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Resumo

Problemas de Corte e Empacotamento são, em sua maioria, NP-difíceis e não existem algo-
ritmos exatos de tempo polinomial para tais se for considerado P �= NP . Aplicações práticas
envolvendo estes problemas incluem a alocação de recursos para computadores; o corte de cha-
pas de ferro, de madeira, de vidro, de alumínio, peças em couro, etc.; a estocagem de objetos;
e, o carregamento de objetos dentro de contêineres ou caminhões-baú.

Nesta tese investigamos problemas de Corte e Empacotamento NP-difíceis, nas suas ver-
sões bi- e tridimensionais, considerando diversas restrições práticas impostas a tais, a saber:
que permitem a rotação ortogonal dos itens; cujos cortes sejam feitos por uma guilhotina; cujos
cortes sejam feitos por uma guilhotina respeitando um número máximo de estágios de corte;
cujos cortes sejam não-guilhotinados; cujos itens tenham demanda (não) unitária; cujos reci-
pientes tenham tamanhos diferentes; cujos itens sejam representados por polígonos convexos e
não-convexos (formas irregulares); cujo empacotamento respeite critérios de estabilidade para
corpos rígidos; cujo empacotamento satisfaça uma dada ordem de descarregamento; e, cujos
empacotamentos intermediários e final tenham seu centro de gravidade dentro de uma região
considerada “segura”.

Para estes problemas foram propostos algoritmos baseados em programação dinâmica; mo-
delos de programação inteira; técnicas do tipo branch-and-cut; heurísticas, incluindo as basea-
das na técnica de geração de colunas; e, meta-heurísticas como o GRASP. Resultados teóricos
também foram obtidos. Provamos uma questão em aberto levantada na literatura sobre cortes
não-guilhotinados restritos a um conjunto de pontos.

Uma extensiva série de testes computacionais considerando instâncias reais e várias outras
geradas de forma aleatória foram realizados com os algoritmos desenvolvidos. Os resultados
computacionais, sendo alguns deles comparados com a literatura, comprovam a validade das
algoritmos propostos e a sua aplicabilidade prática para resolver os problemas investigados.
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Abstract

Several versions of Cutting and Packing problems are consideredNP-hard and, if we consider
that P �= NP , we do not have any exact polynomial algorithm for solve them. Practical appli-
cations arises for such problems and include: resources allocation for computers; cut of steel,
wood, glass, aluminum, etc.; packing of objects; and, loading objects into containers and trucks.

In this thesis we investigate Cutting and Packing problems that are NP-hard considering
theirs two- and three-dimensional versions, and subject to several practical constraints, that
are: that allows the items to be orthogonally rotated; whose cuts are guillotine type; whose
cuts are guillotine type and performed in at most k stages; whose cuts are non-guillotine type;
whose items have varying and unit demand; whose bins are of variable sizes; whose items are
represented by convex and non-convex polygons (irregular shapes); whose packing must satisfy
the conditions for static equilibrium of rigid bodies; whose packing must satisfy an order to
unloading; and, whose intermediaries and resultant packing have theirs center of gravity inside
a safety region;

Such cutting and packing problems were solved by dynamic programming algorithms; inte-
ger linear programming models; branch-and-cut algorithms; several heuristics, including those
ones based on column generation approaches, and metaheuristics like GRASP. Theoretical re-
sults were also provided, so a recent open question arised by literature about non-guillotine
patterns restricted to a set of points was demonstrated.

We performed an extensive series of computational experiments for algorithms developed
considering several instances presented in literature and others generated at random. These re-
sults, some of them compared with the literature, validate the approaches proposed and suggest
their applicability to deal with practical situations involving the problems here investigated.
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Capítulo 1

Introdução

Atualmente existe uma grande demanda por recursos oriundos de diversas fontes, seja recursos
para a indústria ou pequenas empresas, até mesmo para usuários domésticos. Estes recursos,
estando armazenados em algum depósito, precisam ser alocados em meios de transporte para,
então, serem entregues aos destinatários finais.

Segundo estudos, veja [62], o valor final das mercadorias está acrescido de um percentual
de 10% a 15% devido aos gastos com o processo de logística, que incluem, por exemplo, a
estocagem, o carregamento e o eventual transporte das mercadorias. No contexto nacional,
pesquisas mostram que estes serviços representam em média 2,53% do PIB (produto interno
bruto) de um país.

Nesta perspectiva, muitas vezes, os itens estocados precisam ser cortados em pedaços meno-
res, caracterizando um problema de corte (Cutting Problem). Por outro lado, tais itens precisam
ser carregados (empacotados) em objetos maiores, recipientes, caracterizando um problema
de empacotamento (Packing Problem). Em ambas as terminologias, estamos interessados em
otimizar o trabalho efetuado, seja minimizando o desperdício de matéria-prima, no caso dos
problemas de corte, seja maximizando o uso do recipiente, nos problemas de empacotamento.

Apesar da diferença nos termos corte e empacotamento, estes problemas apresentam uma
estrutura lógica análoga para fins teóricos. Isto possibilita tratar um problema de corte como
sendo de empacotamento e vice-versa. Note que cortar um recipiente para obter um conjunto
de itens equivale a empacotar o conjunto de itens dentro do recipiente. Deste modo, usaremos o
termo corte ou empacotamento sem fazer distinção entre tais, referenciando os problemas como
Problemas de Corte e Empacotamento.

Organizar itens dentro de recipientes é uma tarefa complexa e importante. Vale destacar que
ainda existem empresas que trabalham com métodos manuais de empacotamento, o que resulta,
muitas vezes, no uso ineficiente dos recipientes. Além disso, fatores importantes durante a or-
ganização podem ser considerados, como a estabilidade e a fragilidade dos itens, a estabilidade
do empacotamento final, satisfazer uma determinada ordem de descarregamento dos itens (itens

1



2 Capítulo 1.

mais pesados devem ficar embaixo, por exemplo), entre outros.
Nota-se, então, que este não é um problema simples, pois não envolve apenas empaco-

tar/cortar (de qualquer maneira) itens dentro de recipientes. Torna-se necessário diminuir os
custos envolvidos, respeitando diversas restrições impostas e algumas até obrigatórias devido
às questões de segurança.

O objetivo deste trabalho está em propor algoritmos eficientes para alguns problemas de
corte e empacotamento, incluindo aqueles que devem satisfazer restrições presentes no mundo
real. O termo “eficiente” é usado no sentido de que estamos interessados em abordagens que
gerem soluções ótimas ou próximas delas dentro de um tempo de processamento aceitável, já
que este tempo pode ser decisivo em problemas práticos como os tratados nesta tese. Para tanto,
os algoritmos propostos incluem abordagens exatas e heurísticas.

1.1 Motivação

Os problemas de Corte e Empacotamento são fáceis de serem entendidos. Porém, do ponto de
vista computacional, são bastante complexos. Em linhas gerais, grande parte destes problemas
não possuem algoritmos exatos de tempo polinomial, supondo P �= NP . Tais problemas vêm
sendo investigados desde os anos 60 [9, 11, 17, 20, 27, 41, 71]. Muitas de suas variantes são
NP-difíceis, precisamente aquelas apresentadas neste trabalho.

Diversas são as aplicações práticas que envolvem problemas desta natureza, como na alo-
cação de recursos para computadores; no corte de tecido, de bobinas de alumínio, de madeira,
chapas de ferro, lâminas de vidro, peças em couro; etc. Algumas indústrias de bens de con-
sumo precisam empacotar seus produtos e estocá-los em armazéns. Empresas de transporte
necessitam carregar tais produtos dentro de contêineres ou caminhões-baú, podendo ainda, es-
tes contêineres serem organizados/transportados dentro de navios. Em relação ao carregamento
de contêineres, estes, em geral, possuem dimensões fixas e padronizadas. Tal padronização
permite que eles sejam usados tanto por equipamentos de carga/descarga como no acoplamento
a caminhões. Assim, qualquer que seja a aplicação, o objetivo consiste em otimizar o processo
de corte/empacotamento, visando minimizar custos e/ou maximizar lucros.

Diversas são as áreas do conhecimento que trabalham com problemas desta natureza, como
a matemática, a engenharia, a economia e a computação. A resolução de tais podem envolver
tanto o uso de abordagens exatas como heurísticas. Podemos destacar: programação dinâ-
mica; modelos de programação linear; técnicas branch-and-bound, branch-and-cut, branch-
and-price, branch-and-cut-and-price; busca Tabu, algoritmos evolutivos, GRASP, etc.

A diferença entre cada abordagem de resolução é crucial e depende da necessidade do usuá-
rio, pois o uso de abordagens exatas envolve um número exponencial de combinações, que
cresce de acordo com o tamanho da instância e, em geral, é voltada para instâncias de pe-
queno e médio porte. O uso de heurísticas pode tratar instâncias maiores, porém podem levar
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a soluções inviáveis na prática. É importante mencionar que abordagens heurísticas são ex-
tremamente importantes em abordagens exatas, pois na maioria das vezes, permitem produzir
soluções viáveis e possibilitam diminuir o espaço de busca.

Ao propor novos algoritmos para problemas de corte e empacotamento, buscaremos realizar
testes com várias instâncias do mundo real, além de instâncias geradas de forma aleatória,
sempre com o intuito de comparar nossos resultados com resultados da literatura e mostrar
a aplicabilidade prática das estratégias desenvolvidas. Também desejamos demonstrar que a
metodologia seguida é bem fundamentada e realmente útil para ser aplicada na resolução real
dos problemas citados e demais variantes.

1.2 Conceitos, Problemas e Técnicas

Nesta seção apresentaremos conceitos e informações básicas requeridas nos próximos capítulos.
Inicialmente, conceitos sobre problemas de corte e empacotamento são apresentados. Depois,
definimos os principais problemas estudados. Também relatamos brevemente as abordagens
utilizadas para resolver tais problemas, além de outras questões pertinentes.

1.2.1 Alguns Conceitos

Por simplicidade, os objetos grandes são preferencialmente referenciados como recipientes, en-
quanto os pequenos por itens. Neste caso não fazemos distinção se o recipiente/item apresenta
uma forma regular, por exemplo, é um retângulo ou um paralelepípedo, ou uma forma irregu-
lar, por exemplo, é um polígono qualquer (convexo ou não-convexo). Assim, quando o termo
irregular aparecer após o objeto significa que estamos tratando de problemas com objetos irre-
gulares. De outro modo, o objeto é considerado regular.

Como existe uma grande variedade de problemas de corte e empacotamento, estes podem ser
classificados de acordo com certas características. Uma tipologia foi proposta por Wäscher et
al. (2007) [86]. Ela parte da classificação proposta por Dyckhoff (1990) [33], fazendo algumas
modificações, sendo mais precisa e cobrindo um maior número de problemas. Na tipologia de
Wäscher et al. (2007), os problemas são classificados através de cinco critérios: dimensão, tipo
de alocação, sortimento dos itens, sortimento dos recipientes, forma dos itens.

Um empacotamento viável requer que os itens sejam organizados de forma a não ocupar
o mesmo local dentro do recipiente, ou seja, quaisquer dois itens dentro de um recipiente não
podem se sobrepor, além disso não podem extrapolar as dimensões do recipiente. Chamamos
de padrão de corte (ou padrão) cada possível maneira de se cortar um dado recipiente. Um
padrão homogêneo ocorre quando os itens produzidos através deste padrão são de apenas um
tipo. Os cortes são ortogonais quando os itens são obtidos através de cortes paralelos aos lados
do recipiente.
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Os cortes são classificados em guilhotinados e não-guilhotinados. Os cortes guilhotinados
são efetuados por uma guilhotina. Neste caso, tais cortes vão (em linha reta) de um lado do
recipiente até o lado oposto, sendo paralelos a dois lados. Denominamos de padrão guilhoti-
nado um padrão obtido a partir de uma sequência de cortes de guilhotina que são aplicados ao
recipiente original e aos subsequentes recipientes menores obtidos de cada corte (anterior). Um
padrão não-guilhotinado é descrito por um padrão que não necessariamente é obtido através de
cortes de guilhotina.

Nas aplicações práticas existe um limite quanto ao número de estágios de corte para obter
os itens finais. Em um padrão guilhotinado chamamos de estágio de corte (ou estágio) uma
sequência maximal de cortes consecutivos na mesma direção. Os cortes de um estágio devem
ser perpendiculares aos cortes do estágio anterior. Além disso, o número de estágios mede a
quantidade de mudanças na direção do corte. Deste modo, dizemos que um padrão guilhoti-
nado é k-estágios se ele é obtido após executar k estágios de corte. Em alguns casos, torna-se
necessário considerar um estágio adicional de corte que permite separar um item de uma parte
não utilizável.

Uma outra característica dos problemas de corte e empacotamento envolve a orientação dos
itens. No caso de orientação fixa os itens devem ser cortados/empacotados em suas dimensões
originais, isto é, aquelas especificadas na instância de entrada. Por outro lado, quando os itens
podem ser (ortogonalmente) rotacionados, a rotação ocorre em torno de um número limitado de
eixos ou em torno de todos os eixos. E, ao rotacionar um item, o item resultante deve ser viável.

Uma outra restrição, menos considerada, mas muito importante na prática, diz respeito à
estabilidade dos itens dentro do recipiente. Dizemos, informalmente, que um item está estável
se, após tal item ser organizado dentro do recipiente, ele não venha a rotacionar e/ou desfazer o
empacotamento feito. Neste caso, considerando apenas o efeito da força de gravidade. Para todo
o conjunto de itens significa que, em qualquer instante, a forma como os itens estão organizados
no recipiente não resulta no tombamento do empacotamento feito.

Outro caso que envolve a estabilidade consiste em manter o centro de gravidade do empa-
cotamento o mais próximo possível de um centro de gravidade ideal, ou dentro de uma região
considerada “segura”. Deste modo, o recipiente não venha a inclinar (ou tombar) quando estiver
sendo transportado, por exemplo.

Em situações reais, há também a necessidade dos itens serem empacotados segundo uma
dada ordem que posteriormente favoreça o descarregamento. Por exemplo, para empresas que
efetuam a entrega de mercadorias pode ser importante que os itens sejam organizados segundo
a rota de entrega. Isto significa que clientes visitados primeiro, durante o descarregamento dos
itens, tenham seus itens não obstruídos (impedidos de serem retirados) por itens de clientes que
serão visitados posteriormente. Chamamos esta restrição de restrição de ordem.

Em linhas gerais, a restrição de ordem diz que itens com valor de ordem mais baixa (itens
de clientes a serem visitados primeiro) não devem ser obstruídos por itens com ordem mais alta,
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considerando a abertura no recipiente por onde tais itens serão descarregados.
As restrições discutidas acima contemplam as principais restrições que foram consideradas

(de forma individual ou em grupo) quando resolvendo os problemas de corte e empacotamento
nesta tese.

1.2.2 Problemas Base

Enunciaremos nesta subseção os principais problemas tratados nesta tese. Eles foram enunci-
ados de forma geral, isto é, sem especificar a dimensão de interesse, e sem qualquer restrição
adicional. Ao adicionar qualquer restrição, como aquelas discutidas na subseção anterior, um
novo problema surge, mais especificamente, uma nova variante do problema surge.

PROBLEMA DA MOCHILA (Knapsack Problem): São dados um recipiente/mochila B e uma
lista T de n (tipos de) itens i com valor vi, para i = 1, . . . , n. O objetivo é determinar como
empacotar — num único recipiente B — um subconjunto de itens de maneira a maximizar o
valor total dos itens empacotados.

A definição do problema da mochila acima corresponde a versão restrita, isto é, um item
pode ser empacotado no máximo uma vez. Esta versão também é referenciada como mochila
0/1 (0/1 Knapsack). Por outro lado, na versão irrestrita (Unconstrained Knapsack) não há limite
quanto ao número de cópias de cada item que pode ser empacotado.

PROBLEMA DO CORTE DE ESTOQUE (Cutting Stock Problem): São dados recipientes B, e
uma lista T de n (tipos de) itens i com demanda di, para i = 1, . . . , n. O objetivo é determinar
como cortar o menor número possível de recipientes B para produzir di unidades de cada item
i.

PROBLEMA DO EMPACOTAMENTO EM FAIXA (Strip Packing Problem): São dados uma faixa
B, isto é, um recipiente com uma de suas dimensões aberta (sem um valor definido) e uma lista
T de n (tipos de) itens i, para i = 1, . . . , n. O objetivo consiste em decidir como cortar a faixa
B de maneira que cada item i seja produzido e a dimensão, sem valor definido, da parte da faixa
que é usada seja minimizada.

Se o valor da demanda (multiplicidade de cada item) for igual a um no problema do corte
de estoque, surge, então, o problema Bin Packing. No problema de empacotamento em faixa
também podemos associar uma demanda para os itens.

Diversas variantes dos problemas acima foram considerados nesta tese e são discutidas nos
capítulos seguintes. Todas pertencem a classe NP-difícil. De antemão, consideramos tanto as
versões bidimensionais como as tridimensionais.

Nas versões bidimensionais estudamos o caso em que os cortes são do tipo não-guilhotinado.
Também inserimos restrições como: permitir a rotações dos itens; satisfazer uma dada ordem de
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descarregamento; satisfazer às condições de estabilidade estática para corpos rígidos; e, manter
o centro de gravidade dentro de uma região considerada “segura”.

Os problemas bidimensionais do parágrafo anterior foram investigados para itens/recipientes
com a forma retangular. Entretanto, algumas variantes bidimensionais em que os itens assumem
forma irregular também foram consideradas.

Já nas versões tridimensionais, o tipo de corte adotado foi o guilhotinado e os itens tinham
forma regular. Lidamos com o caso em que os itens podem ser rotacionados em torno de todos
os eixos e a versão com estágios de corte. Consideramos também o problema do corte de
estoque com recipientes de tamanhos variados Cutting Stock with Variable Bin Sizes Problem.

1.2.3 Algumas Técnicas para Problemas em Otimização

Discutiremos brevemente algumas técnicas empregadas para solucionar problemas em otimi-
zação, sendo algumas delas utilizadas nesta tese. As técnicas citadas incluem programação
dinâmica, o método simplex, o método simplex com geração de colunas, branch-and-bound,
branch-and-cut, branch-and-price e branch-and-cut-and-price.

O custo dos algoritmos será medido através da complexidade de tempo e de espaço como
funções do tamanho da entrada do respectivo problema. Usamos a notação O. Desta forma,
um algoritmo terá complexidade de tempo polinomial se a função que descreve sua complexi-
dade de tempo for limitada por um polinômio no tamanho da entrada. O mesmo se aplica à
complexidade de espaço.

A técnica de programação dinâmica baseia-se na ideia de divisão-e-conquista e consiste em:
dividir o problema original em subproblemas semelhantes ao original; calcular e armazenar em
uma tabela a solução ótima de cada subproblema; e combinar a solução dos subproblemas para
formar a solução ótima do problema original.

O método simplex é um procedimento matricial usado na resolução de problemas de pro-
gramação linear (ou programas lineares). Um programa linear é aquele cuja função objetivo
e restrições são todas lineares. Ele é chamado de programa linear inteiro quando as variáveis
assumem apenas valores inteiros. O consumo de tempo deste método é exponencial no pior
caso. Porém, é considerado bastante eficaz pela literatura especializada ([7, 25]).

A técnica de geração de colunas foi proposta inicialmente por [31]. Porém, foi no trabalho
de Gilmore e Gomory (1961; 1963; 1965) [41, 42, 43] aplicado aos problemas corte de esto-
que uni- e bidimensionais que o método mostrou ser uma ferramenta poderosa para solucionar
programas lineares. Ela é interessante para resolver problemas em programação linear quando
o número de colunas da matriz relacionada ao programa é proibitivamente grande. Em vez de
armazenar todas as colunas do sistema linear, esta técnica mantém um conjunto bem limitado
de colunas, tipicamente a base da solução atual. Então, a cada iteração resolve um problema
correspondente à busca da coluna a ser inserida pelo método Simplex no intuito de melhorar a
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solução atual. É importante mencionar que a aplicação do método de geração de colunas pode
resultar em soluções fracionárias, já que este é aplicado na relaxação linear do problema. Por
isso, depois de resolvido o programa linear, um novo problema aparece e consiste em determi-
nar uma solução inteira a partir da solução fracionária.

Os métodos branch-and-bound são geralmente empregados na busca de soluções exatas
em otimização combinatória e tratam o processo de busca de uma solução semelhante a busca
em uma árvore. Em linhas gerais, tais métodos resolvem relaxações do problema para obter
limitantes superiores e inferiores das soluções. A partir disso, faz-se a “poda” de ramos da
árvore sempre que soluções ingressem em um tal ramo fora dos limitantes obtidos. O conceito
de branch ocorre quando, a partir da solução relaxada (ou parcial) atual, deve-se gerar novas
soluções em que são testados novos valores com relação aos limitantes obtidos.

Outra método utilizado consiste no branch-and-cut. Este combina os métodos branch-and-
bound com planos de corte. O algoritmo branch-and-cut é similar ao algoritmo branch-and-
bound, porém faz a inclusão de inequações válidas em cada nó na tentativa de melhorar os
limitantes. Com isso, visa reduzir o número de nós da árvore branch-and-bound.

Estudos recentes têm combinado a técnica de geração de colunas com o método branch-
and-bound, criando estratégias conhecidas como branch-and-price. O método branch-and-
price é uma variação do método branch-and-bound em que é usada programação linear junto
com método de geração de colunas para gerar os limitantes. Quando um ótimo fracionário é
encontrado, a operação de branch acontece adicionando novas restrições, as quais dividem o
problema em subproblemas com mais restrições e com o intuito de forçar a integralidade. Fases
de branching e de otimização (através do método de geração de colunas) são realizadas gerando
novas soluções até alcançar o ótimo.

Outros estudos têm realizado a combinação do branch-and-price com planos de cortes,
gerando os métodos branch-and-cut-and-price. Nele se considera, além da inserção de colunas,
planos de cortes. Apesar deste método fornecer um problema linear com relaxações fortes,
fazer a geração de colunas com planos de corte não é uma tarefa simples, já que a geração
de colunas pode se tornar muito difícil depois da adição de restrições. Note que, ao adicionar
novas restrições, podemos destruir a estrutura do problema associado à geração de colunas.
Encontramos poucos trabalhos na literatura (como em [5, 13]) que empregam este método,
dentro da área de problemas de corte e empacotamento.

1.3 Organização da Tese

Este tese é formada por uma coletânea de artigos. Eles foram escritos com o intuito de serem
publicados em congressos e/ou revistas especializadas da área.

Os artigos estão apresentados nos próximos capítulos, sendo cada capítulo formado por um
artigo. Resumidamente, cada artigo contém a descrição dos problemas tratados juntamente



8 Capítulo 1.

com as restrições adotadas, uma breve revisão da literatura e, é claro, os resultados obtidos,
podendo incluir demonstrações, algoritmos e/ou modelos de programação linear. Além disso,
resultados experimentais considerando diversas instâncias são apresentados. Faremos um breve
relato destes artigos nas subseções seguintes.

Excetua-se dos capítulos anteriores o último capítulo, Capítulo 7, que traz a conclusão e
sugestões para trabalhos futuros.

1.3.1 Resultados do Capítulo 2

O próximo capítulo lida com a versão tridimensional dos seguintes problemas: mochila irres-
trita; corte de estoque; corte de estoque com recipientes de tamanhos variados; e, empaco-
tamento em faixa. Também lidamos com a versão destes problemas que permitem a rotação
ortogonal dos itens em torno de todos os eixos e a versão em que os cortes devem ser feitos em
estágios. Estes problemas foram tratados usando a terminologia de corte guilhotinado.

Seguimos a mesma linha proposta em Cintra et al. (2008) [27]. Para a versão do problema
da mochila irrestrita e suas variantes, apresentamos algoritmos exatos baseado na técnica de
programação dinâmica e que faz uso do conceito de reduced raster points [83]. Os algorit-
mos obtidos mostraram ser bastante eficientes, resolvendo a otimalidade diversas instâncias em
pouco tempo computacional. Muitas delas foram resolvidas em tempo inferior a 0, 01 segundos
e a ocupação do recipiente ficou acima dos 85% na média. No caso com rotações, esta ocupação
ultrapassou os 94% na média, incluindo a versão com estágios de corte.

Para a versão do problema do corte de estoque e variantes, apresentamos uma heurística
baseada na técnica de geração de colunas. Esta heurística faz uso dos algoritmos exatos do
problema da mochila irrestrita para gerar as colunas. As soluções inteiras foram obtidas por
meio da resolução da relaxação do programa inteiro, da reaplicação do método em instâncias
residuais e por uma heurística primal construtiva. Uma extensão desta heurística foi feita para
lidar com as versões dos problemas do corte de estoque com recipientes de tamanhos variados e
empacotamento em faixa. Através dos experimentos computacionais comprovamos a eficiência
desta heurística quando temos instâncias com itens de grande demanda. As soluções obtidas
ficaram a menos 3% do ótimo, na média. No caso sem rotações, esta diferença não ultrapassou
os 1% na média e o consumo de tempo foi razoavelmente baixo.

O artigo apresentado no Capítulo 2 foi submetido para uma revista da área. Uma versão pre-
liminar foi apresentada e publicada nos anais do XLI SBPO - Simpósio Brasileiro de Pesquisa
Operacional, realizado na Cidade de Porto Seguro - BA, em setembro de 2009. Este traba-
lho foi realizado em colaboração com Yoshiko Wakabayashi (IME-USP) e Eduardo C. Xavier
(IC-UNICAMP) [80].
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1.3.2 Resultados do Capítulo 3

No Capítulo 3 apresentamos resultados para os problemas da mochila irrestrita e do corte de
estoque nas suas versões bidimensionais. Lidamos com o caso em que os cortes devem ser
ortogonais e não-guilhotinados, ou seja, os cortes não são restritos a serem efetuados por uma
guilhotina, mas devem ser ortogonais aos lados do recipiente que está sendo cortado. As versões
destes problemas que permitem a rotação ortogonal dos itens também foi considerada.

No caso dessa versão do problema da mochila irrestrita e sua variante que permite a rota-
ção ortogonal dos itens, apresentamos três estratégias para resolvê-las, a saber: a Heurística
de Cinco-Blocos Recursiva; a Abordagem L(k); e, a Abordagem L. A ideia da Heurística de
Cinco-Blocos Recursiva é dividir recursivamente um retângulo em cinco (ou menos) retângu-
los menores através de cortes não-guilhotinados de primeira ordem. A abordagem L realiza o
corte/empacotamento dos itens em retângulos e em peças no formato de L. Em testes computa-
cionais preliminares, nossa versão da abordagem L trouxe bons resultados, apesar do moderado
gasto de tempo computacional (algumas vezes alto consumo de tempo). Então, decidimos li-
mitar tal abordagem para conter no máximo k níveis de recursão. Então, criamos a Abordagem
L(k).

Os algoritmos acima foram combinados com o conceito de reduced raster points, e para
obter o limitante inferior da solução usamos o algoritmo exato, baseado em programação di-
nâmica, para as variantes bidimensionais guilhotinada, proposto em [27]. Provamos a questão
em aberto descrita no trabalho de Birgin et al. (2010) [17], que diz que não há perda de gene-
ralidade em considerar cortes feitos somente sobre os reduced raster points na abordagem L.
Também apresentamos um contra-exemplo para a abordagem L de modo a concluir que ela não
é capaz de sempre gerar soluções não-guilhotinadas ótimas para o problema em questão.

Estes algoritmos foram codificados e vários testes computacionais realizados em instâncias
adaptadas de outros trabalhos da literatura. Obtivemos resultados que se mostraram bastante sa-
tisfatórios: conseguimos melhorar o valor da solução já conhecido de quase todas as instâncias
consideradas.

Elaboramos um artigo em conjunto com Yoshiko Wakabayashi (IME-USP) descrevendo os
resultados obtidos acima, veja [79]. Este foi apresentado e publicado nos anais do CLEI 2010
- XXXVI Conferência Latino-americana de Informática, ocorrido na Cidade de Assunção -
Paraguai, em outubro de 2010. Vale mencionar que este artigo foi selecionado como um dos
três melhores artigos de toda a conferência.

Em relação a versão do problema do corte de estoque, adaptamos a heurística, baseada em
geração de colunas, proposta por Cintra et al. (2008) [27]. Deste modo, a geração de colunas
passa a ser feita em até três fases por algoritmos desenvolvidos para a versão do problema da
mochila irrestrita em estudo, a saber: (i) inicialmente, pelo algoritmo exato proposto por [27]
para a versão bidimensional guilhotinada; (ii) caso nenhuma coluna seja adequada, usamos a
Heurística de Cinco-Blocos Recursiva; (iii) e, se ainda nenhuma coluna for adequada, tentamos
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a Abordagem L(k). Com os bons resultados da abordagem L, decidimos também usá-la na
rotina de geração de colunas para obter a solução e o limitante inferior da solução ótima.

Os testes computacionais realizados com a heurística de geração de colunas produziram
resultados satisfatórios. Para o caso sem rotações ortogonais dos itens, a solução ótima foi
encontrada para todas as instâncias (exceto para três delas) ao usar somente a Abordagem L na
rotina de geração de colunas. Além do mais, o tempo computacional requerido ficou abaixo dos
130 segundos no pior caso. Para o caso com rotações ortogonais, a solução obtida diferiu do
limitante inferior em apenas uma unidade e o tempo computacional, na média, ficou abaixo dos
280 segundos.

A versão completa do artigo que contempla ambos os problemas está descrita no Capítulo
3. Este artigo também foi escrito em colaboração com Yoshiko Wakabayashi (IME-USP).

1.3.3 Resultados do Capítulo 4

O terceiro resultado obtido nesta tese e apresentado em forma de artigo no Capítulo 4 contem-
pla a variante bidimensional do problema de empacotamento em faixa em que não há restrição
quanto ao tipo de corte e apenas a versão com orientação fixa é considerada. Neste caso, reque-
remos que os itens sejam empacotados de forma ortogonal.

Para o problema em questão, duas restrições adicionais foram consideradas: o empacota-
mento deve satisfazer uma ordem de descarregamento, isto é, a restrição de ordem; e o em-
pacotamento deve ser estável, ou seja, atender as condições de equilíbrio estático de corpos
rígidos.

Em relação ao estudo da estabilidade dentro de problemas de Corte e Empacotamento ob-
servando às condições reais de equilíbrio estático, encontramos na literatura apenas o trabalho
de Castro Silva et al. (2003) [85].

Diferente do apresentado por Castro Silva et al. (2003) em relação à estabilidade, nossa
metodologia permite, além de verificar a estabilidade estática do empacotamento, calcular o
quanto de força (peso/carga) é passado de um item para os demais. Nesta perspectiva, nossa
metodologia permite ser estendida para também lidar com os casos de estabilidade dinâmica,
ou seja, nos casos em que o recipiente/itens tenham variações de velocidade, inclinações e/ou
curvaturas.

Nosso objetivo para este problema consistiu em obter soluções exatas (empacotamentos
ótimos) que atendessem às restrições impostas. Como a restrição de estabilidade apresentou
formulações complexas, as quais inviabilizaram criar um de modelo de programação linear que
as considerasse, optamos por um algoritmo branch-and-cut. A formulação inteira proposta
fornece um empacotamento que atende à todas as restrições citadas acima, exceto às de es-
tabilidade. Para evitar soluções inteiras que correspondem a empacotamentos instáveis foram
inseridas restrições (planos de corte) para as quais estas soluções tornam-se inviáveis.
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Além do algoritmo branch-and-cut, três heurísticas foram propostas: a primeira realiza
o empacotamento dos itens em níveis verticais, enquanto a segunda é derivada do algoritmo
branch-and-bound proposto por Martello et al. (2000) [68] e se baseia na ideia de empaco-
tar itens em pontos denominados pontos de canto. A terceira heurística é obtida a partir do
algoritmo branch-and-cut proposto.

Durante a realização dos experimentos computacionais, fizemos a combinação destas heu-
rísticas com o algoritmo branch-and-cut com o intuito de acelerar este último algoritmo. Os
experimentos computacionais reportados indicam a aplicabilidade do algoritmo branch-and-cut
para resolver instâncias de pequeno a médio porte. Enquanto, algumas das heurísticas podem
ser aplicadas para resolver instâncias de grande porte, visto terem resolvido a otimalidade várias
instâncias requerendo pouco tempo computacional.

Um artigo com parte dos resultados acima foi apresentado e publicado nos anais do CLEI
2010 - XXXVI Conferência Latino-americana de Informática, ocorrido na Cidade de Assunção
- Paraguai, em outubro de 2010. A versão do CLEI 2010 foi escrita em conjunto com Fabrício
L. S. da Silva [84]. Por outro lado, o Capítulo 4 traz a versão completa deste artigo.

1.3.4 Resultados do Capítulo 5

Uma extensão da formulação apresentada no Capítulo 4 enquanto tratando daquela variante do
problema de empacotamento em faixa é utilizada para lidar com outra variante bidimensional
deste mesmo problema.

No Capítulo 5, então, discorremos sobre a variante bidimensional do problema de empaco-
tamento em faixa com as restrições: os itens devem ser empacotados de forma ortogonal aos
lados do recipiente; os itens não podem ser rotacionados; e a restrição de ordem deve ser aten-
dida. Além destas restrições, foi considerada uma outra restrição que envolve o balanceamento
do empacotamento.

A restrição sobre o balanceamento do empacotamento requer que o centro de gravidade do
empacotamento seja mantido dentro de uma região considerada “segura”. Porém, não quere-
mos que apenas o empacotamento final tenha seu centro de gravidade dentro desta região, mas
que subempacotamentos envolvendo certos conjuntos de itens também satisfaçam esta restri-
ção. Esta restrição possuem fortes implicações no planejamento de cargas de aviões, barcos,
caminhões, etc., já que implica em segurança, por exemplo, em manter a estabilidade durante
o transporte, bem como em redução dos gastos, como redução no consumo de combustível
[59, 72].

Adaptamos o modelo de programação inteira apresentado no Capítulo 4 para tratar desta
variante do problema de empacotamento em faixa. Nesta versão do problema foi possível inserir
as restrições relacionadas ao balanceamento de carga dentro do modelo de programação linear
inteira. Os resultados computacionais mostraram que o modelo é adequado para instâncias
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pequenas e médias.

Um resumo estendido do artigo descrito no Capítulo 5, o qual contém os resultados citados
acima, foi elaborado e submetido para um simpósio da área.

1.3.5 Resultados do Capítulo 6

O último capítulo envolvendo os resultados obtidos contempla os seguintes problemas: mochila
0/1, mochila irrestrita e corte de estoque em suas versões bidimensionais.

Estes problemas foram tratados para o caso em que os itens são representados por polígonos
convexos e não-convexos, ou seja, consideramos a versão com itens irregulares e, em todos os
casos, o recipiente possui forma retangular.

Para lidar com a geometria nestes problemas foi utilizado o conceito de No-Fit polygon,
sendo implementada a robusta estratégia proposta por Burke et al. (2007) [19]. Esta estratégia
foi combinada com uma versão estendida do algoritmo de busca de Adamowicz e Albano (1976)
[1] com o intuito de encontrar o melhor ponto para empacotar um item irregular dentro do
recipiente. Nesta perspectiva, o objetivo era encontrar um ponto que minimizasse a área da
envoltória retangular e convexa do empacotamento.

Em relação a variante do problema da mochila 0/1 considerada, propusemos uma heurística
baseada em GRASP. A ideia foi gerar uma solução gulosa inicial por meio de amostras aleató-
rias de itens e, através da avaliação de soluções vizinhas, buscava-se melhorar a solução atual.
Com esta heurística foi possível obter a solução ótima para 7 das 15 instâncias consideradas
nos experimentos computacionais. O tempo médio computacional requerido pela heurística foi
pequeno para grande parte das instâncias.

Para a versão do problema da mochila irrestrita, nossa estratégia dividiu-se em dois passos:
primeiramente, subconjuntos de itens irregulares foram empacotados em retângulos pequenos
com alta taxa de ocupação. De posse destes retângulos, criamos uma instância para versão
bidimensional do problema da mochila irrestrita que lida com itens retangulares. Usamos o
algoritmo exato proposto por Cintra et al. (2008) [27] para obter o empacotamento final. Nos
resultados computacionais deste caso obtivemos soluções com taxa de ocupação do recipiente
acima dos 90% para mais de 60% das instâncias consideradas.

Por fim, a variante do problema do corte de estoque para itens irregulares foi resolvida por
uma versão adaptada da heurística de geração de colunas de [27]. As colunas foram gera-
das pelo algoritmo desenvolvido para a versão do problema da mochila irrestrita discutida no
parágrafo anterior. Sempre que uma coluna precisava ser computada, um novo subconjunto de
retângulos pequenos era obtido observando o valor corrente das variáveis duais. Soluções iguais
ao limitante inferior da solução ótima foram obtidas para 6 das 15 instâncias usadas. Para os
outros casos, a solução obtida diferiu de no máximo duas unidades do limitante inferior. Em
contrapartida, o tempo requerido para resolver as instâncias foi alto. Na média, ficou próximo
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dos 42.600 segundos.
Um artigo envolvendo estes resultados foi escrito e está apresentado no Capítulo 6. Este

artigo teve a colaboração de Aline M. Del Valle e Eduardo C. Xavier (IC-Unicamp).





Chapter 2

Algorithms for 3D Guillotine Cutting

Problems: Unconstrained Knapsack,

Cutting Stock and Strip Packing

Abstract

We present algorithms for the following three-dimensional (3D) guillotine cutting
problems: Unconstrained Knapsack, Cutting Stock and Strip Packing. We consider
the case where the items have fixed orientation and the case where orthogonal ro-
tations around all axes are allowed. For the Unconstrained 3D Knapsack problem,
we extend the recurrence formula proposed by Beasley (1985) [8] for the Rectan-
gular Knapsack Problem and present a dynamic programming algorithm that uses
reduced raster points. We also consider a variant of the Unconstrained Knapsack
problem in which the cuts must be staged. For the 3D Cutting Stock problem and
its variants in which the bins have different sizes (and the cuts must be staged), we
present column generation based algorithms. Modified versions of the algorithms
for the 3D Cutting Stock problems with stages are then used to build algorithms for
the 3D Strip Packing problem and its variants. The computational tests performed
with the algorithms described in this paper indicate that they are useful to solve
instances of moderate size.

2.1 Introduction

The problem of cutting large objects to produce smaller objects has been largely investigated,
specially when the objects are one- or two-dimensional. We focus here on the three-dimensional

15



16 Capítulo 2.

case, restricted to guillotine cuts. In this context, the large objects to be cut are called bins, and
the small objects (to be produced) are called boxes or items.

A guillotine cut is a cut that is parallel to one of the sides of the bin and goes from one
side to the opposite one. For the problems considered here, not only the first cut, but all the
subsequent cuts on the smaller parts must be of guillotine type.

A k-staged cutting is a sequence of at most k stages of cuts, each stage of which is a set of
parallel guillotine cuts performed on the objects obtained in the previous stage. Moreover, the
cuts in each stage must be orthogonal to the cuts performed in the previous stage. We assume,
without loss of generality, that the cuts are infinitely thin.

Each possible way of cutting a bin is called a cutting pattern (or simply, pattern). To rep-
resent the patterns (and the cuts to be performed), we consider the Euclidean space R3 with the
xyz coordinate system, and assume that the length, width and height of an object is represented
in the axes x, y and z, respectively. We say that a bin (or box) B has dimension (L,W,H), and
write B = (L,W,H), if it has length L, width W and height H . For such a bin, we assume
that the position (0, 0, 0) corresponds to its bottom-left front corner, and position (L,W,H)

represents its top-right behind corner. Analogously, the same terminology is used for the boxes.
The problems considered in this paper are the following.

THREE-DIMENSIONAL UNCONSTRAINED KNAPSACK PROBLEM (3KPG): We are given a bin
B = (L,W,H) and a list T of n types of boxes, each type iwith dimension (li, wi, hi) and value
vi, i = 1, . . . , n. We wish to determine how to cut B to produce boxes of some of the types in
T so as to maximize the total value of the boxes that are produced. Here, no bound is imposed
on the number of boxes of each type that can be produced (some types may not occur). An
instance of this problem is denoted by a tuple (L,W,H, l, w, h, v), where l = (l1, . . . , ln) and
w, h and v are lists defined likewise.

In the problem 3KPG there is no demand associated with a box. Differently, in the cutting
stock and strip packing problems, to be defined next, there is a demand associated with each
type of box. In this case, a box of type i with dimension (li, wi, hi) and demand di is denoted
by a tuple (li, wi, hi, di); and a set of n types of boxes is denoted by (l, w, h, d), where l =

(l1, . . . , ln), and w, h and d are lists defined analogously.

THREE-DIMENSIONAL CUTTING STOCK PROBLEM (3CSG): Given an unlimited quantity of
identical binsB = (L,W,H) and a set of n types of boxes (l, w, h, d), determine how to cut the
smallest possible number of bins B so as to produce di units of each box type i, i = 1, . . . , n.
An instance for this problem is given by a tuple (L,W,H, l, w, h, d).

THREE-DIMENSIONAL CUTTING STOCK PROBLEM WITH VARIABLE BIN SIZES (3CSVG):
Given an unlimited quantity of b different types of binsB1, . . . , Bb, each binBj with dimension
(Lj,Wj , Hj) and value Vj , and a set of n types of boxes (l, w, h, d), determine how to cut the
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given bins to generate di units of each box type i, i = 1, . . . , n, so that the total value of the
bins used is the smallest possible. (Some types of bins may not be used.) An instance of this
problem is given by a tuple (L,W,H, V, l, w, h, d).

