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Resumo

A criptografia de chave-publica é, reconhecidamente, uma ferramenta muito util para
prover requisitos de seguranga tais como confidencialidade, integridade, autenticidade e
nao-repudio, parte integrante das comunicacoes.

A principal vantagem dos criptossistemas de curvas elipticas (CCE) em relagdo a
outras tecnologias de chave-publica concorrentes tais como RSA e DSA, é que parametros
significativamente menores podem ser usados nos CCE com o mesmo nivel de seguranga.
Essa vantagem é especialmente importante em aplicacoes emn ambientes computacionais
limitados como cartdes inteligentes, telefones celulares, computadores de bolso e pagers.

De um ponto de vista pratico, a implementacao dos CCE apresenta varios desafios.
Uma aplicacdo baseada nos CCE precisa que varias escolhas sejam feitas tais como o
nivel de seguranca, algoritmos para implementar a aritmética no corpo finito subjacente,
algoritmos para implementar a aritmética na curva eliptica, protocolos de curvas elipticas e
a plataforma computacional. Essas escolhas podem ter um grande impacto no desempenho
da aplicacao resultante.

Esta dissertagao trata do desenvolvimento de algoritmos eficientes para implemen-
tacao em software de criptossistemas de curvas elipticas sobre o corpo finito Fow. Neste
contexto, foram desenvolvidos métodos eficientes para implementar a aritmética no corpo
finito Fom, e para calcular miultiplos de um ponto eliptico, a operacao fundamental da
criptografia piblica baseada em curvas elipticas. Nesta dissertagao também foi abordado
o problema da implementacéo eficiente em software dos algoritmos propostos, em diferen-
tes plataformas computacionais tais como PCs, estacoes de trabalho, e em dispositivos
limitados como o pager da RIM.



Abstract

It is widely recognized that public-key cryptography is an important tool for providing se-
curity services such as confidentiality, data integrity, authentication and non-repudiation,
which are requirements present in almost all communications. The main advantage of
elliptic curve cryptography (ECC) over competing public-key technologies such as RSA
and DSA, is that significantly smaller parameters can be used in ECC, but with equivalent
levels of security. This advantage is especially important for applications on constrained
environments such as smart cards, cell phones, personal device assistants, and pagers.

From a practical point of view, the implementation of ECC presents various challenges.
An ECC-based application requires that several choices be made including the security
level, algorithms for implementing the finite field arithmetic, algorithms for implementing
the elliptic group operation, elliptic curve protocols, and the computer platform. These
choices may have a significant impact on the performance of the resulting application.

This dissertation focuses on developing efficient algorithms for software implementa-
tion of ECC over Fom. In this framework, we study different ways of efficiently imple-
menting arithmetic in Fym., and computing an elliptic scalar multiplication, the central
operation of public-key cryptography based on elliptic curves. We also concentrate on
the software implementation of these algorithms for different platforms including PCs,
workstations, and constrained devices such as the RIM interactive pager.

This dissertation is a collection of five papers written in English, with an introduction
and conclusions written in Portuguese.
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Capitulo 1
Introducao

A criptografia tem sido utilizada ha séculos em contextos militares e diplométicos para
prover sigilo de informagoes. Na era moderna das comunicagdes eletrénicas, os requisitos
de seguranga tais como confidencialidade, integridade, autenticacao e nao-reptidio tem
assumido um papel muito importante. Também para o provimento desses requisitos, a
criptografia tem se mostrado muito util.

O conceito revoluciondrio de criptografia de chave piblica foi apresentado por Diffie e
Hellman, em 1976, no artigo “New directions in cryptography” [26]. Embora os autores
nao tenham apresentado uma implementagao pratica para essa idéia, o novo conceito
gerou uma intensa atividade de pesquisa na procura de sistemas criptograficos praticos de
chave piiblica. Ainda nesse artigo, € apresentado um engenhoso protocolo para troca de
chaves, cuja seguranga esta baseada na suposta intratabilidade do problema do logaritmo
discreto mddulo um nimero primo (PLD).

Pouco tempo depois, Ron Rivest, Adi Shamir, e Len Adleman [85], descobriram o
primeiro esquema de chave publica para assinatura e ciframento, denominado RSA. O
sistemna RSA estd baseado em outro problema supostamente dificil, a fatoracao de numeros
intewros muito grandes (FNI). Atualmente, o melhor algoritmo conhecido para resolver esse
problema é o “number field sieve” [79], que tem tempo de execucao sub-exponencial.

Em 1984, ElGamal [27] apresentou um outro criptossistema de chave piblica baseado
no PLD. Esse criptossistema tem sido refinado e incorporado em varios protocolos € uma
de suas extensoes forma a base do algoritmo de assinatura digital americano (DSA).

A descoberta de varios algoritmos eficientes para resolver o problema do logaritmo
discreto nos grupos multiplicativos Z,, e Fon", durante os anos de 1978 a 1984, forgou
um aumento no tamanho das chaves utilizadas no protocolo Diffie-Hellman, tornando-o
mais caro e, em consequiéncia, menos atraente. Esta situagao levou varios pesquisadores &
observacao de que tanto o protocolo de troca de chaves de Diffie-Hellman como os sistemas
do tipo ElGamal, podem ser estendidos a grupos abelianos arbitrarios [51]. Assim, os



esforcos de pesquisa foram orientados para a investigagao de grupos abelianos onde o
problema do logaritmo discreto parece ser intratavel e as operagoes no grupo possam ser
implementadas eficienternente em software ou em hardware.

Em 1985, N. Koblitz [47] e V. Miller [68], de forma independente, propuseram uti-
lizar o grupo de pontos de uma curva eliptica sobre um corpo finito para implementar
criptossistemas de chave publica. Esses sistemas, denominados criptossistemas de curvas
elipticas (CCE), tém sua seguranga baseada na suposta intratabilidade do problema do
logaritmo discreto no grupo de pontos de uma curva eliptica (PLDCE).

Nos tltimos anos, muitos avancos foram feitos na drea dos CCE. O melhor algoritmo
conhecido para o problema do logaritmo discreto em curvas elipticas é de tempo expo-
nencial [78]. Embora existam alguns ataques (algoritmos de tempo sub-exponencial [67]
e polinomial [87, 93, 95]) para certos tipos de curvas elipticas, esses ataques podem ser
evitados facilmente por meio de testes simples, descritos em varios padroes industriais
[5, 42].

O fato de nao se conhecer um algoritmo geral de tempo sub-exponencial para o PLD-
CE, possibilita que parametros menores sejam usados nos CCE, relativos aos sistemas
baseados no PLD. Por exemplo, NIST [72] recomenda o uso de chaves de 3072 bits nos
sistemas baseados no PLD e RSA para obter-se um nivel de seguranca comparavel ao
fornecido por um algoritmo de chave simétrica de 128 bits. Entretanto, nos CCE sdo
suficientes chaves de 256 bits para obter-se 0 mesmo nivel de seguranca.

Algumas vantagens que resultam do fato de usar-se pequenos parametros nos CCE
incluem velocidade, chaves e certificados pequenos. Para certas aplicagoes, onde a ca-
pacidade de processamento, a poténcia computacional, o espago de armazenamento e a
banda-passante estejam limitados, os CCE superam outros sistemas de chave piblica.
Por todas estas razoes, os CCE tem tido crescente aceitacdo, nos setores industriais, co-
mo alternativa aos ji estabelecidos RSA, protocolo de troca de chaves Diffie-Hellman e
DSA.

A criptografia de chave publica, nos ultimos anos, tem-se convertido numa das tec-
nologias bdsicas para a construcao de aplicagoes muito sensiveis a seguranca, tais como
correio eletronico, eleicoes eletronicas e comércio eletronico.

A implementacao eficiente da criptografia baseada em curvas elipticas depende de
varios fatores como o nivel de seguranca desejado, a plataforma computacional (software,
hardware, ou firmware), restri¢bes no ambiente computacional (velocidade do processa-
dor, tamanho do codigo, memdria, banda-passante ), métodos eficientes para a aritmética
no corpo (soma, multiplicacao, cdlculo de quadrados e inversos. solugao de equagoes qua-
draticas) e algoritmos para implementar a aritmética na curva eliptica (soma de pontos e
multiplicacao escalar).

Nesta tese, nos concentramos na implementacao em software de curvas elipticas sobre



1.1. Contribuigoes da Tese 3

o corpo finito Fyn. Vérios algoritmos foram desenvolvidos para acelerar a computacao da
operacao central dos CCE, a multiplicacdo de um ponto eliptico por um ndmero inteiro
grande. Nosso trabalho também inclui uma implementacdo prética das curvas NIST [72]
para diferentes plataformas computacionais como PCs, estagoes de trabalho SPARC ¢ o
pager RIM bidirecional.

1.1 Contribuicoes da Tese
As principais contribuicoes desta dissertagao sio:

e Desenvolvimento de um algoritmo eficiente para multiplicacdo no corpo finito Fom,
cujos elementos sao representados usando uma base polinomial. Esse algoritmo é
orientado para implementacoes em software de curvas elipticas sobre Fom. (Capitulo
L

e Melhoramento de um algoritmo desenvolvido por J. Guajardo e C. Paar [37]. Apre-
sentamos férmulas mais eficientes para calcular duplicagoes consecutivas de um pon-
to eliptico em curvas elipticas definidas sobre Fom. (Capitulo 4)

e Desenvolvimento de uma férmula nova para duplicar pontos elipticos em curvas
definidas sobre Fyn. Baseado nessa formula, propusemos um sistema de coordenadas
projetivas para a aritmética de uma curva eliptica sobre Fom. Essa formulacao é
mais eficiente do que a dos métodos conhecidos. (Capitulo 4)

e Desenvolvimento de um algoritmo eficiente para multiplicacdo escalar sobre curvas
elipticas definidas sobre Fom. Esse método é atraente tanto para implementacoes
em software como em hardware de curvas aleatorias sobre Fom. (Capitulo 5).

e Projeto e implementacao de uma biblioteca escrita em linguagem C, para suporte de
curvas elipticas sobre os corpos Faies, Fo2ss e Fa2es (recomendados por NIST [72]), em
diferentes plataformas computacionais que incluem PCs, PCs de bolso (PalmPilot)
e um pager RIM bidirecional. (Capitulo 6).

e Incorporagao da biblioteca de curvas elipticas sobre Fom numa implementacao do
sistema criptografico PGP no pager bidirecional RIM. (Capitulo 6)

1.2 Estrutura da Tese

Esta dissertacao é uma coletanea de artigos cientificos obtidos durante o desenvolvimento
do projeto de pesquisa. O restante deste texto estd organizado da seguinte forma:
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O Capitulo 2 contém uma breve introducao ao estudo dos criptossistemas de curvas
elipticas com énfase na implementacio em software de curvas elipticas definidas sobre o
corpo finito Fom; vdrios algoritmos eficientes sdo apresentados para calcular miltiplos de
um ponto eliptico e para implementar a aritmética do corpo finito Fan, usando uma base
polinomial.

O Capitulo 3 apresenta um algoritmo rapido para multiplicagdo no corpo finito Fom,
onde os elementos sdo representados usando uma base polinomial. O novo algoritmo é
crucial para obter-se uma implementacao eficiente em software dos criptossistemas de
curvas elipticas definidos sobre os corpos finitos de caracteristica 2. Esse algoritmo ¢ a
base da implementacio em software das curvas NIST, apresentada no Capitulo 6.

O Capitulo 4 apresenta alguns algoritmos eficientes para a implementagao da aritmética
no grupo de uma curva eliptica definida sobre Fuo». Em particular, um esquema novo de
coordenadas projetivas é apresentado.

O Capitulo 5 traz um método eficiente para multiplicar pontos de uma curva eliptica.
Esse algoritmo possui algumas caracteristicas que o tornam atraente para implementacoes
em hardware ou software de curvas elipticas aleatérias definidas sobre Fon.

O Capitulo 6 descreve uma implementag¢ao pratica de curvas elipticas definidas sobre
Fsm. O objetivo central foi projetar uma aplicacao pratica de correio eletronico com
seguranca, baseada no sistema criptografico PGP, para ser executada numa plataforma
computacional (com recursos limitados) como o pager RIM bidirecional. Substituimos
os algoritmos de chave puiblica do PGP pelos algoritmos de curvas elipticas, tais como
ECDSA (algoritmo andlogo ao DSA) e ECAES (algoritmo para ciframento baseado no
ElGamal). A aplicacdo esta baseada nas curvas NIST sobre o corpo finito Fom.

O Capitulo 7 contém conclusoes e alguns comentarios para futuros trabalhos.



Capitulo 2

Introducao a Criptossistemas de
Curvas Elipticas

Neste capitulo estudamos os conceitos fundamentais em curvas elipticas e a construcao de
criptossistemas baseados em curvas elipticas (CCE). Abordamos os principais problemas
associados & implementacao eficiente dos CCE, e apresentamos um resumo dos algoritmos
bédsicos para implementagao em software da aritmética no corpo finito Fom e a aritmética
no grupos de pontos de uma curva eliptica definida sobre Fym.

O trabalho apresentado neste capitulo foi publicado como relatério técnico No. IC-
00-10 no Instituto de Computagdo, UNICAMP, e submetido ao Journal of Universal
Computer Science.
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Abstract

Elliptic curve cryptography (ECC) was introduced by Victor Miller and
Neal Koblitz in 1985. ECC proposed as an alternative to established
public-key systems such as DSA and RSA, have recently gained a lot at-
tention in industry and academia. The main reason for the attractiveness
of ECC is the fact that there is no sub-exponential algorithm known to
solve the discrete logarithm problem on a properly chosen elliptic curve.
This means that significantly smaller parameters can be used in ECC
than in other competitive systems such RSA and DSA, but with equiva-
lent levels of security. Some benefits of having smaller key sizes include
faster computations, and reductions in processing power, storage space
and bandwidth. This makes ECC ideal for constrained environments
such as pagers, PDAs, cellular phones and smart cards. The implemen-
tation of ECC, on the other hand, requires several choices such as the
type of the underlying finite field, algorithms for implementing the finite
field arithmetic, the type of elliptic curve, algorithms for implement-
ing the elliptic group operation, and elliptic curve protocols. Many of
these selections may have a major impact on the overall performance. In
this paper we present a selective overview of the main methods and tech-
niques used for practical implementations of elliptic curve cryptosystems.
We also present a summary of the most recent reported software imple-
mentations of ECC.

Key words. Elliptic curve cryptography, finite fields, elliptic scalar
multiplication.

2.1 Introduction

In 1985, Victor Miller [68] and N. Koblitz [47], independently, proposed a public-key
cryptosystem analogue of the ElGamal schemes [27] in which the group Z; is replaced by

6
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the group of points on an elliptic curve defined over a finite field. The main attraction
of elliptic curve cryptography (ECC) over competing technologies such as RSA and DSA
is that the best algorithm known for solving the underlying hard mathematical problem
in ECC (the elliptic curve discrete logarithm problem (ECDLP)) takes fully exponential
time. On the other hand, the best algorithms known for solving the underlying hard
mathematical problems in RSA and DSA (the integer factorization problem, and the
discrete logarithm problem, respectively) take sub-exponential time. This means that
significantly smaller parameters can be used in ECC than in other systems such as RSA
and DSA, but with equivalent levels of security. A typical example of the size in bits of
the keys used in different public-key systems, with a comparable level of security (against
known attacks), is that a 160-bit ECC key is equivalent to RSA and DSA with a modulus
of 1024 bits.

The lack of a sub-exponential attack on ECC offers potential reductions in processing
power, storage space, bandwidth and electrical power. These advantages are specially
important in applications on constrained devices such as smart cards, pagers, and cellular
phones.

From a practical point of view, the performance of ECC depends mainly on the effi-
ciency of finite field computations and fast algorithms for elliptic scalar multiplications.
In addition to the numerous known algorithms for these computations, the performance of
ECC can be sped up by selecting particular underlying finite fields and/or elliptic curves.
Examples of finite fields are Fom (for hardware and software implementations) and F,,
where p is a special prime (e.g., a Mersenne prime or a generalized Mersenne prime, see
[98]). Examples of families of curves that offer computational advantages for computing
a scalar multiplication include Koblitz curves over Fom. Thus, a fast implementation of
a security application based on ECC requires several choices, any of which can have a
major impact on the overall performance.

The remainder of this paper is organized as follows. A short introduction to finite field
arithmetic is provided in Section 2.2. A brief introduction to elliptic curves is presented in
Section 2.3. A list of the main known attacks on the elliptic curve discrete logarithm pro-
blem (ECDLP) is provided in Section 2.4. In Section 2.5, we describe several algorithms
for computing a scalar multiplication which is the central operation of ECC. Finally, some
implementation issues are considered in Section 2.6.

2.2 Finite fields

In this section we present the definition of groups and finite fields. These mathematical
structures are fundamental for the construction of an elliptic curve cryptosystem.
A group is an algebraic system consisting of a set G together with a binary operation
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o defined on G satisfying the following axioms:

e closure: for all z,y in G we have z oy € G,
e associativity: for all z,y and z in G we have (zoy)oz=z0(yoz);
o identity: there exists an e in G such that rce =eocxz =z for all z in G;

e inverse: for all z in G there exists y in G such that zoy=yoz =e.
If in addition, the binary operation o satisfies the abelian property:
e abelian: for all 2,7 in G we have z oy =y oz,

then we say that the group G is abelian.
A finite field is an algebraic system consisting of a finite set F together with two binary
operations + and x, defined on F, satisfyving the following axioms:

e Fis an abelian group with respect to “+7;
e F'\ {0} is an abelian group with respect to “x";
e distributive: for all z,y and z in F we have:

zx(y+z)] = (@xy)l+izxz)
(z+y)xz = (zx2z)+(yxz).

The order of a finite field is the number of elements in the field. A fundamental result
on the theory of finite fields (see [63]), characterizes the existence of finite fields: there
exists a finite field of order ¢ if and only if ¢ is a prime power. In addition, if ¢ is a
prime power, then there is essentially only one finite field of order ¢; this field is denoted
by F, or GF(q). There are, however, many ways of representing the elements of F,, and
some representations may lead to more efficient implementations of the field arithmetic
in hardware or in software.

If ¢ = p™, where p is a prime and m is a positive integer, then p is called the character-
istic of F, and m is called the eztension degree of F,. Most standards which specify ECC
restrict the order of the underlying finite field to be an odd prime (¢ = p) or a power of
2 (g=2m).

2.2.1 The finite field F,

Let p be a prime number. The finite field F,, called a prime field, consists of the set of
integers

with the following arithmetic operations:



2.2. Finite fields 9

o Addition: If a,b € F,, then a + b = r, where r is the remainder of the division of
a+bbypand0<r<p-—1. This operation is called addition modulo p.

e Multiplication: If a,b € Fp, then a - b = 5, where s is the remainder of the division

of a-bby pand 0 < s < p— 1. This operation is called multiplication modulo p.

There are certain primes p for which the modular reduction can be computed very
efficiently. For example, let p be the prime 2! — 264

5
n= E Aj ' 2643.
7=0

— 1. To reduce a positive integer
n < p?, write

Then
n=T+4+S5;4+ S5+ S; (mod p),
where
T = As- g1 Aq - 264 . Ag
S = Az-2%4 4 A4
Sy = A28 4+ A28
Sy = A 284 4..20 L A

Thus, the integer reduction by p can be replaced by three additions (mod p), which are
much faster. The prime number p is an example of a family of primes called generalized
Mersene numbers, recently introduced by Solinas [98]. For more examples of primes that
are well suited for machine implementation, see [98] and [72]. Several techniques for
implementing the finite field arithmetic in F, are described in [46, 66, 14, 43, 25, 41].

2.2.2 The finite field Fom

The finite field Fom, called a binary finite field, can be viewed as a vector space of dimension
m over Fs. That is, there exists a set of m elements {ag, a1,...,®mn-1} in Fom such that
each a € Fom can be written uniquely in the form

m—1
a= Z a;0,, where a; € {0,1}.
=0
The set {ap, @1, ..., Q-1 is called a basis of Fom over F5. We can then represent a as a

binary vector (ag, @y, --..0nm—1). We now introduce two of the most common bases of Fom
over Fy: polynomial bases and normal bases.
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Polynomial basis. Let f(x) = 2™ + Y ' fiz* (where f; € {0,1}, for i = 0,1. -1)
be an irreducible polynomial of degree m over Fy; f(z) is called the reduction polynomz'al.
For each reduction polynomial, there exists a polynomial basis representation. In such
a representation, each element of Fo» corresponds to a binary polynomial of degree less
than m. That is, for a € Fom there exist m numbers a, € {0,1} such that

a=ap_ 12"+ -+ a1z + ap.

The field element a € Fym is usually denoted by the bit string (a;,— ...a1aq) of length
m. The following operations are defined on the elements of Fom when using a polynomial
representation with reduction polynomial f(xz). Assume that @ = (@m-1...a10p) and
b == (bm__l aiaa blbu)_

e Addition: a+b=c= (¢p—; ---€160), where ¢, = (a; + b;) mod 2. That is, addition
corresponds to bitwise exclusive-or.

e Multiplication: a- b= c = (-1 - CLCU) where ¢(z) = Z;—o c;x* is the remainder
of the division of the polynomial (E‘_U a;iz®) (3075 biz') by f(z).

The following procedure is commonly used to choose a reduction polynomial: if an irre-
ducible frinomial ™ + z* 41 exists over Fy, then the reduction polynomial f(r) is chosen
to be the irreducible trinomial with the lowest-degree middle term z*.! If no irreducible
trinomial exists, then select instead a pentanomial ™ + z** + z** + 2% + 1, such that &,
has the minimal value; the value of &, is minimal for the given £;; and k; is minimal for
the given k; and k».

Normal basis. A normal basis of Fom over Fy is a basis of the form {8, 4%,...,3" '},
where § € Fym. It is well known (see [63]) that such a basis always exists. Therefore.
every element @ € Fym can be written as @ = 3 1.'a,4%, where a, € {0,1}. The
field element a is usually denoted by the bit string (aga, ...a;,—1) of length m. A normal
basis representation of Fo» has the computational advantage that squaring an element is a
simple cyclic shift of the vector representation, an operation that is efficiently implemented
in hardware. Multiplication of different elements, on the other hand, is in general a
more complicated operation. Fortunately, for the particular class of normal bases called
Gaussian normal bases (GNB), the field arithmetic operations can be implemented very
efficiently [42]. The iype T of a GNB is a positive integer measuring the complexity of
the multiplication operation with respect to that basis; the smaller the type, the faster
the multiplication.

