oxomplar oorrosponde 3
W dw?am ""‘“m
C"lﬂ;\

e

® aprovide pele Banca Exani
Compinas, 1| da 3 '.:'da" i

Tratamento de Excegoes em Sistemas
Concorrentes Orientados a Objetos

Alessandro Fabricio Garcia

Dissertacao de Mestrado

UNICAMP
BIBLIOTECA CENTRAL
SECAO CIRCULANTF

Tratamento de Excecoes em Sistemas Concorrentes
Orientados a Objetos

Este exemplar corresponde a redagao final da
Dissertagao devidamente corrigida e defendida
por Alessandro Fabricio Garcia e aprovada pela
Banca Examinadora.

Campinas, 14 de abril de 2000.

-]

Cecﬂla Mary&;’gcher Rubu'a. (Orientadora)

UNICAMP
R{BLIOTECA CENTRAL

SECAO CIRCULANTEF

Dissertagdo apresentada ao Instituto de Com-
putacao, UNICAMP, como requisito parcial para
a obtencao do titulo de Mestre em Ciéncia da
Computagao.

URMICANMP
[;orlc.u canTR. |

Instituto de Computacao

Universidade Estadual de Campinas

Tratamento de Excecoes em Sistemas Concorrentes

Orientados a Objetos

Alessandro Fabricio Garcia

Margo de 2000

Banca Examinadora:
e Cecilia Mary Fischer Rubira (Orientadora)

e Prof. Paulo Henrique Monteiro Borba
Centro de Informética (CIn-UFPE)

e Profa. Eliane Martins
Instituto de Computacdo (IC-UNICAMP)

e Prof. Luiz Eduardo Buzato (Suplente)
Instituto de Computagao (IC-UNICAMP)

lSupported by CNPq, grant 131945/98-0

URICAWF .
B IOTECA CENTRSR |

1

PROC. ./ £‘ - _-42_,6;;; /00

¢ [0[]
PREC® 2.8 7,00
DATA-)/d}cf
NfCPO_

CM-00144223-

———

FICHA CATALOGRAFICA ELABORADA PELA
BIBLIOTECA DO IMECC DA UNICAMP

G165t

Garcia, Alessandro Fabricio
Tratamento de excegdes em sistemas concorrentes orientados a

objetos / Alessandro Fabricio Garcia-- Campinas, [S.P. :s.n.], 2000.

Orientador : Cecilia Mary Fischer Rubira
Dissertagdo (mestrado) - Universidade Estadual de Campinas,
Instituto de Computagao.

1. Tolerdncia a falhas. 2. Linguagem de programacdo

(Computadores). 3. Engenharia de software. I. Rubira, Cecilia Mary
Fischer. II. Universidade Estadual de Campinas. Instituto de

Computaggo. 1I1. Titulo.

TERMO DE APROVACAO

Tese defendida e aprovada em 14 de abril de 2000, pela Banca

Examinadora composta pelos Professores Doutores:

LFHL

Prof. Dr. Paulo Henrique Monteiro Borba
UFPE

Flave, (naxdiu

Profa. Dra. Eliane Martins
IC-UNICAMP

%-w:wcu ey, Fuchon, Ruliou
Profa. Dra. Cecilia ﬂlary Fischer Rubira

IC-UNICAMP

“Aos meus pais Antonio e Cida
e a minha irmd Andresa pelo amor e incentivo
prestados incondicionalmente ao longo de toda

manha vida.”

Agradecimentos

Este trabalho é fruto de muito esforgo e dedicagao dispensados nesses dois anos de mes-
trado. A felicidade é imensuravel quando percebo quantas alegrias foram vivenciadas e
quantos desafios foram superados nesses anos. Certamente, € a Deus que manifesto minha
eterna gratidao e dedico todas essas alegrias e vitorias.

[limitados agradecimentos vao para as trés pessoas que julgo serem as responsaveis
primeiras por tudo que alcancei até aqui: meus preciosos pais Antonio e Cida e minha
irma Andresa. O apoio constante da minha familia foi essencial para encontrar forgas e
continuar a lutar pelos meus objetivos.

Repleto de alegria pela fidelidade prestada, venho agradecer com toda sinceridade, aos
meus amigos, aqueles verdadeiros, que me apoiaram incansavelmente nos momentos de
alegria e de dificuldade. Nao referencio todos os nomes aqui, pois a lista seria enorme e
também para nao pecar pelo esquecimento. Caros amigos, por tudo que realizamos e por
tudo que ainda realizaremos juntos: muito obrigado!

Agradeco a minha orientadora Cecilia Rubira pelos iniimeros ensinamentos que me
transmitiu durante o nosso convivio, os quais foram fundamentais para a realizagao deste
trabalho. Agradego também aos demais professores e funcionarios do Instituto de Com-
putacao.

Finalmente, agradego ao CNPq pelo apoio financeiro.

Resumo

Sistemas orientados a objetos confidveis devem incorporar atividades de tratamento de
excegoes de forma a comportarem-se adequadamente sob uma grande variedade de si-
tuagoes, inclusive na presenga de erros. Nesse contexto, um mecanismo de tratamento de
excegoes é fundamental para detecgao e recuperacao de erros bem como para ativagao das
medidas necessarias para restaurar a atividade normal do sistema. O desenvolvimento
de um mecanismo de tratamento de excegoes é uma tarefa dificil especialmente quando a
concorréncia é uma das caracteristicas dos sistemas de software. O principal objetivo des-
ta dissertagao € o projeto e implementagao de um mecanismo de tratamento de excecoes
para a construgao de sistemas orientados a objetos confiaveis. Na construgdo do meca-
nismo proposto, nés utilizamos técnicas de estruturaciao de software, tais como reflexao
computacional e padroes de projeto. Duas contribui¢oes sao consideradas principais. A
primeira delas, caracterizada por aspectos técnicos e usos praticos, € o projeto e imple-
mentagao de um mecanismo de excegoes utilizando a linguagem de programagao Java e
uma arquitetura de software reflexiva chamada Guarana. O mecanismo proposto espe-
cialmente oferece suporte a tratamento de excegoes concorrentes. A outra contribuigao,
caracterizada por aspectos abstratos e abordagem inovadora, é a definicao de uma ar-
quitetura de software reflexiva e um conjunto de padrées de projeto relacionados para a
implementagao de mecanismos de tratamento de excegoes.

vii

Abstract

Dependanble object-oriented software should incorporate exception handling activities in
order to behave suitably in a great number of situations in spite of errors. In this context,
an exception handling mechanism is fundamental to detect errors, and to activate the
suitable measures to restore the normal activity of the system. The development of an
exception handling mechanism is not a trivial task. This task is specially difficult when
the software using the exception mechanism is concurrent. The main aim of this work is to
propose the design and implementation of an exception handling mechanism for developing
dependable object-oriented software. In order to build the proposed mechanism we apply
techniques of software structuring, such as computational reflection and design patterns.
The main contribution of this work is the design and implementation of an exception
handling mechanism using the Java language and a reflective software architecture called
Guarand. The proposed mechanism specially supports concurrent exception handling.
In addition, we define a reflective software architecture and a set of design patterns for
implementing exception handling mechanisms.

viii

Conteudo

Agradecimentos

Resumo

Abstract

1

Introducao Geral

J X QOPODMES s ¢ s e ska G s @i wsWsN g @ e o d s @ 88 76355
1.2 Limitacoes das Solugoes Existentes
LS OO0 o 5 c dba@ @ AR B SR Fe B et b CaN A m 0@ 8w 08
18 A FOocRe FIODORER « « v ¢ c hm s hiwn o s 3 85 v m w8 50 5 o d 08 e 5 S
15 COEribuiChas . . « ¢ o v s w5 g we s s ims 9 F 8 5@ E PuE § 0 T w8
16 OrgatisacRo da DISSertathn’ . + o wov 3w s v ap s w w6 6 %8 5 % ¥ =%

Um Estudo Comparativo de Mecanismos de Excegoes
21 IntroducHon . « v 5. i3 5 3 s R F I FEI S EE AR EDERES S S s

2.2 Exception Handling and Fault Tolerance
221 "TRAROIOEY « v v s s mm S B oy ke O E o s @ T A
2.2.2 [Exception Handling in Concurrent OO Systems

2.3 A Taxonomy for OO Exception Mechanisms

2.4 Exception Handling in Various OO Languages
24.1 ExceptionHanding m Adald . .. :vecvmsamsmssesnsa
242 ExceptionHandlingin Lore . .. oo oo vt oo mo oo on oo v
2.4.3 Exception Handling in Smalltalk-80
244 ExceptionHandlinginEiffel
2.4.5 Exception Handling in Modula-3
246 Exception Handlingin C++4+ oo iiv i v v v
247 Exception Handbogm Jeva . -« « ¢ c s v s v s nsmswsoacss
2.4.8 Exception Handling in Object Pascal/Delphi
249 Exception Handling in Guide’ . o v v o5 o 9 5 6 o 0w 58 @ % es v

ix

vi
vii

viii

2.4.10 Exception Handling in Extended Ada 28

2:4.11 Exception Bandlng 30 Beba « -« « w o ws 0w e 0w 0 w5 e @ s i 29
24.12 Exception Handlingin Arche . . . ¢ .cvsvovinewswswsn 29
2.4.13 Exception Handling in Other Languages 30
20 Bvaluationabd DISCHSKION . s c s 5 s s s b is snsh s msta s s ens 31
28 Genexal Design CBEERIR. o - o5 v 5 50 2 om0 5o 2t o 30 m ok & w5 S 37
2.6.1 Quality Requirements of an Exception Mechanism 38
2.6.2 An Ideal Exception Handling Model 41
T Ongolnp BEareh « » 5 s w s 3 s G W53 GE NS R EREINEB IV D 3G 46
28 Corcluing BOmBtks: - s s sovinsdsRinin s 3 as S5 Ei 85 48
28 HESENOQOb Lapitale B . v s e w i m i e m i e s b s @ N S 50
Projeto e Implementacdao de um Mecanismo de Excegdes para Software
OO Confiavel 51
Sk JOLEOAUCHIEN « « « <5 w2 R WY M EN D ED FWEE S S R 52
3.2 Exception Handling and Fault Tolerance 53
3.3 The Design of Exception Mechanisms 55
3.3.1 Exception Handling and the Object Model 56
3.3.2 Exception Handling in Concurrent OO Systems 57
3.4 Reflection and Meta-Level Architectures 58
3.5 An OO0 Exception Handling Model . ¢« o v v 5000 v e om0 aoow 0w i 06 39
3.:5.1 Exception Representalion . . .« v v cscawasms o @ vm s @6 60
352 Hendler Attachmnent « 5 27 ¢5 55 §% 65 QU NI E @9 & W E R b 60
353 Exception Propagabion « . o « » oo o o 5.5 s 00 0 o0 00 a0 0 2 5 4 62
3.5.4 Continuation of the Control Flow 62
3.5.5 Support for Coordinated Recovery 63
3.6 Twin-Engine Aircraft Control System 64
3.0 Tnplem@Rabon » 2o v w v e Ty P E Y G 08 H F AR Y S 68
3.7.1 The Meta-Level Architecture. ; . « i ¢ 5 ¢4 s i v 2w w s 2w &% & 68
3.7.2 The Meta-Level Architecture and Concurrency 69
3.7.3 Implementation Issues, 70
B3 Belated WK . o v o v o wose v som a0 50 B G % o R R R e e R 8 @ 71
3.9 Concluding Remarks and Future Work 71
3-10 Rewnthio'do Capitls @ c s s wewsn s e v s s wam s BB IR @8 73
Uma Arquitetura de Software Baseada em Padr6es para Mecanismos de
Excecgoes 74
A1 JTREROMMBEONE & o v v 5 oo 0 oo 5 5 5 [0 B 0 Biel B & s @ G O N W s e W e 75
4.2 EreepRiop Bandling . o o o5 5 v woi w00 Wb e B K6 N A S R B B e E R 7

4.2.1 Exception Handling in Sequential Systems
4.2.2 Exception Handling in Concurrent Systems
4.2.3 Integration of Sequential and Concurrent Exception Handling
4.3 Design Reuse and Software Structuring Techniques
4.3.1 Software Architecture and Patterns
4.3.2 Meta-Level Architectures and Computational Reflection
4.4 The Software Architecture for Exception Handling
441 TheBasic Architectire . . . v + v ¢ v s 0 s s o a v am smsm s o s
4.4.2 InterfacesoftheComponents v einswamsena
44.3 The Architecture Refinement v v v v v v v v d v v
4.5 Design Patterns for Exception Handling
481 The BoonplonPRlbern - » v o s m i s sm@d B s mn 5 5w
452 Ths HanglewFaiiet « . o soav.on » o S 0o &itl #0806 § % « v 3
4.5.3 The Ezception Handling StrategyPattern
4.5.4 The Concurrent Ezception Handling Action Pattern
46 Tplomemiation JoBleE « : v .o ssnvsanswe W sv @I @@ vNES
BT Basted WOk - s 6sn imsssssnsamsminanNiBemssenss
48 Conclusionsand OngoingWork
49 ResomodoCapitale 4. < c v v s b s mamomeos SEmuded @ owdwen

5 Conclusao Geral

Bibliografia

103
104
105
106

107

110

Lista de Figuras

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Idealized Fault-Tolerant Component. 11
The Operation of an Exception Mechanism 12
A Method’s Signature with Exception Interface 15
Summary of the Features of the Exception Mechanisms 32
Quality Requirements of Exception Mechanisms 38
Design Decisions x Quality Requirements 42
Idealized Fault-Tolerant Component. 54
A Mta-Level ATCBILCCEUTE . » o v 3.5 = = 4 60 o £ 0 a0 n 80 % 0 b oo B g n 58
Normal and Exceptional Class Hierarchies 59
An Exception Class Hierardhy . « « « « v v ws v s s vsmemsws wasws 60
Objects and their Exceptional Classes 61
Exception Propagalion < s 5 ¢ 6 56 65 s w s ad o8 i msa smas o 64
The DeAnBIonof A H0UE - » o v 6 o m s o dm 8 o b B 5 o & 9 8 & s 65
The Definition of the Exceptions fora Group 65
The Cooperating Activity of the Group Stability 66
The Exception Tree of the Group Stability 67
Object Model for the Twin-Engine Aircraft Control System 67
The Proposed Meta-Level Architecture. « . . ¢ « s v v e v v v v v s w oo 69
The Meta-Level Architecture for Concurrency. 70
Banking Seriice TIRAMDIS: « 4 o v i m Vw5 o e i f 0 % 30 % a0 & 66w 79
Integration of Exception Handling 81
A Meta-Level Software Architecture. 83
The Software Architecture for Exception Handling 84
The Dot led INLOIBADEE. . < v s comwim s s v da @59 5 9% 989 ¥ 8@ s 86
A Scenario of the Proposed Software Architecture. 87
The Axchitecture Refinement. . . . < . oo v v v v cwomewoeosonma 89
Class Diagram for the Ezception Pattern. 90
Interaction Diagram for the Ezception Pattern.. 91