THREE-DIMENSIONAL STRIP PACKING PROBLEM (3SPG): Given a 3D strip B = (L,W,∞)

(a bin with bottom dimension (L,W ) and infinite height) and a set of n types of boxes (l, w, h, d),
determine how to cut the strip B so that di units of each box type i, i = 1, . . . , n, is produced
and the height of the part of the strip that is used is minimized. We require the cuts to be k-
staged (and horizontal in the first stage); furthermore, the distance between any two subsequent
cuts must be at most A (a common restriction imposed by the cutting machines).

For the problems above mentioned, we also consider variants in which orthogonal rotations
of the boxes are allowed. These variants are called 3KPGr, 3CSGr, 3CSVGr and 3SPGr, re-
spectively. When we allow a box bi = (li, wi, hi) to be rotated, this means that its dimension
can be considered as being any of the six permutations of (li, wi, hi). We represent the versions
of these problems that do not specify the type of cut by 3KP, 3CS, 3CSV and 3SP.

Throughout the paper, the dimensions of the bins and the boxes are assumed to be integer.
For the staged variant of the 3CSG problem, we assume that the first cutting stage is performed
in the horizontal direction, that is, parallel to the xy-plane, denoted as �H �; followed by a cut in
the lateral vertical direction, that is, parallel to the yz-plane, denoted as �V �; and then, a cut in
the frontal vertical direction (parallel to the xz-plane), denoted as �D� (a depth cut).

All problems above mentioned areNP-hard. The one- and two-dimensional versions of the
unconstrained knapsack problem have been studied since the sixties. Herz (1972) [48] presented
a recursive algorithm for the two-dimensional version, called 2KP, which obtains canonical pat-
terns making use of discretization points. Beasley (1985) [8] proposed a dynamic programming
formulation that uses the discretization points to solve the staged and non-staged variants of the
2KP problem. Cintra et al. (2008) [27] presented a dynamic programming approach for the
2KP problem and some of its variants. They were able to solve in a small computational time
instances of the OR-Library for which no optimal solution was known. Diedrich et al. (2008)
[32] proposed approximation algorithms for the 3KP problem with approximation ratios (9+�),
(8 + �) and (7 + �); and for the 3KPr problem they designed an approximation algorithm with
ratio (5 + �).

The first column generation approaches for the one- and two-dimensional Cutting Stock
problem, called 1CS and 2CS, were proposed by Gilmore and Gomory (1961; 1963; 1965) [41,
42, 43]. They also considered the variant of 2CS in which the bins have different sizes, called
2CSV, and proposed the k-staged version. Alvarez-Valdes et al. (2002) [4] also investigated
the 2CS problem, for which they presented a column generation based algorithm that uses the
recurrence formulas described in Beasley (1985) [8]. Puchinger and Raidl (2007) [78] presented
a branch-and-price algorithm for the 3-staged case of 2CS.
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For the 3CS problem with unit demand, Csirik and van Vliet (1993) [29] presented an algo-
rithm with asymptotic performance ratio of at most 4.84. Miyazawa and Wakabayashi (2009)
[71] showed that the version with orthogonal rotation is as difficult to approximate as the ori-
ented version, and they also presented a 4.89-approximation algorithm for this case. Cintra et
al. (2007) [26] showed that these approximation ratios are also preserved in the case of arbitrary
demands.

Some approximation algorithms have been proposed for the two-dimensional Strip Packing
(2SP) problem. Kenyon and Rémila (2000) [61] presented an AFPTAS for the oriented case and
Jansen and van Stee (2005) [57] proposed a PTAS for the case in which rotations are allowed.
Other approaches like branch-and-bound and integer linear programmingmodels have also been
proposed in [50, 66, 67]. Cintra et al. (2008) [27] presented a column generation based algo-
rithm for the staged 2SP problem with and without rotations. For the three-dimensional case
(3SP), Jansen and Solis-Oba (2006) [56] proposed an algorithm with asymptotic ratio of 2 + �.

The results we present in this paper are basically extensions of the approaches obtained by
Cintra et al. (2008) [27], combined with the use of reduced raster points (an idea introduced by
Scheithauer (1997) [83]). Section 2.2 focus on the Unconstrained Knapsack problems 3KPG,
3KPGrand its variants in which the cuts must be k-staged. For all these problems we present ex-
act dynamic programming algorithms. For the Cutting Stock problems 3CSG, 3CSGr, 3CSVG
and 3CSVGr, we present in Sections 2.3 and 2.4 column generation based algorithms that use
as a routine the algorithm proposed for the Unconstrained Knapsack problem. In Section 2.5
we focus on the 3SPG problem and its variants (with rotations and/or k-staged cuts). The
algorithms for all these problems use a column generation technique. The computational exper-
iments with the algorithms described here are reported in Section 2.6.

2.2 The 3D Unconstrained Knapsack Problem

The algorithms we describe in this section are based on the use of the so-called raster points.
These are a special sub-set of the discretization points (positions where guillotine cutting can
be performed) and were first presented by Scheithauer (1997) [83].

Discretization points were used (for the two-dimensional case) by Herz (1972) [48] and
also by Beasley (1985) [8] in a dynamic programming algorithm. More recently, Birgin et
al. (2010) [17] used raster points to deal with the packing of identical rectangles in another
rectangle, obtaining very good results.

Let (L,W,H, l, w, h, v) be an instance of the 3KPG problem. A discretization point of

length (respectively, of the width and of the height) is a value i ≤ L (respectively, j ≤ W

and k ≤ H) obtained by an integer conic combination of l = (l1, . . . , ln) (respectively, w =

(w1, . . . , wn) and h = (h1, . . . , hn)). We denote by P , Q and R the set of all discretization
points of length, width and height, respectively.
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The set of reduced raster points P̃ (relative to P ) is defined as P̃ = {�L − r� : r ∈ P},
where �s� = max{t ∈ P : t ≤ s}. In the same way we define the sets Q̃ (relative to Q)
and R̃ (relative to R). To simplify notation, we refer to these points as r-points. An important
feature of the r-points is the fact that they are sufficient to generate all possible cutting patterns
(that is, for every pattern there is an equivalent one in which the cuts are performed only on
r-points). As the set of r-points is a subset of the discretization points, this may reduce the time
for the search of an optimum pattern. To refer to these points we define, for any rational number
xr ≤ L, yr ≤W and zr ≤ H , the following functions:

p(xr) = max{i| i ∈ P̃ , i ≤ xr};

q(yr) = max{j| j ∈ Q̃, j ≤ yr};

r(zr) = max{k| k ∈ R̃, k ≤ zr}.

(2.1)

The algorithm to compute the r-points of a given instance is denoted by RRP. First, it gen-
erates the discretization points using the algorithm DDP (Discretization using Dynamic Pro-
gramming) presented in [27], and then, it selects those that are r-points, following the above
definition.

The time complexity of the algorithm RRP is the same of the algorithmDDP, that is,O(nD)

where D := max{L,W,H}. This algorithm is pseudo-polynomial; so when D is small, or
the dimensions of the boxes are not so small compared to the dimension of the bin, then the
algorithm has a good performance, as shown by the computational tests, presented in Section
2.6.

2.2.1 Algorithm for the 3KPG problem

Let I = (L,W,H, l, w, h, v) be an instance of the 3KPG problem, and let P̃ , Q̃ and R̃ be the
set of r-points, as defined previously. Let G(L,W,H) be the value of an optimum guillotine
pattern for the instance I . The function G can be calculated by the recurrence formula (2.2).
In this formula, g(l∗, w∗, h∗) denotes the maximum value of a box that can be cut in a bin of
dimension (l∗, w∗, h∗). This value is 0 if no box can be cut in such a bin.

G(l∗, w∗, h∗) = max





g(l∗, w∗, h∗);

max
�
G(l�, w∗, h∗) +G(p(l∗ − l�), w∗, h∗)| l� ∈ P̃ , l� ≤ l∗/2

�
;

max
�
G(l∗, w�, h∗) +G(l∗, q(w∗ − w�), h∗)| w� ∈ Q̃, w� ≤ w∗/2

�
;

max
�
G(l∗, w∗, h�) +G(l∗, w∗, r(h∗ − h�))| h� ∈ R̃, h� ≤ h∗/2

�
.





(2.2)

We note that the recurrence above is an extension of the recurrence formula of Beasley
(1985) [8]. It can be solved by the algorithm DP3KPG (Dynamic Programming for the Three-
dimensional Unconstrained Knapsack), which we describe next.



20 Capítulo 2.

Algorithm 2.1: DP3KPG.
Input : An instance I = (L,W,H, l, w, h, v) of the 3KPG problem.
Output : An optimum solution for I .
P̃ ← RRP(L, l), Q̃← RRP(W,w), R̃← RRP(H,h)2.1.1

Let P̃ = (p1 < p2 < . . . < pm), Q̃ = (q1 < q2 < . . . < qs), R̃ = (r1 < r2 < . . . < ru)2.1.2

for i← 1 tom do2.1.3

for j ← 1 to s do2.1.4

for k ← 1 to u do2.1.5

G[i, j, k]← max({vd| 1 ≤ d ≤ n; ld ≤ pi, wd ≤ qj and hd ≤ rk} ∪ {0})2.1.6

item [i, j, k]← max({d| 1 ≤ d ≤ n; ld ≤ pi, wd ≤ qj , hd ≤ rk and vd = G[i, j, k]} ∪ {0})2.1.7

guil [i, j, k]← nil2.1.8

for i← 1 tom do2.1.9

for j ← 1 to s do2.1.10

for k ← 1 to u do2.1.11

nn← max(d| 1 ≤ d ≤ i and pd ≤ �pi/2�)2.1.12

for x← 1 to nn do2.1.13

t← max(d| 1 ≤ d ≤ m and pd ≤ pi − px)2.1.14

if G[i, j, k] < G[x, j, k] +G[t, j, k] then2.1.15

G[i, j, k]← G[x, j, k] +G[t, j, k]2.1.16

pos [i, j, k]← px2.1.17

guil [i, j, k]← �V � // Vertical cut, parallel to yz-plane2.1.18

nn← max(d| 1 ≤ d ≤ j and qd ≤ �qj/2�)2.1.19

for y ← 1 to nn do2.1.20

t← max(d| 1 ≤ d ≤ s and qd ≤ qj − qy)2.1.21

if G[i, j, k] < G[i, y, k] +G[i, t, k] then2.1.22

G[i, j, k]← G[i, y, k] +G[i, t, k]2.1.23

pos [i, j, k]← qy2.1.24

guil [i, j, k]← �D� // Depth cut (vertical, parallel to xy-plane)2.1.25

nn← max(d| 1 ≤ d ≤ k and rd ≤ �rk/2�)2.1.26

for z ← 1 to nn do2.1.27

t← max(d| 1 ≤ d ≤ u and rd ≤ rk − rz)2.1.28

if G[i, j, k] < G[i, j, z] +G[i, j, t] then2.1.29

G[i, j, k]← G[i, j, z] +G[i, j, t]2.1.30

pos [i, j, k]← rz2.1.31

guil [i, j, k]← �H � // Horizontal cut, parallel to xy-plane2.1.32

return G(m, s, u).2.1.33

First, the algorithm DP3KPG calls the algorithm RRP to compute the sets P̃ , Q̃ and R̃ (lines
2.1.1 − 2.1.2). Then (in the lines 2.1.3 − 2.1.8), the algorithm stores in G[i, j, k] for each bin
of dimension (pi, qj , rk), with pi ∈ P̃ , qj ∈ Q̃ and rk ∈ R̃, the maximum value of a box that
can be cut in such a bin. The variable item[i, j, k] indicates the corresponding box type, and the
variable guil [i, j, k] indicates the direction of the guillotine cut if its value is not nil. The value
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nil indicates that no cut has to be performed, and pos [i, j, k] contains the position (point) at x, y
or z-axis where the cut has to be made.

Next, (in the lines 2.1.9 − 2.1.32) the algorithm iteratively finds the optimum solution for
a bin of the current iteration by the best combination of solutions already known for smaller
bins. In other words, for a bin of dimension (pi, qj, rk), the optimum solution is obtained in
the following way: for each possible r-point px where a vertical cut �V � can be performed, the
algorithm determines the best solution by comparing the best solution so far with one that can
be obtained with a vertical cut �V � (lines 2.1.12 − 2.1.18); repeat the same process for a depth
cut �D� (lines 2.1.19 − 2.1.25), and for a horizontal cut �H � (lines 2.1.26 − 2.1.32). Finally, (at
line 2.1.33) the algorithm returns the value of an optimum solution.

The algorithm avoids generating symmetric patterns by considering, in each direction, r-
points up to half of the size of the respective bin (see lines 2.1.12, 2.1.19 and 2.1.26). In fact,
consider a bin of width � and an orthogonal guillotine cut in the x-axis at position t ∈ P̃ , for
t > �

2
. This cut divides the current bin into two smaller bins: one with length t and the other

with length � − t. The patterns that can be obtained with these two smaller bins can also be
obtained using a guillotine cut at position t� = � − t on the original bin. If t� ∈ P̃ , then such a
cut is considered as t� ≤ �

2
; if t� /∈ P̃ then the cut at position �t�� generates two bins in which

we can obtain the same patterns considered for the cut made on t�.
The time complexity of the algorithm DP3KPG is directly affected by the time complexity

of the algorithm RRP (line 2.1.1). Therefore, the time complexity of the algorithm DP3KPG
is O(nL + nW + nH + m2su + ms2u + msu2) where m, s and u are the total number of
r-points of P̃ , Q̃ and R̃, respectively. On the other hand, the space complexity of the DP3KPG
is O(L+W +H +msu).

2.2.2 Algorithm for the k-staged 3KPG problem

We present now a dynamic programming algorithm to solve the k-staged 3KPG and 3KPGr

problems. We consider that in each stage a different cut direction is considered, following the
cyclic order: H − V −D −H − . . . A cutting stage may possibly be empty (when no cut has
to be performed), and in this case, after it, the next cutting stage is considered.

In the next recurrence formulas,G(l∗, w∗, h∗, k, V ),G(l∗, w∗, h∗, k,H) andG(l∗, w∗, h∗, k,D)

denote the value of an optimum guillotine k-staged solution for a bin of dimension (l∗, w∗, h∗).
The parameters V ,H and D indicate the direction of the first cutting stage.
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G(l∗, w∗, h∗, 0, V or H or D) := g(l∗, w∗, h∗);

G(l∗, w∗, h∗, k, V ) :=

max

�
G(l∗, w∗, h∗, k − 1, D);

max
�
G(l�, w∗, h∗, k − 1, D) +G(p(l∗ − l�), w∗, h∗, k, V ) | l� ∈ P̃ , l� ≤ l∗/2

�
�
,

G(l∗, w∗, h∗, k,H) :=

max

�
G(l∗, w∗, h∗, k − 1, V );

max
�
G(l∗, w�, h∗, k − 1, V ) +G(l∗, q(w∗ − w�), h∗, k,H) | w� ∈ Q̃, w� ≤ w∗/2

�
�
,

G(l∗, w∗, h∗, k,D) :=

max

�
G(l∗, w∗, h∗, k − 1, H);

max
�
G(l∗, w∗, h�, k − 1, H) +G(l∗, w∗, r(h∗ − h�), k,D) | h� ∈ R̃, h� ≤ h∗/2

�
�
.

(2.3)

The algorithm DPS3KPG (Dynamic Programming for the k-staged 3KPG) described next
solves the recurrence formulas above. It is very similar to the former algorithm (for the non-
staged case). It computes first the sets P̃ , Q̃ and R̃ and stores in G[0, i, j, l] the maximum value
of a box that can be cut on a bin of dimension (pi, qj , rl) (lines 2.2.1−2.2.8). Then, the algorithm
computes, for each stage b, the best solution for cuts done only in one direction, and it uses this
information to compute the best solution for the next stage, and so on (guaranteeing that two
subsequent stages have cuts in different directions). This is the basic difference between the
algorithm DP3KPG and DPS3KPG. In some cases, the best solution for the stage b − 1 is also
the solution for the stage b, and no cut is needed in this case. In this case, the value nil is stored
in the variable guil (line 2.2.15).

The algorithm DPS3KPG stores in G[k, i, j, l] the optimum k-staged solution for a bin with
dimension (pi, qj , rl). The variables guil [k, i, j, l], pos [k, i, j, l] and item[k, i, j, l] indicate, re-
spectively, the direction of the first guillotine cut, the position of this cut at x, y or z-axis, and
the corresponding item if no cut has to be made in the bin.

The time complexity of the algorithm DPS3KPG is the same of the algorithm DP3KPG
multiplied by the number of cutting stages k. This is also true for the space complexity. On the
other hand, if k is limited by some constant, then DPS3KPG have the same complexity of the
algorithm DP3KPG.

2.2.3 The 3KPGr problem and its variant with k stages

The problem 3KPGr is a variant of 3KPG that allows orthogonal rotations of the boxes (to be
cut) around any of the axes. This means that each box of type i can be considered as having one
of the six dimensions obtained by the permutations of li, wi, hi (as long as they are feasible).
We refer to these feasible dimensions as PERM(li, wi, hi).
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Algorithm 2.2: DPS3KPG.
Input : An instance I = (L,W,H, l, w, h, v, k) of the k-staged 3KPG problem.
Output : An optimum k-staged solution for I .
P̃ ← RRP(L, l1,...,n), Q̃← RRP(W,w1,...,n), R̃← RRP(H,h1,...,n)2.2.1

Let P̃ = (p1 < p2 < . . . < pm), Q̃ = (q1 < q2 < . . . < qs), R̃ = (r1 < r2 < . . . < ru)2.2.2

for i← 1 tom do2.2.3

for j ← 1 to s do2.2.4

for l ← 1 to u do2.2.5

G[0, i, j, l]← max({vd| 1 ≤ d ≤ n; ld ≤ pi, wd ≤ qj and hd ≤ rl} ∪ {0})2.2.6

item[0, i, j, l]← max({d| 1 ≤ d ≤ n; ld ≤ pi, wd ≤ qj , hd ≤ rl and vd = G[0, i, j, l]} ∪ {0})2.2.7

guil [0, i, j, l]← nil2.2.8

if (k mod 3) = 1 then previous← �V � else if (k mod 3) = 2 then previous← �D� else previous← �H �2.2.9

for b← 1 to k do2.2.10

for i← 1 tom do2.2.11

for j ← 1 to s do2.2.12

for l← 1 to u do2.2.13

G[b, i, j, l]← G[b− 1, i, j, l]2.2.14

guil[b, i, j, l]← nil2.2.15

if previous = �D� then2.2.16

nn← max(d| 1 ≤ d ≤ m and pd ≤ �pi/2�)2.2.17

for x← 1 to nn do2.2.18

t← max(d| 1 ≤ d ≤ m and pd ≤ pi − px)2.2.19

if G[b, i, j, l] < G[b− 1, x, j, l] +G[b, t, j, l] then2.2.20

G[b, i, j, l]← G[b− 1, x, j, l] +G[b, t, j, l]2.2.21

pos [b, i, j, l]← px2.2.22

guil [b, i, j, l]← �V �2.2.23

previous← �V �2.2.24

else if previous = �V � then2.2.25

nn← max(d| 1 ≤ d ≤ u and rd ≤ �rl/2�)2.2.26

for z ← 1 to nn do2.2.27

t← max(d| 1 ≤ d ≤ u and rd ≤ rl − rz)2.2.28

if G[b, i, j, l] < G[b− 1, i, j, z] +G[b, i, j, t] then2.2.29

G[b, i, j, l]← G[b− 1, i, j, z] +G[b, i, j, t]2.2.30

pos [b, i, j, l]← rz2.2.31

guil [b, i, j, l]← �H �2.2.32

previous← �H �2.2.33

else2.2.34

nn← max(d| 1 ≤ d ≤ s and qd ≤ �qj/2�)2.2.35

for y ← 1 to nn do2.2.36

t← max(d| 1 ≤ d ≤ s and qd ≤ qj − qy)2.2.37

if G[b, i, j, l] < G[b− 1, i, y, l] +G[b, i, t, l] then2.2.38

G[b, i, j, l]← G[b− 1, i, y, l] +G[b, i, t, l]2.2.39

pos [b, i, j, l]← qy2.2.40

guil [b, i, j, l]← �D�2.2.41

previous← �D�2.2.42

return G(k,m, s, u).2.2.43
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The problem 3KPGr can be solved with the algorithms for the problem 3KPG. For that, we
only need a preprocessing phase to change the instance. Given an instance I for the 3KPGr, we
construct another instance I � by adding to I , for each box i in I of dimension (li, wi, hi), the
set of new types of boxes PERM(li, wi, hi), all with the same value vi. Then, we solve the new
instance I � with the algorithm 3KPG.

For the k-staged 3KPGr problem, we proceed analogously. We denote the corresponding
algorithms for these problems by DP3KPGr and DPS3KPGr.

2.3 The Three-dimensional Cutting Stock Problem

We first present some heuristics which will be used as subroutines in the column generation ap-
proach described in this section for the 3CSG problem. We also compare the sole performance
of these heuristics with the performance of the column generation approach.

2.3.1 Primal heuristics for the three-dimensional cutting stock problem

The primal heuristic we present here – HFF3 – is a hybrid heuristic that generates patterns
composed of levels. It uses an algorithm for the 2CS problem to generate the levels and an
algorithm for the 1CS problem to pack these levels into bins. We first describe the algorithms
for the 1CS and 2CS problems, and then we present the algorithm HFF3.

The algorithms for the 1CS problem that we use here are the well-known First Fit (FF), and
First Fit Decreasing (FFD) algorithms. We describe here only the algorithm we use for the 2CS
problem. It is called HFF2 (Hybrid First Fit 2), as it is based on the Hybrid First Fit algorithm,
designed by Chung et al. (1982) [24]. (For convenience, we describe it as packing algorithm.)

The algorithm HFF2 includes two variants: HFFl and HFFw. Without loss of generality, we
suppose that each box has unit demand. Thus, for an instance (L,W, l, w) of the 2CS problem,
the algorithm HFFl considers the items sorted decreasingly by length (l1 ≥ l2 ≥ . . . ≥ ln).
Then, it considers each item i as a one-dimensional item of size wi, and applies the algorithm
First Fit, FF(W,w), to obtain a packing of those items into recipients S1, . . . , Sm, which we call
strips. Finally, each strip Si is considered as a one-dimensional item of size si = max{lj : j ∈

Si} and the algorithm FFD(L, s) is applied to pack these strips into rectangular (2D) bins. The
strips of the algorithm HFFl are generated in the length direction, whereas the HFFw generates
the strips in the width direction. The algorithm HFF2 executes both variants and returns a
solution with the best value.

To deal with the 3CSGr problem (the variant of 3CSG in which orthogonal rotations are
allowed), we denote by HFFx (respectively, HFFy) the variant of the algorithmHFF2 that rotates
the rectangles i to obtain wi ≥ li (respectively, li ≥ wi) before applying the algorithms HFFl

and HFFw. The algorithm HFF2r executes these algorithms and returns the best solution found.
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Instead of presenting the algorithm HFF3 directly, we present an algorithm called H3CS
(see Algorithm 2.3) that uses as subroutines algorithms for the 1CS and 2CS problems. The
algorithm HFF3 is a specialization of the algorithm H3CS using particular subroutines. The
algorithm H3CS first sorts the items decreasingly by height. Then, it iteratively generates a new
level using an algorithm for the 2CS problem, privileging the packing of the higher items into
each level. For each item i, the largest possible number of them is packed without violating its
demand and keeping the packing in one level (see line 2.3.7). When all levels are generated,
they are packed into bins by an algorithm for the 1CS problem (see line 2.3.10).

We denote by HFF3h (respectively, HFF3rh) the algorithm H3CS that uses the algorithms
FFD and HFF2 (respectively, HFF2r) as subroutines. Observe that the algorithms HFF3h and
HFF3rh generate and pack the levels in the height direction. We denote by HFF3w and HFF3

r
w

(respectively, HFF3l and HFF3rl ) the variants where levels are generated and packed in the width
(respectively, length) direction. Finally, the algorithm HFF3 (respectively, HFF3r) executes the
algorithms HFF3h, HFF3w and HFF3l (respectively, HFF3rh, HFF3

r
w and HFF3

r
l ) and returns

the best packing obtained.

Algorithm 2.3: H3CS.
Input : An instance I = (L,W,H, l, w, h, d) of the 3CSG problem.
Output : A solution for I .
Subroutines: AlgorithmsA and B for the 1CS and 2CS problems.
Sort the items of I decreasingly by height: h1 ≥ h2 ≥ . . . ≥ hn.2.3.1

m← 02.3.2

while exists di > 0 for some i ∈ {1, . . . , n} do2.3.3

m← m+ 12.3.4

Let d� = (d�1, . . . , d
�
n) where d

�
i = 0 for i = 1, . . . , n2.3.5

for i← 1 to n do2.3.6

d�i ← max{t : t ≤ di, �d = (d�1, . . . , d
�
i−1, t, 0, . . . , 0) and2.3.7

|B(L,W, l, w, �d)| ≤ 1}
di ← di − d�i2.3.8

LetNm ← B(L,W, l, w, d�) and h(Nm) = max{hi : d�i > 0}2.3.9

Let P be a packing of the levels (Ni) in bins of heightH by the algorithmA(H,h).2.3.10

return P2.3.11

2.3.2 The column generation based heuristics

Awell-known ILP formulation for the cutting stock problem uses one variable for each possible
pattern [41]. This formulation is the following. Let P denote the set of cutting patterns and
m := |P| denote its size. Now let P be an n ×m matrix whose columns represent the cutting
patterns, and Pij indicates the number of copies of item i in pattern j. For each j ∈ P , let xj
be the variable that indicates the number of times pattern j is used, and let d be the n-vector of
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demands.

The following linear program is a relaxation of an ILP formulation for the cutting stock
problem:

min
�
j∈P xj

subject to

�
Px ≥ d

xj ≥ 0 for all j ∈ P.

(2.4)

As we mentioned before, the column generation approach to solve the 1CS and 2CS prob-
lems was proposed in the early sixties by Gilmore and Gomory. The idea of this approach is to
apply the Simplex method starting with a small set of columns of P as a basis, and generate new
ones as needed. That is, in each iteration it obtains a new pattern (column) z with

�n

i=1 vizi > 1

such that zi is the number of times box i appears in this pattern and vi is the value of this box.
After solving (2.4), one considers the integer part of the solution; and deal the residual problems
iteratively using the same approach.

In the case of 3CSG we use the algorithm presented for the Three-dimensional Uncon-
strained Knapsack (3KPG) problem to generate such a pattern. In what follows, we describe
the algorithm, denoted by SimplexCS, that solves the linear program (2.4). In step 2.4.1, the
matrix In×n is the identity matrix corresponding to n patterns, each one with items of one type
and one orientation. More details about the column generation approach can be found in [25].

Algorithm 2.4: SimplexCS.
Input : An instance I = (L,W,H, l, w, h, d) of the 3CSG problem.
Output : An optimum solution for the linear program (2.4)
Subroutine: An algorithmA for the 3KPG or 3KPGr problem.
Let x← d and B ← In×n2.4.1

Solve yTB = [1, 1, . . . , 1]Tn2.4.2

z ← A(L,W,H, l, w, h, y)2.4.3

if yT z ≤ 1 then return (B, x) else solve Bw = z2.4.4

Let t← min(
xj

wj
| 1 ≤ j ≤ n, wj > 0) and s← min(j | 1 ≤ j ≤ n,

xj

wj
= t)2.4.5

for i← 1 to n do2.4.6

Bi,s ← zi2.4.7

if i = s then xi ← t else xi ← xi − wi t2.4.8

Go to line 2.4.22.4.9

We present below the algorithm CG3CSG that solves the 3CSG problem. It receives the
solution (possibly fractional) found by the algorithm SimplexCS and returns an integer solution
for the 3CSG problem. If needed, this algorithm uses a primal heuristic to obtain a cutting
pattern that causes a perturbation of some residual instance (see line 14 in 2.5).

The algorithm CG3CSG solves (in each iteration) a linear system for an instance I and
obtain B and x (line 2.5.1). Then, it obtains an integer vector x∗, just by rounding down the
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Algorithm 2.5: CG3CSG.
Input : An instance I = (L,W,H, l, w, h, d) of the 3CSG problem.
Output : A solution for I .
Subroutine: An algorithmA for the 3CSG problem or for the 3CSGr problem.
(B, x)← SimplexCS(L,W,H, l, w, h, d)2.5.1

for i← 1 to n do x∗i ← �xi�2.5.2

if there is i such that x∗i > 0 for some 1 ≤ i ≤ n then2.5.3

return (B, x∗1,...,n) (but do not halt)2.5.4

for i← 1 to n do2.5.5

for j ← 1 to n do di ← di −Bi,jx
∗
j2.5.6

n� ← 0, l� ← ( ), w� ← ( ), h� ← ( ), d� ← ( )2.5.7

for i← 1 to n do2.5.8

if di > 0 then2.5.9

n� ← n� + 1, l� ← l��(li), w� ← w��(wi), h� ← h��(hi), d� ← d��(di)2.5.10

if n� = 0 then HALT2.5.11

n← n�, l ← l�, w← w�, h← h�, d← d�2.5.12

Go to line 2.5.12.5.13

return a pattern of A(L,W,H, l, w, h, d) that has the largest volume, and update the demands (but do2.5.14

not halt).

if there exists i (1 ≤ i ≤ n) such that di > 0 then go to line 2.5.12.5.15

vector x (see line 2.5.2). The vector x∗ is a �partial� solution that possibly fulfills only part of the
demands. Thus, if there is a box i with part of its demand fulfilled by x∗, the algorithm returns
(B, x∗), and the patterns corresponding to B. After this, the algorithm defines a new residual

instance I � = (L,W,H, l, w, h, d�), where the vector d� = (d�
1, . . . , d

�
n) contains the residual

demand of each item i (see lines 2.5.7 − 2.5.12). If d� is a null vector, then the algorithm halts
(see line 2.5.11), as this means that each item i has its demand fulfilled; otherwise, the execution
proceeds to solve the new updated instance I .

The vector x returned by the algorithm SimplexCS might have all components smaller than
1. In this case, x∗ is a null vector and the subroutine A is used to obtain a good cutting pattern
(line 2.5.14). Therefore, the demands are updated and if there is some residual demand (lines
2.5.14 − 2.5.15) the execution is restarted for the new residual instance (see line 2.5.1). Note
that the number of residual instances solved by the algorithm CG3CSG can be exponential in n.
But, clearly, the algorithm halts because in each iteration the demands decrease. The algorithm
A used as subroutine by the algorithm CG3CSG is the hybrid algorithm HFF3 described in
Section 2.3.1.

An algorithm for the k-staged version of 3CSG can be obtained analogoulsy, just by chang-
ing the subroutine by the corresponding k-staged versions.
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2.3.3 The 3CSGr problem

We can solve the 3CSGr problem also using the algorithms SimplexCS and CG3CSG, each one
with the appropriate subroutines. Namely, in the SimplexCS we use the algorithmHFF3r, and in
the algorithm CG3CSG, we use the algorithm DP3KPGr. We denote this version by CG3CSGr.
The same idea applies to the k-staged 3CSGr problem in which we use the algorithmDPS3KPG
as subroutine for the algorithm SimplexCS.

2.4 The 3CSVG Problem

We can solve the 3CSVG problem using a column generation approach similar to the one de-
scribed for the 3CSG problem. For that, basically we have to adapt the algorithm SimplexCS.

In this problem we are given a list of different bins B1, . . . , Bb, each bin Bi with dimension
(Li,Wi, Hi) and value Vi, and we want to minimize the total value of the bins used to fulfill
the demands. Using an analogous notation as before, the following is a relaxation of the integer
linear program for the 3CSVG problem:

min
�
j∈P Cjxj

subject to

�
Px ≥ d

xj ≥ 0 for all j ∈ P.

(2.5)

The coefficient Cj in the above formulation indicates the value of the bin type used in
pattern j. So, each Cj corresponds to some Vi.

Similarly to the 3CSG problem, if each box i has value yi and occurs zi times in a pattern j,
we take a new column with

�n

i=1 yizi > Cj . Here, we can also use the algorithms we proposed
for the Three-dimensional Unconstrained Knapsack problem to generate the (new) columns.
The algorithm to solve (2.5) is called SimplexCSV . The basic difference between the algorithms
SimplexCS and SimplexCSV is that the latter has a vector f that associates one bin with each
column of the matrix B. This vector and the variables B, guil and pos are used to reconstruct
the solution found.

We describe now the algorithm CG3CSVG that solves the 3CSVG problem. It uses the
algorithm SimplexCSV and is very similar to algorithm CG3CSG described for the 3CSG prob-
lem (we omit the details). The algorithm A used as subroutine by CG3CSVG is the hybrid
algorithm HFF3.

The algorithm for the k-staged 3CSVG problem also uses the algorithm SimplexCSV , but in
this case with the subroutine for the k-staged 3KPG problem.
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Algorithm 2.6: SimplexCSV .
Input : An instance I = (L,W,H, V, l, w, h, d) of the 3CSVG problem.
Output : An optimum solution for (2.5), where the columns of P are cutting patterns.
Subroutine: An algorithmA for the 3KPG or 3KPGr problem.
Let f be a vector, where fi is the smallest index j such that li ≤ Lj , wi ≤Wj and hi ≤ Hj2.6.1

Let x← d and B ← In×n2.6.2

Solve yTB = CT
B // CB is the vector C = (C1, . . . , Cn) restricted to the columns of B2.6.3

for i← 1 to b do2.6.4

z ← A(Li,Wi, Hi, l, w, h, y)2.6.5

if yT z > Vi then go to line 2.6.82.6.6

return (B, f, x∗1,...,n)2.6.7

Solve Bw = z2.6.8

Let t← min(
xj

wj
| 1 ≤ j ≤ n, wj > 0) and s← min(j | 1 ≤ j ≤ n,

xj

wj
= t)2.6.9

Let fj = i2.6.10

for i← 1 to n do2.6.11

Bi,s ← zi2.6.12

if i = s then xi ← t else xi ← xi − wi t2.6.13

Go to line 2.6.32.6.14

Algorithm 2.7: CG3CSVG.
Input : An instance I = (L,W,H, V, l, w, h, d) of the 3CSVG problem.
Output : A solution for I .
Subroutine: An algorithmA for the 3CSVG problem or for the 3CSVGr problem.
(B, f, x)← SimplexCSV (L,W,H, V, l, w, h, d)2.7.1

for i← 1 to n do x∗i ← �xi�2.7.2

if there is i such that x∗i > 0 for some 1 ≤ i ≤ n then2.7.3

return (B, f, x∗1,...,n) (but do not halt)2.7.4

for i← 1 to n do2.7.5

for j ← 1 to n do di ← di −Bi,jx
∗
j2.7.6

n� ← 0, l� ← ( ), w� ← ( ), h� ← ( ), d� ← ( )2.7.7

for i← 1 to n do2.7.8

if di > 0 then2.7.9

n� ← n� + 1, l� ← l��(li), w� ← w��(wi), h� ← h��(hi), d� ← d��(di)2.7.10

if n� = 0 then HALT2.7.11

n← n�, l ← l�, w← w�, h← h�, d← d�2.7.12

Go to line 2.7.12.7.13

Let V ∗ ← min( Vi

LiWiHi
|i = 1, . . . , f) and j ← min(i | Vi

LiWiHi
= V ∗)2.7.14

return a pattern of A(Lj ,Wj , Hj , l, w, h, d) that has the largest volume, and update the demands.2.7.15

if there exists i (1 ≤ i ≤ n) such that di > 0 then go to line 2.7.12.7.16

2.4.1 The 3CSVGr problem

For this problem, we use the algorithm CG3CSVG with the subroutine HFF3r; and the al-
gorithm SimplexCSV with the subroutine DP3KPGr. This version of the algorithm is called
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CG3CSVGr. For the k-staged 3CSVGr, problem we use the algorithm SimplexCSV with the
subroutine DPS3KPG.

2.5 The Three-dimensional Strip Packing Problem

The 3D strip packing problem (3SPG) has been less tackled with the column generation ap-
proach. One advantage of this approach is that it is less sensitive to large values of demands. In
the 3SPG problem the cuts must be k-staged, the first cutting stage has to be horizontal (that is,
orthogonal to the height), and the distance between two subsequent cuts must be at most some
given valueA. We callA-pattern a guillotine cutting pattern between two subsequent horizontal
cuts.

Let P be the set of all A-patterns, |P| = m, and let Aj be the height of an A-pattern j ∈ P .

The following is a relaxation of the integer linear program for the 3SPG problem:

min
�
j∈P Ajxj

subject to

�
Px ≥ d

xj ≥ 0 for all j ∈ P.

(2.6)

We can use the same approach presented for the 3CSVG problem to solve the 3SPG problem.
For that, note that, each A-pattern of height Aj corresponds to a bin with dimension (L,W,Aj)

and value preciselyAj in the 3CSVG problem. Thus, ifR = {a1, . . . , ab} is the set of discretiza-
tion points of height at most A, we can assume that A = max(a1, . . . , ab), and we can consider
that we are given b different types of bins (A-patterns), each one with dimension (L,W, aj).

The algorithm to solve the k-staged 3SPG problem, called CG3SPG, is basically the al-
gorithm presented for the k-staged 3CSVG problem with two modifications. First, to perturb
the residual instance we generate a level with maximal volume (considering the height of such
level). To do this, we use the algorithm HFF2 (for the 2CS problem). Second, every call to the
algorithm SimplexCSV only solves one instance of the k-staged 3KPG problem, the one with
dimensions (L,W, ab). Observe that the variables G, guil and pos computed by the algorithm
DPS3KPG have the solutions for each height ai ∈ R. This is an important modification because
|R| can be very large, and solving instances for each ai ∈ R considering a different bin would
consume a lot of time.

For the k-staged 3SPGr problem, we consider the algorithm HFF2r to generate a perturbed
instance. We also consider a modification in the algorithmHFF3 when we compare its solutions
with the solution computed by the column generation algorithm. This modification basically
consists in packing the levels generated by the algorithm HFF2 (or HFF2r) one on top of the
other in the direction z. We call M-HFF3 this modified algorithm. Finally, the maximum
distance between two subsequent cuts is considered as the width of the bin.
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2.6 Computational Tests

The tests were performed on several instances adapted from the literature. We present compu-
tational results for the set of instances adapted from Cintra et al. (2008) [27]. These instances
were obtained in the following way: we considered the instances for the two-dimensional ver-
sion of the problem, then we added the third dimension for each box (bin) by randomly choosing
it from the dimensions already used for the other boxes (bins). These instances are available at
the following url: http://www.loco.ic.unicamp.br/binpack3d/.

We only considered the first 12 instances, which we called gcut1_3d, . . . , gcut12_3d. For
each one the number of items and the dimensions of the bin are shown in Table 2.1. The length
and width of the items were originally generated (see [8]) by sampling an integer from the
uniform distribution [25%− 75%] of the respective dimension (length and width) of the bin.

We also considered the set of 700 instances from Bischoff and Ratcliff (1995) [18]. In
such work these instances were used in the Container Loading problem with the objective of
maximizing the occupied volume of the container (we ignored the restriction that there were a
limited number of copies of each item and the orientation restrictions). We used these instances
only for the Knapsack problem, as we would not be able to show the results for each of the
problems considered here. These instances were organized in groups of 100 instances. In each
group, the dimensions of the container and the number of items are the same: only the dimen-
sions of the items are different. For example, in the first group named thpack1, each instance
consists of exactly 3 boxes, and the subsequent groups, thpack2, . . . , thpack7, have 5, . . . , 20
boxes, respectively. A standard ISO container of dimensions (587, 233, 220) is considered for
all the instances. The average number of items per items type is 50.2 for the group thpack1, but
decreases continuously and is only 6.5 for the group thpack7. The length, width, and height of
the items are integers in the range of [30− 120], [25− 100] and [20− 80], respectively.

The algorithms presented in this paper were implemented in C language, and the tests were
run on a computer with processor Intel� CoreTM 2 Quad 2.4 GHz, 4 GB of memory and oper-
ating system Linux. The linear systems in the column generation algorithms were solved by the
Coin-OR CLP solver [28].

We are not aware of other works in the literature to compare our results. We did not find
instances for the 3D Unconstrained Knapsack Problem, so we generated some to test our algo-
rithms. We hope these instances will be useful to future researches on the 3D Unconstrained
Knapsack Problem (and other problems) to perform comparative studies.

2.6.1 Comparing the use of raster points and discretization points

In this section we show, for some of the instances considered, the number of raster points,
the number of discretization points, and the corresponding number of subproblems obtained.
These numbers are shown in Table 2.1. We recall that m, s and u denotes the total number of
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r-points (or discretization points) of length, width and height, respectively. The product msu

gives the number of subproblems (#Subprob in the tables), where in the table we show the
approximate number of subproblems where K stands for 103 and M for 106. In many cases it
is very impressive the reduction on the number of subproblems that occurs with the use of the
r-points. This has a great impact in the dynamic programming approach.

For the instances gcut1_3d–gcut12_3d, the number of subproblems using r-points were,
on average, 0.77% of the number of subproblems using discretization points. For instances
thpack1–thpack7, the columns with the numbers of r-points and discretization points indicate
the average number (truncated) in each group. For the thpack instances, the number of subprob-
lems using r-points corresponds, on average, to 19.01% of the number of subproblems using
discretization points.

