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Resumo

É bem sabido que a automação e a eficácia de métodos de verificação formal de softwares,

sistemas embarcados ou sistemas h́ıbridos, depende da facilidade com que invariantes

precisas possam ser geradas automaticamente a partir do código fonte.

Uma invariante é uma propriedade, especificada sobre um local espećıfico do código

fonte, e que sempre se verifica a cada execução de um sistema. Apesar dos progressos

enormes ao longo dos anos, o problema da geração de invariantes ainda está em aberto

para tanto programas não-lineares discretos, como para sistemas não-lineares h́ıbridos.

Nesta tese, primeiramente, apresentamos novos métodos computacionais que podem

automatizar a descoberta e o fortalecimento de relações não-lineares entre as variáveis

de um programa que contém laços não-lineares, ou seja, programas que exibem relações

polinomiais multivariadas e manipulações fracionárias. Além disso, a maioria dos sistemas

de segurança cŕıticos, tais como aviões, automóveis, produtos qúımicos, usinas de energia

e sistemas biológicos, operam semanticamente como sistemas h́ıbridos não-lineares. Nesse

trabalho, apresentamos poderosos métodos computacionais que são capazes de gerar bases

de ideais polinomiais de invariantes não-lineares para sistemas h́ıbridos não-lineares.

Em segundo lugar, apresentamos métodos pioneiros de verificação que automatica-

mente gerem bases de invariantes expressas por séries de potências multi-variáveis e por

funções transcendentais. Discutimos, também, a sua convergência em sistemas h́ıbridos

que exibem modelos não lineares. Verificamos que as séries de potência geradas para

invariantes são, muitas vezes, compostas pela expansão de algumas funções transcenden-

tais bem conhecidas, tais como “log” e “exp”. Assim, apresentam uma forma analisável

fechada que facilita o uso de invariantes na verificação de propriedades de segurança.

Para cada problema de geração de invariantes estabelecemos condições suficientes,

muito gerais, que garantem a existência e permitem o cálculo dos ideais polinomiais para

situações que não podem ser tratadas pelas abordagens de geração invariantes hoje conhe-

cidas.

Finalmente, estendemos o domı́nio de aplicações, acesśıveis através de métodos de

geração de invariantes, para a área de segurança. Mais precisamente, fornecemos uma

plataforma extenśıvel baseada em invariantes pré-computadas que seriam usadas como
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assinaturas semânticas para análise de intrusos (“malwares”) e deteção dos ataques de

intrusões mais virulentos. Seguindo a concepção de tais plataformas, propomos sistemas

de detecção de intrusão, usando modelos gerados automaticamente, onde as chamadas

de sistema e de funções são vigiados pela avaliação de invariantes, pré-calculadas para

denunciar qualquer desvio observado durante a execução da aplicação.

De modo abrangente, nesta tese, propomos a redução de problemas de geração de

invariantes para problemas algébricos lineares. Ao reduzir os problemas de geração de

invariante não-triviais de sistemas h́ıbridos não-lineares para problemas algébricos lineares

relacionados, somos capazes de ultrapassar as deficiências dos mais modernos métodos de

geração de invariante hoje conhecidos permitindo, assim, a geração automática e eficiente

de invariantes para programas e sistemas h́ıbridos não lineares complexos. Tais métodos

algébricos lineares apresentam complexidades computacionais significativamente inferiores

àquelas exigidas pelos os fundamentos matemáticos das abordagens usadas hoje, tais como

a computação de bases de Gröbner, a eliminação de quantificadores e decomposições

ciĺındricas algébricas.
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Abstract

It is well-known that the automation and effectiveness of formal software verification of

embedded or hybrid systems depends to the ease with which precise invariants can be

automatically generated from source specifications.

An invariant is a property that holds true at a specific location in the specification

code, whenever an execution reaches that location. Despite tremendous progress over the

years, the problem of invariant generation remains very challenging for both non-linear

discrete programs, as well as for non-linear hybrid systems.

In this thesis, we first present new computational methods that can automate the

discovery and can strengthen interrelationships among the variables of a program that

contains non-linear loops, that is, programs that display multivariate polynomial and

fractional manipulations. Moreover, most of safety-critical systems such as aircraft, cars,

chemicals, power plants and biological systems operate semantically as non-linear hybrid

systems. In this work, we demonstrate powerful computational methods that can generate

basis for non-linear invariant ideals of non-linear hybrid systems.

Secondly, we present the first verification methods that automatically generate basis

for invariants expressed by multivariate formal power series and transcendental functions.

We also discuss their convergence over hybrid systems that exhibit non linear models. The

formal power series invariants generated are often composed by the expansion of some

well-known transcendental functions e.g. log and exp. They also have an analysable

closed-form which facilitates the use of the invariants when verifying safety properties.

For each invariant generation problem, we establish very general sufficient conditions

that guarantee the existence and allow for the computation of invariant ideals for situa-

tions that can not be treated in the presently known invariant generation approaches.

Finally, we extend the domain of applications for invariant generation methods to

encompass security problems. More precisely, we provide an extensible invariant-based

platform for malware analysis and show how we can detect the most virulent intrusions

attacks using these invariants. We propose to automatically generate invariants directly

from the specified malware code in order to use them as semantic aware signatures, i.e.

malware invariant, that would remain unchanged by most obfuscated techniques. Fol-
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lowing the design of such platforms, we propose host-based intrusion detection systems,

using automatically generated models where system calls are guarded by pre-computed

invariants in order to report any deviation observed during the execution of the applica-

tion.

In a broad sense, in this thesis, we propose to reduce the verification problem of

invariant generation to algebraic problems. By reducing the problems of non-trivial non-

linear invariant generation for programs and hybrid systems to related linear algebraic

problems we are able to address various deficiencies of other state-of-the-art invariant

generation methods, including the efficient treatment of complicated non-linear loop pro-

grams and non-linear hybrid systems. Such linear algebraic methods have much lower

computational complexities than the mathematical foundations of previous approaches

know today, which use techniques such as as Gröbner basis computation, quantifier elim-

ination and cylindrical algebraic decomposition.
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Caṕıtulo 1

Introduction

The concepts exposed in this chapter are also introduced in our articles [80, 79, 83, 88,

84, 81, 85, 86, 93, 108].

Abstract: In this Chapter, we discuss key research areas that are at the heart of

this dissertations and its contributions. The Chapter is organized as follows. We start

with an overview of formal methods in Section 1.1. In Section 1.2.1, we summarize the

original main contributions of this dissertation, and outline its organization in Section

1.3. Finally, we list our publications and the seminars associated to the results of this

dissertation in Section 1.4.
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2 Caṕıtulo 1. Introduction

1.1 Formal Methods

Formal methods aim at modeling and analysing systems using methods derived from, or

defined by, underlying mathematically-precise concepts and their associated algorithmic

foundations. By modeling we mean building specifications expressed in a particular logic,

design or code. By analysing we mean the verification, or falsification, of system properties

specified in an appropriate formal system.

Formal methods research aims at discovering mathematical techniques and de-

veloping their associated algorithms to establish the correctness of software, hardware,

concurrent systems, embedded systems or hybrid systems, i.e. to prove that the con-

sidered systems are faithful to their specification. On large or infinite systems, or even

systems with a huge or infinite numbers of reachable states, establishing total correctness

is usually not practically possible. That is why we narrow our interest to safety and live-

ness properties that any well behaved engineered systems must guarantee. For instance,

by using static program analysis, one could prove a software free of defects, such as buffer

overflow or segmentation fault, which are safety properties, or non-termination, which is

a liveness property.

In this sense, static analysis is used to generate invariant properties, which are

assertions that hold true at a specific location on every possible run of the system. Thus

static analysis can provide provable guarantees that even the most exhaustive and rigorous

testing methods could not attain. Next, we discuss some proeminent techniques that

proved useful in program verification.

1.1.1 Model Checking

Model checking [106, 29] is a verification technique for finite state systems. All states,

together with all possible interactions in all possible runs of the system, are exhaustively

enumerated. This could lead to huge structures. The main advantage of this method is

that these structures can be build in memory automatically, from specifications in higher

level languages. Several properties could then be algorithmically checked in this state

space, by automatically checking correctness conditions at each state. In practice, we

would explicitly explore all the state space to see if a specified unsafe property holds, that

is, a “bad” reachable state exists. Such techniques have been used to prove correctness

of hardware designs.

But this methods face the “state space explosion” problem, when it is not possible to

hold all the state space even in a huge memory. As an alternative, one could use symbolic

representations.

Symbolic model checking [91] comprise model checking techniques that use symbolic

representations of sets of states. For instance, one could use logic formulae to represent
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a set of states. In this way, one could represent the set of reachable states in a very

concise way. Moreover, binary decision diagrams (BDDs) [20] provide a very concise way

to represent Boolean expressions and so can be used to economically represent sets of

states in memory. We could also symbolically, represent infinite set of states by using, for

example, semi-linear forms written as Presburger formulae. But even with these “nice”

states space representations one could not completely deal with truly infinite systems.

Bounded model checking [13] is a model checking technique that exhaustively, or

symbolically, analyses finite instances of infinite state systems. Any assertions that hold

in a finite instance will hold on an infinite, i.e. more concrete instance. The basic idea

in bounded model checking is to search for a counterexample in executions whose length

is bounded by some integer k. If no defect is found then one increases k until either a

defect is found, or the problem becomes intractable, or some pre-known upper bound is

reached.

Model checking is often also used in falsification tests, i.e. for finding logical errors,

rather than in verification, i.e. proving that errors do not exist. Here, in order to deal with

infinite state systems, one needs to define a suitable abstraction of the systems regarding

the properties one is looking for.

1.1.2 Abstraction

Abstraction [35] is commonly used in formal methods in order to achieve termination in

the verification process for infinite systems, thus implying a trade off between termination

of the verification process and completeness. Abstraction techniques first simplify the

system in order to perform easier proof steps and later transfer the result back to the

concrete system.

Abstract interpretation [35, 36] approaches depend on iteration and fixed point

computations. Basically, it performs an approximate symbolic execution of a program or

system until an assertion is reached that will remain unchanged along further executions

of the program. However, in order to guarantee termination, the method introduces

imprecision by the use of extrapolation operators called widening or narrowing. These

operators often cause the technique to produce a too coarse abstraction that gives rise

to weak invariants. Moreover, it requires manual intervention, as abstraction operations

have to be provided and proved correct. Also, the right widening and narrowing operators

have to be manually provided, which becomes a key challenge for abstract interpretation

based techniques.

Predicate abstraction [59] requires a given set of abstraction predicates and an

infinite state systems. It returns an “abstract state graph”, in the form of a conservative

finite state abstraction. Every execution in the concrete system has a corresponding
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execution in the abstract system. First the abstract version of the safety property is

model-checked in the abstract system. If the property holds in the abstract system,

then it holds in the concrete system too. Otherwise, an abstract counter-example trace

is generated [33]. But it is not guaranteed that there is a concrete counter-example

associated with the abstract one. It is possible that this abstract counter-example is a

spurious one due to a too coarse abstraction, because the set of abstraction predicates

induced a too coarse abstraction. On the other hand, if there is a concrete counter-

example corresponding to the abstract trace, then we have generated the trace of a real

defect in the original design. One can then automatically analyze the counter-example to

find a real defect in the system, or one can refine the abstraction by adding new discovered

predicates [117, 28, 116]. These steps can be done using theorem provers [100, 101, 89] or

other decision procedures such as those stemming from sat modulo theory [43, 44].

1.1.3 Theorem Proving

Theorem proving [89, 101] is an interactive verification technique where the correctness

condition of the system is written as a theorem in a fixed theory. A theorem is then proved

by interleaving automatic and manual interventions, using inference rules of the theory, its

axiomatization, and other proved deductions, i.e. previous lemmas. Theorem proving has

all the methods of logic and mathematics at its disposal, which makes theorem proving

tools very powerful. However, the complexity of the problems that can be addressed

by current theorem provers is limited by the fact that they require manual intervention.

Theorem provers have seen trendemous progress, and some recent techniques propose

model checking frameworks using automated deductions, as in sequent analysis [7].

1.1.4 Invariant Generation

Safety properties can be proved by induction techniques in infinite state systems [78].

An inductive invariant must hold in the initial state of the system and every possible

transition must preserve it. The former is known as the initiation condition and the latter

is called the consecution condition. Actually, the verification problem of safety properties

can be reduced to the problem of invariant generation. In other words, if it holds in a

given state then it continues to hold in all of its successor states. Let ϕP be the desired

property and denote by ϕInv the inductive invariant obtained. If ϕInv ⇒ ϕP holds then

the proof of ϕP is complete.

Automated inductive invariant generation is the essential step in proving safety prop-

erties. For example when proving that an application is free of bugs like division by zero,

outbounds of arrays, buffer overflows, null pointer de-referentiation, and many others. Or

in proving liveness properties such as progress and termination.
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We know that the weakest precondition method [41, 50] and the Floyd-Hoare [50, 66]

inductive assertion technique require loop invariants to establish total correctness. In

order to be completely automatic these methods require the use of invariant generation

techniques. Also, ranking function techniques [78] depend on automated invariant gen-

eration methods in order to prove termination. We could list here many verification

approaches that are only practical depending on the easy with which invariant can be

automatically generated. Verification diagrams [18] is another example.

We can separate invariant generation methods in two main classes. We have methods

that are goal-oriented [71, 54, 130, 113] and follow a top-down approach. These approaches

start with a candidate potential invariant which can be seen as a target property that

implies the properties we want to prove. On the other hand, we find methods which

generate invariants directly from the program code. These approaches [70, 35, 37, 14, 126]

are bottom-up techniques.

1.2 Contributions at a Glance

We look for invariants that strengthen what we wish to prove, and so allow us to establish

the desired property. We can summarize our research achievements as follows.

1.2.1 Contributions of Chapter 3

We describe new computational methods [80, 79, 84] for generating basis of non-linear

loop invariants ideals that can automate the discovery and strengthening of non-linear

interrelationships among the variables of a program containing non-linear loops.

❼ We do not need to start with candidate invariants that generate intractable solving

problems. Instead, we show that the preconditions for discrete transitions can be

viewed as morphisms over a vector space of degree bounded by polynomials which

can, thus, be suitably represented by matrices.

❼ We introduce a more general form for approximating consecution, called fraction

and polynomial consecution. As far as we know, our methods are the first invariant

generation methods that handle multivariate fractional system. The new relaxed

consecution requirements are also encoded as morphisms, represented by matrices

with terms that are the unknown coefficients used to approximate the consecution

conditions.

❼ We succeeded in reducing the non-linear loop invariant generation problem to the

computation of eigenspaces of specific morphisms.
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❼ Such linear algebraic methods have lower complexities than the mathematical foun-

dations of the previous approaches based on fixed point computations or the constraint-

based approaches. Moreover, our methods do not require computation of Gröbner

bases, quantifier elimination, cylindrical algebraic decomposition, or direct resolu-

tion of (semi-)algebraic systems, and do not depend on abstraction operators.

❼ Our methods generate the basis of an ideal where each of its elements is an inductive

non-trivial invariant. In other words, instead of generating one invariant at a time,

a huge (infinite) set of invariants can be generated using the computed basis.

❼ We provide general sufficient conditions guaranteeing the existence and allowing the

computation of non-trivial non-linear loop invariant ideals.

❼ Also, we incorporate a strategy that attains optimal degree bounds for the candidate

degree of invariants. We also note that our existence results and our methods can be

reused in other approach in order to reduce their complexity, since they can reduce

the number of Gröbner basis computations or quantifier eliminations, for example.

1.2.2 Contributions of Chapter 4

Hybrid systems [63, 4] exhibit both discrete and continuous behaviors, as one often finds

when modeling digital system embedded in analog environments. The analysis of hybrid

systems has been one of the main challenges for the formal verification community for

several decades. In fact, most safety-critical systems like aircraft, automobiles, chemical

and nuclear power plants, and biological systems operate semantically as non-linear hybrid

systems. As such, they can only be adequately modeled by means of non linear arithmetic

over the real numbers, involving multivariate polynomials and fractional or transcendental

functions.

Regarding hybrid systems:

❼ We demonstrate powerful algorithms [83, 88, 84, 81], relying on linear algebraic

methods, capable of computing basis for ideals of non-trivial invariants for non-

linear hybrid systems.

❼ We reduce the non-trivial invariant generation problem to the computation of as-

sociated eigenspaces or nullspaces by encoding consecution requirements as specific

morphisms represented by matrices.

❼ Our methods display lower complexities than the mathematical foundations of previ-

ous approaches based on fixed point computation, as well as the present constraint-

based approaches and other approaches that use Gröbner basis calculations, Syzygy

calculations or quantifier elimination.
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❼ We handle non-linear hybrid systems, extended with parameters and variables that

are functions of time. We note that the latter conditions are still not treated by

other state-of-the-art invariant generation methods.

❼ We establish general sufficient conditions guaranteeing the existence and allowing

the computation of invariant ideals for situations not treated by other modern in-

variant generation approaches.

❼ Our algorithm incorporates a strategy for estimating optimal degree bounds for

candidate invariants, thus being able to compute basis for ideals of non-trivial non-

linear invariants.

1.2.3 Contributions of Chapter 5

In order to verify safety properties expressed using transcendental functions, and to reason

symbolically about formal power series, it is necessary to be able to first generate formal

power series invariants.

We present the first verification methods [85, 87] that automatically generate basis

of invariants expressed by multivariate formal power series and transcendental functions,

while dealing with non linear continuous models present in many critical hybrid and

embedded systems. The problem of synthesizing power series invariants and the results

are clearly novel and significant.

In this Chapter:

❼ We introduce a more general approximation of consecution, dealing with assertions

expressed by multivariate formal power series. We show that the preconditions for

discrete transitions and the Lie-derivatives for continuous evolution can be viewed

as morphisms and suitably represented by matrices.

❼ In this way, we reduce the invariant generation problem to linear algebraic matrix

manipulations. We present an analysis of these matrices.

❼ The formal power series invariants generated are often composed by the expansion

of some well-known transcendental functions, like log and exp and has an analysable

closed-form, thus facilitating the use of the invariants to verify safety properties.

❼ We also discuss their convergence over hybrid systems that exhibit non linear mod-

els. To our knowledge, there are no other known methods that generate this type

of invariants or that can deal with this type of systems. We provide resolution and

convergence analysis for techniques that generate non trivial bases of provable mul-

tivariate formal power series and generate transcendental invariants for each local

continuous evolution rules.
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❼ Here again we succeed in obtaining very general sufficient conditions. Moreover, our

methods are efficient since we use linear algebraic methods.

❼ The contribution is significant as it provides invariants that can be used to prove

safety properties which also exhibit formal power series expressions or transcendental

functions.

❼ Mathematically, we develop very general sufficient conditions allowing for the ex-

istence and computation of solutions defined by convergent formal power series for

multivariate polynomial differential systems. In order to achieve this goal we develop

new methods, in the spirit of Boularas et al. [17].

1.2.4 Contributions of Chapter 6

We present the theoretical basis [93, 108, 95] for the design of static and dynamic analysis

platforms that can exhibit a suitable architecture for automatic in-depth malware analysis

and detection. We provide an extensible invariant-based formal platform for malware

analysis and detection. We show that invariant generation methods can be used to detect

and identify malware.

More specifically, in this Chapter:

❼ We propose to automatically generate invariants directly from the specified malware

code. We then show how to use it as semantic aware signatures, that we call

malware-invariant, and we indicate how these invariants remain unchanged in most

of the obfuscated version of malwares. These invariants could concisely capture the

semantic of the malicious behavior of this family of viruses and could be, then,

associated to few semantic aware signatures.

❼ Following the design of such platforms, we propose host-based intrusion detection

systems, using automatically generated models where system calls are guarded by

pre-computed invariants in order to report any deviation observed during the exe-

cution of the application.

❼ Given the precision of our generated models, we are able to detect the most virulent

attacks such as mimicry attacks and non-data-control flow attacks. we also provide

techniques for the detection of logic bugs and vulnerabilities in the application.

❼ Any intrusion or malware detection system analysis will be strongly re-enforced by

the presence of these pre-computed invariants and will be weakened by their absence.

Our platform is flexible, as any invariant generation method could be incorporated.

In other words, it is an open architecture, where any invariant generation tool can
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be connected into a tool bus where invariants, expressed in different logics, will

help in the identification of malicious behavior or in the construction of a precision

intrusion detection system.

1.3 Chapter Outline

❼ In Chapter 1.1 we provide an overview of formal methods. We present standard

definitions and the mathematical concepts that will used. Then we summarize, now

more precisely, our advancements and achievements.

❼ In Chapter 2 we present a preliminaries chapter that introduces all the linear algebra

definitions and needed notations that are used throughout the subsequent chapters.

❼ In Chapter 3 we develop our invariant generation methods for programs. We gen-

erates basis of non-trivial non-linear loop invariants.

❼ Then, in Chapter 4 we present our computational methods for invariant generation

of non-linear hybrid systems using an extension of a linear algebraic approach.

❼ In Chapter 5 we present the first multivariate formal power series and transcendental

invariants generation for non-linear hybrid systems.

❼ In Chapter 6 we discuss our extensible invariant-based platforms for malware anal-

ysis, and we show how we detect the most virulent intrusions attacks using these

invariants.

❼ Finally, in Chapter 7 we present our conclusions.

❼ The Appendix contains a collection of proofs for all the theorems, lemmas and

corollaries stated in this thesis.

Chapters 3, 4, and 5 address the problem of invariants generation for different systems.

Chapter 6 discusses about new domains of applications, forming an independent part that

does not necessarily use only the invariants generated in Chapters 3, 4, and 5, but any

invariants generated by any other technique as well.

1.4 Publications and Seminars

1.4.1 Publications and Pre-prints

❼ [84] Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Meth-

ods. 17th Int. Static Analysis Symposium, SAS2010, Lecture Notes in Computer
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Science (LNCS).

❼ [80] Endomorphisms for Non-trivial Non-Linear Loop Invariant Generation, 5th Int.

Conf. Theoretical Aspects of Computing ICTAC2008, Lecture Notes in Computer

Science (LNCS).

❼ [79] Endomorphism for Non-Trivial Semi-Algebraic Loop Invariant Generation, Tech-

nical Report, IC Unicamp, 2008.

❼ [88] Morphisms for Analysis of Hybrid Systems. ACM/IEEE Cyber-Physical Sys-

tems CPSWeek’09, Second International Workshop on Numerical Software Verifi-

cation. NSV2009, Verification of Cyber-Physical Software Systems. San Francisco,

CA, USA, 2009.

❼ [83] Morphisms for Non-trivial Non-linear Invariant Generation for Algebraic Hybrid

Systems, 12th Int. Conf. Hybrid Systems: Computation and Control (HSCC2009),

Lecture Notes in Computer Science (LNCS), 2010.

❼ [81] Morphisms for Non-trivial Non-Linear Invariant Generation for Algebraic Hy-

brid Systems. Technical Report, IC Unicamp, 2008.

❼ [82], Generating multivariate formal power series for hybrid systems. Technical

Report, IC Unicamp, 2009.

❼ [85], Multivariate Formal Power Series and Transcendental Invariants Generation

for Non-linear Differential and Hybrid Systems. Under submission.

❼ [94] Automated Malware Invariant Generation. Invited submission to the Interna-

tional Journal of Forensic Computer Science, 2010.

❼ [27] An Ant Colony Verification Algorithm. 7th. IEEE. International Conference

on Intelligent Systems Design and Applications. ISDA 2007.

❼ Section 6.2 was published at [93] Formal Methods for Forensic Computer Science:

Automated Malware Invariant Generation, 6th International Conference on Foren-

sic Computer Science, ICoFSC’2009 and 7th International Conference on Cyber

Computer Science, best paper award, ICCYBER’2009.

❼ [108] Quasi-static binary analysis: guarded model for intrusion detection, Technical

Report, USI Lugano – SRI International, 2006.
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1.4.2 Invited Seminars, Seminars and Conference Talks

❼ Institute of Computing UNICAMP, University of Campinas, São Paulo Brazil. ”Al-

gebraic Formal Methods I : Invariant Generation for Program Verification and Se-

curity”.

❼ 5th Int. Conf. Theoretical Aspects of Computing ICTAC2008. ”Endomorphisms

for non-trivial non-linear loop invariant generation”.

❼ “Morphisms for Analysis of Hybrid Systems”. ACM/IEEE Cyber-Physical Systems

CPSWeek’09, Second International Workshop on Numerical Software Verification.

NSV2009, Verification of Cyber-Physical Software Systems.

❼ “Morphisms for Non-trivial Non-linear Invariant Generation for Algebraic Hybrid

Systems”, 12th Int. Conf. Hybrid Systems: Computation and Control, 2010.

❼ “Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Meth-

ods”, 17th Int. Static Analysis Symposium, 2010.

❼ ”Invariant Generation for Host-Based Intrusion Detection”. USI Faculty of Infor-

matics, University of Lugano, Switzerland, 2007.

❼ ”Quasi-Static Binary analysis: Guarded Model for Host-Based Intrusion Detection”.

Stanford Research Institute, 2006.

❼ ”Program and Memory Heap Verification by Infinite Model Checking: Segmenta-

tion Fault and Memory Leak Checking with Recursive Data Structures”. Stanford

Research Institute, 2006.

❼ ”An Extensible LTL Model Checking Library and Transition-based Generalized

Büchi Automata”, Stanford Research Institute, 2006.

❼ ”Automatic Memory Heap Verification”, ETH, University of Zurich, Switzerland,

2006.

❼ ”Formal Verification with CTL* and (Propositional-) Fixed point Theory”, USI

Faculty of Informatics, University of Lugano, Switzerland, 2006.

❼ ”Automated Malware Invariant Generation”, 6th International Conference on Foren-

sic Computer Science, ICoFSC’2009 and 7th International Conference on Cyber

Computer Science, ICCYBER’2009.
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Preliminaries

The concepts and results exposed are also mentioned in our articles [80, 79, 83, 88, 84,

81, 85, 86, 93, 108].

Abstract: This is a preliminary chapter that introduces all algebra definitions that are

used throughout the development of our formal methods and their associated algorithms.

We provide the background material on abstract algebra, algebraic geometry and linear

algebra that are at the heart of the main object of our considerations and at our theoretical

and algorithmic approaches to it.

13
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2.1 Algebra Definitions

In Section 2.2 we give some important elements of abstract algebra such as the definition

of Multivariate Polynomial. In Section 2.3 we introduce important elements of algebraic

geometry such as ideals. Finally, in Section 2.4 we provide notions of linear algebra that

are central in the developments of our approaches.

2.2 Multivariate Polynomial Ring

Here we introduce the needed background material on abstract algebra.

A field is an algebraic structure, that is a set satisfying certain filed axioms for both

addition and multiplication. It is also a commutative division algebra.

Definition 1. Any set K of elements together with two binary operators + and ∗ (com-

monly interpreted as addition and multiplication, respectively) is a field if and only if it

satisfies the following field axioms for both + and ∗:

❼ K is closed under addition and multiplication:

∀r, s ∈ K, r + s, r ∗ s ∈ K.

❼ Associativity of addition and multiplication:

∀r, s, t ∈ K, r + (s+ q) = (r + s) + q and r ∗ (s ∗ q) = (r ∗ s) ∗ q.

❼ Commutativity of addition and multiplication:

∀r, s ∈ K, r + s = s+ r and r ∗ s = s ∗ r.

❼ Existence of additive and multiplicative identity and inverses:

– There are α, ǫ ∈ K such that for all r ∈ K, α + r = r and ǫ ∗ r = r.

– For all r ∈ K there exists an element −r ∈ K such that r+(−r) = α. Similarly,

for all r ∈ K there exists an element r−1 ∈ K\{ǫ} such that r ∗ (r−1) = ǫ.

– Distributivity of multiplication over addition:

For all r, s, t ∈ K, r ∗ (s+ q) = (r ∗ s)+ (r ∗ q) and (s+ q) ∗ r = (s ∗ r)+ (q ∗ r).
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Let {X1, .., Xn} be a set of variables. An expression of the from

Xk1
1 X

k2
2 · · ·X

kn
n ,

where each ki are positive or null integers, is called a power-product over the vari-

ables {X1, .., Xn}. We denote by PX1,...,Xn
the set of power-products over the variables

{X1, .., Xn}.

A monomial is an expression of the form a · m where a is a constant in a field K

and m ∈ PX1,...,Xn
. We denote by MX1,...,Xn

the set of all monomials over the variables

{X1, .., Xn}.

Definition 2. A (multivariate) polynomial over {X1, .., Xn} is a finite sum of monomials

in MX1,...,Xn
. In other words, an n multivariate polynomial Q over {X1, .., Xn} is an

expression of the form

Q =
∑

i1,...,in

ai1,...,inX
i1
1 X

i2
2 · · ·X

in
n .

In this thesis, we refer several times to the notions of polynomial and fractional rings.

We first give the definition of a ring.

Definition 3. Any set R of elements together with two binary operators + and ∗ (com-

monly called addition and multiplication, respectively) is a ring if and only if the following

conditions hold:

❼ R is closed under addition and multiplication: for all r, s ∈ R, r + s, r ∗ s ∈ R.

❼ Associativity of addition and multiplication:

For all r, s, t ∈ R, r + (s+ q) = (r + s) + q and r ∗ (s ∗ q) = (r ∗ s) ∗ q.

❼ Commutativity of addition: for all r, s ∈ R, r + s = s+ r.

❼ Existence of additive and multiplicative identities: there are α, ǫ ∈ R such that for

all r ∈ R, α + r = r and ǫ ∗ r = r.

❼ Existence of additive inverse: for all r ∈ K there exists an element −r ∈ K such

that r + (−r) = α.

❼ Distributivity of multiplication over addition:

∀r, s, t ∈ K, r ∗ (s+ q) = (r ∗ s) + (r ∗ q) and (s+ q) ∗ r = (s ∗ r) + (q ∗ r).
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The sum and product of polynomials are again polynomials, and it is easy to see in

a purely algebraic setting that the collection of polynomials forms a commutative ring (a

ring satisfying the multiplicative commutativity axiom). The set of polynomials on the

variables {X1, .., Xn}, whose coefficients are drawn from a fieldK is the ring of polynomials

over the variables {X1, .., Xn} denoted K[X1, .., Xn].

2.3 Polynomial Ideals and Algebraic Varieties

Let K[X1, .., Xn] be a multivariate polynomial ring over the set of variables {X1, .., Xn}.

Specializing the definition of an ideal to K[X1, .., Xn], we have the following.

Definition 4. An ideal is any set I ⊆ K[X1, .., Xn] such that

❼ it is closed under addition. In other words, if P,Q ∈ I then P +Q ∈ I;

❼ it is closed under multiplication by any element in K[X1, .., Xn], i.e.

if P ∈ I and Q ∈ K[X1, .., Xn] then PQ ∈ I;

❼ it includes the null polynomial, i.e. 0K[X1,..,Xn] ∈ I.

In the following definition we propose a very important polynomial ideal for our pur-

poses and the development of our methods.

Definition 5. Let E ⊆ K[X1, .., Xn] be a set of polynomials.

❼ The ideal generated by E is the set of finite sums

(E) =

{
k∑

i=1

PiQi | Pi ∈ K[X1, . . . , Xn], Qi ∈ E, k ≥ 1

}

.

❼ A set of polynomials E is said to be a basis of an ideal I if I = (E).
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We say that an ideal is finitely generated if it is generated by a finite basis. By the

Hilbert basis theorem, we know that K[X1, .., Xn] is a Noetherian ring, i.e, all ideals

included in K[X1, .., Xn] are finitely generated as they have a finite basis. In Chapter 3, 4,

and 5 we generate basis of ideals where each of its elements has a very powerful property.

An algebraic variety is the set of all common zeroes of a finite collection of polynomials.

In other words, it is the zero set of a finite set of polynomials.

Definition 6. Let P1, ..., Pm be a finite set of polynomials in K[X1, .., Xn].

❼ An algebraic assertion is an assertion φ(X1, .., Xn) of the following form:
∧

i

Pi(X1, ..., Xn) = 0.

❼ The variety defined by P1, ..., Pm is the set V(P1, ..., Pm) such that:

V(P1, ..., Pm) = {(r1, ..., rn) ∈ K | (P1(r1, ..., rn) = 0) ∧ ... ∧ (Pm(r1, ..., rn) = 0)}.

In Chapter 3 algebraic assertions will be formed by (non-linear) loop instructions.

To start connecting ideals and varieties we need to introduce one more specific ideal.

The set of polynomials in K[X1, .., Xn] that vanish in a given set G ⊂ K
n is an ideal. This

set, denoted as I(G), is called the vanishing ideal of G and it is defined as follow:

I(G) = {P ∈ K[X1, .., Xn] | P (r1, ..., rn) = 0 ∀(r1, ...rn) ∈ G}.

Now, let P1, ..., Pm be a finite set of polynomials in K[X1, .., Xn]. Looking at Definition 5

we know how to generate the ideal (P1, ..., Pm). On the other hand, we could look at the

corresponding variety V(P1, ..., Pm) ⊂ K
n. Moreover, we could form the corresponding

vanishing ideal I(V(P1, ..., Pm)). Now, a famous result by Hilbert, the Hilbert’s Nullstel-

lensatz show how these two ideals, (P1, ..., Pm) and I(V(P1, ..., Pm)) are related to each

other and in which case (P1, ..., Pm) = I(V(P1, ..., Pm)) holds. Below we briefly state the

relevant direction of the theorem.

Let φ(X1, .., Xn) ≡ (P1(X1, ..., Xn) = 0 ∧ · · · ∧ Pm(X1, ..., Xn) = 0) be an algebraic

assertion with P1, ..., Pm ∈ K[X1, .., Xn]. If Q ∈ (P1, ..., Pm) then we could write Q in

the following form Q = H1P1 + ... + HmPm where the His are in K[X1, .., Xn]. Let

(r1, ..., rn) ∈ K
n be such that φ(r1, .., rn) holds. Then

Q(r1, ..., rn) = H1(r1, ..., rn)P1(r1, ..., rn) + ...+Hm(r1, ..., rn)Pm(r1, ..., rn) = 0,

since we have P1(r1, ..., rn) = 0, . . . , Pm(r1, ..., rn) = 0. Therefore we just proved that

∀(r1, .., rn) ∈ K
n, φ(X1, .., Xn)⇒ (Q(r1, ..., rn) = 0), i.e., φ(X1, .., Xn) |= (Q(X1, ..., Xn) =
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0). In other words, we have shown that (P1, ..., Pm) ⊂ I(V(P1, ..., Pm)). This correspon-

dence between ideals and varieties form a dual viewpoint (algebraic with ideals and geo-

metric with varieties) that is very powerful. An algebraic assertion can form the basis of

an ideal and an ideal could define a variety, formed by the set of common zeros of all its

polynomials.

2.4 Vector Space, Morphism and Eigenspace

Here we define key notions that are central in the theoretical and algorithmic development

of our methods.

We first define the notion of vector space formed by a collections of vectors that could

be added together and multiplied by a scalar in a field K. A vector space is a set closed

under finite vector addition and scalar multiplication. Its formal definition is given below.

Definition 7. A set V is a vector space over a field K if and only if the following condi-

tions holds:

❼ Associativity of vector addition: for all X, Y, Z ∈ V , X + (Y + Z) = (X + Y ) + Z,

❼ Associativity of scalar multiplication: for all X ∈ V and a, b ∈ K, a ∗ (b ∗ X) =

(a ∗ b) ∗X,

❼ Additive vector identity: there is a vector 0 ∈ V such that for allX ∈ V , X + 0 =

0 +X = X,

❼ Multiplicative scalar identity: for all X ∈ V , 1∗X = X, where 1 is the multiplicative

unit in K,

❼ Existence of additive inverse: for all X ∈ V there exists an element −X ∈ V such

that X + (−X) = 0,

❼ Commutativity of vector addition: for all X, Y, Z ∈ V , X + Y = Y +X,

❼ Distributivity of scalar addition: for all X ∈ V and a, b ∈ K, (a+b)∗X = a∗X+b∗X,

❼ Distributivity of vector addition: for allX, Y ∈ V and a ∈ K, a ∗ (X + Y ) =

a ∗X + a ∗ Y .

A morphism is a function ϕ between two vector spaces E and F , denoted by ϕ :

E → F , such that the addition and multiplication are respected.Such morphism between

vector space could aslo be called linear transformation in the litterature. We give the

formal definition below.
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Definition 8. Let E and F be two vector spaces over a field K. A morphism is a function

ϕ : E → F such that:

❼ for all P,Q ∈ E, ϕ(P +Q) = ϕ(P ) + ϕ(Q),

❼ for all P ∈ E and for all λ ∈ K, ϕ(λ ∗ P ) = λ ∗ ϕ(P ).

A morphism from a vectorial space E to the same vector space E is called an endo-

morphism.

In Chapter 3, 4, and 5, we build several very important morphisms between vectorial

spaces. For instance, we define the morphism L , in Section 3.5.2, between Rr[X1, .., Xn]

and Rrd[X1, .., Xn] where r and d are two integers and where Rr[X1, .., Xn] and Rrd[X1, .., Xn]

refer to the set of polynomials of degree at most r and rd, respectively, over the real field

R. Let T ∈ Rd[X1, .., Xn] be a specific polynomial, we define the following morphism for

all P ∈ Rr[X1, .., Xn]:

L :

{
Rr[X1, . . . , Xn] → Rdr[X1, . . . , Xn]

P 7→ TP.

As we can see, L takes as input a polynomial Q ∈ Rr[X1, . . . , Xn] and returns a polyno-

mial L (Q) = TQ, where T was our fixed specific multiplicative polynomial.

The Kernel of a morphism ϕ : E → F gives the elements from the initial domain

E that are mapped by ϕ to the additive identity element noted 0F . Formalizing the

definition of a Kernel of a vector space, we have the following.

Definition 9. Let E and F be two vectorial spaces over a field K and consider a morphism

ϕ : E → F . The Kernel of ϕ, denoted by Ker(ϕ), is defined by:

Ker(ϕ) = {P ∈ E | ϕ(P ) = 0F},

where 0F is the zero element, the additive identity of F .

The Kernel of a morphism ϕ : E → F is a linear subspace of its initial domain E.

The notions of Kernel remain central for Chapter 3, 4, and 5 as we succeed in reducing

the respective invariants generation problems to the computation of basis which generates

Kernels of specific morphism.

