e assinaturas curtas Boneh-Lynn-Shacham (BLS) [17]
e Zhang-Safavi-Naini-Susilo (ZSS) [95], utilizando curvas elípticas definidas sobre corpos
binários ou primos. De forma quase que surpreendente, foi detectado que assinaturas
curtas não fornecem a economia de energia suficiente na plataforma alvo para justificar
sua escolha em detrimento de esquemas convencionais como ECDSA ou Schnorr. Isto
ocorre porque as curvas padrão utilizadas no ECDSA possuem tamanhos de parâmetros

22

e algoritmos de multiplicação por escalar geralmente mais eficientes do que os disponíveis
em curvas adequadas para a instanciação de emparelhamentos.

O cálculo de emparelhamento bilineares é a operação com maior custo computacio-
nal envolvida em criptografia baseada em emparelhamentos. Por essa razão, obstáculos
significativos de desempenho ainda permanecem para adoção de criptografia baseada em
emparelhamentos em dispositivos de baixo poder computacional, especialmente para al-
tos níveis de segurança [10]. Dadas as tendências tecnológicas recentes da indústria de
computação em migrar as arquiteturas computacionais para arquiteturas paralelas, algo-
ritmos paralelos para cálculo de emparelhamentos em arquiteturas multiprocessadas são
desejáveis. Este problema é sugerido como um problema em aberto em [96] e [67].

Desta forma, foi derivada uma formulação paralela do Algoritmo de Miller [58] empre-
gado para o cálculo de emparelhamentos bilineares. Esta formulação fornece um algoritmo
genérico independente da instanciação do emparelhamento e com ótima escalabilidade
em curvas sobre corpos de característica pequena. Esta formulação foi ilustrada com a
implementação paralela do emparelhamento ηT sobre curvas supersingulares binárias e
do emparelhamento ate optimal sobre curvas Barreto-Naehrig (BN) [97], aprimorando o
estado-da-arte do cálculo paralelo de emparelhamentos descrito nos trabalhos [98, 99].
Estes resultados são descritos em [100, 101, 102, 20, 103, 104]:

1. D. F. Aranha, J. López. Paralelização em Software do Algoritmo de Miller. 9o.
Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais
(SBSEG 2009), 27–40, Campinas, Brasil, 2009.

2. D. F. Aranha, J. López, D. Hankerson. High-speed parallel software implementa-

tion of ηT pairing. Software Performance Enhancement of Encryption and Decryp-
tion and Cryptographic Compilers/SPEED-CC, Berlim, Alemanha, 2009.

3. D. F. Aranha, J. López, D. Hankerson. High-speed parallel software implemen-

tation of ηT pairing. Cryptographer’s Track - RSA Conference (CT-RSA 2010),
89–105, São Francisco, Estados Unidos, 2010.

4. D. F. Aranha, J.-L. Beuchat, J. Detrey, N. Estibals. Optimal Eta Pairing on

Supersingular Genus-2 Binary Hyperelliptic Curves. Cryptology ePrint Archive,
Report 2010/559.

5. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, J. López. Faster Explicit

Formulas for Computing Pairings over Ordinary Curves. 30th International Confe-
rence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT
2011), 48–68 Talynn, Estônia, 2011.

23

6. D. F. Aranha, F. Henríquez-Rodríguez, E. Knapp, A. Menezes. Parallelizing the

Weil and Tate Pairings. 13th Institute of Mathematics and its Applications’ Inter-
national Conference on Cryptography and Coding (IMA-CC 2011), em publicação.

O primeiro trabalho descreve a construção genérica com enfoque apenas na para-
lelização do Algoritmo de Miller. O segundo trabalho introduz uma série de técnicas
para implementação de corpos binários em processadores equipados com conjuntos de
instruções vetoriais. Estas técnicas colaboram para reduzir sobrecargas da paralelização
genérica e produzem aprimoramentos em relação ao estado-da-arte de 28%, 44% e 66%
empregando 2, 4 e 8 processadores, respectivamente. A aceleração do cálculo serial foi
também significativa e sitou-se em pouco mais de 24%. Este conjunto aprimorado de re-
sultados foi apresentado na edição 2009 do workshop bienal SPEED-CC. Como o workshop

não produz anais convencionais – apenas um volume de registro – e a audiência deste é
bastante restrita a especialistas na área de implementação, decidiu-se por enviar uma
versão modificada do trabalho também para o Cryptographers’ Track da RSA Conference

2010 (CT-RSA). Este trabalho encontra-se apresentado como Capítulo 5. As técnicas
avançadas para a implementação de emparelhamento sobre corpos binários permitiram
ainda o estabelecimento de um novo recorde de velocidade para emparelhamentos simé-
tricos com a derivação e implementação de um novo emparelhamento eta sobre curvas
supersingulares binarias de genus 2, discutida no quarto trabalho.

Após o estudo de implementações eficientes de emparelhamentos definidos sobre corpos
binários, o quinto trabalho foi direcionado a corpos primos. Foi possível estabelecer
um novo recorde de velocidade para o cálculo de emparelhamentos sobre curvas BN no
nível de segurança de 128 bits com um aprimoramento de 28% a 34% em relação ao
estado da arte. Este resultado foi obtido a partir da utilização de todas as técnicas
propostas na literatura recente, além da introdução de novas técnicas como a aceleração
da aritmética em corpos de extensão com a generalização da noção de redução modular
preguiçosa, a concepção de novas fórmulas para cálculo comprimido de quadrados em
grupos ciclotômicos e a eliminação de penalidades para parametrizações negativas da
curva subjacente. Este trabalho encontra-se apresentado como Capítulo 6. O capítulo
final da tese dedica-se a revisitar o problema do cálculo paralelo de emparelhamentos,
aprimorando significativamente os resultados obtidos anteriormente com o emprego dos
quadrados comprimidos em grupos ciclotômicos, do suporte nativo à multiplicação binária
e de um compromisso entre tempo de execução e espaço de armazenamento para acelerar a
exponenciação final do emparelhamento ηT . Além disso, como tentativa de se contornar os
obstáculos à paralelização do Algoritmo de Miller, foram propostos dois emparelhamentos
baseados no emparelhamento de Weil, sendo o primeiro deles uma instanciação direta de
uma construção de Hess e o segundo derivado de uma nova construção demonstrada
como bilinear. Esta nova construção permitiu incrementar a escalabilidade do cálculo do

24

emparelhamento ate otimal primos em máquinas com até 8 unidades de processamento.

1.5.3 Biblioteca criptográfica

Um efeito colateral direto deste trabalho foi a fundação do projeto RELIC (RELIC is an

Efficient LIbrary for Cryptography) [105]. O projeto teve como finalidade inicial a pro-
dução de uma biblioteca criptográfica para dispositivos embutidos que tivesse um menor
consumo de memória que as alternativas. Atualmente, o projeto já constitui um fra-

mework completo para experimentação com implementação eficiente de algoritmos crip-
tográficos, fornecendo ampla portabilidade e arquitetura modular especialmente projetada
para permitir acelerações dependentes de arquitetura. São suportadas curvas elípticas e
emparelhamentos sobre corpos binários e primos. A versão em repositório da biblioteca
já atingiu a marca de 60 mil linhas de código, contando com mais de 5000 acessos de 900
visitantes únicos provenientes de 65 países, e mais de 1000 downloads distribuídos nas 7
versões já disponibilizadas.

1.6 Organização do documento

Este tese é organizada como uma coletânea em ordem não-cronológica de seis artigos,
onde cada artigo é apresentado na forma de um capítulo auto-contido. O critério de
seleção dos artigos foi o grau de envolvimento do autor, sendo selecionados apenas os
trabalhos em que houve oportunidade de se participar na concepção, desenvolvimento,
implementação e confecção do documento final. Os três primeiros capítulos descrevem
contribuições para o problema de implementação eficiente de criptossistemas de curvas
elípticas, enquanto os três últimos capítulos dedicam-se ao problema de implementação
eficiente de emparelhamentos. A maior vantagem deste formato em coletânea é permitir
a leitura não-linear e independente das contribuições originais, enquanto a maior desvan-
tagem é a inevitável redundância em algumas das definições. O último capítulo apresenta
conclusões e perspectivas de trabalho futuro.

25

26

Chapter 2

Efficient implementation of elliptic

curve cryptography in wireless sensors

Diego F. Aranha, Leonardo B. Oliveira,

Ricardo Dahab and Julio López

Abstract

The deployment of cryptography in sensor networks is a challenging task, given the lim-
ited computational power and the resource-constrained nature of the sensoring devices.
This paper presents the implementation of elliptic curve cryptography in the MICAz
Mote, a popular sensor platform. We present optimization techniques for arithmetic in
binary fields, including squaring, multiplication and modular reduction at two different
security levels. Our implementation of field multiplication and modular reduction algo-
rithms focuses on the reduction of memory accesses and appears as the fastest result for
this platform. Finite field arithmetic was implemented in C and Assembly and elliptic
curve arithmetic was implemented in Koblitz and generic binary curves. We illustrate
the performance of our implementation with timings for key agreement and digital sig-
nature protocols. In particular, a key agreement can be computed in 0.40 seconds and a
digital signature can be computed and verified in 1 second at the 163-bit security level.
Our results strongly indicate that binary curves are the most efficient alternative for the
implementation of elliptic curve cryptography in this platform.

Publication

This work first appeared in Advances in Mathematics of Communication 4 (2), 2010,
published by the American Institute of Mathematical Sciences and Shandong University
and available at http://dx.doi.org/10.3934/amc.2010.4.169. c©2010 AIMS-SDU

27

2.1 Introduction

A Wireless Sensor Network (WSN) [54] is a wireless ad-hoc network consisting of resource-
constrained sensoring devices (limited energy source, low communication bandwidth,
small computational power) and one or more base stations. The base stations are more
powerful and collect the data gathered by the sensor nodes so it can be analyzed. As any
ad hoc network, routing is accomplished by the nodes themselves through hop-by-hop
forwarding of data. Common WSN applications range from battlefield reconnaissance
and emergency rescue operations to surveillance and environmental protection.

WSNs may be organized in different ways. In flat WSNs, all nodes play similar roles
in sensing, data processing, and routing. In hierarchical WSNs, on the other hand, the
network is typically organized into clusters, with ordinary cluster members and the cluster
heads playing different roles. While ordinary cluster members are responsible for sensing,
the cluster heads are responsible for additional tasks such as collecting and processing
the sensing data from their cluster members, and forwarding the results towards the base
stations.

Besides the vulnerabilities already present in ad-hoc networks, WSNs pose additional
challenges: the sensor nodes are commonly distributed on locations physically accessible
to adversaries; and the resources available in a sensor node are more limited than those
in a conventional ad hoc network node, thus traditional solutions are not adequate. For
example, the fact that sensor nodes should be discardable and consequently have low cost
makes the integration of anti-tampering measures on these devices difficult.

Conventional public key cryptography systems such as RSA and DSA are impractical
in this scenario due to the low processing power of sensor nodes. Until recently, security
services such as confidentiality, authentication and integrity were achieved exclusively by
symmetric techniques [80, 81]. Nowadays, however, elliptic curve cryptography (ECC) [8,
7] has emerged as a promising alternative to traditional public key methods on WSNs [82],
because of its lower processing and storage requirements. These features motivate the
search for increasingly efficient algorithms and implementations of ECC for such devices.
The usual target platform is the MICAz Mote [106], a node commonly used on real WSN
deployments, whose main characteristics are the low availability of RAM memory and
the high cost of memory instructions, memory addressing and bitwise shifts by arbitrary
amounts.

This work proposes optimizations for implementing ECC over binary fields, improving
its limits of performance and viability. Experimental results show that binary elliptic
curves offer significant computational advantages over prime curves when implemented
in WSNs. Note that this observation contradicts a common misconception that sensor
nodes are not sufficiently equipped to compute elliptic curve arithmetic over binary fields

28

in an efficient way [82, 83].
Our main contributions in this work are:

• Efficient implementations of multiplication, squaring, modular reduction and in-

version in F2163 and F2233: optimized versions of known algorithms are presented,
reducing the number of memory accesses to obtain performance gains. The new op-
timizations produce the fastest implementation of binary field arithmetic published
for this platform;

• Efficient implementation of elliptic curve cryptography: point multiplication algo-
rithms are implemented on Koblitz curves and generic binary curves. The time for
a scalar multiplication of a random point in a binary curve is 61% faster than the
best implementation so far [107] and 57% faster than the best implementation over
a prime curve [108] at the 160-bit security level. We also present the first point
multiplication timings at the 233-bit security level in this platform. Performance is
illustrated by executions of key agreement and digital signature protocols.

The remaining sections of this paper are organized as follows. Related work is pre-
sented in Section 2.2 and elementary elliptic curve concepts are introduced in Section 2.3.
The platform characteristics are presented in Section 2.4. Section 2.5 investigates effi-
cient implementations of finite field arithmetic in the target platform while Section 2.6
investigates efficient elliptic curve arithmetic. Section 2.7 presents implementation results
and Section 2.8 concludes the paper.

2.2 Related work

Cryptographic protocols are used to establish security services in WSNs. Key agreement is
a fundamental protocol in this context because it can be used to negotiate cryptographic
keys suitable for fast and energy-efficient symmetric algorithms. One possible solution
for key agreement in WSNs is the deployment of pairing-based protocols, such as Tiny-
Tate [109] and TinyPBC [10], with the added advantage of not requiring communication.
Here instead we focus on the performance side and assume that a simple one-pass Elliptic
Curve Diffie-Hellman [110] protocol is employed for key agreement. With this assumption,
different implementations of ECC can be compared by the cost of multiplying a random
elliptic point by a random integer.

Gura et al. [82] presented the first implementation results of ECC and RSA on AT-
mega128 microcontrollers and demonstrated the superiority of the former over the latter.
In Gura’s work, prime field arithmetic was implemented in C and Assembly and a point
multiplication took 0.81 seconds on a 8MHz device. Uhsadel et al. [111] later presented

29

an expected time of 0.76 seconds for computing a point multiplication in a 7.3728MHz
device. The fastest implementation of prime curves so far [108] explores the potential of
elliptic curves with efficient computable endomorphisms defined over optimal prime fields
and computes a point multiplication in 5.5 million cycles, or 0.745 second.

For binary curves, Malan et al. [112] implemented ECC using polynomial basis and
presented results for the Diffie-Hellman key agreement protocol. A public key generation,
which consists of a point multiplication, was computed in 34 seconds. Yan and Shi [113]
implemented ECC over F2163 and obtained a point multiplication in 13.9 seconds, sug-
gesting that binary curves had too high a cost for sensors’ current technology. Eberle
et al. [83] implemented ECC in Assembly over F2163 and obtained a point multiplica-
tion in 4.14 seconds, making use of architectural extensions for additional acceleration.
NanoECC [114] specialized portions of the MIRACL arithmetic library [115] in the C
programming language for efficient execution in sensor nodes, resulting in a point mul-
tiplication in 2.16 seconds over prime fields and 1.27 seconds over binary fields. Later,
TinyECCK [116] presented an implementation of ECC over binary curves which takes
into account the platform characteristics to optimize finite field arithmetic and obtained
a point multiplication in 1.14 second. Recently, Kargl et al. [107] investigated algorithms
resistant to simple power analysis and obtained a point multiplication in 0.7633 second
on a 8MHz device. Table 2.2 presents the increasing efficiency of ECC in WSNs.

Finite field Work Execution time (seconds)

Binary

Malan et al. [112] 34
Yan and Shi [113] 13.9
Eberle et al. [83] 4.14
NanoECC [114] 2.16
TinyECCK [116] 1.14
Kargl et al. [107] 0.83

Prime

Wang and Li. [117] 1.35
NanoECC [114] 1.27
Gura et al. [82] 0.87

Uhsadel et al. [111] 0.76
TinySA [108] 0.745

Table 2.1: Timings for scalar multiplication of a random point on a MICAz Mote at the
160-bit security level. The timings are normalized for a clock frequency of 7.3728MHz.

30

2.3 Elliptic curve cryptography

An elliptic curve E over a field K is the set of solutions (x, y) ∈ K×K which satisfy the
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K and the curve discriminant is ∆ 6= 0; together with a point at

infinity denoted by O. If K is a field of characteristic 2, then the curve is called a binary

elliptic curve and there are two cases to consider. If a1 6= 0, then an admissible change of
variables transforms E to the non-supersingular binary elliptic curve of equation

y2 + xy = x3 + ax2 + b

where a, b ∈ F2m and ∆ = b. A non-supersingular curve with a ∈ {0, 1} and b = 1 is also
a Koblitz curve. If a1 = 0, then an admissible change of variables transforms E to the
supersingular binary elliptic curve

y2 + cy = x3 + ax+ b

where a, b, c ∈ F2m and ∆ = c4.
The number of points on the curve E(F2m), denoted by #E(F2m), is called the curve

order over the field F2m . The Hasse bound enunciates in this case that n = 2m+1− t and
|t| ≤ 2

√
2m, where t is the trace of Frobenius. A curve can be generated with a prescribed

order using the complex multiplication method [118] or the curve order can be explicitly
computed in binary curves using the approach due to Satoh, Skjernaa and Taguchi [119].
Non-supersingularity comes from the fact that t is not a multiple of the characteristic 2

of the underlying finite field [59].
The set of points {(x, y) ∈ E(F2m)}∪{O} under the addition operation + (chord and

tangent) forms an additive group, with O as the identity element. Given an elliptic point
P ∈ E(F2m) and an integer k, the operation kP , called point multiplication, is defined by
the addition of the point P to itself k − 1 times:

kP = P + P + . . .+ P︸ ︷︷ ︸
k−1 additions

.

Public key cryptography protocols, such as the Elliptic Curve Diffie-Hellman key agree-
ment [110] and the Elliptic Curve Digital Signature Algorithm [110], employ point mul-
tiplication as a fundamental operation; and their security is based on the difficulty of
solving the Elliptic Curve Discrete Logarithm Problem (ECDLP). This problem consists
in finding the discrete logarithm k given a point kP . Criteria for selecting suitable secure

31

curves are a complex subject and a matter of much discussion. We adopt the well-known
standard NIST curves as a conservative choice, but we refer the reader to [110] for further
details on how to generate efficient curves where instances of the ECDLP are computa-
tionally hard.

We restrict the discussion to non-supersingular curves because supersingular curves
are not suitable for elliptic curve cryptosystems based on the ECDLP problem [120].
However, supersingular curves are particularly of interest in applications of pairing-based
protocols on WSNs [10].

2.4 The platform

The MICAz Mote sensor node is equipped with an ATmega128 8-bit processor clocked
at 7.3728MHz. The program code is loaded from an 128KB EEPROM chip and runtime
memory is stored in a 4KB RAM chip [106]. The ATmega128 processor is a typical
RISC architecture with 32 registers, but six of them are special pointer registers. Since
at least one register is needed to store temporary results or data loaded from memory,
25 registers are generally available for arithmetic. The instruction set is also reduced,
as only 1-bit shift/rotate instructions are natively supported. Bitwise shifts by arbitrary
amounts can then be implemented with combinations of shift/rotate instructions and other
instructions. The processor pipeline has two stages and memory instructions always cause
pipeline stalls. Arithmetic instructions with register operands cost 1 cycle and memory
instructions or memory addressing cost 2 processing cycles [32]. Table 2.2 presents the
instructions provided by the platform which can be used for the implementation of binary
field arithmetic.

Instruction Description Use Cost

rsl, lsl Right/left 1-bit shift Multi-precision 1-bit shift 1 cycle
rol, ror Right/left 1-bit rotate Multi-precision 1-bit shift 1 cycle
swap Swap high and low nibbles Shift by 4 bits 1 cycle

bld, bst Bit load/store from/to flag Shift by 7 bits 1 cycle
eor Bitwise exclusive OR Binary field addition 1 cycle

ld, st Memory load/store Read operands/write results 2 cycles
adiw, sbiw Pointer arithmetic Memory addressing 2 cycles

Table 2.2: Relevant instructions for the implementation of binary field arithmetic.

32

2.5 Algorithms for finite field arithmetic

In this section we will represent the elements of F2m using a polynomial basis. Let f(z)
be an irreducible binary trinomial or pentanomial of degree m. The elements of F2m

are the binary polynomials of degree at most m − 1. A field element a(z) =
∑m−1

i=0 aiz
i

is associated with the binary vector a = (am−1, . . . , a1, a0) of length m. In a software
implementation in an 8-bit processor, the element a is stored as a vector of n = ⌈m/8⌉
bytes. The field operations in F2m can be implemented by common processor instructions,
such as logical shifts (≫,≪) and addition modulo 2 (XOR, ⊕).

2.5.1 Multiplication

The computation of kP is the most time-consuming operation on ECC and this operation
depends directly on the finite field arithmetic. In particular, a fast field multiplication is
critical for the performance of ECC.

Two different strategies are commonly considered for the implementation of multipli-
cation in F2m . The first one consists in applying the Karatsuba’s algorithm [121] to divide
the multiplication in sub-problems and solve each problem independently by the following
formula [59] (with a(z) = A1z

⌈m/2⌉ + A0 and b(z) = B1z
⌈m/2⌉ +B0):

c(z) = a(z) · b(z) = A1B1z
m + [(A1 + A0)(B1 +B0) + A1B1 + A0B0]z

⌈m/2⌉ + A0B0.

Naturally, Karatsuba multiplication imposes some overhead for the divide and conquer
steps. The second one consists in applying a direct algorithm like the López-Dahab (LD)
binary field multiplication (Algorithm 2.1) [27]. In this algorithm, the precomputation
window is usually chosen as t = 4 and the precomputation table T has size |T | = 16(n+1),
since each element T [i] requires at most n+1 bytes to store the result of u(z)b(z). Operand
a is scanned from left to right and processed in groups of 4 bits. In an 8-bit processor, the
algorithm is comprised by two phases, where the lower halves of bytes of a are processed
in the first phase and the higher halves are processed in the second phase. These phases
are separated by an intermediate shift which implements multiplication by zt.

Conventionally, the series of additions involved in the LD multiplication are imple-
mented through additions over subparts of a double-precision vector. In order to reduce
the number of memory accesses employed during these additions, we employ a rotating
register window. This window simulates the series of additions by accumulating consec-
utive writes into registers. After a final result is obtained in the lowest precision register,
this value is written into memory and this register is free to participate as the highest
precision register. Figure 2.1 shows a rotating register window with n + 1 registers. We
modify the LD multiplication algorithm by integrating a rotating register window. The

33

Algorithm 2.1 López-Dahab multiplication in F2m [27].
Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..2n− 1].

1: Compute T (u) = u(z)b(z) for all polynomials u(z) of degree lower than t.
2: c[0 . . . 2n− 1]← 0
3: for k ← 0 to n− 1 do
4: u← a[k]≫ t
5: for j ← 0 to n do
6: c[j + k]← c[j + k]⊕ T (u)[j]
7: end for
8: end for
9: c(z)← c(z)zt

10: for k ← 0 to n− 1 do
11: u← a[k] mod 2t

12: for j ← 0 to n do
13: c[j + k]← c[j + k]⊕ T (u)[j]
14: end for
15: end for
16: return c

result of this integration is referred as LD multiplication with registers and shown as Al-
gorithm 2.2. Figure 2.2 presents this modification graphically. These descriptions of the
algorithm assumes that n general-purpose registers are available for arithmetic. If this
is not the case, (e.g. multiplication in F2233 on this platform) the accumulation in the
register window must be divided in different blocks in a multistep fashion and each block
processed with a different rotating register window. A slight overhead is introduced be-
tween the processing of consecutive blocks because some registers must be written into
memory and freed before they can be used in a new rotating register window.

Figure 2.1: Rotating register window with n+ 1 registers.

An additional suggested optimization is the separation of the precomputation table T
in different blocks of 256 bytes, where each block is stored on a 256-byte aligned memory
address. This optimization accelerates memory addressing because offsets lower than 256
can be computed by a simple 1-cycle addition instruction, avoiding expensive pointer

34

Figure 2.2: López-Dahab multiplication with registers of two field elements represented
as n-byte vectors in an 8-bit processor.

Algorithm 2.2 Proposed optimization for multiplication in F2m using n+ 1 registers.
Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..2n− 1].
Note: vi denotes the vector of n+ 1 registers (ri−1, . . . , r0, rn, . . . , ri).

1: Compute T (u) = u(z)b(z) for all polynomials u(z) of degree lower than 4.
2: Let ui be the 4 most significant bits of a[i].
3: v0 ← T (u0), c[0]← r0
4: v1 ← v1 ⊕ T (u1), c[1]← r1
5: · · ·
6: vn−1 ← vn−1 ⊕ T (un−1), c[n− 1]← rn−1

7: c← ((rn−2, . . . , r0, rn) || (c[n− 1], . . . , c[0]))≪ 4
8: Let ui be the 4 least significant bits of a[i].
9: v0 ← T (u0), c[0]← c[0]⊕ r0

10: · · ·
11: vn−1 ← vn−1 ⊕ T (un−1), c[n− 1]← c[n− 1]⊕ rn−1

12: c[n . . . 2n− 1]← c[n . . . 2n− 1]⊕ (rn−2, . . . , r0, rn)
13: return c

arithmetic. Another optimization is to store the results of the first phase of the algorithm
already shifted, eliminating some redundant memory reads to reload the intermediate
result into registers for multi-precision shifting. A last optimization is the embedding
of modular reduction at the end of the multiplication algorithm. This trick allows the

35

reuse of values already loaded into registers to speed up modular reduction. The following
analysis does not take these suggested optimizations into account.

Analysis of multiplication algorithms

Observing the fact that the more expensive instructions in the target platform are related
to memory accesses, the behavior of different algorithms was analyzed to estimate their
performance. This analysis traces the cost of different algorithms in terms of memory
accesses (reads and writes) and arithmetic instructions (XOR).

Without considering partial multiplications, the Karatsuba algorithm in a binary field
executes approximately 11n memory reads, 7n memory writes and 4n XOR instructions.

For LD multiplication, analysis shows that building the precomputation table requires
n memory reads to obtain the values b[i] and |T | writes and 11n XOR instructions for
filling the table. Inside each inner loop, the algorithm executes 2(n + 1) memory reads,
n + 1 writes and n + 1 XOR instructions. In each outer loop, the algorithm executes
n memory accesses to read the values a[k] and n iterations of the inner loop, totalizing
n+2n(n+1) reads, n(n+1) writes and n(n+1) XOR instructions. The logical shift of c(z)
computed at the intermediate stage requires 2n memory reads and writes. Considering
the initialization of c, we have 3n+2(n+2n(n+1)) memory reads, |T |+2(2n)+2n(n+1)

writes and 11n+ 2n(n+ 1) XOR instructions.

For the proposed optimization (Algorithm 2.2), building the precomputation table
requires n memory reads to obtain the values b[i] and |T | writes and 11n XOR instructions
for filling the table. Line 3 of the algorithm executes n+ 1 memory reads and 1 write on
c[0]. Lines 4-6 execute n + 1 memory reads, 1 write on c[i] and n + 1 XOR instructions,
all this n− 1 times. The intermediate shift executes n reads and (2n) writes. Lines 9-11
execute n+1 memory reads, 1 read and write on c[i] and n+2 XOR instructions, all this
n times. The final operation costs n memory reads, writes and XOR instructions. The
algorithm thus requires a total of 3n+n(n+1)+n(n+2) reads, |T |+n+2n+2n writes
and 11n+ (n− 1)(n+ 1) + n(n+ 2) + n XOR instructions.

Table 2.3 presents the costs associated with memory operations for LD multiplication,
LD with registers multiplication and Karatsuba multiplication. Table 2.4 presents ap-
proximate costs of the algorithms in terms of executed memory instructions for the fields
F2163 and F2233 .

We can see from Table 2.3 that the number of memory accesses for LD with registers
is drastically reduced in comparison with the original algorithm, reducing the number of
reads by half and the number of writes by a quadratic factor. The comparison between
LD with registers and Karatsuba+LD with registers favors the first (lower number of
writes) on both finite fields. One problem with this analysis is that it assumes that the

36

Number of instructions in terms of vectors of n bytes

Method Reads Writes XOR

López-Dahab 4n2 + 9n |T |+ 2n2 + 6n 2n2 + 13n

LD with registers 2n2 + 6n |T |+ 5n 2n2 + 14n− 1

Karatsuba 11n+ 3M(⌈n/2⌉) 7n+ 3M(⌈n/2⌉) 4n+ 3M(⌈n/2⌉)

Table 2.3: Costs in number of executed instructions for the multiplication algorithms in
F2m . M(x) denotes the cost of a multiplication algorithm which multiplies two x-byte
vectors.

n = 21 n = 30

Method Reads Writes XOR Reads Writes XOR

López-Dahab 1953 1452 1155 3870 2476 2190

LD with registers 1071 457 1175 1980 646 2219

Karatsuba+LD 1980 1647 1239 3310 2518 1984

Karatsuba+LD with registers 1155 888 1269 1898 1134 2025

Table 2.4: Costs in number of executed instructions for the multiplication algorithms in
F2163 and F2233 . The Karatsuba algorithm in F2233 executes two instances of cost M(15)
and one instance of cost M(14) to better approximate the results.

processor has at least n general-purpose registers available for arithmetic. This is not true
in F2233 , because the algorithm requires 31 registers for a full rotating register window.
The decision between a multistep implementation of LD with registers and Karatsuba+LD
with registers will depend on the actual implementation of the algorithms.

2.5.2 Modular reduction

The NIST irreducible polynomial for the finite field F2163 , f(z) = z163 + z7 + z6 + z3 + 1,
allows a fast modular reduction algorithm. Algorithm 2.3 [116] presents an adaptation of
this algorithm for 8-bit processors. In this algorithm, reducing a digit c[i] of the upper
half of the vector c requires six memory accesses to read and write c[i] on lines 3-5.
Four of them are redundant because ideally we only need to read and write c[i] once.
We eliminate these redundant accesses by employing a rotating register window of three
registers which accumulate writes into registers before a final result can be written into
memory. This optimization is given in Algorithm 2.4 along with the substitution of some
bitwise shifts which are expensive in this platform for cheaper ones. Since the processor
only supports 1-bit and 4-bit shifts natively, we further replace the various expensive
shifts in the accumulate function R by table lookups on 256-byte tables. These tables are
stored on 256-byte aligned memory addresses to speed up memory addressing. The new
version of the accumulate function is depicted in Algorithm 2.5.

37

Algorithm 2.3 Fast modular reduction by f(z) = z163 + z7 + z6 + z3 + 1.
Input: c(z) = c[0..40].
Output: c(z) mod f(z) = c[0..20].

1: for i← 40 downto 21 do
2: t← c[i]
3: c[i− 19]← c[i− 19]⊕ (t≫ 4)⊕ (t≫ 5)
4: c[i− 20]← c[i− 20]⊕ (t≪ 4)⊕ (t≪ 3)⊕ t⊕ (t≫ 3)
5: c[i− 21]← c[i− 21]⊕ (t≪ 5)
6: end for
7: t← c[20]≫ 3
8: c[0]← c[0]⊕ (t≪ 7)⊕ (t≪ 6)⊕ (t≪ 3)⊕ t
9: c[1]← c[1]⊕ (t≫ 1)⊕ (t≫ 2)

10: c[20]← c[20] ∧ 0x07
11: return c

Algorithm 2.4 Fast modular reduction in F2163 with rotating register window.
Input: c(z) = c[0..40].
Output: c(z) mod f(z) = c[0..20].
Note: The accumulate function R(r0, r1, r2, t) executes:

s0 ← t≪ 4
r0 ← r0 ⊕ ((t⊕ (t≫ 1))≫ 4)
r1 ← r1 ⊕ s0 ⊕ (t≪ 3)⊕ t⊕ (t≫ 3)
r2 ← s0 ≪ 1

1: rb ← 0, rc ← 0
2: for i← 40 downto 25 by 3 do
3: R(rb, rc, ra, c[i]), c[i− 19]← c[i− 19]⊕ rb
4: R(rc, ra, rb, c[i− 1]), c[i− 20]← c[i− 20]⊕ rc
5: R(ra, rb, rc, c[i− 2]), c[i− 21]← c[i− 21]⊕ ra
6: end for
7: R(rb, rc, ra, c[22]), c[3]← c[3]⊕ rb
8: R(rc, ra, rb, c[21]), c[2]← c[2]⊕ rc
9: ra ← c[1]⊕ ra

10: rb ← c[0]⊕ rb
11: t← c[20]
12: c[20]← t ∧ 0x07
13: t← t≫ 3
14: c[0]← rb ⊕ (t≪ 7)⊕ (t≪ 6)⊕ (t≪ 3)⊕ t
15: c[1]← ra ⊕ (t≫ 1)⊕ (t≫ 2)
16: return c

38

Algorithm 2.5 Optimized version of the accumulate function R.
Input: r0, r1, r2, t.
Output: r0, r1, r2.
1: r0 ← r0 ⊕ T0[t]
2: r1 ← r1 ⊕ T1[t]
3: r2 ← t≪ 5

For the NIST irreducible polynomial in F2233 on 8-bit processors, we present Algorithm
2.6, a direct adaptation of the standard algorithm. This algorithm only executes 1-bit or
7-bit shifts. These two shifts can be translated efficiently to the processor instruction set,
because 1-bit shifts are supported natively and 7-bit shifts can be emulated efficiently.
Hence lookup tables are not needed and the only optimization made during implemen-
tation of Algorithm 2.6 was complete unrolling of the main loop and straightforward
elimination of consecutive redundant memory accesses.

Algorithm 2.6 Fast modular reduction by f(z) = z233 + z74 + 1.
Input: c(z) = c[0..58].
Output: c(z) mod f(z) = c[0..29].
1: for i← 58 downto 32 by 2 do
2: t0 ← c[i]
3: t1 ← c[i− 1]
4: c[i− 19]← c[i− 19]⊕ (t0 ≫ 7)
5: c[i− 20]← c[i− 20]⊕ (t0 ≪ 1)⊕ (t1 ≫ 7)
6: c[i− 21]← c[i− 21]⊕ (t1 ≪ 1)
7: c[i− 29]← c[i− 29]⊕ (t0 ≫ 1)
8: c[i− 30]← c[i− 30]⊕ (t0 ≪ 7)⊕ (t1 ≫ 1)
9: c[i− 31]← c[i− 31]⊕ (t1 ≪ 7)

10: end for
11: t0 ← c[30]
12: c[0]← c[0]⊕ (t0 ≪ 7)
13: c[1]← c[1]⊕ (t0 ≫ 1)
14: c[10]← c[10]⊕ (t0 ≪ 1)
15: c[11]← c[11]⊕ (t0 ≫ 7)
16: t0 ← c[29]≫ 1
17: c[0]← c[0]⊕ t0
18: c[9]← c[9]⊕ (t0 ≪ 2)
19: c[10]← c[10]⊕ (t0 ≫ 6)
20: c[29]← c[29] ∧ 0x01
21: return c

39

Analysis of modular reduction algorithms

As pointed by Seo et al. [116], Algorithm 2.3 executes many redundant memory accesses:
4 memory reads and 3 writes during each loop iteration and additional 4 reads and 3
writes on the final step, which sum up to 88 reads and 66 writes. The proposed opti-
mization reduces the number of memory operations to 43 reads and 23 writes. Despite
Algorithm 2.5 being specialized for the chosen polynomial, the register window technique
can be applied to any irreducible polynomial with the non-null coefficients located in the
first word. The implementation of Algorithm 2.6 also reduces the number of memory
accesses, since a standard implementation executes 122 reads and 92 writes while our
implementation executes 92 memory reads and 62 writes.

2.5.3 Squaring

The square of a finite field element a(z) ∈ F2m is given by a(z)2 =
∑m−1

i=0 aiz
2i =

am−1z
2m−2 + · · ·+ a2z

4 + a1z
2 + a0. The binary representation of a(z)2 can be computed

by inserting a “0” bit between each pair of successive bits on the binary representation of
a(z) and accelerated by introducing a 16-byte lookup table.

If modular reduction is computed in a separate step, reduntant memory operations
are required to store the squaring result and reload this result for reduction. This can be
improved by embedding the modular reduction step directly into the squaring algorithm.
This way, the lower half of the digit vector a is expanded in the usual fashion and the
upper half digits are expanded and immediately reduced. If modular reduction of a single
byte requires expensive shifts, additional lookup tables can be used to store the expanded
bytes already reduced. This is illustrated in Algorithm 2.7 which computes squaring in
F2163 using the same small rotating register window as Algorithm 2.5 and three additional
16-byte lookup tables T0, T1 and T2. For squaring in F2233 , we also combine byte expansion
of the digit vector’s lower half with Algorithm 2.6 for fast reduction.

2.5.4 Inversion

For inversion in F2m we implemented the Extended Euclidean Algorithm for polynomi-
als [59]. Since this algorithm requires flexible left shifts by arbitrary amounts, we im-
plemented six dedicate shifting functions to shift a binary field element by every amount
possible for an 8-bit processor. The core of a multi-precision left shift algorithm is the
sequence of instructions which receives as input the amount to shift i, a register r and a
carry register rc storing the bits shifted out in the last iteration; and produce (r ≪ i)⊕rc
as output and r ≫ (8− i) as new carry. Table 2.5 lists the required instructions and costs
in cycles for shifting a single byte in each of the implemented multi-precision shifts by

40

i bits. Each instruction in the table cost 1 cycle, thus the cost to compute the core of a
multi-precision left shift by i bits is just the number of rows in the i-th row of the table.

Algorithm 2.7 Squaring in F2163 .
Input: a(z) = a[0..20].
Output: c(z) = a(z)2 mod f(z).
Note: The accumulate function R(r0, r1, r2, t) executes:

r0 ← r0 ⊕ T0[t], r1 ← r1 ⊕ T1[t], r2 ← r2 ⊕ T2[t]

1: For each 4-bit combination u, T (u) = (0, u3, 0, u2, 0, u1, 0, u0).
2: for i← 0 to 9 do
3: c[2i]← T (a[i] ∧ 0x0F)
4: c[2i+ 1]← T (a[i]≫ 4)
5: end for
6: c[20]← T (a[10] ∧ 0x0F)
7: rb ← 0, rc ← 0, j ← 20
8: t0 ← a[20] ∧ 0x0F
9: R(rb, rc, ra, t0), c[21]← rb

10: for i← 19 downto 13 by 3 do
11: ao ← a[i], t0 ← a0 ≫ 4, t1 ← a0 ∧ 0x0F
12: R(rc, ra, rb, t0), c[j]← c[j]⊕ rc
13: R(ra, rb, rc, t1), c[j − 1]← c[j − 1]⊕ ra
14: a0 ← a[i− 1], t0 ← a0 ≫ 4, t1 = a0 ∧ 0x0F
15: R(rb, rc, ra, t0), c[j − 2]← c[j − 2]⊕ rb
16: R(rc, ra, rb, t1), c[j − 3]← c[j − 3]⊕ rc
17: a0 = a[i− 2], t0 = a0 ≫ 4, t1 = a0 ∧ 0x0F
18: R(ra, rb, rc, t0), c[j − 4]← c[j − 4]⊕ ra
19: R(rb, rc, ra, t1), c[j − 5]← c[j − 5]⊕ rb
20: j ← j − 6
21: end for
22: t0 = a[10]≫ 4
23: R(rc, ra, rb, t0), c[2]← c[2]⊕ rc
24: ra ← c[1]⊕ ra, rb ← c[0]⊕ rb
25: t← c[21]
26: ra ← ra ⊕ t⊕ (t≪ 3)⊕ (t≪ 4)⊕ (t≫ 3)
27: rb ← rb ⊕ (t≪ 5)
28: t← c[20]
29: c[20]← t ∧ 0x07
30: t← t≫ 3
31: c[0]← rb ⊕ (t≪ 7)⊕ (t≪ 6)⊕ (t≪ 3)⊕ t
32: c[1]← ra ⊕ (t≫ 1)⊕ (t≫ 2)
33: return c

41

i Intructions

1 rol r

2

clr rt

lsl r

rol rt

lsl r

rol rt

eor r, rc

mov rc, rt

i Intructions

3

clr rt

lsl r

rol rt

lsl r

rol rt

lsl r

rol rt

eor r, rc

mov rc, rt

i Intructions

4

swap r

mov rt, r

andi r, 0xF0

andi rt, 0x0F

eor r, rc

mov rc, rt

5

swap r

mov rt, r

andi r, 0xF0

andi rt, 0x0F

lsl r

rol rt

eor r, rc

mov rc, rt

i Intructions

6

bst rt, 0

bld r, 6

bst rt, 1

bld r, 7

lsr rt

lsr rt

eor r, rc

mov rc, rt

7

bst rt, 0

bld r, 7

lsr rt

eor r, rc

mov rc, rt

Table 2.5: Processor instructions used to efficiently implement multi-precision left shifts
by i bits. The input register is r, the carry register is rc and a temporary register is rt.
When i = 1, rc is represented by the carry processor flag.