! Although this selection may affect the speed of the almost inverse algorithm (see [25]), it allows for
faster reduction modulo f(z).
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The existence of a Gaussian normal basis has been characterized in [71] and [8]. In
particular, a GNB exists whenever m is not divisible by 8. In addition, if m is divisible by
8 and T is a positive integer, then a type 7' GNB for Fom exists ifand only if p=Tm +1
is prime and ged(Tm/k, m) = 1, where £ is the multiplicative order of 2 modulo p.

The finite field operations in Fom, using a Gaussian normal basis of type 7, are defined
as follows. Assume that a = (ag@i ... @an-1) and b = (beby .. .bp-1). Then:

e Addition: a + b = ¢ = (coC1...Cm—-1), Where ¢; = (@; + ;) mod 2. That is, field
addition is performed bitwise.

e Squaring: Since squaring is a linear operation in Fom,

m—1 m—1 m—1
2 E : 242 E : Pk E : 2
a = ( _Giﬁ ) = a; 8 = @3—1 mod mid = (Gm—laual . -am—z)-
1=0 i=0 i=0

Hence squaring a finite field element is a simple rotation of the vector representation.

o Multiplication: Let p=Tm + 1 and let u € F, be an element of order 7. Define the
sequence F'(1), F(2),...,F(p—1) by

F2wW modp)=ifor0<i<m-—1,0<;j<T -1

For each I, 0 <1 < m — 1, define 4, and B; by

p—2

A = E CF(k+1)+t OF(p—k)+1, and
k=1
mf2

B = g (@kt1-1 bmprprti-1 + Qmpotkyi-1 berio1) + Ap
k=1

Then a-b=c¢= (cocy...Cm-1), Where

| Ay if T is even,
“=\ B, if Tis odd,

for each .0 <! < m — 1, where indices are reduced modulo m.

See [42] for a good survey on finite field algorithms using a normal basis in Fan. Consult
Agnew, Mullin and Vanstone [2] and Rosing [86] for a hardware and software implemen-
tation, respectively, of a normal basis in Fom.
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2.2.3 Finite field arithmetic in Fs» using a polynomial basis

In this section we describe various bit-level algorithms for performing computations in the
finite field Fom using a polynomial basis representation. These algorithms can be easily
modified to obtain word-level algorithms, which are well suited for software implementa-

tions.

Addition. Addition in Fo~ is the usual addition of vectors over F,. That is, add the
corresponding bits modulo 2.

Algorithm 1: bit-level method for addition in Fym
INPUT: @ = (@m-1..-a1ap) € Fom and b= (b1 ...b1bp) € Fom
OUTPUT: c=a+ b= (em-1...C1¢0)
1. for j from 0 to m—1 do
Set ¢; + (a; +b;) mod 2
2. return(c).

Modular reduction. By the definition of multiplication in Fom, the result of a polynomial
multiplication or squaring has to be reduced modulo an irreducible polynomial of degree
m. This reduction operation is particularly efficient when the irreducible polynomial f(z)
is a trinomial or a pentanomial. The following algorithm for computing a(z) mod f(z)
works by reducing the degree of a(z) until it is less than m.

Algorithm 2: bit-level method for modular reduction in Fom

INPUT: @ = (@am-2---@1a0) and f = (fmfm-1--. fifo)
OUTPUT: ¢ =a mod f

1. for 2 from 2m —2 to m do
for j from 0 to m—1 do
if fj ?é (0 then Qi—m+j < Qimm+j + Q4
2. return(e + (@m-1-...-a10p)) -

Squaring. This operation can be calculated in an efficient way by observing that the square
of a polynomial a is given by

m—1 m=1
a(z)? = (D aa’)? =) _ alz®
1=0 1=0

This equation yields a simple algorithm:
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Algorithm 3: bit-level method for squaring in Fom

INPUT: a = (am_1 it ﬂ.lﬂ.g) and f - (fmfm-—l ity f]_fg)
OUTPUT: ¢ = a” mod f

1. Bk t4—Y oy ain”

2. Set ¢+t mod f //Use Algorithm 2
3. return(c).

A known technique for speeding up the computation in step 1 is to use a table lookup
(see Schroeppel et al [89)] for details).

Multiplication. The basic method for performing a multiplication in Fym is the “shift-and-
add” method. It is analogous to the binary method for exponentiation, with the square
and multiplication operations being replaced by the multiplication of a field element by z
and field addition operations, respectively. Given a € Fam, the shift-left operation za(x)
mod f(z) can be performed as follows

m—1 i :
Yoo Gyaqad i g =0

Y (aio + £33 + fo if @y # 0.
Then the steps of the “shift-and-add” method are given below.

za(z) mod f(z) = {

Algorithm 4: “shift-and-add”™ method

INPUT: @ € Fom ,b € For and f = (fmfm—l w4 .f]f[))
OuTPUT: c=abmod f

1. Set c¢(z)«+0
2. for j from m—1 to 0 do

Set ¢(x) + zc(x) mod f(x)

if a; # 0 then Set c(z) + c(z) + b(z)
3. return(c).

This method requires m — 1 shift-left operations and m field additions on average. The
speed of this method can be improved by using programming tricks such as separated
name veriables and loop-unrolled code. In [62] we have proposed a fast algorithm for
multiplication that is significantly faster than the “shift-and-add” method, but requires
some temporary storage.

Inversion. The basic algorithm for computing multiplicative inverses is the extended Eu-
clidean algorithm. A high level description of this method is the following:
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Algorithm 5: Extended Euclidean algorithm

INPUT: a € Fam (@ #0) and f = (fnfm-1--- f1.fo)
OUuTPUT: ¢=a"" mod f

1. Set bi(z) « 1, ba(z) « 0
set pi(z) « alz), pa(s) & f(a)

2. while degree(p;) # 0 do

if degree(p;) < degree(p;) then

exchange pi,p, and by, bo

Set j < degree(p;)-degree(p;)

Set pi(z) « pi(z) + 27pa(x), bi(z) « by(z) + x7bs(z)
3. return(c(z) + bi(z)).

An alternative method for computing inverses, called the almost inverse algorithm, was
proposed by Schroeppel et al [89]. This method works quite well when the reduction
polynomial is a trinomial of the form z™ + z* +1 with k > w and m — k > w, where w is
the word size of the computer used. The authors suggested a number of implementation
tricks that can be used for improving the speed of this method: many of these tricks
also work for the extended Euclidean algorithm. Note that in the context of elliptic
curve computations over Fam, most of the inversions required can be avoided by using
a projective scheme [59]. In this case, we trade inversions for multiplications and other
finite field operations.

2.3 Elliptic curves over finite fields

In this section we give a short introduction to the theory of elliptic curves defined over
finite fields. Additional information on elliptic curves and its applications to cryptography
can be found in Blake et al [14], Menezes [64], Chapter 6 of Koblitz's book [49], and [92].
There are several ways of defining equations for elliptic curves, which depend on
whether the field is a prime finite field or a characteristic two finite field. The Weierstrass
equations for both finite fields F, and Fom are described in the next two sections.

2.3.1 Elliptic curves over F,

Let p > 3 be an odd prime and let a,b € F, satisfy 4a* + 276* # 0 (mod p). Then an
elliptic curve E(F,) over I, defined by the parameters a.b € F, consists of the set of
solutions or points P = (z,y) for z,y € F, to the equation:

2=z +az+b (2.1)
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together with a special point O called the point at infinity. For a given point P = (zp,yp),
zp is called the z-coordinate of P, and yp is called the y-coordinate of P.

An addition operation + can be defined on the set E(F,) such that (E(F,),+) forms
an abelian group with O acting as its identity. It is this algebraic group that is used to
construct elliptic curve cryptosystems. The addition operation in E(F,) is specified as
follows:

1. P+O=0+P=Pforall P e E(F,).

2. If P = (z,y) € E(Fp), then (z,y) + (z,—y) = O. (The point (z,—y) € E(F,) is
denoted —P, and is called the negative of P.)

3. Let P = (z1,y1) € E(Fp) and Q = (22,y2) € E(F,), where P # +£Q. Then
P+ Q = (z3,y3), where

Y2 — Uy

T3 =N =21 — 2, ys = Az — x3) — ¥y, and,\=x o
2 — I

4. Let P = (z1,%) € E(F,). Then P+ P = 2P = (z3,ys), where

31} +a

Iz = AQ — 2.’1.‘1, Uz = /\(.’L‘l —.'I.‘3] =371 and A =
2y

This operation is called the doubling of a point.

Notice that the addition of two different elliptic curve points in E(F,) requires the
following arithmetic operations in F,: one inversion, two multiplications, one squaring
and six additions. Similarly, doubling an elliptic curve point in E(F,) requires one inver-
sion, two multiplications, two squarings and eight additions. Since inversion in F, is, in
general, an expensive operation, an alternative method to compute the sum of two elliptic
points is to use projective coordinates. In this case, the inversion operation is traded for
more multiplications and other less expensive finite field operations. See [20] for several
proposed projective schemes.

The following algorithm implements the addition of two points on E(F,) in terms of
affine coordinates.
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Algorithm 6: Addition on E(F,)

INPUT: An elliptic curve E(F,) with parameters a,b € F,, and
points Py = (z1,y1) and P, = (z9,42).
OuTPUT: Q = P, + P».

1. if P, =0, then return(Q < P,)
2. if P, =0, then return(Q «+ P;)
3. If I, =Iy then
if y1 =y, then A « (327 +a)/(2y;) mod p
else return(Q «+ Q) // y1 = -y //
else A\ «— (y2 —y1)/(z2 — ;) mod p
4. Set z3+ A’ —1;—29 mod p
Set y3 + A(zy —z3) —y1 mod p
6. return(Q + (z3,¥3)) .

w

2.3.2 Elliptic curves over Fsn

A (non-supersingular) elliptic curve E(Fym) over Fom defined by the parameters a,b €
Fom.,b # 0, consists of the set of solutions or points P = (z,y) for z,y € Fom to the
equation:

v +zy=12"+az’ +b (2.2)

together with a special point O called the point at infinity.
As in the case of elliptic curves over F,, the set of points on E(F»~ ) can be equipped
with an abelian group structure. This addition operation is specified as follows:

1.

2

P+O=0+4+P=Pforal Pe E(Fam).

2. If P = (z,y) € E(Fan), then (z,y) + (z,—y) = O. (The point (z,—y) € E(Fam) is

denoted — P, and is called the negative of P.)

Let P = (z1,7n) € E(Fom) and Q = (22,y2) € E(Fom), where P # =(@. Then
P+ Q = (x3,y3), where

T3 =N +A+z +22+a, y3 = Az + 73) + 23 + 31 and ,\=___H._y2+y‘,
To=+T
Let P= (x,,4:) € E(Fyom). Then P+ P = 2P = (z3,y3), where

T3 =M+ A+a, ys =AMz +23) + 23+ I and/\=$1+y—l.
1
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Notice that the addition of two different elliptic curve points in E(Fs) requires one in-
version, two multiplications, one squaring and eight additions in Fon. Doubling? a point
in E(Fy=) requires one inversion, two multiplications, one squaring and six additions.
For situations® where the computation of an inversion operation is relatively expensive
compared to a multiplication, projective schemes offer computational advantages. Fast
algorithms for the arithmetic of elliptic curves over Fao in projective coordinates are de-
scribed in [59].

The following algorithm implements the addition of two points on E(Fo=) in terms of
affine coordinates.

Algorithm 7: Addition on E(Fym)

INPUT: An elliptic curve E(Fym) with parameters a, b € Fom, and
points P, = (z1,31) and P = (22, 92).
OUuUTPUT: Q = P, + P,.

1. if P, =0, then return(Q « P)
2. if P, =0, then return(Q <« Py)
3. if z; = z» then
if y1 =y then A\ <z, +y1/71, 23 < A+ A +a
else return(Q « O) // yo=y1 + a1 //
else A+ (o +11)/ (o +21), 23 N+ A+ +T0+a
4. Set yz+ Az +1x3) + T3+ W11
5. return(Q + (z3,¥3)) -

2.3.3 Definitions and basic results

Scalar multiplication. The central operation of cryptographic schemes based on ECC is
the elliptic scalar multiplication (operation analogue of the exponentiation in multiplica-
tive groups). Given an integer k and a point P € E(F,), the elliptic scalar multiplication
kP is the result of adding P to itself & times. In Section 2.5, we will describe some efficient
algorithms for calculating kP.

Orders. The order of a point P on an elliptic curve is the smallest positive integer r such
that 7P = . If k and [ are integers, then kP = [P if and only if £ = (mod 7).

*An alternative method for computing 2P is described in [59].
®See [2] for a hardware implementation and [40] for a software implementation of Fam where an
inversion costs about 24 and 10 multiplications, respectively.
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Curve _order. The number of points of E(F,), denoted by #E(F,), is called the curve order
of the curve. This number can be computed in polynomial time by Schoof’s algorithm
(88]. This algorithm is required for setting up an elliptic curve system based on random
curves. In this case, one selects parameters a and b with the property that the curve order
of the resulting curve be divisible by a large prime (see Section 2.4 for an explanation of
this condition).

Basic facts. Let E be an elliptic curve over a finite field F,. Then:

e Hasse's theorem states that #E(F,) = ¢ + 1 — ¢, where [t| < 2,/g. That is, the
number of points in E(F,) is approximately ¢.

e If g is a power of 2, then #E(F,) is even. More specifically, #E(F,) = 0 (mod 4) if
Tr(a) =0,* and #E(F,) = 2 (mod 4) if Tr(a) = 1.

e E(F,) is an abelian group of rank 1 or 2. That is, E(FF,) is isomorphic to Z,, x Z,,,
where ny divides n; and ¢ — 1.

o If g is a power of two and P = (z,y) € E(IF,) is a point of odd order, then the trace
of the z-coordinate of all multiples of P is equal to the trace of the parameter a.
That is, Tr(z(kP)) = Tr(a) for each integer k. This result, due to Seroussi [94], is
the basis of an efficient algorithm for a compact representation of points on elliptic
curves over Fom. Knudsen's method [45] for computing elliptic scalar multiplications
is also based on this result.

2.3.4 ECC domain parameters

The operation of public-key cryptographic schemes involves arithmetic operations on an
elliptic curve over a finite field determined by some elliptic curve domain parameters. In
this section, we describe the elliptic curve parameters over the finite fields F, and Fom.
ECC domain parameters over F, are a septuple:

T = (¢, FR,a,b,G,n, h)

consisting of a number ¢ specifying a prime power (¢ = p or ¢ = 2™), an indication FR
(field representation) of the method used for representing field elements € F,. two field
elements a and b € F, that specify the equation of the elliptic curve E over F, (i.e.,
y*> = 7% + az + b in the case p > 3, and y* + zy = z* + az® + b when p = 2), a base point
G = (z¢,yg) on E(F,), a prime n which is the order of G, and an integer A which is the
cofactor h = #E(F,)/n.

Several algorithms for the generation and validation of elliptic curve domain para-
meters have been proposed (see for example [72] and [33]). Since the primary security

m—1 ot

“The trace Tr(-) is a linear map from Fy= to F, defined by T'r(a) =" a .
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parameter is n, the ECC key length is thus defined to be the bit-length of n. For exam-
ple, NIST curves [72] are described by parameters which avoid all known attacks. The
security level provided by these curves is at least as much as symmetric-key ciphers with
key lengths 80 to 256 bits. In Table 2.1 we compare key sizes of different cryptosystems
with a comparable level of security (against known attacks).

Symmetric cipher ~ Example = ECC key length for DSA/RSA key length for

key length algorithm  equivalent security equivalent security
80 SKIPJACK 160 1024
112 Triple-DES 224 2048
128 128-bit AES 256 3072
192 192-bit AES 384 7680
256 256-bit AES 512 15360

Table 2.1: ECC, DSA and RSA key length comparisons.

2.3.5 Elliptic curve protocols: ECDH, ECDSA, ECAES

In this section, we give a short description of three fundamental protocols based on elliptic
curves: the Elliptic Curve Diffie-Hellman (ECDH), the Elliptic Curve Digital Signature
Algorithm (ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES).
The ECDH is the elliptic version of the well-known Diffie-Hellman key agreement method;
the ECDSA is the elliptic curve analogue of the DSA, proposed by Scott Vanstone [100] in
1992; and the ECAES is a variant of the ElGamal public-key encryption scheme, proposed
by Abdalla, Bellare and Rogaway [1] in 1999.

Key generation. An entity A’s public and private key pair is associated with a particular
set of elliptic curve domain parameters (¢, FR,a,b,G,n, h)°.
To generate a key pair, entity A does the following:

1. Select a random or pseudo-random integer d in the interval [1,n — 1].
2. Compute @ = dG.
3. A’s public key is Q; A’s private key is d.

Public key validation. This process ensures that a public key satisfies the arithmetic re-
quirements of elliptic curve public key (see [92]). A public key @ = (zg, yg) associated

5This association can be assured cryptographically (i.e., with certificates) or by context (e.g., all
entities use the same domain parameters)
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with a domain parameter (¢, FR,a,b.G, n, h) is validated using the following procedure
(called explicit validation):

1. Check that @ # O.

2. Check that z¢ and yg are properly represented elements of F,.
3. Check that @ lies on the elliptic curve defined by a and b.

4. Check that nQ = O.

Public key validation with step 4 omitted is called partial public-key validation.

ECDH. The basic idea of this primitive is to generate a shared secret value from a pri-
vate key owned by one entity A and a public key owned by another entity B so if both
entities execute the primitive simultaneously with corresponding keys as input, they will
recover the same shared secret value. We assume that entity A has domain parameters
D =(q,FR,a,b,G,n,h) and a private key d4. We also suppose that entity B has a public
key Qg associated with D. The public key Qg should at least be partially valid.

Entity A uses the following procedure to calculate a shared secret value with B:

1. Compute P = ds Qg = (zp,yp).
2. Check that P # O.
3. The shared secret value is z = zp.

If step 1 is computed as P = hdsQg = (zp,yp), then we call this primitive elliptic curve
cofactor Diffie-Hellman. The incorporation of the cofactor h into the calculation of the
secret value is to provide efficient resistance to attacks such as small subgroup attacks
(see [92]).

ECAES. The setup for encryption and decryption is the following. We suppose that
receiver B has domain parameters D = (q, FR,a,b,G,n, h) and public key Q. We also
suppose that sender A has authentic copies of D and Qg. In the following, MAC denotes
a message authentication code (MAC) algorithm such as HMAC [55], ENC a symmetric
encryption scheme such as Triple-DES, and KDF a key derivation function which derives
cryptographic keyvs from a shared secret point.

To encrypt a message m for B, A performs:

1. Select a random integer r from [1,n — 1].
2. Compute R = rG.
3. Compute K = hrQp = (K, K,). Check that K # O.
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1

. Compute ki ||ky = KDF(K,).
5. Compute ¢ = ENCi, (m).

6. Compute t = MAC,(c).

7. Send (R, c,t) to B.

To decrypt a ciphertext (R, c,t), B does:

8. Perform a partial key validation on R.

9. Compute K = hdgR = (K., K,). Check that K # O.
10. Compute k;||k; = KDF(K,).
11. Verify that t = MAC, (c).
12. Compute m = ENC}'(c).

The time consuming operations in encryption and decryption are the scalar multiplica-
tions in steps 3 and 9.

ECDSA. The setup for generating and verifying signatures using the ECDSA is the fol-
lowing. We suppose that signer A has domain parameters D = (¢, FR,a,b,G,n,h) and
public key Q4. We also suppose that B has authentic copies of D and Q4. In the fol-
lowing SHA-1 denotes the 160-bit hash function [73].

To sign a message m, A does the following:

1. Select a random integer k from [1,n — 1].
2. Compute kG = (x1,%1) and r = z; mod n.
If r = 0 then go to step 1.

Compute k~! mod n.

Compute e = SHA-1(m).

Compute s = k~'{e+ds-r} mod n.

If s =0 then go to step 1.

il

(o

6. A’s signature for the message m is (r, s).

To verify A’s signature (r,s) on m, B performs the following steps:

7. Verify that r and s are integers in [1,n — 1].

8. Compute e =SHA-1(m).

9. Compute w = s~ mod n.
10. Compute u; = ew mod n and us = rw mod n.
11. Compute u1G + uaQ4 = (z1,11)-
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12. Compute v = z; mod n.
13. Accept the signature if and only if v = r.

The time consuming operations in signature generation and signature verification are the
scalar multiplications in steps 2 and 11.

2.4 Discrete logarithm problem

The security of ECC is based on the apparent intractability of the following elliptic curve
discrete logarithm problem (ECDLP): given an elliptic curve E(F,), a point P € E(F,)
of order n, and a point Q € E(IF,), determine the integer k, 0 < k& < n — 1, such that
@ = kP, provided that such an integer exists.

The Pohlig and Hellman algorithm [76] reduces the computation of / to the problem
of computing ! modulo each of the prime factors of n. Therefore, n should be selected
prime to obtain the maximum level of security. In practice, one must select an elliptic
curve E(F,) such that #E(F;) = h - n where n is a prime and h is a small integer.

The most efficient general algorithm known to date is the Pollard-p method [78], and its
recent modifications by Gallant, Lambert, and Vanstone [30], and Wiener and Zuccherato
[105], which requires about /7n/2 elliptic group operations. Van Qorschot and Wiener
[80] showed that the Pollard-p method can be parallelized, and that the expected running
time of this algorithm, using r processors, is roughly /77 /(2r) groups operations. This
runtime is exponential in n.

Although no general subexponential algorithms to solve the ECDLP are known, there
are fast algorithms for solving the ECDLP on special curves (e.g., curves for which the
number of points has special properties). We list next some of these known attacks and
explain how they can be avoided in practice.

o Supersingular elliptic curves. Menezes, Okamato and Vanstone [67] and Frey and
Riick [28] showed that, under mild assumptions, the ECDLP can be reduced to
the traditional discrete logarithm problem in some extension field F,x, for some
integer k. This reduction algorithm is only practical if k is small. For the class of

supersingular® elliptic curves it is known that k& < 6. Hence, this reduction algorithm
gives a sub-exponential time algorithm for the ECDLP. However, Balasubramanian
and Koblitz [10] have shown that for most randomly generated elliptic curves we
have k > log® q. To avoid this attack in a particular curve, one needs to check that

6An elliptic curve over F, is said to be supersingular if the trace of E, t(E) = g+ 1 — #E(F,), is
divisible by the characteristic of F,.
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n, the largest prime factor of the curve order, does not divide ¢ — 1 for all small
k for which the ordinary logarithm problem in F,« is tractable. In practice this
checking is done for all k£, 1 < k£ < 30.

o Prime-field anomalous curves. An elliptic curve E over F,, is said to be prime-field-
anomalous if #E(F,) = p. Semaev [93], Smart [95] and Satoh and Araki [87]
independently proposed a polynomial-time algorithm for the ECDLP in E(F,). This
attack does not appear to extend to any other class of elliptic curves. In practice
this attack is avoided by verifying that the curve order does not equal the cardinality
of the underlying finite field.

e Binary composite finite fields. Suppose that E is an elliptic curve defined over the
composite finite field Fom, where m = r - s. Recently, Galbraith and Smart [29],
and Gaundry, Hess and Smart [32] have showed that the complexity of the discrete
logarithm problem on a significant portion of elliptic curves defined over Foss is
smaller than the Pollard-rho method. The authors concluded that this attack does
not appear to be a threat to elliptic curves defined over Fom, for m prime, but that
only curves that satisfy an additional condition (see [14, pp. 18]), should be used
for setting up an elliptic curve cryptosystem.