It is important to emphasize that all the morphisms build in Chapters 3, 4, and 5

are from domains of finite dimension to domains of finite dimension. Therefore, one can

consider their matrix representation using the well-known canonical basis of their initial

and final domains. Every time we define a morphism we present and build its matrix
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representation (giving descriptions for their step by step construction) using the well-

known canonical basis of the initial and final domains of the considered morphism. In

this way we reduce the problem to linear algebra every time. Here we adapt the definition

of Kernel to the context of matrices.

Definition 10. Let M be a m × n matrix where the terms are drawn in a field K. The

Kernel of M , also called its nullspace, and denoted by Ker(M), is defined by:

Ker(M) = {V ∈ K
n | M · V = 0Km}.

In Chapter 3, 4, and 5, we need to compute the Kernel of specific matrices. In fact,

when we deal with square matrices, these Kernels are Eigenspaces. We give the definitions

of Eigenvalues, Eigenvectors, and Eigenspaces, below.

Definition 11. Let M be a n × n square matrix with terms in K. A nonzero vector

X ∈ K is an eigenvector for M associated with eigenvalue λ (a scalar in K), if the

following condition holds:

M ·X = λX, i.e., (M − λIn) ·X = 0,

where In is the n× n matrix of the identity morphism.

The nullspace of (M − λIn) is the eigenspace of M associated with eigenvalue λ.

Our approaches described in Chapter 3, 4, and 5, are based on linear algebraic notions

such as the ones described in this subsection. In Chapter 3 and 4 we build specific mor-

phisms, we construct their matrix representations, compute the Kernel of these matrices

and interpret the results in term of polynomial ideals, called invariant ideals.

For example, assume that a morphism ϕ from R2[x, y] to R4[x, y] needs to be considered

at some point of the execution of our methods for a given application. And let say that

its associated matrix Mϕ, computed using the basis C1 = (x2, xy, y2, x, y, 1) of R2[x, y]

and the basis

C2 = (x4, yx3, y2x2, y3x, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)
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of R4[x, y], is the one described below:

























































0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 −1 0 0

0 0 −2 0 −1 0

0 0 0 0 0 0

0 −1 0 −1 0 0

0 0 −1 0 −1 −1

0 0 0 0 0 0

0 0 0 0 −1 −2

0 0 0 0 0 0

























































.

Then, the eigenspace is generated by the following computed basis

{(1, 0, 0, 0, 0, 0)⊤, (0, 1, 0,−1, 0, 0)⊤, (0, 0, 1, 0,−2, 1)⊤}.

The vectors of the basis are interpreted in the canonical basis C1 of R2[x1, x2]:

❼ the vector (1, 0, 0, 0, 0, 0)⊤ is interpreted by the polynomial x2,

❼ the vector (0, 1, 0,−1, 0, 0)⊤ is interpreted by the polynomial xy − x,

❼ the vector (0, 0, 1, 0,−2, 1)⊤ is interpreted by the polynomial y2 − 2y + 1.

Then, the ideal generated by the basis {x2, xy− x, y2− 2y+1} will be of great interest.

In fact, we show in these chapters that these ideals are actually inductive invariant ideals.

In Subsection 3.6 and in Subsection 4.6 we refer to the notions of matrix rank and of

Singular Value Decomposition (SVD). We just saw that we can calculate the eigenvalues

and associated eigenspaces, and so the nullspace of a square matrix. When the considered

matrix M is a rectangular matrix, we have similar linear algebraic objects. In that case,

we can use its Singular Value Decomposition that provides an explicit representation of its

rank and kernel by computing unitary matrices U and V , and a regular diagonal matrix

S (with non negative real numbers in the diagonal), such that M = USV . The diagonal

terms Si,i of the matrix S are the singular values ofM . Basically, we obtain similar linear

algebraic tools to compute the nullspace of a matrix M .

Definition 12. The rank of a matrix is the dimension of the image of the matrix. In

other words, it is the number of linearly independent columns or rows of the matrix. It is

also the number of singular values of the matrix.
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Let M be a m × n matrix. We know that rank(M) + Dim(Ker(M)) = n where

Dim(Ker(M)) is the dimension of the nullspace of the matrix M .

To compute the basis of eigenspaces and nullspaces, we use well-known state-of-the-art

algorithms, for example those that Mathematica provides.

More details on abstract algebra, algebraic geometry and linear algebra, emphasizing

the computational aspects, can be found in the textbooks Dummit and Foote [42], Cox,

Little, and O’Shea [38], Bochnak, Coste, and Roy [15] and in Land [76].
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Algebraic Invariant Generation

The contributions presented in this chapter are also published in our articles [80, 79, 84].

Abstract: We present new computational methods that can automate the discovery

and the strengthening of non-linear interrelationships among the variables of a program

containing non-linear loops, that is, that give rise to multivariate polynomial and frac-

tional manipulations. Our methods have lower complexities than the mathematical foun-

dations of the previous approaches, which used Grobner basis computation, quantifier

elimination or cylindrical algebraic decomposition. We show that the preconditions for

discrete transitions can be viewed as morphisms over a vector space of degree bounded

by polynomials. These morphisms can, thus, be suitably represented by matrices. We

introduce fractional and polynomial consecution, more general forms for approximating

consecution. As far as it is our knowledge, it is the first invariant generation methods

that handle multivariate fractional loops.

The new relaxed consecution conditions are also encoded as morphisms represented by

matrices. By doing so, we succeeded in reducing the non-linear loop invariant generation

problem to the intersection between eigenspaces of specific endomorphisms and initial

linear or algebraic constraints. We provide general sufficient conditions for the existence

of non-trivial non-linear loop invariants. Our algorithm also incorporates a strategy to

guess the degree bounds which allow for the generation of ideals of non-trivial invariants.

23
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3.1 Introduction

We present a new method that addresses various deficiencies of state-of-the-art non-linear

invariant generation methods. An invariant at a location of a program is an assertion

true of any reachable program state associated to this location. We provide mathematical

techniques and design efficient algorithms to automate the discovery and the strengthening

of non-linear interrelationships among the variables of a program containing non-linear

loops, which give rise to multivariate polynomial and fractional manipulations.

It is well-known that the automation and effectiveness of formal program verification

depends on the ease with which invariants can be automatically generated. Actually, the

verification problem of safety properties, such as no null pointer deferenciation, buffer

overflows, memory leak or outbounds, and array accesses, can be reduced to the problem

of invariant generation [78]. Invariants are also essential to prove and establish liveness

properties such as progress or termination [78]. Furthermore, the standard techniques

[78] for program verification use invariant assertion directly to prove program properties,

or to provide lemmas that can be used to established other safety and liveness program

properties. We look for invariants that strengthen what we wish to prove, and so allow

us to establish the desired property. Also, they can provide precise over-approximations

to the set of reachable states.

We know that the weakest precondition method [41, 50], the Floyd-Hoare [50, 66]

inductive assertion technique, and the standard ranking functions technique [78], require

loop invariants to establish correctness and to render the method completely automatic.

Also, to establish termination verification, the standard ranking functions technique re-

quires the automatic generation of invariants.

To generate loop invariants, one need to discover inductive assertions that hold at any

steps of the loop. An inductive assertion also holds at the first time the loop location is

reached, this is the initiation condition, and is preserved under every instructions that cy-

cle back to the loop location, this being the consecution condition. If we choose transition

systems as the representation model and automata as the computational model, we can

say that the invariant holds in the initial state of the system (the initial condition) and

that every possible transition preserves it (the consecution conditions). In other words,

the invariant holds in any possible reachable state.

In the case of loops describing a linear system, Farka’s lemma [122] can be used to

encode the conditions for being a linear invariant. On the other hand, for non-linear

invariants, the difficulty of automatic generation remains very challenging. By today

known methods, they require a high number of Gröbner Bases computation [120], first-

order quantifier elimination [131, 32] or cylindrical algebraic decomposition [24]. In E.

Rodriguez-Carbonell and D. Kapur [109] forward propagation techniques use an abstract
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interpretation [36, 35] framework and Gröbner bases construction to compute invariants as

fixed points of operations on ideals. Abstract interpretation introduces imprecision, and

widening operators must be provided manually by the user in order to assure termination.

A too coarse abstraction would limit these approaches to trivial invariant generation in

the presence of non linear loops. L. Kovacs et al. [72, 73], attempt to generate invariants

from a restricted class of (P-solvable) loops. Their methods use techniques from algebra

and combinatorics, like Gröbner bases [67], variable elimination, algebraic dependencies

and symbolic summation.

More recent approaches have been constraint-based [120, 109, 69, 110, 118, 114, 105].

In these cases, a candidate invariant with a fixed degree and unknown parametric coef-

ficients, i.e., a template form, is proposed as the target invariant to be generated. The

conditions for invariance are then encoded, resulting in constraints on the unknown coef-

ficients whose solutions yield invariants. One of the main advantage of such constraint-

based approaches is that they are goal-oriented. The main challenge for these techniques

remains in the fact that they still require a high number of Gröbner Bases [21] com-

putations, first-order quantifier elimination [131, 32], cylindrical algebraic decomposition

[24], or abstraction operators. And known algorithms for those problems are, at least, of

double exponential complexity.

Despite tremendous progress over the years [120, 10, 109, 113, 24, 73, 72, 34, 96,

110, 114, 1, 104], the problem of loop invariant generation remains very challenging for

non-linear discrete systems. In this chapter we present new methods for the automatic

generation of loop invariants for non-linear systems. As will be seen, these methods give

rise to more efficient algorithms, with much lower complexity in space and time.

We develop the new methods by first extending our previous work on non-linear non-

trivial invariant generation for discrete programs with nested loops and conditional state-

ments, [80, 84]. Further proof details and examples can be found in associated technical

reports and articles [79, 80, 84].

The contributions of this chapter are summarized in Section 1.2.1.

In Section 3.2 we present ideals of polynomials and their possible interaction with

inductive assertions. In Section 3.3 we introduce new consecution conditions, extended to

fractional systems. In Section 3.4 we consider the case where the loop is linear. We present

results for the existence of non-trivial invariants. We translate the problem in term of

linear algebra, and we present a complete decision procedure for the automatic generation

of non-trivial non-linear invariants. In Section 3.5 we extend our method to non-linear

loops. In Section 3.6 we propose a strategy to obtain optimal degree bounds. In Section

3.7 we provide a complete generalization by considering loops describing multivariate

fractional systems. And in Section 3.8 we show how to handle conditions and nested

loops. We conclude our approach in Section 3.9.
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3.2 Inductive Algebraic Assertions

For the definitions of field, multivariate polynomials, polynomial ring, we refer to Section

2.2 in Chapter 2.

The notions of ideal and their associated basis are detailed in definitions 4 and 5 from

Section 2.3 in Chapter 2. For the definitions of varieties and algebraic assertions, we refer

to definitions 6 from Section 2.3 in Chapter 2.

The linear algebraic notions of morphism and Kernel are central in this chapter and

their definitions could be found in Section 2.4 in Chapter 2. Let K[X1, .., Xn] be the ring

of multivariate polynomials over the set of variables {X1, .., Xn}.

In this Chapter, we will use the following notations:

❼ A primed symbol x′ refers to the next state value of x, after a transition is taken.

❼ We denote by Rd[X1, .., Xn] the ring of multivariate polynomials of degree at most

d over the set of real variables {X1, .., Xn}.

❼ We write V ect(v1, ..., vn) for the vector space generated by the basis v1, ..., vn.

❼ We write Ker(M) for the kernel of M and Rank(M) for the rank of M .

We use transition systems as representation of imperative programs and automata as

their computational models.

The contribution and novelty in our approach clearly set it apart from those in [120] as

their constraint-based techniques are based on several Grobner Basis computations and

on solving non linear problems for each location. Nevertheless, they introduce a useful

formalism to treat programs loops, and we start from similar definitions for transitions

systems, inductive invariants and consecution conditions.

Definition 13. A transition system is given by 〈V, L, T , l0,Θ〉, where

❼ V is a set of variables,

❼ L is a set of locations and l0 ∈ L is the initial location.

❼ A state is given by an interpretation of the variables in V .

❼ A transition τ ∈ T is given by a tuple 〈lpre, lpost, ρτ 〉, where lpre and lpost name the

pre- and post- locations of τ . The transition relation ρτ is a first-order assertion over

V ∪V ′, where V correspond to current-state variable values and V ′ to the next-state

variable values.

❼ Θ is the initial condition, given as a first-order assertion over V .
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The transition system is said to be affine when ρτ is an affine form. And it is said to be

algebraic when ρτ is an algebraic form.

Example 1. Consider the following program corresponding to the multiplication of 2

numbers.

...

int s, i, j, j_0;

...

//initialization

...

(s=0)&&(j=j_0)

...

While (...){

s := s+i;

j := j-1;

}

...

Its computational model is described by the following automaton:

l τ = 〈l, l, ρτ =








s′ = s+ i

j′ = j + 1

i′ = i

j′0 = j0







〉

with V = {s, i, j, j0}, Θ = (s = 0 ∧ j = j0), l0 = l, L = {l} and T = {τ}.

Definition 14. Let W be a transition system. An invariant at location l ∈ L is defined

as an assertion over V which holds at all states reaching location l. An invariant of W is

an assertion over V that holds at all locations.

To generate loop invariants, one needs to discover inductive assertion that holds at

any steps of the loop.

Given our representational and computational models we can say that an invariant

holds in the initial state of the system, that is the initial condition. We can also say that

every possible transition preserves the invariant, that being the consecution conditions.

Definition 15. Let W = 〈V, L, T , l0,Θ〉 be a transition system and let D be an assertion

domain.

An assertion map for W is a map η : L→ D. We say that η is inductive if and only

if the following conditions hold:
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❼ Initiation: Θ |= η(l0)

❼ Consecution: For all τ in T s.t. τ = 〈li, lj, ρτ 〉 we have

η(li) ∧ ρτ |= η(lj)
′.

From R. W. Floyd [50], we know that if η is an inductive assertion map then η(l) is

an invariant at l for W .

3.3 New Continuous consecution conditions

In this section we treat discrete transitions by extending and adapting our previous work

on loop invariant generation for discrete programs [79, 80]. We also consider discrete

transitions that are part of connected components and circuits, thus generalizing the case

of simple propagation.

Now we show how to encode continuous consecution conditions.

Definition 16. Consider a transition system W = 〈V, L, T , l0,Θ〉. Let τ = 〈li, lj, ρτ 〉 be

a transition in T and let η be an algebraic inductive map with

η(li) ≡ (Pη(X1, .., Xn) = 0) and η(lj) ≡ (P ′
η(X1, .., Xn) = 0) where Pη is a multivariate

polynomial in R[X1, .., Xn] such that it has null values at li and at lj, i.e., before and after

taking the transition. This do not implies that Pη is the null polynomial. We identify the

following notions when encoding continuous consecution conditions:

❼ We say that η satisfies a Fractional-scale consecution for τ if and only if there exists

a multivariate fractional T
Q

such that

ρτ |= (Pη(X
′
1, .., X

′
n)−

T

Q
Pη(X1, .., Xn) = 0).

We also say that Pη is a T
Q
-scale discrete invariant.

❼ We say that η satisfies a Polynomial-scale consecution for τ if and only if there

exists a multivariate polynomial T such that

ρτ |= (Pη(X
′
1, .., X

′
n)− TPη(X1, .., Xn) = 0).

We also say that Pη is a polynomial-scale and a T -scale discrete invariant.
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❼ We say that η satisfies a Constant-scale consecution for τ if and only if there exists

a constant λ such that

ρτ |= (Pη(X
′
1, .., X

′
n)− λPη(X1, .., Xn) = 0).

We also say that Pη is a constant-scale and a λ-scale discrete invariant.

Constant-scale consecution encodes the fact that the numerical value of the polynomial

Pη, associated with assertion η(li), is given by λ times its numerical value throughout the

transition τ . Polynomial-scale consecution encodes the fact that the numerical value

of the polynomial Pη, associated with assertion η(li), is given by T times its numerical

value throughout the transition τ , where T is a polynomial in R[X1, ..., Xn]. Also, the T

polynomials can be understood as template multiplicative factors. In other words, they

are polynomials with unknown coefficients.

We are able to handle the general case when the loop describes a multivariate fractional

system with Fractional-scale consecution. Fractional-scale consecution encodes the fact

that the numerical value of the polynomial Pη, associated with assertion η(li), is given

by T
Q
times its numerical value throughout the transition τ . The fractional T

Q
can display

unknown coefficients. As can be seen, the consecution conditions are relaxed when going

from constant to fractional scaling.

3.4 Discrete transition with affine systems

In this section we use constant-scale consecution encoding.

Consider a transition systems corresponding to the loop τ = 〈li, li, ρτ 〉 and its affine

transition relation ρτ such that:

ρτ ≡






X ′
1 = L1(X1, . . . , Xn)

...

X ′
n = Ln(X1, . . . , xn)




 . (3.1)

Where

Li(X1, ..., Xn) =
n∑

k=1

ci,k−1Xk + ci

are affine or linear forms.
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3.4.1 Generating λ-scale Invariants

We have the following λ-scale invariant characterization.

Theorem 1. Consider a transition system corresponding to a loop τ as described in Eq.

(3.4). A polynomial Q in R[X1, .., Xn] is a λ-scale invariant for constant-scale consecution

with parametric constant λ ∈ R for τ if and only if

Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) = λQ(X1, .., Xn). (3.2)

Demonstração. If Q(X ′
1, .., X

′
n) − λQ(X1, .., Xn) belongs to the ideal I generated by the

family (X ′
1 − L1, . . . , X

′
n − Ln), then there exists a family (A1, . . . , An) of polynomials in

R[X ′
1, .., X

′
n, X1, .., Xn] such that

Q(X ′
1, .., X

′
n)− λQ(X1, .., Xn) = (X ′

1 − L1)A1 + · · ·+ (X ′
n − Ln)An.

Letting X ′
i = Li, we obtain

Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn).

Conversely, suppose that

Q(L1(X1, . . . , Xn), .., Ln(X1, . . . , Xn)) = λQ(X1, . . . , Xn),

then, asQ(X ′
1, .., X

′
n) is equal toQ(L1, .., Ln) modulo the ideal I, we get thatQ(X ′

1, .., X
′
n) =

λQ(X1, . . . , Xn) modulo I.

In this case, Q ∈ R[X1, .., Xn] is of degree r. We show that for good choices of λ there

always exists such a λ-invariant that is not trivial.

We note that Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) is also of degree r because all Li’s are

of degree 1.

Transposing the situation and Eq. (3.2) to linear algebra, consider the morphism

M :

{
Rr[X1, . . . , Xn] → Rr[X1, . . . , Xn]

Q(X1, ..., Xn) 7→ Q(L1(X1, .., Xn), . . . , Ln(X1, .., Xn)).

This is indeed an endomorphism because all Li’s are of degree 1. Let M be its matrix in

the canonical basis of Rr[X1, ., Xn].

First, we show how we build the matrix M .
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Example 2. (Running example) Consider the following loop τ = 〈li, li, ρτ 〉 with

ρτ =

[
x′1 = 2x1 + x2 + 1

x′2 = 3x2 + 4

]

. (3.3)

In this example we have two polynomials of degree 1, with two variables. They are

L1(x1, x2) = 2x1 + x2 + 1,

and

L2(x1, x2) = 3x2 + 4.

Now consider the associated endomorphism M from R2[x1, x2] to R2[x1, x2]). Using

the basis

B1 = (x21, x1x2, x
2
2, x1, x2, 1)

of R2[x1, x2], we define the matrix M . To do so, we compute M (P ) for all elements P

in the basis

B1 = (x21, x1x2, x
2
2, x1, x2, 1)

and we express the results in the same basis B1. In other words, to get the first column

of M we first consider

P (x1, x2) = x21

as the first element of B1, and we compute

M (P ) = P (L1(x1, x2), L2(x1, x2))

which is expressed in B1 as

M (x21) = 4 x21 + 4 x1x2 + 1 x22 + 4 x1 + 2 x2 + 1 × 1

M =















4 0 0 0 0 0

4 6 0 0 0 0

1 3 9 0 0 0

4 8 0 2 0 0

2 7 24 1 3 0

1 4 16 1 4 1















.
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Now, let Q ∈ R[X1, .., Xn] be a λ-scale invariant for constant-scale consecution with

parametric constant λ ∈ R for a given system defined by L1, .., Ln ∈ R[X1, .., Xn].

By theorem 1, we have

Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn).

Using the associated endomorphism M , we have:

Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn)

⇔M (Q) = λQ

⇔M (Q) = λI (Q)

⇔ (M − λI )(Q) = 0R[X1,..,Xn]

⇔ Q ∈ Ker(M − λI),

where I is the identity endomorphism and I is the associated identity matrix of Rr[X1, ..Xn].

Hence, λ must be an eigenvalue of M if we want to find a non null λ-invariant whose co-

efficients will be those of an eigenvector.

We can now state the following theorem.

Theorem 2. A polynomial Q of Rr[X1, .., Xn] is λ-invariant for constant-scale consecu-

tion if and only if there exists an eigenvalue λ of M such that Q belongs to the eigenspace

corresponding to λ.

We also notice that the last column of M is always (0, . . . , 0, 1)⊤ by definition of the

matrix M . Thus 1 is always an eigenvalue of M , with a corresponding eigenvector, which

gives the trivial λ-invariant Q(X1, .., Xn) = a, where a is the coefficient of the constant

term. . Eigenvalue 1 always gives the constant polynomial as a λ-invariant, but it might

give better invariants for other eigenvectors if dim(Ker(M − λI)) ≥ 2, as we will see in

the sequel.

Example 3. Looking at the eigenvalues of the matrix M of the previous running example

2, we fix λ to be 4, we get that the corresponding eigenspace is generated by the vector

(1,−2, 1,−6, 6, 9)⊤.

As a λ-invariant polynomial Q for constant-scale consecution with parameter 4, we get

Constant scaling discrete step

Lambda = 4 Eigenspace

{{1, -2, 1, -6, 6, 9}}
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Interpreted in the canonical basis of R[x1, x2], the associated 4-invariant is

Q(x1, x2) = 1x1
2 − 2x1x2 + x2

2 − 6x1 + 6x2 + 9.

Example 4. (General Case for 2 Variables) We first treat the general case where the

transition system has only two variables. We will look for a λ-invariant Q of degree two.

Let

ρτ =

[
x′1 = c1,0x1 + c1,1x2 + c1,2
x′2 = c2,0x1 + c2,1x2 + c2,2

]

Recall that we must solve the equation Q(c1,0X1 + c1,1X2 + c1,2, c2,0X1 + c2,1X2 + c2,2) =
λQ(X1, X2). Thus, for M we get the following matrix:












c1,0
2 c1,0c2,0 c2,0

2 0 0 0

2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1 0 0 0

c1,1
2 c1,1c2,1 c2,1

2 0 0 0

2c1,0c1,2 c1,0c2,2 + c1,2c2,0 2c2,0c2,2 c1,0 c2,0 0

2c1,1c1,2 c1,1c2,2 + c1,2c2,1 2c2,1c2,2 c1,1 c2,1 0

c1,2
2 c1,2c2,2 c2,2

2 c1,2 c2,2 1












We see that the last column is as predicted, besides the matrix is block diagonal. Thus its

characteristic polynomial is P (λ) = (1 − λ)P1(λ)P2(λ), with P1 being the characteristic

polynomial of
(
c1,0 c2,0
c1,1 c2,1

)

,

and P2 being the characteristic polynomial of





c1,0
2 c1,0c2,0 c2,0

2

2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1
c1,1

2 c1,1c2,1 c2,1
2



 .

Here P2 is of degree 3 and has at least one real root, which can be computed by Lagrange’s

resolvent method. Choosing λ to be this root, the corresponding eigenvectors will give

non-trivial λ-invariants of degree two as at least one of the coefficients of the monomial

x21, x1x2 and x2r must be non null for such an eigenvector.

Corollary 1. Let M the matrix introduce in this section. The problem of finding a non-

trivial λ-invariant is decidable if one of the following assertions is true:

❼ M is block triangular (with 4× 4 blocks or less) ,

❼ The eigenspace associated with eigenvalue 1 is of dimension greater than 1.
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Demonstração. Suppose that M be block triangular with 4 × 4 blocks or less. Then it’s

characteristic polynomial will a product of polynomials of degree less than four whose

roots can be calculated by Lagrange’s resolvent method [76].

For the second assertion, we already know that 1 is an eigenvalue. Suppose that

the corresponding eigenspace is of dimension exactly one. Then the only vectors in that

space are the constant polynomials. Whereas if it is of dimension two or more, than we

get polynomials that are non trivial in the eigenspace. With theorem 2 below, we see that

it is a particularly interesting case.

3.4.2 Intersection with an initial hyperplane

Let Q ∈ Rr[X1, .., Xn] be a λ-invariant for constant-scale consecution, meaning that

Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) = λQ(X1, .., Xn).

Now let u1, ..., un be the initial values ofX1, ..., Xn. For the initial step we needQ(u1, ..., un) =

0.

We have the following linear form in Rr[X1, ..., Xn]:

P 7→ P (u1, ..., un).

Hence initial values correspond to a hyperplane in Rr[X1, ..., Xn], given by the kernel of

P 7→ P (u1, ..., un).

Now, if we add the initiation step, Q(X1, ..., Xn) = 0 will be an inductive invariant (see

Definition 19) if and only if there exists an eigenvalue λ of M such that Q belongs to the

intersection of the eigenspace corresponding to λ and the hyperplane Q(u1, . . . , un) = 0,

given by the initial values (u1, . . . , un).

Theorem 3. A polynomial Q in Rr[X1, .., Xn] is an inductive invariant for the affine loop

(see Definition 15) with initial values (u1, . . . , un) if and only if there is an eigenvalue

λ of M such that Q is in the intersection of the eigenspace of λ and the hyperplane

Q(u1, . . . , un) = 0.

In the following corollary, we state an important result.

Corollary 2. There will be a non-null invariant polynomial for any given initial values

if and only if there exists an eigenspace of M with dimension at least 2.
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Demonstração. (⇒) There is a λ-scale invariant for any initial value. Then the corre-

sponding eigenspace has dimension at least 2. Indeed, assume that the space was of

dimension only 1, which is at least necessary to have λ-invariants. Taking any nonzero

vector Q in the eigenspace (i.e. a λ-invariant), Q should lie in any hyperplane of initial

values, i.e., for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0, i.e, Q = 0,

which is absurd.

(⇐) Any eigenspace of M with dimension at least 2 will intersect any space (semi-

hyperplan, ...) given by any initial constraints. As any hyperplane is of co-dimension one

in Vr, it must have a nonzero intersection with any subspace of dimension strictly greater

than one.

Example 5. Now, we return to running example 2. Matrix M has 6 distinct eigenvalues,

so that eigenspaces are of dimension 1. We denote by Eλ the eigenspace corresponding to

λ.

❼ E4 has basis (1,−2, 1,−6, 6, 9)⊤,

❼ E6 has basis (0, 1,−1, 2,−5, 6)⊤,

❼ E9 has basis (0, 0, 1, 0, 4, 4)⊤,

❼ E2 has basis (0, 0, 0, 1,−1,−3)⊤,

❼ E3 has basis (0, 0, 0, 0, 1, 2)⊤, and

❼ E1 has basis (0, 0, 0, 0, 0, 1)⊤.

Suppose that the initiation step is given by (x1 = 0, x2 = −2), i.e. (u1, u2) = (0, 2)

which corresponds to the hyperplane Q(0, 2) = 0 in R2[x1, x2]. Here, we start with

simple initial conditions, we will consider general conditions in the sequel. Our The-

orem 3 applies, and it is clear that (0, 0, 1, 0, 4, 4)⊤ belongs to this hyperplane, so that

X2
2 + 4X2 + 4 = 0 is an inductive invariant for the loop with these specific initial condi-

tions.

Example 6. We study the following transition system [120], corresponding to the multi-

plication of 2 numbers, and where the transition considered is τ = 〈li, li, ρτ 〉 with

ρτ =








s′ = s+ i

j′ = j + 1

i′ = i

j′0 = j0







.

We need to find a λ such that

Q(s+ i, j + 1, i, j0) = λQ(s, j, i, j0).
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❼ Step 1: We build the associated matrix M :

































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0

0 1 0 −1 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0 1

































❼ Step 2: We compute the eigenvectors which will provide us with a basis of non-

trivial λ-invariants. Here an evident eigenvalue is 1.

❼ Step 3: It is clear in view of the matrix M that

dim(Ker(M − I)) ≥ 2.

As the eigenspace associated to eigenvalue 1 is of dimension 2, our Corollary 2

applies.

For example the vector

(1, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0)⊤

is the eigenvector corresponding to the λ-invariant

s+ ji− ij0.

Note that without Grobner bases and quantifier elimination we found the invariant s +

ji − ij0 = 0 obtained in S. Sankaranarayanan, H.B. Sipma, and Z. Manna [120]. The

consecution scale technique will give a non-null invariant whatever the initial values are,

and this explains why a non-trivial invariant was found in S. Sankaranarayanan, H.B.

Sipma, and Z. Manna [120]).



3.5. Handling algebraic discrete transition systems 37

3.4.3 Limit of constant-scale consecution

Let’s consider an algebraic transition relation

ρτ ≡






x′1 = P1(x1, . . . , xn)
...

x′m = Pm(x1, . . . , xn)




 , (3.4)

where each polynomial Pi has a degree greater than 1.

Example 7. Let’s consider the following loop:

ρτ ≡

[
x′ = x(y + 1)

y′ = y2

]

.

At the step k of the iteration, this loop compute the sum: 1+ y+ · · ·+ y2
k−1. We consider

P (x, y) = a0x
2 + a1xy+ a2y

2 + a3x+ a4y+ a5 as candidate λ-invariant. The loop ideal of
K[x′, y′, x, y] which is generated by the following Grobner Bases {x′−x(y+1), y′−y2}, with
the total-degree lexicographic ordering given by the precedence: x′ > y′ > x > y. Modulo
this loop ideal, we have P (x′, y′) = P (x(y+1), y2) and we denote P ′(x, y) = P (x(y+1), y2).
After expanding we get P ′(x, y) = a0x

2y2+a1xy
3+a2y

4+2a0x
2y+a1xy

2+a0x
2+a3xy+

a4y
2 + a3x+ a5. If we try the constant-scale consecution with parameter λ we obtain:







a0 = 0 a1 = 0 a3 = λa3
a1 = 0 a0 = λa0 λa4 = 0

a2 = 0 a3 = λa1 a5 = λa5
2a0 = 0 a4 = λa2

After simplification we get: a0 = a1 = a2 = a3 = a4 = 0 and a5 = λa5. If λ 6= 1

then a5 = 0, which leads to a null invariant. Otherwise, λ = 1 and we obtain a constant

invariant (a5). Also, by considering the initial condition, we remark that it will imply

that the constant invariant a5 is null. So, using a constraint-based approach [120] with

constant-scaling, we can obtain only constant or null (trivial) invariant.

In the following section, we show how we handle this problem.

3.5 Handling algebraic discrete transition systems

3.5.1 T -scale invariant generation

Consider an algebraic transition system:
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ρτ ≡






X ′
1 = P1(X1, .., Xn)

...

X ′
n = Pn(X1, .., Xn)




 , (3.5)

where the Pi’s are in R[X1, .., Xn]. We have the following T -scale discrete invariant char-

acterization.

Theorem 4. A polynomial Q in R[X1, .., Xn] is a T -scale discrete invariant for polynomial-

scale consecution with a parametric polynomial T ∈ R[X1, ..., Xn] for τ if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).

Demonstração. If Q(X ′
1, .., X

′
n) − TQ(X1, .., Xn) belongs to the ideal I generated by the

family (X ′
1 − P1, . . . , X

′
n − Pn), then there exists a family (A1, . . . , An) of polynomials in

K[X ′
1, .., X

′
n, X1, .., Xn] such that

Q(X ′
1, .., X

′
n)− TQ(X1, .., Xn) = (X ′

1 − P1)A1 + · · ·+ (X ′
n − Pn)An.

Letting X ′
i = Pi, we obtain

Q(P1(X1, ..., Xn), ..., Pn(X1, ..., Xn)) = TQ(X1, ..., Xn).

Conversely, suppose

Q(P1(X1, . . . , Xn), .., Pn(X1, . . . , Xn)) = TQ(X1, . . . , Xn),

then asQ(X ′
1, .., X

′
n) is equal toQ(P1, .., Pn) modulo the ideal I, we get thatQ(X ′

1, .., X
′
n) =

λQ(X1, . . . , Xn) modulo I.

Example 8. Reconsider Example 7. We take (y = y0, x = 1) as initial values. We

propose to use polynomial scale consecution with a parametric polynomial

T (x, y) = b0y
2 + b1x+ b2y + b3.

We obtain

P ′(s, x) = (b0y
2 + b1x+ b2y + b3) · P (x, y).

In other words, we obtain the following multi-parametric linear system, with parameters

b0, b1, b2, b3:
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





a0 = b0a0, 0 = b2a5 + b3a4, a3 = b1a4 + b2a3 + b3a1,

a1 = b0a1, 0 = b0a4 + b2a2, a4 = b0a5 + b2a4 + b3a2,

a2 = b0a2, a3 = b1a5 + b3a3, a1 = a3b0 + b1a2 + b2a1,

a5 = b3a5, a0 = b1a3 + b3a0,

0 = b1a0, 2a0 = b1a1 + b2a0.

Now we describe a decision procedure for parameter valuations. Considering the first
three equations and choose b0 = 1. In this way we maintain high degree invariant for,
otherwise, the coefficients a0, a1, a2 of the highest degree terms would be null. Then, we
obtain another system with b1a0 = 0. For the same degree, choose b1 = 0. Then we have
b2a0 = 2a0. As a direct consequence, b2 is set to 2. Since equation b3a0 = a0 is in the
resulting system, b3 is set to 1. Finally, we obtain the following system :







a3 + a1 = 0

a4 + 2a2 = 0

a2 − a5 = 0.

With less equations than variables, we will have a non-trivial solution for the generation

of a T -invariant. Now, we add the hyperplane corresponding to the initial values: a2y0
2+

(a1 + a4)y0 + a0 + a1 + a5 = 0. As there are six variables and four equations, we will have

a non-trivial solution. A possible solution is the vector

(y0(1− y0), 1, 1,−1,−2, 1)
⊤,

that is, y0(1 − y0)x
2 + xy + y2 − x − 2y + 1 = 0 is an invariant. Note that T (x, y) =

y2 + y + 1.

Remarks 1. That is a simple constraint-based procedure, which can fail in more complex

cases. Shortly, we will present a superior technique, form a more encompassing point of

view.

3.5.2 General theory for discrete transition with polynomial

systems

If Q ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then we are

looking for a T of degree e = dr− r. Write its ordered coefficients as λ0, ..., λs, with s+1

being the number of monomials of degree inferior to e.

Let M be the matrix, in the canonical basis of Rr[X1, .., X2] and Rdr[X1, .., Xn], of the

morphism

M :

{
Rr[X1, . . . , Xn] → Rdr[X1, . . . , Xn]

Q(X1, ..., Xn) 7→ Q(P1(X1, .., Xn), . . . , Pn(X1, .., Xn)).
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Let L be the matrix, in the canonical basis of Rr and Rdr, of the morphism

L :

{
Rr[X1, . . . , Xn] → Rdr[X1, . . . , Xn]

P 7→ TP.

Matrix L will have a very simple form: its non zero coefficients are the λi’s, and it has

a natural block decomposition.

Now let Q ∈ R[X1, .., Xn] be a T -scale discrete invariant for a transition relation

defined by the Pi’s. Then

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn)

⇔M (Q) = L (Q)

⇔ (M −L )(Q) = 0R[X1,..,Xn]

⇔ Q ∈ Ker(M − L).

A T -scale discrete invariant is nothing else than a vector in the kernel of M −L. Our

problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 5. Consider M as described above. Then, there will be a T -scale discrete

invariant if and only if there exists a matrix L, corresponding to P 7→ TP , such that

M − L has a nontrivial kernel. Further, any vector in the kernel of M − L will give rise

to a T -scale invariant.

Demonstração. In fact, a polynomial Q is T -invariant if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),

i.e., if and only if M (Q) = L (Q), or (M −L )(Q) = 0. Writing this in matrix equivalent

terms, we get the desired result.

Again, the last column ofM is (0, ..., 0, 1)⊤, and the last column of L is (0, .., 0, λ0, .., λs)
⊤.

Hence, choosing every λi to be zero, except for λs = 1, the last column of M - L will

be null. With this choice of L (or T = 1), we at least get T -invariants corresponding to

constant polynomials.

Now, M − L having a non trivial kernel is equivalent to its rank being less than

the dimension v(r) of Vr. This is equivalent to the fact that each v(r) × v(r) sub-

determinant of M − L is equal to zero [76]. Those determinants are polynomials with

variables (λ0, λ1, · · · , λs), which we will denote by

V1(λ0, λ1, · · · , λs), . . . , Vs(λ0, λ1, · · · , λs).
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Theorem 6. There is a non trivial T -scale invariant if and only if the polynomials

(V1, .., Vs) admit a common root, other than the trivial one (0, . . . , 0, 1).

Remarks 2. This theorem provides us with important existence results. But there is a

more practical way of computing invariant ideals without computing common roots. We

will get to that in a moment.

Example 9. (Loop with two variables, T -scale invariant of degree 2) We first study the

general case of degree two algebraic transition systems with two variables in the loop. Such

transition systems have the form:

ρτ ≡

[
x′ = c0x

2 + c1xy + c2y
2 + c3x+ c4y + c5

y′ = d0x
2 + d1xy + d2y

2 + d3x+ d4y + d5

]

,

M =

































c0
2 c0d0 d0

2 0 0 0

2c0c1 c0d1 + c1d0 2d0d1 0 0 0

2c0c2 + c1
2 c0d2 + c1d1 + c2d0 2d0d2 + d1

2 0 0 0

2c1d1 c1d2 + c2d1 2d1d2 0 0 0

c2
2 c2d2 d2

2 0 0 0

2c0c3 c0d3 + c3d0 2d0d3 0 0 0

2(c0c4 + c1c3) c0d4 + c1d3 + c3d1 + c4d0 2(d0d4 + d1d3) 0 0 0

2(c1c4 + c2c3) c1d4 + c2d3 + c3d2 + c4d1 2(d1d4 + d2d3) 0 0 0

2c2c4 c2d4 + c4d2 2d2d4 0 0 0

2c0c5 + c3
2 c0d5 + c3d3 + c5d0 2d0d5 + d3

2 c0 d0 0

2(c1c5 + c3c4) c1d5 + c3d4 + c4d3 + c5d1 2(d1d5 + d3d4) c1 d1 0

2c2c5 + c4
2 c2d5 + c4d4 + c5d2 2d2d5 + d4

2 c2 d2 0

2c3c5 c3d5 + c5d3 2d3d5 c3 d3 0

2c4c5 c4d5 + c5d4 2d4d5 c4 d4 0

c5
2 c5d5 d5

2 c5 d5 1



































42 Caṕıtulo 3. Algebraic Invariant Generation

and

L =

































λ0 0 0 0 0 0

λ1 λ0 0 0 0 0

λ2 λ1 λ0 0 0 0

0 λ2 λ1 0 0 0

0 0 λ2 0 0

λ3 0 0 λ0 0 0

λ4 λ3 0 λ1 λ0 0

0 λ4 λ3 λ2 λ1 0

0 0 λ4 0 λ2 0

λ5 0 0 λ3 0 λ0

0 λ5 0 λ4 λ3 λ1

0 0 λ5 0 λ4 λ2

0 0 0 λ5 0 λ3

0 0 0 0 λ5 λ4

0 0 0 0 0 λ5

































.