2.6 Algorithms for elliptic curve arithmetic

We have selected fast algorithms for elliptic curve arithmetic in three situations: multi-
plying a random point P by a scalar k, multiplying the generator G by a scalar k and
simultaneously multiplying two points P and Q by scalars k and l to obtain kP + lQ.
Our implementation uses mixed addition with projective coordinates [60], given that the
ratio of inversion to multiplication is 16.

For multiplying a random point by a scalar, we choose Solinas’ τ -adic non-adjacent

form (TNAF) representation [63] with w = 4 for Koblitz curves (4-TNAF method with
4 precomputation points) and the method due to López and Dahab [122] for random
binary curves. Solinas’ algorithm explores the optimizations provided by Koblitz curves
and accelerates the computation of kP by substituting point doublings for applications of
the efficiently computable endomorphism based on the Frobenius map τ(x, y) = (x2, y2).
The method due to López and Dahab does not use precomputation, its execution time
is constant and each iteration of the algorithm executes the same number of operations,
independently of the bit pattern in k [59].

For multiplying the generator, we employ the same 4-TNAF method for Koblitz curves;
and for generic curves, we employ the Comb method [64] with 16 precomputed points.
Precomputed tables for the generator are stored in ROM memory to reduce RAM con-
sumption. Larger precomputed tables can be used if program size is not an issue.

For simultaneous multiplication, we implement the interleaving method with 4-TNAFs

42

for Koblitz curves and the interleaving of 4-NAFs with integers represented in non-adjacent

form (NAF) for generic curves [65]. The same table built for multiplying the generator
is used during simultaneous multiplication in Koblitz curves when point P or Q is the
generator G. An additional small table of 4 points is precomputed for the generator and
stored in ROM to provide the same situation with generic curves.

2.7 Implementation results

The compiler and assembler used is the GCC 4.1.2 suite for ATmega128 with optimization
level -O2. The timings were measured with the software AVR Studio 4.14 [123]. This
tool is a cycle-accurate simulator frequently used to prototype software for execution
on the target platform. We have written a specialized library containing the software
implementations.

Finite field arithmetic

The algorithms for squaring, multiplication, modular reduction and inversion in the finite
field were implemented in the C language and Assembly. Table 2.6 presents the costs
measured in cycles of each implemented operation in F2163 and F2233 . Since the platform
does not have cache memory or out-of-order execution, the finite field operations always
cost the same number of cycles and the timings were taken exactly once, except for
inversion. The timing for inversion was taken as the average of 50 timings measured on
consecutive executions of the algorithm.

m = 163 m = 233

Algorithm C language Assembly C language Assembly

Squaring 629 430 908 463

Modular Squaring 1154 570 1340 956

LD Mult. with registers 13838 4508 – 8314

LD Mult. (new variant) 9738 – 18028 –

Karatsuba+LD with registers 12246 6968 25850 9261

Modular reduction 606 430 911 620

Inversion 243790 81365 473618 142986

Table 2.6: Timings in cycles for arithmetic algorithms in F2m .

From Table 2.6, m = 163, we can observe that in the C language implementation,
Karatsuba+LD with registers multiplication is more efficient than the direct application
of LD with registers multiplication. This contradicts the preliminary analysis based on
the number of memory accesses executed by each algorithm. This can be explained by the

43

fact that the LD with registers multiplication uses 21 of the 32 general-purpose registers
to store intermediate results during multiplication. Several additional registers are also
needed to store memory addresses and temporary variables for arithmetic operations. The
inefficiency found is thus originated from the difficulty of the C compiler to maintain all
intermediate values on registers. To confirm this limitation, a new variant of LD with
registers multiplication which reduces the number of temporary variables needed was also
implemented. This variant processes 32 bits of the operand in each interaction compared
to the original version of LD multiplication which processes 4 bits in each interaction.
The new variant reduces the number of memory accesses while keeping a smaller number
of temporary variables and thus exhibits the expected performance. For the squaring
algorithm, we can see that embedding the modular reduction step reduces the cost of
modular squaring significantly compared with the sequential execution of squaring plus
modular reduction. Table 2.6, m = 233, shows that the Karatsuba algorithm in F2233

indeed does not improve performance over the multistep implementation of LD with
registers multiplication, even if the processor does not have enough registers to store the
full rotating register window. The Assembly implementations demonstrate the compiler
inefficiency in generating optimized code and allocating resources for the target platform,
showing considerably faster timings.

Elliptic curve arithmetic

Point multiplication was implemented on elliptic curves standardized by NIST. Table
2.7 presents the execution time of the multiplication of a random point P by a random
integer k of 163 or 233 bits, with the underlying finite field arithmetic implemented in
C or Assembly. In each of the programming languages, the fastest field multiplication
algorithm is used. The results were computed by the arithmetic mean of the timings
measured on 50 consecutive executions of the algorithm.

C language Assembly
Curve kG kP kP + lQ kG kP kP + lQ

NIST-K163 (Koblitz) 0.56 0.67 1.24 0.29 0.32 0.60
NIST-B163 (Generic) 0.77 1.55 2.21 0.37 0.74 1.04

NIST-K233 (Koblitz) 1.26 1.48 2.81 0.66 0.73 1.35
NIST-B233 (Generic) 1.94 3.90 5.35 0.94 1.89 2.52

Table 2.7: Timings in seconds for point multiplication.

Table 2.8 compares the performance of the proposed implementation with
TinyECCK [116] and the work of Kargl et al. [107], the previously fastest binary curves

44

implementation in C and Assembly published for this platform. For the C implementa-
tion, we achieve faster timings on all finite field arithmetic operations with improvements
over 50%. For the Assembly implementation, we obtain speed improvements on field
squaring and multiplication and exactly the same timing for modular reduction, but the
polynomial used by Kargl et al.[107] is a trinomial carefully selected to support a faster
modular reduction algorithm. The computation of kP on Koblitz curves implemented in
C language was 41% faster than TinyECCK. By choosing the López-Dahab point mul-
tiplication algorithm with generic curves implemented in Assembly, we achieve a timing
11% faster than [107] while satisfying the timing-resistant property. If we relax this con-
dition, we obtain a point multiplication 61% faster in Assembly by using Solinas’ method.
Comparing our Assembly implementation with TinyECCK and [107] with the same curve
parameters, we achieve a 72% speedup and an 11% speedup for point multiplication,
respectively.

Proposed TinyECCK Proposed Kargl et al. [107]

Algorithm C language C language Assembly Assembly

Modular Squaring 1154 c 2729 c 570 c 663

Multiplication 9738 c 19670 c 4508 c 5057 c

Modular reduction 606 c 1904 c 430 c 433 c

Inversion 243790 c 539132 c 81365 c –

kP on Koblitz 0.67 s 1.14 s 0.32 s –

kP on Generic 1.55 s – 0.74 s 0.83 s

Table 2.8: Comparison between different implementations. The timings are presented in
cycles (c) or seconds (s) on a 7.2838MHz device.

The fastest time for point multiplication previously published for this platform at the
160-bit security level was 0.745 second [108]. Compared to this implementation, which
uses prime fields, the proposed optimizations result in a point multiplication 57% faster.

The implemented optimizations allow performance gains but provoke a collateral effect
on memory consumption. Table 2.9 presents memory requirements for code size and
RAM memory for the different implementations at the 160-bit security level. We can
also observe that Assembly implementations are responsible for a significant expansion in
program code size.

Cryptographic protocols

We now illustrate the performance obtained by our efficient implementation with some
executions of cryptographic protocols for key agreement and digital signatures. Key agree-
ment is employed in sensor networks for establishing symmetric keys which can be used
for encryption or authentication. Digital signatures are employed for communication

45

ROM memory Static RAM Stack RAM

Proposed (Koblitz) – C 22092 1028 1207

Proposed (Koblitz) – C+Assembly 25802 1732 1207

Proposed (Generic) – C 12848 881 682

Proposed (Generic) – C+Assembly 16218 1585 682

TinyECCK (C-only) 5592 – 618

Kargl et a. (C+Assembly) [107] 11264 – –

Table 2.9: Cost in bytes of memory for implementations of scalar multiplication of a
random point at the 160-bit security level.

between the sensor nodes and the base stations where data must be made available to
multiple applications and users [124]. For key agreement between nodes, we implemented
the Elliptic Curve Diffie & Hellman (ECDH) protocol [110], and for digital signatures,
we implemented the Elliptic Curve Digital Signature Algorithm (ECDSA) [110]. We as-
sume that public and private keys are generated and loaded into the nodes before the
deployment of the sensor network. Hence timings for key generation and public key au-
thentication are not presented or considered. Table 2.10 presents the timings for the
ECDH protocol and Table 2.11 presents the timings for the ECDSA protocol, using the
choice of algorithms discussed in Section 2.6. Results on these tables pose an interesting
decision between deploying generic binary curves on the lower security level or deploying
special curves on the higher security level.

C language Assembly
Curve Time ROM RAM Time ROM RAM

NIST-K163 0.74 28.3 2.2 0.39 32.0 2.8
NIST-B163 1.62 24.0 1.1 0.81 27.8 1.9

NIST-K233 1.55 31.0 2.9 0.80 38.6 3.7
NIST-B233 3.97 26.9 1.5 1.96 34.6 2.2

Table 2.10: Timings for the ECDH protocol execution. Timings are given in seconds and
ROM memory or Static+Stack RAM consumption are given in KB.

2.8 Conclusions

Despite several years of intense research, security and cryptography on WSNs still face
several open problems. In this work, we presented efficient implementations of binary
field algorithms such as squaring, multiplication, modular reduction and inversion. These
implementations take into account the characteristics of the target platform (the MICAz
Mote) to develop optimizations, specifically: (i) the cost of memory addressing; (ii) the

46

C language Assembly
Curve Time (S + V) ROM RAM Time (S + V) ROM RAM

NIST-K163 0.67 + 1.23 31.8 2.9 0.36 + 0.63 35.3 3.7
NIST-B163 0.87 + 2.17 29.6 2.1 0.45 + 1.05 33.2 2.8

NIST-K233 1.46 + 2.76 34.6 3.1 0.78 + 1.39 42.2 3.8
NIST-B233 2.09 + 5.25 32.8 2.3 1.04 + 2.55 40.4 3.1

Table 2.11: Timings for the ECDSA protocol execution. Timings for signature (S) and
verification (V) are given in seconds and ROM memory or Static+Stack RAM consump-
tion are given in KB.

cost of memory instructions; (iii) the limited flexibility of bitwise shift instructions. We
obtain the fastest binary field arithmetic implementations in C and Assembly published
for the target platform. Significant performance benefits where achieved by the Assembly
implementation, resulting from fine-grained resource allocation and instruction selection.
These optimizations produced a point multiplication at the 160-bit security level under 1

3

of a second, an improvement of 72% compared to the best implementation of a Koblitz
curve previously published and an improvement of 61% compared to the best implemen-
tation of binary curves. When compared to the best implementation of prime curves, we
obtain a performance gain of 57%. We also presented the first timings of elliptic curves at
the higher 233-bit security level. For both security levels, we illustrate the performance
obtained with executions of key agreement and digital signature protocols. In particular,
a key agreement can be computed in under 0.40 second at the 163-bit security level and
under 0.80 second at the 233-bit security level. A digital signature can be computed and
verified in 1 second at the 163-bit security level and in 2.17 seconds at the 233-bit security
level. We hope that our results can increase the efficiency and viability of elliptic curve
cryptography on wireless sensor networks.

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions. Diego
F. Aranha is supported by FAPESP, grant no. 2007/06950-0. Julio López and Ricardo
Dahab are partially supported by CNPq and FAPESP research grants.

47

Chapter 3

Efficient Software Implementation of

Binary Field Arithmetic Using Vector

Instruction Sets

Diego F. Aranha, Julio López and Darrel Hankerson

Abstract

In this paper we describe an efficient software implementation of characteristic 2 fields
making extensive use of vector instruction sets commonly found in desktop processors.
Field elements are represented in a split form so performance-critical field operations can
be formulated in terms of simple operations over 4-bit sets. In particular, we detail tech-
niques for implementing field multiplication, squaring, square root extraction and present
a constant-memory lookup-based multiplication strategy. Our representation makes ex-
tensive use of the parallel table lookup (PTLU) instruction recently introduced in popular
desktop platforms and follows the trend of accelerating implementations of cryptography
through PTLU-style instructions. We present timings for several binary fields commonly
employed for curve-based cryptography and illustrate the presented techniques with exe-
cutions of the ECDH and ECDSA protocols over binary curves at the 128-bit and 256-bit
security levels standardized by NIST. Our implementation results are compared with
publicly available benchmarking data.

Publication

This work was originally published in the Proceedings of the 1st International Conference
on Cryptology and Information Security (LATINCRYPT 2010) available at http://www.
springer.com/computer/security+and+cryptology/book/978-3-642-14711-1.
c©2010 Springer-Verlag

49

3.1 Introduction

Arithmetic in binary fields has significant cryptographic interest and finds several appli-
cations such as providing the underlying layer for arithmetic in elliptic curves – among
them the highly efficient Koblitz family of anomalous binary curves [125] – and building
blocks for the construction of symmetric ciphers [126], bilinear maps [1] and post-quantum
cryptographic schemes [127, 128]. At the same time, modern processors are increasingly
receiving new parallelism resources in the form of advanced vector processing units. Em-
ploying these resources in an efficient way is crucial to improve the performance of binary
field arithmetic and consequently the performance of several cryptographic primitives.

As the main contribution, this work presents a high-speed software implementation of
binary field arithmetic particularly appropriate for vector processors. Field arithmetic is
expressed in terms of operations easily translated to contemporary vector instruction sets
with a clear emphasis in arithmetic of 4-bit granularity to make proper use of the recently
introduced powerful parallel table lookup (PTLU) instructions [129]. The presented tech-
niques are compatible with the most efficient algorithms known for binary field arithmetic
using a polynomial basis [27, 130] and with several of the implementation optimizations
proposed in the literature [102]. These algorithms and optimizations can thus be seen
in a new light under the framework we develop. Using the new PTLU instructions, we
derive a new implementation strategy for binary field multiplication entirely based on
table lookups. This strategy does not precompute tables and consequently consumes less
memory than standard approaches: a single table of constants must be kept so memory
consumption apart from space for temporary results is constant. The efficiency of our
techniques and corresponding implementations is illustrated with performance figures for
arithmetic in fields ranging from F2113 to F21223 defined with square root friendly polyno-
mials or NIST standard polynomials. Timings are also provided for key agreement and
signature protocols at the two security levels adopted as standard for secure elliptic curve
cryptography by the Brazilian National Public Key Infrastructure. We also present tim-
ings for curves supported by the eBACS [90] benchmarking project. The target platforms
are several versions of the Intel Core microarchitecture.

The results of this work can improve the performance of cryptographic primitives
employing binary field arithmetic in vector processors. The introduced techniques may
also be important for exploring trade-offs occurring in the design of hardware arithmetic
units or to optimize software implementations of other small-characteristic fields such
as the ternary fields used in pairing-based cryptography [1]. Furthermore, our results
follow the recent trend of optimizing implementations of cryptography through PTLU
instructions [129, 131] and pose an interesting question about which operations should be
supported by vector arithmetic units from a cost-benefit point of view.

50

This paper is organized as follows. Section 3.2 presents target platform characteristics.
Section 3.3 presents our formulation and the techniques employed for efficient binary field
arithmetic. Section 3.4 discusses experimental results for field and elliptic curve arithmetic
and comparison with related work. The final section concludes the paper.

3.2 Platform Model

We assume that the target platform is equipped with a set of vector instructions, also
called SIMD (Single Instruction, Multiple Data) because they operate in several data
objects simultaneously. Currently, the most popular SIMD instruction sets are the Intel
Streaming SIMD Extensions [50] and the AltiVec extensions introduced by Apple and IBM
in the Power architecture specification [132]. Present technology provides instructions for
orthogonal manipulation of 8, 16, 32 or 64-bit objects stored inside 128-bit architectural
registers, but recently announced improvements in the form of Intel AVX and AMD
SSE5 [133] extensions will support 256-bit registers in the future along with new operations
like a native binary field multiplier [87].

To abstract the specific details of the underlying platform, vector instructions will be
represented as mnemonics denoting a subset of operations supported in most instruction
sets. Table 3.1 presents the mnemonics and the corresponding instructions in the SSE and
AltiVec families, and thus shows the generality of our platform model. Experimental re-
sults will be provided only for SSSE3-capable Core 2/i7 platforms, however. In Table 2.2,
memory access operations assume that memory addresses are always aligned in 16-byte
boundaries so the faster load/store instructions can be used. Mnemonics for memory
operations are reserved for loading/storing vector registers from/to word arrays. Bitwise
shift instructions do not propagate bits between contiguous 32/64-bit data objects, re-
quiring additional shifts and additions to be used as 128-bit bitwise shifts. Bytewise shift
instructions (i.e. the shift amount is a multiple of 8) work across an entire vector register.
We explicitly differentiate between bitwise and bytewise shifts because bytewise shifts
may have smaller latencies in some vector instruction sets. Note that conventional shift
mnemonics (≪,≫) are reserved for bitwise shifts of 64-bit words. Interleaving instruc-
tions alternately take bytes from the lower or higher parts of two registers to produce the
output register. Two powerful instructions are discussed in more detail:

Memory alignment instructions extract a 128-bit section from the concatenation of two
128-bit registers, working as a fast shift with propagation of shifted out bytes be-
tween two vector registers.

Byte shuffling instructions take as inputs registers of bytes ra = (a0, a1, . . . , a15) and
rb = (b0, b1, . . . , b15) and produce as result a permuted vector represented by the

51

16-byte register rc = (ab0 mod 16, ab1 mod 16, . . . , ab15 mod 16). An often-missed use of
these instructions is to perform 16 simultaneous lookups in a 16-byte lookup table,
working as a legitimate PTLU instruction. This can be easily done by storing the
lookup table in ra and the lookup indexes in rb and allows one to efficiently evaluate
any function with 4-bit input and 8-bit output in parallel.

Table 3.1: Relevant vector instructions for the implementation of binary field arithmetic.
Mnemonic Description SSE AltiVec
load,store Memory load/store MOVDQA LVX

≪∤8,≫∤8 32/64-bit bitwise shifts PSLLQ,PSRLQ VSLW,VSRW
≪8,≫8 128-bit bytewise shift PSLLDQ,PSRLDQ VPERM

⊕,∧,∨ Bitwise XOR,AND,OR PXOR,PAND,POR VAND,VOR,VXOR
interlo,interhi Byte interleaving PUNPCKLBW/HBW VMRGLB,VMRGHB

⊳ Memory alignment PALIGNR LVSL+VPERM,LVSR+VPERM
shuffle,lookup Byte shuffling PSHUFB VPERM

There is a visible recent effort from processor manufacturers to increase the perfor-
mance and flexibility of shuffle instructions. Intel introduced a Super Shuffle Engine in
the Core 2 45nm microarchitecture to reduce the latency of the PSHUFB instruction from
3 cycles to 1 cycle and doubled the throughput of this instruction in the Core i7 microar-
chitecture. AMD plans to introduce a new permutation instruction capable of operating
at bit level with opcode PPERM in the upcoming SSE5 instruction set.

3.3 Binary Field Representation and Arithmetic

In this section we will represent the elements of the binary field F2m using a polynomial
basis. Let f(z) be an irreducible binary polynomial of degree m. The elements of F2m

are the binary polynomials of degree at most m − 1. A field element a(z) =
∑m−1

i=0 aiz
i

is associated with the binary vector a = (am−1, . . . , a1, a0) of length m. In a software
implementation, these bit coefficients are typically packed and stored in a compact array
(a[0], . . . , a[n − 1]) of n W -bit words, where W is the word size of the processor. For
simplicity, it is assumed that n is even. We will instead use a split representation where
a polynomial a ∈ F2m is divided into two polynomials:

aL =
∑

0≤i<m,
0≤i mod 8≤3

aiz
i, aH =

∑

0≤i<m,
4≤i mod 8≤7

aiz
i−4,

where aL stores the low-order 4-bits of the contiguous bytes storing a in memory, and
aH stores the high-order 4-bits of the contiguous bytes storing a in memory. Using this

52

representation, a(z) can be simply written as:

a(z) = aH(z)z
4 + aL(z).

This representation allows performance-critical field operations to be formulated in terms
of operations in groups of 4 bits (nibbles), taking advantage of the 4-bit granularity
PTLU instructions. To minimize memory consumption, the algorithms will always receive
the operands in the compact representation, convert them to the split representation
using simple bit masks and return as result a field element stored in the compact form.
In the following sections, algorithms for efficient squaring, square root extraction and
multiplication using the split representation will be discussed.

3.3.1 Squaring

Since squaring in F2m is a linear map, the square of a field element a(z) represented in
split form is:

a(z)2 = (aH(z)z
4 + aL(z))

2 = aH(z)
2z8 + aL(z)

2.

Algorithmically, this means we can compute the a(z)2 by adding the squares of aL and
aH with an 8-bit offset. Squaring aL and aH in turn can be computed by the conventional
method of inserting a zero bit between each pair of consecutive bits on their binary
representations through a 16-byte table lookup [59]. Since these two polynomials have
coefficients stored in 4-bit sets, the table lookups can be executed simultaneously using
PTLU instructions. The proposed optimization is shown in Algorithm 3.1. The algorithm
receives a field element a stored in a compact vector of n 64-bit words (or n

2
128-bit

values) and at each iteration of the algorithm, a 128-bit value a[2i] is loaded from memory
and converted to the split representation by a bit mask. Each group of nibbles is then
expanded from 4 bits to 8 bits by a parallel table lookup. The final 8-bit offset addition is
implemented by interleaving instructions which pick alternately the lower or higher bytes
of aL or aH to form two consecutive 128-bit values (t[2i], t[2i+1]) produced as the result.
The polynomial stored into t can be reduced modulo f(z) to produce the final result c(z).

3.3.2 Square Root

Square root extraction is an important operation for fast implementations of point halv-
ing [62] and the nT pairing [1]. Square root is the inverse of squaring and consequently it
is also a linear map. Using the split representation, we have:

√
a(z) =

√
aH(z)z4 + aL(z) =

√
aH(z) · z2 +

√
aL(z).

53

Algorithm 3.1 Proposed optimization for the implementation of squaring in F2m .
Input: a(z) = a[0..n− 1].
Output: c(z) = c[0..n−1] = a(z)2 mod f(z).

1: ⋄ Store in table the squares u(z)2 of all 4-bit polynomials u(z).
2: table← (0x5554515045444140,0x1514111005040100)
3: mask ← (0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F)
4: for i← 0 to n

2 − 1 do
5: a0 ←load(a[2i])
6: ⋄ Convert to split representation.
7: aL ← a0 ∧mask
8: aH ← a0 ≫∤8 4, aH ← aH ∧mask
9: ⋄ Perform parallel table lookups.

10: aL ←lookup(table, aL), aH ←lookup(table, aH)
11: ⋄ Simulate addition with 8-bit offset.
12: t[2i]←interlo(aL, aH)
13: t[2i+ 1]←interhi(aL, aH)
14: end for
15: return c = t mod f(z)

Given an element a(z) ∈ F2m , the field element c(z) such that c(z)2 = a(z) mod f(z) can
be computed by the expression c(z) = aeven(z)+

√
z ·aodd(z) mod f(z), where aeven(z) rep-

resents the concatenation of even coefficients of a(z), aodd(z) represents the concatenation
of odd coefficients of a(z) and

√
z is a constant depending on the irreducible polynomial

f(z) [62]. When f is chosen as a square root friendly polynomial [134],
√
z has a sparse

format and multiplication by this constant can be implemented with cheap shifted addi-
tions and no further reduction. For several of the NIST-standardized polynomials (e.g.,
F2283 and F2571), however, this is not the case and multiplication by

√
z can be computed

by a half-precision multiplication. A common optimization technique to treat this case is
to precompute a multiplication table for

√
z.

Considering the above, the split representation induces a square root algorithm where√
aL(z) and

√
aH(z) are computed separately and added with a 2-bit offset:

√
a(z) =

√
aH(z)z

2 +
√
aL(z)

=
√
z · (aLodd

(z) + aHodd
(z)z2) + aLeven

(z) + aHeven
(z)z2.

Algorithm 3.2 presents our implementation of this method with vector instructions. The
algorithm processes 128 bits of a in each iteration and progressively separates the coeffi-
cients of a[2i] into even or odd coefficients. First, a permutation mask is used to divide
a[2i] in bytes of odd index and bytes of even index. This trick makes the final step easier.
The bytes with even indexes are stored in the lower 64-bit part of a0 and the bytes with
odd indexes are stored in the higher 64-bit part of a0. The high and low nibbles of a0

54

are then split into aL and aH and additional lookup tables are applied to further separate
the bits of aL and aH into (aLodd

(z), aLeven
(z), aHodd

(z)z2, aHeven
(z)z2). Note that the 2-bit

offset (or z2 factor) is embedded in the sqrtH lookup table. At the end of the 128-bit
section, a0 stores the interleaving of coefficients from aL and aH packed into 4-bit sets.
The remaining instructions in the 128-bit section separate the even and odd coefficients
into u and v, which can be reordered and multiplied by

√
z. We implement these final

steps in 64-bit mode to avoid expensive shifts in 128-bit mode.

Algorithm 3.2 Proposed optimization for square root in F2m .
Input: a(z) = a[0..n− 1], exponents m and t of trinomial f(z).

Output: c(z) = c[0..n−1] = a(z)
1
2 mod f(z).

1: ⋄ Permutation mask to divide a 128-bit value in bytes with odd and even indexes.
2: perm← (0x0F0D0B0907050301,0x0E0C0A0806040200)
3: ⋄ Table to divide a low nibble in bits with odd and even indexes.
4: sqrtL ← (0x3332232231302120,0x1312030211100100)
5: ⋄ Table to divide a high nibble in bits with odd and even indexes (sqrtL ≪∤8 2).
6: sqrtH ← (0xCCC88C88C4C08480,0x4C480C0844400400)
7: ⋄ Bit masks to convert to split representation.
8: maskL ← (0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F)
9: maskH ← (0xF0F0F0F0F0F0F0F0,0xF0F0F0F0F0F0F0F0)

10: aeven ← 0, aodd ← 0
11: for i← 0 to n

2 − 1 do
12: a0 ←load(a[2i])
13: a0 ←shuffle(a0, perm)
14: ⋄ Convert permuted vector to split representation.
15: aL ← a0 ∧maskL
16: aH ← a0 ∧maskH , aH ← aH ≫∤8 4
17: ⋄ Extract (aLodd

(z) + aLeven(z)) in aL and (aHodd
(z)z2 + aHeven(z)z

2) in aH .
18: aL ←lookup(sqrtL, aL), aH ←lookup(sqrtH , aH)
19: ⋄ Compute (aLodd

(z) + aLeven(z) + aHodd
(z)z2 + aHeven(z)z

2).
20: a0 ← aL ⊕ aH
21: ⋄ Compute u = aLeven(z) + aHeven(z)z

2 and v = aLodd
(z) + aHodd

(z)z2.
22: aL ← a0 ∧maskL, aH ← a0 ∧maskH
23: u← store(aL)
24: v ← store(aH)
25: ⋄ From now on, operate in 64-bit registers.
26: aeven ← aeven + (u[0] ∨ (u[1]≪ 4))
27: aodd ← aodd + (v[1] ∨ (v[0]≫ 4))
28: end for
29: return c(z) = aeven +

√
z · aodd mod f(z)

55

3.3.3 Multiplication

In this section, we discuss two strategies for implementing multiplication induced by the
split representation.

Single operand in split representation

If the multiplier is represented in split form, the following expression for multiplication is
obtained:

a(z) · b(z) = b(z) · (aH(z)z4 + aL(z)) = b(z)z4aH(z) + b(z)aL(z). (3.1)

The full multiplication result can then be obtained by adding the partial results of two
smaller multiplications with a 4-bit offset. Since multiplication in a binary field rarely
enjoys native support in common processors, one of the fastest ways of implementing
multiplication with a polynomial basis is through the precomputation-based algorithm
proposed by López and Dahab [27]. For computing a(z) · b(z), this algorithm builds a
table of products of small polynomials of degree less than w by the full field element b(z)
and scans operand a(z) in sets of w bits of each word at a time adding the intermediate
results left-shifted by multiples of w. A common implementation choice is to use w = 4.
The core operation of this algorithm is simulating a fast way of multiplying a small
polynomial by a full field element using a lookup table. This allows the implementation
to employ the XOR instruction with highest granularity included in the target platform,
heavily benefiting from vector instruction sets. When left-shifts by 4 bits are expensive, as
is the case with the target platform, a variant is also provided in [27] which employs two
precomputation tables: one for b(z) and other for b(z)z4. This variant is clearly induced
by Equation 3.1 and its implementation with vector registers is presented in Algorithm
3.3. In our implementation, all the shifted additions are done in registers to avoid costly
memory operations and left-shifts by 4 bits are completely eliminated in favor of left-
shifts by 8 bits. Recall that shifts by multiples of 8 bits can use the convenient and faster
memory-alignment instructions. Operand a is scanned in 128-bit intervals to avoid 64-bit
shifts of the partial result stored in registers.

Both operands in split representation

If both multiplicand and multiplier are represented in split form, the following expression
is obtained:

a(z) · b(z) = (bH(z)z
4 + bL(z)) · (aH(z)z4 + aL(z)).

Due to the sparseness of the split representation, a direct software implementation of this
formula would lead to 4 applications of Algorithm 3.3. By using Karatsuba [121], we can

56

Algorithm 3.3 LD multiplication implemented with n 128-bit registers.
Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..n− 1] = a(z) · b(z).
Note: mi denotes the vector of n

2 128-bit registers (r(i−1+n/2), . . . , ri).

1: Compute T0(u) = u(z) · b(z), T1(u) = u(z) · (b(z)z4) for all u(z) of degree < 4.
2: (rn−1 . . . , r0)← 0
3: for k ← 56 downto 0 by 8 do
4: for j ← 1 to n− 1 by 2 do
5: ⋄ Process implictly 4 bits of aL and then 4 bits of aH .
6: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
7: m(j−1)/2 ← m(j−1)/2 ⊕ T0(u)
8: Let v = (v3, v2, v1, v0), where vt is bit (k + t+ 4) of a[j].
9: m(j−1)/2 ← m(j−1)/2 ⊕ T1(v)

10: end for
11: (rn−1 . . . , r0)← (rn−1 . . . , r0)⊳ 8
12: end for
13: for k ← 56 downto 0 by 8 do
14: for j ← 0 to n− 2 by 2 do
15: ⋄ Process implictly 4 bits of aL and then 4 bits of aH .
16: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
17: mj/2 ← mj/2 ⊕ T0(u)
18: Let v = (v3, v2, v1, v0), where vt is bit (k + t+ 4) of a[j].
19: mj/2 ← mj/2 ⊕ T1(v)
20: end for
21: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0)⊳ 8
22: end for
23: return c = (rn−1 . . . , r0) mod f(z)

lower the number of applications to 3:

a(z) · b(z) = aHbHz
8 + [(aH + aL)(bH + bL) + aHbH + aLbL] z

4 + aLbL.

This can be improved by observing that a multiplication in split representation can be
seen as a series of products of polynomials of degree less than w by a sparse polyno-
mial with coefficients grouped in sets of size w. Products of a small polynomial by small
sets of coefficients can be efficiently computed through table lookups and, moreover, by
choosing w = 4 we can implement the 4-bit granular multiplication by simultaneous table
lookups. Replacing lookups in a precomputation table (as in Algorithm 3.3) by lookups
in a constant table leads to reduced memory consumption and increased arithmetic den-
sity. Higher arithmetic density has lower dependency on the performance of the memory
subsystem and is consequently more attractive for implementation in vector processors.
Unfortunately, there is no easy way of storing the table of constants without using mem-

57

ory and our approach does not benefit heavily of the feature. Algorithm 3.4 presents
our shuffle-based approach to multiplication with the auxiliary function Msplit defined in
Algorithm 3.5. The disadvantage of this approach in comparison with [27] is that the core
operation is sparser: now we multiply a small polynomial by a sparse field element, requir-
ing more executions of this core operation to achieve the result. A fast shuffle instruction
is thus required to implement this strategy in a competitive way. It is important to note
that this approach is not immune to cache latency effects, since lookups using 4-bit sets
of a on a table of constants stored into memory are still required. This is also the reason
why operand a is processed in 64-bit mode inside Msplit: quick access to these sets must
be provided. Operand a is scanned in offsets a multiple of 8 so there is no need to apply
masks to explicitly obtain aL and aH .

Algorithm 3.4 Left-to-right shuffle-based multiplication in F2m .
Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..n− 1] = a(z) · b(z).
1: ⋄ Bit mask to convert to split representation.
2: mask ← (0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F)
3: ⋄ Prepare operands aL(z) and bL(z) in split representation.
4: for i← 0 to n

2 − 1 do bH [i]←load(b[2i]), bL[i] = bH [i] ∧mask, aL[i] = a[i]
5: ⋄ Compute aL(z)bL(z).
6: (mL[n− 1], . . . ,mL[0])←Msplit(aL, bL)
7: ⋄ Prepare operands aH(z) and bH(z) in split representation.
8: for i← 0 to n

2 − 1 do bH [i]← (bH [i]≫∤8 4) ∧mask, aH [i]← a[i]≫ 4
9: ⋄ Compute aH(z)bH(z).

10: (mH [n− 1], . . . ,mH [0])←Msplit(aH , bH)
11: ⋄ Prepare operands (aL(z) + aH(z)) and (bL(z) + bH(z)) in split representation.
12: for i← 0 to n

2 − 1 do bM [i]← bH [i]⊕ bL[i], aM [i] = aL[i]⊕ aH [i]
13: ⋄ Compute (aL(z) + aH(z))(bL(z) + bH(z)).
14: (m[n− 1], . . . ,m[0])←Msplit(aM , bM)
15: ⋄ Compute (aL(z) + aH(z))(bL(z) + bH(z)) + aL(z)bL(z) + aH(z)bH(z).
16: for i← 0 to n− 1 do
17: m[i]← m[i]⊕ (mL[i]⊕mH [i])
18: end for
19: ⋄ Multiply [(aL(z) + aH(z))(bL(z) + bH(z)) + aL(z)bL(z) + aH(z)bH(z)] by z4.
20: (m[n− 1], . . . ,m[0])← (m[n− 1], . . . ,m[0])≪∤8 4
21: ⋄ Multiply aH(z)bH(z) by z8.
22: (mH [n− 1], . . . ,mH [0])← (mH [n− 1], . . . ,mH [0]) ⊳ 8
23: ⋄ Compute aHbHz8 + [(aH + aL)(bH + bL) + aHbH + aLbL] z

4 + aLbL.
24: for i← 0 to n− 1 do
25: m[i]← m[i]⊕ (mL[i]⊕mH [i])
26: end for
27: return c = (m[n− 1], . . . ,m[0]) mod f(z)

58

Algorithm 3.5 Auxiliary multiplication function Msplit(a, b).
Input: Operands a, b in split representation.
Output: Result a · b stored in registers (rn−1 . . . , r0).
1: ⋄ Table of constants storing all products of 4-bit × 4-bit polynomials.
2: table[0]← (0x0000000000000000,0x0000000000000000)
3: table[1]← (0x0F0E0D0C0B0A0908,0x0706050403020100)
4: table[2]← (0x1E1C1A1816141210,0x0E0C0A0806040200)
5: table[3]← (0x111217141D1E1B18,0x090A0F0C05060300)
6: table[4]← (0x3C3834302C282420,0x1C1814100C080400)
7: table[5]← (0x3336393C27222D28,0x1B1E11140F0A0500)
8: table[6]← (0x22242E283A3C3630,0x12141E180A0C0600)
9: table[7]← (0x2D2A232431363F38,0x15121B1C090E0700)

10: table[8]← (0x7870686058504840,0x3830282018100800)
11: table[9]← (0x777E656C535A4148,0x3F362D241B120900)
12: table[10]← (0x666C72784E445A50,0x363C22281E140A00)
13: table[11]← (0x69627F74454E5358,0x313A272C1D160B00)
14: table[12]← (0x44485C5074786C60,0x24283C3014180C00)
15: table[13]← (0x4B46515C7F726568,0x232E3934171A0D00)
16: table[14]← (0x5A544648626C7E70,0x2A243638121C0E00)

17: table[15]← (0x555A4B4469667778,0x2D22333C111E0F00)

18: (rn−1 . . . , r0)← 0
19: for k ← 56 downto 0 by 8 do
20: for j ← 1 to n− 1 by 2 do
21: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
22: for i← 0 to n

2 − 1 do ri ← ri ⊕ shuffle(table[u], b[i])
23: end for
24: (rn−1 . . . , r0)← (rn−1 . . . , r0)⊳ 8
25: end for
26: for k ← 56 downto 0 by 8 do
27: for j ← 0 to n− 2 by 2 do
28: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
29: for i← 0 to n

2 − 1 do ri ← ri ⊕ shuffle(table[u], b[i])
30: end for
31: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0)⊳ 8
32: end for

3.3.4 Modular Reduction and Inversion

Efficient modular reduction and inversion do not benefit from the split representation.
The performance of both operations heavily depend on the performance of shifting and
ad-hoc optimizations. For this reason, we only provide some of the general guidelines that
were followed for the implementation of modular reduction for all the considered different
choices of irreducible polynomial f(z) = zm + r(z):

• If f(z) is a trinomial and m − deg(r) ≥ 128, modular reduction should be imple-

59

mented in 128-bit mode because of the small number of shifts required. Bytewise
shifts should be used whenever possible. One example of modular reduction imple-
mented with this guideline can be found in [102].

• If f(z) is a pentanomial or if the degree of r(z) is too big to satisfy the previous
criteria, but still m− deg(r) ≥ 64, modular reduction should be implemented in 64-
bit mode but processing two words in parallel with 128-bit registers when possible.

• Consecutive writes can be accumulated into registers before being written to memory
to avoid redundant memory writes.

• If the number of 128-bit digits n required to store a field element is small, squaring
and multiplication results can be stored and immediately reduced using registers in-
stead of using arrays. This optimization also reduces redundant memory operations
for reloading and reducing an intermediate value.

For inversion in F2m , the Extended Euclidean Algorithm variant for polynomials [59]
can be implemented in 64-bit mode to make use of flexible shifts by arbitrary amounts.
Our implementation of inversion was focused only in correctness and did not receive the
amount of attention dedicated to the performance-critical operations.

3.4 Experimental Results

We now present and discuss our timings for finite field arithmetic and elliptic curve arith-
metic.

3.4.1 Finite field arithmetic

We implemented arithmetic in the binary fields F2m ,m ∈ {113, 127, 163, 233, 239, 251, 283,
409, 571}, using the non-square root friendly polynomials defined by NIST or the Stan-
dards for Efficient Cryptography Group (SECG) [135] or the ECRYPT Benchmarking
of Cryptographic Systems (eBACS) project [90]; and using the independent square root
friendly polynomials given in [134, 136, 67]. All our choices for defining polynomials can
be found in Table 3.2.

The C programming language was used in conjunction with compiler intrinsics for
accessing vector instructions. The chosen compiler was GCC version 4.1.2 with backports
from 4.3 because in our experiments it generated the fastest code from vector intrinsics,
as already observed in [67]. Compiler flags included optimization level -O2, loop un-
rolling and tuning with the -march=core2 switch. Considered target platforms are the
Core 2 65nm (Core 2 I), Core 2 45nm (Core 2 II) and Core i7 45nm microarchitectures,

60

Table 3.2: Different choices of irreducible binary polynomials f(z) of degree m. Polyno-
mials are classified into Standard (as defined by NIST, SECG or eBACS) or square root
friendly (SQRTF).

m f(z)
√
z mod f(z) Type

113 z113 + z9 + 1 z57 + z5 SQRTF
127 z127 + z63 + 1 z64 + z32 SQRTF

163
z163 + z7 + z6 + z3 + 1 79 terms Standard
z163 + z57 + z49 + z29 + 1 z82 + z29 + z25 + z15 SQRTF

233
z233 + z74 + 1 z228 + z191 + z154 + z117 + z69 + z32 SQRTF
z233 + z159 + 1 z117 + z80 SQRTF

239
z239 + z158 + 1 z199 + z120 + z118 + z39 Standard
z239 + z81 + 1 z120 + z41 SQRTF

251
z251 + z7 + z4 + z2 + 1 166 terms Standard
z251 + z89 + z81 + z3 + 1 z126 + z45 + z41 + z2 SQRTF

283
z283 + z12 + z7 + z5 + 1 68 terms Standard
z283 + z97 + z89 + z87 + 1 z142 + z49 + z45 + z44 SQRTF

409 z409 + z87 + 1 z205 + z44 SQRTF

571
z571 + z10 + z5 + z2 + 1 273 terms Standard
z571 + z193 + z185 + z5 + 1 z286 + z97 + z93 + z3 SQRTF

1223 z1223 + z255 + 1 z612 + z128 SQRTF

represented by a mobile Intel Core 2 T7200 2.0GHz, a Xeon X3320 2.5GHz and a Core i7
860 2.8GHz, respectively. Finite field arithmetic was implemented as an arithmetic back-
end of the RELIC toolkit [105] and the library was used for testing and benchmarking.

