
Implementação Eficiente em Software de
Criptossistemas de Curvas Elípticas

Julio César Ló7Jez Hernández

Tese de Doutorado

I

I

UNJCAMP

BIBLTOTECA CENTRAl.

SEÇÃO CIRCULANTP

c

Instituto de Computação
Universidade Estadual de Campinas

Implementação Eficiente em Software de

Criptossistemas de Curvas Elípticas

Julio César López Hernández

28 de Abril de 2000

Banca Examinadora:

• Prof. Dr. Ricardo Dahab
Universidade Estadual de Campinas (Orientador)

• Prof. Dr. Guido C. S. Araújo
Universidade Estadual de Campinas

• Prof. Dr. Cláudio L. Lucchesi
Universidade Estadual de Campinas

• Prof. Dr. Daniel Panario
Universidade de São Paulo

• Prof. Dr. Routo Terada
Universidade de Toronto

o•1c••~

... IOTIICA Cl!~

UNICAMP

BIBLIOTECA CENTRAl.

SEÇÃO CI RCULANTP

UN I DADE _~ ~~<--
~· CHAMADA :

~~:fê __
' v. Ea.. p(j"

I T O W3 0..f. BC /_'1Jd~:
PROC. fo.Lil ./_0 O

C~-~ D ~~:

; PR~ · ;;=R.!A-~a !L
OATAJ.: f!/ .L O I dO 1.
N.' CPO _______ . ___ _ ·

--·-----·

CM-00144274-9

FICHA CATALOGRÁFICA ELABORADA PELA
BffiLJOTECA DO IMECC DA UNICAMP

López Hemández, Julio César

L88 I i Implementação eficiente em software de criptossisremas de curvas

elípicas I Julio César López Hemández - Campinas, [S.P. :s.n.]. 2000.

Orientador : Ricardo Dahab

Tese (doutorado) - Universidade Estadual de Campinas, Instituto

de Computação.

I . Curvas eüpticas. 2. Cnptografia. l. Dahab, Ricardo. n.
Universidade Estadual de Campinas. Instituto de Computação. lll.

Título.

Implementação Eficiente em Software de

Criptossistemas de Curvas Elípticas

Este exemplar corresponde à redação finaJ da

Tese devidamente corrigida e defendida por
Jul io César López Hernández e aprovada pe

la Banca Examinadora.

Campinas, 28 de Abril de 2000. /

Prof. Dr. Ricardo Dahab

Univers1dade Estadual de Campinas
(Orientador)

Tese apresentada ao Instituto de Computação,
UNICAMP , como requisito parcial para a ob

tenção do t ítulo de Doutor em Ciência da Com
put.ação.

UNICA!v1P

BIBLTOTECA CENTRAl

SEÇÃO CTRCULANTP

TERMO DE APROVAÇÃO

Tese defendida e aprovada em 28 de abril de 2000, pela Banca Examinadora composta
pelos Professores Doutores:

Prof. Dr. Claudio Leonardo Lucchesi
IC- UNICAMP

Prof. Dr. Daniel Panario
University ofToronto

Prof. Dr. Routo Terada
IME- USP

u.ido ~ '(
Prof. Dr. ido Costa Souza de~-----·--------- ----
IC- UNICAMP

Prof. Dr. Ricardo Dahab
IC- UNICAMP

Resumo

A criptografia de chave-pública é, reconhecidamente, uma ferramenta muito útil para
prover requisitos de segurança tais como confidencialidade, integridade, autenticidade e
não-repudio, parte integrante das comunicações.

A principal vantagem dos criptossistemas de curvas elípticas (CCE) em relação a
outra.s tecnologias de chave-pública concorrentes tais como RSA e DSA, é que parâmetros
significativamente menores podem ser usados nos CCE com o mesmo nível de segurança.
Essa vantagem é especialmente importante em aplicações em ambientes computacionais
limitados como cartões inteligentes, telefones celulares, computadores de bolso e pagers.

De um ponto de vista prático, a implementação dos CCE apresenta vários desafios.
Uma aplicação baseada nos CCE precisa que várias escolhas sejam feitas tais como o
nível de segurança, algoritmos para implementar a aritmética no corpo finito subjacente,
algoritmos para implementar a aritmética na cun'a elíptica, protocolos de curvas elípt icas e
a plataforma computacional. Essas escolhas podem ter um grande impacto no desempenho
da aplicação resul tante.

Esta dissertação trata do desenvolvimento de algoritmos eficientes para implemen
tação em software de criptossistemas de curvas elípticas sobre o corpo finito lF2m . Neste
contexto, foram desenvolvidos métodos eficientes para implementar a aritmética no corpo
finito JF2.,.,, e para calcular múltiplos de um ponto elíptico, a operação fundamental da
criptografia pública baseada em curvas elípticas. Nesta dissertação também foi abordado
o problema da implementação eficiente em software dos algoritmos propostos, em diferen
tes plataformas computacionais tais como PCs, estações de trabalho, e em dispositivos
limitados como o pager da RIM.

v

Abstract

It is widely recogn ized that public-key cryptography is an important tool for providing se
curity services such as confidentiali ty, data integrity, authentication and non-repudiation,
which are requirements present in almost ali communications. The main advantage of
elliptic curve cryptography (ECC) over competing public-key technologies such as RSA
and DSA, is that significantly smaller parameters can be used in ECC, but wit h equivalent
leveis of security. This advantage is especially important for applications on constrained
environments such as smart cards, cell phones, personal device assistants, and pagers .

From a practical point o f \'Íew. t he implementation o f ECC presents various challenges.
An ECC-based application requires that several choices be made including the security
levei , algorithms for implementing the fini te field arithmetic, algorithms for implementing
the elliptic group operation, elliptic curve protocols. and the computer platform . These
choices may ha\·e a significant impact on the performance of the resul ti ng application.

This dissertation focuses on developing efficient algorithms for software implementa
t ion of ECC over IF2m. In th is framework, we study different ways of efficiently imple
menting arithmetic in IF2m, and computing an elliptic scalar multiplicat.ion, t he central
operation of public-key cryptography based on ellip tic curves. We also concentrate on
the software implementation of these algorithms for different platforms including PCs,
wo rk stat ion s~ and constrained devices such as the RIM interactive pager.

Tbis dissertation is a collection of five papers written in English, with an introduction
and conclusions written in Portuguese.

Yl

Dedicatória

Aos meus pais Pablo Jul io López e Deyanira Hernández, por terem sempre me incentivado
e apoiado para adquirir o gosto pelos estudos e pelo fascinante mundo dos livros e dos
números.

Aos meus irmaôs e irmãs com quem parti1hei alegrias e sofrimentos e a quem devo as
mais importantes lições de fraternidade; especialmente à minha irmã gêmea Lyda Cristina
que sempre me acompanhou com entusiasmo.

À minha esposa e companheira Ludla, por todo o amor, dedicação e paciência.
Também por me trazer de volta do mundo dos números!.

Vll

Agradecimentos

No Brasil:

• Ao professor Cláudio Lucchesi , que me recebeu e orientou no primeiro semestre e
posteriormente fez parte integrante da Banca Examinadora.

• Ao professor Ricardo Dahab, meu orientador, pela confiança, amizade e trabalho
conjunto.

• Aos professores da Banca Examinadora: Routo Terada, Cláudio Lucchesi, Daniel
Panario, Guido Araújo, pelas valiosas sugestoes.

• Aos professores, funcionários e colegas do Inst ituto de Computação, pela gentileza
com que sempre me receberam.

• À coordenadoria de aperfeiçoamento de pessoal de nível superior (CAPES), pela
bolsa de doutorado.

• Aos amigos de doutorado Ana, Bruno, Maria Emília, Luiz, José Roberto , Luiz
Mariano, Jerônimo, por tornarem o ambiente de trabalho mais acolhedor.

• Aos meus sogros, cunhado e família pela gentileza. e por terem me recebido com
tanto carinho.

• À comunidade de estudantes colombianos na Unicamp, por compartilharem das
novas experiências culturais vivenciadas.

No Canadá:

• Ao professor Alfred Menezes, pela oportunidade de visitar o centro de criptografia
a.plicadada (CACR) da Universidade de \.Va.terloo e pela acolhida e orientação de

meu trabalho de pesquisa.

• Aos colegas no centro CACR Andreas Stein, Edlyin Teske, Mike Jacobson, Berit
Skjernaa, pelas sugestôes e solidariedade.

vm

• Aos colegas do grupo de pesquisa Michael Brown, Donny Cheung, Darrel Hankerson,
Michael Kirkup, Wi.lliam Lewis, por terem tido importante papel no desenvolvimen
to de minha pesquisa.

Na Colômbia:

• Aos colegas do departamento de Ciência da Computação da Universidade do
Valle, pela amizade e apoio recebido.

• À Universidade do Valle, pelo suporte institucional e apoio finan ceiro.

• À amiga Ruby Grisales, por toda sua colaboração.

• Ao professor Jürgen Tischer, por sua orientação e estimulo para continuar estudos
avançados em Computação.

Finalizando: um especial agradecimento, ao povo brasileiro que contribui para a formação
dos pesquisadores nas Universidades Públicas.

IX

Conteúdo

Resumo

Abstract

Dedicatória

Agradecimentos

1 Introdução
1.1 Contribuições da Tese
1.2 Estrutura da Tese . . .

2 Introdução a Criptossistemas de Curvas Elípticas
2.1 Introduction
2.2 Finite fields

2.2.1 The fini te field IFP .
2.2.2 The fini te field IF2 ...

2.2.3 Finite field arithmetic in IF2m using a polynomial basis
2.3 Elliptic curves over finite fields .

2.3.1 Elliptic curves over IFp ...
2.3.2 E lliptic curves over 1F2m • . .

2.3.3 Definitions and basic results
2.3 .4 ECC dornain parameters . .
2.3.5 Elliptic curve protocols: ECDH, ECDSA, ECAES

2.4 Discrete logarithm problem
2.5 Algorithms for elliptic scalar multiplication .

2.5.1 Basic metbods.
2.5.2 Faster methods
2.5.3 J<oblitz curves .

2.6 Implementation issues

X

v

V l

vii

v iii

1

3
3

5
6

7

8
9

11

14

14

16

17
18
19
22
23
24
28
30

31

2.6.1 System setup

2.6.2 Previous software implementations of ECC

2.6.3 An example of a software implementation of ECC

2.7 Conclusions

3 Um Algoritmo para M ultiplicação em lF2m

3.1 Introduction

3.2 The finite field JF2.,.

3.2.1 Polynomial basis representation .. .

3.2.2 Recent methods for multiplication in JF2.,..

3.2.3 The "shift-and-add" method

3.3 Proposed method

3.3.1 Performance comparison

3.4 Timing results

3.4.1 Applications .

3.5 Conclusions

32

33

34

37

38
39
40
40
41

41

43

46
47
47

48

4 Algoritmos Eficientes para a Aritm.ética em Curvas Elípticas sobre 1F2m 49
4.1 Introduction 50

4.2 E li i ptic curves o ver IF 2m

4.3 A New doubling point formula

4.3.1 Performance analysis ..
4.4 Repeated d oubling a lgorithrn .

4.4.1 Complexity comparison .

4.5 A new kind of projective coordinates
4.5.1 Basic facts

4.5.2 Projective elliptic arit hmetic

4.5.3 Performance analysis

4.6 Conclusions

4.7 Appendix

5 Um Algoritmo para Multiplicação Escalar em Curvas Elípticas sobre

51

53

53

54

56
56
57

57

58
59
60

IF 2m sem Pré-computação 63
5.1 Tntroduction 64
5.2 Previous work 65

5.3 Elliptic curves over IF2m 66
5.4 Improved metbod . . . 67

5.4.1 Affine ,·ersion . . 67

5.4.2 Projective version 70

xi

5.4.3 Complexity comparison . 71
5.5 Running times 72
5.6 Conclusion . 73
5.7 Appendix 74

6 PGP em Dispositivos Limitados sem Fio 76

6.1 Introduction . 77
6.2 Pretty Good Privacy 78

6.2.1 History of PGP 78
6.2.2 PGP security services . 80

6.3 RIM's Pager . . 81
6.3.1 Overvie-vv 81
6.3.2 Software development . 82
6.3.3 File system 83

6.4 The PalmPilot . 83
6.5 Elliptic Curve Cryptography 84

6.5.1 Introduction . 84
6.5.2 Selecting ECC paramet.ers 85
6.5.3 ECC protocols 86
6.5.4 Security issues . 88
6.5.5 Timings 89
6.5.6 Interoperability 93

6.6 Porting PGP to the Pager 93
6.7 Implementation 95

6.7.1 User interface 95
6.7.2 Key generation and storage 96
6.7.3 Cryptographic services 97
6.7.4 Key management 97

6.8 Future vVork . 97
6.9 Conclusions 98

7 Conclusões 100

Bibliografia 102

Xll

Lista de Tabelas

2.1 ECC, DSA and RSA key length comparisons. 19
2.2 Timings (in microseconds) for finite fi eld and elliptic curve operations. . . . 33
2.3 Timing comparison of ECDSA , DSA, a nd RSA signature operations. Ali

t imings in mi11iseconds, un less otherwise indicated.
2.4 Timings (in milliseconds) for a n elliptic scalar multiplication ..
2.5 T irnings (in microseconds) for finite field operations in IF21sl.

2.6 T imings (in rnilliseconds) for ECC operations overiF2163.

2.7 Tirnings (in mi11iseconds) for 1024-bi t RSA operations.

34
34
35
36
36

3.1 Number of operations for Algor ithms 1, 4 and 5. 47
3.2 Timings (in microseconds) of the "shift -and-add" met hod and Algori t hm 4

for multiplication in IF2 t63 . . • • • . . • • • . . • . . • • . . . • • . • • . . . 47
3.3 Timings (in microseconds) of t he "shift-and-add" rnethod and Algorithm 5

for multiplication in IF2u.a.

4.1 T he number o f field mult iplications for computíng 25 P + Q.
4.2 Comparison of Algori t hm 1 \v;th other algorit hms
4.3 The number of fi eld operations for 25 P + Q (a = O or 1, Z1 = 1)

48

54
56
59

5.1 Complexity Comparison of Algorit hm 2P with other algorit hms (a= O, 1). 71
5.2 Average running t imes (in microseconds) for lF2m using LiDIA. 72
5.3 Average running t imes (in milliseconds) for computing mP. 72

6.1 ECC, DL, and RSA key length cornpa risons. 85
6.2 Koblit z curves selected. 86
6.3 T imings (in milliseconds) for ECC operations over 1F2t63 on various platforms. 90
6.4 Timings (in milliseconds) for ECC operations over JF2na on various platforrns. 90
6.5 Timings (in milliseconds) for ECC operations over JF22aa on varíous platforms. 91
6.6 T imings (in mílliseconds) for 512-bit and 768-bit RSA operat ions on varíous

platforms. 91

xiii

6.7 Timings (in milliseconds) for 1024-bit and 2048-bit RSA operations on
various platforms. 92

6.8 T imings (in milliseconds) for DL operations on various platforms. 92

xiv

Lista de Figuras

4.1 Algorithm 1: Repeated doubling points.

5.1 Algorithm 1: Binary Method
5.2 Algori thm 2A: Montgomery Scalar Multiplication
5.3 Algorithm 2P: Montgomery Scalar Multiplication

6.1 The RIM pager
6.2 Listing of PGP keys.
6.3 The main menu. . . .
6.4 Screen for creating a new key pair.
6.5 Screen for viewing a (portion of the) public key's attributes.

XV

55

66
69
70

82

95
96
96
96

Capítulo 1

Introdução

A criptografia tem sido utilizada há séculos em contextos militares e diplomáticos para
prover sigilo de informações. Na era moderna das comunicações eletrônicas: os requ isitos

de segurança tais como confidencialidade, integridade , autenticação e não-repúdio tem
assumido um papel muito importante. Também para o provimento desses requisitos, a

criptografia tem se mostrado muito útil.
O conceito revolucionário de criptografia de chave pública foi apresentado por Diffie e

Hellman, em 1976, no artigo "New directions in cryptography" [26). Embora os autores

não tenham apresentado uma implementação prática para essa idéia, o novo conceito
gerou uma intensa atividade de pesquisa na procura de sistemas criptográficos prát icos de
chave pública. Ainda nesse artigo, é apresentado um engenhoso protocolo para troca de
chaves, cuja segurança está baseada na suposta intratabilidade do problema do logantmo
dascreto módulo u.m número primo (PLD) .

Pouco tempo depois, Ron Rivest. Adi Shamir, e Len Adlemao [85], descob1iram o
primeiro esquema de chave pública para assinatura e ciframento, denominado RSA. O

sistema RSA está baseado em outro problema supostamente difícil, a fatoraç ão de números
inte7TOS muito grandes (FNI). Atualmente, o melhor algoritmo conhecido para resolver esse
problema é o i'number field sieve'' [79J, que tem tempo de execução sub-exponencial.

Em 1984, ElGamal [27] apresentou um outro criptossist ema de chave pública baseado

no PLD. Esse criptossistema tem sido refinado e incorporado em vários protocolos e uma

de suas extensões forma a base do algoritmo de assinatura digital americano (DSA).
A descoberta de vários algoritmos eficientes para resolver o problema do logaritmo

discreto nos grupos multiplicativos z;, e lF2m •, durante os anos de 1978 a 1984, forçou

um aumento no tamanho das chaves utilizadas no protocolo Diffie-Hellman, tornando-o
mais caro e, em conseqüência, menos atraente. Esta situação levou vários pesquisadores à
observação de que tanto o protocolo de troca de chaves de Diffie-Hellman como os sistemas
do tipo ElGamal, podem ser estendidos a grupos abelianos arbitrários [51). Assim, os

1

2

esforços de pesquisa foram orientados para a investigação de grupos abelianos onde o
problema do logarit.mo discreto parece ser intratável e as operações no grupo possam ser
implementadas eficientemente em software ou em hardware.

Em 1985, N. Kobli tz [47] e V. Miller [68], de forma independente, propuseram uti
lizar o grupo de pontos de uma curva elíptica sobre um corpo fin ito para implementar
criptossistemas de chave pública. Esses sistemas, denominados criptossistemas de curvas
elípticas (CCE), têm sua segurança baseada na suposta intratabilidade do problema do

logaritmo di-screto no grupo de pontos de uma curva elíptica (PLDCE).
Nos últimos anos, muitos avanços foram feitos na área dos CCE. O melhor algoritmo

conhecido para o problema do logaritmo discreto em curvas elípticas é de tempo expo
nencial [78]. Embora existam alguns ataques (algori tmos de tempo sub-exponencial [67]
e polinomial [87, 93, 95]) para certos tipos de curvas elípticas, esses ataques podem ser
evitados facilmente por meio de testes simples, descritos em vários padrões industriais
[5, 42].

O fato de não se conhecer um algoritmo geral de tempo sub-exponencial para o PLD
CE, possibilita que parâmetros menores sejam usados nos CCE, relativos aos sistemas
baseados no PLD. Por exemplo, NIST [72] recomenda o uso de chaves de 3072 bits nos
sistemas baseados no PLD e RSA para obter-se um nível de segurança comparável ao
fornecido por um algoritmo de chave simétrica de 128 bits. Ent retanto, nos CCE são
suficientes chaves de 256 bi ts para obter-se o mesmo nível de segurança.

Algumas vantagens que resultam do fato de usar-se pequenos parâmetros nos CCE
incluem velocidade, chaves e certificados pequenos. Para certas aplicações, onde a ca
pacidade de processamento, a potência computacional , o espaço de armazenamento e a
banda-passante estejam limitados, os CCE superam outros sistemas de chave pública.
Por todas estas razões, os CCE tem tido crescente aceitação, nos setores industriais, co
mo alternativa aos já estabelecidos RSA, protocolo de troca de chaves Diffie-Hellman e
DSA.

A criptografia de chave pública, nos últimos anos, tem-se convertido numa das tec
nologias básicas para a construção de aplicações muito sensíveis à segurança, tais como
correio eletrônico, eleições eletrônicas e comércio eletrônico.

A implementação eficiente da criptografi a baseada em curvas elípticas depende de
vários fatores como o nível de segurança desejado, a plataforma computacional (software,
hardware, ou firmware), restrições no ambiente computacional (velocidade do processa
dor, tamanho do código, memória, banda-passante), métodos eficientes para a aritmética
no corpo (soma, multiplicação, cálculo de quadrados e inversos, solução de equações qua
dráticas) e algoritmos para implementar a aritmética na curva elíptica (sorna de pontos e
multiplicação escalar).

Nesta tese, nos concentramos na implementação em software de curvas elípticas sobre

1.1. Contribuições da Tese 3

o corpo finito IF2m. Vários algoritmos foram desenvolvidos para acelerar a computação da
operação central dos CCE, a multiplicação de um ponto elíptico por um número inteiro

grande. Nosso trabalho também inclui uma implementação prática das curvas NIST [72]
para diferentes plataformas computacionais corno PCs, estações de trabalho SPARC e o

pager RIM bidirecional.

1.1 Contribuições da Tese

As principais contribuições desta dissertação são:

• Desenvolvimento de um algoritmo eficiente para multiplicação no corpo finito IF 2m,
cujos elementos são representados usando uma base polinomial. Esse algoritmo é
orientado para implementações em software de curvas elípticas sobre IF2m. (Capítulo
3.)

• Melhoramento de um algoritmo desenvolvido por J. Guajardo e C. Paar [37]. Apre
sentamos fórmula..c:; mais eficientes para calcular duplicações consecutivas de um pon
to elíptico em curvas elípticas definidas sobre IF2m . (Capítulo 4)

• Desenvolvimento de uma fórmula nova para duplicar pontos elípticos em curvas

definidas sobre IF2m . Baseado nessa fórmula, propusemos um sistema de coordenadas
projetivas para a aritmética de uma curva elíptica sobre JF2.,. . Essa formulação é
mais eficiente do que a dos métodos conhecidos. (Capítulo 4)

• Desenvolvimento de um algoritmo eficiente para multiplicação escalar sobre curvas
elípticas definidas sobre IF2m . Esse método é atraente tanto para implementações
em software corno em hardware de curvas aleatórias sobre IF2 (Capítulo 5) .

• Projeto e implementação de uma biblioteca escrita em linguagem C, para suporte de
curvas elípticas sobre os corpos lF2 11;3, lF2233 e lF22s3 (recomendados por NIST [72}), em
diferentes plataformas computacionais que incluem PCs, PCs de bolso (PalmPilot)

e um pager RIM bidirecional. (Capítulo 6).

• Incorporação da biblioteca de curvas elípticas sobre 1F2m numa implementaçào do

sistema criptográfico PGP no pager bidirecional RIM. (Capítulo 6)

1.2 Estrutura da Tese

Esta dissertação é uma coletânea de artigos científicos obtidos durante o desenvolvimento
do projeto de pesquisa. O restante deste texto está organizado da seguinte forma:

1.2. Estrutura da Tese 4

O Capítulo 2 contém uma breve introdução ao estudo dos criptossistemas de curvas
elípticas com ênfase oa implementação em software de curvas elípticas definidas sobre o
corpo finito IF2m; vários algoritmos eficientes são apresentados para calcular múltiplos de
um ponto elíptico e para implementar a aritmética do corpo finito IF2m, usando uma base
polinomial.

O Capítulo 3 apresenta um algoritmo rápido para multiplicação no corpo finito IF2m,
onde os elementos são representados usando uma base polinomial. O novo algoritmo é
crucial para obter-se uma implementação eficiente em software dos criptossistemas de
curvas elípticas definidos sobre os corpos finitos de característica 2. Esse algoritmo é a
base da implementação em software das curvas NIST, apresentada no Capítulo 6.

O Capítulo 4 apresenta alguns algoritmos eficientes para a implementação da aritmética
no grupo de uma curva elíptica definida sobre IF2 m . Em particular, um esquema novo de
coordenadas projetivas é apresentado.

O Capítulo 5 traz um método eficiente para multiplicar pontos de uma curva elíptica.
Esse algoritmo possui algumas características que o tornam atraente para implementações
em hardware ou software de curvas elípticas aleatórias definidas sobre IF2m.

O Capítulo 6 descreve uma implementação prática de curvas elípticas definidas sobre
IFzm. O objetivo central foi projetar uma apl icação prática de correio eletrônico com
segurança, baseada no sistema criptográfico PGP, para. ser executada numa plataforma
computacional (com recursos limitados) como o pager RIM bidirecional. Substituímos
os algoritmos de chave pública do PGP pelos algoritmos de curvas elípticas, tais como
ECDSA (algoritmo análogo ao DSA) e ECAES (algoritmo para ciframento baseado no
ElGamal). A aplicação está baseada nas curvas NIST sobre o corpo finito JF2,...

O Capítulo 7 contêm conclusões e alguns comentários para futuros trabalhos.

Capítulo 2

Introdução a Criptossistemas de
Curvas Elípticas

Neste capítulo estudamos os conceitos fundamentais em curvas elípticas e a construção de
criptossisternas baseados em curvas elípticas (CCE). Abordamos os principais problemas
associados à implementação eficiente dos CCE, e apresentamos um resumo dos algoritmos
básicos para implementação em software da aritmética no corpo finito IF2m e a aritmética
no grupos de pontos de uma curva elíptica definida sobre IF2m.

O trabalho apresentado neste capítulo foi publicado corno relatório técnico No. IC-
00-10 no Instituto de Computação, UNICAMP, e submetido ao Journal of Universal
Computer Science.

5

An Overview of Elliptic Curve
Cryptography

Julio López and Ricardo Dahab

State University of Carnpinas
Campinas, SP, Brazil

{julioher,dahab}@dcc .unicamp.br

Abstract

Elhptic curve cryptography (ECC) was introduced by Victor Miller and
Neal Koblitz in 1985. ECC proposed as an alternative to established
public-key systems such as DSA and RSA, have recently gained a lot at
tention in industry and academia. The main reason for the attractiveness
of ECC is the fact that there is no sub-exponential algorithm known to
solve the discrete logarithm problem on a properly chosen elliptic curve.
This means that significantly smaller parameters can be used in ECC
than in other competitive systems such RSA and DSA, but with equiva
Jent levels of security. Some benefits of having smaller key sizes ínclude
faster computations, and reductions in processing power, storage space
and bandwidth. This makes ECC ideal for constrained environments
such as pagers, PDAs, cellular phones and srnart cards. The implemen
tation of ECC, on the other hand, requires severaJ choices such as the
type of the underlying finite field, algorit hms for implementing the finite
field arithmetic, the type of e1liptic curve, algorithms for implement
ing the elliptic group operation, and elliptic curve protocols. Many of
these selections may have a major impact on the overall performance. Tn
this paper we present a selective overview of the maio rnethods and tech
niques used for practical implementations of elliptic curve cryptosystems.
\"'i/e also present a summary of the most recent reported software imple
mentations of ECC.

Key words. Elliptic curve cryptography, finite fields, elliptic scalar
m ultiplication.

2.1 Introduction

In 1985, Victor Míller [68] and N. Koblitz [47], independently, proposed a public-key
cryptosystem analogue of the ElGamal schemes [27] in which the group z; is replaced by

6

2.2. Finite fields 7

the group of points on an elliptic curve defined over a finite field. The main attraction
of elliptic curve cryptogra.phy (ECC) over competing technologies such as RSA and DSA
is that the best algorithm known for solving the underlying hard mathematical problem
in ECC (the elliptic curve discrete logarithm problem (ECDLP)) takes fully exponential
time. On the other hand, the best algorithms known for solving the underlying hard
mathematical problems in RSA and DSA (the integer factorization problem, and the
discrete logarithm problem, respectively) take sub-exponential time. This means that
significantly smaller parameters can be used in ECC tha.n in other systems such as RSA
and DSA, but with equivalent leveis of security. A typica.l example of the size in bits of
the keys used in different public-key systems, with a comparable levei of security (against
known attacks), is that a 160-bit ECC key is equivalent to RSA and DSA wíth a modulus
of 1024 bits.

The lack of a sub-exponential attack on ECC offers potential reductions in processing
power, storage space, bandwidth and electrical power. These advantages are specially
important in applications on constrained devices such as smart cards, pagers, and cellular
phones.