Instance Number Bin Raster Points Discretization Points #Subprob(%)
of items Dimensions m s u #Subprob m s u #Subprob Rast./Discr.

gcut1_3d 10 (250, 250, 250) 13 5 5 325 68 20 20 27.2K 1.19
gcut2_3d 20 (250, 250, 250) 17 24 13 5.3K 95 112 69 73.4K 0.72
gcut3_3d 30 (250, 250, 250) 44 26 22 25.1K 143 107 122 1.8M 1.35
gcut4_3d 50 (250, 250, 250) 45 50 29 65.2K 146 146 133 2.8M 2.30
gcut5_3d 10 (500, 500, 500) 10 13 8 1K 40 76 26 79K 1.32
gcut6_3d 20 (500, 500, 500) 12 18 8 1.7K 96 120 41 472.3K 0.37
gcut7_3d 30 (500, 500, 500) 23 19 17 7.4K 179 126 140 3.1M 0.24
gcut8_3d 50 (500, 500, 500) 44 59 27 70K 225 262 164 9.6M 0.73
gcut9_3d 10 (1000, 1000, 1000) 15 7 7 735 92 42 32 123.6K 0.59
gcut10_3d 20 (1000, 1000, 1000) 14 20 5 1.4K 89 155 37 510.4K 0.27
gcut11_3d 30 (1000, 1000, 1000) 20 38 14 10.6K 238 326 127 9.8M 0.11
gcut12_3d 50 (1000, 1000, 1000) 49 42 27 55.5K 398 363 291 42M 0.13

AVERAGE 0.77%

thpack1 3 (587, 233, 220) 36 10 22 7.9K 100 27 53 143.1K 5.53
thpack2 5 (587, 233, 220) 88 65 48 274.5K 267 65 113 1.9M 14.00
thpack3 8 (587, 233, 220) 206 37 93 708.8K 390 114 155 6.8M 10.29
thpack4 10 (587, 233, 220) 263 52 110 1.5M 425 134 165 9.3M 16.01
thpack5 12 (587, 233, 220) 302 65 123 2.4M 445 146 172 11.1M 21.61
thpack6 15 (587, 233, 220) 339 81 134 3.6M 463 157 177 12.8M 28.60
thpack7 20 (587, 233, 220) 375 101 147 5.5M 481 167 184 14.7M 37.67

AVERAGE 19.1%

Table 2.1: Comparison between the number of subproblems using Raster Points and using Discretization
Points for the instances adapted from [18] and [27].

When we consider orthogonal rotations, the use of raster points also leads to a good reduc-
tion on the number of subproblems, as we can see in Table 2.2. In the average, the number of
subproblems reduced to 2.13% for gcut1–gcut12 instances and to 45.44% for thpack1–thpack7
instances.
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Instance Number Bin Raster Points Discretization Points # Subprob.(%)
of items Dimensions m s u # Subprob. m s u # Subprob. Rast./Discr.

gcut1_3d 10 (250, 250, 250) 15 15 15 3.3K 92 92 92 778.6K 0.43
gcut2_3d 20 (250, 250, 250) 41 41 41 68.9K 142 142 142 2.8M 2.41
gcut3_3d 30 (250, 250, 250) 58 58 58 195.1K 152 152 152 3.5M 5.56
gcut4_3d 50 (250, 250, 250) 81 81 81 531.4K 166 166 166 4.5M 11.62
gcut5_3d 10 (500, 500, 500) 23 23 23 12.1K 154 154 154 3.6M 0.33
gcut6_3d 20 (500, 500, 500) 28 28 28 21.9K 201 201 201 8.1M 0.27
gcut7_3d 30 (500, 500, 500) 43 43 43 79.5K 232 232 232 12.4M 0.64
gcut8_3d 50 (500, 500, 500) 95 95 95 857.3K 292 292 292 24.8M 3.44
gcut9_3d 10 (1000, 1000, 1000) 17 17 17 4.9K 174 174 174 5.2M 0.09
gcut10_3d 20 (1000, 1000, 1000) 32 32 32 32.7K 294 294 294 25.4M 0.13
gcut11_3d 30 (1000, 1000, 1000) 60 60 60 216K 461 461 461 97.9M 0.22
gcut12_3d 50 (1000, 1000, 1000) 85 85 85 614.1K 511 511 511 133.4M 0.46

AVERAGE 2.13%

thpack1 3 (587, 233, 220) 393 58 50 1.1M 490 137 124 8.3M 13.69
thpack2 5 (587, 233, 220) 451 99 86 3.8M 519 165 152 13M 29.5
thpack3 8 (587, 233, 220) 486 132 119 7.6M 537 183 170 16.7M 45.7
thpack4 10 (587, 233, 220) 496 142 129 9M 542 188 175 17.8M 50.95
thpack5 12 (587, 233, 220) 504 150 137 10.3M 546 192 179 18.7M 55.19
thpack6 15 (587, 233, 220) 511 157 144 11.5M 549 195 182 19.4M 59.29
thpack7 20 (587, 233, 220) 520 166 153 13.2M 554 200 187 20.7M 63.74

AVERAGE 45.44%

Table 2.2: Comparison between the number of subproblems using Raster Points and using Discretization
Points for the instances adapted from [18] and [27], considering rotations.

2.6.2 Results for the Unconstrained Knapsack problem

In this section, we present the computational results for the 3D Unconstrained Knapsack prob-
lem. For this section, we consider the value vi of each box i equal to its volume. Note that for
the thpack instances the values in each group correspond to the average volume for that group.
We first observe that for all instances, the computational time required to solve each instance
was less than 0.001 second.

The columns of the Table 2.3 have the following information: Instance name, Volume for
the case without rotations, Volume for the case with rotations, percentage of volume increased
when considering rotations, Volume for the 4-staged case without rotations, Volume for the
4-staged case with rotations, percentage of volume increased when considering rotations in
4-staged patterns.

As one would expect, we have a better use of the bin when orthogonal rotations are allowed.
Indeed, when we compare the occupied volume of the bin in Table 2.3, the use of rotations leads
to an improvement of 5.63% on gcut instances and of 3.19% on thpack instances, on average.
When considering 4-staged patterns, the use of rotations leads to an improvement of 6.65% on
gcut instances and of 3.89% on thpack instances, on average.
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Instance Unconstrained 3DK 4-Staged Unconstrained 3DK
Without Rot. With Rot. Increase (%) Without Rot. With Rot. Increase (%)

gcut1_3d 80.6 86.7 7.58 80.6 85.7 6.4
gcut2_3d 84.9 94.9 11.82 84.4 93.1 10.36
gcut3_3d 92.5 95.3 3 88.1 94.4 7.19
gcut4_3d 95.4 97 1.63 91.6 96.7 5.62
gcut5_3d 84.3 94.1 11.52 83.8 92.5 10.34
gcut6_3d 84.8 90 6.04 81.8 88 7.54
gcut7_3d 88.1 93.3 5.95 87.6 93.1 6.34
gcut8_3d 93.2 96.6 3.67 92.6 96.6 4.4
gcut9_3d 93.2 96.5 3.59 93.2 96.5 3.59
gcut10_3d 85.2 89 4.51 85.2 89 4.51
gcut11_3d 91.4 95 3.88 89.2 95 6.49
gcut12_3d 92.7 96.7 4.39 89.7 96 7.04

AVERAGE 5.63% 6.65%

thpack1 90.9 98.1 7.94 89.5 97 8.35
thpack2 94.4 98.9 4.73 93 98.1 5.45
thpack3 96.7 99.3 2.74 95.4 98.7 3.5
thpack4 97.3 99.5 2.22 96 99 3.06
thpack5 97.7 99.6 1.88 96.5 99.1 2.67
thpack6 98.2 99.7 1.55 97.1 99.3 2.28
thpack7 98.6 99.8 1.25 97.6 99.5 1.93

AVERAGE 3.19% 3.89%

Table 2.3: Results for the 3KPG problem on instances adapted from [18] and [27].

2.6.3 Results for the Cutting Stock problem

The results for the 3CSG problem and its variants are shown in Tables 2.4, . . . , 2.7. For each of
them, we indicate the instance name; a lower bound (LB) for the value of an optimum integer
solution (obtained by solving the linear relaxation (2.4) by the algorithm SimplexCS); the dif-
ference (in percentage) between the solutions obtained by the algorithm CG3CSG and the lower
bound (LB); the CPU time in seconds; the total number of columns generated; the solution ob-
tained only by the algorithm HFF3 (or HFF3r); and the difference between (improvement over)
HFF3 (respectively, HFF3r) and algorithm CG3CSG (respectively, CG3CSGr).

We exhibit in Table 2.4 and Table 2.5 the results for the non-staged cutting stock problem.
In these tables we can see that the difference between the solutions of the algorithmCG3CSG

(and CG3CSGr) and the lower bound (LB) is 0.407% (and 2.320%), on average. When we
compare the performance of the column generation algorithm with the algorithm HFF3 (re-
spectively, HFF3r) the improvement on the value of the solution is of 20.932% (respectively,
29.819%), on average. The time spent to solve these instances was at most 42 seconds for the
3CSG problem and at most 2600 seconds for the 3CSGr problem. For the k-staged version,
k = 4, we show in Table 2.6 and Table 2.7 the results obtained. We omitted the results for
k = 3, since they are very similar to those for k = 4.
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Instance Solution of LB Difference Time Columns HFF3 Improvement over
CG3CSG from LB (%) (s) generated HFF3 (%)

gcut1_3d 177 177 0.000% 0.03 72 181 2.21%
gcut2_3d 220 220 0.000% 0.56 652 245 10.20%
gcut3_3d 142 140 1.429% 6.93 2,272 194 26.80%
gcut4_3d 520 517 0.580% 41.41 4,230 747 30.39%
gcut5_3d 122 122 0.000% 0.03 48 160 23.75%
gcut6_3d 305 304 0.329% 0.20 338 364 16.21%
gcut7_3d 395 394 0.254% 0.66 607 467 15.42%
gcut8_3d 371 369 0.542% 26.87 3,610 558 33.51%
gcut9_3d 60 60 0.000% 0.08 156 70 14.29%
gcut10_3d 217 216 0.463% 0.08 150 276 21.38%
gcut11_3d 191 189 1.058% 1.33 958 281 32.03%
gcut12_3d 429 428 0.234% 8.63 1,473 572 25.00%

AVERAGE 0.407% 20.932%

Table 2.4: Results for the 3CSG problem on instances adapted from [27].

Instance Solution of LB Difference Time Columns HFF3 Improvement over
CG3CSGr from LB (%) (s) generated HFF3 (%)

gcut1_3d 163 161 1.242% 0.15 150 181 9.94%
gcut2_3d 157 153 2.614% 4.63 466 255 38.43%
gcut3_3d 135 129 4.651% 154.09 2,977 199 32.16%
gcut4_3d 460 453 1.545% 518.62 3,669 666 30.93%
gcut5_3d 100 98 2.041% 0.31 119 140 28.57%
gcut6_3d 226 225 0.444% 2.07 438 330 31.52%
gcut7_3d 372 369 0.813% 17.52 1,032 467 20.34%
gcut8_3d 327 318 2.830% 2,554.40 8,258 529 38.19%
gcut9_3d 57 54 5.556% 0.25 187 81 29.63%
gcut10_3d 198 196 1.020% 1.66 226 269 26.39%
gcut11_3d 167 161 3.727% 136.24 2,432 282 40.78%
gcut12_3d 375 370 1.351% 525.99 3,580 543 30.94%

AVERAGE 2.320% 29.819%

Table 2.5: Results for the 3CSGr problem on instances adapted from [27].

Observing Table 2.6 and Table 2.7, we have a difference of 0.381% (and 2.402%), on av-
erage, between the values of the solutions found by the algorithm CG3CSG (and CG3CSGr)
and the lower bound (LB). Moreover, comparing them with the HFF3 (respectively, HFF3r) the
gain in the value of the solution was 19.088% (respectively, 29.694%), on average.

The algorithm CG3CSG found an optimum solution for the instances gcut1_3d, gcut2_3d,
gcut5_3d, gcut9_3d as shown in Table 2.4 and Table 2.6.
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Instance Solution of LB Difference Time Columns HFF3 Improvement over
CG3CSG from LB (%) (s) generated HFF3 (%)

gcut1_3d 177 177 0.000% 0.05 106 181 2.21%
gcut2_3d 220 220 0.000% 0.40 428 245 10.20%
gcut3_3d 146 144 1.389% 8.15 2,103 194 24.74%
gcut4_3d 519 517 0.387% 39.04 3,906 747 30.52%
gcut5_3d 132 132 0.000% 0.03 62 160 17.50%
gcut6_3d 305 304 0.329% 0.06 120 364 16.21%
gcut7_3d 396 394 0.508% 0.56 511 467 15.20%
gcut8_3d 399 397 0.504% 28.84 3,243 558 28.49%
gcut9_3d 62 62 0.000% 0.05 91 70 11.43%
gcut10_3d 218 217 0.461% 0.10 157 276 21.01%
gcut11_3d 204 202 0.990% 2.31 1,198 281 27.40%
gcut12_3d 434 434 0.000% 14.52 1,806 572 24.13%

AVERAGE 0.381% 19.088%

Table 2.6: Results for the 4-staged 3CSG problem on instances adapted from [27].

Instance Solution of LB Difference Time Columns HFF3 Improvement over
CG3CSGr from LB (%) (s) generated HFF3 (%)

gcut1_3d 163 161 1.242% 0.13 118 181 9.94%
gcut2_3d 157 153 2.614% 5.34 459 255 38.43%
gcut3_3d 136 130 4.615% 121.33 2,697 199 31.66%
gcut4_3d 460 453 1.545% 650.82 3,883 666 30.93%
gcut5_3d 100 98 2.041% 0.35 133 140 28.57%
gcut6_3d 228 225 1.333% 3.51 601 330 30.91%
gcut7_3d 373 369 1.084% 17.34 908 467 20.13%
gcut8_3d 325 319 1.881% 2,155.94 7,789 529 38.56%
gcut9_3d 57 54 5.556% 0.28 194 81 29.63%
gcut10_3d 198 196 1.020% 1.24 177 269 26.39%
gcut11_3d 167 161 3.727% 158.81 2,657 282 40.78%
gcut12_3d 378 370 2.162% 920.53 4,376 543 30.39%

AVERAGE 2.402% 29.694%

Table 2.7: Results for the 4-staged 3CSGr problem on instances adapted from [27].

2.6.4 Results for the 3CSVG problem

We tested the algorithm CG3CSVG (and CG3CSVGr) with the instances above mentioned,
with three different bins. In these instances, the value of each bin corresponds to its volume.
The results are shown in Table 2.8 and Table 2.9.

We can note that the problem with different bins size is harder to solve, demanding more
computational time than the 3CSG problem. But the results were also very good, where
the largest difference from the lower bound for the 3CSVG (3CSVGr) problem was 2.052%
(7.907%), and was 1.260% (4.196%), on average.



2.6. Computational Tests 37

Instance Solution of LB Difference Time Columns
CG3CSVG from LB (%) (s) generated

gcut1_3d 2,431,875,000 2,415,000,000.0 0.699% 0.60 1,821
gcut2_3d 2,386,093,750 2,338,125,000.0 2.052% 9.64 10,699
gcut3_3d 2,179,687,500 2,137,243,406.8 1.986% 114.06 33,936
gcut4_3d 6,894,218,750 6,845,773,809.5 0.708% 1,572.03 163,072
gcut5_3d 13,342,500,000 13,190,833,333.3 1.150% 0.35 542
gcut6_3d 29,420,000,000 29,130,171,875.0 0.995% 5.73 7,796
gcut7_3d 36,553,750,000 36,153,136,160.7 1.108% 44.05 26,332
gcut8_3d 41,788,750,000 41,280,158,270.4 1.232% 1,622.03 197,427
gcut9_3d 59,860,000,000 58,847,226,277.4 1.721% 0.41 646
gcut10_3d 197,420,000,000 196,062,395,833.3 0.692% 0.33 550
gcut11_3d 174,270,000,000 171,061,388,146.2 1.876% 74.32 38,689
gcut12_3d 370,100,000,000 366,802,923,728.8 0.899% 143.49 18,204

AVERAGE 1.260%

Table 2.8: Results for the 3CSVG problem on instances adapted from [27].

Instance Solution of LB Difference Time Columns
CG3CSVGr from LB (%) (s) generated

gcut1_3d 1,582,187,500 1,521,787,500.0 3.969% 5.56 3,946
gcut2_3d 1,917,812,500 1,823,075,945.0 5.197% 169.04 12,384
gcut3_3d 2,011,718,750 1,908,532,902.9 5.407% 4,049.10 68,502
gcut4_3d 5,819,531,250 5,652,226,962.2 2.960% 113,341.67 373,377
gcut5_3d 10,518,750,000 9,932,319,046.0 5.904% 14.35 4,639
gcut6_3d 22,545,000,000 21,728,068,481.4 3.760% 178.02 20,807
gcut7_3d 31,166,250,000 30,536,088,859.9 2.064% 2,464.12 77,720
gcut8_3d 38,084,200,000 37,119,105,733.3 2.534% 335,101.12 354,237
gcut9_3d 54,280,000,000 50,302,713,615.5 7.907% 9.61 6,112
gcut10_3d 157,500,000,000 154,562,209,821.4 1.901% 64.77 6,583
gcut11_3d 152,710,000,000 143,306,761,029.1 6.562% 7,636.69 102,188
gcut12_3d 300,410,000,000 293,985,781,261.7 2.185% 51,168.44 211,262

AVERAGE 4.196%

Table 2.9: Results for the 3CSVGr problem on instances adapted from [27].

Table 2.10 and Table 2.11 show the results for the staged version of the problem. We note
that some instances like gcut4_3d, gcut8_3d and gcut12_3d require tens of thousand of sec-
onds to be solved. On the other hand, when we compare the solutions found by the algorithm
CG3CSVG (and CG3CSVGr) and the lower bound, the difference is 0.970% (and 3.920%), on
average.
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Instance Solution of LB Difference Time Columns
CG3CSVG from LB (%) (s) generated

gcut1_3d 2,432,500,000 2,415,000,000.0 0.725% 0.43 1,193
gcut2_3d 2,443,125,000 2,417,773,437.5 1.049% 8.85 8,907
gcut3_3d 2,238,750,000 2,205,086,568.8 1.527% 149.56 39,142
gcut4_3d 6,963,906,250 6,900,824,728.3 0.914% 1,678.22 134,327
gcut5_3d 14,187,500,000 14,122,500,000.0 0.460% 0.25 356
gcut6_3d 29,960,000,000 29,722,351,562.5 0.800% 4.88 5,936
gcut7_3d 37,412,500,000 37,028,616,071.4 1.037% 33.46 18,482
gcut8_3d 43,150,000,000 42,814,590,460.7 0.783% 958.29 90,063
gcut9_3d 61,620,000,000 61,051,648,936.2 0.931% 0.17 271
gcut10_3d 198,200,000,000 196,451,666,666.7 0.890% 1.17 1,532
gcut11_3d 181,930,000,000 178,705,312,500.0 1.804% 24.25 12,067
gcut12_3d 374,660,000,000 371,975,610,351.6 0.722% 258.72 20,801

AVERAGE 0.970%

Table 2.10: Results for the 4-staged 3CSVG problem on instances adapted from [27].

Instance Solution of LB Difference Time Columns
CG3CSVGr from LB (%) (s) generated

gcut1_3d 1,597,500,000 1,551,045,372.6 2.995% 3.18 3,059
gcut2_3d 1,969,062,500 1,871,147,927.3 5.233% 253.32 14,080
gcut3_3d 2,051,406,250 1,948,098,696.7 5.303% 4,481.70 79,799
gcut4_3d 5,924,218,750 5,756,335,128.3 2.917% 67,161.89 276,688
gcut5_3d 10,541,250,000 10,157,437,500.0 3.779% 9.88 2,506
gcut6_3d 23,266,250,000 22,752,722,529.8 2.257% 115.47 14,935
gcut7_3d 31,935,000,000 31,032,417,461.1 2.909% 2,782.32 90,438
gcut8_3d 38,182,500,000 37,219,195,377.3 2.588% 116,401.04 260,380
gcut9_3d 55,420,000,000 51,183,053,219.9 8.278% 6.19 3,217
gcut10_3d 160,710,000,000 156,510,662,983.4 2.683% 59.95 5,476
gcut11_3d 157,240,000,000 149,207,472,717.2 5.383% 5,687.61 79,269
gcut12_3d 305,530,000,000 297,446,392,419.0 2.718% 38,753.94 151,803

AVERAGE 3.920%

Table 2.11: Results for the 4-staged 3CSVGr problem on instances adapted from [27].

2.6.5 Results for the Strip Packing problem

The results obtained for the k-staged 3SPG and 3SPGr problems with k = 4 are shown in Ta-
ble 2.12 and Table 2.13. We omit the results for k = 3 because they were very similar to the case
k = 4. As expected, the computational time required to solve these problems is considerably
larger than the time required to solve the corresponding cutting stock problems. The instance
gcut12_3d, for example, (and its version with rotation) required 461 seconds (28057 seconds)
to be solved for the strip packing problem, and demanded 14 seconds (920 seconds) for the
4-staged version of the cutting stock problem. But the algorithm CG3SPG (and CG3SPGr) ob-
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tained very good results, computing solutions that differ from the lower bound at most 0.835%
(and 1.534%). Moreover the improvement over M-HFF3 was 7.779% (and 22.325%), on aver-
age.

Instance Solution of LB Difference Time Columns M-HFF3 Improvement over
CG3SPG from LB (%) (s) generated M-HFF3 (%)

gcut1_3d 35,510 35,458.2 0.146% 0.02 41 35,648 0.39%
gcut2_3d 45,400 45,372.2 0.061% 0.72 138 48,151 5.71%
gcut3_3d 37,632 37,565.5 0.177% 26.60 1,201 43,537 13.56%
gcut4_3d 112,507 112,334.5 0.154% 303.90 5,077 134,169 16.15%
gcut5_3d 54,311 54,208.8 0.188% 0.02 39 55,413 1.99%
gcut6_3d 114,387 114,114.7 0.239% 0.37 408 127,178 10.06%
gcut7_3d 162,829 162,551.2 0.171% 2.88 370 182,543 10.80%
gcut8_3d 185,854 185,425.5 0.231% 440.59 5,993 208,859 11.01%
gcut9_3d 58,804 58,317.3 0.835% 0.04 79 61,002 3.60%
gcut10_3d 191,638 190,937.9 0.367% 0.34 238 205,111 6.57%
gcut11_3d 192,456 191,962.8 0.257% 19.61 1,915 209,980 8.35%
gcut12_3d 399,664 398,647.1 0.255% 461.47 3,930 421,417 5.16%

AVERAGE 0.257% 7.779%

Table 2.12: Results for the 4-staged 3SPG problem on instances adapted from [27].

Instance Solution of LB Difference Time Columns M-HFF3 Improvement over
CG3SPGr from LB (%) (s) generated M-HFF3 (%)

gcut1_3d 24,863 24,757.1 0.428% 0.73 246 32,808 24.22%
gcut2_3d 30,824 30,440.4 1.260% 105.28 2,276 43,364 28.92%
gcut3_3d 32,246 31,922.2 1.014% 978.46 7,776 41,750 22.76%
gcut4_3d 90,838 90,175.2 0.735% 14,590.06 31,584 117,003 22.36%
gcut5_3d 40,931 40,263.0 1.659% 1.82 147 52,695 22.32%
gcut6_3d 87,297 86,758.8 0.620% 39.90 1,660 113,529 23.11%
gcut7_3d 121,259 120,707.1 0.457% 441.89 5,446 159,555 24.00%
gcut8_3d 149,917 148,765.7 0.774% 23,620.73 25,946 190,709 21.39%
gcut9_3d 52,314 51,523.6 1.534% 1.22 219 60,608 13.68%
gcut10_3d 151,532 150,583.5 0.630% 22.70 303 193,338 21.62%
gcut11_3d 150,444 149,160.8 0.860% 2,005.83 4,856 193,689 22.33%
gcut12_3d 296,361 294,843.5 0.515% 28,057.17 24,402 376,038 21.19%

AVERAGE 0.874% 22.325%

Table 2.13: Results for the 4-staged 3SPGr problem on instances adapted from [27].

2.7 Concluding Remarks

We presented algorithms and computational tests for the problems 3KPG, 3CSG, 3CSVG and
3SPG and its variants with k stages and orthogonal rotations.
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For the Three-dimensional Unconstrained Knapsack and its variants, the results obtained
showed that the use of raster points in the dynamic programming approach was very successful,
with considerable reduction on the number of subproblems. On the oriented 3DK problem
with gcut instances, for example, the number of subproblems reduced to less than 0.77% of the
number of subproblems using discretization points.

When orthogonal rotations are allowed, the occupied volume of the bin increases signifi-
cantly (on average, this improvement was 5.63% on gcut instances). This is natural, since the
domain of the feasible solutions increases too. The highlight is for the computational time,
since all instances were solved (to optimality) in at most 0.01 seconds.

For the Three-dimensional Cutting Stock Problem and its variants, the column generation
algorithm found solutions, on average, within 1.8% of the lower bound. And, when we compare
with the primal heuristic we have high improvements. The computational time was high for the
case when orthogonal rotations are allowed. We had instances solved in about 2600 seconds.

For the Three-dimensional Cutting Stock Problem with Variable Bin Size (and its variants)
the column generation algorithm found solutions differing 2.6%, on the average, from the lower
bound. On the other hand, a lot of computational time (more than 100 thousand seconds), was
required to solve some instances, mainly for the case in which orthogonal rotations are allowed.
So this problem showed to be harder to solve than the 3CSG problem.

The column generation algorithms for the Strip Packing problem and its variants also ob-
tained solutions very close to the lower bound: the difference was at most 1.6%. As in the case
of the 3CSG and 3CSVG problems, the improvement over the solutions returned by the primal
heuristics was larger than 22.5%, on average. It is important to note that the solutions for the
k-staged version of the 3CSG, 3CSVG and 3SPG problems for k = 3 were very similar to those
for k = 4. The main difference was in the little increase of computational time when k = 4.

The computational results indicate that the algorithms proposed in this paper may be useful
to solve real-world instances of moderate size. For the instances considered here, the algorithms
found optimum or quasi-optimum solutions in a satisfactory amount of computational time.



Chapter 3

Approaches for the Two-Dimensional

Non-Guillotine Cutting Problems

Abstract

We investigate the Two-Dimensional Unconstrained Knapsack problem and the
Two-Dimensional Cutting Stock problem, both for the case in which the cuts must
be orthogonal, but need not be of guillotine type. For the 2D Unconstrained Knap-
sack problem, we present algorithms that use the concept of reduced raster points,
first order non-guillotine cuts and the known L-approach. We prove that there is no
loss in the quality of the solution obtained by the L-approach if we consider only
cuts on the raster points. We also show an example where the L-approach fails to
obtain an optimum solution for this problem. For the 2D Cutting Stock problem,
we present a column generation heuristic that uses the algorithm presented for the
2D Knapsack problem to generate columns. Integer solutions were obtained using
the relaxation of the integer formulation, the reapplication of the method to residual
instances and by a constructive heuristic. Computational tests on instances adapted
from the literature indicate that the approaches can be useful in practice. For many
instances we obtained better results than those already known.

3.1 Introduction

We present algorithms and computational results for the Unconstrained Non-Guillotine Knap-
sack and the Cutting Stock problems, both in the two-dimensional case. These problems have
many practical applications, as for example, in loading boxes into pallets, loading pallets into
trucks, and the cutting of large objects to produce small one as in the cutting of glass, steel,
wood or paper. These problems, known to be NP-hard [37], can be defined as follows.

41
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TWO-DIMENSIONAL UNCONSTRAINED KNAPSACK PROBLEM (2KP): An instance of this
problem consists of a rectangular bin B = (L,W ) and a list T of n types of items, each type
i with dimension (li, wi) and value vi, i = 1, . . . , n. The objective is to determine how to cut
B into items of some of the types in T so as to maximize the total value of the items produced.
Here, no bound is imposed on the number of items of each type that can be produced (some
types may not occur), hence the term unconstrained. An instance of this problem is denoted by
a tuple (L,W, l, w, v), where l = (l1, . . . , ln) and w and v are lists defined likewise.

TWO-DIMENSIONAL CUTTING STOCK PROBLEM (2CS): Given an unlimited quantity of rect-
angular bins B = (L,W ) and n types of items, each type i with dimension (li, wi) and demand
di, i = 1, . . . , n, determine how to cut the smallest number of bins B so as to produce di units
of each item type i. An instance for this problem is given by a tuple (L,W, l, w, d).

We also study the case where the items can be rotated orthogonally: the corresponding
problems are denoted 2KPr and 2CSr, respectively. In these problems an item i of dimension
(li, wi) can be considered as being an item with dimension (wi, li), if wi ≤ L e li ≤ W .

Note that, we may consider 2KP and 2KPr as a packing problems (in this case the objective
is to pack items accordingly so as to maximize the total cost). Depending on the application,
one of the terms cutting or packing may be more appropriate. We shall mostly refer to cutting.

Each possible way of cutting a rectangle (bin) is called a cutting pattern (or simply, pattern).
We consider here only orthogonal cuts: these are cuts that are orthogonal to one of the edges
of the rectangle. A guillotine cut is an orthogonal cut that goes from one edge of the rectangle
to the opposite one, parallel to the remaining edges. A guillotine pattern is a pattern obtained
by a series of guillotine cuts applied to the original bin and to the subsequent small bins that
are obtained after each cut. A non-guillotine pattern is a pattern that is obtained by a series of
orthogonal cuts which are not necessarily of guillotine type.

In the literature there are many works on guillotine cuts [8, 27, 41, 42, 48]. But for the
unconstrained non-guillotine problem only few results can be found, as mentioned by Hadji-
constantinou and Iori (2007) [46].

In this paper we focus the mentioned problems in the more general setting in which non-
guillotine cutting patterns are considered. From now on, we refer to these problems as TWO-
DIMENSIONAL UNCONSTRAINED NON-GUILLOTINE KNAPSACK PROBLEM (2KPNG) and
TWO-DIMENSIONAL NON-GUILLOTINE CUTTING STOCK PROBLEM (2CSNG). The cor-
responding versions in which orthogonal rotations are allowed are denoted as 2KPNGr and
2CSNGr, respectively.

To specify the position and the direction of the cuts in the algorithms, we use the Cartesian
plane R

2 with the x-coordinate and the y-coordinate representing the length and the width,
respectively. The positions (0, 0) and (L,W ) represent, respectively, the bottom left corner and
the top right corner of a bin with dimension (L,W ). We adopt the convention that the position
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of an item is specified by its bottom left corner. We also assume, without loss of generality, that
the values in each instance are all integer numbers and that the cuts are infinitely thin.

3.1.1 Literature Review

The unconstrained guillotine knapsack problems, in the one- and two-dimensional cases, have
been investigated since the sixties. In 1972, Herz [48] presented, for the two-dimensional ver-
sion, a recursive approach that uses the so-called discretization points to obtain canonical pat-
terns.

Cintra et al. (2008) [27] presented dynamic programming algorithms for the 2KP and 2KPr

problems considering guillotine patterns (these problems were denoted by 2KPG and 2KPGr,
respectively). They solved optimally instances of the OR-Library [10] spending low CPU time
(finding solutions for some unsolved instances).

For the constrained non-guillotine problem, Beasley (1985) [8] proposed in 1985 a branch
and bound approach in which the upper bound is calculated by a Lagrangean relaxation. Fekete
and Schepers (2004) [36] showed a two-level tree search algorithm for solving the d-dimensional
version of this problem.

Arenales and Morabito (1995) [6] developed an AND/OR graph approach and a branch and
bound search for the 2KPNG and 2KPNGr problems. An interesting variant of the 2KPNGr

problem is the Manufacturer’s Pallet Loading problem (MPL). In this problem, given the di-
mensions of a bin and of an item (with unlimited copies), the objective is to pack/cut the largest
possible number of the given items.

A heuristic procedure to solve the MPL problem was presented by Morabito and Morales
(1998) [74]. This heuristic, called Recursive Five-block Heuristic, divides recursively the (rect-
angular) bin into five (or less) smaller (rectangular) bins using the so-called first-order non-
guillotine cuts.

An efficient algorithm called L-approach was proposed by Lins et al. (2003) [65] to solve
the MPL. They showed that this approach improves the solution returned by the five-block
heuristic and conjectured that it always finds optimum solutions for the MPL problem when the
bin is rectangular.

Recently, Birgin et al. (2010) [17] presented a refined version of the recursive five-block
heuristic. Moreover, the authors also proved some theoretical results and made use of the re-
duced raster points (simply called raster points from now on) of Scheithauer (1997) [83] com-
bined with their algorithms. They left an open question about the L patterns: whether it is
possible to generated all of them using only raster points (instead of the whole set of discretiza-
tion points).

The first column generation approaches for the one- and two-dimensional Cutting Stock
problem restricted to guillotine cuts, called 1CSG and 2CSG, were presented by the semi-
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nar works of Gilmore and Gomory (1961; 1963; 1965) [41, 42, 43]. Alvarez-Valdes et al.
(2002) [4] also investigated the 2CSG problem, for which they presented a column generation
based algorithm that uses the recurrence formulas described in Beasley (1985) [8].

Cintra et al. (2008) [27] also considered the 2CSG problem, and presented a heuristic based
on the column generation approach that uses the exact algorithm mentioned previously for the
guillotine knapsack problem to generate new columns (see Section 3.2.2 for details).

3.1.2 Contributions

We propose recursive and dynamic programming algorithms for the 2KPNG and 2KPNGr prob-
lems. In particular, we extend the algorithms proposed for the MPL problem presented in Birgin
et al. (2010) [17], developing a new version of the recursive five-block heuristic and of the L-
approach.

Computational experiments showed that the L-approach gives good results, but sometimes
consumes long CPU time. So, we use this approach limiting the number of recursive calls to
a fixed parameter k (at most 7). We refer to this strategy as L(k)-approach. The lower bound
is computed by the exact dynamic programming algorithm proposed for 2KPG and 2KPGr

problems in [27].

We prove the conjecture of Birgin et al. (2010) [17] that L patterns can be generated using
only raster points. Using this result, for many instances we noted that the number of subprob-
lems solved by the L-approach were drastically reduced.

We present an instance for the unconstrained non-guillotine knapsack problem for which
the L-approach (with cuts done on raster points) fails to compute an optimum solution. This
proves that the L-approach may not find an optimum unconstrained non-guillotine pattern.

For the 2CSNG problem, we present a column generation based heuristic derived from the
work of Cintra et al. (2008) [27] The integer solutions were calculated by first solving the
relaxation of an integer linear formulation; and then by solving the residual instances with the
reapplication of the method and a constructive heuristic. We also use theL-approach to generate
new columns and to compute a lower bound.

The computational results reported here show that the presented algorithms find optimum
solutions or improve the best solutions that were known for almost all instances considered.
These results show that the proposed algorithms outperform the other heuristics and exact algo-
rithms we found in the literature.

This paper is organized as follows. In Section 3.2, we define raster points and discuss how
we obtain lower bounds. In Section 3.3.2, we present theL-approach and prove some theoretical
results. Section 3.3 presents the algorithms for the 2KPNG and 2KPNGr. The algorithms for
2CSNG and 2CSNGr problems are discussed in Section 3.4. Section 3.5 reports computational
experiments for a wide range of instances. Finally, in Section 3.6 some concluding remarks and



3.2. Some Considerations 45

perspectives for future research are discussed.

3.2 Some Considerations

We first define the concept of raster points, proposed by Scheithauer (1997) [83], and their
generation. We observe that the algorithms presented here generate cutting patterns using only
raster points. Afterwards, we discuss howwe compute lower bounds for non-guillotine patterns.

3.2.1 Raster Points

A discretization point (of Herz [48]) is a position on the bin (under consideration) where an
item may be packed (or the bin may be cut to produce an item): it always indicate a possible
position for the left corner of an item. Scheithauer (1997) refined this concept introducing the
idea of raster points (they form a subset of the set of the discretization points).

Let (L,W, l, w, v) be an instance for the 2KPG problem. A discretization point of the length
(resp., of the width) is a value i ≤ L (resp., j ≤ W ) obtained by a non-negative integer linear
combination of l = (l1, . . . , ln) (resp., w = (w1, . . . , wn)). The set of all discretization points
of the length and width are denoted by P and Q, respectively.

From the sets P andQ, we compute the sets of raster points P̃ (relative to P ) and Q̃ (relative
to Q) as follows:

P̃ := {�L− r�P | r ∈ P}; where �s�P = max{t ∈ P | t ≤ s};

Q̃ := {�W − u�Q | u ∈ Q}; where �a�Q = max{b ∈ Q | b ≤ a}.
(3.1)

In 2010, Birgin et al. [17] proved —for the MPL problem— that each pattern generated
over the discretization points may be transformed into an equivalent pattern generated over the
raster points.

To find the sets of raster points, we use the algorithm RRP. This algorithm finds the dis-
cretization points using the dynamic programming algorithm DDP (Discretization using Dy-
namic Programming) shown in [27]; then, it selects the raster points using (3.1). The algorithm
RRP has worst-case time complexity O(nD) (pseudo-polynomial), where D := max{L,W}.

Empirical studies carried out by Birgin et al. (2010) and Queiroz et al. (2009) [17, 80] show
that there is a speed up of 50% using the set of raster points instead of the discretization points.

3.2.2 Lower Bound for the Knapsack Problem

Lower bounds for the optimum values are computed by the exact dynamic programming algo-
rithm developed by Cintra et al. (2008) [27] for the unconstrained guillotine case. This exact
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algorithm solves the recurrence formula given by Beasley [8] considering cutting patterns gen-
erated over the discretization points. We consider the same algorithm of [27], but restricted to
patterns generated only over raster points.

For rational numbers xr ≤ L and yr ≤ W , let

p(xr) = max{i| i ∈ P̃ , i ≤ xr} and

q(yr) = max{j| j ∈ Q̃, j ≤ yr}.
(3.2)

Using the functions defined above, we have the following recurrence formula that computes
the value G(l∗, w∗) of an optimum guillotine solution for a bin of dimensions (l∗, w∗):

G(l∗, w∗) := max





g(l∗, w∗);

max({G(l�, w∗) +G(p(l∗ − l�), w∗)| l� ∈ P̃ , l� ≤ l∗/2});

max({G(l∗, w�) +G(l∗, q(w∗ − w�))| w� ∈ Q̃, w� ≤ w∗/2});



 . (3.3)

where g(l∗, w∗) denotes the value of the most valuable item that can be cut in a rectangle with
dimension (l∗, w∗). This value is 0, if no item can be cut in such a rectangle.

We denote by DP2KPG (resp. DP2KPGr) the dynamic programming algorithm, presented
in [27], that solves the Eq. (3.3) for an instance I = (L,W, l, w, v) of the 2KPG (resp. 2KPGr)
problem. As the raster points are computed first by the algorithm RRP, the worst-case time
complexity of the algorithms DP2KPG and DP2KPGr is O(|P̃ |

2
|Q̃| + |P̃ ||Q̃|

2
), and the space

complexity is O(L+W + |P̃ ||Q̃|).

3.3 2KPNG Problem

We discuss now the approaches we use to solve the problems 2KPNG and 2KPNGr.

3.3.1 The Recursive Five-block Heuristic

This heuristic partitions recursively a rectangle using the so-called first-order non-guillotine
cuts. We say that a cut is first-order, if it produces 5 new smaller rectangles organized in such a
way that they do not configure a guillotine pattern. A first-order non-guillotine cutting pattern

is a pattern obtained by successive guillotine and/or first-order non-guillotine cuts.

A first-order non-guillotine cut is defined by a quadruple (x1, x2, y1, y2), such that 0 ≤ x1 ≤

x2 ≤ L e 0 ≤ y1 ≤ y2 ≤W (see Fig. 3.1).

There are some refinements that we may consider in this heuristic to avoid solving the same
subproblem more than once. We consider the same improvements presented by Birgin et al.
[17] to improve such heuristic.
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Figure 3.1: The five rectangular bins obtained after a first-order non-guillotine cut be applied.

The first improvement is related to the statement that first-order non-guillotine cutting pat-
terns can be generated using only the set of raster points. That is, with x1, x2 ∈ P̃ and
y1, y2 ∈ Q̃. Unfortunatley, this heuristic cannot find all (optimum) non-guillotine patterns.

We may also avoid equivalent patterns considering some symmetries related to the cuts.
Following the results proved in [17], we can consider only first-order non-guillotine cuts that
generate exactly 5 new smaller rectangles. Consider a rectangular bin of dimension (L,W )

divided into 4 regions defined by 2 orthogonal straight lines: one in the position L/2 and the
other in the positionW/2. We call these regions A,B,C and D, as shown in Fig. 3.2.

x1x2

y2
y1 W

2

L
2

CA

DB

Figure 3.2: Regions used to compute the symmetries of first-order non-guillotine cuts.

Birgin et al. (2010) presented equivalent patterns for the first-order non-guillotine cuts.
According to Fig. 3.2, first-order non-guillotine cuts into region A are symmetric to those ones
in regionD. The same holds for regions B and C. Other details and the proof of the mentioned
improvements can be found in [17].

The algorithms Five-Block and Heur-5BL, named as Algorithm 3.1 and Algoritm 3.2, present
the Recursive Five-Block heuristic used to solve the 2KPNG problem. Algorithm Five-Block
uses the algorithms RRP and DP2KPG previously discussed, preparing the lower bounds and
data for the recursive Algorithm Heur-5BL.