Additional information on other attacks for the ECDLP as well for attacks on elliptic
curve protocols can be found in ANSI X9.62 [5], ANSI X9.63 [6], Blake, Seroussi and
Smart [14], Johnson and Menezes [44], Koblitz, Menezes and Vanstone [51], Araki, Satoh
and Miura [7], and Certicom’s ECC challenge [19].

2.5 Algorithms for elliptic scalar multiplication

The implementation of public key protocols of ECC such as ECDH, ECDSA and ECAES,
requires elliptic scalar multiplications. That is, calculations of the form

Gt Phesd P
———

k times

where P is a curve point, and k is an integer in the range 1 < k < order(P). Depending
on the protocol, the point P is either a fixed point that generates a large, prime order
subgroup of E(F,), or P is an arbitrary point in such a subgroup.

Many authors have discussed methods for exponentiation in a multiplicative group,
which can, therefore, be extended to computing elliptic scalar multiplication (36, 66, 53,
54]. However, elliptic curve groups have special properties that allow for some extra
optimizations. In this section we will describe some efficient algorithms for computing
kP. These algorithms, depending on the elliptic curve and the characteristic of the finite
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field, can be further optimized. Finally, we summarize recent techniques suitable for
hardware or software implementation of ECC.

2.5.1 Basic methods

Binary method. The simplest (and oldest) method for computing kP is based on the
binary representation of k. If k = 3°._f k;27, where each k; € {0,1}, then kP can be
computed as

bl
kP =Y k2P =2(---2(2ki=1 P + kioP) + -+ -) + ko P.
§=0
This method requires / doublings and wy, —1 additions, where wy, is the weight (the number
of ones) of the binary representation of k.
An improved method for computing kP can be obtained from the following facts:

e Every integer k£ has a unique representation of the form k = E;;lu k;27, where each
k; € {—1,0,1}, such that no two consecutive digits are nonzero. This representation,
known as non-adjacent form (NAF), was first described by Reitwiesner [83] (see also
[14]).

e The expected weight of a NAF of length [ is /3, see [14].

e The computation of the negation of a point P = (z,y) € E(F,) (-P = (z,—y) or
—P = (x,z+y)) is virtually free, so the cost of addition or subtraction is practically
the same.

There are, however, several algorithms for computing the NAF of k& from its binary repre-
sentation (see for example [66]). The following method, from Solinas [97], computes the
NAF of an integer k.

Algorithm 8: Computation of NAF (k)

INPUT: An integer k
OutpuT: The non-adjacent form of k, NAF (k)= (u—; ... u ug)

1. Set c+k, 1+0
2. while ¢>0 do
if ¢ odd then
Set u; + 2 — (¢ mod 4)
Set c+—c¢c— uy
else Set u; + 0
Set c+c¢/2, l+1+1
3. return(NAF(k) + (w_y...ui2)) -
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Addition-Subtraction method. This algorithm, analogue of the binary method, performs
an addition or subtraction depending on the sign of each digit of &k, scanned from left to
right.” The details are given in Algorithm 9. This algorithm requires / doublings and /3
additions on average. This implies, for example, that for elliptic curves over F,, using
the projective coordinates given in [42], we obtain an improvement of about 14% over the
binary method.

Algorithm 9: Addition-Subtraction method

INPUT: An integer k and a point P = (z,y) € E(F,)
OuTPuT: The point Q = kP € E(F,)

1. Compute NAF(k) = (w;_...ujug)

2. Set Q«+ O

3. for j from /-1 downto 0 do
Set @ « 2Q)
if u; =1 then Set Q « Q+ P
if u; =—1 then Set Q+—Q—P

4. return(Q@).

Window method. Several generalizations of the binary method such as the m-ary method,
sliding method, etc., work by processing simultaneously a block of digits. In these
methods, depending on the size of the blocks (or windows) a number of precomputed
points are required. We describe a typical window method called the width-w window
method (see [97]).

Let w be an integer greater than 1. Then every positive number £ has a unique wrdth-w

nonadjacent form k = Z;_:h u;27 where:

e each nonzero u; is odd and less than 2¥~! in absolute value;
e among any w consecutive coefficients, at most one is nonzero.

The width-w NAF is written NAF, (k) = (w1 ...u1ug). A generalization of Algorithm 8
for computing NAF, (k) is described in Algorithm 10. Given the width-w NAF of an
integer k, and a point P € E(F,), the calculation of kP can be carried out by Algorithm 11.

"This algorithm can be modified to obtain a right-to-left version, which does not need storage for the
NAF(k), see [97] for more details.
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Algorithm 10: Computation of NAF,, (k)

INPUT: An integer k
OutpuT: NAF, (k)= (w1 ... uup)

1. Set c+k, [+ 0
2. while ¢ >0 do
if ¢ odd then
Set u + 2 — (¢ mod 2%)
if u; > 2""! then Set uy  u;— 2%
Set c<c—y
else Set u; «+ 0
Set c«¢/2, | —1+1
3. return(NAF, (k) < (wi—1...u1up)) -

Algorithm 11: The width-w window method

INpPUT: Integers k and w, and a point P = (z,y) € E(F,)
OuTpPUT: The point Q = kP € E(F,)

// Precomputation:
// Compute uP for u odd and 2 < u < 2v~!
1. Set Ry« P, T « 2P
2. for 7 from 1 to 2?2 -1 do
Set P+ Pi_i+T
// Main Computation:
3. Compute NAF, (k) = (wy_y...ujuq)
4. Set Q+ O
5. for j from [ -1 downto 0 do
Set @Q + 20Q
if u; #0 then
Set i+ (|u;| —1)/2
if u; >0 then Set Q «+ Q+ P,
else Set Q +— Q- P,

6. return(Q).

The number of nonzero digits in the NAF, (k) is on average {/(w + 1) [99]. Therefore,
Algorithm 11 requires 2“2 — 1 additions and one doubling for the precomputation step,
and //(w+1) additions and { —1 doublings for the main computation. Note that although
the number of additions can be reduced by selecting an apropriate width w, the number
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of doublings is the same as in the previous methods. The total number of finite field ope-
rations required for computing kP depends mainly on the algorithms used for the elliptic
operations (affine or projective coordinates), the cost-ratio of inversion to multiplication,
and the width w.

Comb method. This method, developed by Lim and Lee [58], can be used for computing
kP when P is a fixed point, known in advance of the computation. In order to compute
kP, the I-bit integer k is divided into h blocks K., each one of length @ = [I/h]. In
addition, each block K, is subdivided into » blocks of size b = [a/v]. Thus, k& can be
written as

h—1 v—1 b—

k= Z Z Z kvbr+b5+t2vbr+bs+t-

r=0 $=0 {=0

(]
—

Then, Lim/Lee’s method uses the following expression for computing & P:

PP = i 2‘(i G[s][Is4]),

where the precomputation array G[s][u] for 0 < s < v, 0 < u < 2", and u = (up—1 - - - ug)2,
is defined by the following equations:

Gl0][u] = iu,?”"’}’,
Glsllu] = 2°G[0][u],

and the number I, for 0 < s < v —1and 0 < < b is defined by

h—1
Is,t == E kvbr+bs+£2T-
r=0

A detailed description of Lim/Lee’s method is given in Algorithm 12. This algorithm
requires (2" — 1) elliptic points of storage, and the average number of operations to
perform a scalar multiplication is b — 1 doublings and (2" — 1)/2%»b — 1 additions on
average, but vh — 1 additions in the worst case. The selection of both parameters h
and v presents a trade-off between precomputation (memory) and online computations
(speed). Some improvements to this algorithm are discussed in [21]. For other algorithms
for computing kP when P is a known point, see [66].
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Algorithm 12: Lim/Lee method

INPUT: Integers k, b, v and an array of points G[s][u], with0 < s < v
and 1 <u < 2~
// The array G is computed as:
for u from 1 to 2* — 1 do
for s from 0tov—1do
Set u ¢ (up_1...U1lg)o
Set Gls][u] + 2% S0 u, 2% P.

OuTtprUT: The point Q = kP € E(F,).

// Main Computation:
1. Set Q< O
2. for t from b—1 downto 0 do
Set Q « 2Q
for s from » — 1 downto 0 do
Set Is,t — E?—;_{]l 2ikvbi+bs+t
if I,; #0 then Q « Q + GJ[s][I.]
3. return(@).

2.5.2 Faster methods

In recent years, the study of fast methods for computing a scalar multiplication has been
an active research area. In this section we summarize some of these recent methods.

e An algorithm for computing repeated doublings (i.e., 2' P), for elliptic curves defined
over Fon was proposed by Lopez and Dahab [59]. This algorithm, an improvement
over the formulas presented by Guajardo and Paar [37], computes 2'P with only one
inversion, and it is faster than the usual method for computing 2'P (2 consecutive
doublings) if the cost-ratio of inversion to multiplication is at least 2.5. This method
can be used to speed up window methods such as the one described in the previous
section.

e Another algorithm for computing repeated doublings, for elliptic curves over Fom,
was proposed by Schroeppel [91]. This algorithm is useful for situations where the
computation of an inverse is relatively fast compared to a multiplication. A slightly
improved version of this method is the following:
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Algorithm 13: Repeated doublings on E(Fymn)

INnPUT: An integer ¢ and a point P = (z,y) € E(Fam)
OuTtpPuT: The point Q = 2P
1. Set Ae—z+y/z
2. for j from 1 to i-1 do

Set zo «— A’ +)A+a

Set Ay + A2 +a+

2 i+ b

Set T Ty, A Ao
3. Set oA +Ata, pealt(A+1) -
4. return(Q < (z2,y2)) .

This method is based on the observation that doubling a point using the represen-
tation (z,\)® is faster than using the affine representation (x,y). Thus, we save
one field multiplication in each iteration of Algorithm 13. A further optimization is
to use a fast routine to multiply by the constant . This method can be used for
speeding up window methods in affine coordinates.

e For elliptic curves over F,, Itoh ef al [43] proposed fast formulas for computing
repeated doublings in projective coordinates, which reduce both the number of
field multiplications and the number of field additions. This technique works in
combination with window methods.

e An optimized version of an algorithm developed by Montgomery [69], was proposed
by Lopez and Dahab [60]. This algorithm works for every elliptic curve defined over
Fom, 1s faster than the addition-subtraction method, and it is suitable for both hard-
ware and software implementations. In addition, this algorithm has the property
that in each iteration the same amount of computation (an addition followed by a
doubling) is performed. This may help to prevent timing attacks [50].

e An algorithm for computing elliptic scalar multiplications which replaces the dou-
bling operation by the halving operation (i.e., the computation of @ such that
2Q = P) was proposed by Knudsen [45]. This algorithm works for half of the el-
liptic curves defined over Faom (i.e., curves whose elliptic curve parameter a satisfies
Tr(a) = 1). The implementation of this method requires fast routines for the fol-
lowing operations in Fom: the square root of a field element, the trace of a field
element, and the solution of quadratic equations of the form z° +z = s, for s € Fom.
Since these operations can be carried out very efficiently using a normal basis, this

8Every point P = (z,y) € E(Fom ),z # 0, can be represented as the pair (z,A), A = z+y/z, but (z, A)
is not a point on E(Fam ).
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approach is suitable for hardware implementations. The implementation of Knud-
sen’s method, using a polynomial basis, presents a trade off between memory and
speed for both implementations hardware and software.

2.5.3 Koblitz curves

These curves, also known as binary anomalous curves, were first proposed for crypto-
graphic use by Koblitz [48]. They are elliptic curves over Fon with coefficients a and b
either 0 or 1. Since it is required that b # 0, then the curves must be defined by the
equations:

Ep: P +zy=2+1and By : P +zy =2+ 2+ 1.

Koblitz curves have the following interesting property: if (z.y) is a point on E,,a =0 or
a =1, so is the point (z?, y¥?). Moreover, every point P = (z,y) € E, satisfies the relation

(z*, y*) + 2P = u- (2%, 4%). (2.3)

where
p=(-1)""

By using the Frobenius map over Fo: 7(z,y) = (z°, ¢%), equation (2.3) can be written as
7(TP)+ 2P = ptP, for all P € E,.

Then the Frobenius map 7P can be regarded as a multiplication by the complex number
T = *‘i‘%—_"_l satisfying 72 + 2 = pr.

Several methods have been proposed to take advantage of the Frobenius map, starting
with the observation of Koblitz [48], that four consecutive doublings of a point P =
(z,y) € E, can be computed efficiently via the formula

16P =P — 7P = (2, 4*) — (2'%,9"°)-

The fastest method known for computing kP on Koblitz curves is due to Solinas [97].
This method uses an expansion for kP of the form

-1
kP =) k7P, ki € {~1,0,1} and | = logk.
1=0
Then, the calculation of kP can be carried out by a similar method to Algorithm 9 where

the doublings are replaced by evaluations of the Frobenius map. Before we describe
Solinas’ method, the following sequences p,(n) and o,(n) are defined:
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® pa(0) =0, pa(1l) =a—1, pa(n+1) = ppa(n) — 2ps(n — 1) +a — 2.
® 0,(0)=0, 0,(1) =a—1, g,(n+1) = po.(n) — 20,(n —1).

Algorithm 14 describe Solinas’ method for computing an elliptic scalar multiplication
on the Koblitz curve E,(Fon).

Algorithm 14: 7- adic NAF method for Koblitz curves

INPUT: An integer k& and a point P = (z,y) € E,(Fan).
OutPuT: The point Q = kP € E;(Fsm)

// Reduction modulo (7™ —1)/(v — 1)
1. Set 7+ |pa(m) - A./Qm H, s+ |oa(m)-k/2™|
2. Set t ¢ 2p,(m)+ po.(m), v+ o.(m)-s
3. Set c+—k—t-r—2v, d< o,(m)-T—2p,(m)-s
// Main computation
4. Set Q+ O, D+ P
5. while ¢#0 or d#0 do
if ¢ odd then Set u + (¢ — 2d (mod 4))
else Set u «+ 0
Set c¢+—c—u
if u=1 then Set Q «— Q+ D
if u=—1 then Set @+ Q- D
Set D+« 1D
Set e+ c¢/2, cd+ pe, d+ —e
6. return(Q).

This algorithm requires, on average, m/3 elliptic additions and m evaluations of the
Frobenius map. For comparison, if we implement Koblitz curves over 9163, using a normal
basis? with the projective coordinates given in [59], Algorithm 9 takes 972 multiplications,
while Solinas’ algorithm requires 486 multiplications, obtaining a theoretical improvement
of about 50%. Further speedups can be obtained by using window techniques; see Solinas
[97]* for the “width-w 7-addic NAF method” analogous to Algorithm 11.

2.6 Implementation issues

When implementing ECC, there are many factors that may guide the choices required in
the implementation of a particular application. The factors include: security considera-

“For hardware implementations, the squarings are much faster than multiplications.
Routine 6 from [97] fails when a = 0 and w = 6. A new version of this routine was given in [99].
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tions (the ECDLP and security of the protocols), methods for implementing the finite field
arithmetic, methods for computing elliptic scalar multiplications, the application platform
(hardware or software), constraints of the computing environment (processor speed, code
size, power consumption), and constraints of the communication environment (bandwidth,
response time). Since these factors can have a major impact on the overall performance
of the application, it is recommended that they all be taken together for better results.

2.6.1 System setup
Setting up an elliptic curve cryptosystem requires several basic choices including:

¢ An underlying finite field F,
(eg,g=p, g=2"orq=p™, p>3)
e A representation of the finite field elements
(e.g., Montgomery residue for F,, polynomial or normal basis for Fam)
e Algorithms for implementing the finite field operations
(e.g., Montgomery multiplication in F, and Fom, the extended Euclidean algorithm
and the almost inverse algorithm for computing multiplicative inverses)
e An appropriate elliptic curve over I,
(e.g., the NIST curves)
e Algorithms for implementing the elliptic curve operations
(e.g., windows methods in affine or projective coordinates)

e Elliptic curve protocols
(e.g., ECDSA, ECDH)

By an appropriate elliptic curve, we mean an elliptic curve defined over the finite field F,
that resists all known attacks on the ECDLP. Specifically:

1. The number of points, #E(F,), is divisible by a prime n that is sufficiently
large to resist the parallelized Pollard p-attack [80] againts general curves, and its
improvements [30, 105] which apply to Koblitz curves.

2. #E(F,) # q, to resist the following attacks: Semaev [93], Smart [95], and Satoh-
Araki [87].

3. n does not divide ¢ — 1 for all 1 < k < 30, to resist the Weil paring attack [67] and
the Tate paring attack [28].

4. All binary fields Fon chosen have the property that m is prime, to resist recent
attacks [29, 32] on elliptic curves defined over Fym where m is composite.

Examples of appropriate curves to be used in real world cryptosystems are given in [72]
and [33].
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2.6.2 Previous software implementations of ECC

In the last five years, there have been many reported software implementations of elliptic
curves over finite fields. Most of these implementations focus on a single cryptographic
application, such as designing a fast implementation of ECDSA for one particular fini-
te field. Typical examples of finite fields used in these implementations are Fyis:[89],
Foer [15], Farrs [37, 9], Faer [25], F, (p a 160-bit prime) [41], F, (p a 192-bit prime)
(25], and F63_s5)3 [11]. In [61], we have compiled timing results of several reported soft-
ware implementations of ECC. In this section, we summarize three examples of software
implementations of ECC on general purpose computers.

e Schroppel et al. [89] reported an implementation of an elliptic curve analogue of
Diffie-Hellman key exchange algorithm over Foiss with a trinomial basis represen-
tation. A detailed description of the finite field arithmetic in Fsiss is provided,
including a fast method for computing reciprocals, called the almost inverse algo-
rithm. An improved method for doubling an elliptic curve point is also presented.
Two computer architectures were used to measure performance, a Sun Sparc-IPC
(25 MHz), with 32 bit word size, and a DEC Alpha 3000 (175 MHz), with a 64-bit
size word. The implementation was written in C with several programming tricks.
The performance results are given in Table 2.2.

| Field and Curve Operations over Foiss || Sparc IPC | Alpha
Squaring 11.9 0.64
Multiplication 116.4 7.59
Inversion 280.1 25.21
ECDH key exchange 137,000 11,500
DH key exchange (512 bits) 2,670,000 | 185,000

Table 2.2: Timings (in microseconds) for finite field and elliptic curve operations.

e De Win et al. [25] described an implementation of ECDSA, for both F, and Fom,
and made comparisons with other signature algorithms such as RSA and DSA.
The platform used was a Pentium-Pro 200 MHz running Windows NT 4.0 and
using MSVC 4.2 and maximal optimization. The code for RSA and DSA was
written in C, using macros in assembly language. The elliptic curve code was mainly
written in C++ and for F, the same multi-precision routines in C were called as for
RSA and DSA. The modulus for both RSA and DSA was 1024 bits long. For the
elliptic curves, the field sizes for F, and Fy» were approximately 191 bits. Table 2.3
summarizes the results of their implementation.
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| | ECDSA Fo» | ECDSA F, | RSA | DSA |
Key generation i B 5.5 1 sec. | 22.7
Signature 11.3 6.3 433 | 23.6
Verification 60 26 0.65 | 28.3
Scalar multiplication 50 21.1 - -

Table 2.3: Timing comparison of ECDSA , DSA, and RSA signature operations. All
timings in milliseconds, unless otherwise indicated.

e Bailey and Paar [11] introduced a new type of finite fields which can be used to
achieve a fast software implementation of elliptic curve cryptosystems. This class
of finite fields called Optimal Extension Field (OEF), is of the form F,», where
p is a prime of special form and m a positive integer. The OEFs take advantage
of the fast integer arithmetic found on modern RISC workstation processors. The
authors provided a list of OEFs suitable for processors with 8, 16, 32 and 64 bit
word sizes. In [12], the same authors presented further improved algorithms for the
finite field arithmetic, and timing results of their elliptic curve implementation on
several platforms. Two Alpha workstations DEC 21064 and 21164A, and a 233 MHz
Intel Pentium/MMx PC were used to measure performance. The implementation
for the workstations was written in optimized C, resorting to assembly to perform
polynomial multiplications; the implementation for the PC was written entirely in
C. The sizes of chosen finite fields were approximately 183 bits. Table 2.4 presents
the timings to perform an elliptic scalar multiplication of an arbitrary point.

Operation || Alpha 21064 | Alpha 21164A | Pentium/MMX
150 MHz 600 MHz 233 MHz

kP 7.0 1.09 13.1

Table 2.4: Timings (in milliseconds) for an elliptic scalar multiplication.

2.6.3 An example of a software implementation of ECC

In this section we present some details of the ECC software implementation reported in
[16]. This paper describes an experience with porting PGP to the Research in Motion
(RIM) two-way pager, and incorporating ECC into PGP.

o Finite fields: Fom, m = 163, 233, 283.



Implementation issues 35

Representaiion: A polynomial basis was used for each finite field, with the following
reduction polynomials: z'% + 27 + 25 + 2% + 1 for Faiea, 223 + 2™ + 1 for Fyes: and
23 + 22 + 27 + 26 4 1 for Fyass.

Algorithms for the finite field arithmetic: The squaring operation was sped up by
using a table lookup of 512 bytes. The multiplication operation was carried out
by the algorithm described in [62]. The inverse operation was carried out by the
extended Euclidean algorithm.

Curves: The Koblitz and random curves over Faiss, Forss and Foue: were selected
from the list of NIST recommended curves [72].

Algorithms for the elliptic curve group: For random curves, the method given in [60]
was implemented for computing scalar multiplications when P is an arbitrary point.
Lim/Lee’s method [66], with 16 points of precomputation, was implemented using
the projective coordinates given in [59] for computing scalar multiplications when
P is a known point (e.g., for signing). For a Koblitz curve, Solinas’ methods [97]
were implememented using projective coordinates, with width w = 5 for random
points, and w = 6 for a known point (in this case, 16 points of precomputation are
required ).