From a practical point of view, the performance of ECC depends rnainly on the effi
ciency of finite field computations and fast algorithms for elliptic scalar multiplications.
In addition to the numerous known algorithms for these computations, the performance of
ECC can be sped up by selecting particular underlying finite fields and/or el liptic curves.
Exarnples of finite fields are JF2,. (for hardware and software implementations) and 1Fp,
where p isa special prime (e.g., a Mersenne prime ora generalized Mersenne prime, see
[98)). Exarnples of families of curves that offer computational advantages for computing
a scalar multiphcation include Koblitz curves over lF2m. Thus, a fast implementation of
a security application based on ECC requires severa! choices, any of which can have a
major impact on the overall performance.

The rernainder of this paper is organized as follows. A short introduction to finite field
arithmetic is provided in Section 2.2. A brief introduction to elliptic curves is presented in
Section 2.3. A list of the main known attacks on the elliptic curve discrete logarithm pro
blem (ECDLP) is provided in Section 2.4. In Section 2.5, we describe severa! algorithms
for computing a scalar mul t iplication which is the central operation of ECC. Finally, some
implementation issues are considered in Section 2.6.

2.2 Finite fields

In this section we present the definition of groups and finite fields. These mathematical

structures are fundamental for the construction of an e!Jiptic curve cryptosystem.
A group is an algebraic systern consisting of a set G together with a binary operation

2.2. Finite fields 8

o defined on G satisfying t he following axiorns.:

• closure: for ali x, y in G we have x o y E G;

• associativity: for a ll x, y and z in G we have (x o y) o z = x o (y o z);
• ident ity: t here exists an e in G such that x o e= e o x = x for ali x in G;

• inverse: for a li x in G there exists y in G such that x o y = y o x = e.

Tf in addit ion, the binary operation o satisfies the abelian property:

• abelian: for ali x, y in G we have x o y = y o x,

Lhen we say t hat the group G is abelian .
A finite field is an a lgebraic systern consisting of a fi nite set F together with two binary

operations + and x, defined on F, sat isfying the following ax-iorns:

• F is an abelian group with respect to "+, ;
• F\ {O} is an abelia n group with respect to !-x" ;

• distribut ive: for ali x , y and z in F we have:

x x (y + z) - (x x y) + (x x z)

(x + y) x z (x x z) + (y x z).

T he order of a fi nite field is the number of elements in the field. A fundamental result

on the theory of fini te fields (see [63]) , characlerizes the existence of fin ite fields: t here
exists a finite field of order q if and only if q is a prime power. In addition, if q js a
prime power , t hen t here is essentially only one fi ni te field of order q; this field is denoted

by lFq or GF(q). T here are, however, many ways o f representing the elements of IFq, and
some representations may lead to more efficient implementations of t he fi eld ari th rnetic
in hardware or in software.

If q = pm, where p is a prime and m is a positive integer, then p is called 1.he character
istic of IF9 and m is called the extension degree of IF9 . Most standards which specify ECC
restrict the order of t he underlying finite field t.o be an odd prime (q = p) or a power of
2 (q =2m).

2.2.1 The finite field IFp

Let p be a prime number. T he finite field lFp, called a prime field. consists of the set of

integers
{0, 1, 2, .. . , p- 1}

with the fo llow1ng aritbmetic operations:

2.2. Finite fields 9

• Additíon: If a, b E IFp, then a+ b = r, where r is the remainder of the division of

a + b by p and O ;::; r ~ p - 1. This operation is called addition modulo p.

• Multiplicatíon: If a, b E IFp, then a · b = s, where s is the remainder of the division
of a · b by p and O ::; s ::; p - 1. This operation is called multiplicatíon modulo p.

There are certain primes p for which the modular reduction can be computed very

efficiently. For example, let p be the prime 2192 - 264 - l. To reduce a positive integer

n < p2
, write

5

n - " A . . ')64j
,, . -~ J .., .

j=O

Then

where

T A2. 2128 + A1 · 2
64 + Ao

s1 A3. 264 + A3

s2 A4. 2128 + A4. 264

53 As. 2128 + As. 264 + As.

Thus, the integer reduction by p can be replaced by th ree additions (mod p), which are
rnuch faster. The prime number p is an example of a family of primes called generalized
Mersene numbers, recently introduced by Solinas [98]. For more examples of primes that
are well suited for machine implementation, see [98] and [72]. Severa) techniques for

implementing the finite field arithmetic in lFP are described in [46, 66, 14, 43, 25, 41].

2.2.2 The finite field JF2m

The finite field lF2m, called a binary finite field , can be viewed as a vector space of dimension

mover IF2. That is, there exist.s a set of m elements {ao, cx1 , ... , am- 1} in lF2m such that
each a E IF 2m can be written uniquely in the form

m - 1

a= L aiat, where ai E {0, 1}.
i=O

The set {a0 , a 1 , .. . , O!m-d is called a basis of lF2m over F2 . vVe ca.n then representa as a
binary vector (a0 , a 1, .. . , am-d · vVe now introduce two of the most common bases of lF2m

over lF 2: polynomial bases and no·rmal bases.

2.2. Finite fields 10

Polynomial basis. Let f(x) = xm + 2:: :~
1 flx' (wbere fi E {0, 1} , for i= O, 1 .. . , m- 1)

be an irreducible polynomial of degree mover JF2 ; f(x) is called t he reduction polynomial.
For each reduction polynomial, tbere exist s a polynomial basis representation. In such
a representation, each element of lF 2m corresponds to a binary polynomia l o f degree less
t han m . That is, for a E lF2m there exist m numbers at E {O, 1} such that

The field element a E lF2m is usually denoted by tbe bit string (am-l .. . a1ao) of length
rn . The following operations are defined on the elements of JF2,.,. when using a polynomial
representation with reduction polynomial f(x). Assume that a = (am- 1 . .. a1a0) and

b = (bm- 1 . .. blbo)·

• Addition: a+ b =c = (Crn-J ... c1c0), where i; = (a1 + bt) mod 2. That is, addition
corresponds to bitwise exclusive-or.

• Multiplication: a· b =c= (Cm-1 . . . c1co) , where c(x) = 2:: ~~
1

CiXi ís the remainder
of the division of the polynomial CI:;~õ 1

a 1 xi)(2: ~
1

biX
1) by f(x).

The following procedure is commonly used to choose a reduction polynornial: if an irre
ducible trinomial xm + xk + 1 exists over F2 , then the reduciion polynomial f(:r) is chosen
to be the irreducible trinomial with t be lowest-degree middle term xk . 1 If no irreducible
trinomial exists, then select instead a pentanomial xm + xk3 + xk2 + xk1 + 1, such that k1

has the minimal value; the value of k2 is minimal for t he given k1 ; and k3 is minirnal for
the given k1 and k2.

Normal basis. A normal basis of IF2m over 1F2 ís a basis of t he form {/3,/32 , . .. , (32
m - l } 1

where j3 E F2 It is well known (see [63]) that such a basis always exists. Therefore,
every element a E IF2m can be written as a = 2:~ ~ 1 a,í32

i, where a, E {0.1}. The
field element ais usually denoted by the bi t string (aoa1 .•• am-l) of length m. A normal
basis representation of F 2m has t he computat iona l advantage t hat squaring an element is a
simple cyclic shift of the vector representation , an operation that is efficiently implemented
in hardware. Multiplication of different elements, on t he other hand, is in general a
more complicated operation. Fortunately, for the particular class of normal bases called
Gaussian normal bases (G ~B): the field arithmetic operations can be implemented very
efficiently [42). The type T of a GNB is a positive integer measuring the complexity of
the mult iplication operation with respect to that basis; the smaller the type, the faster
t he rnultiplication.

1 Although tbts selection may affect the speed of the almost inverse algorithm (see [25]) , it allows for
faster reduction modulo f (x).

2.2. Finite fields 11

The existence of a Gaussian normal basis has been characterized in [71] and [8]. In

particular, a GNB exists whenever m is not divisible by 8. In addition, if m is divisible by
8 and T is a positive integer, then a type T GNB for 1F'2m exists if and only if p = Tm + 1
is prime and gcd(Tmfk, m) = 1, where k is the mu]tiplicati've order of 2 modulo p.

The fini te field operations in lF'2m , using a Gaussian normal basis of type T, are defined

as follows. Assume that a= (aoat .. . am-1) and b = (bobl ... bm-1)· Then:

• Addition: a + b = c = (eoc1 . .. Cm-d, where c, = (ai+ bt) mod 2. That ís, field
addition is performed bitwise.

• Squaring: Since squaring is a linear operation in lF' 2m,

m-1 m - 1 m - 1

a2 = (2::: ai/32
')

2 = L atf32
i+

1 = L ai- 1 mod m /3?;> = (am- laoal ... am- 2) .
l=O i=O i=O

Hence squaring a finite field element is a simple rotation of the vector represent at.ion.

• Multiplication: Let p = Tm + 1 and let u E JFP be an element of order T. Define the

sequence F(l), F(2), ... , F(p - 1) by

F(2iu.i mod p) =i for O <i ::; m - 1, O::; j :5 T - 1.

For each l, O:::; l < m- 1, define At and Bt by

p-2

A1 = L aF(k+l)+l bF{p-k)+h and
k= L

m/ 2

Bl = L (ak+l-1 bm/2+k+l-1 + am/2+k+l- l bk+t-1) + At.
k=1

Then a · b =c= (eoc1 . .. C-rn-1), where

{
At if Tis even ,

Ct = Bt if Tis odd,

for each l, O ::; l ::; m - 1, where índices are reduced modulo m .

See [42] for a good survey on finíte field algorithms using a normal basis in F2"' · Consult

Agnew, Mullin anel Vanstone [2] and Rosing [86] for a hardware and software implemen

tation, respectively, of a normal basis in JF'2""' ·

2.2. Finite fields 12

2.2.3 Finite field arithmetic in IF 2m using a polynomial basis

In thi s section we describe various bit-levei algorithms for performing comp utations in the

finite field F 2rn using a po]ynomial basis representation. These algorithms can be easily

modified to obtain word-level a lgorithms, which are well suited for software implementa

tions.

Addition. Addition in 1F2 m is the usual addit ion of vectors over 1F2 . Tbat is, add the

corresponding bits modulo 2.

Algorithm 1: bit-leve) method for addition in IF2n.

lNPUT: a = (am-1 ... atao) E lF2m and b = (bm-1 ... btbo) E lF2m

ÜUTPUT: c= a + b = (Cm-1 . .. C1Co)

1. for j from O to m - 1 do
Set Cj ~ (aj + bj) mod 2

2. return (c).

Modular reduction. By the definition of multiplication in JF2,., the result of a polynornial

mul tiplication or squaring has t.o be reduced modulo an irreducible polynomia l of degree

m. This reduction operat ion is particula rly effi.cient when the irreducible p olynorn ial f(x)
is a trinomial or a pentanornial. The following algorithm for computing a(x) mod f(x)
works by redu cing the degree of a.(x) unt il it is less than m .

Algorithm 2: bit-levei met.hod for modular reduction in 1F2 m

INPUT: a = (~m-2 . . . a1ao) and f = Umfm-1 . .. !do)
Ü UTPU'r: c= a mod f

1 . for ~ from 2m - 2 to m do
for j from o to m - 1 do

if / 1 "# O then ai-m+j f- at-m+j +ai
2. return (c f- (am- 1 . . . a 1ao)).

Squaring. This operation can be calculated in an efficient way by observing tbat the square

of a polynorn ial a is given by

m-1 m-1

a(x)2 = (L: aixl)2 = 2:: aix2i.
i=O t=O

This equation yields a simple algorithm:

2.2. Fínite fields

Algorithm 3: bít-level method for squaring in lF2m

lNPUT: a= (am-l . .. a1ao) and f = Umfm-1 . .. fdo)
ÜUTPUT: C= a2 mod f

S t "m-1 2 2t
1 . et r L.......,=o at x
2. Set c r t mod f I /Use Algorithm 2
3. return (c).

13

A known technique for speeding up the computation in step 1 is to use a table lookup
(see Schroeppel et al [89) for details) .

Multiplication. The basic method for performing a multiplication in 1F2m is the ''shift-and
add" method. It is analogous to the binary method for exponentiation , with the square
and multiplication operations being replaced by the multiplication of a field element by x

and field addition operations, Tespectively. Given a E 1F2m. the shift-left operation xa(x)
mod f(x) can be performed as follows

) () _ { I:;:~ 1
a1_ 1xi if am-1 =O,

xa(x mod f x - "m-1(. f ·) J f, f -1. L....... j=l a1-1 + 1 X + o i am-1 r O.

Then the steps of the "shift-and-add" method are given below.

Algorithm 4: "shift-and-add"' method

INPUT: a E !F 2m l b E !F 2m and f= Umfm-1 ... !do)
ÜUTPUT: C= ab mod f

1. Set c(x) r O

2 . for j from m - 1 to O do
Set c(x) r xc(x) mod f(x)
if a, #O then Set c(x) f- c(x) + b(x)

3. return(c).

This method requires m- 1 shift-left operations and m field additions on average. The
speed of this method can be improved by usíng programming tricks such as separ·ated
name variables and loop-unrolled code. In [62] we have proposed a fast a lgorithm for
multiplication that is significantly faster than the "shift-and-add" method, but requires
some temporary storage.

Inversion. The basic algorithm for computing multiplicative inverses is the extended Eu
clidean algorithm. A high levei description of this method is the following:

2.3. E lliptic curves over finite fields

Algorithm 5: Extended Euclidean a lgorit.hm

!N PUT: a E .IF2m (a i= O) and f = Umfm-1 . . ftfo)

ÜUTP UT: C = a-1 mod f

1. Set b1 (x) f- 1, bz(x} f- O
Set Pt(X) f- a(x), P2(x) f- f(x)

2 . while degree (p1) =/= O do
i f degree (p 1) < degree (p2) then

exchange Pt , P2 an d b1 : b2
Set J f- degree(p1)-degree(p2)

Set PL(x) f- Pl (x) + xipz(x), b1(x) f- bt (x) + xib2(x)
3 . return(c(x) f- b1 (x)).

14

An alternative method for comput ing inverses, called the almost inverse algorithm, was
proposed by Schroeppel et al [89]. This method works quite well when the reduction
polynomial is a trinomia l of the form xm + xk + 1 with k > w a nd m - k > w 1 where w is
t he word size of the computer used. The authors suggested a number of implementation
t ri cks t hat can be used for improving the speed of this method: many of t hese t 1icks
a lso work for the extended Euclidean algorithm. Note that in t he context of elliptic
curve computations over .IF2"', most of the inversions required can be avoided by using
a projective scheme (59]. In this case, we trade inversions for mul tiplications and other
fini te fi eld operations.

2.3 Elliptic curves over finite fields

Tn t his section we give a short introductíon to the theory of elliptic curves defined over
fini te fields. Addi t ional information on elliptic curves and its applications to cryptography
can be found in Blake et al (14], Menezes [64], Chapter 6 of Koblitz's book [49], and [92}.

T here are severa] ways of defining equations for elliptic curves, which depend on
whether the field is a prime finite field or a characteristic two finite field. T he Weierstrass
equations for both fini te fields IFP and IF2m are described in the next two sections.

2.3.1 Elliptic curves over 1Fp

Let p > 3 be an odd prime and let a, b E .IFp satisfy 4a3 + 27b2 i= O (mod p). Then an
elliptic curve E(JF,) over IFp defined by the parameters a: b E IFp consists of the set of
solut ions or poin ts P = (x, y) for x, y E JFP to t he equation:

(2.1)

2.3. Elliptic curves over finite fields 15

together with a special point O called the point at infimty. For a given point P = (xp, yp),
Xp is called the x-coordinate of P, and yp is called the y-coordinat.e of P.

An addition operation + can be defined on the set E(IFp) such that (E(IFp), +) forrns
an abelian group wit h O acting as its identity. Tt is this algebraic gro up that is used to

construct elliptic curve cryptosystems. The addition operation in E(lFp) is specified as
follows:

1. P+O = O+P = P for ali P E E (!Fp) ·

2. If P = (x, y) E E(IFp), then (x, y) + (x, -y) = O. {Tbe point (x, -y) E E(IFp) is
denoted - P, and is called the negative of P.)

3. Let P = (xt, yl) E E(IFp) and Q = (x2, y2) E E(IFp), where P =I= ±Q. Then

P + Q = (x3, Y3), where

4. Let P = (x1, Y1) E E(!Fp)· Then P + P = 2? = (x3 , y3), where

This operation is called the doubling of a point.

Notice that the add it ion of two different ellipt ic curve points in E(IF11) requires the
following arithrnetic operations in IFp: one inversion, two rnultiplications, one squaring

and six additions. Similarly, doubling an elliptic curve point in E(IFp) requires one inver
sion, two rnultiplications, two squarings and eight additions. Since inversion in IFP is, in

general , an expensive operation, an alterna t ive method to compute the sum of two elliptic
points is to use projecti\'e coordinates. In tb is case, the inversion operation is traded for

more rnu]tiplications and other less expensive finite field operations. See (20) for severa}
proposed projective schernes.

The following algorithm irnplements the addition of two points on E{:IFp) in terms of
affine coordinates.

2.3. Elliptic curves over fimte fields

Algorithm 6: Addition on E(lFp)

lNPUT: An elliptic curve E (lFp) with parameters a, b E lFp: and

points P1 = (xi, yi) and P2 = (x2, Yz).
ÜUTPUT: Q = P1 +P2.

1. if P1 = O, then return CQ f- P2)

2 o if P2 = (), then return CQ f- P1)

30 if x 1 = X2 then

if Y1 = Y2 then >. f- (3x~ + a) /(2yJ) mod p
else return(Q f- 0) I I y1 = - y2 I I

else >. f- (Y2- yl)j(xz- xt) mod p

4 o Set X3 t- À2
- X1 - X2 mod p

5. Set Y3 f- >.(x1 - x3) - Y1 mod p

6 . return (Q f- (x3,y3)).

2.3.2 Elliptic curves over IF2m

16

A (non-supersingular) elliptic curve E (JF2,...) over lF2m defined by the parameters a,b E

lF2 ... , b =f:. O, consists of the set of solutions or points P = (x, y) for x, y E lF2m to the
equation:

(2 .2)

together with a special point () called the point at infinity.

As in the case of elliptic curves over JFP , the set. of points on E (IF2 m) can be equipped
\vit h an abelian group structure. This addition operation is specified as follows:

1. P + () = () + P = P for all P E E(lF2m).

2. If P = (x,y) E E (lFzm), then (x,y) + (x,-y) =O. (The point (x, -y) E E(lF2=) is
denoted - P , and is called the negative of P .)

3. Let P = (xh Yl) E E(lF2m) and Q = {x2, Yz) E E(lF2m), where P ::/= ±Q. T hen
P + Q = (x3, Y3) , where

4. Let P = (x1 , y1) E E(lF2m). Tben P + P = 2? = (x3, y3), where

2.3. Elliptic curves over finite fields 17

Notice that the addit.ion of two different elliptic curve points in E(lF2m) requires one in
version, two multiplications, one squaring and eight additions in lF2m . Doubling2 a point
in E(lF2m) requires one inversion 1 two multiplications, one squaring and six additions.
For situations3 where the computatíon of an inversion operation is relatively expensive
compared to a rnultiplication, projective schemes offer computational advantages. Fast
algorithms for the arithmetic of elliptic curves over .JF2,.,.. in projective coordinates are de
scribed in [59} .

The followíng algorithm implements the addition of two points on E(lF 2m.) in terms o f

affine coordinates.

Algorithm 7: Additíon on E(JF2,..)

INPUT: An elliptic curve E(lF2m) with parameters a,b E lF2m, and

points P1 = (x1, Yl) and P2 = (xz, Y2).
ÜUTPUT: Q = P1 + Pz.

1. if P1 = O, tben return (Q +-- P2)

2. if Pz =O, then return(Q +-- P1)

3. if x1 = x2 then
if Y1 = Yz then À+-- x 1 + ydx1, X3 +-- À2 +À+ a
else return(Q +-- 0) I I Yz = Y1 + x1 I I

else À+-- (y2 + yt)j(x2 + x1), X3 +-- À2 +À+ Xt + Xz +a
4. Set Y3 +-- À(xl +x3) -t-X3 +Y1

5. return(Q +-- (xs,Y3)).

2.3.3 Definitions and basic results

Scalar multiplication. The central operation of cryptographic schemes based on ECC is
the elliptic scalar multiplicatíon (operation analogue of the exponentiation in multiplica
tive groups). Given an integer k anda point P E E(lFq), the elliptic scalar multiplication

kP is t he result of adding P to itself k times. In Section 2.5, we will describe some efficient
algorithms for calculating kP.

Orders. The order of a point P on an elliptic curve is the smallest positive integer r such
that r P =O. If k and l are integers, then kP = lP if and only if k _ l (mod r) .

2 An alternative method for computing 2P is described in [59].
3See [2] for a hardware implementation and [40] for a software implementation of JF'z,... where an

ínversion costs about 24 and 10 multiplications, respectively.

2.3. Ellipt1c curves over finite fields 18

Curve order. The number of points of E(IFq) , denoted by #E(lFq), is called the curve order
of the curve. T his number can be computed in polynomial time by Schoof's algorithm
[88]. This a lgorit hm is required for setting up an elliptic curve system based on random
curves. In this case, one selects parameters a and b with the property that t he curve order
of t he resulting curve be divisible by a large prime (see Section 2.4 for a n explanation of
this condlt ion).
Basic facts. Let E be an elliptic cun·e over a finite field IF9 . Then:

• Hasse's theorem states that #E{IF9) = q + 1 - t, where ltl ~ 2-IQ. That is, the
number of points in E(IF9) is a.pproximately q.

• If q ís a power of 2, then #E(JF9) is even. More specifically, #E(TF9) =O (mod 4) if
Tr(a) = 0,4 and #E(JF9) = 2 (mod 4) if Tr(a) = 1.

• E(lF9) is an a belian group of rank 1 or 2. That is, E (Fq) is isomorphic to Zn 1 x Zn2 ,

where n2 divides n 1 and q - 1.

• I f q is a power of two a nd P = (x , y) E E(F9) is a poin t of odd order, then the trace
of the x-coor.dinate of ali multiples of P is equal to the trace of the parameter a.
That is, Tr(x(k P)) = Tr(a) for each integer k. This result , dueto Seroussi [94], is
the basis of an efficient algorithm for a compact representation of poin ts on elliptic
curves over lF2m. Knudsen 's method (45] for computing elliptic scaJar multiplications
is a lso based on this resul t.

2.3.4 ECC domain parameters

The operation of public-key cryptographic schemes involves arithmetic operations on an
elliptic curve over a fini te field determined by some ellipt ic curve domain parameters. In
this section, we describe the elliptic curve parameters over the finite fi elds 1Fp and lF2m.
ECC domain parameters over IFq are a septuple:

consisting of a number q specifying a prime power (q = por q = 2m) , an indicat ion FR
(field representation) of the method used for represent ing field elements E Fq, two field
elements a a nd b E JF9 t hat specify the equat ion of the elliptic curve E over lF9 (i.e.,
y2 = x3 + ax + b in the case p > 3. and y2 + xy = x3 + ax2 + b when p = 2). a base point
G = (xc , yc) on E(JF9) , a prime n which is the order of G, and an integer h which is the
cofactor h= #E(W9)/n.

Severa) algori t hms for the generation and va]idation of elliptic curve domain para

meters have been proposed (see for example [72] and [33]). Since t he primary security

4 The trace Tr(·) is a linear m.ap from F2"' to IF2 defined by Tr(a) = E::-;;1
a~ ·.

2.3. Elliptic curves over finite fields 19

parameter is n, the ECC key length is t hus defined to be the bi t-length of n. For exam
ple, NIST curves [72] are described by parameters which avoid all known attacks. The
security levei provided by these curves is at least as much as symmetric-key ciphers with
key lengths 80 to 256 bits. In Ta.ble 2.1 we compare key sizes of different cryptosystems
with a comparable levei of security (against known attacks).

Symmetric cipher Example ECC key length for DSA/ RSA key length for
key length algorithm equivalent security equivalent security

80 SKIPJACK 160 1024
112 Triple-DES 224 2048
128 128-bit AES 256 3072
192 192-bit AES 384 7680
256 256-bit AES 512 15360

Table 2.1: ECC, DSA and RSA key length comparisons.

2.3.5 Elliptic curve protocols: ECDH, ECDSA, ECAES

In this section, we give a short descript ion of three fundamental protocols based on elliptic
curves: the Elliptic Curve Diffie-Hellman (ECDH), the Elliptic Curve Digital Signature
Algorithm (ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (EGAES).
The ECDH is the el1iptic version of the well-known Diffie-Hellman key agreement method;
the ECDSA is the ellíptic curve analogue of the DSA, proposed by Scott Vanstone [1 00] in
1992; and the ECAES is a variant of the ElGamal public-key encryption scheme, proposed
by Abdalla, Bellare and Rogaway [1] in 1999.

Key generation. An entity A's public and private key pair is associated with a particular
set o f e1liptic curve domain parameters (q, F R, a, b, G, n, h)5

.

To generate a key pair, ent ity A does the following:

1. Select a random or pseudo-random ínteger d in the interval [1 ,n- 1].

2. Compute Q = dG.

:3. A's public: key is Q; A's private key is d.

Public key 1Jalidation. This process ensures that a public key satisfies the arithmetic re

quirements of elliptic curve public key (see (92]). A public key Q = (XQ, YQ) a.ssociated
5 This association can be assured cryptographically (i.e., with certificates) or by context (e.g., ali

entities use the same domain parameters)

2.3. Elliptic curves over finite fields 20

with a domain parameter (q , F R , a , b.G, n , h) is validated using the follo-wing procedure
(called explicit validation):

1. Check that Q =I= O.

2. Check that XQ and YQ are properly represented elements o f lF q·

3. Check that Q lies on the elliptic curve defined by a and b.

4. Check that nQ = O.

Public key validation witb step 4 omitted is called partwl public-key val idation.

ECDH. The basic idea of this primitive is to generate a shared secret value from a pri
vate key owned by one entity A and a public key owned by another entity B so if both
entities execute the primitive simultaneously with corresponding keys as input, t hey will
recover the same shared secret value. vVe assume that entity A has domain parameters
D = (q, F R, a, b, G, n , h) anda priva te key dA · We also suppose that entity B h as a public
key Qe associated with D. The public key Q8 should at least be partially valid.

Entity A uses the fol1owing procedure to calculate a shared secret value with B:

1. Compute P = dAQB = (xp , yp).
2. Check that P =I= O.
3. The shared secret value is z = Xp.

If step 1 is computed as P = hdAQB = (xp , yp), then we call th is prirnitive elhptic curve
cofactor D-iffie-Hellman. The incorporation of the cofactor h into the calcula tion of the
secret value is to provide efficient resistance to attacks such as small subgroup attacks
(see [92]).

ECAES. The setup for encryption and decryption is the following. vVe suppose that
receiver B has domain parameters D = (q, F R; a, b, G, n, h) and public key Q B· We also
suppose that sender A has authentic copies of D and Q 8 . In the following , MAC denotes
a message authentication code (MAC) algorithm such as HMAC (55), ENC a symmetric
encryption scheme such as Triple-DES, and KDF a key derivation function which derives
cryptographic keys from a shared secret point.

To encrypt a message rn for B , A performs:

1. Select a random integer r from [l ,n - 1] .

2. Compute R= rG.
3. Compute K = hrQ8 = (!(r., Ky) · Check that K =I= O.

2.3. Elliptic curves over finite fields 21

4. Compute k1 llk2 = KDF(I<x)·

5. Compute c = ENCk, (m).

6. Compute t = MACk2 (c).
7. Send (R, c, t) to B.

To decrypt a ciphertext (R, c, t), B does:

8. Perform a partia] key validation on R.
9. Compute I< = hdsR = (Kx , Ky). Check that K # O.

10. Compute kdlk2 = KDF(Kx) ·
11. Verify that t = MACk2 (c) .
12. Computem= ENC;

1

1(c) .

The time consuming operations in encryption and decryption are the scalar multiplica

tions in steps 3 and 9.

ECDSA. The setup for generating and verifying signatures using t he ECDSA is the fol

lowing. We suppose that signer A h as domain parameters D = (q, F R, a, b, G, n, h) and

public key QA. We also suppose that B has aut hentic copies of D and QA. In the fol
lowing SHA-1 denotes the 160-bit hash function (73] .

To sign a message m, A does the following:

1. Select a random integer k from [1,n- 1].
2. Compute kG = (x1, yl) and r= x1 mod n .

If r= O then go to step 1.