For the rank ofM−L to be less than 6, one has to calculate each 6×6 sub-determinant

obtained by canceling 9 lines of M − L. They will be polynomials of degree less than 6 in

the variables (λ0, ..., λ5). Now, L is such that M − L will be of degree less than 6 if and

only if (λ0, ..., λ5) are roots of each of those polynomials.

Remarks 3. In many cases, it is easy to find a matrix L such that M − L has a non

trivial kernel. We describe two decidable classes: (i) suppose that in the previous case,

c2, c4 and c5 are null, then one can choose (λ0, . . . , λs) in order to make the first column

zero; and (ii) the third column can be canceled using good choices for the λi’s, if d0, d3
and d5 are zero.

3.5.3 Generating invariant ideals with an initiation step

Consider initial values given by unknown parameters (X1 = u1, . . . , Xn = un). The initial

step defines, on Rr[x1, . . . , xn], a linear form

P 7→ P (u1, ..., un).

Hence, in terms of linear algebra, initial values correspond to a hyperplane of Rr[X1, .., Xn],

given by the kernel of P 7→ P (u1, ..., un), which is

{Q ∈ Rr[X1, .., Xn] | Q(u1, . . . , un) = 0}.

Theorem 7. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the tran-

sition system with initial values (u1, .., un) if and only if there exists a matrix L 6= 0 (the
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one of P 7→ TP ), corresponding to T in Re[X1, .., Xn], such that Q is in the intersection

of Ker(M − L) and the hyperplane given by the initial values Q(u1, . . . , un) = 0.

The invariants correspond to vectors in the intersection.

Now, if Dim(Ker(M − L)) ≥ 2 then Ker(M − L) would intersect any initial (semi-

)hyperplane.

We can state the following Corollary, important in practice.

Corollary 3. There are non-trivial invariant for any given initial values if and only if

there exists a matrix L such that Ker(M − L) has dimension at least 2. The basis of

Ker(M − L) being a basis for non-trivial invariants.

There are non-trivial invariants for any given initial values if and only if there exists

a matrix L, corresponding to the template multiplicative in T such that Ker(M −L) has

dimension at least 2.

3.5.4 Running example

Example 10. (Running example) Let’s consider the following transition:

τ = 〈li, lj, ρτ ≡

[
x′ = xy + x

y′ = y2

]

〉.

Step 1: We build the matrix M − L. The maximal degree of ρτ is d = 2, and so the

T -scale invariant will be of degree r = 2. Also, T is of degree e = dr− r = 2 and we write

λ0, ..., λ5 as its ordered coefficients. Then its canonical form is T = λ0x
2 + λ1xy+ λ2y

2 +

λ3x+ λ4y + λ5. Consider the associated morphisms M and L from R2[x, y] to R4[x, y].

Using the basis

C1 = (x2, xy, y2, x, y, 1)

of R2[x, y] and the basis

C2 = (x4, yx3, y2x2, y3x, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)
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of R4[x, y], our algorithm compute the matrix M − L as

M − L =

























































−λ0 0 0 0 0 0

−λ1 −λ0 0 0 0 0

1− λ2 −λ1 −λ0 0 0 0

0 1− λ2 −λ1 0 0 0

0 0 1− λ2 0 0 0

−λ3 0 0 −λ0 0 0

2− λ4 −λ3 0 −λ1 −λ0 0

0 1− λ4 −λ3 −λ2 −λ1 0

0 0 −λ4 0 −λ2 0

1− λ5 0 0 −λ3 0 −λ0

0 −λ5 0 1− λ4 −λ3 −λ1

0 0 −λ5 0 1− λ4 −λ2

0 0 0 1− λ5 0 −λ3

0 0 0 0 −λ5 −λ4

0 0 0 0 0 1− λ5

























































.

Step 2: We then reduce the rank of M −L by assigning values to the λi’s. Our procedure

fixes λ0 = λ1 = λ3 = 0, λ2 = λ5 = 1 and λ4 = 2, so that T (x, y) = y2 + 2y + 1. The first

column of M − L becomes zero and the second column is equal to the fourth. Hence, the

rank of M − L is less than 4 and its kernel has dimension at least 2. Any vector in this

kernel will be a T -invariant.

Step 3: Now matrix M − L satisfies the hypotheses of Theorem 5(iii). So, there will

always be invariants, whatever the initial values. We compute the basis of Ker(M − L):

Polynomial scaling discrete step

T(x,y) = y^2 + 2 y + 1

Module of degree 6 and rank 3 and Kernel of dimension 3

{{1, 0, 0, 0, 0, 0}, {0, 1, 0, -1, 0, 0}, {0, 0, 1, 0, -2, 1}}

The vectors of the basis are interpreted in the canonical basis C1 of R2[x, y]:

Basis of invariant Ideal

{x^2, x y - x, y^2 - 2 y + 1}

We thus obtained an ideal for non trivial inductive invariants. In other words, for all G1,

G2, G3 ∈ R[x, y],

G1(x, y)(x
2) +G2(x, y)(xy − x) +G3(x, y)(y

2 − 2y + 1) = 0

is an inductive invariant. For instance, consider the initial step (y = y0, x = 1). A

possible invariant is

y0(1− y0)x
2 + xy − x+ y2 − 2y + 1 = 0.
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3.6 Obtaining optimal degree bounds for discrete tran-

sition systems

To guarantee the existence of non-trivial invariants, we are looking for a polynomial T

such that

Ker(M − L) 6= 0.

The pseudo code depicted in Algorithm 1 illustrates the strategy. Algorithm 1 is in

a standard form, but its contribution relies on very general sufficient conditions for the

existence and the computation of invariants. As input we have r, the candidate degree for

the set of basis invariants elements, and P1, ..Pn, the n polynomials given by the transition

relation in considered loop.

We first compute d, the maximal degree of the Pi’s as can be seen by

Max degree({P1, ..., Pn}), at line 4. Then, we detail the cases were the transitions are

defined by non linear systems, i.e. d ≤ 2.

Then we define T as a polynomial of degree dr − r in its canonical form,i.e. with

parametrized coefficients. See Template Canonical Form(dr − r), at line 7.

We can then build a decision procedure to assign values to the coefficients of T in such

a way that Ker(M − L) 6= 0. As we saw in the previous section, Ker(M − L) 6= 0 is

equivalent to having

Rank(M − L) < Dim(Rr[X1, . . . , Xn]).

In other words, it is equivalent to havingM−L with rank strictly less than the dimension

v(r) of Rr[X1, . . . , Xn]. We then reduce the rank of M − L by assigning values of terms

in M to parameters in L.

See Reduce Rank Assigning Values(M − L), at line 10. By so doing we can zero or

identify some columns or lines of M − L. Next, we determine whether the matrix ob-

tained, M − L, has a trivial kernel by first computing its rank and then checking if

(Rank(M − L) < Dim(Rr[X1, .., Xn])) holds. See line 11.

In the case where M − L has a trivial kernel, we can increase the degree r of in-

variants until Theorem 5 (or Corollary 3) applies, or until stronger hypotheses occur,

e.g. if all v(r) × v(r) sub-determinants are null. See return Ideal Loop Inv Gen(r +

1, P1, ..., Pn, X1, ..., Xn, at line 12.

If there is no ideal for non-trivial invariants for a value ri then we conclude that there

is no ideal of non-trivial invariants for all degrees k ≤ ri. This can also be used to guide

other constraint-based techniques, since checking for invariance with a template of degree

less or equal to ri will not be necessary. Otherwise, we compute and output the basis

of the nullspace of matrix M − L, in order to construct an ideal basis for non trivial
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invariants. See Nullspace Basis, at line 15. For the latter, we use well-known state-

of-the-art algorithms, for example those that Mathematica provides. These algorithms

calculate the eigenvalues and associated eigenspaces ofM − L when it is a square matrix.

WhenM − L is a rectangular matrix, we can use its singular value decomposition (SVD).

A SVD of M − L provides an explicit representation of its rank and kernel by computing

unitary matrices U and V and a regular diagonal matrix S such that

M − L = USV.

We compute the SVD of a v(r+d−1)×v(r) matrix M̄ by a two step procedure. First,

we reduce it to a bi-diagonal matrix, with a cost of O(v(r)2v(r+d−1)) flops. The second

step relies on an iterative method, as is also the case for other eigenvalue algorithms. In

practice, however, it suffices to compute the SVD up to a certain precision, i.e. up to a

machine epsilon. In this case, the second step takes O(v(r)) iterations, each using O(v(r))

flops. So, the overall cost is O(v(r)2v(r + d− 1)) flops. It is standard to try to generate

invariantes at each step associated to a guessing r value. State-of-the-art methods require

several step in doubly exponential complexity for each choosen r value while our methods

only require a polynomial step.

For the implementation of the algorithm we could rewrite Corollary 3 as follows.

Corollary 4. Let M − L = U ·S ·V be the singular value decomposition of matrix M − L

described just above. There will be a non trivial T -invariant for any given initial condition

if and only if the number of non-zero elements in matrix S is less than v(r) − 2, where

v(r) is the dimension of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace

obtained from the decomposition directly gives an ideal for non-linear invariants.

It is important to emphasize that eigenvectors of M − L are computed after the pa-

rameters of LT have been assigned. When the discrete transition system has several

variables and none or few parameters, which correspond to practical cases, M − L will be

over the reals and there will be no need to use the symbolic version of these algorithms.

3.7 Invariant generation for discrete transitions with

fractional systems

We now want to deal with transition systems ρτ of the following type:






X ′
1 =

P1(X1,..,Xn)
Q1(X1,..,Xn)
...

X ′
n = Pn(X1,..,Xn)

Qn(X1,..,Xn)






, (3.6)



3.7. Invariant generation for discrete transitions with fractional systems 47

Algorithm 1: Ideal Loop Inv Gen(r, P1, ..., Pn, X1, ..., Xn)

/*Guessing the degree bounds for discrete transitions.*/

Data: r is the candidate degree for the set of basis invariants elements we are

looking for, P1, ..Pn the n are polynomials given by the considered loop, and

X1, ..Xn ∈ V

Result: Ideal Inv, a basis of ideal of invariants.

begin

int d1

Template T2

Matrix M , L3

d←− Max degree({P1, ..., Pn})4

/*d is the maximal degree of Pi’s*/5

if d >= 2 then6

T ←− Template Canonical Form(dr − r)7

M ←− Matrix D(r, dr, P1, ..., Pn)8

L←− Matrix L(r, dr, T )9

¯M − L←− Reduce Rank Assigning Values(M − L)10

if Rank(M̄) >= Dim(Rr[X1, .., Xn]) then11

return Ideal Loop Inv Gen(r + 1, P1, ..., Pn, X1, ..., Xn)12

/*We need to increase the degree r of candidates invariants.*/13

else14

return Nullspace Basis( ¯M − L)15

/*There exists an ideal of invariants that we can compute*/16

else17

... /*We refer to our previous work for constant scaling.*/18

end
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where the Pi’s and Qi’s belong to R[X1, .., Xn] and the Pi is relatively prime to Qi.

This case, one needs to relax the consecution conditions to fractional-scale as soon as

fractions appear in the transition relation.

Theorem 8. (F -scale invariant characterization) A polynomial Q in R[X1, .., Xn] is a

F -scale invariant for fractional discrete scale consecution with a parametric fractional

F ∈ R(X1, .., Xn) for τ if and only if

Q

(
P1

Q1

, ..,
Pn

Qn

)

= FQ.

Demonstração. If Q(X ′
1, .., X

′
n) − FQ(X1, .., Xn) belongs to the fractional ideal J gener-

ated by the family (X ′
1−P1/Q1, . . . , X

′
n−Pn/Qn), then there exists a family (A1, . . . , An)

of fractional functions in K(X ′
1, .., X

′
n, X1, .., Xn) such that

Q(X ′
1, .., X

′
n)− FQ(X1, .., Xn) = (X ′

1 − P1/Q1)A1 + · · ·+ (X ′
n − Pn/Qn)An.

Letting X ′
i = Pi/Qi, we obtain Q(P1/Q1, .., Pn/Qn) = λQ(X1, . . . , Xn). Conversely,

suppose that Q(P1/Q1, .., Pn/Qn) = FQ(X1, .., Xn). Then, as Q(X ′
1, .., X

′
n) is equal to

Q(P1/Q1, .., Pn/Qn) modulo the ideal J , we get Q(X ′
1, .., X

′
n) = FQ(X1, .., Xn) modulo

J .

Let d be the maximal degree of the Pi’s and Qi’s, and let Π be the least common

multiple (lcm) of the Qi’s. Now let U = X1
i1 ..Xn

in be a monomial of degree less than r (

i.e. i1 + ..+ in ≤ r). Then,

ΠrU(P1/Q1, . . . , Pn/Qn) = Πr(P1/Q1)
i1 ...(Pn/Qn)

in .

But as Q
ij
j divides Πij , for all j, we see that Qi1

1 ...Q
in
n divides Πi1+...+ir , which divides Πr.

We deduce that ΠrQ(P1/Q1, . . . , Pn/Qn) is a polynomial for every Q in Rr[X1, .., Xn].

Now suppose that F = T/S, with T relatively prime to S, satisfies the equality of

the previous theorem. Suppose, further, that we are looking for bases for invariants Q of

degree r. Then, multiplying by Πr we get

ΠrQ(P1/Q1, . . . , Pn/Qn) = (ΠrTQ)/S.

As we have no “a priory” information on Q, in most of the cases Q will be relatively

prime to S. In this case we see that S will divides Πr, and we can suppose that it has

denominator Πr. So, let F be of the form T/Πr, and we just argued that this constraint

is weak.



3.7. Invariant generation for discrete transitions with fractional systems 49

Now let M be the morphism

M :

{

Rr[X1, . . . , Xn] → Rnrd[X1, . . . , Xn]

Q 7→ ΠrQ( P1

Q1
, .., Pn

Qn
)

And letM be its matrix in the canonical bases. Let T be a polynomial in Rnrd−r[X1, .., Xn]

and let L denote the morphism of vector spaces

L :

{
Rr[X1, . . . , Xn] → Rnrd[X1, . . . , Xn]

Q 7→ TQ

Also, let L be its matrix in the canonical bases. As we show in the following theorem,

our problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 9. ConsiderM and L as described above. Then, there exists F -scale invariants,

where F is of the form T/Πr, if and only if there exists a matrix L such that Ker(M−L) 6=

∅. In this situation, any vector in the kernel of M −L will give rise to a F -scale discrete

invariant.

This is similar to Theorems 6 and 7. For the initiation step, we have a hyperplane in

Vr. In order for the transition system to make sense, the n-tuple of initial values must not

be a root of any of the Qi’s, and so must be their iterates, as long as the loop is applied.

In this way, they will not cancel Πr.

We have the following:

Theorem 10. (Non trivial invariants using Fractional scale consecution) We have a non

trivial invariant if and only if there exists a matrix L such that the intersection of the

kernel of M − L and the hyperplane given by the initial values is not zero, the invariants

corresponding to vectors in the intersection.

We also have the following important corollary.

Corollary 5. (Non trivial invariants using Fractional-scale consecution and for any initial

value) We will have a non-trivial invariant for any non-trivial initial value if there exists

a matrix L such that the dimension of Ker(M − L) is at least 2.

Example 11. (Running example)) Consider the system

ρτ ≡

[

x′1 =
x2

(x1+x2)

x′2 =
x1

(x1+2x2)

]

. (3.7)

We are looking for F -scale invariant polynomials of degree 2. The lcm of (x1 + x2)

and (x1 + 2x2) is their product, so that M is given by:

Q ∈ R2[x1, x2] 7→ [(x1 + x2)(x1 + 2x2)]
2Q(

x1
(x1 + x2)

,
x2

(x1 + 2x2)
)].
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As both x2

(x1+x2)
and x1

(x1+2x2)
have “degree” zero,

[(x1 + x2)(x1 + 2x2)]
2Q(

x2
(x1 + x2)

,
x1

(x1 + 2x2)
)

will be a linear combination of degree 4, if it is non null.

Hence, M has values in

V ect(x41, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2).

with T and Q in R2[x1, x2] we verify that

[(x1 + x2)(x1 + 2x2)]
2Q(

x2
(x1 + x2)

,
x1

(x1 + 2x2)
) = TQ.

As the left member is in V ect(x41, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2), T must be of the form

λ0x
2
1 + λ1x1x2 + λ2x

2
2

and Q of the form

a0x
2
1 + a1x1x2 + a3x

2
2.

We see that we can take Q in V ect(x21, x1x2, x
2
2), and similarly for T .

Then both M , L : (Q 7→ TQ) are morphisms from

V ect(x21, x1x2, x
2
2)

in

V ect(x41, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2).

In the corresponding canonical basis, the matrix M − L is

M − L =










−λ0 0 1

−λ1 1− λ0 2

1− λ2 3− λ1 1− λ0

4 2− λ2 −λ1

4 0 −λ2










.

Taking λ0 = 1, λ1 = 3 and λ2 = 2 cancels the second column and so, the kernel will be

equal to V ect(0, 1, 0). Now, Corollary 5 applies to M − L:

Fractional scaling discrete step

T(x,y) / Q(x,y) = 1 / ((x + y) (x + 2 y))^2

Module of degree 3 and rank 1 and Kernel of dimension 2

{{0, 1, 0}}

Basis of invariant Ideal

{ x y }
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It was clear from the beginning that the corresponding polynomial x1x2 is
1

[(x1+x2)(x1+2x2)]2
-

scale invariant.

In particular, it is an invariant for the initial values (0, 1). Moreover, it clearly never

cancels x1 + x2 and x1 + 2x2, because they are of the form (a, 0) or (0, b) with a and b

strictly positive.

3.8 Branching conditions and nested loops

We have generated a basis of a vector space which describes invariants for transitions. A

global invariant would be any invariant which is in the intersection of these vector spaces.

In this way, we avoid the definition of a single isomorphism for the whole transitions

system. Instead, we generate the basis for each separate consecution conditions.

To compute the basis of global invariants, we could use the following Theorem. It

proposes to multiply all the elements of each computed basis. By so doing, we also avoid

the heavy computation of ideal intersections This approach is a sound, but not complete,

way of computing ideals for global invariants, and it has a low computational complexity.

In order to take into account initial conditions we could intersect these vector spaces of

invariants with the initial hyperplanes deduced from the isomorphism associated with

initial requirements.

Here, we show how our method deals with the conditional statements inside loops.

Let’s consider the following type of loop :

...

while(B_1){

[I_1;]

if(B_2){

[I_2;]

}

else{

[I_3;]

}

[I_4;]

}

...

where Iis are notations that represent a block of multivariate fractional instructions. First

we represent the loop with the following two transitions

τ1 = 〈li, li, (B1 ∧ B2), ρτ1〉

and

τ2 = 〈li, li, (B1 ∧ ¬B2), ρτ2〉,

where:

ρτ1 ≡ [x′1 = F1,[I1;I2;I4;]◦(x1, ..., xn), . . . , x
′
n = Fn,[I1;I2;I4;]◦(x1, ..., xn)]
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and

ρτ2 ≡ [x′1 = F1,[I1;I3;I4;]◦(x1, ...xn) . . . , x
′
n = Fn,[I1;I3;I4;]◦(x1, ..., xn)]

with [; ; ]◦ denoting our operator based on separation rewriting rules to compose blocks of

instructions.

We first independently generates the ideals of invariants ξ1 = (µ1, ..., µn) and ξ2 =

(κ1, ..., κp) for the respective transitions τ1 and τ2. Any element µi ∈ ξ1 refers to an

inductive invariant µi(X1, ..., Xn) = 0 corresponding to the partial loops described by

transition τ1. Similarly, any κi ∈ ξ2 refers to an inductive invariant κi(X1, ..., Xn) = 0 for

the loop described by the transition τ2.

Then we can take

µi(X1, ..., Xn) ∗ κi(X1, ..., Xn) = 0

as global loop invariants, since these invariant will remind true in any sequences of tran-

sitions during the execution of the loop.

Theorem 11. Let I = {I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)
1, ..., f

(j)
nj )

where j ∈ [1, k]. Let

�(I1, ..., Ik) = {δ1, ..., δn1n2...nk
}

be such that all elements δi in �(I1, ..., Ik) are formed by the product of one element from

each ideal in I. Assume that all Ij’s are ideals for invariants for a loop at location lj,

described by a transition τj. Now, if all lj describe the same location or program point

l, then we have several transitions looping at the same point. Thus we can obtain an

encoding of possible execution paths of a loop containing conditional statements.

It is clear then that �(I1, ..., Ik) is an ideal of non-trivial non-linear invariants for the

entire loop located at l.

We deal with loop conditions using the same methods that we propose to handle

initiation conditions. We know, for instance, that if our Corollary 3 holds, then there

exists invariants for any (semi-)hyperplane that could be induced by the loop conditions.

We illustrate this point in figure 3.1.

Let (Pi(x1, .., xn) < 0) be semi-algebraic loop conditions at location l and let Q be an

inductive invariant for D(l). Thus (Pi(x1, .., xn) − Q(x1, .., xn) < 0) is also an inductive

invariant. Then, we can build an operator, similar to the one introduced in Theorem 11, to

generate, in a different way, ideals of non-trivial invariants at a state l with semi-algebraic

loop conditions.

Example 12. Consider the following loop. An example of an invariant generated is

xyu0z
2 − u20z

2 + xyzu+ xyu2 − xyz − 2xyu+ xy = 0
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//initialization

...

int u_0;

...

((M > 0)&&(Z = 1)&&(U = u_0)...)

...

While ((X>=1) || (Z>=z_0)){

...

If(Y > M){

X = Y / (X + Y);

Y = X / (X + 2 * Y);

}

Else{

Z = Z * (U + 1);

U = U^2;

}

}

...

Once again, here there are no need for Grobner Basis computation and the complexity of
the steps described remain linear. Example 12 illustrate our method for the case where
the loop contains two conditional statements. We first generate an invariant for the loop
corresponding to the first conditional ”if”, at line 6, using Fractional-Scaling.

If_1 :

Fractional scaling discrete step

T(x,y) / Q(x,y) = 1 / ((x + y) (x + 2 y))^2

...

Basis of invariant Ideal

{ x y }

...

See Example 11 for more details. Then we compute the invariant

Else_1 :

...

Basis of invariant Ideal

{ u_0z^2-u_0^2z^2+zu+u^2-z-2u+1, ... }

...

corresponding to the other alternative transition τ2 of the loop. See ”Else”, at line 10.
The Join operator only returned the product of the two previously computed invariants:

While_1 :

...

{ xyu_0z^2-u_0^2z^2+xyzu+xyu^2-xyz-2xyu+xy, ... }

...



54 Caṕıtulo 3. Algebraic Invariant Generation

-40

-20

0

20

40

-40

-20

0

20

40

-40

-20

0

20

40

Figura 3.1: Intersection between the conditional loop: 800 < (x−5)2+(y−5)2+(y0−5)
2 <

1000 and the invariant y0(1 − y0)x
2 + xy − x + y2 − 2y + 1 = 0 from the invariant ideal

({x2, xy − x, y2 − 2y + 1}) computed for the running example 10.

In the presence of nested loops, our method generates ideals for invariants for each

inner-loop and then generates a global invariant.
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3.9 Chapter Discussions: Performances and Limita-

tions

When using previous modern approaches [120, 10, 109, 113, 24, 73, 72, 34, 96, 110, 114,

104] based on fixed point computation, or on the constraint-based approaches, the com-

putation of Gröbner Bases, quantifier elimination, cylindrical algebraic decomposition,

direct resolution of algebraic systems or the construction of abstraction operators are

required. The notions of Gröbner Bases and their computations, and the ideal member-

ship problem are at the heart of most recent approaches. Focusing on the most recent

and best performing techniques [120, 109, 69, 110, 118, 114, 105], one could synthesize

these constraint-based approaches in three main steps. But, to understand the difficulties

they raise, we need first to give more details on Gröbner Bases and the ideal membership

problem.

Consider a n multivariate polynomial, Q =
∑

i1,..,in
ai1,..,inx1

i1 ...xn
in , where ai1,...,in are

in a field K. How do we know if p is in an ideal I of K[X1, ..., Xn] ? This is Ideal

membership problem. We can consider the Gröbner Bases G = {g1, ..., gs} of I. There

exist an algorithm [21, 46] that compute such bases as long as we know a finite generating

bases of I. We can compute the normal form of Q for I using a Gröbner Bases G.

Denote the normal form by NFG(Q). Gröbner Bases are used because they are bases

that guarantee the confluence and termination of those reductions. Then NFG(Q) =
∑

i1,..,in
f(a)i1,..,inx1

i1 ...xn
in , here f(a)i1,..,in are combinations of ai1,..,in . Then (Q ∈ I) is

equivalent to (NFG(Q) = 0), in other words all the coefficients f(a)i1,...,in are null. Known

algorithms for computing the Gröbner bases G and the algorithms performing the normal

form reduction NFG(Q) to Q are of doubly exponential complexity.

In the mentioned approaches, the loop instructions are considered in order to form

varieties and to build associated algebraic assertions and its generated ideal I (see Sec-

tion 2.3 in Chapter 2). In a first step, these techniques compute the Gröbner Bases G

of I. Then, they consider a template polynomial Q (i.e., a polynomial with unknown

coefficients) as the candidate invariant. As we have seen just above, Q is an invariant if

it belongs to the ideal I, in other words if (NFG(Q) = 0). So, in the second step of these

techniques, the reductions NFG(Q) is performed and a equation systems (NFG(Q) = 0)

is generated. This set of constraints form the candidate invariant constraints. Finally,

they attempt to solve directly the candidate invariant constraint systems. We clearly see

that each single step of these approaches induce a high numbers of computations that are

of double exponential complexity. Also, there are no conditions that is identified over the

degree of their candidate invariants, and that would guarantee the non-triviality of the re-

sulting invariant, when it can be computed. Moreover, we have shown (see Section 3.4.3)

that as soon as the loop contains a non-linear instruction, the constraints considered in



56 Caṕıtulo 3. Algebraic Invariant Generation

their final step is a non-linear equation systems, which makes their resolution unfeasible.

In terms of performance and efficiency, we succeeded in reducing the non-linear loop

invariant generation problem to a linear algebraic problem, i.e. the computation of

eigenspaces of specific morphisms. Our techniques have few computational steps: we

compute first some specific matrices and we then compute their nullspaces. Each step

performed by our techniques remains of polynomial complexity. Further, our approaches

do not generate an invariant at a time. Instead we generate an ideal of invariants which

is an enormous (infinite) structure. We also handle fractional systems and our algorithm

incorporates a strategy to guess degree bounds which allow for the automatic generation

of ideals of non-trivial invariants. Moreover, as one of the main results, we provide very

general sufficient conditions allowing for the existence and computation of invariant ideals.

Note that these conditions could be directly used by any invariant generation method.

In terms of limitations, our techniques concern logic with non-linear (or linear) arith-

metic. In order to be considered as a verification tool for complex software one would

need to extend the logic and consider their associated formal methods in order to han-

dle more complex instructions. To statically analyse complex software one would need to

consider several different logics and combine their associated independent formal methods

and tools. For instance, one need heap logic and their formal methods to handle recur-

sive data structures and pointers. And we would need to consider another logic and its

associated formal methods in order to handle array or threads. Also these static analysis

methods and their associated automated proof methods applied first on algorithm than

software. As it is done in other standard program verification techniques on need to adapt

the methods to variables over the reals dealing with overflow properties.

One of the main challenge for the formal methods community is to first identify a

logic for each type of semantics induced by a software. Then one needs to develop formal

methods independently for each logic and finally propose techniques to composed them

in a tool-bus. In Chapter 6, our techniques are combined with other formal methods and

their associated tools. We compose our techniques with formal methods restricted to logics

with uninterpreted functions, that is, a logics handling function calls and operating system

calls. Our primary goal and motivation are to provide invariant generation methods

for static analysis. Also, the methods proposed in this chapter could be extended to

probalistic programs and timed automata. On the other hand, our secondary motivation

is to propose a new domain of applications for invariant generations, one that requires the

computation of complex invariants. In Chapter 6 we generate invariants over malwares

that are used as strong semantic aware signatures that can be used to analyse and identify

these malwares. In this context we are considering binary codes (where structure such

as pointers and array do not appear, for instance). These binary code induce a logic

with non-linear arithmetic and the methods described here allow for the generations of
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complex and precise invariants. And the more the invariant, i.e. signature generated, is

complex all the better it is as it will be harder to morph such signatures in an automatic

way.





Caṕıtulo 4

Generating Invariants for Non-linear

Hybrid Systems

The concepts and contributions exposed in this chapter are also introduced in our publi-

cations [83, 88, 84, 81].

Abstract: We describe powerful computational techniques, relying on linear algebraic

methods, for generating ideals of non-linear invariants of algebraic hybrid systems. We

show that the preconditions for discrete transitions and the Lie-derivatives for continuous

evolution can be viewed as morphisms, and so can be suitably represented by matrices.

We reduce the non-trivial invariant generation problem to the computation of the asso-

ciated eigenspaces by encoding the new consecution requirements as specific morphisms

represented by such matrices. More specifically, our methods are the first to establish

very general sufficient conditions that show the existence and allow the computation of

invariant ideals. Our methods also embody a strategy to estimate certain degree bounds,

leading to the discovery of rich classes of inductive, i.e. provable, invariants. By reduc-

ing the problem to related linear algebraic manipulations we are able to address various

deficiencies of other state-of-the-art invariant generation methods, including the efficient

treatment of non-linear hybrid systems. Our approach avoids first-order quantifier elim-

ination, Gröbner basis computation or direct system resolution, thereby circumventing

difficulties met by other recent techniques.

4.1 Introduction

Hybrid systems [63, 4] exhibit both discrete and continuous behaviors, as one often finds

when modeling digital system embedded in analog environments. Most safety-critical sys-

59
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tems, e.g. aircraft, automobiles, chemicals and nuclear power plants, biological systems,

operate semantically as non-linear hybrid systems. As such, they can only be adequately

modeled by means of non linear arithmetic over the real numbers involving multivariate

polynomials and fractional or transcendental functions.

The analysis of hybrid systems has been one of the main challenges for the formal

verification community for several decades. Some verification approaches for treating

such models are based on inductive invariant generation methods [77, 126] and also on

the Abstract Interpretation framework [36, 35], combined with the reduction of safety-

critical properties to invariant properties [64, 9]. We look for invariants that strengthen

what we wish to prove, and so allow us to establish the desired properties. Also, they can

provide precise over-approximations of the set of reachable states in the continuous state

space.

More recent approaches have been constraint-based [118, 114, 105, 1, 115]. In these

cases, a candidate invariant with a fixed degree and unknown parametric coefficients, i.e.,

a template form, is proposed as the target invariant to be generated. The conditions for

invariance are then encoded, resulting in constraints on the unknown coefficients whose

solutions yield invariants. One of the main advantage of such constraint-based approaches

is that they are goal-oriented. But, on the other hand, they still require the computation

of several Gröbner Bases [21] or require first-order quantifier elimination [131, 32]. And

known algorithms for those problems are, at least, of double exponential complexity.

SAT Modulo Theory decision procedures and polynomial systems [16, 53, 114] could also,

eventually, lead to decision procedures for linear theories and, thus, to decidable systems.

Such ideas strive to generate linear or polynomial invariants over hybrid systems that

exhibit affine or polynomial systems as continuous evolution modes. Nonetheless, despite

tremendous progress over the years [118, 125, 111, 114, 1, 124, 8, 52, 3, 16, 115, 104],

the problem of invariant generation for hybrid systems remains very challenging for both

non-linear discrete systems as well as non-linear differential systems with non abstracted

local and initial conditions.

In this work we use hybrid automata as computational models for hybrid systems.

A hybrid automaton describes the interaction between the discrete transitions and the

continuous dynamics, the latter being governed by local differential equations. We present

new methods for the automatic generation of non-linear invariants for non-linear hybrid

systems. These methods give rise to more efficient algorithms, with much lower complexity

in space and time.

First, we extend and generalize our previous work on invariant generation for hybrid

systems [84, 83, 88]. To do so, we provide methods to generate non trivial basis of provable

invariants for local continuous evolution modes described by non linear differential rules.

These invariants can provide precise over-approximations of the set of reachable states
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in the continuous state space. As a consequence, they can determine which discrete

transitions are possible and can also verify if a given property is fulfilled or not.

Next, in order to generate invariants for hybrid systems, we complete and extend

our previous work on non linear invariant generation for discrete programs [80, 79]. The

contribution and novelty in our approaches clearly differ from those in [118] as their

constraint-based techniques are based on several Gröbner Basis or Syzygy Basis [119],

computations and on solving non linear problems for each location. Nevertheless, they

introduce a useful formalism to treat the problem, and we start from similar definitions

for hybrid systems, inductive invariants and consecution conditions.

We then propose methods to identify suitable morphisms to encode the relaxed con-

secution requirements. We show that the preconditions for discrete transitions and the

Lie-derivatives for continuous evolutions can be viewed as morphisms over a vector space

of terms, with polynomially bounded degrees, which can be suitably represented by ma-

trices. The relaxed consecution requirements are also encoded as morphisms represented

by matrices. By so doing, we do not need to start with candidate invariants that gen-

erate intractable solving problems. Moreover, our methods are not constraint-based.

Rather, we automatically identify the needed degree of a generic multivariate polyno-

mial, or fractional, as a relaxation of the consecution condition. The invariant basis are,

then, generated by computing the Eigenspace of another matrix that is constructed. We

identify the needed approximations and the relaxations of the consecution conditions, in

order to guaranteed sufficient conditions for the existence and computation of invariants.

Moreover, the unknown parameters that are introduced are all fixed in such a way that

certain specific matrices will have a non null kernel, guaranteeing a basis for non-trivial

invariants.

The contribution of this chapter are summarized in Section 1.2.2. In Section 4.2 we

introduce ideals of polynomials, inductive assertions and algebraic hybrid systems. In

Section 4.3 we present new forms of approximating consecution for non-linear differential

systems. In Section 4.5, we discuss morphisms suitable to handle non-linear differential

rules and show how to generate invariants for differential rules. In Section 4.6 we introduce

a strategy that can be used to choose the degree of invariants. Section 4.7 presents some

experiments. In Section 4.8, we show how to generate ideals for global invariants by

taking into account the ideal basis of local differential invariants, together with those

derived from the discrete transition analysis and the initial constraints. We present our

conclusions in Section 4.9.

In this writing, we strive to precede the most important proofs by sketches. Full

proofs, more details and examples can be found in [84, 81, 79, 80].
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4.2 Algebraic Hybrid Systems and Inductive Asser-

tions

For the abstract algebraic definitions of field, multivariate polynomials and polynomial

ring we refer to Section 2.2 in Chapter 2. The definitions of ideal and its basis, we refer

to definitions 4 and 5 from Section 2.3 in Chapter 2.

The linear algebraic notions of morphism and nullspace (i.e., Kernel) are very impor-

tant for this Chapter and in this chapter and one could found their presentation in Section

2.4 in Chapter 2.

Let K[X1, .., Xn] be the ring of multivariate polynomials over the set of variables

{X1, .., Xn}.

Notationally, as is standard in static program analysis, a primed symbol x′ refers to

next state value of x after a transition is taken. We may also write ẋ for the derivative
dx
dt
.

We denote by Rd[X1, .., Xn] the ring of multivariate polynomials over the set of real

variables {X1, .., Xn} of degree at most d.

We write V ect(v1, ..., vn) for the vectorial space generated by the basis v1, ..., vn.

Definition 17. A hybrid system is described by a tuple 〈V, Vt, L, T , C,S, l0,Θ〉, where

❼ V = {a1, .., am} is a set of parameters,

❼ Vt = {X1(t), .., Xn(t)} where Xi(t) is a function of t,

❼ L is a set of locations and

❼ l0 is the initial location.

❼ A transition τ ∈ T is given by 〈lpre, lpost, ρτ 〉, where lpre and lpost name the pre- and

post- locations of τ , and the transition relation ρτ is a first-order assertion over

V ∪ Vt ∪ V
′ ∪ V ′

t .

❼ Also, Θ is the initial condition, given as a first-order assertion over V ∪ Vt,

❼ and C maps each location l ∈ L to a local condition C(l) denoting an assertion over

V ∪ Vt.

❼ Finally, S associates each location l ∈ L to a differential rule S(l) corresponding to

an assertion over V ∪ {dXi/dt|Xi ∈ Vt}.

❼ A state is any pair (location and interpretation of the variables) from L× R
|V |.
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Example 13. The dynamic system of a bouncing ball ([121]) can be modeled by the

following hybrid automaton:

C(l) =
{

y ≥ 0

S(l) =







ẏ = v

v̇ = −10

ǫ̇ = 1

τ = 〈l, l, ρτ =






ǫ > 0 ∧ y = 0

v′ = −v/2

y′ = y ∧ ǫ′ = 0




〉

V = {y, v, ǫ}, Θ = (v = 16 ∧ y = ǫ = 0), l0 = l, L = {l} and T = {τ}.

The evolution of variables and functions in an interval must satisfy the local conditions

and the local differential rules.

Definition 18. A run of a hybrid automaton is an infinite sequence

(l0, κ0)→ · · · → (li, κi)→ · · ·

of states where l0 is the initial location and κ0 |= Θ.

For any two consecutive states (li, κi) → (li+1, κi+1) in such a run, the condition

describes a discrete consecution if there exists a transition 〈q, p, ρi〉 ∈ T such that q = li,

p = li+1 and 〈κi, κi+1〉 |= ρi where the primed symbols refer to κi+1.