First note that when the subroutine Heur-5BL is called for a bin (L,W ), we already have the
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Algorithm 3.1: Five-block heuristic for the 2KPNG problem.
Input : An instance I = (L,W, l, w, v) of 2KPNG problem.
Output : A solution for I .
P̃ ← RRP (L, l); Q̃← RRP (W,w)3.1.1

LB[ ]← DP2KPG(I, P̃ , Q̃)3.1.2

solved[i, j]← false for each i, j such that 0 < i ≤ L and 0 < j ≤W .3.1.3

sol ← Heur-5BL(I, LB)3.1.4

return sol3.1.5

Algorithm 3.2: Subroutine Heur-5BL.
Input : An instance I� = (L,W, l, w, v); the lower bound LB[ ].
Output : A solution for I�.
if solve[L,W ] = false then3.2.1

Build sets P̃L and Q̃W for I considering the sets P̃ and Q̃3.2.2

foreach x1 ∈ P̃L such that x1 ≤ �L
2
� do3.2.3

foreach x2 ∈ P̃L such that x1 < x2 and x1 + x2 ≤ L do3.2.4

foreach y1 ∈ Q̃W such that y1 < W do3.2.5

foreach y2 ∈ Q̃W such that y1 < y2 and y1 + y2 ≤W do3.2.6

if x1 + x2 �= L or y1 + y2 ≤W then3.2.7

Let (L1,W1), . . . , (L5,W5)) be the 5 blocks (rectangles) obtained with quadruple3.2.8

(x1, x2, y1, y2)
LB[L,W ] ← max{LB[L,W ];

�5
i=1 Heur-5BL(Li,Wi, l, w, v, LB)}3.2.9

foreach x1 ∈ P̃L such that x1 ≤ �L
2
� do3.2.10

x2 ← x1; y1 ← 0; y2 ← 03.2.11

Compute (L1,W1) and (L2,W2) blocks considering the quadruple (x1, x2, y1, y2)3.2.12

LB[L,W ] ← max{LB[L,W ] ; Heur-5BL(L1,W1, l, w, v, LB)+Heur-5BL(L2 ,W2, l, w, v, LB)}3.2.13

foreach y1 ∈ Q̃W such that y1 ≤ �W
2
� do3.2.14

y2 ← y1; x1 ← 0; x2 ← 03.2.15

Compute (L2,W2) and (L5,W5) considering the quadruple (x1, x2, y1, y2)3.2.16

LB[L,W ] ← max{LB[L,W ]; Heur-5BL(L2,W2, l, w, v, LB)+Heur-5BL(L5 ,W5, l, w, v, LB)}3.2.17

solved[L,W ] ← true3.2.18

return LB[L,W ]3.2.19

optimum guillotine solution, obtained by Algorithm DP2KPG. At lines 3.2.2 − 3.2.9 the sub-
routine computes a solution dividing the input rectangle (L,W ) into smaller rectangles (blocks)
(L1,W1), . . . , (L5,W5). All these smaller rectangles are non-empty. At lines 3.2.10 − 3.2.17

the subroutine computes the value dividing the input rectangle (L,W ) into two smaller rect-
angles with a guillotine cut (note that these smaller rectangles may have non-guillotine cuts).
All subproblems are initially marked as not solved (meaning that it has not been solved by the
Heur-5BL algorithm). Once it is solved, its status is changed, so that it is not solved again (line
3.2.18).

3.3.2 L-approach

We first discuss the central idea of the L-approach, and then we prove some theoretical results.
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The main idea of the L-approach consists in generating non-guillotine patterns by partition-
ing recursively a rectangular (R) or L-shaped piece (L) into two new pieces, each one of which
is again an R or L.

Without loss of generality, let X, Y, x and y be integer parameters. We denote by R(X, Y )

the rectangle whose diagonal goes from (0, 0) to (X, Y ). And, we denote by L(X, Y, x, y),
where X ≥ x ≥ 0 and Y ≥ y ≥ 0, the topological closure of R(X, Y ) minus the rectangle
whose diagonal goes from (x, y) to (X, Y ).

If 0 < x < X and 0 < y < Y , then L(X, Y, x, y) is said to be a non-degenerated L-shaped
piece. When x = X and y = Y , we have L(X, Y,X, Y ) = R(X, Y ), a particular case of an
L-shaped piece that is called a degenerated L. Figure 3.3 shows all possible ways to partition
an L-shaped piece into two L-shaped pieces of smaller area.
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Figure 3.3: Subdivisions B1, . . . , B7 (resp. B8 and B9) represent the ways we can partition a non-
degenerated L-shaped piece (resp. degenerate L) into two smaller L-shaped pieces.

For a given L-shaped piece L(X, Y, x, y), to indicate its partition into two smaller L-shaped
piecesL� andL�� (see Fig. 3.3), we use a pair (x�, y�) to define the subdivisions calledB1, . . . , B7,
and triples (x�, x��, y�) or (x�, y�, y��) to define the subdivisions B8 or B9, respectively. More de-
tails about the L-approach can be found in [17, 65].

Before presenting the recursive formula for the L-approach, we discuss and prove the open
question about the raster points and the L patterns presented in [17]. This question also arises
when we consider the five-block heuristic with the use of raster points. In what follows, we
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prove that the L-approach can be applied using only cuts over the raster points. We first present
some definitions in accordance with the terminology used by Birgin et al. (2010) [17].

Definition 3.1. AnL(X, Y, x, y) piece is valid if its parameters belongs to the same set of points,

that is, either X, x ∈ P and Y, y ∈ Q or X, x ∈ P̃ and Y, y ∈ Q̃.

Definition 3.2. Let L� and L�� be two L-shaped pieces. We say that L� ≥ L�� if there is a

transformation of L�, so that for each point p ∈ L�� we also have p ∈ L�. A transformation of L�

is a combination of rotation, reflection and/or translation.

Definition 3.3. Let C and C � be two different cuts. Let {L1, L2, . . . , Lm} and {L�
1, L

�
2, . . . , L

�
m}

be the sets of pieces defined by C and C �, respectively. We say that C � covers C if there is a

bijection f : {1, 2, . . . , m} → {1, 2, . . . , m}, such that L�
f(i) ≥ Li for all i = 1, . . . , m.

Definition 3.4. Given a set of numbers S, we define �x�S = min{r ∈ S | x ≤ r}.

That is, given x ∈ P then �x�P̃ = min{r ∈ P̃ | x ≤ r}. The same is valid for the set Q̃.
We use four lemmas obtained by Birgin et al. [17], described below (the proof can be found

in the original work), and then we derive new results.
An important observation concerns the sets of discretization points and raster points. The

set P (the same applies to sets Q, P̃ and Q̃) previously defined, is not closed under subtraction.
That is, for any a, b ∈ P , where a ≤ b, it is not necessarily true that (b−a) ∈ P . Consequently,
the operator � � defined in Eq. (3.1) has to be used whenever some operation of subtraction is
used, in order to keep valid any piece originated from some cut.

Lemma 3.1. Let x ∈ P̃ and y ∈ P , where x ≥ y. Then, �x− y�P = �x− y�P̃ ∈ P̃ .

Lemma 3.2. For all x ∈ P̃ , we have �L− �L− x�P �P = x .

Lemma 3.3. Let x ∈ P and x� = �x�P̃ . Then, �L− x��P = �L− x�P .

Lemma 3.4. Let x1, x2 ∈ P , such that x1 ≤ x2. Let also x�
1 = �x1�P̃ and x�

2 = �x2�P̃ . Then,

�x2 − x1�P ≤ �x
�
2 − x�

1�P .

We first deduce new lemmas, used to prove the theorem.

Lemma 3.5. For all x ∈ P and x� = �x�P̃ , we have �L− �L− x�P �P = �L− �L− x��P �P =

x.

Proof. The proof is straightforward, and follows from Lemmas 3.2 and 3.3.

Lemma 3.6. Let x, y ∈ P̃ , where x ≥ y. Then, �x− y�P = �x− y�P̃ ∈ P̃ .
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Proof. Note that in Lemma 3.1 we have y ∈ P . As P̃ ⊆ P , the proof is straightforward.

Lemma 3.7. Let x ∈ P , x� = �x�P̃ and y ∈ P̃ , with x ≤ y. Then, �y − x��P = �y − x�P .

Proof.

• First we prove (by contradiction) that �y − x��P ≥ �y − x�P . Suppose that we have
�y − x�P > �y − x��P . Letting t = �y − x�P ∈ P , we have y − x� < t ≤ y − x. If
we subtract y and multiply by (−1) all terms, we have x� > y − t ≥ x. As x ∈ P ,
we obtain x� > �y − t�P ≥ x. Since y ∈ P̃ and t ∈ P , we have by Lemma 3.1 that
r = �y − t�P ∈ P̃ . However, x /∈ P̃ . Thus, x� > r > x, what contradicts the definition
of x�;

• Now, we prove that �y − x��P ≤ �y − x�P . As x� ≥ x, we have y − x� ≤ y − x and,
thus, �y − x��P ≤ �y − x�P .

All the lemmas given above remain valid when we consider the widthW and the sets Q and
Q̃, instead of L, P and P̃ . The following theorem is straightforward.

Theorem 3.1. Let L̇ = L(Ẋ, Ẏ , ẋ, ẏ) be an L-shaped piece, where Ẋ, ẋ ∈ P and Ẏ , ẏ ∈ Q.

Then, L� = L(�Ẋ�P̃ , �Ẏ �Q̃, �ẋ�P̃ , �ẏ�Q̃) defines a new piece that covers L̇, that is, L� ≥ L̇.

Proof. The proof is straightforward. Note that X ≥ Ẋ , Y ≥ Ẏ , x ≥ ẋ and y ≥ ẏ.

Now, to complete the proof of the open question raised in [17], we prove the following
theorem.

Theorem 3.2. Let L� = L(X, Y, x, y), where X, x ∈ P̃ and Y, y ∈ Q̃, be an L-shaped piece

resulting from the application of Theorem 3.1, and let ċ be a cut made on the pair (ẋ�, ẏ�) or

on the triple (ẋ�, ẋ��, ẏ�) or (ẋ�, ẏ�, ẏ��), where ẋ�, ẋ�� ∈ P and ẏ�, ẏ�� ∈ Q. Then, (x�, y�) =

(�ẋ��P̃ , �ẏ��Q̃) or (x
�, x��, y�) = (�ẋ��P̃ , �ẋ���P̃ , �ẏ��Q̃) or (x

�, y�, y��) = (�ẋ��P̃ , �ẏ��Q̃, �ẏ���Q̃)

define a cut c that covers ċ, that is, c ≥ ċ.

Proof. To prove this statement we have to consider each subdivision B1, . . . , B9. Owing to
space limitation, we just prove for the subdivision B1. The other cases can be proved analo-
gously.

Consider the piece L� = L(X, Y, x, y) and the cut ċ = (ẋ�, ẏ�) applied on it, generating two
new pieces: L̇�

1 = L(x, �Y − ẏ��Q , ẋ�, �Y − y�Q ) and L̇�
2 = L(X, y, �X − ẋ��P , y�). On the
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other hand, the cut c = (x�, y�) applied on the piece L� = L(X, Y, x, y) generates the following
pieces: L�

1 = L(x, �Y − y�� , x�, �Y − y� ) and L�
2 = L(X, y, �X − x�� , y�).

We show that L�
k ≥ L̇�

k, for k = 1, 2 (that is, L�
k covers L̇�

k).
To prove that L�

1 ≥ L̇�
1, note that:

• x ∈ P̃ ;

• �Y − y��Q ∈ Q̃ by Lemma 3.6, and �Y − y��Q̃ = �Y − ẏ��Q by Lemma 3.7;

• x� ∈ P̃ and x� ≥ ẋ�;

• �Y − y�Q ∈ Q̃ by Lemma 3.6, and �Y − y�Q̃ = �Y − y�Q.

To prove that L�
2 ≥ L̇�

2, observe that:

• X ∈ P̃ ;

• y ∈ Q̃.

• �X − x��P ∈ P̃ by Lemma 3.6, and �X − x��P̃ = �X − ẋ��P by Lemma 3.7;

• y� ∈ Q̃ and y� ≥ ẏ�.

Moreover, L�
1 and L�

2 are valid pieces.

As a corollary of the above theorem, it follows that the parameters that define each new
piece obtained with a cut on the raster points also belong to the set of raster points. Therefore,
cuts made in valid pieces always results in new valid pieces.

Although we had the guarantee given by the theorems above, we performed many com-
putational experiments using not only the raster points, but also the discretization points. For
all instances, the same results were obtained no matter which set of points were used. As one
would expect, with the raster points the number of generated L-patterns were much smaller than
the number of patterns obtained with discretization points. Some details are shown in Table 3.1
of Section 3.5.

The recurrence formula (3.4), extended from Lins et al. (2003) [65], is used to compute the
value v� of the solution for an L(X, Y, x, y) piece. In this formula, L k(L) denotes the set of
all pair of pieces (L�, L��) that results of the subdivision Bk, as presented in Fig. (3.3), and it
considers all raster points that belong to the region delimited by such L.

v�(L) := max





v(L);

max
1≤k≤9

�
max{v�(L�) + v�(L��) : (L�, L��) ∈ L

k(L)}
�



 . (3.4)
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Following Eq. (3.4), v(L) corresponds to the more valuable item that can be cut in the L

piece; v(L) = 0 means that no item can be cut in the L piece.
As we extended the L-approach to deal with the Unconstrained Knapsack problem (previ-

ously applied only to theMPL problem), the main question that arises is whether theL-approach
can (or cannot) cover all non-guillotine patterns for this more general problem.

As shown in the computational tests, in Section 3.5, the L-approach could improve the value
of the solutions for almost all the instances considered. However, to answer the above question,
we present in Fig. 3.4 a counterexample in which the L-approach fails to find an optimum solu-
tion. This shows that the L-approach not always computes optimum (non-guillotine) solutions
for the Unconstrained Knapsack problem.

Figure 3.4: Instance in which the L-approach fails in computing the optimum solution.

For the instance presented in Fig. 3.4, the gap between the solution returned by the L-
approach (value of 119,318) and the optimum solution (value of 119,601) is of 0.237%. The
L-approach required 55,863.53 seconds (� 15.5 hours) of CPU time (running on the computer
mentioned in Section 3.5). The five-block heuristic returned a solution (value of 119, 171) after
309 seconds and with a gap of 0.36%.

3.3.3 The L(k)-approach

We performed some preliminary numerical experiments with the L-approach, and noticed that
it spends considerable CPU time to solve some instances of the 2KPNG (mainly 2KPNGr)
problem, even with the use of raster points. This is a consequence of the depth of the recursive
calls to solve the recurrence formula (3.4). In view of this, we decided to restrict the recursive
calls to some fixed parameter k. We called this algorithm L(k)-approach.

We performed further tests to see the influence of this parameter k on the value of the
solution, and, of course, on the runtime to solve the instances. In the computational tests, we
tried to balance the ratio: “depth limit versus CPU time”. The appropriate value of k will be
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discussed when dealing with the numerical experiments. As the L(k)-approach is very similar
to the L-approach, we just show the algorithm for the first one.

The main routine for the L(k)-approach is presented in Algorithm 3.3. It uses the algorithm
RRP to generate the sets of raster points, and the algorithm DP2KPG that solves the instance
and returns the lower bound of the subproblems that can appear during the processing of the
subroutine SolveL (line 3.3.4).

Algorithm 3.3: L(k)-approach.
Input : An instance I = (L,W, l, w, v) for the 2KPNG problem; The depth limit for the recursion

calls, DEP .
Output : A solution for I .
P̃ ← RRP (L, l); Q̃← RRP (W,w)3.3.1

foreach L-shaped piece L� = L(X,Y, x, y) with x ≤ X ≤ L and y ≤ Y ≤W do3.3.2

solved[L�]← false3.3.3

LB[L�]← 03.3.4

LB[ ]← DP2KPG(I, P̃ , Q̃)3.3.5

return SolveL(R(L,W ), DEP, LB[ ])3.3.6

The algorithm SolveL —see Algorithm 3.4— solves the recurrence formula (3.4) consid-
ering the depth limit imposed for the recursive calls. First, (line 3.4.1) the algorithm verifies
if the subproblem L(X, Y, x, y) was already solved and if it is within the allowed depth. Ini-
tially, the solution corresponds to the respective lower bound already computed. Next, (at lines
3.4.2 − 3.4.4) the algorithm recursively computes each subdivision Bj , for L

j
1 and L

j
2 , con-

sidering each pair (L�, L��) of pieces resulting from subdivision j and with all parameters (that
are raster points).

Algorithm 3.4: SolveL.
Input : The L∗ = L(X,Y, x, y) piece; The depth limit k; The lower bound LB[ ].
Output : The value of LB[L∗] and the matrix LB updated.
if k > 0 and solved[L∗] = false then3.4.1

for j ← 1 to 9 do3.4.2

foreach pair (L�, L��) ∈ L j(L) obtained from the subdivision of type Bj do3.4.3

LB[L∗]← max{LB[L∗]; SolveL(L1, k − 1, LB[ ]) + SolveL(L2, k − 1, LB[ ])3.4.4

solved[L∗]← true3.4.5

return LB[L∗]3.4.6

3.3.4 Time and Space Complexity

To estimate the time and space complexity of the five-block heuristic and L-approach in the
worst-case, we assume that no depth limit in the recursion is imposed. So, each subproblem
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is solved at most once. The strategies were implemented by a memorized recursive algorithm.
A table is used to save the information of each subproblem. As a consequence, we may af-
firm that the worst-case complexity of this implementation is the same of its iterative dynamic
programming counterpart. For simplicity we just analyze the last one.

Let I = (L,W, l, w, v) be an instance for 2KPNG problem. First we compute the sets of
raster points using the algorithm RRP. As mentioned, the time complexity of this operation is
O(nL+ nW ) and the space complexity is O(L+W ).

To compute the lower boundwe use the algorithmDP2KPG. The values obtained were saved
in a table. We note that for each pair (X, Y ) ∈ P̃ × Q̃ there is a subproblem whose instance
is IXY = (X, Y, l, w, v). However, to compute the LB[ ] we just call the algorithm DP2KPG
with original instance I = (L,W, l, w, v) as input. It is easy to see that all subproblems IXY are
solved when the instance I is solved by the algorithm DP2KPG, because it is exact and based
on iterative dynamic programming. So, we only save informations about each subproblem IXY .
The time complexity to calculate the lower bound LB[ ] is the same of the algorithm DP2KPG,

that is: O(|P̃ |
2
|Q̃|+ |P̃ ||Q̃|

2
). The space complexity is O(L+W + |P̃ ||Q̃|).

The time complexity to solve only one subproblem IXY by the five-block heuristic is given
by: (i) time complexity of O(|P |+ |Q|) to obtain the raster points from the sets P̃ and Q̃ first

computed, plus (ii) time complexity of O(|P̃ |
2
|Q̃|

2
) to generate all first-order non-guillotine

cuts, plus (iii) time complexity of O(|P̃ | + |Q̃|) to generate all the horizontal and vertical guil-
lotine cuts.

Consequently, the worst-case time complexity of the five-block heuristic is the time com-
plexity of the algorithm RRP plus the time complexity to compute the lower bound LB[ ] plus
the time complexity to solve all possible subproblems (where we haveO(|P̃ ||Q̃|) subproblems):

Therefore, the time complexity of the five-block heuristic is given by

O(nL+ nW + |P̃ ||Q̃|(|P̃ |
2
|Q̃|

2
+ |P |+ |Q|)). (3.5)

The worst-case space complexity is clearly O(L+W + |P̃ ||Q̃|).

Following the same idea for the L-approach, we have one subproblem IXY solved with:
(i) time complexity of O(|P | + |Q|) (to get the raster points from the sets P̃ and Q̃ already
computed) plus (ii) time complexity of O(|P̃ ||Q̃|) (to generate all non-degenerated L-shaped

pieces) plus (iii) time complexity ofO(|P̃ |
2
|Q̃|+|P̃ ||Q̃|

2
) (to generate all degenerated L-shaped

pieces).

The worst-case time complexity of the L-approach is computed by: time complexity of
the algorithm RRP plus the time complexity to compute the lower bound LB[ ] plus the time
complexity to solve all possible subproblems. Therefore, we have a resulting time complexity
of
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O(nL+ nW + |P̃ |
2
|Q̃|

2
(|P̃ ||Q̃|+ |P |+ |Q|)), (3.6)

where the number of subproblems is O(|P̃ |
2
|Q̃|

2
). The amount of memory required is O(L +

W + |P̃ |
2
|Q̃|

2
).

It is easy to see that the algorithms proposed are pseudo-polynomial. So, they are suited for
instances in which the bins have small dimensions. Also, when the bins have large dimensions
but the dimensions of the items are not so small compared to the dimensions of the bin, then
these algorithms have a satisfactory performance.

3.3.5 2KPNGr Problem

Since the Knapsack problem under consideration is the unconstrained version, we can deal with
the version with orthogonal rotations in a easy way, without any modification in the algorithms
proposed. We just need to create another instance for the problem 2KPNG.

Given an instance I � of the 2KPNGr problem, we create another instance I —for the 2KPNG
problem— in which we add the n items and the bin B of I � to I . Then, for each item i� ∈ I �

with dimensions (li, wi) and value vi, we add to I the new item i = (wi, li, vi), if it is feasible
and it is not already in the instance. The same remains valid for the guillotine version.

3.4 2CSNG Problem

In this section we deal with the Two-dimensional Cutting Stock problem, where the cuts are
of non-guillotine type (2CSNG). To solve this problem we use column generation based al-
gorithms, where the columns are generated by the algorithms proposed for the unconstrained
Knapsack problem.

The integer linear formulation for the Cutting Stock problem based on cutting patterns is
described next. Let P be the set of all cutting patterns, |P| = m; let P be a matrix of order
n×m, whose columns represent the cutting patterns; and let d be the vector of demands of the
items. We use an integer variable xj for each pattern j ∈ P , that indicates how many times the
pattern j is chosen. Thus, the following linear program is a relaxation of an integer formulation:

minimize
�

j∈P

xj

subject to Px ≥ d

xj ≥ 0 ∀ j ∈ P.

(3.7)

To solve the 2CSNG problem we use the algorithms presented in Cintra et al. (2008) [27].
The main idea of these algorithms is to solve the linear formulation (3.7) using the column
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generation approach proposed by Gilmore and Gomory [41] in the early sixties; round down
the variables to obtain a partial integer solution; and, repeat the process to deal with the residual
problems. When this process cannot find a non-null solution in one iteration, a primal heuristic
is used to obtain a good cutting pattern and perturb the residual instance.

In each iteration of the column generation process, for each item i we have a value yi and
we have to compute a new column (pattern) that satisfies

�n

i=1 yizi > 1, where zi represents
the number of times that item i appears in such pattern. Naturally, we can use any algorithm for
the unconstrained (non-guillotine) Knapsack problem to compute the patterns.

The algorithm used to solve the linear program (3.7) is the algorithm SimplexCG2 presented
in Cintra et al. [27]. It corresponds to the algorithm Simplex with a column generation subrou-
tine. More details about this algorithm can be found in [25]. In our implementation the matrix
In×n corresponds to the identity matrix with n patterns, each one with items of one type and
one orientation.

The subroutine to solve the 2D unconstrained non-guillotine knapsack problem, as the col-
umn generator procedure, denoted by Sol3, is coded in the following way:

• First, we try to generate a feasible column using the algorithm DP2KPG;

• If the DP2KPG fails, we try to generate a feasible column with the five-block heuristic;

• If the five-block heuristic also fails, we try the L(k)-approach as a last option.

Since the algorithm SimplexCG2 may return a fractional solution, we also use the algorithm
CGp (presented in [27]) that receives the solution computed by SimplexCG2, and returns an in-
teger solution for the 2CSNG problem. The algorithm CGp uses as subroutine a primal heuristic
to obtain a cutting pattern that causes a perturbation of some residual instance. In this case, the
primal heuristic considered is the algorithm M-HFF, that is a modified version of the heuristic
HFF (Hybrid First Fit) to deal with demands. Other details on HFF can be found in [24].

The algorithm CGp has exponential worst-case time complexity and halts after a finite num-
ber of iterations, since the demand is fulfilled in each iteration of the rounding process.

Although theL-approach spent considerable CPU time in solving some Knapsack instances,
it could in general obtain very good results. So, we also used this algorithm as a unique algo-
rithm to generate new columns and to calculate a lower bound for the value of an optimum inte-
ger solution (that is obtained solving the linear relaxation (3.7) by the algorithm SimplexCG2).

3.4.1 2CSNGr Problem

We use the algorithm CGRp presented in Cintra et al. (2008) [27] to solve the 2CSNGr problem.
The main difference between this algorithm and the algorithm CGp is in the subroutines called.
The algorithm CGRp make calls to the algorithms proposed for 2KPGr and 2KPNGr problems,
that are the versions in which the items can be orthogonally rotated.
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3.5 Computational Experiments

The algorithms above mentioned were implemented in C/C + +. The tests were run in a
computer with Intel� CoreTM 2Quad 2.4GHz processor, 4 GB of memory and Linux operating
system. The linear systems in the column generation algorithms were solved by the COIN-OR
CLP solver [28].

We executed the numerical experiments with many medium and large-sized instances pre-
sented in the literature. Some of the instances were proposed for others variants (constrained
and/or guillotine-cut) of the Knapsack problem and some of them were not proposed for the
Cutting Stock problem, but they were easily adapted for our purposes. In what follows we
present the instances considered:

• Three instances, cgcut01− cgcut03, from [23];

• Twelve instances, ngcut01− ngcut12, from [9];

• Five instances,m1 −m5, from [73];

• Thirteen instances, gcut01− gcut13, from [8];

• Five instances, okp01− okp05, from [36];

• Twenty two instances, uu1− uu11, uw1− uw11, from [35];

Some of these instances are available in the OR-Library [10]. We left them publically avail-
able at the URL: http://www.loco.ic.unicamp.br/nonguillotine2d/.

All the above instances were used for the unconstrained Knapsack problem. Note that for
this problem we just need the bin’s dimensions and the items’ dimensions and values, so the
other information were excluded. For the instances m, gcut and uw the value of each item is
precisely its area.

However, only some of those instances were considered for the Cutting Stock problem due
to difficulties with memory size (memory overflow) to store/solve instances with large-size
dimensions. The instances gcut01− gcut12were used by Cintra et al. (2008) when solving the
guillotine versionof the Cutting Stock problem. For the others instances we needed to generate
an integer demand for each item. Each integer demand was randomly generated in the interval
[1, 100] (varying demands).

With the aim of verifying the influence of the depth limit k in the recursion calls of the
L(k)-approach, we initially executed this approach with k = 2, . . . , 6. Consequently, we found
solutions of lower quality spending reasonable CPU time. Best solutions, some of them equal
to solutions found by L-approach, were found using k = 7, however the runtime increases
accordingly to the increase of k. It seems to us that for large values of k the depth limit has no
influence when solving the subproblems.



3.5. Computational Experiments 59

In order to illustrate the number of non-guillotine patterns generated by the algorithms, we
present in Table 3.1 some characteristics of the instances above mentioned. In each line of this
table: Instance is the instance name; (L,W ) is the bin’s dimension; |P̃ | (relative to P ) and
|Q̃| (relative to Q) are the number of reduced raster points; Raster patterns is the number of
non-guillotine subproblems using raster points; |P | and |Q| are the number of discretization
points of Herz for the length and width, respectively; Discretization patterns is the number
of non-guillotine subproblems using discretization points; Rast./Discr. is the percentage of
subproblems using raster points compared to the subproblems using discretization points.

Each subproblem in the L-approach (or the first-order non-guillotine cuts in Five-block
heuristic) is determined by a quadruple (X, Y, x, y) where X, x ∈ P̃ and Y, y ∈ Q̃. So the total
number of subproblems (worst-case) is of magnitude (|P̃ ||Q̃|)2.

Observing Table 3.1 the number of subproblems using raster points corresponds only to
11.59%, on average, of the number of subproblems using discretization points.

3.5.1 Results for the 2KPNG and 2KPNGr Problems

Tables 3.2 and 3.3 show the results of the numerical experiments for the 2KPNG and 2KPNGr

problems, respectively. In each line of such tables we have: instance name; value of solution
and the time (of CPU) in seconds spent to solve the respective instance (the value zero indicates
that the time required is less than 0.0001s) obtained by the Five-block heuristic, L(k)-approach
(with k = 7) and L-approach, respectively; and, the optimum solution for the guillotine case
computed by the DP2KPG (or DP2KPGr) algorithm.

The entry “–” in the following tables represents that the solution was not returned after 10
days of processing, so we abort the processing. The solutions of the Five-block heuristic that are
in boldface have the same value as the ones obtained by L-approach. The underlined solutions
means that they improve the guillotine one, and they were the best result found. Note that
the algorithms of this paper get equal or better results (for many instances) than the optimum
guillotine solution.

As shown in Table 3.2, the algorithms (Five-block heuristic, L(k)-approach and L-approach)
obtained the same solution for 86.67% of the instances, that corresponds to 52 out of 60 in-
stances. Only for instances m1, uu8 and uu10 the solutions obtained by the L-approach are
better than the ones obtained by the Five-block heuristic. Such improvement is only of 0.13%,
in the best situation (instancem1).

On the other hand, the Five-Block heuristic was faster than the other approaches and its CPU
time was only 35.97 seconds, on average. Definitely the L-approach spent more CPU time than
the other algorithms (Five-block heuristic and L(k)-approach), since its CPU time was 7485.37
seconds, on average. The L(k)-approach spent 288.92 seconds, on average, that is equivalent to
96.14% lesser CPU time than the L-approach.
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Table 3.1: Comparisons on the number of patterns using raster points and discretization points for the
orientated case.

(L,W ) n |P̃ | |Q̃| Raster |P | |Q| Discretization No. Patterns (%)
Instance Patterns Patterns Rast./Discr.

cgcut01 (15, 10) 7 14 11 23716 15 11 27225 87.11
cgcut02 (40, 70) 10 19 43 667489 30 57 2924100 22.83
cgcut03 (40, 70) 20 14 41 329476 27 56 2286144 14.41

ngcut01 (10, 10) 5 9 6 2916 10 8 6400 45.56
ngcut02 (10, 10) 7 11 11 14641 11 11 14641 100.00
ngcut03 (10, 10) 10 11 11 14641 11 11 14641 100.00
ngcut04 (15, 10) 5 4 11 1936 7 11 5929 32.65
ngcut05 (15, 10) 7 8 11 7744 12 11 17424 44.44
ngcut06 (15, 10) 10 14 11 23716 15 11 27225 87.11
ngcut07 (20, 20) 5 21 21 194481 21 21 194481 100.00
ngcut08 (20, 20) 7 6 21 15876 11 21 53361 29.75
ngcut09 (20, 20) 10 21 19 159201 21 20 176400 90.25
ngcut10 (30, 30) 5 31 25 600625 31 28 753424 79.72
ngcut11 (30, 30) 7 17 27 210681 24 29 484416 43.49
ngcut12 (30, 30) 10 27 31 700569 29 31 808201 86.68

m1 (100, 156) 10 23 17 152881 48 74 12616704 1.21
m2 (253, 294) 10 63 17 1147041 154 87 179506404 0.64
m3 (318, 473) 10 13 32 173056 72 156 126157824 0.14
m4 (501, 556) 10 15 15 50625 78 139 117548964 0.04
m5 (750, 806) 10 23 16 135424 124 147 332259984 0.04

gcut01 (250, 250) 10 13 5 4225 68 20 1849600 0.23
gcut02 (250, 250) 20 17 24 166464 95 112 113209600 0.15
gcut03 (250, 250) 30 44 26 1308736 143 107 234120601 0.56
gcut04 (250, 250) 50 45 50 5062500 146 146 454371856 1.11
gcut05 (500, 500) 10 10 13 16900 40 76 9241600 0.18
gcut06 (500, 500) 20 12 18 46656 96 120 132710400 0.04
gcut07 (500, 500) 30 23 19 190969 179 126 508682916 0.04
gcut08 (500, 500) 50 44 59 6739216 225 262 3475102500 0.19
gcut09 (1000, 1000) 10 15 7 11025 92 42 14930496 0.07
gcut10 (1000, 1000) 20 14 20 78400 89 155 190302025 0.04
gcut11 (1000, 1000) 30 20 38 577600 238 326 1724930448 0.03
gcut12 (1000, 1000) 50 49 42 4235364 398 363 20872736676 0.02
gcut13 (3000, 3000) 32 647 1849 1431140867809 1821 2425 19500393605625 7.34

okp1 (100, 100) 15 101 101 104060401 101 101 104060401 100.00
okp2 (100, 100) 30 101 83 70274689 101 92 86341264 81.39
okp3 (100, 100) 30 93 55 26163225 97 78 57244356 45.70
okp4 (100, 100) 33 101 95 92064025 101 98 97970404 93.97
okp5 (100, 100) 29 101 83 70274689 101 92 86341264 81.39

uu1 (500, 500) 25 29 39 1279161 171 205 1228853025 0.10
uu2 (750, 800) 30 61 38 5373124 334 322 11566572304 0.05
uu3 (1100, 1000) 25 44 37 2650384 389 317 15206095969 0.02
uu4 (1000, 1200) 38 65 83 29106025 444 570 64049486400 0.05
uu5 (1450, 1300) 50 111 116 165791376 694 643 1563426948 10.60
uu6 (2050, 1457) 38 59 50 8702500 649 495 125559921 6.93
uu7 (1465, 2024) 50 144 139 400640256 743 944 491950737664 0.08
uu8 (2000, 2000) 55 114 95 117288900 914 830 575504304400 0.02
uu9 (2500, 2460) 60 120 127 232257600 1047 1044 796744336 29.15
uu10 (3500, 3450) 55 110 177 379080900 1304 1542 1623724288 23.35
uu11 (3500, 3765) 25 2527 1156 8533479548944 3014 2461 55018623842116 15.51

uw1 (500, 500) 25 31 35 1177225 208 219 2074984704 0.06
uw2 (560, 750) 35 85 64 29593600 309 355 12032993025 0.25
uw3 (700, 650) 35 53 59 9778129 301 311 173084729 5.65
uw4 (1245, 1015) 45 115 128 216678400 623 533 110263179481 0.19
uw5 (1100, 1450) 35 61 52 10061584 452 476 46290383104 0.02
uw6 (1750, 1542) 47 98 93 83064996 764 721 303429112336 0.03
uw7 (2250, 1875) 50 93 113 110439081 905 837 573783525225 0.02
uw8 (2645, 2763) 55 119 172 418939024 1116 1263 1986712802064 0.02
uw9 (3000, 3250) 45 80 85 46240000 1082 1166 1591664838544 0.01
uw10 (3500, 3650) 60 183 130 565964100 1526 1556 5638041295936 0.01
uw11 (555, 632) 30 176 221 1512898816 366 427 24424063524 6.19

The L(k)-approach (with k = 7) spent more CPU time than the Five-block heuristic and
could not obtain better solutions than the latter one. With the Five-block heuristic we get better
solutions for 8 instances when comparing with the L(k)-approach approach. See in Table 3.2
the instances: cgcut02, m1, m2, m5, gcut04, gcut05, uu4 and uw11. The best improvement
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Table 3.2: Results for the 2KPNG problem.
Instance Algorithms Optimum

Five-block L(k) -approach L-approach Guillotine
Value Time (s) Value Time (s) Value Time (s) Solution

cgcut01 250 0.0040 250 0.0200 250 0.1160 249
cgcut02 3094 0.0840 3076 1.3201 3094 5.5283 3076
cgcut03 2240 0.0120 2240 0.6160 2240 2.2161 2240

ngcut01 243 0.0000 243 0.0040 243 0.0000 243
ngcut02 280 0.0000 280 0.0000 280 0.0000 280
ngcut03 268 0.0040 268 0.0000 268 0.0000 268
ngcut04 318 0.0000 318 0.0040 318 0.0000 318
ngcut05 396 0.0000 396 0.0040 396 0.0080 396
ngcut06 374 0.0040 374 0.0320 374 0.0840 371
ngcut07 1144 0.0440 1144 0.1840 1144 1.6961 1144
ngcut08 1039 0.0000 1039 0.0080 1039 0.0240 1039
ngcut09 1128 0.0240 1128 0.1200 1128 1.5441 1128
ngcut10 2250 0.0200 2250 0.0000 2250 0.0000 2250
ngcut11 2113 0.0360 2113 0.3800 2113 1.5401 2113
ngcut12 2039 0.2880 2039 1.1321 2039 13.6369 2039

m1 15054 0.0080 15024 0.1040 15073 0.5440 15024
m2 73255 0.0520 73176 0.8040 73255 9.6766 73176
m3 147386 0.0080 147386 0.1640 147386 0.5240 142817
m4 266233 0.0040 266233 0.0440 266233 0.1280 265768
m5 579883 0.0120 577882 0.0920 579883 0.4840 577882

gcut01 58480 0.0000 58480 0.0040 58480 0.0040 56460
gcut02 61146 0.0080 61146 0.2520 61146 0.4400 60536
gcut03 61275 0.0320 61275 2.4202 61275 7.4445 61036
gcut04 61918 0.1240 61698 16.9931 61918 56.2635 61698
gcut05 246000 0.0000 246000 0.0120 246000 0.0160 246000
gcut06 243598 0.0040 238998 0.0520 243598 0.0840 238998
gcut07 244306 0.0120 244306 0.1680 244306 0.4680 242567
gcut08 247815 0.1720 247815 24.1975 247815 93.2858 246633
gcut09 971100 0.0040 971100 0.0040 971100 0.0040 971100
gcut10 982025 0.0080 982025 0.0680 982025 0.0960 982025
gcut11 980096 0.0280 980096 1.2521 980096 2.2521 980096
gcut12 979986 0.1400 979986 21.4053 979986 43.0907 979986
gcut13 – – – – – – 8997780

okp1 28513 887.1714 28513 723.0732 28513 22991.9929 28425
okp2 28467 3.7682 28467 0.3200 28467 0.3120 28467
okp3 28360 54.2394 28360 216.9976 28360 7619.0002 28360
okp4 458236 666.2416 458236 752.4390 458236 51835.5115 458236
okp5 28467 3.8442 28467 0.2960 28467 0.3080 28467

uu1 245205 0.0440 245205 4.2763 245205 7.8685 242919
uu2 595288 0.1640 595288 13.4608 595288 65.5521 595288
uu3 1088154 0.1000 1088154 9.3606 1088154 28.4178 1072764
uu4 1191071 1.0241 1184671 174.2549 1191071 783.2930 1179050
uu5 1870038 4.8363 1870038 1245.4338 1870038 8456.2205 1868999
uu6 2950760 0.2960 2950760 17.0851 2950760 144.3610 2950760
uu7 2943852 11.7847 2943852 1755.9657 2943852 21516.7407 2930654
uu8 3969784 3.8242 3969784 490.0306 3970877 5438.4519 3959352
uu9 6100692 5.5523 6100692 1076.1513 6100692 13990.7264 6100692
uu10 11995637 11.5967 11995637 2341.7504 12001291 26252.7047 11955852
uu11 – – – – – – 13157811

uw1 6036 0.0680 6036 2.2761 6036 8.4125 6036
uw2 8468 0.3840 8468 0.1080 8468 0.1000 8468
uw3 6302 0.1640 6302 0.0440 6302 0.0480 6302
uw4 8326 2.4362 8326 0.5480 8326 0.5840 8326
uw5 7780 0.4880 7780 44.1548 7780 201.6486 7780
uw6 6615 1.2961 6615 0.2800 6615 0.2800 6615
uw7 10464 1.6721 10464 0.3760 10464 0.3400 10464
uw8 7692 5.4123 7692 1.1481 7692 1.1001 7692
uw9 7128 3.1362 7128 304.7230 7128 2009.2056 7038
uw10 7507 7.8165 7507 1.5401 7507 1.5281 7507
uw11 16400 407.7535 15920 7509.1853 16400 272555.4457 15747

in solution occurs for instance uw11 and it was 2.93%. As observed, for high values of k the
L(k)-approach may obtain better solutions, however the CPU time will increase accordingly to.

It is worth mentioning that the values of the solutions for the guillotine case were improved
for 41.67% of the instances. This improvement corresponds to at most 3.98% (instance uw11)
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(see Table 3.2).

Next, we present in Table 3.3 the results for the case where the items can be orthogonally
rotated. First of all, comparing Tables 3.2 and 3.3, we have the following increase on average
on CPU time spent by the algorithms compared to the case where the items can be orthogonally
rotated: 438.08% for the Five-block heuristic; 437.41% for the L(k)-approach; and, 62.85% for
the L-approach.

As one can observe in Table 3.3, the same conclusions hold for the case with rotations. Now,
the algorithms found equal solution for 47 out of 60 instances, that is 78.33% of the instances.
The L-approach returned better result only for instancem1r, and the improvement was 0.13%.
The Five-block heuristic still returned better results than the L(k)-approach. In addition, the
guillotine solution was improved 0.49%, on average, considering 28 instances.

Although the CPU time increases for the case that allows rotations of the items, of course
better solutions were obtained, because the domains of the solutions also increase. In fact, when
comparing the improvement (only for the L-approach) of the solutions obtained for this case
and the orientated case, the difference is of 3.22%, on average.

Finally, as shown in Tables 3.2 and 3.3 we note that the L-approach obtained better solutions
than the Five-block heuristic and L(k)-approach for a small set of instances, that correspond to
only 4 of a total of 120 instances. Besides that, such approach also spent much more CPU
time than the other algorithms. So, the winner is the Five-block heuristic that returned the same
solutions of the L-approach and L(k)-approach for almost all instances, but spending much less
CPU time.

3.5.2 Results for the 2CSNG and 2CSNGr Problems

We show in Tables 3.4 and 3.5 the numerical experiments for 2CSNG and 2CSNGr problems.
Each column in these tables corresponds to: instance name (Name); value of the solution re-
turned by the algorithm CGp (or CGRp) using only the L-approach to generate new columns;
the lower bound (LB) for the value of an optimum integer solution obtained by solving the
linear relaxation (3.7) with the algorithm CGp (or CGRp); the difference (in percentage) be-
tween the solutions obtained with the algorithm CGp (or CGRp) and the lower bound (LB). the
CPU time spent in seconds when using the L-approach; the total number of columns generated
(#Columns); the solution obtained using the subroutine Sol3 in the algorithm CGp (or CGRp);
the CPU time spent in seconds when using the subroutine Sol3; and, the difference between
(improvement over) the use of subroutine Sol3 comparing with L-approach when generating
new columns. The last column shows the result when using only the algorithm DP2KPG (for
guillotine version of the knapsack problem) to generate the columns.