3. Compute k- 1 mod n.

4. Compute e= SHA-l(m).

5. Computes=k- 1{e + dA·r} mod n.
If s =O then go to step 1.

6. A 's signature for the message m is (r, s).

To verify A's signature (r, s) on m , B performs the following steps:

7. Verify that r and sare integers in [1,n - 1].
8. Compute e =SHA-1 (m).

9. Compute w = s- 1 mod n.

1 O. Compute u 1 = ew mod n and U:2 = rw mod n .

11. Compute u1G + u2QA = (x1, yL).

2.4. Discrete Jogarithm problem 22

12. Compute v = x1 mod n .

13. Accept the signature if and only if v = r.

The time consuming operations in signature generation and signature verification are the
scalar multiplications in steps 2 and 11.

2.4 Discrete logarithrn problem

The security of ECC is based on the apparent intractability of the following ellíptic curve

discrete logarithm problem (ECDLP): given an elliptic curve E(lFq), a point P E E(IF9)

of order n, and a point Q E E(JF9), determine the integer k, O ~ k ::; n - 1, such that
Q = kP, provided that such an integer exists.

The Pohlig and Hellman algorit hm [76] reduces the computation of l to the problem
of computing l modulo each of the prime factors of n . Therefore, n should be selected
prime to obtain the maximum leve) of security. In practice, one must select an elliptic
curve E (IF9) such that #E(lFq) =h· n ·where n is a prime and h is a sma.ll integer.

The most efficient general algorithm known to dateis the Pollard-p method (78), and its
recent modifications by Gallant , Lambert, and Vanstone (30], and Wiener and Zuccherato
[105], which requíres about .Ji'ii/2 elliptic group operations. Van Oorschot and VViener
(80] showed that the Pollard-p method can be parallelized, and that the expected running
time of t his algorithm, using r processors, is roughly .Jifií/ (2-r) groups operations. This
runtime is exponential in n.

Although no general subexponential algorithms to solve the ECDLP are known, there
are fast algorithms for solving the ECDLP on special curves (e.g., curves for which the
number of points has special properties). We list next some of these known attacks and
explain how they can be avoided in practice.

• Supersingular elliptic curves. Menezes, Okamato and Vanstone [67] and Frey and
Rück [28] showed that, under mild assumptions, the ECDLP can be reduced to
the traditíonal discrete logarithm problem in some extension fi eld Fq ~c, for some
integer k . This reduction algorithm is only practical if k is small. For the class of
supersingular6 elliptic curves it is known that k ~ 6. Hence, this reduction algorithm
gives a sub-exponential time algorithm for the ECDLP. HO\vever, Balasubramanian
and Koblitz [10] have shown that for most randomly generated elliptic curves we
have k > log2 q. To avoid this attack in a particular curve, one needs to check that

6 An elliptic curve over IFq is said to be supersingular if the trace of E, t(E) = q + 1- #E(F9) , is
dívisible by the characteristic of IF9 •

2.5. Algorithms for elliptic scalar multiplication 23

n, the largest prime factor of the curve o rder , does not divide qk - 1 for ali small

k for which the ordinary logarithm problem in 1Fq" is tractable. In practice this
checking is clone for all k, 1 :::; k :::; 30.

• Prime-field anomalous curves. An elliptic curve E over JFP is said to be prime-field

anomalous if #E(lFp) = p. Semaev [93], Smart [95] and Satoh and Araki [87]

independently proposed a polynomial-time algorithm for t he ECDLP in E(!Fp)· This

attack does not appear to extend to any other class of elliptic curves. In practice

this attack is avoided by verifying that the curve order does not equal the cardinali ty

of the underlying finite field.

• Binary composite finite fields. Suppose that E is an elliptic curve defined over the

composite finit.e field lF2m., where m = r · s. Recently, Galbraith and Smart (29L

and Gaundry, Hess and Smart [32] have showed that the complexity of the discrete

logarithm problem on a significant portion of elliptic curves defined over 1F24$ is

smaller than the Pollard-rho method. The authors concluded that this attack does

not appear to be a threat to elliptic curves defined over 1F2m, for m prime, but that

only cun'es that satisfy an additional condition (see [14, pp. 18]), should be used

for setting up an ellipt ic curve cryptosystem.

Additional information on other attacks for the ECDLP as well for attacks on e1liptic

curve protocols can be found in ANSI X9.62 [5] , ANSI X9.63 (6] , Blake, Seroussi and

Smart (14], Johnson and Menezes [44], Koblitz, Menezes and Vanstone [51], Araki , Satoh
and Miura (7]. and Certicom's ECC challenge [19].

2.5 Algorithms for elliptic scalar multiplication

The implementation of public key protocols of ECC such as ECDH, ECDSA and ECAES,

requires elliptic scalar multiplications. That is, cakulations of t he form

Q = kP = P+· ··+ P ...__...
k times

where P is a curve point , and k is an integer in the range 1 s; k s; order(P). Depending

on the protocol, t he point P is either a fixed point that generates a large, prime order

subgroup of E(IFq), or P is an arbitrary point in such a subgroup.

Many authors have discussed methods for eÃ-ponentiation in a multiplicative group,

which can, therefore, be extended to computing elliptic scalar multiplication [36, 66, 53,

54]. However, elliptic curve groups have special properties that aJlow for some extra

optimizations. In this section we will describe some efficient algorithms for computing

kP. These algorithms, depending on the elliptic curve and the characteristic of the finite

2.5. Algorithms for elliptic scalar multiplication 24

field, can be further optimized. Finally, we summarize recent techniques suitable for

hardware or software implementation of ECC.

2.5.1 Basic methods

Binary method. The simplest (and oldest) method for computing kP is based on the

binary representation of k . Tf k = :L;:~ kj2i, where each kj E {O, 1}, then kP can be
computed as

1- 1

kP =I: k32j P = 2(· · · 2(2kl-lp + k1-2P) + · · ·) + koP.
j=O

This method requires l doublings and wk -1 additions, where wk is the weight (the number
of ones) o f the binary representation o f k.

An improved method for computing kP can be obtained from the following facts:

• Every integer k has a unique representation of the form k = :L ~:~ kj2i, where each
kj E { -1, O, 1 }, such that no two consecutive digits are nonzero. This representa.tion,
known as non-adjacent form {NAF), was first described by Reitwiesner [83] (see also
[14]).

• The expected weight of a NAF of length l is l / 3, see [14] .
• The computation of the negation of a point P = (x, y) E E (lFq) (-P = (x, -y) or

- P = (x, x + y)) is virtually free, so the cost of addition or subtraction is practicaJly
the same.

There are, however, severa) algorithms for computing the NAF of k from its binary repre
sentation (see for example [66]). The following method, from Solinas [97], computes the
NAF of an integer k.

Algorithm 8: Computation of NAF(k)

lNPUT: An integer k
ÜUTPUT: The non-adjacent form of k, NAF(k)= (ut - l ... ·u1uo)

1 . Set c +- k, l +- O

2. wh.ile c > O do
if c odd tben

Set u.1 +- 2 - (c mod 4)
Set c +-- c- Ut

else Set u1 +- O
Set c +- c/ 2, l +- l + 1

3 . return(NAF (k) +- (Ut-1 . . . uluo)).

2.5. Algorithms for elliptic scalar multiplication 25

Addition-Subtraction method. This algorithm, analogue of the binary method, performs
an addition or subtraction depending on the sign of each digit of k, scanned from left to
right.7 The details are given in Algorithm 9. This algorithm requires l doublings and l/3
additions on average. This implies, for example, that for elliptic curves over lFp , using
the projective coordinates given in [42], we obtain an improvement of about 14% over the
binary method.

Algorithm 9: Addition-Subtraction method

lNPUT: An integer k and a point P = (x , y) E E(lFq)
ÜUTPUT: The point Q = kP E E(lFq)

1. Compute NAF(k) = (ut_1 ... u1u0)

2. Set Q t-O
3. for j from l-1 downto O do

Set Q t- 2Q
if v.1 = 1 then Set Q f- Q + P
if u1 = -1 then Set Q t- Q - P

4. return(Q).

Window method. Severa} generalizations of the binary method such as the m-ary method,
sliding method, etc., work by processing simultaneously a block of digits. In these
methods, depending on the size of the blocks (or windows) a number of precomputed
poínts are required. Vve describe a typical window method called the width-w window

method (see [97]).
Let w be an integer greater than 1. Then every posit ive number k has a unique wídth-w

nonadjacent form k = I:~-::1 u121 where:

• each nonzero u_1 is odd and less than 2w- l in absolute value;

• among any w consecutive coefficients, at most one is nonzero.

The width-w NAF is written NA.Fw (k) = (u1_ 1 .. . u 1u0). A generalization of Algorithm 8
for computíng NAFw(k) is described in Algorithm 10. Given the width-w NAF of an
integer k, anda point P E E(lFq), the calculation of kP can be ca.rried out by Algorithm 1 L

7This algorithrn can be rnodified to obtain a right·to-lejt version, which does not need storage for the
NAF(k), see [97] for more details.

2.5. Algorithms for elliptic scalar multiplication

Algorithm 10: Computation of NAFw(k)

lNPUT: An integer k
ÜUTPUT: NAFw(k)= (ui-I ... uluo)

1 . Set c r k, l r O
2. while c> O do

if c odd then
Set u1 r 2- (c mod 2w)
if Ut > 2w-l then Set Ut r 'U-t - 2w
Set c r c- u1

else Set u1 r O
Set c r c/ 2, l r l + 1

3. return(NAFw (k) r (Ut- l ... u1uo)).

Algorithm 11: The width-w window method

lNPUT: Tntegers k and w, and a point P = (x, y) E E(IB'q)
ÜUTPUT: The point Q = kP E E(1Fq)

I I Precomputation:
I I Compute uP for u odd and 2 < u < 2w-l

1 . Set P0 r P, T r 2P
2. for i from 1 to 2w-z- 1 do

Set Pi r P i-l + T
I I Main Computation:
3. Compute NAFw(k) = (u1-1 .. . u1uo)
4. Set Q r O
5 . for j from l -1 downto O do

Set Q r 2Q

if Uj =I= O then
Set i r (luj l - 1)/2
if Uj >O then Set Q r Q + ~

else Set Q r Q - Pi
6. return (Q) .

26

The number of nonzero digits in the NAFw(k) is on average l / (w + 1) [99] . Therefore,
AJgorithm 11 requires 2w-z- 1 additions and one doubling for the precomputation step,
and lj (w + 1) additions and l-1 doublings for the rnain computation. Note that although
the number of additions can be reduced by selecting an apropriate width w, the number

2.5. Algorithms for elliptic scalar rnultiplication 27

of doublings is the same as in the previous methods. The total number of finite field ope
rations required for computing kP depends maínly on the algorithms used for the elliptic
operations (affine or projective coordinates), the cost-rat io of inversion to multiplication ,
and the width w.

Comb method. Thís method, developed by Lim and Lee [58], can be used for computing
kP when Pisa fixed point , known in advance of the cornputation. In order to compute
kP, the l-bit integer k is divided into h blocks Kn each one of length a = fl /hl In
addition, each block Kr is subdivided into v blocks of size b = r a/v l Thus, k can be
written as

h - 1 v - 1 b-1

k _ """ """ """ k 2 vbr+ bs+ t - L L L vbr+bs+t ·
r=O s=O t=O

Then, Lim/ Lee's rnethod uses the following expression for computing kP:

b-1 -u-1

kP =L 2t(L G[s][Is,tlL
t=O s=O .

where the precomputation array G[s][u] for O:::; s <v, O :::; u < 2\ a.nd u = (uh- 1 . _. u0)2,
is defined by the following equa.tions:

G[OJ[u]

G[s][u]

h- l

2:::.: Ur 2 T'Vb P,
r=O

2sbG[O][u],

and the number l 5 ,t, for O :::; s < v - 1 and O :::; t < b is defined by

h-1

fs,t = L kvbr+bs+t2r ·

r=O

A deta.iled description of Lim/Lee\ method is given in Algorithm 12. This algorithm
requires v(2h - 1) elliptic points of storage, and the a.verage number of operations to
perform a scalar multiplication is b - 1 doublings a.nd (2h - 1) j2hvb - 1 additions on
a.vera.ge, but vb - 1 additions in the worst case. The selection of both parameters h
and v presents a trade-off between precomputation (memory) and online computations
(speed). Some irnprovements to this a.lgorithm are discussed in (21]. For other a.lgorithms
for computing kP when P is a known point, see [66}.

2.5. Algoríthms for elliptic scalar multíplícation

Algorithm 12: Lim/ Lee method

INPUT: Integers k , h, v and an array of points G[s][u], wit h O ~ s < v
and 1 ::; u < 2h.

I I The array G is computed as:
for u from 1 to 2h - 1 do

for s from O to v - 1 do

Set u f- (uh- l ... u1uoh
Set G[sJ[u] f- 2sb "2:7,:-01 ui2vbi P.

ÜUTPUT: The point Q = kP E E(lFq)·

I I Main Computation:
1. Set Q ~O
2. for t from b- 1 downto O do

Set Q f- 2Q
for s from v - 1 downto O do

Set ls,t ~ "2:~: 0
1

2i kvbi+bs+t

if ls,t =fi O then Q ~ Q + G[s][Is,t]
3. return(Q).

2.5.2 Faster methods

28

In recent years , the study of fast methods for computíng a scalar multíplication has been
an active research area. In t his section we summarize some of these recent methods.

• An algorithm for computing repeated doublings (i.e. , 2t P) , for elliptic curves defined
over IFzm was proposed by López and Dahab [59). This algorithm, an improvement
over the formulas presented by Guajardo and Paar [37), computes 21 P with only one
inversion, and it. is faster than the usual method for computing 21 P (i consecutive
doublings) if the cost-ratio of inversíon to multiplicatíon ís at Jeast 2.5. This method
can be used to speed up window methods such as the one described in the previous
section.

• Another algorithm for computing repea.ted doublings, for elliptic curves over IF2"',
was proposed by Schroeppel [91]. This algorithm ís useful for situations where the
computation of an inverse is relatively fast compared to a multiplication. A slightly
improved version of this method is the following:

2.5. Algorithms for elliptic scalar multíplication

A lgorithm 13: Repeated doublings on E(lF2m)

lNPUT: An integer i and a point P = (x, y) E E(IF'2m)
ÜUTPUT: The point Q = 2i P

1. Set >. t- x + yfx
2. for j from 1 to i-1 do

Set xz f- >.2 +À + a
b

Set Àz f- >. 2 + a + 4 b
X +

Set x f- Xz , >. f- Àz
3. Set Xzf-À2+À+a, Yz?-x2+(>.+ 1) · xz
4. return CQ f- (xz, Yz)).

29

This method is based on the observation t hat doubling a point using the represen
tation (x, >.)8 is faster than using the affine representation (x, y). Thus, we save
one field multiplication in each iteration of Algorithm 13. A further optimization is
to use a fast routine to multiply by the constant b. This method can be used for
speeding up window methods in affine coordinates.

• For elliptic curves over 1Fp, Itoh et al [43] proposed fast formulas for computing
repeated doubl ings in projective coordinates, which reduce both the number of
field multiplications and the number of field additions. This technique works in
combination with window methods.

• An optimízed version of an algorithm developed by Montgomery [69], was proposed
by Lopez and Dahab [60] . This a.lgorithm works for every elliptic curve defined over
IF'2m, is faster than the addition-subtraction method, and it is suitable for both hard
ware and software implementations. In addition, this algorithm has the property
that in each iteration the same amount of computation (an addition followed by a
doubling) is performed. This may help to prevent t iming attacks [50].

• An algorithm for comput ing elliptic scalar multiplications which replaces the dou
bling operation by the halving operation (i.e. , the computation of Q such that
2Q = P) was proposed by Knudsen [45]. This algorithm works for half of the el
liptic curves defined over lF2m (i.e., curves whose elliptic curve parameter a satisfies
Tr(a) = 1). The implementation of this method requires fast routines for the fol
lowing operations in lF2m: the square root o f a fi eld element , the trace of a field
element, and the solution of quadratic equations o f the form x2 + x = s, for s E lF 2,. .

Since these operations can be carried out very efficiently using a normal basis, this
8Every point P = (x,y) E E(F2m) ,x i: O, can be represented as the pair (x,..\) , À= x+y/ x , but (x, ..\)

is not a point on E(F~m).

2.5. Algorithms for elliptic scalar multiplication 30

approach is suitable for hardware implementations. The implementation of Knud
sen 's method, using a polynomial basis, presents a trade off between memory and
speed for both implementations hardware a nd software.

2.5.3 Koblitz curves

These curves, also known as binary anomalous curYes, were first proposed for crypto

graphic use by Koblitz [48]. They are elliptic curves O\'er IF2m with coefficients a and b
either O or 1. Since it is required that b :f:. O, t hen the curves must be defined by the

equations:

Eo : y2 + xy = x 3 + 1 and E1 : y2 + xy = x 3 + x2 + 1.

Koblitz curves have the following interesting property: if (x: y) is a point on Ea, a = O or
a= 1, so is t he point (x2, y2). Moreover, every point P = (x, y) E Ea satisfies the relation

(2.3)

where
J..L=(-l)l-a_

By using the Frobenius map over lF2 : r(x, y) = (x2 , y2), equation (2.3) can be written as

r(rP) + 2P = J-t'TP, for al1 P E Ea-

Then the Frobeni us map r P can be regarded as a multiplication by t he complex number
r= p+p sat isfying r 2 + 2 = J.l'T.

Severa} methods have been proposed to take advantage of the Frobenius map, starting
with the observation o[Koblitz [48], that four consecutive doublings of a point P =
(x , y) E E 1 can be computed efficiently via t he formula

The fastest method known for computing kP on Koblitz curves is due to Solinas [97].
This method uses an expansion for kP o[the forro

1- l

kP =L k,riP, ki E { -1, O, 1} and l ~ logk.
t=O

Then, the calculation of kP can be carried out by a similar method to .Algorithm 9 where

the doubl ings are replaced by evaluations of t he Frobenius map. Before we describe
Solinas· method, t he following sequences Pa(n) a nd oa(n) are defined:

2.6. Implementatíon issues 31

• Pa(O) =O, Pa(1) = a- 1, Pa(n + 1) = Jl,Pa(n)- 2pa(n- 1) +a- 2.

• O"a(O) =O, O"a(l) =a- 1, O"a(n + 1) = Jl,O"a(n)- 2CJa(n- I).

Algorithm 14 describe Solinas' method for computing an elliptic scalar multiplication
on the Koblitz curve E a (IF 2m).

Algorithm 14: T- adie NAF method for Koblitz curves

!NPUT: An integer k anda point P = (x,y) E Ea(1F2m).
ÜUTPUT: The point Q = kP E Ea(IF2 ...)

I I Reduction modulo (Tm - 1)/(-r - 1)
1. Set r~ lPa(m) · k/2m-l J, s ~ lo-a (m) · k/2mJ

2 . Set t ~ 2pa(m) + Jl,Oa(m) , v ~ Oa(m) · s
3. Set c~ k- t ·r- 2v, d ~ (Ja(m) ·r - 2pa(m) · s

I I Main computation

4. Set Q ~ O, D ~ P
5. while c# O or d =f: O do

if c odd then Set u ~ (c- 2d (mod 4))
else Set u ~ O

Set c~ c - u
if u = 1 then Set Q ~ Q + D
if u = -1 then Set Q +- Q - D
Set D ~ TD

Set e ~ c/ 2, c +- d + f.J,€ , d ~ -e
6 . return (Q) .

This algorithm requires, on average, m/3 elliptic addi t ions and m evaluations of the
Frobenius map. For comparíson, ifwe implement Koblitz curves over IF2 163, using a normal
basis9 with the projective coordinates given in [59], Algorithm 9 takes 972 multiplications,

while Solinas' algorithm requires 486 multiplications, obtaining a t heoretical improvement

of about 50%. Further speedups can be obtained by using window techniques; see Solinas
[97]1° for the "width-w -r-addic N AF method" analogous to Algorithm 11.

2.6 Implementation issues

When implementing ECC, there are many factors t hat may guide the choices required in

the ímplernentation of a particular application . The factors include: security considera-
9 For hardware implementations, the squarings are much faster than multiplícations.

10Routine 6 from (97] fails when a= O and w = 6. A new version of this routine was given in (99J.

2.6. Implementation issues 32

tions (the ECDLP and security of the protocols), methods for implementing the finite field
arithmetic, rnethods for cornputing elliptic scalar rnultiplications, the application p]atforrn
(hardware or software) , constraints of the computing environment (processor speed, code
size, power consumption) , and constraints ofthe communication environment (bandwidth,

response time). Since these factors can have a major impact on the overall performance
of the applícation, it is recommended that they ali be taken together for better results.

2.6.1 System setup

Setting up an elliptic curve cryptosystem requires severa! basic choic:es including:

• An underlying finite field IFq
(e.g., q = p, q =2m or q = pm, p > 3)

• A representation of the finite field elements
(e.g., Montgomery residue for 1Fp, polynomial or normal basis for IF2m)

• Algorithms for implementing the finite field operations
(e.g., Montgomery multiplication in IFp and IF2m, the extended Euclidean algorithm
and the almost inverse algorithm for computing multiplicative inverses)

• An appropriate elliptic curve over lF q

(e.g., the NJST curves)

• Algorithms for implementing the elliptic curve operations
(e.g. , windows methods in affine o r projective coordinates)

• Elliptic curve protocols
(e.g. , ECDSA, ECDH)

By an appropriate elliptic curve, we mean an elliptic curve defined over the finite field IFq
that resists ali known attacks on t he ECDLP. Specifically:

1. The number of points, #E(IFqL is divisible by a prime n that is sufficiently
large to resist, t he parallelized Pollard p-attack [80] againts general curves, and its
improvements [30, 105] which apply to Koblitz curves.

2. #E(lFq) =/= q, to resist the following attacks: Semaev [93], Smart [95), and Satoh

Araki [87] .
3. n does not divide qk - 1 for all l ::; k ::; 30, to resist the vVeil paring attack [67] and

the Tate paring attack [28].
4. Ali binary fields IF2m chosen have the property that m is prime, to resist recent

attacks [29, 32] on elliptic curves defined over IF2m where m is composite.

Examples of appropriate curves to be used in real world cryptosystems are given in [72]
and (33].

2.6. lmplementation issues 33

2.6.2 Previous software implementations of ECC

In the last five years, there have been many reported software implementations of elliptic
curves over finite fields. Most of these implementations focus on a single cryptographic
application, such as designing a fast implementation of ECDSA for one particular tini
te field. Typical examples of finite fields used in these implementations are JF2m [89] ,
JF216? (15], 1F2176 [37, 9], JF2m (25], 1Fp (p a 160-bit prime) [41], IFp (p a 192-bit prime)
[25], and IF(26J_25)3 [11]. In [61], we have compiled t iming results of severa! reported soft
ware implementations of ECC. In this section, we summarize three examples of software
implementations of ECC on general purpose computers.

• Schroppel et al. [89] reported an implementation of an elliptic curve analogue of
Diffie-Hel1man key exchange algorithm over 1F2m with a tt·inomial basis represen
tation. A detailed description o f the tini te field a ri thmetic in lF 2 ts5 is provided,
including a fast method for computing reciprocals. called t he almost inverse algo
rithm. An improved method for doubling an elliptic curve point is also presented.
Two computer architectures were used to measure performance, a Sun Sparc-IPC
(25 MHz), with 32 bit word size, anda DEC Alpha 3000 (175 MHz), with a 64-bit
size word. The implementation was written in C with severa! programming tricks.
The performance results are given in Table 2.2.

I Fie]d and Curve Operations over IF216s 11 Sparc IPC I Alpha
Squaring 11.9 0.64
Multiplication 116.4 7.59
Inversion 280.1 25.21

ECDH key exchange 137,000 11,500
DH key exchange (512 bits) 2,670,000 185,000

Table 2.2: Timings (in microseconds) for finite field and elliptic curve operations.

• De Win et al. [25] described an implementation of ECDSA, for both JFP and IF2m,
and made comparisons with other signature algorithms such as RSA and DSA.
The platform used was a Pentium-Pro 200 MHz running Windows NT 4.0 and
using l\t1SVC 4.2 and maximal optimization. The code for RSA and DSA was
written in C, using macros in assembly language. The elliptic curve code was mainly
written in C++ and for IFp the same multi-precision routines in C were called as for
RSA and DSA. The modulus for both RSA and DSA was 1024 bits long. For the
elliptic curves, the field sizes for 1FP and JF2,. were appro:x.imately 191 bits. Table 2.3
summarizes t he results of their implementation.

2.6. lmplementa.tion issues 34

11 ECDSA JF2m I ECDSA JFp I RSA I DSA I

Key generation 11.7 5.5 1 sec. 22.7
Signature 11.3 6.3 43.3 23.6
Verification 60 26 0.65 28.3
Scalar multiplication 50 21.1 - -

Table 2.3: T iming comparison of ECDSA , DSA, a nd RSA signature operations. Ali
timings in milliseconds, unless otherwise indicated.

• Bailey and Paar [11] introduced a new type of finite fields which can be used to
achieve a fast software implementation of ellip tic curve cryptosystems. This class
of finite fields ca.lled Optimal Extension Field (OEF) , is of the form IFpm: where
p is a prime of special form and m a positive integer. The OEFs take advantage
of the fast integer arithmetic found on modem RISC workstation processors. The
aut hors provided a list of OEFs suitable for processors with 8, 16, 32 and 64 bit
word sizes. In [12], the same authors presented further improved algorithms for the
finite field a rithmetic, and timing results of t heir ellipt ic curve implementation on
severa) platforms. Two Alpha workstations DEC 21064 and 21164A, and a 233 MHz
Intel Pentium/MMx PC were used to measure performa nce. The implementation
for the workstations was writt en in optimized C, resorting to assembly to perform
polynomial multiplications; the implementation for the PC was written entirely in
C. The sizes of chosen finite fields were approximately 183 bits. Table 2.4 presents
the timings to perform an elliptic scalar multiplication of an arbitrary point.

Operation Alpha 21064 Alpha 21164A Pentium/MMX
150 MHz 600 MHz 233 MHz

kP 11 r.O 1.09 13.1

Table 2.4: Timíngs (in milliseconds) for an elliptic scalar multiplication.

2.6.3 An example of a software implementation of ECC

In this sect ion we present some details of the ECC software implementation reported in
[16]. T his paper describes an e..-xperience wüh porting PGP to the Research in Motion
(RIM) two-way pager, a nd incorporating ECC into PGP.

• Finite fields: lF 2m, m = 163, 233 283.

2.6. Implementation issues 35

• Representation: A polynomial basis was used for each finite field , with the following
reduction polynomials: x163 + x7 + x6 + x3 + 1 for JF21Ga, x233 + x74 + 1 for JF2m and
x2B3 + xl2 + x7 + x6 + 1 for lFz2s3.

• Algorithms for the finite field arithmetic: The squaring operatíon was sped up by
using a table lookup of 512 bytes. The multiplication operation was carried out
by the algorithrn described in (62]. The inverse operation was carried out by the
extended Euclidean algorithm.

• Curves: The Koblitz and random curves o ver IF 2163, lF 22a3 and lF 2m were selected
frorn the list of NIST recommended curves [72].

• Algoríthms for the elliptic curve group: For random curves, the method given in [60]
was implemented for computing scalar multiplications when P is an arbitrary point.
Lim/Lee's method [66), with 16 points of precomputat ion: was implemented using
the projective coordinates given in (59) for computing scalar multiplications when
P is a known point (e.g., for signing). For a Koblitz curve, Solinas· methods (97]
were implememented using projective coordinates, with width w = 5 for random
points, and w = 6 for a known point (in this case, 16 points of precomputation are
required) .

• EC protocols: T he protocols implemented were: ECDSA and ECAES.

• Multi-precision library: The library bc from OpenSSL [81], written entirely in C,
was used to perform the modular arithmetic operations required in the elliptic curve
protocols a.s well in Salinas' methods.

• Platforms: A Pentium II 400 MHz and a RIM pager 10 MHz.
• Language: The implementation was written entirely in C.
• RSA: The RSA code, written entirely in C, was taken from the OpenSSL library.
• T'imings: The performance results provided are only for the case m = 163 (see [16]

for more timings). Table 2.5 shows the timings for finite field operations in lF2163.