Table 3.3 presents our results for finite field arithmetic. The operations considered
are squaring, multiplication, square root extraction and inversion. The standard poly-
nomials are used in all operations with the exception of square root modulo a friendly
polynomial. The differences between our implementations in the various microarchitec-
tures can be explained by the lower cost of the bytewise shift and shuffle instructions
after the introduction of the Super Shuffle Engine by Intel in the first release of the 45nm
microarchitecture. Timings for the Core i7 are a little faster or competitive with timings
for the Core 2 45nm architecture up to m = 251. For the bigger fields, minor compiler
decisions focusing on Core 2 scheduling characteristics decrease performance in Core i7.
To date, no released GCC version has specific tuning for the Core i7 microarchitecture.
Our implementation shows some interesting results:

1. PTLU-based approaches like squaring, square root extraction and shuffle-based mul-
tiplication are significantly faster in the latest microarchitectures. The increased
throughput of PTLU instructions is visible in simple operations like squaring and
square root extraction and on the small field multipliers. Square root extraction

61

modulo friendly polynomials is the only PTLU-based approach that benefits from
increased throughput in all field sizes. This happens because of its the lower depen-
dence on memory performance compared to squaring or shuffle-based multiplication,
since square root does not rely on a table of constants stored into memory and has
a higher arithmetic density between fetching the operands and storing the results.
Nevertheless, these approaches will likely benefit from future enhancements to the
flexibility or speed of PTLU instructions.

2. Squaring and square root extraction with a friendly f(z) are formulated and com-
puted very efficiently using shuffling, producing multiplication-to-squaring ratios as
high as 34. Table lookups are so fast that performance is mainly dependent on
the choice of f(z) and the resulting form of

√
z, as we can see in two cases: (i)

comparing squaring in F2251 and in F2409 , where the former requires the expansion of
two vector registers, but expansion of three vector registers and reduction modulo
a trinomial in the latter is cheaper; (ii) comparing square root with friendly f(z)

between F2571 and F21223 , where the former has half the field size, but the nice form
of
√
z in the latter makes square root extraction faster. Square root in field F21223

on the Core i7 is indeed an extreme example of this, since it is competitive with
square root modulo friendly polynomials in much smaller fields.

3. Shuffle-based multiplication strategy (Algorithm 3.4) gets a significant speed im-
provement with faster shuffle instructions. However, memory access for addressing
the table of 16 constants acts as a bottleneck for further improvements in the Core i7
architecture where shuffle throughput is doubled. A faster way to address this table
must be made available so the higher arithmetic density can be explored without
memory performance interference. It is still surprising that this algorithm requiring
three times the number of operations of conventional López-Dahab multiplication
(Algorithm 3.3) is only 50%-90% slower in the microarchitectures where shuffling is
faster.

Our results lack a full comparison with other works because we were not able to
find published timings for the same combinations of parameters and architectures using
vector instruction sets. Comparing with the results given by [136] for a 64-bit C-only
implementation of arithmetic in F2127 on a Core 2 65nm machine: (i) both López-Dahab
and shuffle-based multiplication approaches are faster by 25% and 3% than the reported
270 cycles, respectively, because of the higher addition granularity and fast shifting by
8 bits; (ii) square root extraction is 64% faster due to the way PTLU instructions are
employed; (iii) inversion is 17% slower because it was not considered performance-critical
in this work. The improvement with vector registers is still less than what could be

62

Table 3.3: Timings in cycles for our implementation of binary field arithmetic arithmetic in
Intel platforms Core 2 65nm (Core 2 I), Core 2 45nm (Core 2 II) and Core i7 45nm. Square
root friendly polynomials are only used when explicitly stated (or when the standard
polynomial is also square root friendly). Results are the average of 104 executions of each
algorithm with random inputs.

Platform and field size
Core 2 I Core 2 II Core i7 Core 2 I Core 2 II Core i7

Field operation m = 113 m = 127
Squaring 34 25 24 25 16 16
Square root with standard f - - - - - -
Square root with friendly f 27 23 22 22 19 17
López-Dahab multiplication 147 127 116 200 179 165
Shuffle-based multiplication 257 187 176 262 191 169
Inversion 3675 3593 3446 4096 4042 3894

m = 163 m = 233
Squaring 60 49 48 50 36 34
Square root with standard f 195 163 167 128 124 117
Square root with friendly f 99 89 84 92 76 74
López-Dahab multiplication 240 218 216 276 241 246
Shuffle-based multiplication 506 336 313 695 429 403
Inversion 5984 5948 5756 9986 9922 10074

m = 239 m = 251
Squaring 53 43 47 72 59 58
Square root with standard f 113 104 94 258 237 231
Square root with friendly f 94 77 71 109 99 88
López-Dahab multiplication 284 251 261 350 325 323
Shuffle-based multiplication 686 441 412 738 468 475
Inversion 10259 10150 10101 10816 10471 10761

m = 283 m = 409
Squaring 73 58 55 67 52 50
Square root with standard f 309 278 292 171 155 135
Square root with friendly f 131 106 103 171 155 135
López-Dahab multiplication 418 397 400 751 690 715
Shuffle-based multiplication 1084 664 647 2239 1234 1265
Inversion 13522 13301 13608 23199 23050 24012

m = 571 m = 1223
Squaring 124 95 94 160 108 110
Square root with standard f 844 827 849 - - -
Square root with friendly f 211 191 174 166 140 114
López-Dahab multiplication 1247 1173 1197 4030* 3785* 3912*
Shuffle-based multiplication 4105 2163 2285 12204* 7219* 7367*
Inversion 38404 38173 40226 149763 149589 161577
(*) Karatsuba at depth 1 was used at the top level.

expected by doubling the register size, but this can be explained in terms of arithmetic
density: López-Dahab multiplication benefits from larger ratios between field size and
register size. We also refer the reader to [102] for a comparison of our implementation of

63

arithmetic in F21223 using similar techniques with an efficient implementation of this field
reported in [98].

A full comparison can however be provided in the fields F2113 and F2251 employed
for curve-based key exchange benchmarking in the eBACS project [90]. We present in
Table 3.4 timings obtained by the eBACS 64-bit version of the mpFq library [137] dis-
tributed as part of SUPERCOP version 20100509. This version employs the SSE2 vector
instruction set inside the multiplier and relies on automatic tuning of the multiplica-
tion code. These timings were measured through the simple integration of mpFq as an
arithmetic backend of RELIC so that the same compiling, testing and benchmarking pro-
cedures could be used. Comparison of results in Tables 3.3 and 3.4 for the corresponding
fields favor our approaches with the exception of López-Dahab Multiplication in F2113

on Core 2 I. Speedups range from 8% to 84%. This gives an idea of the improvements
of our approach over the previous state-of-the-art in efficient implementations of finite
field arithmetic using vector instructions. Note that although our code was hand-written,
most of it closely follows the described algorithms. There is no obstacle to automatically
generate an implementation with comparable performance.

Table 3.4: Timings in cycles of the mpFq library for binary field arithmetic arithmetic
in Intel platforms Core 2 65nm (Core 2 I), Core 2 45nm (Core 2 II) and Core i7 45nm.
Using notation of Table 3.3, results of square root extraction correspond to the square
root friendly polynomial in F2113 and to the standard polynomial in F2251 . Results are the
average of 104 executions of each algorithm with random inputs.

Platform and field size
Core 2 I Core 2 II Core i7 Core 2 I Core 2 II Core i7

Field operation m = 113 m = 251
Squaring 38 40 36 106 103 102
Square root 144 141 128 557 552 526
Multiplication 135 139 129 490 489 458
Inversion 5497 5435 5430 18425 16502 17907

3.4.2 Elliptic curve arithmetic

The performance obtained by our efficient implementation is illustrated with some execu-
tions of the Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve Digital Signature
Algorithm (ECDSA) protocols [110]. We have selected fast algorithms for elliptic curve
arithmetic in three situations: multiplying a random point P by a scalar k, multiplying
the generator G by a scalar k and simultaneously multiplying two points P and Q by
scalars k and l to obtain kP + lQ. Our implementation uses mixed addition with projec-

64

tive coordinates [60], given that the inversion-to-multiplication ratio is between 22 and
41.

For multiplying a random point by a scalar, we choose Solinas’ τ -adic non-adjacent

form (TNAF) representation [63] with w = 4 for Koblitz curves (4-TNAF method with 4
precomputation points) and the method due to López and Dahab [122] for random binary
curves. We did not implement point halving [62] because NIST field definitions are not
optimal for square root computation, although conversion to the friendly representations
used in Table 3.3 would be practical in some scenarios. For multiplying the generator,
we employ the 6-TNAF method for Koblitz curves; and for generic curves, we employ the
Comb method [64] with 256 precomputed points. For simultaneous multiplication, we
implement the interleaving method with 4-TNAFs for Koblitz curves and with 4-NAFs
(width-4 non-adjacent form) for generic curves [65].

Table 3.5 presents our timings for elliptic curve arithmetic using the fastest finite field
implementations presented in the previous section. We provide timings for curves at the
128-bit and 256-bit security levels defined by NIST as reference for future implementa-
tions. The eBACS [90] website currently reports timings for key exchange of 855000,
748000 and 755000 cycles on platforms Core 2 I (latour), Core 2 II (needme) and Core
i7 (dragon) respectively using CURVE2251. We improve these timings by 27%-30% with
our implementation of CURVE2251 and show that we can instead compute key exchanges
in curve NIST-B283 with performance comparable to the eBACS results. Bernstein [61]
describes a bitsliced implementation of 251-bit binary Edwards curves (BBE) that com-
putes a batch of 1024 point multiplications in parallel taking in average 314000 cycles
per scalar multiplication in a Core 2 I (latour) platform. A question left open is the
speed of a bitsliced approach using special curves. The straight-line requirements noted
in [61] are naturally compatible with reducing side-channel exposure, but these do not
appear to be compatible with traditional approaches on Koblitz curves. As a reference
point, our results show that it’s possible to match BBE’s performance with a conventional
implementation using the Koblitz curve SECG-K239 if one is willing to accept the fol-
lowing trade-offs: (i) allow curves with special algebraic structures; (ii) relax side-channel
resistance; and (iii) lower the security level to a 239-bit curve. In order to comply with
the security requirements in [61] while keeping the flexibility a non-bitsliced implementa-
tion provides, currently the best choice for binary curves is to use our implementation of
CURVE2251 with the added performance impact.

3.5 Conclusion

In this work, we proposed novel techniques for exploring parallelism during the imple-
mentation of binary fields in computers equipped with modern vector instruction sets. It
was made clear that field arithmetic can be efficiently formulated and implemented us-

65

Table 3.5: Timings given in 103 cycles for elliptic curve operations inside executions of
the ECDH and ECDSA protocols measured in Intel platforms Core 2 65nm (Core 2 I),
Core 2 45nm (Core 2 II) and Core i7 45nm. Results are the average of 104 executions of
each algorithm with random inputs.

Key Exchange (kP) Sign (kG) + Verify (kG+ lP)

Curve Core 2 I Core 2 II Core i7 Core 2 I Core 2 II Core i7

SECG-K239 270 247 260 196 + 419 175 + 384 184 + 400

CURVE2251 594 535 537 172 + 926 157 + 850 157 + 852

NIST-K283 411 378 386 298 + 632 270 + 586 275 + 599
NIST-B283 858 785 793 225 + 1212 210 + 1120 212 + 1140

NIST-K571 1782 1617 1656 1295 + 2840 1159 + 2580 1185 + 2645
NIST-B571 4754 4310 4440 1225 + 6206 1126 + 5683 1145 + 5822

ing these instructions. A competitive shuffle-based implementation of multiplication was
introduced and our results show that it has two main requirements: (i) the availability
of fast shuffle instructions; (ii) an efficient table addressing mechanism avoiding memory
accesses completely. If both requirements can be satisfied in a low-cost way, we pose an
interesting question on the design of future vector arithmetic units: is there a real need
for a native binary field multiplier from a cost-benefit perspective? Supporting a single
fast shuffle instruction can be cheaper and may allow very efficient implementations of
the performance-critical operations in F2m and other fields of cryptographic interest such
as F3m .

We illustrated our implementation results with timings for ECDSA and ECDH pro-
tocols in two different NIST-standardized security levels, showing that a random point
multiplication at the 128-bit security level can be computed in 411000 cycles in an Intel
Core 2 65nm architecture. A comparison of our results with benchmark data from the
eBACS project shows that our implementation of CURVE2251 is up to 30% faster. The
timings on SECG-K239 provide a reference point for future comparisons with batch meth-
ods such as [61] under the assumption that the interest is in the fastest point multiplication
on standardized curves over binary fields. This comparison will be interesting to revisit
once the effects of the to-be-released native multiplier [87] and the AVX extensions [133]
are evaluated in both implementations.

Acknowledgements

We would like to thank the anonymous reviewers for pointing out useful suggestions
on how to compare our preliminary results with related work; and CNPq, CAPES and
FAPESP, which support authors Diego F. Aranha and Julio López.

66

Chapter 4

Software implementation of binary

elliptic curves: impact of the carry-less

multiplier on scalar multiplication

Jonathan Taverne, Armando Faz-Hernández, Diego F. Aranha,

Francisco Rodríguez-Henríquez, Darrel Hankerson and Julio López

Abstract

The availability of a new carry-less multiplication instruction in the latest Intel desk-
top processors significantly accelerates multiplication in binary fields and hence presents
the opportunity for reevaluating algorithms for binary field arithmetic and scalar multi-
plication over elliptic curves. We describe how to best employ this instruction in field
multiplication and the effect on performance of doubling and halving operations. Al-
ternate strategies for implementing inversion and half-trace are examined that restore
most of their competitiveness relative to the new multiplier. These improvements in field
arithmetic are complemented by a study on serial and parallel approaches for Koblitz
and random curves, where parallelization strategies are implemented and compared. The
contributions are illustrated with experimental results improving the state-of-the-art per-
formance of halving and doubling-based scalar multiplication on NIST curves at the 112-
and 192-bit security levels, and a new speed record for side-channel resistant scalar mul-
tiplication in a random curve at the 128-bit security level.

Publication

This work was accepted for publication in the Proceedings of the 13th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES 2011). c©2011 IACR

67

4.1 Introduction

Improvements in the fabrication process of microprocessors allow the resulting higher
transistor density to be converted into architectural features such as inclusion of new in-
structions or faster execution of the current instruction set. Limits on the conventional
ways of increasing a processor’s performance such as incrementing the clock rate, scal-
ing the memory hierarchy [38] or improving support for instruction-level parallelism [36]
have pushed manufacturers to embrace parallel processing as the mainstream computing
paradigm and consequently amplify support for resources such as multiprocessing and
vectorization. Examples of the latter are the recent inclusions of the SSE4 [51], AES [138]
and AVX [52] instruction sets in the latest Intel microarchitectures.

Since the dawn of elliptic curve cryptography in 1985, several field arithmetic assump-
tions have been made by researchers and designers regarding its efficient implementation
in software platforms. Some analysis (supported by experiments) assumed that inversion
to multiplication ratios (I/M) were sufficiently small (e.g., I/M ≈ 3) that point opera-
tions would be done in affine coordinates, favoring certain techniques. However, the small
ratios were a mix of old hardware designs, slower multiplication algorithms compared
with [27], and composite extension degree. It seems clear that sufficient progress was
made in multiplication so there is incentive to use projective coordinates. Our interest in
the face of much faster multiplication is at the other end—is I/M large enough to affect
methods that commonly assumed this ratio is modest?

On the other hand, authors in [62] considered that the cost of a point halving compu-
tation was roughly equivalent to 2 field multiplications. The expensive computations in
halving are a field multiplication, solving a quadratic z2+z = c, and finding a square root
over F2m . However, quadratic solvers presented in [59] are multiplication-free and hence,
provided that a fast binary field multiplier is available, there would be concern that the
ratio of point halving to multiplication may be much larger than 2. Having a particularly
fast multiplier would also push for computing square roots in F2m as efficiently as possible.
Similarly, the common software design assumption that field squaring is essentially free
(relative to multiplication) may no longer be valid.

A prevalent assumption is that large-characteristic fields are faster than binary field
counterparts for software implementations of elliptic curve cryptography.1 In spite of
simpler arithmetic, binary field realizations could not be faster than large-characteristic
analogues mostly due to the absence of a native carry-less multiplier in contemporary high-
performance processors. However, using a bit-slicing technique, Bernstein [61] was able to
compute a batch of 251-bit scalar multiplications on a binary Edwards curve, employing

1In hardware realizations, the opposite thesis is widely accepted: elliptic curve scalar point multipli-
cation can be computed (much) faster using binary extension fields.

68

314,323 clock cycles per scalar multiplication, which, before the results presented in this
work and to the best of our knowledge, was the fastest reported time for a software
implementation of binary elliptic point multiplication.

In this work, we evaluate the impact of the recently introduced carry-less multiplica-
tion instruction [87] in the performance of binary field arithmetic and scalar multiplication
over elliptic curves. We also consider parallel strategies in order to speed scalar multi-
plication when working on multi-core architectures. In contrast to parallelization applied
to a batch of operations, the approach considered here applies to a single point multi-
plication. These approaches target different environments: batching makes sense when
throughput is the measurement of interest, while the lower level parallelization is of in-
terest when latency matters and the device is perhaps weak but has multiple processing
units. Furthermore, throughout this paper we will assume that we are working in the un-
known point scenario, i.e., where the elliptic curve point to be processed is not known in
advance, thus precluding off-line precomputation. We will assume that there is sufficient
memory space for storing a few multiples of the point to be processed and look-up tables
for accelerating the computation of the underlying field arithmetic.

As the experimental results will show, our implementation of multiplication via this
native support was significantly faster than previous timings reported in the literature.
This motivated a study on alternative implementations of binary field arithmetic in hope
of restoring the performance ratios among different operations in which the literature is
traditionally based [59]. A direct consequence of this study is that performance analysis
based on these conventional ratios [139] will remain valid in the new platform. Our main
contributions are:

• A strategy to efficiently employ the native carry-less multiplier in binary field mul-
tiplication.

• Branchless and/or vectorized approaches for implementing half-trace computation,
integer recoding and inversion. These approaches allow the halving operation to be-
come again competitive with doubling in the face of a significantly faster multiplier,
and help to reduce the impact of integer recoding and inversion in the overall speed
of scalar multiplication, even when projective coordinates are used.

• Parallelization strategies for dual core execution of scalar multiplication algorithms
in random and Koblitz binary elliptic curves.

We obtain a new state-of-the-art implementation of arithmetic in binary elliptic curves,
including improved performance for NIST-standardized Koblitz curves and random curves
suitable for halving and a new speed record for side-channel resistant point multiplication
in a random curve at the 128-bit security level.

69

The remainder of the paper progresses as follows. Section 4.2 elaborates on exploiting
carry-less multiplication for high-performance field multiplication along with implementa-
tion strategies for half-trace and inversion. Sections 4.3 and 4.4 discuss serial and parallel
approaches for scalar multiplication. Section 4.5 presents extensive experimental results
and comparison with related work. Section 4.6 concludes the paper with perspectives on
the interplay between the proposed implementation strategies and future enhancements
in the architecture under consideration.

4.2 Binary field arithmetic

A binary extension field F2m can be constructed by means of a degree-m polynomial f
irreducible over F2 as F2m

∼= F2[z]/ (f(z)). In the case of software implementations in
modern desktop platforms, field elements a ∈ F2m can be represented as polynomials of
degree at most m − 1 with binary coefficients ai packed in n64 = ⌈m

64
⌉ 64-bit processor

words. In this context, the recently introduced carry-less multiplication instruction can
play a significant role in order to efficiently implement a multiplier in F2m . Along with
field multiplication, other relevant field arithmetic operations such as squaring, square
root, and half-trace, will be discussed in the rest of this section.

4.2.1 Multiplication

Field multiplication is the performance-critical operation for implementing several cryp-
tographic primitives relying on binary fields, including arithmetic over elliptic curves and
the Galois Counter Mode of operation (GCM). For accelerating the latter when used in
combination with the AES block cipher [138], Intel introduced the carry-less multiplier
in the Westmere microarchitecture as an instruction operating on 64-bit words stored in
128-bit vector registers with opcode pclmulqdq [87]. The instruction latency currently
peaks at 15 cycles while reciprocal throughput ranks at 10 cycles. In other words, when
operands are not in a dependency chain, effective latency is 10 cycles [140].

The instruction certainly looks expensive when compared to the 3-cycle 64-bit integer
multiplier present in the same platform, which raises speculation whether Intel aimed
for an area/performance trade-off or simply balanced the latency to the point where the
carry-less multiplier did not interfere with the throughput of the hardware AES imple-
mentation. Either way, the instruction features suggest the following empirical guidelines
for organizing the field multiplication code: (i) as memory access by vector instructions
continues to be expensive [61], the maximum amount of work should be done in regis-
ters, for example through a Comba organization [141]; (ii) as the number of registers
employed in multiplication should be minimized for avoiding false dependencies and max-

70

imize throughput, the multiplier should have 128-bit granularity; (iii) as the instruction
latency allows, each 128-bit multiplication should be implemented with three carry-less
multiplications in a Karatsuba fashion [121].

In fact, the overhead of Karatsuba multiplication is minimal in binary fields and
the Karatsuba formula with the smaller number of multiplications for multiplying ⌈n64

2
⌉

128-bit digits proved to be optimal in all the considered field sizes. This observation
comes in direct contrast to previous vectorized implementations of the comb method
for binary field multiplication due to López and Dahab [27, Algorithm 5], where the
memory-bound precomputation step severely limits the number of Karatsuba steps which
can be employed, fixing the cutoff point to large fields [88] such as F21223 . To summarize,
multiplication was implemented as a 128-bit granular Karatsuba multiplier with each
128-digit multiplication solved by another Karatsuba instance requiring three carry-less
multiplications, cheap additions and efficient shifts by multiples of 8 bits. A single 128-
digit level of Karatsuba was used for fields F2233 and F2251 where ⌈n64

2
⌉ = 2, while two

instances were used for field F2409 where ⌈n64

2
⌉ = 4. Particular approaches which led

to lower performance in our experiments were organizations based on optimal Toom-
Cook [142] due to the higher overhead brought by minor operations; and on a lower
64-bit granularity combined with alternative multiple-term Karatsuba formulas [143] due
to register exhaustion to store all the intermediate values, causing a reduction in overall
throughput.

4.2.2 Squaring, square-root and multi-squaring

Squaring and square-root are considered cheap operations in a binary field, especially
when F2m is defined by a square-root friendly polynomial [134, 144], because they require
only linear manipulation of individual coefficients [59]. These operations are traditionally
implemented with the help of large precomputed tables, but vectorized implementations
are possible with simultaneous table lookups through byte shuffling instructions [88]. This
approach is enough to keep square and square-root efficient relative to multiplication
even with a dramatic acceleration of field multiplication. For illustration, [88] reports
multiplication-to-squaring ratios as high as 34 without a native multiplier, far from the
conventional ratios of 5 [139] or 7 [59] and with a large room for future improvement.

Multi-squaring, or exponentiation to 2k, can be efficiently implemented with a time-
memory trade-off proposed asm-squaring in [144, 145] and here referred as multi-squaring.
For a fixed k, a table T of 16⌈m

4
⌉ field elements can be precomputed such that T [j, i0+2i1+

4i2+8i3] = (i0z
4j+i1z

4j+1+i2z
4j+2+i3z

4j+3)2
k

and a2
k

=
∑⌈m

4
⌉

j=0 T [j, ⌊a/24j⌋ mod 24]. The
threshold where multi-squaring became faster than simple consecutive squaring observed
in our implementation was around k ≥ 6 for F2233 and k ≥ 10 for F2409 .

71

4.2.3 Inversion

Inversion modulo f(z) can be implemented via the polynomial version of the Extended
Euclidean Algorithm (EEA), but the frequent branching and recurrent shifts by arbitrary
amounts present a performance obstacle for vectorized implementations, which makes it
difficult to write consistently fast EEA codes across different platforms. A branchless
approach can be implemented through Itoh-Tsuji inversion [146] by computing a−1 =

a(2
m−1−1)2, as proposed in [147]. In contrast to the EEA method, the Itoh-Tsujii approach

has the additional merit of being similarly fast (relative to multiplication) across common
processors.

The overall cost of the method is m − 1 squarings and a number of multiplications
dictated by the length of an addition chain for m − 1. The cost of squarings can be
reduced by computing each required 2i-power as a multi-squaring [145]. The choice of an
addition chain allows the implementer to control the amount of required multiplications
and the precomputed storage for multi-squaring, since the number of 2i-powers involved
can be balanced.

Previous work obtained inversion-to-multiplication ratios between 22 and 41 by im-
plementing EEA in 64-bit mode [88], while the conventional ratios are between 5 and
10 [59, 139]. While we cannot reach the small ratios with Itoh-Tsujii for the parameters
considered here, we can hope to do better than applying the method from [88] which will
give significantly larger ratios with the carry-less multiplier. Hence the cost of squar-
ings and multi-squarings should be minimized to the lowest possible allowed by storage
capacity.

To summarize, we use addition chains of 10, 10 and 11 steps for computing field
inversion over the fields F2233 , F2251 and F2409 , respectively.2 We extensively used the
multi-squaring approach described in the preceding section. For example, in the case of
F2233 , we selected the addition chain 1→2→3→6→7→14→28→29→58→116→232, and used
3 pre-computed tables for computing the iterated squarings a2

29
, a2

58
and a2

116
. The rest

of the field squaring operations were computed by executing consecutive squarings. We
recall that each table stores a total of 16⌈m

4
⌉ field elements.

4.2.4 Half-trace

Half-trace plays a central role in point halving and its performance is essential if halving
is to be competitive against doubling. For an odd integer m, the half-trace function
H : F2m → F2m is defined by H(c) =

∑(m−1)/2
i=0 c2

2i
and satisfies the equation λ2 + λ =

c+Tr(c) required for point halving. One efficient desktop-targeted implementation of the

2In the case of inversion over F2409 , the minimal length addition chain to reach m − 1 = 408 has 10
steps. However, we preferred to use an 11-step chain to save one look-up table.

72

half-trace is described in [134] and presented as Algorithm 4.1, making extensive use of
precomputations. This implementation is based on two main steps: the elimination of
even power coefficients and the accumulation of half-trace precomputed values.

Step 5 in Algorithm 4.1, as shown in [59], consists in reducing the number of non-
zero coefficients of c by removing the coefficients of even powers i via H(zi) = H(zi/2) +

zi/2 + Tr(zi). That will lead to memory and time savings during the last step of the
half-trace computation, the accumulation (step 8). This is done by extraction of the odd
and even bits and can benefit from vectorization in the same way as square-root in [88].
However, in the case of half-trace there is a bottleneck caused by data dependencies. For
efficiency, the bank of 128-bit registers is used as much as possible, but at one point in
the algorithm execution the number of available bits to process decreases. For 64-bit
and 32-bit digits, the use of 128-bit registers is still beneficial, but for a smaller size, the
conventional approach (not vectorized) becomes again competitive.

Once step 5 is completed, the direction taken in [59] remains in reducing memory
needs. However another approach is followed in [134] which does not attempt to minimize
memory requirements but rather it greedily strives to speed up the accumulation part
(step 8). Precomputation is extended so as to reduce the number of accesses to the lookup
table. The following values of the half-trace are stored: H(l0c

8i+1+l1c
8i+3+l2c

8i+5+l3c
8i+7)

for all i ≥ 0 such that 8i < m − 3 and lj ∈ F2. The memory size in bytes taken by the
precomputations follows the formula 16× n64 × 8× ⌈m

8
⌉.

Algorithm 4.1 Solve x2 + x = c

Input: c =
∑m−1

i=0 ciz
i ∈ F2m where m is odd and Tr(c) = 0

Output: a solution s of x2 + x = c
1: compute H(l0c

8i+1 + l1c
8i+3 + l2c

8i+5 + l3c
8i+7) for i ∈ I = {0, . . . , ⌊m−3

8
⌋} and lj ∈ F2

2: s← 0
3: for i = (m− 1)/2 downto 1 do
4: if c2i = 1 then
5: c← c+ zi, s← s+ zi

6: end if
7: end for
8: return s← s+

∑
i∈I c

8i+1H(z8i+1) + c8i+3H(z8i+3) + c8i+5H(z8i+5) + c8i+7H(z8i+7)

While considering different organizations of the half-trace code, we made the following
serendipitous observation: inserting as many xor operations as the data dependencies
permitted from the accumulation stage (step 8) into step 5 gave a substantial speed-up
of 20% to 25% compared with code written in the order as described in Algorithm 4.1.
Plausible explanations are compiler optimization and processor pipelining characteristics.
The result is a half-trace-to-multiplication ratio near 1, and this ratio can be reduced if
memory can be consumed more aggressively.

73

4.3 Random binary elliptic curves

Given a finite field Fq for q = 2m, a non-supersingular elliptic curve E(Fq) is defined to
be the set of points (x, y) ∈ Fq × Fq that satisfy the affine equation

y2 + xy = x3 + ax2 + b, (4.1)

where a and 0 6= b ∈ Fq, together with the point at infinity denoted by O. It is known
that E(Fq) forms an additive Abelian group with respect to the elliptic point addition
operation.

Let k be a positive integer and P a point on an elliptic curve. Then elliptic curve scalar

multiplication is the operation that computes the multiple Q = kP , defined as the point
resulting of adding P to itself k−1 times. One of the most basic methods for computing a
scalar multiplication is based on a double-and-add variant of Horner’s rule. As the name
suggests, the two most prominent building blocks of this method are the point doubling

and point addition primitives. By using the non-adjacent form (NAF) representation of
the scalar k, the addition-subtraction method computes a scalar multiplication in about
m doubles and m/3 additions [59]. The method can be extended to a width-ω NAF

k =
∑t−1

i=0 ki2
i where ki ∈ {0,±1, . . . ,±2m − 1}, kt−1 6= 0, and at most one of any ω

consecutive digits is nonzero. The length t is at most one larger than the bitsize of k, and
the density is approximately 1/(ω + 1); for ω = 2, this is the same as NAF.

4.3.1 Sequential algorithms for random binary curves

The traditional left-to-right double-and-add method is illustrated in Algorithm 4.2 where
n = 0 (that is, the computation corresponds to the left column) and the width-ω NAF k =∑t−1

i=0 ki2
i expression is computed from left to right, i.e., it starts processing kt−1 first, then

kt−2 until it ends with the coefficient k0. Step 1 computes 2ω−2− 1 multiples of the point
P . Based on the Montgomery trick, authors in [148] suggested a method to precompute
the affine points in large-characteristic fields Fp, employing only one inversion. Exporting
that approach to F2m , we obtained formulae that offer a saving of 4 multiplications and
15 squarings for ω = 4 when compared with a naive method that would make use of the
Montgomery trick in a trivial way (see Table 4.1 for a summary of the computational
effort associated to this phase).

For a given ω, the evaluation stage of the algorithm has approximately m/(ω + 1)

point additions, and hence increasing ω has diminishing returns. For the curves given by
NIST [149] and with on-line precomputation, ω ≤ 6 is optimal in the sense that total
point additions are minimized. In many cases, the recoding in ωNAF(k) is performed
on-line and can be considered as part of the precomputation step.

74

Algorithm 4.2 Double-and-add, halve-and-add scalar multiplication: parallel
Input: ω, scalar k, P ∈ E(F2m) of odd order r, constant n (e.g., from Table 4.1(b))
Output: kP
1: Compute Pi = iP for
i ∈ I = {1, 3, . . . , 2ω−1 − 1}

2: Q0 ← O

3: Recode: k′ = 2nk mod r and obtain rep
ωNAF(k′)/2n =

∑t
i=0 k

′
i2

i−n

4: Initialize Qi ← O for i ∈ I
{Barrier}

5: for i = t downto n do
6: Q0 ← 2Q0

7: if k′i > 0 then
8: Q0 ← Q0 + Pk′i
9: else if k′i < 0 then

10: Q0 ← Q0 − P−k′i
11: end if
12: end for

13: for i = n− 1 downto 0 do
14: P ← P/2
15: if k′i > 0 then
16: Qk′i

← Qk′i
+ P

17: else if k′i < 0 then
18: Q−k′i

← Q−k′i
− P

19: end if
20: end for

{Barrier}

21: return Q← Q0 +
∑

i∈I iQi

The most popular way to represent points in binary curves is López-Dahab projective
coordinates that yield an effective cost for a mixed point addition and point doubling
operation of about 8M + 5S ≈ 9M and 4M + 5S ≈ 5M , respectively (see
Tables 4.2 and 4.3). Kim and Kim [150] report alternate formulas for point doubling
requiring four multiplications and five squarings, but two of the four multiplications are
by the constant b, and these have the same cost as general multiplication with the native
carry-less multiplier. For mixed addition, Kim and Kim require eight multiplications but
save two field reductions when compared with López-Dahab, giving their method the
edge. Hence, in this work we use López-Dahab for point doubling and Kim and Kim for
point addition.

Right-to-left halve-and-add

Scalar multiplication based on point halving replaces point doubling by a potentially faster
halving operation that produces Q from P with P = 2Q. The method was proposed
independently by Knudsen [151] and Schroeppel [152] for curves y2 + xy = x3 + ax2 + b

over F2m . The method is simpler if the trace of a is 1, and this is the only case we
consider. The expensive computations in halving are a field multiplication, solving a
quadratic z2 + z = c, and finding a square root. On the NIST random curves studied in
this work, we found that the cost of halving is approximately 3M , where M denotes the
cost of a field multiplication.

Let the base point P have odd order r, and let t be the number of bits to represent

75

Table 4.1: Costs and parameter recommendations for ω ∈ {3, 4, 5}.
ω

Algorithm 4.2 [59, Alg 3.70] [59, Alg 3.70]’
Precomp Postcomp Precomp Postcomp

3 14M , 11S , I 43M , 26S 2M , 3S , I 26M , 13S
4 38M , 15S , I 116M , 79S 9M , 9S , I 79M , 45S
5 N/A N/A 23M , 19S , 2I 200M , 117S

(a) Pre- and post-computation costs.

ω
Algorithm 4.2 Algorithm 4.3
B-233 B-409 K-233 K-409

3 128 242 131 207
4 132 240 135 210
5 N/A N/A 136 213

(b) Recommended value for n.

r. For 0 < n ≤ t, let
∑t

i=0 k
′
i2

i be given by the width-ω NAF of 2nk mod r. Then
k ≡ k′/2n ≡∑t

i=0 k
′
i2

i−n (mod r) and the scalar multiplication can be split as

kP = (k′t2
t−n + · · ·+ k′n)P + (k′n−12

−1 + · · ·+ k′02
−n)P. (4.2)

When n = t, this gives the usual representation for point multiplication via halving,
illustrated in Algorithm 4.2 (that is, the computation is essentially the right column).
The cost for postcomputation appears in Table 4.1.

4.3.2 Parallel scalar multiplication on random binary curves

For parallelization, choose n < t in (4.2) and process the first portion by a double-and-
add method and the second portion by a method based on halve-and-add. Algorithm 4.2
illustrates a parallel approach suitable for two processors. Recommended values for n to
balance cost between processors appear in Table 4.1.

4.3.3 Side-channel resistant multiplication on random curves

Another approach for scalar multiplication offering some resistance to side-channel attacks
was proposed by López and Dahab [122] based on the Montgomery laddering technique.
This approach requires 6M + 5S in F2m per iteration independently of the bit pattern in
the scalar, and one of these multiplications is by the curve coefficient b. The curve being
lately used for benchmarking purposes [90] at the 128-bit security level is an Edwards
curve (CURVE2251) corresponding to the Weierstraß curve y2 + xy = x3 + (z13 + z9 +

z8 + z7 + z2 + z + 1). It is clear that this curve is especially tailored for this method due
to the short length of b, reducing the cost of the algorithm to approximately 5.25M + 5S

76

per iteration. At the same time, halving-based approaches are non-optimal for this curve
due to the penalties introduced by the 4-cofactor [153]. Considering this and to partially
satisfy the side-channel resistance offered by a bitsliced implementation such as [61], we
restricted the choices of scalar multiplication at this security level to the Montgomery
laddering approach.

4.4 Koblitz elliptic curves

A Koblitz curve Ea(Fq), also known as an Anomalous Binary Curve [125], is a special
case of (4.1) where b = 1 and a ∈ {0, 1}. In a binary field, the map taking x to x2 is an
automorphism known as the Frobenius map. Since Koblitz curves are defined over the
binary field F2, the Frobenius map and its inverse naturally extend to automorphisms of
the curve denoted τ and τ−1, respectively, where τ(x, y) = (x2, y2). Moreover, (x4, y4) +
2(x, y) = µ(x2, y2) for every (x, y) on Ea, where µ = (−1)1−a; that is, τ satisfies τ 2+2 = µτ

and we can associate τ with the complex number τ = µ+
√
−7

2
.

Solinas [63] presents a τ -adic analogue of the usual NAF as follows. Since short rep-
resentations are desirable, an element ρ ∈ Z[τ] is found with ρ ≡ k (mod δ) of as small
norm as possible, where δ = (τm−1)/(τ−1). Then for the subgroup of interest, kP = ρP

and a width-ω τ -adic NAF (ωτNAF) for ρ is obtained in a fashion that parallels the usual
ωNAF. As in [63], define αi = i mod τω for i ∈ {1, 3, . . . , 2ω−1−1}. A ωτNAF of a nonzero
element ρ is an expression ρ =

∑l−1
i=0 uiτ

i where each ui ∈ {0,±α1,±α3, . . . ,±α2ω−1−1},
ul−1 6= 0, and at most one of any consecutive ω coefficients is nonzero. Scalar multiplica-
tion kP can be performed with the ωτNAF expansion of ρ as

ul−1τ
l−1P + · · ·+ u2τ

2P + u1τP + u0P (4.3)

with l − 1 applications of τ and approximately l/(ω + 1) additions.

The length of the representation is at most m + a, and Solinas presents an efficient
technique to find an estimate for ρ, denoted ρ′ = k partmod δ with ρ′ ≡ ρ (mod δ),
having expansion of length at most m + a + 3 [63, 154]. Under reasonable assumptions,
the algorithm will usually produce an estimate giving length at most m+1. For simplicity,
we will assume that the recodings obtained have this as an upper bound on length; small
adjustments are necessary to process longer representations. Under these assumptions and
properties of τ , scalars may be written k =

∑m
i=0 uiτ

i =
∑m

i=0 uiτ
−(m−i) since τ−i = τm−i

for all i.

77

4.4.1 Sequential algorithms for Koblitz curves

A traditional left-to-right τ -and-add method for (4.3) appears as [59, Alg 3.70], and is
essentially the left-hand portion of Algorithm 4.3. Precomputation consists of 2ω−2 − 1

multiples of the point P , each at a cost of approximately one point addition (see Table 4.1
for a summary of the computational effort associated to this phase).

Alternatively, we can process bits right-to-left and obtain a variant we shall denote as
[59, Alg 3.70]′ (an analogue of [59, Alg 3.91]). The multiple points of precomputation Pu

are exchanged for the same number of accumulators Qu along with postcomputation of
form

∑
αuQu. The cost of postcomputation is likely more than the precomputation of

the left-to-right variant; see Table 4.1 for a summary in the case where postcomputation
uses projective additions. However, if the accumulator in Algorithm 4.3 is in projective
coordinates, then the right-to-left variant has a less expensive evaluation phase since τ is
applied to points in affine coordinates.

4.4.2 Parallel algorithm for Koblitz curves

The basic strategy in our parallel algorithm is to reformulate the scalar multiplication in
terms of both the τ and the τ−1 operators as k =

∑m
i=0 uiτ

i = u0 + u1τ
1 + · · · + unτ

n +

un+1τ
−(m−n−1)+· · ·+um =

∑n
i=0 uiτ

i+
∑m

i=n+1 uiτ
−(m−i) where 0 < n < m. Algorithm 4.3

illustrates a parallel approach suitable for two processors. Although similar in structure
to Algorithm 4.2, a significant difference is the shared precomputation rather than the
pre and postcomputation required in Algorithm 4.2.