Some of the instances previously considered by the unconstrained Knapsack problem (see
Tables 3.2 and 3.3) were not considered for the Cutting Stock problem. The main reason is



3.5. Computational Experiments 63

Table 3.3: Results for the 2KPNGr problem.
Instance Algorithms Optimum

Five-block L(k) -approach L-approach Guillotine
Value Time (s) Value Time (s) Value Time (s) Solution

cgcut01r 278 0.0040 278 0.0400 278 0.1640 278
cgcut02r 3150 1.2841 3150 17.1171 3150 112.3390 3147
cgcut03r 2320 0.1200 2320 5.6324 2320 27.1857 2280

ngcut01r 243 0.0000 243 0.0040 243 0.0040 243
ngcut02r 280 0.0040 280 0.0000 280 0.0000 280
ngcut03r 282 0.0040 282 0.0000 282 0.0000 282
ngcut04r 416 0.0040 416 0.0200 416 0.0520 416
ngcut05r 408 0.0000 408 0.0160 408 0.0360 408
ngcut06r 407 0.0040 407 0.0640 407 0.1840 407
ngcut07r 1144 0.0360 1144 0.2160 1144 2.0841 1144
ngcut08r 1157 0.0360 1157 0.2720 1157 1.3121 1119
ngcut09r 1136 0.0680 1136 0.4280 1136 2.7882 1136
ngcut10r 2250 0.0320 2250 0.0000 2250 0.0000 2250
ngcut11r 2194 0.2760 2194 1.8281 2194 13.3848 2194
ngcut12r 2148 0.5840 2148 1.4881 2148 31.9700 2136

m1r 15054 0.2760 15024 12.1888 15073 85.9094 15024
m2r 73255 10.0326 73176 316.3318 73255 6951.4544 73176
m3r 147386 0.0760 147386 9.0766 147386 26.5057 142817
m4r 266233 0.1160 266233 7.6885 266233 37.6664 265768
m5r 579883 0.4600 579883 21.3013 579883 187.6557 577882

gcut01r 58480 0.0040 58480 0.0800 58480 0.0880 58136
gcut02r 61329 0.0880 61329 12.7728 61329 32.3260 60611
gcut03r 62020 0.2840 62020 83.0332 62020 263.8805 61626
gcut04r 62265 1.1281 62265 606.8059 62265 2540.2828 62265
gcut05r 246000 0.0200 246000 0.5480 246000 1.0081 246000
gcut06r 243598 0.0280 243598 1.9801 243598 3.3962 240951
gcut07r 246988 0.0840 245912 9.9046 246988 29.9139 245866
gcut08r 248832 1.8601 248832 1092.3403 248832 4483.7722 247787
gcut09r 971100 0.0080 971100 0.1040 971100 0.1160 971100
gcut10r 982025 0.0520 982025 2.8402 982025 4.4403 982025
gcut11r 984979 0.4480 984979 102.0784 984979 235.6507 980096
gcut12r 988694 1.4161 988694 859.7337 988694 1801.1246 988694
gcut13r – – – – – – 9000000

okp1r 29080 790.7494 29080 2457.3536 29080 41298.1610 28876
okp2r 28794 8.7485 28794 0.3840 28794 0.3760 28794
okp3r 29408 340.3533 29408 1195.3387 29408 43108.8621 29152
okp4r 485520 549.7824 485520 1325.5188 485520 89346.3798 477360
okp5r 28794 8.5045 28794 0.4040 28794 0.3720 28794

uu1r 245205 0.9481 245205 452.1883 245205 1059.5982 242919
uu2r 595288 6.6964 595288 2708.2853 595288 19182.6028 595288
uu3r 1088154 3.4402 1088154 1594.0036 1088154 7469.8188 1072764
uu4r 1191071 42.7667 1188104 34477.7627 1191071 193542.2996 1179050
uu5r 1870038 251.7597 – – – – 1868999
uu6r 2950760 10.5407 2950760 2627.2162 2950760 43813.0821 2950760
uu7r 2943852 1785.7636 – – – – 2930654
uu8r 3969784 134.6564 – – – – 3959352
uu9r 6100692 196.0723 – – – – 6100692
uu10r 11995637 914.9932 – – – – 11955852
uu11r – – – – – – 13170382

uw1r 6916 1.4681 6916 265.0246 6916 1433.2816 6696
uw2r 9732 8.2525 9732 2.4522 9732 2.4842 9732
uw3r 7188 4.3923 7188 1.3281 7188 1.4241 7188
uw4r 8452 38.6544 8452 8.7005 8452 8.8366 8452
uw5r 8604 57.9116 8604 28777.5785 8604 152278.2328 8398
uw6r 6937 40.9346 6937 9.1446 6937 9.1126 6937
uw7r 11585 68.3443 11585 15.1769 11585 15.1529 11585
uw8r 8088 215.8935 8088 37.5984 8088 37.4343 8088
uw9r 7527 228.2463 – – – – 7527
uw10r 8172 409.4536 8172 65.3441 – – 8172
uw11r 18500 5087.5620 – – – – 18200

due to the computational time spent to solve them. Observe that the large CPU time in Tables
3.2 and 3.3 show that some instances are hard even considering the Knapsack problem. Thus,
we consider only the instances cgcut, ngcut, m and gcut01 − gcut12. Table 3.4 presents the
results for the oriented case of the Cutting Stock problem.
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Table 3.4: Results for the 2CSNG problem.

Name L-approach LB Difference (%) Time (s) #Columns Sol3 Time (s) Improvement (%) Guillotine
solution from LB L-approach solution Sol3 over Sol3 solution

cgcut01 37 37.0 0.000% 0.13 57 37 0.10 0.000% 38
cgcut02 44 44.0 0.000% 6.18 79 44 3.43 0.000% 44
cgcut03 365 365.0 0.000% 0.68 106 365 0.11 0.000% 365

ngcut01 35 35.0 0.000% 0.02 25 35 0.02 0.000% 35
ngcut02 101 101.0 0.000% 0.08 23 101 0.02 0.000% 101
ngcut03 111 111.0 0.000% 0.14 84 112 0.12 0.901% 112
ngcut04 42 42.0 0.000% 0.01 13 42 0.01 0.000% 42
ngcut05 82 82.0 0.000% 0.03 25 82 0.02 0.000% 82
ngcut06 96 96.0 0.000% 0.23 106 96 0.18 0.000% 97
ngcut07 33 33.0 0.000% 1.00 39 33 0.54 0.000% 33
ngcut08 60 60.0 0.000% 0.08 57 60 0.04 0.000% 60
ngcut09 146 146.0 0.000% 0.73 80 147 0.22 0.685% 147
ngcut10 72 72.0 0.000% 1.14 17 72 0.30 0.000% 72
ngcut11 36 36.0 0.000% 1.88 69 36 1.76 0.000% 37
ngcut12 121 121.0 0.000% 28.50 109 121 7.80 0.000% 121

m1 97 97.0 0.000% 0.34 66 98 0.27 1.031% 98
m2 86 85.0 1.176% 9.23 166 86 4.46 0.000% 86
m3 94 93.0 1.075% 0.58 80 94 0.38 0.000% 94
m4 71 71.0 0.000% 0.19 51 71 0.11 0.000% 72
m5 101 101.0 0.000% 0.49 65 101 0.20 0.000% 101

gcut01 294 294.0 0.000% 0.03 26 294 0.01 0.000% 294
gcut02 345 345.0 0.000% 0.92 214 345 0.42 0.000% 345
gcut03 332 332.0 0.000% 7.25 528 332 5.67 0.000% 333
gcut04 836 836.0 0.000% 99.29 1790 836 22.17 0.000% 837
gcut05 197 197.0 0.000% 0.10 51 198 0.03 0.508% 198
gcut06 338 338.0 0.000% 0.42 146 339 0.15 0.296% 344
gcut07 591 591.0 0.000% 0.90 159 591 0.36 0.000% 592
gcut08 691 690.0 0.145% 128.49 1547 691 36.35 0.000% 692
gcut09 131 131.0 0.000% 0.12 73 131 0.05 0.000% 132
gcut10 293 293.0 0.000% 0.32 52 293 0.06 0.000% 293
gcut11 330 330.0 0.000% 8.92 582 331 1.93 0.303% 331
gcut12 672 672.0 0.000% 66.53 978 673 19.87 0.149% 672

Observing Table 3.4 (orientated case) we can see that the solution obtained using the L-
approach in the column generation coincides with the lower bound (LB) computed, except for
the following instances: m2, m3 and gcut08. Moreover, some solutions were obtained in 125
seconds of processing time, in the worst case.

Using the subroutine Sol3 in the column generation procedure, we could obtain in many
cases, solutions equal to those ones computed by the L-approach. It corresponds to 25 out of
32 instances, that is 78.125% of the instances. Moreover, Sol3 consumed much less CPU time
than the use of the L-approach. Note that the CPU time spent, on average, by Sol3 was 3.35
seconds against 11.40 seconds of the L-approach.

The number of instances in which the L-approach obtained better solutions compared to
Sol3 correspond to 21.875% of the instances. And, the improvement over Sol3 was of 0.121%,
on average, and 1.031% on the best situation for the instancem1 (see Table 3.4).
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Next, Table 3.5 exhibits the computational results for the problem 2CSNGr, that is the
Cutting Stock problem in which the items can be orthogonally rotated.

Table 3.5: Results for the 2CSNGr problem.

Name L-approach LB Difference (%) Time (s) #Columns Sol3 Time (s) Improvement (%) Guillotine
solution from LB L-approach solution Sol3 over Sol3 solution

cgcut01r 34 33.0 3.030% 0.24 60 34 0.15 0.000% 34
cgcut02r 44 43.0 2.326% 296.11 184 44 209.15 0.000% 44
cgcut03r 301 300.0 0.333% 67.67 691 301 47.95 0.000% 302

ngcut01r 34 34.0 0.000% 0.02 21 34 0.01 0.000% 34
ngcut02r 98 98.0 0.000% 0.12 48 98 0.08 0.000% 98
ngcut03r 111 110.0 0.000% 0.12 53 111 0.10 0.000% 111
ngcut04r 33 33.0 0.000% 0.06 19 33 0.03 0.000% 33
ngcut05r 65 64.0 1.562% 0.03 31 65 0.03 0.000% 65
ngcut06r 92 92.0 0.000% 0.40 98 93 0.16 1.087% 93
ngcut07r 32 31.0 3.226% 1.77 39 32 1.44 0.000% 32
ngcut08r 56 55.0 1.818% 4.42 88 56 2.37 0.000% 56
ngcut09r 133 133.0 0.000% 5.84 124 134 3.82 0.752% 135
ngcut10r 68 68.0 0.000% 7.99 20 68 1.39 0.000% 68
ngcut11r 35 35.0 0.000% 42.87 80 35 19.54 0.000% 36
ngcut12r 117 116.0 0.862% 66.73 129 117 66.50 0.000% 117

m1r 94 94.0 0.000% 138.80 131 94 36.62 0.000% 95
m2r 83 83.0 0.000% 2030.28 127 83 1968.54 0.000% 84
m3r 84 83.0 1.205% 127.07 196 84 17.76 0.000% 86
m4r 68 67.0 1.493% 19.61 67 68 5.93 0.000% 68
m5r 97 96.0 1.042% 34.69 69 97 23.78 0.000% 97

gcut01r 291 291.0 0.000% 0.18 70 291 0.08 0.000% 291
gcut02r 283 282.0 0.355% 19.87 178 283 9.78 0.000% 283
gcut03r 309 308.0 0.325% 282.75 992 310 267.00 0.322% 315
gcut04r 836 836.0 0.000% 2116.29 1435 836 1301.35 0.000% 836
gcut05r 173 172.0 0.581% 0.97 43 173 0.39 0.000% 175
gcut06r 295 294.0 0.340% 2.92 130 295 2.52 0.000% 302
gcut07r 542 542.0 0.000% 21.05 223 542 10.86 0.000% 544
gcut08r 645 644.0 0.155% 1959.55 1049 645 1459.43 0.000% 651
gcut09r 123 122.0 0.820% 0.34 75 123 0.15 0.000% 123
gcut10r 270 270.0 0.000% 2.70 107 270 2.29 0.000% 270
gcut11r 298 298.0 0.000% 220.80 382 298 95.63 0.000% 299
gcut12r 601 601.0 0.000% 1412.39 597 602 675.55 0.166% 602

Observing Table 3.5 we note that the time spent to solve the instances increased significantly.
To compare the differences between the oriented case (see Table 3.4) and this case considering
the L-approach, the CPU time was 11.40 and 277.65 seconds, on the average, respectively.

When comparing the lower bound with the solutions returned using the L-approach as
subroutine for the column generation, we have a difference of at most 3.226% (for instance
ngcut07r). Note that all solutions obtained using the L-approach differ by at most one bin of
the lower bound. Moreover, it also returns solutions equal to the lower bound for 16 out of 32
instances. On the other hand, using the subroutine Sol3, the algorithm returned solutions for 28
instances, that correspond to 87.5%, equal to those ones computed with the L-approach. More
details can be seen in Table 3.5.
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In order to compare the results presented in Tables 3.4 and 3.5 for the L-approach with
those ones computed using algorithm DP2KPG (see column guillotine solution), we obtained
better solutions for 15 out of 32 instances of Table 3.4 and 14 out of 32 instances of Table 3.5.
However the CPU time spent by L-approach was very high compared to that one required by
algorithm DP2KPG, since the algorithm DP2KPG spent no more than 20 seconds against 2120
seconds of the L-approach, in the worst-case.

3.6 Conclusion

In this paper, we presented some recursive approaches for the two-dimensional unconstrained
Knapsack and Cutting Stock problems for the more general case in which the cuts are non-
guillotine type. We extended some approaches developed for the Manufacturer’s Pallet Loading
problem: Five-Block heuristic and L-approach.

We also proved the open question raised in the work of Birgin et al. (2010) [17], showing
that the L-patterns can be generated only using the raster points. We also presented a counterex-
ample in which the L-approach fails to obtain an optimum (non-guillotine) solution. Due to the
medium (and large) computational time required by the L-approach to solve some instances, we
restricted to a parameter k the depth of its recursive calls and named this variant L(k)-approach.

The results obtained for the Two-dimensional Unconstrained Knapsack problem show that
the algorithms proposed can improve the guillotine solution considering practical CPU time.
Of course, the large instances are hard since the L-approach requires more CPU time than the
Five-Block heuristic. Better results were found for the case where the items can be orthogonally
rotated.

The highlight was for the Five-Block heuristic that returned equal solutions (for almost all
instances) to those obtained by the L-approach, but spending much less CPU time than the latter
one. The L(k)-approach like the L-approach was not interesting in some instances (large one)
because it spend large CPU time and could not improve the previous solution obtained by the
Five-Block heuristic. It is also important to say that with these algorithms we improved almost
all solutions when compared to the guillotine case.

For the Two-dimensional Cutting Stock problem, the column generation algorithm using
the L-approach to generate new columns obtained solutions equal to the lower bound for all
instances of the oriented case, except for three instances in which this value differ only one bin.
For the case in which orthogonal rotations of the items are allowed, such algorithm obtained
solutions that differ only one bin of the lower bound for all instances.

The subroutine Sol3 used to generate new columns showed to be helpful, because it allowed
the column generation approach to obtain in almost all instances the same solution of that using
the L-approach, but requiring low CPU time.

The computational results indicate that the algorithms proposed in this paper can be useful
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to solve real-world instances of moderate and large sizes. For the instances considered here,
the algorithms found optimum or quasi-optimum solutions in a satisfactory amount of compu-
tational time.

Future research will be focus on extending the algorithms proposed for the constrained
version of Knapsack problem, and also problems like Strip Packing and Cutting Stock with
bins of different sizes.





Chapter 4

Exact and Heuristic Algorithms for the

Two-dimensional Strip Packing Problem

with Order and Static Stability

Abstract

This paper investigates the Two-Dimensional Strip Packing Problem considering
the case in which the items should be arranged to form a physically stable packing
and also satisfy a predefined order of the items unloading, so that after unloading
each item, the packing continues to be stable. We consider the oriented case, where
rotations are not allowed. To analyze the packing stability, the presented method-
ology is based on conditions for static equilibrium of rigid bodies. We formulate
an integer linear programming for the Strip Packing problem considering the order
constraint, and the stability is dealt by a cutting plane algorithm, leading to a branch-
and-cut approach. We also present three heuristics. The first heuristic is based on
a stack building algorithm; the second one is based on a branch-and-bound strategy
that uses corner points to pack the items; and, the last one is a slight modification of
the branch-and-cut approach. The computational experiments show that the exact
model is suitable to deal with small and medium-sized instances. With the combina-
tion of the heuristics and the branch-and-cut algorithm some instances were solved
in few seconds. Optimal solutions were obtained after few minutes (and hours) of
CPU processing.
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4.1 Introduction

Packing problems have many applications in the industry and real-life problems, and in many
cases, they include a large set of constraints. In [18], Bischoff and Ratcliff (1995) outlines some
practical considerations for packing problems. One of them is the load stability, also referred to
as cargo stability constraint (see [58]). The cargo stability aims to pack items in which any item
has its bottom face supported by the top faces of other items or the bottom of the bin, so that no
item can rotate or lay down after it is packed.

In other words, the cargo stability constraint involves the packing of items into a bin in a
physically stable way that satisfy the static equilibrium conditions of rigid bodies. In a more
realistic scenarios, the dynamic equilibrium is considered instead of the static one. From now
on, when we refer to static (cargo) stability or static equilibrium we are considering the static
equilibrium of rigid bodies.

Another common constraint involves an order (or sequence) in which the items must be
loaded/unloaded from the bin. In fact, for some industries, the unloading of boxes from trucks
or containers is performed by machines and only occurs from one side (lateral-side or up-side).
As a result, the boxes that must be unloaded first have an order (number) higher than the last
ones. From now on we refer to this constraint as order constraint. Applications involving the
order constraint can be found in some variants of the Vehicle Loading problems [40, 55]

This paper investigates the Two-dimensional Strip Packing problem subject to the order and
static stability constraints.

We assume for the order constraint that the items will be (un)loaded from the up-side of the
strip. In this case, an item i with order oi must be placed at the bottom of the strip or over items
whose order value are smaller than or equal to oi. Then, for any item i there must exist free
space to remove the item in the direction of the unloading side, and no item j with oj > oi, is
packed above i obstructing it.

For the static stability constraint, we assume that each item i has also a value of massmi. To
ensure the stability of the items the concepts about strength of materials, that is the formulations
used to analyze beams under the static equilibrium of rigid bodies, are considered [12, 82].

TWO-DIMENSIONAL STRIP PACKING PROBLEM WITH ORDER AND STATIC STABILITY CON-
STRAINTS (2SPOS): Given a strip B = (L,∞) and a set of rectangles S, each rectangle i with
dimensions (li, wi), order value oi and massmi, find a packing of S into the strip B so that the
order and static stability constraints are satisfied and the height of the used portion of the strip
is minimized.

The formal definition of static stability are presented in the Section 4.2.
In a feasible packing the items cannot overlap and theymust be packed in an orthogonal way.

That is, the sides of the items must be parallel or orthogonal to the sides of the strip. Moreover,
the items cannot be rotated, and the order and static stability constraints must be satisfied. The
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packings are considered in the Cartesian plane R2, and a rectangle is specified by a pair (x, y),
where x and y denote, respectively, the length and height of any object. The position (0, 0)
represents the bottom left corner of the strip B, and the position of an item is specified by its
bottom left corner. We also assume that the values in each instance are all integer numbers.

The Two-dimensional Strip Packing problem, denoted by 2SP, is NP-hard as shown in [37],
and it is a particular case of the 2SPOS problem when oi = 0, for i = 1, . . . , n and the constraint
about the static stability is not considered. Following the typology of Wäscher et al. [86], this
is the Two-dimensional Rectangular Open Dimension Problem.

Some algorithms have been proposed for the 2SP problem. Kenyon and Rémila (2000) [61]
presented an AFPTAS for the oriented case and Jansen and van Stee (2005) [57] proposed a
PTAS for the case in which rotations are allowed. Hifi (1998) [50], Lodi et al. (2003) [66],
Martello et al. (2003) [67] and Lesh et al. (2004) [64] presented approaches using branch-and-
bound and integer linear programming models. In the work of Lesh et al. (2004) [64], the main
idea of the proposed branch-and-bound algorithm is to prune branches when it is impossible
to pack a new object without generating a hole. Cintra et al. (2008) [27] presented a column
generation based algorithm for the staged 2SP problem with and without rotations.

Recent surveys for the 2SP problem can be found in Riff et al. (2009) and Ntene and Vuuren
(2009) [81, 75]. In 2009, Kenmochi et al. [60] proposed an exact branch-and-bound algorithm
for the oriented case and the case in which the items can be rotated orthogonally. For the
oriented case, the proposed algorithm is faster than the one presented in [64]. Ortmann et al.
(2010) [77] presented four new and improved level-packing algorithms.

Most results presented for the Strip packing problem consider heuristic approaches. The
main reason may be due to the restricted size of the instances solved by exact algorithms. Al-
though heuristics can solve large-sized instances, in most of the cases they cannot guarantee
any information about the optimality of the obtained solution. When considering metaheuris-
tics, there are genetic algorithms, simulated annealing methods and GRASP [3, 51, 53, 87].

We found few papers related to the cargo stability in the literature. Junqueira et al. (2010)
[58] presented an integer linear formulation for the problem of loading rectangular boxes inside
bins under cargo stability and load bearing constraints. They define a cargo stability constraint
based on a factor α of bottom contact. This factor measure the percentage of the bottom face of
each item that must be in contact with other items or the strip. This same requirement is used
by Gendrau et al. (2006) [39] when dealing with the three-dimensional Loading Capacitated
Vehicle Routing problem. Naturally, the above condition is an approximative model and may
obtain packings that do not satisfy the conditions for the static equilibrium of rigid bodies.

On the other hand, we only found the work of Castro Silva et al. (2003) [85] for the packing
problem with cargo stability constraints that consider the static equilibrium of rigid bodies, as
considered in this paper. The authors proposed a greedy heuristic for the three-dimensional Bin
Packing problem with the constraint that the items packed within the bins has to be physically
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stable. The heuristic is based on three ideas: looks for a best filling of a single bin by the
items; two items cannot overlap; and an item is inserted into a bin in a (feasible) position which
generates the minimum increase on the unused space of the overall packing volume. To insert a
new item a subroutine is called to verify if the item remains stable as well as the packing. They
tried to incorporate the dynamical stability, without any success as mentioned by themselves.

We propose a slightly different approach from the one proposed by Castro Silva et al. (2003)
about the static stability. Our methodology allows not only to verify the static stability, but also
to compute the forces (any kind of force acting on the items/packing) that a single item exerts
to the other ones under it. As a result, our methodology may be extended to deal with the
dynamical stability, namely, the cases in which the items or packing have variations of velocity,
acceleration, inclinations and/or curvatures.

In this paper, we propose three heuristics and a branch-and-cut algorithm for the 2SPOS
problem. The first heuristic consider the packing of items into vertical layers. The second one
is derived from the exact branch-and-bound algorithm proposed by [68], and the last one is a
slight modification of the branch-and-cut algorithm proposed here. The heuristics are discussed
in Section 4.5.

Due to the complexity of the static stability constraints, we propose an integer linear formu-
lation for the 2SPOS problem, that initially starts without any static stability constraint. To avoid
integer solutions that corresponds to unstable packings the algorithm add constraints (cutting
planes) into the initial program. More details are presented in Section 4.3.

The computational experiments are given in Section 4.6. We report numerical experiments
for some random instances and other instances presented in the OR-Library [10]. The results
obtained confirm the good performance of the proposed algorithms. Finally, Section 4.7 is
devoted to the conclusions and suggestions for future works.

4.2 Static Stability in Packing Problems

To deal with the static stability of the items/packing, we use some concepts about strength of
materials that include static equilibrium of rigid bodies. So, our methodology is derived from
the physical concepts of force, center of gravity, moment, bending moment, beams and the
three-moment equation method [21, 47, 49].

Without loss of generality, the rectangular items are associated with structural elements
called beams. The aim is to use the concepts and formulations of such elements to deal with the
static stability in packing problems. So, we do not make any difference between the terms (rect-
angular) items and (simple continuous) beams. Moreover, the proposed methodology requires
some assumptions that can be easily used/extended to any packing problem.

First, we only consider the existence of the weight force, produced by each item. That is, we
only consider the weight of each item for the static stability. In others scenarios there may exist
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others kind of forces, for example the wind action, or in cases of transportation, the dynamical
action of the truck over the packing, etc.

The weight of an item corresponds to the gravity force acting on that item and it is uniformly
distributed along the item. This force can be substituted by only one resulting force that acts on
the center of gravity of the item. As we consider the static equilibrium of rigid bodies the forces
do not vary with the time (are static) and the items are rigid (rectangular) bodies.

The massm of the items can be assumed to be concentrated in only one point that is called
center of mass. Under the consideration that the gravitational field is uniform, the center of
gravity coincides with the center of mass. Then, the center of mass is the point where the
resulting weight force acts on. The Eq. (4.1) is used to calculate the center of mass of an item
composed by other masses:
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where
−−→
CM , with components in the x- and y-axes, is the vector that indicates the center of mass

of the item;mi is the ith mass and whose distance to an inertial reference frame (First Newton’s
Law) is described by the position vector −→ri = (rxi , ryi ). The bottom left corner of the item is
adopted as its inertial frame.

Any item without other forces acting on it has its center of mass located at the mid-point
of its dimensions. We say that an item i is adjacent to an item j if j is immediately under and
in direct contact with i. From now on, an item composed by one mass is in static equilibrium
(for the sake of simplicity, is stable) when its center of mass lies on one of the following stable
regions: over some of its adjacent items; in the middle of two (or more) of its adjacent items;
or, in the floor of the bin. If the center of mass of an item does not lie on any of these stable
regions a movement (of the item) occurs, and consequently the item may fall down. Note that
the lateral borders of the strip are not considered, so that they do not restrict any item to rotate,
and fall down.

The modulus of the weight force for an item i with dimensions (li, wi) is calculated by Eq.
(4.2), since the items are homogeneous and made of the same material.

Fpi = mig (N) (4.2)

where g is the acceleration of gravity (e.g., g = 9, 82 m/s2). We also assume that the mass of
an item i is given by its area. More precisely, for each item i, we havemi = lici.

To verify the static stability of any packing, it is necessary to analyze each item individually
verifying if the center of mass lies on a stable region. Moreover, if an item is stable, the resultant



74 Capítulo 4.

force acting on its center of mass is then carried to its adjacent items. On the other hand, if an
item is unstable the packing is assumed to be unstable, since such item will rotate and may
break up the packing.

To determine the value of the forces transmitted from the item under consideration to its
adjacent ones the equations for static equilibrium of rigid bodies are applied. An item is in
static equilibrium when the resultant of the forces and moments acting on it are equal to zero:
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i represent the vectorial sum of all the forces and moments acting

on item i, respectively. The bottom left corner of the item under consideration is adopted as the
inertial frame O whenever the moment is computed. As we use the (2D) Cartesian plane and
only the weight forces (whose direction is vertically downward) are acting on any item, only
the y direction (of the force) and z direction (of the moment) need to be considered.

Therefore, the objective is to determine how to transmit the resultant forces of the item under
consideration to its adjacent ones, and how to determine the place where such forces will act on
them. As a consequence, there are three cases to analyze:

• (i) the item has exactly one adjacent item;

• (ii) the item has exactly two adjacent items; and,

• (iii) the item has three or more adjacent items.

The cases (i) and (ii) appeared frequently on numerical experiments, and they are basic cases
for the last one. In particular, the cases (i) and (ii) have straightforward formulations that are
helpful and allows the subroutine to check the stability constraints very quickly.

The hypothesis of small displacements is assumed, since beams are structural elements in
which forces and loads act on, they may deform and/or move from its original position. There-
fore, it means that the conditions for static equilibrium are imposed on the original geometry
(undeformed) of the structure [12, 21].

4.2.1 Case (i)

The case (i) is the most simple case and consists in one or more items over exactly one adjacent
item. Let i be an item in which only its weight force

−→
Fpi is acting on its center of mass

−−→
CMi,

and let j be the unique adjacent item of i. Assume that the center of mass of item i is positioned
on a stable region (that is i is stable). This situation is represented in Fig. 4.1.
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Figure 4.1: Simple representation of case (i).

Now, to analyze item j it is necessary to consider not only its weight force acting on its
center of mass, but also the forces that are acting from the items immediately over (and in direct
contact with) item j. In this example, there is only the weight force of the item i. In this case,
the point where the force of item i is acting on item j corresponds to the point where the center
of mass of i is located.

The item j has more than one force acting on, and then, its center of mass must be calculated
using Eq. (4.1). If such center of mass lies on a stable region, then item j is also stable and
its resultant force can be carried to its adjacent items (of course, following some of the three
cases above mentioned). On the other hand, item j is unstable and the algorithm that verify the
stability can stop.

4.2.2 Case (ii)

The case (ii) configures the situation in which an item has exactly two other adjacent items. In
this situation the analogy with beams simplify the analysis and the configuration can be verified
directly. Let k be the item to be analyzed where three forces are acting on: its own weight force
on its center of mass

−−−→
CMk, and two others forces:

−→
Fpi and

−→
Fpj applied on points

−→pi and
−→pj ,

respectively. Consider that items k1 and k2 are under item k. Figure 4.2 represents this case
using the rectangular items and also the analogy with beams.

Let us assume that the center of mass of item k lies on a stable region. Now, we have to
calculate the resultant forces of k to its adjacent items.

As shown in Fig. 4.2 the item k represents a simple continuous beam and its adjacent items,
k1 and k2, are its supports (for example, pillars) that interacts with it. In such interaction two
new forces appear, R1 and R2, so called reaction forces.

From now on, we refer to the resultant force as the resultant of all forces that acts on the
beam, except the reaction forces. Then, to satisfy the Newton’s third law and, consequently, the
conditions for static equilibrium the resultant force must be decomposed into forces acting on
the adjacent supports on contact with the beam. Without loss of generality, we assume that the
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Figure 4.2: (a) Example of the case (ii) using rectangular items; and, (b) its representation by a
simple continuous beam.

point where each “partial” resultant force (obtained after the decomposition) acts on its support
corresponds to the mid-point of the length of contact between the beam and the support under
consideration, as presented in Fig. 4.2(a).

In order to calculate the forces carried from the item under consideration to its adjacent ones,
namely, to calculate the reaction forces R1 and R2, the analysis consists to divide the beam into
three parts, so called spans (segments): span 1 (to the left of the support R1); span 2 (between
supports R1 and R2); and, span 3 (to the right of the support R2).

The equations for static equilibrium, Eq. (4.3), are first applied to the spans in the extremes
(in the present situation they are the spans 1 and 3). Therefore, the moments and the first
part of the reaction forces: Rd1 and Re2, are computed. Next, the Eq. (4.3) is applied on the
intermediary spans (only span 2 in this case), and the last part of the reaction forces: Re1 andRd2,
can be computed. Finally, using the superposition principle [47], the final value of the reaction
forces of the supports can be obtained. And, they correspond to the forces carried from the item
under consideration to its adjacent ones.

4.2.3 Case (iii)

This last case is a natural extension of the case (ii). The main difference appears on the number
of adjacent items. In this situation the item under consideration has three (or more) adjacent
items, and then, the simple continuous beam has three (or more) supports that characterizes
a hyperstatic beam. For this beam, the number of unknown variables (reaction forces) to be
computed is more than the number of equations for static equilibrium available.

The Eq. (4.3) allows to solve only the cases (i) and (ii) in a direct way, because there are
two equations. For the case (iii) it is necessary to compute the (internal) moments that appear
on the intermediate supports. If the moment in these supports are known, then it is possible to
divide the beam into span segments, and thus apply the equations for static equilibrium on each
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segment.

We can apply a simple method called Three-Moment Equation method used to deal with
hyperstatic structures, and then, calculate the reaction forces on the supports [21, 38].

To deal with the static stability, a beam with n span segments has exactly n − 1 supports,
since the spans in the extremes (spans 1 and n) are free of supports. The spans in the extremes
are not considered when applying the three-moment equation method, because the momentsM1

andMn−1 on respective supports 1 and n− 1 are calculated directly by Eq. (4.3). Furthermore,
the first part of the reaction forces Rd1 and Ren−1 are also computed directly.

The three-moment equation method is applied in adjacent pair of spans (i.e., two by two
subsequent span segments) starting from the span 2 to the span n− 1. Figure 4.3 schematically
represents an item k with three adjacent items, k1, k2 and k3. Note that there are four spans and
three supports.

Figure 4.3: Example of the case (iii) for an item with others three adjacent items.

In what follows we describe the matrix formulation of the three-moment equation method
for the case in which the beam has n span segments over n − 1 supports. This situation is
represented by an item with n−1 adjacent items. Note that individual forces are acting on each
span of the beam as its own weight force and/or the resultant forces that goes from the items
immediately above. Then, it is only necessary to solve the following equation symbolically:

F m = d, (4.4)

where F is the flexibility matrix. The matrix F is three-diagonal and symmetric;m is the vector
of (internal) moments at the supports; and, d is the vector of forces/loads applied on the item
under analysis. The objective is to compute the system of equations (4.4) to find the values in
vectorm.

Starting from the span 2 to the span n− 1 and considering that support j is between span j

and span j + 1, the three non-zero elements in row j (j = 2, . . . , n − 2) of matrix F are given
by:
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Fj,j−1 = lj ,

Fj,j = 2(lj + lj+1), (4.5)

Fj,j+1 = lj+1,

where lj is the length of the span j. The jth position of the vector d corresponds to:

dj = −6(µ
2
j + µ1

j+1), (4.6)

where µ2
j and µ1

j+1, are respectively the (static) load factors of the span j for the right support
(entry 2 in the exponent), and of the span (j + 1) for the left support (entry 1 in the exponent).

The load factors are calculated from the forces (except the reaction forces) acting on each
span segment. There are some cases in which two or more forces are acting on the span. For
instance, when we have the weight force of a span and the forces of the other items that are over
and in direct contact with the span. So, the final load factor is computed by summing up all load
factors acting on the item. Figure 4.4 presents the two ways to calculate the load factors: (a)
for an uniformly distributed force/load, e.g., the weight force; (b) for a concentrated force/load,
e.g., the resultant forces of the items over and in direct contact with.

Figure 4.4: Equations to compute the load factors: (a) for an uniformly distributed force/load;
(b) for a concentrated force/load.

The following values F1,1, Fn−1,n−1, d1 and dn−1 are given by:
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where F 1
p and l1 represent, respectively, the weight force and the length of the span 1; r1 is the

number of forces carried from the items over and in direct contact with the span 1 (in this case
the weight of the span is not considered); and, F 1

i and d1
i are, respectively, the modulus of the

ith force and its distance from the inertial frame, both for the span 1. The same remains for
F n−1
p , ln−1, rn−1, F

n−1
i and dn−1

i considering the span n− 1.
Using the values of F and d, the moments m can be obtained using Eq. (4.4). Applying

the equations for static equilibrium for each span segment, we can compute the reaction forces
from adjacent items.

4.2.4 The Algorithm

Considering the three cases above mentioned, we have all information to determine the forces
carried for each item, and then, to verify if a two-dimensional packing is statically stable. The
Algorithm 4.1 described in the following allow us to verify the stability.

The worst-case time complexity of the Algorithm 4.1 is O(n4) where n is the quantity
of items in the input packing I . The steps of the lines 4.1.1 − 4.1.8 can be executed in
time O(n logn) considering any O(n logn) algorithm to sort the items. The loop in lines
4.1.9 − 4.1.26 spend time O(n4). Note that for case (iii) the algorithm obtain the inverse of
the flexibility matrix F, which can be computed in time complexity O(n3).
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Algorithm 4.1: Algorithm to verify the static stability of a 2D packing.
Input : Packing I of a set of n rectangular items.
Output : It returns if I is (or not) statically stable.
Let pi(xi, yi) be the left bottom corner for each i ∈ I .4.1.1

Let S(I) be the arrangement of the items in decreasing order of yi. Items with the same height are4.1.2

arranged in increasing way by xi.

Let A(i) be the set of items that are adjacent to i, for each i ∈ S(I).4.1.3

foreach i ∈ S(I) do4.1.4

foreach j ∈ A(i) do4.1.5

Let Iij be the segment that represents the length of contact between items i and j.4.1.6

Let (xsij , y
s
ij) and (x

e
ij , y

e
ij ) be the initial- and end-points of Iij , respectively.4.1.7

Let (xpij , y
p
ij) = (

(xe
ij−x

s
ij)

2 ,
(ye

ij−y
s
ij)

2 ) be the mid-point of Iij .4.1.8

foreach i ∈ S(I) do4.1.9

if there are no forces carried from items over and in direct contact with item i then4.1.10

Compute the center of mass
−−→
CM i of the item i.4.1.11

if
−−→
CM i does not fit on a stable region then4.1.12

return (Item i is unstable; the packing is unstable).4.1.13

else4.1.14

Compute the center of mass
−−→
CM i of the item i by Eq. (4.1), considering the set of forces4.1.15

carried from items over and in direct contact with item i.
if
−−→
CM i does not fit on a stable region then4.1.16

return (Item i is unstable; the packing is unstable).4.1.17

Let k ← |A(i)| be the quantity of adjacent items to item i.4.1.18

Compute (and save) the forces carried from item i to its adjacent items that belong to A(i) for the4.1.19

exact value of k, that is:
if k = 1 then4.1.20

Apply case (i).4.1.21

else4.1.22

if k = 2 then4.1.23

Apply case (ii).4.1.24

else4.1.25

Apply case (iii).4.1.26

return The packing is stable.4.1.27

4.3 2SPOS Problem

In what follows we present the integer linear formulation and heuristics for the 2SPOS problem.
In this formulation, the strip B = (L,∞) is discretized in a grid of points (non-necessarily
uniform).

The discretization of the strip B = (L,∞) generates a grid of points that we denote by P .
All the horizontal lines (in the height direction, y-axis) are in the setW and all the vertical lines
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(in the length direction, x-axis) are in L. In the x-axis, we may assume a uniform discretization,
whose distance between subsequent points is given by a sufficiently small value dx. For the y-
axis, we may assume the setW as the set of all combinations between the height of the items.
The coordinates of a point p ∈ P are given by a pair p = (a, b) where a ∈ L refers to the x-axis,
and b ∈ W refer to the y-axis.

As a consequence, the problem consists find an optimal packing of the items within the grid
of points in such a way to minimize the overall height of the strip, satisfying the order and the
static stability constraints.

4.3.1 The Integer Linear Formulation

Now, we present an integer linear programming model, described in Eq. (4.8), that formulates
the 2SPOS problem when each item is packed in a discretization point. An instance of the
2SPOS problem is denoted by I = (L,∞, l1,...,n, w1,...,n, o1,...,n), where each item i has dimen-
sions (li, wi) and value of order oi > 0, for i = 1, . . . , n. Let Pi ⊆ P be the set of feasible
points where the item i can be packed without passing the border of the strip. The binary vari-
able ze is equal to 1 if a point pe ∈ P for some horizontal line e ∈ W is covered by some item,
and ze = 0, otherwise. The binary variable xip is 1 if the item i is packed with its bottom left
corner on point p ∈ P .

We denote by Rip ⊆ P the set of points of the grid that are covered by the item i, when it
is packed in point p, except those ones that matches the upper and right border of i. The binary
variable yqi indicates whether the point q ∈ P is covered by item i.

The set O = {1, . . . ,Omax} contains possible order values for each item and value oi ∈ O

is the order of item i. The binary variable rpo indicates whether point p ∈ P has value of
order o ∈ O. Note that if xip = 1, then all the points q ∈ Rip have value of order equal to
oi (of item i). For each point p = (a, b) ∈ P , we denote by λ(p) the point p� = (a, b�) where
b� = min{β ∈ W | β > b}.

It is desirable that each item is packed over another item, or in the bottom of the strip, in
such a way to avoid items “floating in mid-air” within the packing. Naturally, items floating in
mid-air generate non-stable packings.

Therefore, for an item i with dimensions (li, wi) packed on point p = (a, b), let Sijp be the
set of points in which the item j with dimensions (lj, wj) can be packed (these points are under
item i) to ensure that item i always have an extension of contact with j of at least dx units. In
other words, the bottom border of the item i must have a nonempty extension of contact with
the upper border of item j. The points in Sijp ⊆ P are the points with abscissa in (a−lj , a+ li),
with 0 ≤ a− lj ≤ L and a− lj ≤ a+ li ≤ L.

The objective function in formulation (4.8) is composed by two parts. The first one aims to
minimize the overall height of the strip. The second complements the first one in the sense of
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keeping the items always close to the bottom border of the strip (floor). The value of � is a very
small number.

min

|W|�

e=1

eze + �(

n�

i=1

�

p=(•,b)∈Pi

bxip)

subject to :

(1)
�

p∈Pi

xip = 1 ∀ item i (i = 1, . . . , n).

(2)

n�

i=1

ypi ≤ 1 ∀ p ∈ P .

(3)

Omax�

o=1

rpo ≤ 1 ∀ p ∈ P .

(4) xip ≤ rqoi ∀ item i (i = 1, . . . , n); ∀ p ∈ Pi; ∀ q ∈ Rip.

(5) xip ≤ yqi ∀ item i (i = 1, . . . , n); ∀ p ∈ Pi; ∀ q ∈ Rip.

(6) rp�o� ≤
Omax�

o��=o�

rp��o�� ∀ p� ∈ P ; ∀ o�, o�� ∈ O; such that o� ≤ o��,

p�� = λ(p�).

(7) xip ≤ ze ∀ item i (i = 1, . . . , n); ∀ p ∈ Pi; ∀ e ∈ Nip.

(8) xip ≤
n�

j=1
j �=i

�

q∈Sijp

xjq ∀ item i (i = 1, . . . , n); ∀ p ∈ Pi.