Operations Pentium II RIM pager
in lF2163 400 MHz 10 :lvfHz

Squaring 0.41 100
M ul tiplication 2.97 1,515
Inversion 31.23 12,500

Table 2.5: T imings (in microseconds) for fin i.te field operations in JF216a.

The performance results for the ECC operations using Koblitz and random curves
over IF2 16a are summarize in Table 2.6. Timings for RSA operations, with a modulus
of 1024 bits, are given in Table 2.7.

2.6. lmplementation issues

Koblitz curve over lF 2163 Ra.ndom curve over JF2163

RIM pager PII RIM pager PII
Key Generation 751 1.47 1,085 2.12
ECAES encrypt 1,759 4.37 3,132 6.67
ECAES decrypt 1,065 2.85 2,114 4.69
ECDSA signing 1,011 2.11 1,335 2.64
ECDSA verifying 1,826 4.09 3,243 6.46

Table 2.6: Timings (in milliseconds) for ECC operations overlF2 l63 .

I RSA key generation
RSA encrypt (e= 3)
RSA encrypt (e= 216 + 1)
RSA decrypt

RSA signing
RSA verifying (e = 3)
RSA verifying (e = 216 + 1)

11 1024-bit modulus I

RIM Pager I Pentium I~

11 58o,4o5 I 2,740.87 I

533 2.?0
1,241 5.34

15,901 67.32

15,889 66.56
301 1.23

1,008 3.86

Table 2. 7: Timings (in rnilliseconds) for 1024-bit RSA operations.

36

• Conclusions: Since the two systems RSA-1024 and ECC-163 have a cornparable
levei of security, the following conclusions can be drawn from the timings:

- RSA public-key operations (encryption and signature) are faster than ECC
public-key operations.

- ECC private key operations (decryption and signature generation) are faster
than RSA private-key operations.

- Koblitz curves perform better than random curves, especially for encrypting
and verifying.

- With respect. to the the PGP operations Signing-and-encrypting and Verifying
and-decryting, the performance of ECC (Koblítz curves) is about five times the
performance of RSA on the RIM pager.

2. 7. Conclusions 37

2. 7 Conclusions

In this paper, we have presented an overview of the main ideas behínd the public-key
technology based on elliptic curves. vVe have focused on algorithms for software imple

mentatíon of ellipt ic curves defined over the binary field lF2"'. We h ave also presented
a summary of the fastest software implementations of ECC reported on general purpose
computers.

Capítulo 3

Um Algoritmo para Multiplicação

em IF2m

Este capítulo descreve um algorit mo eficiente para mult iplicação em 1F2m, cujos elementos
são representados usando uma base polinomial. O método proposto pode ser utilizado
para implementação em software de curvas elípticas definidas sobre IF2"'. Os tempos de
execução deste a lgoritmo, em diferentes plataformas computacionais, indicam que o novo
algoritmo é significativamente mais rá pido do que o método padrão de multiplicação em

IF2"'·
O trabalho apresentado neste capít ulo foi publícado como relatório técnico No. IC-00-

09 no Instituto de Computação, UNICAMP, e submetido à conferência Indocrypt 2000.

38

High-Speed Software Multiplication in IF2m

Julio López and Ricardo Dahab

Institute of Computing

State University of Ca1npinas,
Campinas, C.P. 6176, 13083-970, SP, Brazil

{julioher,dahab}@dcc.unicamp.br

Abstract

In this paper we describe an efficient algorithm for rnultiplicat ion in
F 2m, where t he field elements o f F 2m are represented in standard poly
nomial basis. The proposed algorithm can be used in practical software
implementations of ellipt ic curve cryptography. Our tirning results, on
severa) platforms, show that the new method is sign íficantly faster than
the "shift-and-add" method.

Key words. Multiplication in 1Fzm, Polynornial Basis, Elliptic Curve
Cryptography.

3.1 lntroduction

Efficient algorithrns for multiplication in lF2m are required to irnplement cryptosystems
such as the Diffie-Hellrnan and elliptic curve cryptosystems defined over F 2m. Efficient
implernentation of the field arithrnetic in lF2m depends greatly on t he particular basis used
for the finite field. Two cornrnon choices of bases for F2m are normal and polynorníal.
Normal bases seem more suitable for hardware implementations (see [2]).

In this paper we describe a technique for multiplication in t he finite field IF 2m, where
the field elements are represented as binary polynornials modulo an irreducible binary
polynomial of degree m. The proposed method is about 2-5 times faster than t he standard
multiplication, and is particularly useful for software implernentatíon of elliptic curve
cryptosystems over lF2m. It is based on the observation that Lim/ Lee's method [58] (or
comb method [66]) , designed for exponentiation, can be modified to work in F 2m .

The remainder of this paper is organized as follows. In Section 3.2 we describe the finite
field lF2m using a polynomiaJ basis, along with a description of the standard algorithrn for
multiplication in IF 2,... A descript ion of a simple version of Leef Lim 's method and two
versions of the proposed rnethod are described in Section 3.3. In Section 3.4, we present
t iming results on difl'erent computational platforms.

39

3.2. The fi.nite field IF'zm 40

3.2 The finite field IF2m

3.2.1 Polynomial basis representation

In this section we describe the finite field 1F zm, called a characteristíc two finíte field o r
a binary finite field, in terms o f a polynomial basis representation. Let f (x) = xm +
E::~

1 fíxi (where fí E {O, 1}, for i = O, .. . , m - 1) be an irred uci ble polynomial o f degree
m over JF2 ; polynomial f(x) is called the reduction polynomial. A polynomial basis is
specified by a reduction polynomial. In such a representation, the bit string (am- l . .. a1a0)

is taken to represent the polynomial

over IF2 . Thus, the finite field JF2.,.. can be represented by the set of all polynomials of

degree less than m over JF2 . That is,

The field arithmetic is implemented as polynomial arithmetic modulo f (x). In this repre
sentation, additíon and multiplication of a = (am- 1 . .. a1ao) and b = (bm-l ... b1bo) are
performed as follows:

• Addition: a+ b = (Cm-1 ... c1eo), where 4 = (at + bl) mod 2.

• Multiplícation: c= a· b = (Cm-1 ... c1co), where the polynomial c(x) = E::~ 1

cixi

is the remainder of the division of polynomial (L:,~ 1 aixi) · (E7~~ 1 bixl) by j(x) .

That is, c = ab mod f.

For efficiency reasons, the reduction polynomial can be selected as a trinomial xm +xk + 1,
where 1 ::::; k ::::; m - 1 or a pentanomial xm + xk3 + xkz + xk1 + 1, where 1 < k1 < k2 <
k3 < m- 1. ANSI X9.62 [5] specífies severa} rules for choosing the reduction polynomial.

In software implementations, we partition t he bit representation of a field element
a = (am- 1 .•. a 1 a0) into blocks o f the same size. Let w be the word size of a compu ter
(typica.l values are w = 8, 16, 32, 64) , and s be the number of words required to pack a
into words. That is, s = f m / w l· Then, we can write a as an sw-bit number consisting of
s words, where each word is of length w . Thus, we can write

a= (A s-1 .. . A tAo),

where each Ai is of length w and

3.2. Tbe finite field lF2m 41

In polynomials terms,

s- 1 s-1 w-1

a(x) =L Ai(x)xlw =L L a1w+jXiw+J. (3.1)

3.2.2 Recent methods for multiplication in IF2m

In recent years, severa! algorithms for software multiplicat ion in JF2'" bave been reported;
however, we are interested in techniques that can be used when m is prime.1 In Schroeppel
et al. [90] various programming t ricks are discussed for implement ing t he "shift-and-add"
method, a basíc algorithm for multiplication in IF2m. A slight variant of this method is
described by De W in et al. (24]. In Koç (52). a word-level Montgomery multiplication
a lgorithm in lF2m is proposed. T his method is significantly faster t han the standard method
wbenever the multip lication of two words of size w, each one represent ing a polynomial in
lF 2.., can be performed in few cycles. Since this operation is not available in most general
purpose processors, t he aJternative is to use table lookup. This approach requires, for
example, 128 Kbytes for w = 8 and 16 Gbytes for w = 16, making it less attractive for
practica] apphcations. Another well known method for multiplication in 1F2m is that of
Karatsuba (see for examp]e (14]).

3.2.3 The "shift-and-add" method

In this section we describe the basic method for computing c(x) = a(x) · b(x) mod f (x)
in JF2.,.. It is analogous to the binary method for e.x-ponentiation , with t he square and
multiplication operations being replaced by the SHIFT (multiplication of a field element by
x) and field addition operations, respectively. T hus, t he '·shift-and-add '' method processes
the bits of polynomial a(x) from left to right, and uses the following equation to perform
c = ab mod f:

c(x) = x(· · · x(xllm_1b(x) + am-zb(x) mod f(x)) + · · ·) + aob(x) mod f(x) .

Assume that a(x) = E: :: ~ A,xw\ b(x) =L:::~ Bíxwi, and f(x) =L:: ,: ~ F:xwi. Then the
steps of the "shift-and-addl' method are g1ven below.

1 Many standards that include elliptic curves defined over IF'2"' recommend for security reasons, the
use of binary finite fields with the property that m be prime.

3.2. The flnite field lF2m 42

Algorithm l; the '·shift-and-add" method.

lNPUT: a= (As-1 ... Ao), b = (Bs-1 . .. Bo), and f= (Fs-1 ... Fo).
ÜUTPUT: c= (C"_1 . .. Co) =a· b mod f.

1. Set k +- m- 1 - w(s - 1), c f- O

2. for i from s- 1 downto O do
for j from k downto O do

Set c+- SHIFT(c)

if aiw+i = 1 then c+- c~ b
if Cm = 1 then c f- c EB f

Set k +- w - 1
3. return (c) .

This algoriLhm requi res m- 1 shift operations and m field additions on average, but t he
number of field additions can be reduced by selecting the reduction polynomial f(x) as a
trinomial or a pentanomial. Observe tbat in this algorithm , the multiplication step (tbe
computation of d(x) = a(x) ·b(x)) and the reduction step (the computation of c(x) = d(x)
mod f(x)) are integrated. Since for the proposed algorithm these steps are separated, we
include Algorithm 2 for performing the reduction step. Assume that f(x) = xm + g(x).
where the degree of polynomial g(x) is less than m- w.

Algorithm 2: modular reduction.

INPUT: a= (An-1 . . . As-1 ... Ao), and f= (Fs-l ... Fo).
ÜUTPUT: c= (Cs- 1 ••. Co) =a mod f

1 . for t from n - 1 downto s do
Set d f- iw- m

Set t +- Ai(x)xd · f(x) = L;;-01 atw+3:rd+i · f(x)

I I t = (T~ ... ~ - sO ... 0). where Ti= A1 I I
for j from i downto t - s do

Set A; <-A; ffi T3

2. Set t f- 2::;:~
1
- m D-m+;xJ · f(x)

I I t = (Ts-1 ... To) I I

3. for j from s - 1 d ownto O d o

Set A1 <- A; EB T,
4. return (c+- (As-1 ... Ao)).

Algorithm 2 works by zeroing out the most significant word of a(x) in each iteration of
step 1. A chosen multiple of the reduction polynomial f(x) is added to a(x) which lowers

3.3. Proposed metbod 43

the degree of a(x) by w. T his is possible because the degree of g(x) is less than m - w.
Finally, the Jeading sw - m bits of As- l are cancelled in step 3 obtaining a polynomial
of degree less than m. The number of XOR operations will depend on the weight of t he

reduction polynomial f(x). For example, if f(x) is a pentanomial then Algorithm 2 re

quires at most Bn XOR operations.

Rernark I. The use of standard programming tricks such as separated name variables,
and loop-unrolled code, can be used to improve the performance of both Algorithms 1 and
2. See [90] for some suggested progra mrning optimizations.

3.3 Proposed method

In t his section we describe two versions of the new algorithm for multiplication in IF2,..

The first version is a straightforward extension of Lim/ Lee's method, which does not
require extra temporary memory. The second version is based on a window technique.
Before we describe the proposed a lgorithms, we discuss a simple version of Limj Lee's

method for exponentia.tion, using the terminology of additíve groups; this will help us to
understand t he extension to F 2m.

In order to compute t he '·mul tiplication" a·g (the addition of g to itself a times) where
a is an integer and g is an element of a n additive group, t he number a is divided into s
words of size w . T hen a can be written as

s-1

a= (As-1 ... A1Ao) = 2:: A,2w1
,

t=O

where each Ai, O :::; i < s, has the binary representation {D.tw+ w-1 ... auu+lalwh· Based
on the binary representation (ua-1 ... u1u0)2 of u, J ~ u < 2S, and t.he group elements
2wl · g, O :::; i < s- 1, define the vector P[u] of precomputations by the following equation:

Then the multiplication a· g =:L:::~ Ai2w' · g, can be computed as

w-1 s- 1 w- 1

a, · g =L 2'(L aiw+J2w't · g) =L 21 P[Ij], (3.2)
j=O t=O j =O

where li = (a(s-l)w+J ... aw+1 a1)2. A detailed algorithm for computing a · g using the
Lim/ Lee's precomputation technique is given in A lgorithm 3.

3.3. Proposed method

Algorithrn 3: Lim/ Lee's algorithm.

INPUT: a= 2::::~ Aizwí,Ai = (aiw+w-l ·· .azwh,O <i< s, and g.

ÜUTPUT: r== a· g

I I Precomputation I I
1 . for u frorn O downto 2s - 1 do

Set u f- (Us-1 ... u1 uo)2

Set P[u] f- 2::: : :~ ui2wi · g
I I Main Computation I I
2. Set -r f- O
3 . for j frorn w - 1 downto O do

Set r f- r+ r

Set u f- (a(s- I)w+j . .. aw+jaj)2
Set r f- r + P [u]

4. return (r).

44

Algorithm 3 performs well in situations where the group elernent g is known in a.dvance,

since the ca.lculation of the precomputation step can be made off-line. A faster version of

this algorithm, with more precomputations, is discussed in [58].
Next we explain the extension of Algorithm 3 to the finite field JF2, •. Let a and b be

two polynomials in lF2m. Assume that a can be represented as a = (As-l ... Ao) - By
replacing 2 by x and zw · g by xwb(x) in (3.2), we obtain the following formal expression
for the product a(x)b(x):

w-1 s-1

a(x)b(x) =L xi(L atw+JXw1)b(x) .
j=O t = O

It is easy to verify that indeed the above formula for a(x)b(x) is correct. Then an al
gorithm, analogue of Algorithm 3, can be derived for computing ab mod f when b is a

polynomial known in advance. By observing that the operation xwib(x) is virtually free (it
consists of an anangement of the words representing b), the precomputation of the zs- 1

polynomials: P[u] = 2::::~ uixwi, 1 < /u < 2\ u = (u5 _ 1 ... uo)2 , can be made online. This
eliminates the need of storing 25

- 1 polynomials, and t he resulting algorithm is faster
than Algorithm 1, even when bis not a fixed polynomial. The details of t his method are

given in Algorithm 4.

3.3. Proposed method

Algorithm 4: basic proposed method.

l NP UT: a= (As-1 ... Ao), b = (Bs-1 ... Bo), and f = (Fs-1 .. . Fo).
ÜUTPUT: c = (C s- 1 . . . Co)= ab mod f

1 . Set ~ t- O; i = O, . .. , 2s - 1

2 . for j from w -1 downt o O do
for i from O to s - 1 do

if a,w+J # O then
for k from O to s - 1 do

Set T k+i +- T k+t $ Bk

if j # O then T t- xT I I shift TI I
3 . Set c+- T mod f I I Use Algori t hm 2 I I
4 . return (c) .

45

The idea of window methods [14, pp. 66] for exponent iation can be extended to
Algorithm 4 to obt ain a more efficient algorithm, provided that extra temporary memory
is available. For example, if we define t he precomputed vector P 16[u] for O ~ u < 16,

using t he equation

P16[u](x) = (u3x3 + u2x2 + u1x + uo)b(x),

where u = (u3 . .. u0)2, then lhe product a(x)b(x) can be computed as

a(x)b(x)
s-1 w-1

L L atw+jXiw+jb(x)
t=O J=O

w-1 s-1

- L Xj L aiw+jXiwb(x)
j=O i=O

w/4-1 s- 1

L X
4

j L (atw+j+3x3 + .. . + D.iw+J+lx + atw+J)x'wb(x)
J=O i= O

w/4-1 s- 1

L x43(L xwipl6[u,,1](x)), where Ui,j = (a,w+i+3 . . . aiw+ih·
j=O t=O

Based on the a bove formula for ab, we derived an algorit hm t hat processes simultaneously
four bits of each word of a and trades in each itera t ion four mul tiplications by x for one
mul tiplicat ion by x4 • T his method is described in Algoritbm 5.

3.3. Proposed method 46

Algorithm 5: fast proposed method.

TNPUT: a= (As-I ... Ao), b = (Bs- 1 .. . Bo), and f= (Fs-1 ... Fo) .
ÜUTPUT: c= (Cs-1 . . . Co)= ab modf.

1. for j from O to 15 do
Set P16(j]_<- (j3x3 + · · · + Jo)b(x),j = (j3jzjâoh

2. Set 7i t- O; i = O, . .. , 2s - 1

3. for j from w/ 4 -1 downto O do
for i from O to s - 1 do

I 4" Set Ui,J +- Ai 2 1 mod 16
for k from O to s - 1 do

Set Tk+í <- Tk+í EB Pl6[ui,JJ[k]
if j i= O then T <- x 4T

4. Set c+- T mod f I I Use Algorithm 2 I I
5. return (c) .

Remark 2. When b is known in advance, Algorithm 5 can be modified to work with
a larger window size. If we process eight bits at the same time, then we need 256
field elements of precomputations. By observing that I::J=o aixib(x) = L~=O af xfb(x) +
I:~=O a4+fxf x 4 b(x) , we reduce the precomputation to 32 field elements at the expense of
doing more XOR operations.

3.3.1 Performance comparison

Let us compare the performance of Algorithrns 4 and 5. Vve calculate the number of
XOR operations and SHIFT operations required in each algorithm. We assume that the
reduction polynomial is a pentanomial, so the total number of XOR operations required
by Algorithm 2 is at most 8(2s- 1). Therefore, Algorithm 4 requires 2(w- 1) SHIFT

operations and sm/ 2 + 8(2s - 1) XOR operations on average. Similarly, Algorithm 5
requires 3 + 2(wf 4 -1) SHIFT2 operations and s(ll + m/ 4) +8(2s - 1) XOR operations on
average. Thus, the time saved in Algorithm 5 is at. the expense of using 16 field elements
of ternporary memory. In Table 3.1 we compared the number of operations required
by Algorithms 1, 4 and 5, for the particular case m = 163, w = 32, s = 6, and the

pentanomial f(x) = x163 + x7 + x6 + x3 + 1.

2 We are assuming that multíplying a polynomial by x 4 is comparable in speed to multiplying a
polynomial by x.

3.4. Timing results 47

I Algorithms li XOR I SHIFT I
Algorit hm 1 81*6+ 81*2 = 648 162
Algorithm 4 81*6 + 42 = 528 62
Algorithm 5 52*6 + 42 = 354 17

Table 3.1: Number of operations for Algorithms 1, 4 and 5.

3.4 Timing results

This section presents running timings for the proposed a lgorithms and thc ''shift-and-add17

met.hod on the following platforms: a 233 MHz Pentium MMX, a 400 MI-Iz Pentium II, a
450 MHz Sun UltraSparc workstation and a 10 MHz Intel 386 processar (RIM interacti\·e
pager [13]). The implernentation was written ent irely in C, and the compilers used were
gcc for the workstat ion Sun and the Pentium 1\fiVIX , and }vficrosoft Visual C++ (version
6.0) for the other architectures. Ali algorithms were implemented with a comparable levei
of programming optimizations.

Tables 3.2 and 3.3 show timings to perform a multiplication in !F21e.3 using Algorithms 1,
4 and 5.3 From Table 3.2, Algorithm 4 performs 45% to 49% faster than Algorithm 1, and
t he best speed up was obtained on the UltraSparc machine. In Table 3.3 t he performances
of the fast version of t he proposed algorithm (Aigorithrn 5) and the standard met hod are
compared. \Ve observed a significant improvement: Algorithm 5 is about 3.0 to 5.5 t imes
faster than the standard method.

11 Pentium 233 MHz I UltraSparc 450 MHz I

Algorithm 1 31.27 10.97
Algorithm 4 17.07 5.55

Table 3.2: T imings (in microseconds) of t he "shift-and-add'. method and Algorithm 4 for
multiplication in IF21GJ.

3.4.1 Applications

The most important application of th is work is in software irnplementations of elliptic
curve cryptography over 1F2m. Our timings on different architectures have shown that
Algorithrn 5 is significantly faster than the standard method in modern workstations

3 Recently, NIST has recommended ellipt1c curves over IF2 u;s for US federal government use [72].

3.5. Conclusions 48

RIM Pentium Pentium II UltraSparc
10 MHz 233 MHz 400 MHz 450 MHz

Algorithm 1 4,848 31.27 16.48 10.97
Algorithm 5 1,515 10.20 2.97 2.52

Table 3.3: Timings (in microseconds) of the "shift-and-add" method and A lgorithm 5 for
multiplication in JF2l63 .

as well as in wireless devices such as the RIM pager (a hand-held device with an Intel
processor running at 10 MHz [13]).

3.5 Conclusions

There are several techniques that can be used for speeding up t he computation of c =
ab mod f in lF2m. In this paper we have shown a technique based on Lim/Lee's rnethod
for exponentiations. It turns out that our software implementation of the optímized
version (Algorithm 5), on different platforms, proved to be significantly faster tha.n the
"shift-and-a.dd" method, making it useful for software implementations of elliptic curve
cryptogra.phy in different computational environments.

Capítulo 4

Algoritmos Eficientes para a
Aritmética em Curvas Elípticas

sobre IF2m

Este capítulo descreve três contribuições para a implementação eficiente dos críptossis
temas de curvas elípticas sobre IF2"... A primeira é um método novo para duplicar um
ponto elíptico, o qual é mais simples de implementar do que o melhor método conhecido,

desenvolvido por Schroeppel, e que favorece coeficientes elípticos dispersos. A segunda
é uma versão generalizada e melhorada das fórmulas de Guajardo e Paar para calcular
duplicações consecutivas de um ponto elíptico. A terceira contribuição consist e em um
sistema novo de coordenadas projetivas. Os algoritmos resultantes desta formulação le
vam a um ganho de 17% na computação de uma multiplicação escalar, comparado com
métodos anteriores baseados em coordenadas projetivas.

Este capítulo é uma versão revisada do artigo apresentado no workshop: fifth annual

workshop on Selected Areas in Cryptography, SAC'98, Kingston, Canadá. Publicado em
Lecture Notes in Compu ter Science, 1556, pp. 201-212, Springer-Verlag, 1998.

49

lmproved Algorithms for Elliptic Curve
Arithmetic in 1F 2m*

Julio López and Ricardo Dahab
State University of Campinas

Campinas, SP, Brazil
{julioher, dahab}@dcc.unicamp.br

Abstract

This paper describes three contributions for efficient implementation
of elliptic curve cryptosystems in IF2...... The first is a new method for
doubling an elliptic curve point, which is simpler to implement than the
fastest known method, due to Schroeppel, and which favors sparse ellip
tic curve coeffidents. The second is a generaJized and improved version
of the Guajardo and Paar 's formulas for cornputing repeated doublíng
points. The third contribution consists of a new kind of projective co
ordinates that provides the fastest knO\\>'Il arithmetic on elhptic curves.
The algorithms resulting from this new formulation lead to a running
time improvement for computing a scalar rnultiplication of about 17%
over previous projective coordinate methods.

4.1 Introduction

Elliptic curves defined over finite fields of characteristic two have been proposed for Diffie
Hellman type cryptosystems [26]. The calculation of Q = kP, for P a point on the elliptic
curve and k an integer, is the core operation of elliptic curve public-key cryptosystems.
Therefore, reducing the number of field operations required to perform the sca.lar multi
plication kP ís crucial for efficient implementation of these cryptosysterns.

In this paper we discuss efficient rnethods for implementing ellipt ic curve arithmetic.
vVe present better results tha.n those reported in [96, 42, 37] ; our basic technique is to
rewrit.e the elliptic operations (doubling and addition) with less costly field operations (in
versions and multiplications), and replace general field multiplications by multiplications
by fixed elliptic coefficients.

The first method is a new formula for doubling a point, i.e. , for calculating the sum of
equal points. This method is simpler to implement than Schroeppel's method [96] since it
does not require a quadratic solver. If the elliptic curve coefficient bis sparse, i.e., with few

"This paper is a revised version of the paper appearing in the Proceedings of SAC'98.

50

4.2. Elliptic curves o ver 1F 2m 51

1 's in its representation, thus making the multiplication by t he constant b more efficient

than a general field multiplication, then our new formula should lead to an improvement
of up to 12% compared to Schroeppel's method [96] . \Ve also note that our formula can
be applied to composite finite fields as well.

In [37], a new approach is introduced for accelerating the computation of repeated
doubling points. This method can be viewed as computing consecutive doublings using
fractional field arithmetic. Vve have generalized and improved the formulas presented in
that paper. The new formulas can be used to speed-up variants of the sliding-window
method. For field implementations where t he cost-ratio of inversion to multiplication
varies from 2.5 to 4 (typical values of practical software field implementations) , we expect
a speed-up of 7% to 22% in perforrning a scalar multiplication.

In [91], Schroeppel proposes an algorithm for computing repeated doubling points
removing most of the general field multiplications, and favoring elJiptic curves with sparse
coefficients. Using his method, the computation of 2i P, ~ ~ 2 requires i field inversions,
i multiplications by a fixed constant, one general field multiplication, and a quadratic
solver. Since inversion is the most expensive field operation, t his method is suitable
for finite fields where field inversion is relatively fast. If the cost-ratio of inversion to
multiplication is less than 3, this algorithm may be faster than our repeated doubling
algorithm.

vVhen field inversion is costly (e.g., for normal basis representation, the cost-ratio of
inversion to multiplication is at least 7 [37, 96]), projective coordinates offer an alternative
method for efficiently implementing the elliptic curve arit hmetic. Based on our doubling
formula, we have developed a new kind of projective coordinates whích should lead to
an improvement of 38% over the traditional projective arithmetic coordinates [64] and
17% on the recent projective coordinates presented in [42], for calculating a multiple of a
point.

The remainder of the paper is organized as follows. Section 4.2 presents a brief sum
rnary of elliptic curves defined over finite fields of characteristic two. In Section 4.3, we
present our doubling point algorithm. Based on this method, we describe an algorithm
for repeated doubling points in Section 4.4. In Section 4.5, we describe the new projective
coordinates. An implementation of the doubling and adding projective algorithms is given
in the appendix.

4.2 Elliptic curves over 1F2m

A non-supersingular elliptic curve E over 1F2m is defined to be t he set of solutions (x, y) E

IF2m x IFzm to the equat.ion,

4.2. EJJiptic curves over F2m 52

where a and b E lF2m, b i= O, together with the poínt at infinity denoted by O.
It is well known that E forms a commutative finite group, with O as the group identity,

under the addítion operation known as the "tangent and chord method" . Explicit rational
formulas for the addition rule involve severa) arithmetic operations (adding, squaring,

multiplication and inversion) in the underlying finite field. In vvhat follows, we wíll on)y

be concerned with formulas for doubling a point P in affine coordinates; formulas for
adding two different points in affine or projective coordinates can be found in [64, 42].

Let P = (x1 , y1) be a point of E. The doubling point formula [64] to compute 2P =
(Xz 1 Yz) is given by

x 1
{

X2 = xi + b2 ,

Yz = x? + (x1 + '*) -Xz + Xz
(4.1)

Note that the x-coordinate of doubling point formula 2P depends only on the x-coordinate
of P and the coefficient b, but doubling a point requires two general field multiplications,
one multiplication by the constant b and one field inversion.

Schroeppel [89] improved the doubling point formula saving the multiplication by the
constant b. His improved doubling point formula is :

{

xz = !112 + M + a ,
2 Yz = x1 + lVJ · xz + Xz ,

X M = x 1 + ~ .

(4.2)

Observe that the x-coordinates of the previous doubling point formula lead to the qua
dratic equation for lvf:

2 2 b M + lvf + a = x1 + 2 xl
(4.3)

If we assume that the cost o f multiplying by a sparse fixed constant is comparable in speed
to field addítion, and that solving the previous quadratic equation is faster, then we obtain
another method for doubling a point with an effective cost of one general multiplication
and one field inversion. A description of this method, developed by Schroeppel, can be
found in [96, pp. 370-371] and [42].