4.10 Class Diagram for the Handler Pattern. 93

4.11 Interaction Diagram for the Handler Pattern. 94
4.12 Class Diagram of the Ezception Handling Strategy Pattern. 96
4.13 Interaction Diagram for the Ezception Handling Strategy Pattern. a7
4.14 Class Diagram of the Concurrent Ezception Handling Action Pattern. . . . 99

4.15 Interaction Diagram for the Concurrent Ezception Handling Action Pattern.102

Capitulo 1

Introducao Geral

O uso crescente de sistemas computacionais em quase todos os ramos da sociedade tem
levado a necessidade de desenvolvimento de sistemas de software confidveis. O paradigma
de objetos € uma das formas promissoras para construcao de software de qualidade e pode
contribuir decisivamente para a prevengao e remoc¢ao de falhas durante as fases do ciclo
de desenvolvimento de software. Entretanto, a presenca de falhas residuais é inevitavel
mesmo em sistemas orientados a objetos devido a complexidade inerente aos sistemas de
software atuais. Essas falhas podem ocasionar efeitos indesejdveis no sistema durante sua
vida operacional. O desenvolvimento de sistemas orientados a objetos confidveis nao é
uma tarefa trivial. Projetistas de sistemas confidveis devem lidar com as situagGes ex-
cepcionais possiveis e incorporar ao sistema atividades de tolerancia a falhas capazes de
evitar um defeito catastréfico. As atividades de tolerancia a falhas introduzidas usualmen-
te aumentam a complexidade do sistema de software. Nesse contexto, um mecanismo de
tratamento de excegoes € fundamental para detecgao e recuperagao de erros, causados por
falhas residuais, e para a estruturagao e ativagao das medidas apropriadas de tolerancia
a falhas de forma a restaurar a atividade normal de um sistema de software confiavel.

Programadores utilizam mecanismos de tratamento de excegbes (mecanismo de ex-
cegbes) para a implementagao das atividades de tratamento de excecdes (erros) de um
sistema de software. As atividades de tratamento de excegoes implementam as medidas
para tolerar as falhas que podem se manifestar durante a execugao da atividade normal. O
mecanismo de excegdes é responsavel pela interrupgao do fluxo normal do sistema quando
a ocorréncia de uma exce¢ao é detectada durante a sua execucgao, e a ativagao das medidas
de tolerancia a falhas adequadas.

1.1. O Problema 2

1.1 O Problema

O desenvolvimento de mecanismos de excegoes adequados para a construcio de software
orientado a objetos confidvel implica em um grande desafio. Estes mecanismos devem
prover suporte para uma separagao explicita entre as atividades normais e as atividades
de tratamento de excegoes de tal forma a manter sob controle a complexidade geral de
sistemas confidveis. Esses mecanismos também devem ser simples, restritivos e integrados
com o paradigma de objetos. Mecanismos baseados em soluges complexas e com flexi-
bilidade desnecessaria proporcionam a introducdo de erros adicionais ocasionados pelo
seu uso. Além disso, o desenvolvimento de um mecanismo de excegdes sofre impactos
adicionais quando a concorréncia é uma das caracteristicas dos sistemas de software.

Tratamento de excegGes € muito mais dificil em sistemas concorrentes devido a con-
corréncia cooperativa [38]. Em particular, para sistemas orientados a objetos, processos
concorrentes podem cooperar através de comunicagao inter-processos para a realizacio
de alguma atividade do sistema. Eventualmente, um dos processos pode levantar uma
excecao. Essa excegao nao pode ser tratada isoladamente no processo que a levantou,
uma vez que informagao erronea pode ter sido espalhada através de comunicagdo inter-
processos. Além disso, devido a prépria natureza de software concorrente, mais de uma
excegao pode ser levantada mais ou menos ao mesmo tempo nos diferentes processos. O
levantamento de muiltiplas excegGes concorrentemente pode ser o sintoma de uma falha
mais séria [9]. Nesses casos, o mecanismo de excegdes deve dar suporte a recuperagao de
erros de forma coordenada entre os processos envolvidos na cooperagao. Todos processos
participantes da atividade cooperativa devem ser informados da ocorréncia de excegdes e
devem ser envolvidos no processo de recuperagao de erros.

1.2 Limitacgoes das Solucoes Existentes

Mecanismos de excegoes sao usualmente considerados como uma parte essencial de qual-
quer linguagem de programagdo moderna e, tipicamente, modelos distintos de tratamento
de excegGes sao adotados para o projeto desses mecanismos nas diferentes linguagens. En-
tretanto, um estudo comparativo de mecanismos existentes em linguagens orientadas a ob-
jetos mostrou que eles nao satisfazem algumas caracteristicas desejaveis [25] (Capitulo 2).
Desenvolvedores desses mecanismos se preocupam geralmente em prover solugées ampla-
mente flexiveis sem a atencao devida para simplicidade e outros requisitos importantes.
Os mecanismos existentes muitas vezes nao possuem um projeto orientado a objetos e
provéem suporte limitado para uma separagao explicita entre as atividades normais e
excepcionais de uma aplicagao.

Uma das principais deficiéncias dos mecanismos de excegoes disponiveis € a inexisténcia

1.3. Objetivos 3

de suporte apropriado para tratamento de excecdes concorrentes. Os mecanismos existen-
tes geralmente sdo dedicados para programas sequenciais. Somente a linguagem Arche [33]
prové um esquema para tratamento de condigoes excepcionais em sistemas concorrentes.
Entretanto, o modelo de concorréncia implementado em Arche limita-se a ativar recu-
peragao de erros entre objetos do mesmo tipo. Assim, as linguagens de programacao
orientadas a objetos atuais nao provéem, de forma satisfatoria, mecanismos de trata-
mento de excegOes adequados para o desenvolvimento de sistemas orientados a objetos
confidveis.

Recentemente, alguns trabalhos [58, 60, 74] tém proposto mecanismos dedicados es-
pecialmente para tratamento de excegdes concorrentes como extensoes para determinadas
linguagens de programacgao especificas. As abordagens propostas exigem alguma mo-
dificagdo da linguagem de programacao e/ou de seu compilador ou interpretador, ou a
defini¢ao de uma interface de programacao para tratamento de excegoes concorrentes. En-
tretanto, estas abordagens usualmente apresentam solugoes complicadas e implementam
um modelo de tratamento de excegoes nao integrado com o modelo de objetos. Ademais,
tais propostas sao intrusivas do ponto de vista da aplicacao uma vez que o cédigo da
aplicagao é embutido com uma série de chamadas a servigos especificos do mecanismo de
tratamento de excegbes concorrentes. O cédigo extra inserido dificulta a legibilidade, a
reutilizacdo e a manutencdo dos componentes da aplicagdo. Consequentemente, as abor-
dagens existentes propdem mecanismos para tratamento de excegbes concorrentes que
sao dificeis de usar, e usualmente conduzem ao desenvolvimento de sistemas orientados a
objetos ndo confidveis e que sao dificeis de entender, manter e reutilizar.

1.3 Objetivos

Em resumo, os principais objetivos desta dissertagdo sao:
1. Proposta de projeto e implementa¢ao de um mecanismo orientado a objetos de

tratamento de excegoes para o dominio de sistemas orientados a objetos confiaveis.

2. Utilizagao pratica de técnicas avangadas de estruturagao de software para a cons-
trugcao do mecanismo proposto, tais como reflexao computacional e padroes de pro-
jeto, e a andlise das vantagens e limitagGes destas técnicas no desenvolvimento do
mecanismo de excegoes.

1.4 A Solucao Proposta

Este trabalho apresenta o projeto e implementagao de um mecanismo de excegbes apro-
priado para a construcdo de software orientado a objetos confidvel. O mecanismo incor-

1.5. Contribuigoes 4

pora um modelo orientado a objetos de tratamento de excegoes e permite uma separagao
explicita entre as atividades normais e excepcionais de um sistema. O modelo proposto
especialmente proporciona suporte para tratamento de excegoes concorrentes. Técnicas
de estruturagao de software sao utilizadas para a construgao de um mecanismo de excegoes
que seja de facil uso e reutilizagao.

A técnica de reflexao computacional é utilizada para implementagao do modelo pro-
posto de tratamento de excegoes. O uso dessa técnica permite a introdugao do mecanismo
de excegdes para a linguagem de programagao sem criar modificagGes para a prépria lin-
guagem. Além disso, a utilizacdo de reflexao computacional permite uma melhor divisao
entre a funcionalidade da aplicagao e os servigos especificos do mecanismo de excegoes.
Essa divisao alcangada permite a obtencdo de um mecanismo de excegbes nao intrusivo
e facil de usar. O mecanismo proposto estd implementado na linguagem Java e usa uma
arquitetura de software reflexiva para esta linguagem chamada Guarana [51].

Nés também definimos o projeto de uma arquitetura de software reflexiva para meca-
nismos de tratamento de excegGes. A arquitetura é descrita por um conjunto de compo-
nentes com responsabilidades bem definidas e a interagao entre esses componentes. Esta
arquitetura oferece uma solugdo de projeto genérica que integra uniformemente trata-
mento de excegOes para programas sequenciais e concorrentes. A arquitetura proposta é
descrita de forma independente de linguagem de programagao e pode ser reutilizada em
diferentes aplicacées. Um conjunto de quatro padroes de projeto documenta os aspectos
estruturais e comportamentais dos componentes da arquitetura de software proposta. Pa-
droes de projeto constituem boas solugdes de projeto para problemas recorrentes dentro
de um contexto particular (7, 20]. No contexto deste trabalho, os padrdes propostos in-
corporam boas solucoes conhecidas para os problemas comuns no dominio de mecanismos
de excegoes.

1.5 Contribuicoes

Este trabalho apresenta as seguintes contribuigoes:

1. Um estudo comparativo dos diferentes modelos de tratamento de excegbes imple-
mentados em diversas linguagens orientadas a objetos e proposta de uma taxonomia
que permite avalia-los.

2. Proposta de um critério de projeto com os requisitos desejaveis para mecanismos de
tratamento de excegdes que serdo utilizados na construgao de sistemas orientados
a objetos confidveis. Um modelo ideal de tratamento de excegoes é proposto tendo
como base o critério de projeto definido. O modelo proposto especialmente da
suporte a tratamento de excegbes concorrentes.

1.6. Organizagao da Dissertagao 5

3. Projeto e implementagao de um mecanismo de excegdes para a linguagem Java
utilizando a arquitetura de software reflexiva do Guarana. O mecanismo implementa

o modelo proposto de tratamento de excegoes que contempla o critério de projeto
definido.

4. Definicao de uma arquitetura de software reflexiva para o projeto de mecanismos
de excegbes que serao utilizados na construgao de sistemas orientados a objetos
confidveis.

5. Proposta de um conjunto coeso de quatro padrées de projeto que documentam
os aspectos de estrutura e comportamento dos componentes arquiteturais de um
mecanismo de excegOes, e incorporam boas solugdes conhecidas para os problemas
comuns no dominio desses mecanismos.

1.6 Organizacao da Dissertacao

Esta dissertacao é uma colegao de artigos cientificos escritos em inglés que foram publi-
cados ou submetidos para publicagao em simpésios e revistas internacionais. O restante
desta dissertacao estd organizada da seguinte forma:

Capitulo 2 contém o artigo “A Comparative Study of Ezception Handling Proposals
for Dependable Object-Oriented Software” [25]. Este artigo apresenta a terminologia rela-
cionada a tratamento de excegoes e tolerancia a falhas utilizada neste trabalho, bem como
discute as dificuldades relacionadas a tratamento de excecGes concorrentes. Este artigo
também revisa diferentes modelos de tratamento de excecoes implementados em diversas
linguagens orientadas a objetos e propoe uma taxonomia. A taxonomia desenvolvida per-
mite classificar e comparar os modelos de tratamento de excecoes estudados. Finalmente,
este artigo apresenta um critério de projeto adequado para mecanismos de excecoes bem
como um modelo ideal de tratamento de excegoes.

Capitulo 3 contém o artigo “An Ezception Handling Mechanism for Developing De-
pendable Object-Oriented Software Based on a Meta-Level Approach” [21]. Este artigo
apresenta o projeto e implementagao de um mecanismo de tratamento de excegoes utili-
zando a arquitetura de software reflexiva do Guarana [51]. O mecanismo implementa o
modelo proposto de tratamento de excegdes que contempla o critério de projeto definido
no Capitulo 2.

Capitulo 4 contém o artigo “An Ezception Handling Software Architecture for De-
veloping Robust Software” [22]. Este artigo define uma arquitetura de software reflexiva
para mecanismos de tratamento de excegGes que serao utilizados na construgao de siste-

1.6. Organizagao da Dissertagao 6

mas orientados a objetos confidveis. Além disso, este artigo propoe os padroes de projeto
que documentam a estrutura e o comportamento dos componentes arquiteturais de um
mecanismo de tratamento de excegoes.

Capitulo 5 resume as conclus6es do nosso trabalho, apresentando as principais con-
tribuigGes e os possiveis trabalhos futuros.