(9)
�

ip∈P

xip ≤ n− 1 ∀ non-stable packing P,

(10) xip ∈ {0, 1} ∀ item i (i = 1, . . . , n); ∀ p ∈ P .

(11) yqi ∈ {0, 1} ∀ item i (i = 1, . . . , n); ∀ q ∈ P .

(12) rpo ∈ {0, 1} ∀ o ∈ O; ∀ p ∈ P .

(13) ze ∈ {0, 1} e = 1, . . . , |W|.

(4.8)

Constraints (4.8.1) impose that each item i is packed exactly once. Constraints (4.8.2)
ensure that each point of the grid is covered by at most one item, and constraints (4.8.3) impose
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that such points have at most one value of order. It is easy to see that there may exists points of
the grid that will not be covered by any item.

When a item i is packed in the point p, constraints (4.8.4) impose that all the points in Rip
have the same value of order oi, and constraints (4.8.5) ensure that such points are marked in
such a way that no item can be packed on them except item i.

To ensure the order constraint imposed by the problem, constraints (4.8.6) impose that any
item i with order oi must be packed over items j with order oj that satisfy oj ≤ oi. In other
words, if a point p = (a, b) has value of order oi, then the point immediately over it, say point
q = (a, c) (on the same line that intercepts at y-axis), must have value of order oj , with oj ≤ oi.

Constraints (4.8.7) ensure that the horizontal lines of the grid covered by any item has to be
used. Observe that the item i = (li, wi) packed on point p = (a, b) covers the horizontal lines
in Nip = [b, b + �wi

dy
�].

To avoid items floating in mid-air, constraints (4.8.8) ensure that an item i will be packed
only if there exist an extension of contact with other item j or if item i lies on the floor of the
strip. Constraints (4.8.9) avoid packings that are not stable. Finally, constraints (4.8.10−4.8.13)
ensure that all variables are binary.

4.4 The Branch-and-Cut Algorithm

Since the number of non-stable packings is very large, we do not insert all the static stability
constraints in the integer formulation (4.8). As we must obtain packings for the 2SPOS problem
that are stable, the static stability constraints are inserted on demand as cutting planes. For the
sake of simplicity, we call this algorithm as BCut.

The integer formulation used in the algorithm BCut is solved by the commercial software
CPLEX. However, any integer linear programming solver that can deal with cutting planes can
be used. In fact, most of the commercial software also provide a framework for branch-and-cut
algorithms. In this framework, we implemented a cutting plane routine that is called every time
a new (integer) solution candidate is obtained. The routine first verify, using Algorithm 4.1, if
the corresponding packing is stable. In case positive, the new solution is accepted. Otherwise,
such candidate solution is avoided inserting the following inequality in the linear program:

n�

i=1

xip ≤ n− 1, (4.9)

where item i was packed on point p in such solution. The cuts of stability are inserted as global
cuts in the branching tree, so that they are valid for all packings.

Besides the cuts of stability, the CPLEX solver automatically manage and insert other types
of cuts. We call these cuts “standard cuts”. Among the standard cuts, the solver may insert:
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clique cuts, cover cuts, disjunctive cuts, flow cuts, Gomory cuts and zero-half cuts.

4.5 The Heuristics

Naturally, the number of variables and constraints in formulation (4.8) depends on the dis-
cretization of the strip. To avoid unnecessary computation we present some heuristics to com-
pute the initial height for the grid as well as feed the solver with an initial solution (upper bound)
for the integer formulation.

We denote the first heuristic by HffO, and is defined as follows: Given an instance I =

(L,∞, l, w, o) for the 2SPOS problem, the algorithm HffO considers the items sorted decreas-
ingly by length (l1 ≥ l2 ≥ . . . ≥ ln). For the sake of simplicity, we present this algorithm in two
phases. The first phase consists in packing the items on the floor of the strip. As the items were
sorted decreasingly by length, the first item with length l1 will be packed on the point (0, 0), the
second item on the point (l1, 0), the third item on the point (l1 + l2, 0), and so on. When the
packing of the next item of the instance extrapolates the length of the strip, it is ignored and the
routine continues from the next item.

The first phase aims to create vertical layers whose length corresponds to the length of
the items already packed there. Suppose we have k items packed on the floor, with lengths
li1, li2 , . . . , lik . Each one of these items will start a vertical layer of items, where layer j has
length lij and height given by the sum of the heights of the items in the layer. Initially, layer j
has height wij given by the unique item ij .

In the second phase, the algorithm sorts the non-packed items decreasingly by height. To
pack the next item, the algorithm looks for a layer with sufficient length and smallest height.
Ties are broken by choosing the layer with smallest possible length. The item is packed in the
middle of the layer length.

Algorithm HffO always generates stable packings, since each item is packed in the middle
of the layer. Now, to generate packings that also satisfy the order constraints, the algorithm
sort the items in the layer decreasingly by the value of order. The Algorithm 4.2 describes the
heuristic HffO.

The heuristic HffO can be improved for the case in which there is no order value (or all
items have a same order). For each item to pack, a new vertical layer is created. Observe that
the items were sorted decreasingly by length, so that to pack the item i, whose length is li, in
layer k, whose length is dk, we have li ≤ dk. If ln ≥ dk − li, then a new vertical layer of length
dk − li can be created, since at least one item (the last one) can be packed in it. This is the
only modification to be made in algorithm HffO, so that the other steps remain, except those
ones about the order constraint (lines 4.2.18− 4.2.22) that must be deleted. This version of the
algorithm is denominated by HffNo.

It is clear that algorithmsHffO andHffNo has worst-case time complexity equal toO(nlog(n)),
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Algorithm 4.2: HffO.
Input : An instance I = (L,∞, l, w, o) of the 2SPOS problem.
Output : The height of the strip used and the solution for I .
Sort the items of I decreasingly by length: l1 ≥ l2 ≥ . . . ≥ ln.4.2.1

m← 1; and, let SOL← { } represents the solution for I .4.2.2

Create the layerm with bottom left corner on point (0, 0).4.2.3

Put layerm in SOL on point (0, 0).4.2.4

for i← 1 to n do4.2.5

Let k be the layer of minimum height that item i can be packed.4.2.6

Let (xk, yk) be a point in layer of k: xk represents the x-coordinate where layer k start in the4.2.7

strip, and yk represents the height this layer.
Pack item i on point (xk, yk)4.2.8

if i is NOT the only item packed on layer k then4.2.9

Let dk be the length of layer k that was defined by the first item packed in it.4.2.10

else4.2.11

dk ← li.4.2.12

if yk = 0 AND xk + dk ≤ L− ln then4.2.13

m← m+ 1.4.2.14

Create a new layerm with (xm, ym)← (xk + dk, 0).4.2.15

Put layerm in SOL on point (xm, 0).4.2.16

yk ← yk + wi.4.2.17

foreach layerm ∈ SOL do4.2.18

Let S be the set of items packed inm.4.2.19

Sort the items of S decreasingly by value of order: o1 ≥ o2 ≥ . . . ≥ o|S|.4.2.20

Compute the center of mass CMi for each item i ∈ S; and, let dm be the length of layerm.4.2.21

Pack the items (i = 1, . . . , |S|) of S in layerm in such way that the CMi coincides with
dm

2 .4.2.22

LetW be the height of the layer of highest height in SOL.4.2.23

return (W,SOL)4.2.24

where n corresponds to the number of items in instance I . Note that these algorithms always
produce guillotine patterns that are statically stable. In the case of algorithmHffO these patterns
also satisfy the order constraint.

The second heuristic presented here consists in a modification of the branch-and-bound
algorithm developed by Martello et al. (2000) [68] called OneBin. The modified version of this
algorithm considers the order and the static stability constraints and is denoted by OneBinOSS
(OneBin with Order constraint and Static Stability). The implementation makes use the source
code made available by the authors.

The algorithm OneBinOSS works as follows. Let I be an instance of the 2SPOS problem as
previously discussed. As this algorithm consider a bin, the initial heightW adopted is the sum
of the height of all items, that isW =

�n

i=1 wi. For each item i denote by ai the area of item i,
and by V the area of the bin.

First, the algorithm sort the items in I decreasingly by the value of order o. Items with the
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same value are ordered decreasingly by area. During its execution, the algorithm maintain some
sets so as to limit the branch-and-bound ramification. Let P be the set of packed items and N

the set of non-packed items. Denote by C(P ) the set of corner points and A(P ) the area of the
envelope [68]. Denote by F the area of the best packing already done.

The sets C(P ) and A(P ) are updated in each iteration. Each item j ∈ N is assigned for
each corner point c ∈ C(P ) and the algorithm is called recursively, and, if necessary, F has its
value updated. The backtracking occurs if

�
i∈P ai − (A(P )− V ) ≤ F . The order constraint

and the static stability are dealt in an easy way. The algorithm always checks if the order and
the static stability constraints are violated by an item whenever it is assigned to some point. If
true, the backtracking occurs. The heuristic version of the algorithm OneBinOSS simply set
the time to a maximum time limit. When this time is reached, the best solution computed is
returned, otherwise no solution is provided.

The algorithm OneBinOSS can also be applied to solve the cases without order constraint.
In this situation it is only necessary to check if the static stability is violated. This version is
denominated by OneBinSS. Both heuristics OneBinOSS and OneBinSS stop when they obtain
a packing of the items with all constraints satisfied. So, they are not concerned to generate
solutions with minimum height.

The third heuristic is obtained after a simple modification in the algorithm BCut. It consists
in solving the integer linear formulation (4.8) considering the discretization at the length direc-
tion in the same way it was made at the height direction. As discussed before, this modification
on the grid may result in worst solutions. We denominate this heuristic by NonExact.

4.6 Numerical Experiments

The algorithms were implemented in C language and all computational tests were performed
in a computer with Intel� CoreTM 2 Quad 2.4 GHz processor with 4 GB of RAM memory and
Linux operating system.

We used the standard framework provided by ILOG� CPLEX� 12 Callable Library (with
default parameters) to solve the integer linear formulation in algorithms NonExact and BCut.
The CPU time was limited to 3600 seconds for heuristic NonExact and 3600 seconds for al-
gorithm BCut. The algorithms OneBinOSS and OneBinSS had the CPU time limited to 1800
seconds.

4.6.1 The Instances

The computational tests were done in some instances present in the OR-Library [10]. We also
generate new random instances.
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The instances adapted from the OR-Library are the following: ngcut01 − ngcut12 and
cgcut01− cgcut03. Such instances were proposed for the Two-dimensional Constrained Knap-
sack problem considering the oriented case and the case in which the cuts may be non-guillotine
and guillotine type, respectively.

The randomly generated instances are divided in three main classes, the first two with 9
instances, and the last one with 6 instances. For all the instances in the first, second and third
classes, the strip length is equal to 20, 40 and 60, respectively. Moreover, for the first two
classes there are 3 groups of instances each one with 3 instances whose quantity of items is 8,
15 and 20, respectively. In the last class there are only two groups of 3 instances, each one with
8 and 15 items, respectively. The dimensions of each item i = (li, wi) were generated randomly
in the closed interval [0.10L, 0.40L]. These instances were denominated by rand01, rand02 and
rand03 plus the information about the length of the strip and the quantity of items.

A total of 78 instances, with and without order constraints, were considered on the numerical
experiments. The order of each item i, for all randomly generated instances, was chosen at
random in the set [1, 2, 3, 4]. All the mentioned instances are also available at the following url:
http://www.loco.ic.unicamp.br/stability2d/.

4.6.2 The Algorithms

We combine the algorithm BCut and the heuristics with the objective to reduce the CPU time
spent to solve the instances. The most promising combinations are described in Algorithms 4.3
and 4.4.

Algorithm 4.3: First combination of the heuristics with the algorithm BCut.
Input : An instance I = (L,∞, l, w, o) of the 2SPOS problem.
Output : A solution for I .
if the instance I consider the order constraint then4.3.1

(W,S)← execute HffO(I) and OneBinOSS(I), and returns the best solution found.4.3.2

else4.3.3

(W,S)← execute HffNo(I) and OneBinSS(I), and returns the best solution found.4.3.4

Create the instance I � = (L,W, l, w, o).4.3.5

(W �, S�)← NonExact(I �, S�).4.3.6

if (W �, S�) is empty then4.3.7

Create the instance I �� = (L,W, l, w, o); SBCut ← BCut(I ��, S).4.3.8

else4.3.9

Create the instance I �� = (L,W �, l, w, o); SBCut ← BCut(I ��, S�).4.3.10

return SBCut.4.3.11

The Algorithm 4.3 consists in executing the algorithms HffO and OneBinOSS (or HffNo
and OneBinSS for the case without order constraints) in order to obtain the first (initial) solu-
tion S and the height W of the strip for the instance I . At line 4.3.2 the term “best solution
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found” corresponds to a solution of smallest height. The height W is used to create another
instance I � in which the strip has length L and height W . Then, the algorithm NonExact use
such dimensions to generate the grid of points, and the solution S is used as initial solution
(incumbent) for the integer formulation. Finally, the solution and height returned by algorithm
NonExact is used as input for the algorithm BCut.

The main difference between Algorithms 4.4 and 4.3 is in the computation of the height.
In Algorithm 4.3 the height W was used to create another instance I �, and so on. Now, in
Algorithm 4.4 the height W computed by algorithms HffO and OneBinOSS (or HffNo and
OneBinSS) is used to calculate another height W1 that is the greatest combination of item
heights that is strictly smaller thanW .

It remains valid to calculate W1 in this way, since the horizontal lines of the grid are com-
puted looking for all combinations between the height of the items. Thus, if there is no optimal
solution whose height isW , it means that the optimal solution has height smaller thanW , that
isW1 or again smaller thanW1, but never a height on the interval (W1, W ].

Algorithm 4.4: Second combination of the heuristics with the algorithm BCut.
Input : An instance I = (L,∞, l, w, o) of the 2SPOS problem.
Output : A solution for I .
if the instance I consider the order constraint then4.4.1

(W,S)← execute HffO(I) and OneBinOSS(I), and returns the best solution found.4.4.2

else4.4.3

(W,S)← execute HffNo(I) and OneBinSS(I), and returns the best solution found.4.4.4

LetW1 be the largest combination of item heights withW1 < W .4.4.5

Create the instance I � = (L,W1, l, w, o).4.4.6

(W �, S�)← NonExact(I �, S�).4.4.7

if (W �, S�) is empty then4.4.8

Create the instance I �� = (L,W1, l, w, o); SBCut ← BCut(I ��, S).4.4.9

else4.4.10

Create the instance I �� = (L,W1, l, w, o); SBCut ← BCut(I ��, S�).4.4.11

return SBCut.4.4.12

The main advantage in the use of W1 instead of W occurs in the pre-processing phase of
the solver, but it may also occur in the optimization phase. The reason is if the best packing
found by the algorithms HffO and OneBinOSS (or HffNo and OneBinSS) is optimal, the solver
returns that the program is infeasible for the grid of points that has height W1. Consequently,
a lot of CPU time can be saved. On the other hand, if the algorithm NonExact computes a
solution with height W1, the same procedure is now repeated for a new height W2, that is the
largest combination of item heights withW2 < W1, using algorithm BCut.

In Algorithm 4.4 the initial solution is computed by algorithms HffO and OneBinOSS (or
HffNo and OneBinSS in the version without order constraints) and cannot be used to start algo-
rithm NonExact or BCut, and so on. This is because the solution obtained by those heuristics
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has heightW instead ofW1. It is worth mentioning that if the solution of the heuristic NonExact
is infeasible, the algorithm BCut can still obtain an optimal solution for the respective instance.
And, if the solution returned by algorithm BCut is also infeasible, it is because the initial solu-
tion computed by the first heuristics is optimal.

4.6.3 The Results

We first present some information about the instances used on numerical experiments. In Table
4.1, each row has the following data: instance name (Name); length of the strip (L); quantity
of items (n); the sum of the height of all items, namely W ; the height WA and the time of
algorithm A spent to obtain a packing, for A ∈ {HffNo,HffO,OneBinSS,OneBinOSS}.

Observing Table 4.1 the improvement in the height obtained by algorithms HffNo and
OneBinSS (HffO and OneBinOSS) overW were in the best situation, respectively, 82.14% for
instance rand032020 and 80.95% for instance rand02860 (80.95% for instance rand032020 and 82.25%
for instance ngcut12). On average, these improvements were 61.81% and 52.36% (55.45% and
51.24%), respectively. These algorithms had CPU time no more than 95 seconds in the worst-
case. Only for instances cgcut03, ngcut01, ngcut03, ngcut04, ngcut08 and ngcut09 the height
of the solution obtained by algorithm OneBinSS is smaller than that obtained by HffNo. The
improvement obtained in this case was 29.01%, on average. For the case with order constraint
such improvement was 24.92%, on average, and considering 14 instances. On the other hand,
better results were obtained by heuristics HffNo and HffO. The improvement over OneBinSS
and OneBinOSS was 31.37% and 35.81%, on average.

It is worth mentioning that the improvement overW obtained by those heuristics allows the
solver work with instances that have more items within the time limit imposed.

In order to show the size of the generated models, we presented in Table 4.2 the total num-
ber of variables and constraints for the algorithms NonExact and BCut. These numbers were
obtained by CPLEX before pre-processing phase. The columns in this table have the following
informations: instance name (Name); number of variables (V ar) and constraints (Const) for
algorithms NonExact and BCut, and the difference Diff var (in percentage) on the number of
variables between algorithms NonExact and BCut (these informations are for the case without
order constraint). The same informations are also presented for the case with order constraint.

Notice that in Table 4.2 some rows have the column Diff var with negative value. It means
that algorithm BCut has number of variables (and also constraints) smaller than the ones pro-
duced by algorithm NonExact. The reason that it occurs is because Algorithm 4.3 consider the
height obtained by the previous algorithm (see lines 4.3.2, 4.3.4 and 4.3.6) as input to the next
one. The number of instances in which the column Diff var has negative value corresponds to
14 and 12, respectively, for the case without and with order constraints.

As shown in Table 4.2 the algorithmNonExact returned solutions with a number of variables
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Table 4.1: Informations about the instances.
Without order constraint With order constraint

Name L n W WHffNo Time (s) WOneBinSS Time (s) WHffO Time (s) WOneBinOSS Time (s)

cgcut01 15 7 23 8 3.00 11 1.00 8 1.00 13 0.00
cgcut02 40 10 151 92 1.00 94 0.00 92 0.00 70 1.00
cgcut03 40 20 551 551 39.00 458 7.00 551 0.00 460 1.00
ngcut01 10 5 24 11 6.00 9 0.00 24 5.00 17 1.00
ngcut02 10 7 29 19 1.00 19 1.00 19 1.00 17 0.00
ngcut03 10 10 36 26 1.00 23 0.00 26 0.00 22 1.00
ngcut04 15 5 11 11 1.00 8 1.00 11 1.00 11 0.00
ngcut05 15 7 25 15 0.00 15 1.00 15 1.00 15 1.00
ngcut06 15 10 46 16 1.00 21 0.00 24 0.00 19 1.00
ngcut07 20 5 18 11 0.00 17 1.00 18 1.00 14 0.00
ngcut08 20 7 29 29 1.00 21 0.00 29 1.00 23 1.00
ngcut09 20 10 63 51 1.00 14 1.00 63 0.00 45 1.00
ngcut10 30 5 55 32 0.00 55 1.00 55 1.00 46 0.00
ngcut11 30 7 61 33 0.00 54 1.00 61 0.00 33 1.00
ngcut12 30 10 169 55 0.00 64 1.00 85 0.00 30 1.00
rand01820 20 8 37 10 1.00 15 0.00 11 1.00 10 0.00
rand02820 20 8 38 9 1.00 10 0.00 9 1.00 11 0.00
rand03820 20 8 35 10 1.00 11 1.00 12 1.00 9 1.00
rand011520 20 15 44 9 1.00 15 1.00 9 1.00 12 2.00
rand021520 20 15 36 8 1.00 16 0.00 8 0.00 15 1.00
rand031520 20 15 37 8 0.00 12 1.00 8 1.00 18 1.00
rand012020 20 20 59 13 1.00 27 1.00 13 0.00 24 1.00
rand022020 20 20 60 12 0.00 16 4.00 12 8.00 17 1.00
rand032020 20 20 56 10 1.00 22 1.00 10 1.00 30 0.00
rand01840 40 8 51 13 1.00 18 0.00 13 1.00 17 0.00
rand02840 40 8 46 12 0.00 14 1.00 12 1.00 12 0.00
rand03840 40 8 55 12 0.00 16 1.00 12 0.00 15 1.00
rand011540 40 15 91 21 0.00 46 1.00 21 1.00 42 1.00
rand021540 40 15 88 16 1.00 27 11.00 20 1.00 27 14.00
rand031540 40 15 90 23 0.00 56 5.00 23 1.00 57 0.00
rand012040 40 20 124 26 1.00 32 1.00 26 0.00 43 1.00
rand022040 40 20 122 25 52.00 58 14.00 25 9.00 85 0.00
rand032040 40 20 133 28 1.00 65 0.00 28 0.00 97 1.00
rand01860 60 8 75 15 0.00 16 1.00 15 0.00 16 1.00
rand02860 60 8 84 16 1.00 16 1.00 16 0.00 40 1.00
rand03860 60 8 68 16 0.00 16 1.00 16 1.00 16 0.00
rand011560 60 15 140 27 0.00 85 1.00 27 1.00 39 1.00
rand021560 60 15 123 26 0.00 67 1.00 26 0.00 64 1.00
rand031560 60 15 129 25 1.00 56 95.00 25 1.00 53 0.00

that are 25.92% and 22.03% smaller than the number of variables used by algorithm BCut, on
average, considering the cases without and with order constraint, respectively. Only the non-
negative values of Diff var were considered for such calculus. Even with the reduction on the
number of variables and constraints, we cannot work with instances with many different item
sizes and/or those ones whose dimensions is small compared to the length of the strip.

Tables 4.3 and 4.4 exhibit the results computed using, respectively, the Algorithms 4.3 and
4.4 for the case without order constraints, that is, oi = 0, for i = 1, . . . , n. Tables 4.5 and 4.6
present the results for the case with order constraint, respectively.

In each row of the Tables 4.3 to 4.6 we have the following informations (first presented for
the algorithm NonExact): instance name (Name); number of processed nodes (Nodes); number
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Table 4.2: Size of the integer formulation for algorithms NonExact and BCut considering Algorithm
4.3.

Without order constraint With order constraint
Name NonExact BCut Diff var NonExact BCut Diff var

V ar Const V ar Const (%) V ar Const V ar Const (%)

cgcut01 1240 4589 1688 7327 26.54 1504 7995 2048 13051 26.56
cgcut02 45318 1475491 62478 3066808 27.47 37408 1706149 51576 3610816 27.47
cgcut03 442442 16200942 707642 87267660 37.48 488844 31370611 781884 171399306 37.48
ngcut01 366 746 606 1438 39.60 869 3636 917 3898 5.23
ngcut02 2413 10327 1833 7375 -31.64 2618 15506 2565 16075 -2.07
ngcut03 4163 17569 3216 14013 -29.45 4576 28608 3696 24417 -23.81
ngcut04 408 794 1208 4883 66.23 726 2079 1568 9305 53.70
ngcut05 1485 4181 3165 16575 53.08 1800 7285 3840 30723 53.12
ngcut06 4496 26329 4816 29800 6.64 6137 57979 6574 65912 6.65
ngcut07 891 2403 2211 7646 59.70 1470 6052 2871 14218 48.80
ngcut08 2820 10168 5058 43302 44.25 3762 20672 6138 81802 38.71
ngcut09 3913 18506 5213 35275 24.94 15224 202829 20284 404628 24.95
ngcut10 671 1418 3311 14213 79.73 1264 4357 6256 42648 79.80
ngcut11 4901 31403 12209 195392 59.86 5945 56678 14819 373372 59.88
ngcut12 26928 630261 28848 709151 6.66 14835 230014 15893 262130 6.66
rand01820 2440 10412 2247 8685 -8.59 2896 18109 2667 15061 -8.59
rand02820 2135 6995 1926 5593 -10.85 2534 11722 2286 9305 -10.85
rand03820 2745 13416 2247 9253 -22.16 2896 18863 2667 16237 -8.59
rand011520 4568 18577 3606 13129 -26.68 5176 31474 4086 22131 -26.68
rand021520 3997 14919 3005 9999 -33.01 4529 25521 3405 16995 -33.01
rand031520 3997 14166 3005 9319 -33.01 4529 23963 3405 15639 -33.01
rand012020 9132 41647 6408 26600 -42.51 10044 70325 10572 75624 4.99
rand022020 8371 37170 6408 26376 -30.63 9207 62415 9691 67113 4.99
rand032020 6849 27826 5607 21322 -22.15 7533 46612 6167 35616 -22.15
rand01840 5193 35626 4487 21405 -15.73 6165 65097 5327 38625 -15.73
rand02840 2645 13775 2564 11876 -3.16 3140 25160 3044 21644 -3.15
rand03840 4039 23130 4487 26843 9.98 4795 41873 5327 48763 9.99
rand011540 19998 246154 21618 272680 7.49 22662 449733 24498 498918 7.49
rand021540 14053 136942 15613 158949 9.99 20825 379501 23137 442107 9.99
rand031540 22220 309382 24020 343039 7.49 25180 570810 27220 633675 7.49
rand012040 34063 474660 36823 526299 7.50 37467 868629 40503 964533 7.50
rand022040 32582 470263 35222 521632 7.50 35838 866196 38742 962046 7.50
rand032040 37025 600156 40025 665874 7.50 40725 1108190 44025 1231040 7.50
rand01860 4245 20684 4805 23953 11.65 5040 37636 5705 43687 11.66
rand02860 5383 35383 6727 46886 19.98 6391 65144 7987 86780 19.98
rand03860 6921 54399 6727 35951 -2.88 8217 100708 7987 65739 -2.88
rand011560 29718 456161 32418 509401 8.33 33678 849918 36738 950083 8.33
rand021560 34671 755838 37821 845293 8.33 39291 1423723 42861 1593493 8.33
rand031560 32420 694502 36020 803746 9.99 36740 1307266 40820 1515344 10.00

of stability cuts (Scuts); number of standard cuts automatically inserted by CPLEX (Ccuts);
the height of the bin (W ), the value of the objective function (OBJ), and the CPU time (in
seconds) spent to solve the respective instance. The same informations are also presented for
the algorithm BCut.

The entry “–” in tables 4.3 to 4.6 represents that there are no sufficient computer memory
available to solve the respective instance. On the other hand, when using the Algorithm 4.4,
if the name of the instance appear in boldface means that algorithms NonExact or BCut could
not solve it for the initial height considered. In the other cases in which the time limit was
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reached (that is, greater or equal than 3600 seconds) the solution returned consists in the best
integer solution computed until that moment, if that exists, otherwise the value 0 appears in the
columnsW and OBJ.

Table 4.3: Performance of Algorithm 4.3 for the case without order constraint.
Name NonExact BCut

Nodes Scuts Ccuts W OBJ Time (s) Nodes Sbcuts Ccuts W OBJ Time (s)

cgcut01 0 0 5 8 36.010 1.00 3 1 5 8 36.010 2.00
cgcut02 0 0 0 92 3081.239 3612.00 0 0 1319 92 3081.239 3603.00
cgcut03 - - - - - - - - - - - -
ngcut01 - - - - - - - - - - - -
ngcut02 3473 9 1 13 91.023 224.00 778 0 5 13 91.023 23.00
ngcut03 8677 4 4 16 136.045 3601.00 36694 1 10 16 136.039 3600.00
ngcut04 1 1 16 8 36.013 0.00 1 0 22 8 36.013 1.00
ngcut05 13 0 19 15 120.031 1.00 65 0 13 15 120.031 10.00
ngcut06 4613 0 6 16 136.047 3600.00 5352 1 3 15 120.040 3600.00
ngcut07 0 0 9 11 66.014 0.00 0 0 8 11 66.011 0.00
ngcut08 5212 5 2 19 171.032 258.00 2288 0 3 19 171.032 810.00
ngcut09 - - - - - - - - - - - -
ngcut10 0 0 0 32 66.011 0.00 0 0 4 32 66.011 0.00
ngcut11 1520 1 11 33 435.038 398.00 0 0 1363 33 435.038 3601.00
ngcut12 0 1 987 55 1176.091 3603.00 0 0 1022 55 1176.091 3602.00
rand01820 0 0 3 9 28.003 1.00 0 0 1 9 28.003 0.00
rand01820 0 1 2 8 21.002 1.00 0 0 5 8 21.002 1.00
rand01820 0 0 1 8 28.004 0.00 0 0 0 8 28.004 0.00
rand011520 141 0 8 7 21.013 253.00 17 0 4 7 21.013 29.00
rand021520 21 1 7 6 15.014 102.00 13 0 14 6 15.014 19.00
rand031520 26 0 4 6 15.009 50.00 2 0 2 6 15.009 6.00
rand012020 52 0 4 9 36.031 2867.00 14 0 2 9 36.031 299.00
rand022020 30 1 1 9 36.030 2396.00 16 0 8 9 36.030 243.00
rand032020 80 1 7 8 28.029 1188.00 139 0 23 8 28.029 215.00
rand01840 10 0 3 11 28.003 16.00 4 0 4 11 28.003 7.00
rand02840 0 0 2 10 10.003 2.00 0 0 1 10 10.003 1.00
rand03840 18 0 1 12 28.003 16.00 28 0 1 12 28.003 40.00
rand011540 0 0 1 21 171.055 3600.00 0 0 1 18 120.038 3601.00
rand021540 11 0 2 16 91.036 3601.00 2 0 1 16 91.036 3601.00
rand031540 0 0 0 23 210.066 3601.00 0 0 12 23 210.066 3600.00
rand012040 0 0 0 26 276.136 3600.00 0 1 1 26 276.136 3601.00
rand022040 0 0 0 25 253.144 3601.00 0 0 0 25 253.144 3600.00
rand032040 0 0 0 28 325.158 3600.00 0 0 0 28 325.158 3601.00
rand01860 0 0 0 15 15.001 1.00 0 0 0 15 15.001 1.00
rand02860 0 0 0 16 28.002 1.00 0 0 0 16 28.002 1.00
rand03860 0 0 0 13 28.001 1.00 0 0 0 13 28.001 0.00
rand011560 0 0 0 27 171.047 3600.00 0 1 235 27 171.047 3601.00
rand021560 0 1 1115 26 231.078 3601.00 0 0 1200 26 231.078 3601.00
rand031560 0 0 1248 25 210.061 3601.00 0 0 0 25 210.061 3602.00

Table 4.3 shows that the value of the objective function computed by algorithm NonExact
is equal to the one computed by algorithm BCut for 82.05% of the instances. For the other
instances, the solution returned by algorithm BCut is better than that of NonExact, and the
improvement obtained was 29.82% on the best situation (see instance rand011540). Such im-
provement obtained by algorithm BCut is related with the way that Algorithm 4.3 consider the
height. The number of nodes explored and the time spent by algorithm NonExact was 664 and
1517 seconds, on average. These numbers are equal to 1262 and 1489 seconds considering the
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algorithm BCut, on average.
Note that algorithm BCut reached the time limit imposed for 14 against 13 out of 39 in-

stances for the algorithm NonExact. The number of stability cuts applied were of 26 (5) for the
algorithm NonExact (BCut) considering all instances. This number corresponds to only 0.74%
(0.09%) of the total number of CPLEX cuts applied. More details can be found in Table 4.3.

Table 4.4: Performance of Algorithm 4.4 for the case without order constraint.
Name NonExact BCut

Nodes Scuts Ccuts W OBJ Time (s) Nodes Sbcuts Ccuts W OBJ Time (s)

cgcut01 - - - - - - - - - - - -
cgcut02 0 0 884 0 0.000 3604.00 0 0 1375 0 0.000 3601.00
cgcut03 - - - - - - - - - - - -
ngcut01 - - - - - - - - - - - -
ngcut02 7849 5 1 13 91.023 257.00 - - - - - -
ngcut03 10426 13 2 16 136.038 3600.00 21946 0 4 0 0.000 3601.00
ngcut04 - - - - - - - - - - - -
ngcut05 - - - - - - - - - - - -
ngcut06 11342 1 1 14 105.035 3600.00 - - - - - -
ngcut07 - - - - - - - - - - - -
ngcut08 4845 4 12 19 171.033 177.00 - - - - - -
ngcut09 - - - - - - - - - - - -
ngcut10 - - - - - - - - - - - -
ngcut11 - - - - - - - - - - - -
ngcut12 0 1 964 0 0.000 3601.00 0 0 999 0 0.000 3601.00

rand01820 0 0 3 9 28.003 1.00 - - - - - -
rand02820 0 0 2 8 21.003 1.00 - - - - - -
rand03820 7 0 3 8 28.004 2.00 - - - - - -
rand011520 22 1 4 7 21.013 62.00 - - - - - -
rand021520 16 0 1 6 15.014 33.00 - - - - - -
rand031520 31 0 13 6 15.009 25.00 - - - - - -
rand012020 125 0 4 9 36.032 2055.00 - - - - - -
rand022020 100 4 6 9 36.030 1077.00 - - - - - -
rand032020 59 0 11 8 28.029 394.00 - - - - - -
rand01840 22 2 3 11 28.003 19.00 - - - - - -
rand02840 0 0 1 10 10.003 1.00 - - - - - -
rand03840 - - - - - - - - - - - -
rand011540 0 0 1 0 0.000 3600.00 0 0 1 0 0.000 3600.00
rand021540 29 0 1 14 66.019 2051.00 - - - - - -
rand031540 0 0 1 0 0.000 3600.00 0 0 1 0 0.000 3600.00
rand012040 0 0 0 0 0.000 3600.00 0 0 0 33 0.000 3601.00
rand022040 0 0 0 0 0.000 3601.00 0 0 0 0 0.000 3601.00
rand032040 0 0 0 0 0.000 3600.00 0 0 0 0 0.000 3601.00
rand01860 - - - - - - - - - - - -
rand02860 - - - - - - - - - - - -
rand03860 - - - - - - - - - - - -
rand011560 0 0 880 0 0.000 3600.00 0 1 235 36 0.000 3600.00
rand021560 0 0 1116 0 0.000 3601.00 0 0 0 0 0.000 3601.00
rand031560 0 0 1248 0 0.000 3600.00 0 0 0 0 0.000 3601.00

Observing Table 4.4 the height computed by heuristics HffNo or OneBinSS corresponds to
the optimal height for 30.76% of the instances. The height returned by NonExact corresponds
to the height of an optimal solution for 38.46% of the instances. Consequently, the use of the
Algorithm 4.4 allows 27 out of 39 instances to be solved and avoid the algorithm BCut to be
executed.
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For the case with order constraint the results are show in Tables 4.5 and 4.6 considering
the algorithms 4.3 and 4.4, respectively. As discussed above, the size, and consequently the
difficulty increase significantly for the models when compared with the case without order
constraint. Notice that the time limit imposed was reached for 43.59% (both algorithms) of
the instances in Table 4.5, and for Table 4.6 in 33.34% and 35.89%, considering the algorithms
NonExact and BCut, respectively.

Table 4.5: Performance of Algorithm 4.3 for the case with order constraint.
Name NonExact BCut

Nodes Scuts Ccuts W OBJ Time (s) Nodes Sbcuts Ccuts W OBJ Time (s)

cgcut01 30 0 66 8 36.011 4.00 117 0 135 8 36.011 8.00
cgcut02 0 0 0 70 1596.116 3600.00 0 0 0 70 1596.116 3604.00
cgcut03 - - - - - - - - - - - -
ngcut01 0 0 0 11 28.008 0.00 0 0 0 11 28.008 0.00
ngcut02 820 2 319 15 120.035 49.00 761 2 313 15 120.035 54.00
ngcut03 2637 1 1812 16 136.047 3600.00 6993 0 1156 16 136.047 1854.00
ngcut04 0 0 0 8 36.015 0.00 0 0 0 8 36.015 0.00
ngcut05 3 0 60 15 120.041 1.00 41 0 188 15 120.041 13.00
ngcut06 350 2 297 19 190.047 3600.00 100 0 100 16 136.049 3600.00
ngcut07 0 0 19 11 66.011 1.00 0 0 0 11 66.011 1.00
ngcut08 35 0 188 19 171.045 10.00 51 0 957 19 171.043 592.00
ngcut09 0 0 1386 45 990.165 3600.00 0 0 878 45 990.165 3601.00
ngcut10 12 4 49 46 136.019 1.00 27 3 171 46 136.019 8.00
ngcut11 66 2 332 33 435.038 42.00 0 0 573 33 435.038 3600.00
ngcut12 0 0 1766 0 0.000 3606.00 0 0 2190 0 0.000 3600.00
rand01820 65 2 75 9 28.005 15.00 0 0 18 9 28.005 3.00
rand02820 0 0 21 8 21.002 2.00 0 0 1 8 21.002 1.00
rand03820 16 0 14 8 28.005 6.00 0 0 0 8 28.005 1.00
rand011520 82 2 35 7 21.014 590.00 9 0 14 7 21.014 113.00
rand021520 125 2 25 6 15.014 574.00 8 0 50 6 15.014 54.00
rand031520 276 0 72 6 15.010 304.00 1053 0 438 6 15.010 263.00
rand012020 2 3 12 0 0.000 3600.00 2 0 4 13 78.072 3600.00
rand022020 4 2 7 0 0.000 3600.00 3 0 10 12 66.062 3601.00
rand032020 251 3 35 8 28.033 3600.00 1848 0 240 8 28.032 3600.00
rand01840 12 1 38 11 28.003 71.00 5 0 62 11 28.003 37.00
rand02840 15 0 44 10 10.003 10.00 0 0 0 10 10.003 4.00
rand03840 4 2 41 12 28.005 40.00 4 1 27 12 28.003 46.00
rand011540 0 0 641 0 0.000 3600.00 0 0 636 21 171.056 3601.00
rand021540 0 0 721 0 0.000 3600.00 0 0 411 20 153.053 3600.00
rand031540 0 0 0 0 0.000 3600.00 0 0 0 23 210.063 3601.00
rand012040 0 0 0 0 0.000 3601.00 0 0 0 26 276.133 3600.00
rand022040 0 0 0 0 0.000 3601.00 0 0 1546 25 253.140 3601.00
rand032040 0 0 0 0 0.000 3601.00 0 0 0 28 325.154 3602.00
rand01860 0 0 0 15 15.002 2.00 0 0 0 15 15.002 2.00
rand02860 0 0 51 16 28.002 21.00 0 0 20 16 28.002 36.00
rand03860 10 0 693 13 28.001 84.00 0 0 12 13 28.001 28.00
rand011560 0 0 0 0 0.000 3601.00 0 0 0 27 171.047 3601.00
rand021560 0 0 0 0 0.000 3601.00 0 0 0 26 231.063 3601.00
rand031560 0 0 0 0 0.000 3601.00 0 0 0 25 210.050 3602.00

For the case with order constraint the results shown in Tables 4.5 and 4.6 summarize those
ones in Tables 4.3 and 4.4, respectively. Observing Table 4.5 the algorithm NonExact could
not return any feasible solution (see the value 0.00 in column OBJ) for 12 instances within the
imposed time limit, whilst the algorithm BCut returned at least one solution for 11 of these
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instances. The reason may be due to the grid of points considered by the last algorithm. On
average, the time spent by algorithm NonExact was 1616.82 seconds, whilst algorithm BCut
spent 1692.97 seconds. And, the maximum number of stability cuts inserted was 4 and 3,
respectively, both for the instance ngcut10.

Table 4.6: Performance of Algorithm 4.4 for the case with order constraint.
Name NonExact BCut

Nodes Scuts Ccuts W OBJ Time (s) Nodes Sbcuts Ccuts W OBJ Time (s)

cgcut01 - - - - - - - - - - - -
cgcut02 0 0 0 0 0.000 3602.00 0 0 0 0 0.000 3604.00
cgcut03 - - - - - - - - - - - -
ngcut01 0 0 0 11 28.008 0.00 - - - - - -
ngcut02 788 3 289 15 120.035 57.00 - - - - - -
ngcut03 2534 4 1054 16 136.048 2111.00 - - - - - -
ngcut04 0 0 0 8 36.015 0.00 - - - - - -
ngcut05 - - - - - - - - - - - -
ngcut06 427 1 382 0 0.000 3600.00 313 4 93 0 0.000 3600.00
ngcut07 0 0 21 11 66.011 1.00 - - - - - -
ngcut08 43 3 154 19 171.045 12.00 - - - - - -
ngcut09 0 0 1286 0 0.000 3600.00 0 0 906 0 0.000 3600.00
ngcut10 - - - - - - - - - - - -
ngcut11 - - - - - - - - - - - -
ngcut12 - - - - - - - - - - - -
rand01820 146 0 112 9 28.005 18.00 - - - - - -
rand02820 0 0 34 8 21.002 2.00 - - - - - -
rand03820 0 0 26 8 28.004 3.00 - - - - - -
rand011520 19 0 19 7 21.013 302.00 - - - - - -
rand021520 97 0 48 6 15.014 280.00 - - - - - -
rand031520 3108 0 377 6 15.010 871.00 - - - - - -
rand012020 2 2 11 0 0.000 3600.00 2 0 30 0 0.000 3600.00
rand022020 217 1 7 9 36.032 2738.00 12 0 8 0 0.000 3601.00
rand032020 2305 0 245 8 28.033 3600.00 - - - - - -
rand01840 10 1 64 11 28.003 74.00 - - - - - -
rand02840 5 0 24 10 10.003 6.00 - - - - - -
rand03840 - - - - - - - - - - - -
rand011540 0 0 506 0 0.000 3601.00 0 0 0 0 0.000 3600.00
rand021540 0 0 390 5 0.000 3600.00 0 0 369 27 0.000 3601.00
rand031540 0 0 1222 0 0.000 3601.00 0 0 1142 28 0.000 3601.00
rand012040 0 0 0 0 0.000 3600.00 0 0 0 0 0.000 3600.00
rand022040 0 0 0 0 0.000 3601.00 0 0 0 0 0.000 3601.00
rand032040 0 0 0 0 0.000 3601.00 0 0 0 0 0.000 3602.00
rand01860 - - - - - - - - - - - -
rand02860 - - - - - - - - - - - -
rand03860 0 0 526 13 28.001 44.00 - - - - - -
rand011560 0 0 0 0 0.000 3601.00 0 0 0 0 0.000 3601.00
rand021560 0 0 0 0 0.000 3601.00 0 0 0 0 0.000 3602.00
rand031560 0 0 0 0 0.000 3602.00 0 0 0 0 0.000 3603.00

Now, for Table 4.6 we have that the height computed by algorithm NonExact corresponds
to the optimal height for 41.03% of the instances. This number corresponds to 7 out of 39
instances for the heuristics HffO or OneBinOSS.