In the next section, we introduce a new doubling point formula which requires also a
general field rnultiplication, one field inversion, but does not depend on a quadratic solver.

4.3. A New doubling point formula. 53

4.3 A New doubling point formula

Given an elliptic curve point P = (x1 , y1), the coordinates of the doubling point 2P =

(x2, Y2) ·Can be calculated by the following new doubling point formula:

(4.4)

To derive the above formula we transform the y-coordinate of the doubling point formula
(4.2):

4.3.1 Performance analysis

We begin with t he observation that our doubling formula eliminates the need for compu
ting the field element M from formula (4.2), which requires either one general multiplica
tion or a quadratic solver. The calculation of 2P requires one general field multiplication,
two field multiplications by t he fixed constant b, and one field multiplication by the con
stant a. This last multiplication can be avoided by choosing the coefficient a to be O
or 1.1 Thus, our formula favors elliptíc curves with sparse coefficients, í.e., t hose having
relatively few l's in their representation.

In order to compare the running time of our formula with Schroeppel's method [96]
for computing a scalar multiplication, we made the following assumptions:

• Adding and squaring field elements is fast compareci to a multiplicat ion.

• Multiplyíng a field element by a sparse constant is comparable to adding.

• The cost of solving the quadratic equation (4.3) and determining the right solu
tion is about half of that of a field multiplica.tion (this is true for the finite field
implementation given in [89], but no efficient method is known for tower fields [91]).

The fa.stest methods for computing a scalar multiplication [89, 54] perform five point dou
blings for every point-addition, on avera.ge. Table 4.1 compares our formula, in performing
a scalar multiplication, for different values of the cost-ratio T of inversion to multiplication.

1 Eis isomorphic to E 1 : y 2 + xy = x3 + ax2 + b, where Tr(a) = Tr (a) , a = O or 'Y and Tr(() = l (if
n is odd, we can take 'Y = 1), see (64, pp. 39J.

4.4. Repeated doubling algorithm 54

Table 4.1: The number of field multiplicat.ions for computing 25 P + Q.

Cost-Ratio New Formula Schroeppel (96] Improv.
#Mult. #Mult. %

r=2 19 21.5 12
T = 2.5 22 24.5 10
r=3 25 27.5 9
r=4 31 33.5 7

Therefore, for pract ical field imp lementations as those given in [89, 25, 37], our for

mula should lead to a runn ing t ime im provement of up to 12% in computing a scalar

mult.iplication . However, for elliptic curves selected at random (where t he coefficient b is

not necessaril y sparse), both our and Schroeppel's method may not give a computationa]

advantage. A better algorithm for comput ing 25 P is presented in the next section.

4.4 Repeated doubling algorithm

We present a method for computing repeated doublings, 2* P, i ~ 2, which is based on

fractional field arithmetic and the doubling formula. The idea is to successively compute

the elliptic points 21 P = (x1 , Yi), j = 2, 3, ... , i, as triples (v,. w1 , c51) of field elements,

where X 1 = (.- and y, = ~- The exact formulation is given in the following theorem.
1 õi

Theorem 1 Let P = (x, y) be a point on the elliptic curve E. Then the coordinates of

the point 2i P = (xi, y1), i;:::: 2, are given by

where

Xz

vk+l - v: + M~ , vo = x

6k+l - (6k · vk)2 , c5o = 1

Yi

-
vt

Ói
,

W;
c52 '

!

Wk+l - Mk · c5k+l + vk+t · (atSk+I + wl + Mt) wo = y , O < k < i .

(4.5)

(4.6)

4.4. Repeated doubling algorithm 55

Proof. We will prove by induction on i that x1 = ~ and y1 = J?· This is easily t rue for
l

~ = 2. Now assume that the statement is true for i = n; we prove it for i = n + 1:

b 2 M~ ~~~
2 +xn = -2 + r2
Xn 11n °n

br4 + 114 Un n _ lln+l
2 ...-2 - r

11n · Vn Un+l

similarly, for Yn+t we obtain:

b ?) b)
Yn+l = 2 + axn+l + (y;;, + b · (1 + 4

Xn Xn

M~ lln+I (w~ b) (1. M!)
- - 2 +a- ~ -+ -4 + · + - 4

vn Ôn+l ón l/11

M! lln+l (w~ + bó~) · Vn+ l
- -;: - +a-_- + -2

Un+I Ón+l Ôn+l

Wn+ l

- 6!+1

The following algorithm, based on Theorem 1, implements repeated doublings in terms

of the affine coordinates of P = (x , y).

Figure 4.1: Algorithm 1: Repeated doubling points .

lNPUT: P = (x , y) E E 2 ~ 2.
ÜUTPUT: Q = 2i P.

Set V f- x 2
, D f- v; W f- y, T f- b.

for k = 1 to i - 1 do
Set V f- V2 + T.
Se t W f- D · T + V · (aD + HT2 + T) .
if k # i - 1 then

V f- V2
• D f- D2

, T f- bD2
, D f- D ·V.

fi
od
Se't D f- D - V .
Set M f- D- 1

• (V2 + TV) .
Set X f- v-l. V 2 .

Set xi f- !v12 + 1\IJ + a, Yi f- x 2 + Jvf · x, + x1 •

return (Q f- (xt ,Yi)) .

4.5. A. new kind o[projective coordinates 56

Note t hat the correctness of this algorithm follows directly from the proof of Theorem 1

and formula (4.2).

Corollary 1 Assume that P is an elliptic poínt of arder larger than 2i. Then Algorithm 1
performs 32 - 1 general field multiplications, i - 1 m:ultiplications by the fixed constant b,
and 5i - 4 field squarings.

4.4.1 Complexity comparison

Since Algorithm 1 cuts down the number of field inversions at the expense of more fi
eld multiplications, the computational advantage of Algorithm 1 over repeated doubling
(using t he standard point doubling formula (4.2)) depends on r, the cost-ratio of ínver
sion to multiplication. Assuming that add ing and squaríng is fast, we conclude, from

Corollary 1, that Algorithm 1 outperforms the computation of five consecutive doublings
when r > 2. Table 4.2 shows the number of field multiplications needed for computing
25 P + Q for several methods and for different values of r. Note that the standard al
gorithm and Guajardo and Paar's formulas do not use the elliptic curve coefficient b,
whereas Algorithm 1 does.

Table 4.2: Comparison of Algorithm 1 with other algorithms.

Ratio Algorithm 1 Schroeppel [91 J C.P. [37] Standard (4.2)
r b sparse b random b sparse b randorn b randorn b random

2.5 21 25 18.5 22.5 27 27
3 22 26 21.5 25.5 28 30

3.5 23 27 24.5 28.5 29 33
4 24 28 27.5 3L3 30 36

Algorithm 1 obtains its best performance for field implementations when r is at least
three. If the elliptic curve ís selected at random, then we expect Algorithm 1 to be up

to 22% faster than the standard algorithm. For field implementations where r < 3, (for
example [89, 25]), Schroeppel's method [91] outperforms Algorithm 1.

4.5 A new kind of projective coordinates

vVhen field inversion in !F2m is relatively expensive, then it may be of computational

advantage to use fractional field arithmetic to perform elliptic curve additions, as well as,

doublings. This is clone with t he use of project.ive coordinates.

4.5. A new kind of projective coordinates 57

4.5.1 Basic facts

A projective plane P2 is defined to be the set of equivalence classes of triples (X, Y, Z) ,
not ali zero, where (X11 Y1 , ZL) and (X2 , Y2, Z2) are said to be equivalent if there exists

.À E lFzm , .À =I= o such that xl = .ÀXz, Yi = X?Yz and zl = ÃZz. Each equivalence class is
called a projectíve point. Note that if a projective point P = (X, Y, Z) has nonzero Z , then
P can be represented by the projective poínt (x, y, 1), where x = X/Z and y = Y jZ 2 .

Therefore, the projective plane can be identified with all points (x, y) of the ordinary

(affine) plane plus the points for which Z =O.

Any equation f(x, y) = O of a curve in the affine plane corresponds to an equation

F(X , Y, Z) = O, where F is obtained by replacing x = XfZ, y = Y / Z2
, and multiplying

by a power of Z to clear the denominators. In particular, t he projectíve equation of the

affine equation y2 + xy = x 3 + ax2 + b is given by

If Z = O in this equation, then Y2 = O, i.e., Y = O. Therefore, (1, O, O) is the only
projectíve point that satisfies the equation for which Z = O. This point is called the point
at in.finity (denoted O).

T he resulting projective elliptic equation is

To convert an affine point (x, y) to a projective point , one sets X = x, Y = y, Z = 1.

Simílarly, to convert a projective point (X, Y, Z) to an affine point, we compute x =

X / Z, y = Y/Z2. The projective coordínates of the point -P(X, Y, Z) are given by

- P (X , Y, Z) = (X, X Z + Y, Z) . The algorithms for adding two projective points are
given below.

4.5.2 Projective elliptic arithmetic

In this sectíon we present new formulas for adding elliptic curve points in projective
coordinates. These formulas can be derived directly from the formulas for adding points
in affine coordinates (see (64]).