Capitulo 2

Um Estudo Comparativo de
Mecanismos de Excecoes

Mecanismos de tratamento de excegGes sao usualmente considerados como uma parte
essencial de qualquer linguagem de programagao orientada a objetos. No contexto de
sistemas orientados a objetos confidveis, mecanismos de excegoes sao usados para detecgao
e recuperagao de erros, e para estruturar as atividades de tolerancia a falhas incorporadas
em um sistema. Modelos distintos de tratamento de excegGes sao adotados para o projeto
desses mecanismos nas diferentes linguagens. Um mecanismo de excegdes para software
orientado a objetos confidvel deve incorporar um modelo adequado de tratamento de
excegoes.

Este capitulo contém o artigo “A Comparative Study of Fzception Handling Proposals
for Dependable Object-Oriented Software” [25], que foi submetido para a revista “Journal
of Systems and Software”. Este artigo apresenta os conceitos relacionados a tratamento de
excecoes e tolerancia a falhas utilizados neste trabalho, bem como discute as dificuldades
relacionadas a tratamento de excegdes concorrentes. Este artigo também revisa diferentes
modelos de tratamento de excegoes implementados em diversas linguagens orientadas a
objetos e propoe uma taxonomia. A taxonomia desenvolvida é utilizada para classificagao
e comparagao dos modelos de tratamento de excegoes estudados. Finalmente, este artigo
apresenta um critério de projeto adequado para mecanismos de tratamento de excegoes e
um modelo ideal de tratamento de excegoes.

2.1. Introduction 3

A Comparative Study of Exception Handling Proposals for
Dependable Object-Oriented Software

Alessandro F. Garcia Cecilia M. F. Rubira
Institute of Computing
University of Campinas (UNICAMP)
Campinas — Brazil
{afgarcia, cmrubira}@dcc.unicamp.br

Alexander Romanovsky
Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne — United Kingdom
{alexander.romanovsky } @newcastle.ac.uk

Jie Xu
Department of Computer Science
University of Durham
Durham — United Kingdom
{Jie.Xu}@durham.ac.uk

2.1 Introduction

Dependable object-oriented systems have to cope with a number of exceptional situations
and incorporate fault tolerance activities in order to meet the system’s robustness and
reliability requirements. With such systems growing in size and complexity, employing
error-handling techniques and satisfying the requirements of software qualities such as
maintainability and reusability are still deep concerns to engineers of dependable object-
oriented systems. Exception handling mechanisms are the most important schemes for
detecting and recovering errors, and structuring the fault tolerance activities incorporated
in a system. However, the current lack of suitable exception handling mechanisms can
make an application non-reliable and difficult to understand, maintain and reuse in the
presence of faults.

Engineers of dependable object-oriented systems utilize exception mechanisms to de-

2.1. Introduction 9

velop exception handling activities for dealing with such erroneous situations. In this
systems, the code devoted to error detection and handling is usually both numerous
and complex. As a consequence, up to two-thirds of a program can be for error han-
dling [11, 26]. In this context, the design of an exception mechanism should be simple
and easy to use, and provide explicit separation between the normal and exceptional code.
Ideally, dependable object-oriented systems using the exception mechanism should be easy
to understand, maintain and reuse. A number of exception mechanisms have been deve-
loped to object-oriented programming languages. Realistic examples of object-oriented
languages include Java [30], Modula-3 [50] and Eiffel [44].

The purpose of our paper is to investigate the applicability of the existing exception
mechanisms of object-oriented programming languages for developing dependable object-
oriented software with effective quality attributes. The major contributions of this article
are: (i) the definition of a set of adequate design solutions while developing an exception
mechanism suitable for dependable object-oriented software, (ii) the presentation of a
comprehensive survey of existing exception mechanisms implemented in object-oriented
languages, (iii) comparison and evaluation of the investigated mechanisms as well as the
identification of the primary limitations in applying them in practice to develop depen-
dable object-oriented systems, and (iv) the identification of current trends related to
exception handling and dependable object-oriented software. A taxonomy is used to dis-
cuss nine functional aspects of an exception mechanism and to distinguish one mechanism
from another - especially support for concurrent exception handling is examined in detail.

The remainder of this article is organized as follows. Section 2 gives a brief descrip-
tion of exception handling within a framework for facilitating software fault tolerance.
This section also introduces exception mechanisms as well as difficulties related to con-
current exception handling. Section 3 describes our proposed taxonomy for classifying
different design approaches to exception mechanisms. Section 4 presents a general crite-
ria to design an effective exception mechanism for developing dependable object-oriented
systems. Section 5 discusses in more detail exception models implemented in various
object-oriented languages. Section 6 assesses the relative advantages, disadvantages and
general limitations of these models based on our established design criteria. Section 7
discusses difficulties and directions for future work. Finally, Section 8 presents some
concluding remarks.

2.2. Exception Handling and Fault Tolerance 10

2.2 Exception Handling and Fault Tolerance

2.2.1 Terminology

Following the terminology adopted by Lee and Anderson [38], a system consists of a
set of components that interact under the control of a design. A fault in a component
may cause an error in the internal state of the system which eventually leads to the
failure of the system. Dependable software systems require supplementary techniques
in order to tolerate the manifestations of faults in its components and, consequently, to
avoid failures of the system. In general, these techniques are based on the provision of
redundancy which increases the size of the systems and introduces additional complexity
to them. Dependable software and its components should therefore be well-structured
in order to master such an additional complexity. Each system component should be
able to return well-defined responses, and incorporate a clear separation between normal
and fault tolerance activities. In this sense, exceptions and exception handling provide a
suitable framework for structuring the fault tolerance activities incorporated in a system.

Software components receive service requests and produce responses. If a component
cannot satisfy a service request, it returns an ezception. So the responses from a compo-
nent can be separated into two distinct categories, namely normal and ezceptional respon-
ses. Exceptions can be classified into three different categories: (i) interface exceptions
which are signaled in response to a request which did not conform to the component’s in-
terface; (ii) failure ezceptions which are signaled if a component determines that for some
reason it cannot provide its specified service; (iii) internal ezceptions which are exceptions
raised by the component in order to invoke its own internal fault tolerance activity. The
activity of a component can be divided in two parts: normal activity and abnormal (or
ezceptional) activity (Figure 2.1). The normal activity implements the component’s nor-
mal services while the exceptional activity provides measures for tolerating the faults that
cause exceptions. Thus, the normal activity of the system is clearly distinguished from
its exceptional activity. At each level of the system, an idealized fault-tolerant compo-
nent handles the exceptions raised during its normal activity and exceptions signaled by
lower-level components. Whenever an exception is raised in a (server/callee) component
that cannot handle it, the exception is signaled to the (client/caller) higher-level compo-
nent that dynamically invoked the server component. After the exception is handled, the
system may return to its normal activity.

Developers of dependable systems usually refer to faults as exceptions because they are
expected to manifest rarely during the component’s normal activity. Exception handling
mechanisms (or merely exception mechanisms) have been developed for programming lan-
guages and allow software developers to define exceptions and to structure the exceptional
activity of software components by means of handlers. The handlers of a program consti-

2.2. Exception Handling and Fault Tolerance 11

Client/Caller Higher-Level Components

Faily
mormal operation)
Server/Callee Abnormal Activity
Chent/CaHe!‘ (fault tolerance by

exception handling)

Server/Callee Lower-Level Components

Figura 2.1: Idealized Fault-Tolerant Component

tutes its exceptional activity part. The exception mechanism is responsible for changing
the normal control flow of a program to the ezceptional conirol flow when an exception is
raised during its execution. Exception mechanisms are either built as an inherent part of
the language with its own syntax, or as a feature added on the language through library
calls [17].

In the context of programming languages, exceptions are usually classified into two
types [29, 37): (i) user-defined, and (ii) predefined. User-defined exceptions are defined
and detected at the application level. Predefined exceptions are declared implicitly and
are associated with conditions that are detected by the language’s run-time support, the
underlying hardware or operating system. The kinds of exceptional events supported by
a particular exception mechanism differ from one language to another and depend on
general decisions taken by the language designers.

An exception can be raised at run-time (an ezception occurrence) during the normal
execution of an operation (method). A signaling statement is the statement being execu-
ted when an exception occurrence is detected. The code block containing the signaling
statement is referred to as the exception signaler (Figure 2.2). When an exception occur-
rence is detected, the exception mechanism is responsible for searching and invoking an
ezception handler (or simply handler) to deal with the raised exception. The handler is the
part of application’s code that provides the measures for handling the raised exception.
Some extra-information about an exception occurrence, such as its name, description, lo-

2.2. Exception Handling and Fault Tolerance 12

PROGRAM CLIENT SERVER Signaler
method mi() method m2()
[

calls '

= | s

: : signaling "
protected protected statgment ~~(el) ralsed |
region region e e

i 3 § 1 local handler |

i ’ / was not found |

E normal ‘é’oﬂfn : exceptional protected
t flow | / response region
Y ¥ el iy

Handler(ES) Handler(E1) e | Handler(E2)
7. executed \
LEGEND
_ Handler(E2) Handler(E7) Handler(E3)
E] Normal Activity - |ocal
handlers

[Exceptional Activity

—= Normal Control Flow Handler(E6) Handler(E4) Handler(E4)
— Excepuonal Control Flow

Figura 2.2: The Operation of an Exception Mechanism

cation, and severity [37], is usually required by the corresponding handler, and it is useful
for handling an exception occurrence. Extra-information is passed either explicitly by the
signaler, or implicitly by the exception handling mechanism.

Handlers are attached to a particular region of the normal code which is termed
protected region or handling contezt. Figure 2.2 illustrates three protected regions. Each
protected region can have a set of attached handlers. If an exception is raised in an
protected region, the normal control flow is deviated to the exceptional control flow.
Then the exception mechanism first tries to find a local handler attached to the protected
region (the signaler). If it does not find a local handler for that exception, it searches
the handlers provided by the enclosing protected region. If it again does not find an
appropriate handler, the exception is signaled to the operation caller and this sequence
of steps is again repeated. After a suitable handler is found, invoked and executed by
the mechanism, it returns the computation to the normal control flow. In Figure 2.2,
an exception el is raised during the execution of m2. The exception mechanism signals
el to the caller, the method ml, since a local handler was not defined at the context of
the signaler (arrow 6). The exception mechanism then finds and invokes the appropriate
handler at the context of the caller (arrow 7), and returns the system to the normal
control flow (arrow 8).

2.2. Exception Handling and Fault Tolerance 13

2.2.2 Exception Handling in Concurrent OO Systems

In an object-oriented software system, there may be a number of processes (threads)
running concurrently. There are different ways of dealing with concurrency in object-
oriented systems. In this work, we define a clear distinction between objects and threads:
threads are agents of computation that execute methods on objects (which are the subjects
of computation). Exception handling is an important mechanism for achieving fault
tolerance in sequential object-oriented software. Exception handling, and consequently
the provision of fault tolerance, are much more difficult in concurrent object-oriented
systems than in sequential ones. Exception mechanisms used in sequential programs
cannot be applied to concurrent software without appropriate adjustments due to new
difficulties introduced by concurrent exception handling.

From the standpoint of fault tolerance, the implementation of an exception mecha-
nism for concurrent object-oriented systems is an interesting challenge due to cooperative
concurrency [9, 38]. Different threads of a system can be cooperating for executing some
system’s task. Threads are said to be cooperating when they are designed collectively and
have shared access to common objects that are used directly for communication between
the threads [38]. Erroneous information may spread directly or indirectly through inter-
thread communication. As a consequence, the handling of an exception should involve all
concurrent threads participating in a cooperation. Sometimes it may involve the entire
system due to complex interactions between its cooperating threads. The cooperating
threads of a concurrent system must be controlled very carefully in order to avoid that
erroneous information spreads unexpectedly through the whole system [9].

The approach to using exception handling in such systems extends the well-known ato-
mic action paradigm [9]. Atomic actions are the most comprehensive way of structuring
the behavior of concurrent systems. These actions are units of inter-thread cooperation
and their execution is indivisible and invisible from the outside. The activity of a group
of threads participating in a cooperation constitutes an atomic action if there are no
interactions between that group and the rest of the system for the duration of the activi-
ty [38]. Complex interactions between the participating threads of an atomic action can
be coordinated within that action, including necessary activities for concurrent exception
handling [9]. When one of the cooperating threads has raised an exception, error reco-
very should proceed in a coordinated way by triggering different handlers for the same
exception within all the threads [9, 69].

An atomic action is formed by a group of cooperating threads, the action participants.
The participants cooperate within the scope of the action. A set of exceptions is associated
with each action. Each participant in the action has a set of handlers for (all or part of)
these exceptions. The entries of participants in the action may be asynchronous but they
have to leave the action synchronously to guarantee that no information is smuggled to or

2.3. A Taxonomy for OO Exception Mechanisms 14

from the action. When an exception has been raised in any of the participants inside an
action, all action participants have to participate in the error recovery. Different handlers
for the same exception have to be called in all of the participants [9]. These handlers
cooperate to recover the action. The participants can leave the action on three occasions.
First of all, this happens if there have been no exceptions raised. Secondly, if an exception
had been raised, and the called handlers have recovered the action. Thirdly, they can
signal a failure exception to the containing action if an exception has been raised and it
has been found that there are no appropriate handlers or that recovery is not possible.

Furthermore, due to nature of concurrent systems, it is possible that various exceptions
may be raised concurrently by cooperating threads. In this way, a mechanism for ezception
resolution is an essential part of concurrent exception handling. The paper [9] describes a
model for exception resolution called ezception tree which includes an exception hierarchy.
This model allows to find the exception that represents all exceptions raised concurrently.
This tree includes all exceptions associated with the action and imposes a partial order on
them in such a way that a higher-level exception has a handler capable of handling any
lower-level exception. If several exceptions are raised concurrently, the resolved exception
is the root of the smallest subtree containing all of the exceptions.

A demand for concurrent exception handling in object-oriented systems is recognized
by many researchers because it would make the error handling simpler, uniform and less
error prone. Different works have identified the need for concurrent exception handling
in a number of practical examples and systems in different application areas such as
banking [22, 70], office automation [70], sales control systems [69], software development
environments [70], and production cell control systems [62, 74, 55].

2.3 A Taxonomy for OO Exception Mechanisms

There is a number of design issues for building exception mechanisms that will be used
for constructing dependable object-oriented software. However, the chosen solution for
designing each of them varies from mechanism to mechanism. This section presents a
taxonomy which identifies the several common design issues of exception mechanisms, and
classifies the different design solutions. The taxonomy was developed based on the set of
analyzed exception mechanisms (Section 2.4), and on some reviewed previous studies [37,
17].