The scalar representation is given by Solinas [63] and hence has an expected m/(ω+1)

point additions in the evaluation-stage, and an extra point addition at the end. There
are also approximately m applications of τ or its inverse. If the field representation is
such that these operators have similar cost or are sufficiently inexpensive relative to field
multiplication, then the evaluation stage can be a factor 2 faster than a corresponding
non-parallel algorithm.

As discussed before, unlike the ordinary width-ω NAF, the τ -adic version requires a
relatively expensive calculation to find a short ρ with ρ ≡ k (mod δ). Hence, (a portion
of) the precomputation is “free” in the sense that it occurs during scalar recoding. This can
encourage the use of a larger window size ω. The essential features exploited by Algorithm
4.3 are that the scalar can be efficiently represented in terms of the Frobenius map and
that the map and its inverse can be efficiently computed, and hence the algorithm adapts
to curves defined over small fields.

Algorithm 4.3 is attractive in the sense that two processors are directly supported
without “extra” computations. However, if multiple applications of the “doubling step” are
sufficiently inexpensive, then more processors and additional curves can be accommodated

78

Algorithm 4.3 ωτNAF scalar multiplication: parallel
Input: ω, k ∈ [1, r − 1], P ∈ Ea(F2m) of order r, constant n (e.g., from Table 4.1(b))
Output: kP
1: ρ← k partmod δ
2:
∑l−1

i=0 uiτ
i ← ωτNAF(ρ)

3: Pu = αuP ,
for u ∈ {1, 3, 5, . . . , 2ω−1 − 1}

{Barrier}

4: Q0 ← O
5: for i = n downto 0 do
6: Q0 ← τQ0

7: if ui = αj then
8: Q0 ← Q0 + Pj

9: else if ui = −αj then
10: Q0 ← Q0 − Pj

11: end if
12: end for

13: Q1 ← O
14: for i = n+ 1 to m do
15: Q1 ← τ−1Q1

16: if ui = αj then
17: Q1 ← Q1 + Pj

18: else if ui = −αj then
19: Q1 ← Q1 − Pj

20: end if
21: end for

{Barrier}

22: return Q← Q0 +Q1

in a straightforward fashion without sacrificing the high-level parallelism of Algorithm 4.3.
As an example for Koblitz curves, a variant of Algorithm 4.3 discards the applications of
τ−1 (which may be more expensive than τ) and finds kP = k1(τ jP)+k0P = τ j(k1P)+k0P

for suitable ki and j ≈ m/2 with traditional methods to calculate kiP . The application
of τ j is low cost if there is storage for a per-field matrix as it was first discussed in [144].

4.5 Experimental results

We consider example fields F2m for m ∈ {233, 251, 409}. These were chosen to address
112-bit and 192-bit security levels, according to the NIST recommendation, and the 251-
bit binary Edwards elliptic curve presented in [61]. The field F2233 was also chosen as
more likely to expose any overhead penalty in the parallelization compared with larger
fields from NIST. Our C library coded all the algorithms using the GNU C 4.6 (GCC)
and Intel 12 (ICC) compilers, and the timings were obtained on a 3.326GHz 32nm Intel
Westmere processor i5 660.

Obtaining times useful for comparison across similar systems can be problematic. In-
tel, for example, introduced “Pentium 4" processors that were fundamentally different
than earlier designs with the same name. The common method via time stamp counter
(TSC) requires care on recent processors having “turbo" modes that increase the clock
(on perhaps 1 of 2 cores) over the nominal clock implicit in TSC, giving an underesti-
mate of actual cycles consumed. Benchmarking guidelines on eBACS [90], for example,

79

Table 4.2: Timings in clock cycles for field arithmetic operations. “op/M ” denotes ratio
to multiplication obtained from ICC.

Base field F2233 F2251 F2409

operation GCC ICC op/M GCC ICC op/M GCC ICC op/M

Multiplication 128 128 1.00 161 159 1.00 345 348 1.00
López-Dahab Mult. 256 367 2.87 338 429 2.70 637 761 2.19
Square root 67 60 0.47 155 144 0.91 59 56 0.16
Squaring 30 35 0.27 56 59 0.37 44 49 0.14
Half trace 167 150 1.17 219 212 1.33 322 320 0.92
Multi-Squaring 191 184 1.44 195 209 1.31 460 475 1.36
Inversion 2,951 2,914 22.77 3,710 3,878 24.39 9,241 9,350 26.87
4-τNAF 9,074 11,249 87.88 - - - 23,783 26,633 76.53
3-NAF 5,088 5,059 39.52 - - - 13,329 14,373 41.30
4-NAF 4,280 4,198 32.80 - - - 11,406 12,128 34.85
Recoding (halving) 1,543 1,509 11.79 - - - 3,382 3,087 8.87
Recoding (parallel) 999 1,043 8.15 - - - 2,272 2,188 6.29

recommend disabling such modes, and this is the method followed in this paper.

Timings for field arithmetic appear in Table 4.2. The López-Dahab multiplier de-
scribed in [88] was implemented as a baseline to quantify the speedup due to the native
multiplier. For the most part, timings for GCC and ICC are similar, although López-
Dahab multiplication is an exception. The difference in multiplication times between
F2233 = F2[z]/(z

233+z74+1) and F2251 = F2[z]/(z
251+z7+z4+z2+1) is in reduction. The

relatively expensive square root in F2251 is due to the representation chosen; if square roots
are of interest, then there are reduction polynomials giving faster square root and similar
numbers for other operations. Inversion via exponentiation (§4.2) gives I/M similar to
that in [88] where an Euclidean algorithm variant was used with similar hardware but
without the carry-less multiplier.

Table 4.4 shows timings obtained for different variants of sequential and parallel scalar
multiplication. We observe that for ωNAF recoding with ω = 3, 4, the halve-and-add
algorithm is always faster than its double-and-add counterpart. This performance is a
direct consequence of the timings reported in Table 4.3, where the cost of one point
doubling is roughly 5.5 and 4.8 multiplications whereas the cost of a point halving is of
only 3.3 and 2.5 multiplications in the fields F2233 and F2409 , respectively. The parallel
version that concurrently executes these algorithms in two threads computes one scalar
multiplication with a latency that is roughly 37.7% and 37.0% smaller than that of the
halve-and-add algorithm for the curves B-233 and B-409, respectively.

The bold entries for Koblitz curves identify fastest timings per category (i.e., consid-
ering the compiler, curve, and the specific value of ω used in the ωNAF recoding). For
smaller ω, [59, Alg 3.70]′ has an edge over [59, Alg 3.70] because τ is applied to points in
affine coordinates; this advantage diminishes with increasing ω due to postcomputation

80

Table 4.3: Timings in clock cycles for curve arithmetic operations. “op/M ” denotes ratio
to multiplication obtained from ICC.

Elliptic curve B-233 B-409
operations GCC ICC op/M GCC ICC op/M

Doubling (LD) 690 710 5.55 1,641 1,655 4.76
Addition (KIM Mixed) 1,194 1,171 9.15 2,987 3,000 8.62
Addition (LD Mixed) 1,243 1,233 9.63 3,072 3,079 8.85
Addition (LD General) 1,954 1,961 15.32 4,893 4,922 14.14
Halving 439 417 3.26 894 878 2.52

Table 4.4: Timings in 103 clock cycles for scalar multiplication in the unknown-point
scenario.

Scalar mult B-233 B-409
ω random curves GCC ICC GCC ICC

Double-and-add 240 238 984 989
3 Halve-and-add 196 192 755 756

(Dbl,Halve)-and-add 122 118 465 466

Double-and-add 231 229 941 944
4 Halve-and-add 188 182 706 705

(Dbl,Halve)-and-add 122 116 444 445

Side-channel resistant CURVE2251
scalar multiplication GCC ICC
Montgomery laddering 296 282

Scalar mult K-233 K-409
ω Koblitz curves GCC ICC GCC ICC

[59, Alg 3.70] 111 110 413 416
3 [59, Alg 3.70]′ 98 98 381 389

(τ, τ)-and-add 73 74 248 248
Alg. 4.3 80 78 253 248

[59, Alg 3.70] 97 95 353 355
4 [59, Alg 3.70]′ 90 89 332 339

(τ, τ)-and-add 68 65 216 214
Alg. 4.3 73 69 218 214

[59, Alg 3.70] 92 90 326 328
5 [59, Alg 3.70]′ 95 93 321 332

(τ, τ)-and-add 63 58 197 191
Alg. 4.3 68 63 197 194

81

cost. “(τ, τ)-and-add” denotes the parallel variant described in §4.4.2. There is a storage
penalty for a linear map, but applications of τ−1 are eliminated (of interest when τ is
significantly less expensive). Given the modest cost of the multi-squaring operation (with
an equivalent cost of less than 1.44 field multiplications, see Table 4.2), the (τ, τ)-and-
add parallel variant is usually faster than Algorithm 4.3. When using ω = 5, the parallel
(τ, τ)-and-add algorithm computes one scalar multiplication with a latency that is roughly
35.5% and 40.5% smaller than that of the best sequential algorithm for the curves K-233
and K-409, respectively.

Per-field storage and coding techniques compute half-trace at cost comparable to field
multiplication, and methods based on halving continue to be fastest for suitable random
curves. However, the hardware multiplier and squaring (via shuffle) give a factor 2 advan-
tage to Koblitz curves in the examples from NIST. This is larger than in [62, 59], where a
32-bit processor in the same general family as the i5 has half-trace at approximately half
the cost of a field multiplication for B-233 and a factor 1.7 advantage to K-163 over B-163
(and the factor would have been smaller for K-233 and B-233). It is worth remarking that
the parallel scalar multiplications versions shown in Table 4.4 look best for bigger curves
and larger ω.

4.6 Conclusion and future work

In this work we achieve the fastest timings reported in the open literature for software
computation of scalar multiplication in NIST and Edwards binary elliptic curves defined
at the 112-bit, 128-bit and 192-bit security levels. The fastest curve implemented, namely
NIST K-233, can compute one scalar multiplication in less than 17.5µs, a result that is not
only much faster than previous software implementations of that curve, but is also quite
competitive with the computation time achieved by state-of-the-art hardware accelerators
working on similar or smaller curves [155, 144].

These fast timings were obtained through the usage of the native carry-less multiplier
available in the newest Intel processors. At the same time, we strive to use the best
algorithmic techniques, and the most efficient elliptic curve and finite field arithmetic
formulae. Further, we proposed effective parallel formulations of scalar multiplication
algorithms suitable for deployment in multi-core platforms.

The curves over binary fields permit relatively elegant parallelization with low syn-
chronization cost, mainly due to the efficient halving or τ−1 operations. Parallelizing at
lower levels in the arithmetic would be desirable, especially for curves over prime fields.
Grabher et al. [96] apply parallelization for extension field multiplication, but times for a
base field multiplication in a 256-bit prime field are relatively slow compared with Beuchat
et al. [99]. On the other hand, a strategy that applies to all curves performs point doubles

82

in one thread and point additions in another. The doubling thread stores intermediate
values corresponding to nonzero digits of the NAF; the addition thread processes these
points as they become available. Experimentally, synchronization cost is low, but so is
the expected acceleration. Against the fastest times in Longa and Gebotys [21] for a
curve over a 256-bit prime field, the technique would offer roughly 17% improvement, a
disappointing return on processor investment.

The new native support for binary field multiplication allowed our implementation to
improve by 10% the previous speed record for side-channel resistant scalar multiplication
in random elliptic curves. It is hard to predict what will be the superior strategy be-
tween a conventional non-bitsliced or a bitsliced implementation on future revisions of
the target platform: the latency of the carry-less multiplier instruction has clear room for
improvement, while the new AVX instruction set has 256-bit registers. An issue with the
current Sandy Bridge version of AVX is that xor throughput for operations with register
operands was decreased significantly from 3 operations per cycle in SSE to 1 operation
per cycle in AVX. The resulting performance of a bitsliced implementation will ultimately
rely on the amount of work which can be scheduled to be done mostly in registers.

Acknowledgments

We wish to thank the University of Waterloo and especially Professor Alfred Menezes for
useful discussions related to this work during a visit by three of the authors, where the
idea of this project was discussed, planned and a portion of the development phase was
done. Diego F. Aranha and Julio López thank CNPq, CAPES and FAPESP for financial
support.

83

Chapter 5

High-speed Parallel Software

Implementation of the ηT Pairing

Diego F. Aranha, Julio López and Darrel Hankerson

Abstract

We describe a high-speed software implementation of the ηT pairing over binary super-
singular curves at the 128-bit security level. This implementation explores two types of
parallelism found in modern multi-core platforms: vector instructions and multiprocess-
ing. We first introduce novel techniques for implementing arithmetic in binary fields with
vector instructions. We then devise a new parallelization of Miller’s Algorithm to com-
pute pairings. This parallelization provides an algorithm for pairing computation without
increasing storage costs significantly. The combination of these acceleration techniques
produce serial timings at least 24% faster and parallel timings 66% faster than the best
previous result in an Intel Core platform, establishing a new state-of-the-art implementa-
tion of this pairing instantiation in this platform.

Publication

This work was originally published in the Proceedings of the Cryptographers’ Track at
the RSA Conference (CT-RSA 2010) available at http://www.springer.com/computer/
security+and+cryptology/book/978-3-642-11924-8. c©2010 Springer-Verlag

85

5.1 Introduction

The computation of bilinear pairings is the most expensive operation in Pairing-based
Cryptography, especially for high levels of security. For this reason, implementations must
employ all the resources found in the target platform to obtain maximum efficiency. A
resource being increasingly introduced in computing platforms is parallelism, in the form
of vector instructions (data parallelism) and multiprocessing (task parallelism). This
trend is observed even in the embedded space, with proposals of resource-constrained
multi-core architectures and vector instruction sets for multimedia processing in portable
devices.

This work describes a high-performance implementation of the ηT pairing [1] over
binary supersingular curves at the 128-bit security level which employs these two forms of
parallelism in a very efficient way. The target platform is the Intel Core architecture [30],
the most popular 64-bit computing platform. Our main contributions are:

• Novel techniques for implementing arithmetic in binary fields: we explore powerful
SIMD instructions to accelerate arithmetic in binary fields. We focus on the SSE
family of vector instructions, but the same techniques can be employed with other
SIMD instruction sets such as Altivec and the upcoming AMD SSE5.

• Parallelization of Miller’s Algorithm to compute pairings: we develop a simple algo-
rithm for parallel pairing computation which does not increase storage costs. Our
parallelization is independent of the underlying pairing instantiation, allowing a
parallel implementation to reach scalability in a variable number of processors un-
related to the pairing mathematical definition. This parallelization provides good
scalability in fields of small characteristic.

• Static load balancing technique: we present a simple technique to balance the costs
of parallel pairing computation between the available processing units. The tech-
nique is successfully applied for latency minimization, but its flexibility allows the
implementation to determine controlled non-optimal partitions of the algorithm.

• Experimental results: speedups of parallel implementations over serial implemen-
tations are estimated and experimentally verified for platforms up to 8 processors.
We also obtain an approximation of the performance up to 32 processing units and
compare our serial and parallel execution times with the current state-of-the-art
implementations with the same parameters.

The results of this work can improve serial and parallel implementations of pairings.
The parallelization may be important to reduce the latency of pairing computation in two

86

scenarios: (i) desktop-class processors running real-time applications with strict response
time requirements; (ii) embedded multiprocessor architectures with weak processing units.
The availability of parallel algorithms for application in these scenarios is suggested as an
open problem by [96] and [67]. Our features of flexible load balancing and small storage
overhead are critical for the second scenario, because they can support static scheduling
schemes for compromises between pairing computation time and power consumption; and
memory capacity is commonly restricted in embedded devices.

5.2 Finite Field Arithmetic

In this section we will represent the elements of F2m using a polynomial basis. Let f(z)
be an irreducible binary polynomial of degree m. The elements of F2m are the binary
polynomials of degree at most m−1. A field element a(z) =

∑m−1
i=0 aiz

i is associated with
the binary vector a = (am−1, . . . , a1, a0) of length m. In a software implementation, these
bit coefficients are packed and stored in an array (a[0], . . . , a[n − 1]) of n W -bit words,
where W is the word size of the processor. For simplicity, we assume that n is always
even.

5.2.1 Vector Instruction Sets

Vector instructions, also called SIMD (Single Instruction, Multiple Data) because they
operate in several data objects simultaneously, are widely supported in recent families
of processor architectures. The number, functionality and efficiency of these instructions
have been improved with each new generation of processors, and natural applications in-
clude multimedia processing, scientific applications or any software with high arithmetic
density. Some well-known SIMD instruction sets are the Intel MMX and SSE [50] families,
the Altivec extensions introduced by Apple and IBM in the Power architecture specifica-
tion and AMD 3DNow. Instruction sets supported by current technology are restricted to
128-bit registers and provide simple orthogonal operations across 8, 16, 32 or 64-bit data
units stored inside these registers, but future extensions such as Intel AVX and AMD
SSE5 will support 256-bits registers with the added inclusion of a heavily-anticipated
carry-less multiplier [87].

The Intel Core microarchitecture is equipped with several vector instruction sets which
operate in 16 architectural 128-bit registers. A small subset of these instructions can be
used to implement binary field arithmetic, some found in the Streaming SIMD Extensions
2 (SSE2) and others in the Supplementary SSE3 instructions (SSSE3). The SSE2 instruc-
tion set is also supported by the recent VIA Nano processors, AMD processors since the
K8 family and Intel processors since the Pentium 4.

87

A non-exhaustive list of SSE2 instructions relevant for our work is given below. Each
instruction described will be referred in the algorithms by the short mnemonic which
follows the instruction opcode:

• MOVDQU/MOVDQA (load/store): implements load/store between unaligned/ aligned
memory addresses and registers. In our implementation, all allocated memory is
stored in 128-bit aligned base addresses so that the faster MOVDQA instruction can
always be used.

• PSLLQ/PSRLQ (≪∤8,≫∤8): implements bitwise left/right shifts of a pair of 64-bit
integers while shifting in zero bits. This instruction does not propagate bits from the
lower 64-bit integer to the higher 64-bit integer, thus additional shifts and additions
are required to implement bitwise shifts of 128-bit values.

• PSLLDQ/PRLLDQ (≪8,≫8): implements byte-wise left/right shifts of a 128-bit regis-
ter. Since this instruction propagates bytes from the lower half to the higher half of
a 128-bit register, this instruction is preferred over the previous one when the shift
amount is a multiple of 8. Thus shifts by multiples of 8 bits should be used whenever
possible. The latency of this instruction is 2 cycles in the first generation of Core 2
Conroe/Merom (65nm) processors and 1 cycle in the more recent Penryn/Wolfdale
(45nm) microarchitecture.

• PXOR/PAND/POR (⊕,∧,∨): implements bitwise XOR/AND/OR of two 128-bit reg-
isters. These instructions have a high throughput, reaching 3 instructions per cycle
when the operands are registers and there are no dependencies between consecutive
operations.

• PUNPCKLBW/PUNPCKHBW (interlo/interhi): interleaves the lower/higher bytes in a
register with the lower/higher bytes of another register.

We also find application for powerful but often-missed SSSE3 instructions:

• PALIGNR (⊳): takes registers ra and rb, concatenate their values, and pull out a 128-
bit section from an offset given by a constant immediate; in other words, implements
a right byte-wise shift with propagation of shifted out bytes from ra to rb. This
instruction can be used to implement a left shift by s bytes with the immediate
(16− s).

• PSHUFB (lookup or shuffle depending on functionality): takes registers of bytes
ra = a0, a1, . . . , a15 and rb = b0, b1, . . . , b15 and replaces ra with the permutation
ab0 , ab1 , . . . , ab15 ; except that it replaces ai with zero if the most significant bit of bi

88

is set. A powerful use of this instruction is to perform 16 simultaneous lookups in
a 16-byte lookup table. This can be easily done by storing the lookup table in ra
and the lookup indexes in rb. Intel introduced a specific Super Shuffle Engine in
the latest microarchitecture to reduce the latency of this instruction from 3 cycles
to 1 cycle.

Alternate vector instruction sets present functional analogues of these instructions. In
particular, the PSHUFB permutation instruction is implemented as VPERM in Altivec and
as PPERM in SSE5, although the PPERM instruction is reportedly more powerful as it can
also operate at bit level. SIMD instructions are critical for the performance of binary
field arithmetic and can be easily accessed with compiler intrinsics. In the remainder of
this section, the optimization techniques applied during the implementation of each field
operation are detailed. We will describe algorithms in terms of vector operations using
the mnemonics defined above so that algorithms can be easily transcribed to other target
platforms. Specific instruction choices based on latency or functionality will be focused
on the SSE family.

5.2.2 Squaring

Since the square of a finite field element a(z) ∈ F2m is given by a(z)2 =
∑m−1

i=0 aiz
2i =

am−1z
2m−2+ · · ·+a2z4+a1z2+a0, the binary representation of a(z)2 can be computed by

inserting a zero bit between each pair of consecutive bits on the binary representation of
a(z). This operation can be accelerated by introducing a lookup table as discussed in [59].
This method can be improved further if the table lookups can be executed simultaneously.
This way, for an implementation which processes 4 bits per iteration, squaring can be
implemented mainly in terms of permutation instructions which convert groups of 4 bits
(nibbles) to the corresponding expanded bytes. The proposed optimization is shown in
Algorithm 5.1. The algorithm receives a field element a stored in a vector of n 64-bit
words (or n

2
128-bit values) and expands the input into a double-precision vector t which

can be reduced modulo f(z). At each iteration of this algorithm, a 128-bit value a[2i] is
loaded from memory and separated by a bit mask into two registers containing the low
nibbles (aL) and the high nibbles (aH). Each group of nibbles is then expanded from 4 bits
to 8 bits by a parallel table lookup. The proper order of bytes is restored by interleaving
instructions which pick alternately the lower or higher bytes of aL or aH to form two
consecutive 128-bit values (t[2i], t[2i+ 1]) produced as the result.

89

Algorithm 5.1 Proposed implementation of squaring in F2m .
Input: a(z) = a[0..n− 1].
Output: c(z) = c[0..n−1] = a(z)2 mod f(z).

1: ⊲ Store in table the squares u(z)2 of all 4-bit polynomials u(z).
2: table← 0x5554515045444140,0x1514111005040100

3: mask ← 0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F

4: for i← 0 to n
2 − 1 do

5: a0 ←load(a[2i])
6: aL ← a0 ∧mask, aL ←lookup(table, aL)
7: aH ← a0 ≫∤8 4, aH ← aH ∧mask, aH ←lookup(table, aH)
8: t[2i]←store(interlo(aL, aH)), t[2i+ 1]←store(interhi(aL, aH))
9: end for

10: return c = t mod f(z)

5.2.3 Square Root

Given an element a(z) ∈ F2m , the field element c(z) such that c(z)2 = a(z) mod f(z) can
be computed by c(z) = aeven+

√
z ·aodd mod f(z), where aeven represents the concatenation

of even coefficients of a(z), aodd represents the concatenation of odd coefficients of a(z)
and
√
z is a constant depending on the irreducible polynomial f(z) [62]. When f(z) is a

suitable trinomial f(z) = zm + zt + 1 with odd exponents m, t,
√
z has the sparse form√

z = z
m+1

2 + z
t+1
2 and multiplication by this constant can be computed with shifts and

additions only.
This algorithm can also be implemented with simultaneous table lookups. Algo-

rithm 5.2 presents our implementation of this method with vector instructions. The
algorithm processes 128 bits of a in each iteration and progressively separates the coeffi-
cients of a[2i] in even or odd coefficients. First, a permutation mask is used to divide a[2i]
in bytes of odd index and bytes of even index. The bytes with even indexes are stored in
the lower 64-bit part of a0 and the bytes with odd indexes are stored in the higher 64-bit
part of a0. The high and low nibbles of a0 are then divided into aL and aH and additional
lookup tables are applied to further separate the bits of aL and aH into bits with odd and
even indexes. At the end of the 128-bit section, a0 stores the interleaving of odd and even
coefficients of a packed into groups of 4 bits. The remaining instructions in the 128-bit
section separate the even and odd coefficients into u and v, which can be reordered and
multiplied by

√
z inside the 64-bit section. We implement these final steps in 64-bit mode

to avoid expensive shifts in 128-bit registers.

5.2.4 Multiplication

Two different strategies are commonly considered for the implementation of multiplication
in F2m . The first one consists in applying the Karatsuba algorithm [121] to divide the

90

Algorithm 5.2 Proposed implementation of square root in F2m .
Input: a(z) = a[0..n− 1], exponents m and t of trinomial f(z).

Output: c(z) = c[0..n−1] = a(z)
1
2 mod f(z).

1: ⊲ Permutation mask to divide a 128-bit value in bytes with odd and even indexes.
2: perm← 0x0F0D0B0907050301,0x0E0C0A0806040200

3: ⊲ Tables to divide a low/high nibble in bits with odd and even indexes.
4: sqrtL ← 0x3332232231302120,0x1312030211100100

5: ⊲ Table to divide a high nibble in bits with odd and even indexes (sqrtL ≪ 2).
6: sqrtH ← 0xCCC88C88C4C08480,0x4C480C0844400400

7: ⊲ Bit masks to isolate bytes in lower or higher nibbles.
8: maskL ← 0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F

9: maskH ← 0xF0F0F0F0F0F0F0F0,0xF0F0F0F0F0F0F0F0

10: c[0 . . . n− 1]← 0, h← n+1
2 , l← t+1

128 , s1 ← m+1
2 mod 64, s2 ← t+1

2 mod 64
11: for i← 0 to n

2 − 1 do
12: a0 ←load(a[2i]), a0 ←shuffle(a0, perm)
13: aL ← a0 ∧maskL, aL ←lookup(sqrtL, aL),
14: aH ← a0 ∧maskH , aH ← aH ≫∤8 4, aH ←lookup(sqrtH , aH)
15: a0 ← aL ∨ aH , aL ← a0 ∧maskL, aH ← a0 ∧maskH
16: u← store(aL), v ← store(aH)
17: ⊲ From now on, operate in 64-bit registers.
18: aeven ← u[0] ∨ u[1]≪ 4, aodd ← v[1] ∨ v[0]≫ 4
19: c[i]← c[i]⊕ aeven
20: c[i+ h− 1]← c[h+ i− 1]⊕ (aodd ≪ s1)
21: c[i+ h]← c[h+ i]⊕ (aodd ≫ (64− s1))
22: c[i+ l]← c[i+ l]⊕ (aodd ≪ s2)
23: c[i+ l + 1]← c[i+ l + 1]⊕ (aodd ≫ (64− s2))
24: end for
25: return c

multiplication in sub-problems and solve each problem independently [59] (for a(z) =

A1z
⌈m/2⌉ + A0 and b(z) = B1z

⌈m/2⌉ +B0):

c(z) = a(z) · b(z) = A1B1z
m + [(A1 + A0)(B1 +B0) + A1B1 + A0B0]z

⌈m/2⌉ + A0B0.

The second one consists in applying a direct algorithm like the comb method proposed
by López and Dahab in [27]. Conventionally, the series of additions involved in this
method are implemented through additions over sub parts of a double-precision vector.
In order to reduce the number of memory accesses during these additions, we employ
n registers. These registers simulate the series of memory additions by accumulating
consecutive writes, allowing the implementation to reach maximum XOR throughput. We
also employ an additional table T1 analogue to T0 which stores u(z)·(b(z)≪ 4) to eliminate
shifts by 4, as discussed in [27]. Recall that shifts by multiples of 8 bits are faster in the
target platform. We assume that the length of operand b[0..n− 1] is at most 64n− 7 bits;

91

if necessary, terms of higher degree can be processed separately at relatively low cost.
The implemented LD multiplication algorithm is shown as Algorithm 5.3. The element
a(z) is processed in groups of 8 bits separated by intervals of 128 bits. This avoids shifts
of the register vector since a 128-bit shift can be emulated by referencing mi+1 instead of
mi. The multiple precision shift by 8 bits of the register vector (⊳8) is implemented with
15-byte shifts with carry propagation (⊳) of register pairs.

Algorithm 5.3 LD multiplication implemented with n 128-bit registers.
Input: a(z) = a[0..n− 1], b(z) = b[0..n− 1].
Output: c(z) = c[0..n− 1].
Note: mi denotes the vector of n

2 128-bit registers (r(i−1+n/2), . . . , ri).

1: Compute T0(u) = u(z) · b(z), T1(u) = u(z) · (b(z)≪ 4) for all u(z) of degree < 4.
2: (rn−1 . . . , r0)← 0
3: for k ← 56 downto 0 by 8 do
4: for j ← 1 to n− 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: Let v = (v3, v2, v1, v0), where vt is bit (k + t+ 4) of a[j].
7: m(j−1)/2 ← m(j−1)/2 ⊕ T0(u)
8: m(j−1)/2 ← m(j−1)/2 ⊕ T1(v)
9: end for

10: (rn−1 . . . , r0)← (rn−1 . . . , r0)⊳ 8
11: end for
12: for k ← 56 downto 0 by 8 do
13: for j ← 0 to n− 2 by 2 do
14: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
15: Let v = (v3, v2, v1, v0), where vt is bit (k + t+ 4) of a[j].
16: mj/2 ← mj/2 ⊕ T0(u)
17: mj/2 ← mj/2 ⊕ T1(v)
18: end for
19: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0)⊳ 8
20: end for
21: return c = (rn−1 . . . , r0) mod f(z)

5.2.5 Modular Reduction

Efficient modular reduction depends on the format of the trinomial or pentanomial f(z).
In general, it’s better to choose f(z) such that bitwise shifts amounts are multiples of
8 bits. If the non-null coefficients of f(z) are located in the lower words of the array
representation of f(z), consecutive writes into memory can also be accumulated into reg-
isters to avoid redundant memory writes. We illustrate these optimizations with modular
reduction by f(z) = z1223 + z255 + 1 in Algorithm 5.4. The algorithm receives as input a

92

vector of n 128-bit elements and reduces this vector by accumulating four memory writes
at a time in registers. Note also that shifts by multiples of 8 bits are used whenever
possible.

Algorithm 5.4 Proposed modular reduction by f(z) = z1223 + z255 + 1.
Input: t(z) = t[0..n− 1] (vector of 128-bit elements).
Output: c(z) mod f(z) = c[0..n− 1].
Note: The accumulate function R(r3, r2, r1, r0, t) executes:

s← t≫∤8 7, r3 ← t≪∤8 57
r3 ← r3 ⊕ (s≪8 64)
r2 ← r2 ⊕ (s≫8 64)
r1 ← r1 ⊕ (t≪8 56)
r0 ← r0 ⊕ (t≫8 72)

1: r0, r1, r2, r3 ← 0
2: for i← 19 downto 15 by 4 do
3: R(r3, r2, r1, r0, t[i]), t[i− 7]← t[i− 7]⊕ r0
4: R(r0, r3, r2, r1, t[i− 1]), t[i− 8]← t[i− 8]⊕ r1
5: R(r1, r0, r3, r2, t[i− 2]), t[i− 9]← t[i− 9]⊕ r2
6: R(r2, r1, r0, r3, t[i− 3]), t[i− 10]← t[i− 10]⊕ r3
7: end for
8: R(r3, r2, r1, r0, t[11]), t[4]← t[4]⊕ r0
9: R(r0, r3, r2, r1, t[10]), t[3]← t[3]⊕ r1

10: t[2]← t[2]⊕ r2, t[1]← t[1]⊕ r3, t[0]← t[0]⊕ r0
11: r0 ← m[9]≫8 64, r0 ← r0 ≫∤8 7, t[0]← t[0]⊕ r0
12: r1 ← r0 ≪8 64, r1 ← r1 ≪∤8 63, t[1]← t[1]⊕ r1
13: r1 ← r0 ≫∤8 1, t[2]← t[2]⊕ r1
14: for i← 0 to 9 do c[2i]← store(t[i])
15: c[19]← c[19] ∧ 0x7F

16: return c

5.2.6 Inversion

For inversion in F2m we implemented a variant of the Extended Euclidean Algorithm for
polynomials [59] where the length of each temporary vector is tracked. Since this algorithm
requires flexible left shifts by arbitrary amounts, we implemented the full algorithm in
64-bit mode. Some Assembly in the form of a compiler intrinsic was used to efficiently
count the number of leading 0 bits to determine the highest set bit.

93

Table 5.1: Comparison of different software implementations of finite field arithmetic
in two Intel Core 2 platforms. All timings are reported in cycles. Improvements are
computed in comparison with the previous fastest result in a 65nm platform, since the
related works do not present timings for field operations in a 45nm platform.

Operation

Implementation a2 mod f a
1
2 mod f a · b mod f a−1 mod f

Hankerson et al. [67] 600 500 8200 162000
Beuchat et al. [98] 480 749 5438 –
This work (Core 2 65nm) 160 166 4030 149763
Improvement 66.7% 66.8% 25.9% 7.6%

This work (Core 2 45nm) 108 140 3785 149589

5.2.7 Implementation Timings

In this section, we present our timings for finite field arithmetic. We implemented arith-
metic in F21223 with irreducible trinomial f(z) = z1223 + z255 + 1. This field is suitable for
instantiations of the ηT pairing over supersingular binary curves at the 128-bit security
level [67]. The C programming language was used in conjunction with compiler intrinsics
for accessing vector instructions. The chosen compiler was GCC version 4.1.2 because it
generated the fastest code from vector intrinsics, as already observed by [67]. The differ-
ences between our implementations in the 65nm and 45nm processors can be explained
by the lower cost of the PSLLDQ and PSHUFB instructions in the newer generation after the
introduction of the Super Shuffle Engine by Intel.

Field multiplication was implemented by a combination of one instance of Karatsuba
and the LD method depicted as Algorithm 5.3. Karatsuba’s splitting point was at 632 bits
and the divide-and-conquer steps were also implemented with vector instructions. Note
that our binary field multiplier precomputes two tables of 16 rows, while the multiplier
implemented in [67] precomputes a single table. This increase in memory consumption is
negligible when compared to the total memory capacity of the target platform.

5.3 Pairing Computation

Miller’s Algorithm for pairing computation requires a rich mathematical framework. We
briefly present some definitions and point the reader to more complete treatments of the
subject presented in [22, 23].

94

5.3.1 Preliminary Definitions

An admissible bilinear pairing is an efficiently computable map e : G1 × G2 → GT ,
where G1 and G2 are additive groups of points in an elliptic curve E and GT is a related
multiplicative group. Let P,Q be r-torsion points. The computation of a bilinear pairing
e(P,Q) requires the construction and evaluation of a function fr,P such that div(fr,P) =
r(P) − r(O) at a divisor D which is equivalent to (Q) − (O). Miller constructs fr,P in
stages by using a double-and-add method [58]. Let gU,V : E(Fqk) → Fqk be the line
equation through points U and V . If U = V , the line gU,V is the tangent to the curve at
U . If V = −U , the line gU is the shorthand for gU,−U . A Miller function is any function
fc,P with divisor div(fc,P) = c(P) − (cP) − (c − 1)(O), c ∈ Z. The following property is
true for all integers a, b ∈ Z [23, Theorem 2]:

fa+b,P (D) = fa,P (D) · fb,P (D) ·
gaP,bP (D)
g(a+b)P (D)

. (5.1)

Direct corollaries are:

(i) f1,P (D) = 1.

(ii) fa,P (D) = fa−1,P (D) · g(a−1)P,P (D)

gaP (D)
.

(iii) f2a,P (D) = fa,P (D)2 · gaP,aP (D)

g2aP (D)
.

Miller’s Algorithm is depicted in Algorithm 5.5. The work by Barreto et al. [23]
later showed how to use the final exponentiation of the Tate pairing to eliminate the
denominators involved in the algorithm and to evaluate fr,P at Q instead of the divisor D.
Additional optimizations published in the literature focus on minimizing the latency of the
Miller loop, that is, reduce the length of r while keeping its low Hamming weight [1, 2, 3].

5.3.2 Related Work

In this work, we are interested in parallel algorithms for pairing computation with no
static limits on scalability, or more precisely, algorithms in which the scalability is not
restricted by the mathematical definition of the pairing. Practical limits will always exist
when: (i) the communication cost is dominant; (ii) the cost of parallelization is higher
than the cost of computation.

Several works already developed parallel strategies for the computation of pairings
achieving mixed results. Grabher et al. [96] analyzes two approaches: parallel extension
field arithmetic, which gives good results but has a clear limit on scalability; a parallel

95

Algorithm 5.5 Miller’s Algorithm [58].

Input: r =
∑log2(r)

i=0 ri2
i, P , D = (Q+R)− (R)

Output: fr,P (D).
1: T ← P , f ← 1
2: for i = ⌊log2(r)⌋ − 1 downto 0 do

3: f ← f2 · gT,T (Q+R)g2T (R)
g2T (Q+R)gT,T (R)

4: T ← 2T
5: if ri = 1 then
6: f ← f · gT,P (Q+R)gT+P (R)

gT+P (Q+R)gT,P (R)

7: T ← T + P
8: end if
9: end for

10: return f

Miller loop strategy for two processors, where lines 3-4 for all iterations in Miller’s Al-
gorithm are precomputed by one processor and both processors compute in parallel the
iterations where ri = 1. Because r frequently has a low Hamming weight, this strat-
egy results in performance losses due to unbalanced computational costs between the
processors.

Mitsunari [156] observes that the different iterations of the algorithm can be computed
in parallel if the points T of different iterations are available and proposes a specialized
version of the ηT pairing over F3m for parallel execution in 2 processors. In this version,

all the values (xP
1
3
i
, yP

1
3
i
, xQ

3i, yQ
3i) used for line evaluation in the i-th iteration of the

algorithm are precomputed and the Miller loop iterations are divided in sets of the same
size. Hence load balancing is trivially achieved. Since the cost of cubing and cube root
computation is small, this approach achieves good speedups ranging from 1.61 to 1.76

at two different security levels. However, it requires significant storage overhead, since
4·(m+1

2
) field elements must be precomputed and stored. This approach is generalized and

extended in the work by Beuchat et al. [98], where results are presented for fields of char-
acteristic 2 and 3 at the 128-bit security level. For characteristic 2, the speedups achieved
by parallel execution reach 1.75, 2.53 and 2.57 for 2, 4, and 8 processors, respectively.
For characteristic 3, the speedups reach 1.65, 2.26 and 2.79, respectively. This paralleliza-
tion represents the current state-of-the-art in parallel implementations of cryptographic
pairings.

Cesena and Avanzi [157, 158] propose a technique to compute pairings over trace zero
varieties constructed from supersingular elliptic curves and extensions with degrees a = 3

or a = 5. This approach allows a pairing computation to be packed in a short parallel
Miller loops by the action of the a-th power of Frobenius. The problem with this approach
is again the scalability limit (restricted by the extension degree a). The speedup achieved

96

with parallel execution in 3 processors is 1.11 over a serial implementation of the ηT
pairing at the same security level [158].

5.3.3 Parallelization

In this section, a parallelization of Miller’s Algorithm is derived. This parallelization
can be used to accelerate serial pairing implementations or improve the scalability of
parallel approaches restricted by the pairing definition. This formulation is similar to the
parallelization presented by [156] and [98], but our method focuses on minimizing the
number of points needed for parallel executions of different iterations of the algorithm.
This allows us to eliminate the overhead of storing 4(m+1

2
) precomputed field elements.

Miller’s Algorithm computes fr,P in log2(r) iterations. For a parallel algorithm, we
must divide these log2(r) iterations between some number π of processors. To achieve
this, first we need a simple property of Miller functions [3, 24].

Lemma 5.3.1. Let P,Q be points on E(Fq), D ∼ (Q) − (∞) and fc,P denote a Miller

function. For all integers a, b ∈ Z, fa·b,P (D) = fb,P (D)a · fa,bP (D).
We need this property because Equation (5.1) just divides a Miller’s Algorithm in-

stance computed in log2(r) iterations in two instances computed in at least log2(r) − 1

iterations. If we could represent r as a product r0 ·r1, it would be possible to compute fr,P
in two instances of log2(r)

2
iterations. Since for some pairing instantiations, r is a prime

group order, we write r in the simple and flexible form 2wr1 + r0, with w ∼ log2(r)
2

. This
way, we can compute:

fr,P (D) = f2wr1+r0,P (D) = f2wr1,P (D) · fr0,P (D) ·
g(2wr1)P,r0P (D)

grP (D)
. (5.2)

The previous Lemma provides two choices to further develop f2wr1,P (D):
(i) f2wr1,P (D) = fr1,P (D)2

w · f2w,r1P (D).