Projective elliptic doubling

The projective form of the doubling formula ís

l
~~~-b-~ 

~'l.IOnc• e.-!'1..,.,. .. , 1 ______ ...:__) 



4.5. .4 new kind o[ projective coordinates 

where 

Zi ·X? , 
X 4 + b. Z 4 

1 1 

bZ{ · Z2 + X 2 · (aZ2 + Yl + bZ: ) 

Projective elliptic adclition 

The projective form of the addíng formu la is 

where 

D = Bo + B1 , 
E= Zo · Zt , 
F=D·E , 
z2 = F 2 

, 

H=C -F, 
X2 = C2 + H +G, 
I = D2 

· Bo · E + X 2 , 

J = D2 · Ao + X2 , 

Ao = Yt · ZJ . 
At = Yo · Zf , 
Bo = X 1 · Zo , 
Bt = Xo · Zt , 
C= Ao+ At , G = D2 · (P + aE2) , Y2 = H · I + Z2 · J 

These formulas ca.n be improved for the special case Z1 = 1: 

where 

A =Yi· Z ~ +Yo , 

B = Xt · Zo + Xo , 
C= Zo · B , 
D = B2 ·(C+ aZÕ) , 
z2 = C2 

, 

4.5.3 Performance analysis 

E=A·C, 
X 2 = A2 + D+ E, 
F = x2 + x1 · z2 , 
c = x2 + Y1 · z2 , 
Yí = E · P + Z2 · G 

58 

The new projective doubling a.lgor ithm requires three general fi eld multiplications, two 
multiplications by a fixed constant , and five squarings. Since doubling a point takes one 
general field multiplication less than the previous projective doubling algorithm given in 
[42], we obtain an improvement of about 20% for doubling a point, in general. For sparse 
coefficients b, we may obtain an improvement of up to a 25%. 

The new projective adding algorithm requ ires 13 general multiplications, one multi
plication by a fixed constant and six squarings. Jf a= O (ora = 1) and Z1 = 1, then only 



4.6. Conclusions 59 

nine general field multiplications and four squarings are required. Thus, we obtain one 

field multiplication less than the previous projective addit ion algorithm presented in [42]. 

The number of field operations required to perform an elliptic addition for various kinds 

of projective coordinates is listed in Table 4.3. 

Now we can estimate the improvement of a scalar multiplicat ion using the new pro

jective coordinates. We will consider only the case a= O (or a= 1) and Zt = 1, since 

for this situation we obtain the best improvement. The number of field operations for 

computing 25 P + Q is given in Table 4.3. 'Csing these values we can conclude that the 

computation of a scalar multiplication , based on the new projective coordinates, is on 

average 17% and 38% faster than the previous projective coordinates [64, 42]. 

Table 4.3: The number of field operations for 25P + Q (a= O or 1, Z1 = 1) 

Projective Doubling Adding Cost of 25 P + Q 
coordi n ates #Mult. #Sqr. #Mult. #Sqr. #Mult. #Sqr. 

(xlz, ylz2
) 4 5 9 4 29 29 

( x I z2
, Y I z3) 5 5 10 4 35 29 

(xlz, yjz) 7 5 12 1 47 26 

4.6 Conclusions 

We have presented irnproved methods for faster implementation of the arithmet.ic of an 

elliptic curve defined over JF2,.,. .. Our methods are easy to implement and can be applied 

to all elliptic curves defined over fields of characteristic two, independently of the specific 

fi eld representation. Tbey favor sparse elliptic coefficients bu t also perform well for elliptic 

curves selected at random. Tn general , they should lead to an improvement of up to 20% 

in the computation of a scalar multiplication. 



4. 7. A ppendix 60 

4.7 Appendix 

Algorit hm 2: Projective ellipt ic doubling algorit hm 

ln put: the finite field lF2m; the field elements a and c = b2"'-
1 
(c2 = b) defin ing a curve E 

over lF2rn ; projective coordinates (X1 , Yí. , Z1 ) for a point P 1 on E . 
Output: projective coordina tes (X2, Yí , Z2) for the point P2 = 2? 1 . 

1. T1 ~ x1 
2. T2 f- Y1 

3. T3 ~ z1 
4. T4 f- c 

5. if T1 =O or T3 =O then 
output (1. O, O) and stop. 

6. T3 ~T} 

7. T4 ~ T3 X T4 
8. T4 ~ TJ 
9. Tt ~ Tf 
1 o. T3 f- T1 x T3 = z2 
11. T1 ~ Tf 
12. T1 ~ T4 + T1 = X2 
13. T2 f- T i 

14. if a :f: O then 

Ts ~a 
n ~T 3 xTs 
T2 f- Ts +T2 

15. T2 f- T4 + Tz 
16. T2 ~ T1 x T2 
17. T4 ~ T3 X T4 
18. T2 f- T4 +T2 
19. x2 f- T1 
20. Y2 ~ T2 
21. z2 ~ T3 

=Y2 

T his algorithm requi res 3 general field multiplicat ions, 5 field squa.rings and 5 temporary 
variables. If also a = O, then only 4 temporary var iables are required. 



4. 7. Appendix 61 

Algorithm 3: Projective elliptic adding algorithm 

lnput: the finite field lFzm; the fi eld elements a and b defining a curve E over 1F2m; 
projective coordinates (X0 , Y0 , Z0 ) and (X1, Y1, 1) for points P0 and P1 on E. 
Output: projective coordinates (X2 , Y2 , Z2 ) for the point P2 = P0 + Pt, unless P0 = P1 . 

In this case, t.he triple (O, O, O) is returned. (The triple (0,0,0) is not a valid projective 
point on the curve, but rather a marker indicating that the Doubling Algorithm should 
be used, see [42}.) 

1. T1 ~xo 
2. Tz ~Yo 
3. T3~Zo 

4. T4 ~xl 
5. T.s ~ Yt 
6. T6 ~ T4 X T3 
7. Tt ~ T5+T1 =B 
8. T6 t- Tj 
9. if a# O the 

T1 t-a 
T1 ~ T6 x T1 

10. n t-Ts X T6 
11. T2 t- T6 +T2 =A 
12. ifT1 =O then 

if T2 = O then output (O, O, O) and stop. 
else output ( LO, O) and stop. 

13. T6 f- Tt X T3 =C 
14. Tt t- T'{ 
15. if a =f. O then 

T1 t- TG +T1 
Tt ~T7 X Tt =D 

else T1 t- T5 x T1 =D 

16. T3 t- TJ = Z2 
17. T6 t- T2 X T6 =E 
18. Tt t- T6 +Tt 
19. Tz ~T:f 
20. Tt t-Tz +Tt =Xz 

21. To~~ T3 X T4 
22. T5 t- T3 x Ts 
23. To~ t- Tt +T4 =F 
24. Ts t- Tt +Ts =G 



4. 7. Appendix 62 

25. T4 f- Ts x T4 
26. Ts f- T3 x Ts 
27. T2 f- T4 +T5 = y2 
28. x2 f- T1 
29. Y2 f- T2 
30. z2 f- T3 

This algorithm requires 9 general field multiplications, 4 field squarings and 7 temporary 
variables. If also a= O, then only 6 temporary variables are required. 



Capítulo 5 

Um Algoritmo para Multiplicação 

Escalar em Curvas Elípt icas sobre 

IF2m sem Pré-computação 

Neste capítulo é apresentado um algoritmo para multiplícação escalar em curvas elípticas 
defin idas sobre IF2m . O algoritmo é uma versão otimizada de um método desenvolvido por 
Montgomery [69]. Nosso algoritmo é fácil de implementar tanto em hardware como em 
software, funciona em qualquer curva elíptica sobre JF2,. , não requer pontos pré-calculados. 
e é em média mais rápido do que o método ·'soma-subtração'' descrito no standard P l363 
[42]. Além disso, o método requer menos registros que nos esquemas projetivos, e a 
quantidade de computação necessá.ria para uma multiplicação escalar é fixa para todos os 
multiplicadores do mesmo tamanho em bits (isto pode ajudar a prevenir ataques baseados 
em medidas de tempo de execução [50]). Portanto, o método melhorado têm muitas 
características almejadas para implementar curvas elípticas em ambientes com recursos 
limitados. 

Este capítulo é uma versão revisada do artigo apresentado no workshop: Cryptographic 
Hardware Embedded Systems. CHES'99, Vlorcester, USA. Publicado em Lecture Notes 
in Compu ter Science, 1717, pp. 316-327, Springer-Verlag, 1999. 

63 



Fast Multiplication on Elliptic Curves over 
F2m without Precomputation* 

Julio López and Ricardo Dahab 

Institute of Computing 
State University of Campinas, 

Campinas, C.P. 6176, 13083-970, SP, Brazil 
{juliohr,dahab}@dcc.unicamp.br 

Abstr act 

This paper describes an algori thm for computing ellipt ic scalar mul
tiplications on non-supersingular elliptic curves defined over !F 2m . T he 
algorithm is an optimized version of a method described in [2], which is 
based on ).ilontgomery's method [69] . Ou r algorithm is easy to implernent 
in both hardware and software, works for any elliptic curve over JF2,. , re
quires no precornputed multiples of a point , and is faster on average 
than the addition-subtraction method described in draft standard IEEE 
P1363. In addition, t he method requires less memory than projective 
scbemes and the amount of computation needed for a scalar multipli
cation is fixed for ali multipliers of t he same binary length. Therefore, 
the improved method possesses many desirable features for implementing 
elliptic curves in restricted envíronments. 

Key words. Elliptic curves over IF2 ... , Point multiplication. 

5.1 Introd uction 

Elliptic curve cryptography first suggested by Kobl itz [47] and Miller [68] is becoming 
increasingly common for implementing public-key protocols as the Diffie-Hellman key 
agreement. The security of these cryptosystems relies on the presumed intractability of 
the discrete logarithm problem on elliptic curves. Since there is no known sub-e.x-ponential 
type algori thm for ellipt ic curves over fi nite fields , the sizes of the fi elds, keys, and other 
parameters can be considered sh01·ter than other public key cryptosyst.ems such as RSA 
with the same leve) of security. This can be especially an advantage for applications where 
resources such as memory and j or computing power are limited. 

"This paper is a revised version of the paper appearing in the Proceedings of CHES"99. 

64 



5.2. Previous work 65 

Elliptíc curves over lF2m are particularly attractive because the finite field operations 
can be implemented very efficiently in hardware and software. See for example [2] for a 
hardware implementation of IF2ts5, and (25) for a software implementation of JF2191 . 

Given an elliptic point P and a Iarge integer k of about the síze of the underlying 
field, the operation elliptic scalar multiplication, kP, is defined to be the elliptic point 
resul ting from adding P to itself k times. This operation , analogous to exponent iati
on in muJtiplicative groups, is the most t ime consuming operation of the elliptic curve 
cryptosystems. 

In this paper, the calculation of kP for a random int.eger k and a random point P 
is considered. An effi.cient scalar multiplication algorithm, which is an optimized version 
of an algorithm described in [2), is presented. The proposed algorithm is suítable for 
hardware and software implementation of random elliptic curves over !F 2m. 

5.2 Previous work 

The basic method for comput ing kP is the addition-subtraction method described in 
draft standard IEEE P1363 [42]. This method is an improved version over the wel1 
know11 "add-and-double" (or binary) method, which requires no precomputations. For 
a random multiplier k, this algorithm performs on average ! log2 k field multiplications 
and ~ log2 k field inversions in affine coordinates, and st log2 k field multiplications in 
projective coordinates. 

Several proposed generalizations of the binary method (for exponentiation in a multi
plicative group) , sucb as the k-ary method, the signed ,.,.;ndow method, can be extended 
to compute elliptic scalar multiplications over a finite field [66]. These algorithms are 
based on the use of precornputa:tion and methods for recoding the multiplier. In [36], 
severa} algorithms are analyzed under various condi tions. However, most of the proposed 
optimizations may not be worthwhile when memory is at a premi um. 

Some special classes of ell iptic curves defined over F 2m allow efficient implementations. 
For anomalous curves, the fastest known algorithm to compute kP is given in (96]; for 
curves defined over small subfields, efficient algorithms are presented in (70]. 

In [37, 91 , 59] some techniques are presented for accelerating methods such as k-ary 
and window based rnethods. These rnethods are suitable for software implementation of 
random elliptic curves over !F 2m. 

A different approach for computing kP was introduced by :. ~ ron tgomery [69}. This 
approach is based on the binary method and the observation t hat the x-coordinate of 
the sum of two points whose difference is known can be computed in terms of the x

coordinates of the involved points. This method uses the following variant of the binary 
rnethod: 



5030 Elliptic curves over lF2m 

Figure 501: Algorithm 1: Binary Method 

INPUT: An integer k > O and a point P. 
ÜUTPUT: Q = kP. 

10 Set k +-- (kt-1 o o o k1k0 )2 o 
2 o Set P1 +-- P, P2 +-- 2P o 

30 for i from l- 2 downto O do 
if ki = 1 then 

Set P1 +-- P1 + g , P2 +-- 2P2o 
else 

Set P2 +-- P2 + P1, P1 +- 2Pto 
40 return(Q +-- P1) o 

66 

Note that this rnethod rnaintains the invariant relationship g-P1 = P, and performs 
an addition and a doubling in each iteration o In [65], Montgomery's method was applied 
for reducing the number of registers needed to add points in supersingular curves over IF2 m o 
However, the authors observed that the benefits in storage provided by Montgomery 's 
method is at a considerable expense of speedo 

From the point o f view o f hardware implementation of elliptic curves over lF2m, few 
papers have discussed efficient methods for computíng kPO In [2], Montgomery's method 
was adapted for non-supersingular elliptíc curves over F 2m o However, the formulas given 
for implementing each iteration are not efficient in terms of field multiplicationso 

In this paper we will present an efficient implementation of Montgomery 's method for 
computing kP on non-supersingular elliptic curves over lF2m o 

The remainder of the paper is organized as followso In Section 503 vve present a 
short introduction to elliptic curves over JF2,.,. o The proposed algorithm is described and 
ana.lyzed in Section 5.40 Some running times of the proposed algorithm based on LiDIA 
are presented in Section 5050 An implementation of t he proposed algorithm is given in 
the appendixo 

5.3 Elliptic curves over IFzm 

Here we present a brief introduction to elliptic curves; more information on elliptic curves 
over finite fields of characteristic two can be found in [64, 42}0 Let F 2m be a finite field of 
characteristic twoo A non-supersingular elliptic curve E over lF2m is defined to be the set 
of solutions (x, y) E lF2m x 1F2m to the equation, 

y 2 + xy = x3 + ax2 + b , 



5.4. Improved metbod 67 

where a and b E lF2rn, b =f. O, together with the point at infinity denoted by O. 
It is well known that E forms a comrnutative finite group, with O as the group identity, 

under the addition operation known as the "tangent and chord method". Explicit rational 
formulas for the addition rule involve severa! a rit hmetic operations (addi tion, squaring, 

multiplication and inversion) in the underlying finite field. Formulas for adding two points 

in projective coordinates can be found in (64, 59]. In affine coordinates, t he elliptic group 

operation is given by the following. Let P = (x1 , y1 ) E E; then -P = (x17 x 1 +y1). For ali 

P E E, O+ P = P +O= P. lf Q = (x2,Y2) E E and Q =f. - P, t hen P + Q = (x3 , y3 ) . 

where 

and 

P=JQ 

P = Q 

- { Ci1! M2 )(xl + X3) + XJ + Yl , p =I= Q 
Y3 - . 1 2 J1J... 

xf + (x1 + x~ )x3 + X3 , P = Q. 

(5.1) 

(5.2) 

Notice that the x-coordinate of 2P does not involve the y-coord inate of P. T his observa
tion will be used in the derivation of the improved method. 

5.4 Improved method 

T his section describes t he improved method for computing kP. \Ve first develop an 

algorithm in affine coordinates which requires two field inversions in each iteration. Next 

a '·projective" version is presented with more field multiplications, but with only one field 

inversion at the end of the computation. 

5.4.1 Affine version 

The extension of Montgomery's method [69] to ellipt ic curves over JF2,. requires formulas 
for implementing Step 3 of Algorithm 1. In what follows we give efficient formulas that use 

only the x-coordinates of P1. P2 and P for perforrning t he arithmetic operations needed in 
Algorithm 1. At t he end of the lth iteration of Algorithm 1, we obta.in the x-coordinates 
of kP and (k + 1)P . We also provide a simple formula for recovering the y-coordinate of 

kP. 

The following lemma gives another formula for computing t he x-coordinat e of t he 

addition of two different points. 



5.4. Improved method 68 

Lemma 1 Let P1 = (x1, y1), and P2 = (x2, y2) be elliptíc points. Then the x-coordinate 

of P1 + P2. X3, can be computed as follows. 

(5.3) 

Proof. Since P1 and P2 are elliptic points , it follows that. yf+y~+XtYl +X2Y2+x~+x~ =O. 
The result. then follows easily from formula (5.1). 

The foll owing lemma shows how to compute the x-coordinate for the addition of two 

points whose difference is known. 

L em ma 2 Let P = ( x, y), P 1 = ( x 11 yt). and P2 = ( x2 , Y2) be elliptíc po'ints. A ssum e that 
P2 = P1 + P . Then the x-coordinate of P1 + P2, x 3, can be computed in terms of the 

x -coordinates of P, P1 and P2 as follows. 

(5.4) 

Proof. The case P = O follows d irectly from (5.1 ). Apply ing formula (5.3), we obtain 
that the x-coordinate of P2 + P1 can be rewritten as 

(5.5) 

Similarly, t he x-coordinate of P2 - P1 satisfies 

XtY2 + X2(X1 + Yt) + XtX~ + XzX~ 
x = (x1 + x2)2 (5.6) 

The resul t follows from adding (5.5) and (5.6). 
T he nex:t Jemma allows one to compute the y-coordinate of P1 when P and the x-

coordinates of P1 and P1 + P are known. 

Lemma 3 Let P = (x, y), P1 = (xb y1), and P2 = (x2, Y2) be elliptzc poznts. Assume that 
P2 = P1 + P and x =f:= O. Then the y-coordinate of P1 can be expressed in terms of P , and 
the x-coordinates of P1 and P2 as follows. 

(5.7) 

Proof. Since P2 = P1 + P, we obtain from (5.3) that y1 satisfies the following equation: 



5.4. Improved method 69 

Therefore, 

XY1 X2Xi + X2X
2 + XtY + XtX

2 + xxi 

- xt{x1x2 + x1x + x2 + y} + x{xx2} 

- Xt {x1X2 + X1X + X 2 + XX 2 + x 2 + y} 

+ X{XtX2 + X1X + XX2 + y} + XY 

- (x1 + x){(x1 + x)(x2 + x) + x2 + y} + xy. 

The following algorithm, based on Lemmas 2 and 3, implements Montgomery's method 

in affine coordinates. 

Figure 5.2· Algorithrn 2A: Montgomery Scalar Multiplication 

lNPUT: An integer k .2 O and a point P = (x, y) E E. 
0 UTPUT: Q = kP. 

1. if k =O or x =O then output(O, O) and stop. 
2. Set k f- (k1-1 .. . k1koh. 
3. Set x 1 f- x, x2 f- x2 + b/x2

. 

4. for i from l - 2 downto O do 
S t X! et t- X1 + X2. 
if kí = 1 then 

Set XI f- X+ t2 + t, X2 f- X~+ bjx~. 

else 
Set X2 t- x + t2 + t, x 1 t- xi + bfxf. 

5. Set T1 f- x1 +X, T2 f- X2 +X. 

6. Set Y1 t- r1(r1r2 + x2 + y)jx + y 
7. return(Q f- (x1, Y1)). 

Observe that Algorithm 2A, in each iteration of Step 4, performs two field inversions, 
one general field multiplication, one multiplication by the constant b, two squarings, and 

four additions; it follows that t he total number of fi eld operations to compute kP is given 
in the following lemma: 

Lemma 4 For computing kP, Algorithm 2A takes exactly the following number o f field 
operations in lF 2,.: 

#lNV. = 2llog2 kJ + 1 , 
#ADD. = 4llog2 kj + 6 , 

#NfULT. = 2llog2 kJ + 4 , 

#SQR. = 2llog2 kJ + 2. 

Remark. A further improvement to Algorithm 2A is to use an optimized routine to 
multiply by the constant b. Another potent1al improvement isto compute in parallel Xt 

and x2 from Step 4, since t hese calcuJations are independent of each other. 



5.4. lmproved metbod 70 

5.4.2 Projective version 

\\'hen fi eld inversion in IF2m is relatively expensive ( e.g., invers ion based on Fermaf s theo

rem requires at least 7 mult iplications in lF2m if m > 128) , then it may be of computa tional 

advantage to use fractional field arithmetic to perform ellipt ic curve calculations. 
Let P, P1 a nd P2 be points on the curve E such that P2 = P1 + P. Let t he x-coordinate 

of Pi be represented by Xt/Zt, for i E {1 , 2}. From Lemma 2, when the x-coordinate of 
2~ is converted to projective coordinates it becomes 

{ 
x{2g ) = xt + b · z: , (5.8) 
z(2Pi) = Z[ · x;. 

Similarly, the x-coordina te of P1 + P2 in projec tive coordinates can be computed as the 

fraction X 3/Z3 , where 

{ 
z3 = (X 1 · z2 + x2. ZI)2 , 
x3 = x · z3 + cx1 · Z2) · cx2 · Zt )-

(5.9) 

The addition formula requires three general fi eld multiplications, one mul tiplicat ion by 
x (i.e. , the x-coord inate of P , which is fixed during the computa.tion of kP), one squaring 
and two addi tions; doubling requires one general field mul tiplication , one multiplication 
by the constant b, four squa rings, a nd one addi tion. A method based on these formulas 
is described in the next algorit hm . 

Figure 5.3: Algorithm 2P: Montgomery Scalar Multiplication 

l NPUT: An integer k 2 O and a point P = (x, y) E E . 
Ü UTPUT: Q = k P. 

1 . if k =O or x =O then output (O, O) and stop. 
2 . Set k r (kt-1 . . . k1koh. 
3. Set X1 r x, Z1 r 1, X2 r x4 + b, Z2 r x2 . 

4 . for i from l- 2 downto O do 
if kt = 1 then 

Madd(X1, Z1,X2, Z2). Mdouble(X2, Z2). 
else 

Madd(X2, Z2, Xt, Zt), Mdouble(X1 , Zt). 
5 . return CQ f- Mxy(X 1, Z1 , X2, Z2) ) . 

An implementation of the procedures Madd , Mdouble and Mxy is given in the appendix. 

Lemma 5 Algorithm 2P perf orms exactly the following number of fi eld operations in lF2rn: 

# I NV. = 1 , 

#ADD. = 3llog2 kj + 7 , 

#MULT. = 6llog2 kj + 10 

#SQR. = 5Llog2 kJ + 3. 



5.4. ImproYed metbod 71 

Remark. Since the complexity of both versions of Algorithm 2 does not depend on the 
number of 1 's (or O's) in the binary representation of k, th is may help to prevent timing 
a.ttacks. On the other hand, t he use of restricted mul t ipliers (e.g., with small Hamming 

weight) does not speedup directly Algorithms 2A and 2P, and this is a disadvantage 
compared to methods such as the bina.ry method. However, from a practical point of 
view, most protocols in ct1-ptographic applications use random multipliers. 

5.4.3 Complexity comparison 

In the sequei, we assume tha.t adding and squaring in 1F2m is relatively fast . Now we 
compare the complexities of t he addition-subtraction method to the complexity of the 

proposed method. This is a fair comparison since both methods do not use precomputa
tion. For a random multiplier k, the addition-subtraction method in projective coor
dinates, given in [42], performs 8.3log2 k field multiplications; it follows t hat we expect 

Algorithm 2P to be about 28% faster on average. However, if we use the formulas given in 
[59] for implementing the group operation in projective schemes, Algorithm 2P is about 

14% fast er than the addition-subt.raction method. In the following table we summarize 

the complexities of these methods. 

Table 5.1: Comple:x'ity Comparison of Algorithm 2P with other algorithms (a= 0,1). 

Method l Projective Coordinates I 
Binary [64) 13 log2 k 

Add-Sub (42) 8.3log2 k 
Add-su b[59] 7log2 k 

Algorithm 2P 6log2 k 

Now we derive the cost of the addition-subtraction method (using affine coordinates) 
in terms of field multiplications. As mentioned in Section 5.2, this method performs on 

average ~ log2 k field m ultiplications and ~ Jog2 k fi eld inversions. Thus, the total cost is 
k(4r + 8) multiplications, where r is the cost-ratio of inversion to m ultiplication. This 

shows t hat for implementations of the finite fieJd lF2m where r > 2.5 (see for example 

[2, 25, 37]), Algorithm 2P gives a computational advantage over t he addition-subtraction 
method. 



5.5. Running times 72 

5.5 Running times 

In this section we present some running times we obtained in our software implementati
on of the proposed algorithm over the finite fields lF2m, where m = 163, 191 and 239. To 
represent the finite fields we used Li DIA [57], a C++ based library. This finite field imple
mentation uses a polynomial basis representation and the irreducible modulus is chosen 
as sparse as possible. Vve used a Sun UltraSPARC 3001\tl.Hz machine. For comparison, we 
list in Table 5.2 the timings for the basic arithmetic operations in 1F2m. 

Table 5.2: Average running t imes (in microseconds) for JF2,. using LiDIA. 

[]xtension m I Add. I Sqr. I Mult. I Inv. I 
163 0.6 2.3 10.5 96.2 
191 0.7 2.0 10.9 118.1 
239 0.8 2.6 14.6 162.8 

Notice that one field inverse costs more than 9 field multiplications; therefore, the use 
of LiDIA may illustrate the performance of the proposed algorithm in situations where a 
field inverse is relatively expensive compareci to field multiplication. 

Table 5.3: Average running times (in milliseconds) for computing mP. 

I Extension m I Binary[64] I Add-Sub.[42] I Algorithm 2P I 
163 27.5 19.1 13.5 
191 33.1 22.4 16.0 
239 52.3 35.1 25.6 

In Table 5.3 we present average running times for computing a scalar multiplication 
using severa! methods. These values were obtained using the following test: we select 10 
random elliptic curves (a = O) over IF 2m, then we multiply a random point P in each curve 
with 100 randomly chosen integers of size < 2m. We implemented the binary method in 
projective coordinates (see [64]), the addition-subtraction method [42] and Algorithm 2P. 
From Table 5.3 we conclude that the proposed method on average is 27-29% faster than 
the addition-subtraction method and 51% faster tha,n the bi.nary method. These timings 
show that the theoretical improvement of Algorithm 2P, given in Table 5.1, ís observed 
in a actual implementation. 



5.6. Conclusion 73 

5.6 Conclusion 

In thís paper, we have presented an efficient method for cornputing elliptic scalar multi
plications, which is an optimízed version of an algorithm presented in [2]. The method 

performs exactly 6Llog2 kJ + 10 field mul tiplication for computing kP on elliptic curves 
selected at random, is easy to implement in both hardware and software, requires no 
precomputations, works for any implementation of GF(2n), is faster than the addition
subtraction method on average, and uses fewer registers than methods based on projective 
schemes. Therefore, the method appears usefuJ for applications of elliptic curves in con
straint environments such as mobile devices and smart cards. 



5. 7. Appendix 74 

5.7 Appendix 

Mdouble (Doubling algorithm) 

lnput: t he fin ite field lF2m; the fi eld elem ents a and c = b2"'-
1 

(c2 = b) defining a curve E 
over lF2m; the x-coordinate X / Z for a point P . 
Output: t he x-coordinate X / Z for the p oint 2P. 

1. T1 +--- c 

2. X t- X 2 

3. z +--- Z 2 

4. Tl f- z X Tl 
5. Zt-ZxX 
6. Tt t- T~ 

7. X t-X2 

8. Xt--X+T1 

T his a lgori thm requires one genera l field mult iplication , one field mult iplication by the 

constant c, four field squa rings and one tempora ry vari able. 

Madd (Adding algoritbm) 

lnput : the fi nite field IF2, ; t he field elements a and b defining a curve E over JF2,..; the 

x-coordinate of the point P: the x-coordinates X 1/ Z1 a.nd X2/Z2 for the points P1 and 

P2 on E. 
Out put: T he x-coordinate Xl/Z1 for the p oint P 1 + Pz. 

1. TI f- X 

2. xl t- x l X Zz 
3. z1 t- Z1 x x2 
4 . T2 t- x~ x z1 
5. Z1 t- z1 + x1 
6. z1 +--- Zi 
7. x l +--- Z1 x T1 
8. X1 +--- xl +T2 

This a lgorithm requires three general fie ld multiplications, one fie ld mul tiplication by x , 
one field squaring an d two temporary variables. 



5.7. Appendix 

Mxy ( Affine coordinates) 

Input: the finite field lF2m; the affin e coordinates of the point P 
coordinates XIfZ1 and X2/Z2 for the points P 1 and P2 . 

Output: The affine coordinates (xk, Yk) = (X2, Z2) for the point P1. 

1. if zl = o then output (0,0) and stop. 
2. if Z2 = 0 t hen OUtput (x, X+ y) and stop. 

3. Tl f- X 

4. T2 t- y 
5. T3 t- Z1 x z2 
6. z1 +- z1 x T1 
7. z1 t- z 1 + x 1 

s. z2 t- z2 x T1 
9. x 1 t- z2 x x 1 

10. z2 +- z2 + x2 
11. z2 +- Z2 x z 1 

12. T4 t- Tf 
13. T4 t- T4 + T2 
14. r4 +- r4 x n 
15. T4 t- T4 + Z2 
16. T3 t- T3 X Tl 
17. T3 t- ínverse(T3) 

18. T4 f- T3 X T4 
19. x2 +- x1 x T3 
20. Z2 t- X 2 + T1 
21. z2 t- Z2 x T4 
22. Z2 t- z2 + T2 

75 

(x, y) ; t he x-

T his algorithm requires one field inversion , ten general field mult iplications, one field 
squaring and four temporary variables. 



Capítulo 6 

PGP em Dispositivos Limitados sem 
Fio 

~este capítulo descrevemos um e>.-perimento prático, em que a infra-estrutura criptográfica 
de chave pública de uma implementação do PGP (RSA e ElGamal) no pager bidirecional 
RIM foi substituída por algoritmos baseados em curvas elípticas sobre lF2m. Os resultados 
mostram que o desempenho dos criptossislemas de curvas elípticas (CCE) foi melhor do 
que os outros sistemas de chave públ ica para o mesmo nível de segurança teórico. A mesma 
biblioteca dos CCE foi implementada em outras plataformas (estações de trabalho, PCs 
e PalmPilot) e a comparação de desempenho com outras tecnologias de chave pública 
(RSA, DSA e ElGamal) também se mostraram favorável aos CCE. 

O trabalho apresentado neste capítulo foi aceito para apresentação no 9th USENIX 
Security Symposium, a realizar-se em agosto de 2000 em Denver, Colorado, EUA. 

76 



PGP in Constrained Wireless Devices 

Michael Brown* Donny Cheung* Darrel Hankersont 
Julio Lopez Hernandez+ J\llichael Kirkup* Alfred Menezes* 

Abstract 

The market for Personal Digital Assistants (PDAs) is growing ata rapid 
pace. An increasing number of products, such as the PalmPilot, are 
adding wireless communications capabilities. PDA users are now able to 
send and receive email just as they would from their networked desktop 
machines. Because of the inherent insecurity of wireless environments, 
a system is needed for secure email communications. The requirements 
for the securi ty system will likely be inftuenced by the constraints of 
the PDA, including limited memory, Jimited processing power, limited 
bandwidth, and a limited user interface. 
This paper describes our experience with porting PGP to the Research 
in Motion (RIM) two-way pager, and incorporating elliptic curve cryp
tography into PGP's suite of public-key ciphers. Our main conclusion 
is that PGP is a viable solution for providing secure and interoperable 
email communications between constrained wireless devices and desktop 

machines. 

6.1 Introduction 

It is expected that t here wíll be more than 530 million wireless subscribers by the year 
2001, and over a billion by 2004 (see [102]) . Efforts are underway, most notable among 
them the \Vireless Application Pro toco] (WAP) [101], to define and standardize the emerg
ing wireless Internet. Users will access wireless services including telephony, erna il and 
web browsing, using a variety o f wireless devices such as mobile phones) PDAs (such as the 
PalmPilot) , pagers, and laptop computers equipped with wireless modems. Many wireless 
devices are constrained by Jimited CPU , memory, battery life , and use r interface ( e.g., 
small screen size, ora lack of graphics capabilit ies). vVíreless networks are constra.ined by 

*Dept. of CombinatOrics and Optimization, University of Waterloo, Canada. 
Emails: {mk3brown, dccheung,mkir kup ,ajmene ze }<ilcacr .math. uwaterloo. ca 

tDept. of Discrete and Statistical Sciences, Auburn University, USA. 
Email: hankedr@mail. aubnrn . edu 

tlnstitute of Computing, State University of Campinas, Brazil, and Dept. of Computer Science, 
University of Valle, Colombia. Email: j ulioher<Mcc. unicamp. br 

77 



6.2. Pretty Good Privacy 78 

low bandwidth, high latency, and unpredictable availability and stability. The purpose of 
this paper isto examine the viabi1ity of using PGP for providing secure and interoperable 
email communications between constrained wireless devices and desktop machines. 

There are two popular standards for email securi ty: S/MIME and PGP. S/MIME [82] 
provides confidentiality and authentication ser v ices to the YIIME (M ultipurpose Internet 
Mail Extensions) Internet email format standard. PGP (Pretty Good Privacy) [1 7, 31] 
is an email security standard that has been widely used since it was first introduced by 
Zimmermann in 1991 [106]. While it appears t hat S/MIME will emerge as the industry 
standard for commercial and organizational use, it a lso appears that PGP will remain the 

choice for personal email security for many users in the years to come. 
The specific goals of this project were three-fold: 

1. Port the basic PGP funct ionality to the RIM pager, and implement a workable key 
management system and a usable user interface that is appropriate for the RIM 
pager environment. 

2. Achieve interoperability with existing PGP implementations for workstation and 
PalmPilot platforms. 

3. Incorporate standards-based and commercial-strength elliptic curve cryptography 
into PGP's suite of public-key algorithms. 

The remainder of this paper is organized as follows. §6.2 provides a brief history of 
PGP. and summarizes the security services offered by PGP. A description of the RD•I 
two-way pager including hardware, software, user intetface, development tools. and the 
paging environment, is provided in §6.3. A brief overview of the PalmPilot is presented 
in §6.4. Elliptic curve cryptography is introduced in §6.5, along with a description of our 
implementation. We provide timing comparisons of our ECC implementation with RSA 
and DL implementations on a variety of platforrns. Our experience with porting PGP to 
the RIM pager is described in §6.6. Our implementation, including a descript.ion of the 
user interface and key management facilities, is presented in §6. 7. In §6.8, we describe 
some possible directions for future work. Finally, §6.9 makes concluding remarks. 

6.2 Pretty Good Privacy 

6.2.1 History of PGP 

The history of the Pretty Good Privacy (PGP) application is both interesting and convo
luted, and encornpasses issues in national security, personal privacy, patents, personalities, 
and politics; see1 for example. [31). A myriad of PGP releases emerged, in part due to US 
Government restrictions on exports. 



6.2. Pretty Good Privacy 79 

The initial PGP application was released in 1991. According to [31] this was an 
"emergency release" prompted in part by a proposed anti-crime bill which would require 
eavesdropping ability for the US Government on all communicatjons systems. An RSA
based public-key scheme was used, along with a symmetric-key algorithm developed by 
Zimmermann known as Bass-0-Matic. 

Security concerns over Bass-0-Matic resulted in its replacement with IDEA in PGP 2. 
A commercial version of PGP was developed in 1993 with ViaGrypt ( which had a license 
from Public Key Partners for RSA). Although RSA Data Security had relea.sed a reference 