Otherwise, it is a continuous consecution condition and we must have q ∈ L, ε ∈ R

and a differentiable function φ : [0, ε)→ R
|V ∪Vt| such that the following conditions hold:

❼ (i) li = li+1 = q;

❼ (ii) φ(0) = κi, φ(ε) = κi+1;

❼ (iii) During the time interval [0, ε), φ satisfies the local condition C(q) and the local

differential rule S(q). That is, for all t ∈ [0, ε) we must have φ(t) |= C(q) and

〈φ(t), dφ(t)/dt〉 |= S(q).

A state (ℓ, κ) is reachable if there is a run and some i ≥ 0 such that (ℓ, κ) = (ℓi, κi).

Example 14. Returning to Example 13, consider the run:

(l, κ0)
µ0
−→ (l, κ1)

µ1
−→ (l, κ2),

where κ0 = (0, 16, 0). In a valuation (a, b, c) ∈ R
3, a is the value of y, b is the value of v

and c is the value of ǫ. Clearly, κ0 |= Θ, as required.
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Now take κ1 = (0,−16, ε), where ε = 16
5
, and consider φ : [0, ε] → R

|Vt| such that

φ(t) = (y(t), v(t), ǫ(t)) = (−5t2 + 16t,−10t + 16, t). Then φ(0) = (0, 16, 0) = κ0 and

φ(ε) = (y(ε), v(ε), ǫ(ε)) = κ1. Further, for all t ∈ [0, ε] we get φ(t) |= C(q) because y(t) is

clearly non-negative for t ∈ [0, ε]. Also, for all t ∈ [0, ε] we have 〈φ(t), dφ(t)/dt〉 |= S(q)

because

dφ(t)/dt = (dy(t)/dt, dv(t)/dt, dǫ(t)/dt) = (v,−10, 1). So, by construction, µ0 is a possi-

ble continuous consecution.

Now, since 〈(0,−16, ε), (0, 8, 0)〉 |= ρτ , if we let κ2 = (0, 8, 0), then µ1 is a discrete

consecution.

Definition 19. Let W be a hybrid system. An assertion ϕ over V ∪ Vt is an invariant at

l ∈ L if κ |= ϕ whenever (l, κ) is a reachable state of W .

Definition 20. Let W be a hybrid system and let D be an assertion domain. An assertion

map for W is a map γ : L → D. We say that γ is inductive if and only if the following

conditions hold:

1. Initiation: Θ |= γ(l0);

2. Discrete Consecution: for all 〈li, lj, ρτ 〉 ∈ T we have

γ(li) ∧ ρτ |= γ(lj)
′;

3. Continuous Consecution: for all l ∈ L, and two consecutive states (l, κi) and

(l, κi+1) in a possible run of W such that κi+1 is obtained from κi according to the

local differential rule S(l),

if κi |= γ(l) then κi+1 |= γ(l).

Note that if

γ(l) ≡ (Pγ(X1(t), .., Xn(t)) = 0)∀t ∈ [0, ε)

where Pγ is a multivariate polynomial in R[X1, .., Xn] such that it has null values

on the trajectory

(X1(t), ..., Xn(t))

during the time interval [0, ε) which do not implies that Pγ is the null polynomial,

then

C(l) ∧ (Pγ(X1(t), .., Xn(t)) = 0) |= (d(Pγ(X1(t), .., Xn(t))/dt = 0)

during the local time interval.

Hence, if γ is an inductive assertion map then γ(l) is an invariant at l for W .
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Example 15. Consider the hybrid system of Example 13. It is easy to verify that the

assertion

y = v × ǫ+ 5× ǫ2

is a provable, inductive invariant. We can see that the assertion holds during discrete

transitions and the continuous evolution.

4.3 New continuous consecution conditions

Now we show how to encode differential continuous consecution conditions. Consider a

hybrid automaton W . Let l ∈ L be a location which could, eventually, be in a circuit,

and let η be an assertion map such that

η(l) ≡ (Pη(X1(t), .., Xn(t)) = 0)

, where Pη is a multivariate polynomial in R[X1, .., Xn] such that it has null values on the

local trajectory

(X1(t), ..., Xn(t))

during the local time interval [0, ε) which do not implies that Pη is the null polynomial.

We have

dPη

dt
=
∂Pη(X1, . . . , Xn)

∂X1

dX1(t)

dt
+ · · ·+

∂Pη(X1, . . . , Xn)

∂Xn

dXn(t)

dt
.

Definition 21. For a polynomial P in Rd[X1, .., Xn], we define the polynomial DP of

Rd[Y1, .., Yn, X1, .., Xn]:

DP (Y1, .., Yn, X1, .., Xn) =
∂P (X1, .., Xn)

∂X1

Y1 + ...+
∂P (X1, .., Xn)

∂Xn

Yn.

Hence,

dPη

dt
= DPη

(Ẋ1, .., Ẋn, X1, .., Xn).

Now, let (l, κi) and (l, κi+1) be two consecutive configurations in a run. Then we can

express local state continuous consecutions as

C(l) ∧ (Pη(X1(t), .., Xn(t)) = 0) |= (dPη/dt = 0)

during the local time interval.
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Definition 22. Let W be a hybrid automaton, l ∈ L a location and let η be an algebraic

inductive map with η(l) ≡ (Pη(X1(t), .., Xn(t)) = 0) for all t in the time interval of mode

l (so, Pη has a null value over the local trajectory (X1(t), .., Xn(t))). We identify the

following notions to encode continuous consecution conditions:

❼ η satisfies a differential Fractional-scale consecution at l if and only if there exists

a multivariate fractional T
Q

such that

C(l) |= (dPη/dt−
T

Q
Pη = 0).

We say that Pη is a fractional-scale and a T
Q
-scale differential invariant.

❼ η satisfies a differential Polynomial-scale consecution at l if and only if there exist

a multivariate polynomial T such that

C(l) |= dPη/dt− TPη = 0.

We say that Pη is a polynomial-scale and a T -scale differential invariant.

❼ η satisfies a differential Constant-scale consecution at l if and only if there exists a

constant λ ∈ R\{0} such that

C(l) |= (dPη/dt− λPη = 0).

We say that Pη is a constant-scale and a λ-scale differential invariant.

❼ η satisfies a differential Strong-scale consecution at l if and only if

C(l) |= (dPη/dt = 0).

Also, we say that Pη is a strong-scale differential invariant.

Differential Polynomial-scale consecution encode the fact that the numerical value of

the Lie derivative of the polynomial Pη associated with assertion η(l) is given by T times

its numerical value throughout the time interval [0, ε].

In [83, 88] we proposed methods for T -scale invariant generation where T is a constant

(constant-scaling) or null (strong-scaling).

As can be seen, the consecution conditions are relaxed when going from strong to

polynomial scaling.

Also, the T polynomials can be understood as template multiplicative factors. In other

words, they are polynomials with unknown coefficients.
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In the next section, we consider polynomial-scale consecution and then we could extend

the methods to fractional-scale consecution conditions, as is done in Section 3.7 for discrete

steps.

In later sections we show how to combine these conditions with others induced by dis-

crete transitions. In [81], [79] one can find more details on how to handle other constraints

associated to locations.

Theorem 12. (Soundness) Let P be a continuous function and let

S =






Ẋ1(t) = P1(X1(t), .., Xn(t))
...

Ẋn(t) = Pn(X1(t), .., Xn(t)






be a differential rule, with initial condition (x1, .., xn). Any polynomial which is a P -scale

differential invariant for these initial conditions is actually an inductive invariant.

Theorem 13. (Completeness) There exist a differential rule S such that its invariants

are not Polynomial-scale differential invariant. Such systems are then counter-example

for completeness.

4.4 Differential Invariant Generation

Invariant generation for continuous time evolution is one of the main challenging step in

static analysis and verification of hybrid systems. That is why we first restrict the analysis

to differential system which appear in locations.

We start with strong-differential invariants generation.

4.4.1 Morphisms for strong-scale differential consecution

First, we consider a differential system of the form:

S =






Ẋ1 = P1(X1, . . . , Xn)
...

Ẋn = Pn(X1, . . . , Xn)




 . (4.1)

We have the following lemma.

Lemma 1. Let Q ∈ R[X1, .., Xn] such that

DQ(P1, .., Pn, X1, .., Xn) = 0.

Then Q is a strong-scale differential invariant.
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If P ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then the

degree of DP (P1, .., Pn, X1, .., Xn) is r+d−1. Transposing the situation to linear algebra,

consider the morphism

D :

{
Rr[X1, . . . , Xn] → Rr+d−1[X1, . . . , Xn]

P 7→ DP (P1, . . . , Pn, X1, . . . , Xn).

Let MD be its matrix in the canonical basis of Rr[X1, ., Xn] and Rr+d−1[X1, .., Xn].

Example 16. (MD for 2 variables, a degree 2 differential rule, and degree 2 invariants)

Consider the following differential rules:

[
ẋ(t) = x2(t) + x(t)y(t) + 3y2(t) + 3x(t) + 4y(t) + 4

ẏ(t) = 3x2(t) + x(t)y(t) + y2(t) + 4x(t) + y(t) + 3

]

. (4.2)

In this example we write

P1(x, y) = x2 + xy + 3y2 + 3x+ 4y + 4

and

P2(x, y) = 3x2 + xy + y2 + 4x+ y + 3.

We consider the associated morphism D from R2[x, y] to R3[x, y]. Using the basis

B1 = (x2, xy, y2, x, y, 1)

of R2[x, y] and

B2 = (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)

of R3[x, y], we define the matrix MD.

To do so, we compute D(P ) for all elements P in the basis (x2, xy, y2, x, y, 1) and we

express the results in the basis (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1).

Hence, to get the first column of MD we first consider

P (x, y) = x2,

the first element of B1, and we compute

D(P ) = DP (P1, P2, x, y)
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which is expressed in B2 as

D(x2) = 2 x3 + 2 x2y + 6 xy2 + 0 y3 + 6 x2 + 8 xy + 0 y2 + 8 x+ 0 y + 0 × 1

MD =

























2 3 0 0 0 0

2 2 6 0 0 0

6 2 2 0 0 0

0 3 2 0 0 0

6 4 0 1 3 0

8 7 8 1 1 0

0 4 2 3 1 0

8 3 0 3 4 0

0 4 6 4 1 0

0 0 0 4 3 0

























.

As we can see, a differential system S and a considered degree r, are the only required

informations in order to build MD.

Now let Q ∈ R[X1, .., Xn] be a strong-scale differential invariant for a given differential

system defined by P1, .., Pn ∈ R[X1, .., Xn]. Then

(DQ(P1, .., Pn, X1, .., Xn) = 0) ⇔ (D(Q) = 0K[X1,..,Xn])

⇔ (Q ∈ Ker(MD)).

We can see that Q will be a strong-scale differential invariant if and only if it is in the

kernel of MD.

Theorem 14. A polynomial Q of Rr[X1, .., Xn] is a strong-scale differential invariant for

the differential system (4.1) if and only if it lies in the kernel of MD.

Now we want to know when one can assert the existence of a non-trivial invariant

polynomial of degree r. We denote by v(r) the dimension of Rr[X1, .., Xn].

If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking

for a strong-scale differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane

P (u1, . . . , un) = 0, i.e., we are looking for Q in

ker(MD) ∩ {P | P (u1, . . . , un) = 0} .

We deduce the following theorem.
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Theorem 15. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the dif-

ferential system with initial values (u1, .., un) if and only if Q is in the intersection of

Ker(MD) and the hyperplane Q(u1, . . . , un) = 0.

The intersection of the hyperplane {P |P (u1, . . . , un) = 0} with constant polynomials

is always reduced to zero, and the intersection of any hyperplane with a subspace of

Rr[x1, . . . , xn] has dimension of at least 1.

From the preceding theorem and the remark that follows it, there always exists non-

trivial invariant when MD has a kernel of dimension at least 2 (i.e. when MD has rank

at most v(r)− 2) as it will intersect any initial (semi-)hyperplane.

We deduce the following corollary.

Corollary 6. There exists a strong-scale invariant of degree r for the differential system

with initial conditions (any initial conditions, actually), if and only if the kernel of MD

is of dimension at least 2. The basis of Ker(MD) gives a basis of a non-trivial invariant

ideal

So, if corollary 6 holds for a given differential systems, we will compute the basis of

Ker(MD) to obtain a basis of non-trivial invariant. We will see in the following that

such strategies is very effective and practical once the consecution condition is relaxed to

constant-scaling and polynomial-scaling.

Now consider the following differential system with initial conditions





ẋ(t) = x(t)

ẏ(t) = ny(y)

(x(0), y(0)) = (λ, µ)



 , (4.3)

where n is a parameter in V and x(t), y(t) are function of t in Vt. The solutions of this

system are well known:

x(t) = λet and

y(t) = µent.

Consider the polynomial Q(x, y) = xn/λn− y/µ. Hence, it is immediate that the polyno-

mial assertion

xn/λn − y/µ = 0

is an invariant. It is actually a generator of the ideal of invariants. For if Q′ is invariant,

it is null on the points (λu, µun) for u ∈ R and so xn/λn−y/µ divides Q′. For this system

it is the most significant invariant one can get. Now, Q(x, y) = xn/λn − y/µ is not a

strong-scale differential invariant because ∂1Q = nxn−1/λn and ∂2Q = −1/µ, and

∂1Q(x, y)x+ ∂2Q(x, y)y = nxn/λn − y/µ 6= 0.
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In order to simplify the notation, take n = 1. We show that there cannot exist a

non-trivial strong-scale differential invariant for the system

[
ẋ = x

ẏ = y

]

. (4.4)

Suppose such an invariant exists. Write it as Q(x, y) =
∑

i,j ai,jx
iyj. The relation

∂1Q(x, y)x + ∂2Q(x, y)y = 0 implies
∑

i,j iai,jx
iyj +

∑

i,j jai,jx
iyj = 0, which gives (i +

j)ai,j = 0. As i ≥ 0 and j ≥ 0, this implies that all ai,j = 0 but for a0,0. Hence, Q is

constant. Thus, even in cases where very simple invariants can be found, one will not find

strong-scale differential invariants which are non-trivial inductive invariants. Therefore,

we can conjecture that strong invariants exist in special cases. In the following we estab-

lish characterisation properties and classes of differential systems admitting strong-scale

differential invariants which are non-trivial inductive invariants. We will use the following

lemma.

Lemma 2. Let Q1, . . . , Qn be n polynomials in R[X1, . . . , Xn]. Then there exists a poly-

nomial Q such that ∂1Q = Q1, . . . , ∂nQ = Qn if and only if for any i 6= j, 1 ≤ i, j ≤ n,

one has ∂iQj = ∂jQi.

Let Syz(P1, .., Pn) denote the Syzygy Module [74] of (P1, . . . , Pn).

Definition 23. Let P1, . . . , PK be k polynomials in R[X1, . . . , Xn]. The Syzygy Module

of (P1, . . . , Pk) is the following set:

{ (Q1, . . . Qk) ∈ R[X1, . . . Xn] | Q1P1 +Q2P2 + · · ·+QkPk = 0 }.

We can state the following theorem.

Theorem 16. There exists a strong-scale invariant for a differential system if and only if

there exists (Q1, .., Qn) in Syz(P1, .., Pn) such that for any i, j with i 6= j and 1 ≤ i, j,≤ n,

one has ∂iQj = ∂jQi.

For example, when n = 2, we get the following class of systems for which one can

always find a strong invariant:
[
ẋ1 = P1(x1, x2)

ẋ2 = P1(x1, x2)

]

. (4.5)

with ∂2P2 = −∂1P1. Indeed, (P2−P1) always belongs to Syz(P1, P2). In fact, it is actually

a basis when P1 and P2 are relatively prime.
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Example 17. Consider the following differential rules.

[
ẋ = xy

ẏ = −y2/2

]

. (4.6)

Here, we indeed have ∂2P2 = −∂1P1 = −y. The corresponding invariant is Q(x, y) =

xy2/2.

Example 18. Another example of systems admitting strong invariants is a generalization

to dimension n of the rotational motion of a rigid body:






ẋ1 = a1x2 . . . xn
...

ẋn = anx1 . . . xn−1




 . (4.7)

We treat the case when the ai’s are non zero parameters, other cases being easier. Indeed,

the vector

(Q1 = x1/a1, Q2 = −x2/(n− 1)a2, . . . , Qn = −xn/(n− 1)an)

belongs to Syz(P1, . . . , Pn), where

Pi = aix1 . . . xi−1xi+1 . . . xn

belongs to the set of polynomials defining the differential rule.

Now if i 6= j, one has ∂iQj = ∂jQi = 0, and applying Theorem 16 we deduce that the

system admits a strong invariant. In order to obtain an invariant, we just have to solve

∂1Q = x1/a1;Q2 = −x2/(n− 1)a2; . . . ;Qn = −xn/(n− 1)an.

A trivial solution is

Q(x1, . . . , xn) = x21/2a1 − x
2
2/2(n− 1)a2 · · · − x

2
n/2(n− 1)an.

Hence, the system admits as strong invariant the following assertion:

Q(x1, . . . , xn) = x21/2a1 − x
2
2/2(n− 1)a2 · · · − x

2
n/2(n− 1)an = 0.

4.4.2 Morphisms for constant-scale differential consecution

Consider the differential system S depicted in Eq. 4.1. We state the following lemma.
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Lemma 3. Let Q ∈ R[X1, ..., Xn] such that

DQ(P1, .., Pn, X1, .., Xn) = λQ(X1, .., Xn).

Then Q is a λ-scale invariant.

If Q has degree r, and the maximal degree of the Pi’s is d, then we know that

DQ(P1, ..., Pn, X1, ..., Xn) has degree r+d−1. Hence we deduce that, in general, constant-

scale consecution will work when the polynomials Pi of the differential transition system

are of degree one, i.e. when the transition system is affine. So, suppose that the Pi’s are

of degree one. Now we want to find an invariant Q of degree r.

We reduce the problem again to linear algebra. Consider the endomorphism D of

Rr[X1, . . . , Xn] given by

D :

{
Rr[X1, . . . , Xn] → Rr[X1, . . . , Xn]

P 7→ DP (P1, . . . , Pn, X1, . . . , Xn).

Using lemma 3, Q will be a λ-invariant for constant-scale consecution of degree at most r

if and only if λ is an eigenvalue of D, and Q is an eigenvector for λ. By letting MD be the

matrix of D in the canonical basis of Rr[X1, .., Xn] we can state the following theorem.

Theorem 17. A polynomial Q of Rr[X1, .., Xn] is a λ-scale invariant for continuous scale

consecution of the differential system if and only if there exists an eigenvalue λ of MD

such that Q belongs to the eigenspace of MD corresponding to λ.

Zero is always an eigenvalue of MD, since its last column is always null. But this gives

a constant eigenvector, which is less interesting.

In the following cases we describe the methods in the most general case for 2 variables

and the generation of λ-invariant of degree 2

Example 19. (General case for 2 variables and degree 2) Consider the differential system

of the following form:
[
ẋ = a1x+ b1y + c1
ẏ = a2x+ b2y + c2

]

(4.8)

The matrix MD in the basis (x2, xy, y2, x, y, 1) is

MD =












2a1 a2 2b2 0 0 0

2b1 a1 + b2 2a2 0 0 0

0 b1 0 0 0 0

2c1 c2 0 a1 0 0

0 c1 2c2 b1 b2 0

0 0 0 c1 c2 0












.
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This matrix is block lower triangular, with blocks of size 3 × 3. Hence, its characteristic

polynomial is the product of two degree 3 polynomials, and roots of such polynomials can

be computed by Cardan’s method.

Thus, one will always be able to find non-null λ-scale invariants in this case.

We just proved the following proposition and gave a method for finding the corre-

sponding invariants.

Proposition 1. If we are looking at an affine differential transition system with polyno-

mials in two variables, then one is always able to find good scale invariants.

As we did in [80] when dealing with discrete consecution, we can identify large decid-

able classes, e.g.

❼ (i) when MD is block triangular with 4× 4 blocks or less; and

❼ (ii) when the eigenspace associated with eigenvalue 1 is of dimension greater than

1; among others.

Theorem 18. A polynomial Q in Rr[X1, .., Xn] is a λ-scale invariant for the differential

system with initial values (u1, . . . , un) if and only if there exists an eigenvalue λ of MD

such that Q belongs to the intersection of the eigenspaces corresponding to λ and the

hyperplane Q(u1, . . . , un) = 0.

Corollary 7. There will be a non-null polynomial invariant for any given initial values

if and only if there exists an eigenspace of MD with dimension at least 2.

Example 20. Consider system (4.3) again, which we could not handle using strong-scale

invariant encoding. We recall that the differential system




ẋ = x

ẏ = ny

(x(0), y(0)) = (λ, µ)



 (4.9)

has an associated endomorphism

D : Q(x, y) 7→ ∂xQ(x, y)x+ n∂yQ(x, y)y.

Writing its matrix in the basis

(xn, xn−1y, . . . , xyn−1, yn, . . . . . . , x, y, 1)

we have: 






n . . . 0 0

0 MD 0 0

0 . . . n 0

0 . . . 0 0








.
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We see that the eigenspace corresponding to n has at least dimension 2, and it con-

tains V ect(xn, y) (the vector spaces generated by xn and y). Using the theorem on the

existence on solutions for any initial conditions, we deduce that for the initial values

(x(0) = λ, y(0) = µ) there exists an invariant of the form axn+ by, and which must verify

aλn+bµ = 0. If λ and µ are non zero, which is the interesting case, one can take a = λ−n

and b = −µ−1, which gives the inductive invariant

Q(x, y) = xn/λn − y/µ = 0.

4.5 Handling non-linear differential systems

We consider a non-linear differential system of the form:

S =






Ẋ1(t) = P1(X1(t), .., Xn(t))
...

Ẋn(t) = Pn(X1(t), .., Xn(t))




 ,

with the Pi’s in R[X1, .., Xn].

We know that as soon as one of the Pi’s has degree more than one, we must use

polynomial-scale consecution in order to obtain interesting invariants [81].

We have the following lemma.

Lemma 4. Let Q ∈ R[X1, .., Xn] such that

DQ(P1, .., Pn, X1, .., Xn) = TQ

with T in R[X1, .., Xn]. Then Q is a T -scale invariant.

If P ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then the

degree of DP (P1, .., Pn, X1, .., Xn) is r + d− 1.

Hence, T must be searched in the subspace of R[X1, .., Xn], which is of degree at most

r + d− 1− r = d− 1.

Transposing the situation to linear algebra, consider the morphism

D :

{
Rr[X1, . . . , Xn] → Rr+d−1[X1, . . . , Xn]

P 7→ DP (P1, . . . , Pn, X1, . . . , Xn).

Let MD be its matrix in the canonical basis of Rr[X1, ., Xn] and Rr+d−1[X1, .., Xn]. Here,

we build matrices MD in a same manner as we did and describe in Section 4.4.1 Example

16.



76 Caṕıtulo 4. Generating Invariants for Non-linear Hybrid Systems

Choosing a generic T in Rd−1[X1, .., Xn], we define the associated morphism

T :

{
Rr[x1, . . . , xn] → Rr+d−1[x1, . . . , xn]

P 7→ TP.

Denote by LT its matrix in the canonical basis, obtained as in the computation of

MD. Matrices LT corresponding to multiplication by polynomials T of Rd−1[x1, . . . , xn]

have a very precise form, dependent on the coefficients of T . Thus, for fixed n, r and

d, they can be easily identified. We will call M(pol) the set of such matrices. It is, in

fact, a (vector-)subspace of matrices corresponding to morphisms from Rr[x1, . . . , xn] to

Rr+d−1[x1, . . . , xn].

To be even more precise, if T is a generic template in Rd−1[X1, .., Xn], call t1, .., tv(d−1)

its coefficients where v(d− 1) is the dimension of Rd−1[X1, .., Xn].

Then LT ’s coefficients are in {t1, .., tv(d−1)} and it has a natural block decomposition.

We will call M(pol) the set of such matrices.

In order to fix ideas, we show what happens for two variables, Pi’s of maximal degree

3, and we are looking for an invariant in R2[x, y]. Hence, T lies in R2[x, y].

Example 21. A generic T is of the form

T (x, y) = t1x
2 + t2xy + t3y

2 + t4x+ t5y + t6.

Using the basis B2 = (x2, xy, y2, x, y, 1) of R2[x, y] and the basis

B4 = (x4, x3y, x2y2, xy3, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)

of R4[x, y], we define the matrices LT .

To do so, we compute T (P ) for all elements P in the basis B2 and we express the

results in the basis B4.

In other words, to get the first column of LT we first consider

P (x, y) = x2

the first element of B2, and we compute

T (P ) = TP
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which is expressed in B4 as

T (x2) = t1 x4 + t2 x3y + t3 x2y2 + 0 xy3 + 0 y4 + t4 x3 + t5 x2y + 0 xy2 + 0 y3 +

t6 x2 + 0 xy + 0 y2 + 0 x+ 0 y + 0 × 1







































t1 0 0 0 0

t2 0 0 0 0

t3 t1 0 0 0

0 t2 0 0 0

0 t3 0 0 0

t4 0 t1 0 0

t5 0 t2 t1 0

0 t4 t3 t2 0

0 t5 0 t3 0

t6 0 t4 0 t1

0 0 t5 t4 t2

0 t6 0 t5 t3

0 0 t6 0 t4

0 0 0 t6 t5

0 0 0 0 t6







































.

This determines M(pol).

Now let Q ∈ R[X1, .., Xn] be a T -scale invariant for a given differential system defined

by P1, .., Pn ∈ R[X1, .., Xn]. Then

(DQ(P1, .., Pn, X1, .., Xn) = TQ) ⇔ D(Q) = T (Q)

⇔ ((D − T )(Q) = 0R[X1,..,Xn])

⇔ (Q ∈ Ker(MD − LT )).

So, a T -scale invariant is nothing else than a vector in the kernel of MD − LT .

Theorem 19. There is a polynomial-scale invariant for the differential system if and only

if there exists a matrix LT in M(pol), corresponding to a polynomial T of Rd−1[x1, .., Xn],

such that Ker(MD−LT ) is not reduced to zero. And, any vector in the kernel of MD−LT

will give a T -scale differential invariant.

Now notice that MD − LT with a non trivial kernel is equivalent to it having rank

strictly less than the dimension v(r) of Rr[x1, . . . , xn]. By a classical theorem [76], this is
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equivalent to the fact that each v(r)× v(r) sub-determinant of MD −LT is equal to zero.

Those determinants are polynomials with variables (t1, .., tv(d−1)), which we will denote

by

E1(t1, ..., tv(d−1)), ..., Es(t1, ..., tv(d−1)).

Theorem 20. There is a non trivial T -scale invariant if and only if the polynomials

(E1, .., Es) admit a common root, other than the trivial one (0, ..., 0).

This theorem provides us with important existence results. But there is a more prac-

tical way to get invariant ideals without computing common roots. Consider initial values

given by unknown parameters

(x1(0) = u1, . . . , xn(0) = un).

The initial step defines a linear form on Rr[x1, . . . , xn], namely

Iu : P 7→ P (u1, ..., un).

Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given by the kernel Iu,

which is

{Q ∈ Rr[X1, .., Xn] | Q(u1, . . . , un) = 0}.

Theorem 21. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the dif-

ferential system with initial values (u1, .., un) if and only if there exists a matrix LT 6= 0

in M(pol), corresponding to T in Rd−1[X1, .., Xn], such that Q is in the intersection of

Ker(MD − LT ) and the hyperplane Q(u1, . . . , un) = 0.

Now, if

Dim(Ker(MD − LT )) ≥ 2

then Ker(MD − LT ) would intersect any initial (semi-)hyperplane.

Corollary 8. There are non-trivial invariants for any given initial values if and only if

there exists a matrix LT in M(pol) such that Ker(MD−LT ) has dimension at least 2.

Also, we have (Dim(Ker(MD−LT )) ≥ 2) if and only if we also have Rank(MD−LT ) ≤

Dim(Rr[X1, .., Xn])− 2. Further, we also show how to assign values to the coefficients of

T in order to guarantee the existence and generation of invariants.
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Example 22. (Running example) Consider the following differential rules with P1 =

x2 + 2xy + x and P2 = xy + 2y2 + y:

[
ẋ(t) = x2(t) + 2x(t)y(t) + x(t)

ẏ(t) = x(t)y(t) + 2y2(t) + y(t)

]

. (4.10)

❼ Step 1: We build matrix MD − LT .

The maximal degree of the systems is d = 2 and the T -scale invariant will be of

degree r = 2. Then, T is of degree d− 1 = 1 and we write t1, t2, t3 for its unknown

coefficients, (i.e. the canonical form is

T (x, y) = t1x+ t2y + t3.

Using the basis

(x2, xy, y2, x, y, 1)

of R2[x, y] and the basis

(x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)

of R3[x, y], the matrix MD − LT is:

MD − LT =






















2− t0 0 0 0 0 0

4− t1 2− t0 0 0 0 0

−t2 4− t1 2− t0 0 0 0

0 0 4− t1 0 0 0

2 0 0 1− t0 0 0

0 2− t2 0 2− t1 1− t0 0

0 0 2− t2 0 2− t1 0

0 0 0 1− t2 0 −t0
0 0 0 0 1− t2 −t1
0 0 0 0 0 −t2






















.

❼ Step 2: Now the unknown ti’s are given values so as to guarantee the existence of

invariants.

Our algorithm proposes to fix t1 = 2, t2 = 4 and t3 = 2 to get

T (x, y) = 2x+ 4y + 2.

Matrix MD − LT has its second and third columns equal to zero. So, the rank of

MD − LT is less than 4 and its kernel has dimension at least 2. Any vector in this

kernel will be a T -scale differential invariant.
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❼ Step 3 Now, Corollary 8 applies to MD − LT .

So, there will always be invariants, whatever the initial values. We compute and

output the basis of Ker(MD − LT ):

Polynomial scaling continuous evolution

T(x,y) = 2 x + 4 y + 2

Module of degree 6 and rank 2 and Kernel of dimension 4

{{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}}

The vectors of the basis are interpreted in the canonical basis of R2[x, y]:

Basis of invariant Ideal

{x y, y^2}

We have an ideal for non trivial inductive invariants and we search for one of the

form

axy + by2.

If the system has initial conditions x(0) = λ and y(0) = µ, then

aλµ+ bµ2 = 0,

and

µxy − λy2 = 0

is an invariant for all µ and λ.

4.6 Obtaining optimal degree bounds

In order to guarantee the existence of non-trivial invariants of degree r, we need a

polynomial T such that

Ker(MD − LT ) 6= 0.

First, define T as a polynomial with parametrized coefficients. We can then build a

decision procedure to assign values to the coefficients of T in such a way that Ker(MD −

LT ) 6= 0.

The pseudo code depicted in Algorithm 2 illustrates this strategy. Algorithm 2 is in

a standard form, but its contribution relies on very general sufficient conditions for the

existence and the computation of invariants.
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Algorithm 2: Ideal Inv Gen(r, P1, ..., Pn, X1, ..., Xn)

/*Guessing the degree bounds.*/

Data: r is the degree for the set of invariants we are looking for, P1, ..Pn are the n

polynomials given by the considered differential rules, and X1, ..Xn ∈ Vt are

functions of time.

Result: BInv, a basis of ideal of invariants.

begin

int d1

Template T2

Matrix MD, LT3

d←− Max degree({P1, ..., Pn})4

/*d is the maximal degree of Pi’s*/5

if d >= 2 then6

T ←− Template Canonical Form(d− 1)7

MD ←− Matrix D(r, r + d− 1, P1, ..., Pn)8

LT ←− Matrix L(r, r + d− 1, T )9

M̄ ←− Reduce Rank Assigning Values(MD − LT )10

if Rank(M̄) >= Dim(Rr[X1, .., Xn]) then11

return Ideal Inv Gen(r + 1, P1, ..., Pn, X1, ..., Xn)12

/*We need to increase the degree r of candidates invariants.*/13

else14

return Nullspace Basis(M̄)15

/*There exists an ideal of invariants that we can compute*/16

else17

... /*We refer to our previous work for strong and constant scaling.*/18

end
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From the differential rules, we obtain matrix MD (see line 8) with real entries. We

can then define degree bounds for matrices LT that can be used to approximate the

consecution requirements (see line 9).

As we recall from Section 4.5, Ker(MD − LT ) 6= 0 is equivalent to having MD − LT

with rank strictly less than the dimension v(r) of Rr[x1, . . . , xn]. We then reduce the rank

of MD − LT by assigning values of terms in MD to parameters in LT (see line 10).

Next, we determine whether the obtained matrix M̄ has a trivial kernel by first com-

puting its rank and then checking if

(Rank(M̄) < Dim(Rr[X1, .., Xn]))

holds (see line 11).

By so doing, we can increase the degree r of invariants until Theorem 19 (or Corollary

8) applies or until stronger hypotheses occur, e.g. if all v(r)× v(r) sub-determinants are

null.

Then, we compute and output the basis of the nullspace of matrix M̄ in order to

construct an ideal basis for non trivial invariants (see Nullspace Basis, line 15).

We can directly see that if there is no ideal for non-trivial invariants for a value ri
then we conclude that there is no ideal of non-trivial invariants for all degrees k ≤ ri.

This could guide other constraint-based techniques, since checking for invariance with a

template of degree less or equal to ri will not be necessary. In case there is no ideal

for invariants of degree r (see line 12), we first increment the value of r by 1 before the

recursive call to Ideal Inv Gen.

We thus showed how to reduce the invariant generation problem to the problem of

computing a kernel basis for polynomial mappings. For the latter, we use well-known

state-of-the-art algorithms, e.g. that Mathematica provides. These algorithms calculate

the eigenvalues and associated eigenspaces of M̄ when it is a square matrix. When M̄ is

a rectangular matrix, we can use its singular value decomposition (SVD). A SVD of M̄

provides an explicit representation of its rank and kernel by computing unitary matrices

U and V and a regular diagonal matrix S such that

M̄ = USV.

We compute the SVD of a v(r+d−1)×v(r) matrix M̄ by a two step procedure. First,

reduce it to a bi-diagonal matrix, with a cost of O(v(r)2v(r + d − 1)) flops. The second

step relies on an iterative method, as is also the case for other eigenvalue algorithms. In

practice, however, it suffices to compute the SVD up to a certain precision, i.e. up to a

machine epsilon. In this case, the second step takes O(v(r)) iterations, each using O(v(r))

flops. So, the overall cost is O(v(r)2v(r + d− 1)) flops.

For the implementation of the algorithm we could rewrite Corollary 8 as follow.
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Corollary 9. Let M̄ = U ·S ·V be the singular value decomposition of matrix M̄ described

just above. There will be a non trivial T -invariant for any given initial condition if and

only if the number of non-zero elements in matrix S is less than v(r)−2, where v(r) is the

dimension of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace obtained

from the decomposition directly gives an ideal for non-linear invariants.

It is important to emphasize that eigenvectors of M̄ are computed after the parameters

of LT have been assigned. When the differential system has several variables and none or

few parameters, M̄ will be over the reals and there will be no need to use the symbolic

version of these algorithms.

4.7 Examples and Experimental Results

By reducing the problem to Linear Algebra, we are able to combine it with new optimiza-

tion techniques, as illustrated in the following examples. Depending on the form of the

monomials present in the system, we may be able to find T and a vector X such that

X ∈ Ker(MD − LT ) without defining T as a template, i.e. without using a polynomial

with unknown coefficients for scaling consecution. The idea is to directly obtain a suitable

T by factorization. For instance, we can identify the following large classes of systems

where the methods apply.

Example 23. Let s ∈ N be a positive and consider the following differential rules:






ẋ1(t) =
∑s

k=0 akx1(t)
k+1x2(t)

k · · · xn(t)
k

...

ẋn(t) =
∑s

k=0 akx1(t)
k · · · xn−1(t)

kxn(t)
k+1




 . (4.11)

This differential system contains parameters and variables that are time functions. We

denote the polynomials thus

P1 =
s∑

k=0

akx
k+1
1 xk2 . . . x

k
n;

...

Pn =
s∑

k=0

akx
k
1 . . . x

k
n−1x

k+1
n .

Let D be the morphism associated with (4.11) and let MD be its matrix in the canonical

basis. Then, it is immediate that

DP (xi) = Pi.
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Now, for this particular class of Pi’s, we see that

DP (xi) = xiT,

where

T =
s∑

k=0

akx
k
1x

k
2 . . . x

k
n−1x

k
n.

This means that if T is the morphism associated to multiplication by T , we have

DP (xi) = T (xi)

for each i. Let LT be its matrix in the canonical basis. We deduce that

V ect(x1, .., xn) ⊂ Ker(MD − LT ).

Hence, for n ≥ 2, the space Ker(MD − LT ) has dimension greater than 2, and we can

apply our existence theorem for invariants, given any initial values.

We can then search for an invariant of the form

a1x1 + · · ·+ anxn.

Given the initial conditions

(x1(0) = λ1, . . . , xn(0) = λn),

a vector (a1 · · · an)
⊤ is such that the polynomial

a1x1 + · · ·+ anxn

is an invariant for (4.11) whenever it belongs to the kernel of the linear form with matrix

(λ1, . . . , λn). Summarizing, with polynomial scaling, any polynomial Q = a1x1+ · · ·+anxn
with (a1 · · · an)

⊤ in the kernel of (λ1, . . . , λn) is an invariant for (4.11).

Example 24. In order to handle air traffic management systems [104, 127] automatically,

we consider the given differential system:

[
ẋ1 = a1cos(ωt+ c)

ẋ2 = a2sin(ωt+ c)

]

. (4.12)

This models the system satisfied by one of the two airplanes. We introduce the new vari-

ables d1 and d2 to handle the transcendental functions, axiomatizing them by differential

equations, so that d1 and d2 satisfy

[
ḋ1 = −a1/a2ωd2
ḋ2 = a2/a1ωd1.

]

(4.13)
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If D is the morphism associated to this system, it is immediate that

D(a22d
2
1) = −2a1a2ωd1d2

whereas

D(a21d
2
2) = 2a1a2ωd1d2.

From [83, 88], it implies that

V ect(a22d
2
1 + a21d

2
2) ⊂ Ker(D)

and so

a22d
2
1 + a21d

2
2

is a strong-scale invariant ( i.e. a T -scale invariant where T is null) for the system. But

ẋ1 = d1 = [a1/(a2ω)]ḋ2

and

ẋ2 = d2 = [−a2/(a1ω)]ḋ1.