(ii) f2wr1,P (D) = f2w,P (D)r1 · fr1,2wP (D).
The choice can be made based on efficiency: (i) compute w squarings in the extension
field F∗

qk
and a point multiplication by r1; (ii) compute an exponentiation to r1 in the

extension field and a point multiplication by 2w (or w repeated point doublings). In the
general case, the most efficient strategy will depend on the curve and embedding degree.
The higher the embedding degree, the higher the cost of exponentiation in the extension
field in comparison with point multiplication in the elliptic curve. If r has low Hamming
weight, the two strategies should have similar costs. We adopt the first strategy:

fr,P (D) = fr1,P (D)2
w · f2w,r1P (D) · fr0,P (D) ·

g(2wr1)P,r0P (D)
grP (D)

. (5.3)

97

This formula is clearly suitable for parallel execution in π = 3 processors, since each
Miller function can be computed in log2(r)

2
iterations. For our purposes, however, r will

have low Hamming weight and r0 will be very small. In this case, fr,P can be computed
by two Miller functions of approximately log2(r)

2
iterations. The parameter w can be

adjusted to balance the costs in both processors (w extension field squarings with a point
multiplication by r1).

This formula can also be applied recursively for fr1,P and f2w,r1P to develop a paral-
lelization suitable for any number of processors. Observe that π also does not have to be
a power of 2, because of the flexible way we write r to exploit parallelism. An important
detail is that a parallel implementation will only have significant speedups if the cost of
the Miller loop is dominant over the communication overhead or the parallelization over-
head. It is also important to note that the higher the number of processors, the higher
the number of squarings and the smaller the constants ri involved in point multiplication.
However, applying the formula recursively can increase the size of the integers which
multiply P , because they will be a product of ri constants. Thus, the scalability of this
algorithm for π processors depends on the cost of squarings in the extension field, the cost
of point multiplications by ri in the elliptic curve and the actual length of the Miller loop.
Fortunately, these parameters are constant and can be statically determined. If P is fixed
(a private key, for example), the multiples riP can also be precomputed and stored with
low storage overhead.

5.3.4 Parallel ηT Pairing

In this section, the performance gain of a parallel implementation of the ηT pairing over
a serial implementation is investigated following the analysis by [67].

Let E be a supersingular curve with embedding degree k = 4 defined over F2m with
equation E/F2m : y2 + y = x3 + x + b. The order of E is 2m + 1 ± 2

m+1
2 . A quartic

extension is built over F2m with basis {1, s, t, st}, where s2 = s + 1 and t2 = t + s. Let
P,Q ∈ E(F2m) be r-torsion points. An associated distortion map ψ from E(F2m)[r] to
E(F24m) is defined by ψ : (x, y)→ (x+ s2, y + sx+ t). For this family of curves, Barreto
et al. [1] defined the optimized ηT pairing:

ηT : E(F2m)[r]× E(F24m)[r]→ F∗
24m ,

ηT (P,Q) = fT ′,P ′(Q′)M , (5.4)

with Q′ = ψ(Q), T ′ = (−v)(2m−#E(F2m)), P ′ = (−v)P , M = (22m− 1)(2m +1± 2
m+1

2)

for a curve-dependent parameter v ∈ {−1, 1}.
At the 128-bit security level, the base field must have m = 1223 bits [67]. Let E1 be

the supersingular curve with embedding degree k = 4 defined over F21223 with equation

98

E1(F21223) : y
2 + y = x3 + x. The order of E1 is 5r = 21223 + 2612 + 1, where r is a 1221-

bit prime number. Applying the parallel form developed in Section 5.3.3, the pairing
computation can be decomposed in:

fT ′,P ′(Q′)M =

(
f2612−w,P ′(Q′)2

w · f2w,2612−wP ′(Q′) · g2612−wP ′,P ′(Q′)

gT ′P ′(Q′)

)M

.

Since squarings in F24m and point duplication in supersingular curves require only bi-
nary field squarings and these can be efficiently computed, the cost of parallelization is
low, but further improvements are possible. Barreto et al. [1] proposed a closed formula
for this pairing based on a reversed-loop approach with square roots which eliminates the
extension field squarings in Miller’s Algorithm. Beuchat et al. [79] encountered further
algorithmic improvements and proposed a slightly faster formula for the ηT pairing com-
putation. We can obtain a parallel algorithm directly from the parallel formula derived
above by excluding the involved extension field squarings and simply dividing the loop
iterations between the processors. This algorithm is shown as Algorithm 5.6. In this algo-
rithm, each processor i starts the loop from the wi counter, computing wi squarings/square
roots of overhead. Without extension field squarings to offset these operations, it makes
sense to assign processor 1 the first line evaluation and to increase the loop parts executed
by processors with small wi. The total overhead is smaller because extension field squar-
ings are not needed and point arithmetic in binary supersingular curves can be computed
with inexpensive squarings and square roots. Observe that the combining step can be
implemented in at least two different ways: (i) serial combining of results with (π − 1)

serial extension field multiplications executed in one processor; (ii) parallel logarithmic
combining of results with latency of ⌈log2(π)⌉ extension field multiplications. We adopt
the parallel strategy for efficiency.

5.3.5 Performance Analysis

Now we proceed with performance analysis of Algorithm 5.6. Processor 1 has an initializa-
tion cost of 3 multiplications and 2 squarings. Processor i has a parallelization cost of 2wi

squarings and 2wi square roots. Additional parallelization overhead is ⌈log2(π)⌉ extension
field multiplications to combine the results. A full extension field multiplication costs 9
field multiplications. Each iteration of the algorithm executes 2 square roots, 2 squarings,
1 field multiplication and 1 extension field multiplication. Exploring the sparsity of Gi,
this extension field multiplication costs 6 field multiplications. The final exponentiation
has a cost of 26 multiplications, 7 finite field squarings, 612 extension field squarings and
1 inversion. Each extension field squaring costs 4 finite field squarings [79].

Let m̃, s̃, r̃, ĩ be the cost of finite field operations: multiplication, squaring, square root
and inversion, respectively. For our efficient implementation of finite field F21223 in an

99

Intel Core 2 65nm processor, we have r̃ ≈ s̃, m̃ ≈ 25s̃ and ĩ ≈ 37m̃. From these ratios,
we will illustrate how to compute the optimal wi values which balance the computational
cost between processors. Let cπ(i) be the computational cost of a processor 0 < i ≤ π

while executing its portion of the parallel algorithm. For π = 2 processors:

c2(1) = (3m̃+ 2s̃) + (7m̃+ 4s̃)w2 = 80s̃+ (186s̃)w2

c2(2) = (4s̃)w2 + (7m̃+ 4s̃) (611− w2) .

Algorithm 5.6 Proposed parallelization of the ηT pairing (π processors).
Input: P = (xP , yP), Q = (xQ, yQ) ∈ E(F2m)[r], starting point wi for processor i.
Output: ηT (P,Q) ∈ F∗

24m .

1: yP ← yP + 1− δ
2: parallel section(processor i)
3: if i = 1 then
4: ui ← xP + α, vi ← xQ + α
5: g0i ← ui · vi + yP + yQ + β
6: g1i ← ui + xQ, g2i ← vi + x2P
7: Gi ← g0i + g1is+ t
8: Li ← (g0i + g2i) + (g1i + 1)s+ t
9: Fi ← Li ·Gi

10: else
11: Fi ← 1
12: end if
13: xQi ← (xQ)

2wi , yQi ← (yQ)
2wi

14: xP i ← (xP)
1

2wi , yP i ← (yP)
1

2wi

15: for j ← wi to wi+1 − 1 do
16: xP i ←

√
xP i, yP i ←

√
yP i, xQi ← xQ

2
i , yQi ← yQ

2
i

17: ui ← xP i + α, vi ← xQi + α
18: g0i ← ui · vi + yP i + yQi + β
19: g1i ← ui + xQi
20: Gi ← g0i + g1is+ t
21: Fi ← Fi ·Gi

22: end for
23: F ←

∏π
i=1 Fi

24: end parallel
25: return FM

Naturally, we always have w1 = 0 and wπ+1 = 611. Solving c2(1) = c2(2) for w2, we can
obtain the optimal w2 = 309. For π = 4 processors, we solve c4(1) = c4(2) = c4(3) = c4(4)

to obtain w2 = 158, w3 = 312, w4 = 463. Observe that by solving a simple system of
equations it is always possible to balance the computational cost between the processors.
Furthermore, the latency of the Miller loop will always be equal to cπ(1). Let c1(1) be the

100

Table 5.2: Estimated speedups for our parallelization of the ηT pairing over supersingular
binary curves at the 128-bit security level. The optimal partitions were computed by a
Sage1 script.

Number π of processors
Estimated speedup s(π) 1 2 4 8 16 32
Core 2 65nm 1.00 1.90 3.45 5.83 8.69 11.48
Core 2 45nm 1.00 1.92 3.54 6.11 9.34 12.66

cost of a serial implementation of the main loop, par be the parallelization overhead and
exp be the cost of final exponentiation. Considering the additional ⌈log2(π)⌉ extension
field multiplications as parallelization overhead and 26m̃ + (7 + 2446)s̃ + ĩ as the cost
of final exponentiation, the speedup for π processors is the ratio between the cost of the
serial implementation over the cost of the parallel implementation:

s(π) =
c1(1) + exp

cπ(1) + par + exp
=

77 + 179 · 611 + 3978

cπ(1) + 225⌈log2(π)⌉+ 3978
.

Table 5.2 presents speedups estimated by our performance analysis. Note that our
efficient implementation of binary field arithmetic in a 45nm processor has a bigger
multiplication-to-squaring ratio, concentrating higher computational costs in the main
loop of the algorithm. This explains why the speedups should be higher in the 45nm
processor.

5.4 Experimental Results

We implemented the parallel algorithm for the ηT pairing over our efficient binary field
arithmetic in two Intel Core platforms: an Intel Core 2 Quad 65nm platform running
at 2.4GHz (Platform 1) and a dual quad-core Intel Xeon 45nm processor running at
2.0GHz (Platform 2). The parallel sections were implemented with OpenMP2 constructs.
OpenMP is an application programming interface that supports multi-platform shared
memory multiprocessing programming in C, C++ and Fortran. We used a special version
of the GCC 4.1.2 compiler included in Fedora Linux 8 with OpenMP support backported
from GCC 4.2 and SSSE3 support backported from GCC 4.3. This way, we could use
both multiprocessing support and fast code generation for SSE intrinsics.

The timings and speedups presented in Table 5.3 were measured on 104 executions
of each algorithm. We present timings in millions of cycles to ignore differences in clock
frequency between the target platforms. From the table, we can observe that real imple-
mentations can obtain speedups close to the estimated speedups derived in the previous
section. We verified that threading creation and synchronization overhead stayed in the

101

Table 5.3: Experimental results for serial/parallel executions of the ηT pairing. Times are
presented in millions of cycles and the speedups are computed by the ratio between exe-
cution times of serial implementations over execution times of parallel implementations.
The columns marked with (*) present estimates based on per-thread data.

Number of threads
Platform 1 – Intel Core 2 65nm 1 2 4 8* 16* 32*
Hankerson et al. [67] – latency 39 – – – – –
Beuchat et al. [98] – latency 26.86 16.13 10.13 – – –
Beuchat et al. [98] – speedup 1.00 1.67 2.65 – – –
This work – latency 18.76 10.08 5.72 3.55 2.51 2.14
This work – speedup 1.00 1.86 3.28 5.28 7.47 8.76
Improvement 30.2% 37.5% 43.5% – – –

Platform 2 – Intel Core 2 45nm 1 2 4 8 16* 32*
Beuchat et al. [98] – latency 23.03 13.14 9.08 8.93 – –
Beuchat et al. [98] – speedup 1.00 1.77 2.54 2.58 – –
This work – latency 17.40 9.34 5.08 3.02 2.03 1.62
This work – speedup 1.00 1.86 3.42 5.76 8.57 10.74
Improvement 24.4% 28.9% 44.0% 66.2% – –

order of microseconds, being negligible compared to the pairing computation time. Tim-
ings for π > 4 processors in Platform 1 and π > 8 processors in Platform 2 were measured
through a high-precision per-thread counter measured by the main thread. These timings
might be an accurate approximation of future real implementations, but memory effects
(such as cache locality) or scheduling influence may impose penalties.

Table 5.3 shows that the proposed parallelization presents good scalability. We im-
prove the state-of-the-art serial and parallel execution times significantly. The fastest
timing for computing the ηT pairing obtained by our implementation was 1.51 millisec-
onds using all 8 cores of Platform 2. The work by Beuchat et al. [98] reports a timing
of 3.08 milliseconds in a Intel Core i7 45nm processor clocked at 2.9GHz. Note that we
obtain a much faster timing with a lower clock frequency and without requiring the stor-
age overhead of 4 · (m+1

2
) field elements present in [98], which may reach 365KB for these

parameters and be prohibitive in resource-constrained embedded devices.

1SAGE: Software for Algebra and Geometry Experimentation.
http://www.sagemath.org

2Open Multi-Processing. http://www.openmp.org

102

5.5 Conclusion and Future Work

In this work, we proposed novel techniques for exploring parallelism during the implemen-
tation of the ηT pairing over supersingular binary curves in modern multi-core computers.
Powerful vector instructions of the SSE family were shown to accelerate considerably
the arithmetic in binary fields. We obtained significant performance in computing the
ηT pairing, using an efficient implementation of field multiplication, squaring and square
root computation. The optimizations improved the state-of-the-art timings of this pair-
ing instantiation at the 128-bit security level by 24% and 30% in two different Intel Core
processors.

We also derived a parallelization of Miller’s Algorithm to compute pairings. This
parallelization is generic and can be applied to any pairing algorithm or instantiation.
The construction also achieves good scalability in the symmetric case and this scalability
is not restricted by the definition of the pairing. We illustrated the formulation when
applied to the ηT pairing over supersingular binary curves and validated our performance
analysis with a real implementation. The experimental results show that the actual
implementation could sustain performance gains close to the estimated speedups. Parallel
execution of the ηT pairing improved the state-of-the-art timings by at least 28%, 44%
and 66% in 2, 4 and 8 cores respectively. This parallelization is suitable for embedded
platforms and can be applied to reduce computation latency when response time is critical.

Future work can adapt the introduced techniques for the case F3m . Improvements to
the parallelization should focus on minimizing the serial region and parallelization cost.
The proposed parallelization should also be applied to an optimal asymmetric pairing
setting, where parallelization costs are clearly higher. Preliminary data for the R-ate
pairing [3] over Barreto-Naehrig curves at the 128-bit security level points to a 10%
speedup using 2 processor cores.

103

Chapter 6

Faster Explicit Formulas for Computing

Pairings over Ordinary Curves

Diego F. Aranha, Koray Karabina, Patrick Longa,

Catherine H. Gebotys and Julio López

Abstract

We describe efficient formulas for computing pairings on ordinary elliptic curves over
prime fields. First, we generalize lazy reduction techniques, previously considered only
for arithmetic in quadratic extensions, to the whole pairing computation, including tow-
ering and curve arithmetic. Second, we introduce a new compressed squaring formula for
cyclotomic subgroups and a new technique to avoid performing an inversion in the final
exponentiation when the curve is parameterized by a negative integer. The techniques
are illustrated in the context of pairing computation over Barreto-Naehrig curves, where
they have a particularly efficient realization, and are also combined with other impor-
tant developments in the recent literature. The resulting formulas reduce the number of
required operations and, consequently, execution time, improving on the state-of-the-art
performance of cryptographic pairings by 28%-34% on several popular 64-bit computing
platforms. In particular, our techniques allow to compute a pairing under 2 million cycles
for the first time on such architectures.

Publication

This work was originally published in the Proceedings of the 30th International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2011) and
is available at http://www.springer.com/computer/security+and+cryptology/book/
978-3-642-20464-7. c©2011 IACR.

105

6.1 Introduction

The performance of pairing computation has received increasing interest in the research
community, mainly because Pairing-Based Cryptography enables efficient and elegant
solutions to several longstanding problems in cryptography such as Identity-Based En-
cryption [12, 13], powerful non-interactive zero-knowledge proof systems [159] and efficient
multi-party key agreements [16]. Recently, dramatic improvements over the figure of 10
million cycles presented in [67] made possible to compute a pairing at the 128-bit security
level in 4.38 million cycles [160] when using high-speed vector floating-point operations,
and 2.33 million cycles [99] when the fastest integer multiplier available in Intel 64-bit
architectures is employed.

This work revisits the problem of efficiently computing pairings over large-characteristic
fields and improves the state-of-the-art performance of cryptographic pairings by a sig-
nificant margin. First of all, it builds on the latest advancements proposed by several
authors:

• The Optimal Ate pairing [24] computed entirely on twists [26] with simplified final
line evaluations [160] over a recently-introduced subclass [97] of the Barreto-Naehrig
(BN) family of pairing-friendly elliptic curves [74].

• The implementation techniques described by [99] for accelerating quadratic exten-
sion field arithmetic, showing how to reduce expensive carry handling and function
call overheads.

On the other hand, the following new techniques are introduced:

• The notion of lazy reduction, usually applied for arithmetic in quadratic exten-
sions in the context of pairings, as discussed in [19], is generalized to the towering
and curve arithmetic performed in the pairing computation. In a sense, this fol-
lows a direction opposite to the one taken by other authors. Instead of trying to
encode arithmetic so that modular reductions are faster [161, 160], we insist on
Montgomery reduction and focus our efforts on reducing the need of computing re-
ductions. Moreover, for dealing with costly higher-precision additions inserted by
lazy reduction, we develop a flexible methodology that keeps intermediate values
under Montgomery reduction boundaries and maximizes the use of operations with-
out carry checks. The traditional operation count model is also augmented to take
into account modular reductions individually.

• Formulas for point doubling and point addition in Jacobian and homogeneous co-
ordinates are carefully optimized by eliminating several commonly neglected oper-
ations that are not inexpensive on modern 64-bit platforms.

106

• The computation of the final exponentiation is improved with a new set of formulas
for compressed squaring and efficient decompression in cyclotomic subgroups, and
an arithmetic trick to remove a significant penalty incurred when computing pairings
over curves parameterized by negative integers.

The described techniques produce significant savings, allowing our illustrative software
implementation to compute a pairing under 2 million cycles and improve the state-of-the-
art timings by 28%-34% on several different 64-bit computing platforms. Even though the
techniques are applied on pairings over BN curves at the 128-bit security level, they can
be easily extended to other settings using different curves and higher security levels [25].

This paper is organized as follows. Section 6.2 gives an overview of Miller’s Algo-
rithm when employed for computing the Optimal Ate pairing over Barreto-Naehrig curves.
Section 6.3 presents the generalized lazy reduction technique and its application to the
improvement of towering arithmetic performance. Different optimizations to curve arith-
metic, including the application of lazy reduction, are discussed in Section 6.4. Section 6.5
describes our improvements on the final exponentiation. Section 6.6 summarizes operation
counts and Section 6.7 describes our high-speed software implementation and compari-
son of results with the previously fastest implementation in the literature. Section 6.8
concludes the paper.

6.2 Preliminaries

An admissible bilinear pairing is a non-degenerate efficiently-computable map e : G1 ×
G2 → GT , where G1 and G2 are additive groups of points in an elliptic curve E and GT

is a subgroup of the multiplicative group of a finite field. The core property of map e

is linearity in both arguments, allowing the construction of novel cryptographic schemes
with security relying on the hardness of the Discrete Logarithm Problem in G1,G2 and
GT .

Barreto and Naehrig [74] described a parameterized family of elliptic curves Eb : y
2 =

x3 + b, b 6= 0 over a prime field Fp, p = 36u4 + 36u3 + 24u2 + 6u + 1, with prime order
n = 36u4 + 36u3 + 18u2 + 6u + 1, where u ∈ Z is an arbitrary integer. This family is
rather large and easy to generate [97], providing a multitude of parameter choices; and,
having embedding degree k = 12, is well-suited for computing asymmetric pairings at the
128-bit security level [19]. It admits several optimal derivations [24] of different variants
of the Ate pairing [2] such as R-ate [3], Optimal Ate [24] and χ-ate [162].

Let E[n] be the subgroup of n-torsion points of E and E ′ : y2 = x3 + b/ξ be a
sextic twist of E with ξ not a cube nor a square in Fp2 . For the clear benefit of direct
benchmarking, but also pointing that performance among variants is roughly the same,

107

we restrict the discussion to computing the Optimal Ate pairing defined as in [160]:

aopt : G2 ×G1 → GT

(Q,P) → (fr,Q(P) · l[r]Q,πp(Q)(P) · l[r]Q+πp(Q),−π2
p(Q)(P))

p12−1
n ,

where r = 6u + 2 ∈ Z; the map πp : E → E is the Frobenius endomorphism πp(x, y) =

(xp, yp); groups G1,G2 are determined by the eigenspaces of πp as G1 = E[n] ∩Ker(πp −
[1]) = E(Fp)[n] and G2 as the preimage E ′(Fp2)[n] of E[n] ∩ Ker(πp − [p]) ⊆ E(Fp12)[n]

under the twisting isomorphism ψ : E ′ → E; the group GT is the subgroup of n-th roots
of unity µn ⊂ F∗

p12 ; fr,Q(P) is a normalized function with divisor (fr,Q) = r(Q)− ([r]Q)−
(r − 1)(O) and lQ1,Q2(P) is the line arising in the addition of Q1 and Q2 evaluated at
point P .

Miller [8, 58] proposed an algorithm that constructs fr,P in stages by using a double-
and-add method. When generalizing the denominator-free version [23] of Miller’s Algo-
rithm for computing the pairing aopt with the set of implementation-friendly parameters
suggested by [97] at the 128-bit security level, we obtain Algorithm 6.1. For the BN curve
we have E : y2 = x3 +2, u = −(262 +255 +1) < 0. In order to accommodate the negative
r (line 9 in Algorithm 6.1), it is required to compute a cheap negation in G2 to make the
final accumulator T the result of [−|r|]Q, and an expensive inversion in the big field GT

to obtain the correct pairing value f−|r|,Q(P) = (f|r|,Q(P))
−1, instead of the value f|r|,Q(P)

produced at the end of the algorithm. The expensive inversion will be handled later at
Section 6.5 with the help of the final exponentiation.

6.3 Tower Extension Field Arithmetic

Miller’s Algorithm [8, 58] employs arithmetic in Fp12 during the accumulation steps (lines
3,5,11-12 in Algorithm 6.1) and at the final exponentiation (line 13 in the same algorithm).
Hence, to achieve a high-performance implementation of pairings it is crucial to perform
arithmetic over extension fields efficiently. In particular, it has been recommended in [163]
to represent Fpk with a tower of extensions using irreducible binomials. Accordingly, in
our targeted setting we represent Fp12 using the flexible towering scheme used in [164, 67,
99, 97] combined with the parameters suggested by [97]:

• Fp2 = Fp[i]/(i
2 − β), where β = −1.

• Fp4 = Fp2 [s]/(s
2 − ξ), where ξ = 1 + i.

• Fp6 = Fp2 [v]/(v
3 − ξ), where ξ = 1 + i.

• Fp12 = Fp4 [t]/(t
3 − s) or Fp6 [w]/(w

2 − v).

108

Algorithm 6.1 Optimal Ate pairing on BN curves (generalized for u < 0).

Input: P ∈ G1, Q ∈ G2, r = |6u+ 2| =
∑log2(r)

i=0 ri2
i

Output: aopt(Q,P)

1: T ← Q, f ← 1
2: for i = ⌊log2(r)⌋ − 1 downto 0 do
3: f ← f 2 · lT,T (P), T ← 2T
4: if ri = 1 then
5: f ← f · lT,Q(P), T ← T +Q
6: end for
7: Q1 ← πp(Q), Q2 ← π2

p(Q)
8: if u < 0 then
9: T ← −T, f ← f−1

10: end if
11: f ← f · lT,Q1(P), T ← T +Q1

12: f ← f · lT,−Q2(P), T ← T −Q2

13: f ← f (p12−1)/n

14: return f

It is possible to convert from one towering Fp2 → Fp6 → Fp12 to the other Fp2 →
Fp4 → Fp12 by simply permuting the order of coefficients. The choice p ≡ 3 (mod 4)

accelerates arithmetic in Fp2 , since multiplications by β = −1 can be computed as simple
subtractions [97].

6.3.1 Lazy Reduction for Tower Fields

The concept of lazy reduction goes back to at least [165] and has been advantageously
exploited by many works in different scenarios [166, 167, 19]. Lim and Hwang [166] showed
that multiplication in Fpk , when Fpk = Fp[x]/(x

k − w) is seen as a direct extension over
Fp via the irreducible binomial (xk−w) with w ∈ Fp, can be performed with k reductions
modulo p. In contrast, it would normally require either k2 reductions using conventional
multiplication, or k(k + 1)/2 reductions using Karatsuba multiplication. Lazy reduction
was first employed in the context of pairing computation by [19] to eliminate reductions in
Fp2 multiplication. If one considers the tower Fp → Fp2 → Fp6 → Fp12 , then this approach
requires 2 · 6 · 3 = 36 reductions modulo p, and 3 · 6 · 3 = 54 integer multiplications for
performing one multiplication in Fp12 ; see [19, 67, 99].

In this section, we generalize the lazy reduction technique to towering-friendly fields
Fpk , k = 2i3j, i ≥ 1, j ≥ 0, conveniently built with irreducible binomials [168]. We show
that multiplication (and squaring) in a tower extension Fpk only requires k reductions and
still benefits from different arithmetic optimizations available in the literature to reduce
the number of subfield multiplications or squarings. For instance, with our approach one

109

now requires 2 · 3 · 2 = 12 reductions modulo p and 54 integer multiplications using the
tower Fp → Fp2 → Fp6 → Fp12 to compute one multiplication in Fp12 ; or 12 reductions
modulo p and 36 integer multiplications to compute one squaring in Fp12 . Although wider
in generality, these techniques are analyzed in detail in the context of Montgomery mul-
tiplication and Montgomery reduction [169], which are commonly used in the context of
pairings over ordinary curves. We explicitly state our formulas for the towering construc-
tion Fp → Fp2 → Fp6 → Fp12 in Section 6.3.3. To remove ambiguity, the term reduction

modulo p always refers to modular reduction of double-precision integers.

Theorem 6.3.1. Let k = 2i3j, i, j ∈ Z and i ≥ 1, j ≥ 0. Let

Fp = Fpk0 → Fpk1 = Fp2 → · · · → Fpki+j−2 → Fpki+j−1 → Fpki+j = Fpk

be a tower extension, where each extension Fpkℓ+1/Fpkℓ is of degree either 2 or 3, which

can be constructed using a second degree irreducible binomial x2 − βℓ, βℓ ∈ Fpkℓ , or a

third degree irreducible binomial x3 − βℓ, βℓ ∈ Fpkℓ , respectively. Suppose that βℓ can be

chosen such that, for all a ∈ Fpkℓ , a · βℓ can be computed without any reduction modulo p.

Then multiplication in Fpk can be computed with 3i6j integer multiplications and k = 2i3j

reductions modulo p for any k.

Proof. We prove this by induction on i+ j. The base case is i+ j = 1 (i = 1 and j = 0).
That is, k = 2, and we have a tower Fp → Fp2 with Fp2 = Fp[x]/(x

2 − β). For any
a = a0 + a1x, b = b0 + b1x ∈ Fp2 , ai, bi ∈ Fp, we can write

a · b = (a0b0 + a1b1β) + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)x,

which can be computed with 3 integer multiplications and 2 reductions modulo p (note
that we ignore multiplication by β, by our assumption).

Next, consider
Fp → Fp2 → · · · → Fpki+j → Fpki+j+1 ,

where ki+j+1 = 2i+13j, or ki+j+1 = 2i3j+1. In the former case, let Fpki+j+1 = Fpki+j [x]/(x
2−

β) and a = a0 + a1x, b = b0 + b1x ∈ Fpki+j+1 , ai, bi ∈ Fpki+j . Then

a · b = (a0b0 + a1b1β) + [(a0 + a1)(b0 + b1)− a0b0 − a1b1] x, (6.1)

which can be computed with 3 multiplications in Fpki+j , namely a0b0, a1b1β and (a0 +

a1)(b0 + b1) (again, we ignore multiplication by β). By the induction hypothesis, each
multiplication in Fpki+j requires 3i6j integer multiplications, and 2i3j reductions modulo
p. Also, three reductions modulo p, when computing a0b0, a1b1β and (a0+a1)(b0+b1), can
be minimized to two reductions modulo p (see (6.1)). Hence, multiplication in Fpki+j+1 can

110

be computed with 3 · 3i6j = 3i+16j integer multiplications and 2 · 2i3j = 2i+13j reductions
modulo p.

The latter case, ki+j+1 = 2i3j+1, can be proved similarly, by considering Fpki+j+1 =

Fpki+j [x]/(x
3 − β), and the Karatsuba multiplication formula for degree 3 extensions in-

stead of (6.1).

It is also straightforward to generalize the procedure above to any formula other
than Karatsuba which also involves only sums (or subtractions) of products of the form∑
±aibj, with ai, bj ∈ Fpkl , such as complex squaring or the Chung-Hasan asymmetric

squaring formulas [170].
For efficiency purposes, we suggest a different treatment for the highest layer in the

tower arithmetic. Theorem 6.3.1 implies that reductions can be completely delayed to
the end of the last layer by applying lazy reduction, but in some cases (when the optimal
k is already reached and no reductions can be saved) it will be more efficient to perform
reductions immediately after multiplications or squarings. This will be illustrated with
the computation of squaring in Fp12 in Section 6.3.3.

In the Miller Loop, reductions can also be delayed from the underlying Fp2 field dur-
ing multiplication and squaring to the arithmetic layer immediately above (i.e., the point
arithmetic and line evaluation). Similarly to the tower extension, on this upper layer
reductions should only be delayed in the cases where this technique leads to fewer reduc-
tions. For details, see Section 6.4.

There are some penalties when delaying reductions. In particular, single-precision

operations (with operands occupying n = ⌈⌈log2 p⌉/w⌉ words, where w is the com-
puter word-size) are replaced by double-precision operations (with operands occupying
2n words). However, this disadvantage can be minimized in terms of speed by selecting
a field size smaller than the word-size boundary because this technique can be exploited
more extensively for optimizing double-precision arithmetic.

6.3.2 Selecting a Field Size Smaller than the Word-Size Boundary

If the modulus p is selected so that l = ⌈log2 p⌉ < N , where N = n · w, n is the exact
number of words required to represent p, i.e., n = ⌈l/w⌉, and w is the computer word-size,
then several consecutive additions without carry-out in the most significant word (MSW)
can be performed before a multiplication of the form c = a · b, where a, b ∈ [0, 2N − 1]

such that c < 22N . In the case of Montgomery reduction, the restriction is given by the
upper bound c < 2N · p. Similarly, when delaying reductions the result of a multiplication
without reduction has maximum value (p − 1)2 < 22N (assuming that a, b ∈ [0, p]) and
several consecutive double-precision additions without carry-outs in the MSW (and, in
some cases, subtractions without borrow-outs in the MSW) can be performed before

111

reduction. When using Montgomery reduction up to∼ ⌊2N/p⌋ additions can be performed
without carry checks.

Furthermore, cheaper single- and double-precision operations exploiting this “extra
room” can be combined for maximal performance. The challenge is to optimally balance
their use in the tower arithmetic since both may interfere with each other. For instance, if
intermediate values are allowed to grow up to 2p before multiplication (instead of p) then
the maximum result would be 4p2. This strategy makes use of cheaper single-precision
additions without carry checks but limits the number of double-precision additions that
can be executed without carry checks after multiplication with delayed reduction. As it
will be evident later, to maximize the gain obtained with the proposed methodology one
should take into account relative costs of operations and maximum bounds.

In the case of double-precision arithmetic, different optimizing alternatives are avail-
able. Let us analyze them in the context of Montgomery arithmetic. First, as pointed
out by [99], if c > 2N · p, where c is the result of a double-precision addition, then c can be
restored with a cheaper single-precision subtraction by 2N ·p (note that the first half of this
value consists of zeroes only). Second, different options are available to convert negative
numbers to positive after double-precision subtraction. In particular, let us consider the
computation c = a + l · b, where a, b ∈ [0,mp2], m ∈ Z+ and l < 0 ∈ Z s.t. |lmp| < 2N ,
which is a recurrent operation (for instance, when l = β). For this operation, we have
explored the following alternatives, which can be integrated in the tower arithmetic with
different advantages: Option 1: r = c+(2N · p/2h), r ∈ [0,mp2 +2N · p/2h], h is a small
integer s.t. |lmp2| < 2N · p/2h < 2N · p−mp2.
Option 2: if c < 0 then r = c+ 2N · p, r ∈ [0, 2N · p].
Option 3: r = c− lmp2, r ∈ [0, (|l|+ 1)mp2], s.t. (|l|+ 1)mp < 2N .
Option 4: if c < 0 then r = c− lmp2, r ∈ [0, |lmp2|].

In particular, Options 2 and 4 require conditional checks that make the corresponding
operations more expensive. Nevertheless, these options may be valuable when negative
values cannot be corrected with other options without violating the upper bound. Also
note that Option 2 can make use of a cheaper single-precision subtraction for converting
negative results to positive. Options 1 and 3 are particularly efficient because no condi-
tional checks are required. Moreover, if l is small enough (and h maximized for Option 1)
several following operations can avoid carry checks. Between both, Option 1 is generally
more efficient because adding 2N · p/2h requires less than double-precision if h ≤ w, where
w is the computer word-size.

Next, we demonstrate how the different design options discussed in this section can be
exploited with a clever selection of parameters and applied to different operations com-
bining single- and double-precision arithmetic to speed up the extension field arithmetic.

112

6.3.3 Analysis for Selected Parameters

For our illustrative analysis, we use the tower Fp2 → Fp6 → Fp12 constructed with the
irreducible binomials described at the beginning of this section. When targeting the 128-
bit security level, single- and double-precision operations are defined by operands with
sizes N = 256 and 2N = 512, respectively. For our selected prime, ⌈log2 p⌉ = 254 and
2N · p ≈ 6.8p2. Notation is fixed as following: (i) +,−,× are operators not involving carry
handling or modular reduction for boundary keeping; (ii) ⊕,⊖,⊗ are operators producing
reduced results through carry handling or modular reduction; (iii) a superscript in an
operator is used to denote the extension degree involved in the operation; (iv) notation
ai,j is used to address j-th subfield element in extension field element ai; (v) lower case
t and upper case T variables represent single- and double-precision integers or extension
field elements composed of single and double-precision integers, respectively. The precision
of the operators is determined by the precision of the operands and result. Note that, as
stated before, if c > 2N · p after adding c = a+ b in double-precision, we correct the result
by computing c− 2N · p. Similar to subtraction, we refer to the latter as “Option 2”.

The following notation is used for the cost of operations: (i) m, s, a denote the cost of
multiplication, squaring and addition in Fp, respectively; (ii) m̃, s̃, ã, ĩ denote the cost of
multiplication, squaring, addition and inversion in Fp2 , respectively; (iii) mu, su, r denote
the cost of unreduced multiplication and squaring producing double-precision results,
and modular reduction of double-precision integers, respectively; (iv) m̃u, s̃u, r̃ denote the
cost of unreduced multiplication and squaring, and modular reduction of double-precision
elements in Fp2 , respectively. For the remainder of the paper, and unless explicitly stated
otherwise, we assume that double-precision addition has the cost of 2a and 2ã in Fp and
Fp2 , respectively, which approximately follows what we observe in practice.

We will now illustrate a selection of operations for efficient multiplication in Fp12 , be-
ginning with multiplication in Fp2 . Let a, b, c ∈ Fp2 such that a = a0+a1i, b = b0+b1i, c =

a · b = c0 + c1i. The required operations for computing Fp2 multiplication are detailed in
Algorithm 6.2. As explained in Beuchat et al. [99, Section 5.2], when using the Karatsuba
method and ai, bi ∈ Fp, c1 = (a0 + a1)(b0 + b1)− a0b0 − a1b1 = a0b1 + a1b0 < 2p2 < 2N · p,
additions are single-precision, reduction after multiplication can be delayed and hence
subtractions are double-precision (steps 1-3 in Algorithm 6.2). Obviously, these opera-
tions do not require carry checks. For c0 = a0b0 − a1b1, c0 is in interval [−p2, p2] and a
negative result can be converted to positive using Option 1 with h = 2 or Option 2, for
which the final c0 is in the range [0, (2N · p/4) + p2] ⊂ [0, 2N · p] or [0, 2N · p], respectively
(step 4 in Algorithm 6.2). Following Theorem 6.3.1, all reductions can be completely
delayed to the next arithmetic layer (higher extension or curve arithmetic).

Let us now define multiplication in Fp6 . Let a, b, c ∈ Fp6 such that a = (a0 + a1v +

113

Algorithm 6.2 Multiplication in Fp2 without reduction (×2, cost m̃u = 3mu + 8a)

Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2

Output: c = a · b = (c0 + c1i) ∈ Fp2

1: T0 ← a0 × b0, T1 ← a1 × b1, t0 ← a0 + a1, t1 ← b0 + b1
2: T2 ← t0 × t1, T3 ← T0 + T1
3: T3 ← T2 − T3
4: T4 ← T0 ⊖ T1 (Option 1 or 2)
5: return c = (T4 + T3i)

a2v
2), b = (b0 + b1v + b2v

2), c = a · b = (c0 + c1v + c2v
2). The required operations for

computing Fp6 multiplication are detailed in Algorithm 6.3. In this case, c0 = v0+ ξ[(a1+

a2)(b1 + b2) − v1 − v2], c1 = (a0 + a1)(b0 + b1) − v0 − v1 + ξv2 and c2 = (a0 + a2)(b0 +

b2)− v0 − v2 + v1, where v0 = a0b0, v1 = a1b1 and v2 = a2b2. First, note that the pattern
sx = (ai + aj)(bi + bj)− vi− vj repeats for each cx, 0 ≤ x ≤ 2. After multiplications using
Alg. 6.2 with Option 1 (h = 2), we have vi,0, vj,0 ∈ [0, (2N · p/4)+p2] and vi,1, vj,1 ∈ [0, 2p2]

(step 1 of Alg. 6.3). Outputs of single-precision additions of the forms (ai+aj) and (bi+bj)

are in the range [0, 2p] and hence do not produce carries (steps 2, 9 and 17 of Alg. 6.3).
Corresponding Fp2 multiplications rx = (ai + aj)(bi + bj) using Alg. 6.2 with Option 2

give results in the ranges rx,0 ∈ [0, 2N · p] and rx,1 ∈ [0, 8p2] (steps 3, 10 and 18). Although
max(rx,1) = 8p2 > 2N · p, note that 8p2 < 22N and sx,1 = ai,0bj,1+ai,1bj,0+aj,0bi,1+aj,1bi,0 ∈
[0, 4p2] since sx = aibj + ajbi. Hence, for 0 ≤ x ≤ 2, double-precision subtractions for
computing sx,1 using Karatsuba do not require carry checks (steps 4 and 6, 11 and 13, 19
and 21). For computing sx,0 = rx,0 − (vi,0 + vj,0), addition does not require carry check
(output range [0, 2(2N · p/4 + p2)] ⊂ [0, 2N · p]) and subtraction gives result in the range
[0, 2N · p] when using Option 2 (steps 5, 12 and 20). For computing c0, multiplication
by ξ, i.e., S0 = ξs0 involves the operations S0,0 = s0,0 − s0,1 and S0,1 = s0,0 + s0,1,
which are computed in double-precision using Option 2 to get the output range [0, 2N · p]
(step 7). Similarly, final additions with v0 require Option 2 to get again the output
range [0, 2N · p] (step 8). For computing c1, S1 = ξv2 is computed as S1,0 = v2,0 − v2,1
and S1,1 = v2,0 + v2,1, where the former requires a double-precision subtraction using
Option 1 (h = 1) to get a result in the range [0, 2N · p/2 + 2N · p/4 + p2] ⊂ [0, 2N · p]
(step 14) and the latter requires a double-precision addition with no carry check to get
a result in the range [0, (2N · p/4) + 3p2] ⊂ [0, 2N · p] (step 15). Then, c1,0 = s1,0 + S1,0

and c1,1 = s1,1 + S1,1 involve double-precision additions using Option 2 to obtain results
in the range [0, 2N · p] (step 16). Results c2,0 = s2,0 + v1,0 and c2,1 = s2,1 + v1,1 require
a double-precision addition using Option 2 (final output range [0, 2N · p], step 22) and
a double-precision addition without carry check (final output range [0, 6p2] ⊂ [0, 2N · p],
step 23), respectively. Modular reductions have been delayed again to the last layer Fp12 .

Finally, let a, b, c ∈ Fp12 such that a = a0 + a1w, b = b0 + b1w, c = a · b = c0 + c1w.