implementation (RSAREF) of RSA that could be used for non-commercial purposes, there 
were interface and other difficulties preventing its use in PGP. In 1994, RSAREF 2.0 was 
released and included changes which MIT recognized would solve the interface problems. 
This eventually led to PGP 2.6, a version which could be used freely for non-commercial 
purposes, and which quickly leaked out of the US and developed in to severa! international 
variants. 

MIT PGP 2.6.2 increased the ceiling on t.he maximum size of a.n RSA modulus (from 
1024 to 2048 bits, although ViaCrypt reports a patch correcting certain bugs with the 
Jonger moduli) . The symmetric-key cipher is IDEA ~ a 64-bit block cipher with 128-bit 
keys; MD5 is used as the hash function, having digest length of 128 bits. A dependency 
tree for various US and international versions and variants rnay be found via (75]. 

vVork on PGP 3 began in 1994, and was released by PGP Inc (formed by Zimmermann) 
as PGP 5 in May 1997.1 New algorithms were present, including DSA [72] for signatures, 
an ElGamal public-key encryption scheme [27], the Secure Hash Algorithm (SHA-1 ) (73] 
with 160-bit message digests, and the symmetric-key ciphers CAST and Triple-DES (64-
bit block ciphers with key sizes of 128 and 168 bits, respectively) . 

In August of 1997, the IETF was approached concerning a. proposal to bring PGP 
to a standards body as a protocol. An OpenPGP working group was formed. Using 
PGP 5 as the base, a format specification was promoted to a Proposed Standard by the 
IESG in October 1998. The resulting IETF specification for OpenPGP [18} describes 
an unencumbered architecture, although compatibility with PGP 2.6 was encouraged. A 
reference implementation was written by Tom Zerucha and provided in a forro suitable 
for sca.nning to circumvent US export restrictions [17]. 

In December 1999, Network Associates (which had a.cquired PGP Inc in December 
1997) was granted a license by the US Government to export PGP. An international PGP 
project [74], which had been making PGP available world-wide by scanning paper copies 
that were (legally) exported from the US, announced that the lifting of the ban on strong 

1 Callas [17] notes that ViaCrypt had released several products with a version number of 4 although 
they were derivatives of PGP 2, and "it was easier to explain wby tbree becarne five than to explain why 
three was the new program and four the old one." 



6.2. Pretty Good Privacy 80 

encryption '·marks the end of the PGPi scanning and OCR project, which started with 
PGP 5.0i in 1997." 

Severa} OpenPGP-compliant applications have b een developed. The reference im
plementation by Zerucha [17] relies on the OpenSSL líbrary [81], and has been used by 

Zerucha as the basis for a PalmPilot implementation. The standard does not require the 
use of patented algorithms, and applications such as GNU Prh·acy Guard [34), released in 
1999 as a replacement for PGP, can be both compliant and distributable without patent 
restrictions (since it does not include IDEA or RSA). 

6.2.2 PGP security services 

Key generation and storage. PGP allows a user to generate multiple key pairs (public
keyf private-key pairs) for each public scheme supported. Different key pairs are generated 
for publ ic-key encryption and for digital signatures. The key pairs, together with public 
keys of other users, are stored in a file called t he key ring. 

lnformation stored with a public key includes t he user's name, email address, trust 
and validity indicators, key type, key size, expiry date, fingerprint ( e.g., the 160-bit 
SHA-1 hash of the formatted public key) , and a key ID (e.g., the low order 64 bits 
o f the fingerprint) . 

Private keys are not stored directly in the key ring. Instea.d, the user selects a pass
phrase which is salted and hashed to derive a key k for a symmetric encryption scheme. 
The prívate key is encrypted using k, the passphrase is discarded. and the encrypted 
private key is stored. Subsequently, when the user wishes to access a private key (in order 
to decrypt a message or sign a message), the passphrase must be supplied so that t he 
system can regenerate k and recover the prívate key. 

Cryptographic services. PGP uses a combination of symmetric-key and public-key methods 
to provide authentication and confidentiality. 

A message can be signed using the private key from a suitable public-key signa
ture scheme. The recipient can verify the signature once an authentic copy of the sig
ner's corresponding public key is obtained. The OpenPGP standard requires support for 
SHA-1 as a bash algorithm and the DSA, and encourages support for the MD5 hash 
funct ion and RSA as a signat ure algorithm. 

The use of symmetric-key algorithms (such as DES) alone for encryption is sup
ported, although PGP is known more for the confidentiality provided by a combination of 
public-key and symmetric-key schemes. Since public-key encryption schemes tend to be 

computationally expensíve, a session key is used with a symmetric-key scheme to encrypt 
a rnessage; the session key is then encrypted using one or more public keys (typically, one 
for each recipient), and then the encrypted message aJong "\'\ith each encrypted session 



6.3. RIA-1's Pager 81 

key is delivered. T he standard requires support for an ElGamal public-key encryption 
scheme and Triple-DES: support for RSA , IDEA, and CAST is encouraged. 

Signatures and encryption are often used together, to provide authentication and 
confidentiality. The message is first signed and then encrypted as described above. 

Key management. The OpenPGP standard does not have a trust model. An OpenPGP
compliant PGP implementation could support a hierarchical X.509-based public key in
frastructure (PKI). The trust model employed by existing PGP implementations is a 
combination of direct t rust and the web of trust. In the former , user A obtains a·s public 
key directly from B ; fingerprints facilitate this processas only the fin gerprints have to be 
authenticated. In the web of trust model , one or more users can attest to the validity of 
B 's public key by signing it with their own signing key. If A possesses an authentic copy 
of the public key of one of these users, then A can verify that user)s signature thereby 
obtaining a measure of assurance of the authenticity of B's public key. This chaining of 
trust can be carried out to any depth. 

6.3 RIM's Pager 

6.3.1 Overview 

The RIM wireless handheld device is built around a custem Intel 386 processar running 
at 10 MHz. Current models carry 2 Mbytes of flash memory and 304 Kbytes of SRAM. 
There is a fairly conventional (ifrather small) keyboard witb a 6- or 8-line by 28 character 
(depending on font) graphical display. A thumb-operated trackwheel takes the place of a 
conventional mouse (see Figure 6.1). 

A set of applícations including a calendar and ad.dress book are commonly instal
led; even the occasional garoe of Tetris (fallíng blocks) is possible with efficient use of 
the graphical display. The main at traction is the wireless communication features, in 
particular, email solu t ions. The integrated wireless modem is essentially invisible, with 
no protruding antennae. T he device is roughly 3.5in x 2.5in x 1 in (89mm x 64mm x 
25mm) and weighs 5 ounces (142 g) with tbe single AA battery (there is also an internai 
líthium cell). RIM claims that the battery willlast roughly three weeks with typical usage 
patterns. 

A docking cradle can be used to directly connect the device to a serial port. Software 
for Microsoft Windows is provided to download programs and other information, and to 
synchronize application data. An RS-232 compatible serial port on the pager runs at 
19200 bps. 

To be slightly more precise, RIM has two hardware devices, the 850 and the 950. 
which are combined with software to provide communications solut ions. We used RIM's 



6.3. RIM's Pager 82 

Figure 6.1: The RIM pager. 

BlackBerry solution [13) which uses t he same hardware as the RIM Inter@ctive Pager 950. 
The 950 is more of a 2-way pager, sold in Canada by Cantei and in the US by BellSouth 
Wireless Data. T he BlackBerry is sold directly by RIM and includes feat ures such as 
single mailbox integration and PIM synchronization to the device. 

The RIM 850 looks very similar to t he 950 device, but runs on a different wireless 
oetwork (ARDIS for the 850 as opposed to Mobitex for the 950). The RIM 850 is resold 
through American Mobile Satellite Corporation (AMSC) in the US, and is part of the 
AMSC and SkyTel eLink solution. 

6.3.2 Software development 

The BlackBerry Software Developer's Kit (SDK) is designed to make use of t he features 
in ~ficrosoft ' s C++ compiler packages. The SDK is freely aYailable from [84]. A handheld 
application is built as a \iVindows DLL, a process which allows use of development and 
debugging facilities avai lable for vVindows. However. only a smalJ subset of the usual 
library calls may be used, along with calls to SDK-supplied routines. The resulting DLL 
is then stripped of extraneous information and ported into the handheld operating system. 

For simplicity, the multitasking is cooperative. An application is expected to period
ically yield control ; in fact, failure to yield within 1 O seconds can trigger a pager reset. 
As an example. public-key operations tend to be computationally expensive, and it was 
necessary to insert explicit task yields in t he code developed for this paper. 

The SDK includes a simulator which can be used to test applications on lhe handheld 



6.4. The PaJmPilot 83 

operating system without having to download to the device (the images in t his paper are 
snapshots o f the simulator). A radio device (RAP modem) can be connected via serial 
port to the host machine so that applications running in the simulator can commun icate 
with the Mobitex network. Alternately, a pager in the cradle can be used to exchange 
email with the simulator, provided that the pager is in coverage. 

The simulator is essentia1 for serious development, altbough testing on the pager can 
reveal bugs not found in t he simulator. For ex:ample, we managed to link applications in 
such a way that they would work in the simulator but fail on the pager. At one point , we 
carelessly used some instructions introduced on t he Intel 486, which would work in the 
simulator when running on a 486-or-better, but would fail on a 386. 

6.3.3 File system 

The pager relies on flash memory to store non-volati le data. Writing to fl ash is sign ificantly 
more expensive t han reading, primarily because flash is a write-once, bulk-erase device. 
Rewriting a single word of flash involves saving the contents of the 64K sector, era.sing, 
and rewriting the entire sector. The longest step in th is opera tíon is erasing the sector, 
and takes approximately 5 seconds. A log-structured file system is employed in order to 
maintain acceptable performance. Periodically, the expensive process of committing the 
log updates is performed in order to free file system space. 

The programming interface to the file system is generally through a relatively small 
number of high-level database-style calls. Handles are used to read and update databa.ses 
and variable-length records, a simple but effective method to cooperate with the updating 
process of t he log-structured fil e system. It is possible to use stream-style I/O operations 
of t he type famil iar to C programmers, which we occasionally found useful for testing 
code fragments developed on more traditional systems. 

6.4 The PalmPilot 

For comparison, our crypto routines were also run on the Palm Pilot , a very popular PDA 
based on a 16 MHz Motorola 68000-type "Dragonball'" processor.2 Recent models carry 
2-4 MB of memory in addition to ROM, although considerable expansion is possible. In 
1999, wireless capabili ties were introduced on the Paim VII. T he communications model 
differs from the RIM device; in particular, the Paim does not quaJify as a pager in the 
usual sense. T here is an antenna which rnust be physically activated and then the device 
can request informat ion. A NiCad battery charged from two AAA batteries cornmon in 
the Paim series is used to power the radio. 

2 According to [77], "Even after two rounds of Microsoft's best Windows CE efforts, PalmPilot OS 
devices still represent 80% of ali palmtop sales." 



6.5. Elliptic Curve Cryptograpby 84 

Ian Goldberg had adapted portions of Eric Young's well-known SSLeay library (now 

OpenSSL (81}) for use on the PalmPilot [35]. T he resulting library was used by Zerucha 
in building a Paim vers ion of his reference OpenPGP, and by Daswaní and Boneh (23) in 
their paper on electronic commerce. 

\rVe used Paim development tools based on the GNU C compíler (gcc-2.7.2.2) . Timíngs 
were dane on aPalm V running PalmOS 3.0. There are code segment and stack restrictions 
which must be considered in the design of a larger application, and our code had to be 
divided into several libraries in order to accomodate the Paim. 

6.5 Elliptic Curve Cryptography 

6.5.1 Introduction 

Elliptic curve cryptography (ECC) was proposed independently in 1985 by Neal Koblitz 
[47) and Victor Miller [68). For an int roduction to ECC, the reader is referred to Chapter 6 
of Koblitz's book [49], or the recent book by Blake, Seroussi and Smart [14]. 

The prima1-y reason for t he attractiveness of ECC over RSA and discrete log (DL3) 

public-key systems is that the best algorithm known for solving thc underlying hard 
mathematical problem in ECC (the elliptic curve discrete logarithm problem, ECDLP) 
takes fully exponential time. On the other hand, t he best algorithms known for solving the 
underlying hard mathematical problems in RSA and DL systems (the integer factorization 
problem, and t he discrete logarithm prob1em) take subexponential time. This means that 
t he algorithms for solving the ECDLP become infeasible much more rapid ly as the problem 
size increases than t hose algorithms for the integer factorization and díscrete logarithm 
problems. For this reason, ECC offers security equivalent to that of RSA and DL systems, 
while using significantly smaller key sizes. 

Table 6.1 lists ECC key lengths and very rough estimates of DL and RSA key lengths 
that provide the same security (against known attacks) as some common symmetric en
cryption schemes. The ECC key lengths are twíce the key lengths of theír symmet
ric cipher counterparts since the best general algorithm known for the ECDLP takes 
(~)/2 steps for k-bit ECC keys, while exhaustive key search on a symmetric cipher 
with l-bit keys takes 21 steps. The estimates for DL security were obtained from [3]. The 
estimates for RSA security are the same as those for DL security because the best algo
rithms known for the integer factorization and discrete logarithm problems have t he same 
expected running times. These est imates are roughly the same as the estimates províded 
by Lenstra and Verheul in their very thorough paper (56) . 

3 Examples of DL systems are the EJGamal public-key encryption scbeme and the DSA signature 
scbeme which is specified in the Digital Signature Standard. PGP documem:ation refer to these two 
schemes as Diffi.e-Hellman/ DSS or DH/ DSS. 



6.5. Elliptic Cun·e Cryptography 85 

Symmetric cipher Example ECC key lengths for DL/ RSA key lengths for 
key lengths algorithm equivalent security equivalent security 

80 SKTPJACK 160 1024 
168 Triple-DES 224 2048 
128 128-bit AES 256 3072 
192 192-bit AES 384 7680 
256 256-bit AES 512 15360 

Table 6.1 : ECC, DL, and RSA key length comparisons. 

The advantages that may be gained from smaller ECC parameters include speed (faster 
computation) and smaller keys and certificates. These advantages are especially important 
in environments where processing power, storage space, bandwidth, or power consumption 
are at a premium such as smart cards, pagers, cellular phones, and PDAs. 

6.5.2 Selecting ECC parameters 

Notation. In the following, lFq denotes a finite field of order q, and E denotes an elliptic 
curve defined over lF9 . #E(lFq) denotes the number of points on the elliptic curve E. The 
point at infini ty is denoted by O. There is a group law for adding any two elliptic curve 
points. If k is an integer and P E E (JF9) is a point, then kP is the point obtained by 
adding together k copies of P ; this process is called scalar multiplication. 

Domain parameters. ECC domain parameters consist of the following: 

q the field size. 
FR method used for representing field elements. 
a, b elements of 1Fq which determine the equation of an elliptic curve E. 
G the base point of prime order. 
n the order of G. 
h t he cofactor: h= #E(lFq)/n. 

The primary security parameter (see §6.5.4) is n. T he ECC key length is thus defined 
to be the bitlength of n. Typical choices for q are an odd prime (in \vhich case lF9 is called 
a prime field) or a power of 2 (in which case lFq is called a bmary field). 

Curves selected. For this project , we chose binary fields lF2m, for m = 163, 233 and 
283. Suitably chosen elliptic curves over these fields provide at least as much security 
as symmetric-key ciphers wit.h key lengths 80, 112 and 128 bits respectively (see Ta
ble 6.1). A polynomial basis representation was used to represent field elements. Such a 



6.5. Elliptic Curve Cryptography 86 

m 163 
f(x) x163 + x1 + x6 + x3 + 1 
E Y2 + XY = X 3 + X 2 + 1 
n 40000000000000000000201 08A 2EOCCOD99F8A 5EF 
h 2 
m 233 
f(x) x233 + x14 + 1 
E Y2 + XY = X 3 + 1 
n 8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF 
h 4 
m 283 
f(x) x283 + x12 + x1 + xs + 1 
E Y 2 +XY= X 3 +1 
n 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED075 77265DF 

F7F94451 E061E163C61 
h 4 

Table 6.2: Koblitz curves selected. 

representation is defined by a reduction polynomial /(x), which is an irreducible binary 
polynomial of degree m. For each field IF2m. , we chose a random curve over F2m and a 
Koblitz curve [48] over F2m from the list of elliptic curves recommended by NIST for US 
federal government use [72]. The salient features of the Koblitz curves are provided in 
Table 6.2. Kobl itz curves have special structure t hat enable faster elliptic curve arithmetic 
in some environments (see (96, 97]). The number of points on eacb of the chosen curves 
is almost prime; that is, #E(F2,..) = nh, where n is prime and h = 2 or h = 4. Since 
#E ('F 2m) ~ 2m, it follows that tbe ECC key length is approximately equal tom. Security 
implications of these choices are discussed in §6.5.4. 

6.5.3 ECC protocols 

Key generation. An entit.y A 's public and private key pair is associated with a particular 
set of EC domain parameters (q, FR, a, b1 G, n, h). This association can be assured cryp
tographically (e.g., with certificates) or by conte:x."t (e.g., a li entities use the same domain 
parameters). 

To generate a key pair, entity A does the following: 

1. Select a random integer d from [1, n- 1]. 

2. Compute Q = dG. 



6.5. Elliptic Curve Cryptography 87 

3. A's public key is Q; A's private key is d. 

Public key validation. This process ensures that a public key has the requisite arithmetic 
properties. A public key Q = (xQ, YQ) assoC'iated with domain parameters (q, FR, a, b, G, n, h) 
is validated using the following procedure: 

1. Check that Q =I O. 

2. Check that XQ and YQ are properly represented elements of 1F9 . 

3. Check that Q lies on the elliptic curve defined by a and b. 

4. Check that nQ = O. 

The computationally expensive operation in public key validation is the scalar multipli
cation in step 4. This step can sometimes be incorporated into the protocol that uses Q 
- this is done in the ECAES below. Public key validation with step 4 omitted is called 
partial public key validation. 

Elliptic curve authenticated encryption scheme (ECAES). The ECAES, proposed by Ab
dalla, Bellare and Rogaway [1 J, is a variant of the ElGamal public-key encryption scheme 
[27] . It is efficient and provides security against adaptive chosen-ciphertext attacks. 

vVe suppose that receiver B has domain parameters D = (q, FR, a, b, G , n , h) and 
public key Q. Vve also suppose that A has authentic copies of D and Q. In the following, 
MAC is a message authentication code (MAC) algorithm such as HMAC [55L ENC is a 
symmetric encryption scherne such as Triple-DES. KDF denotes a key derivation function 
which derives cryptographic keys from a shared secret point. 

To encrypt a message m for B, A does: 

1. Select a random integer r from [1, n- 1]. 

2. Compute R= rG. 

3. Compute K = hrQ. Check that K i= O. 

4. Compute k1 11 k2 = KDF(K). 

5. Compute c = ENCk1 (m). 

6. Compute t = MACk2 (c). 

7. Send (R, c, t) to B. 

To decrypt ciphertext (R, c, t) , B does: 

1. Perform a partia} key validation on R. 

2. Compute I< = hdR. Check that K =I O. 

3. Compute k1 11 k2 = KDF(K) . 

4. Verify that t = MACk2 (c). 



6.5. Elliptic Curve Cryptography 88 

5. Computem= ENC;
1

1 (c). 

T he computationally expensive operations in encryption and decryption are the scalar 

mult iplications in steps 2-3 and step 2, respectively. 

Elliptic curve digital signature algorithm {ECDSA). The ECDSA is the elliptic cun'e ana

legue of the DSA [72]. SHA-1 is the 160-bit hash function [73]. 
We suppose that signer A has domain parameters D = (q, FR, a, b, G , n, h) and public 

key Q. We a lso suppose that B has authentic copies of D and Q. 
To sign a message m, A does the following: 

1. Select a random integer k from [1, n- 1]. 

2. Compute kG = (x1 , Yt) and r= x1 mod n. 
If r= O then go to step 1. 

3. Compute k- 1 mod n. 

4. Compute e= SHA-1(m). 

5. Computes= k- 1{e + dr} mod n. 
If s = O then go to step 1. 

6 . .4 's signature for the message m is (r, s). 

To verify A 's signature (r, s) on m, B should do the following: 

1. Verify that r and s are integers in [1 , n- 1]. 

2. Compute e = SHA-l(m). 

3. Compute w = s-1 mod n. 

4. Compute u 1 = ew mod n and u2 = rw mod n. 

5. Compute u1G + u2Q = (x1,yl). 

6. Compute v = x, mod n. 

7. Accept the signature if and only if v= r. 

The computationally expensive operations in signature generation and signature verifica

tion are the scalar mult ipl ications in step 2 and step 5, respectively. 

6.5.4 Security issues 

Hardness of the ECDLP. It can easily be verified that the elliptic curYes E(lFq) chosen 

resist all known attacks on t he ECDLP. Specifically: 

1. The number of points, #E(TFq), is divisible by a pnme 11 that is sufficiently large 
to resist the parallelized Pollard rho attack [80) against general curves, and its 
improvements [30, 105] which apply to Koblitz curves. 



6.5. Elliptic Curve Cryptograpby 89 

2. n does not divide qk - 1 for ali 1 ~ k ~ 30, confirming resistance to the \tVeil pairing 
attack [67] a nd the Tate pairing attack [28]. 

3. #E(Fq) # q, confirming resistance to the Semaev attack [93]. 

4. Ali binary fields JF2,.. chosen have tbe property that m is prime, t hereby circumvent
ing recent attacks [29, 32] on the ECDLP for elliptic curves over binary fields lF2m 

where m is composite. 

Security of ECAES. The ECAES modifies the ElGamal encryption scheme by using the 
one-time Diffie-Hellman shared secret , hrdG, to derive secret keys k 1 and k2 The first key 
kt is used to encrypt the message using a syrnmetric cipher, while t he second key k2 is 
used to authenticate the resulting ciphertext. The latter provides resistance to chosen
ciphertext attacks. Some formal justification of ECAES security is provided in [1] , where 
it is proven to be semantically secure against adaptive chosen-ciphertext attack on the 
assumption that the underlying symmetric encryption and MAC schemes are secure, and 
a.ssuming the hardness of certain Yariants of t he ell ipt.ic curve Diffie-Hellman problem. 

In order to correctly balance the security of the ECAES cryptographic components, 
one should ideally employ a ~-b it block cipher and a k-bit hash fun ction for HMAC when 
using a k-bit elliptic curve (see Table 6.1). Our impJementation used the 112-bit block 
cipher Triple-DES in CBC-mode and the 160-bi t hash function SHA-1 for ali 3 choices 
of ECC key lengths (163, 233 and 283). A future version of our implementation should 
allow for a variable output-length hash function (e.g., the forthcoming SHA-2) and a 
variable-length block cipher (e.g., the AES). 

Secunty of ECDSA. ECDSA is the straightforward elliptic curve analogue of tbe DSA, 
whích has been extensively scrutinized since it was proposed in 1991. For a summary of 
the security properties o f the ECDSA, see [44]. 

Our implementation used the 160-bit hash function SHA-1 for ali 3 choices of ECC 
key lengths (163, 233 and 283). As with the ECAES, a future version of our ECDSA 
implementation should allow for a variable output-length hash fun ction. 

6.5.5 Timings 

This section presents timings for t he ECC operations on a Pentium TI 400 MHz machine, 
a PalmPilot anel Lhe RIM pager, and compares thern with timings for RSA and DL 
operations. 

ECC timings. Our ECC code was written entirely in C on a Sun Sparcstation and, in order 
to ensure portability, no assembler was used. We encountered no problems in porting the 
code to the Pentium II, RIM pager, and PalmPilot platforms, although some changes 
were required in order to cooperate witb the 16-bit options used in the Palm version of 



6.5. Elliptic Curve Cryptography 90 

the "big number" library of OpenSSL. No effort was made to optimize the ECC code 

for these particular platforms; it is very ]íkely that significant performance improvements 

could be obtained by optimizing the ECC (and DL and RSA) code for t hese platforms. 
Further details of our ECC implementations are reported in [40). 

For other ECC implementation reports, see (89] for a C implementation of elliptíc 

curve arithrnetic over IF2155, (25] for a C/C++ of elliptic curve arithmetic over IF2191 and 
over a 191-bit prime field, and [41] for an assembly language implementation of elliptic 

curve arithmetic OYer a 160-bi t prime field on a 10 MHz 16-bit microcomputer. 

Tables 6.3, 6.4 and 6.5 present. t imings of our ímplementation for ECC operations 

using the Koblitz curves and random curves over 1F 2163, lF 2:z3s and 1F 22s3. 

Koblitz curve over iF2153 Random curve over 1F2t63 

11 RIM pager PalmPilot PII RIM pager PalmPilot PII 
Key generation 751 1,334 1.47 1,085 1,891 2.12 
ECAES encrypt 1,759 2,928 4.37 3,132 5,458 6.67 
ECAES decrypt 1,065 1,610 2.85 2,114 3,564 4.69 
ECDSA signing 1,011 1,793 2.11 1,335 2,230 2.64 
ECDSA verifying 1,826 3,263 4.09 3,243 5,370 6.46 

Table 6.3: Tirnings (in miJliseconds) for ECC operations over 1F2l63 on various platforms. 

Koblitz curve over IF2233 Random curve over F2:m 

RIM pager PalmPilot PII RIM pager PalmPilot PU 

Key generation 1,552 2,573 3.11 2,478 3,948 4.58 
ECAES encrypt 3,475 5,563 7.83 6,914 11,373 13.99 
ECAES decrypt 2,000 2,969 4.85 4,593 7,551 9.55 
ECDSA signing 1,910 3,080 4.03 3,066 4,407 5.52 
ECDSA verifying 3.701 5.878 7.87 7,321 11,964 14.08 

Table 6.4: Timings (in milliseconds) for ECC operations over IF2-zJJ on various platforms. 

RSA timings. The RSA code, written entirely in C, was taken from the OpenSSL Jibrary 
(81}. Tables 6.6 and 6.7 present timings for 512, 768, 1024, and 2048-bit RSA operations. 

DL timings. The DSA and ElGamal code, also written entirely in C, was obtained from 

the OpenSSL and OpenPGP libraries. For EIGamal, t he prime p was chosen to be a 
safe prime; that is p = 2q + 1 where q is a lso prime. Table 6.8 presents t imings for 512, 



6.5. Elliptic Curve Cryptography 91 

Koblitz curve over iF2z8s Random curve over 1F 2z1l3 

RIM pager PalmPilot PII RIM pager PalmPilot PII 
Key generation 2,369 4,062 4.50 3,857 6,245 6.88 
ECAES encrypt 5,227 8,579 11.02 11,264 18,273 20.86 
ECAES decrypt 2,932 4,495 6.78 7,498 12,046 13.88 
ECDSA signing 2,760 4,716 5.64 4,264 6,816 8.08 
ECDSA verifying 5,485 9,059 11.46 11,587 18,753 21.15 

Table 6.5: Timings (in milliseconds) for ECC operations over lF22as on various platforms. 

512-bit modulus 768-bit modulus 
Pager Pi1ot PU Pager Pilot PII 

RSA key generation 73,673 189,461 346.77 287,830 496,356 953.01 
RSA encrypt (e= 3) 213 317 1.13 388 587 1.87 
RSA encrypt (e = 17) 262 410 1.28 451 753 2.17 
RSA encrypt (e= 216 + 1) 428 743 1.90 793 1,347 3.32 
RSA decrypt 2,475 5,858 11.05 7,905 16,262 28.05 
RSA signíng 2,466 5,751 10.78 7,889 16,047 27.72 
RSA verifying (e = 3) 99 200 0.40 214 413 0.78 
RSA verifying (e= 17) 147 293 0.56 273 577 1.07 
RSA verifying (e= 216 + 1) 314 623 1.17 616 1,221 2.24 

Table 6.6: Timings (in milliseconds) for 512-bit and 768-bit RSA operations on various 
platforms. 

768 and 1024-bit DSA and EIGamal operations. For encryption, the per-rnessage secret 
key is not of full length (i .e., the bitlength of p), but of bitlength 200 + (bitlength of 
p) / 32; t.his explains why EIGamal encryption is faster than ElGamal decryption. The 
E IGamal operations could be sped up significantly if DSA-like pararneters were, used (i.e., 

p = kq + 1, where q is a 160-bit prime). 

Comparison. T he performance of all t hree families of public-key systerns (ECC, RSA 
and DL) a re sufficiently fast for PGP irnplementations on a Pentium machine-it hardly 

matters whether a user has to wait 10 ms or 100 ms to sign and encrypt a message. 
On the pager, RSA public-key operations (encryption and signat ure verification) are 

faster than ECC publie-key operations, especially when the public exponent is e = 3. For 
example, verifying a 1024-bit RSA signature takes about 300 ms, while verifying a 163-bit 

ECC signature (using a Koblitz curve) takes about 1,800 ms. On the other hand, RSA 
pr1vate-key operations (decryption and signature generatíon) are slower than ECC private-



6.5. Elliptic Curve Cryptography 92 

1024-bit modulus 2048-bit modulus 
Pager Pilot PTI Pager Pílot PII 

RSA key generation 580,405 1,705,442 2,740.87 - - 26,442.04 
RSA encrypt (e= 3) 533 1,023 2.70 1,586 3,431 7.26 
RSA encrypt (e = 17) 683 1,349 3.23 2,075 4,551 9.09 
RSA encrypt (e= 216 + 1) 1,241 2,670 5.34 4,142 8,996 16.57 
RSA decrypt 15,901 36,284 67.32 112,091 292,041 440.78 
RSA signíng 15,889 36,130 66.56 111 ,956 288,236 440.69 
RSA verifying (e= 3) 301 729 1.23 1,087 2,392 4.20 
RSA verifying (e = 17) 445 1,058 1.76 1,585 3,510 6.10 
RSA verifying (e= 216 + 1) 1,008 2,374 3.86 3,608 7,973 13.45 

Table 6. 7: Tirnings (in rnilliseconds) for 1024-bit and 2048-bit RSA operations on various 
platforrns. 

512-bit modulus 768-bit modulus 11 1024-bit modulus 

11 Pager Pilot PII Pager Pilot PII 11 Pager Pilot PII 

ElGamal k. g. - - 51,704 - - 219,820 - - 1,200,157 
EIGamal enc. 7,341 17,338 19.13 16,078 34,904 35.91 26,588 73 ,978 67.78 
ElGamal dec. 8,704 19,060 22.55 26,958 56,708 59.53 57,248 148,059 144.73 
DSA key gen. - - 3,431 - - 14,735 - - 54,674 
DSA signing 2,955 6,329 7.53 6,031 11,875 15.55 9,529 25,525 24.28 
DSA verifying 5,531 12,389 14.31 11,594 24,277 26.13 18,566 52,286 47.23 

Table 6.8: Timings (in milliseconds) for DL operat ions on various platforms. 

key operations. For example, signing with a 1024-bit RSA key takes about 16,000 ms, 
while signing with a 163-bit ECC key takes about 1,000 ms. ECC has a clear advantage 
over RSA for PGP operations that require both private key and public key computations. 
Signing-and-encrypting together takes 16,400 ms with 1024-bit RSA (using e = 3), and 
2800 ms with 163-bit ECC (using a Koblitz curve). Verifying-and-decrypting together 
t.akes 16,200 rns with 1024-bit RSA, and 2,900 ms with 163-bit ECC. 

Similar conclusions are drawn when comparing RSA and ECC performance on the 
PalmPilot. 

Private key operations with 2048-bi t RSA are too slow for t he pager and the PalmPilot, 
while 233-bit ECC and 283-bit ECC operations are tolerable for PGP applica.tions on the 
pager. 

Since dornain parameters are used in our ECC irnplementation, ECC key generation 
only involves a single scalar multiplication and thus is very fast on the pager. RSA, 



6.6. Porting PGP to the Pager 93 

ElGamal and DSA key generation on t he pager 1s prohibitively slow. However, EIGamal 
and DSA key generation would be feasíble on the pager i f precomputed domain parameters 
(primes p and q, and generator g) were used. 

6.5.6 Interoperability 

The elliptic curves and protocols were selected to conform with the prevailing ECC 

standards and draft standards. 
The Koblitz and random curves over IF2 ts3 , lF223a and lF2n3 are from the list of NIST 

recommended curves [72) . The representations, for both field elements and for elliptic 
curve points, are compliant with the ANST X9.62 [5], ANSI X9.63 [6], IEEE Pl363 [42] 
and FIPS 186-2 [?2] standards. In addítion, the Koblitz curve over lF21s3 is explicitly listed 
in the vVAP wTLS specification [103}. 

Our ECDSA implementation conforms to the security and interoperability requi re
ments of ANSI X9.62, IEEE Pl363, and FIPS 186-2. Our ECAES implementation 
conforms to the security and interoperabili ty requirements of ANSI X9.63. The cryp
tographic components HMAC and Triple-DES (in CBC mode) of ECAES are compliant , 
respectively, with RFC 2104 [55] and ANSI X9.52 [4]. 

6.6 Porting PGP to the Pager 

There are now a number of cryptographic libraries and PGP applications wbich have 
received extensive development and for which source code is available; see, for example, 
cryptlib by Peter Gutmann [38] and Crypto++ by Wei Dai [22]. Our plan was to adapt 
existing code, adding public-key schemes based on elliptic curves. For comparisons and 
development, it was essential that the code run on severa! platforms in addition to the 