EC protocols: The protocols implemented were: ECDSA and ECAES.

o Multi-precision library: The library bc from OpenSSL [81], written entirely in C,

was used to perform the modular arithmetic operations required in the elliptic curve
protocols as well in Solinas’ methods.

Platforms: A Pentium II 400 MHz and a RIM pager 10 MHz.

Language: The implementation was written entirely in C.

RSA: The RSA code, written entirely in C, was taken from the OpenSSL library.
Timings: The performance results provided are only for the case m = 163 (see [16]
for more timings). Table 2.5 shows the timings for finite field operations in Faies.

Operations Pentium II | RIM pager
in F2153 400 MHz 10 MHz
Squaring 0.41 100
Multiplication 297 1,515
Inversion 31.23 12,500

Table 2.5: Timings (in microseconds) for finite field operations in Fyuss.

The performance results for the ECC operations using Koblitz and random curves
over Faiss are summarize in Table 2.6. Timings for RSA operations, with a modulus
of 1024 bits, are given in Table 2.7.
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Koblitz curve over Fqies || Random curve over Faiss

RIM pager P11 RIM pager PII
Key Generation 751 1.47 1,085 2:12
ECAES encrypt 1,759 4.37 3,132 6.67
ECAES decrypt 1,065 2.85 2,114 4.69
ECDSA signing 1,011 Dl d 1,335 2.64
ECDSA verifying 1,826 4.09 3,243 6.46

Table 2.6: Timings (in milliseconds) for ECC operations overFyiss.

1024-bit modulus
RIM Pager | Pentium II
| RSA key generation 580,405 2,740.87

RSA encrypt (e = 3) 533 2.70
RSA encrypt (e = 2% +1) 1,241 5.34
RSA decrypt 15,901 67.32
RSA signing 15,889 66.56
RSA verifying (e = 3) 301 1.23
RSA verifying (e = 2'® + 1) 1,008 3.86

Table 2.7: Timings (in milliseconds) for 1024-bit RSA operations.

e Conclusions: Since the two systems RSA-1024 and ECC-163 have a comparable
level of security, the following conclusions can be drawn from the timings:

— RSA public-key operations (encryption and signature) are faster than ECC
public-key operations.

— ECC private key operations (decryption and signature generation) are faster
than RSA private-key operations.

— Koblitz curves perform better than random curves, especially for encrypting
and verifying.

— With respect to the the PGP operations Signing-and-encrypting and Verifying-
and-decryting, the performance of ECC (Koblitz curves) is about five times the
performance of RSA on the RIM pager.
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2.7 Conclusions

In this paper, we have presented an overview of the main ideas behind the public-key
technology based on elliptic curves. We have focused on algorithms for software imple-
mentation of elliptic curves defined over the binary field Fsn. We have also presented
a summary of the fastest software implementations of ECC reported on general purpose
computers.



Capitulo 3

Um Algoritmo para Multiplicacao
€11l Fgm

Este capitulo descreve um algoritmo eficiente para multiplicagao em Fam, cujos elementos
sao representados usando uma base polinomial. O método proposto pode ser utilizado
para implementacao em software de curvas elipticas definidas sobre Fom. Os tempos de
execugao deste algoritmo, em diferentes plataformas computacionais, indicam que o novo
algoritmo é significativamente mais rapido do que o método padrao de multiplicacao em
E“Qm i

O trabalho apresentado neste capitulo foi publicado como relatério técnico No. 1C-00-
09 no Instituto de Computagao, UNICAMP, e submetido a conferéncia Indocrypt 2000.
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Abstract

In this paper we describe an efficient algorithm for multiplication in
Fom, where the field elements of Fom are represented in standard poly-
nomial basis. The proposed algorithm can be used in practical software
implementations of elliptic curve cryptography. Our timing results, on
several platforms, show that the new method is significantly faster than
the “shift-and-add” method.

Key words. Multiplication in Fym, Polynomial Basis, Elliptic Curve
Cryptography.

3.1 Introduction

Efficient algorithms for multiplication in Fym are required to implement cryptosystems
such as the Diffie-Hellman and elliptic curve cryptosystems defined over Fym. Efficient
implementation of the field arithmetic in Fom depends greatly on the particular basis used
for the finite field. Two common choices of bases for Fom are normal and polynomial.
Normal bases seem more suitable for hardware implementations (see [2]).

In this paper we describe a technique for multiplication in the finite field Fy~, where
the field elements are represented as binary polynomials modulo an irreducible binary
polynomial of degree 7. The proposed method is about 2-5 times faster than the standard
multiplication, and is particularly useful for software implementation of elliptic curve
cryptosystems over Fom. It is based on the observation that Lim/Lee’s method [58] (or
comb method [66]), designed for exponentiation, can be modified to work in Fom.

The remainder of this paper is organized as follows. In Section 3.2 we describe the finite
field Fo- using a polynomial basis, along with a description of the standard algorithm for
multiplication in Fon. A description of a simple version of Lee/Lim’s method and two
versions of the proposed method are described in Section 3.3. In Section 3.4, we present
timing results on different computational platforms.
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3.2 The finite field Fom

3.2.1 Polynomial basis representation

In this section we describe the finite field Fom, called a characteristic two finite field or
a binary finite field, in terms of a polynomial basis representation. Let f(x) = z™ +
E;’:L)l .z (where f; € {0,1}, for i = 0,...,m —1) be an irreducible polynomial of degree
m over Fy; polynomial f(z) is called the reduction polynomial. A polynomial basis is
specified by a reduction polynomial. In such a representation, the bit string (a,,_1 . .- a1a0)
is taken to represent the polynomial

B Lol g

over Fy. Thus, the finite field Fom can be represented by the set of all polynomials of
degree less than m over F,. That is,

Fom = {(am——l ...alag) l a; € {0?1}}

The field arithmetic is implemented as polynomial arithmetic modulo f(z). In this repre-
sentation, addition and multiplication of @ = (@pm_;1...a1a¢) and b = (b, ... b1by) are
performed as follows:

e Addition: a+b = (¢p-1 ...c1¢0), where ¢; = (a; + b,) mod 2.

e Multiplication: ¢ = a-b = (€1 ---€1¢y), where the polynomial ¢(z) = E:?__Bl ¢t

is the remainder of the division of polynomial (370! a;a) - (3omy bizt) by f(z).
That is, ¢ = ab mod f.

For efficiency reasons, the reduction polynomial can be selected as a trinomial z™ +z*+1,
where 1 < k < m — 1 or a pentanomial ™ + z** + 2% + 2P + 1, where 1 < k; < ks <
ks < m —1. ANSI X9.62 [5] specifies several rules for choosing the reduction polynomial.

In software implementations, we partition the bit representation of a field element
@ = (@m-1...a1a0) into blocks of the same size. Let w be the word size of a computer
(typical values are w = 8,16,32,64), and s be the number of words required to pack a
into words. That is, s = [m/w]. Then, we can write a as an sw-bit number consisting of
s words, where each word is of length w. Thus, we can write

a= (As-1...Ar1A),
where each A; is of length w and

A; = (Giwsw—1- - - Ciw+10iw) € Fow.
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In polynomials terms,

s=1 s—1 w-—1

alz) = Z Ai(z)z™ = Z Z Qi . (3.1)

1=0 =0 3=0

3.2.2 Recent methods for multiplication in Fon

In recent vears, several algorithms for software multiplication in Fom have been reported;
however, we are interested in techniques that can be used when m is prime.! In Schroeppel
et al. [90] various programming tricks are discussed for implementing the “shift-and-add”
method, a basic algorithm for multiplication in Fom. A slight variant of this method is
described by De Win et al. [24]. In Kog [52], a word-level Montgomery multiplication
algorithm in Fom is proposed. This method is significantly faster than the standard method
whenever the multiplication of two words of size w, each one representing a polynomial in
Fy. can be performed in few cycles. Since this operation is not available in most general
purpose processors, the alternative is to use table lookup. This approach requires, for
example, 128 Kbytes for w = 8 and 16 Gbytes for w = 16, making it less attractive for
practical applications. Another well known method for multiplication in Fom is that of
Karatsuba (see for example [14]).

3.2.3 The “shift-and-add” method

In this section we describe the basic method for computing ¢(z) = a(z) - b(z) mod f(x)
in Fom. It is analogous to the binary method for exponentiation, with the square and
multiplication operations being replaced by the SHIFT (multiplication of a field element by
z) and field addition operations, respectively. Thus, the “shift-and-add” method processes
the bits of polynomial a(z) from left to right, and uses the following equation to perform
¢=ab mod f:

c(z) = z(- - - 2(2Am-1b(Z) + @m-2b(z) mod f(z)) + ---) + agh(x) mod f(x).

Assume that a(z) = Y23 A2, b(z) = 0, Bix™, and f(2) = 357, F.z™. Then the
steps of the “shift-and-add” method are given below.

"Many standards that include elliptic curves defined over Fo» recommend for security reasons, the
use of binary finite fields with the property that m be prime.
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Algorithm 1: the “shift-and-add” method.

INPUT: a = (A,_] ariciss Ag), L E— (Bs—l e Bg), and f — (.F:‘_] ol Fo)
OUTPUT: ¢ = (Cy=1.--Cp) =a-bmod f.

1. Set kem—-1—-w(s—1), c«0
2. for ¢ from s—1 downto 0 do
for j from k£ downto 0 do
Set c < SHIFT(c)
if ajy+j=1 then c<c@b
if ¢, =1 then c+—ca f
Set k+ w—1
3. return (c).

This algorithm requires m — 1 shift operations and m field additions on average, but the
number of field additions can be reduced by selecting the reduction polynomial f(z) as a
trinomial or a pentanomial. Observe that in this algorithm, the multiplication step (the
computation of d(z) = a(z)-b(z)) and the reduction step (the computation of ¢(z) = d(z)
mod f(z)) are integrated. Since for the proposed algorithm these steps are separated, we
include Algorithm 2 for performing the reduction step. Assume that f(z) = z™ + g(z),
where the degree of polynomial g(z) is less than m — w.

Algorithm 2: modular reduction.

INPUT: @ = (Ap-1...As-1...40),and f = (Fs_1...Fp).
OutPUT: ¢ = (Cys—1...-Cy) =amod f
1. for ¢ from n—1 downto s do
Set d+—1w—m
Set t + A(z)z?- f(z) = Z;‘:Ol G2 - f(2)
/] t=(T;...T;_;0...0), where T;=A; //
for j from ¢ downto : — s do
Set A;+ A; 0 7T;
2. Set t T Ty - £(2)
L = (TecysBy) H
3. for j from s—1 downto 0 do
Set A;— A;0T;
4. return (¢« (As—1...Ap)).

Algorithm 2 works by zeroing out the most significant word of a(z) in each iteration of
step 1. A chosen multiple of the reduction polynomial f(z) is added to a(z) which lowers



3.3. Proposed method 43

the degree of a(z) by w. This is possible because the degree of g(z) is less than m — w.
Finally, the leading sw — m bits of A;_; are cancelled in step 3 obtaining a polynomial
of degree less than m. The number of XOR operations will depend on the weight of the
reduction polynomial f(z). For example, if f(z) is a pentanomial then Algorithm 2 re-
quires at most 8n XOR operations.

Remark 1. The use of standard programming tricks such as separated name variables,
and loop-unrolled code, can be used to improve the performance of both Algorithms 1 and
2. See [90] for some suggested programming optimizations.

3.3 Proposed method

In this section we describe two versions of the new algorithm for multiplication in F...
The first version is a straightforward extension of Lim/Lee's method, which does not
require extra temporary memory. The second version is based on a window technique.
Before we describe the proposed algorithms, we discuss a simple version of Lim/Lee’s
method for exponentiation, using the terminology of additive groups; this will help us to
understand the extension to Fom.

In order to compute the “multiplication” a-¢ (the addition of g to itself a times) where
a 1s an integer and g is an element of an additive group, the number a is divided into s
words of size w. Then @ can be written as

5—1
a=(Ay-1... A1 dg) = Y A2™,
1=0
where each A;,0 < i < s, has the binary representation (Qiw4w—1 - .- @iw+1G:ms)2. Based

on the binary representation (u,—i...ujup)2 of u, 1 < u < 2°, and the group elements
2¥. g.0 < 7 < s—1, define the vector P[u] of precomputations by the following equation:

Plu] = ug_12°067Y . g4 u, 52% D g ooy 2¥ - g4 ug - g.

5

Then the multiplication a- g = E‘;; A;2"" - g, can be computed as

w—1 §—1 w~—1
a-g= Z 23(2 ﬂiw+32m . 9) = Z 23}3“}']: (3‘2)
3=0 1=0 1=0

where I} = (@(s—1)w+j-- - Gu+;a;)2- A detailed algorithm for computing a - g using the
Lim/Lee’s precomputation technique is given in Algorithm 3.
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Algorithm 3: Lim/Lee’s algorithm.

INPUT: @= 3o A2 Ay = (@ o« 0in)o,0 < § < 5,/and g
OUTPUT: T=a-g

// Precomputation //

1. for u from 0 downto 2° -1 do
Set u ¢ (us_1...u1lg)2
Set Plu] « > 7, g u 2% - g

// Main Computation //

2. Set r+0

3. for j from w—1 downto 0 do
Set r«r+r
Set % ¢ (Q(s—1)wtj - - - Qw+j0;)2
Set 7 « r+ Py

4. return (7).

Algorithm 3 performs well in situations where the group element ¢ is known in advance,
since the calculation of the precomputation step can be made off-line. A faster version of
this algorithm, with more precomputations, is discussed in [58].

Next we explain the extension of Algorithm 3 to the finite field Fom. Let a and b be
two polynomials in Fom. Assume that a can be represented as a = (A;—;...A4p). By
replacing 2 by z and 2% - g by z%b(z) in (3.2), we obtain the following formal expression
for the product a(z)b(z):

z)b(z) = EIJ Zamﬂx b(z).

[t is easy to verify that indeed the above formula for a(z)b(z) is correct. Then an al-
gorithm, analogue of Algorithm 3, can be derived for computing ab mod f when b is a
polynomial known in advance. By observing that the operation z**b(z) is virtually free (it
consists of an arrangement of the words representing b), the precomputation of the 2° —1
polynomials: Plu] = 700 u;z%', 1 < u < 2°,u = (¥s1 .- Up)2, can be made online. This
eliminates the need of storing 2° — 1 polynomials, and the resulting algorithm is faster
than Algorithm 1, even when b is not a fixed polynomial. The details of this method are
given in Algorithm 4.
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Algorithm 4: basic proposed method.

INPUT: @ = (As_1...4¢), b= (Bs-1...Byp), and f = (F,_1...Fp).
OuTPUT: ¢ = (Cs-1...Cp) = ab mod f

1. Set T;+0; :=0,...,2s—1
2. for j from w—1 downto 0 do

for ¢ from 0 to s—1 do

if aj4+; #0 then
for £ from 0 to s—1 do
Set Tpy; + Tk-{-: & By,

if j#0 then T « zT // shift T//
3. Set ¢+ T mod f // Use Algorithm 2 //
4. return (¢).

The idea of window methods [14, pp. 66] for exponentiation can be extended to
Algorithm 4 to obtain a more efficient algorithm, provided that extra temporary memory
is available. For example, if we define the precomputed vector Pjgu| for 0 < u < 16,
using the equation

Pis[u](z) = (usz® + uoz® + urx + uo)b(2),

where u = (u3...ug)s, then the product a(z)b(z) can be computed as

s—1 w-1
a(z)b(z) = Y ) w4z b(z)
=0 3=0
=1 §—1
= Z g’ Z a,-u,_l.j:r"‘”b(z:)
j=0 1=0
w/4-1 s—1

— Z I4J Z(ﬂ.,u,+j+3.'£3 = LT o Ay +5+1T + a,u,+j):r'"’b(.7:)
=0

=0
w/4-1 s—1

= Z T”(Z " Pig[u; j](z)), where u;; = (@iw+j+3- - - Giwj)2-
=0 1=0

Based on the above formula for ab, we derived an algorithm that processes simultaneously
four bits of each word of ¢ and trades in each iteration four multiplications by « for one
multiplication by z*. This method is described in Algorithm 5.
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Algorithm 5: fast proposed method.

INPUT: @ = (As—y...Ap), b= (Bs_1...By), and f = (F;_;...Fp).
Ovreirr: o= (Ciy -Gy =ubhedf.

1. for j from 0 to 15 do
Set Pig[j] & (jaz® + - -~ + jo)b(2),j = (Jaj2d1do)2
2. 88t Thd—0 1=0000528— 1
3. for j from w/4—1 downto 0 do
for ¢ from 0 to s—1 do
Set u;; + A;/2" mod 16
for £ from 0 to s—1 do
Set Tk+t — Tk_.{.z @ Pls[u,-J][k]
if j#0 then 7 « z'T
4. Set ¢+« T mod f // Use Algorithm 2 //
5. return (¢).

Remark 2. When b is known in advance, Algorithm 5 can be modified to work with
a larger window size. If we process eight bits at the same time, then we need 256
field elements of precomputations. By observing that Y ._jaz'b(z) = E?:e a;z’b(z) +
E?:n as4;2°z*b(z), we reduce the precomputation to 32 field elements at the expense of
doing more XOR operations.

3.3.1 Performance comparison

Let us compare the performance of Algorithms 4 and 5. We calculate the number of
XOR operations and SHIFT operations required in each algorithm. We assume that the
reduction polynomial is a pentanomial, so the total number of XOR operations required
by Algorithm 2 is at most 8(2s — 1). Therefore, Algorithm 4 requires 2(w — 1) SHIFT
operations and sm/2 + 8(2s — 1) XOR operations on average. Similarly, Algorithm 5
requires 3+ 2(w/4 — 1) SHIFT? operations and s(11+m/4) +8(2s — 1) XOR operations on
average. Thus, the time saved in Algorithm 5 is at the expense of using 16 field elements
of temporary memory. In Table 3.1 we compared the number of operations required
by Algorithms 1, 4 and 5, for the particular case m = 163, w = 32, s = 6, and the
pentanomial f(z) = 2% + 27 + 2% + 2% + L.

4

We are assuming that multiplying a polynomial by z* is comparable in speed to multiplying a

polynomial by z.
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| Algorithms || XOR | SHIFT
Algorithm 1 || 81%6+ 81%2 = 648 | 162
Algorithm 4 81%6 + 42 = 528 62
Algorithm 5 || 52%6 + 42 =354 | 17

Table 3.1: Number of operations for Algorithms 1, 4 and 5.

3.4 Timing results

This section presents running timings for the proposed algorithms and the “shift-and-add”
method on the following platforms: a 233 MHz Pentium MMX, a 400 MHz Pentium II, a
450 MHz Sun UltraSparc workstation and a 10 MHz Intel 386 processor (RIM interactive
pager [13]). The implementation was written entirely in C, and the compilers used were
gece for the workstation Sun and the Pentium MMX, and Microsoft Visual C++ (version
6.0) for the other architectures. All algorithms were implemented with a comparable level
of programming optimizations.

Tables 3.2 and 3.3 show timings to perform a multiplication in Fyies using Algorithms 1,
4 and 5. From Table 3.2, Algorithm 4 performs 45% to 49% faster than Algorithm 1, and
the best speed up was obtained on the UltraSparc machine. In Table 3.3 the performances
of the fast version of the proposed algorithm (Algorithm 5) and the standard method are
compared. We observed a significant improvement: Algorithm 5 is about 3.0 to 5.5 times
faster than the standard method.

[ Pentium 233 MHz | UltraSparc 450 MHz

Algorithm 1 31.27 10.97
Algorithm 4 17.07 9.59

Table 3.2: Timings (in microseconds) of the “shift-and-add™ method and Algorithm 4 for
multiplication in Faes.

3.4.1 Applications

The most important application of this work is in software implementations of elliptic
curve cryptography over Fym. Our timings on different architectures have shown that
Algorithm 5 is significantly faster than the standard method in modern workstations

*Recently, NIST has recommended elliptic curves over Faes for US federal government use [72].
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RIM Pentium | Pentium II | UltraSparc
10 MHz | 233 MHz | 400 MHz | 450 MHz
Algorithm 1 || 4,848 31.27 16.48 10.97
Algorithm 5 1,515 10.20 2.97 2.52

Table 3.3: Timings (in microseconds) of the “shift-and-add”™ method and Algorithm 5 for
multiplication in Fyies.

as well as in wireless devices such as the RIM pager (a hand-held device with an Intel
processor running at 10 MHz [13]).

3.5 <Conclusions

There are several techniques that can be used for speeding up the computation of ¢ =
ab mod f in Fy~. In this paper we have shown a technique based on Lim/Lee’s method
for exponentiations. It turns out that our software implementation of the optimized
version (Algorithm 5), on different platforms, proved to be significantly faster than the
“shift-and-add” method, making it useful for software implementations of elliptic curve
cryptography in different computational environments.



Capitulo 4

Algoritmos Eficientes para a
Aritmética em Curvas Elipticas
sobre [Fom

Este capitulo descreve trés contribui¢bes para a implementacgdo eficiente dos criptossis-
temas de curvas elipticas sobre Fom. A primeira é um método novo para duplicar um
ponto eliptico, o qual é mais simples de implementar do que o melhor método conhecido,
desenvolvido por Schroeppel, e que favorece coeficientes elipticos dispersos. A segunda
¢ uma versao generalizada e melhorada das férmulas de Guajardo e Paar para calcular
duplicacoes consecutivas de um ponto eliptico. A terceira contribuicao consiste em um
sistema novo de coordenadas projetivas. Os algoritmos resultantes desta formulagao le-
vam a um ganho de 17% na computacdo de uma multiplicagdo escalar, comparado com
métodos anteriores baseados em coordenadas projetivas.

Este capitulo é uma versdo revisada do artigo apresentado no workshop: fifth annual
workshop on Selected Areas in Cryptography, SAC'98, Kingston, Canadéd. Publicado em
Lecture Notes in Computer Science, 1556, pp. 201-212, Springer-Verlag, 1998.
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Abstract

This paper describes three contributions for efficient implementation
of elliptic curve cryptosystems in Fom. The first is a new method for
doubling an elliptic curve point, which is simpler to implement than the
fastest known method, due to Schroeppel, and which favors sparse ellip-
tic curve coefficients. The second is a generalized and improved version
of the Guajardo and Paar’s formulas for computing repeated doubling
points. The third contribution consists of a new kind of projective co-
ordinates that provides the fastest known arithmetic on elliptic curves.
The algorithms resulting from this new formulation lead to a running
time improvement for computing a scalar multiplication of about 17%
over previous projective coordinate methods.