Therefore, there exist constants c1 and c2, determined by the initial values, such that

x1 = a1/a2ωd2 + c1

and

x2 = d2 = −a2/a1ωd1 + c2.

This implies that

(a2x1 − k1)
2 + (a1x2 − k2)

2 = 0,

with k1 = a2c1 and k2 = a1c2, is an invariant of the first system. Hence the two airplanes,

at least for some lapse of time, follow an elliptical path.

In the following two examples we have shown again how to deal with differential

systems with parameters and several variables.

Example 25. Consider the following differential rules:
[
ẋ = ax2(t) + bx(t)y(t) + cx(t)

ẏ = ax(t)y(t) + by2(t) + cy(t)

]

. (4.14)

In this example we have two polynomials of degree 2, with two variables x(t) and y(t) in

Vt and three parameters a, b, c, in V : P1 = ax2+bxy+cx and P2 = axy+by2+cy. Using

the basis (x2, xy, y2, x, y, 1) of R2[x, y] and the basis (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1) of

R3[x, y], the matrix MD is depicted on the left just below. Here the polynomial T we

use for scaling must be of degree 1. Hence T (x, y) = t1x + t2y + t3 where t1, t2, t3 are

unknown parameters that will be assigned to values in order to guarantee the existence

and generation of invariants. The associated matrix LT of the T -multiplication morphism

has the form depicted at the right just below:
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MD =






















2a 0 0 0 0 0

2b 2a 0 0 0 0

0 2b 2a 0 0 0

0 0 2b 0 0 0

2c 0 0 a 0 0

0 2c 0 b a 0

0 0 2c 0 b 0

0 0 0 c 0 0

0 0 0 0 c 0

0 0 0 0 0 0






















. LT =






















t1 0 0 0 0 0

t2 t1 0 0 0 0

t3 t2 t1 0 0 0

0 0 t2 0 0 0

0 0 0 t1 0 0

0 t3 0 t2 t1 0

0 0 t3 0 t2 0

0 0 0 t3 0 t1
0 0 0 0 t3 t2
0 0 0 0 0 t3






















.

Then taking

T (x, y) = 2ax+ 2by + 2c,

i.e. t1 = 2a, t2 = 2b and t3 = 2c one verifies that the matrix MD − LT has its second and

third columns equal to zero. Hence, the rank of MD−LT is less than 4, and our existence

theorem for any given initial values applies.

Example 26. Consider the following differential rules:





ẋ(t) = x2(t) + x(t)y(t)− x(t)z(t)

ẏ(t) = 2x(t)y(t) + y2(t)

ż(t) = z(t)y(t)− 2z2(t)



 . (4.15)

Our method shows that

x2(t)− y(t)z(t)− x0 = 0

is an inductive invariant with polynomial scaling T = 2(x + y − z) with x0 = x(0) an

initial parameter.

By analogy with the discrete case (see Chapter 3), the way invariants are computed in

the context of fractional-scale continuous consecution is similar to the case of polynomial-

scale consecution.

Table 4.1 summarizes the type of linear algebraic problems associated with each conse-

cution approximation. The last column gives some existential results that could be reused

by any constraint-based approach or reachability analysis.

In Table 4.2 we list some experimental results.
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Tabela 4.1: Linear algebraic problems and consecution approximations

Aprox.Consec. Lin. Algeb. Prob. Existence Conditions

Strong nullspaces Ker(MD) 6= ∅ or (see [83]) ∃(Q1, .., Qn) ∈

Syz(P1, .., Pn), s.t ∂iQj = ∂jQi

Lambda eigenspaces Ker(MD) ≥ 2 for any init. cond., and

Ker(MD) 6= ∅ otherwise.

Polynomial nullspaces Ker(MD − LT ) ≥ 2 for any init. cond.,

and Ker(MD − LT ) 6= ∅ otherwise.

4.8 Putting all together: Global invariants

In the previous sections and in Chapter 3 we have shown how to handle continuous and

discrete consecution conditions and how to generate ideals of invariants for each states and

for the transitions structure. To be more precise, we thus generated a basis of a vectorial

space which describes invariants for each location, transitions and initial conditions. A

global invariant would be any invariant which is in the intersection of these three vector

spaces. In this way, we avoid the definition of a single isomorphism for the whole hybrid

system. Instead, we generate the basis for each separate consecution condition. To

compute the basis of global invariants, we could use theorem 22. It proposes to multiply

all the elements of each computed basis. By so doing, we also avoid the heavy computation

of ideal intersections. This approach is a sound, but not complete, way of computing ideals

for global hybrid invariants, and it has a lower computational complexity.

Theorem 22. Let W be a hybrid system and let l be one of its locations. Let I =

{I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)
1, ..., f

(j)
nj ) where j ∈ [1, k].

Let �(I1, ..., Ik) = {δ1, ..., δn1n2...nk
} be such that all elements δi in �(I1, ..., Ik) are formed

by the product of one element from each ideal in I. Assume that the Ij’s are collections

of invariant ideals associated to S(l), its differential rule, C(l), its local conditions, and

all invariant ideals generated considering all incoming transitions at l. Then �(I1, ..., Ik)

is a non-trivial invariant ideal for location l.
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Tabela 4.2: Experimental results: Basis of invariant ideals obtained automatically by

our prototype. All examples are treated in Section 4.4.1, Section 4.4.2, Section 4.5 and

Section 4.7

Differential Syst. Scal. CPU/s

See Section 4.7, system 4.14 (also from [81]). Poly. 1.12

See Section 4.7, system 4.13 (also from [81]). Poly. 2.04

See Section 4.7, system 4.15 (also from [88]). Poly. 0.34

See Section 4.7, systems 4.11 (also from [84]). Poly. 98.49

See Section 4.5, system 4.10 (also from [84]). Poly. 0.43

See Section 4.4.2, system 4.9 (also from [83]). Lamb. 2.48

See Section 4.4.1, system 4.6 (also from [81]). Str. 0.02

See Section 4.7, systems 4.12 (also from [84, 104, 127]). Str. 1.29

See Section 4.4.1, system 4.4 (also from [81]). Lamb. 0.03

See Section 4.4.1, system 4.7 (also from [83]). Str. 15.90

See Section 4.4.2, system 4.8 (also from [81]). Lamb. 1.04
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Corollary 10. Let l be a state and let C(l) ≡ (Pi(x1, .., xn) < 0) be its semi-algebraic local

conditions and Q be an inductive invariant for D(l), its differential rule, and all ideals

of invariants generated considering all incoming transitions at l. Then (Pi(x1, .., xn) −

Q(x1, .., xn) < 0) is an inductive invariant.

Semi-algebraic local state conditions, as well as initiation and transition guards are

assertions of the form (Pi(x1, .., xn) < 0) with Pi ∈ K[x1, .., xn]. Then, we obtain an

operator, similar to the one introduced in Theorem 22, to generate ideals of non-trivial

invariants at a state l with semi-algebraic local conditions. We can then generate ideals

of non-trivial semi-algebraic invariants.

4.9 Chapter Discussions: Performances and Limita-

tions

Despite tremendous progress over the years [118, 125, 111, 114, 1, 124, 8, 52, 3, 16, 115,

104], automatic generation of invariant for hybrid systems remains very challenging for

non-linear differential systems. In the academic and industrial formal methods and static

analysis communities, it was clearly established that reasoning about non-linear differen-

tial systems is presently a critical bottleneck and that verification of critical systems deeply

need new symbolic techniques with fast numerical approaches to handle such non-linear

systems. More recent approaches have been constraint-based [118, 114, 105, 1, 115].

In these approaches, the local differential systems are seen as varieties and their al-

gebraic assertions and their induced ideal J . First, the Gröbner bases of J is computed.

Then, a candidate invariant Q is considered. Q is taken with a fixed degree and un-

known parametric coefficients, i.e., it is a template form that can be understood as the

target invariant to be generated. Then, the normal form reduction NFG(Q) of G over

Q is obtained in order to generate a system (NFG(Q) = 0) of equations encoding the

conditions for invariance, resulting in constraints on the unknown coefficients whose so-

lutions yield invariants. Each single computation steps, i.e., computations of Gröbner

bases, normal form reductions of the template and the resolution of the constraints, re-

quire a high numbers of operations, and are of double exponential complexity. Moreover

the set of constraints they generate remains non-linear when the local continuous rules

are non-linear differential systems. Even for linear local continuous rules, the constraints

generated could form a very complex non-linear differential system which makes their

resolution intractable.

In terms of performance and efficiency, we succeeded in reducing the invariant gen-

eration problem for non-linear hybrid systems to linear algebraic problems, i.e. to the

computation of eigenspaces of specific morphisms. Each computational step required by



90 Caṕıtulo 4. Generating Invariants for Non-linear Hybrid Systems

our techniques remains of polynomial complexity. We compute first our specific matrices

and then we compute their nullspaces. We can also handle non-linear hybrid systems,

extended with parameters and variables that are functions of time. We note that these

type of hybrid system are still not treated by other state-of-the-art invariant generation

methods. Instead of generating an invariant at a time, our approaches are capable of

computing an ideal of invariants. Our algorithm embodies a strategy to guess the degree

bounds which allow the non-triviality of the computed invariants. It is also important to

emphasize the fact that the very general sufficient conditions allowing for the existence

and computation of invariant ideals provided in this Chapter could be directly used by

any constraint-based invariant generation method [114, 118, 115, 1], or by any analysis

methods based on over-approximations and reachability [103, 104, 107]. Our examples

show the strenght of our methods by illustrating that they are beyond other current

state-of-the-art approaches.

In terms of limitations, our methods generate invariants that are assertions with equal-

ity and it would be interesting to generate also inequalities in order to facilitate the devel-

opment of reachability analysis. Also, the theoretical limit of the techniques proposed in

this Chapter can be gauged by the fact that they are sound but not complete (see Section

4.3), as predicted. Also, in Section 4.7 we show how our techniques can handle some

local continuous rules involving transcendental functions that are trigonometric, like cos,

but the proposed techniques can not handle transcendental functions such as log or exp.

Also, the methods presented here generate polynomial equalities and an important first

generalisation would be to develop new techniques to be able to generates more precise

invariant that could contain transcendental functions (see Chapter 5).
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Multivariate Formal Power Series

and Transcendental Invariant

Generation for Non Linear Hybrid

Systems

The contribution exposed in this Chapter also appear in our articles [85, 87].

Abstract: We present the first verification methods that automatically generate bases

of invariants expressed by multivariate formal power series and transcendental functions.

We also discuss their convergence over hybrid systems that exhibit non linear models.

We reduce the invariant generation problem to linear algebraic matrix systems, from

which one can provide effective methods for solving the original problem. More specifically,

we obtain very general sufficient conditions for the existence and the computation of formal

power series invariants over multivariate polynomial continuous differential systems. The

formal power series invariants generated are often composed by the expansion of some

well-known transcendental functions like log or exp and have an analysable closed-form.

This facilitates the use of the invariants to verify safety properties. Our examples with

non linear continuous evolution, similar to those present today in many critical hybrid

embedded systems, show the strength of our results. For some of the examples and we

can prove that they do not have ”finite”polynomial invariants, a result which is beyond

other recent approaches to the problem.

91
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5.1 Introduction

As we have shown in chapter 4, hybrid systems [63, 4] exhibit both discrete and continu-

ous behaviorsMost safety-critical systems, e.g. aircraft, automobiles, chemical plants and

biological systems, operate as non-linear hybrid systems and can only be adequately mod-

eled by means of non-linear arithmetic over the real numbers and involving multivariate

polynomial, fractional or transcendental functions. In this work, we use hybrid automata

as computational models for hybrid systems. A hybrid automaton can describe interac-

tions between discrete transitions and continuous dynamics, the latter being governed by

local differential equations.

Some known verification approaches are based on inductive invariant generation [77],

which can be extended to hybrid systems to verify safety-critical properties. Also, they

can provide precise over-approximations of the set of reachable states in the continuous

state space. Given that, they can be used to determine which discrete transitions are

possible and can also be used to verify if a given property is fulfilled or not.

More recent works strive to generate linear or polynomial invariants over hybrid sys-

tems that exhibit affine or polynomial systems as continuous evolution modes. Despite

tremendous progress over the past years [118, 125, 111, 114, 1, 115, 107, 3, 104], generating

invariants for hybrid systems remains very challenging for non-linear discrete systems, as

well as for non-linear differential systems with non-trivial local and initial conditions.

We look for invariants that strengthen what we wish to prove, and so allow us to

establish the desired property. In this work, we present new methods for the automatic

generation of invariants in the form of assertions where continuous functions are expressed

by multivariate formal power series. Such methods can then be applied to systems with

continuous evolution modes described by multivariate polynomials or fractional differen-

tial rules. As far as we know, there are no other methods that deal with this type of

systems or that can automatically generate this type of invariants.

We develop the new methods by first extending our previous work on non-linear in-

variant generation for discrete models with nested loops and conditional statements that

describe multivariate polynomial or fractional systems [80, 79]. Then, we generalize our

previous work on non-linear invariant generation for hybrid systems [84, 83, 88, 81].

The contributions of this Chapter are summarized in Section 1.2.3.

This Chapter is organized as follows. In Section 5.2 we first recall the notion of alge-

braic hybrid systems, and we introduce our notations and representations for multivariate

formal series. In Section 5.3 we present new forms for approximating consecution with

multivariate formal power series. In Section 5.4 we reduce the problem to triangular lin-

ear algebraic matrix systems. In Section 5.5 we provide very general sufficient conditions

for the existence of invariants and, further, we show how to automatically compute such
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invariants. In Section 5.6 we present a convergence analysis and illustrate it in Section

5.7. We show the efficiency of our methods in Section 5.8 by generating closed-form in-

variants for systems that are intractable by other state-of-the-art formal methods and

static analysis approaches. Section 5.9 offers our conclusions.

5.2 Hybrid Systems and Multivariate Formal Power

Series

In this subsection, we recall some basic notions.

5.2.1 Hybrid Systems

We use the notion of hybrid automata as the computational model for hybrid systems.

Definition 24. A hybrid system is described by a tuple 〈V, Vt, L, T , C,S, l0,Θ〉, where

❼ V = {a1, .., am} is a set of parameters.

❼ Vt = {X1(t), .., Xn(t)} where Xi(t) is a function of t.

❼ L is a set of locations,

❼ l0 is the initial location.

❼ A transition τ ∈ T is given by 〈lpre, lpost, ρτ 〉, where lpre ∈ L and lpost ∈ L name the

pre- and post- locations of τ , and the transition relation ρτ is a first-order assertion

over V ∪ Vt ∪ V
′ ∪ V ′

t .

❼ Θ is the initial condition, given as a first-order assertion over V ∪ Vt.

❼ C maps each location l ∈ L to a local condition C(l) denoting an assertion over

V ∪ Vt.

❼ Finally, S associates each location l ∈ L to a differential rule S(l) corresponding to

an assertion over V ∪ {dXi/dt|Xi ∈ Vt}.

❼ A state is any pair from L× R
|V |.

We refer to Chapter 4 and Section 4.2 for more details and examples of hybrid systems

and invariant maps.
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5.2.2 Multivariate Formal Power Series

Let W be a hybrid system, and let γ(l) be an inductive assertion, as in Definition 20.

Recall that an inductive assertion holds at the initial state and at every other possible

states in a run. Hence, if γ is an inductive assertion map then γ(l) is an invariant at l for

W (see Section 4.2 Chapter 4).

Let us describe the continuous evolution rules by a polynomial differential system S

of the form:

S =








ẋ1(t) = P1(x1(t), ..., xn(t))

ẋ2(t) = P2(x1(t), ..., xn(t))
...

ẋn(t) = Pn(x1(t), ..., xn(t))








Definition 25. A formal power series in the indeterminates x1, . . . , xn is an expression

of the following form:
∑

(i1,...,in)∈Nn

fi1,...,inx
i1 ...xin ,

where the coefficients fi1,...,in belong to R.

Definition 26. Whenever i = (i1, ..., in) ∈ N
n, we denote the sum i1 + · · · + in by |i|.

We say that an order < is a lexicographical total ordering in N
n if for any two elements

i = (i1, ..., in) and j = (j1, ..., jn) in N
n we have that

(j1, ..., jn) < (i1, ..., in)

holds if and only if one of the following condition holds:

❼ (i) |j| < |i|; or

❼ (ii) |j| = |i|, and the first non null component of i− j is positive.

With |i| = k, where i = (i1, ..., in), the monomials

xi11 ...x
in
n



5.2. Hybrid Systems and Multivariate Formal Power Series 95

, form an ordered basis for the vector space of homogeneous polynomials of total degree

k. This means that any homogeneous polynomial of total degree k can be written in the

following ordered form:
∑

|i|=k

fi1,...,inx
i1
1 . . . x

in
n .

As a consequence, since a formal power series F (x1, .., xn) is the direct sum of its homo-

geneous components, it can be written in the following ordered form:

F (x1, .., xn) =
∑

k≥1

∑

|i|=k

fi1,...,inx
i1
1 . . . x

in
n .

We will use the following notation [17]: the coefficients of homogeneous polynomials

of degree k will be denoted by

Fk =
[
fk,0,0,...,0 fk−1,1,0,...,0 fk−1,0,1,...,0 . . . f0,0,0,...,k

]⊤

and the basis of homogeneous monomials of degree k will be denoted by the following

vector:

Xk = [ x1
k x1

k−1x2 x1
k−1x3 . . . xn

k ]⊤.

where the coordinates are ordered with respect to the lexicographical total ordering given

as in Definition 26. With this notation, the formal power series F (x1, .., xn) can be written

as
∑

k≥1

Fk ·X
k = F1 ·X

1 + ...+ Fk ·X
k + ...,

where

Fk ·X
k

denotes the scalar product

〈Fk, X
k〉.

The polynomial Pi(x1, . . . , xn) can thus be written in the form

Pi(x1, . . . , xn) = P i
1 ·X

1 + ...+ P i
m ·X

m,

where m is the maximal degree among all polynomials Pi, and the P i
j are the coefficients

vector of Pi. Denote by x(t) the vector

(x1(t), ..., xn(t))
⊤.

Then S can be written as

ẋ = A1 ·X
1(t) + ...+ Am ·X

m(t),

where Aj =
[
P 1
j . . . P n

j

]⊤
. In particular, A1 is the n×n matrix which is actually equal

to the Jacobian matrix of the polynomial system given by the Pi’s at zero.
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5.3 New continuous consecutions

Now we show how to encode differential continuous consecution conditions. Let S be a

polynomial differential system as in Eq. (5.2.2).

Definition 27. A function F from R
n to R is said to be a λ-invariant for a system S if

d

dt
F (x1(t), ..., xn(t)) = λF (x1(t), ..., xn(t)),

for any solution

x(t) = (x1(t), ..., xn(t))

of S.

Definition 27 encodes the fact that the numerical value of the Lie derivative of F is

given by λ times its numerical value throughout the time interval [0, ε). Without loss of

generality we will assume that λ is a constant. It is worth noticing, however, that our

methods will also work when λ is a multivariate fractional or multivariate polynomial, as

we proposed for the case of multivariate polynomial invariants generation [83, 88, 81].

Now, we want to establish sufficient conditions over S for it to admit λ-invariants

which are formal power series.

Note that a formal power series

F (x) = F1 ·X
1 + ...+ Fk ·X

k + ...

is a λ-invariant if the following conditions holds:

n∑

i=0

∂F (x)

∂xi
Pi(x) = λF (x). (5.1)

Using our notation, we obtain:

n∑

i=0

∂(F1 ·X
1 + ...+ Fk ·X

k + ...)

∂xi
(P i

1 ·X
1 + ...+ P i

m ·X
m)

−λ(F1 ·X
1 + ...+ Fk ·X

k + ...) = 0. (5.2)

5.4 Reduction to linear algebra

By directly expanding the left side of Eq. (5.2) and collecting terms corresponding to

increasing degrees, we have:
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(1) :
∑n

j=1
∂(F1X1)

∂xj
P j
1X

1 − λF1X
1 = 0

(2) :
∑n

j=1[
∂(F1X1)

∂xj
P j
2X

2 + ∂(F2X2)
∂xj

P j
1X

1]− λF2X
2 = 0

(3) :
∑n

j=1[
∂(F1X1)

∂xj
P j
3X

3 + ∂(F2X2)
∂xj

P j
2X

2 + ∂(F1X1)
∂xj

P j
3X

3]− λF3X
3 = 0

...
...

(m) :
∑n

j=1[
∂(F1X1)

∂xj
P j
mX

m + ∂(F2X2)
∂xj

P j
m−1X

m−1 + · · ·+ ∂(FmXm)
∂xj

P j
1X

1]

−λFmX
m = 0

(m+ 1) :
∑n

j=1[
∂(F2X2)

∂xj
P j
mX

m + ∂(F3X3)
∂xj

P j
m−1X

m−1 + · · ·+ ∂(Fm+1Xm+1)
∂xj

P j
1X

1]

−λFm+1X
m+1 = 0

...
...

The equation corresponding to degree k is:

∑n
j=1[

∂(Fk−min(k,m)+1X
k−min(k,m)+1)

∂xj
P j
min(k,m)X

min(k,m)

+
∂(Fk−min(k,m)+2X

k−min(k,m)+2)

∂xj
P j
min(k,m)−1X

min(k,m)−1 + · · ·+ ∂(FkX
k)

∂xj
P j
1X

1 ]− λFkX
k = 0

By taking a different notion of consecution, we can treat more general systems than

those that appeared in the determinant analysis of integrability of differential systems in

Boularas [17]. Take the linear morphism Dp−k,p from Rp−k[x1, . . . , xn] to Rp[x1, . . . , xn],

given by

Dp−k,p :

{

Rp−k[x1, . . . , xn] → Rp[x1, . . . , xn]

P (X = x1, . . . , xn) 7→
∑

j=1,...,n(∂jP (X))P j
k+1.X

k+1

which can be represented by matrixMp−k,p, in the ordered canonical basis of Rp−k[x1, . . . , xn]

and Rp[x1, . . . , xn], respectively.

Its l-th column is the decomposition of the polynomial
∑

j=1,...,n

(∂jP (X))P j
k+1.X

k+1,

where P (X) is the l-th monomial in the ordered basis
{
xp1, x

p−1
1 x2, x

p−1
1 x3, . . . , x

p
n

}
.
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We can reduce the infinite system, described just above, to the following linear algebraic

system:







(M1,1 − λI2)F1 = 0

M1,2F1 + (M2,2 − λI2)F2 = 0

M1,3F1 +M2,3F2 + (M3,3 − λI4)F3 = 0

...

Mk−min(k,m)+1,kFk−min(k,m)+1 +Mk−min(k,m)+2,kFk−min(k,m)+2

+ · · ·+ (Mk,k − λIk+1)Fk = 0

...

(5.3)

By the definition of Dp−k,p, we can symbolically compute all the matrices Mm,n. We

will use the following result.

Lemma 5. Assume that matrix A =M1,1 is triangular,i.e.

A =










λ1

⋆ λ2

⋆ ⋆
. . .

⋆ ⋆ ⋆ λn−1

⋆ ⋆ ⋆ ⋆ λn










.

Then Mp,p is also triangular with diagonal terms

i1λ1 + · · ·+ inλn,

where i1 + · · ·+ in = p.

Demonstração. In this case,

P j
1 .X

1 = λjxj + aj,j+1xj+1 + · · ·+ aj,nxn.

Now consider the monomial basis

P (X) = xi11 . . . x
in
n ,

where i1 + · · ·+ in = p.
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One has

Dp,p(X) = i1x
i1−1
1 . . . xinn (λ1x1 + a1,2x2 + · · ·+ a1,nxn)

+i2x
i1
1 x

i2−1
2 . . . xinn (λ2x2 + a2,3x3 + · · ·+ a2,nxn)

+ · · ·+

+inx
i1
1 . . . x

in−1
n (λnxn)

= (i1λ1 + · · ·+ inλn)x
i1
1 . . . x

in
n + Ω

,

where Ω is a sum of higher terms monomials that come after xi11 . . . x
in
n in the ordered

basis of Rp[x1, . . . , xn].

Then, matrixMp,p corresponding toDp,p in the canonical ordered basis ofRp[x1, . . . , xn],

is: 















pλ1

⋆ (p− 1)λ1 + λ2

⋆ ⋆
. . .

⋆ ⋆ ⋆
n∑

k=1

ikλk

⋆ ⋆ ⋆ ⋆
. . .

⋆ ⋆ ⋆ ⋆ ⋆ λn−1 + (p− 1)λn

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ pλn

















Thus, it is also triangular with diagonal terms

i1λ1 + · · ·+ inλn,

where i1 + · · ·+ in = p.

5.5 Sufficient general existence conditions and the

computation of invariants

First, we show what happens when a λ-invariant converges. Next, we examine the com-

putation of λ-invariants.

Theorem 23. (Soundness) Let F be a λ-invariant for a system S.

Let U be an open subset of Rn, where F is defined by a normally convergent power

series.

If there is an initial condition

x1(0), ..., xn(0)

in U such that

F (x1(0), ..., xn(0)) = 0,
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then

F (x1(t), ..., xn(t)) = 0

for all t such that x1(t), ..., xn(t) remain in U , i.e., F is an invariant of S for the initial

condition

x1(0), ..., xn(0).

Demonstração. As the power series defining F converges normally on U , so does any of

its derivatives. Thus,

Ḟ (x1(t), ..., xn(t)) =
n∑

i=1

∂iF (x1(t), ..., xn(t))ẋi(t) = λF (x1(t), ..., xn(t))

because of the λ-invariant property.

So, F (x1(t), ..., xn(t)) must be equal to

t 7→ keλt

for some constant k. But as

F (x1(0), ..., xn(0)) = 0,

then k is zero, and so is F (x1(t), ..., xn(t)) for any t s.t.

(x1(t), . . . , xn(t)) ∈ U.

5.5.1 Sufficient general existence conditions

We obtain the following main results on the existence of formal power series invariants

for systems S, described as in Eq. (5.2.2).

Theorem 24. Let A be the Jacobian matrix at zero of the polynomial

P = (P1, ..., Pn)

defining the system S. Its expression is:

(∂iPj(0, ..., 0), i, j ∈ [1, n]2).

Let Pk(0, .., 0) = 0. If A is triangularizable with eigenvalues

λ1 ≤ ... ≤ λn,
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then there exists a λ-invariant formal power series for S when all eigenvalues are positive,

or are all negative, with

λ = λ1.

Demonstração. Up to a linear change of variables, we can assume that matrix A is trian-

gular with diagonal terms

λ1 ≤ ... ≤ λn.

We know that matrix Mk,k has the form described in Lemma 5. As A is triangular, so

is Mk,k, and its diagonal terms are the real numbers

i1λ1 + · · ·+ inλn,

where

i1 + · · ·+ in = k.

Hence, the diagonal terms of

Mk,k − λIk+1

are

0 ≤ λ2 − λ... ≤ λn − λ

when k = 1. Also, it has a nonzero kernel, and so we can chose a nonzero F1, such that

(M1,1 − λI2)F1 = 0.

For k ≥ 2 and i1 + · · ·+ in = k, the diagonal terms

i1λ1 + · · ·+ inλn − λ

of the triangular matrix

Mk,k − λIk+1

are greater than

i1λ1 + · · ·+ inλn − λ = kλ− λ > λ > 0.

So, Mk,k − λIk+1 is invertible.

Hence we can choose:

F2 = −(M2,2 − λI3)
−1M1,2F1,

and then

F3 = −(M3,3 − λI4)
−1(M1,3F1 +M2,3F2),
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and recursively,

Fk = −(Mk,k − λIk+1)
−1(Mk−min(k,m)+1,kFk−min(k,m)+1 + · · ·+Mk−1,kFk−1).

Then,

(F1, F2, . . . )

is a nonzero solution of the system and the formal power series

∑

i

FiX
i

is a λ-invariant.

The proof of the preceding important theorem, also describe a method for the resolu-

tion of the triangular matrix system.

We are then able to generate nonzero formal power series

∑

i

FiX
i

which are λ-invariants associated to the nonzero solution

(F1, F2, . . . ).

In the examples we used Maple to compute the matrix products necessary to obtain

Fk in its symbolic form.

We treat the case when all eigenvalues are negative in a similar way. That is, with

λ = λn ..., λ will be the eigenvalue with the minimum absolute value. Also, we recall that

triangularizable matrices of Mn(R) form a dense open subset of total measure of Mn(R).

5.5.2 Inductive invariants and initial conditions

We state the following important result.

Theorem 25. Let A be the Jacobian matrix at zero of the polynomial

P = (P1, ..., Pn)

defining a system S, as in Eq. (5.2.2), and whose expression is

(∂iPj(0, ..., 0), i, j ∈ [1, n]2).

Assume, further, that Pk(0, .., 0) = 0.
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Suppose that A is triangularizable with eigenvalues

λ1 ≤ ... ≤ λn.

Denote λ1 by λ and assume that the eigenspace associated with λ is of dimension at least

2. Let F1 and F2 be two independent λ-invariants.

If there is an open subset U of Rn, over which F1 and F2 define two normally convergent

power series then, for any initial value

(x1,0, . . . , xn,0),

the power series

F2(x1,0, . . . , xn,0)F1 − F1(x1,0, . . . , xn,0)F2

defines an inductive invariant on U for the solution of S with initial conditions

x1(0) = x1,0, . . . , xn(0) = xn,0.

Demonstração. Both F1 and F2 converge to a solution

(x1(t), . . . , xn(t))

with initial values (x1,0, . . . , xn,0) in U .

Hence, it must stay in U for small t. Moreover, since F1 and F2 are independent,

F = F2(x1,0, . . . , xn,0)F1 − F1(x1,0, . . . , xn,0)F2

is a nonzero λ-invariant which vanishes at (x1,0, .., xn,0).

So, according to Theorem 23, F is an inductive invariant

The methods presented so far automatically generate bases for non trivial multivariate

formal power series invariants for each differential rule associated to locations in the hybrid

automaton.

In order to handle the discrete transition relations when generating global invariants

we can use the methods proposed in our previous works [83, 88, 81] which were presented in

the previous Chapter. They generate finite polynomial invariant for such hybrid systems.
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5.6 Triangularizable systems

Now we show how to treat the following general system with parameters a, b, c, a1,1, a1,2,

a2,2, b1,1,b1,2, b2,2 in V , and variables x, y in Vt:

{
ẋ(t) = ax(t) + by(t) + a1,1x

2(t) + a1,2x(t)y(t) + a2,2y
2(t)

ẏ(t) = cy(t) + b1,1x
2(t) + b1,2x(t)y(t) + b2,2y

2(t)

The Jacobian matrix at zero of the polynomials defining the system is

(
a 0

b c

)

.

From Theorem 24, we already know how to find a formal power series F which is an

a-invariant. Looking more closely at the coefficients of such a series we will show that it

must converge in some appropriate neighborhood of 0. In this section it is not necessary

to assume that a > c or a < c, since we will choose λ = min{a, c}.

In Subsections 5.6.1, 5.6.2 and 5.6.3 we show how to generate λ-invariants which

take initial condition into account, by applying Theorem 24. We stated a = c only at

subsection 5.6.4 to show that when Theorem 25 apply, the λ-invariants hold whatever the

initial conditions are.

5.6.1 The matrices Mp−k,p

Using our notation, we have P i
1 = 0 and P i

2 = 0 for all i > 0. Then Mp−k,p is the matrix

whose l-th column is the vector corresponding to the decomposition of the polynomial

∂1[(0, ..., 0, 1
︸︷︷︸

l−th position

, 0, ..., 0)Xp−k]P 1
k+1X

k+1

+∂2[(0, ..., 0, 1
︸︷︷︸

l−th position

, 0, ..., 0)Xp−k]P 2
k+1X

k+1 .

in the ordered canonical basis of Rp[x, y].

Here, the polynomial

(0, .., 0, 1
︸︷︷︸

l−th place

, 0, .., 0)Xp−k

is the l-th monomial of the canonical basis of Rp−k[x, y].

Therefore, the matrices Mp−k,p are zero unless k = 0 or k = 1. When k = 0, the
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general form of Mp,p is given in Section 5.4 and, in our particular case, it is












pa

p.b (p− 1)a+ c

(p− 1)b (p− 2)a+ 2c
. . .

. . .

2b a+ (p− 1)c

b pc












.

Note that p + 1 is actually the dimension of Rp[x, y] and so Mp−1,p is rectangular with

p + 1 rows and p columns. Here, the l-th monomial in the basis of Rp−1[x, y] is x
p−l−1yl.

Also, the polynomial P 1
2X

2 is

a1,1x
2 + a1,2xy + a2,2y

2

and the polynomial P 2
2X

2 is

b1,1x
2 + b1,2xy + b2,2y

2.

Hence, matrix Mp−1,p can be written as:














(p− 1)a1,1 b1,1
(p− 1)a1,2 (p− 2)a1,1 + b1,2 2b1,1
(p− 1)a2,2 (p− 2)a1,2 + b2,2 (p− 3)a1,1 + 2b1,2 3b1,1

. . .
. . .

. . .
. . .

3a2,2 2a1,2 + (p− 3)b1,2 a1,1 + (p− 2)b1,2 (p− 1)b1,1
2a2,2 a1,2 + (p− 2)b2,2 (p− 1)b1,2

a2,2 (p− 1)b2,2














.

5.6.2 Resolution of the infinite system

We are looking for λ-scale invariants and we know that we can choose λ = min{a, c}.

Then, the system to solve is







(M1,1 − λI2)F1 = 0

M1,2F1 + (M2,2 − λI3)F2 = 0

M2,3F2 + (M3,3 − λI4)F3 = 0
...

Mk−1,kFk−1 + (Mk,k − λIk+1)Fk = 0
...

(5.4)
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It can be written as:






(M1,1 − λI2)F1 = 0

F2 = −(M2,2 − λI3)
−1M1,2F1

F3 = −(M3,3 − λI4)
−1M2,3F2

...

Fk = −(Mk,k − λIk+1)
−1Mk−1,kFk−1

...

(5.5)

One can choose any F1, and then let

Fk = (−1)k+1Uk(F1),

where Uk is the matrix with k + 1 rows and 2 columns:

[ (Mk,k − λIk+1)
−1Mk−1,k] · [(Mk−1,k−1 − λIk)

−1Mk−2,k−1]

· · · · · [(M3,3 − λI4)
−1M2,3] · [(M2,2 − λI3)

−1M1,2 ]
(5.6)

Then, Mk,k − λIk+1 is












ka− λ

k.b (k − 1)a+ c− λ

(k − 1)b (k − 2)a+ 2c− λ
. . .

. . .

2b a+ (k − 1)c− λ

b kc− λ












which can be decomposed as the product DT :











d1
d2

d3
. . .

dk
dk+1























1

t2 1

t3 1
. . .

. . .

tk 1

tk+1 1












,

where

di = (k + 1− i)a+ (i− 1)c− λ

and

tj = (k + 2− j)b/dj.

So,

(Mk,k − λIk+1)
−1 = T−1D−1,
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where D−1 has the obvious form and T−1 is










1

−t2 1

t2t3 −t3 1

−t2t3t4 t3t4 −t4 1

⋆ ⋆ ⋆ ⋆ ⋆

(−1)kt2 . . . tk+1 (−1)k−1t3 . . . tk+1 . . . tktk+1 −tk+1 1











.

5.6.3 Convergence of the λ-invariant

We want to show that if λ > 2b, the coefficients of the Fi vectors decrease quickly enough

so that the invariant F converges in a neighborhood of zero.

Let us first recall some basic properties of norms in finite dimension real vector spaces,

as well as the associated matrix norms. If v, with coordinates vi, belongs to R
n, we denote

by |v|∞ the value maxi=1,...,n |vi|. If A is a matrix withm rows and n columns, representing

a morphism from (Rn, |.|∞) to (Rm, |.|∞) in the canonical basis, it is well-known that

associated with the norm |.|∞ is the matricial norm ||.|| on Mm,n(R), where

||A|| = max
i=1,...,m

(
n∑

j=1

|Ai,j|).

Moreover, using this norm, if v ∈ R
n then one has that

|Av|∞ ≤ ||A||.|v|∞.

This implies that if A and B are two matrices belonging, respectively, to Mm,n(R) and

Mn,p(R), then one has that

||AB|| ≤ ||A|| · ||B||.

In particular,

||Uk|| ≤ ||Mk,k − λIk+1| · |||Mk−1,k|| . . . ||M2,2 − aI3|| · ||M1,2||.

But, from the expressions for the Mk−1,k matrices, we have that

||Mk−1,k|| ≤ f(k − 1),

where

f = 4 ·max(|ai,j|, |bi′,j′ |).

From the preceding paragraph again, we deduce that

||(Mk,k − λIk+1)
−1|| ≤ ||D−1|| · ||T−1||.
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But

||D−1|| = max
i

(d−1
i ) ≤ [(k − 1)λ]−1,

because λ = min(a, c), and so

||T−1|| = max
i

(1 + ti + ti−1ti + · · ·+ t2t3 . . . ti−1ti).

But each tj is less than

(k + 2− j)b/dj ≤ kb/[(k − 1)λ] ≤ 2b/λ.

Suppose now that λ > 2b. Then

||T−1|| ≤ 1 + 2b/λ+ · · ·+ (2b/λ)k ≤ 1/(1− 2b/λ).

By letting e be the constant

1/(1− 2b/λ),

we can write

||(Mk,k − λIk+1)
−1|| ≤ e/(k − 1)λ.

Finally, ||Uk|| is less than

(ef/λ)k−2 = rk−2.

Eventually,

|Fk|∞ = |Uk(F1)|∞ ≤ ||Uk||.|F1|∞ ≤ rk−2|F1|∞.

Let t be max{|x|, |y|}. Then,

|F (x, y)| ≤ |F1X
1|+|F2X

2| · · ·+|FkX
k|+· · · ≤ 2|F1|∞t+3|F2|∞t

2+· · ·+(k+1)|Fk|∞t
k+. . .

The right part of the inequality is itself inferior to

1/r2|F1|∞[2(rt) + 3(rt)2 + · · ·+ (k + 1)(rt)k + . . . ],

which, from the classical theory of one variable power series, is convergent in the open

disk centered at zero and of radius 1/r. Hence, we have proved the following.