RIM device. 

Our initial work was with GNU Privacy Gua.rd (GnuPG) [34], an OpenPGP-compliant 
freely distributable replacernent for PGP, which was nearing a post-beta release in 1999. 
Initial tests on the pager with severa! fragments adapted from GnuPG sources were pro
mising, and the code appeared to be ideal for adding the elliptic curve routines and testing 
on Unix-based and other systems. However, ít appeared that untangling code dependen
cies for our use on the pager would be unplea.sant . (Perhaps a better understanding of 
GnuPG internais and design decisions would h ave cha.nged our opinion.) 

Jonat.han Callas suggested that we look again a.t the OpenPGP reference implemen
tat.ion [17], which we had put aside aft.er initial testing revealed a few portability and 
alignment. problems in the code. The reference implementation relied on the OpenSSL 
library [81]. 



6.6. Porting PGP to the Pager 94 

The OpenPGP reference implementat ion is surprisingly complete for the amount of 
code, although it is admittedly a little rough on the edges.4 The code was developed on a 
Linux/ x86 system, and modifications were required for alignment errors which prevented 
the program frorn running on systems such as Solaris/SPARC. In addition, some porta
bility changes were required, including code involvi.ng the "long long" data type. For t he 
RIM pager, the separation of the PGP code from the well-tested OpenSSL library, along 
with the small size of the OpenPGP sources, were defini te advantages. Finally, it should 
be noted t hat the OpenSSL libraries build easily on Unix and Microsoft Windows systems, 
and are designed so that adding routines such as the ellipt ic curve code is straightforward. 

Although applications for the pager are built as Windows DLLs, the pager is not a 
Windows-based system. There are significant restrictions on the calls that can be used, 
extending to those involving memory allocatíon, time a nd character handling, and the 
file system. There is no floating-point processar on the pager. In order to adapt code 
developed on more traditional systems, we wrote a library of compatibility functions 
to use with the pager. Some functions were trivial (such as those involving rnemory 
a11ocation, since the SDK included equivalent calls): others, such as the stream I/ 0 calls. 
were written to speed testing and porting and cannot be recommended as particularly 
robust or elegant. 

Vve used portions of OpenSSL 0.9.4. along with t he library in the OpenPGP refe
rence implementation. Relatively few changes to OpenSSL were required, and could be 
restricted to header files in many cases. T he elliptic curve rout ines were integrated, in
cluding additions to the scripts used to build OpenSSL. For some platforms, OpenSSL 
can be built using assembly-language versions of certain key routines to improve execution 
speed. Some of these files for the Intel x86 include instructions (such as bswap) which 
were introduced for the 486, and cannot be used on the pager. 

The OpenPGP sources were modified to correct the align rnent bugs and portability 
problems mentioned above, and necessary changes were made for the elliptic curve schemes 
(public-key algorithms 18 and 19 in the OpenPGP specification [18]). The compatibility 
Jibrary, along with a few stream-to-memory conversion functions allowed fairly direct use 
o f the Open PGP sources on the pager. 

The only code test ed exclusively in the pager environment involved t he user interface 
(see §6.7.1). The SDK provides a fairly powerful and high-level APT for working ,,.;th 
the display and user input. The difficulties we encountered were mostly due to the lack 
of support in the API for direct manipulation of messages desired in a PGP framework. 
In part, this reAects a deliberate design decision by BlackBerry to develop a robust and 
intuitive communication solut ion which provides some protection against misbehaving 

4 Zerucba writes that he wasn't "careful about wiping memory and preventing memory leaks and other 
tlnngs to make the co de robust'' [ 17]. 



6. 7. Implementation 95 

applications. 5 

The pager DLLs for the interface and PGP libra ry were over 400 KB in combined 
size. This includes all of the OpenPGP required a.lgorithms and recommended algorithms 
such as IDEA and RSA, along with the new schemes based on elliptic curves. For a 
rough comparison , the code size for the main executable from the OpenPGP reference 
implementation (with the addition of the elliptic curve routines) is 300- 400 KB, depending 
on platform. 

6. 7 Implementation 

6. 7.1 U ser interface 

PGP in any forro has not been an easy application for novices to manage properly, in 
part due to t.he sophistication required, but also because of poor in terface design (104] . 
The goals for our user interface design were rather modest: that a user who is famil iar 
with using PGP on a workstation , and is comfortable operating the RIM device, should, 
without having to refer to a manual or help pages, be easily able to figure out how to 
use PGP on the pager and avoid dangerous errors (such as those described in [104]). As 
mentioned in §6.3.1, the graphics capabilities and screen size of the RIM device are very 
limited. This forced us to keep our PGP implementat ion simple and only offer the user 
the essential features. 

A glimpse of our user interface is provided in F igures 6.1-6.5. Clicking on the PGP 
icon (see Figure 6.1) displays the list of users whose keys are in the public key ring (see 
Figure 6.2). Selecting a user name displays the menu sbown in F igure 6.3, which allows 

Figure 6.2: Listing of PGP keys. 

the user to view the key's attributes, compose a new key, delete a key, or send a key. 
5 Durmg our work on tbis project, BlackBerry modified the AP J to provi de some of the access needed 

to smoothly integrate PGP into their mail application. 



6. 7. Implementation 96 

Figure 6.3: The main menu. 

6.7.2 Key generation and storage 

The main PGP menu (Figure 6.3) has an option "New Key" for creating a key pair. 
Users can ente r their na me, email address, pager PIN, and select a key type and key 
length (see Figure 6.4) . The key types and key sizes presently a\·ailable are ECC (random 

Figure 6.4: Screen for creating a new key pair. 

curve or Koblitz curve; oYer lF21o3, lF2233 or lF2:zs3), DH/ DSS (512/512, 768/ 768, 1024/1024, 
1536/1024 or 2048/1024 bits), and RSA (512, 768, 1024, 1536 or 2048 bits). The DH/ DSS 
and RSA key sizes are the ones available in many existing PG P implementations. For 
the DSA, the maximum bitsize of the prime p is 1024 bits in conformance with the DSS 
[72]. For ECC, separate key pairs are generated for public-key encryption and digital 
signatures. 

Public keys and private keys are stored in separate key rings. Public key at tributes 
(see Figure 6.5) can be viewed using the ''View Key" function available on t he main menu. 
As required by OpenPGP, private keys are encrypted under a user-selected passphrase, 

Figure 6.5: Screen for viewing a (portion of the) public key's attributes. 



6.8. Future Work 97 

and the encrypted private key is stored. The passphrase has to be entered whenever a 

pr1vate key is required to sign or decrypt a message. 

6.7.3 Cryptographic services 

The three bas1c PGP services are available: sign only, encrypt only, or sign-and-encrypt. 

Users can decide to sign an email , or to encrypt an emai l, after composing the message. 

The user is prompted for the passphrase to unlock the private signing key, and to select 

the public encryption key of the intended recípient. In addition to the times gíven in 
Tables 6.3-6.8 for the main operations, there is additional overhead which can be apparent 
to the user. Verifying the passphrase, for example, may require 20 seconds if the default 
iteration count is used when hashing the salted passphrase; our implementation used a 

smaller default iteration count. A small amount of t ime is added for interaction with the 
database filesystem for large memory transfers. 

6. 7.4 Key rnanagement 

The key management system we implemented was the simplest one possible-the direct 
trust model (see §6.2.2). A menu item is available (see Figure 6.3) for emailing one's public 
key to another user. A function is also available for extracting and storing a public key 
received in an email message. If desired, a publíc key can be authenticated by verifying its 

fingerprint by some direct means (e.g., communicating it over the telephone-authenticity 
is provided by voice recognition). 

6.8 Future Work 

The follo\ving are some directions for fut.ure work. 

Random number generation. Many systems implement a ('random gathering dev ice'· whi ch 
attempts to use environmental noise (keyboard data, system timers, disk characteristics, 
etc. ) to build a cryptographically secure source o f random bits [39]. Our pager applica

tion used only a rather simple (and most likely not sufficiently secure) seeding process 
involving the clock and a few other sources. A more sophisticated solution is essential , 
perhaps tapping into the radio apparatus as a source. 

Code size. No serious effort was made to minimize the size of the programs loaded to the 

pager. There is some code linked from the OpenSSL cryptographic library which could 

easily be removed (in fact , we were somewhat surprised that the library with the added 
elliptic curve routines could be used with relatively few modifica.tions for the pager). The 
library routines a.dapted from OpenSSL and OpenPGP along with various glue needed 



6.9. Conclusions 98 

to adapt to the pager accounts for approximately 3/4 of the 370 KB loaded on the de, ice 
(with the remainder attríbuted to code involving the screen and user-interface). lf some 
interoperability can be sacrificed, then the code size can also be reduced by removing 
routines such as CAST or some of the hash algorithms. 

Makmg the OpenPGP code more robust. The OpenPGP reference implementation pro
vides minimal diagnostics and can easi ly break on bad data. The occasional segmentation 

fault t riggered by bad user data may be merely unpleasant when an application is used 
on a workstation; such errors on the pager are completely unacceptable. Our application 
corrects some of t he most troublesome shortcomings, but better error-handling is needed. 

Key management We would like to implement an X.509-based PKI or the web of trust 
model. In either case, we would implement a key server for retrieving and storing keys 
in a key repository. This would involve setting up a proxy wireless server with which t he 
pager would communicate directly. The proxy server in turn would communicate with 
existing key servers on the Internet. 

6.9 Conclusions 

Tmplementing PGP on the RIM pager. The 32-bit architecture, relatively sophisticated 
operating system and development environment, and relatively large rnemory size means 
that development for the pager is closer to that done for more traditiona l systems than 
the small size might suggest.. The user interface must be customized for the device, but 
•·generic code" wbich does not involve file T/ 0 moves fairly easily to the pager. 

On the other hand, it appears likely that such devices will continue to have processors 
which run much more slowly than their desktop counterparts. Long delays in handling 
encrypted messages or signatures will be a considerable annoyance for users of this type 
of device. \;vhile we used a significant amount of the available memory on t he pager, it 
would be desira.ble to reduce the resource consumption in a production version of PGP. 
Battery life will continue to be a major concern , and the overhead of authentication and 
confidentiality competes ·with t he need to minimize transmissions from the device. 

Tnteroperability. The goal of interoperabili ty was met. Ali of the required algori thms frorn 
RFC 2440 are included, along with severallisted as recommended and the elliptic curve 
routines. Our PGP implementation interoperated with existing implernentations for the 
PalmPilot and workstations. 

Elliptic curve cryptography. Elliptic curve solutions fit particularly well into the con
strained environment. 1024-bit and 2048-bi t RSA private-key operations a re too slow for 
PGP applications, while the performance of 163-bit, 233-bit and 283-bit ECC operations 



6.9. Conclusions 99 

is tolerable for PGP applications. If PGP (or other email security solutions) is to be 
used for securing email communications between constrained wireless dev1ces and desktop 
machines, then our timings show that ECC is preferable to RSA since the performance 
of the latter on some wireless devices is too slow, whi le both systems perform sufficiently 
well on workstations. 

General. This paper concentrated on PG P, although the results are more widely appli
cable. Many of the services targeted at the gro,,ring wireless market wi11 require security 
solutions involving the cryptographic' mechanisms used by PGP. The constraints on small 
wireless devices are likely to be with us for some time, and will require a balance of 
usabílity, computational requirements, security, and battery life. 

Acknowledgements 

The authors would like to thank Jonathan Callas for some enlightening discussions about 
PGP, and Herb Little for answering our numerous questions about the RIM pager. 



Capítulo . 7 

Conclusões 

Nesta dissertação estudamos os criptossistemas de curvas elípticas (CCE) e sua imple
mentação eficiente em software, enfatizando curvas elípticas definidas sobre o corpo finito 
JF2m. 

Os resultados deste trabalho mostram que os CCE podem ser eficientemente imple
mentados em diferentes plataformas tais como PCs, estações de trabalho, computadores 
de bolso e pagers. ='Jo desenvoh'imento desta pesquisa foram propostos vários algoritmos 
para calcular eficientemente múltiplos de um ponto elíptico, a operação central dos CCE. 
Além disso, foi desenvolvido um algoritmo para multiplicação em .IF2m. Assim, nos dois 
níveis (corpo finito e grupo elíptico) de operações fundamentais para o desempenho dos 
CCE, foram obtidos algoritmos eficientes. Outra contribuição, não menos importante, 
foi a implementação de uma biblioteca, baseada em nossos algoritmos, de suporte para. 
curvas elípticas definidas sobre IF2m. 

A biblioteca foi projetada para arquiteturas de 32 bits e contêm as seguintes im
plementações: as curvas NIST (aleatórias e Koblitz) sobre os corpos finitos 1F2m, para 
m = 163:233 e 283, e os algoritmos ECAES e ECDSA para ciframento e assinatura 
digital , respectivamente. A biblioteca foi escrita na linguagem C. :\a nossa opinião, o 
desempenho da biblioteca em diferentes plataformas é muito bom quando comparado 
com outras implementações já documentadas. Esta biblioteca estará disponível em breve, 
sendo o primeiro software público a oferecer serviços criptográficos baseados em curvas 
elípticas sobre F2m. 

Nossa experiência nos permite elaborar as seguintes observações: 

• A implementação em software dos algoritmos para operações no corpo finito é mui

to sensível ao hardware; este fato é especialmente notável quando comparamos os 
tempos das operações de cálculo de inversos multiplicativos e de multiplicação. A 
razão entre esses tempos pode influenciar a escolha do sistema de coordenadas dos 
pontos da curva elíptica. Por exemplo, se um cálculo de um inverso custa mais de 8 

100 



101 

multiplicações, então os algoritmos em coordenadas projetivas oferecem vantagens 
computacionais sobre os algoritmos em coordenadas afins. Na nossa implementação 
do algoritmo de Euclides estendido e o algoritmo de multipl icação proposto, a razão 
inverso/multiplicação observada em diferentes plataformas, variou de 8 a 12. Nessa 
situação, nossos algoritmos para multiplicações escalares são os melhores candidatos 
para implementações em software. 

• A decisão de escrever uma implementação da aritmética do corpo finíto 1F2m foi 
muito importante nos resultados obtidos. Primeiro, as poucas bibliotecas públicas 
para corpos finitos de característica 2 não são suficientemente otimizadas, não estão 
escritas completamente em C, e não são fáceis de adaptar para um corpo finito 
particular. Segundo, nos permitiu avaliar melhor os algoritmos de multiplicação 
escalar) já que tínhamos a possibilidade de experimentar diferentes algoritmos para 
as operações no corpo finito. Finalmente, os progressos nos tempos de execução 
nos motivaram a testar diferentes técnicas matemáticas ou de programação para 
melhorar o desempenho da implementação. 

Trabalhos futuros 

Vislumbramos os seguintes desdobramentos e possibilidades de trabalhos futuros nesta 
linha de pesquisa: 

• Projeto e implementação de uma biblioteca de suporte para operações no corpo lF2m, 
orientada para processadores de 8, 16 e 64 bits. 

• Projeto e implementação de uma biblioteca de suporte das operações aritméticas 
módulo p, p primo, que tirem proveito de arquiteturas específicas e explorem a 
estrutura de IF P> para valores particulares de p. 

• Implementação e comparação de criptossistema..'l de curvas elípticas sobre corpos 
finitos (lfp, IF2 .... , 1Fpm ), em diferentes dispositivos limitados. 

• Melhoramento dos algoritmos existentes ou desenvolvimento de novos algoritmos 
para implementação eficiente em software da. aritmética no grupo de pontos de uma 
curva elíptica. 

• Implementação e comparação entre o algoritmo de Euclides estendido e o algorit
mo de Schroeppel, para os corpos finitos IF2m, m = 163, 233 e 283 , em diferentes 
arquiteturas. 



Bibliografia 

[1] l\1. Abdalla, M. Bellare and P. Rogaway. "DHAES: An encryption scheme on t he 
Diffie-Hellman problem'', preprint 1999. A vailable at 

http ://www-cse. ucsd .edu/users/mihir / 

(2] G. B. Agnew, R. C. Mullin and S. A. Vanstone, "An implementation of elliptic curve 

cryptosystems over lF21s&", IEEE journal on selected areas in communicatwns, Vol 
11, No. 5, pp. 804-813, 1993. 

[3) ANST X9.30-1, "The digital signature algorithm (DSA) (revised )" , Arnerican Bankers 
Association, working draft , July 1999. 

[4] ANSI X9.52, "Triple data encryption algorithm modes of operation"', American Ban
kers Association , 1998. 

[5) ANST X9.62, "The elliptic curve digital signature algorithm (ECDSA)"\ American 
Bankers Association, 1999. 

[6] ANSJ X9.63, aElliptic curve key agreement and key t ransport protocols", A merican 
Bankers Association, working draft, August 1999. 

[7] K. Araki , T. Satoh and S. Miura, "Overview of elliptic curve cryptography"". In 
Pmceeding of P'ltblic-key Cryptography, LNCS 1431, pp. 29-49, Springer-Verlag, 1999. 

[8) D. Ash, I. Blake and S. Vanstone, ''Low complexity normal bases'', Discrete Applied 
Mathematics, 25, pp. 191-210, 1989. 

[9] M. Aydos, E. Savas, and Ç. K. Koç, :clmplementing network security protocols based 

on elliptic curve cryptography", Proceedmgs o f the Pourth Symposium on Computer 
Networks, pp. 130-139, Jstanbul , Turkey, May 20-21, 1999. 

[10] R. Balasubramanian and N. Kobhtz, "The improbability that an elliptic curve has 
a sub-exponential discrete log problern under the Menezes-Okamoto-Vanstone algo
rithm'' , J ournal of Cryptology, 11, pp. 141-145. (1998). 

102 



BIBLIOGRAFTA 103 

[11] Daniel Bailey and Christof Paar, "Optimal extension fi elds for fast arithmetic in 
public-key a lgorithms" . In Crypto '98, LNCS 1462, pp. 472-485, Springer-Verlag, 
1998. 

[12} Daniel Bailey and Christof Paar, "Inversion in optimal extension fields'·, Proceedings 

o f the Conference on The Mathematics oj Publíc K ey Cryptography, Toronto, Canada, 
June 12-1 7, 1999. 

[13] Blackberry, http: I /"~Nv . blackberry .net 

[14] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography, Cambridge 
University Press, 1999. 

[15] Bogdan Antonescu, Elliptic Curve Cryptosystems on Embedded Microprocessors, 
Master's t hesis, ECE Dept., \Vorcester Polytechnic Institute, \Vorcester, USA, May 
1999. 

[16] M. Brown. D. Cheung, D. Hankerson, J. Lopez, M. Kirkup and A. Menezes, ''PGP 
in constrained wireless devices", Proceedíngs of the 9th USEN!X'2000 Security Sym
posium, to appear. 

[17] J. Callas, OpenPGP Speci5ca.tion and Sample Code, Printers Inc. Bookstore, Paio 
Alto, March 1999. 

[18] J. Callas, L. Donnerhacke, H. Finney and R . Thayer, ':OpenPGP message format". 
Internet RFC 2440, November 1998. 

[19] Certicom , c:ECC Cha.Jlenge", Details available at htpp: I /ww. certicom . com/chal/ 

[20] H. Cohen, A. Miyaji , and T. Ono, "Efficient elliptic curve exponentiation using mixed 
coordinates"' , In A siacrypt '98, LNCS 1514, pp. 51-65. Sprínger-Verlag, 1998. 

[21] Biljana Cubaleska, Andreas Rieke, and Thomas Hermann, "lmproving and Extending 

the Lim/ Lee Exponentiation Algorit hm" , Proceedings oj SAC'99, LNCS, to appear. 

[22] \V. Dai , Crypto++. http : I /www. eskimo. com/ "-'Weidai/ cryptlib .html 

[23] .i'\. Daswani and D. Boneh, "Experimenting with electronic commerce on t he Palm
Pilot", Financia] Cryptography '99, LNCS 1648, pp. 1-16, Springer-Verlag, 1999. 

[24] E. De W in, A. Bosselaers, S. Vanderberghe, P. De Gersem and J. Vandewalle, "A fast. 
software implementation for arithrnetic operations in GF(2n)," Advances in Crypto

logy, Proc. Asiacrypt '96, LNCS 1163, pp. 65-76, Springer-Verlag, 1996. 



BIBLIOGRAFIA 104 

(25] E. De \Vin, S. :Mister, B. Prennel and M. Wiener, "On the performance of signature 
based 011 elliptic curves". In Algorithmic Number Theory, Proceedmgs Third fntern. 
Symp., A;\TS-III, LNCS 1423, pp. 252-266, Springer-Verlag, 1998. 

[26] W. Diffie and M. Hellman, ''New directions in cryptography" . IEEE Transactions on 
Jnformation Theory, 22, pp. 644-654, 1976. 

(27) T. ElGamal, "A public key cryptosystems and a signature scheme based on discrete 
logarithms" . IEEE Transatíons on Jnformatio Theory, 31, pp. 469-472, 1985. 

[28) G. Frey and H. Rück, "A remark concerning m-divisibili ty and the discrete logarithm 
in the divisor class group of curves\ Mathematics of Computation, 62, pp. 865-874, 

1994. 

[29] S. Ga.lbraith and N. Smart, "A cryptographic application of VVeil descent" , Codes 
and Cryptography, LNCS 1746, pp. 191-200, Springer-Verlag, 1999. 

[30] R. Gallant, R. Lambert and S. Vanstone, "Improving the para.llelized Pollard lambda 
search on binary anomalous curves'', to appear in Mathematics of Computation. 

[31] S. Garfinkel, PGP: Pretty Good Privacy, O'Reilly & Associa.tes, 1995. 

[32] P. Gaudry: F. Hess and N. Smart , ''Construct1ve and destructive facets 
of Weil descent on elliptic curves", preprint, J anuary 2000. Available at 
http://wv~.hpl.hp.com/techreports/2000/HPL-2000-10.html 

[33] GEC 1. "Recommended elliptic curve domain parameters". Standards for Ef
ficient Cryptography Group, September, 1999. VJorking draft. Available at 
http: //www.secg.org/ 

[34] GNU Privacy Guard, http://www.gnupg.org 

[35] L Goldberg, "Pilot stuff from the ISAAC Group'·, http: I /WWTN. isaac . cs . berkeley . 
edu/pilot/ 

[36] D. M. Gordon, I . A survey of fast exponentiation metbods'·, Journal of Algorithms, 

27, pp. 129-146, 1998. 

[37] J. Guajardo anu C. Paar, ''Efficient algorithms for ellipt.ic curve cryptosystems:·, 
Advances in Cryptology, Proc. Crypto '97, LNCS 1294, pp. 342-356, Springer-Verla.g, 
1997. 

[38) P. Gutmann, "Crypto1ib" . http: //wvw.es. auckland.ac.nz/-vpgut001/cryptlib 



BIBLIOGRAFIA 105 

[39] P. Gutmann, •·software generation of practically strong random numbers'· , Procee
dings of the Seventh USENIX Security Symposium, pp. 243-257, 1998. 

[40] D. Hankerson, J. Lopez and A. Menezes, "Software implementations of elliptic curve 
cryptography over fields of characteristic t,,-o". draft, 2000. 

[41] T. Hasegawa, J. Nakaj ima and M. Matsui, nA practical implementation of elliptic 
curve cryptosystems over GF(p) on a 16-bit microcomputer", Public Key Crypto

graphy- Proceedings oj PKG98, L~CS 1431, pp. 182-194, Springer-Verlag, 1998. 

[42] IEEE P1363, "Standard specifications for public-key cryptography", ballot draft, 
1999. Drafts available at http :/ /grouper. ieee. org/groups/1363 

[43] K. Itoh, M. Takenaka, N. Torii , S. Temma, and Y. Kurihara, «fast implementation 
of public-key cryptography on a DSP TMS320C6201'', In Proceedings of the First 

Workshop on Cryptographzc Hardware and Embedded Systems (CHES '99}, LNCS 
1717, pp. 61-72, Springer-Verlag, 1999. 

[44] D. Jobnson and A. Menezes, .. T he e11iptic curve digital signature algorithm (ECD
SA)'', Technical report CORR 99-06, Department of Cornbinatorics & Optimization, 
University o f Waterloo, 1999. A vailable at http : I /Y'rlVI . cacr. math. uwaterloo. ca/ 

[45] E. vV. Knudsen , uElliptic scalar mult iplication using point halving", In Asiacrypt '99, 
LNCS 1716, pp. 135-149, Springer-Ved ag, 1999. 

(46] D.E. Knuth, The Art o[ Computer Programming, 2-Semi-numerical Algorithrns. 
Addison- ~íesJy , 2nd edition, 1981. 

[47] N. Koblitz , "Elliptic curve cryptosystems", Mathematics of Computation, 48, pp. 
203-209, 1987. 

[48) N. Koblitz, '·CM-curves wilh good cryptographic properties". In Advances in Cryp
tology:Crypto '91, LNCS 576, pp. 279-287, Springer-Verlag, 1992. 

[49] N. Koblitz, A Course in Number Theory and CrJ'"ptography, 2nd edition, Springer
Verlag, 1994 

[50] P. Kocher, "Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and 
other systems·• , Advances in Cryptology-CRYPT0'96, LNCS 1109, pp. 104-113, 
Spri nger-Verlag, 1996. 

[51] N. Kobli tz , A.J. Menezes, and S. Vanslone, "The state of elliptic curve crypto
graphy'·, Designs, Codes, and Cryptography, 19, pp. 173-193, 2000. 



BIBLIOGRAFIA 106 

[52] C. K. Koç and T . Acar, ':Montgomery multiplication in GF(2k)" , Designs, Codes 
and Cryptography, 14 , pp. 57-69, 1998. 

[53] C. K. Koç, "High-Speed RSA implementation", TR 201, RSA Laboratories, 7~ pages, 
November 1994. 

[54] K. Koyama and Y. Tsuruoka, ''Speeding up elliptic cryptosystems by using a signed 
binary window method", In Advances in Cryptography-CRYPTO '92, LNCS 7 40, pp. 
345-357, Springer-Verlag, 1992. 

[55] H. Krawczyk, M. Bellare and R. Cannetti , ·'HMAC:Keyed-hashing for message 
authentication", Internet RFC 2104, Februa ry 1997. 

[56] A. Lenstra and E. Verheul , "Select ing cryptographic key sizes'', Proceedings o f PKC 
2000, LNCS 1751, pp. 446-465, Springer-Verlag, 2000. 

(57] LiDIA Group LiDIA v1.3- A library for computational number theory. TH
Darmstadt, 1998. 

[58] C. H . Lim and P. J. Lee, ''More flexible exponentiation with precomputation .. , In 
Advances zn Cryptography-CRYPT0 '94, LNCS 839, pp. 95-107, Springer-Verlag, 
1994. 

[59] J. Lopez and R. Dahab, "Improved algorithms for ellipt ic curve arithmetic m 
GF(2n)", SAC.98, LNCS 1556, pp. 201-212, Springer-Verlag, 1998. 

[60] J. Lopez and R Dahab, "Fast multiplication on elliptic curves over GF(2m) without 
precomputation'·, CHES'99, LNCS 1717. pp. 316-327. Springer-Verlag, 1999. 

[61] J. Lopez and R. Dahab, "Performance o f elliptic curve cryptosystems'', Technical 
report, IC-00-08, 2000. Available at 
http: //www .dcc.unicamp.br/ic-main/publi cations-e.html 

[62] J. Lopez and R. Dahab, 11High-Speed software multiplication in IF2m'·, Techn1cal 
report , IC-00-09, 2000. A vailable at 
http: // ww~ . d cc .un ic amp.br/ic-ma i n/publications-e.html 

[63] R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Acade
mic Publishers, 1987. 

[64) A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 
1993. 



BIBLIOGRAFIA. 107 

[65] A. Menezes and S. Vanstone, "Elliptic curve cryptosystems and their implementati
on" , J ournal of Cryptology, 6, pp. 209-224 , 1993. 

[66] A. Menezes, P. van Oorschot and S. Vanstone, Ha.ndbook o[ Applied Cryptograpby, 

CRC Press, 1997. 

[6'7] A. Menezes, T. Okamato and S. Vanstone, "Reducing elliptic curve logarithms to 
Iogarithms in a finite field '', IEEE Transactions on lnformation Theory, 39, pp. 
1639-1646, 1993. 

[68] V. Miller, "Uses of elliptic curves in cryptography", Advances in Cryptology: proce
edings o f Crypto '85, LNCS 218, pp. 417-426, New York: Springer-Verlag, 1986. 

[69] P. Montgomery, "Speeding the Pollard and elliptic curve methods of factorization'', 
Mathematics of Computation, vol 48, pp. 243-264, 1987. 

[70) V. Müller, ''Fast multiplication on elliptic curves over small fields of characteristic 
two", Journal of Cryptology, 11, pp. 219-234, 1998. 

[71 J R. M ullin , I. Onyszchuk, S. Vanstone and R. Wilson, '·Optimal normal bases in 
GF(pnt, Discrete Applied Mathematics, 22, pp. 149-161 , (1988/ 89). 

[72] National Institute of Standards and Technology, '1Digital Signature Standard'", FIPS 
Publication 186-2, February 2000. Avai lable at http: I I csrc. nist. gov /fips 

(73) National Institute of Standards and Technology, "Secure Hash Standard (SHS)'', 
FIPS Publication 180-1 , April1995. Available at http://csrc.nist.gov/fips 

[74] The International PGP Home Page, http: I / www . pgpi. org 

[75] PGP versions, http: I /www. par ano ia. com/ --vvax/pgp_versions. html 

[76] S.C. Pohlig and M.E. Hellman, "An improved algorithm for computing logarithms 
over GF(p) and its cryptographic significance., IEEE Transactwns on lnformation 

Theory, 24, pp. 106-110, 1978. 

[77] David Poguet, PaJmPilot: Tbe Ultimate Cuide, 2nd edition, O'Reilly & Associates, 
1999. 

(78] J. Pollard , "Monte Carlo methods for index computation mod p", Mathematícs of 

Computation, 32, pp. 918-924, 1978. 



BIBLIOGRAFIA 108 

[79] J. Pollard, "Factoring with cuhic integers,, A. K. Lenstra and H. VI/. Lenstra Jr. 
editors, The Development o f the Number Field Sieve, 1554, Lecture Notes in Mathe
matics, pp. 4-10, Springer-Verlag, 1993. 

(80] P. Van Oorschot and M. Wiener, '·Parallel coll ision search with cryptanalytic appli
cations11, Journal of Cryptology, 12, pp. 1-28, 1999. 

[81] OpenSSL, http: I l\1\l'W. openssl. org 

[82] B. Ramsdell , "S/ MIME version 3 message specification", Internet RFC 2633, June 
1999. 

[83) G. Reitwiesner, "Binary arithmetic'· , Advances in Computers, 1, pp. 231-308, 1960. 

[84] RIM Software Developer's Kit (SDK) , 
http:lldevelopers .r1m .netlhandheldslsdk 

[85] R. Rivest , A. Schamir and L. Adleman, "A method for obtaining digital signatu
res and public-key cryptosystems", Communications of the ACM, 21 , pp. 120-126, 
February 1978. 

[86] M. Rosing, Implementing Elliptic Cunre Cryptograpby, Manning Publications Gre
enwich, CT (1999). 

(87) T . Satoh and K. Araki, ·'Fermat quotients a nd the polynomial t ime discrete log 
algorithrn for anornalous elliptic curves" , Commentarii Mathematici Universitatis 
Sancti Pauli, 47, pp. 81-92, 1998. 

[88] R. Schoof, "Elliptic curves over finite "fields and t he cornputation of square roots mod 
p" , Math. Comp. , 44, pp. 483-494, 1985. 

[89] R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, "Fast key exchange with 
elliptic curve systems, 11 Ad,uances in Gryptology, Proc. Crypto '95, LNCS 963, pp. 
43-56, Springer-Verlag, 1995. 

[90] R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, "Fast key exchange with 
elliptic curve systems··, University of Arizona, C. S. , Tech. report 95-03: 1995. 

[91) R. Schroeppel. "Faster elliptic calculations in GF(2n)/' preprint, March 6, 1998. 

[92] SEC 1, "Elliptic curve cryptograpby" , Standards for Efficiency Cryptography Group, 
September, 1999. \Vorking Draft. Available at. http: I lw'W'W. secg. org 



BIBLIOGRAFIA 109 

[93] I. Semaev, "Evaluation of discrete logarithms in a group of p-torsion points of an 
elliptic curve in characteristic p", Mathernatics of Cornputatíon, 67, pp. 353-356, 
1998. 

[94] G. Seroussi, "Compact representation of elliptic curve points over lF2m" . Hewlett
Packard Laboratories, Technical report No. HPL-98-135, August 1998. 

[95] N. Smart, "The discrete logarithm problem on elliptic curves of trace one", Journal 

of Cryptology, 12,pp. 193-196, 1999. 

[96] J. Solinas, "An improved algorithm for arithrnetic on a family of elliptic curves,'' 
Advances in Cryptology, Proc. Crypto '97, LNCS 1294, pp. 357-371 , Spring-Verlag, 
1997. 

[97] J. Solinas, t'An improved algorithm for arithmetic on a family of elliptic curves (revi
sed)" Technical report CORR 99-06, Department of Combinatorics & Optimization, 
University of Waterloo, 1999. Avai lable at http: I 1-w-ww. cacr .math. uwaterloo. ca/ 

[98] J. Solinas, "Generalized Mersenne numbers", Technical report CORR 99-06, Depart
ment of Combinatorics & Optimization, University of vVaterloo, 1999. Available at 
http:/l www.cacr .math .uwaterloo.ca/ 

[99] J. Salinas, "Efficient arithmetic on Koblitz curvesn, Desígns, Codes and Crypto
graphy, 19, pp. 195-249, 2000. 

[100] S. Vanstone, "Responses to NIST's Proposal" , Communications of the ACM, 35, 
pp. 50-52, (communicated by John Anderson), .July 1992. 

[101] \iVireless App1ication Protocol Forum, "Wireless Application Protocol" , John Wiley 
& Sons, Inc. , 1999. see also http: I /-w-ww. -w-apforum. org/ 

[102] \VAP white paper, 1999, http : I /www. wap forum. org/ whatlwhitepapers. htm 

[103] Wireless A.pplication Protocol Forum, "VVireless Application Protocol Wireless 
Transport Layer Security Specification'' , Chapter 16 of [101], 1999. Drafts availa
ble at http: I / www. wapforum. org 

[104] A. VVhitten and J. Tygar, (<\Vhy Johnny can't encrypt : A usability evaluation of 
PGP 5.0", Proceedings of tbe Eigb th USENIX Security Symposium, 1999. 

[105] M. Wiener and R. Zuccherato, "Faster attacks on ellipt ic curve cryptosystems", 
Selected Areas in Cryptography'98, LNCS 1556, pp. 190-200, Springer-Verlag, 1998. 

[106] P. Zimmermann, Tbe OfHcial PGP User)s Cuide, MIT Press, 1995. 

UNICAMP 
BIBLIOTECA CENTRAL 

SEÇÃO ClRCULANTF 