4.1 Introduction

Elliptic curves defined over finite fields of characteristic two have been proposed for Diffie-
Hellman type cryptosystems [26]. The calculation of Q = kP, for P a point on the elliptic
curve and k an integer, is the core operation of elliptic curve public-key cryptosystems.
Therefore, reducing the number of field operations required to perform the scalar multi-
plication kP is crucial for efficient implementation of these cryptosystems.

In this paper we discuss efficient methods for implementing elliptic curve arithmetic.
We present better results than those reported in [96, 42, 37]; our basic technique is to
rewrite the elliptic operations (doubling and addition) with less costly field operations (in-
versions and multiplications), and replace general field multiplications by multiplications
by fixed elliptic coefficients.

The first method is a new formula for doubling a point, i.e., for calculating the sum of
equal points. This method is simpler to implement than Schroeppel’s method [96] since it
does not require a quadratic solver. If the elliptic curve coefficient b is sparse, i.e., with few

*This paper is a revised version of the paper appearing in the Proceedings of SAC'98.
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1’s in its representation, thus making the multiplication by the constant b more efficient
than a general field multiplication, then our new formula should lead to an improvement
of up to 12% compared to Schroeppel’s method [96]. We also note that our formula can
be applied to composite finite fields as well.

In [37], a new approach is introduced for accelerating the computation of repeated
doubling points. This method can be viewed as computing consecutive doublings using
fractional field arithmetic. We have generalized and improved the formulas presented in
that paper. The new formulas can be used to speed-up variants of the sliding-window
method. For field implementations where the cost-ratio of inversion to multiplication
varies from 2.5 to 4 (typical values of practical software field implementations), we expect
a speed-up of 7% to 22% in performing a scalar multiplication.

In [91], Schroeppel proposes an algorithm for computing repeated doubling points
removing most of the general field multiplications, and favoring elliptic curves with sparse
coefficients. Using his method, the computation of 2'P,2 > 2 requires 7 field inversions,
+ multiplications by a fixed constant, one general field multiplication, and a quadratic
solver. Since inversion is the most expensive field operation, this method is suitable
for finite fields where field inversion is relatively fast. If the cost-ratio of inversion to
multiplication is less than 3, this algorithm may be faster than our repeated doubling
algorithm.

When field inversion is costly (e.g., for normal basis representation, the cost-ratio of
inversion to multiplication is at least 7 [37, 96]), projective coordinates offer an alternative
method for efficiently implementing the elliptic curve arithmetic. Based on our doubling
formula, we have developed a new kind of projective coordinates which should lead to
an improvement of 38% over the traditional projective arithmetic coordinates [64] and
17% on the recent projective coordinates presented in [42], for calculating a multiple of a
point.

The remainder of the paper is organized as follows. Section 4.2 presents a brief sum-
mary of elliptic curves defined over finite fields of characteristic two. In Section 4.3, we
present our doubling point algorithm. Based on this method, we describe an algorithm
for repeated doubling points in Section 4.4. In Section 4.5, we describe the new projective
coordinates. An implementation of the doubling and adding projective algorithms is given
in the appendix.

4.2 Elliptic curves over Fom

A non-supersingular elliptic curve E over Fom is defined to be the set of solutions (z,y) €
Fom x Fom to the equation,
V+rzy=az+az®+b ,
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where a and b € Fom, b # 0, together with the point at infinity denoted by O.

It is well known that E forms a commutative finite group, with O as the group identity;,
under the addition operation known as the “tangent and chord method”. Explicit rational
formulas for the addition rule involve several arithmetic operations (adding, squaring,
multiplication and inversion) in the underlying finite field. In what follows, we will only
be concerned with formulas for doubling a point P in affine coordinates; formulas for
adding two different points in affine or projective coordinates can be found in [64, 42].

Let P = (z1,%:) be a point of E. The doubling point formula [64] to compute 2P =
(z9,yo) is given by

ZTo =27+ % )
@ 1 m (4.1)
P = 5 +(x1+xl)-:1:2+x2 .
Note that the z-coordinate of doubling point formula 2P depends only on the z-coordinate
of P and the coefficient b, but doubling a point requires two general field multiplications,
one multiplication by the constant b and one field inversion.

Schroeppel [89] improved the doubling point formula saving the multiplication by the

constant b. His improved doubling point formula is :

o =M*+M+a ,
Yo =22+ M-z9+ 1o (4.2)
ﬂvf :Il-i-%.

Observe that the z-coordinates of the previous doubling point formula lead to the qua-
dratic equation for M:
L

M4+ M+a = o5 +— . (4.3)
1

x
If we assume that the cost of multiplying by a sparse fixed constant is comparable in speed
to field addition, and that solving the previous quadratic equation is faster, then we obtain
another method for doubling a point with an effective cost of one general multiplication
and one field inversion. A description of this method, developed by Schroeppel, can be
found in [96, pp. 370-371] and [42].

In the next section, we introduce a new doubling peint formula which requires also a
general field multiplication, one field inversion, but does not depend on a quadratic solver.
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4.3 A New doubling point formula

Given an elliptic curve point P = (z1,¥;), the coordinates of the doubling point 2P =
(z9,Yo) can be calculated by the following new doubling point formula:

Ty = ’E% + ?E% 3
1 (4.4)

Yo =%+ax2+(yf+b)-(1+$%) 5
1

To derive the above formula we transform the y-coordinate of the doubling point formula
(4.2):

2 2
2 Y1 b y1+b+imf1
= I+ (T + =) D+ =— + ()2
Y2 1+ {2 -'51) 2 2 g:% ( mf ) - T2
b v?+b xi+b, b ) b
= —+ary+ ? =—=+ars+ Yy +0)-(1+—) .
e 2 2 ( 2 ) 22 2+ (¥1 +0) - ( 3:?)

4.3.1 Performance analysis

We begin with the observation that our doubling formula eliminates the need for compu-
ting the field element M from formula (4.2), which requires either one general multiplica-
tion or a quadratic solver. The calculation of 2P requires one general field multiplication,
two field multiplications by the fixed constant b, and one field multiplication by the con-
stant a. This last multiplication can be avoided by choosing the coefficient a to be 0
or 1.! Thus, our formula favors elliptic curves with sparse coefficients, i.e., those having
relatively few 1’s in their representation.

In order to compare the running time of our formula with Schroeppel’s method [96]
for computing a scalar multiplication, we made the following assumptions:

e Adding and squaring field elements is fast compared to a multiplication.
e Multiplying a field element by a sparse constant is comparable to adding.

e The cost of solving the quadratic equation (4.3) and determining the right solu-
tion is about half of that of a field multiplication (this is true for the finite field
implementation given in [89], but no efficient method is known for tower fields [91]).

The fastest methods for computing a scalar multiplication [89, 54] perform five point dou-
blings for every point-addition, on average. Table 4.1 compares our formula, in performing
a scalar multiplication, for different values of the cost-ratio r of inversion to multiplication.

1E is isomorphic to E;: y? + 2y = z° + az® + b, where Tr(a) = Tr(a), a =0 or v and Tr(y) = 1 (if
n is odd, we can take y = 1), see [64, pp. 39].
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Table 4.1: The number of field multiplications for computing 2°P + Q.

Cost-Ratio | New Formula | Schroeppel [96] | Improv.
#Mult. #Mult. %
r=2 19 21.5 12
7= 2.0 22 24.5 10
r =3 25 27.5 9
r=4 31 33.5 7

Therefore, for practical field implementations as those given in [89, 25, 37], our for-
mula should lead to a running time improvement of up to 12% in computing a scalar
multiplication. However, for elliptic curves selected at random (where the coefficient b is
not necessarily sparse), both our and Schroeppel’s method may not give a computational
advantage. A better algorithm for computing 2°P is presented in the next section.

4.4 Repeated doubling algorithm

We present a method for computing repeated doublings, 2'P,¢ > 2, which is based on
fractional field arithmetic and the doubling formula. The idea is to successively compute
the elliptic points 2P = (z;,y;), 7 = 2,3,...,t, as triples (v;.w;,0;) of field elements,
where z; = -‘4: and y, = %Jj The exact formulation is given in the following theorem.

3

Theorem 1 Let P = (z,y) be a point on the elliptic curve E. Then the coordinates of
the point 2'P = (x;,y;),1 > 2, are given by

£y = = 4.5
e 2 (45)
W
W = o (4.6)
o7
where
Vgl = V:-{-ba: , V==
Oker = (Bp-1)?, dp=1

Weg+1 = bé: - (51_-_4.] + Vgyr - (adk_i.] -+ wf -+ bé}:) 3 W =1, 0 S k<q
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Proof. We will prove by induction on ¢ that z; = %’- and y; = ?5- This is easily true for

¢ = 2. Now assume that the statement is true for ¢ = n; we pm\:e it fort=n+1:

Iﬂ+1 = _2 + I;‘ = _; + -_-‘5‘
n lV‘ll"l. n
B 65; + V,‘: _ Un41
U,21 : 672; Ont1
similarly, for 7,., we obtain:
b 5 b
Ynt1 = x_g +@Tasi + (U +0) < (T + "'4‘)
‘ﬂ.
bon | Va1 bsa
= +a +b)-(1+—
2 11-[-1 (64 ( Vﬂ )
B vmn (@2 D) e
= +a—— + -~
6ﬂ+1 oﬂ-+1 ;+l
=y Wn1
= 8
571-{-1

The following algorithm, based on Theorem 1, implements repeated doublings in terms
of the affine coordinates of P = (z,y).

Figure 4.1: Algorithm 1: Repeated doubling points.

INPUT: P=(z,9) € E 12 2.
OvutpPuT: Q = 2'P.

Set V122, DV, Wy, T«b.
for k=1 to i—1 do
Set V& V24T,
Set W« D-T+V-(aD+W?+T).
if k#i—1 then
VeV DeD? T+« bD? D«D-V.
fi
od
Set D~ D-V.
Set M« D7 '-(V2+W).
Set z « D™1.V2,
Set z; — M>+M+a, ye—z*+M-z,+1;.
return(Q « (z.,v:)) -
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Note that the correctness of this algorithm follows directly from the proof of Theorem 1
and formula (4.2).

Corollary 1 Assume that P is an elliptic point of order larger than 2'. Then Algorithm 1
performs 31 — 1 general field multiplications, 1 — 1 multiplications by the fired constant b,
and 5t — 4 field squarings.

4.4.1 Complexity comparison

Since Algorithm 1 cuts down the number of field inversions at the expense of more fi-
eld multiplications, the computational advantage of Algorithm 1 over repeated doubling
(using the standard point doubling formula (4.2)) depends on r, the cost-ratio of inver-
sion to multiplication. Assuming that adding and squaring is fast, we conclude, from
Corollary 1, that Algorithm 1 outperforms the computation of five consecutive doublings
when 7 > 2. Table 4.2 shows the number of field multiplications needed for computing
2°P + @ for several methods and for different values of r. Note that the standard al-
gorithm and Guajardo and Paar’s formulas do not use the elliptic curve coefficient b,
whereas Algorithm 1 does.

Table 4.2: Comparison of Algorithm 1 with other algorithms.

Ratio Algorithm 1 Schroeppel [91] G.P. [37] | Standard (4.2)
r b sparse | b random | b sparse | b random | b random b random
2.5 21 25 18.5 22.5 27 27
3 22 26 21.5 25.5 28 30
3.5 23 27 24.5 28.5 29 33
4 24 28 27.5 31.5 30 36

Algorithm 1 obtains its best performance for field implementations when r is at least
three. If the elliptic curve is selected at random, then we expect Algorithm 1 to be up
to 22% faster than the standard algorithm. For field implementations where r < 3, (for
example [89, 25]), Schroeppel’s method [91] outperforms Algorithm 1.

4.5 A new kind of projective coordinates

When field inversion in Fom is relatively expensive, then it may be of computational
advantage to use fractional field arithmetic to perform elliptic curve additions, as well as,
doublings. This is done with the use of projective coordinates.
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4.5.1 Basic facts

A projective plane P? is defined to be the set of equivalence classes of triples (X, Y. Z),
not all zero, where (X,,Y:,Z;) and (X,, Y5, Z,) are said to be equivalent if there exists
A€ Fom, A # 0such that X; = AX5,Y; = A\%Y; and Z; = A\Z,. Each equivalence class is
called a projeciive point. Note that if a projective point P = (X,Y, Z) has nonzero Z, then
P can be represented by the projective point (z,y,1), where z = X/Z and y = Y/Z2
Therefore, the projective plane can be identified with all points (z,y) of the ordinary
(affine) plane plus the points for which Z = 0.

Any equation f(z,y) = 0 of a curve in the affine plane corresponds to an equation
F(X,Y,Z) = 0, where F is obtained by replacing z = X/Z, y = Y/Z?, and multiplying
by a power of Z to clear the denominators. In particular, the projective equation of the
affine equation y? + zy = 2° + az? + b is given by

Y2+ XY Z =X?Z +aX* 2% 402" .

If Z = 0 in this equation, then Y? = 0, i.e., ¥ = 0. Therefore, (1,0,0) is the only
projective point that satisfies the equation for which Z = 0. This point is called the point
at infinity (denoted O).

The resulting projective elliptic equation is

E = {(‘T?yaz) = P2;92+I9‘2 — $32+al‘22? +524} .

To convert an affine point (z,y) to a projective point, one sets X =z, ¥ =y, Z = 1.
Similarly, to convert a projective point (X,Y,Z) to an affine point, we compute z =
X/Z, y = Y/Z? The projective coordinates of the point —P(X,Y,Z) are given by
— P(X,Y,Z) = (X, XZ +Y,Z). The algorithms for adding two projective points are
given below.

4.5.2 Projective elliptic arithmetic

In this section we present new formulas for adding elliptic curve points in projective
coordinates. These formulas can be derived directly from the formulas for adding points
in affine coordinates (see [64]).

Projective elliptic doubling

The projective form of the doubling formula is

2(X],Y1, Z]_) = (X?! }T2> ZQ) )

[r——
i MEICiy~
L BERSLIOTRCA £r i

e |
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where

Zz — Z]?'Xlz M
Xg = X-f‘{'“b'Zf N
Yo = bZ;l-Zg+}(-2'(022+}’1?+523) :

Projective elliptic addition
The projective form of the adding formula is

(Xo, Yo, Zo) + (X1, Y1, Z1) = (X0, Yo, Z5)

where
Ay =Vi=23 DB By o o
A]_:YO‘Z‘I'? E=2y-2, , .X2=C2+H+G,
Bo=X:1-2p , F=D-F , I=D*-By-E+ X,
BI=X0~Zz = ZQZFZ 3 JZDQ':Q(]'F/YQ -
C=4+4 , G=D?-(F+aE? , Yo=H-I+2,-J.

These formulas can be improved for the special case Z; = 1:

(X-O!},U?ZU) + (‘X-ls },I:' 1) = (A—Z’!}”’Z!ZZ).'

where
A=W -Z2+Y,, EBE=A:0 ,
BwX,: Zp+X5 Xo= A2+ D+E
C=%ZB ; FeXot XD
D=B?.-(C+aZ}) , G=Xs+Y-%s ,
Zp=0C%* Yo=E-F+2,-G .

4.5.3 Performance analysis

The new projective doubling algorithm requires three general field multiplications, two
multiplications by a fixed constant, and five squarings. Since doubling a point takes one
general field multiplication less than the previous projective doubling algorithm given in
[42], we obtain an improvement of about 20% for doubling a point, in general. For sparse
coefficients b, we may obtain an improvement of up to a 25%.

The new projective adding algorithm requires 13 general multiplications, one multi-
plication by a fixed constant and six squarings. If a =0 (ora = 1) and Z; = 1, then only
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nine general field multiplications and four squarings are required. Thus, we obtain one
field multiplication less than the previous projective addition algorithm presented in [42].
The number of field operations required to perform an elliptic addition for various kinds
of projective coordinates is listed in Table 4.3.

Now we can estimate the improvement of a scalar multiplication using the new pro-
jective coordinates. We will consider only the case a = 0 (or @ = 1) and Z; = 1, since
for this situation we obtain the best improvement. The number of field operations for
computing 2°P + Q is given in Table 4.3. Using these values we can conclude that the
computation of a scalar multiplication, based on the new projective coordinates, is on
average 17% and 38% faster than the previous projective coordinates [64, 42].

Table 4.3: The number of field operations for 2°P 4+ Q (a=0or 1, Z, = 1)

Projective Doubling Adding Cost of 2°P +Q
coordinates | #Mult. | #Sqr. | #Mult. | #Sqr. | #Mult. | #Sqr.
(z/z,y/2%) 4 5 9 4 29 29
(z/2%,y/2°) 5 5 10 4 35 29
(x/z,y/2) 7 5 12 1 47 26

4.6 Conclusions

We have presented improved methods for faster implementation of the arithmetic of an
elliptic curve defined over Fom. Our methods are easy to implement and can be applied
to all elliptic curves defined over fields of characteristic two, independently of the specific
field representation. They favor sparse elliptic coefficients but also perform well for elliptic
curves selected at random. In general, they should lead to an improvement of up to 20%
in the computation of a scalar multiplication.
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4.7 Appendix
Algorithm 2: Projective elliptic doubling algorithm

Input: the finite field Fom; the field elements a and ¢ = 52" (¢2 = b) defining a curve E
over Fom: projective coordinates (X, Yy, Z;) for a point P; on E.
Output: projective coordinates (X5, ¥3, Z;) for the point P, = 2P;.

1. Tl - X1
2 Ty «— Y,
3. T3 — Zl
4. T4 e
5. if Ty =0 or T35 = 0 then
output (1,0,0) and stop.
6. T3 \ v T«E
7. Ty« T3 xTy
8. Ty« TF
5 T2
10. T3(—T1 X Th = Zg
12. Ty TesTy =X
13. T? — 1113
14. if a # 0 then
T3+ a
T5 T T3 X Ts
Ty «— T5+4+ T,

15. T+ Ty +To
16. To +— Ty xTo
17. Ty T3 x Ty

18. To«Ts+Ts =Y
19. Xo T4
200 Yo T
21. Zg : 7o Tg

This algorithm requires 3 general field multiplications, 5 field squarings and 5 temporary
variables. If also a = 0, then only 4 temporary variables are required.
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Algorithm 3: Projective elliptic adding algorithm

Input: the finite field Fom; the field elements a and b defining a curve E over Fom;
projective coordinates (X, Yy, Zg) and (X, Y3, 1) for points Py and P, on E.

Output: projective coordinates (X», Y5, Z5) for the point P, = Fy + Py, unless Py = P,.
In this case, the triple (0,0,0) is returned. (The triple (0,0,0) is not a valid projective
point on the curve, but rather a marker indicating that the Doubling Algorithm should
be used, see [42].)

T1 — X[)
T, + Y,
T3+ Zy
Ty + X3
Ts + ‘Yl
Ts — Ty xTy
T« Ts+T =8B
T +— Tg
if a # 0 the
T: +a
Ty + T x T3
10. T +— T5 x Tp
11. Ty T+ T5 =A
12, if 77 = 0 then
if 7, = 0 then output (0,0,0) and stop.
else output (1.0,0) and stop.

prc it -l ool e

o oo

18 Tl uE =C
14. T, « T12
15. ifa # 0 then
T T+ T
T+« T7xT =D
elseTh « Ty x Ty =D
16. T3+ T? =2

17 Ts T Tg X Tﬁ =

18. T, «—Tg+ T

19. Th+ T3

200 T\« T +T) =Xy
21, TheTxTy

22. T3+«T3xT;

A Ty« T+ Ty =F
24, Ts+ T, +7T;5 =G
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25.
26.
27.
28.
29.
30.

Ty« T x Ty
T5 «+ T3 x T3
To Ty +T;5
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This algorithm requires 9 general field multiplications, 4 field squarings and 7 temporary

variables. If also a = 0, then only 6 temporary variables are required.



Capitulo 5

Um Algoritmo para Multiplicacao
Escalar em Curvas Elipticas sobre
Fom sem Pré-computacao

Neste capitulo é apresentado um algoritmo para multiplicagao escalar em curvas elipticas
definidas sobre Fom. O algoritmo é uma versao otimizada de um método desenvolvido por
Montgomery [69]. Nosso algoritmo é facil de implementar tanto em hardware como em
software, funciona em qualquer curva eliptica sobre Fom, nao requer pontos pré-calculados,
e é em média mais rapido do que o método “soma-subtracao” descrito no standard P1363
[42]. Além disso, o método requer menos registros que nos esquemas projetivos, e a
quantidade de computagao necessaria para uma multiplicagao escalar é fixa para todos os
multiplicadores do mesmo tamanho em bits (isto pode ajudar a prevenir ataques baseados
em medidas de tempo de execugao [50]). Portanto, o método melhorado tém muitas
caracteristicas almejadas para implementar curvas elipticas em ambientes com recursos
limitados.

Este capitulo é uma versao revisada do artigo apresentado no workshop: Cryptographic
Hardware Embedded Systems, CHES'99, Worcester, USA. Publicado em Lecture Notes
in Computer Science, 1717, pp. 316-327, Springer-Verlag, 1999.
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Abstract

This paper describes an algorithm for computing elliptic scalar mul-
tiplications on non-supersingular elliptic curves defined over Fon. The
algorithm is an optimized version of a method described in [2], which is
based on Montgomery's method [69]. Our algorithm is easy to implement
in both hardware and software, works for any elliptic curve over Fym, re-
quires no precomputed multiples of a point, and is faster on average
than the addition-subtraction method described in draft standard IEEE
P1363. In addition, the method requires less memory than projective
schemes and the amount of computation needed for a scalar multipli-
cation is fixed for all multipliers of the same binary length. Therefore,
the improved method possesses many desirable features for implementing
elliptic curves in restricted environments.

Key words. Elliptic curves over Fom, Point multiplication.

5.1 Introduction

Elliptic curve cryptography first suggested by Koblitz [47] and Miller [68] is becoming
increasingly common for implementing public-key protocols as the Diffie-Hellman key
agreement. The security of these cryptosystems relies on the presumed intractability of
the discrete logarithm problem on elliptic curves. Since there is no known sub-exponential
type algorithm for elliptic curves over finite fields, the sizes of the fields, keys, and other
parameters can be considered shorter than other public key cryptosystems such as RSA
with the same level of security. This can be especially an advantage for applications where
resources such as memory and/or computing power are limited.

“This paper is a revised version of the paper appearing in the Proceedings of CHES'99.
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Elliptic curves over Fom are particularly attractive because the finite field operations
can be implemented very efficiently in hardware and software. See for example [2] for a
hardware implementation of Fass, and [25] for a software implementation of Fyio:.

Given an elliptic point P and a large integer k of about the size of the underlying
field, the operation elliptic scalar multiplication, kP, is defined to be the elliptic point
resulting from adding P to itself & times. This operation, analogous to exponentiati-
on in multiplicative groups, is the most time consuming operation of the elliptic curve
cryptosystems.