Proposition 2. Consider the system described at the beginning of Section 5.6 with a and

c positive and strictly greater than 2b. Let λ be the minimum between a and c. Then there

exists a λ-invariant, obtained as described in Theorem 24, and which always converges in

a neighborhood of zero.
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5.6.4 The case of eigenspaces with dimension 2

Now, suppose that the eigenspace corresponding to λ has multiplicity 2, i.e. a = c = λ > 0

and b = 0.

We know, from the previous subsection, that any λ-invariant will converge in a ball

of radius 1/r and centered at zero. Moreover, according to Theorem 25, this will give an

inductive invariant for the system, for any initial solutions within this ball.

More precisely, by letting

F 1
1 = (1, 0)⊤

and

F 2
1 = (0, 1)⊤,

we get a basis F 1(x, y) and F 2(x, y) of λ-invariants that converge in the open |.|∞-disk of

radius 1/r and centered at zero.

Note that the monomial of degree one in the Taylor series of F 1 is x, and it is y in

the Taylor series of F 2. In other words, if we take the first coefficient of F as (1, 0)⊤, we

obtain a λ-invariant F = F 1(x, y) and, similarly, if we take the second coefficient of F as

(0, 1)⊤, we obtain another λ-invariant F = F 2(x, y). Moreover, these two invariants form

a basis for invariants that converge in the open |.|∞-disk of radius 1/r and centered at

zero.

Assume now that we are given initial values, x(0) = x0 and y(0) = y0, as solutions in

this open disk. Then, there will always exist two real numbers, λ and µ, such that

λ(x0, y0)F
1(x0, y0) + µ(x0, y0)F

2(x0, y0) = 0,

where

λ(x0, y0) = F 2(x0, y0)

and

µ(x0, y0) = −F
1(x0, y0).

Then,

λ(x0, y0)F
1 + µ(x0, y0)F

2

is an invariant for the solution corresponding to the initial condition (x0, y0).

So, given (x0, y0) in the |.|∞-disk of radius 1/r and centered at zero, the invariant

depends smoothly on the initial condition.
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5.7 Running example

In this section, we discuss a running example and explain how the sufficient conditions

for invariance are used, and how a basis for invariant ideals are automatically obtained.

We treat sub-classes of non linear differential rules that we often find in local continuous

modes in hybrid systems.

More specifically, we show how our method applies to the systems:
[
ẋ(t) = ax(t) + bx(t)y(t)

ẏ(t) = ay(t) + dx(t)y(t)

]

.

In the sequel, we proceed trace, step by step, how to generate invariant ideals.

The Jacobian matrix at zero for the system is
(
a 0

0 a

)

.

Hence, from Theorem 24, we already know that we can find a formal power series F which

is an a-invariant. We will show that it must converge in some neighborhood of 0.

5.7.1 The matrices Mp−k,p

The coefficient vectors Pi are zero, for i ≥ 2. So, Mp−k,p is the matrix whose l-th column

is the vector corresponding to the decomposition of the polynomial

∂1[(0, . . . , 0, 1
︸︷︷︸

l−th position

, 0, . . . , 0)Xp−k]P 1
k+1X

k+1

+∂2[(0, . . . , 0, 1
︸︷︷︸

l−th position

, 0, . . . , 0)Xp−k]P 2
k+1X

k+1

in the ordered canonical basis of Rp[x, y]. Hence, in this case, the matrices Mp−k,p are

zero unless k = 0 or k = 1. When k = 0, the general form of Mp,p, as detailed in Section

5.4, is given by

paIp+1.

But p + 1 is actually the dimension of Rp[x, y] and so Mp−1,p is rectangular with p + 1

rows, and p columns. Then the l-th monomial of the basis of Rp−1[x, y] is x
p−l−1yl. Then,

the polynomial P 1
2X

2 is bxy, and the polynomial P 2
2X

2 is dxy.

Hence, ∂1[(0, .., 0,

l−th position
︷︸︸︷

1 , 0, .., 0)Xp−1]P 1
2X

2+

∂2[(0, .., 0,

l−th position
︷︸︸︷

1 , 0, .., 0)Xp−1]P 2
2X

2

reduces to

b(p− l − 1)xp−l−1yl+1 + dlxp−lyl.
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Eventually, it can be seen that the matrix can be written as:

Mp−1,p =














0

(p− 1)b d

(p− 2)b 2d
. . .

. . .

2b (p− 2)d

b (p− 1)d

0














.

5.7.2 Resolution of the infinite system

When looking for λ-scale invariants, we already know that we must choose λ = a. Then,

we need to solve the following:







(M1,1 − aI2)F1 = 0

M1,2F1 + (M2,2 − aI2)F2 = 0

M2,3F2 + (M3,3 − aI3)F3 = 0
...

Mk−1,kFk−1 + (Mk,k − aIk)Fk = 0
...

(5.7)

As the matrix Mk,k is equal to kaIk+1, the system becomes:







0 · F1 = 0

F2 = −a
−1M1,2F1

F3 = −(2a)
−1M2,3F2

...

Fk = −[(k − 1)a]−1Mk−1,kFk−1

...

(5.8)

This means that one can choose any F1, and then choose Fk as

(−1)k+1a−k+1Uk(F1),

where Uk is the matrix with k + 1 rows and 2 columns given by the product

[1/(k − 1)Mk−1,k] · [1/(k − 2)Mk−2,k−1] . . . [1/2M2,3]M1,2.
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5.7.3 Convergence of the invariant

Now we show that the invariant F converges in a neighborhood of zero.

In particular, the norm ||Uk|| is less than or equal to the product

1

(k − 1)!
||Mk−1,k|| . . . ||M1,2||.

The expression of Mk−1,k gives

||Mk−1,k|| ≤ ck,

where c = max{|b|, |d|}. Hence,

||Uk|| ≤ ck!/(k − 1)! = ck.

Eventually, we get

|Fk|∞ = a−k+1|Uk(F1)|∞ ≤ a−k+1||Uk||.|F1|∞ ≤
ck

ak−1
|F1|∞.

Let t be max{|x|, |y|}. Then,

|F (x, y)| ≤ |F1X
1|+ |F2X

2| · · ·+ |FkX
k|+ . . .

≤ 2|F1|∞t+ 3|F2|∞t
2 + · · ·+ (k + 1)|Fk|∞t

k + . . .

The right side of the inequality is inferior to

ac|F1|∞[2(
t

a
) + 3.2(

t

a
)2 + · · ·+ (k + 1)k(

t

a
)k + . . . ].

From the classical theory of one variable power series, it must converge in the open disk

of radius a and centered at zero.

More precisely, taking F 1 and F 2, respectively, as (1, 0)⊤ and (0, 1)⊤, we get a basis

F 1(x, y) and F 2(x, y) for a-invariants of the system, and which converge in the open

|.|∞-disk of radius a and centered at zero.

Assume now that we are given initial values x(0) = x0 and y(0) = y0 for solutions of

the system within this open disk.

Then, there will always exist two real numbers λ and µ, such that

λ(x0, y0)F
1(x0, y0) + µ(x0, y0)F

2(x0, y0) = 0,

where

λ(x0, y0) = F 2(x0, y0)

and

µ(x0, y0) = −F
1(x0, y0).
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Then,

λ(x0, y0)F
1 + µ(x0, y0)F

2 = 0

is an invariant corresponding to the initial condition (x0, y0). It is also clear that, for

(x0, y0) in the |.|∞-disk of radius a and center at zero, it depends smoothly on the initial

condition.

Note that, for these classes of systems we obtained a larger region of convergence than

the one found in the previous Section.

5.8 Transcendental invariants generation in closed-

form

Here is an example where our method exhibits a transcendental invariant. Most im-

portantly, note that this kind of results can not be obtained via the classical constant,

polynomial or fractional scale methods. Moreover, the invariant obtained converge every-

where.

The formal power series invariant generated are often composed by expansion of some

well-known transcendental function and hence has an analysable closed form. Moreover,

being able of computing closed forms for the invariants allows us to reason symbolically

about formal power series. This facilitates the use of the invariants to verify properties.

Consider the system
{

˙x(t) = ax(t)
˙y(t) = ay(t) + bx(t)y(t).

(5.9)

According to previous Section 5.6, we start by computing the matrix Uk(F1), which gives

1/[(k − 1)!]Mk−1,k . . .M1,2(F1)

when F1 is (0, 1) and (1, 0). One easily checks that for such a system, Uk((1, 0)) is the

zero vector for k ≥ 2, and Uk((0, 1)) is equal to

1/[(k − 1)!](0, dk−1, 0, . . . , 0)

for k ≥ 2. Hence Fk is zero when k ≥ 2 and Fk is

(−d/a)k−1/[(k − 1)!](0, 1, 0, . . . , 0).

Hence (Section 5.6.3), the power series

F 1(x, y) = x
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and

F 2(x, y) =
∑

k≥1

(−d/a)k−1/[(k − 1)!]xk−1y = e−dx/ay

form a basis of the vector space of a-invariants.

Finally, for any given initial value (x0, y0), the following assertion

e−dx0/ay0x− x0e
−dx/ay = 0

is an inductive invariant whatever are the initial conditions, i.e. for all x0 and y0. Clearly

it depends smoothly on the initial value and is convergent everywhere.

5.9 Chapter Discussions: Performances and Limita-

tions

Invariant generation problems for the continuous time state evolution is the most chal-

lenging step in static analysis and verification of hybrid systems. We know that, in order

to verify safety properties expressed with transcendental functions and to reason symbol-

ically about formal power series, one need first to be able to generate formal power series

invariants. So, before looking for automated reasoning techniques for transcendental func-

tions one need to know how to generate inductive invariants expressed by formal power

series. In this Chapter, we presented methods which generate bases of multivariate formal

power series and transcendental invariants for hybrid systems with non-linear behavior.

As for originality, the problem of generating power series invariants and the results

are clearly novel. Importantly, there is no other known methods that generate this type

of invariants.

As for efficiency, we used linear algebra methods which do not require several Gröbner

Basis computation or quantifier eliminations. To show the strength and the performance

of our results we recall that we generated transcendental invariants for some non-linear

systems while we can prove that these non-linear systems do not have ”finite”polynomial

invariants, i.e. beyond recent approaches limits. Also, we remark that all the elements of

the generated basis are not essentially infinite transcendental invariants and some of them

are simple finite polynomials. In other words, one could also generate finite invariants

for systems that could not be treated by polynomial or fractional scaling consecution

encodings.

We limited our work to the development of formal methods that can generate formal

power series invariants for non-linear hybrid systems. These invariants are very precise

and would allow precise reachability analysis and safety verification of properties expressed
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using transcendental functions. But we need to associate new automatic reasoning tech-

niques to be able to reason symbolically about formal power series and to check for safety

properties of this kind. One could then extend this words investigating several existing

computational algebraic techniques and tools, like Maple or Mathematica, that manip-

ulate formal power series. Also, we saw that the formal power series obtained using

our methods are expressed in a symbolic way, but the identification of closed-forms will

depend on the limits of orthogonal techniques used by the tools to be considered.
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New domain of applications

The contributions exposed in this chapter also appear in our articles [93, 108, 95].

Abstract: In our days, substential social infrastructures rely on computer security

and privacy: a malicious intent to a computer is a threat to society. In this chapter we

provide powerful a theoretical basis for the design of static and dynamic platforms that

can exhibit a suitable architecture for automatic in-depth malware analysis.

We show how formal methods involving programs static and dynamic analysis can

be used to build such architectures. We propose automatic semantic aware detection,

identification and model extraction methods, hereby circumventing difficulties met by

other recent approaches to malware detection.

We propose a new approach to detect and identify malware by automatically gener-

ating invariants directly from the specified malware code. Such invariants that we call

malware-invariants, can then be used as semantic aware signatures. Importantly, these

invariants would remain unchanged in most of the obfuscated versions of the code.

Then, we propose host-based intrusion detection systems, using automatically tools,

where system calls are guarded by pre-computed invariants. In this way, we can report any

deviations observed during the execution of the application. Our methods also provides

techniques for the detection of logic bugs and vulnerabilities in applications.

We prove that any static analysis based malware or intrusion detection system will be

strongly re-enforced by the presence of pre-computed invariants, and will also be weakened

by their absence.

117
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6.1 Introduction

Invariant properties are assertions, expressed in a specified logic, that hold true on every

possible run of a system. A malware is a program that has malicious intent. Examples of

such programs include viruses, Trojans horses, and worms. Malicious intent to computers

can be virulent threats to society. We deeply need to understand malicious behaviors in

more detail.

All present security systems, like anti-virus and other detection systems, suffer from

a lack of automation in their malware analysis. In order to provide automatic in-depth

malware analysis and precise detection systems, one needs to be able to automatically

extract the malicious behaviors, and not just its syntactic signature.

Current malware detectors are “signature-based”: the presence of the malicious behav-

ior is detected if the malicious code matches some byte-signature. Such current malware

detectors are based on sound methods, with byte-signatures located in a database of reg-

ular expressions which specify byte or instructions sequences. But the main problem is

that malware writers can then use Obfuscation [97] to evade current detectors. To evade

detection, hackers frequently use obfuscation to morph malware. By so doing, they can

evade detection by injecting code into malwares in a way that preserves malicious be-

havior and makes the previous signature irrelevant. Further, current intrusion detection

systems are based on too coarse abstraction methods.

The number of malwares variants that use obfuscation increases exponentially each

time a new malware type appear. Malware writers can easily generate new undetectable

viruses and, then, the anti-virus code has to update its signature database very frequently

to be able to catch the new virus. The main difficulty remain in the update procedures,

because the new malware need to be analyzed precisely and the new signatures need to

be created and distributed as soon as possible in order to control the propagation.

We propose a new approach to detect and identify malware by automatically generat-

ing invariants directly from the specified malware code that we call malware-invariants,

and use them as semantic aware signatures. Malware invariants are propertiesthat hold

true on any possible behaviors, execution of considered malware. In order to do so, one

needs to adapt formal methods currently used to verify and prove systems correctness.

Importantly, malware invariant remains unchanged for most of obfuscated version of the

code. In other words, most of the new versions of the malicious piece of code, obtained

by obfuscation techniques, would still share the same malware invariants. Thus, using

such platforms, one would have only a few semantic aware signatures for each family of

viruses.

Using such static analysis platforms and automatically generated invariants we show

how to construct a suitable architecture for Host-based intrusion detection systems. Host-
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based intrusion detection systems that monitor an application execution report any de-

viation from its statically built model. They have seen a tremendous progress in recent

years. We could capture the main difficulties met by recent host-based intrusion detection

systems by saying that they use models that reflect only the control flow structure of the

programs. The lack of precision of these models explain why they are subject to mimicry

attacks [129] and non-control-data attacks [23].

We propose a new model addressing various deficiencies of the state-of-the-art of other

recent intrusion detection systems. Our model captures the control flow structure and the

data flow characteristics of a program. It is automatically generated and has a very low

monitoring overhead. Further, using our methods, one can mathematically prove that any

intrusion once the violation of an application invariant is observed during the execution

of the application. Being rigorous, they allow for no false alarms. Our model does not

only prevent mimicry and non-data-control flow attacks, but can also be used to detect

logic bugs and other vulnerabilities in the application.

As the main contribution (see Section 1.2.4) , we prove that any static analysis based

malware or intrusion detection system will be strongly re-enforced by the presence of pre-

computed invariants, and will also be weakened by their absence. In Section 6.2 we discuss

a theoretical basis that supports the design of malwares analysis platforms using formal

methods. In Section 6.3 we present guarded monitor generation for intrusion detection

and vulnerability auditing.

6.2 Malware Invariant Generation

6.2.1 Malware and Virus Characterisation

A malware is a program that has malicious intent. Examples of such programs include

viruses, Trojans horses, and worms. These malicious intent display the following behavior,

by:

1. following infection strategies,

2. executing a set of malicious actions, payloads,

3. evaluating some boolean control conditions, called triggers, to determine when a

payload will be activated.

A classification of malware with respect to their effects and propagation methods

is proposed in G. McGraw and G. Morrisett [90]. Also, L. M. Adelman [2] and F.B.

Cohen [30] show that the research security community will deeply need a mathematical
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Type Active Propa. Pop. Evolution Context-free

Virus yes > 0 no

Worm yes > 0 yes

Spyware no 0 yes

Adware no 0 yes

Trojan no 0 no

Back Door no 0 partially

Rabbit yes 0 yes

Logic Bomb no 0 partially

Tabela 6.1: Characterisation for malware types.

formalism that could serve as a scientific basis for their classification. We can distinguish

three properties that characterise a class of malware:

❼ Active propagation: A malware can propagate passively or actively using self-

instance replication or self-modification.

❼ Population evolution: A malware can be characterized by the evolution of the num-

ber of malware instances.

❼ Context dependence: in order to perform its malicious intent, a malware can depend

on external context, e.g. it could require other executable code or a pre-compilation

step.

We give the classification of some types of malwares using these three properties in

Table 6.1. Other hybrid types and network-based denial-of-service types like botnets

and zombie net-works, ... could be also considered by combining and extending these

properties. In Subsection 6.2 we will encounter more specific characterisation properties,

like obfuscation and encryptions techniques, that we shall consider in our approaches for

automated malware analysis.

6.2.2 Identifying Malware Concealment Behaviours

Current malware detectors are “signature-based” and equipped with a data base. These

malware detectors are based on sound methods, that is, if the executable matches byte-

signatures, then they guarantee the presence of the malicious behavior. They are equipped

with a database of regular expressions that specify byte or instructions sequences that are

considered malicious. But the main problem resides in the fact that these methods have

a low degree of completeness.
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Malware writers can then evade detection by current syntactic signatures and pat-

tern matching approach by injecting code into malwares in such a way that it preserves

malicious behavior and makes the previous signature irrelevant, because the regular ex-

pressions would not match the modified binaries. These techniques are called obfuscation

[97]. Hackers frequently use obfuscation techniques to morph malware, as they are easy

to write and very challenging to detect. Malware detectors, commercial anti-virus and

scanners are susceptible to these techniques.

As common obfuscation techniques, one could cite polymorphism and metamorphism.

In these methods, a virus encrypts, or obfuscates, its malicious payload and decrypts, or

deobfuscates, it during execution. By doing so, a virus can succeed in morphing itself.

Here the words ”encryption”and ”decryption”do not refer to cryptography, they are better

thought of as obfuscation and deobfuscation strategies.

Once a new type of malware appears, the number of derivative malwares generated by

obfuscation increases exponentially. Malware writers can easily generate new undetected

viruses. As a consequence, the anti-virus code has to update its signature database very

frequently in order to be able to catch the new virus the next time it appears.

6.2.3 Obfuscation Strategies for Infection Mechanisms, Triggers

and Payloads

Malware can be obfuscated, i.e. its three body parts, namely Infection Mechanisms,

Triggers and Payloads, can be first set in an encrypted form to avoid detection.

But it can not be entirely encrypted to be executable. It needs a decryptor loop,

which deobfuscates its body parts in a specific writable memory location. Also, the

deobfuscation mechanism can use a random key, which vary at any iteration, or it could use

encryption library, which contains cryptographic algorithms. The encrypted part would

be very difficult to detect, and that is why anti-virus, and polymorphic malware detectors

concentrate on detecting the decryptor loop. The unchanging part of an encrypted virus,

which can randomly modify its key for each instance, is the decryptor loop.

To avoid detection, a polymorphic virus modify their decryptor loop at each instance

using several automatic transformation, since a virus could easily generate billion of loop

versions [49]. And metamorphic viruses change their body parts using a variety of obfus-

cation techniques when they replicate.

To modify the loop, or to obfuscate a body part, a malware uses a mutation engine [97]

which can rewrite the loop with other semantically equivalent sequences of instructions

[31] and rename register or memory locations. This transforms the original sequence of

instructions into an equivalent one. In general this is done by using unconditional jumps,

inlining and outlining the body of function codes, using new function calls, inserting junk



122 Caṕıtulo 6. New domain of applications

code, using threaded versions, ... and a host of similar trirs.



6.2. Malware Invariant Generation 123

Example 27. Let’s consider the following piece of pseudo-code:

1 c a l l Funct ion 0

2 . . .

3 Funct ion 0 :

4 r5=12

5 r1=12

6 r6=r3+r2

7 r2=34

8 r4=r5+r6

9 r3=r1+r2

10 r e tu rn

It could be rewritten in the form:

1 c a l l Funct ion 1

2 c a l l Funct ion 2

3 . . .

4 Funct ion 1 :

5 r l = 12

6 r2 = r3+r2

7 r4 = r l+r2

8 r e tu rn

9 Funct ion 2 :

10 r l = 12

11 r2 = 34

12 rS = r l+r2

13 r e tu rn

without changing its semantic behavior.

But these decryptor loops and the derived ones still share some common invariants,

and, these invariants are more difficult to morph in an automated fashion.

6.2.4 Malware Invariant as Semantic Aware Signature

To be able to reason directly from unknown vulnerable binary code, one needs an inter-

mediate representation [58, 19] for the binary code.

Example 28. Intermediate representation.

1 . . . / / . . .

2 dec ecx // ecx <−− ecx −1

3 j n z 004010 B7 // I f ( ! ecx =0 ) go to 004010 B7

4 mov ecx , eax // ecx <−− eax

5 s h l eax , 8 // eax <−− eax < < 8

6 . . . / / . . .

The rightmost column shows the semantics of each x86 Executable instructions expressed

in a C-like notation [58, 19].

In [26, 25, 40], malware-detection algorithms try to incorporate instruction semantics

in order to detect malicious behavior. Semantic properties are more difficult to morph

in an automated fashion than syntactic properties. But the main problem of these ap-

proaches is that they relay on too coarse abstracted semantic information e.g. def-use
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information. Instead of dealing with regular expressions, they try to match a control flow

graph, enriched with def-use informations to the vulnerable binary code. Those methods

eliminate a few simple techniques of obfuscation as it is very simple to obfuscate def-

use information by adding any junk code or by reordering operations that would either

redefine or use the variables present in the def-use properties.

Our approach to the problem of malware detection generates quasi-static invariants

directly from the specified malware code, and use it as semantic-aware signatures that

we call malware-invariants. Now consider a suspicious code. We could check if there

is one assertion in the malware-invariant data base that holds in one of the reachable

program states. In order to do so, we can use our formal methods for invariant generation

and assertion checking. This will complicate, make it much more for a hacker to evade

the detection using common obfuscation techniques. Thus, for each family of viruses we

would have few semantic aware signatures. We propose to use, combine and compose

many static and dynamic tools in order to automatically generates invariants which are

semantic-aware signatures of malwares, i.e. they are malware-invariant.

6.2.5 Automatic Generation of Malware Invariants

Static Analysis for Detection and Identification

We say that an analysis is static when it does not run the application. Anti-virus use a

data base of signatures and a scanning algorithms to look efficiently for several patterns

at a time. Each of these patterns represents several different signatures. As we saw in the

previous sections, present malware writers can evade such pattern-matching techniques.

Malware invariants could be computed directly using our invariant generations meth-

ods, together with any other invariants computed using different techniques, such as based

on a complementary logic. Several tools could be made available though a communica-

tions framework. We provide a theoretical basis for the construction of static analysis

platforms that can form a suitable architecture for the extraction and identification of

possible malicious behaviours. We propose to consider several invariant generations tech-

niques where the automatically computed invariants would be express in specific logic.

Considering the methods described in Chapter 3, one can handle logic with non-linear

arithmetic and inequalities. Using them one can generate non-linear invariants in sev-

eral guises like assertions, formulae over inter-relationship values of registers, memory

locations, variables, system call attributes, and similar others.
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Example 29. Consider the following piece of code expressed in an intermediate repre-
sentation after a transformation process.

1 i n t e g e r R 1 , R 2 , eax , ebx , ecx , OxN;

2 . . .

3 where ( eax=R 1 && ebx=ecx=R 2 && OxN=0)

4 . . .

5 wh i l e ( eax != ebx ){

6 wh i l e ( eax > ebx ){

7 eax = eax − ebx ;

8 y 4 = OxN + ecx ;

9 }

10 wh i l e ( ebx > eax ){

11 ebx = ebx − eax ;

12 ecx = ecx + 0xN ;

13 }

14 }

15 . . .

We can, for instance generate the following invariant

eax ∗ ecx+ ebx ∗OxN −R 1 ∗R 2 = 0.

In order to handle systems and function calls effectively, we adapted the techniques

described in A. Tiwari et al. [62, 60] which provide invariants over a logic with uninter-

preted function and inequality. This theory uses several level of Abstract Interpretation

[36] and is based on Unification Theory [6]. Moreover the implementation also requires a

modifications to adapt it of the CIL tool [99].

Example 30. Consider the following piece of code with uninterpreted system calls. Note

that it could be any other systems calls with a similar signature.

1 vo id

2 F D( i n t fd 1 , i n t f d 2 ){

3 . . .

4 i n t t1 , t2 , t3 , t4 , t5 , a ;

5

6 i f ( f d 1==fd 2 ) {

7 t 1=dup ( fd 1−f d 2 ) ;

8 t 2=dup ( dup ( 0 ) ) ;

9 }

10 e l s e {

11 t 2=dup ( t1 ) ;

12 }

13 t 3=dup ( t1 ) ;

14 a=fd 2 −1;

15 i f ( f d 1==a ){

16 t 4=dup2 ( fd 1 ,2✯ f d 1 +1);

17 t 5=dup2 ( fd 1 , dup2 ( fd 1 ,2✯ f d 2 −1));

18 }

19 e l s e {

20 t 5 = dup2 ( fd 1 , t4 ) ;

21 }

22 }
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As an example, we were able to generate the following invariant

Invariant Generation [Logic: Uninterpreted Function]

t3 = t2

fd_2 + -1.000000*a = 1.000000

t2 = dup(t1)

t5 = dup2(fd_1, t4)

As we can see it yields inter-relationships between system calls returns values and at-

tributes.

We could as well, consider any other logic which has an associated invariant generation

techniques and tools. The main contribution here is that most of all obfuscation techniques

presented in section 6.2.3 will not change the computed invariants.

Quasi-Static Malware Analysis

In contrast, we propose new concepts and a theoretical framework that can be used to

compute exact invariants, i.e. inductive provable invariant, using hypotheses, i.e. likely

invariants, that are true properties on all observed execution traces, in a certain training

period. We could then generate likely invariants which are properties that hold at any

program point in the observed execution trace, using test methods. We call this new

view of program analysis “Quasi -Static Analysis”. Figure 6.1 illustrates the architectural

structure of this new theoretical framework. Then we could turn likely invariants into

invariants using verification methods, like assertion checkers [11, 132].

DYNAMIC ANALYSIS:STATIC ANALYSIS:

Is it an Invariant ?

Invariant Generation.

VERIFICATION:

to be an Invariant.

Likely−Invariant proved 

YES NO

Refinement.

Likely−Invariant.

PROGRAM or MODEL

Likely−Invariant Generation

over observed execution’s 

traces.

Figura 6.1: Quasi-static analysis framework
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SPECIFIC BEHAVIORS.

QUASI−STATIC ANALYSIS

SYSTEMS

Does the system behaviours   

DECISION PROCEDURES:

MODEL CHECKING and

THEOREM PROOVING.

contains the specific ones ?

Evaluation and Refinement

YES

SubModel of the systems that validate the specific behavior. 

(Models: Programs, State Machine)

(Unsafe, Vulnerable, Malicious, ... ).

Figura 6.2: New formal methods to verify if the considered systems contains common

behavior with another specified systems

Some of the likely-invariants computed by a Dynamic Analysis are real invariants.

They hold in all possible executions of the program. Then, using theorem provers or

assertions checkers, for instance one could check if the proposed properties during the

Dynamic analysis are real invariants. These computed malware-(likely)invariants are then

treated as signatures. One can, then, use pushdown model checking techniques and theo-

rems proving methods, combined with program verification tools and methods, to detect

the presence of malicious behavior described by our malware-invariants. If the malware-

invariants describe reachable states in the verification process, then we can guarantee that

the software displays the suspicious behavior. This point is illustrated in Figure 6.2

One can first generate a malware invariant φsign as described just above. Then one

can use similar invariant generation methods, applied over the vulnerable executable code

being inspected, and generate an invariant ψExe. Then one could check if ψExe ⇒ φsign

using a theorem prover or other decision procedure. Alternatively, one can generate a

push down system modeling the malicious behavior by combining control flow and data

flow analysis. Those abstract state graph, that we call malware PDS, captures both the

control and the data flow properties of the malicious behaviours. We can use and combine

malware invariant and malware PDS to form formal signature. This point is illustrated

in Figure 6.3.

One can, then, build formal signature data base. On the other hand we could extract

invariant from the code being inspected with similar mentioned methods and check, using
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BINARY Code.

C−like code representation.

QUASI−STATIC

ANALYSIS

MALWARE PDS

FORMAL

GENERATION

SIGNATURE

DIASSEMBLER and INTERMEDIATE REPRESENTATION

PDS MODEL

− Invariant,

− Data flow analysis.

MALWARE INVARIANT

Figura 6.3: Formal Signature: Malware Invariant and Malware PDS Generation.

decision procedures, if it implies one of the malware invariant. Or, we can check if the

code behavior allow a possible run in one of the malware PDS. The malware detector

method described in this Section is sound with respect to the signature that is being

considered as the representation of malicious behavior. This point is illustrated in Figure

6.4.

In Section 6.3, we build a working theoretical platform, and its associated Host-based

intrusion detection systems, following similar a proof of concept. A semantic aware mal-

ware detector can then be built upon the intrusion detector system.

6.3 Guarded Monitors For Host-based Intrusion De-

tection Systems

Host-based intrusion detection systems monitor an application execution and report any

deviation from its statically built model [128, 47, 57]. It has been shown [51] that finding

anomalies in the stream of system calls issued by the execution of user applications is

an effective host-based intrusion detection capability. In D. Wagned and D. Dean [128],

the idea of using static analysis to design a model of application leading to a host-based

intrusion detection system was mentioned for the first time. They first recognized the

fact that such systems would have the following three advantages:

❼ a high degree of automation,

❼ protection against a broad class of attacks, and
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BINARY Code.

C−like code representation.

FORMAL SIGNATURE GENERATION

FORMAL SIGNATURE DATA BASE

Malware PDS.

MODEL CHECKING 

PUSHDOWN SYSTEM

THEOREM PROVING

Malware PDS,

Malware Invariant

Malware Invariants 

Refinement

Evaluation

DECISION PROCEDURES

MALWARE DETECTION:
          YES/ NO

DIASSEMBLER and INTERMEDIATE REPRESENTATION

Figura 6.4: Formal Malware Intrusion Detector System
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❼ the elimination of false alarms.

Since then, various models capturing the sequences of legitimate system calls have been

proposed [128, 57, 47, 55]. The degree of precision of the model is the main issue that

current intrusion detection systems approaches struggle with. The more precise the model

is, the less attacks are possible.

The weakness of these systems is that they often rely on overly abstracted models

that reflect only the control flow structure of programs and, therefore, are subject to the

so-called mimicry attacks [129, 75] that produce a sequence of system calls that conform

to the model but allow the execution of malicious code. In other words, the weakness of

current host-based intrusion detection systems can be traces to the lack of any significant

data flow analysis.

We propose to use automatically generate invariants to guard system calls. By com-

bining control flow and data flow analysis, our models are not only able to detect mimicry

attacks, but they also tackle the ever increasingly threatening non-control-data flow at-

tacks [23]. We note that more data flow information about the program is necessary in

order to prevent such attacks.

These attacks are all detectable by our model because it captures in a very precise

manner the semantics of the application being protected. During the execution of the

application, the associated model simulation will detect any mimicry and non-control-

data attacks, as they inevitably violate an invariant specified in the model. Our model

makes sure that system calls not only occur in the order specified by the model, i.e. they

maintain control flow integrity, but also guarantee that each system call is preceded by a

check that some program invariant generated by static analysis holds, i.e. they assure data

flow integrity. Such invariants capture crucial properties about system call arguments,

system call return values, input variables, and about the values of branch predicates at

all control locations of the program. Some very weak versions of these properties are

generated manually in J. Giffin et al. [55], or learned from runs of the application in

an attack free environment in R. Sekar et al [12]. Thus, in these cases, they form an

under-approximation of the application behavior, which leads to an intrusion detection

approach that generates many false alarms.

We use invariant generation and assertion checking techniques to build our model

which can be described as a control flow graph in which system call locations are annotated

with a set of predicates and logic assertions that have to remain true at those system call

locations. It is an abstract state graph [59] that captures both the control and the data flow

properties of a program. The model is statically build using a combination of predicate

abstraction, invariant generation techniques and inter-procedural invariant propagation.

We use these statically built model to monitor an application execution and report

any deviation from it i.e. we report any behaviors that are not possible to simulate by
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the model. These monitors are Visibly Pushdown Automaton [5], in which, invariants

are checked against the image of the process before any system call. As we discuss

in R. Rebiha and H. Saidi [108], our method is much more secure, while the overhead is

reduced drastically compared to Dyck models [56], since the latter needs to add null system

calls at any function call site. Our monitor is automatically generated by combining

control flow and data flow analysis using state-of-the-art tools for automatic generation

and propagation of invariants.

Further, our methods do not yield false alarm because if an invariant is violated we

have the proof of an abnormal behavior issued by an intrusion. In many cases, our model

is precise enough so that it is possible to automatically check the application for the

presence of application logic bugs and vulnerabilities. Such feature is absent from any

other intrusion detection approach.

6.3.1 Systems Calls Guarded by Invariants

Invariants that are true at control locations where system calls are invoked become guards

that should evaluate true at run-time, before allowing for a system call. This ensures both

control flow and data flow integrity.

First we propose an intra-procedural analysis to define model a procedure. This model

is the abstract state graph of the procedure. It is a much more precise version of the control

flow graph of the procedure.

Definition 28. ASG: Abstract State Graph. Let P be a procedure, and let p1, . . . , pk
be a set of arbitrary predicates over P ’s program variables. An ASG of P using the

predicates p1, . . . , pk is the intraprocedural control flow graph

G = 〈V, Va, Enterp, ExitP , δa〉

associated with the program source code of P where:

❼ V is the finite set of program locations,

❼ EnterP ∈ V is the entry point of P

❼ ExitP ⊆ V is the finite set of P ’s exit points.

❼ Va is the finite set of abstract states. Each such abstract state is a pair (v, e) where

v is a program control location and e a valuation of the predicates p1, . . . , pk. For

instance for k = 3, a node pc1, (0, 1, 1) indicates that at location pc1, the predicate

P1 ∧ ¬P2 ∧ ¬P3 is true.

❼ δa ⊆ V × V is a transition relation.
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Example 31. Consider the following program:

1 x=0;

2 While ( x <= 10){

3 x=x+1;

4 }

Consider the predicate B ≡ (x ≤ 10), its abstract state graph is given below:

〈EnterP ,⊤〉 〈l2,B〉 〈l4,¬B〉 〈ExP ,¬B〉
τ1 : x = 0; τ3 : x = x+ 1; τ4

τ2 : x = x+ 1;

with V = {EnterP , l2, l4, ExP}, ExitP = {ExP}, and T = {τ1, τ2, τ3, τ4}.

The ASG of a procedure is turned into a Guarded Control Flow Graph by guarding

transitions originating from an abstract state (v, e) by the Boolean combination of the

predicates p1, . . . , pk given by the valuation e. This Boolean combination is an invariant

of the program at location v.

Definition 29. (GCFG: Guarded Control Flow Graph) A GCFG of a procedure

P is the intraprocedural control flow graph GP = 〈V, v0, ExitP ,G, δlP 〉 associated with the

program source code of P where:

❼ V is the finite set of program locations.

❼ EnterP ∈ V is the entry point of P .

❼ ExitP ⊆ V is the finite set of P ’s exit points.

❼ δP (V × G) ⊆ 2I × V is a transition function where a block of instructions in I is

guarded by an invariant in the set G .

Since we monitor system calls, our model abstracts away from the GCFG any transi-

tions and instruction blocks that do not refer to a system call or to function call.

The result is a guarded call graph.
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Definition 30. (GCG: Guarded Call Graph) Let P be a procedure and let its GCFG

be

GP = 〈V,EnterP , ExitP ,G, δlP 〉.

A guarded call graph (GCG) of P is a tuple

G = 〈S, EnterP , ExitP , δP , λ, FuncC, SysC, Predsite〉

where :

❼ S is a finite set of states.

❼ FuncC is the finite set of function call that appear in P .

❼ SysC is the finite set of system call that appear in P .

❼ Predsite is a finite set of predicates associated to function call sites.

❼ λ : S → 2V labels the state with a set of consecutive program points that identify a

basic block, i.e. straight-line pieces of code without any jumps nor system or function

calls.

❼ Finally,

δP ⊆ (S × G × FuncC × S) ∪ (S × G × SysC × S)

is a transition relation.

Intuitively, these action guarded transitions are labeled by a system (SysC) or a

function (FuncC) call that occur at the last program point labeled in the current state

(basic block). They should satisfy:

❼ If there is a function call F ∈ FuncC at a program point v ∈ V then ∃s, ∃s′ ∈ S

and ∃g ∈ G s.t. v ∈ λ(s), and δP (s, g) = (f, s′). Also the predicate P (F, s) is in

Predsite.

❼ If there is a system call C ∈ SysC at a program point v ∈ V then ∃s, ∃s′ ∈ S and

∃g ∈ G s.t. v ∈ λ(s), and δP (s, g) = (c, a, s′).

Since we monitor only system calls, it is necessary to replace function calls by a jump

to the model of the called function, while retaining information about the control location

to which the application should return after the call to the function is completed.
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Definition 31. (GSCG: Guarded System Call Graph) Let P be a procedure and

let guarded call graph (GCG) be

G = 〈S, EnterP , ExitP , δSC , λ, FuncC, SysC, Predsite〉.

Then G is said to be a Guarded System Call Graph if FuncC = ∅. In other words, G

does not generates function calls. Furthermore, the transition relation δSC is defined as

δSC ⊆ (S × G × SysC × (A ∪ {epsilon})× S)

where the finite set of actions A is given by the grammar

a← P := True|P := False|ǫ,

where P is a predicate in Predsite.

Intuitively, by eliminating function calls, the transition relation only refers to sys-

tem calls. However, for the purpose of maintain control flow integrity, it is crucial to

maintaining information related to function call sites and return sites. This is achieved

by augmenting the transition relation with assignments of the form P (s, F ) := True, or

P (s, F ) := 1, that indicate that a function F has been called at control point s, or,in

other words, the call was done at a location v such that λ(v) = s. An assignment of the

form P (s, F ) := False, or P (s, F ) := 0, where P (s, F ) is a predicate in Predsite, indicates

a return from a call to the function F .