We classify the design issues of an exception handling scheme into nine aspects of
interest: (i) exception representation, (ii) exception interface, (iii) handler attachment,
(iv) handler binding, (v) exception propagation, (vi) continuation of the control flow, (vii)
cleanup actions, (viii) reliability checks, and (ix) concurrent exception handling. In the
following we discuss each aspect in turn.

2.3. A Taxonomy for OO Exception Mechanisms 15

method name Exception Interface
> normal response (exceptional responses)

Method A (parameters) returns (return_type) signals (exception_list);

Figura 2.3: A Method’s Signature with Exception Interface

Exception Representation. Exceptions that can be raised during a system’s execu-
tion must be represented internally within this system. Exceptions can be represented
as: (i) symbols, (ii) data objects, or (iii) full objects. The representation of exceptions
as symbols is a classical approach in which exceptions are strings or numbers. Raising
an exception sets the corresponding string variable (or integer variable) and returns the
control to the caller that is in charge of testing the variable.

In the second and third solutions, exceptions are organized hierarchically as classes;
when an exception is raised, an instance of an exzception class (an ezception object) is
created and passed as a parameter to the corresponding handler. Therefore, exceptions
are first-class objects. However, such solutions differ in how exceptions are raised. In the
second solution, exceptions are raised by calling a keyword of the language. In the third
solution, exceptions are raised by invoking a method raise on the exception object. In
this last case, the exception is a standard object that receives messages since the behavior
specific to exception raising is defined as a method on an exception class [36]. In addition,
specific behaviors to continuation of the control flow (see below) can also be defined as
methods on exception classes. Note that in the second solution the aim of exception
objects is just to hold data, despite the possible definition of methods on them.

Exception Interface. A method may either terminate normally or exceptionally by
signaling an exception. Exception interface is the part in a method’s signature that expli-
citly declares the list of exceptions that might be signaled by the method [37] (Figure 2.3).

There are different design solutions for exception interface in different exception me-
chanism proposals. In some exception mechanisms, exception interfaces are obliged — an
attempt to propagate to the invoker an exception that is not in the exception list causes
either a compiling error or the raising of a predefined exception at run-time. In other me-
chanisms, exception interfaces either are optional or unsupported. There is also a hybrid
approach — some exceptions must be listed in exception interfaces while others may not
be listed.

Handler Attachment. Protected region is a domain that specifies the region of com-
putation during which, if an exception occurrence is detected, a handler attached to this
region will be activated. Handlers can be attached to different protected regions, such as:

2.3. A Taxonomy for OO Exception Mechanisms 16

(i) a statement, (ii) a block, (iii) a method, (iv) an object, (v) a class, or (vi) an ezcep-
tion. Statement (or block) handlers are attached to a statement (or a statement block),
allowing context-dependent responses to an exception. The block is usually defined by
means of keywords of the language; the protected region starts with a specific keyword
and ends with another keyword of the language. Method handlers are associated with a
method; when an exception is raised in one of the statements of the method, the method
handler attached to this exception is executed. Exception mechanisms that allow to at-
tach handlers to blocks, consequently also support method handlers since a block may be
defined as a method. Object handlers are valid for particular instances of a class; that is,
each instance has its own set of handlers. Object handlers are usually attached to object
variables in their declarations. Class handlers are attached to classes, allowing the soft-
ware developers to define a common exceptional behavior for a class of objects. Handlers
attached to exceptions themselves are always invoked if no more specific handlers can be
found. They are the most general handlers, and must be valid in any part of the program,
independent of execution context and object state. For instance, such a handler could
print an error message or make a general correction action.

Handler Binding. When an exception is raised at run-time, a handler should be in-
voked to deal with the exception occurrence. There are three different design solutions
for binding handlers to exception occurrences: (i) the static approach, (ii) the dynamic
approach, and (iii) the semi-dynamic approach. In the static approach, a handler is sta-
tically attached to a protected region, and this handler is used for all occurrences of the
corresponding exception during the execution of that protected region. The handler bin-
ding is independent of the control flow of the program, and hence there is no run-time
search to bind handlers to exception occurrences. :

In the dynamic approach, the binding depends upon the control flow of the program.
As a consequence, this approach determines at run-time which handler should be used
for a given exception occurrence. The handler cannot be determined at compile-time.
Generally, exception handlers are defined dynamically in the executable statements of
programs by executing a statement making a handler available for a particular exception.
In PL/I, the binding is performed dynamically by means of the statement ON. A statement
ON specifies a handler binding to a specific exception, and it stays in effect until either a
new statement ON for that exception is executed or the block in which it occurs is exited.

The semi-dynamic binding is a hybrid model that combines the two previous approa-
ches. Local handlers can be bound statically to the signaler. If a handler is not attached to
the raised exception in the context of the signaler, a dynamic approach is employed to find
a suitable handler. Firstly, handlers attached to enclosing protected regions are searched
dynamically. If none is found, the exception mechanism then signals the exception to the

2.3. A Taxonomy for OO Exception Mechanisms 17

caller. The call chain of method invocations and protected regions is therefore traversed
backwards until a statement or another protected region is found in which a handler for
that exception is attached. The example in the Figure 2.2 illustrates the semi-dynamic
approach. The exception mechanism does not find a local handler attached statically
to the signaler, the method m2. The exception mechanism then proceeds the search by
taking the invocation history into account. A handler is then found at the context of m1l.

Exception Propagation. If no local handler is defined for an exception which has
been raised, the exception can be propagated to the caller of the method raising the
exception. In fact, the caller often knows what effect the operation had to achieve and
how best to respond to exceptions [13, 64]. If no handler is found for the exception within
the caller, the exception can be propagated to higher-level components other than its
immediate caller. There are two design solutions for exception propagation: (i) ezplicit
propagation, and (ii) automatic (or implicit) propagation. In the first case, the handling
of signaled exceptions is limited to the immediate caller; however, the raised exception or
a new exception can be signaled explicitly within a handler (attached to the caller) to a
higher-level component. For this reason, the exception mechanisms that adopt such an
approach are called single-level [40]. If a signaled exception is not handled at the caller’s
context, either a predefined general exception is further propagated automatically, or the
program is terminated.

In the second case, if no handler is found for the exception within the caller, the
exception is propagated automatically to higher-level components until a handler can be
found; that is, an exception can be handled by components other than its immediate
caller. As a consequence, the exception mechanisms that incorporate this design solution
are termed multi-level [40].

Exception propagation is closely related to the issue of handler binding. Exception
mechanisms that implement static binding cannot allow exception propagation since the
binding is done at compile time and the chain of invokers is ignored. Semi-dynamic
and dynamic bindings are performed at run-time and, therefore, can allow exception
propagation.

Continuation of the Control Flow. After an exception is raised and the correspon-
ding handler is executed, the system should continue its normal execution. There is an
issue concerning the semantics which determines the continuation of the control flow, i.e.,
where normal execution proceeds. There are at least two possible design solutions, whi-
ch correspond to different styles of continuation of the control flow: (i) the resumption
model, and (ii) the termination model. In the resumption model, the execution has the
capability to resume the internal activity of the signaler after the point at which the ex-

2.3. A Taxonomy for OO Exception Mechanisms 18

ception was raised. In the termination model, the activity of the component which raised
the exception cannot be resumed; conceptually, this means that its activity is terminated.

There are some variations of the termination model. Such variations can be classified
into at least three different ways with their respective semantics: (i) refurn — terminate
the signaler and direct control flow to the statement following the protected region where
the exception was handled; (ii) strict termination — terminate the program and return
control to the operating environment; and (iii) retry the signaler — terminate the signaler
and retry it to attempt to complete the required service in the normal manner.

Figure 2.2 pictures an example of termination with return semantics. The execution
of m2 (the signaler) is terminated, the handler is executed, and the normal control flow is
directed to the statement following the protected region where the exception is handled.
Then, execution continues at the method main since the method ml is the protected
region where the exception is handled. If the specified model of continuation of control
flow was resumption, the handler would be executed and normal execution would resume
the internal activity of the signaler after the point at which the exception was raised. This
return point is indicated as * in Figure 2.2.

Cleanup Actions. Components of a program should be kept in a consistent state,
regardless of whether the code completes normally or is interrupted by an exception. In
this sense, it is required to do some cleanup action to keep the program in a consistent state
before the termination of the component. Cleanup code may either restore the component
to a possible state, undo some undesirable effect, or release allocated resources. Cleanup
actions can be supported by particular designs of exception mechanisms in three different
ways: (i) use of ezplicit propagation, (ii) specific construct, and (iii) automatic cleanup. In
the first approach, the explicit propagation is used for performing some cleanup actions
before termination of the component. When an exception occurrence is detected, if it
cannot be handled by the signaler and has to be propagated, then the cleanup action
should be specified within the corresponding handler before the statement that propagates
the exception.

The second method provides a construct which is executed whenever the protected
program unit exits. The cleanup code is attached to the protected program unit and this
code is executed whether an exception is raised or not. If no exceptions are raised in the
protected region, the attached cleanup code is executed after the protected region. Howe-
ver, if an exception is raised in the protected region, control is transferred immediately
to the statements devoted to clean up.

The third solution is based on the premise that the exception mechanism knows what
should be cleaned up before termination of the component. The exception mechanism
itself performs automatically the necessary cleanup actions and the application developer

2.3. A Taxonomy for OO Exception Mechanisms 19

does not need to worry about.

Reliability Checks. Reliability checks test for possible errors introduced by the use of
an exception mechanism. A number of issues can be checked by the exception mechanism
itself, such as [73]: (i) checking that each exception is signaled with the correct set of
actual parameters; (ii) checking that each handler for an exception is defined with the
correct set of formal parameters; (iii) checking that only those exceptions that are defined
by a signaler are signaled by it, in effect forcing the explicit propagation; and (iv) checking
that all exceptions that can be raised in a given scope are handled in that scope. We
classify the design approaches regarding reliability checks into two design solutions: (i)
static checks, and (ii) dynamic checks. Static checks are performed by the compiler while
dynamic checks are performed by the run-time system. Static checking depends on the use
of exception interface, static binding and representation of exceptions as objects. When
exceptions are not declared in the external interface of their signalers or are not typed,
there is very little that can be checked at compile time. Some exception mechanisms
do not provide any support for static checks, while other ones perform both static and
dynamic checks.

Concurrent Exception Handling. When concurrent programming is supported by
the underlying programming language, one or more exceptions can be raised concurrently
during a cooperative activity (Section 2.2.2). In this way, exception mechanisms should
provide some support for concurrent exception handling. The design approaches to con-
current exception handling can be classified into at least three possible design solutions,
which correspond to different support levels: (i) unsupported, (ii) limited, and (iii) com-
plete. In the first approach, no support for concurrent exception handling is provided.

Exception mechanisms that implement the second approach only provide basic support
for concurrent exception handling. A special exception (signal) is used to notify the
threads involved in a cooperation when an exception is raised in one of the cooperating
threads. In this way, exceptions can be handled by more than one thread in a coordinated
manner. Effective facilities which allow using atomic actions with exception handling are
not provided. In addition, the exception resolution process is also left to application
programiners.

The third approach provides complete support for concurrent exception handling.
Explicit facilities are provided to use atomic actions with concurrent exception handling.
Software designers can concentrate on definition of cooperative activities, exceptions and
handlers, which are application-dependent issues. The exception mechanism provides: (i)
synchronization of the action participants, (ii) support for exception resolution, and (iii)
invocation of the different handlers attached to the action participants.

2.4. Exception Handling in Various OO Languages 20

2.4 Exception Handling in Various OO Languages

In the 1970s, exception mechanisms were developed specifically for procedural program-
ming languages. PL/I [41] pioneered the concept of providing application programmers
with linguistic constructs for exception handling. However, such constructs resulted in
an exception mechanism that was complex and difficult to use. The CLU’s exception
mechanism [40] overcame some difficulties detected in the PL/I’s exception mechanism
and introduced an exception handling model more suitable for implementing dependable
software. In the 1980s, the object-oriented languages brought to developers a new way of
thinking about and designing their systems as well as some new techniques to make them
more modular and reusable. Exception handling mechanisms have been integrated into
main stream object-oriented languages such as Java [30], Modula-3 [50] and Eiffel [44].
We can now review various exception mechanisms dedicated to object-oriented languages.
We use the taxonomy described in Section 2.3 to help compare and evaluate their main
strengths and weaknesses. Figure 2.4 in Section 2.5 summarizes the design choices of each
exception mechanism presented in this Section.

CLU [40] was the first language to offer an exception mechanism more suitable for im-
plementing fault-tolerant software. In fact, its primary purpose is to support construction
of software modules which are able to respond reasonably to wide variety of circumstan-
ces. In addition, the CLU’s exception mechanism is based on a simple model of exception
handling that is to lead to well-structured programs. As a consequence, it is considered
to be a baseline of our study.

The Exception Handling Model of CLU. In the CLU’s exception handling model,
exceptions are represented as symbols. However, a set of typed parameters can be used to
pass information about the exception from the signaler to the handler. CLU’s exception
mechanism is said to be single level since the exception raised by a procedure is normally
handled by its immediate caller. However, the immediate caller may resignal the exception
explicitly to its invoker. A CLU procedure definition must include exception interface.
Handlers are attached to any statement in a CLU procedure by clauses except having the
following syntactic form:

statement except when E1: ... when E2:

The handlers are often collected at the end of the procedure whenever possible because
the placement of handlers in individual statement can reduce the code readability. Howe-

2.4. Exception Handling in Various OO Languages 21

ver, there is the possibility of interleaving exception handler and normal code on a per
statement basis. If a statement calls a procedure that signals an exception, but that
statement has no attached handler for that exception, then the exception is propagated
automatically to progressively larger static scopes within the procedure. If a handler is
found in the procedure, it is executed. Otherwise, the predefined default exception fai-
lure is raised and control returns to the caller. This exception is the only one implicitly
propagated. CLU procedures that raise an exception are normally terminated. After
the handler execution, control simply directs to the statement following the statement to
which the handler is attached, that is, the termination model has a return semantics. The
model does not provide any specific construct to define cleanup actions; and also does not
support concurrent exception handling.