In this paper, the calculation of kP for a random integer & and a random point P
is considered. An efficient scalar multiplication algorithm, which is an optimized version
of an algorithm described in [2], is presented. The proposed algorithm is suitable for
hardware and software implementation of random elliptic curves over Fym.

5.2 Previous work

The basic method for computing kP is the addition-subtraction method described in
draft standard IEEE P1363 [42]. This method is an improved version over the well
known “add-and-double” (or binary) method, which requires no precomputations. For
a random multiplier k, this algorithm performs on average £ log, k field multiplications
and 3log, k field inversions in affine coordinates, and 83 log, k field multiplications in
projective coordinates.

Several proposed generalizations of the binary method (for exponentiation in a multi-
plicative group), such as the k-ary method, the signed window method, can be extended
to compute elliptic scalar multiplications over a finite field [66]. These algorithms are
based on the use of precomputation and methods for recoding the multiplier. In [36],
several algorithms are analyzed under various conditions. However, most of the proposed
optimizations may not be worthwhile when memory is at a premium.

Some special classes of elliptic curves defined over Fom allow efficient implementations.
For anomalous curves, the fastest known algorithm to compute kP is given in [96]; for
curves defined over small subfields, efficient algorithms are presented in [70].

In [37, 91, 59] some techniques are presented for accelerating methods such as k-ary
and window based methods. These methods are suitable for software implementation of
random elliptic curves over Fom.

A different approach for computing kP was introduced by Montgomery [69]. This
approach is based on the binary method and the observation that the z-coordinate of
the sum of two points whose difference is known can be computed in terms of the z-
coordinates of the involved points. This method uses the following variant of the binary
method:
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Figure 5.1: Algorithm 1: Binary Method

INPUT: An integer k& > 0 and a point P.
OuTPUT: @ = kP.

1. Set k « (k3_1...k1k0)g.
2. Set P+ P, P,+ 2P.
3. for ¢ from /-2 downto 0 do
if k;, =1 then
Set P+ P+ P, P,« 2P,
else
Set P+ P,+ P, P« 2P,.
4. return(Q « P,).

Note that this method maintains the invariant relationship P, — P, = P, and performs
an addition and a doubling in each iteration. In [65], Montgomery’s method was applied
for reducing the number of registers needed to add points in supersingular curves over Fon.
However, the authors observed that the benefits in storage provided by Montgomery’s
method is at a considerable expense of speed.

From the point of view of hardware implementation of elliptic curves over Fon, few
papers have discussed efficient methods for computing & P. In [2], Montgomery’s method
was adapted for non-supersingular elliptic curves over Fon. However, the formulas given
for implementing each iteration are not efficient in terms of field multiplications.

In this paper we will present an efficient implementation of Montgomery’s method for
computing kP on non-supersingular elliptic curves over Fom.

The remainder of the paper is organized as follows. In Section 5.3 we present a
short introduction to elliptic curves over Fom. The proposed algorithm is described and
analyzed in Section 5.4. Some running times of the proposed algorithm based on LiDIA
are presented in Section 5.5. An implementation of the proposed algorithm is given in
the appendix.

5.3 Elliptic curves over Fom

Here we present a brief introduction to elliptic curves; more information on elliptic curves
over finite fields of characteristic two can be found in [64, 42]. Let Fy» be a finite field of
characteristic two. A non-supersingular elliptic curve E over Fom is defined to be the set
of solutions (z,y) € Fom X Fom to the equation,

y2+.’£y=:t:3—i—a:r2+b -
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where a and b € Fam, b # 0, together with the point at infinity denoted by O.

It is well known that E forms a commutative finite group, with O as the group identity,
under the addition operation known as the “tangent and chord method”. Explicit rational
formulas for the addition rule involve several arithmetic operations (addition, squaring,
multiplication and inversion) in the underlying finite field. Formulas for adding two points
in projective coordinates can be found in [64, 59]. In affine coordinates, the elliptic group
operation is given by the following. Let P = (z,,4,) € E; then —P = (2,2, +%;). For all
PeEE, O+ P=P+0=PIfQ=(z2,%) € E and Q # —P, then P+ Q = (z3,¥3),
where

+ + ¥
Btlp U 4o ota, PAQ

I3 = 5.1
% I%-f—-%— . P=Q (5.1)
Ty
and
y
U3 = (:r1+x )(IELL+53)+I3+311 : #Q (5.2)
Il+($1+xl)$3+—’€3, P=Q.

Notice that the z-coordinate of 2P does not involve the y-coordinate of P. This observa-
tion will be used in the derivation of the improved method.

5.4 Improved method

This section describes the improved method for computing kP. We first develop an
algorithm in affine coordinates which requires two field inversions in each iteration. Next
a “projective” version is presented with more field multiplications, but with only one field
inversion at the end of the computation.

5.4.1 Affine version

The extension of Montgomery's method [69] to elliptic curves over Fom requires formulas
for implementing Step 3 of Algorithm 1. In what follows we give efficient formulas that use
only the z-coordinates of P;, P» and P for performing the arithmetic operations needed in
Algorithm 1. At the end of the /th iteration of Algorithm 1, we obtain the z-coordinates
of kP and (k + 1)P. We also provide a simple formula for recovering the y-coordinate of
kP.

The following lemma gives another formula for computing the z-coordinate of the
addition of two different points.
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Lemma 1 Let P, = (z1,%1), and P, = (x2,y2) be elliptic points. Then the x-coordinate
of P, + Py, x3, can be computed as follows.

— T1Ye + Ty + 3:1:5% + .rg:rf
3 —_—
(11.'1 +.’I".‘-2)2

(5.3)

Proof. Since P, and P; are elliptic points, it follows that 4>+ 45+, +Toys+15 +23 = 0.
The result then follows easily from formula (5.1).

The following lemma shows how to compute the z-coordinate for the addition of two
points whose difference is known.

Lemma 2 Let P = (z,y), P, = (21,%1), and P, = (x2,y2) be elliptic points. Assume that
P, = P, + P. Then the z-coordinate of P, + P,, x3, can be computed in terms of the
z-coordinates of P, P, and P> as follows.
T T
I+(x1—|-lxg)2+:t:1+l:cg » PA#P

I?'F—g ; P = P
1

I3z =

(54)

Proof. The case P = O follows directly from (5.1). Applving formula (5.3), we obtain
that the z-coordinate of P, + P, can be rewritten as

2 2
_ I\Yys -+ Lol + T1Ty + Ty

I3 - (3.5)
(:r1 + Ig)z
Similarly, the z-coordinate of P, — P, satisfies
. :t:ly2+1‘g(:r1+y])+2311'§+r2xf (5 6)

(1'1 + 1'2)2

The result follows from adding (5.5) and (5.6).
The next lemma allows one to compute the y-coordinate of P, when P and the z-
coordinates of P, and P, + P are known.

Lemma 3 Let P = (z,y), PL = (21, y1), and P, = (z2,y2) be elliptic points. Assume that
P, =P, + P and z # 0. Then the y-coordinate of P, can be expressed in terms of P, and
the x-coordinates of Py and P, as follows.

= (m+2){(z1+2)(z2+2z)+2*+y}/z+y . (5.7)
Proof. Since P, = P, + P, we obtain from (5.3) that y, satisfies the following equation:

To(z1 +2)% = 21y + zy1 + 2127 + 222 .
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Therefore,
2 2
T = ToZ; + I +T1y+ I1I2 . :crf

zi{z122 + 717 + 22 + y} + z{z2s}
= {2122 + 717 + 2% + 225 + 2° + Y}
+ z{z120 + T1Z + TT2 + Yy} + TY
= (zi+z){(z: +z)(22 +2) + 2 + ¥} + zv.

The following algorithm, based on Lemmas 2 and 3, implements Montgomery’s method
in affine coordinates.

Figure 5.2: Algorithm 2A: Montgomery Scalar Multiplication

INPUT: An integer k£ > 0 and a point P = (z,y) € E.
QurruT: Q =EP.

1. if k=0 or z =0 then output(0,0) and stop.
2 Set k « (k;_l - .klko)g.
3. Set 7)<z, Iy z>+b/%.
4. for i from [ — 2 downto 0 do
Set { + ET%'}E.
if k; =1 then
Set o «—z+t2+t, x4 xz5+b/x3.
else
Set Zp ¢~z +1t2+¢t, I +—:rf-|—b/:r%.
5. Set me&mn+zx, To—Tor+I.
6. Set yy «ri(rire+z>+y)/z+y
7. return(Q « (ry,y1)).

Observe that Algorithm 2A, in each iteration of Step 4, performs two field inversions,
one general field multiplication, one multiplication by the constant b, two squarings, and
four additions; it follows that the total number of field operations to compute kP is given
in the following lemma:

Lemma 4 For computing kP, Algorithm 2A takes exactly the following number of field
operations in Fom :

LINV. =2|log, k| +1 , #MULT. = 2|log, k| +4 ,
#ADD. = 4|log, k| +6 , #SQR. = 2|log, k| + 2.

Remark. A further improvement to Algorithm 2A is to use an optimized routine to
multiply by the constant b. Another potential improvement is to compute in parallel z,
and z, from Step 4, since these calculations are independent of each other.
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5.4.2 Projective version

When field inversion in Fom is relatively expensive (e.g., inversion based on Fermat’s theo-
rem requires at least 7 multiplications in Fom if rn > 128), then it may be of computational
advantage to use fractional field arithmetic to perform elliptic curve calculations.

Let P, P, and P; be points on the curve E such that P, = P, + P. Let the x-coordinate
of P; be represented by X,/Z;, for : € {1,2}. From Lemma 2, when the z-coordinate of
2P; is converted to projective coordinates it becomes

2(2P) = X}+b-2
{ 2(2P) = Z}- X%
Similarly, the z-coordinate of P, + P, in projective coordinates can be computed as the
fraction X3/Z3, where

(5.8)

{ Zy= (X1-Z2+X5-2,)? (5.9)

Xs= 1-Z3+(X1-25) - (Xs-2).

The addition formula requires three general field multiplications, one multiplication by
z (i.e., the z-coordinate of P, which is fixed during the computation of £P), one squaring
and two additions; doubling requires one general field multiplication, one multiplication
by the constant b, four squarings, and one addition. A method based on these formulas
is described in the next algorithm.

Figure 5.3: Algorithm 2P: Montgomery Scalar Multiplication

INPUT: An integer £ > 0 and a point P = (z,y) € E.
OurpuT: Q= kP.

1. if k=0 or z =0 then output(0,0) and stop.
2. Set k « (kg_1 : ..klkg)-z.
3. Set ‘Yl — I, 214—1, JYQ(—ZA‘Fb, ZQW:—.’LT?.
4. for 7 from [ — 2 downto 0 do
if k&, =1 then
Madd(X;, Z1, X3, Z5), Mdouble(Xs, Z>).
else
Madd(X5, Zs, X1, Z;), Mdouble(X, Z)).
5. return(Q — MXY(X]_, Z]_, )(?, Zg)) -

An implementation of the procedures Madd, Mdouble and Mxy is given in the appendix.

Lemma 5 Algorithm 2P performs ezxactly the following number of field operations in Fom:

£INV. =1 , #MULT. = 6|log, k| + 10 .
#ADD. = 3|log, k| +7 , #SQR. =5|log, k| + 3.
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Remark. Since the complexity of both versions of Algorithm 2 does not depend on the
number of 1's (or 0's) in the binary representation of k, this may help to prevent timing
attacks. On the other hand, the use of restricted multipliers (e.g., with small Hamming
weight) does not speedup directly Algorithms 2A and 2P, and this is a disadvantage
compared to methods such as the binary method. However, from a practical point of
view, most protocols in cryptographic applications use random multipliers.

5.4.3 Complexity comparison

In the sequel, we assume that adding and squaring in Fom is relatively fast. Now we
compare the complexities of the addition-subtraction method to the complexity of the
proposed method. This is a fair comparison since both methods do not use precomputa-
tion. For a random multiplier k£, the addition-subtraction method in projective coor-
dinates, given in [42], performs 8.3log, k field multiplications; it follows that we expect
Algorithm 2P to be about 28% faster on average. However, if we use the formulas given in
[59] for implementing the group operation in projective schemes, Algorithm 2P is about
14% faster than the addition-subtraction method. In the following table we summarize
the complexities of these methods.

Table 5.1: Complexity Comparison of Algorithm 2P with other algorithms (@ = 0,1).

Method Projective Coordinates
Binary [64] 13log, k
Add-Sub [42] 8.3log, k
Add-sub[59] 7log, k
Algorithm 2P 6log, k

Now we derive the cost of the addition-subtraction method (using affine coordinates)
in terms of field multiplications. As mentioned in Section 5.2, this method performs on
average 2 log, k field multiplications and § log, k field inversions. Thus, the total cost is
3(4r + 8) multiplications, where 7 is the cost-ratio of inversion to multiplication. This
shows that for implementations of the finite field Fom where r > 2.5 (see for example
(2, 25, 37]), Algorithm 2P gives a computational advantage over the addition-subtraction
method.
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5.5 Running times

In this section we present some running times we obtained in our software implementati-
on of the proposed algorithm over the finite fields Fom, where m = 163,191 and 239. To
represent the finite fields we used LiDIA [57], a C++ based library. This finite field imple-
mentation uses a polynomial basis representation and the irreducible modulus is chosen
as sparse as possible. We used a Sun UltraSPARC 300MHz machine. For comparison, we
list in Table 5.2 the timings for the basic arithmetic operations in Fom.

Table 5.2: Average running times (in microseconds) for Fom using LiDIA.

| Extension m | Add. [ Sqr. | Mult. | Inv. |
163 06 | 23 | 10.5 96.2
191 0.7 | 2.0 | 109 | 118.1
239 08 | 26 | 146 | 162.8

Notice that one field inverse costs more than 9 field multiplications; therefore, the use
of LiDIA may illustrate the performance of the proposed algorithm in situations where a
field inverse is relatively expensive compared to field multiplication.

Table 5.3: Average running times (in milliseconds) for computing mP.

Extension m | Binary[64] | Add-Sub.[42] | Algorithm 2P |
163 27.5 19.1 13.5
191 33:1 22.4 16.0
239 02.3 35.1 25.6

In Table 5.3 we present average running times for computing a scalar multiplication
using several methods. These values were obtained using the following test: we select 10
random elliptic curves (@ = 0) over Fam, then we multiply a random point P in each curve
with 100 randomly chosen integers of size < 2™. We implemented the binary method in
projective coordinates (see [64]), the addition-subtraction method [42] and Algorithm 2P.
From Table 5.3 we conclude that the proposed method on average is 27-29% faster than
the addition-subtraction method and 51% faster than the binary method. These timings
show that the theoretical improvement of Algorithm 2P, given in Table 5.1, is observed
in a actual implementation.



5.6. Conclusion 73

5.6 Conclusion

In this paper, we have presented an efficient method for computing elliptic scalar multi-
plications, which is an optimized version of an algorithm presented in [2]. The method
performs exactly 6|log, k| + 10 field multiplication for computing kP on elliptic curves
selected at random, is easy to implement in both hardware and software, requires no
precomputations, works for any implementation of GF(2"), is faster than the addition-
subtraction method on average, and uses fewer registers than methods based on projective
schemes. Therefore, the method appears useful for applications of elliptic curves in con-
straint environments such as mobile devices and smart cards.
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5.7 Appendix
Mdouble (Doubling algorithm)

Input: the finite field Fym; the field elements a and ¢ = 42" (¢2 = b) defining a curve E
over [Fom; the z-coordinate X/Z for a point P.
Output: the z-coordinate X /Z for the point 2P.

Ty +c
X « X?
Z « Z°
T, +— Z xT,
Z+—ZxX
Tli—T?
X+ X?
X«X+T,

00 =k S E i R =

This algorithm requires one general field multiplication, one field multiplication by the
constant ¢, four field squarings and one temporary variable.

Madd (Adding algorithm)

Input: the finite field Fom; the field elements a and b defining a curve E over Fom; the
z-coordinate of the point P; the z-coordinates X,/Z; and X,/Z, for the points P; and
P, on E.

Output: The z-coordinate X, /Z; for the point P, + P>.

1. THh+z

2. X1+ X\x2,
3. Z1+ Zyx X
4. T+ X\ x2Z;
5. Z1+«—Z1+ X,
6. Z,+ Z}

. Kv-EZnT
8. X+« X\+T,

This algorithm requires three general field multiplications, one field multiplication by z,
one field squaring and two temporary variables.
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Mxy (Affine coordinates)

Input: the finite field Fom; the affine coordinates of the point P = (z,y); the z-
coordinates X,/Z, and X,/Z, for the points P, and Ps.
Output: The affine coordinates (zy,y:) = (X», Z3) for the point P;.

if Z; = 0 then output (0,0) and stop.
if Z, = 0 then output (z,z + ¥) and stop.
T] — 2

T, + vy

T3 — Z]_ X Z?,
Zy+— 7Zy xTh

Zl £r= Z1 + .X]

8. Zg = Zz X T1

9. Xl o Zg X X1
10. Zg e Z? - Xg
11. ZQ : Zg X Zl

12. Ty« T?

13. Th+«Ty+T;

14 Ty« Ty xTs

15. Ty + T4 + Zs

16. T3+ T3 x T,

17. T; + inverse(T3)
18. T3+ T3 xT;

19. Xs + .Xl X T3
20 Zo+—Xo+Th

21. Zo —Zo x Ty

22. Zh+—2Zy+ T

= B A

This algorithm requires one field inversion, ten general field multiplications, one field
squaring and four temporary variables.



Capitulo 6

PGP em Dispositivos Limitados sem
Fio

Neste capitulo descrevemos um experimento pratico, em que a infra-estrutura criptogréfica
de chave publica de uma implementacao do PGP (RSA e ElGamal) no pager bidirecional
RIM foi substituida por algoritmos baseados em curvas elipticas sobre Fom. Os resultados
mostram que o desempenho dos criptossistemas de curvas elipticas (CCE) foi melhor do
que os outros sistemas de chave piiblica para o mesmo nivel de seguranca teérico. A mesma
biblioteca dos CCE foi implementada em outras plataformas (estacoes de trabalho, PCs
e PalmPilot) e a comparaciao de desempenho com outras tecnologias de chave piblica
(RSA, DSA e ElGamal) também se mostraram favordvel aos CCE.

O trabalho apresentado neste capitulo foi aceito para apresentagao no 9th USENIX
Security Symposium, a realizar-se em agosto de 2000 em Denver, Colorado, EUA.
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PGP in Constrained Wireless Devices

Michael Brown* Donny Cheung* Darrel Hankerson!
Julio Lopez Hernandez'? Michael Kirkup*  Alfred Menezes*

Abstract

The market for Personal Digital Assistants (PDAs) is growing at a rapid
pace. An increasing number of products, such as the PalmPilot, are
adding wireless communications capabilities. PDA users are now able to
send and receive email just as they would from their networked desktop
machines. Because of the inherent insecurity of wireless environments,
a system is needed for secure email communications. The requirements
for the security system will likely be influenced by the constraints of
the PDA, including limited memory, limited processing power, limited
bandwidth, and a limited user interface.

This paper describes our experience with porting PGP to the Research
in Motion (RIM) two-way pager, and incorporating elliptic curve cryp-
tography into PGP’s suite of public-key ciphers. Our main conclusion
is that PGP is a viable solution for providing secure and interoperable
email communications between constrained wireless devices and desktop
machines.

6.1 Introduction

It is expected that there will be more than 530 million wireless subscribers by the year
2001, and over a billion by 2004 (see [102]). Efforts are underway, most notable among
them the Wireless Application Protocol (WAP) [101], to define and standardize the emerg-
ing wireless Internet. Users will access wireless services including telephonyv, email and
web browsing, using a variety of wireless devices such as mobile phones, PDAs (such as the
PalmPilot), pagers, and laptop computers equipped with wireless modems. Many wireless
devices are constrained by limited CPU, memory, battery life, and user interface (e.g.,
small screen size, or a lack of graphics capabilities). Wireless networks are constrained by

*Dept. of Combinatorics and Optimization, University of Waterloo, Canada.
Emails: {kabrown,dccheung,mkirkup,ajmeneze}@cacr.math.uwaterloo. ca

"Dept. of Discrete and Statistical Sciences, Auburn University, USA.
Email: hankedr@mail.auburn.edu

Institute of Computing, State University of Campinas, Brazil, and Dept. of Computer Science,
University of Valle, Colombia. Email: julioher@dcc.unicamp.br
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low bandwidth, high latency, and unpredictable availability and stability. The purpose of
this paper is to examine the viability of using PGP for providing secure and interoperable
email communications between constrained wireless devices and desktop machines.

There are two popular standards for email security: S/MIME and PGP. S/MIME [82]
provides confidentiality and authentication services to the MIME (Multipurpose Internet
Mail Extensions) Internet email format standard. PGP (Pretty Good Privacy) [17, 31]
is an email security standard that has been widely used since it was first introduced by
Zimmermann in 1991 [106]. While it appears that S/MIME will emerge as the industry
standard for commercial and organizational use, it also appears that PGP will remain the
choice for personal email security for many users in the years to come.

The specific goals of this project were three-fold:

1. Port the basic PGP functionality to the RIM pager, and implement a workable key
management system and a usable user interface that is appropriate for the RIM
pager environment.

&

Achieve interoperability with existing PGP implementations for workstation and
PalmPilot platforms.

3. Incorporate standards-based and commercial-strength elliptic curve cryptography
into PGP’s suite of public-key algorithms.

The remainder of this paper is organized as follows. §6.2 provides a brief history of
PGP, and summarizes the security services offered by PGP. A description of the RIM
two-way pager including hardware, software, user interface, development tools, and the
paging environment, is provided in §6.3. A brief overview of the PalmPilot is presented
in §6.4. Elliptic curve cryptography is introduced in §6.5, along with a description of our
implementation. We provide timing comparisons of our ECC implementation with RSA
and DL implementations on a variety of platforms. Our experience with porting PGP to
the RIM pager is described in §6.6. Our implementation, including a description of the
user interface and key management facilities, is presented in §6.7. In §6.8, we describe
some possible directions for future work. Finally, §6.9 makes concluding remarks.

6.2 Pretty Good Privacy

6.2.1 History of PGP

The history of the Pretty Good Privacy (PGP) application is both interesting and convo-
luted, and encompasses issues in national security, personal privacy, patents, personalities,
and politics; see, for example, [31]. A myriad of PGP releases emerged, in part due to US
Government restrictions on exports.
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The initial PGP application was released in 1991. According to [31] this was an
“emergency release” prompted in part by a proposed anti-crime bill which would require
eavesdropping ability for the US Government on all communications systems. An RSA-
based public-key scheme was used, along with a symmetric-key algorithm developed by
Zimmermann known as Bass-O-Matic.