Comparing the results obtained by Algorithms 4.3 and 4.4, we can state that the last algo-
rithm showed to be much more efficient. So, it can be applied in order to validate (to optimality)
the solutions first computed by heuristics and, consequently, to avoid an extensive computation
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that is required by an exact approach. With the Algorithm 4.4 only 25 out of 78 instances (see
Tables 4.4 and 4.6) were executed by the algorithm BCut.

4.7 Conclusions

In this paper we considered the Two-dimensional Strip Packing problem that have unloading
order and static stability constraints. The static stability consider the formulations for the static
equilibrium of rigid bodies and the strength of materials. For the Two-dimensional Strip Packing
problem with Order constraint we developed an integer linear programming model that was
solved by a branch-and-cut algorithm.

We also presented some heuristics. The first one is based on the level-packing algorithm
called Hybrid First Fit [24]; the second one was derived from the branch-and-bound approach
developed by [68]; and, the last one was a slight modification of the branch-and-cut approach
shown in this paper.

The methodology proposed to deal with the static stability is innovative and different from
the ones proposed in the literature in the area of cutting and packing problems, since we dealt
with the stability in an almost exact way. Our methodology is free-problem in the sense that it
can be applied to work consistently well for any packing problem on two-dimensional version.
Moreover, with this methodology we can also extend the algorithms to deal with the dynamical
stability.

The computational results show that the branch-and-cut approach is consistent and have a
good behavior to be applied in practical situations. Although it is limited to solve small to
medium-sized instances, where the grid of points is relatively small, the presented heuristics are
helpful when integrated with the branch-and-cut approach, mainly in the case of Algorithm 4.4.
These heuristics were capable of solving to optimality many instances.

The most promising heuristic in quantity of optimal results computed was that one derived
from the branch-and-cut algorithm. However, its CPU time was closer to that spent by the first
approach. On the other hand, the heuristic HffNo and HffO was shown to be more eligible for
medium- and large-sized instances.

With the presented results we can note the limitations of the CPLEX solver (with default
parameters) to solve instances of moderate size for the problem under consideration. Never-
theless, it is worth mention that the solved instances had thousands of variables and constraints
showing to be hard to solve.

As future works, we expect to apply these techniques in other problem variants as the three-
dimensional case and the Unconstrained Knapsack problem. Then, to extend the static stability
for three-dimensional case too, as well as for dynamic stability constraints.

Finally, the algorithms and formulation proposed here can be useful to motivate future re-
search exploring others methods as relaxation methods, probabilistic methods, metaheuristics,
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among others, in order to solve large-sized instances and consider other practical constraints as
those discussed in [18].





Chapter 5

An Integer Programming Model for the

Two-dimensional Strip Packing Problem

with Multi-drop and Load Balancing

Constraints

Abstract

This paper deals with the Two-Dimensional Strip Packing Problem considering the
case in which the center of gravity of the packing must lies on a safety region (load
balancing constraint) and the items must satisfy a sequence of loading/unloading
(multi-drop requirements). When a subset of items is unloaded, the remaining pack-
ing still maintain the center of gravity in the same safety region. We present 0-1
integer linear programming models for this problem and consider only the oriented
case. We present two models and a comprehensive performance analysis with sev-
eral instances. Our computational experiments validate the models and show that
they are suitable to deal with problems of small and moderate sizes. Optimal solu-
tions were obtained after few hours of processing time.

5.1 Introduction

Many works on Cutting and Packing problems do not consider practical issues that appear in
real-life scenarios, as discussed by Bischoff and Ratcliff (1995) [18]. These issues comprises
practical requirements as the load bearing strength of the items [58]; load stability [39, 58, 85];
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multi-drop situations [22, 40]; shipment priorities [59, 72]; load balancing (or weight distribu-
tion) [54, 59, 72], etc.

We focus on the strip packing problem subject to load balancing constraint with multi-drop
requirements. The packing problem can be stated as follows:

TWO-DIMENSIONAL STRIP PACKING PROBLEM (2SP): Given a 2D strip B = (L,∞) (a bin
with length L and infinite height) and a set of n rectangular items, each item i with dimensions
(li, wi), determine how to pack all items into the strip B so that the height of the used part of
the strip is minimized.

A packing is considered feasible if all the items are packed and arranged orthogonally (i.e.
theirs sides are parallel or orthogonal to the strip sides), and there is no overlapping of the
items. We consider the oriented case, that is the items can not be rotated. Additionally, other
constraints can be included in the problem as we discuss in what follows.

In the typology of Wäscher et al. [86] the 2SP problem is called by Two-dimensional Rect-
angular Open Dimension Problem. This problem is NP-hard (see [51]), and with practical
applications in industry, as in the cutting of rolls of metal or paper.

The literature have been proposed many heuristic algorithms for 2SP problem. Recent sur-
veys were done by Riff et al. (2009) and Ntene and Vuuren (2009) [81, 75]. Hopper and Turton
(2001) [51] presented a overview of several metaheuristic strategies. A recent heuristic based
on level-packing was presented by Ortmann et al. (2010) [77].

In 2009, Kenmochi et al. [60] proposed exact branch-and-bound algorithms that improved
the strategy developed by [64]. Cintra et al. (2008) [27] proposed heuristics based on a column
generation approach for the case of guillotine patterns.

In situations where the multi-drop constraints occurs, it is necessary to pack the items within
the strip so as to avoid having to unload and re-load a large part of the cargo many times. In
this case, we assume that the items are loaded/unloaded by the up-side of the strip. Then, if
the cargo follows a route with two or more customers, all items of a particular customer should
be available and easy to be removed when the strip arrives at the customer. That is, these
items must have free passage to be unloaded. So, we associate to each item i a number di that
corresponds to its customer, and we require that no item j with dj > di are packed above the
given item i.

The multi-drop constraint was explored into the Capacitated Vehicle problem with Loading
Constraints [40, 55]. There the variant with multi-drop is called sequential case. Iori et al.
(2007) [55] presented an exact branch-and-cut algorithm for the two-dimensional version, while
Gendrau et al. (2008) [40] presented a Tabu search approach for the three-dimensional one.
Christensen and Rousøe (2009) [22] present a greedy heuristic that is guided by a tree search
for container loading problem subject to multi-drop constraint. They implemented the multi-
drop method proposed by Bishoff and Ratcliff [18].
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Other common constraints employed by shipping companies are related to load balancing,
that is the weight distribution so that the center of gravity (CG) of the cargo (packing) lies
close to an “ideal” point or in a region (area) also denominated by envelope. In some cases
this ideal point (or ideal CG) consists in the geometrical mid-point of the bin/container under
consideration. For air-plane and ship (also trucks and trains) cargo, the ideal CG has drastic
implications on safety and efficiency like stability and fuel consumption [59, 72]. The center
of gravity is defined as the point where all the weight of the object can be considered to be
concentrated.

Recent approaches have considered the load balancing constraints obtaining solutions to op-
timality in an acceptable time. Mongeau and Bès (2003) [72] presented an integer programming
formulation for the problem of deciding which items (containers) have to be loaded in plan’s
compartment satisfying load balance (stability) requirements.

The work of Imai et al. (2006) [54] were concerned with the container stowage and load-
planning while satisfying the ship stability (it involves the distance between the CG and the
ideal CG, known as the metacenter position), list and trim, while minimizing the number of
container rehandles. These authors formulate the problem as a multi-objective integer program.

In 2009, Kaluzny and Shaw presented a mixed integer linear programming model for the
problem of packing (a subset of) rectangular items in a cargo hold that optimizes the load bal-
ance and also consider other constraints as the ability to rotate items and item-specific spacing
requirements. Two different objectives were considered. The first one consider to minimize the
distance between the center of gravity and the ideal CG, and the second one to maximize the
number of the items loaded while the CG must lie within the envelope.

The above papers are concerned with packings where the load balancing is satisfied when
all items are packed. In other words, it is not required that the packing satisfy the load balancing
when a subset of items is unloaded. A simple scenario where this constraint is important consist
in the cases in which a vehicle (ships or even a fleet of trucks) transport goods to customers.
In this situation the multi-drop constraints must consider the order in which the customers will
be visited. So each customer i (for i = 1, . . . , K) with number di means that it will be dith
customer to be visited in the route. When the first customer is visited his items are unloaded,
and, consequently, the packing has its CG moved from its original position.

With this is mind, we consider for the 2SP problem, the load balancing constraint associated
with the multi-drop requirement. Thus, not only the final packing, but also each intermediary
packing related to a subset of customers non visited in the route must satisfy the load balancing.
For the sake of simplicity, this problem is denominated k-2SPMdLb. We present a 0-1 integer
linear programming models for this problem.

The paper is organized as follows. In the next section we introduce the integer linear for-
mulation of the 2SP problem. In Section 5.3 we discuss the load balancing and multi-drop
constraints used to formulate the k-2SPMdLb problem. The models implemented are shown in
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Section 5.4. In Section 5.5 the computational tests are carried out and presented to evidence
the real-applicability of the models proposed. Finally, Section 5.6 reports the conclusions and
future works.

5.2 The Initial Formulation

The Cartesian plane R2 is used to represent the packings. Each item is represented by a pair
(x, y), where x represents the length and y the height of the object. The position of the item
within the packing is represented by its bottom left corner. The pair (0, 0) represents the bottom
left corner of the strip.

Let I = (L,∞, l1,...,n, w1,...,n, d1,...,n, m1,...,n) be an instance of the k-2SPMdLb where each
item i has dimensions (li, wi), value di for Multi-drop constraint and massmi, for i = 1, . . . , n.
Moreover, we assume that all values in I (except those ones for mass) are integers (if it is not
the case, it is just necessary to apply a change of scale).

The problem 2SP is formulated by the binary linear program (5.1). The formulation consider
the strip B = (L,∞) discretized in a grid of points. The distance between each point on the
grid on x and y-axis vary according to the grid discretization. Let us assume this distance on x

to be represented by cx. Without loss of generality, the strip at height direction (y-axis) can be
discretized observing all combinations between the height of the items.

We denote by P the set of points obtained from discretization of the strip. Each point p ∈ P
is represented by a pair p = (a, b). Let Pi be the set of feasible points where the item i can be
packed. And, the set Rip contains all the points r ∈ P that are covered by item i packed on
point p, except those points that match the upper and right border of the item.

There are two setsW and L used to represent the lines of the grid. The setW has the lines
at the height direction (y-axis), whilst L has the lines at the length direction (x-axis). Note that
an item i = (li, wi) packed on point p = (a, b) ∈ P covers all the horizontal lines with height
in the setNip = [b, b + wi].

The decision variables presented in formulation (5.1) are the following: the variable ze
indicates whether an item cover at least one point pe ∈ P of the horizontal line e ∈ W . For
each item i and point p ∈ P , the variable xip = 1, if i is packed in p, and xip = 0 otherwise.
The variable yir = 1 indicates that the point r ∈ P is covered by item i, otherwise yir = 0.
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min

|W|�

e=1

eze

subject to :

(i)
�

p∈Pi

xip = 1 i = 1, . . . , n.

(ii)

n�

i=1

yip ≤ 1 ∀ p ∈ P.

(iii) xip ≤ yir i = 1, . . . , n; ∀ p ∈ Pi; ∀ r ∈ Rip.

(iv) xip ≤ ze i = 1, . . . , n; ∀ p ∈ Pi; ∀ e ∈ Nip.

(v) xip ∈ {0, 1} i = 1, . . . , n; ∀ p ∈ P.

(vi) yqi ∈ {0, 1} i = 1, . . . , n; ∀ q ∈ P.

(vii) ze ∈ {0, 1} e = 1, . . . , |W|.

(5.1)

In formulation (5.1) the objective function aims to minimize the overall height of the strip,
and the constraints ensure the feasibility of the packing. In other words, constraints (5.1.i)
impose that each item i must be packed exactly once, whilst constraints (5.1.ii) ensure that
each point can be covered by only one item; constraints (5.1.iii) impose that all the points
in Rip must be covered by item i whether such item was packed on point p; and, constraints
(5.1.iv) ensure that the horizontal lines in the grid covered by any item has to be considered,
since they has effect while computing the height of the strip. Constraints (5.1.v−5.1.vii) ensure
the conditions for integrality.

5.2.1 Valid Inequalities

Other constraints can be applied to integer formulation (5.1) in order to speed up the solver
and to limit the quantity of combinatorial cases. Then, in an effort to avoid items to “float in
mid-air” within the strip the following constraint can be added:

xip ≤
n�

j=1
j �=i

�

q∈Sijp

xjq i = 1, . . . , n; ∀ p ∈ Pi. (5.2)

where Sijp is the set of points in the upper border of item i packed on p = (a, b) in which item
j = (lj, wj) can be placed to assure that i always have contact with j. Notice that each point
p ∈ Sijp has abscissa in (a− lj, a+ li), for 0 ≤ a− lj ≤ L and a− lj ≤ a+ li ≤ L.
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5.3 The Multi-drop and Load Balancing Constraints

In this section we describe the multi-drop and load balancing constraints to be added in the
formulation (5.1). As mentioned, if there are items of different customers packed in the strip,
care has to be taken while loading/unloading. When unloading the items of a given point, they
must not be blocked by items that will be unloaded in other points.

The multi-drop requirements are presented in constraints (5.3). The variable upd indicates
whether point p ∈ P has value d ∈ D. The set D contains all possible values of di for i =

1, . . . , n, whilst Dj have the items whose value is exactly dj . The value Dmax corresponds to
the highest value within D. Without loss of generality, we also assume that di > 0 and the set
D is a list sorted decreasingly.

(i)
Dmax�

d=1

upd ≤ 1 ∀ p ∈ P.

(ii) xip ≤ urdi i = 1, . . . , n; ∀ p ∈ Pi; ∀ r ∈ Rip.

(iii) up�d� ≤
Dmax�

d��=d�

up��d�� ∀ p� ∈ P; ∀ d�, d�� ∈ D; such that d� ≤ d��,

p�� = λ(p�).

(iv) upd ∈ {0, 1} ∀ p ∈ P; ∀ d ∈ D.

(5.3)

where λ(p) denotes for each point p = (a, b) ∈ P the point p� = (a, b�) with b� = min{β ∈

L | β > b}.

Now, we detail each class of constraints in (5.3). Constraints (5.3.i) ensure that each point of
the grid has at most one value of d; constraints (5.3.ii) impose that all the points inRip have the
same value of di; and, constraints (5.3.iii) ensure that any item i with value di must be packed
over items j with value dj that satisfy dj ≤ di. Note that this last set of constraints consider the
points of the grid observing only y-axis. If p� = (a, b�) then λ(p) is a point p�� = (a, b��)where b��

is the next discretization point inW greater than b�. Constraints (5.3.iv) assure that the variable
must be of binary type.

With regard to the load balancing constraint we desire that the center of gravity of the
packing (and all sub-packings) lies on an envelope. Giving a packing P , we denote by Pd the
packing obtained from P removing items with di < d. An envelope consists in a rectangular
region (that contains the ideal CG) within the strip determined by four coordinates: on the x-axis
they are (xstart, xend), and on the y-axis, (ystart, yend). A packing P is feasible if all packings
Pd, for d ∈ D, have the center of gravity within the envelope. As the objective function aims
to minimize the overall height of the strip, we do not have a precise value for the height of the
strip, and thus the coordinates of the envelope on y-axis (ystart, yend) can be disregard.
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(i)

�

∀ i with
di∈(D−∪k−1

j=1Dj)

�

∀ p=(a,b)∈Pi

mi(a+
li
2
)xip

�

∀ i with
di∈(D−∪k−1

j=1Dj)

mi
≥ xstart k = 1, . . . , Dmax.

(ii)

�

∀ i with
di∈(D−∪k−1

j=1Dj)

�

∀ p=(a,b)∈Pi

mi(a+
li
2
)xip

�

∀ i with
di∈(D−∪k−1

j=1Dj)

mi
≤ xend k = 1, . . . , Dmax.

(5.4)

The constraints presented in (5.4) ensure that the center of gravity of the packing and all
sub-packings lies on the closed interval [xstart, xend]. In other words, for each value of k ∈ D,
that is k = 1, . . . , Dmax, constraints (5.4.i) and (5.4.ii) ensure that the strip with all the items
except those ones whose value of d is smaller or equal than k has its center of gravity between
the coordinates xstart and xend, respectively.

The accurate values of xstart and xend depends on the application, and as discussed by
Mongeau and Bès (2003) [72] they are set by the master taking into account several uncertainties
like the geometric and weight data.

5.4 The Models

The 0-1 integer linear model developed for k-2SPMdLb problem consists in the objective func-
tion (5.2) subject to the constraints: (5.1); (5.2); (5.3); and, (5.4).

This formulation depends on the values assumed by cx, so the exactness of the model is
intrinsically associated with the grid of points. We used cx = 1 in the numerical experiments.
We called this model by BBound.

We also consider a second model where the strip is also discretized at the length direction
(x-axis) considering all combinations between the length of the items. It is called NonBB. Note
that this modification may not provide optimal solutions.

The main objective is, then, to compare this two models (BBound and NonBB) considering
the solution generated. Also to use the solution computed by model NonBB as initial (feasible)
solution for the model BBound.
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5.5 Computational Experiments

We coded the algorithms in the C language, and used the standard framework provided by
ILOG� CPLEX� 12 Callable Library (with default parameters) to solve the presented models.
The main idea of the algorithm is to feed the model NonBB with the sum up of the height of
the items as initial height for the grid. If a solution was found for this model, it is used as initial
solution (incumbent) for model BBound. Otherwise, if no solution was computed for NonBB,
we use the same initial height for model BBound.

The solver CPLEX uses a branch-and-cut (referred in some contexts as branch-and-bound)
algorithm to solve Mixed Integer Linear Programs. As mentioned, we use this solver with its
default parameters, so CPLEX automatically manage the optimization process where cuts may
be added. For the sake of simplicity, we call these cuts standard cuts. Among these standard
cuts, we have clique cuts, cover cuts, disjunctive cuts, flow cuts, Gomory cuts and zero-half
cuts. More details can be found in [52].

The experiments were run on a computer with Intel� CoreTM 2 Quad 2.4 GHz processor, 4
GB of RAM memory and Linux operating system. For each model we set the maximum CPU
time to 7200 seconds.

We consider two main classes of instances. The first one consists in instances cgcut01 −

cgcut03 and ngcut01− ngcut12 present in OR-Library [10]. These instances were used by the
Two-dimensional Constrained Knapsack problem considering the guillotine and non-guillotine
versions, respectively. Some approaches that used theses instances can be found in [20, 23, 46].

The second class of instances consists in new random instances created in conformity with
the k-2SPMdLb problem. It is divided into three groups, each one with 6 instances, and the
strip with length of 20, 40 and 60, respectively. In each group there are 3 instances with 8 items
and 3 instances with 15 items. The dimensions of each item i = (li, wi) vary between 10% and
40% of the length of the strip. We called these instances by rand01, rand02 and rand03 plus the
informations about the length of the strip and the quantity of items.

The ideally center of gravity adopted corresponds to the mid-point of the dimensions of the
strip. Thus, we required for numerical experiments that the coordinates of the envelope on the
x-axis lies in the closed interval [0.35L, 0.65L], that is: xstart = 35%L and xend = 65%L.

We adopted the value of mass for each item equal to the area of the item. That is, the mass
mi of the item i = (li, wi) is equal to mi = liwi. The integer value di, for the Multi-drop
constraint, was obtained at random in the interval [1, . . . , 4]. The instances above mentioned are
available at the url: http://www.loco.ic.unicamp.br/balance2d/.

5.5.1 The Results

We first present some informations about the instances. These informations include the height
used to compute the grid of points, the number of variables and constraints for each model.
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The number of variables and constraints were obtained before the pre-processing phase of the
CPLEX. The following information are shown in each row of the Table 5.1: instance name;
length L of the strip; quantity of items (n); height used to compute the grid of points, number
of variables (NV ar) and constraints (NConst) for models NonBB and BBound, respectively;
and, the difference Dvar (in percentage) on the number of variables between models NonBB
and BBound.

Remember that the height used by the model NonBB corresponds to the sum up of the
height of the items, whilst the height for model BBound is the height returned after solving the
instance using model NonBB. However, if no solution was found for model NonBB, the height
considered for model BBound is the same used by NonBB. As a result some instances present
in Table 5.1 have the columnDvar with negative value.

Observing Table 5.1, the number of instances where the model BBound outperforms (has
less variables and constraints than) NonBB is equal to 11 out of 33. It represents 33.34% of
the instances considered on numerical experiments. And, the difference between the number
of variables is of 60.16%, on average. On the other hand, the model NonBB has less variables
and constraints than BBound only for cases in which the instances on model NonBB can not be
solved or no feasible solution was found within the time limit imposed. Anyway note that the
instances are hard to be solved, since they have thousands of variables and constraints for both
models.

Table 5.2 illustrates the results obtained by the solver considering the previous models.
The following informations are shown in each row of this table: instance name; the number
of branching nodes visited (Nodes), the number of standard cuts generated by CPLEX (Cuts),
the height W and the center of gravity (CG) of the strip, the optimal value (OPT) computed,
and, the time spent (in seconds) to solve the respective instance considering the model NonBB.
These informations are also presented for model BBound.

Some instances in Table 5.2 have the entry “–”. This means that there are no sufficient
computer memory available. However, there are cases where the time limit for each model was
reached, but at least one feasible solution was found, in this case, we present the informations
about this solution. On the other hand, when the value 0 appears at same time in columns
W , CG and OPT means that the optimization processes was interrupted because the time limit
imposed was reached and no feasible solution was found.

Observing Table 5.2 we note that the number of branching nodes visited by NonBB and
BBound was of 80 and 82, on average. As a result, the time spent, on average, was of 4559.79
and 4168.82 seconds, respectively. Despite the difference in number of nodes visited and time
spent, both models returned solutions with equal values (see column OPT) for 72.73% of the
instances.

In model BBound better solutions were computed compared to the model NonBB. However,
as presented in Table 5.1, the height used by BBound to compute the grid of points was different
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Table 5.1: Informations about the 0-1 integer models NonBB and BBound.
Name L n NonBB BBound Dvar

Height NV ar NConst Height NV ar NConst (%)

cgcut01 15 7 23 4324 31641 8 2048 13057 -52.64
cgcut02 40 10 151 85731 5336621 151 118203 11116031 27.47
cgcut03 40 20 551 571419 37730292 551 913959 206733048 37.48
ngcut01 10 5 24 1185 5695 17 1441 7480 17.77
ngcut02 10 7 29 4466 30404 14 2394 14563 -46.39
ngcut03 10 10 36 7812 51212 16 3856 24725 -50.64
ngcut04 15 5 11 726 2085 8 1568 9311 53.70
ngcut05 15 7 25 3000 14281 15 3840 30729 21.88
ngcut06 15 10 46 15502 166383 26 9386 98142 -39.45
ngcut07 20 5 18 1890 8394 11 2871 14224 34.17
ngcut08 20 7 29 4617 26912 19 6138 81808 24.78
ngcut09 20 10 63 22021 303161 45 29341 604217 24.95
ngcut10 30 5 55 1501 5650 41 5474 35616 72.58
ngcut11 30 7 61 10865 141755 38 17374 476598 37.46
ngcut12 30 10 169 104315 6421316 169 111755 7210196 6.66
rand01820 20 8 32 10860 125531 8 2667 16904 -75.44
rand02820 20 8 37 11946 155943 19 6477 70161 -45.78
rand03820 20 8 35 11946 140044 8 2667 16243 -77.67
rand011520 20 15 45 27821 246956 45 29283 265831 4.99
rand021520 20 15 49 30409 258660 49 32007 278263 4.99
rand031520 20 15 46 28468 249869 16 10215 80384 -64.12
rand01840 40 8 57 31703 915477 15 8371 114289 -73.60
rand02840 40 8 48 25880 715005 14 7610 104308 -70.600
rand03840 40 8 51 28638 879259 17 9893 186008 -65.45
rand011540 40 15 113 127437 5005222 113 145627 6140923 12.49
rand021540 40 15 85 99461 2989601 85 107519 3331913 7.49
rand031540 40 15 92 108274 3477828 92 117046 3872751 7.49
rand01860 60 8 85 58078 3239488 85 81011 5445643 28.31
rand02860 60 8 86 37830 1245490 86 44499 1590066 14.99
rand03860 60 8 75 58716 3343548 75 71883 4567162 18.32
rand011560 60 15 142 224114 15284959 142 249002 17640197 10.00
rand021560 60 15 148 254456 16462497 148 277576 18425587 8.33
rand031560 60 15 150 253506 16290909 150 281658 18894081 10.00

of that used by model NonBB for 57.58% of the instances. Moreover, the model BBound found
better results (see column OPT) than the latter one for 12.5% of the instances as shown in Table
5.2. The improvement obtained was of 39.17%, on average, and 81.70% on the best situation
(see instance rand02820).

With the time limit imposed, only 13 optimal solutions were found using model BBound.
And, the number of optimal instances for NonBB were 11 out of 33 instances. Besides that,
the number of standard cuts applied, on average, was of 308 and 189 for models NonBB and
BBound, respectively. Other details can be found in Tables 5.1 and 5.2.
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Table 5.2: Solutions computed for models NonBB and BBound.

Name NonBB BBound
Nodes Cuts W CG OPT Time (s) Nodes Cuts W CG OPT Time (s)

cgcut01 118 344 8 (6.91, 3.86) 36.011 116.00 174 222 8 (6.91, 3.86) 36.011 8.00
cgcut02 - - - - - - - - - - - -
cgcut03 - - - - - - - - - - - -
ngcut01 20 68 17 (4.77, 8.99) 66.021 1.00 0 10 17 (4.77, 8.99) 66.021 0.00
ngcut02 274 574 14 (4.82, 6.14) 105.033 51.00 52 134 14 (4.82, 6.14) 105.033 5.00
ngcut03 1024 289 16 (4.55, 7.85) 136.051 2083.00 482 82 16 (4.55, 7.85) 136.051 85.00
ngcut04 0 0 8 (6.92, 4.25) 36.015 0.00 0 0 8 (6.92, 4.25) 36.015 0.00
ngcut05 493 333 15 (6.45, 7.43) 120.041 14.00 0 157 15 (6.45, 7.43) 120.041 18.00
ngcut06 11 145 26 (8.40, 11.19) 351.080 7200.00 174 167 24 (6.44, 11.56) 300.080 7200.00
ngcut07 13 64 11 (9.92, 4.06) 66.011 1.00 0 1 11 (9.92, 4.06) 66.011 1.00
ngcut08 280 626 19 (8.65, 9.38) 171.043 28.00 540 118 19 (8.65, 9.38) 171.043 2873.00
ngcut09 - - - - - - - - - - - -
ngcut10 0 0 41 (13.20, 19.86) 105.023 0.00 0 8 41 (13.20, 19.86) 105.023 3.00
ngcut11 4 844 38 (16.70, 15.42) 595.047 7200.00 0 626 38 (16.70, 15.42) 595.047 7208.00
ngcut12 - - - - - - - - - - - -
rand01820 56 41 8 (8.97, 3.45) 28.007 154.00 0 23 8 (8.97, 3.45) 28.007 2.00
rand02820 15 1863 19 (9.40, 5.88) 153.017 7201.00 511 216 9 (9.65, 3.90) 28.005 811.00
rand03820 0 18 8 (9.10, 3.52) 28.004 12.00 0 17 8 (10.32, 3.52) 28.004 3.00
rand011520 0 162 0 (0.00, 0.00) 0.000 7200.00 0 101 0 ((0.00, 0.00) 0.000 7200.00
rand021520 0 33 0 (0.00, 0.00) 0.000 7201.00 0 35 0 (0.00, 0.00) 0.000 7202.00
rand031520 0 569 16 (9.72, 5.48) 120.047 7200.00 20 64 16 (9.72, 5.48) 120.047 7200.00
rand01840 0 829 15 (19.46, 5.12) 66.004 7203.00 0 1094 15 (19.46, 5.12) 66.004 1276.00
rand02840 0 1031 14 (19.48, 5.51) 55.005 7204.00 418 741 11 (18.49, 5.01) 28.005 7200.00
rand03840 0 1078 17 (21.60, 6.89) 91.016 7208.00 0 1641 13 (18.88, 5.56) 45.009 7200.00
rand011540 0 0 0 (0.00, 0.00) 0.000 7249.00 0 0 0 (0.00, 0.00) 0.000 7277.00
rand021540 0 0 0 (0.00, 0.00) 0.000 7214.00 0 0 0 (0.00, 0.00) 0.000 7215.00
rand031540 0 0 0 (0.00, 0.00) 0.000 7224.00 0 0 0 (0.00, 0.00) 0.000 7215.00
rand01860 0 0 0 (0.00, 0.00) 0.000 7214.00 0 0 0 (0.00, 0.00) 0.000 7345.00
rand02860 0 0 0 (0.00, 0.00) 0.000 7204.00 0 0 0 (0.00, 0.00) 0.000 7210.00
rand03860 0 0 0 (0.00, 0.00) 0.000 7207.00 0 0 0 (0.00, 0.00) 0.000 7247.00
rand011560 0 0 0 (0.00, 0.00) 0.000 7227.00 0 0 0 (0.00, 0.00) 0.000 7331.00
rand021560 0 0 0 (0.00, 0.00) 0.000 7214.00 0 0 0 (0.00, 0.00) 0.000 7345.00
rand031560 0 0 0 (0.00, 0.00) 0.000 7204.00 0 0 96 (0.00, 0.00) 0.000 7210.00

From these experiments, we can state that the model BBound requires much more CPU
time compared to model NonBB. However, the combination of these two models seems to be
the best choice, since the solutions computed by NonBB can be used as input for BBound, and
avoid an expensive computation required by the last one.

5.6 Conclusions and Future work

This paper deals with the Two-dimensional Strip Packing problem subject to the load balancing
and the multi-drop constraints. This means that the entire packing as well as the intermediary
packings must satisfy the load balancing constraints.

After several numerical experiments, we note that the accuracy of the results depends of the
grid of points used in the formulation. Consequently, if the grid of points is dense, the CPU
time increases accordingly.
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Several others instances were solved to optimally with the two presented models within the
time limited imposed of 7200 seconds. These show that the models are suitable and consistent
to represent practical situations, although they are limited to solve instances where the number
of points in the grid is relatively small.

In conclusion, the models presented in this paper allows for a solution of the Strip packing
problem under a realistic scenarios (with practical constraints), however considerable room for
improvement and extension of the models remains.



Chapter 6

Heuristics for Two-Dimensional Irregular

Cutting and Packing Problems

Abstract

There are several papers that deal with the two-dimensional version of cutting and
packing problems for regular/rectangular shapes. However packing problems with
irregular item shapes have not received as much attention as problems with regu-
lar shapes. In this work we propose algorithms for cutting and packing problems
for objects with irregular shapes based on the computation of No-Fit polygons. We
present a GRASP based heuristic for the 0/1 version of the Knapsack Problem, and
a heuristic for the unconstrained version of the Knapsack Problem. This last heuris-
tic is divided on two steps: first pack irregular items in rectangles and then use the
rectangles as regular items to be packed in the bin. This algorithm is then com-
bined with a column generation algorithm to solve the Cutting Stock problem with
irregular objects. The algorithms proposed found optimal solutions for several of
the tested instances within a reasonable runtime. For other instances, the algorithms
obtained solutions for almost all instances with occupancy rates above 90% with
relatively fast execution time.

6.1 Introduction

In this paper we investigate cutting and packing problems with items of irregular shapes. These
problems have several practical applications including: garment manufacturing, sheet metal
cutting, furniture making; shoes manufacturing ([16, 44]). Naturally, packing items inside a bin
can be seen as the same as cutting the bin in order to obtain the items. Thus, from now on, we
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use the term packing or cutting with the same meaning. The problems of interest in this paper
are the following:

TWO-DIMENSIONAL IRREGULAR 0/1 KNAPSACK PROBLEM (2KPI-(0/1)): We are given a
bin B and a list T of n items, each item i may have an irregular or regular shape, and has value
vi, for i = 1, . . . , n. The objective is to determine how to cut some items of T in order to
maximize the total value of the items that are produced from the bin. In this problem, at most
one item of each shape can be produced, so some items may not occur.

TWO-DIMENSIONAL IRREGULAR UNCONSTRAINED KNAPSACK PROBLEM (2KPI): In this
problem we have the same input as in the above problem. But now one item of T can be cut
several times from the bin. The objective is the same, but many copies of one item can be
produced (again some items may not occur), hence the term unconstrained.

TWO-DIMENSIONAL IRREGULAR CUTTING STOCK PROBLEM (2CSI): We are given an un-
limited quantity of bins B and a list T of n items, with irregular or regular shapes, each item i

with demand di for i = 1, . . . , n. The objective is to determine how to cut the smallest number
of bins B so as to produce di units of each item i.

For all the above mentioned problems, the items are represented by polygons (that may
contain holes), and may have irregular shape. The bins are rectangles with length L and width
W . The items are represented by convex and non-convex polygons, with oriented edges, and
any curve is approximated by a sequence of (exterior) tangent segments. A feasible placement
of the items in the bin consists in a placement where no two items overlap and all of them fit
inside the bin. All the problems above mentioned are NP-hard [37].

According to Bennell and Oliveira (2006) [15] these problems are referred to as nesting
problems, that are problems where more than one item of irregular shape must be placed in a
configuration with the other item(s) in order to optimize an objective function.

Albano and Sapuppo (1980) [2] presented a nesting algorithm combined with the no-fit
polygons that aims to reduce the geometric complexity of the nesting process. The no-fit poly-
gon has become an increasingly popular and efficient option for dealing with the geometry of
packing problems with irregular shapes. The purpose of no-fit polygons is to present regions of
feasible placement of items such that they do no overlap and are placed inside the bin. The term
no-fit polygon was introduced by Adamowicz and Albano (1976) [1]. Oliveira et al. (2000)
[76] also use no-fit polygons solution to solve nesting problems.

Daniels and Milenkovic (1997) [30] proposed exact and approximated algorithms for nest-
ing problems restricted to the case where we have at most seven different items, and items and
the bin have convex shape. Approaches based on linear programming can be found in [14];

Hopper (2000) [69] presented a genetic algorithm in combination with the bottom-left and
the bottom-left-fill approaches for both orthogonal and irregular nesting problems. Burke et al.
(2007) [19] presented an overview of several techniques for the computation of no-fit polygon,
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and then, proposes a complete and robust no-fit polygon algorithm. Their approach is based
on a robust orbital method that involves two geometric stages. A recent survey covering the
core geometric methodologies employed in cutting and packing of irregular shapes was done
by Bennell and Oliveira (2008) [15].

In 2010, Martins and Tsuzuki [70] proposed a heuristic based on simulated annealing for
the problem of minimizing the waste while packing a set of irregular items inside a bin, where
rotation of items are allowed. Other approaches especially metaheuristics can be found in [34,
63];

For the problem of packing regular shapes (rectangles) inside a rectangle, Cintra et al.
(2008) [27] present dynamic programming algorithms for the 2KP problem with guillotine cuts
and its variants that allows rotation of the items and cuts in at most k stages. Puchinger and
Raidl (2007) [78] presented a branch-and-price algorithm for the 2CS problem where the cuts
have to be done in at most k stages. Cintra et al. (2008) [27] also consider the 2CS problem
restricted to cuts of guillotine type. Their approach is a column generation method that uses
the dynamic programming algorithm proposed for the 2KP problem in order to generate the
columns. Other approaches are discussed in [11, 17, 20, 41, 46, 48].

In this paper we propose the following:

• For the 2KPI-(0/1) problem: a GRASP algorithm that uses the robust no-fit polygon
strategy proposed by Burke et al. [19] to compute the no-fit polygons (NFP) between
each pair of items and on each possible rotation, and, then, to ensure feasible layouts;
and, a search algorithm developed by Adamowicz and Albano [1] to compute the best
arrangement of an item inside a packing with the objective to minimize the area of the
rectangular and convex closures and also respect the dimensions of the bin.

• For the 2KPI problem: a strategy that combines the approaches developed by Burke et
al. [19] and Adamowicz and Albano [1] to generate rectangles with high occupation.
Then, these rectangles are used as items for the exact dynamic programming approach
developed by [27] to deal with the regular (rectangular items) and the guillotine version
of the 2KP problem. We combine such algorithm for the 2KP problem with the reduced
raster points of Scheithauer (1997) [83].

• For the 2CSI problem: we use the column generation based approach presented in [27],
using the algorithm proposed for the 2KPI problem to generate new columns.

This paper is organized as follows. In Section 6.2, we discuss about the 2KPI-(0/1) problem.
We outline the way the no-fit polygon is computed and the GRASP based algorithm developed
to solve this problem. Sections 6.3 and 6.4 present the algorithm to solve the 2KPI problem and
outlines the column generation approach for the 2CSI problem. In Section 6.5 the numerical
experiments are reported in order to show the efficiency of the proposed algorithms. Finally, in
Section 6.6 some concluding remarks are presented.
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6.2 2KPI-(0/1) Problem

First, we discuss about the geometrical questions that arise in problems with irregular shapes.
Naturally, the most visible attribute of nesting problems is the geometry.

6.2.1 The No-Fit Polygon Generation

Some approaches handled in the literature include the raster method, direct trigonometry, the
no-fit polygon and the phi-function. The most promising strategy consists in the computation
of the no-fit polygon (NFP) [15].

The NFP can be stated as the polygon obtained by combining two items in such a way
that: (i) the interior of the NFP represents the relative positions of these two items that result in
overlap; (ii) the boundary consists in the touching positions between such items; and, (iii) the
exterior represents their separation. In this paper we codify the robust approach developed by
Burke et al. (2007) [19]. We call this algorithm by NoFitP.

This approach is used to calculate the no-fit polygon NFPAB (orbiting item B on its refer-
ence point around item A) for two items A and B. It is divided on two phases. In the first phase
the item B slides around the item A to create the outer path of the no-fit polygon of these two
shapes. The second one consists in find the remaining paths (internal holes) of the no-fit poly-
gon that were not found in the first phase. Details about the implementation of the algorithm
NoFitP can be found in [19].

The algorithm NoFitP allows to compute all feasible positions between two items, when
they do not overlap and they are touching each other. However, a simple packing can involve
several items. First, assume that each item i has a set of allowable rotations Θ = {θ1, . . . , θm}.
Then, it is just necessary to use the algorithm NoFitP to compute the no-fit polygons between
all the pairs of items and for each allowable rotation.

Therefore, when a new item is packed, we already know the no-fit polygon, denoted by
NFP (i, j, θi, θj), of the new item i, whose rotation is θi, in relation to each item already
packed j, whose rotation is θj . In other words, for a set of items already packed {j1, . . . , jk}
and a new item i to be packed, becomes necessary to generate the NFP obtained by

�k

q=1

NFP (i, jq, θi, θjq).

6.2.2 The Search Algorithm

The search algorithm proposed by Adamowicz and Albano (1976) [1] is adapted here to com-
pute the best position inside the bin to pack an item. In our version the objective is to search a
point that minimizes the area of the rectangular and convex closures. The dimensions of the bin
must also be considered. We denominate such version by ExSEARCH.
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We denote by rectangular area of a set of packed items as the area of the rectangular closure
where all these items are packed. The convex area corresponds to the area of the convex closure.

Next, we describe the idea of the algorithm ExSEARCH considering two items A and B as
input. Assume that the no-fit polygon NFPAB was previously computed by algorithm NoFitP.
The main idea is to execute a search on all vertices of NFPAB . For each vertex in NFPAB , the
item B is, then, translated considering its reference point and the set of allowable rotations, so
the area of rectangular and convex closures are computed. Thus, the current best solution is
updated whenever a better solution is computed. It is important to mention that the dimensions
of the bin are also considered for such computation. When holes are found in NFPAB the
algorithm first executes the search in such holes.

To deal with a set of items, the algorithm ExSEARCH considers two by two items. The first
two items are, then, combined in order to create a single item. Then, the algorithm consider
this new single item and other item of the set. This process is repeated always considering two
items: the item created by the union of the items already packed and another item of the set.

6.2.3 Packing Single Items

Now we describe the algorithm that uses the algorithms NoFitP and ExSEARCH with the ob-
jective to pack an item in a bin that may already contain items. This algorithm is referred to as
PackS and is presented in Algorithm 6.1.

The algorithm PackS has as input an item i to be packed, the set of allowable rotations Θ
that this item may assume, where |Θ| = m, the dimensions of the bin (L,W ), and a (partial)
packing P of items. It returns −1 if the item i can not be packed inside the bin of dimensions
(L,W ). Otherwise, it returns the point (x, y) where item i can be packed and the rotation θi
considered for such packing.

Observing algorithm PackS, the variable flag indicates whether item i can be packed inside
the bin. The main loop at lines 6.1.3 − 6.1.15 consider all m rotations of item i in order to
compute a feasible packing that generates the rectangular closure of smallest area. Notice that
at line 6.1.7 the algorithm calculates the no-fit polygon between item i, with rotation θi, and
each item j packed in P on rotation θj . The no-fit polygon in variable nfp consists of the union
of the individual no-fit polygons i and each j.