2.4.1 Exception Handling in Ada95

Ada95 [66] is a fully object-oriented language which has the upward compatibility with
Ada. The exception mechanism of Ada95 is basically the same as it was in Ada; it was
not revised as it could have been to become more object-oriented. For instance, Ada
exceptions are originally symbols and are not declared in the external interface of the
procedures (methods). However, some new features make using exceptions much simpler:
(i) an exception can be raised with a message which can be analyzed during handling; (ii)
the value of the variable of the new type ExceptionOccurrence represents each occurrence
of the exception — there is a function converting the variable of this type into a string;
(ili) another function, of the type string, returns the name of the raised exception.
Handlers can be attached to blocks, procedures or packages. Handlers are placed
together in an clause exception, which must be placed at the end of the protected region,

as below:
begin
. —— protected region -- ...
exception when E1 => ... -- handler -- ..
when E2 => ... -- handler -- ..
when others => ... -- all-encompassing handler -- ...
end;

Ada allows the definition of all-encompassing default handlers by means of the construct
when others. This handler catches just those exceptions that the programmer has not
provided specific handlers for.

2.4. Exception Handling in Various OO Languages 22

Ada95’s exception handling model supports semi-dynamic binding and automatic pro-
pagation of all unhandled exceptions. Therefore, Ada95’s exception mechanism is multi-
level as opposed to the single-level mechanism of CLU. It adopts the termination model
with return semantics. An exception can also be propagated explicitly by a component
reraising the exception within the handler. Therefore, explicit propagation can be used
to perform any final cleanup actions before signaling the exception. All-encompassing
default handlers can be also used to do it. However, no explicit support is provided for
cleanup actions. As exceptions are not typed and are not declared in the external interface
of their signalers, there is very little that can be checked at compile time.

Ada95 allows to attach handlers to tasks (threads). Handlers may be called in seve-
ral concurrent tasks when an exception has been raised in one of them. However, this
language has a limited form of concurrent-specific exception propagation: an exception is
propagated to both the caller and callee tasks if it is raised during the Ada rendezvous.
Then the exception mechanism is not applicable directly for systems that contain complex
cooperative concurrency.

2.4.2 Exception Handling in Lore

An object-oriented exception mechanism has been designed by Dony [15, 16] and it has
been implemented in Lore, an object-oriented language dedicated to knowledge represen-
tation. An important characteristic of this mechanism is the object-oriented representa-
tion of exceptions: exceptions are full objects. The exception interface may be part of a
method’s signature by means of the clause signals.

The exception mechanism ensures explicit separation between normal and exceptio-
nal code since handlers are ordinary methods of a specific class named protected-handler.
Handlers can be attached to statements, classes and exception classes. Handlers attached
to classes are called default handlers. When an exception is raised, the handler search
proceeds as follows: (i) first handlers that are attached to statements that dynamically
include the signaling one are searched, and the search stops as soon as a handler, whose
parameter type is a supertype of the signaled exception, is found; (ii) if none is found, the
system tries to find default handlers attached to the class or upper classes of the signaling
active object; (iii) if none is found, the system looks for default handlers attached to the
signaled exception itself; (iv) if none is found, the exception is then propagated automati-
cally to the operation caller, and the sequence of steps is again repeated. Exceptions can
also be propagated explicitly.

This exception mechanism is more flexible than CLU’s one. Two policies for continua-
tion of control flow are provided: resumption and termination (with return semantics).
The behavior of these policies are defined as methods on an exception class from which

2.4. Exception Handling in Various OO Languages 23

all exception classes inherit. The methods that define such policies are invoked within
handlers. When handlers do not explicitly choose one of these options, the predefined
exception ExceptionNotHandled is signaled. This approach is interesting because it tries
to integrate exceptions into the standard invocation mechanism. The Lore’s exception
mechanism has explicit support for specifying cleanup actions. It provides the construct
when-exit allowing to attach cleanup actions to expressions. No support is provided for
concurrent programming and concurrent exception handling.

2.4.3 Exception Handling in Smalltalk-80

Being one of the earliest widely available object-oriented languages, Smalltalk [28] attrac-

ted much attention during the 1980s. In Smalltalk-80, an exception is a selector but not

a first-class object. A selector specifies the operation name. Thus a exception selector

cannot own any characteristics, cannot be inspected, modified or upgraded [16]. In or-

der to signal run-time exceptions, the Smalltalk evaluator sends, to the current object, a

message corresponding to the current exception. Therefore handlers are methods pointed
out by exception selectors, and they only can be attached to classes. Thus, exceptions

raised by methods defined on a class are handled within that class. Exceptions cannot

be propagated to operation callers. For this reason, exception interface is not part of a

method’s signature.

Smalltalk-80 has no static type checking. As long as method has no syntax errors
and no undeclared variables it will compile, and if there are any type errors they will
occur at run-time. As a consequence, in the Smalltalk environment, most run-time errors
(exceptions) occurs when a message for which no method exists arrives at an object. In
this case, the run-time system sends a special message doesNotUnderstand: to the recei-
ver, with the message selector and arguments of the original message as arguments. The
search for the selector doesNotUnderstand: thus follows the same path as the search for
the first selector. In this way, a user is given the opportunity to define methods does-
NotUnderstand: in the visited classes, in order to customize exception handling or catch
errors. If the programmer does not do this, an error is signaled anyway by the standard
method doesNotUnderstand: on the class Object (all application classes are derived from
Object); it causes a notifier to appear on the screen giving some information about the
error, and providing the ability to invoke the debugger. Unlike CLU, Smalltalk supports
both resumption and termination. Two variants of the termination model are supported:
return and retry. The programmer may specify cleanup actions within an block ensure
which is always executed after the protected block, no matter if an exception occurred or
not. The mechanism does not support concurrent programming and concurrent exception
handling.

2.4. Exception Handling in Various OO Languages 24

2.4.4 Exception Handling in Eiffel

The exception mechanism of the sequential language Eiffel [44, 45, 67] is integrated with
the notion of design by contract. Classes and methods establish contracts with their clients
by specifying assertions: pre and post-conditions, and invariants. Exceptions are defined
as the violation of assertions during the execution of the associated method, and they are
raised implicitly. However, exceptions may also be defined by the user. Eiffel exceptions
are typed entities which have an integer value and a string tag. However, exception
interface is unsupported. Handlers can be attached to a method or a class. Thus, on the
one hand the exception mechanism provides no support for attaching handlers to units
at lower levels, such as a block of statements, but on the other hand it ensures explicit
separation between normal and handler code.

When an exception occurs during the execution of a method, its execution is stopped
and the respective handler is executed. Within a handler, the exception can be deter-
mined by comparing a predefined variable called exception with an exception name. The
variables which are visible to the protected region have the same visibility in the handler.
If no handler is defined, the method is said to fail and the exception is propagated implici-
tly to the caller (the so-called organized panic). Therefore, Eiffel design adopts automatic
propagation as default behavior. However, exceptions can be propagated explicitly. Han-
dlers can report failure to the caller by reraising the exception. Explicit propagation can
be used for performing some cleanup actions before reraising the exception.

The exception mechanism of Eiffel supports retry, a variation of the termination model.
Handlers try to restore the class invariant by retrying the method if the pre-condition still
holds. In this way, a routine may succeed or fail, there is no intermediate ground. So the
raising of an exception means the failure of a software component which has been unable
to terminate in a normal manner. No support is provided for concurrent programming
and concurrent exception handling.

2.4.5 Exception Handling in Modula-3

Modula-3’s exception mechanism [50] is based on a semantic model similar to Ada95.
Exceptions are represented as symbols. However, exceptions optionally can have parame-
ters. The exception interface may be part of a method’s signature by means of the clause
set. As a consequence, this feature facilitates static checks for raising unlisted exceptions
within the code and dynamic checks for exception occurrences that were not explicitly
raised. Handlers can be attached to a statement or a block. Like Ada95, handlers are
attached to a block of instructions by means of the construct try... except, as in:

2.4. Exception Handling in Various OO Languages 25

try ... -- protected region -~ ...
except ... -- handlers -- ...
else ... -- all-encompassing handler -- .

Handler binding is semi-dynamic. If, during the execution of a block try (the protected
region), an exception occurrence is detected, execution ceases, and control passes to the
corresponding handler. If no handler is found, and the part else is present, the control
flow is deviated to this part. The part else implements an all-encompassing handler, i.e.
a single default handler attached to the protected region to handle any exceptions that
the programmer have not provided specific handlers for. It is similar to the construct
when others of Ada95. If the part else also is not present, a handler is sought in the
statically enclosing protected region (a construct try... except may be nested in a block
try). If no handler is found there, the exception is automatically propagated, and the
search continues in the context of the calling procedure. If no handler can be found, the
Modula-3 run-time system will halt the program with a suitable error message. Thus,
automatic propagation is adopted as default behavior. However, exceptions also may be
propagated explicitly.

When a handler is found and it has finished its execution, control passes to the sta-
tement following the protected region where the exception was handled. That is, the
termination model is adopted with the return semantics (as CLU). Modula-3 provides
programmers with the construct try... finally to define cleanup actions. No support is
provided for concurrent exception handling.

2.4.6 Exception Handling in C+4++

In C++ [35], exceptions are data objects and exception interface may be optionally in-
cluded as part of a method’s signature. In other words, although exception interface is
supported, it is not obliged. Like Ada95 and Modula-3, C++ also introduces an exception
mechanism that is sensitive to contexts. The handling context is termed a block try, and
handlers may be attached to a statement or a block. Handlers are declared at the end of
a block try using the keyword catch. The exception is handled by invoking an appropriate
handler selected from a list of handlers found immediately after the block try, as in:

try { ... -- protected region -- ...
} catch (E1) { ... -- handler —— ... }
catch (E2) { ... -- handler -- ... }

catch (...) { ... -- all-encompassing handler -- ... }

2.4. Exception Handling in Various OO Languages 26

A handler catches an exception object by specifying its type. The handler declares its
parameter as being of a given class, but may catch exception objects of any subclass. C++
also allows the definition of all-encompassing default handlers by means of the construct
catch (...). As in Ada 95 and Modula-3, this handler catches those exceptions that the
programmer have not provided specific handlers for.

Unlike CLU, the exception mechanism of C++ implements semi-dynamic binding and
supports both automatic and explicit propagation of exceptions. However, the default
behavior is automatic propagation. Regarding continuation of the control flow, only the
termination model with return semantics is implemented. If a clause catch terminates
without raising another exception, execution continues normally at the first statement
after the block try to which the executed handler is attached. The model does not provide
any specific support for cleanup actions. As exceptions are typed entities, static checks
can be performed by the compiler. However, as the use of exception interface is not
forced, dynamic checks are performed by the run-time system. No support is provided
for concurrent exception handling.

2.4.7 Exception Handling in Java

Java is considered to be a language from the C++ family and adopts various similar
design solutions. For instance, Java supports representation of exceptions as data objects,
semi-dynamic binding, and the termination model with return semantics. In addition,
Java [30, 52| provides software developers with a block try to define protected regions.
However, its exception handling is much safer and clearer than that of its ancestor. As
for the main aspects of exception handling, Java has more powerful features than C++,
because it allows better static checking and provides specific support for programming
cleanup actions.

Java adopts a hybrid solution for exception interface. All exceptions must be th-
rowable, that is, exceptions must inherit (directly or indirectly) from the class Throwable.
Classes Throwable can be categorized into two groups: (i) classes that inherit from the
class Error or that inherit from the class RuntimeException are unchecked, and (ii) other
classes that inherit from the class Exception are checked. The first group are exceptions
from which ordinary programs are not expected to recover (for example, loading and lin-
kage errors, virtual machine errors), or exceptions that occur within the Java run-time
system (for example, arithmetic, pointer, indexing exceptions). The compiler does not
require that programmers check and specify the unchecked exceptions as part of a me-
thod’s signature. But Java requires that the program either catch or specify all checked
exceptions that can be thrown directly or indirectly within the scope of the method.

As opposed to C++, Java provides programmers with the construct try... finally to

2.4. Exception Handling in Various OO Languages 27

define cleanup actions. The block finally is always executed at the end of the block try,
whether an exception is raised or not, unless the block try raises an exception that is not
caught by its handlers, in which case the exception is propagated.

Although Java describes clear semantics of exception handling in concurrent Java pro-
grams, it does not offer complete support for concurrent exception handling. The Java’s
exception mechanism is integrated with the Java thread/synchronization model, so that
locks are released as statements synchronized and invocations of methods synchronized
complete abruptly. An asynchronous exception (signal) can be raised in a concurrent
program by invoking the method stop on the class Thread.

2.4.8 Exception Handling in Object Pascal/Delphi

Object Pascal [4, 5] is the underlying programming language of Delphi, a tool for rapid
application development. Exceptions in Object Pascal are data objects, and exception in-
terface is unsupported. Like Modula-3 and Java, handlers can be attached to a statement
or a block. A protected region starts with the keyword try and ends with the keyword
end. As Modula-3 and Ada95, Object Pascal also allows the definition of all-encompassing
default handlers. After exception is handled, execution continues at the end of the cur-
rent block where the exception was handled. Therefore, Object Pascal implements the
termination model with return semantics.

Unlike CLU, exceptions are propagated automatically and handlers may be associated
semi-dynamically. If a block does not handle a particular exception, execution leaves that
block and returns to the block that contains the block (or to the code that called the
block), with the exception still raised. This process repeats with increasingly broad scope
until either execution reaches the outermost scope of the application or a block at some
level handles the exception. However, a handler may reraise explicitly the same exception
by calling the keyword raise without the exception object argument. Like Modula-3
and Java, cleanup actions may be specified by using the construct try... finally. The
application always executes any statements in the block finally, even if an exception occurs
in the protected block. As semi-dynamic binding is adopted and exception interface is
unsupported, there is very little that can be checked statically. Moreover, no support is
provided for concurrent programming and concurrent exception handling.