Security concerns over Bass-O-Matic resulted in its replacement with IDEA in PGP 2.
A commercial version of PGP was developed in 1993 with ViaCrypt (which had a license
from Public Key Partners for RSA). Although RSA Data Security had released a reference
implementation (RSAREF) of RSA that could be used for non-commercial purposes, there
were interface and other difficulties preventing its use in PGP. In 1994, RSAREF 2.0 was
released and included changes which MIT recognized would solve the interface problems.
This eventually led to PGP 2.6, a version which could be used freely for non-commercial
purposes, and which quickly leaked out of the US and developed into several international
variants.

MIT PGP 2.6.2 increased the ceiling on the maximum size of an RSA modulus (from
1024 to 2048 bits, although ViaCrypt reports a patch correcting certain bugs with the
longer moduli). The symmetric-key cipher is IDEA, a 64-bit block cipher with 128-bit
keys; MDS5 is used as the hash function, having digest length of 128 bits. A dependency
tree for various US and international versions and variants may be found via [75].

Work on PGP 3 began in 1994, and was released by PGP Inc (formed by Zimmermann)
as PGP 5 in May 1997.' New algorithms were present, including DSA [72] for signatures,
an ElGamal public-key encryption scheme [27], the Secure Hash Algorithm (SHA-1) [73]
with 160-bit message digests, and the symmetric-key ciphers CAST and Triple-DES (64-
bit block ciphers with key sizes of 128 and 168 bits, respectively).

In August of 1997, the IETF was approached concerning a proposal to bring PGP
to a standards body as a protocol. An OpenPGP working group was formed. Using
PGP 5 as the base, a format specification was promoted to a Proposed Standard by the
IESG in October 1998. The resulting IETF specification for OpenPGP [18] describes
an unencumbered architecture, although compatibility with PGP 2.6 was encouraged. A
reference implementation was written by Tom Zerucha and provided in a form suitable
for scanning to circumvent US export restrictions [17].

In December 1999, Network Associates (which had acquired PGP Inc in December
1997) was granted a license by the US Government to export PGP. An international PGP
project [74], which had been making PGP available world-wide by scanning paper copies
that were (legally) exported from the US, announced that the lifting of the ban on strong

!Callas [17] notes that ViaCrypt had released several products with a version number of 4 although
they were derivatives of PGP 2, and “it was easier to explain why three became five than to explain why
three was the new program and four the old one.”
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encryption “marks the end of the PGPi scanning and OCR project, which started with
PGP 5.0i in 1997.”

Several OpenPGP-compliant applications have been developed. The reference im-
plementation by Zerucha [17] relies on the OpenSSL library [81], and has been used by
Zerucha as the basis for a PalmPilot implementation. The standard does not require the
use of patented algorithms, and applications such as GNU Privacy Guard [34], released in
1999 as a replacement for PGP, can be both compliant and distributable without patent
restrictions (since it does not include IDEA or RSA).

6.2.2 PGP security services

Key generation and storage. PGP allows a user to generate multiple key pairs (public-
key/private-key pairs) for each public scheme supported. Different key pairs are generated
for public-key encryption and for digital signatures. The key pairs, together with public
keys of other users, are stored in a file called the key ring.

Information stored with a public key includes the user’s name, email address, trust
and validity indicators, key type, key size, expiry date, fingerprint (e.g., the 160-bit
SHA-1 hash of the formatted public key), and a key ID (e.g., the low order 64 bits
of the fingerprint).

Private keys are not stored directly in the key ring. Instead, the user selects a pass-
phrase which is salted and hashed to derive a key k for a symmetric encryption scheme.
The private key is encrvpted using &, the passphrase is discarded, and the encrypted
private key is stored. Subsequently, when the user wishes to access a private key (in order
to decrypt a message or sign a message), the passphrase must be supplied so that the
system can regenerate £ and recover the private key.

Cryptographic services. PGP uses a combination of symmetric-key and public-key methods
to provide authentication and confidentiality.

A message can be signed using the private key from a suitable public-key signa-
ture scheme. The recipient can verify the signature once an authentic copy of the sig-
ner’s corresponding public key is obtained. The OpenPGP standard requires support for
SHA-1 as a hash algorithm and the DSA, and encourages support for the MD5 hash
function and RSA as a signature algorithm.

The use of symmetric-key algorithms (such as DES) alone for encryption is sup-
ported, although PGP is known more for the confidentiality provided by a combination of
public-key and symmetric-key schemes. Since public-key encryption schemes tend to be
computationally expensive, a session key is used with a symmetric-key scheme to encrypt
a message; the session key is then encrypted using one or more public keys (typically, one
for each recipient), and then the encrypted message along with each encrypted session
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key is delivered. The standard requires support for an ElGamal public-key encryption
scheme and Triple-DES: support for RSA, IDEA, and CAST is encouraged.

Signatures and encryption are often used together, to provide authentication and
confidentiality. The message is first signed and then encrypted as described above.

Key management. The OpenPGP standard does not have a trust model. An OpenPGP-
compliant PGP implementation could support a hierarchical X.509-based public kev in-
frastructure (PKI). The trust model employed by existing PGP implementations is a
combination of direct trust and the web of trust. In the former, user A obtains B’s public
key directly from B; fingerprints facilitate this process as only the fingerprints have to be
authenticated. In the web of trust model, one or more users can attest to the validity of
B’s public key by signing it with their own signing key. If A possesses an authentic copy
of the public key of one of these users, then 4 can verify that user’s signature thereby
obtaining a measure of assurance of the authenticity of B’s public key. This chaining of
trust can be carried out to any depth.

6.3 RIM’s Pager

6.3.1 Overview

The RIM wireless handheld device is built around a custom Intel 386 processor running
at 10 MHz. Current models carry 2 Mbytes of flash memory and 304 Kbytes of SRAM.
There is a fairly conventional (if rather small) keyboard with a 6- or 8-line by 28 character
(depending on font) graphical display. A thumb-operated trackwheel takes the place of a
conventional mouse (see Figure 6.1).

A set of applications including a calendar and address book are commonly instal-
led; even the occasional game of Tetris (falling blocks) is possible with efficient use of
the graphical display. The main attraction is the wireless communication features, in
particular, email solutions. The integrated wireless modem is essentially invisible, with
no protruding antennae. The device is roughly 3.5in x 2.5in x lin (89mm x 64mm x
25mm) and weighs 5 ounces (142 g) with the single AA battery (there is also an internal
lithium cell). RIM claims that the battery will last roughly three weeks with typical usage
patterns.

A docking cradle can be used to directly connect the device to a serial port. Software
for Microsoft Windows is provided to download programs and other information, and to
synchronize application data. An RS-232 compatible serial port on the pager runs at
19200 bps.

To be slightly more precise, RIM has two hardware devices, the 850 and the 950,
which are combined with software to provide communications solutions. We used RIM’s
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Figure 6.1: The RIM pager.

BlackBerry solution [13] which uses the same hardware as the RIM Inter@ctive Pager 950.
The 950 is more of a 2-way pager, sold in Canada by Cantel and in the US by BellSouth
Wireless Data. The BlackBerry is sold directly by RIM and includes features such as
single mailbox integration and PIM synchronization to the device.

The RIM 850 looks very similar to the 950 device, but runs on a different wireless
network (ARDIS for the 850 as opposed to Mobitex for the 950). The RIM 850 is resold
through American Mobile Satellite Corporation (AMSC) in the US, and is part of the
AMSC and SkvTel eLink solution.

6.3.2 Software development

The BlackBerry Software Developer’s Kit (SDK) is designed to make use of the features
in Microsoft’s C++ compiler packages. The SDK is freely available from [84]. A handheld
application is built as a Windows DLL, a process which allows use of development and
debugging facilities available for Windows. However, only a small subset of the usual
library calls may be used, along with calls to SDK-supplied routines. The resulting DLL
is then stripped of extraneous information and ported into the handheld operating system.

For simplicity, the multitasking is cooperative. An application is expected to period-
ically vield control; in fact, failure to yield within 10 seconds can trigger a pager reset.
As an example, public-key operations tend to be computationally expensive, and it was
necessary to insert explicit task yields in the code developed for this paper.

The SDK includes a simulator which can be used to test applications on the handheld
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operating system without having to download to the device (the images in this paper are
snapshots of the simulator). A radio device (RAP modem) can be connected via serial
port to the host machine so that applications running in the simulator can communicate
with the Mobitex network. Alternately, a pager in the cradle can be used to exchange
email with the simulator, provided that the pager is in coverage.

The simulator is essential for serious development, although testing on the pager can
reveal bugs not found in the simulator. For example, we managed to link applications in
such a way that they would work in the simulator but fail on the pager. At one point, we
carelessly used some instructions introduced on the Intel 486, which would work in the
simulator when running on a 486-or-better, but would fail on a 386.

6.3.3 File system

The pager relies on flash memory to store non-volatile data. Writing to flash is significantly
more expensive than reading, primarily because flash is a write-once, bulk-erase device.
Rewriting a single word of flash involves saving the contents of the 64K sector, erasing,
and rewriting the entire sector. The longest step in this operation is erasing the sector,
and takes approximately 5 seconds. A log-structured file system is emploved in order to
maintain acceptable performance. Periodically, the expensive process of committing the
log updates is performed in order to free file system space.

The programming interface to the file system is generally through a relatively small
number of high-level database-style calls. Handles are used to read and update databases
and variable-length records, a simple but effective method to cooperate with the updating
process of the log-structured file system. Tt is possible to use stream-style /O operations
of the type familiar to C programmers, which we occasionally found useful for testing
code fragments developed on more traditional systems.

6.4 The PalmPilot

For comparison, our crypto routines were also run on the PalmPilot, a very popular PDA
based on a 16 MHz Motorola 68000-type “Dragonball” processor.? Recent models carry
2-4 MB of memory in addition to ROM, although considerable expansion is possible. In
1999, wireless capabilities were introduced on the Palm VII. The communications model
differs from the RIM device: in particular, the Palm does not qualify as a pager in the
usual sense. There is an antenna which must be physically activated and then the device
can request information. A NiCad battery charged from two AAA batteries common in
the Palm series is used to power the radio.

*According to [77], “Even after two rounds of Microsoft’s best Windows CE efforts, PalmPilot OS
devices still represent 80% of all palmtop sales.”
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Ian Goldberg had adapted portions of Eric Young’s well-known SSLeay library (now
OpenSSL [81]) for use on the PalmPilot [35]. The resulting library was used by Zerucha
in building a Palm version of his reference OpenPGP, and by Daswani and Boneh [23] in
their paper on electronic commerce.

We used Palm development tools based on the GNU C compiler (gee-2.7.2.2). Timings
were done on a Palm V running PalmOS 3.0. There are code segment and stack restrictions
which must be considered in the design of a larger application, and our code had to be
divided into several libraries in order to accomodate the Palm.

6.5 Elliptic Curve Cryptography

6.5.1 Introduction

Elliptic curve cryptography (ECC) was proposed independently in 1985 by Neal Koblitz
[47] and Victor Miller [68]. For an introduction to ECC, the reader is referred to Chapter 6
of Koblitz's book [49], or the recent book by Blake, Seroussi and Smart [14].

The primary reason for the attractiveness of ECC over RSA and discrete log (DL?)
public-key systems is that the best algorithm known for solving the underlying hard
mathematical problem in ECC (the elliptic curve discrete logarithm problem, ECDLP)
takes fully exponential time. On the other hand, the best algorithms known for solving the
underlying hard mathematical problems in RSA and DL systems (the integer factorization
problem, and the discrete logarithm problem) take subexponential time. This means that
the algorithms for solving the ECDLP become infeasible much more rapidly as the problem
size increases than those algorithms for the integer factorization and discrete logarithm
problems. For this reason, ECC offers security equivalent to that of RSA and DL systems,
while using significantly smaller key sizes.

Table 6.1 lists ECC key lengths and very rough estimates of DL and RSA kev lengths
that provide the same security (against known attacks) as some common symmetric en-
cryption schemes. The ECC key lengths are twice the key lengths of their symmet-
ric cipher counterparts since the best general algorithm known for the ECDLP takes
(V/w2¥) /2 steps for k-bit ECC keys, while exhaustive key search on a symmetric cipher
with [-bit keys takes 2! steps. The estimates for DL security were obtained from [3]. The
estimates for RSA security are the same as those for DL security because the best algo-
rithms known for the integer factorization and discrete logarithm problems have the same
expected running times. These estimates are roughly the same as the estimates provided
by Lenstra and Verheul in their very thorough paper [56].

SExamples of DL systems are the ElGamal public-key encryption scheme and the DSA signature
scheme which is specified in the Digital Signature Standard. PGP documentation refer to these two
schemes as Diffie-Hellman/DSS or DH/DSS.
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Symmetric cipher ~ Example  ECC key lengths for DL/RSA key lengths for

key lengths algorithm equivalent security equivalent security
80 SKIPJACK 160 1024
168 Triple-DES 224 2048
128 128-bit AES 256 3072
192 192-bit, AES 384 7680
256 256-bit AES 512 15360

Table 6.1: ECC, DL, and RSA key length comparisons.

The advantages that may be gained from smaller ECC parameters include speed (faster
computation) and smaller keys and certificates. These advantages are especially important
in environments where processing power, storage space, bandwidth, or power consumption
are at a premium such as smart cards, pagers, cellular phones, and PDAs.

6.5.2 Selecting ECC parameters

Notation. In the following, F, denotes a finite field of order ¢, and E denotes an elliptic
curve defined over F,. #E(F,) denotes the number of points on the elliptic curve E. The
point at infinity is denoted by O. There is a group law for adding any two elliptic curve
points. If %k is an integer and P € E(F,) is a point, then kP is the point obtained by
adding together k copies of P; this process is called scalar multiplication.

Domain parameters. ECC domain parameters consist of the following:

q — the field size.

FR — method used for representing field elements.

a.b — elements of F, which determine the equation of an elliptic curve E.
G — the base point of prime order.

n — the order of G.

h ~ — the cofactor: h = #E(F,)/n.

The primary security parameter (see §6.5.4) is n. The ECC key length is thus defined
to be the bitlength of n. Typical choices for ¢ are an odd prime (in which case F, is called
a prime field) or a power of 2 (in which case F is called a binary field).

Curves selected. For this project, we chose binary fields Fom, for m = 163, 233 and
283. Suitably chosen elliptic curves over these fields provide at least as much security
as symmetric-key ciphers with kev lengths 80. 112 and 128 bits respectively (see Ta-
ble 6.1). A polynomial basis representation was used to represent field elements. Such a
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Table 6.2: Koblitz curves selected.

representation is defined by a reduction polynomial f(z), which is an irreducible binary
polynomial of degree m. For each field Fom, we chose a random curve over Fom and a
Koblitz curve (48] over Fym from the list of elliptic curves recommended by NIST for US
federal government use [72]. The salient features of the Koblitz curves are provided in
Table 6.2. Koblitz curves have special structure that enable faster elliptic curve arithmetic
in some environments (see [96, 97]). The number of points on each of the chosen curves
is almost prime; that is, #E(Fy») = nh, where n is prime and h = 2 or h = 4. Since
#E(Fom) = 2™, it follows that the ECC key length is approximately equal to m. Security
implications of these choices are discussed in §6.5.4.

6.5.3 ECC protocols

Key generation. An entity A’s public and private key pair is associated with a particular
set of EC domain parameters (g, FR,a, b, G, n, h). This association can be assured cryp-
tographically (e.g., with certificates) or by context (e.g., all entities use the same domain

parameters).
To generate a key pair, entity A does the following:

1. Select a random integer d from [1,n — 1].
2. Compute Q = dG.
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3. A’s public key is Q; A’s private key 1s d.

Public key validation. This process ensures that a public key has the requisite arithmetic

properties. A publickey Q = (z¢, yp) associated with domain parameters (¢, FR,a,b, G, n,

is validated using the following procedure:

1. Check that Q # O.

2. Check that zg and yg are properly represented elements of F,.
3. Check that @ lies on the elliptic curve defined by a and b.

4. Check that nQ = O.

The computationally expensive operation in public key validation is the scalar multipli-
cation in step 4. This step can sometimes be incorporated into the protocol that uses ()
— this is done in the ECAES below. Public key validation with step 4 omitted is called
partial public key validation.

Elliptic curve authenticated encryption scheme (ECAES). The ECAES, proposed by Ab-
dalla, Bellare and Rogaway [1], is a variant of the EIGamal public-key encryption scheme
[27]. Tt is efficient and provides security against adaptive chosen-ciphertext attacks.

We suppose that receiver B has domain parameters D = (¢,FR,a,b,G,n, h) and
public key . We also suppose that A has authentic copies of I and Q. In the following,
MAC is a message authentication code (MAC) algorithm such as HMAC [55], ENC is a
symmetric encryption scheme such as Triple-DES. KDF denotes a key derivation function
which derives cryptographic keys from a shared secret point.

To encrypt a message m for B, A does:

Select a random integer r from [1,n — 1].
Compute R = rG.

Compute K = hr@Q. Check that K # O.
Compute &, || ks = KDF(K).

Compute ¢ = ENCy, (m).

Compute t = MACy,(c).

Send (R, ¢, t) to B.

oS e b el

To decrypt ciphertext (R, ¢, t), B does:

1. Perform a partial key validation on K.
2. Compute K = hdR. Check that K # O.
3. Compute k, || k» = KDF(K).

4. Verify that ¢ = MAC;,(c).
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5. Compute m = ENC;'(c).

The computationally expensive operations in encryption and decryption are the scalar
multiplications in steps 2-3 and step 2, respectively.

Elliptic curve digital signature algorithm (ECDSA). The ECDSA is the elliptic curve ana-
logue of the DSA [72]. SHA-1 is the 160-bit hash function [73].

We suppose that signer 4 has domain parameters D = (¢, FR, a, b, G, n, k) and public
key Q. We also suppose that B has authentic copies of D and Q.

To sign a message m, A does the following:

1. Select a random integer k from [1,n — 1].

i

Compute kG = (z1,%) and r = z; mod n.
If r = 0 then go to step 1.

Compute k= mod n.

Compute e = SHA-1(m).
Compute s = k~'{e + dr} mod n.
If s = 0 then go to step 1.

A

(=2}

. A’s signature for the message m is (7, s).
To verify A’s signature (r,s) on m, B should do the following;:

Verify that r and s are integers in [1.n — 1].
Compute ¢ = SHA-1(m).

Compute w = s~' mod n.

Compute u; = ew mod n and us = rw mod n.
Compute u1G + us@ = (z1,1)-

Compute v = z; mod n.

il A B - Ll

Accept the signature if and only if v = 7.

The computationally expensive operations in signature generation and signature verifica-
tion are the scalar multiplications in step 2 and step 5, respectively.

6.5.4 Security issues

Hardness of the ECDLP. Tt can easily be verified that the elliptic curves E(F,) chosen
resist all known attacks on the ECDLP. Specifically:

1. The number of points, #E(F,), is divisible by a prime n that is sufficiently large
to resist the parallelized Pollard rho attack [80] against general curves, and its
improvements [30, 105] which apply to Koblitz curves.
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2. n does not divide q"c —1forall1 <& < 30, confirming resistance to the Weil pairing
attack [67] and the Tate pairing attack [28].

3. #E(F,) # ¢, confirming resistance to the Semaev attack [93].

4. All binary fields Fom chosen have the property that m is prime, thereby circumvent-
ing recent attacks [29, 32] on the ECDLP for elliptic curves over binary fields Fom
where m 1s composite.

Security of ECAES. The ECAES modifies the EIGamal encryption scheme by using the
one-time Diffie-Hellman shared secret, ArdG, to derive secret keys k; and k, The first key

ki is used to encrypt the message using a symmetric cipher, while the second key ks is
used to authenticate the resulting ciphertext. The latter provides resistance to chosen-
ciphertext attacks. Some formal justification of ECAES security is provided in [1], where
it is proven to be semantically secure against adaptive chosen-ciphertext attack on the
assumption that the underlying symmetric encryption and MAC schemes are secure, and
assuming the hardness of certain variants of the elliptic curve Diffie-Hellman problem.

In order to correctly balance the security of the ECAES cryptographic components,
one should ideally employ a £-bit block cipher and a k-bit hash function for HMAC when
using a k-bit elliptic curve (see Table 6.1). Our implementation used the 112-bit block
cipher Triple-DES in CBC-mode and the 160-bit hash function SHA-1 for all 3 choices
of ECC key lengths (163, 233 and 283). A future version of our implementation should
allow for a variable output-length hash function (e.g., the forthcoming SHA-2) and a
variable-length block cipher (e.g., the AES).

Security of ECDSA. ECDSA is the straightforward elliptic curve analogue of the DSA,
which has been extensively scrutinized since it was proposed in 1991. For a summary of
the security properties of the ECDSA, see [44].

Our implementation used the 160-bit hash function SHA-1 for all 3 choices of ECC
key lengths (163, 233 and 283). As with the ECAES, a future version of our ECDSA
implementation should allow for a variable output-length hash function.

6.5.5 Timings

This section presents timings for the ECC operations on a Pentium IT 400 MHz machine,
a PalmPilot and the RIM pager, and compares them with timings for RSA and DL
operations.

ECC timings. Our ECC code was written entirely in C on a Sun Sparcstation and, in order
to ensure portability, no assembler was used. We encountered no problems in porting the
code to the Pentium II, RIM pager, and PalmPilot platforms, although some changes
were required in order to cooperate with the 16-bit options used in the Palm version of
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the “big number” library of OpenSSL. No effort was made to optimize the ECC code
for these particular platforms: it is very likely that significant performance improvements
could be obtained by optimizing the ECC (and DL and RSA) code for these platforms.
Further details of our ECC implementations are reported in [40].

For other ECC implementation reports, see [89] for a C implementation of elliptic
curve arithmetic over Fouss, [25] for a C/C++ of elliptic curve arithmetic over Fyion and
over a 191-bit prime field, and [41] for an assembly language implementation of elliptic
curve arithmetic over a 160-bit prime field on a 10 MHz 16-bit microcomputer.

Tables 6.3, 6.4 and 6.5 present timings of our implementation for ECC operations
using the Koblitz curves and random curves over Foisz, Fo2ss and Fozss.