In what follows, we propose to extend the previous model with a stack, which will

allow us to deal with recursive functions.

Definition 32. E GSCG: Extended GSCG Let P be a procedure and let its guarded

call graph (GSCG) be

G = 〈S, EnterP , ExitP , δP , λ, FuncC, SysC, Predsite〉.

The E GSCG EG extends G with a finite stack alphabet

Γ ⊆ {Predsite × {0, 1}},

where γ0 ∈ Γ∗ the initial stack configuration. We define the transition system δE with the

set of actions AE as follow:

❼ AE is the finite set of actions given by the following grammar:

a← Push(γ)|Pop(γ)|B := 0|B := 1|ǫ,

where B ∈ Predsite, γ ∈ Γ and Push(γ),Pop(γ) are the two common operations that

pop and push γ into the stack.
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❼ Finally,

δE ⊆ ∪(S × Γ× G × SysC × (AE ∪ {ǫ})× S × Γ).

The semantics of the transition relation δE identifies valid sequences of system calls

during a program execution. Its semantics is given by the rules described below.

Definition 33. Run of an E GSCG.

For sequence of system calls, i.e. a word

w = a1, ..., ak ∈ Syccall

a run of GP on w is a sequence

ρ = (s0ρ0), . . . , (sk, ρk),

where for every si ∈ S, ρi ∈ Γ∗, ρ0 = ǫ and for every 1 ≤ i ≤ k the following rules apply:

❼ Making a system call:

If (si, ǫ, g, ai, ǫ, si+1, ǫ) ∈ δ then the system call ai is allowed by our model when

transitioning from si to si+1 if the guard g ∈ G evaluates to True at si and there is

no stack activity (ρi+1 = ρi).

❼ Call to a non-recursive function:

If (si, ǫ, g, ai, (P (si, F ) := True), si+1, ǫ) ∈ δE the system call ai is allowed by our

model when transitioning from si to si+1 if the guard g ∈ G is evaluate to True at si.

The action of the transition sets the predicate P (si, F ) ∈ Predsite to True, meaning

that a call to a function F has been done at si and ai is the first system call induced

by F for the current context. Also, there is no stack activity.

❼ Return from a non-recursive function:

If (si, ǫ, (P (si, F ) == True) ∧ g), ai, (P (si+1, F ) := True), si+1, ǫ) ∈ δE then the

system call ai is allowed by our model when transitioning from si to si+1 if the

guard (P (si, F ) == True) ∧ g evaluates to True at si. The action of the transition

assigns the value of the predicate P (si+1, F ) ∈ Predsite to False, meaning that si+1 is

the return address of the non-recursive function F . In the case where there are many

call sites to F , the guard checks also if it is the correct return address (P (si, F ) ==

True). Also, there is no stack activity.

❼ Call to a recursive function:

If (si, ǫ, g, ai,Push(γ), si+1, γ) ∈ δE then the system call ai is allowed by our model
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when transitioning from si to si+1 if the guard g evaluates to True at si. In that

case, γ is pushed onto the predicate stacks, meaning that ρi+1 = γ · ρi, with si
interpreting the function call site mentioned in γ, and where “·” is the operator of

concatenation.

❼ Return from a recursive function:

If (si, γ, (P (si+1, F ) == True) ∧ g, ai,Pop(γ), si+1, ǫ) ∈ δE and γ = (P (si+1, F ), 1).

The system call is allowed if g and the test at the Top of the predicate stack

(P (si+1, F ) == True) are True. It means that the program returns from a function

call and pops γ from the stack under the condition that γ is at the top of the stack.

Existing models that use a Pushdown System to monitor sequences of system calls are

visibly pushdown automaton [5]. Intuitively, the stack alphabet is a finite set of return

addresses specifying to where a function call returns. The visibly pushdown automaton

pushes onto the stack an element when it reads a function call, it pops the stack only

when returning, and it does not use the stack when it reads allowed system calls. Using a

visibly pushdown automaton requires code instrumentation to trigger the push and pop

operations based on the observed inputs to the automaton.

Our model is more efficient at monitoring time because we already encoded these

operation using the predicates in Predsite. It is a generalisation of visibly pushdown

automaton with a stack of predicates controlling the return of a function called at the

right address. It achieves stack determinism and can be simulated by a Dyck model.

But the latter generates more overhead during monitoring, by adding extra system calls

at each function call and return sites. It can not handle recursive functions or cycles in

function calls. We show that recursive functions can be handled without generating extra

system calls. We, thus, succeeded in building a model which does not need to monitor the

program counter, unlike in D. Dean et al. [128], nor does it introduce extra null system

calls unlike in J. Giffin et al. [47, 55].

6.3.2 Construction of our model

Our invariants are generated by using a combination of several methods and tools. As-

sertions are generated from observed runs during a training period in an attack-free envi-

ronment and using Daikon [45]. Daikon generates likely invariants from execution traces.

That is, assertions or relationships between program variables that are true at some con-

trol location during the observed runs, but may or may not be true for all possible runs of

the program. We use the BLAST assertion checker for C programs [11, 65] to try to prove

or disprove the fact that the likely invariants hold at the locations indicated by Daikon.
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We also automatically generate linear invariants expressing linear relationships among

integer program variables that hold at all control locations of a program using the Inv-

Gen tool described in A. Tiwari et al. [61]. In particular, we generate invariants that

hold at entry and exit points of every procedure in the application. We use the linear

invariants as inputs to BLAST, as additional information about the program, so that it

maximizes BLAST’s chances of proving or disproving likely invariants. BLAST proves as-

sertions using predicate abstraction [59]. That is in order to obtain a finite representation

of the program, it partitions the reachable states of the program using a set of predi-

cates appearing in the assertion to prove, the conditional branches and assignments as

well as internally generated predicates [68]. BLAST’s assertion checking process amounts

to evaluating the set of predicates in every control location, effectively propagating the

predicates throughout the control graph of the program. The propagation works as fol-

lows: if an assignment instruction does not modify the variables in a predicate, then the

predicate holds after the assignment. If however the program variables in the predicate

are modified by the instruction, it is necessary to either prove that the post condition

of the assignment implies that the predicate still holds, or its negation holds. If neither

implication is proved, then the successor control node is split into a node where the pred-

icate holds and a node where the negation of the predicate holds, introducing therefore

some non-determinism in the control flow graph. The result of our invariant generation

and assertion checking process is a control flow graph where each program control point

is annotated with a set of predicates that are true at that location. That is, an abstract

state graph that captures both the control and the data flow properties of a program.

To review, in order to build our model:

❼ We adapted the Invariant Generation methods of A. Tiwari [60] to handle inter-

procedural codes with system calls.

❼ We run the application using Daikon [45] and generate a set of likely invariants :

assertions generated from observed runs during a training period in an attack-free

environment. These are, assertions or relationships between program variables that

are true at some control location during the observed runs, but may or may not be

true in all possible runs of the program.

❼ We turn every likely invariant generated by Daikon into an assert statement at the

line of code indicated by Daikon, and we augment the application code with these

assert statements.

❼ We run the Blast [11] assertion checker and check all assert statements in the aug-

mented application code, making use of the invariants generated by Inv-Gen as aids

in the assertions checking process.
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❼ We filter the set of likely invariants into three sets: (i) likely invariants for which

Blast can prove that the corresponding assert holds; (ii) likely invariants for which

Blast generates execution traces that violate the corresponding asserts, and (iii)

likely invariants for which Blast either runs out of memory, crashes, or returns with

an inconclusive answer.

❼ We generate the control flow graph of each function, in such a way that each node

is decorated by the set of predicates that hold at that node.

❼ Finally, we minimize the abstract state graph by applying a minimization algorithm,

based on observational equivalence proposed by R. Milner [92] and implemented in

J-C. Fernandez [48].

The call graph of each function is turned into a guarded call graph by guarding each

system call and function call by the invariant that holds at the control location where

the call is invoked. The minimization step does not loose any information about the

collected invariants at the control nodes that have been collapsed, since the construction

of the abstract state graph propagates every invariant to every node location where it

holds and, in particular, at control locations where a function or a system call is invoked.

While obtaining the guarded call graph for each function is simple once an abstract state

graph is built, combining the guarded call graphs of all functions to build a global call

graph can be done in different ways.

In J. Vitek et al. [57] inlining is used whenever a function call is made. The problem

in this approach is that the same call graph is duplicated at each call site of a function

without further analysis. In our approach, invariants that are true at the function call

site are propagated inside the function to obtain a more refined control structure. That

is, for every function call site, we might inline a different and more precise model of the

function. In the case where the propagation of the predicates does not produce a more

precise model of the function, we just transfer the control to the function’s guarded call

graph. Since we need to remember the call site to which the execution should return to

after the function call, we add a new predicate that is set to true when a particular call

is invoked at a particular control location. We update the specific predicate P ∈ Predsite
at function call sites and return sites. We define first the set of predicates that we use.

Then, Predsite is given by the following characteristic function:

Predsite(S × FuncC) ⊂ {{0}, {1}}.

The predicate Predsite(s, F ) is true if there is a function call to F at s.

Adding call site predicates amounts to combining the guarded call graph of all func-

tions and producing a global guarded system call graph when there are no recursive
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functions, or an extended guarded system call otherwise. This is done by eliminating the

function calls and deciding whether to apply inlining or not.

The algorithm, presented in figure 6.5, describes our process for producing the final

global model, starting from the guarded call graph (GCG) of the main function.

6.3.3 Guarded monitors precision and properties

Our model allows less attacks than, for instance, a Dyck model [55]. Recall that a Dyck

model instrumentation involves inserting distinct pre- and post-calls, denoted Pre Call

and Post Call at each function call site. This ensures determinism in stack operations

as each call site is identified by its pre-call. A Dyck stack records the Pre call and a

path is deemed feasible if each return leads to Post Call that matches the last pre-call

at the top of the Dyck stack.

Theorem 26. (Expressivity) Let P be a program, and GSCG and E GSCG be, respec-

tively the guarded system call and and the extended system call graph of P. We have:

❼ If P contains no recursive functions then any GSCG can be simulated by a Dyck

Model.

❼ If P contains recursive functions then any E GSCG can be simulated by a Dyck

Model.

Theorem 26 shows that our Model is always more precise than the Dyck Model. Also,

the level of stack determinism is reached without the overhead of instrumenting the binary

code with null system calls. We also do not need to monitor the Program counter, as

it is statically taken into account by the Abstract State Graph. By using updates over

predicates in Predsite, we eliminate the need to instrument the source or the binary code

with the addition of system calls at each system call site. If P does not contain recursive

functions, or cycles in sequence of function calls, then a stack is not mandatory, even if a

function is called at different sites.

Following is a series of examples that illustrate the weaknesses of the various models

proposed in the literature and how our model captures automatically dependencies be-

tween program variables and system calls in the form of powerful invariants that produce

a dramatically more precise control flow graphs and limit the attacker’s ability to launch

mimicry attacks.
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Let T = (s, g, F, s′) ∈ δP , a Function call to F is made at site s.

❼ If FuncCF = ∅ then F does not make any function call.

– In that case if SysCF 6= ∅, that is F contains at least one system call C, then there exist

t1, . . . tm ∈ δF such that

tk = (EntryF , gk, Ck, Ak, sk)

with 1 ≤ k ≤ m and m ≤ |SysCF |. We then connect the two graphs, without duplicating the

graph of the called function, as follows:

✯ we merge the states s and EntryF ,

✯ we add the transition

tk = (s, φ(g,gk)
, Ck, (Predsite(s, F ) := 1), sk)

to δP , where φ(g,gk)
are guards computed automatically using propagation techniques. The

predicate Predsite(s, F ) is then set to true.

✯ If there exists r1, . . . rn in δF such that

rj = (sj , gj , Cj , Aj , s
′

j) ∧ s′j ∈ ExitF

with 1 ≤ j ≤ n and n ≤ |SysCF |, then we add the transition

rj = (sj , φg,gj ∧ Predsite(s, F ), C, (Predsite(s, F ) := 0), s′

to δP .

✯ We remove T from δP and we repeat this process until δP contains no more function

calls.

✯ We apply this process to all functions that call F.

✯ We remove all transitions tk from δF with 1 ≤ k ≤ m and we remove all transition rj from

δF with 1 ≤ k ≤ m.

– If SysCF = ∅.

✯ We merge s and s′

✯ We update the guards of all outgoing transitions of s′ by propagating invariant of F,

and we remove T.

❼ If FuncCF 6= ∅ then F makes function calls. Then we apply the same algorithm to functions in

FuncCF .

Figura 6.5: Process for producing the final global monitor
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Example 32. Let’s first consider the following program without any function calls, de-

scribed in [47].

1 char ✯ s t r , ✯ user ;

2 . . .

3 i f ( strncmp ( user , ”admin ” , 5)){

4 s y s 1 ( ) ; }

5 e l s e {

6 s y s 2 ( ) ; }

7 /✯ user = ’ ’ ge s t ’ ’ ; ✯/

8 s t r c p y ( s t r , someinput ) ;

9 i f ( strncmp ( user , ”admin ” , 5)){

10 s y s 3 ( ) ; }

11 e l s e {

12 s y s 4 ( ) ; }

13 }

In line 3 and 9, the predicate strncmp (user,”admin”, 5) determines which branch of

the if statement is executed. Only two system call sequences are possible: 〈sys 1, sys 3〉

if the predicate evaluates to True and 〈sys 2, sys 4〉 otherwise.
Since recent models proposed in the literature like Dyck Model [47, 55] do not track

automatically the values of branch predicates, they will allow the following four sequences
〈sys 1, sys 3〉, 〈sys 1, sys 4〉, 〈sys 2, sys 3〉 and 〈sys 2, sys 4〉 as can be noticed on
their following representation:

l3 l9 l13

sys 1( );

sys 2( );

sys 3( );

sys 4( );

An attack on these models uses a large someinput in strcpy to overflow str and change

the value ”guest” of user to ”admin”. Then the illegal sequences 〈sys 1, sys 4〉 or 〈sys 2, sys 3〉

are executed without any detection.
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Below, we illustrate our guarded model, here it is simply the abstract state graph of

the program built using the predicate

P ≡ (user = admin)

appearing in the conditional branches.

l3

l6 l12

l4 l10

P
sys 2( );

¬P
sys 1( );

P
sys 4( );

¬P
sys 3( );

Our model will first accept the system call sys 1 because the guard P ≡ (user = admin)

is true, but will not accept system call sys 4, because sys 4 is allowed only if the negation

of P holds. The illegal sequences will violate the invariants P and ¬P that guard system

calls sys 3 and sys 4.
Now, if we uncomment the instruction commented away in line 7, our model is pre-

cise enough to allow only the sequences 〈sys 1, sys 3〉 and 〈sys 2, sys 3〉 as it is clearly
shown in the following graph.

l3 l9 l13

¬P
sys 1( );

P
sys 2( );

P
sys 4( );
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Example 33. Consider the following program:

1 char ✯ f i l ename ;

2 p i d t p id [ 2 ] ;

3 char bu f [ 3 2 ] ;

4 i n t main ( i n t argc , char ✯ argv [ ] ) {

5 f i l ename = argv [ 1 ] ;

6 u i d t u id = g e t u i d ( ) ;

7 i n t handle , c t r l u i d ;

8 c t r l u i d = c t r l ( u id ) ;

9 i f ( c t r l u i d != 0){

10 hand le = prepare ( 1 ) ;

11 read ( handle , buf , 3 2 ) ;

12 }

13 e l s e {

14 hand le = prepare ( 2 ) ;

15 wr i t e ( handle , buf , 3 2 ) ;

16 c l o s e ( hand le ) ;

17 }

18 i n t prepare ( i n t index ){

19 p id [ index ] = g e t p i d ( ) ;

20 s t r c p y ( buf , f i l ename ) ;

21 r e tu rn open ( buf , ORDWR) ;

22 }

23

24 i n t c t r l ( i n t i 1 ) {

25 i n t t1 , t2 , t3 ;

26 i f ( i1 >0) {

27 t 1 = 2 ;

28 t 2 = 3 ;

29 }

30 e l s e {

31 t 1 = 8 ;

32 t 2 = 9 ;

33 }

34 t 3 = t2−t 1 ;

35 r e tu rn t3 ;

36 }

In this example the program does a call to a function ctrl which does not contain

system calls. The behavior of this function affects the sequences of system calls that the

program can generate. Existing Models abstract away in their control flow based models
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all function calls that do not contain system calls.

An attack on these models would force the process pid[2] to write in the input file

”filename”, whereas our analysis says it can only read it. This attack will be detected by

our model and accepted by others. The reason is that we were able to generate an invariant

on the possible return value of the function ctrl, stating that it is always equal to 1 (in

the form of the predicate ctrl(x) = 1) for all possible input value of x.

This invariant is propagated to other control locations beyond the control location where

ctrl is invoked. This implies that we are able to eliminate the ’’else’’ branch from

our model, and therefore detect any attack that tries to execute the write statement in

line 15.

Here, we compare our monitor to the corresponding Dyck model. First we represent
the Dyck model for this program.

getuid

PRE-SysCall A

PRE-SysCall B

getpid open

POST-SysCall A

POST-SysCall B

write

read

close

Our model obtained for this program is depicted in the figure below:

g1
getuid();

g2
getpid();

g3
open();

g4
read();

g5
close();
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Example 34. In our model, system calls arguments and return values are naturally cap-

tured by automatically generated invariants. Previous approaches [12] propose to learn

dependency between an argument variable and a constant during a training period that

does not guarantee an exhaustive listing of all possible dependencies. Consider the follow-

ing example where F and G are two uninterpreted functions.

1 vo id F i l e d e s ( i n t fd 1 , i n t f d 2 ) {

2 i n t t1 , t2 , t3 , t4 , t5 , a ;

3 i f ( f d 1==f d 2 ) {

4 t 1 = F( fd 1−f d 2 ) ;

5 t 2 = F(F ( 0 ) ) ;

6 }

7 e l s e {

8 t 2 = F( t1 ) ;

9 }

10 t 3 = F( t1 ) ;

11 a = fd 2 −1;

12 i f ( f d 1==a ){

13 t 4 = G( fd 1 , 2✯ f d 1 +1);

14 t 5 = G( fd 1 , G( fd 1 , 2✯ f d 2 −1));

15 }

16 e l s e

17 {

18 t 5 = G( fd 1 , t4 ) ;

19 c l o s e ( 1 ) ;

20 }

21 c l o s e ( 0 ) ;

22 }

First, we interpret F and G as being two common system calls dup() and dup2() and
we obtain the same program depicted in example 30. So, we obtained automatically the
following invariant: (t3 = t2)∧ (fd 2+−1.000000∗a = 1.000000)∧ (t2 = dup(t1))∧ (t5 =
dup2(fd1, t4)). Our invariants are strong enough to express dependencies between the ar-
guments of the system calls dup() and dup2() and their return values. A possible exploit
on this program will start by modifying the value of file descriptors fd1, fd2, t1, t2, · · · , t5
in order to grant the attacker access to critical files. As a first consequence, duplications
performed by dup(), dup2() or any system and function calls referring to these file de-
scriptors will be executed with the modified values. This is a mimicry attacks which can
not be detected by existing models [47, 55, 12], because their techniques can not for in-
stance see a dependency between the constant argument ”0” line 5 in F (F (0)), and the
arithmetic expression fd1 − fd2 in line 3 of F and between fd1 − fd2 and all the return
values of system or function call F performed in lines 4 and 5. Since we employ powerful
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invariant generation and propagation tools, our invariants capture all the necessary de-
pendencies and heir effect on the branch predicate fd1 == fd2 that decides which branch,
and therefore, which system call is executed. Now, consider the same program, but instead
of interpreting the functions F and G as system calls, we interpret F as ctrl, the function
that does not contain system calls given in the program of example 33 (between lines 24
and 36), and G by the function, which contains system calls, described by the following
program:

1 i n t G( i n t a , i n t b ){

2 i n t r e t ;

3 i f ( b < 15){

4 wr i t e ( b , . . , . . ) ;

5 r e t = b ;

6 }

7 e l s e {

8 c l o s e ( b , . . , . . ) ;

9 r e t = a ;

10 }

11 r e tu rn r e t ;

12 }

The figure below describes our generated model using invariant generation and propaga-

tion. We consider the predicates B ≡ (fd 1 = fd 2− 1) and P ≡ (b < 15).

B∧¬P
close(a);

B∧¬P
close(a);

B∧¬P
close(a);

J
close(0);

B∧P
write(b, ...);

B∧P
write(b,...);

B∧P
write(b,..);

¬B∧P
write(b,..);

¬B∧¬P
close(a);

¬B∧P
close(1);

¬B∧¬P
close(1);

Any mimicry attacks that manipulates these files descriptors will not by detected by the

other models. In particular, a Dyck mode [47, 55] will accept many sequences that could

be executed non-deterministically whereas our model only allows in a deterministic way

the four sequence of system calls described in the graph above.
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In Figure 6.6, we refer to published attacks in first column of the table. They are based

on non-control flow manipulation described at the second column. All these attacks do

not modify the sequences of system calls generated by the execution of the program but

violate a trivial invariant that is generated and propagated along the control structure

of the program and that is detected by our model. Notice, that attacks listed in S. chen

et al. [23] are detected by data flow integrity mechanisms implemented in M. Castro et

al. [22] and that connect read values to instructions that write those values. These are

exactly the kind of dependencies that a tool based on runs, like Daikon, generates. Also,

those are exactly the kinds of likely invariants that BLAST will manage to prove true

and, therefore, will appear in our model.

Reference Program Attacks

[23] ghttpd overwrite filename

[23] wu-ftpd overwrites userid

[39] rm.c race condition overwrites path name

[102, 123] ssh overwrite authentificated flag to non-zero

Figura 6.6: Non-control flow attacks detected by our methods.

To illustrate the effectiveness of our monitor, it detects any attacks generated au-

tomatically by the automated mimicry attacks generator described in C. Kruegel et al.

[75].

Theorem 27. (Effectiveness) Let P be a program, and the GSCG the guarded system

call graph of P. Any attack on P automatically generated by the framework described in

C. Kruegel et al. [75] is going to be detected by GSCG.

6.3.4 Vulnerability Auditing

In some cases our model detect application logic bugs efficiently.

Theorem 28. (Precision) Let P be a program, and let GSCG be the guarded system call

graph of P. If GSCG is build from deterministic abstract state graphs, then the sequences

of systems calls accepted by GSCG are exactly those accepted by the P.

Theorem 28 states that if the abstract state graph is deterministic, then there is

an equivalence between the application’s code and its abstract state graph. That is, the

model is not an overapproximation of the application behavior but is an exact abstraction.

Therefore, not only a deviation from the model is an attack, but the model itself is a

finite faithful representation of the original program that can be easily evaluated against

a specification of application for logic bugs and vulnerabilities.
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As we can see, the theoretical framework introduced in the previous sections has been

established. Moreover, we note that any other assertion checker, invariant generation or

dynamic tools can be considered in this framework.

6.4 Chapter Discussions: Performances and Limita-

tions

Any intrusion or malware detection system analysis will be strongly re-enforced by the

presence of these pre-computed invariants and will be weakened by their absence. Our

platform is flexible as any invariant generation method could be incorporated. In other

words, it is an open architecture, where any invariant generation tool can be connected

into a tool bus where invariants, expressed in different logics, will help in the identification

of malicious behavior or in the construction of a precision intrusion detection system.

We provide an extensible invariant-based formal platform for malware analysis. These

invariants would concisely capture the semantic of the malicious behavior of this family of

viruses and should be, then, associated to fewer semantic aware signatures. Following the

lines of such theoretical frameworks, we proposed host-based intrusion detection systems

using automatically generated models where system calls are guarded by pre-computed

invariants in order to report any deviation observed during the execution of an application.

Our methods also provide techniques for the detection of logic errors and vulnerabilities

in applications. By analogy with proof carrying code [98] approaches, our methods and

their automated proofs and inductive invariants generation provide use with a very precise

intrusion detection and malware identification system.

In terms of limitations, we cannot guarantee that all obfuscation techniques would

fail as the analysis depends on the formal methods that we have applied. It would be

essential to build a tool bus where any formal methods for static and dynamic analysis

could communicate their likely-invariants or inductive invariants. These communications

between tools would augment the productivity of invariants as a tool could discover new

invariants once it receives an invariant that it could not compute. In other words, this

tool bus would not be only a tool chain but a communication system between formal

methods handling different logics. Actually it is one of the main recent challenge for the

formal methods community [112]. Also, most formal methods applies to source code, but

since we would prefer static analysis tools that apply directly on object code, we note

that this could imply tedious implementations in some cases.
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Conclusions

Abstract: In this final Chapter, we offer our conclusions.

7.1 Final Conclusions

We proposed new computational methods that can automate the discovery and strength-

ening of non-linear interrelationships among the variables of a program that contains

non-linear loops, that is, programs that display multivariate polynomial and fractional

manipulations. Our methods automatically generate basis for non-trivial non-linear loop

invariants ideals, providing an efficient treatment of complicated non-linear loop pro-

grams. We succeeded in reducing the non-linear loop invariant generation problem to the

computation of eigenspaces of associated endomorphisms.

We described powerful computational methods, relying on linear algebraic methods,

that can generate basis for non-linear invariant ideals of non-linear hybrid systems. To

do so, we provided methods to generate non-trivial basis of provable invariants for local

continuous evolution modes described by non-linear differential rules. These invariants

can provide precise over-approximations of the set of reachable states in the continuous

state space. As a consequence, they can determine which discrete transitions are possible

and can also verify if a given property is fulfilled or not.

We first showed that the preconditions for discrete transitions and the Lie-derivatives

for continuous evolution can be viewed as morphisms and can be suitably represented

by matrices. The new relaxed consecution requirements, extended to fractional scaling,

are also encoded as morphisms represented by matrices with terms that can be used to

approximate the consecution conditions. Our invariant generation methods also embody

strategies to estimate degree bounds, leading to the discovery of rich classes of inductive,

provable invariants.

In order to verify safety properties expressed using transcendental functions, and to

149
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reason symbolically about formal power series, it is necessary to be able to generate formal

power series invariants. We presented the first verification methods that automatically

generate basis of invariants expressed by multivariate formal power series and transcen-

dental functions. We also discussed their convergence over hybrid systems that exhibit

non linear models. We provided resolution and convergence analysis for techniques that

can generate non trivial bases of provable multivariate formal power series and can also

generate transcendental invariants for each local continuous evolution rules. We reduced

the invariant generation problem to linear algebraic matrix manipulations and presented

an analysis of these matrices, from which we provide effective methods for solving the

original problem. The formal power series invariants generated are often composed by

the expansion of some well-known transcendental functions e.g. log and exp. They also

have an analysable closed-form which facilitates the use of the invariants when verifying

safety properties.

Our examples, dealing with non linear continuous evolution similar to those present

today in many critical hybrid embedded systems, showed the strength of our results. In

some of those examples we proved that they do not have “finite” polynomial invariants.

These are results which truly extend the limits of any recent approach to the invariant

generation problem. Moreover, for each invariant generation problem we deal with in this

thesis, we succeeded in establishing very general sufficient conditions that guarantee the

existence and allow for the computation of invariant ideals for situations that can not

be treated by other present invariant generation approaches. These conditions could be

directly used by any current or future constraint-based invariant generation methods, or

by any methods based on over-approximations and reachability. Moreover, such linear

algebraic methods have lower complexities than the mathematical foundations of the

previous approaches that needed Gröbner basis computations, quantifier eliminations or

cylindrical algebraic decompositions.

We also extended the domain of applications for invariant generation methods to the

area of security. More precisely, we presented a theoretical basis for the design of static and

dynamic analysis platforms which can lead to suitable architectures for automatic malware

analysis. We showed how formal methods, involving program static and dynamic analysis,

can be used to build such architectures. By doing so, we provided an extensible invariant-

based platform for malware analysis. Further, in the line of such theoretical frameworks,

we showed how we can detect the most virulent intrusions attacks using these invariants.

We proved that any static analysis based malware or intrusion detection system will be

strongly re-enforced by the presence of pre-computed invariants. Our platform is open

and flexible, in such a way that any current and future invariant generation methods can

be incorporated to it, in order to help in the identification of malicious behavior or in the

construction of precision intrusion detection systems.
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In summary, this thesis rigorously developed many mathematical techniques, based

on linear algebraic tools and their associated algorithms, for the analysis of programs and

hybrid systems. The novelty of our approaches provides the bases for future intensive

studies both in the filed of invariant generation for static program analysis, as well as for

the verification of safety and security properties.

7.2 Conclusões Finais

Propusemos novos métodos computacionais que podem automatizar a descoberta e fort-

alecimento das inter-relações não-lineares entre as variáveis de um programa que contém

laços não-lineares, ou seja, programas que exibem manipulações polinomiais multivariadas

e fracionárias. Nossos métodos geram automaticamente bases de ideais de invariantes não-

triviais para laços não-lineares, proporcionando um tratamento eficiente de programas

não-lineares complexos. Conseguimos reduzir o problema de geração de invariantes para

laços não-lineares para o cálculo de “eigenspaces” de endomorfismos associados. Descreve-

mos métodos computacionais poderosos que podem gerar bases de ideais para invariantes

não-lineares para sistemas h́ıbridos não-lineares. Para tal, fornecemos métodos para gerar

bases de invariantes não-triviais locais para modos de evolução cont́ınua, descritos por

regras diferenciais não-lineares. Estas invariantes podem fornecer sobre-aproximações

precisas do conjunto de estados alcançáveis no espaço de estado cont́ınuo. Como con-

seqüência, elas podem determinar quais das transições discretas são posśıveis e também

podem verificar se uma propriedade determinada é ou não verificada.

Primeiramente, mostramos que as condições prévias para transições discretas e as

derivadas de Lie para evoluções cont́ınuas podem ser vistas como morfismos e podem ser

adequadamente representadas por matrizes. Os novos requisitos para consecução relax-

ada, estendidos para escalas fracionárias, também são codificados como morfismos repre-

sentados por matrizes, com termos que podem ser usados para aproximar as condições de

consecução. Nossos métodos de geração de invariantes também incorporam estratégias

para estimar limites do grau dos polinômios, levando à descoberta de ricas classes de

invariantes indutivas. Para verificar as propriedades de segurança expressas através de

funções transcendentais, e raciocinar simbolicamente sobre séries de potência formais, é

necessário a capacidade de gerar invariantes sobre séries de potência formais. Apresenta-

mos os primeiros métodos de verificação que automaticamente geram bases de invariantes

expressas por séries de potências multivariadas formais e por funções transcendentais.

Também discutimos a convergência de tais séries geradas sobre sistemas h́ıbridos, que

exibem modelos não lineares. Fornecemos a análises de convergência para técnicas que

podem gerar bases não triviais de séries de potência multivariadas formais e também

podem gerar invariantes transcendentais para cada regra local de evolução cont́ınua. Re-
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duzimos o problema de geração de invariante para problemas envolvendo manipulações

algébricas lineares de matrizes, e apresentamos uma análise destas matrizes, a partir do

qual fornecemos métodos eficazes para resolver o problema original. As séries formais ger-

adas são muitas vezes compostas pela expansão de algumas funções transcendentais bem

conhecidos, tais como “log” e “exp”. Elas também apresentam formas fechadas analisáveis

que facilitam o uso de invariantes para verificar propriedades de segurança.

Os exemplos apresentados, lidando com evolução não linear cont́ınua semelhantes

àquelas presentes hoje em sistemas h́ıbridos ou embarcados cŕıticos, mostroram a força

dos resultados. Alguns desses exemplos provam que os sistemas subjacentes não têm

invariantes polinomiais “finitas”. Estes são resultados que realmente estendem os lim-

ites de outras abordagem para o problema da geração de invariantes. Além disso, para

cada problema de geração de invariante com que lidamos nesta tese conseguimos estab-

elecer condições suficientes muito gerais que garantem a existência e permitem o cálculo

de ideais invariantes para situações que não podem ser tratadas por outras abordagens

recentes de geração de invariantes. Estas condições podem ser diretamente usadas por

quaisquer métodos de geração de invariantes baseados em restrições, atuais ou futuros, ou

por quaisquer métodos de análise baseados em sobre-aproximações e acessibilidade. Além

disso, tais métodos algébricos lineares apresentam complexidades computacionais menores

do que outros cujos fundamentos matemáticos necessitam calcular bases de Gröbner, elim-

inar quantificador ou usar decomposições algébricas ciĺındricas.

Também ampliamos o domı́nio das aplicações para métodos de geração de invariantes

para a área de segurança. Mais precisamente, apresentamos uma base teórica para a con-

cepção de plataformas de análise estática e dinâmica que podem levar arquiteturas ade-

quadas para a análise automática de intrusões (“malwares”). Mostramos como os métodos

formais, envolvendo a análise estática e dinâmica de programas, podem ser usados para

construir tais arquiteturas. Fornecemos, assim, uma plataforma extenśıvel baseada em

invariantes para análise de malwares. Além disso, mostramos como podemos detectar os

ataques mais virulentos usando essas invariantes. Provamos que qualquer análise estática

de malwares ou sistemas de detecção de intrusão, será fortemente reforçada pela presença

de invariantes pré-computadas. A plataforma propsota é aberta e flex́ıvel, de tal forma

que métodos de geração de invariantes, atuais e futuros, podem ser incorporados a ela,

auxiliando na identificação de comportamentos maliciosos ou na construção de sistemas

de detecção de intrusão mais precisos.



Apêndice A

Proofs

In this Chapter we could find for each chapters, the collection of all theorem, lemma,

corollary and their associated proofs.
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A.1 Proofs of Chapter 2

A.1.1 Proofs of Section 3.4.1

Theorem 1

Consider a transition system corresponding to a loop τ as described in Eq. (3.4). A

polynomial Q in R[X1, .., Xn] is a λ-scale invariant for constant-scale consecution with

parametric constant λ ∈ R for τ if and only if

Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) = λQ(X1, .., Xn).

Demonstração. if

Q(X ′
1, .., X

′
n)− λQ(X1, .., Xn)

belongs to the ideal I generated by the family

(X ′
1 − L1, . . . , X

′
n − Ln),

then there exists a family

(A1, . . . , An)

of polynomials in

R[X ′
1, .., X

′
n, X1, .., Xn]

such that

Q(X ′
1, .., X

′
n)− λQ(X1, .., Xn) = (X ′

1 − L1)A1 + · · ·+ (X ′
n − Ln)An.

Letting

X ′
i = Li,

we obtain that

Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn).

Conversely suppose

Q(L1(X1, . . . , Xn), .., Ln(X1, . . . , Xn)) = λQ(X1, . . . , Xn),

then as Q(X ′
1, .., X

′
n) is equal to Q(L1, .., Ln) modulo the ideal I, we get that

Q(X ′
1, .., X

′
n) = λQ(X1, . . . , Xn)

modulo I.
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Theorem 2

A polynomial Q of Rr[X1, .., Xn] is λ-invariant for constant-scale consecution if and only

if there exists an eigenvalue λ of M such that Q belongs to the eigenspace corresponding

to λ.

Demonstração. Let Q be a polynomial in Rr[X1, .., Xn].

(Q(L1(X1, ..., Xn), .., Ln(X1, ..., Xn)) = λQ(X1, ..., Xn))

⇔ (M (Q) = λQ)

⇔ (M (Q) = λId(Q))

⇔ ((M − λId)(Q) = 0R[X1,..,Xn])

⇔ (Q ∈ Ker(M − λI)),

Using the definition of an invariant and theorem 1, we can see that Q will be a λ-scale

invariant if and only if it belong to the eigenspace correspoinding to λ.

Corollary 1 Let M the matrix introduce in this section, departing from its charaterisitcs

one could find several decidable classes for the problem of finding a non-trivial λ-invariant.

For instance one can list the following decidable classes:

❼ M is block triangular (with 4× 4 blocks or less) ,

❼ Eigenspace associated with eigenvalue 1 is of dimension greater than 1.

Demonstração. Suppose M is block triangular with blocks 4 × 4 or less, then it’s char-

acteristic polynomial will a product of polynomials of degree less than four, whose roots

can be calculated by Lagrange’s resolvent method [76].

For the second assertion, we already know that 1 is an eigenvalue, suppose that the

corresponding eigenspace is of dimension exactly one, then the only vectors in that space

are the constant polynomials. Whereas if it is of dimension two or more, than we get

polynomials that are non trivial in the eigenspace. Looking at theorem 2 to come, we see

that it is particularly interesting case.

A.1.2 Proofs of Section 3.4.2

Theorem 3

A polynomial Q in Rr[X1, .., Xn] is an inductive invariant for the affine loop with initial

values (u1, . . . , un) if and only if there is an eigenvalue λ of M such that Q is in the

intersection of the eigenspace of λ and the hyperplane Q(u1, . . . , un) = 0.
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Demonstração. We first consider theorem 14.

The initiation step defines on Rr[x1, . . . , xn] a linear form on this space, namely, Iu :

P 7→ P (u1, ..., un). Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given

by the kernel Iu, which is

{Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0} .

If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking

for a λ-scale invariant in Rr[x1, . . . , xn] that belongs to the hyperplane P (u1, . . . , un) = 0,

i.e., we are looking for Q in

ker(M − λI) ∩ {P | P (u1, . . . , un) = 0} .

Corollary 2

There will be a non-null invariant polynomial for any given initial values if and only if

there exists an eigenspace of M with dimension at least 2.

Demonstração.

(⇒) If there is a λ-scale invariant for any initial value. Then the corresponding eigenspace

has dimension at least 2. Indeed, if the space was of dimension only 1 (which is at

least necessary to have λ-invariants).Taking any nonzero vector Q in the eigenspace (i.e.

a λ-invariant), Q should lie in any hyperplane of initial values,i.e. for every n-tuple

(u1, . . . , un), one would have Q(u1, . . . , un) = 0, i.e Q = 0, which is absurd.

(⇐) Any eigenspace of M with dimension at least 2 will intersect any space (semi-

hyperplan, ...) given by any initial constraints. As any hyperplane is of codimension one

in Vr, it must have a nonzero intersection with any subspace of dimension strictly greater

than one.

A.1.3 Proofs of Section 3.5.1

Theorem 4

A polynomial Q in R[X1, .., Xn] is a T -scale discrete invariant for polynomial-scale conse-

cution with parametric polynomial T ∈ R[X1, ..., Xn] for τ if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).
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Demonstração. If Q(X ′
1, .., X

′
n) − TQ(X1, .., Xn) belongs to the ideal I generated by the

family

(X ′
1 − P1, . . . , X

′
n − Pn),

then there exists a family

(A1, . . . , An)

of polynomials in R[X ′
1, .., X

′
n, X1, .., Xn] such that

Q(X ′
1, .., X

′
n)− λQ(X1, .., Xn) = (X ′

1 − P1)A1 + · · ·+ (X ′
n − Pn)An.