2.4.9 Exception Handling in Guide

Guide’s exception mechanism [1, 36] is similar to CLU’s one. The nature of a Guide
exception is symbol. However, complementary information can be passed to handlers
while raising exceptions. Guide implicitly provides the handler with the names of the
class and the method that signaled the exception. In Guide, exceptions potentially raised

2.4. Exception Handling in Various OO Languages 28

must be included in the interface. In other words, the use of exception interface is obliged,
and it is not optional like in C++ and Modula-3. Handlers may be attached to method
invocations (statements), methods and classes.

If a statement raises an exception, the method containing the signaling statement
signals the exception to its caller. Local handlers are not possible. Guide’s exception me-
chanism adopts the termination model with return semantics. The normal continuation
after the execution of a handler is from the point just after the raising method invocation.
The binding is semi-dynamic, and all exceptions propagated from a method to its invoker
should be either explicitly propagated or resignaled. Exceptions are not propagated au-
tomatically in Guide. When an exception is not handled by the caller, a special exception
termed Uncaught_Exception is propagated. The retry policy also is provided through the
keyword retry that only a handler can use.

Guide’s approach addresses the issue of consistency of objects. The block restore allows
a block with cleanup actions to be defined. The block is executed just after the raising
of the exception and prior to the execution of the handler. Recursively, if the handler
propagates an exception, then the block restore of the caller object is executed before the
search for a new handler. As Guide uses static binding and the use of exception interface
is obliged, most checks are performed statically. Although Guide provides constructs for
concurrent programming, its exception mechanism does not support concurrent exception
handling.

2.4.10 Exception Handling in Extended Ada

Cui’s approach, called data-oriented exception handling [13], is a design that associates
handlers with objects in their declarations. This concept has been implemented with an
Ada preprocessor and empirical studies [13] have shown that its use can produce programs
that are smaller and better structured when compared to the programs produced using
Ada’s traditional exception handling. In Ada’s exception handling mechanism, although
handlers appear after the main algorithm, introducing blocks in the middle of a statement
list to associate different handlers with different objects inserts exception handling code
in the middle of the main algorithm preventing a clear separation between them. The
data-oriented exception handling removes exception handling code from algorithmic code
helping code writeability and readability.

Exceptions are declared with type declarations in generic package specifications (ex-
ception interface). Handlers are attached statically to object variables in declarations.
Each object declared has its own set of (exception, handler) binding pairs specified in its
declaration. Three language features are defined to implement this design: #exception,
#when, and #raise. Exceptions are declared by attaching a clause #exception to the type

2.4. Exception Handling in Various OO Languages 29

exported from the specification part of a package. Handlers are associated with data
object’s declaration by attaching a clause #when to the declaration that specifies handler
procedures for the exceptions defined on the object’s type. Exceptions are signaled by
statements #raise that transmit parameters, indicating the object with failure. Default
handlers for exceptions can be specified in a type declaration and inherited by variables
declared with that type. Like CLU, only the termination model is supported.

2.4.11 Exception Handling in Beta

Beta [42] is an object-oriented language that generalizes some of the concepts introduced
by Simula67. Beta has no special constructs for exception handling. Instead a langua-
ge construct, using existing syntax, is adopted. Beta’s abstraction mechanism is called
pattern which replaces classes, procedures, functions, types and exceptions. Instances of
patterns are called objects and can be used as variables, data structures, procedures, func-
tions, and so on. Inheritance is implemented using the supperpattern mechanism. This
includes explicit control of overriding using the construct inner. Exceptions are represen-
ted as virtual patterns, a variant of the pattern describing the construction of classes or
individual objects.

Signaling an exception amounts to directly calling the handler by its name. Handler
can be attached to classes, objects, methods and statements. The mechanism is based
on the static binding approach, i.e., there is no run-time search to find handlers. The
default continuation of control flow is strict termination of the program. Beta also allows
resumption.

Propagation of an exception to the caller is not supported. For this reason, the concept
of searching dynamically for a handler does not exist in Beta. The construct inner and
virtual patterns of Beta together provide a way for an invoker of an operation to affect
the handling of an exception inside the object. The code extension (called binding) given
by the invoker at the time of an invocation is executed by substituting in the operation’s
code at the place where inner is declared. The mechanism inner also allows a subclass to
extend or augment the exception handling of the parent class. This use of inner can often
require a careful understanding of the pattern’s code [46].

2.4.12 Exception Handling in Arche

Arche [32, 33] is a concurrent object-oriented language which makes a clear distinction
between type (description of an interface) and class (an implementation of a type). Ex-
ceptions are data objects and exception interface is supported. The clause signals may be
used in any operation signature to state the exceptions that the operation may signal.

2.4. Exception Handling in Various OO Languages 30

Handlers can be attached to blocks and are declared by means of a construct similar
to Modula-3. Like CLU, Arche adopts the termination model with explicit propagation
of exceptions. A handler may propagate the handled exception by using the command
signal. Thus, the search for a handler is implemented according to the explicit propagation
of exceptions. If the search fails the predefined exception failure is signaled. The handler
binding is semi-dynamic. However the absence of handlers can be detected at compile
time due to explicit propagation, allowing an error report to the programmer.

Of the reviewed object-oriented languages in this study, Arche provides the best sche-
me for concurrent exception handling. Cooperating threads can be enclosed within a
scheme of object groups. Object groups are declared as a sequence through the use of
the type constructor seq of. Methods of an object group are executed concurrently and
synchronized within group scope and are called multi-operations. In Arche, the notion of
multi-operations is therefore the base structuring mechanism for fault tolerance. Multi-
operations can be regarded as atomic actions (Section 2.2.2).

A multi-operation may issue a coordinated call, a natural extension of the method-call
mechanism. All the group components then join together to call a multi-operation and
are all synchronized. When the call is terminated, results - if any - are made available to
all callers’ components before their parallel activities are resumed. In a multi-operation
execution, many components may concurrently signal different exceptions. Then Arche
provides a resolution function, which is declared within a class. A resolution function takes
a sequence of exceptions as input parameter and returns an exception called concerted
exception. The resolution function is then implicitly invoked when the execution of a
multi-operation results in the signal of an exception by at least one of the multi-operation
components.

2.4.13 Exception Handling in Other Languages

Trellis/Owl [18] is an important landmark in the history of object-oriented language
design. When an operation is invoked and it is unable to complete, the interface of the
operation has a list of exceptions that the operation can signal. The error message not
found (a familiar run-time error when programming in an untyped language like Smalltalk)
could not occur in the strict compile-time type checking of Trellis/Owl. Exceptions are
created with the keyword signal, and handlers are defined with the clause except on, similar
to CLU’s exception handling.

Actl [39] is an object-oriented language designed on the basis of the actor model. Each
actor delegates the message to which it cannot respond, to another actor called its proxy.
The proxy takes charge of the task it has been delegated and the delegating actor is ready
to process another message. The proxy knows the delegating actor in case it should need

2.5. Evaluation and Discussion 31

additional information. Delegation, like class inheritance, is a means of sharing behavior
(i.e. operations). However, delegation is more flexible than inheritance: an actor may
dynamically choose new proxies, whereas the inheritance graph is statically defined at
compile time. A specific actor called Object is the universal proxy and the root of the
“delegation tree”. In this context, error handling is distributed: the continuation of a
message may be one of the actors which handle exceptions, by activating an interactive
debugger. Users can thus define new actors processing exceptions in a way suited to their
requirements.

2.5 Evaluation and Discussion

Although it is difficult to claim which model and mechanism implemented for a single
language is better than the others, the relative advantages and disadvantages of each
mechanism will be identified and addressed below. Figure 2.4 provides a summary of
the main aspects of the exception mechanisms presented in Section 2.4. The figure high-
lights the different approaches for each design issue identified according our taxonomy
(Section 2.3). '

Exception Representation. With respect to exception representation, we can observe
that 6 mechanisms have represented exceptions as symbols. The others have represented
exceptions as objects: 4 mechanisms have represented exceptions as data objects, and only
2 have chosen to represent exceptions as full objects. We can conclude that several designs
still intermingle object-oriented solutions with conventional solutions since half the studied
exception mechanisms have represented exceptions as symbols. From the perspective of
language uniformity, notions related to exception handling should be defined according to
the object-oriented programming paradigm [32, 33]. In fact, object paradigm was born
during a time when procedural programming was abundantly dominant. As a result,
some mechanisms of languages, called hybrid languages, combine procedural solutions of
programming with object-oriented ones.

The handlers of a dependable system need useful information to damage assessment
and consequent error handling. Handlers may not be in the same context where the
design fault which caused the exception raising. Extra-information should be passed to
the corresponding handler so that it can perform correct and effective error handling.
When an exception is a mere symbol, it cannot pass parameters back to its handler. This
forces the programmer to communicate via global variables, which in turn decreases the
modularity of the system. Extra-information passing can be performed naturally when
exceptions are represented as objects. The representation of exceptions as objects allows
the inclusion of context-related information that can be passed implicitly by the exception

2.5. Ewaluation and Discussion

veeriors || |51 5|2l .| |5l 8|8 |2
ol ®| @ ol alo| | =l £
oy SEHEEBEHEEEEE
: Symbols |v| ||V |V a4
o7 B Data Objects virira 7
Full Objects v v
Unsupported || ||V v v
Exception Optional s S 7
Interface Obliged 717
Hybrid v
Statement |v'|v AT ACACACARRrArd
Block |v/ arardrs v
Handler Method | A AV AT AT 44T 4
Attachment Object 77
Class ||V |V |V s
Exception v v
Handler Static v /I
Binding Dynamic
Semi-Dynamic ||| |||V | /|| v
Exception Automatic | v N\
Propagation Explicit ||| |||V V|V v
Continuation of Resumption rars v
the Control Flow Termination || ||V ||V |/ |||V ||V
Unsupported v
Cleanup Use of Explicit Propagation | v | | v
Actions Specific Construct ARV AdR A4 4T
Automatic Cleanup
Reliability Dynamic Checks |v/| V| /| |/ |/ |/ |/ |V v
Checks Static Checks NP iraraviririvs
Concurrent Unsupported A A AR A AT 44
Exception Limited |+ v/
Handling Contie 7

Figura 2.4: Summary of the Features of the Exception Mechanisms

32

2.5. Evaluation and Discussion 33

mechanism at run-time as well as explicitly by the signaler declaring the information in
the state of the exception object.

Exception Interface. As regards the exception interface, 5 exception mechanisms have
supported it, 4 mechanisms have not forced its use, 2 mechanisms have forced its use, and
only 1 mechanism has adopted the hybrid solution. Java is the only design that adopts
the hybrid solution. Designers of exception mechanisms have opted for a flexible solution
regarding exception interface; programmers usually are not required to specify predefined
and user-defined exceptions that a method may signal. However, the inclusion of excep-
tion interface in the method’s signature leads to better readability [8]. This feature allows
a programmer to state the intent of a method in a precise way, by specifying both its ex-
pected normal and exceptional behaviors [27]. Knowing which exceptions a called method
may signal, the client code may guard easily against exceptional behaviors by providing
appropriate handlers [27]. This is in line with the idealized-fault-tolerant-component mo-
del, i.e., components with well-defined interfaces which involves constraining the patterns
of normal and exceptional interactions among the components.

Handler Attachment. With respect to handler attachment, 9 mechanisms have inclu-
ded statement handlers, 6 mechanisms have included block handlers, only 2 mechanisms
(Extended Ada and Beta) have included handlers at the level of objects, 7 mechanisms
have included class handlers, and only 2 mechanisms (Lore and Beta) have included ex-
ception handlers. For the purpose of improving the writeability and structuring of the
dependable systems, it is desirable to allow multi-level attachment of handlers, i.e., the
attachment of handlers to several levels of protected regions such as exceptions, classes,
objects, methods and so on. However, only the exception mechanism of Beta supports
multi-level attachment of handlers.

It has been a tendency to provide programmers with high flexibility for defining the
size of protected regions. In other words, several exception mechanisms have allowed
software developers to attach handlers to blocks, and they can define the extent of a
protected region by means of keywords. However, the use of block handlers violates
explicit separation of concerns, since the exceptional code is intermingled with normal
code, albeit moved to the end of statement blocks. Another disadvantage of defining
protected regions as blocks of statements is that nested blocks are usually added for
the sole purpose of attaching an exception handler [37]. As a result, it leads to the
development of dependable software which is difficult to read, maintain and test. In
addition, block handlers are not absolutely necessary. Statement handlers enable the
cause of the exception to be located more precisely, and can be used without violating
the separation of concerns. The exception handling model of Guide is a typical example
of design that adopts only statement handlers and achieves explicit separation between

2.5. Evaluation and Discussion 34

the normal and exceptional activities.

Some languages offer another feature related to the handler attachment: the all- en-
compassing default handler. With this feature, programmers may provide a single handler
attached to a protected region to handle any exceptions that have not been provided spe-
cific handlers for. In order to use this feature in Modula-3 (Section 2.4.5), programmers
add a part else to the part except of the exception-handling block. However, the use
of the all-encompassing default handlers may be error prone. The part else handles all
exceptions, including those the software developer know nothing about. In general, the
exceptional activity of a dependable system should handle only exceptions its program-
mers actually know how to handle. In other cases, it is better to execute cleanup code
and leave the handling to code that has more information about the exception and knows
how to handle it. Several exception mechanisms, such as Delphi, Ada95 and C++, also
adopt this error-prone feature in order to provide a high degree of flexibility for handler
attachment.

Handler Binding. Related to handler binding, 3 mechanisms have implemented the
static approach, none has implemented the dynamic approach, and 9 mechanisms have
implemented the semi-dynamic approach. Static binding leads to better readability since
it is easier to verify which handler would be activated for a given exception occurrence.
With dynamic and semi-dynamic binding, it is more difficult since exceptions are propa-
gated dynamically and the binding depend effectively upon the control flow at run-time.
However, exception propagation is not allowed and there is no run-time search to find
handlers in the static approach (Section 2.3). It has been said that not to propagate ex-
ceptional results of a conceptual level equal to that of the operation breaks reusability [8].
The callers of an operation generally have better solutions for handling than statically
bound handlers (local handlers) that are unaware of the computation history.

The dynamic and semi-dynamic approaches take the invocation history into account
while finding for a handler as opposed to the static approach. In fact, the handler binding
in the dynamic and semi-dynamic approaches depend effectively upon the control flow at
run-time. From the perspective of dependable software, it should be possible to change the
currently installed handler at run-time without shutting down or rebooting the system.
Most dependable object-oriented systems are essentially critical and cannot be shut down
and rebooted. Therefore, some way of dynamic binding should be supported.