Koblitz curve over Foiss Random curve over Fyiss
RIM pager | PalmPilot | P IT || RIM pager | PalmPilot | P II
Key generation 751 1,334 1.47 1,085 1,891 2.12
ECAES encrypt 1,759 2,928 4.37 3,132 5,458 6.67
ECAES decrypt 1,065 1.610 2.85 2,114 3,564 4.69
ECDSA signing 1,011 1,793 2.11 1,335 2,230 2.64
ECDSA verifying 1,826 3,263 4.09 3.243 5,370 6.46

Table 6.3: Timings (in milliseconds) for ECC operations over Faiss on various platforms.

Koblitz curve over F,2s3 Random curve over Fj2as
RIM pager | PalmPilot | P II | RIM pager | PalmPilot | P II
Key generation 1,552 2,573 3.11_ 2,478 3,948 4.58
ECAES encrypt 3,475 5,563 7.83 6,914 11,373 13.99
ECAES decrypt 2,000 2,969 4.85 4,593 7,551 9.55
ECDSA signing 1,910 3,080 4.03 3.066 4,407 5.52
ECDSA verifying 3,701 5.878 7.87 7,321 11,964 14.08

Table 6.4: Timings (in milliseconds) for ECC operations over Fa:: on various platforms.

RSA timings. The RSA code, written entirely in C, was taken from the OpenSSL library
[81]. Tables 6.6 and 6.7 present timings for 512, 768, 1024, and 2048-bit RSA operations.

DL timings. The DSA and ElGamal code, also written entirely in C, was obtained from
the OpenSSL and OpenPGP libraries. For ElGamal, the prime p was chosen to be a
safe prime; that is p = 2¢g + 1 where ¢ is also prime. Table 6.8 presents timings for 512,
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Koblitz curve over Fyzss Random curve over Fyzss
RIM pager | PalmPilot | P II || RIM pager | PalmPilot | P II
Key generation 2,369 4,062 4.50 3,857 6,245 6.88
ECAES encrypt 5,227 8,579 11.02 11,264 18,273 20.86
ECAES decrypt 2,932 4,495 6.78 7.498 12,046 13.88
ECDSA signing 2,760 4,716 5.64 4,264 6.816 8.08
ECDSA verifying 5,485 9.059 11.46 11,587 18,753 21.15
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Table 6.5: Timings (in milliseconds) for ECC operations over Fazs: on various platforms.

512-bit modulus 768-bit modulus

Pager | Pilot PII || Pager | Pilot | PII
RSA key generation 73,673 | 189,461 | 346.77 || 287,830 | 496,356 | 953.01
RSA encrypt (e = 3) 213 317 1.13 388 H87 1.87
RSA encrypt (e = 17) 262 410 1.28 451 753 217
RSA encrypt (e = 2'¢ 4+ 1) 428 743 1.90 793 1,347 3.32
RSA decrypt 2,475 5,858 11.05 7,905 16,262 | 28.05
RSA signing 2,466 5,751 10.78 7,889 16,047 | 27.72
RSA verifying (e = 3) 99 200 0.40 214 413 0.78
RSA verifying (e = 17) 147 293 0.56 273 77 1.07
RSA verifying (e = 2'¢ + 1) 314 623 1.17 616 1,221 2.24

Table 6.6: Timings (in milliseconds) for 512-bit and 768-bit RSA operations on various
platforms.

768 and 1024-bit DSA and ElGamal operations. For encryption, the per-message secret
key is not of full length (i.e., the bitlength of p), but of bitlength 200 + (bitlength of
p)/32; this explains why ElGamal encryption is faster than ElGamal decryption. The
ElGamal operations could be sped up significantly if DSA-like parameters were used (i.e.,
p =kq+ 1, where ¢ is a 160-bit prime).

Comparison. The performance of all three families of public-key systems (ECC, RSA
and DL) are sufficiently fast for PGP implementations on a Pentium machine—it hardly
matters whether a user has to wait 10 ms or 100 ms to sign and encrypt a message.

On the pager, RSA public-key operations (encryption and signature verification) are
faster than ECC public-key operations, especially when the public exponent is e = 3. For
example, verifying a 1024-bit RSA signature takes about 300 ms, while verifying a 163-bit
ECC signature (using a Koblitz curve) takes about 1,800 ms. On the other hand, RSA
private-key operations (decryption and signature generation) are slower than ECC private-
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1024-bit modulus 2048-bit modulus

Pager | Pilot | PII Pager | Pilot [ PII
RSA key generation 580,405 | 1,705,442 | 2,740.87 L — 26.442.04
RSA encrypt (e = 3) 533 1,023 2.70 1,586 3,431 7.26
RSA encrypt (e = 17) 683 1,349 3.23 2,075 4,551 9.09
RSA encrypt (e = 216 4+ 1) 1,241 2,670 5.34 4,142 8,996 16.57
RSA decrypt 15,901 36,284 67.32 112,091 | 292,041 | 440.78
RSA signing 15,889 36,130 66.56 111,956 | 288,236 | 440.69
RSA verifying (e = 3) 301 729 1.23 1,087 2,392 4.20
RSA verifying (e = 17) 445 1,058 1.76 1,585 3,510 6.10
RSA verifying (e = 216 + 1) 1,008 2,374 3.86 3.608 7,973 13.45

Table 6.7: Timings (in milliseconds) for 1024-bit and 2048-bit RSA operations on various
platforms.

512-bit modulus 768-bit modulus 1024-bit modulus
Pager | Pilot PII Pager | Pilot PII Pager | Pilot PII
ElGamal k. g. - — 51,704 — — 219,820 — — 1,200,157
ElGamal enc. 7,341 | 17,338 | 19.13 || 16,078 | 34,904 | 3591 26,588 | 73,978 67.78
ElGamal dec. 8,704 | 19,060 | 22.55 || 26,958 | 56,708 | 59.53 57,248 | 148,059 144.73
DSA key gen. — — 3,431 — — 14,735 - = 54,674
DSA signing 2,955 | 6,329 7.53 6,031 11,875 15.55 9,529 25,525 24.28
DSA verifying || 5,531 | 12,389 | 14.31 11,594 | 24,277 26.13 18,566 | 52,286 47.23

Table 6.8: Timings (in milliseconds) for DL operations on various platforms.

key operations. For example, signing with a 1024-bit RSA key takes about 16,000 ms,
while signing with a 163-bit ECC key takes about 1,000 ms. ECC has a clear advantage
over RSA for PGP operations that require both private key and public key computations.
Signing-and-encrypting together takes 16,400 ms with 1024-bit RSA (using e = 3), and
2800 ms with 163-bit ECC (using a Koblitz curve). Verifying-and-decrypting together
takes 16,200 ms with 1024-bit RSA, and 2,900 ms with 163-bit ECC.

Similar conclusions are drawn when comparing RSA and ECC performance on the
PalmPilot.

Private key operations with 2048-bit RSA are too slow for the pager and the PalmPilot,
while 233-bit ECC and 283-bit ECC operations are tolerable for PGP applications on the
pager.

Since domain parameters are used in our ECC implementation, ECC key generation
only involves a single scalar multiplication and thus is very fast on the pager. RSA,
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ElGamal and DSA key generation on the pager is prohibitively slow. However, ElGamal
and DSA key generation would be feasible on the pager if precomputed domain parameters
(primes p and ¢, and generator g) were used.

6.5.6 Interoperability

The elliptic curves and protocols were selected to conform with the prevailing ECC
standards and draft standards.

The Koblitz and random curves over Foiss, Fs233 and Fs2s: are from the list of NIST
recommended curves [72]. The representations, for both field elements and for elliptic
curve points, are compliant with the ANST X9.62 [5], ANSI X9.63 [6], IEEE P1363 [42]
and FIPS 186-2 [72] standards. In addition, the Koblitz curve over Foues is explicitly listed
in the WAP wTLS specification [103].

Our ECDSA implementation conforms to the security and interoperability require-
ments of ANSI X9.62, IEEE P1363, and FIPS 186-2. QOur ECAES implementation
conforms to the security and interoperability requirements of ANSI X9.63. The cryp-
tographic components HMAC and Triple-DES (in CBC mode) of ECAES are compliant,
respectively, with RFC 2104 [55] and ANSI X9.52 [4].

6.6 Porting PGP to the Pager

There are now a number of cryptographic libraries and PGP applications which have
received extensive development and for which source code is available; see, for example,
cryptlib by Peter Gutmann [38] and Crypto++ by Wei Dai [22]. Our plan was to adapt
existing code, adding public-key schemes based on elliptic curves. For comparisons and
development, it was essential that the code run on several platforms in addition to the
RIM device.

Our initial work was with GNU Privacy Guard (GnuPG) [34], an OpenPGP-compliant
freely distributable replacement for PGP, which was nearing a post-beta release in 1999.
Initial tests on the pager with several fragments adapted from GnuPG sources were pro-
mising, and the code appeared to be ideal for adding the elliptic curve routines and testing
on Unix-based and other systems. However, it appeared that untangling code dependen-
cies for our use on the pager would be unpleasant. (Perhaps a better understanding of
GnuPG internals and design decisions would have changed our opinion.)

Jonathan Callas suggested that we look again at the OpenPGP reference implemen-
tation [17], which we had put aside after initial testing revealed a few portability and
alignment problems in the code. The reference implementation relied on the OpenSSL
library [81].
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The OpenPGP reference implementation is surprisingly complete for the amount of
code, although it is admittedly a little rough on the edges.* The code was developed on a
Linux/x86 system, and modifications were required for alignment errors which prevented
the program from running on systems such as Solaris/SPARC. In addition, some porta-
bility changes were required, including code involving the “long long” data type. For the
RIM pager, the separation of the PGP code from the well-tested OpenSSL library, along
with the small size of the OpenPGP sources, were definite advantages. Finally, it should
be noted that the OpenSSL libraries build easily on Unix and Microsoft Windows systems,
and are designed so that adding routines such as the elliptic curve code is straightforward.

Although applications for the pager are built as Windows DLLs, the pager is not a
Windows-based system. There are significant restrictions on the calls that can be used,
extending to those involving memory allocation, time and character handling, and the
file system. There is no floating-point processor on the pager. In order to adapt code
developed on more traditional systems, we wrote a library of compatibility functions
to use with the pager. Some functions were trivial (such as those involving memory
allocation, since the SDK included equivalent calls): others, such as the stream 1/O calls,
were written to speed testing and porting and cannot be recommended as particularly
robust or elegant.

We used portions of OpenSSL 0.9.4, along with the library in the OpenPGP refe-
rence implementation. Relatively few changes to OpenSSL were required, and could be
restricted to header files in many cases. The elliptic curve routines were integrated, in-
cluding additions to the scripts used to build OpenSSL. For some platforms, OpenSSL
can be built using assembly-language versions of certain key routines to improve execution
speed. Some of these files for the Intel x86 include instructions (such as bswap) which
were introduced for the 486, and cannot be used on the pager.

The OpenPGP sources were modified to correct the alignment bugs and portability
problems mentioned above, and necessary changes were made for the elliptic curve schemes
(public-key algorithms 18 and 19 in the OpenPGP specification [18]). The compatibility
library, along with a few stream-to-memory conversion functions allowed fairly direct use
of the OpenPGP sources on the pager.

The only code tested exclusively in the pager environment involved the user interface
(see §6.7.1). The SDK provides a fairly powerful and high-level API for working with
the display and user input. The difficulties we encountered were mostly due to the lack
of support in the API for direct manipulation of messages desired in a PGP framework.
In part, this reflects a deliberate design decision by BlackBerry to develop a robust and
intuitive communication solution which provides some protection against misbehaving

4Zerucha writes that he wasn’t “careful about wiping memory and preventing memory leaks and other
things to make the code robust™ [17].
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applications.®

The pager DLLs for the interface and PGP library were over 400 KB in combined
size. This includes all of the OpenPGP required algorithms and recommended algorithms
such as IDEA and RSA, along with the new schemes based on elliptic curves. For a
rough comparison, the code size for the main executable from the OpenPGP reference
implementation (with the addition of the elliptic curve routines) is 300-400 KB, depending
on platform.

6.7 Implementation

6.7.1 User interface

PGP in any form has not been an easy application for novices to manage properly, in
part due to the sophistication required, but also because of poor interface design [104].
The goals for our user interface design were rather modest: that a user who is famihar
with using PGP on a workstation, and is comfortable operating the RIM device, should,
without having to refer to a manual or help pages, be easily able to figure out how to
use PGP on the pager and avoid dangerous errors (such as those described in [104]). As
mentioned in §6.3.1, the graphics capabilities and screen size of the RIM device are very
limited. This forced us to keep our PGP implementation simple and only offer the user
the essential features.

A glimpse of our user interface is provided in Figures 6.1-6.5. Clicking on the PGP
icon (see Figure 6.1) displays the list of users whose keys are in the public kev ring (see
Figure 6.2). Selecting a user name displays the menu shown in Figure 6.3, which allows

Figure 6.2: Listing of PGP keys.

the user to view the key’s attributes, compose a new key, delete a key, or send a key.

®During our work on this project, BlackBerry modified the API to provide some of the access needed
to smoothlv integrate PGP into their mail application.
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Figure 6.3: The main menu.

6.7.2 Key generation and storage

The main PGP menu (Figure 6.3) has an option “New Key” for creating a key pair.
Users can enter their name, email address, pager PIN, and select a key type and key
length (see Figure 6.4). The key types and key sizes presently available are ECC (random

Figure 6.4: Screen for creating a new key pair.

curve or Koblitz curve; over Faies, Fa2ss or Fyess), DH/DSS (512/512, 768/768, 1024/1024,
1536/1024 or 2048 /1024 bits), and RSA (512, 768, 1024, 1536 or 2048 bits). The DH/DSS
and RSA key sizes are the ones available in many existing PGP implementations. For
the DSA, the maximum bitsize of the prime p is 1024 bits in conformance with the DSS
[72]. For ECC, separate key pairs are generated for public-key encryption and digital
signatures.

Public keys and private keys are stored in separate key rings. Public key attributes
(see Figure 6.5) can be viewed using the “View Key” function available on the main menu.
As required by OpenPGP, private keys are encrypted under a user-selected passphrase,

Figure 6.5: Screen for viewing a (portion of the) public key's attributes.
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and the encrypted private key is stored. The passphrase has to be entered whenever a
private key is required to sign or decrypt a message.

6.7.3 Cryptographic services

The three basic PGP services are available: sign only, encrypt only, or sign-and-encrypt.
Users can decide to sign an email, or to encrypt an email, after composing the message.
The user is prompted for the passphrase to unlock the private signing key, and to select
the public encryption key of the intended recipient. In addition to the times given in
Tables 6.3-6.8 for the main operations, there is additional overhead which can be apparent
to the user. Verifying the passphrase, for example, may require 20 seconds if the default
iteration count is used when hashing the salted passphrase; our implementation used a
smaller default iteration count. A small amount of time is added for interaction with the
database filesystem for large memory transfers.

6.7.4 Key management

The key management system we implemented was the simplest one possible—the direct
trust model (see §6.2.2). A menu item is available (see Figure 6.3) for emailing one’s public
key to another user. A function is also available for extracting and storing a public key
received in an email message. If desired, a public key can be authenticated by verifying its
fingerprint by some direct means (e.g., communicating it over the telephone—authenticity
is provided by voice recognition).

6.8 Future Work

The following are some directions for future work.

Random number generation. Many systems implement a “random gathering device” whi ch

attempts to use environmental noise (keyboard data, system timers, disk characteristics,
etc.) to build a cryptographically secure source of random bits [39]. Our pager applica-
tion used only a rather simple (and most likely not sufficiently secure) seeding process
involving the clock and a few other sources. A more sophisticated solution is essential,
perhaps tapping into the radio apparatus as a source.

Code size. No serious effort was made to minimize the size of the programs loaded to the
pager. There is some code linked from the OpenSSL cryptographic library which could
easily be removed (in fact, we were somewhat surprised that the library with the added
elliptic curve routines could be used with relatively few modifications for the pager). The
library routines adapted from OpenSSL and OpenPGP along with various glue needed
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to adapt to the pager accounts for approximately 3/4 of the 370 KB loaded on the device
(with the remainder attributed to code involving the screen and user-interface). If some
interoperability can be sacrificed, then the code size can also be reduced by removing
routines such as CAST or some of the hash algorithms.

Making the OpenPGP code more robust. The OpenPGP reference implementation pro-
vides minimal diagnostics and can easily break on bad data. The occasional segmentation
fault triggered by bad user data may be merely unpleasant when an application is used
on a workstation; such errors on the pager are completely unacceptable. Our application
corrects some of the most troublesome shortcomings, but better error-handling is needed.

Key management. We would like to implement an X.509-based PKI or the web of trust
model. In either case, we would implement a key server for retrieving and storing keys
in a key repository. This would involve setting up a proxy wireless server with which the
pager would communicate directly. The proxy server in turn would communicate with
existing key servers on the Internet.

6.9 Conclusions

Implementing PGP on the RIM pager. The 32-bit architecture, relatively sophisticated
operating system and development environment, and relatively large memory size means
that development for the pager is closer to that done for more traditional systems than
the small size might suggest. The user interface must be customized for the device, but
“generic code” which does not involve file [/O moves fairly easily to the pager.

On the other hand, it appears likely that such devices will continue to have processors
which run much more slowly than their desktop counterparts. Long delays in handling
encrypted messages or signatures will be a considerable annoyance for users of this type
of device. While we used a significant amount of the available memory on the pager, it
would be desirable to reduce the resource consumption in a production version of PGP.
Battery life will continue to be a major concern, and the overhead of authentication and
confidentiality competes with the need to minimize transmissions from the device.

Interoperability. The goal of interoperability was met. All of the required algorithms from
RFC 2440 are included, along with several listed as recommended and the elliptic curve
routines. Our PGP implementation interoperated with existing implementations for the
PalmPilot and workstations.

Elliptic curve cryptography. Elliptic curve solutions fit particularly well into the con-

strained environment. 1024-bit and 2048-bit RSA private-key operations are too slow for
PGP applications, while the performance of 163-bit, 233-bit and 283-bit ECC operations



6.9. Conclusions 99

is tolerable for PGP applications. If PGP (or other email security solutions) is to be
used for securing email communications between constrained wireless devices and desktop
machines, then our timings show that ECC is preferable to RSA since the performance
of the latter on some wireless devices is too slow, while both systems perform sufficiently
well on workstations.

General. This paper concentrated on PGP, although the results are more widely appli-
cable. Many of the services targeted at the growing wireless market will require security
solutions involving the cryptographic mechanisms used by PGP. The constraints on small
wireless devices are likely to be with us for some time, and will require a balance of
usability, computational requirements, security, and battery life.
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Capitulo 7
Conclusoes

Nesta dissertacao estudamos os criptossistemas de curvas elipticas (CCE) e sua imple-
mentacao eficiente em software, enfatizando curvas elipticas definidas sobre o corpo finito
]Fgm.

Os resultados deste trabalho mostram que os CCE podem ser eficientemente imple-
mentados em diferentes plataformas tais como PCs, estacoes de trabalho, computadores
de bolso e pagers. No desenvolvimento desta pesquisa foram propostos vérios algoritmos
para calcular eficientemente multiplos de um ponto eliptico, a operacdo central dos CCE.
Além disso, foi desenvolvido um algoritmo para multiplicagao em Fom. Assim, nos dois
niveis (corpo finito e grupo eliptico) de operagées fundamentais para o desempenho dos
CCE, foram obtidos algoritmos eficientes. Outra contribui¢do, nao menos importante,
foi a implementagdo de uma biblioteca, baseada em nossos algoritmos, de suporte para
curvas elipticas definidas sobre Fom.

A biblioteca foi projetada para arquiteturas de 32 bits e contém as seguintes im-
plementacoes: as curvas NIST (aleatérias e Koblitz) sobre os corpos finitos Fym, para
m = 163,233 e 283, e os algoritmos ECAES e ECDSA para ciframento e assinatura
digital, respectivamente. A biblioteca foi escrita na linguagem C. Na nossa opinido, o
desempenho da biblioteca em diferentes plataformas é muito bom quando comparado
com outras implementagoes ja documentadas. Esta biblioteca estard disponivel em breve,
sendo o primeiro software publico a oferecer servigos criptograficos baseados em curvas
elipticas sobre Fom.

Nossa experiéncia nos permite elaborar as seguintes observagoes:

e A implementagao em software dos algoritmos para operagoes no corpo finito é mui-
to sensivel ao hardware; este fato é especialmente notavel quando comparamos os
tempos das operagoes de cdlculo de inversos multiplicativos e de multiplicagao. A
razao entre esses tempos pode influenciar a escolha do sistema de coordenadas dos
pontos da curva eliptica. Por exemplo, se um calculo de um inverso custa mais de 8
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multiplicacoes, entao os algoritmos em coordenadas projetivas oferecem vantagens
computacionais sobre os algoritmos em coordenadas afins. Na nossa implementacao
do algoritmo de Euclides estendido e o algoritmo de multiplicagao proposto, a razao
inverso/multiplicagdo observada em diferentes plataformas, variou de 8 a 12. Nessa
situacao, nossos algoritmos para multiplicacoes escalares sao os melhores candidatos
para implementacoes em software.

e A decisao de escrever uma implementaciao da aritmética do corpo finito Fy» foi
muito importante nos resultados obtidos. Primeiro, as poucas bibliotecas publicas
para corpos finitos de caracteristica 2 ndo sdo suficientemente otimizadas, ndo estao
escritas completamente em C, e nao sao faceis de adaptar para um corpo finito
particular. Segundo, nos permitiu avaliar melhor os algoritmos de multiplicagao
escalar, ja que tinhamos a possibilidade de experimentar diferentes algoritmos para
as operacoes no corpo finito. Finalmente, os progressos nos tempos de execucao
nos motivaram a testar diferentes técnicas matemdticas ou de programacao para
melhorar o desempenho da implementacao.

Trabalhos futuros

Vislumbramos os seguintes desdobramentos e possibilidades de trabalhos futuros nesta
linha de pesquisa:

e Projeto e implementacao de uma biblioteca de suporte para operagoes no corpo Fom,
orientada para processadores de 8, 16 e 64 bits.

e Projeto e implementacao de uma biblioteca de suporte das operac¢des aritméticas
moédulo p, p primo, que tirem proveito de arquiteturas especificas e explorem a
estrutura de I, para valores particulares de p.

e Implementacdo e comparagdo de criptossistemas de curvas elipticas sobre corpos
finitos (F,, Fom,F, =), em diferentes dispositivos limitados.

e Melhoramento dos algoritmos existentes ou desenvolvimento de novos algoritmos
para implementacao eficiente em software da aritmética no grupo de pontos de uma
curva eliptica.

e Implementacdo e comparacao entre o algoritmo de Euclides estendido e o algorit-
mo de Schroeppel, para os corpos finitos Fom, m = 163,233 e 283, em diferentes
arquiteturas.
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