114

Algorithm 6.3 Multiplication in Fp6 without reduction (×6, cost of 6m̃u + 28ã)

Input: a = (a0 + a1v + a2v
2) and b = (b0 + b1v + b2v

2) ∈ Fp6

Output: c = a · b = (c0 + c1v + c2v
2) ∈ Fp6

1: T0 ← a0 ×2 b0, T1 ← a1 ×2 b1, T2 ← a2 ×2 b2 (Option 1, h = 2)
2: t0 ← a1 +

2 a2, t1 ← b1 +
2 b2

3: T3 ← t0 ×2 t1 (Option 2)
4: T4 ← T1 +

2 T2
5: T3,0 ← T3,0 ⊖ T4,0 (Option 2)
6: T3,1 ← T3,1 − T4,1
7: T4,0 ← T3,0 ⊖ T3,1, T4,1 ← T3,0 ⊕ T3,1 (≡ T4 ← ξ · T3) (Option 2)
8: T5 ← T4 ⊕2 T0 (Option 2)
9: t0 ← a0 +

2 a1, t1 ← b0 +
2 b1

10: T3 ← t0 ×2 t1 (Option 2)
11: T4 ← T0 +

2 T1
12: T3,0 ← T3,0 ⊖ T4,0 (Option 2)
13: T3,1 ← T3,1 − T4,1
14: T4,0 ← T2,0 ⊖ T2,1 (Option 1, h = 1)
15: T4,1 ← T2,0 + T2,1 (steps 14-15 ≡ T4 ← ξ · T2)
16: T6 ← T3 ⊕2 T4 (Option 2)
17: t0 ← a0 +

2 a2, t1 ← b0 +
2 b2

18: T3 ← t0 ×2 t1 (Option 2)
19: T4 ← T0 +

2 T2
20: T3,0 ← T3,0 ⊖ T4,0 (Option 2)
21: T3,1 ← T3,1 − T4,1
22: T7,0 ← T3,0 ⊕ T1,0 (Option 2)
23: T7,1 ← T3,1 + T1,1
24: return c = (T5 + T6v + T7v

2)

Algorithm 6.4 details the required operations for computing multiplication. In this case,
c1 = (a0 + a1)(b0 + b1) − a1b1 − a0b0. At step 1, Fp6 multiplications a0b0 and a1b1 give
outputs in range ⊂ [0, 2N · p] using Algorithm 6.3. Additions a0 + a1 and b0 + b1 are
single-precision reduced modulo p so that multiplication (a0 + a1)(b0 + b1) in step 2 gives
output in range ⊂ [0, 2N · p] using Algorithm 6.3. Then, subtractions by a1b1 and a0b0
use double-precision operations with Option 2 to have an output range [0, 2N · p] so
that we can apply Montgomery reduction at step 5 to obtain the result modulo p. For
c0 = a0b0 + va1b1, multiplication by v, i.e., T = v · v1, where vi = aibi, involves the
double-precision operations T0,0 = v2,0 − v2,1, T0,1 = v2,0 + v2,1, T1 = v0 and T2 = v1, all
performed with Option 2 to obtain the output range [0, 2N · p] (steps 6-7). Final addition
with a0b0 uses double-precision with Option 2 again so that we can apply Montgomery
reduction at step 9 to obtain the result modulo p. We remark that, by applying the lazy

115

reduction technique using the operation sequence above, we have reduced the number of
reductions in Fp6 from 3 to only 2, or the number of total modular reductions in Fp from
54 (or 36 if lazy reduction is employed in Fp2) to only k = 12.

Algorithm 6.4 Multiplication in Fp12 (×12, cost of 18m̃u + 6r̃ + 110ã)

Input: a = (a0 + a1w) and b = (b0 + b1w) ∈ Fp12

Output: c = a · b = (c0 + c1w) ∈ Fp12

1: T0 ← a0 ×6 b0, T1 ← a1 ×6 b1, t0 ← a0 ⊕6 a1, t1 ← b0 ⊕6 b1
2: T2 ← t0 ×6 t1
3: T3 ← T0 ⊕6 T1 (Option 2)
4: T2 ← T2 ⊖6 T3 (Option 2)
5: c1 ← T2 mod6 p
6: T2,0,0 ← T1,2,0 ⊖ T1,2,1, T2,0,1 ← T1,2,0 ⊕ T1,2,1 (Option 2)
7: T2,1 ← T1,0, T2,2 ← T1,1 (steps 6-7 ≡ T2 ← v · T1)
8: T2 ← T0 ⊕6 T2 (Option 2)
9: c0 ← T2 mod6 p

10: return c = (c0 + c1w)

As previously stated, there are situations when it is more efficient to perform reduc-
tions right after multiplications and squarings in the last arithmetic layer of the tower
construction. We illustrate the latter with squaring in Fp12 . As shown in Algorithm 6.5,
a total of 2 reductions in Fp6 are required when performing Fp6 multiplications in step 4.
If lazy reduction was applied, the number of reductions would stay at 2, and worse, the
total cost would be increased because some operations would require double-precision.
The reader should note that the approach suggested by [97], where the formulas in [170]
are employed for computing squarings in internal cubic extensions of Fp12 , saves 1m̃ in
comparison with Algorithm 6.5. However, we experimented such approach with several
combinations of formulas and towering, and it remained consistently slower than Algo-
rithm 6.5 due to an increase in the number of additions.

6.4 Miller Loop

In this section, we present our optimizations to the curve arithmetic. To be consistent with
other results in the literature, we do not distinguish between simple- and double-precision
additions in the formulas below.

Recently, Costello et al. [26, Section 5] proposed the use of homogeneous coordinates
to perform the curve arithmetic entirely on the twist. Their formula for computing a
point doubling and line evaluation costs 2m̃+7s̃+23ã+4m+1mb′ . The twisting of point
P , given in our case by (xP/w

2, yP/w
3) = (xP

ξ
v2, yP

ξ
vw), is eliminated by multiplying the

116

Algorithm 6.5 Squaring in Fp12 (cost of 12m̃u + 6r̃ + 73ã)

Input: a = (a0 + a1w) ∈ Fp12

Output: c = a2 = (c0 + c1w) ∈ Fp12

1: t0 ← a0 ⊕6 a1, t1,0,0 ← a1,2,0 ⊖ a1,2,1, t1,0,1 ← a1,2,0 ⊕ a1,2,1
2: t1,1 ← a1,0, t1,2 ← a1,1 (steps 2-3 ≡ t1 ← v · a1)
3: t1 ← a0 ⊕6 t1
4: c1 ← (a0 ×6 a1) mod6 p, t0 ← (t0 ×6 t1) mod6 p
5: t1,0,0 ← c1,2,0 ⊖ c1,2,1, t1,0,1 ← c1,2,0 ⊕ c1,2,1
6: t1,1 ← c1,0, t1,2 ← c1,1 (steps 6-7 ≡ t1 ← v · c1)
7: t1 ← t1 ⊕6 c1
8: c0 ← t0 ⊖6 t1, c1 ← c1 ⊕6 c1
9: return c = (c0 + c1w)

whole line evaluation by ξ and relying on the final exponentiation to eliminate this extra
factor [26]. Clearly, the main drawback of this formula is the high number of additions.
We present the following revised formula:

X3 =
X1Y1
2 (Y 2

1 − 9b′Z2
1) , Y3 =

[
1
2 (Y 2

1 + 9b′Z2
1)
]2
− 27b′2Z4

1 , Z3 = 2Y 3
1 Z1,

l = (−2Y1Z1yP)vw + (3X2
1xP) v

2 + ξ (3b′Z2
1 − Y 2

1) .
(6.2)

This doubling formula gives the cost of 3m̃ + 6s̃ + 17ã + 4m +mb′ +mξ. Moreover,
if the parameter b′ is cleverly selected as in [97], multiplication by b′ can be performed
with minimal number of additions and subtractions. For instance, if one fixes b = 2 then
b′ = 2/(1+i) = 1−i. Accordingly, the following execution has a cost of 3m̃+6s̃+19ã+4m

(note that computations for E and l0,0 are over Fp and yP = −yP is precomputed):

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 +D1,

E1 = D1 −D0, F = 3E, X3 = A · (B − F), G = (B + F)/2,

Y3 = G2 − 3E2, H = (Y1 + Z1)
2 − (B + C),

Z3 = B ·H, I = E − B, J = X2
1

l0,0,0 = I0 − I1, l0,0,1 = I0 + I1, l1,1 = H · yP , l0,2 = 3J · xP .

(6.3)

We point out that in practice we have observed that m̃ − s̃ ≈ 3ã. Hence, it is more
efficient to compute X1Y1 directly than using (X1 + Y1)

2, B and J . If this was not the
case, the formula could be computed with cost 2m̃+ 7s̃+ 23ã+ 4m.

Remarkably, the technique proposed in Section 6.3 for delaying reductions can also
be applied to the point arithmetic over a quadratic extension field. Reductions can be
delayed to the end of each Fp2 multiplication/squaring and then delayed further for those

117

sums of products that allow reducing the number of reductions. Although not plentiful
(given the nature of most curve arithmetic formulas which have consecutive and redundant
multiplications/squarings), there are a few places where this technique can be applied.
For instance, doubling formula (6.2) requires 25 Fp reductions (3 per Fp2 multiplication
using Karatsuba, 2 per Fp2 squaring and 1 per Fp multiplication). First, by delaying
reductions inside Fp2 arithmetic the number of reductions per multiplication goes down
to only 2, with 22 reductions in total. Moreover, reductions corresponding to G2 and
3E2 in Y3 (see execution (6.3)) can be further delayed and merged, eliminating the need
of two reductions. In total, the number of reductions is now 20. Similar optimizations
can be applied to other point/line evaluation formulas (see extended version [171] for
optimizations to formulas using Jacobian and homogeneous coordinates).

For accumulating line evaluations into the Miller variable, Fp12 is represented us-
ing the towering Fp2 → Fp4 → Fp12 and a special (dense×sparse)-multiplication costing
13m̃u + 6r̃ + 61ã is used. During the first iteration of the loop, a squaring in Fp12 can
be eliminated since the Miller variable is initialized as 1 (line 1 in Algorithm 6.1) and a
special (sparse×sparse) multiplication costing 7m̃u+5r̃+30ã is used to multiply the first
two line evaluations, resulting in the revised Algorithm 6.6. This sparser multiplication
is also used for multiplying the two final line evaluations in step 10 of the algorithm.

6.5 Final Exponentiation

The fastest way known for computing the final exponentiation is described in [172]. The
power p12−1

n
is factored into an easy exponent (p6 − 1) which requires a conjugation and

an inversion; another easy exponent (p2 + 1) which requires a p2-power Frobenius and
a multiplication; and a hard exponent (p4 − p2 + 1)/n which can be performed in the
cyclotomic subgroup Gφ6(Fp2). For computing this last power, one can write the hard
exponent as follows [19]:

(p4 − p2 + 1)/n = λ3p
3 + λ2p

2 + λ1p+ λ0,

where

λ3(u) = 1 , λ2(u) = 6u2 + 1,

λ1(u) = −36u3 − 18u2 − 12u+ 1 , λ0(u) = −36u3 − 30u2 − 18u− 2,

and compute the individual powers by a multi-addition chain, requiring three consecutive
exponentiations by the absolute value of the curve parameter |u|, 13 multiplications, 4
squarings, 4 p-power Frobenius, 2 p2-power Frobenius and a single p3-power Frobenius in
Fp12 . These powers of Frobenius can be efficiently computed with the formulas in [99].

118

In the following subsections, we explain how to remove the expensive inversion in Fp12

mentioned at the end of Section 6.2; and how the cyclotomic subgroup structure allows
faster compressed squarings and consequently faster exponentiation by |u|.

6.5.1 Removing the Inversion Penalty

From Algorithm 6.1, the Optimal Ate pairing when u < 0 can be computed as

aopt(Q,P) =
[
g−1 · h

] p12−1
n , (6.4)

with r = 6u+2, g = f|r|,Q(P) and h = l[−|r|]Q,πp(Q)(P)·l[−|r|Q]+πp(Q),−π2
p(Q)(P). Lemma 6.5.1

below allows one to replace the expensive inversion g−1 with a simple conjugation with
no change in the result. This is depicted in line 9 of Algorithm 6.6.

Lemma 6.5.1. The pairing aopt(Q,P) can be computed as
[
gp

6 · h
] p12−1

n

, with g, h defined

as above.

Proof. By distributing the power (p12 − 1)/n in terms g, h in Equation (6.4):

aopt(Q,P) = g
1−p12

n · h p12−1
n = g

(1−p6)(1+p6)
n · h p12−1

n

= g
(p12−p6)(1+p6)

n · h p12−1
n = g

p6(p6−1)(p6+1)
n · h p12−1

n =
[
gp

6 · h
] p12−1

n

6.5.2 Computing u-th powers in Gφ6
(Fp2)

Let

g =
2∑

i=0

(g2i + g2i+1s)t
i ∈ Gφ6(Fp2) and g2 =

2∑

i=0

(h2i + h2i+1s)t
i

with gi, hi ∈ Fp2 . In [173], it was shown that one can compress g to C(g) = [g2, g3, g4, g5],
and the compressed representation of g2 is computed as C(g2) = [h2, h3, h4, h5], where hi
is computed as follows:

h2 = 2(g2 + 3ξB4,5),

h4 = 3(A2,3 − (ξ + 1)B2,3)− 2g4,

h3 = 3(A4,5 − (ξ + 1)B4,5)− 2g3,

h5 = 2(g5 + 3B2,3),

(6.5)

119

where Ai,j = (gi + gj)(gi + ξgj) and Bi,j = gigj. The above formula requires 4 multipli-
cations in Fp2 . Considering the lazy reduction technique discussed in Section 6.3.3, we
propose another formula that is slightly faster and has a cost of 6s̃u + 4r̃ + 31ã. The
formula is given as follows:

h2 = 2g2 + 3(S4,5 − S4 − S5)ξ,

h4 = 3(S2 + S3ξ)− 2g4,

h3 = 3(S4 + S5ξ)− 2g3,

h5 = 2g5 + 3(S2,3 − S2 − S3),

(6.6)

where Si,j = (gi + gj)
2 and Si = g2i ; also see extended version [171] for the correctness of

our formula and an explicit implementation.
When g is raised to a power via a square-and-multiply exponentiation algorithm,

full representation of elements (decompression) is required because, if C is used as the
compression map, it is not known how to perform multiplication given the compressed
representation of elements. Given a compressed representation of g ∈ Gφ6(Fp2) \ {1},
C(g) = [g2, g3, g4, g5], the decompression map D is evaluated as follows (see [173] for more
details):

D([g2, g3, g4, g5]) = (g0 + g1s) + (g2 + g3s)t+ (g4 + g5s)t
2,

{
g1 =

g25ξ+3g24−2g3
4g2

, g0 = (2g21 + g2g5 − 3g3g4)ξ + 1, if g2 6= 0;

g1 =
2g4g5
g3

, g0 = (2g21 − 3g3g4)ξ + 1, if g2 = 0.

In particular, g|u| can be computed in three steps:

1. Compute C(g2i) for 1 ≤ i ≤ 62 using (6.6) and store C(g255) and C(g262).

2. Compute D(C(g255)) = g2
55

and D(C(g262)) = g2
62

.

3. Compute g|u| = g2
62 · g255 · g.

Step 1 requires 62 squarings in Gφ6(Fp2). Using Montgomery’s simultaneous inversion
trick [174], Step 2 requires 9m̃ + 6s̃ + 22ã + ĩ. Step 3 requires 2 multiplications in Fp12 .
The total cost is:

Exp = 62 · (6s̃u + 4r̃ + 31ã) + (9m̃+ 6s̃+ 22ã+ ĩ) + 2 · (18m̃u + 6r̃ + 110ã)

= 45m̃u + 378s̃u + 275r̃ + 2164ã+ ĩ,

Granger-Scott’s [175] formula for squaring can be implemented at a cost of 9s̃u+6r̃+

46ã if lazy reduction techniques are employed. With this approach, an exponentiation
costs:

Exp′ = 62 · (9s̃u + 6r̃ + 46ã) + 2 · (18m̃u + 6r̃ + 110ã)

= 36m̃u + 558s̃u + 399r̃ + 3072ã.

120

Hence, the faster compressed squaring formulas reduce by 33% the number of squarings
and by 30% the number of additions in Fp2 .

Algorithm 6.6 Revised Optimal Ate pairing on BN curves (generalized for u < 0).

Input: P ∈ G1, Q ∈ G2, r = |6u+ 2| =∑log2(r)
i=0 ri2

i

Output: aopt(Q,P)

1: d← lQ,Q(P), T ← 2Q, e← 1
2: if r⌊log2(r)⌋−1 = 1 then e← lT,Q(P), T ← T +Q
3: f ← d · e
4: for i = ⌊log2(r)⌋ − 2 downto 0 do
5: f ← f2 · lT,T (P), T ← 2T
6: if ri = 1 then f ← f · lT,Q(P), T ← T +Q
7: end for
8: Q1 ← πp(Q), Q2 ← π2

p(Q)

9: if u < 0 then T ← −T, f ← fp6

10: d← lT,Q1(P), T ← T +Q1, e← lT,−Q2(P), T ← T −Q2, f ← f · (d · e)
11: f ← f (p6−1)(p2+1)(p4−p2+1)/n

12: return f

6.6 Computational Cost

We now consider all the improvements described in the previous sections and present a
detailed operation count. Table 6.1 shows the exact operation count for each operation
executed in Miller’s Algorithm.

Table 6.1: Operation counts for arithmetic required by Miller’s Algorithm. (†) Work [99]
counts these additions in a different way. Considering their criteria, costs for multiplica-
tion and squaring in Fp2 are 3mu + 2r + 4a and 2mu + 2r + 2a, respectively.

E′(Fp2)-Arithmetic Operation Count

Doubling/Eval. 3m̃u + 6s̃u + 8r̃ + 22ã+ 4m
Addition/Eval. 11m̃u + 2s̃u + 11r̃ + 12ã+ 4m

p-power Frobenius 6mu + 4r + 18a
p2-power Frobenius 2m+ 2a

Negation ã
Fp2 -Arithmetic Operation Count

Add./Sub./Neg. ã = 2a
Conjugation a

Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a†

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a†

Multiplication by β a
Multiplication by ξ 2a

Inversion ĩ

Fp12 -Arithmetic Operation Count

Add./Sub. 6ã
Conjugation 3ã

Multiplication 18m̃u + 6r̃ + 110ã
Sparse Mult. 13m̃u + 6r̃ + 61ã
Sparser Mult. 7m̃u + 5r̃ + 30ã

Squaring 12m̃u + 6r̃ + 73ã
Cyc. Squaring 9s̃u + 6r̃ + 46ã

Comp. Squaring 6s̃u + 4r̃ + 31ã

Simult. Decomp. 9m̃+ 6s̃+ 22ã+ ĩ
p-power Frobenius 15mu + 10r + 46a
p2-power Frobenius 10m+ 2ã

Inversion 25m̃u + 9s̃u + 24r̃

+112ã+ ĩ

For the selected parameters and with the presented improvements, the Miller Loop in
Algorithm 6.6 executes 64 point doublings with line evaluations, 6 point additions with

121

line evaluations (4 inside Miller Loop and 2 more at the final steps), 1 negation in Fp2

to precompute yP , 1 p-power Frobenius, 1 p2-power Frobenius and 2 negations in E(Fp2);
and 1 conjugation, 1 multiplication, 66 sparse multiplications, 2 sparser multiplications
and 63 squarings in Fp12 . The cost of the Miller Loop is:

ML = 64 · (3m̃u + 6s̃u + 8r̃ + 22ã+ 4m) + 6 · (11m̃u + 2s̃u + 11r̃ + 12ã+ 4m)

+ ã+ 6mu + 4r + 18a+ 2m+ 2a+ 2ã+ 3ã+ (18m̃u + 6r̃ + 110ã)

+ 66 · (13m̃u + 6r̃ + 61ã) + 2 · (7m̃u + 5r̃ + 30ã) + 63 · (12m̃u + 6r̃ + 73ã)

= 1904m̃u + 396s̃u + 1368r̃ + 10281ã+ 282m+ 6mu + 4r + 20a.

The final exponentiation executes in total 1 inversion, 4 conjugations, 15 multiplica-
tions, 3 u-th powers, 4 cyclotomic squarings, 5 p-power Frobenius, 3 p2-power Frobenius:

FE = 25m̃u + 9s̃u + 24r̃ + 112ã+ ĩ+ 4 · 3ã+ 15 · (18m̃u + 6r̃ + 110ã)

+ 3 · Exp+ 4 · (9s̃u + 6r̃ + 46ã) + 5 · (15mu + 10r + 46a) + 3 · (10m+ 2ã)

= 430m̃u + 1179s̃u + 963r̃ + 8456ã+ 4̃i+ 30m+ 75mu + 50r + 230a.

Table 6.2 gives a first-order comparison between our implementation and the best im-
plementation available in the literature of the Optimal Ate pairing at the 128-bit security
level in the same platform. For the related work, we suppose that lazy reduction is always
used in Fp2 and then each multiplication or squaring essentially computes a modular re-
duction (that is, m̃ = m̃u + r̃ = 3mu + 2r and s̃ = s̃u + r̃ = 2mu + 2r). Note that our
generalization of the lazy reduction techniques to the whole pairing computation brings
the number of modular reductions from the expected 7818 (if lazy reduction was only used
for Fp2 arithmetic) to just 4662, avoiding more than 40% of the total required modular
reductions. The number of multiplications is also reduced by 13% and the number of
additions is increased by 26% due to lazy reduction trade-offs. Our operation count for
the pairing computation is apparently more expensive than Pereira et al. [97]. However,
the reader should note that, when we consider the real cost of additions in Fp, we cannot
exploit the squaring formula in Fp12 by [170] (see Section 6.3.3) and a point doubling
formula with fewer multiplications (see Section 6.4), given the significant increase in the
number of additions.

6.7 Implementation Results

A software implementation was realized to confirm the performance benefits resulting
from the introduced techniques. We implemented Fp2 arithmetic directly in Assembly,
largely following advice from [99] to optimize carry handling and eliminate function call

122

Table 6.2: Comparison of operation counts for different implementations of the Optimal
Ate pairing at the 128-bit security level.

Work Phase Operations in Fp2 Operations in Fp

Beuchat et al.[99]
ML 1952(m̃u + r̃) + 568(s̃u + r̃) + 6912ã 6992mu + 5040r
FE 403(m̃u + r̃) + 1719(s̃u + r̃) + 7021ã 4647mu + 4244r

ML+FE 2355(m̃u + r̃) + 2287(s̃u + r̃) + 13933ã 11639mu + 9284r

This work

ML 1904m̃u + 396s̃u + 1368r̃ + 10281ã 6504mu + 2736r
FE 430m̃u + 1179s̃u + 963r̃ + 8456ã 3648mu + 1926r

ML+FE 2334m̃u + 1575s̃u + 2331r̃ + 18737ã 10152mu + 4662r

Table 6.3: Cumulative performance improvement when using new arithmetic in cyclo-
tomic subgroups (Section 6.5.2) and generalized lazy reduction (Section 6.3.1) on several
Intel and AMD 64-bit architectures. Improvements are calculated relatively to the Basic
Implementation. Timings are presented in millions of clock cycles.

This work

Method Phenom II Impr. Core i5 Impr. Opteron Impr. Core 2 Impr.
Basic Implementation 1.907 - 2.162 - 2.127 - 2.829 -
Cyclotomic Formulas 1.777 7% 2.020 7% 2.005 6% 2.677 5%
Lazy Reduction 1.562 18% 1.688 22% 1.710 20% 2.194 22%

overheads. Higher-level algorithms were implemented using the C programming language
compiled with the GCC compiler using -O3 optimization level. Table 6.3 presents the rele-
vant timings in millions of cycles. Basic Implementation employs homogeneous projective
coordinates and lazy reduction below Fp2 . Faster arithmetic in cyclotomic subgroups ac-
celerates the Basic Implementation by 5%-7% and, in conjunction with generalized lazy
reduction, it improves the Basic Implementation by 18%-22%.

Table 6.4 compares our implementation with related work. To ensure that machines
with different configurations but belonging to the same microarchitecture had compatible
performance (as is the case with Core i5 and Core i7), software from [99] was bench-
marked and the results compared with the ones reported in [99]. Machines considered
equivalent by this criteria are presented in the same column. We note that Phenom II
was not considered in the original study and that we could not find a Core 2 Duo machine
producing the same timings as in [99]. For this reason, timings for these two architectures
were taken independently by the authors using the available software. Observe that the
Basic Implementation in Table 6.3 consistently outperforms Beuchat et al. due to our
careful implementation of an optimal choice of parameters (E(Fp) : y2 = x3 + 2, p = 3

mod 4) [97] combined with optimized curve arithmetic in homogeneous coordinates [26].
When lazy reduction and faster cyclotomic formulas are enabled, pairing computation be-
comes faster than the best previous result by 28%-34%. For extended benchmark results
and comparisons with previous works on different 64-bit processors, the reader is referred
to our online database [176].

123

Table 6.4: Comparison between implementations on 64-bit architectures. Timings are
presented in clock cycles.

Work/Platform
Beuchat et al. [99]

Operation Phenom II Core i7 Opteron Core 2 Duo
Multiplication in Fp2 440 435 443 590
Squaring in Fp2 353 342 355 479
Miller Loop 1,338,000 1,330,000 1,360,000 1,781,000
Final Exponentiation 1,020,000 1,000,000 1,040,000 1,370,000
Optimal Ate Pairing 2,358,000 2,330,000 2,400,000 3,151,000

This work

Operation Phenom II Core i5 Opteron Core 2 Duo
Multiplication in Fp2 368 412 390 560
Squaring in Fp2 288 328 295 451
Miller Loop 898,000 978,000 988,000 1,275,000
Final Exponentiation 664,000 710,000 722,000 919,000
Optimal Ate Pairing 1,562,000 1,688,000 1,710,000 2,194,000

Improvement 34% 28% 29% 30%

6.8 Conclusion

In this work, we revisited the problem of computing optimal pairings on ordinary pairing-
friendly curves over prime fields. Several new techniques were introduced for pairing
computation, comprised mainly in the generalization of lazy reduction techniques to arith-
metic in extensions above Fp2 and inside curve arithmetic; and improvements to the final
exponentiation consisting of a formula for compressed squaring in cyclotomic subgroups
and an arithmetic trick to remove penalties from negative curve parameterizations. The
faster arithmetic in the cyclotomic subgroup improved pairing performance by 5%-7%
and the generalized lazy reduction technique was able to eliminate 40% of the required
modular reductions, improving pairing performance by further 11%-17%. The introduced
techniques allow for the first time a pairing computation under 2 million cycles on 64-bit
desktop computing platforms, improving the state-of-the-art by 28%-34%. The perfor-
mance improvements are expected to be even higher on embedded architectures, where
the ratio between multiplication and addition is typically higher.

Acknowledgements

We would like to express our gratitude to Alfred Menezes, Craig Costello, Michael Scott,
Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira and Conrado P. L. Gouvêa for useful
discussions during the preparation of this work. The authors thank the Natural Sciences
and Engineering Research Council of Canada (NSERC), the Ontario Centres of Excellence
(OCE), CNPq, CAPES and FAPESP for partially supporting this work.

124

Chapter 7

Parallelizing the Weil and Tate Pairings

Diego F. Aranha, Francisco Henríquez-Rodríguez, Edward
Knapp and Alfred Menezes

Abstract

In the past year, the speed record for pairing implementations on desktop-class machines
has been broken several times. The speed records for asymmetric pairings were set on a
single processor. In this paper, we describe our parallel implementation of the optimal ate
pairing over Barreto-Naehrig (BN) curves that is about 1.23 times faster using two cores
of an Intel Core i5 or Core i7 machine, and 1.45 times faster using 4 cores of the Core i7
than the state-of-the-art implementation on a single core. We instantiate Hess’s general
Weil pairing construction and introduce a new optimal Weil pairing tailored for parallel
execution. Our experimental results suggest that the new Weil pairing is 1.25 times faster
than the optimal ate pairing on 8-core extensions of the aforementioned machines. Finally,
we combine previous techniques for parallelizing the eta pairing on a supersingular elliptic
curve with embedding degree 4, and achieve an estimated 1.24-fold speedup on an 8-core
extension of an Intel Core i7 over the previous best technique.

Publication

This work corresponds to the submited version accepted for publication in the Proceedings
of the 13th Institute of Mathematics and its Applications’ International Conference on
Cryptography and Coding (IMA-CC 2011).

125

7.1 Introduction

Since the publication in 2001 of Boneh and Franklin’s seminal paper on identity-based
encryption [12], pairings have been used extensively to design ingenious protocols for meet-
ing security objectives that are seemingly unachievable using conventional cryptographic
techniques. Researchers have made remarkable progress in designing and implementing
both symmetric and asymmetric pairings. For asymmetric pairings based on Barreto-
Naehrig (BN) elliptic curves at the 128-bit security level, there have recently been several
notable improvements on the 10-million cycle Core 2 implementation reported in [67].
Naehrig et al. [160] exploited high-speed vector floating-point operations and were able to
compute a pairing in 4.47 million cycles on a Core 2. Shortly thereafter, Beuchat et al.
[99] and Aranha et al. [20] reported timings of 2.33 million cycles and 1.70 million cycles,
respectively, when employing the fastest integer multiplier available on the Intel Core i7
64-bit platform.

The aforementioned timings were all for a single-core implementation. In this paper,
we continue the work initiated by Grabher, Großschädl and Page [96] on implementing
pairings on multi-core platforms. This work is especially challenging for asymmetric pair-
ings because of the apparent paucity of opportunities available for parallelizing Miller’s
basic algorithm. In particular, it seems hopeless to expect the optimal 2-fold speedup for
known algorithms when going from 1 core to 2 cores on existing computing platforms.
Furthermore, effective usage of parallel computation resources depends on expensive oper-
ating system calls for thread creation or synchronization and on the relative immaturity of
development tools such as compilers, profilers, and debuggers. Concurrent programming is
difficult in general, due to fundamentally nondeterministic nature of the multi-threading
programming model [41], but it becomes even harder when the computational cost of
what is being computed is not several orders of magnitude higher than the parallelization
overhead itself.

Our results

We focus our attention on two of the fastest known symmetric and asymmetric pairings
at the 128-bit security level, namely the eta pairing [1] over a supersingular elliptic curve
with embedding degree 4, and Vercauteren’s optimal ate pairing [24] over BN elliptic
curves. It is worthwhile studying both symmetric and asymmetric pairings because they
provide different functionalities (see [96]). Our target platforms are popular Intel archi-
tectures. For the eta pairing, we combine techniques from [98] and [102] and achieve an
estimated 1.24-fold speedup on an 8-core extension of an Intel Core i7 over the previous
best technique. For the optimal ate pairing, we exploit a method introduced in [102] for
parallelizing a Miller function evaluation and a new ‘delayed squaring’ technique. Our

126

implementation is about 1.23 times faster using two cores of an Intel Core i5 or Core i7
machine, and 1.45 times faster using 4 cores of the Core i7 than the state-of-the-art im-
plementation on a single core [20]. We observe that the straightforward methods for
parallelizing extension field multiplication that were deemed effective in [96] fail on the
platforms under consideration because our field multiplication is much faster, whereby
the cost of managing the resulting threads dominates the cost of useful computation.

The limited success in parallelizing the optimal ate pairing on BN curves is due in
part to the apparent difficulty in parallelizing the final exponentiation. This motivated us
to consider the Weil pairing, whose potential speed advantages over the Tate pairing due
to the absence of a final exponentiation in the former were first considered in [177]. We
study two optimal Weil pairings, both of which can be computed using the equivalent of
four independent Miller functions each having optimal length, and without an expensive
final exponentiation. The first pairing is an instantiation of Hess’s general Weil pairing
construction [178], while the second pairing is an elegant new construction tailored for
parallel execution. These pairings are faster than previous variants of the Weil pairing
proposed in [179] and [178]. Our experimental results suggest that the new Weil pairing
is 1.25 times faster than the optimal ate pairing on 8-core extensions of the Intel Core i5
and Core i7 machines.

We emphasize that our implementations are for a single pairing evaluation on multi-
ple cores. If a protocol requires multiple pairing evaluations, the best strategy may be
to simply execute each pairing on a single core of a multi-core platform — the optimal
strategy depends on several factors including the number of available cores. Thus, our
work is primarily directed at protocols that require a single pairing evaluation in appli-
cations that have stringent response time requirements or where the processing power of
individual cores in a multi-core platform is low. Some examples of protocols that require
a single pairing evaluation are the encryption and decryption procedures in the Boneh-
Franklin identity-based encryption scheme [12], signature verification in the Boneh-Boyen
short signature scheme [180], the Sakai-Ohgishi-Kasahara non-interactive key agreement
scheme [13], and Scott’s identity-based key agreement scheme [181].

Other platforms

In order to exploit the fine-grained parallelism inherent in hardware platforms, a designer
must carefully craft the circuit’s control unit and schedule its hundreds of thousands
of micro instructions [182], an extremely challenging and complex task. FPGA devices
can achieve substantial performance improvements and power efficiency for cryptographic
applications. However, their reconfigurable design feature results in unavoidable highly-
redundant architectures that cause an overhead area factor between 20 and 40 when

127

compared to static ASIC designs [183]. Mainly because of this, contemporary FPGA
devices can run at maximum clock frequencies of less than 600MHz (although this value
is rarely or never achieved in actual cryptographic designs). Thus, it is not entirely
surprising that timings for the FPGA implementations of the optimal ate pairing over
BN curves reported by Duquesne and Guillermin [184] and Yao et al. [185] are slightly
slower than the ones for software implementation by Aranha et al. [20].

In contrast, ASIC designs and multi-core processors can easily operate at higher fre-
quencies. Fan et al. [161] and Kammler et al. [186] presented ASIC and ASIP designs of
pairings over BN curves at the 128-bit security level. The timings achieved by these designs
are both slower than the ones reported in the aforementioned FPGA designs [184, 185]
and software implementation [20]. On the other hand, modern multi-core processors are
supported by standard C/C++ compilers such as GCC and Intel’s ICC that can be com-
bined with OpenMP to add parallelism. Even though achieving optimal performance
using these tools is a challenging task, the software implementor’s work is significantly
easier than that of the hardware designer. In practice, the achievable parallelism on the
multi-core processors tends to be coarse-grained, but this should be compared with the
high frequencies of operation that these platforms enjoy, the periodic addition by major
manufacturers of faster and more powerful sets of instructions, and the constant reduction
of the retail price due to the large market for these processors.

We believe that deciding whether multi-core processors or FPGA/ASIC hardware
devices are the best choice for parallel realizations of pairings is far from clear. Perhaps
in the near future, the preferred design option will be a combination of both platforms
as some hybrid computer manufacturers whose architectures combine both technologies
seem to suggest. This combination of technologies can also be of interest for emerging
resource-constrained and embedded multi-core architectures such as the dual-core Cortex
ARM. It is conceivable that such constrained processors can be supported by fast hardware
accelerators attached to them.

We expect that our study of parallel pairing implementation on desktop processors pre-
sented will be useful in predicting the performance that parallel pairing implementations
can achieve in resource-constrained embedded systems. Even though the parallelization
overhead is likely to be much more expensive in embedded systems than on desktop pro-
cessors, the pairing computation time will be slower due to the usage of smaller processor
word sizes and less sophisticated multipliers. Hence, we expect that the ratio between
the pairing computation time and the parallelization overhead reported in our work will
remain roughly the same as the ones that we can expect in resource-constrained plat-
forms. Because of that, we anticipate that many of the observations and conclusions for
pairing parallelization on desktop processors that we arrive at can be extrapolated to the
embedded-system scenario.

128

Outline

The remainder of this paper is organized as follows. The optimal ate and eta pairings
are reviewed in §7.2. Our parallelization of the optimal ate pairing is described in §7.3,
and the optimal Weil pairings are presented in §7.4. Our parallel implementation of the
optimal ate and optimal Weil pairings is described in §7.5. Our improvements to the
parallel implementation of the eta pairing are presented in §7.6. We draw our conclusions
in §7.7.

7.2 Background on pairings

Let E be an elliptic curve defined over the finite field Fq, and let r be a prime with
r | #E(Fq) and gcd(r, q) = 1. The embedding degree k is the smallest positive integer
with r | (qk − 1). We will assume that k is even, whence E[r] ⊆ E(Fqk).

7.2.1 Miller functions

Let R ∈ E(Fqk) and let s be a non-negative integer. A Miller function fs,R [58] of length

s is a function in Fqk(E) with divisor (fs,R) = s(R) − (sR) − (s − 1)(∞). Note that
fs,R is uniquely defined up to multiplication by nonzero constants in Fqk . The length s

of a Miller function determines the number ⌊log2 s⌋ of doubling steps, and the Hamming
weight of s determines the number of addition steps in Miller’s algorithm for computing
fs,R [58]. We will always assume that Miller functions are minimally defined; that is,
if R ∈ E(Fqe), then fs,R is selected from the function field Fqe(E). Let u∞ be an Fq-
rational uniformizing parameter for ∞. A function f ∈ Fqk(E) is said to be normalized

if lc∞(f) = 1, where lc∞(f) = (u−t
∞f)(∞) and t is the order of f at ∞. Furthermore, f is

said to be semi-normalized if lc∞(f) belongs to a proper subfield of Fqk .

7.2.2 The Tate pairing

Let GT denote the order-r subgroup of F∗
qk

. The (reduced) Tate pairing er : E[r]×E[r]→
GT can be defined by

er : (P,Q) 7→
(
fr,P (Q+R)

fr,P (R)

)(qk−1)/r

(7.1)

where R ∈ E(Fqk) satisfies R 6∈ {∞, P,−Q,P −Q}. Several variants of the Tate pairing
have been defined in the literature, e.g., [1, 2, 3, 24, 162, 178]. All these pairings have
the property that they are fixed powers of the Tate pairing with domain restricted to the
product of two order-r subgroups of E[r]. In §7.2.3 and §7.2.4, we describe two of the

129

fastest asymmetric and symmetric pairings — the optimal ate pairing on BN curves, and
the eta pairing on k = 4 supersingular curves.

7.2.3 The optimal ate pairing

A BN elliptic curve E : Y 2 = X3+ b [74] of order r is defined over a prime field Fp, where
p(z) = 36z4 + 36z3 + 24z2 + 6z + 1 and where r = #E(Fp) = 36z4 + 36z3 + 18z2 + 6z + 1

is prime. These curves have embedding degree k = 12. The integer z is called the BN
parameter.

Let π : (x, y) 7→ (xp, yp) be the Frobenius endomorphism, and let G1 = {P ∈ E[r] :

π(P) = P} = E(Fp)[r]; G1 is the 1-eigenspace of π acting on E[r]. There is a unique
sextic twist Ẽ of E over Fp2 with r | #Ẽ(Fp2) [2]; let Ψ : Ẽ → E be the associated twisting
isomorphism. Let Q̃ ∈ Ẽ(Fp2) be a point of order r; then Q = Ψ(Q̃) 6∈ E(Fp). The group
G2 = 〈Q〉 is the p-eigenspace of π acting on E[r]. Points in G2 have x-coordinates in Fp6 ,
a property that is exploited in the important denominator elimination speedup [187]. For
future reference, we note that for a suitable third root of unity δ ∈ Fp, the automorphism
φ : (x, y) 7→ (δx,−y) has order 6 and satisfies φ(P) = p2P for all P ∈ G1.

The optimal ate pairing [24] is aopt : G1 ×G2 → GT defined by

aopt : (P,Q) 7→
(
f6z+2,Q(P) · ℓ(6z+2)Q,π(Q)(P) · ℓ(6z+2)Q+π(Q),−π2(Q)(P)

)(p12−1)/r
, (7.2)

where ℓA,B denotes the line through points A and B, and where f6z+2,Q and the line
functions are semi-normalized. This pairing is called “optimal” because the length 6z + 2

of the Miller function appearing in (7.2) has bitlength roughly one-fourth that of the
length r of the Miller function in the Tate pairing definition (7.1) [24]. The exponent
(p12− 1)/r in (7.2) can be written as (p6− 1)(p2 +1)(p4− p2 +1)/r. Since p-th powering
is inexpensive in Fp12 , the exponentiation by (p6− 1)(p2+1) is said to be the easy part of
the final exponentiation in (7.2); the exponentiation by (p4 − p2 + 1)/r is called the hard

part.