Exception Propagation. With regard to the exception propagation, 6 mechanisms
have supported automatic propagation and 9 mechanisms have implemented the explicit
propagation. The exception mechanisms of Smalltalk, Extended Ada and Beta adopt
static binding and therefore have not supported any kind of propagation. Although most
mechanisms allow explicit propagation of exceptions, automatic propagation is usually

2.5. Evaluation and Discussion 35

adopted as default behavior. In fact, Ada95, Eiffel, Modula-3, C++, Java and Delphi ha-
ve implemented both semi-dynamic binding and automatic propagation. Thus flexibility
also has influenced this design issue in the different exception handling proposals. Howe-
ver, automatic propagation may allow an exception occurrence be inadvertently bound
to an inappropriate handler. In addition, automatic propagation of unhandled excep-
tions through different levels of abstraction may compromise information hiding because
the exception object can reveal information about the original signaler to other than its
immediate caller. It decreases modularity since it can thereby increase coupling [73]. Ex-
plicit propagation addresses this problem since the handling of an exception occurrence
is limited to the immediate caller in this approach. Explicit propagation of exceptions is
only forced in 4 mechanisms: Lore, Guide, Extended Ada and Arche.

Continuation of the Control Flow. Related to continuation of control flow, all me-
chanisms have adopted the termination model. Very few languages, such as Mesa [47] and
PL/I [41] (which are not addressed here), implement exclusively the resumption model
which has been considered to be too complex [38, 33]. Beta, Smalltalk and Lore provide
both the termination and resumption models. Mechanisms that support resumption are
very powerful and flexible, but it turns out to be difficult to use by application program-
mers. From the viewpoint of fault tolerance, an exception mechanism should be simple
and reliable. A mechanism implementing resumption has to support a more complex
pattern of interaction: the system invokes a component which in turn can invoke the sys-
tem by signaling an exception [38]. Unnecessary complexity may introduce error-prone
features in the design of an exception mechanism and complicate the programmer’s task
while developing its dependable system. In fact, as far as fault tolerance is concerned the
termination model is considered to be most adequate due to its clearer semantics [40].
A formal treatment of the termination model within the framework for software fault
tolerance is given by Cristian [12].

Cleanup Actions. With respect to the cleanup actions, 1 mechanism (Extended Ada)
has not provided any support for cleanup actions, 4 mechanisms have only allowed to spe-
cify cleanup actions by means of explicit propagation, 7 mechanisms have provided specific
constructs, and none of the exception mechanisms has provided automatic facilities. Thus
most exception mechanisms provide a specific construct which is executed whenever the
protected region unit exits. Ideally the exception mechanism should be responsible for
performing cleanup actions automatically. It could make programmer job more simple
and less error prone, and would allow to achieve a number of quality requirements, such
as readability, maintainability, and simplicity. However, the feasibility of this approach is
doubtful since implementing automatic cleanup may be too difficult, and investigation of
alternate methods is required [37].

2.5. Evaluation and Discussion 36

Reliability Checks. As regards the reliability checks, 10 mechanisms have supported
dynamic checks, and 9 mechanisms have supported static checks. Most mechanisms per-
form static checks, followed by some level of dynamic checking. Some mechanisms have
implemented either exclusively dynamic checks, or only static checks. In Smalltalk, for
instance, checks are all performed dynamically. It is a untyped language, if there are any
type errors they will occur at run-time. Therefore Smalltalk cannot be considered an
adequate language for construction of dependable object-oriented software, although the
design of its exception mechanism is object-oriented. Smalltalk is more suitable for other
areas of system development. In fact, different languages simply have different goals, and
are tailored to meet the needs of different communities. Unlike Smalltalk, C++, Java,
and many other languages, Eiffel takes the view that error handling and fault tolerance
semantics should be the central part of the language. The aim of its design criteria is allow
the development of robust applications. According to the Eiffel’s discipline, an exception
arises only if a routine fails because of some error [27]. Eiffel contains a broad range of te-
chniques such as pre-conditions, pos-conditions and assertions, which are complementary
to the exception mechanism (Section 2.4.4). With the use of these additional techniques,
in most cases there is no need for naming exceptions or for providing a raise statement.
All that matters is whether a failure that would violate the object’s contract occurred in
a method.

Concurrent Exception Handling. Related to the issue of concurrent exception han-
dling, only the Arche language has effectively provided complete support for it. Arche
supports a mechanism based on a concurrent exception-handling model whose features
enforce the construction of correct and robust programs. Arche’s exception mechanism
allows user-defined resolution of multiple exception amongst a group of objects that be-
long to different implementations of a given type. However, this approach is not generally
applicable to the coordinated recovery of multiple interacting objects of different types.
Moreover, the exception resolution mechanism implemented in Arche is not based on the
concept of exception tree (Section 2.2.2). Issarny et al. [32, 33] argues that exception
trees are not indicated for parametrised exception, so Arche have introduced the concept
of resolution function to determine which handler should be activated in case various
exceptions are raised in a cooperating group of objects. However, to program resolution
functions it seems not to be an easy task since application developers are responsible for
deciding how to implement resolution functions. As a consequence, concurrent program-
ming and concurrent exception handling in Arche is not simple and can become rather
difficult to use.

To summarize our discussions, the following issues conclude this Section:

o Several design decisions are based on too flezible and complez solutions. In spite of

2.6. General Design Criteria 37

the prime aim of exception mechanisms in working as a simple and reliable scheme
for developing robust programs, a number of their design decisions still are based
on several flexible and complex solutions. The use of flexible and complex features
may lead to the construction of dependable object-oriented software which is error
prone. The use of all-encompassing default handlers is an example of flexible feature
with unnecessary expressive power which may cause the introduction of additional
design faults.

e Lack of support for concurrent ezception handling. The main drawback of the cur-
rent exception handling techniques is the lack of complete support to handle con-
current exceptions. Only Arche has effectively provided support for concurrent
exception handling. However, as stated above, its exception mechanism has some
limitations. In this way, in actual concurrent object-oriented languages, exception
handling is still an evolving subject where no clear consensus exists and many open
problems remain.

e Studied exception mechanisms have not fully addressed the demanding quality requi-
rements. None of the investigated exception mechanisms have incorporated design
decisions which are fully suitable for developing dependable object-oriented software.
Designers of exception mechanisms do not pay enough attention to the demanding
quality requirements, such as readability, modularity, uniformity, maintainability
and reusability. In addition, the advantage of one mechanism is often the disadvan-
tage of the other. For instance, the mechanisms of Lore, Smalltalk and Extended
Ada adopt design solutions highly integrated with the object paradigm, but fail in
providing an exception mechanism more restrictive and ease to use. However, it
is worthwhile to highlight the design of the exception mechanism of Guide which,
according to our evaluation, has reached the highest punctuation in our ranking. In
addition, the exception mechanism of Eiffel is interesting since it is complemented
with a broad range of techniques as discussed above. We can claim that both mecha-
nisms have a design more suitable to produce dependable object-oriented software
with demanding quality attributes, although no support for concurrent exception
handling is offered for these mechanisms.

2.6 General Design Criteria

The taxonomy (Section 2.3) identified the several design issues of an exception mecha-
nism, and classified the different solutions to design them. The design decisions on these
issues should be taken according to the demanding quality requirements. Figure 2.5 pic-
tures this scenario. Note that some quality requirements are stated by the dependable

2.6. General Design Criteria 38

eeption

Mechanism

Figura 2.5: Quality Requirements of Exception Mechanisms

object-oriented applications using the exception mechanism, while others are imposed
on the exception mechanism itself. However, the designs of existing exception handling
mechanisms have not satisfied these requirements (Section 2.5).

This section outlines the criteria to design an effective exception mechanism for de-
veloping dependable object-oriented systems. Based on the criteria, we define the design
choices for an ideal exception handling model for this kind of systems. The criteria and
the proposed exception handling model have been developed based on our extensive work
in building dependable object-oriented systems [19, 60, 53, 54, 63, 71, 69] and exception
mechanisms for this kind of systems [23, 21, 57, 58, 61, 69].

2.6.1 Quality Requirements of an Exception Mechanism

Q1. Readability. One of the main reasons to use an exception mechanism is to promote
program readability [6, 48]. The importance of readability increases regarding dependa-
ble object-oriented software since the number of possible exceptions and the exceptional
activity to deal with such exceptions are both very large and complex. The exception me-
chanism should promote explicit separation between the exceptional and normal execution
code, following the overall structure of the component-fault-tolerant-idealized model (Sec-
tion 2.2.1). A mechanism with a clear separation will be easier to read and understand,

2.6. General Design Criteria 39

highlighting the main purpose and extent of the protected region and the abnormal code
in the exception handler section. Otherwise, the code for the normal situations may then
be difficult to read.

Q2. Modularity. An exception mechanism should yield dependable object-oriented
applications in which the effect of an abnormal condition occurring at run-time in a com-
ponent will remain confined to this component, or at least will propagate to a few neigh-
boring component only [44]. In this way, the exception mechanism should ensure each
component of a dependable object-oriented application practices information hiding [73].

Q3. Maintainability. It is widely estimated that 70% of the cost of software is devoted
to maintenance [44]. An effective exception mechanism should not neglect this aspect
and promote ease of program maintenance. If dependable object-oriented software can
not easily changed, additional errors will be introduced during the maintenance phase.
As a result, the design of an exception mechanism for dependable object-oriented systems
should specially emphasize simplicity and program readability.

Q4. Reusability. Designing for reusability means that the system has been structured
so that its components can be chosen from previously built products. The exceptional
activity of a software component should be reused as well as the normal activity. Alter-
natively, exceptions and handlers are defined independent of the component, thus reused
independently. If reusability is not satisfied, it compromises the ability to incorporate
new exception handlers into idealized fault-tolerant components. It forces programmers
to write exception-handling code even if the main body of code is already available [37).

Q5. Testability. Software testability refers to the ease with which software can be
made to demonstrate its faults through (typically execution-based) testing. In general, a
system’s testability relates to several structural issues [2]: (i) its separation of concerns,
(ii) its level of documentation, and (iii) the degree to which the system uses informa-
tion hiding. Object-oriented software testing is still an evolving area. Furthermore, the
addition of exceptions and exceptional behavior complicates significatively the testing
activity. It should not be difficult to analytically verify that every possible error has a
known handler, and it should not be hard to test every exceptional scenario in a systematic
manner. Depedanble object-oriented software should be well-tested in order to decrease
the possibility of manifestation of residual faults at run-time. The design decisions of
an exception mechanism should be taken without damaging the testability of dependable
object-oriented software.

2.6. General Design Criteria 40

Q6. Writeability. Dependable object-oriented systems should embed error recovery
activities at various levels of the system. In this way, the complexity inherent to such
systems could be controlled in a flexible and systematic approach, and redundancy could
be similarly added at several levels of an object-oriented system. However, care is needed
in introducing expressive power. Unnecessary expressive power may introduce additional
complexity for the exception mechanism (Section 2.5).

Q7. Consistency. Components of a software system should be kept in a consistent
state, regardless of whether the code completes normally or is interrupted by an exception.
The consistency of components of dependable object-oriented systems should always be
maintained, because such systems usually continue to execute even in the presence of
errors to prevent catastrophic failures.

Q8. Reliability. The exception mechanism features should aid the development of
reliable programs. Therefore, the exception mechanism should be designed to avoid error-
prone features and to maximize automatic detection of programming errors. In fact, the
team of designers of a dependable object-oriented software has yet to deal with many fault
types. Additional faults should not be introduced by the use of the exception mechanism.
The exception handling system should anticipate and prevent common programmer errors.

Q9. Simplicity. As with all language features, the exception mechanism must be sim-
ple to understand and use. Meyer [44] advocates that a good exception mechanism should
be simple and modest. Therefore, the exception mechanism should not contain unnecessa-
ry complexity. It should have a consistent semantic structure that minimizes the number
of underlying concepts. In other words, the concepts introduced by an exception me-
chanism should be as small as possible and consistent with the needs of the dependable
object-oriented applications. It should have few special cases and should be composed
from features that are individually simple in their semantics. In a exception mechanism
that programmers of dependable systems master totally, they feel confident and can con-
centrate on the complexity inherent to their systems rather than on the intricacies of the
exception mechanism.

Q10. Uniformity. The exception mechanism should have uniform syntactic conven-
tions and should not provide several notations for the same concept. In addition, the
design solutions of an exception mechanism for object-oriented systems should be uni-
formly adopted in the light of object-orientation. Object-oriented solutions should not be
intermingled with conventional solutions. Otherwise, it would affect negatively reusabili-
ty, modularity, testability of the dependable object-oriented software using the exception

2.6. General Design Criteria 41

mechanism.

Q11. Traceability. Dependable object-oriented software needs useful information to
damage assessment and consequent error recovery. The information should be passed
by the exception mechanism together with the notification of the exception, and it may
include the name, description, location, severity of the exception, propagation chain and
other useful data (Section 2.2.1).

Q12. Performance. Performance is always a consideration. There are two major
trends in the exception mechanism design: (i) the time for searching a suitable handler
when an exception is raised — ideally, the complexity of the search algorithm should be
O(1); (ii) run-time overheads caused by the exception mechanism under normal operation
conditions — ideally, the mechanism should be designed so that run-time overheads are
incurred only when handling an exception. However, in the case of dependable systems,
in particular, where speed of error recovery is on prime importance, an application may be
prepared to tolerate a little overhead on the normal error-free operation [6]. Performance
frequently compromises the achievement of all other qualities. Some performance penalty
should be tolerated for a greater quality of the exception mechanism. In this way, the
other qualities should be priorized in designing an exception mechanism for dependable
object-oriented software. Performance is really crucial in hard real-time systems which is
not our study aim. We refer to [37] for deeper discussions regarding exception handling
and real-time systems.

2.6.2 An Ideal Exception Handling Model

After analyzing the demanding quality requirements, we discuss each design decision and
present an ideal exception handling model for dependable object-oriented software. We
point out which quality requirements each design choice affects positively or negatively.
Figure 2.6 summarizes these influences. Tradeoffs also are discussed since the quality
requirements may conflict.