The algorithm ExSEARCH is used at line 6.1.8 to find the best point to pack item i at
rotation θi. As mentioned, the algorithm finds a point that minimizes the area of the rectangular
closure, stored in the variable areaR, and the convex closure, stored in the variable areaC , and
that respect the dimensions (L,W ) of the bin. If ExSEARCH returns flag � as true, then a new
solution was found so that item i is packed on point (x�, y�) at rotation θi, and the variables may
have their values updated (see lines 6.1.9− 6.1.15).
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Algorithm 6.1: PackS.
Input : item i; set of rotations Θ for i; dimensions of the bin (L,W ); packing P .
Output : point (x, y) and angle θ to pack item i inside bin.
flag ← false .6.1.1

(areaR, areaC )← (0, 0).6.1.2

foreach θi ∈ Θ do6.1.3

flag � ← false .6.1.4

nfp ← { }.6.1.5

foreach item j ∈ P do6.1.6

nfp ← nfp ∪NoFitP(i, j, θi, θj).6.1.7

(x�, y�, f lag�)← ExSEARCH(nfp, i, θi, L,W ).6.1.8

if flag � then6.1.9

Let areaR� be the area of the rectangular closure for P ∪ {i, (x�, y�), θi}.6.1.10

Let areaC � be the convex closure for P ∪ {i, (x�, y�), θi}.6.1.11

if areaR = 0 OR areaR� < areaR OR (areaR� = areaR AND areaC � < areaC )6.1.12

then

(x, y, θ)← (x�, y�, θi).6.1.13

areaR ← areaR�; areaC ← areaC �.6.1.14

flag ← true .6.1.15

if flag then6.1.16

return {1, (x, y), θ}.6.1.17

return {−1, (−1,−1),−1}.6.1.18

6.2.4 GRASP Algorithm for the 2KPI-(0/1) Problem

Now, we present the GRASP based heuristic to solve the 2KPI-(0/1) problem. We consider that
the value of each item corresponds to its area and as mentioned each item is represented by
a polygon. The first step to construct our heuristic is to generate an initial solution (by some
greedy algorithm). Then, a local search algorithm that aims to improve the initial solution is
repeatedly applied.

The greedy randomized algorithm used to generate the initial solution constructs a solution
where the items are packed one by one. This algorithm is described in Algorithm 6.2 and it is
called by IniSOL.

In each iteration of lines 6.2.2 − 6.2.12, the algorithm IniSOL chooses a random subset of
items (line 6.2.3) to generate the set I �. From the items in I �, the algorithm selects an item with
the best contribution for the partial solution S. That is, all feasible items are tested (packed)
considering the set of rotationsΘ. Notice that algorithm PackS is used at line 6.2.5 to pack each
item i. Next, if some item i can be packed, the cost to add i into S is computed (line 6.2.7). This
cost is related to the total area of items packed in the bin and with the area of the rectangular
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Algorithm 6.2: IniSOL.
Input : set of items I; set of rotations Θ for items in I; dimensions of the bin (L,W );

percentage p of items to be chosen at random.
Output : solution (packing) S; set I1 with the items that are in S; set I2 with the items that

are not in S.
S ← { }.6.2.1

while I �= { } do6.2.2

I � ← choose p% of the items from I at random.6.2.3

foreach i ∈ I � do6.2.4

(flag , x, y, θ)← PackS(i,Θ, L,W, S).6.2.5

if flag �= −1 then6.2.6

Compute the cost to add i into S.6.2.7

else6.2.8

I � ← I � − {i}; I ← I − {i}; I2 ← I2 ∪ {i}.6.2.9

if I � �= { } then6.2.10

Select i ∈ I � of smallest cost and get the rotation θ and the point (x, y) of such item.6.2.11

I ← I − {i}; I1 ← I1 ∪ {i}; S ← S ∪ {i, θi, (x, y)}.6.2.12

return (S, I1, I2).6.2.13

closure. Otherwise, item i is removed from set I and added into I2 (line 6.2.9).
Observing lines 6.2.10− 6.2.12 note that the set I � have all the items that can be added into

S. In the case where two or more items are in I �, the item of smallest cost, that is with the best
occupation of the bin. Ties are broken selecting an item which leads to the rectangular closure
of smallest area. The algorithm ends when the set I is empty.

The solution S (that is a packing of items) returned by algorithm IniSOL is the initial so-
lution for the GRASP based algorithm. The next step is, thus, to improve such solution. The
Algorithm 6.3, denoted by LocSEARCH, is a local search procedure that aims to improve an
initial solution. We assume that a solution consists in a sequence of items (i1, . . . , is) packed by
the algorithm PackS. The neighbors of a solution S, considered by the algorithm LocSEARCH,
are obtained by applying simple modifications into S as insertions or permutations of items.
Note that the neighbors of a solution are also solutions. The local search procedure finishes
when a solution can not be improved.

On each iteration of the lines 6.3.1− 6.3.6, the algorithm generates x neighbors of solution
S using the sets I1 and I2. The neighbors are obtained by insertions and permutations of items
in S and these lists. We consider three different types of neighbors, each one selected with a
given probability. The three types of neighbors are the followings:

1. A neighbor is obtained by permuting two items of I1. This new order of the items may
produce a more compact packing leaving space for some item j ∈ I2 to be packed in I1.
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Algorithm 6.3: LocSEARCH.
Input : solution S; set I1 with the items that are in S; set I2 with the items that are not in S;

dimensions of the bin (L,W ); number of iterations x; probabilities (q1, q2, q3) for
each type of neighbor.

Output : solution S possibly improved.
while S can be improved do6.3.1

for i← 1 to x do6.3.2

Choose a type t of neighbor at random considering probabilities (q1, q2, q3).6.3.3

Compute a neighbor of the solution S considering type t, and sets I1 and I2.6.3.4

if there is at least one neighbor S� of S that was improved then6.3.5

S ← S�.6.3.6

return {S}.6.3.7

Even if item j can not be packed in I1, the new solution (neighbor) may be better than
the actual one whether the area of its rectangular closure is smaller than the last. The
probability that this type is chosen is q1;

2. In this case, a neighbor is obtained by changing item i ∈ I1 with an item j ∈ I2. The
change only occurs if the area of the item j is greater than the area of item i. After the
change, if all the items in I1 can be packed, this new solution (neighbor) is better than
the actual one, since the area occupied by this neighbor is greater than the area of actual
solution. Its probability is given by q2;

3. In the last case, a neighbor is obtained by inserting an item j ∈ I2 into I1. Now, if all the
items in I1 can be packed, this solution is clearly better than the actual. Its probability is
q3.

Each neighbor type t is selected by the algorithm LocSEARCH at random (line 6.3.3) in
agreement with each probability value. We assume that the probability to type (1.), that is q1,
was set to be greater than the others. For all types t previously commented the insertions and
permutations happened only for the last pq% items of I1. With the changes happening at the
end of I1, the packing process can continue from that position.

At line 6.3.5 all the neighbors were calculated and one with the best-improvement is selected
as the actual solution S. Notice that an optimal packing S � is obtained when all the items in I1
were packed into the bin and I2 is empty. So, the algorithm LocSEARCH can halt.

At each moment that a neighbor is computed, the set I1 has a new configuration. Thus, it is
first verified if the items in I1 generate a feasible packing S �, and then, S � is compared with the
actual solution S.

We present in Algorithm 6.4 the GRASP based heuristic to solve the 2KPI-(0/1) problem.
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This heuristic uses, the algorithm IniSOL to generate initial solutions and the algorithm Loc-
SEARCH to improve the initial solutions, if possible.

Algorithm 6.4: GRASP algorithm to solve the 2KPI-(0/1) problem.
Input : set of items I; set of rotations Θ for items in I; dimensions of the bin (L,W );

number of iterations mIter ; number of iterations x; percentage p of items to be
chosen at random; probabilities (q1, q2, q3) for each type of neighbors.

Output : solution S.
S∗ ← { }.6.4.1

for i← 1 to mIter do6.4.2

(S, I1, I2)← IniSOL(I,Θ, L,W, p).6.4.3

S� ← LocSEARCH(S, I1, I2, L,W, x, q1, q2, q3).6.4.4

if S� is better than S∗ then6.4.5

S∗ ← S�.6.4.6

return (S∗).6.4.7

The GRASP algorithm repeats this search until a maximum number of iterations is reached.
On each iteration an initial solution is generated by algorithm IniSOL (line 6.4.3) and the im-
provement step is done by algorithm LocSEARCH (line 6.4.4). The best obtained solution is
stored in S∗ and returned at end. If the values of S � and S∗ are equal, the algorithm selects one
with rectangular closure of smallest area.

6.3 Algorithm for the 2KPI Problem

In this section we present an algorithm to solve the 2KPI problem. This algorithm first packs
subsets of irregular items into small rectangles with a high occupancy ratio, and then, it uses the
exact dynamic programming algorithm proposed by Cintra et al. (2008) [27] to solve the 2KP
problem considering these rectangular items. Here, we also assume that the value of each item
corresponds to its area.

The algorithm that is used to pack subsets of irregular items into small rectangles is denoted
by GenRET and is presented in the Algorithm 6.5. The idea is to pack items one by one and,
consequently, to create partial rectangles that grows every time a new item is packed. If the
generated rectangle reaches a good occupancy ratio, it is stored with the set of irregular items
packed into it.

The algorithm GenRET repeats this search until a maximum number of iterations or rectan-
gles is reached. On each iteration a rectangle rtg is generated from the set I � given that pu%
of the items from I are chosen at random (see lines 6.5.2 − 6.5.4). The strategy is to use the
algorithm PackS to obtain packings with a certain minimum occupation ratio of subsets of items
in I � into rectangles rtg (lines 6.5.5− 6.5.11).
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Algorithm 6.5: GenRET.
Input : set of items I; set of rotations Θ for items in I; minimum occupancy ratio B;

maximum allowable dimensions (LR,WR) for a rectangle; maximum numberm of
iterations; maximum number r of rectangles to be generated; percentage pu of
items to be chosen at random.

Output : set of rectangles R whose occupancy ratio is at least B.
R← { }.6.5.1

for j, l ← 1 to j ≤ m AND l ≤ r do6.5.2

rtg ← { }.6.5.3

I � ← choose pu% of items from I at random.6.5.4

foreach i ∈ I � do6.5.5

(flag , x, y, θ)← PackS(i,Θ, LR,WR, rtg).6.5.6

if flag �= −1 then6.5.7

Pack item i into rtg on point (x, y) and at rotation θ.6.5.8

ocupp ←(sum up of the area of items packed in rtg) / (area of rectangular6.5.9

closure of rtg).
if occup ≥ B then6.5.10

R← R ∪ {rtg}.6.5.11

return {R}.6.5.12

It is worth mentioning that algorithm GenRET may not generate a rectangle with occupancy
ratio smaller than B. So, we use this algorithm as subroutine in Algorithm 6.6, denominated by
PackAllRET. The algorithm PackAllRET first pack items into rectangles with high occupancy
ratio. Next, the occupancy ratio is decremented on each iteration by a small value of � so new
rectangles may be generated.

Algorithm 6.6: PackAllRET.
Input : set of items I; set of rotations Θ for items in I; initial occupancy ratio B;

maximum allowable dimensions (LR,WR) for a rectangle; maximum numberm of
iterations; maximum number r of rectangles to be generated; percentage pu of
items to be chosen at random; value � used to decrement the occupancy ratio.

Output : set of rectangles R with different occupancy rates.
R← { }.6.6.1

while B > 0 AND there are items not packed yet do6.6.2

I � ← items of I that are not packed in any rectangle in R.6.6.3

R� ← GenRET(I �,Θ, B, LR,WR,m, r, pu).6.6.4

R← R ∪R�.6.6.5

B ← B − �.6.6.6

return {R}.6.6.7
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In accordance with algorithm PackAllRET, at line 6.6.3 a set I � of items that are not packed
in any rectangle is obtained. This set is used as input to the algorithm GenRET so that a new set
of rectangles R� may be obtained with occupancy rates of at least B (line 6.6.4). In this case,
the set R� is stored and the value of B is decremented by �. The value of � is chosen to allow all
the items in I to be packed.

It is worth mentioning that all the presented algorithms (here and in the previous sections)
have polynomial worst-case time and space complexity.

Since the irregular items are packed into rectangles with good occupancy rates, we can use
any algorithm developed for the 2KP problem that consider rectangular items. Therefore, we
use the exact algorithm developed by Cintra et al. (2008) [27], as it is very fast even when
solving hard instances. Moreover, it will be used to generate columns in the column generation
heuristic presented for the 2CSI problem.

The exact algorithm of [27] consists in solving the recurrence formula of Beasley (1985) [8]
considering guillotine cutting patterns generated over the discretization points of Herz [48]. We
consider the same algorithm of [27], but restricted to patterns generated only over the reduced
raster points (raster points) of Scheithauer (1997) [83].

A guillotine cutting pattern is defined as the pattern obtained by orthogonal guillotine cuts
applied to an original bin and to the subsequent smaller bins that were obtained after each cut.
A cutting pattern (or only pattern) consists in each possible way to cut orthogonally the bin
and get the final items. The guillotine cuts are cuts that goes from one edge of the bin to the
opposite one, and are parallel to the remaining edges.

Let (L,W, l, w, v) be a tuple representing an instance for the 2KP problem for rectangular
items, where l = (l1, . . . , ln) and w and v are lists defined likewise. The bin has dimensions
(L,W ) and each item i has length li, width wi and value vi, for i = 1, . . . , n.

A discretization point of the length (resp., of the width) is a value i ≤ L (resp., j ≤

W ) obtained by a non-negative integer linear combination of l = (l1, . . . , ln) (resp., w =

(w1, . . . , wn)). We consider the set of all discretization points for length and width represented
by P and Q, respectively. Thus, the sets of raster points P̃ (related to P ) and Q̃ (related to Q)
are calculated by:

P̃ := {�L− r�P | r ∈ P}; where �s�P = max{t ∈ P | t ≤ s};

Q̃ := {�W − u�Q | u ∈ Q}; where �a�Q = max{b ∈ Q | b ≤ a}.
(6.1)

The sets of raster points are computed by the algorithm RRP: first, such algorithm computes
the the sets of discretization points by the dynamic programming algorithm DDP (Discretiza-
tion using Dynamic Programming) presented in [27]; next, RRP selects the set of raster points
following Eq. (6.1). The algorithm RRP has O(nD) time complexity (pseudo-polynomial)
where D assumemax{L;W}.

Given a rational number xr ≤ L (resp. yr ≤ W ), we denote by p(xr) (resp. q(yr)) as the
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smallest raster point of length (resp. width) that is greater than or equal to the given input. More
formally,

p(xr) = max{i| i ∈ P̃ , i ≤ xr};

q(yr) = max{j| j ∈ Q̃, j ≤ yr}.
(6.2)

The recurrence formula of Beasley that computes the valueG(l∗, w∗) of an optimum guillo-
tine solution for a bin with dimensions (l∗, w∗), and that uses the functions defined in Eq. (6.2)
is described next:

G(l∗, w∗) = max





g(l∗, w∗);

max({G(l�, w∗) +G(p(l∗ − l�), w∗)| l� ∈ P̃ , l� ≤ l∗/2});

max({G(l∗, w�) +G(l∗, q(w∗ − w�))| w� ∈ Q̃, w� ≤ w∗/2});



 ,

(6.3)
where g(l∗, w∗) denotes the value of the most valuable item that can be cut in a bin with dimen-
sions (l∗, w∗). This value is 0, if no item can be cut in such rectangle.

We denote by DP2KPG the dynamic programming algorithm that solves the Eq. (6.3) using
the raster points for an instance I = (L,W, l, w, v) of the 2KP problem with rectangular items.
According to [27], the worst-case time complexity of the algorithm DP2KPG is O(nL+nW +

|P̃ |
2
|Q̃|+ |P̃ ||Q̃|

2
). The required space complexity is O(L+W + |P̃ ||Q̃|).

Now, we can describe the algorithm that solves the 2KPI problem, which we denote by
Solve2KPI:

1. Generate the set R of rectangular items by algorithm PackAllRET;

2. Create an instance I for the 2KP problem for rectangular items by considering the rect-
angles in R, so for each rectangle r ∈ R its values vr is given by the total sum of the item
values packed in it;

3. Execute algorithm DP2KPG for instance I where the set of raster points was first com-
puted by RRP;

4. Return the solution computed by DP2KPG as the final solution for the 2KPI problem.

Note that in the final solution each rectangle represents a subset of items (polygons) packed
in it.

6.4 The Column Generation Heuristic for the 2CSI Problem

In this section, we consider the Two-dimensional Cutting Stock problem with irregular items,
denoted by 2CSI. We use a column generation algorithm to solve such problem where the
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columns are generated by algorithm Solve2KPI.

The integer linear formulation for the Cutting Stock problem based on cutting patterns is
very known. Let P be a set of cutting patterns in which |P| = m denote its size. The linear
formulation uses a matrix P with order n×m where each column represent a cutting pattern and
a vector d of demand of the items. Each column has the number of copies of each item in the
corresponding pattern. We use the integer variable xj for each pattern j ∈ P , each one indicates
how many times the pattern j is used in the solution. Thus, the following linear program is a
relaxation of the equivalent integer formulation:

minimize
�

j∈P

xj

subject to Px ≥ d

xj ≥ 0 ∀ j ∈ P.

(6.4)

We use the algorithms presented in Cintra et al. (2008) [27] to solve the 2CSI problem.
The main idea of such algorithms are to solve the linear formulation (6.4) using the column
generation approach proposed by Gilmore and Gomory (1961; 1963) [41, 42]; to consider the
integer part of the solution; and, to deal with the residual problems in an iterative way, that is
using the same approach combined with a primal heuristic. The primal heuristic returns cutting
patterns that causes a perturbation of those residual problems.

Notice that in each iteration, the algorithm must generate a new column to be inserted into
the basis. To this end, the dual value yi is computed for each item i. The new column (pattern)
must satisfy that

�n

i=1 yizi > 1, where zi is the number of times that item i appear in such
pattern. Of course we can use any algorithm developed for the 2KPI problem to compute these
patterns.

The algorithm used to solve the linear programming (6.4) is the algorithm SimplexCG2

shown in Cintra et al. (2008) [27]. It corresponds to the algorithm Simplex with a subroutine
to generate columns which is discussed next. More details about this algorithm can be found in
[25]. Our implementation consider the matrix In×n as the identity matrix with n patterns, each
one with items of one shape and one orientation.

The subroutine used to generate the columns uses the algorithm Solve2KPI with a simple
modification. Remember that algorithm Solve2KPI packs the items observing their areas. How-
ever, now each item has a value that do not necessary corresponds to its area (value of the dual).
The simple modification consists in to generate rectangles with occupancy ratio given by B

times C, where B is the minimum occupancy ratio previously defined and C is computed on
each iteration of PackAllRET, and it is returned by Algorithm 6.7, so called by computeC. So,
we consider B × C as input for GenRET in algorithm PackAllRET (see line 6.6.4).

In algorithm computeC the values of area ai and vi for each item i are not necessarily equal.
It is also necessary to modify the way that the variable ocupp is calculated in algorithm GenRET
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Algorithm 6.7: computeC.
Input : set of items I each one with area ai and value vi.
Output: upper bound C.
Find i ∈ I such that the value of vi

ai
is maximum.6.7.1

C ← vi
ai
.6.7.2

return {C}.6.7.3

(see line 6.5.9). Now, occup is given by: (total sum of the values of the items packed in rtg) /
(area of the rectangular closure of rtg).

The algorithm SimplexCG2 may return a fractional solution, then we also extend the algo-
rithm CGp (presented in [27]) that receives the solution returned by SimplexCG2, and returns an
integer solution for the 2CSI problem. The algorithm CGp uses as subroutine a primal heuristic
to obtain cutting patterns that cause a perturbation of the residual problems. We denominate the
algorithm that solves the 2CSI problem by Solve2CSI.

The primal heuristic considered corresponds to the algorithm M-HFF, that is a modified
version of the heuristic HFF (Hybrid First Fit) to deal with demands. As the heuristic M-HFF
can not handle with irregular items, we consider the smallest rectangle where each irregular
item can be packed as input for such heuristic. Details about HFF are shown in [24].

The algorithm CGp has exponential time complexity, but as mentioned by Cintra et al.
(2008) this algorithm in fact halts, because after a finite number of iterations the demand will
be fulfilled.

6.5 Computational Results

All the algorithms above mentioned were implemented in C/C++ language and the geometry
library used was the CGAL (Computational Geometry Algorithms Library) available at the url:
http://www.cgal.org/.

The tests were performed on computer with processor Intel� CoreTM 2 Quad 2.4 GHz, 4
GB of RAM memory and Linux operating system. The linear systems in the column generation
algorithms were solved by COIN-OR CLP solver [28].

The instances used were adapted from the Two-Dimensional Irregular Strip Packing prob-
lem and they can be found at the url: http://ww.fe.up.pt/esicup/. In these instances
the following informations are available: the quantity of items where each item is represented
by a polygon; the set of allowable rotations for these items; and, the length of the strip. The
objective of such problem is to pack all the items into the strip so that the height of the used part
of the strip is minimized.

Anyway for our problems the bins have fixed rectangular dimensions, so that the length of
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the bin is the same length used for the strip and the width of the bin consists at height presented
in Gomes and Oliveira (2006) [45]. For the 2KPI and 2CSI problems only the integer part of
the dimensions of the bin were considered. Besides that, it was necessary to generate a value of
demand for the instances of the 2CSI problem. Thus, we generate an integer value of demand
for each item. Such value was randomly chosen in the interval [1, 100].

For future researches as well as benchmarks purposes such instances are available at the url:
http://www.loco.ic.unicamp.br/irregular2d/.

Tables 6.1 presents some initial informations about the instances used by the algorithms.
A total of 15 instances were considered for numerical tests. Each row of this table has the
following information: instance name (Name); quantity of items (n); length of the bin (L);
width of the bin (W ); and, set of allowable rotations for the items (Rotations);

Table 6.1: Informations about the instances under consideration.
Name n L W Rotations
FU 12 38 34 (0, 90, 180)

JACKOBS1 25 40 13 (0, 90, 180)
JACKOBS2 25 70 28.2 (0, 90, 180)
SHAPES0 43 40 63 (0)
SHAPES1 43 40 59 (0, 180)
SHAPES2 28 15 27.3 (0, 180)
DIGHE1 16 100 138.13 (0)
DIGHE2 10 100 134.05 (0)
ALBANO 24 4900 10122.63 (0, 180)
DAGLI 30 60 65.6 (0, 180)
MAO 20 2550 2058.6 (0, 90, 180)

MARQUES 24 104 83.6 (0, 90, 180)
SHIRTS 99 40 63.13 (0, 180)
SWIM 48 5752 6568 (0, 180)

TROUSERS 64 79 245.75 (0, 180)

The GRASP based heuristic as well as all the algorithms used as subroutines depend on
several parameters which need to be well defined, since the quality of the solution depends on
such parameters. Likewise, the algorithms Solve2KPI and Solve2CSI (and their subroutines)
depends of various parameters too.

In Table 6.2 we summarize the values for all those parameters considering all the algorithms
previously discussed. It is worth mentioning that such values were chosen after an extensive
execution of tests considering the instances presented in Table 6.1. Each parameter was tested
individually and also together with others in order to set a final value for it.

Table 6.3 illustrates the results obtained by the GRASP based heuristic for the 2KPI-(0/1)
problem. The following information are shown in each row of this table: instance name (Name);
the time spent (in seconds) to compute all the no-fit polygons (Time of NFP); the quantity of
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Table 6.2: Parameters required by algorithms previously discussed.
Parameter Value considered Main algorithm that uses such parameter

p 10% GRASP
x 25 GRASP

(q1, q2, q3) (70, 20, 10) GRASP
pq 60% LocSEARCH

mIte 15 GRASP
pu 80% Solve2KPI, Solve2CSI
B 90% Solve2KPI, Solve2CSI
m 15 Solve2KPI, Solve2CSI
r two times the quantity of items n Solve2KPI, Solve2CSI
� 10% Solve2KPI, Solve2CSI

(LR,WR) same values considered for (L,W ) Solve2KPI, Solve2CSI

items in the solution (Quantity of Items); the area of the bin occupied by items (Area Occupied);
the time spent (in seconds) to solve the respective instance (Time of GRASP); and, the total time
spent: Time of NFP + Time of GRASP.

Table 6.3: Performance of the GRASP based heuristic for the 2KPI-(0/1) problem.
Name Time of NFP (s) Quantity of Items Area Occupied Time of GRASP (s) Total Time (s)
FU 0.26 12 0.8382 21.79 22.05

JACKOBS1 59.49 25 0.7538 8.30 67.79
JACKOBS2 53.80 25 0.6844 565.71 619.51
SHAPES0 51.32 41 0.6016 1552.46 1603.78
SHAPES1 202.56 41 0.6424 3891.60 4094.16
SHAPES2 17.90 26 0.7289 1048.12 1066.02
DIGHE1 0.12 16 0.7240 10.68 10.80
DIGHE2 0.15 10 0.7460 0.07 0.22
ALBANO 14.40 23 0.8038 961.59 975.99
DAGLI 26.16 29 0.7586 1106.40 1132.56
MAO 102.91 20 0.7160 120.42 223.33

MARQUES 57.50 24 0.8274 217.77 275.27
SHIRTS 208.49 96 0.7702 14317.13 14525.62
SWIM 1088.21 46 0.6427 39781.43 40869.64

TROUSERS 48.22 62 0.7866 5796.59 5844.81

Observing Table 6.3 we note that the solution of the following instances could not pack
all the items: SHAPES0, SHAPES1, SHAPES2, ALBANO, DAGLI, SHIRTS, SWIM and
TROUSERS. It corresponds to 8 out of 15 instances. On the other hand, the heuristic found
optimal solutions for the others 7 instances. The percentage of the area of the bin that was oc-
cupied was of 73.5%, on average, and at worst case was of 60.16%, for instance SHAPES0. The
time spent to compute the no-fit polygons was smaller compared to that required by the heuris-
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tic. On average, the calculus of the NFP required 128.77 seconds, against 4626.67 seconds of
the last one.

Anyway, the results in Table 6.3 demonstrates good occupancy rates, since the considered
instances have a large number of items completely irregular and they are considered hard to
solve. Moreover, better results may be found if we do not consider conservative values for the
parameters of the GRASP heuristic. However, the time required to solve the instances may
increase accordingly to.

Table 6.4 presents the results of the numerical experiments for the 2KPI problem. For each
instance the algorithm Solve2KPI was executed 10 times, and the average runtime and area of
occupation of the bin were returned as final solution.

In each line of Table 6.4 we have: instance name (Name); the best occupation of the bin
(Best Occupation); the average value of occupation (Avg. Occupation); the average time (of
CPU) in seconds spent by algorithm Solve2KPI to solve the respective instance (Avg. Time);
and, the time spent (in seconds) to compute the no-fit polygons (Time of NFP).

Table 6.4: Performance of the algorithm Solve2KPI for the 2KPI problem.
Name Best Occupation Avg. Occupation Avg. Time (s) Time of NFP (s)
FU 0.9892 0.9892 5.01 0.26

JACKOBS1 1.0000 0.9870 49.60 59.49
JACKOBS2 1.0000 0.9851 66.08 53.80
SHAPES0 0.6190 0.5873 134.43 51.32
SHAPES1 0.6949 0.6893 248.15 202.56
SHAPES2 0.9284 0.9183 49.37 10.48
DIGHE1 0.7631 0.6909 7.62 0.12
DIGHE2 0.7791 0.7657 3.14 0.15
ALBANO 0.9653 0.9653 37.93 14.40
DAGLI 0.9256 0.9196 50.99 26.16
MAO 0.9812 0.9644 71.53 102.91

MARQUES 0.9606 0.9515 43.76 57.50
SHIRTS 1.0000 1.0000 508.92 208.49
SWIM 0.7590 0.7272 2206.42 1088.21

TROUSERS 1.0000 0.9986 193.54 48.22

As observed in Table 6.4, the instances where there are several rectangular items or few
items completely irregular allow the algorithm PackAllRET to generate rectangles with high
occupancy rates. The instances with occupancy rates greater than 90% were: FU, JACKOBS1,
JACKOBS2, SHAPES2, ALBANO, DAGLI, MAO, MARQUES, SHIRTS and TROUSERS,
that corresponds to 66.67% of the instances. On the other hand, the instances SHAPES0,
SHAPES1, DIGHE1, DIGHE2 and SWIM have several items completely irregulars, so that
the average occupancy ratio decrease accordingly to. On average, the average occupancy ratio
and the average time plus the time of NFP were of 87.60% and 373.37 seconds, respectively.
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Table 6.5: Results obtained for the 2CSI problem.
Name Solution LB Difference (%) Time (s) Columns
FU 81 81.0 0.000% 70.91 168

JACKOBS1 52 51.0 1.961% 2112.33 465
JACKOBS2 47 47.0 0.000% 2576.83 606
SHAPES0 38 36.0 5.556% 15409.90 2260
SHAPES1 32 31.0 3.226% 68585.42 3089
SHAPES2 35 33.0 6.060% 6260.68 1176
DIGHE1 61 61.0 0.000% 103.50 287
DIGHE2 48 48.0 0.000% 16.01 103
ALBANO 35 33.0 6.060% 3443.47 862
DAGLI 30 28.0 7.142% 8427.17 1517
MAO 47 47.0 0.000% 2337.35 462

MARQUES 51 51.0 0.000% 3983.01 815
SHIRTS 17 16.0 6.250% 343859.61 8325
SWIM 22 21.0 4.761% 11208.77 1652
trousers 20 19.0 5.263% 171122.16 6859

The results returned by algorithm Solve2CSI for the 2CSI problem are shown in Table 6.5.
Each column of this table presents: instance name (Name); solution computed by algorithm
Solve2CSI (Solution); the lower bound (LB) for the value of an optimum integer solution that
is given by solving the linear relaxation (6.4) by algorithm Solve2CSI; the difference (in per-
centage) on number of bins computed by Solve2CSI and LB; the time in seconds spent by
Solve2CSI (Time); the number of columns generated (Columns).

Observing Table 6.5 we can note that the solution obtained using algorithm Solve2CSI
is equal to the corresponding lower bound (LB) for instances: FU, JACKOBS2, DIGHE1,
DIGHE2, MAO and MARQUES. It corresponds to 40.0% of the instances under considera-
tion. For the other instances the difference was of 5.142%, on average, and, at worst case was
of 7.142%, for instance DAGLI. However, if we consider the number of bins required such
difference was of at most two bins (see instances: SHAPES0, ALBANO and DAGLI).

Some solutions were returned after 343859.42 seconds (≈ 96 hours) of CPU processing, at
worst case. The CPU time spent on average was of 42634.47 seconds, as presented in Table
6.5. The number of columns generated was of 1909.73, on average. It shows that the column
generation heuristic is useful to deal with this variant of the Cutting Stock problem, that is the
case with irregular items. However, it requires high CPU time for solving instances that have
several items completely irregulars.

All the results here were obtained for those parameters considered in Table 6.2. These
results were obtained after several executions of the algorithms discussed in this paper, so they
are average values. Naturally, better results may be obtained if we change the value of those
parameters in Table 6.2. However, if better results are required as to increase the occupancy
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ratio of the bins, the time required to solve each instance may also increase.

6.6 Concluding Remarks

In this paper we presented heuristics to deal with the following problems on two-dimensional
version: 0/1 Knapsack, Unconstrained Knapsack and Cutting Stock. For all these problems we
consider the case where the items are represented by polygons, that is irregular shapes (with
holes).

To handle the geometry we codify the robust no-fit polygons generator proposed by Burke
et al. (2007) [19], and an extended version of the search algorithm developed by Adamowicz
and Albano (1976) [1] to deal with the arrangement of the items inside the bin.

For the Irregular 0/1 Knapsack problem we presented a GRASP based heuristic that shows
to be efficient in the cases where there are few irregular items in the instance, due to the high
occupancy ratio B that we set for the bin on numerical tests. Optimal solutions were obtained
for 7 out of 15 instances within a reasonable CPU time. Better results may be obtained for
the cases where conservative values of the parameters are not considered, however the required
CPU time may also increase.

For the Irregular Unconstrained Knapsack problem, the proposed approach obtained for
66.67% of the instances solutions that occupies 90% of the bin area spending little CPU time.

For the Irregular Cutting Stock problem the column generation heuristic showed to be effi-
cient not only for the case with rectangular items (as presented by [27]) but also for the case with
irregular items. Solutions equal to the lower bound were computed for 6 out of 15 instances.
For the other cases, the difference between the solution computed and the lower bound was by
at most two bins. As mentioned, the only drawback was the required CPU time, that can be
considered high for instances of moderate size.

After all, we can state that the proposed algorithms are suitable and well-defined to solve
practical instances of moderate size. It is worth mentioning that optimum or quasi-optimum
solutions were obtained in a satisfactory amount of computational time.



Chapter 7

Conclusões

Nesta tese trabalhamos com as versões bi- e tridimensionais dos seguintes problemas de corte
e empacotamento: mochila, corte de estoque e empacotamento em faixa. Variantes destes
problemas, consideradas NP-difíceis, foram investigadas e, para cada uma delas, propomos
abordagens exatas e/ou heurísticas.

O Capítulo 2 implementa e analisa soluções para as versões tridimensionais guilhotinada
e com k estágios de corte dos problemas da mochila irrestrita, do corte de estoque, do corte
de estoque com contêineres de tamanhos variados e do empacotamento em faixa. As variantes
do problema da mochila irrestrita são resolvidas via programação dinâmica, enquanto que os
demais problemas e suas variantes são resolvidos via geração de colunas, sendo que a cada
iteração deste método, um novo padrão é definido via solução da correspondente versão do
problema da mochila irrestrita. Os diversos testes realizados indicam que estes algoritmos são
úteis para resolver problemas reais de pequeno a médio porte. Como trabalho futuro seria
interessante tentar estender os algoritmos de programação dinâmica do problema da mochila
irrestrita para a sua versão restrita. Também, estudar variantes dos problemas em foco em
que não necessariamente é preciso empacotar todos os itens da instância da entrada. Isto tem
aplicação direta, por exemplo, no transporte aéreo, visto que é preciso decidir sempre que um
voo chega/parte quais objetos devem ser levados ou deixados para um próximo voo.

No Capítulo 3 estudamos os problemas da mochila irrestrita e do corte de estoque nas suas
versões bidimensionais considerando cortes não-guilhotinados. Investigamos as variante em
que os itens possuem orientação fixa e aquela em que os itens podem ser rotacionados ortog-
onalmente. Neste capítulo mostramos empiricamente que os algoritmos propostos para uma
versão particular do problema da mochila irrestrita, que permite a rotação dos itens, são úteis
neste contexto, isto é, para resolver o caso mais geral. Ainda no contexto do problema da
mochila irrestrita, apresentamos uma instância na qual a Abordagem L falha em computar a
solução ótima, introduzimos a Abordagem L(k), que reduz o esforço computacional requerido
pela Abordagem L, e provamos a questão em aberto relacionada a usar somente os reduced
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raster points na Abordagem L. No caso do problema do corte de estoque, uma heurística
baseada em geração de colunas, que faz uso dos algoritmos previamente desenvolvidos para o
problema da mochila irrestrita foi apresentada. Nos testes computacionais realizados obtivemos
soluções melhores que as previamente existentes para grande parte das instâncias utilizadas. Um
possível trabalho futuro seria a extensão destes algoritmos com o intuito de resolver a versão
tridimensional do problema da mochila irrestrita para cortes não-guilhotinados. Também, seria
interessante investigar uma abordagem similar a L em que os cortes formariam peças retangu-
lares, na forma de L e/ou na forma de U . Então, tentar provar se esta nova abordagem forneceria
(ou não) a solução ótima para o problema em questão.

O artigo apresentado no Capítulo 4 propõe heurísticas que geram empacotamentos em
níveis, usam a ideia de pontos de canto e um algoritmo branch-and-cut para resolver a versão
bidimensional do problema de empacotamento em faixa conservando a estabilidade (condições
de equilíbrio estático para corpos rígidos) e respeitando uma certa ordem de descarregamento.
Para este problema foi apresentado um modelo de programação inteira. O algoritmo branch-
and-cut depende da discretização do recipiente, sendo a complexidade do problema intima-
mente relacionada à quantidade de pontos em tal discretização. Fizemos uma análise exata das
condições de equilíbrio estático e propusemos um algoritmo, usado como planos de corte, para
determinar se um dado empacotamento bidimensional é estável. Nos resultados computacionais
as heurísticas se mostraram bastante eficazes para resolver o problema em foco. Elas retornaram
soluções cuja altura é ótima para diversas instâncias em pouco tempo computacional. Um tra-
balho futuro interessante seria estender a metodologia proposta para a estabilidade (estática)
para também lidar, de forma exata, com a estabilidade dinâmica. Então, considerar situações
em que há variação de velocidade, aceleração e/ou inclinação dos itens/recipiente. Outra exten-
são deste metodologia seria lidar com o caso de empacotamentos tridimensionais, também de
forma exata. Para o modelo de programação linear, seria interessante investigar restrições que
permitem reduzir simetrias no padrão de empacotamento. Também, se é possível utilizar, sem
perda de generalidade, uma malha de pontos representada por conjuntos de menor cardinali-
dade, como os reduced raster points.

Uma extensão da formulação inteira apresentada no Capítulo 4 é feita no Capítulo 5 para
tratar da versão bidimensional do problema de empacotamento em faixa sujeito a restrição de
ordem e ao balanceamento de carga. Como resultado, dois modelos de programação inteira são
apresentados: o primeiro possui uma malha de pontos mais refinada, enquanto que o segundo
possui uma malha com menos pontos. Estes modelos foram resolvidos por um resolvedor
comercial considerando instâncias geradas de forma randômica. Bons resultados foram obtidos
quando os dois modelos são combinados, isto é, a solução gerada por um modelo é usada como
solução inicial para o outro modelo. Deste modo, conseguimos resolver a otimalidade grande
parte das instâncias considerando o tempo máximo de processamento imposto. Assim como nos
resultados obtidos no Capítulo 4, estes modelos são fortemente dependentes da malha de pontos
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utilizada, de modo que quanto mais refinada for esta malha, maior será o consumo de tempo
computacional. Uma extensão natural dos modelos propostos seria lidar com outras restrições
práticas, como considerar o empacotamento completo de grupos de itens, assumir prioridade
para os itens, manter itens separados dentro do recipiente e questões como fragilidade, as quais
envolve um limite quanto ao número de itens (peso) que outro item suportaria. Poderia também
ser investigado com mais detalhes os parâmetros adotados pelo resolvedor comercial. Todos
os testes foram realizados para os valores padrão do resolvedor. Outro ponto a ser investigado
consiste no desenvolvimento de heurísticas que gerem soluções de qualidade para o problema
em foco. A primeiro momento, a restrição de balanceamento de carga não se demonstrou de
fácil consideração para gerar uma heurística de qualidade.

No Capítulo 6 estudamos o caso em que os itens são representados por polígonos convexos
e não-convexos dos problemas da mochila 0/1, da mochila irrestrita e do corte de estoque nas
suas versões bidimensionais. Fizemos uso do conceito de No-Fit polygons para lidar com a
geometria dos itens e, então, obter pontos viáveis para empacotá-los. Os pontos escolhidos
foram os que minimizavam a área da envoltória retangular e convexa do empacotamento. Para
a versão do problema da mochila 0/1, propomos uma heurística baseada em GRASP. Em se
tratando da versão do problema da mochila irrestrita, desenvolvemos uma rotina que empacota
itens irregulares em retângulos considerando uma alta taxa de ocupação. Estes retângulos foram
usados para criar uma instância do problema da mochila irrestrita que lida com itens retangu-
lares, a qual foi resolvida por um algoritmo exato de programação dinâmica. Por fim, a versão
do problema do corte de estoque usou da mesma heurística de geração de colunas discutida nos
capítulos anteriores. Antes de chamar o algoritmo desenvolvido para o problema da mochila
irrestrita, que trata de itens irregulares, para gerar uma nova coluna, retângulos compostos de
itens irregulares eram gerados observando o valor das variáveis duais e da área dos itens. Os
resultados obtidos foram satisfatórios, visto que conseguimos para grande parte das instâncias
soluções com alta taxa de ocupação do recipiente. Porém, o tempo computacional requerido
foi elevado para o problema do corte de estoque. Alguns pontos promissores que podem ser
investigados incluem implementar novos algoritmos para lidar com a geometria dos itens, bem
como implementar uma biblioteca geométrica que otimize as operações mais utilizadas, como
as operações que envolvem o cálculo de interseções entre os itens. No caso do ponto escolhido
para empacotar um item, além de escolher o ponto que minimize a área da envoltória retangu-
lar e convexa, também poderia se considerar o ponto que minimize a área do menor polígono
que envolve a união dos itens. Parece promissor estudar e propor modelos de programação
linear que lidem de forma eficiente com itens irregulares, visto que grande parte das estratégias
encontradas na literatura consideram heurísticas.

Trabalhos futuros poderiam abordar o desenvolvimento de algoritmos de aproximação para
os problemas relatados nesta tese. Um estudo comparativo envolvendo tais tipos de algoritmos
com os desenvolvidos nesta tese pode ser interessante tanto do ponto de vista teórico (desen-
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volver os algoritmos de aproximação) como prático (implementar e compará-los com outros
algoritmos).

Por fim, podemos afirmar que esta tese tem sua contribuição no campo da ciência tanto em
termos quantitativos (número de problemas abordados e soluções propostas), como em termos
qualitativos (resultados originais e de forte aplicação prática).
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