7.2.4 The eta pairing

Consider the supersingular elliptic curve E : Y 2 + Y = X3 +X defined over F2m , with m
odd. For simplicity, we further assume that m ≡ 7 (mod 8). We have #E(F2m) = 2m +

1+ 2(m+1)/2. Let r be a large prime divisor of #E(F2m). The embedding degree is k = 4.
The extension field F24m is represented using tower extensions F22m = F2m [s]/(s

2 + s+ 1)

and F24m = F22m [t]/(t
2 + t + s). A distortion map on G1 = E(F2m)[r] is ψ : (x, y) 7→

(x+ s2, y + sx+ t). Let GT be the order-r subgroup of F∗
24m . The eta pairing of Barreto

et al. [1] is ηT : G1 ×G1 → GT defined by

ηT : (P,Q) 7→ fT,−P (ψ(Q))
M , (7.3)

130

where T = 2(m+1)/2 + 1 and M = (22m − 1)(2m − 2(m+1)/2 + 1). Note that if r ≈ 2m,
then the length of the Miller function appearing in (7.3) is approximately half that of the
length r of the Miller function in the Tate pairing definition (7.1). Observe also that the
final exponentiation by M can be computed relatively quickly since squaring in F24m is
an inexpensive operation.

7.3 Parallelizing the optimal ate pairing

In this section, we shall assume that all Miller functions and line functions are semi-
normalized. Equations involving Miller and line functions hold up to multiplication by
nonzero constants. The following are two well-known properties of Miller functions.

Lemma 1 (Miller [58]). Let a and b be non-negative integers, and let R ∈ E(Fqk). Then

(i) fa+b,R = fa,R · fb,R · ℓaR,bR/v(a+b)R, where vP denotes the vertical line through P ; and

(ii) fab,R = fa
b,R · fa,bR.

The method of [102] for parallelizing the computation of a Miller function fs,R is the
following. We first write s = 2ws1 + s0, where s0 < 2w. Applying Lemma 1, we obtain

fs,R = f 2w

s1,R
· f2w,s1R · fs0,R ·

ℓ2ws1R,s0R

vsR
. (7.4)

If s0 is small, then the Miller function fs0,R can be computed relatively cheaply. Thus
the computation of fs,R can be parallelized by computing f 2w

s1,R
on one processor and

f2w,s1R on a second processor. The parameter w should be carefully selected in order to
balance the time of the two function computations. The relevant criteria for selecting
w include the Hamming weight of s1 (which determines the number of additions in the
Miller loop for the first function), and the cost of the w-fold squaring in the first function
relative to the cost of computing s1R in the second function. The w-fold squaring in
f 2w

s1,R
can be sped up by first computing α = f

(p6−1)(p2+1)
s1,R

(recall that exponentiation
by (p6 − 1)(p2 + 1) is the easy part of the final exponentiation), followed by α2w . The
advantage of this ‘delayed squaring’ trick is that α belongs to the order-(p4 − p2 + 1)

cyclotomic subgroup of F∗
p12 whence Karabina’s squaring method [173] can be deployed at

a cost of 12 Fp multiplications plus some small overhead — this is considerably less than
squaring a general element in Fp12 which costs 24 Fp multiplications.

Each of the two expensive Miller function computations in (7.4) can be recursively
parallelized. For this purpose, one writes

s = st2
wt + · · ·+ s22

w2 + s12
w1 + s0,

131

where si2wi = (s mod 2wi+1) − (s mod 2wi) for some wt > · · · > w2 > w1 > w0 = 0. We
also note that the lines that appear in (7.2) should be scheduled for execution on the
processor that handles s0 since this processor does not have any overhead of computing
consecutive squarings.

Remark 1. We were unable to find any effective method for parallelizing the hard part
of the final exponentiation. The exponent (p4−p2+1)/r can be decomposed into a multi-
addition chain requiring the consecutive z-th powers αz, αz2 and αz3 where α ∈ Fp12 [172].
However, the extremely low Hamming weight of z limits the potential for parallelization.
Furthermore, techniques that exploit very fast squaring (e.g., [188]) and fixed bases (e.g.,
[64]) are not applicable.

Remark 2. We measured the parallelization overhead in the target platforms using
OpenMP Microbenchmarks [189] and observed costs on the order of 1µs for multi-threading
primitives such as thread creation or synchronization; the costs confirm those reported in
[39]. These overheads also scaled linearly with the number of threads involved. During
1µs on a 2.53GHz machine, it is possible to perform 6 Fp2 multiplications or 8 Fp2 squar-
ings [20]. On the other hand, the most expensive Fp12 operation within the Miller loop
of a pairing computation is a sparse multiplication costing 13 Fp2 multiplications. Hence,
it seems that any potential speedup in a parallel implementation of Fp12 arithmetic (for
example, by assigning each of the three Fp6 multiplications required for an Fp12 multipli-
cation to different processors), as suggested by Grabher, Großschädl and Page [96], would
be nullified by the overheads. Furthermore, this approach is clearly not scalable to many
processors.

7.4 Optimal Weil pairings

In this section, E is BN curve defined over Fp with BN parameter z. Unless otherwise
stated, all functions are assumed to be normalized. By a ‘pairing’ we will mean a non-
degenerate bilinear pairing from G1×G2 to GT . Note that if e is a pairing and gcd(ℓ, r) =

1, then eℓ is also a pairing. It is understood that pairing values are defined to be 1 if
either input point is equal to ∞.

The classical Weil pairing [58] is eW : G1 ×G2 → GT defined by

eW : (P,Q) 7→ −fr,P (Q)
fr,Q(P)

. (7.5)

Note that the Weil pairing does not have a final exponentiation. The two Miller functions
in (7.5) each have length approximately z4 and can be independently computed on two
processors.

132

7.4.1 Hess’s Weil pairing construction

Hess [178] developed a framework for designing Tate and Weil-type pairings. Let s be an
integer. Let h =

∑d
i=0 hix

i ∈ Z[x] with h(s) ≡ 0 (mod r), and let m = h(s)/r; we assume
that r ∤ m. For R ∈ E[r], Lemma 1(ii) gives

fm
r,R = fmr,R = f∑d

i=0 hisi,R
.

As shown by Vercauteren [24, Theorem 1], repeated application of Lemma 1 yields

fm
r,R =

d∏

i=1

fhi

si,R
·
(

d∏

i=0

fhi,siR ·
d−1∏

i=0

ℓsi+1R,hisiR

vsiR

)
(7.6)

where si =
∑d

j=i hjs
j. Let fs,h,R denote the expression within the parenthesis in (7.6);

fs,h,R is called an extended Miller function and can be verified to have divisor∑d
i=0 hi((s

iR) − (∞)). Note that fs,R = fs,s−x,R. Hess’s result for Weil pairings spe-
cialized to BN curves is the following.

Theorem 1 (Theorem 1 in [178]). Let s be a primitive 6th root of unity modulo r2 with

s ≡ p2 (mod r). Let h ∈ Z[x] with h(s) ≡ 0 (mod r) and h(s) 6≡ 0 (mod r2). Then

es,h : G1 ×G2 → GT defined by

es,h : (P,Q) 7→
(
fs,h,P (Q)

fs,h,Q(P)

)6

(7.7)

is a pairing. In particular, there exists a sixth root of unity w ∈ Fp such that taking

h(x) = p2 − x gives the eil pairing eeil : G1 ×G2 → GT defined by

eeil : (P,Q) 7→ w
fp2,P (Q)

fp2,Q(P)
. (7.8)

7.4.2 The α Weil pairing

Taking h(x) = (2z + 1) + (6z2 + 2z)x in Theorem 1 yields the pairing α′ : G1×G2 → GT

defined by

α′ : (P,Q) 7→ w
f2z+1,P (Q)

f2z+1,Q(P)
· f6z2+2z,p2P (Q)

f6z2+2z,p2Q(P)
· ℓ(6z2+2z)p2P,(2z+1)P (Q)

ℓ(6z2+2z)p2Q,(2z+1)Q(P)
(7.9)

for some sixth root of unity w ∈ Fp. Since 6 | p6 − 1 and r ∤ (p6 − 1)(p2 + 1), it follows
that the map α : G1 ×G2 → GT defined by

α = (α′)(p
6−1)(p2+1) : (P,Q) 7→

(
f2z+1,P (Q)

f2z+1,Q(P)
· f6z2+2z,p2P (Q)

f6z2+2z,p2Q(P)

)(p6−1)(p2+1)

(7.10)

133

is also a pairing. The advantage of α over α′ is that field elements that lie in a proper
subfield of Fp12 can be ignored. In particular, the four Miller functions in (7.10) only
need to be semi-normalized, the important denominator elimination speedup of [187] can
be applied, and the two line functions in (7.9) can be ignored. Furthermore, the delayed
squaring technique of §7.3 can be employed as described below. In order to shorten
the length of the Miller functions f6z2+2z,R for R ∈ {p2P, p2Q} in (7.10), we can use
Lemma 1(ii) to write

f6z2+2z,R = fz,(6z+2)R · f z
6z+2,R.

The revised formula for the α pairing now has 6 Miller functions, and it may appear that
at least 6 processors would be necessary to effectively parallelize the pairing. However,
we observe that

f6z2+2z,p2Q(P) = f p2

6z2+2z,Q(P) (7.11)

since p2Q = π2(Q) and π(P) = P . Lemma 2 shows that an analogous conclusion can be
drawn with P and Q exchanged.

Lemma 2. For all P ∈ G1 and Q ∈ G2 we have

f
(p6−1)(p2+1)

6z2+2z,p2P (Q) = f
p2(p6−1)(p2+1)

6z2+2z,P (Q). (7.12)

Proof. To simplify the notation, we set a = 6z2 + 2z and c = (p6 − 1)(p2 + 1). Two
applications of Lemma 1(ii) yields

f c
ap2,P = fac

p2,P · f c
a,p2P = f cp2

a,P · f c
p2,aP . (7.13)

Let π̃ : (x, y) 7→ (xp
2
, yp

2
) be the p2-power Frobenius acting on the twist Ẽ. Let G̃1 and

G̃2 be the 1-eigenspace and the p2-eigenspace, respectively, of π̃ acting on Ẽ[r]. Then
Ψ−1(G1) = G̃2 and Ψ−1(G2) = G̃1, where Ψ : Ẽ → E is the twisting isomorphism1.
Lemma 6 of [190] applied to Ẽ shows that (P̃ , Q̃) 7→ f̃p2,P̃ (Q̃) is a pairing on G̃2 × G̃1,
where f̃ is a normalized Miller function associated with Ẽ. Thus

f̃p2,aP̃ (Q̃) = f̃a
p2,P̃

(Q̃). (7.14)

Now, it follows from the work of [191] (see also the proof of Theorem 1 in [26]) that
f̃ c
p2,P̃

(Q̃) = f c
p2,P (Q) where P = Ψ−1(P̃) ∈ G1 and Q = Ψ−1(Q̃) ∈ G2. Hence (7.14) can

be written as
f c
p2,aP (Q) = fac

p2,P (Q).

The result now follows from (7.13).

1We couldn’t find the statement Ψ(G̃2) = G1 in the literature. For completeness, we include a proof
in Appendix 7.A.

134

Using (7.11) and (7.12), we obtain the following alternate formulation of the α pairing:

α : (P,Q) 7→


f2z+1,P (Q)

f2z+1,Q(P)
·
(
fz,(6z+2)P (Q) · f z

6z+2,P (Q)

fz,(6z+2)Q(P) · f z
6z+2,Q(P)

)p2



(p6−1)(p2+1)

. (7.15)

Now, if fz,R is computed first, then f2z+1,R and f6z+2,R can be computed thereafter with
little additional work. Thus, there are effectively only 4 Miller functions in (7.15). Each of
these Miller functions has length approximately z, and therefore the α pairing is considered
optimal in the sense of [24].

Figure 7.1 illustrates the execution path when the 4 Miller functions in (7.15) are
computed in parallel using 4 processors. A further optimization is to raise the Miller
functions to the power (p6 − 1)(p2 + 1) as soon as they are computed — this enables
the use of Karabina’s fast squaring when computing f z

6z+2,P (Q) and f z
6z+2,Q(P). Note also

that since (6z+2)+p−p2+p3 ≡ 0 (mod r), we have (6z+2)Q = −π(Q)+π2(Q)−π3(Q)

and thus (6z + 2)Q can be computed very quickly. The fourth processor in Figure 7.1 is
the bottleneck because of the exponentiation by z.

fp2

z,(6z+2)Q(P) f2z+1,Q(P) · fp2

6z2+2z,Q(P)

f6z+2,Q(P) fz
6z+2,Q(P) f2z+1,Q(P) · fzp2

6z+2,Q(P)

1. (6z + 2)P

2. f2z+1,P (Q)

fp2

z,(6z+2)P (Q) f2z+1,P (Q) · fp2

6z2+2z,P (Q)

f6z+2,P (Q) fz
6z+2,P (Q) f2z+1,P (Q) · fzp2

6z+2,P (Q)

3.

f2z+1,Q(P)

(6z + 2)Q

4.

Figure 7.1: Execution path for computing the α pairing on 4 processors.

In §7.4.3, we present a variant of the Weil pairing that is slightly faster than the α
pairing.

7.4.3 The β Weil pairing

Consider h(x) = (6z + 2) + x− x2 + x3. From (7.6) we obtain

f−1
p,h,R = f−m

r,R · fp,R · f−1
p2,R · fp3,R (7.16)

and

fp,h,R = f6z+2,R · f−1,p2R ·
ℓ(6z+2)R,(p−p2+p3)R

v∞
· ℓpR,(−p2+p3)R

v(p−p2+p3)R

· ℓ−p2R,p3R

v(−p2+p3)R

. (7.17)

135

Theorem 2. For h(x) = (6z + 2) + x− x2 + x3, the map β′ : G1 ×G2 → GT defined by

β′ : (P,Q) 7→ w

(
fp,h,P (Q)

fp,h,Q(P)

)p
fp,h,pP (Q)

fp,h,Q(pP)
(7.18)

is a pairing, where w ∈ Fp is some sixth root of unity.

Proof. For simplicity, multiplicative factors that are sixth roots of unity will be omitted
in the proof. For y ∈ {r, p, p2, p3}, define the functions

γy : (P,Q) 7→
fy,P (Q)

p

fy,Q(P)p
· fy,pP (Q)
fy,Q(pP)

on G1 ×G2. Since f−1
p,h,P = f−m

r,P · fp,P · f−1
p2,P · fp3,P , it follows that

β′(P,Q)−1 = γr(P,Q)
−m · γp(P,Q) · γp2(P,Q)−1 · γp3(P,Q)

for all (P,Q) ∈ G1×G2. The conclusion that β′ is a pairing immediately follows if it can
be shown that γr, γp, γp2 and γp3 are pairings.

Now, (P,Q) 7→ fr,P (Q)/fr,Q(P) and (P,Q) 7→ fp2,P (Q)/fp2,Q(P) are, respectively, the
classic Weil pairing (7.5) and the eil pairing (7.8). It follows that γr and γp2 are also
pairings.

Using the facts that fp2,R = f p
p,R · fp,pR (Lemma 1(ii)) and that (P,Q) 7→ fp,Q(P) is a

pairing (Lemma 6 of [190]), the eil pairing can be written as

fp2,P (Q)

fp2,Q(P)
=

fp,P (Q)
p

fp,Q(P)p
· fp,pP (Q)
fp,pQ(P)

=
fp,P (Q)

p

fp,Q(P)p
· fp,pP (Q)
fp,Q(pP)

= γp(P,Q),

and hence γp is a pairing.
Finally, we note that (P,Q) 7→ fp2,Q(P) is a pairing since fp2,Q = f p

p,Q · fp,pQ and

(P,Q) 7→ fp,Q is a pairing. Using this observation and the fact that fp3,R = f p2

p,R · fp2,pR,
one can check that

γp3(P,Q) = γp(P,Q)
p2 · γp2(pP,Q).

Hence γp3 is a pairing.

Remark 3. The proof of Theorem 2 can easily be modified for all polynomials h(x) ∈ Z[x]

that satisfy h(p) ≡ 0 (mod r).

Since 6 | p6 − 1 and r ∤ (p6 − 1)(p2 + 1), the map β : G1 ×G2 → GT defined by

β = (β′)(p
6−1)(p2+1) : (P,Q) 7→

((
fp,h,P (Q)

fp,h,Q(P)

)p
fp,h,pP (Q)

fp,h,Q(pP)

)(p6−1)(p2+1)

(7.19)

136

is also a pairing. Since each extended Miller function in (7.19) is essentially a Miller
function of length approximately z (see (7.17)), the β pairing is considered optimal. As
was the case with the α pairing, the exponentiation by (p6 − 1)(p2 + 1) means that the
four extended Miller functions in (7.19) only need to be semi-normalized and denominator
elimination can be applied. Moreover, the vertical lines v(p−p2+p3)R, v(−p2+p3)R, f−1,p2R

and ℓ(6z+2)R,(p−p2+p3)R for R ∈ {P, pP,Q} in (7.17) can be ignored. Once pP has been
computed, the remaining line functions ℓpR,(−p2+p3)R and ℓ−p2R,p3R for R ∈ {P, pP,Q}
can be computed at very little additional cost since p2P = φ(P), p3P = φ(pP), and
pQ = π(Q). Furthermore, the delayed squaring technique of §7.3 can be employed if the
extended Miller functions are divided using (7.4).

Figure 7.2 illustrates the execution path when the 4 extended Miller functions in (7.19)
are computed in parallel using 4 processors. The fourth processor is the bottleneck, and
thus it is desirable to accelerate the computation of pP . To this effect, we observe that

p ≡ 2z(p2 − 2) + p2 − 1 (mod r),

whence
pP = 2z(p2 − 2)P + p2P − P = 2z(φ(P)− 2P) + φ(P)− P. (7.20)

Thus, computing pP has roughly the same cost as zP .

4.

3.

2.

1.

f6z+2,Q(pP)

f6z+2,pP (Q)

fp
6z+2,Q(P) · f6z+2,Q(pP)

fp
6z+2,P (Q) · f6z+2,pP (Q)

pP

fp
6z+2,Q(P)

pP

fp
6z+2,P (Q)

Figure 7.2: Execution path for computing the β pairing on 4 processors.

7.5 Parallel implementation of the BN pairings

The parallelization approaches described in §7.3 and §7.4 were implemented on top of
the state-of-the-art implementation of an optimal ate pairing at the 128-bit security level
described in [20]. The underlying elliptic curve is a BN curve with parameter z = −(262+
255 + 1) [97].

Let π denote the number of available processors on the target platform. To select
parameters (wπ−1, . . . , w2, w1, w0) that split the Miller loop, we employ the load balancing
scheme suggested in [102] with fine granularity, taking into account the relative cost of
inversions, multiplications, squarings, additions and modular reductions on the target

137

platform. With the optimal parameters determined, elementary operation counting makes
it possible to estimate the performance improvement of the corresponding implementation.
Figure 7.3 presents the estimated speedups for the parallelization approaches discussed in
this work in comparison with the optimal ate serial implementation of [20]. Notice how
the performance of the α and β Weil pairings scales better with the number of processing
cores. Scaling stills suffers from the same saturation effect experienced by the ate pairing
variants, but at a higher number of cores.

��

����

��

����

��

�� �� �� �� �� �	 �A �B

C
D
E
E
F
�
D

����E�����D���E�����

�D��������E
�D��������E������FE�� EF��!����"#

$ %E���D����"#
& %E���D����"#

Figure 7.3: Estimated speedups for several parallelization approaches of BN pairings.
Speedups are computed in relation to a serial implementation of the optimal ate pairing.

The parallel implementation was realized on platforms — a 2-core Intel Core i5 M540
32nm 2.53GHz machine (“Platform 1”) and a 4-core Intel Core i7 Sandy Bridge 32nm
2.0GHz machine (“Platform 2”), using GCC v4.5.2 as compiler with optimization flags
-O3 -funroll-loops. Parallel sections were implemented through the compiler’s native
OpenMP support. The same split in the Miller loop was used in both machines, as they
have similar field operation costs. Table 7.1 presents the experimental results, including
both the speedups estimated by operation counting and actual timings. For the optimal
ate pairing, the table confirms that delayed squaring yields a slightly better scaling, and
that the increase in overall speedup starts to stagnate at 8 cores. Even with these obsta-
cles, the pairing latency of the optimal ate pairing is reduced by 18-20% when using 2
processor cores, a significant improvement over the 10% reported as a preliminary result
for the R-ate pairing in [102]. The measured timings are compatible with the estimated
speedups — the differences are due to the parallelization overheads that are not accounted

138

for in the model for speedup estimation. The gap between the estimated and measured
timings increases with the number of cores due to the linear increase in overhead.

Number of threads
Estimated speedup 1 2 4 8

Optimal ate 1.00 1.24 1.40 1.48
Optimal ate with delayed squaring 1.00 1.27 1.47 1.58
α Weil 0.43 0.80 1.33 1.84
β Weil 0.44 0.86 1.48 2.05
Platform 1: Intel Core i5 Westmere 32nm 1 2 4* 8*

Optimal ate – latency 1688 1394 1254 1204
Optimal ate – speedup 1.00 1.21 1.35 1.40
Optimal ate with delayed squaring – latency – 1371 1189 1151
Optimal ate with delayed squaring – speedup – 1.23 1.42 1.47
α Weil – latency – – 1318 1006
α Weil – speedup – – 1.28 1.68
β Weil – latency – – 1227 915
β Weil – speedup – – 1.38 1.84
Platform 2: Intel Core i7 Sandy Bridge 32nm 1 2 4 8*

Optimal ate – latency 1562 1287 1137 1107
Optimal ate – speedup 1.00 1.21 1.37 1.41
Optimal ate with delayed squaring – latency – 1260 1080 1056
Optimal ate with delayed squaring – speedup – 1.24 1.45 1.48
α Weil – latency – – 1272 936
α Weil – speedup – – 1.23 1.67
β Weil – latency – – 1104 840
β Weil – speedup – – 1.41 1.86

Table 7.1: Experimental results for serial/parallel executions of BN pairings. Times
are presented in thousands of clock cycles and the speedups are computed as the ratio
of the execution time of a serial implementation and of a parallel implementation. The
dashes represent data points where there is no expected improvement over the serial
implementation. The columns marked with (*) present estimates based on per-thread
data.

The performance of the β Weil pairing is generally superior to the α Weil pairing due
to the difference in the cost of computing zP in the former and an exponentiation by z in
the cyclotomic subgroup in the latter (see Figures 7.1 and 7.2). It is important to observe
that since the β pairing is tailored for parallel execution, any future improvements in
the parallelization of the Miller loop in the optimal ate variants can be directly applied
to the β pairing. In the columns of Table 7.1 marked with (*), we present estimates

139

for machines with higher numbers of cores. These estimates were obtained by running
multiples threads per core and then measuring the cost of the most expensive thread.
This serves as an accurate prediction of performance scaling in future machines, assuming
that critical platform characteristics such as the memory organization and multi-threading
overhead will not change dramatically.

7.6 Parallel implementation of the eta pairing

Four approaches to parallelizing the eta pairing are outlined in §§7.6.1–7.6.4. Our imple-
mentation is then described in §7.6.5.

7.6.1 Algorithm 1

Aranha et al. [102] applied the parallelization method given in (7.4) to the reverse-loop
eta pairing algorithm presented in [79], obtaining Algorithm 7.1. The Miller loop is
split across π processors inside a parallel execution section. The intermediate results Fi,
0 ≤ i ≤ π − 1, from each core are multiplied together in parallel in step 17 at a cost of
⌈log2 π⌉ F24m-multiplications. The starting points (w0, w1, . . . , wπ−1) can be determined
so that the precomputation cost of processor i to compute (xQ)

2wi , (yQ)
2wi , (xP)

1/2wi ,
(yP)

1/2wi in step 10 can be balanced with the number of iterations, wi+1 − wi, so that
all processors incur the same cost [102]. This balancing can be deduced statically with a
simple platform-dependent operation count. The main advantage of Algorithm 1 is the
negligible storage requirements, which makes it well suited for embedded platforms.

7.6.2 Algorithm 2

An alternate parallelization strategy proposed in [98] is to precompute all the squares
and square-roots (xQ)

2j , (yQ)2
j

, (xP)1/2
j

, (yP)1/2
j

for 0 ≤ j < (m − 1)/2 and split the
Miller loop in equal parts so that wi+1 − wi = ⌈(m − 1)/2π⌉ without the need for any
static scheduling. This strategy requires storage capacity for 4 · (m − 1)/2 ≈ 2m field
elements, and therefore is more useful for the desktop platform scenario where storage
is abundant. However, Algorithm 2 was found to be slower that Algorithm 1 because
the precomputation cost is higher. Since this precomputation step is executed serially in
Algorithm 2, it can be viewed as the equivalent of all the processors incurring a higher
precomputation cost compared with Algorithm 1.

140

Algorithm 7.1 for parallelization of the eta pairing on π processors.
Input: P = (xP , yP), Q = (xQ, yQ) ∈ E(F2m)[r], starting point wi for processor i ∈ [0, π − 1].
Output: ηT (P,Q) ∈ F∗

24m .

1: yP ← yP + 1
2: parallel section (processor i)
3: if i = 0 then
4: ui ← xP , vi ← xQ
5: g0i ← ui · vi + yP + yQ + 1, g1i ← ui + xQ, g2i ← vi + x2P
6: Gi ← g0i + g1is+ t, Li ← (g0i + g2i) + (g1i + 1)s+ t, Fi ← Li ·Gi

7: else
8: Fi ← 1
9: end if

10: xQi ← (xQ)
2wi , yQi ← (yQ)

2wi , xP i ← (xP)
1/2wi , yP i ← (yP)

1/2wi

11: for j ← wi to wi+1 − 1 do
12: xP i ←

√
xP i, yP i ←

√
yP i, xQi ← xQ

2
i , yQi ← yQ

2
i

13: ui ← xP i, vi ← xQi
14: g0i ← ui · vi + yP i + yQi + 1, g1i ← ui + xQi
15: Gi ← g0i + g1is+ t, Fi ← Fi ·Gi

16: end for
17: F ←

∏π−1
i=0 Fi

18: end parallel
19: return FM

7.6.3 Algorithm 3

A straightforward improvement to Algorithm 2 is to further parallelize the precomputation
step using at most 4 processors, where each processor takes care of one iterated squaring
or square-root routine.

7.6.4 Algorithm 4

An improvement to Algorithm 3 is to utilize a recently-introduced time-memory trade-off
for computing consecutive squares [145]. Since squaring and square-root are linear maps
on F2m = F2[x]/(f(x)), for any fixed power 2k, a table T of 16⌈m/4⌉ F2m elements can be
precomputed so that

T [j, i0 + 2i1 + 4i2 + 8i3] = (i0x
4j + i1x

4j+1 + i2x
4j+2 + i3x

4j+3)2
k

(7.21)

for all 0 ≤ j < ⌈m/4⌉ and i0, i1, i2, i3 ∈ {0, 1}. After the table has been computed, any
power α2k can be quickly computed as

α2k =

⌈m/4⌉∑

j=0

T [j, ⌊a/24j⌋ mod 16],

141

where a denotes the integer whose base-2 digits are the coefficients of the polynomial
α ∈ F2[x] (which has degree at mostm-1). A similar table can be computed for 2−k powers.
The objective of this technique is to permit the computation of any 2k or 2−k-powers in
constant time independent of how large k is. When applied to the precomputation step
required for parallelization, this in turn allows each processor to use the same partition
size at a storage cost of 2 · 16 · m/4 = 8m field elements per processor, divided into
two tables for squarings and square-roots. This has the effect of making load balancing
trivial while speeding up the precomputation step. The technique has further application
in reducing an important part of the serial cost of parallel pairing computation — the
final exponentiation by M . The time-memory trade-off can also be used to accelerate the
2(m+1)/2-th power in F24m and inversion with the Itoh-Tsujii algorithm [146, 98].

7.6.5 Implementation report

For concreteness, we focus our attention on the supersingular elliptic curve E1 : Y
2+Y =

X3 + X over F21223 . This curve is a candidate for the 128-bit security level [67]. We
have #E1(F21223) = 5r where r is a 1221-bit prime. The representation chosen for the
underlying field is F21223 = F2[x]/(x

1223 + x255 + 1).

We implemented Algorithms 1–4 on an Intel Core i5 Westmere 32nm processor (“Plat-
form 1”) and an Intel Core i7 Sandy Bridge 32nm processor (“Platform 2”), both equipped
with the new carry-less multiplier [87]. The finite field implementation closely followed [88]
with the exception of multiplication, where a multi-level Karatsuba multiplier of 128-bit
granularity that exploits the new native multiplication instruction was deployed. The
first level is the traditional 2-way Karatsuba, where each of the three multiplications is
solved by a 5-way Karatsuba formula [143]. Each of the final 128-digit multiplications is
computed by another Karatsuba instance requiring 3 executions of the carry-less multi-
plication instruction.

Let M , S, R, T , I be the respective costs of multiplication, squaring, square-root, re-
peated squaring or square-root computation using a precomputed table as given in (7.21),
and inversion in F2m . The following ratios were obtained from our implementation of
arithmetic in F21223 on Platform 1: M = 14S and S ≈ R; for Algorithm 1 we have
I = 95M , and for Algorithm 4 we have T = 73S and I = 51M . Using these ratios, the
speedups for the eta pairing of the four parallelization approaches over a serial implemen-
tation were estimated; the results are depicted in Figure 7.4. It can be observed from
Figure 7.4 that the proposed parallelization is expected to be faster and more scalable, at
the expense of storage requirements for 8πm field elements. On Platform 2, the ratios
were: M = 18S, S ≈ R, I = 78M for Algorithm 1, and T = 81S and I = 38M for
Algorithm 4.

142

��

��

��

��

��

��

��

�	

�� �� �� �� �� �� �	 �A

B
C
D
D
E
F
C

�F��D�����C���D�����

�����������
�����������
�����������
�����������

Figure 7.4: Estimated speedups of the eta pairing on Platform 1 for four parallelization
algorithms using up to π = 8 processors.

Table 7.2 presents experimental results for this parallelization and updates results
from [88] by accounting for the native support for binary field multiplication. The
speedups obtained by the actual implementation closely match what was estimated in
Figure 7.4. The one exception is for Algorithm 4 running in 8 threads on Platform 1
where the competition for cache occupancy among the processors for quick access to the
precomputed tables degrades performance. One can expect that this effect will be reduced
in a proper 8-core machine because the memory hierarchy would be better prepared for
parallel access. The native support for binary field multiplication has two effects: dra-
matically improving the serial pairing computation time from 17.4 million cycles in [102]
to 7.2 million cycles (Platform 1) and 6.7 million cycles (Platform 2) in Algorithm 1; and
reducing the relative cost of the Miller loop compared to the final exponentiation, which
further reduces the 8-core estimated speedups for Platform 1 from 6.11 in [102] to 4.96 in
Algorithm 1. The improvements in Algorithm 4 eliminate an important serial cost in the
final exponentiation. For Platform 1, this resulted in an increase in the 8-core estimated
speedup to 6.40, and an acceleration of the serial pairing latency by about 4.5%.

7.7 Concluding remarks

Our work has demonstrated that asymmetric pairings derived from BN curves can be sig-
nificantly accelerated on multi-processor machines. Furthermore, our experiments suggest

143

Number of threads
Platform 1: Intel Core i5 Westmere 32nm 1 2 4* 8*

Algorithm 1 – estimated speedup 1.00 1.85 3.18 4.96
Algorithm 1 – latency 7197 3900 2292 1507
Algorithm 1 – speedup 1.00 1.84 3.14 4.77
Algorithm 4 – estimated speedup 1.00 1.92 3.62 6.40
Algorithm 4 – latency 6864 3751 1983 1305
Algorithm 4 – speedup 1.00 1.83 3.46 5.26
Platform 2: Intel Core i7 Sandy Bridge 32nm 1 2 4 8*

Algorithm 1 – estimated speedup 1.00 1.87 3.29 5.26
Algorithm 1 – latency 6648 3622 2072 1284
Algorithm 1 – speedup 1.00 1.84 3.21 5.17
Algorithm 4 – estimated speedup 1.00 1.94 3.67 6.54
Algorithm 4 – latency 6455 3370 1794 1034
Algorithm 4 – speedup 1.00 1.92 3.60 6.24

Table 7.2: Experimental results for serial/parallel executions the eta pairing. Times are
presented in thousands of clock cycles and the speedups are computed as the ratio of the
execution time of a serial implementation and of a parallel implementation. The columns
marked with (*) present estimates based on per-thread data.

that there are variants of the Weil pairing that are more amenable to parallelization than
the optimal ate pairing. Unlike the case with asymmetric pairings, our parallel implemen-
tations of the eta pairing on k = 4 supersingular elliptic curves come close to achieving the
ideal parallelization factor. Nevertheless, we found that asymmetric pairings derived from
BN curves are faster than the eta pairing on multi-processor machines. Of course, these
conclusions are heavily dependent on the characteristics of the hardware we employed and
may change on future generations of multi-core architectures.

7.A Relationship between G1, G2, G̃1 and G̃2

Let E : Y 2 = X3 + b be a BN curve defined over Fp with r = #E(Fp). We have
Fp12 = Fp2 [w]/(w

6 − ξ) where ξ ∈ Fp2 is a non-square and a non-cube [74]. Without
loss of generality, we can assume that the equation for the degree-6 twist Ẽ over Fp2

for which r | #Ẽ(Fp2) is Y 2 = X3 + b/ξ. The twisting isomorphism is Ψ : Ẽ → E,
(x, y) 7→ (w2x, w3y).

Lemma 3. Let G1 and G2 be the 1- and p-eigenspaces of the p-power Frobenius π acting

on E[r], and let G̃1 and G̃2 be the 1- and p2-eigenspaces of the p2-power Frobenius π̃ acting

on Ẽ[r]. Then Ψ(G̃1) = G2 and Ψ(G̃2) = G1.

144

Proof. Ψ(G̃1) = G2 was proven in [74]. We shall show that Ψ(G̃2) = G1.
We have wp2 = w(w6)(p

2−1)/6 = w · ξ(p2−1)/6. Let c = ξ(p
2−1)/6 so wp2 = cw. Then

c6 = ξp
2−1 ∈ F∗

p2 , so c is a 6th root of unity and in fact is in Fp since p ≡ 1 (mod 6).
Furthermore, c has order 6 since ξ is a non-square non-cube in Fp2 .

Let P = (w2x, w3y) ∈ G1 and P̃ = Ψ−1(P) = (x, y). Then

Ψ(π̃(P̃)) = (w2xp
2

, w3yp
2

)

= (w2p2c−2p2xp
2

, w3p2c−3p2yp
2

)

= π2(c−2w2x, c−3w3y)

= π2(χ(P))

= χ(P)

where χ : (x, y) 7→ (c−2x, c−3y) is an order-6 automorphism of E defined over Fp and thus
satisfies χ(P) = p2P or χ(P) = p10P . If χ(P) = p10P , then we have Ψ(π̃(P̃)) = p10P ,
and applying Ψ−1 to both sides gives π̃(P̃) = p10P̃ — this is impossible since p10 is not an
eigenvalue of π̃ acting on Ẽ[r]. Hence we must have χ(P) = p2P , whence Ψ(π̃(P̃)) = p2P .
Applying Ψ−1 to both sides gives π̃(P̃) = p2P̃ , so P̃ ∈ G̃2. We have established that
Ψ−1(P) ∈ G̃2, so we conclude that Ψ(G̃2) = G1.

145

Capítulo 8

Conclusões

Apresentamos nos capítulos anteriores vários trabalhos relacionados à implementação efi-
ciente em software de algoritmos critográficos. As contribuições foram agrupadas em dois
conjuntos de resultados: implementação eficiente de criptossistemas de curvas elípticas
e implementação eficiente de criptografia baseada em emparelhamentos. Procurou-se or-
ganizar os trabalhos apresentados segundo um fluxo lógico que parte de dispositivos no
segmento mais restrito do espectro de arquiteturas computacionais até atingir as arquite-
turas multiprocessadas que vêm ditando as tendências tecnológicas recentes.

No Capítulo 2, são apresentadas técnicas para implementação de aritmética em cor-
pos binários em microcontroladores de 8 bits que aproveitam ao máximo os recursos da
plataforma subjacente em busca de desempenho. A implementação de curvas elípticas
no nível de segurança de 80 bits sobre estes corpos permite calcular uma multiplicação
de ponto aleatório, operação fundamental de protocolos baseados em curvas elípticas, em
menos de 1

3
segundo. Este resultado contraria diversas observações levantadas em traba-

lhos anteriores sobre a inviabilidade de curvas binárias do ponto de vista de desempenho
para dispositivos limitados, e aperfeiçoa o estado-da-arte em pelo menos 57% para mul-
tiplicações de ponto curvas elípticas neste nível de segurança. Ainda que inicialmente
dedicadas à plataforma alvo, as otimizações desenvolvidas podem ser empregadas em ar-
quiteturas que compartilhem de características como conjunto de instruções limitado e
latência proibitiva em operações de acesso à memória, típicas de outras arquiteturas no
segmento de microcontroladores. Um obstáculo claro detectado neste trabalho foi a falta
de disponibilidade de memória RAM na plataforma alvo para realizar implementações em
níveis de segurança mais altos. Em compensação, uma vantagem do cenário de rede de
sensores é não exigir proteção contra vazamento de informações por canais laterais, visto
que o adversário já possui acesso físico irrestrito aos dispositivos de monitoramento.

No Capítulo 3, o mesmo problema é transportado para arquiteturas desktop equipadas
com conjuntos de instruções vetoriais. Uma formulação de aritmética em corpos binários

147

explorando explicitamente as novas instruções de permutação de bytes é desenvolvida,
acelerando a latência de operações em um corpo binário em até 84% e induzindo um novo
ainda que ineficiente algoritmo de multiplicação no corpo finito. Esta nova formulação
de aritmética é ilustrada com a implementação da multiplicação de ponto em uma curva
elíptica no nível de segurança de 128 bits, mais adequado para a plataforma-alvo, e acelera
em até 30% o estado-da-arte de implementações desta primitiva que não funcionam em
modo lote. Devido ao desempenho superior de abordagens baseadas em modo lote, não
houve quebra de recordes de velocidade, mas o trabalho permitiu estabelecer novos pontos
de referência para o desempenho em modo lote. Seria interessante como trabalho futuro
estender a abordagem à corpos finitos de catacterística 3 e avaliar o desempenho do novo
algoritmo de multiplicação neste cenário.

No Capítulo 4, é analisado o impacto algorítmico causado pela introdução de suporte
nativo à multiplicação em corpos binários nas microarquiteturas mais recentes da Intel.
Diversas estratégias de implementação de operações como half-trace e inversão permi-
tiram restaurar o desempenho de abordagens para multiplicação de ponto baseadas em
halving, face à disponibilidade de uma operação de duplicação de ponto significativamente
mais eficiente. Os impactos da nova instrução são ainda explorados a partir de extensas
implementações seriais e paralelas de curvas elípticas binárias padronizadas nos níveis de
segurança de 112 e 192 bits e um novo recorde de velocidade é finalmente obtido para mul-
tiplicações de ponto em curvas binárias resistentes ao vazamento de informações por meio
de canal lateral, com uma modesta aceleração de 10% em relação ao estado-da-arte em
modo lote previamente discutido. Outra conseqüência da nova instrução, além da acele-
ração da implementação, é reduzir o vazamento de informações por canais laterais ligados
à hierarquia de memória presentes nos algoritmos que exigem fases de pré-computação. e
modo lote precisa ser novamente revisitada após a introdução de instruções vetoriais de
256 bits trazidas pelas extensões AVX. É também necessário fornecer um panorama mais
completo do desempenho de curvas elípticas no nível de segurança de 128 bits, visto que
apenas um cenário foi considerado neste trabalho.

As contribuições que lidam com o desempenho de emparelhamentos foram apresenta-
das a partir do Capítulo 5. Neste capítulo, a implementação eficiente em corpos binários
permitiu estabelecer um novo recorde de velocidade para emparelhamentos simétricos,
com uma aceleração de até 30% em relação ao estado-da-arte prévio. Além disso, é
apresentada uma estratégia escalável de paralelização do Algoritmo de Miller útil para
aplicações em que a latência de comunicação é crítica. Esta estratégia é excepcional para
o caso simétrico binário e acelera o estado-da-arte em 28%, 44% e 66% em arquiteturas
com 2, 4 e 8 unidades de processamento. A aplicação da mesma estratégia para o caso
assimétrico fornece um ganho modesto de desempenho de apenas 10% com o emprego de
2 unidades de processamento. Como trabalhos futuros, permanece a necessidade de se

148

revisitar essas estratégias para o caso simétrico definido sobre corpos ternários.
No Capítulo 6, são desenvolvidas novas técnicas para a implementação serial de em-

parelhamentos primos no nível de segurança de 128 bits. As contribuições principais são:
(i) a generalização da noção de redução modular preguiçosa para aritmética em corpos de
extensão e em twists de curvas elípticas; (ii) o desenvolvimento de novas fórmulas para o
cálculo de quadrados comprimidos sucessivos em subgrupos ciclotômicos de corpos de ex-
tensão; (iii) a eliminação de penalidades de desempenho em parametrizações negativas de
curvas Barreto-Naehrig. Estas novas técnicas estabelecem um novo recorde de velocidade
para o cálculo de qualquer emparelhamento, aprimorando o melhor resultado anterior em
até 34%. Como trabalho futuro natural, é importante examinar o impacto dessas novas
técnicas na escolha de parâmetros para o cálculo de emparelhamentos em níveis superiores
de segurança, onde uma primeira análise sugere curvas com maior grau de mergulho.