Letting X ′
i = Pi, we obtain that

Q(P1(X1, ..., Xn), ..., Pn(X1, ..., Xn)) = TQ(X1, ..., Xn).

Conversely suppose

Q(P1(X1, . . . , Xn), .., Pn(X1, . . . , Xn)) = TQ(X1, . . . , Xn),

then asQ(X ′
1, .., X

′
n) is equal toQ(P1, .., Pn) modulo the ideal I, we get thatQ(X ′

1, .., X
′
n) =

λQ(X1, . . . , Xn) modulo I.

A.1.4 Proofs of Section 3.5.2

Theorem 5

ConsiderM as described above. Then, there will be a T -scale discrete invariant if and only

if there exists a matrix L (corresponding to P 7→ TP ) such that M − L has a nontrivial

kernel. Further, any vector in the kernel of M − L will give a T -scale invariant.

Demonstração. Let Q be a polynomial in R[X1, .., Xn]. In fact, a polynomial Q is T -

invariant if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),

i.e. if and only if

M (Q) = L (Q)⇔ (M −L )(Q) = 0R[X1,..,Xn].

Writing this in equivalent terms of matrices:

((M − L)Q = 0)⇔ (Q ∈ Ker(M − L)),

we get the statement of the theorem.
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Theorem 6

There is a non trivial T -scale invariant if and only if the polynomials (V1, .., Vs) admit a

common root, other than the trivial one (0, . . . , 0, 1).

Demonstração. From linear algebra, we know that M − L with a non trivial kernel is

equivalent to it having rank strictly less than the dimension v(r) of Rr[x1, . . . , xn].

This is equivalent to the fact that each v(r) × v(r) sub-determinant of MD − LT is

equal to zero.

Those determinants are polynomials with variables (t1, .., tv(d−1)), which we will denote

by

V1(t1, ..., tv(d−1)), ..., Vs(t1, ..., tv(d−1)).

From the form of L, this is zero when

(t1, ..., tv(d−1)) = (0, ..., 0).

Hence, in this case, M − L has its last column equal to zero, giving a common root

for these polynomials, corresponding to the constant invariants.

A.1.5 Proofs of Section 3.5.3

Theorem 7

Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the transition system with

initial values (u1, .., un) if and only if there exists a matrix L 6= 0 (the one of P 7→ TP ),

corresponding to T in Re[X1, .., Xn], such that Q is in the intersection of Ker(M−L) and

the hyperplane given by the initial values Q(u1, . . . , un) = 0. The invariants correspond

to vectors in the intersection

Demonstração. We first consider theorem 5.

The initiation step defines on Rr[x1, . . . , xn] a linear form on this space, namely,

Iu : P 7→ P (u1, ..., un).

Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given by the kernel Iu,

which is

{Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0} .

If we add initial conditions of the form

(x1(0) = u1, . . . , xn(0) = un),

we are looking for a T -scale differential invariant in Rr[x1, . . . , xn] that belongs to the

hyperplane

P (u1, . . . , un) = 0,
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i.e., we are looking for Q in

ker(M − L) ∩ {P | P (u1, . . . , un) = 0} .

Corollary 3

There are non-trivial invariant for any given initial values if and only if there exists a

matrix L such that Ker(M − L) has dimension at least 2. The basis of Ker(M − L)

being a basis for non-trivial invariants.

Demonstração.

❼ (⇒) If there is a T -scale invariant for any initial value, then the corresponding

eigenspace has dimension at least 2. Indeed, if the space was of dimension only 1

(which is at least necessary to have T -invariants), taking any non-zero vector Q in

the eigenspace (i.e. a T -invariant), Q should lie in any hyperplane of initial values,i.e.

for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0,i.e Q = 0, which is

absurd.

❼ (⇐) Any intersection between an eigenspace of MD −LT with dimension at least 2

will intersect any space (semi-hyperplane, ...) given by any initial constraints.

A.1.6 Proofs of Section 3.6

Corollary 8

Let ¯M − L = U · S · V be the singular value decomposition of matrix ¯M − L described

just above. There will be a non trivial T -invariant for any given initial condition if and

only if the number of non-zero elements in matrix S is less than v(r)−2, where v(r) is the

dimension of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace obtained

from the decomposition directly gives an ideal for non-linear invariants.

Demonstração. The right singular vectors corresponding to vanishing singular values of
¯M − L span the null space of ¯M − L. The left singular vectors corresponding to the

non-zero singular values of ¯M − L span the range of ¯M − L. As a consequence, the rank

of ¯M − L equals the number of non-zero singular values which is the same as the number

of non-zero elements in the matrix S.
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A.1.7 Proofs of Section 3.7

Theorem 8

A polynomial Q in R[X1, .., Xn] is a F -scale invariant for fractional discrete scale conse-

cution with a parametric fractional F ∈ R(X1, .., Xn) for τ if and only if

Q

(
P1

Q1

, ..,
Pn

Qn

)

= FQ.

Demonstração. If Q(X ′
1, .., X

′
n) − FQ(X1, .., Xn) belongs to the fractional ideal J gener-

ated by the family

(X ′
1 − P1/Q1, . . . , X

′
n − Pn/Qn),

then there exists a family

(A1, . . . , An)

of fractional functions in

R(X ′
1, .., X

′
n, X1, .., Xn)

such that

Q(X ′
1, .., X

′
n)− FQ(X1, .., Xn) = (X ′

1 − P1/Q1)A1 + · · ·+ (X ′
n − Pn/Qn)An.

Letting

X ′
i =

Pi

Qi

,

we obtain that

Q(
P1

Q1

, ..,
Pn

Qn

) = λQ(X1, . . . , Xn).

Conversely suppose

Q(
P1

Q1

, ..,
Pn

Qn

) = FQ(X1, .., Xn),

then asQ(X ′
1, .., X

′
n) is equal toQ(

P1

Q1
, .., Pn

Qn
) modulo the ideal J , we get thatQ(X ′

1, .., X
′
n) =

FQ(X1, .., Xn) modulo J .

Theorem 9

ConsiderM and L as described above. Then, there exists F -scale invariants (where F

is of the form T/Πr) if and only if there exists a matrix L such that Ker(M −L) 6= ∅. In

this situation, any vector in the kernel of M −L will give a F -scale discrete invariant.
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Demonstração. Let Q be a polynomial in R[X1, .., Xn]. In fact, a polynomial Q is T/Πr-

invariant if and only if

Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T/Πr(X1, .., Xn)Q(X1, .., Xn),

which is equivalent to

ΠrQ(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn),

i.e. if and only if

(M (Q) = L (Q))⇔ ((M −L )(Q) = 0R[X1,..,Xn]

Writing this in equivalent terms of matrices:

((M − L)Q = 0)⇔ (Q ∈ Ker(M − L)),

we get the statement of the theorem.

Theorem 10

We have a non trivial invariant if and only if there exists a matrix L such that the

intersection of the kernel of M − L and the hyperplane given by the initial values is not

zero, the invariants corresponding to vectors in the intersection.

Demonstração. We first consider theorem 14.

The initiation step defines on Rr[x1, . . . , xn] a linear form on this space, namely, Iu :

P 7→ P (u1, ..., un). Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given

by the kernel Iu, which is

{Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0} .

If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking

for a strong-scale differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane

P (u1, . . . , un) = 0, i.e., we are looking for Q in ker(M−L)∩{P | P (u1, . . . , un) = 0}.

Corollary 5 We will have a non-trivial invariant for any non-trivial initial value if there

exists a matrix L such that the dimension of Ker(M − L) is at least 2.

Demonstração.
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❼ (⇒) If there is a non-trivial F -scale invariant for any initial value, then the corre-

sponding eigenspace has dimension at least 2. Indeed, if the space was of dimension

only 1 (which is at least necessary to have F -invariants), taking any non-zero vector

Q in the eigenspace (i.e. a F -invariant), Q should lie in any hyperplane of initial val-

ues,i.e. for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0,i.e Q = 0,

which is absurd.

❼ (⇐) Any intersection between an eigenspace of M with dimension at least 2 will

intersect any space (semi-hyperplane, ...) given by any initial constraints.

A.1.8 Proofs of Section 3.8

Theorem 11

Let I = {I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)
1, ..., f

(j)
nj ) where

j ∈ [1, k]. Let’s �(I1, ..., Ik) = {δ1, ..., δn1n2...nk
} such that all elements δi in �(I1, ..., Ik)

are formed by the product of one element from each ideal in I. Assume that all Ijs are

ideals of invariants for a loop at location lj described by a transition τj. Now, if all lj
describe the same location/program point l, then we have several transitions looping at

the same point. So we obtain an encoding of possible execution paths of a loop containing

conditional statements. Then �(I1, ..., Ik) is an ideal of non-trivial non-linear invariants

for the entire loop located at l.

Demonstração. Let f
(j)
1 , ..., f

(j)
nj ∈ K[X1, ..., Xn] such that Ij = (f

(j)
1 , ..., f

(j)
nj ), forall j in

[1, k].

Let β ∈ (�(I1, ..., Ik)), then there exists e1, ..., en1n2...nk
∈ K[X1, .., Xn] such that

β = e1δ1 + ... + en1n2...nk
δn1n2...nk

. Also, by construction of �(I1, ..., Ik) we know that:

∀r ∈ [1, ..., n1n2...nk], δr ∈ �(I1, ..., Ik).

In other words, ∃(α
(r)
1 , ..., α

(r)
k ) ∈ I1 × ...× Ik such that δr = Πk

i=0α
(r)
i .

Then we have β =
∑n1n2...nk

j=1 [λjΠ
k
i=1α

(j)
i ].

Now, for all m in [1, k], if Im correspond to a pre-computer inductive ideal of in-

variant associated to one of the transition τm at the location l, then ∀j ∈ [1, n1n2..nk],

α
(j)
m (X1, ..., Xn) = 0. And so ∀j ∈ [1, n1n2..nk], Πk

i=1α
(j)
i = 0.

Finally we obtain β(X1, ..., Xn) = 0 for allm in [1, n1n2..nk]. In other words, β(X1, ..., Xn) =

0 is an algebraic assertion true at any step of the iteration of the loop for any transition

τm that could possibily taken. Then (β(X1, ..., Xn) = 0) is an inductive invariant and we

can conclude that (�(I1, ..., Ik)) is an ideal of inductive invariant.
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A.2 Proofs of Chapter 3

A.2.1 Proofs of Section 4.3

Theorem 12

Let P be a continuous function and let

S =






Ẋ1(t) = P1(X1(t), .., Xn(t))
...

Ẋn(t) = Pn(X1(t), .., Xn(t)






be a differential rule, with initial condition (x1, .., xn). Any polynomial which is a P -scale

differential invariant for these initial conditions is actually an inductive invariant.

Demonstração. Suppose Q ∈ R[X1, .., Xn] is such an invariant. Then if (X1(t), .., Xn(t))

is a solution of (S), by the definition of P -scale invariant one has

DQ(P1, .., Pn, X1, .., Xn) = PQ(X1, .., Xn).

Call f(t) the function Q(X1(t), .., Xn(t)). Then we get

ḟ(t) = P (X1(t), .., Xn(t))f(t).

Call R(t) an anti-derivative of P (X1(t), .., Xn(t)).

Then f must be of the form

t 7→ λeR(t)

for some scalar λ.

Now taking into account the initial conditions, if Q(x0, .., xn) = 0⇔ f(0) = 0, then λ

must be zero.

Hence, f(t) = Q(X1(t), .., Xn(t)) is the zero function, and Q is an invariant of (S).

Theorem 13

There exist a differential rule S such that its invariants are not Polynomial-scale differ-

ential invariant. Such systems are then counter-example for completeness.

Demonstração. Consider polynomial-scale consecution, the system

[
ẋ = ax(t)

ẏ = ay(t) + bx(t)y(t)

]

could be cited as counter-example for completeness as its invariants are not P -scale dif-

ferential invariant.
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A.2.2 Proofs of Section 4.4.1

Lemma 1

Let Q ∈ R[X1, .., Xn] such that DQ(P1, .., Pn, X1, .., Xn) = 0. Then Q is a strong-scale

differential invariant.

Demonstração. Let Q ∈ R[X1, .., Xn] be a polynomial such that

DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = 0

. then dQ/dt = 0 and Q is a strong invariant as dXi(t)
dt

= Pi(X1, ..., Xn) for all i in [1, n]

and by construction of DQ.

Theorem 14

A polynomial Q of Rr[X1, .., Xn] is a strong-scale differential invariant for the differential

system (4.1) if and only if it lies in the kernel of MD.

Demonstração. let Q ∈ R[X1, .., Xn] be a polynomial. Then

(DQ(P1, .., Pn, X1, .., Xn) = 0) ⇔ (D(Q) = 0K[X1,..,Xn])

⇔ (Q ∈ Ker(MD)).

Using the definition of an invariant and lemma 1, we can see that Q will be a strong-scale

invariant if and only if it is in the kernel of MD.

Theorem 15 Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the differen-

tial system with initial values (u1, .., un) if and only if Q is in the intersection of Ker(MD)

and the hyperplane Q(u1, . . . , un) = 0.

Demonstração. We first consider theorem 14.

The initiation step defines on Rr[x1, . . . , xn] a linear form on this space, namely, Iu :

P 7→ P (u1, ..., un). Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given

by the kernel Iu, which is

{Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0} .

If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are looking

for a strong-scale differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane

P (u1, . . . , un) = 0, i.e., we are looking for Q in

ker(MD) ∩ {P | P (u1, . . . , un) = 0} .
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Corollary 6 There exists a strong-scale invariant of degree r for the differential system

with initial conditions (any initial conditions, actually), if and only if the kernel of MD

is of dimension at least 2. The basis of Ker(MD) gives a basis of a non-trivial invariant

ideal

Demonstração.

❼ (⇒) If there is a non-trivial strong-scale invariant for any initial value, then the

corresponding eigenspace has dimension at least 2. Indeed, if the space was of

dimension only 1 (which is at least necessary to have strong-invariants), taking

any non-zero vector Q in the eigenspace (i.e. a strong-invariant), Q should lie in

any hyperplane of initial values,i.e. for every n-tuple (u1, . . . , un), one would have

Q(u1, . . . , un) = 0,i.e Q = 0, which is absurd.

❼ (⇐) Any intersection between an eigenspace of MD with dimension at least 2 will

intersect any space (semi-hyperplane, ...) given by any initial constraints.

Lemma 2 Let Q1, . . . , Qn be n polynomials in R[X1, . . . , Xn]. Then there exists a poly-

nomial Q such that ∂1Q = Q1, . . . , ∂nQ = Qn if and only if for any i 6= j, 1 ≤ i, j ≤ n,

one has ∂iQj = ∂jQi.

Demonstração. We treat the case of two variables, the case of n variables being a straight

generalization.

Suppose that

∂iQj = ∂jQi

for each pair (i, j).

We choose a polynomial Q1, an anti-derivative of Q1 with respect to x1.

Now

∂1(∂2Q
1) = ∂2(∂1Q

1) = ∂2Q1 = ∂1Q2.

Hence

∂1(∂2Q
1 −Q2) = 0,

and so

∂2Q
1 = Q2 + b(x2, . . . , xn)

for some function b of (x2, . . . , xn) which is actually a polynomial.



166 Apêndice A. Proofs

Choosing an anti-derivative B(x2, . . . , xn) of b(x2, . . . , xn) with respect to x2, one ver-

ifies that

Q1,2 = Q1 − B(x2, . . . , xn)

is such that

∂1Q1,2 = Q1

and

∂2Q1,2 = Q2.

Now,

∂1∂3Q1,2 = ∂3∂1Q1,2 = ∂3Q1 = ∂1Q3,

and

∂2∂3Q1,2 = ∂2Q3

as well.

Hence,

∂3Q1,2 −Q3 = c(x3, . . . , xn)

for a polynomial c. Taking C as an anti-derivative of c with respect to x3, one deduces

that

Q1,2,3 = Q1,2 − C

is such that

∂iQ1,2,3 = Qi

for i = 1, 2, 3.

Repeating the process, we construct Q1,...,n such that

∂iQ1,...,n = Qi,

for i = 1, 2, 3.

Theorem 16

There exists a strong-scale invariant for a differential system if and only if there exists

(Q1, .., Qn) in Syz(P1, .., Pn) such that for any i, j with i 6= j and 1 ≤ i, j,≤ n, one has

∂iQj = ∂jQi.

Demonstração. Obtain by directly using lemma 2.
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A.2.3 Proofs of Section 4.4.2

Lemma 3

Let Q ∈ R[X1, ..., Xn] such that

DQ(P1, .., Pn, X1, .., Xn) = λQ(X1, .., Xn).

Then Q is a λ-scale invariant.

Demonstração. Let Q ∈ R[X1, .., Xn] be a polynomial such that

DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = λQ(X1, .., Xn).

. As dXi(t)
dt

= Pi(X1, ..., Xn) for all i in [1, n] and by construction ofDQ we obtain dQ
dt

= λQ.

So, dQ
dt
− λQ = 0 and Q is a λ-scale invariant.

Theorem 17

A polynomial Q of Rr[X1, .., Xn] is a λ-scale invariant for continuous-scale consecution

of the differential system if and only if there exists an eigenvalue λ of MD such that Q

belongs to the eigenspace of MD corresponding to λ.

Demonstração.

(DQ(P1, .., Pn, X1, .., Xn) = λQ(X1, ..., Xn))

⇔ (D(Q) = λId(Q))

⇔ ((D − λId)(Q) = 0R[X1,..,Xn])

⇔ (Q ∈ Ker(D − λId)),

⇔ (Q ∈ Ker(MD − λI)).

Using the definition of an invariant and lemma 3, we can see that Q will be a strong-scale

invariant if and only if it is in the kernel of MD.

Theorem 18

A polynomial Q in Rr[X1, .., Xn] is an λ-scale invariant for the differential system with

initial values (u1, . . . , un) if and only if there exists an eigenvalue λ of MD such that

Q belongs to the intersection of the eigenspaces corresponding to λ and the hyperplane

Q(u1, . . . , un) = 0.

Demonstração. We first consider theorem 14.

The initiation step defines on Rr[x1, . . . , xn] a linear form on this space, namely,

Iu : P 7→ P (u1, ..., un).
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Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given by the kernel Iu,

which is

{Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0} .

If we add initial conditions of the form (x1(0) = u1, . . . , xn(0) = un), we are look-

ing for a λ-scale differential invariant in Rr[x1, . . . , xn] that belongs to the hyperplane

P (u1, . . . , un) = 0, i.e., we are looking for Q in

ker(MD − λI) ∩ {P | P (u1, . . . , un) = 0} .

Corollary 7 There will be a non-null polynomial invariant for any given initial values if

and only if there exists an eigenspace of MD with dimension at least 2.

Demonstração.

❼ (⇒) If there is a λ-scale invariant for any initial value, then the corresponding

eigenspace has dimension at least 2. Indeed, if the space was of dimension only 1

(which is at least necessary to have λ-invariants), taking any non-zero vector Q in

the eigenspace (i.e. a λ-invariant), Q should lie in any hyperplane of initial values,i.e.

for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0,i.e Q = 0, which is

absurd.

❼ (⇐) Any intersection between an eigenspace of MD with dimension at least 2 will

intersect any space (semi-hyperplane, ...) given by any initial constraints.

A.2.4 Proofs of Section 4.5

Lemma 4

Let Q ∈ R[X1, .., Xn] such that

DQ(P1, .., Pn, X1, .., Xn) = TQ

with T in R[X1, .., Xn]. Then Q is a T -scale invariant.

Demonstração. Let Q ∈ R[X1, .., Xn] be a polynomial such that

DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = TQ(X1, .., Xn).

. As dXi(t)
dt

= Pi(X1, ..., Xn) for all i in [1, n] and by construction ofDQ we obtain dQ
dt

= TQ.

So, dQ
dt
− TQ = 0 and Q is a T -scale invariant.
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Theorem 19

There is a polynomial-scale invariant for the differential system if and only if there exists

a matrix LT in M(pol), corresponding to a polynomial T of Rd−1[x1, .., Xn], such that

Ker(MD − LT ) is not reduced to zero. And, any vector in the kernel of MD − LT will

give a T -scale differential invariant.

Demonstração. The sketch of the proof is induced by the constructed linear algebraic

reduction. Assume that there an invariant Q in Rr[x1, . . . , xn] for differential polynomial-

scale consecution corresponding to the differential system. And, there exists a polynomial

T such that
˙Q(x1, ..., xn) = T (x1, .., xn)Q(x1, .., xn).

By definition, we have

DQ(P1, . . . , Pn, x1, . . . , xn) = TQ

and then

D(Q) = T (Q).

In other words (D − T )(Q) = 0, i.e. Q ∈ Ker(MD − LT ) which means that Ker(MD −

LT ) 6= ∅. On the other hand if Ker(MD−LT ) 6= ∅ then there exists a polynomial P such

that MD(P ) = LT (P ). By definition, D(P ) = T (P ) and DP (P1, . . . , Pn, x1, . . . , xn) =

TP . In other words, ˙P (x1, ..., xn) = T (x1, .., xn)P (x1, .., xn) and P is a T invariant in

Rr[x1, . . . , xn] for differential polynomial-scale consecution corresponding to the differen-

tial system.

Theorem 20

There is a non trivial T -scale invariant if and only if the polynomials (E1, .., Es) admit a

common root, other than the trivial one (0, ..., 0).

Demonstração. From linear algebra, we know that MD − LT with a non trivial kernel is

equivalent to it having rank strictly less than the dimension v(r) of Rr[x1, . . . , xn].

This is equivalent to the fact that each v(r) × v(r) sub-determinant of MD − LT is

equal to zero.

Those determinants are polynomials with variables (t1, .., tv(d−1)), which we will denote

by

E1(t1, ..., tv(d−1)), ..., Es(t1, ..., tv(d−1)).

From the form of LT , this is zero when

(t1, ..., tv(d−1)) = (0, ..., 0).

Hence, in this case, MD −LT has its last column equal to zero, giving a common root

for these polynomials, corresponding to the constant invariants.
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Theorem 21

Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for the differential system

with initial values (u1, .., un) if and only if there exists a matrix LT 6= 0 in M(pol),

corresponding to T in Rd−1[X1, .., Xn], such that Q is in the intersection of Ker(MD−LT )

and the hyperplane Q(u1, . . . , un) = 0.

Demonstração. We first consider theorem 19. The initiation step defines on Rr[x1, . . . , xn]

a linear form on this space, namely, Iu : P 7→ P (u1, ..., un). Hence, initial values corre-

spond to a hyperplane of Rr[X1, .., Xn] given by the kernel Iu, which is

{Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}. If we add initial conditions of the form (x1(0) =

u1, . . . , xn(0) = un), we are looking for a T -scale differential invariant in Rr[x1, . . . , xn]

that belongs to the hyperplane P (u1, . . . , un) = 0, i.e., we are looking for Q in

ker(MD − LT ) ∩ {P | P (u1, . . . , un) = 0} .

Corollary 8

There are non-trivial invariants for any given initial values if and only if there exists a

matrix LT in M(pol) such that Ker(MD − LT ) has dimension at least 2.

Demonstração.

❼ (⇒) If there is a T -scale invariant for any initial value, then the corresponding

eigenspace has dimension at least 2. Indeed, if the space was of dimension only 1

(which is at least necessary to have T -invariants), taking any non-zero vector Q in

the eigenspace (i.e. a T -invariant), Q should lie in any hyperplane of initial values,i.e.

for every n-tuple (u1, . . . , un), one would have Q(u1, . . . , un) = 0,i.e Q = 0, which is

absurd.

❼ (⇐) Any intersection between an eigenspace of MD −LT with dimension at least 2

will intersect any space (semi-hyperplane, ...) given by any initial constraints.

A.2.5 Proofs of Section 4.6

Corollary 9

Let M̄ = U ·S ·V be the singular value decomposition of matrix M̄ described just above.

There will be a non trivial T -invariant for any given initial condition if and only if the

number of non-zero elements in matrix S is less than v(r)−2, where v(r) is the dimension
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of Rr[x1, . . . , xn]. Moreover, the orthonormal basis for the nullspace obtained from the

decomposition directly gives an ideal for non-linear invariants.

Demonstração. The right singular vectors corresponding to vanishing singular values of

M̄ span the null space of M̄ . The left singular vectors corresponding to the non-zero

singular values of M̄ span the range of M̄ . As a consequence, the rank of M̄ equals the

number of non-zero singular values which is the same as the number of non-zero elements

in the matrix S.

A.2.6 Proofs of Section 4.8

Theorem 22

Let W be a hybrid system and let l be one of its locations. Let I = {I1, ..., Ik} a set of

ideals in R[X1, ..., Xn] such that Ij = (f (j)
1, ..., f

(j)
nj ) where j ∈ [1, k]. Let �(I1, ..., Ik) =

{δ1, ..., δn1n2...nk
} be such that all elements δi in �(I1, ..., Ik) are formed by the product of

one element from each ideal in I. Assume that the Ij’s are collections of invariant ideals

associated to S(l), its differential rule, C(l), its local conditions, and all invariant ideals

generated considering all incoming transitions at l. Then �(I1, ..., Ik) is a non-trivial

invariant ideal for location l.

Demonstração. Let f
(j)
1 , ..., f

(j)
nj in K[X1, .., Xn] such that Ij = (f (j)

1, ..., f
(j)
nj ), forall j

in [1, k].Let β ∈ (�(I1, ..., Ik)),then there exists e1, .., en1n2..nk
in K[X1, .., Xn] such that

β = e1δ1 + .. + en1n2..nk
δn1n2..nk

. Also, by construction of �(I1, ..., Ik) we know that:

∀r ∈ [1, .., n1n2..nk], δr ∈ �(I1, ..., Ik). ∃(α
(r)
1 , .., α

(r)
k ) ∈ I1 × I2 × .. × Ik such that

δr =
∏k

i=o α
(r)
i . Then we have β =

∑n1n2..nk

j=1 [λj
∏k

i=1 α
(j)
i ]. Now, for all m in [1, k], if

Im correspond to a pre-computer inductive ideal of invariant associated to one of the

transition τm at the location l, then ∀j ∈ [1, n1n2..nk], α
(j)
m (X1, .., Xn) = 0. And so

∀j ∈ [1, n1n2..nk],
∏k

i=1 α
(j)
i = 0. Finally we obtain β(X1, .., Xn) = 0 for all m in

[1, n1n2..nk]. In other words, (β(X1, .., Xn) = 0) is an algebraic assertion true at any

step of the iteration of the loop for any transition τm that could possibliy taken. Then

(β(X1, .., Xn) = 0) is an inductive invariant and we can conclude that (�(I1, ..., Ik)) is an

ideal of inductive invariant.

Corollary 10

Let l be a state and let C(l) ≡ (Pi(x1, .., xn) < 0) be its semi-algebraic local conditions

and Q be an inductive invariant for D(l), its differential rule, and all ideals of invariants

generated considering all incoming transitions at l. Then (Pi(x1, .., xn)−Q(x1, .., xn) < 0)

is an inductive invariant.
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Demonstração. This is straight forward from the fact that (Pi(x1, .., xn)−Q(x1, .., xn) < 0)

will be an invariant as soon as Q(x1, .., xn) = 0 is an inductive invariant at l. We conclude

using theorem 22.
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A.3 Proofs of Chapter 4

A.3.1 Proofs of Section 5.4

Lemma 5

Assume that matrix A =M1,1 is triangular,i.e.

A =










λ1

⋆ λ2

⋆ ⋆
. . .

⋆ ⋆ ⋆ λn−1

⋆ ⋆ ⋆ ⋆ λn










.

Then Mp,p is also triangular with diagonal terms

i1λ1 + · · ·+ inλn,

where i1 + · · ·+ in = p.

Demonstração. In this case,

P j
1 .X

1 = λjxj + aj,j+1xj+1 + · · ·+ aj,nxn.

Now consider the monomial basis

P (X) = xi11 . . . x
in
n ,

where i1 + · · ·+ in = p.

One has

Dp,p(X) = i1x
i1−1
1 . . . xinn (λ1x1 + a1,2x2 + · · ·+ a1,nxn)

+i2x
i1
1 x

i2−1
2 . . . xinn (λ2x2 + a2,3x3 + · · ·+ a2,nxn)

+ · · ·+

+inx
i1
1 . . . x

in−1
n (λnxn)

= (i1λ1 + · · ·+ inλn)x
i1
1 . . . x

in
n + Ω

,

and Ω is a sum of higher terms monomials that come after xi11 . . . x
in
n in the ordered

basis of Rp[x1, . . . , xn].
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Then, matrixMp,p corresponding, toDp,p in the canonical ordered basis ofRp[x1, . . . , xn],

is: 















pλ1

⋆ (p− 1)λ1 + λ2

⋆ ⋆
. . .

⋆ ⋆ ⋆

n∑

k=1

ikλk

⋆ ⋆ ⋆ ⋆
. . .

⋆ ⋆ ⋆ ⋆ ⋆ λn−1 + (p− 1)λn

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ pλn

















Thus, it is also triangular with diagonal terms

i1λ1 + · · ·+ inλn,

where i1 + · · ·+ in = p.

A.3.2 Proofs of Section 5.5

Theorem 23

Let F be a λ-invariant for a system S.

Let U be an open subset of Rn, where F is defined by a normally convergent power

series.

If there is an initial condition

x1(0), ..., xn(0)

in U such that

F (x1(0), ..., xn(0)) = 0,

then

F (x1(t), ..., xn(t)) = 0

for all t such that x1(t), ..., xn(t) remain in U , i.e F is an invariant of S for the initial

condition

x1(0), ..., xn(0).

Demonstração. As the power series defining F converges normally on U , so does any of

its derivatives.
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Thus,

Ḟ (x1(t), ..., xn(t)) =
n∑

i=1

∂iF (x1(t), ..., xn(t))ẋi(t) = λF (x1(t), ..., xn(t))

because of the λ-invariant property.

So, F (x1(t), ..., xn(t)) must be equal to

t 7→ keλt

for some constant k.

But as

F (x1(0), ..., xn(0)) = 0,

then k is zero, and so is F (x1(t), ..., xn(t)) for any t s.t.

(x1(t), . . . , xn(t)) ∈ U.

A.3.3 Proofs of Section 5.5.1

Theorem 24

Let A be the Jacobian matrix at zero of the polynomial

P = (P1, ..., Pn)

defining the system S, whose expression is:

(∂iPj(0, ..., 0), i, j ∈ [1, n]2).

Let Pk(0, .., 0) = 0. If A is triangularizable with eigenvalues

λ1 ≤ ... ≤ λn

then there exists a λ-invariant formal power series for S when all eigenvalues are positive,

or are all negative, with

λ = λ1.

Demonstração. Up to a linear change of variables, we can assume that matrix A is trian-

gular with diagonal terms

λ1 ≤ ... ≤ λn.
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We know that matrix Mk,k has the form described in Lemma 5.

As A is triangular, so is Mk,k, and its diagonal terms are the real numbers

i1λ1 + · · ·+ inλn,

where

i1 + · · ·+ in = k.

Hence, the diagonal terms of

Mk,k − λIk+1

are

0 ≤ λ2 − λ... ≤ λn − λ

when k = 1.

Also, it has a nonzero kernel, and so we can chose a nonzero F1, such that

(M1,1 − λI2)F1 = 0.

For k ≥ 2 and i1 + · · ·+ in = k, the diagonal terms

i1λ1 + · · ·+ inλn − λ

of the triangular matrix

Mk,k − λIk+1

are greater than

i1λ1 + · · ·+ inλn − λ = kλ− λ > λ > 0.

So, Mk,k − λIk+1 is invertible.

Hence we can choose:

F2 = −(M2,2 − λI3)
−1M1,2F1,

and then

F3 = −(M3,3 − λI4)
−1(M1,3F1 +M2,3F2),

and recursively,

Fk = −(Mk,k − λIk+1)
−1(Mk−min(k,m)+1,kFk−min(k,m)+1 + · · ·+Mk−1,kFk−1).

Then,

(F1, F2, . . . )

ia a nonzero solution of the system and the formal power series
∑

i

FiX
i

is a λ-invariant.
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Theorem 25

Let A be the Jacobian matrix at zero of the polynomial

P = (P1, ..., Pn)

defining a system S, as in Eq. (5.2.2), and whose expression is

(∂iPj(0, ..., 0), i, j ∈ [1, n]2).

Assume, further, that Pk(0, .., 0) = 0.

Suppose that A is triangularizable with eigenvalues

λ1 ≤ ... ≤ λn.

Denote λ1 by λ and assume that the eigenspace associated with λ is of dimension at least

2.

Let F1 and F2 be two independent λ-invariants.

If there is an open subset U of Rn, over which F1 and F2 define two normally convergent

power series, then for any initial value

(x1,0, . . . , xn,0),

the power series

F2(x1,0, . . . , xn,0)F1 − F1(x1,0, . . . , xn,0)F2

defines an inductive invariant on U for the solution of S with initial conditions

x1(0) = x1,0, . . . , xn(0) = xn,0.

Demonstração. Both F1 and F2 are convergent for a solution

(x1(t), . . . , xn(t))

with initial values

(x1,0, . . . , xn,0)

in U .

Hence, it must stay in U for small t. Moreover, since F1 and F2 are independent,

F = F2(x1,0, . . . , xn,0)F1 − F1(x1,0, . . . , xn,0)F2

is a nonzero λ-invariant which vanishes at

(x1,0, .., xn,0).

So, according to Theorem 23, F is an inductive invariant
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A.4 Proofs of Chapter 5

A.4.1 Proofs of Section 6.3.3

Theorem 26

Let P be a program, and GSCG and E GSCG be respectively the guarded system call

and and the extended system call graph for P .

❼ If P contains no recursive functions then any GSCG can be simulated by Dyke

Model.

❼ If P contains recursive functions then any E GSCG can be simulated by Dyck

Model.

Demonstração. For the first assertion, we show that GSCG can be simulated with the

following encoding. Let G be the GSCG of P and t ∈ δP such that t = (s, g, C,A, s′).

❼ If the action A is of the form Pred(s, F ) := True then there exist a transtion in the

Dyke Model departing from s and labeled by Pre Call F .

❼ If the action is of the form Pred(s, F ) := False and the guard Pred(s, F ) == True

then there exists a transition departing from s labeled by Post Call F and the top

of the Dyke stack is Pre Call F .

For the second assertion, we show that E GSCG can be simulated with the following

encoding. Let G be the E GSCG of P and t ∈ δE.

❼ If t = (s, ǫ, g, C,Push(γ), s′, γ) and γ = (Pred(s, F ), 1). Then there exist a transtion

in the Dyke Model departing from s and labeled by Pre Call F . At s′ the top of

the Dyke stack is Pre Call F and the top of EG’s stack is (Pred(s, F ), 1).

❼ If t = (s, γ, (Pred(s, F ) == True) ∧ g, C,Pop(γ), s′, ǫ and γ = ((Pred(s′, F ), 1).

Then there exists a transition departing from s labeled by Post Call F and the top

of the Dyke stack is Pre Call F .

❼ The other cases are the same as these describe for the GSCG.

For all sequences of system calls w ∈ SysC∗ generated by the normal execution of P , if

there exists an accepted run of G on w then there exists the corresponding run in the

Dyke Model.

Theorem 27

Let P be a program, and GSCG the guarded system call graph of P . Any attack on P

automatically generated by the framework described in [75] is going to be detected by

GSCG.
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Demonstração. The technique described in [75] consists in finding a sequence

sc1, sc2, . . . , scn

of system calls that are accepted by an intrusion detection model such a Dyck model.

The attacker hijacks the application and executes the following sequence:

mc1, sc1, r1,mc2, sc2, r2, . . . ,mcn, scn, rn.

That is, it executes a malicious code mci before a system call sci in which arguments to

the system call have been overwritten with values defined by the attacker, executes the

system call sci with the attacker’s arguments, and then finds a set of memory location and

corresponding values so that if these memory location are overwritten in a sequence ri of

instructions, the program’s flow of execution will return to a legitimate program control

point to conform to the control flow integrity enforced by the model. The sequence is

repeated for each system call sci. The GSCG guards each system call sci with an invariant

gi. Therefore, executing the sequence mci, sci which overrides system calls arguments

with attacker’s values instead of the sequence lci, sci consisting of the legitimate block of

instruction lci preceding the system call sci will not follow the program execution paths

and will violate the invariant gi that summarizes the data flow in lci.

A.4.2 Proofs of Section 6.3.4

Theorem 28

Let P be a program, and GSCG the guarded system call graph of P . If GSCG is build

from deterministic abstract state graphs, then the sequences of systems calls accepted by

GSCG are exactly those accepted by the P .

Demonstração. If the abstract state graph of P is deterministic then the GSCG obtained

from P ’s ASG is an exact over-aproximation. In otherwords, any sequence of the GSCG

is a sequence of P . Moreover, any sequence of P is a sequence/run for the model.
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[9] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

Uppaal - a tool suite for automatic verification of real-time systems. In Hybrid

Systems, pages 232–243, 1995.

[10] S Bensalem, M Bozga, J-C Ghirvu, and L Lakhnech. A transformation approach

for generating non-linear invariants. Static Analysis Symposium, 5:101–114, June

2000.

[11] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-

ware model checker blast: Applications to software engineering. In Journal on

Software Tools for Technology Transfer (paper from FASE2005), 2007.

[12] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow anomaly detection.

In IEEE Symposium on Security and Privacy, pages 48–62. IEEE Computer Society,

2006.

[13] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model check-

ing. 58, 2003.

[14] Nikolaj Bjorner, Anca Browne, and Zohar Manna. Automatic generation of invari-

ants and intermediate assertions. Theor. Comput. Sci., 173(1):49–87, 1997.

[15] J. Bochnak, M. Coste, and M. F. Roy. Real Algebraic Geometry. Springer, 1998.

[16] Cristina Borralleras, Salvador Lucas, Rafael Navarro-Marset, Enric Rodriguez-

Carbonell, and Albert Rubio. Solving non-linear polynomial arithmetic via sat

modulo linear arithmetic. CADE, pages 294–305, 2009.

[17] Driss Boularas and Abdelkader Chouikrat. Equations d’amorçage d’intégrales
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REFERÊNCIAS BIBLIOGRÁFICAS 183
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