No último capítulo de resultados, o Capítulo 7, todas as técnicas desenvolvidas no
trabalho são empregadas para o aprimoramento dos resultados obtidos nos dois últimos
capítulos. Em primeiro lugar, é mostrado como as fórmulas para o cálculo comprimido de
quadrados em subgrupos ciclotômicos aumentam a escalabilidade da estratégia de parale-
lização apresentada no Capitulo 5 para o caso assimétrico, atingindo até 20% de ganho de
desempenho quando estão disponíveis 2 unidades de processamento. Há um estudo mais
detalhado da granularidade ideal e dos obstáculos para a paralelização de emparelhamen-
tos assimétricos e são apresentados dois novos emparelhamentos derivados do empare-
lhamento de Weil, dos quais um deles apresenta escalabilidade superior às outras opções
quando há disponibilidade de 8 unidades de processamento. Finalmente, o desempenho de
emparelhamentos simétricos sobre curvas elípticas supersingulares binárias é revisitado,
considerando principalmente o impacto do novo suporte nativo à multiplicação em corpos
binários discutido no Capítulo 4, propondo-se uma simplificação da partição paralela do
Algoritmo de Miller que restaura a escalabilidade observada na implementação original.

Dentre os vários recordes de velocidade para implementações em software no nível de
segurança de 128 bits apresentados neste trabalho, nenhum foi superado até a publicação
desta tese. São estes: recorde de velocidade para a multiplicação em curvas binárias
genéricas resistente a canais laterais e para o cálculo serial ou paralelo de emparelhamentos
bilineares nos cenários simétrico e assimétrico. O recorde para o caso assimétrico se
aplica também a implementações em hardware. Várias das contribuições desta tese estão
disponíveis na biblioteca criptográfica RELIC, da qual o autor é fundador e desenvolvedor
líder.

149

Referências Bibliográficas

[1] P. S. L. M. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient Pairing
Computation on Supersingular Abelian Varieties. Designs, Codes and Cryptography,
42(3):239–271, 2007.

[2] F. Hess, N. P. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE

Transactions on Information Theory, 52:4595–4602, 2006.

[3] H. Lee E. Lee and C. Park. Efficient and Generalized Pairing Computation on
Abelian Varieties. IEEE Transactions on Information Theory, 55(4):1793–1803,
2009.

[4] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, IT-22:644–654, November 1976.

[5] L. M. Kohnfelder. Towards a practical public-key cryptosystem. B.S. Thesis, su-
pervised by L. Adleman, May 1978.

[6] P. Gutman. PKI: it’s not dead, just resting. IEEE Computer, 35(8):41–49, 2002.

[7] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of computation, 48:203–9,
1987.

[8] V. Miller. Uses of Elliptic Curves in Cryptography. In H. C. Williams, editor, 5th

Annual International Cryptology Conference (CRYPTO 85), volume 218 of LNCS,
pages 417–426. Springer, 1986.

[9] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[10] L. B. Oliveira, M. Scott, J. López, and R. Dahab. TinyPBC: Pairings for Authen-
ticated Identity-Based Non-Interactive Key Distribution in Sensor Networks. In
5th International Conference on Networked Sensing Systems (INSS 2008), pages
173–179, 2008.

151

[11] A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and D. Chaum, editors, 4th Annual International Cryptology Conference (CRYPTO

84), volume 196 of LNCS, pages 47–53. Springer, 1984.

[12] D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing.
In J. Kilian, editor, 21st Annual International Cryptology Conference (CRYPTO

2001), volume 2139 of LNCS, pages 213–229. Springer, 2001.

[13] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems Based on Pairing over Ellip-
tic Curve (in Japanese). In The 2001 Symposium on Cryptography and Information

Security, January 2001.

[14] A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. In 23rd annual ACM Symposium on Theory of Computing

(STOC 91), pages 80–89, New Yourk, USA, 1992. ACM.

[15] G. Frey and M. M{uller and H. R}uck. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transtactions on Information Theory,
45(5):1717–1719, 1999.

[16] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. Journal of Cryptology,
17(4):263–276, 2004.

[17] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing.
Journal of Cryptology, 17(4):297–319, 2004.

[18] Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless Public Key Cryp-
tography. In C.-S. Laih, editor, 9th International Conference on the Theory and

Application of Cryptology and Information Security (ASIACRYPT 2003), volume
2894 of LNCS, pages 452–473. Springer, 2003.

[19] M. Scott. Implementing Cryptographic Pairings. In First International Conference

on Pairing-Based Cryptography (Pairing 2007), volume 4575 of LNCS, pages 177–
196. Springer, 2007.

[20] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. In K. Patterson, editor,
30th International Conference on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT 2011), volume 6632 of LNCS, pages 48–68. Springer,
2010.

152

[21] P. Longa and C. H. Gebotys. Efficient techniques for high-speed elliptic curve cryp-
tography. In S. Mangard and F.-X. Standaert, editors, 12th International Workshop

on Cryptographic Hardware and Embedded Systems (CHES 2010), volume 6225 of
LNCS, pages 80–94. Springer, 2010.

[22] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient Implementation of
Pairing-Based Cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

[23] Paulo S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient Algorithms
for Pairing-Based Cryptosystems. In M. Yung, editor, 22th Annual International

Cryptology Conference (CRYPTO 2002), volume 2442 of LNCS, pages 354–368.
Springer, 2002.

[24] F. Vercauteren. Optimal pairings. IEEE Trans. Inf. Theor., 56(1):455–461, 2010.

[25] D. Freeman, M. Scott, and E. Teske. A Taxonomy of Pairing-Friendly Elliptic
Curves. Journal of Cryptology, 23(2):224–280, 2010.

[26] C. Costello, T. Lange, and M. Naehrig. Faster Pairing Computations on Curves
with High-Degree Twists. In P. Q. Nguyen and D. Pointcheval, editors, 13th In-

ternational Conference on Practice and Theory in Public Key Cryptography (PKC

2010), volume 6056 of LNCS, pages 224–242. Springer, 2010.

[27] J. López and R. Dahab. High-Speed Software Multiplication in GF(2m). In B. K.
Roy and E. Okamoto, editors, 1st International Conference in Cryptology in India

(INDOCRYPT 2000), volume 1977 of LNCS, pages 203–212. Springer, 2000.

[28] A. J. Devegili, C. Ó hÉigeartaigh, M. Scott, and R. Dahab. Multiplication and
Squaring on Pairing-Friendly Fields. Cryptology ePrint Archive, Report 2006/471,
2006. http://eprint.iacr.org/.

[29] OpenMP Architecture Review Board. OpenMP Application Program Interface.
http://www.openmp.org/drupal/mp-documents/spec25.pdf, 2005.

[30] O. Wechsler. Inside Intel Core Microarchitecture: Setting new Standards for Energy-
efficient Performance. Technology@Intel Magazine, 2006.

[31] Advanced Micro Devices. Software optimization guide for amd family 10h and 12h
processors. Technical Report, 2006. http://developer.amd.com/.

[32] Atmel Corporation. 8 bit AVR Microcontroller ATmega128(L) manual. Atmel,
2467M-AVR-11/04 edition, November 2004.

153

[33] Intel. The Intel XScale Microarchitecture Technical Summary. http://www.intel.
com.

[34] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[35] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, and A. Lefohn
amd Timothy J. Purcell. A Survey of General-Purpose Computation on Graphics
Hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[36] D. W. Wall. Limits of Instruction-Level Parallelism. In 4th International Confe-

rence on Architectural Support for Programming Languages and Operating System

(ASPLOS 91), volume 26, pages 176–189, New York, NY, 1991. ACM.

[37] V. V. and M. Franz. Power reduction techniques for microprocessor systems. ACM

Computing Surveys, 37(3):195–237, 2005.

[38] Wm. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the
obvious. SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[39] S. Akhter and J. Roberts. Multi-Core Programming. Intel Press, 2006.

[40] H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54–62,
2005.

[41] E. A. Lee. The Problem with Threads. Computer, 39(5):33–42, 2006.

[42] C. Hughes and T. Hughes. Professional Multicore Programming: Design and Im-

plementation for C++ Developers. Wrox Press Ltd., Birmingham, UK, UK, 2008.

[43] C. N. Keltcher, K. J. Mcgrath, A. Ahmed, and P. Conway. The AMD Opteron
processor for multiprocessor servers. IEEE Micro, 23(2):66–76, 2003.

[44] R. Hetheringtonh. The UltraSPARC T1 Processor: Power-Efficient Throughput
Computing. Sun White Paper, December 2005.

[45] K. Hirata and J. Goodacre. ARM MPCore; The streamlined and scalable ARM11
processor core. In ASP-DAC, pages 747–748, 2007.

[46] MIPS Technologies. MIPS32 1004K Coherent Processing System Core. The MIPS32
1004K Product Brief, 2008.

154

[47] F. Zhao N. B. Priyantha and D. Lymberopolous. mPlatform: A reconfigurable
architecture and efficient data sharing mechanism for modular sensor nodes. Tech
Report, 2006. http://research.microsoft.com/pubs/70353/tr-2006-142.pdf.

[48] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transac-

tions on Computers, C-21(9):948–960, September 1972.

[49] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture.
IEEE Micro, 16(4):42–50, 1996.

[50] Intel. Intel Architecture Software Developer’s Manual Volume 2: Instruction Set
Reference. http://www.intel.com, 2002.

[51] Intel. Intel SSE4 Programming Reference. Technical Report. http://software.

intel.com/.

[52] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. Intel AVX: New frontiers in
performance improvement and energy efficiency. White paper. http://software.

intel.com/.

[53] F. Mattern and C. Floerkemeier. From the Internet of Computers to the Internet

of Things, volume 6462 of LNCS, pages 242–259. Springer, 2010.

[54] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. In K. G. Shin, Y. Zhang, R. Bagrodia,
and R. Govindan, editors, 15th Annual International Conference on Mobile Com-

puting and Networking (MOBICOM 99), pages 263–270, Seattle, WA USA, 1999.
ACM.

[55] Jeremey Landt. Shrouds of Time: The History of RFID. Technical report, The
Association for Automatic Identification and Data Capture Technologies, 2001.

[56] Intel. Intel Architecture Software Developer’s Manual Volume 3: System Program-
ming Guide. http://www.intel.com, 2006.

[57] V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.

[58] V. S. Miller. The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology,
17(4):235–261, 2004.

[59] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Crypto-

graphy. Springer-Verlag, Secaucus, NJ, USA, 2003.

155

[60] J. López and R. Dahab. Improved Algorithms for Elliptic Curve Arithmetic in
GF(2n). In S. E. Tavares and H. Meijer, editors, 5th Annual International Workshop

Selected Areas in Cryptography (SAC 98), volume 1556 of LNCS, pages 201–212.
Springer, 1998.

[61] D. J. Bernstein. Batch Binary Edwards. In S. Halevi, editor, 29th Annual In-

ternational Cryptology Conference (CRYPTO 2009), volume 5677 of LNCS, pages
317–336. Springer, 2009.

[62] K. Fong, D. Hankerson, J. López, and A. Menezes. Field Inversion and Point Halving
Revisited. IEEE Transactions on Computers, 53(8):1047–1059, 2004.

[63] J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Crypto-

graphy, 19(2-3):195–249, 2000.

[64] C. H. Lim and P. J. Lee. More Flexible Exponentiation with Precomputation. In
Y. Desmedt, editor, 14th Annual International Cryptology Conference (CRYPTO

1994), volume 839 of LNCS, pages 95–107, London, UK, 1994. Springer.

[65] R. Gallant, R. Lambert, and S. Vanstone. Faster Point Multiplication on Elliptic
Curves with Efficient Endomorphisms. In J. Kilian, editor, 21st Annual Internatio-

nal Cryptology Conference (CRYPTO 2001), volume 2139 of LNCS, pages 190–200.
Springer, 2001.

[66] H. Cohen and G. Frey, editors. Handbook of Elliptic and Hyperelliptic Curve Cryp-

tography. CRC Press, 2005.

[67] D. Hankerson, A. Menezes, and M. Scott. Software Implementation of Pairings. In
Identity-Based Cryptography, chapter 12, pages 188–206. IOS Press, 2008.

[68] D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM

Journal on Discrete Mathematics, 6(1):124–138, 1993.

[69] L. M. Adleman. A Subexponential Algorithm for the Discrete Logarithm Problem
with Applications to Cryptography (Abstract). In Foundations of Computer Science

(FOCS 79), pages 55–60. IEEE, 1979.

[70] J. H. Silverman and J. Suzuki. Elliptic curve discrete logarithms and the index
calculus. In K. Ohta and D. Pei, editors, International Conference on the Theory

and Applications of Cryptology and Information Security (ASIACRYPT 98), volume
1514 of LNCS, pages 110–125, London, UK, 1998. Springer.

156

[71] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for Cryptographers. Dis-

crete Applied Mathematics, 156(16), 2008.

[72] K. E. Stange. The Tate Pairing via Elliptic Nets. In T. Takagi, T. Okamoto,
E. Okamoto, and T. Okamoto, editors, First International Conference on Pairing-

Based Cryptography (Pairing 2007), volume 4575 of LNCS, pages 329–348. Springer,
2007.

[73] A. Miyaji, M. Nakabayashi, and S. Takano. New Explicit Conditions of Elliptic
Curve Traces for FR-Reduction. Transactions on Comm./Elec./Information and

Systems, 2001.

[74] P. S. L. M. Barreto and M. Naehrig. Pairing-Friendly Elliptic Curves of Prime
Order. In B. Preneel and S. E. Tavares, editors, 12th International Workshop on

Selected Areas in Cryptography (SAC 2005), volume 3897 of LNCS, pages 319–331.
Springer, 2005.

[75] E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing Brezing-Weng pairing
friendly elliptic curves using elements in the cyclotomic field. In S. D. Galbraith
and K. G. Paterson, editors, 2nd International Conference on Pairing-Based Cryp-

tography (Pairing 2008), volume 5209 of LNCS, pages 126–135. Springer, 2008.

[76] M. Maas. Pairing-based Cryptography. Master’s thesis, Department of Mathematics
and Computer Science, Technische Universiteit Eindhoven, 2004.

[77] C.-M. Park, M.-H. Kim, and M. Yung. A remark on implementing the weil pairing.
In D. Feng, D. Lin, and M. Yung, editors, 1st SKLOIS Conference on Information

Security and Cryptology, volume 3822 of LNCS, pages 313–323. Springer, 2005.

[78] I. M. Duursma and H. S. Lee. Tate Pairing Implementation for Hyperelliptic Curves
y2 = xp-x + d. In C.-S. Laih, editor, 9th International Conference on the Theory and

Application of Cryptology and Information Security (ASIACRYPT 2003), volume
2894 of LNCS, pages 111–123, 2003.

[79] J. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodríguez-Henríquez.
A Comparison Between Hardware Accelerators for the Modified Tate Pairing over
F2m and F3m . In S. D. Galbraith and K. G. Paterson, editors, 2nd International

Conference on Pairing-Based Cryptography (Pairing 2008), volume 5209 of LNCS,
pages 297–315. Springer, 2008.

[80] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security
Protocols for Sensor Networks. Wireless Networks, 8(5):521–534, September 2002.

157

[81] C. Karlof, N. Sastry, and D. Wagner. TinySec: A Link Layer Security Architecture
for Wireless Sensor Networks. In 2nd ACM SenSys, pages 162–175, Nov 2004.

[82] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs. In M. Joye and J.-J. Quisquater,
editors, 6th International Workshop on Cryptographic Hardware and Embedded Sys-

tems (CHES 2004), volume 3156 of LNCS, pages 119–132. Springer, 2004.

[83] H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, and V. Gupta. Architectural Ex-
tensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors. In
16th IEEE International Conference on Application-Specific Systems, Architectures,

and Processors (ASAP 2005), pages 343–349. IEEE, 2005.

[84] D. F. Aranha, D. Câmara, J. López, L. B. Oliveira, and R. Dahab. Implementação
eficiente de criptografia de curvas elípticas em sensores sem fio. In VIII Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais (SBSEG

2008), pages 173–186, 2008.

[85] D. F. Aranha, J. López, L. B. Oliveira, and R. Dahab. Efficient implementation
of elliptic curves on sensor nodes. In Conference on Hyperelliptic curves, discrete

Logarithms, Encryption, etc (CHiLE 2009), 2009.

[86] D. F. Aranha, L. B. Oliveira, J. López, and R. Dahab. Efficient implementation of
elliptic curve cryptography in wireless sensors. Advances in Mathematics of Com-

munications, 4(2):169–187, 2010.

[87] S. Gueron and M. E. Kounavis. Carry-Less Multiplication and Its Usage for Com-
puting The GCM Mode. White paper. http://software.intel.com/.

[88] D. F. Aranha, J. López, and D. Hankerson. Efficient Software Implementation of
Binary Field Arithmetic Using Vector Instruction Sets. In M. Abdalla and P. S.
L. M. Barreto, editors, 1st International Conference on Cryptology and Information

Security (LATINCRYPT 2010), volume 6212 of LNCS, pages 144–161, 2010.

[89] J. Taverne, A. Faz-Hernández, D. F. Aranha, F. Rodríguez-Henríquez, D. Hanker-
son, and J. López. Software implementation of binary elliptic curves: Impact of the
carry-less multiplier on scalar multiplication. In 13th International Workshop on

Cryptographic Hardware and Embedded Systems (CHES 2011), 2011. To appear.

[90] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of Cryp-
tographic Systems. http://bench.cr.yp.to, accessed 25 May 2010.

158

[91] D. F. Aranha, L. B. Oliveira, J. López, and R. Dahab. NanoPBC: implementing
cryptographic pairings on an 8-bit platform. In Conference on Hyperelliptic curves,

discrete Logarithms, Encryption, etc (CHiLE 2009), 2009.

[92] L. B. Oliveira, D. F. Aranha, C. P. L. Gouvêa, M. Scott, D. F. Câmara, J. López, and
R. Dahab. TinyPBC: Pairings for Authenticated Identity-Based Non-Interactive
Key Distribution in Sensor Networks. Computer Communications, 4(2):169–187,
2010.

[93] L. B. Oliveira, A. Kansal, C. P. L. Gouvêa, D. F. Aranha, J. López, B. Priyantha,
M. Goraczko, and F. Zhao. Secure-tws: Authenticating node to multi-user commu-
nication in shared sensor networks. The Computer Journal, 2011. To appear.

[94] C.-P. Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, CRYPTO ’89, volume 435 of LNCS, pages 239–252. Springer,
1989.

[95] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature
scheme from bilinear pairings and its applications. In Feng Bao, Robert H. Deng,
and Jianying Zhou, editors, Public Key Cryptography (PKC 2004), volume 2947 of
LNCS, pages 277–290. Springer, 2004.

[96] P. Grabher, J. Groszschaedl, and D. Page. On Software Parallel Implementation
of Cryptographic Pairings. In R. M. Avanzi, L. K., and F. Sica, editors, 15th

International Workshop on Selected Areas in Cryptography (SAC 2008), volume
5381 of LNCS, pages 34–49. Springer, 2008.

[97] P. S. L. M. Barreto, M. Naehrig, G. C. C. F. Pereira, and M. A. Simplício Jr. A
Family of Implementation-Friendly BN Elliptic Curves. Cryptology ePrint Archive,
Report 2010/429, 2010. http://eprint.iacr.org/.

[98] J. Beuchat, E. López-Trejo, L. Martínez-Ramos, S. Mitsunari, and F. Rodríguez-
Henríquez. Multi-core Implementation of the Tate Pairing over Supersingular El-
liptic Curves. In J. A. Garay, A. Miyaji, and A. Otsuka, editors, 8th Internatio-

nal Conference on Cryptology and Network Security (CANS 2009), volume 5888 of
LNCS, pages 413–432. Springer, 2009.

[99] J.-L. Beuchat, J.E. González Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-
Henríquez, and T. Teruya. High-speed software implementation of the optimal ate
pairing over Barreto–Naehrig curves. In M. Joye, A. Miyaji, and A. Otsuka, edi-
tors, 4th International Conference on Pairing-Based Cryptography (Pairing 2010),
number 6487 in LNCS, pages 21–39. Springer, 2010.

159

[100] D. F. Aranha and J. López. Paralelização em software do Algoritmo de Miller. In
IX Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais

(SBSEG 2009), pages 27–40, 2009.

[101] D. F. Aranha, J. López, and D. Hankerson. High-Speed Parallel Software Implemen-
tation of the ηT Pairing. In Software Performance Enhancement of Encryption and

Decryption and Cryptographic Compilers (SPEED-CC 2009), pages 73–88, 2009.
http://www.hyperelliptic.org/SPEED/record09.pdf.

[102] D. F. Aranha, J. López, and D. Hankerson. High-Speed Parallel Software Imple-
mentation of the ηT Pairing. In J. Pieprzyk, editor, Cryptographers’ Track at RSA

Conference (CT-RSA 2010), volume 5985 of LNCS, pages 89–105. Springer, 2010.

[103] Diego F. Aranha, Jean-Luc Beuchat, Jérémie Detrey, and Nicolas Estibals. Optimal
eta pairing on supersingular genus-2 binary hyperelliptic curves. Cryptology ePrint
Archive, Report 2010/559, 2010. http://eprint.iacr.org/.

[104] D. F. Aranha, F. Rodríguez-Henríquez, E. Knapp, and A. Menezes. Parallelizing
the Weil and Tate Pairings. To appear in Proceedings of the 13th IMA International
Conference on Cryptography and Coding (IMA-CC 2011).

[105] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/.

[106] J. L. Hill and D. E. Culler. MICA: A Wireless Platform for Deeply Embedded
Networks. IEEE Micro, 22(6):12–24, 2002.

[107] A. Kargl, S. Pyka, and H. Seuschek. Fast Arithmetic on ATmega128 for Elliptic
Curve Cryptography. Cryptology ePrint Archive, Report 2008/442, 2008. http:

//eprint.iacr.org/.

[108] J. Großschädl. TinySA: a security architecture for wireless sensor networks. In
Conference on Emerging Network Experiment and Technology (CoNEXT 2006),
page 55. ACM, 2006.

[109] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. López, and R. Dahab. Tiny-
Tate: Computing the Tate Pairing in Resource-Constrained Sensor Nodes. In IEEE

International Symposium on Network Computing and Applications (NCA 2007),
pages 318–323. IEEE, 2007.

[110] Certicom Research. SEC 1: Elliptic Curve Cryptography. http://www.secg.org,
2000.

160

[111] L. Uhsadel, A. Poschmann, and C. Paar. Enabling Full-Size Public-Key Algorithms
on 8-Bit Sensor Nodes. In F. Stajano, C. Meadows, S. Capkun, and T. Moore,
editors, 4th European Workshop on Security and Privacy in Ad-hoc and Sensor

Networks (ESAS 2007), volume 4572 of LNCS, pages 73–86. Springer, 2007.

[112] D. J. Malan, M. Welsh, and M. D. Smith. A Public-Key Infrastructure for Key
Distribution in TinyOS Based on Elliptic Curve Cryptography. In Proceedings of

SECON’04, Santa Clara, California, October 2004.

[113] H. Yan and Z. J. Shi. Studying Software Implementations of Elliptic Curve Cryp-
tography. In 3rd International Conference on Information Technology: New Gene-

rations (ITNG 2006), pages 78–83, Washington, USA, 2006. IEEE.

[114] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC: Tes-
ting the Limits of Elliptic Curve Cryptography in Sensor Networks. In R. Verdone,
editor, European Conference on Wireless Sensor Networks (EWSN’08), volume 4193
of LNCS, pages 305–320. Springer, 2008.

[115] M. Scott. MIRACL – Multiprecision Integer and Rational Arithmetic C/C++ Li-
brary. http://www.shamus.ie/.

[116] S. C. Seo, D. Han, and S. Hong. TinyECCK: Efficient Elliptic Curve Cryptography
Implementation over G(2) on 8-Bit Micaz Mote. IEICE Transactions, 91-D(5):1338–
1347, 2008.

[117] H. Wang and Q. Li. Efficient Implementation of Public Key Cryptosystems on Mote
Sensors. In P. Ning, S. Qing, and N. Li, editors, 8th International Conference on

Information and Communications Security (ICICS 2006), volume 4307 of LNCS,
pages 519–528, Raleigh, NC, 2006. Springer.

[118] G.-J. Lay and H. G. Zimmer. Constructing elliptic curves with given group order
over large finite fields. In L. M. Adleman and M.-D. A. Huang, editors, 1st Interna-

tional Symposium on Algorithmic Number Theory (ANTS-I), volume 877 of LNCS,
pages 250–263. Springer, 1994.

[119] B. Skjernaa T. Satoh and Y. Taguchi. Fast computation of canonical lifts of elliptic
curves and its application to point counting. Finite Fields Appl., 9:89–101, 2003.

[120] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inform. Theory, 39:1639–1646, 1993.

161

[121] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by Automatic
Computers. Doklady Akad. Nauk SSSR, (145):293–294, 1962. Translation in Physics-
Doklady 7, 595-596, 1963.

[122] J. López and R. Dahab. Fast Multiplication on Elliptic Curves over GF(2m) without
Precomputation. In Ç. K. Koç and C. Paar, editors, 1st International Workshop

on Cryptographic Hardware and Embedded Systems (CHES 1999), volume 1717 of
LNCS, pages 316–327. Springer, 1999.

[123] Atmel Corporation. AVR Studio 4.14. http://www.atmel.com/, 2005.

[124] L. B. Oliveira, A. Kansal, B. Priyantha, M. Goraczko, and Zhao F. Secure-TWS:
Authenticating Node to Multi-user Communication in Shared Sensor Networks. In
The 8th ACM/IEEE International Conference on Information Processing in Sensor

Networks (IPSN 2009). ACM, 2009.

[125] N. Koblitz. CM-Curves with Good Cryptographic Properties. In 11th Annual

International Cryptology Conference (CRYPTO 1991), volume 576 of LNCS, pages
279–287. Springer, 1991.

[126] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2002.

[127] R. Misoczki and P. S. L. M. Barreto. Compact McEliece Keys from Goppa Codes.
In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors, 16th Annual Inter-

national Workshop on Selected Areas in Cryptography (SAC 2009), volume 5867 of
LNCS, pages 376–392. Springer, 2009.

[128] A. I.-T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F. Y.-
S. Lee, and B.-Y. Yang. SSE Implementation of Multivariate PKCs on Modern x86
CPUs. In C. Clavier and K. Gaj, editors, 11th International Workshop on Cryp-

tographic Hardware and Embedded Systems (CHES 2009), volume 5747 of LNCS,
pages 33–48. Springer, 2009.

[129] A. M. Fiskiran and R. B. Lee. Fast Parallel Table Lookups to Accelerate Symmetric-
Key Cryptography. In International Symposium on Information Technology: Coding

and Computing (ITCC 2005), volume 1, pages 526–531. IEEE, 2005.

[130] D. Hankerson, J. López, and A. Menezes. Software Implementation of Elliptic
Curve Cryptography over Binary Fields. In Ç. K. Koç and C. Paar, editors, 2nd

International Workshop on Cryptographic Hardware and Embedded Systems (CHES

2000), volume 1965 of LNCS, pages 1–24. Springer, 2000.

162

[131] Y. Hilewitz, Y. L. Yin, and B. Lee R. Accelerating the Whirlpool Hash Function
Using Parallel Table Lookup and Fast Cyclical Permutation. In K. Nyberg, editor,
15th International Workshop on Fast Software Encryption (FSE 2005), volume 5086
of LNCS, pages 173–188, 2008.

[132] K. Diefendorff, P. K. Dubey, R. H., and H. Scales. AltiVec Extension to PowerPC
Accelerates Media Processing. IEEE Micro, 20(2):85–95, 2000.

[133] AMD Technology. AMD64 Architecture Programmer’s Manual Volume 6: 128-bit
and 256-bit XOP, FMA4 and CVT16 Instruction. http://support.amd.com/us/

Processor_TechDocs/43479.pdf.

[134] R. M. Avanzi. Another Look at Square Roots (and Other Less Common Operations)
in Fields of Even Characteristic. In C. M. Adams, A. Miri, and M. J. Wiener, editors,
14th International Workshop on Selected Areas in Cryptography (SAC 2007), volume
4876 of LNCS, pages 138–154. Springer, 2007.

[135] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
http://www.secg.org, 2000.

[136] D. Hankerson, K. Karabina, and A. Menezes. Analyzing the Galbraith-Lin-Scott
Point Multiplication Method for Elliptic Curves over Binary Fields. IEEE Transac-

tions on Computers, 58(10):1411–1420, 2009.

[137] P. Gaudry and E. Thomé. The mpFq library and implementing curve-based key
exchanges. In Software Performance Enhancement of Encryption and Decryp-

tion (SPEED 2007), pages 49–64, 2009. http://www.hyperelliptic.org/SPEED/
record.pdf.

[138] S. Gueron. Intel Advanced Encryption Standard (AES) Instructions Set. White
paper. http://software.intel.com/.

[139] D.J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-
scalar multiplication. In Proceedings 8th International Conference on Finite Fields

and Applications (Fq8), volume 461, pages 1–20. AMS, 2008.

[140] A. Fog. Instruction tables: List of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs. http://www.agner.org/

optimize/instruction_tables.pdf, accessed 01 Mar 2011.

[141] P. G. Comba. Exponentiation Cryptosystems on the IBM PC. IBM Systems Jour-

nal, 29(4):526–538, 1990.

163

[142] M. Bodrato. Towards optimal Toom-Cook multiplication for univariate and multi-
variate polynomials in characteristic 2 and 0. In Claude Carlet and Berk Sunar, edi-
tors, 1st International Workshop on the Arithmetic of Finite Fields (WAIFI 2007),
volume 4547 of LNCS, pages 116–133. Springer, 2007.

[143] P.L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Tran-

sactions on Computers, 54(3):362–369, 2005.

[144] Omran Ahmadi, Darrel Hankerson, and Francisco Rodríguez-Henríquez. Parallel
formulations of scalar multiplication on Koblitz curves. Journal of Universal Com-

puter Science, 14(3):481–504, 2008.

[145] J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe. Ecc2k-130 on cell cpus.
In J. Bernstein D and T. Lange, editors, 3rd International Conference on Cryptology

in Africa (AFRICACRYPT 2010), volume 6055 of LNCS, pages 225–242. Springer,
2010.

[146] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative in-
verses in GF(2m) using normal bases. Inf. Comput., 78(3):171–177, 1988.

[147] J. Guajardo and C. Paar. Itoh-Tsujii inversion in standard basis and its application
in cryptography and codes. Designs, Codes and Cryptography, 25(2):207–216, 2002.

[148] E. Dahmen, K. Okeya, and D. Schepers. Affine precomputation with sole inversion
in elliptic curve cryptography. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors,
12th Australasian Conference on Information Security and Privacy (ACISP 2007),
volume 4586 of LNCS, pages 245–258. Springer, 2007.

[149] National Institute of Standards and Technology. Recommended elliptic curves for
federal government use. NIST Special Publication, 1999. http://csrc.nist.gov/
csrc/fedstandards.html.

[150] K. H. Kim and S. I. Kim. A new method for speeding up arithmetic on elliptic
curves over binary fields. Cryptology ePrint Archive, Report 2007/181, 2007. http:
//eprint.iacr.org/.

[151] E. W. Knudsen. Elliptic scalar multiplication using point halving. In K.-Y. Lam,
E. Okamoto, and C. Xing, editors, International Conference on the Theory and

Applications of Cryptology and Information Security (ASIACRYPT 1999), volume
1716 of LNCS, pages 135–149. Springer, 1999.

[152] R. Schroeppel. Elliptic curves: Twice as fast! Presentation at the 20th Annual
International Cryptology Conference (CRYPTO 2000) Rump Session, 2000.

164

[153] B. King and B. Rubin. Improvements to the point halving algorithm. In H. Wang,
J. Pieprzyk, and V. Varadharajan, editors, 9th Australasian Conference on Infor-

mation Security and Privacy (ACISP 2004), volume 3108 of LNCS, pages 262–276.
Springer, 2004.

[154] I. F. Blake, V. K. Murty, and G. Xu. A note on window τ -NAF algorithm. Inf.

Process. Lett., 95(5):496–502, 2005.

[155] K. Järvinen. Optimized FPGA-based elliptic curve cryptography processor for high-
speed applications. Integration, the VLSI Journal, 44(1):12–21, 2010.

[156] S. Mitsunari. A Fast Implementation of ηT Pairing in Characteristic Three on
Intel Core 2 Duo Processor. Cryptology ePrint Archive, Report 2009/032, 2009.
http://eprint.iacr.org/.

[157] E. Cesena. Pairing with Supersingular Trace Zero Varieties Revisited. Cryptology
ePrint Archive, Report 2008/404, 2008. http://eprint.iacr.org/.

[158] E. Cesena and R. Avanzi. Trace Zero Varieties in Pairing-based Cryptography. In
Conference on Hyperelliptic curves, discrete Logarithms, Encryption, etc (CHiLE

2009), 2009. http://inst-mat.utalca.cl/chile2009/Slides/Roberto_Avanzi_
2.pdf.

[159] J. Groth and A. Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups.
In N. P. Smart, editor, 27th International Conference on the Theory and Applica-

tions of Cryptographic Techniques (EUROCRYPT 2008), volume 4965 of LNCS.
Springer, 2008.

[160] M. Naehrig, R. Niederhagen, and P. Schwabe. New Software Speed Records for
Cryptographic Pairings. In M. Abdalla and P. S. L. M. Barreto, editors, First

International Conference on Cryptology and Information Security in Latin America

(LATINCRYPT 2010), volume 6212 of LNCS, pages 109–123. Springer, 2010.

[161] J. Fan, F. Vercauteren, and I. Verbauwhede. Faster Fp-arithmetic for Cryptographic
Pairings on Barreto-Naehrig Curves. In 11th International Workshop on Crypto-

graphic Hardware and Embedded Systems (CHES 2009), volume 5747 of LNCS,
pages 240–253. Springer, 2009.

[162] Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa. Integer Variable χ-
Based Ate Pairing. In S. D. Galbraith and K. G. Paterson, editors, 2nd International

Conference on Pairing-Based Cryptography (Pairing 2008), volume 5209 of LNCS,
pages 178–191. Springer, 2008.

165

[163] IEEE. P1363.3: Standard for Identity-Based Cryptographic Techniques using Pai-
rings. Draft.

[164] A. J. Devegili, M. Scott, and R. Dahab. Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In T. Takagi, T. Okamoto, E. Okamoto, and T. Oka-
moto, editors, First International Conference on Pairing-Based Cryptography (Pai-

ring 2007), volume 4575 of LNCS, pages 197–207. Springer, 2007.

[165] D. Weber and T. F. Denny. The solution of mccurley’s discrete log chal-
lenge. In Hugo Krawczyk, editor, 18th Annual International Cryptology Conference

(CRYPTO ’98), volume 1462 of LNCS, pages 458–471. Springer, 1998.

[166] C. H. Lim and H. S. Hwang. Fast implementation of elliptic curve arithmetic in
GF(pn). In H. Imai and Y. Zheng, editors, Third International Workshop on Practice

and Theory in Public Key Cryptography (PKC 2000), volume 1751 of LNCS, pages
405–421. Springer, 2000.

[167] Roberto Maria Avanzi. Aspects of hyperelliptic curves over large prime fields in
software implementations. In Marc Joye and Jean-Jacques Quisquater, editors, 6th

International Workshop on Cryptographic Hardware and Embedded Systems - CHES

2004, volume 3156 of LNCS, pages 148–162. Springer, 2004.

[168] N. Benger and M. Scott. Constructing Tower Extensions of Finite Fields for Imple-
mentation of Pairing-Based Cryptography. In M. A. Hasan and T. Helleseth, editors,
Third International Workshop on Arithmetic of Finite Fields (WAIFI 2010), volume
6087 of LNCS. Springer, 2010.

[169] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathematics

of Computation, 44(170):pp. 519–521, 1985.

[170] J. Chung and M. . Hasan. Asymmetric Squaring Formulae. In 18th IEEE Symposium

on Computer Arithmetic (ARITH-18 2007), pages 113–122, 2007.

[171] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Ju-
lio López. Faster explicit formulas for computing pairings over ordinary curves.
Cryptology ePrint Archive, Report 2010/526, 2010. http://eprint.iacr.org/.

[172] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and E. J. Kachisa.
On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves.
In H. Shacham and B. Waters, editors, 3rd International Conference on Pairing-

Based Cryptography (Pairing 2009), volume 5671 of LNCS, pages 78–88. Springer,
2009.

166

[173] Koray Karabina. Squaring in cyclotomic subgroups. Cryptology ePrint Archive,
Report 2010/542, 2010. http://eprint.iacr.org/.

[174] P. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factorization.
Mathematics of Computation, 48:243–264, 1987.

[175] R. Granger and M. Scott. Faster Squaring in the Cyclotomic Subgroup of Sixth
Degree Extensions. In P. Q. Nguyen and D. Pointcheval, editors, 13th Internatio-

nal Conference on Practice and Theory in Public Key Cryptography (PKC 2010),
volume 6056 of LNCS, pages 209–223. Springer, 2010.

[176] P. Longa. Speed Benchmarks for Pairings over Ordinary Curves. Available at
http://www.patricklonga.bravehost.com/speed_pairing.html#speed.

[177] N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In
Nigel P. Smart, editor, 10th IMA International Conference on Cryptography and

Coding (IMA-CC 2005), volume 3796 of LNCS. Springer, 2005.

[178] F. Hess. Pairing lattices. In S. D. Galbraith and K. G. Paterson, editors, 2nd

International Conference on Pairing-Based Cryptography (Pairing 2008), volume
5209 of LNCS, pages 18–38. Springer, 2008.

[179] C. Zhao, F. Zhang, and D. Xie. Reducing the complexity of the weil pairing compu-
tation. Cryptology ePrint Archive, Report 2008/121, 2008. http://eprint.iacr.
org/.

[180] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

[181] M. Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive: Report 2002/164, 2002. http:
//eprint.iacr.org/.

[182] N. Estibals. Compact hardware for computing the Tate pairing over 128-bit-security
supersingular curves. In M. Joye, A. Miyaji, and A. Otsuka, editors, 4th Interna-

tional Conference on Pairing-Based Cryptography (Pairing 2010), number 6487 in
LNCS, pages 397–416. Springer, 2010.

[183] T. Güneysu. Utilizing hard cores for modern fpga devices for high-performance
cryptography. Journal of Cryptographic Engineering, 1:37–55, 2011.

167

[184] S. Duquesne and N. Guillermin. A fpga pairing implementation using the resi-
due number system. Cryptology ePrint Archive, Report 2011/176, 2011. http:

//eprint.iacr.org/.

[185] G. Yao, J. Fan, R. Cheung, and I. Verbauwhede. A high speed pairing coprocessor
using rns and lazy reduction. Cryptology ePrint Archive: Report 2011/258, 2011.
http://eprint.iacr.org/.

[186] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg, D. Au-
ras, G. Ascheid, and R. Mathar. Designing an ASIP for cryptographic pairings
over Barreto–Naehrig curves. In C. Clavier and K. Gaj, editors, 11th Internati-

onal Workshop on Cryptographic Hardware and Embedded Systems (CHES 2009),
number 5747 in LNCS, pages 254–271. Springer, 2009.

[187] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In M. Matsui and R. J. Zuccherato, editors, 10th International Workshop

on Selected Areas in Cryptography (SAC 2003), volume 3006 of LNCS, pages 17–25,
2003.

[188] J. von zur Gathen. Efficient and optimal exponentiation in finite fields. Computa-

tional Complexity, 1:360–394, 1991.

[189] OpenMP Microbenchmarks v2.0.

[190] R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. Ate pairing on
hyperelliptic curves. In M. Naor, editor, 26th International Conference on the The-

ory and Applications of Cryptographic Techniques (EUROCRYPT 2007), number
4515 in Lecture Notes in Computer Science, pages 430–447. Springer, 2007.

[191] Y. Nogami M. Akane and Y. Morikawa. Fast ate pairing computation of embedding
degree 12 using subfield-twisted elliptic curve. IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Sciences, E92.A:508–516, 2009.

168