D1. Exceptions Represented as Objects. Exceptions should be represented as (full
or data) objects. This design decision has a number of benefits. For instance, it leads
to better traceability (Q11) and modularity (Q2) since extra-information passing can be
performed naturally when exception occurrences are objects (Section 2.5). Moreover, this
representation is integrated uniformly (Q10) with the object paradigm and has a number
of advantages when compared to the classical approach, such as [8, 15]: (i) exceptions
organized into an inheritance hierarchy which makes the system easier to reuse (Q4), read

2.6. General Design Criteria

42

Application Exception
i e Mechanism
= Quality : o T+
iremen = > 2
. equirements %‘%‘éé‘;g%azggé
el SEHEHEEEEEER:
Decisions §§§§E§§%EEEE
e =3 L P R L R
5|8|8|3|6|6|6|8|8|5|5|6
D1 Exception Full Objects/Data Objects |+ |+ |+ |+ |+ |+ == i G) I Bl i
- Representation Symbols oy g | . y o
Excevti Unsupported/Optional |- |- |- |- |- [+ - |+~ +
ception - . - :
D2. | oterface Obliged |+ | +|+[+|+ v |+
Hybrid |+ |+ |+ |+ |+~ + |- |+ -
Handler Statement/Block |~ [~ [~ |- |~ |+ -
D3. _ :
Attachment Method/Object/Class/Exception |+ |+ |+ |+ |+~ + |+
Static |+|+| |- [+ +|+ e
D4 Handler = e - X
& Binding ynamic o
Semi-Dynamic |- |- -+ - 5
Ds. Excepﬁqn Automatic |- [~ [- |- |- |+ - |+ +
Propagation Explicit |+ [+ |+ |+ |+~ +|- -
D6 Continuation of Resumption &l 5
the Control Flow Termination + |+ +
Unsupported | - ==
D7 Cleanup Use of Explicit Propagation |- -l=1-]- +
' Actions Specific Construct | + +|+| |+ +
Automatic Clenaup |+ +|+ |+ |+ ||+ + =
Unsupported -
Reliability PP
D8. Checks Dynamic Checks o =
Static Checks + +
Concurrent Unsupported | = = === =1-
D9. Exception tmited [= == |=[=|=|=]|=1]= &
— Complete |+ |+ [+ |+ |+ |+ |+|+|+ %

Figura 2.6: Design Decisions x Quality Requirements

2.6. General Design Criteria 43

(Q1), test (Q5), maintain (Q3) and extend; (ii) handler definition is powerful (Q6), since
handlers do not only handle one kind of exception but all exceptions that are subclasses
of it — consequently, less handler bindings are needed, and the program is shorter which
improves readability (Q2) and makes the mechanism more simple and easier to use (Q9);
(iii) handlers that are independent of any execution context can be attached to exception
classes, and handlers attached to classes can be inherited by subclasses (Q6); and (iv)
the use of the exception mechanism is more reliable (Q8), since representing exceptions
as mere symbols may be error prone.

D2. Obliged Exception Interface. According to the idealized-fault-tolerant-component
model (Section 2.2), each system component should be able to return well-defined res-
ponses. The normal and exceptional responses of the components of a dependable system
should be rigorously specified. To understand which exceptional responses a method may
return, one should not have to examine its implementation. In fact, the presence of excep-
tion interface leads to better readability (Q1) (Section 2.1). This feature also promotes
the construction of modular software systems (Q2) [8], which in turn improves maintai-
nability (Q3), reusability (Q4) and testability (Q5). Finally, exception interface affects
the conformance rules checked by the compiler and makes the exception mechanism mo-
re reliable (Q8). Therefore, exception interface should be obliged. However, the hybrid
approach also could be adopted since it is difficult to designers anticipate all exceptions,
many exception types are unpredictable by nature.

D3. Multi-level Attachment of Handlers. For the purpose of improving the wri-
teability (Q6) and structuring of dependable object-oriented software, it is desirable to
allow the multi-level attachment of handlers (Section 2.5). The programmer can assume
the existence of different levels of handler attachment. When an exception is related to an
operation, a handler for this exception may be locally associated with the operation. Al-
ternatively, handlers can be associated with a class, which can be applied to all operations
of that class. It is also possible to attach handlers to objects and exceptions themselves.
Such flexible attachment has many advantages: (i) it provides a clear separation of the
object abnormal behavior from the normal one according to the concept of an idealized
fault-tolerant component (Q1); (ii) protected regions can be factored out at the respective
levels of classes, objects and operations (Q6); (iii) software layering facilitates the design
of fault-tolerant systems; and (iv) the close integration between the language and the
exception mechanism could be obtained through the uniform use of the object paradigm
(Q9). However, block handlers should not be supported. The use of block handlers usual-
ly intermingles the exception handling code with the normal flow of an operation, which
may result in less readable (Q1) and reusable (Q4) programs. Separation of concerns is

2.6. General Design Criteria 44

on prime importance for dependable object-oriented systems. The error handling code
is detailed and complex and may then make code for the normal situations difficult to
read (Q1) and maintain (Q3). Explicit separation of concerns achieves a number of soft-
ware qualities: readability (Q1), modularity (Q2), maintainability (Q3), reusability (Q4),
testability (Q5) and writeability (Q6).

D4. Semi-Dynamic Binding. As stated previously in the Section 2.5, although the
static approach leads to better readability (Q1), some way of dynamic binding should be
supported for dependable systems. We believe semi-dynamic binding is sufficient. Semi-
dynamic binding associates different handlers with the exception in different contexts
during a program'’s execution. In addition, the semi-dynamic binding method can be used
to achieve the functionality similar to that of the dynamic method. A semi-dynamically
bound handler can call different handlers based on run-time conditions. However, static
binding cannot achieve this because the run-time condition may not be valid in some
contexts. Although this design solution has negative influences on readability (Q1) and
simplicity of the exception mechanism (Q9), the adoption of explicit propagation (D5)
minimizes such negative impacts. Explicit propagation limits the handler binding to the
local context related to the signaler and to the immediate caller.

D5. Explicit Propagation of Exceptions. Explicit propagation should be the only
way of propagating exceptions along the chain of invokers. According to the CLU’s desig-
ners, the caller of a method x should know nothing about the exceptions signaled by the
methods which are called during the execution of x. The handling of an exception occur-
rence should be limited to the immediate caller. Explicit propagation directly improves
modularity (Q2) (Section 2.5), which in turn improves readability (Q1), maintainability
(Q3), reusability (Q4), testability (Q5) and reliability (Q8). The exception mechanism
should therefore not provide automatic propagation and should force the users to expli-
citly rename any propagated exception. When automatic propagation is disallowed, the
set of handlers that can field a particular exception can be statically determined, thus al-
lowing additional compiler checks (Q8). However, this design choice obviously constrains
writeability (Q6) and performance (Q12).

D6. Termination. As discussed in Section 2.5, termination should be the only sup-
ported model for continuation of the control flow. A mechanism implementing only ter-
mination is very simple to construct (and hence more reliable - Q8) since the signaling
of an exception can be regarded as an abnormal return from the component [38]. From
the viewpoint of fault tolerance, the resumption model introduces unnecessary expressive
power [40] as well as additional complexity for the exception mechanism (Q9) [40, 33].

2.6. General Design Criteria 45

Practical experience with exception mechanisms providing resumption has shown that the
resumption model is more error prone [27]. Furthermore, it can promote the unreliable
programming practice (Q8) of removing the symptom of an error without removing the
cause [27].

D7. Explicit Support for Cleanup Actions. The use of an exception mechanism
might lead to inconsistencies (Q7) when exceptions are raised [64]. Components of a
dependable object-oriented application cannot be left in inconsistent states, since that the
system should continue to operate even in the presence of errors to prevent catastrophic
failures. Automatic facilities for cleanup actions can be infeasible (Section 2.5) and it
would cause probably high overheads at run-time (Q12). In fact, none of the exception
mechanisms in realistic object-oriented languages have automatic cleanup. Therefore, the
most suitable solution is provide programmers with specific support for cleanup actions;
using explicit propagation to perform cleanup actions is more error prone (Q8), and
more difficult to understand and use (Q9). Furthermore explicit support leads to better
readability (Q1) and writeability (Q6) because it avoids replication of code devoted to
cleanup. This problem is inevitable when using explicit propagation since cleanup actions
are implemented within each handler attached to the protected region.

D8. Static Reliability Checks. The exception mechanism should be designed for
creating highly reliable dependable software. It should provide extensive static checking,
perhaps followed by some level of dynamic checking. This design decision is devoted to
guide programmers of dependable systems towards reliable programming habits (Q8).
Our decisions in adopting exception interface (D2) and explicit propagation as design
principles facilitate static checking. For instance, the compiler may verify if an exception
being raised at run-time will have a bound handler.

D9. Complete Support for Concurrent Exception Handling. We consider that
complete support for concurrent programming as one basic aspect of an actual exception
mechanism because we believe it is extremely important for realistic dependable object-
oriented applications. In practice, the approach classified as limited (Section 2.2.2) can
lead to production of software components which are difficult to read (Q1), maintain (Q3),
reuse (Q4), and test (Q5). In addition, the responsibility related to handler invocation and
exception resolution is left to application programmers which in turn leads to unreliable
programming of dependable object-oriented applications (Q8). From the viewpoint of
fault tolerance, concurrent exception handling is complicated (Section 2.3) and should
be integrated with atomic actions. The effort of developers of dependable object-oriented

2.7. Ongoing Research 46

systems should be minimized and they should concentrate on issues which are application-
dependent.

2.7 Ongoing Research

As we have concluded in the previous Section, existing exception mechanisms have not
fully addressed an appropriate design criteria. The current lack of effective exception
mechanisms for developing depedendable object-oriented software with the demanding
quality attributes requires the building of new error-handling techniques. Ideally a new
technique developed for a specific programming language should not introduce new lan-
guage constructs. In practice this would make the approach infeasible for existing lan-
guages. We believe this is the time to map the fault tolerance approaches that are well
researched but are not used in practice very often, onto practical, widely used existing
languages. It seems to be one of the main flaws of the previous research specially related
to fault-tolerant software that it is still rather theoretical and is applied to exotic systems
and languages [59]. In addition, a new exception mechanism should be developed without
conflict with other existing mechanisms.

One way to extend the facilities of programming languages is to use preprocessors whi-
ch will accept an extended syntax as input and map them into the standard form of the
language. Usually, such extensions however are not compatible; then other preprocessors
may not be combined with each other, which results in unsolvable dilemmas [44]. A ten-
dency for extending object-oriented programming languages is to use the computational
reflection technique. This technique is based on the reflection mechanism which introdu-
ces a new dimension of modularity — the separation of the base-level computation from
the meta-level computation. This approach allows to implement additional mechanisms
for the underlying language without any changes to the language itself.

The work of Hof et al. [31] describes an exception mechanism based on meta-programming
and computational reflection. Its implementation was carried out in a specific system but
it could be implemented to most other systems that support meta-programming. Howe-
ver, such a mechanism does not support concurrent exception handling in cooperating
participants and is not fully integrated with the object paradigm. The work of Garcia et
al. [21] proposes a new error-handling technique for developing dependable object-oriented
software also based on a reflective approach. The meta-level implements the exception
mechanism, and at the base level resides the application. They have implemented their
exception mechanism within the Java programming language without any changes to the
language itself by means of a meta-object protocol. The proposed object-oriented excep-
tion handling model is based on the idealized fault-tolerant component (Section 2.2.1) and
establishes a clear separation between exceptional and normal code. Mitchell et al. [48]

2.7. Ongoing Research 47

also propose an exception handling model which ensures complete separation between
error handling and normal code. However, their proposal applies the reflection techni-
que in a different way. Instead of utilizing reflective principles to achieve the separation
between the application and the management mechanisms related to exception handling,
this work explores reflection to separate the aplication’s normal code (meta-level) from
the aplication’s exceptional code (base level).

Object-oriented frameworks is also an emerging technology in the world of object-
orientation. A framework is a reusable and flexible software that can be extended to
produce customized applications. Framework’s designers specify variations within its
design by means of extension points, which are those aspects of an domain that have to be
kept flexible; developers of a specific application refine the framework design for the needs
of their aplication by filling in those extension points. Extension points describe where
and how the framework is extended and customized. We argue that framework technology
is a sounding idea for implementing an exception mechanism. An exception mechanism
could be implemented as an object-oriented framework providing a set of extension points
since different kinds of applications would require different functionalities of the exception
mechanism. For instance, dependable systems require the termination policy for the
exception mechanism, but the resumption policy may be useful for simulation systems.
The extension points could implement the different design approaches for each exception
mechanism’s functionality according to our proposed taxonomy. These extension points
could be easily adapted according the context where the exception handling framework is
being employed.

According to [34] the use of design patterns is extremely useful both as a guide during
the framework development and as a help in better understanding a framework design. A
design pattern is a microarchitecture that applies to a cross-domain design problem [7].
Some of the most useful patterns describe the framework’s extension points. In this way,
a system of patterns for exception handling could be developed to assist the building of an
exception handling framework and document its design. The Error Detection pattern [56]
proposes a design solution to detect errors of an application at runtime. However, such
a pattern only encompasses error detection; it does not define means for the definition of
handlers to cope with such exceptions. The paper [24] proposes a set of design patterns
for the exception handling domain.

As we have examined in this paper, the main drawback of the current exception han-
dling techniques is the lack of complete support to handle concurrent exceptions. Somes
works have been developed to integrate concurrent exception handling with the atomic
action concept. The paper [58] describes a concurrent exception mechanism based on
atomic action structures for the Ada95 language. The coordinated atomic action concept
(CAAction) [69] was introduced as a unified approach for structuring complex concur-

2.8. Concluding Remarks 48

rent activities and supporting error handling between multiple interacting objects in a
concurent object-oriented system. CAActions provide a suitable framework to develop
dependable object-oriented systems. The paper [61] discusses the introduction of concur-
rent exception handling and CA Action schemes into object-oriented systems. This paper
also discusses a distributed exception-resolution algorithm.

As stated previously, error handling activities play a special role in the development
of dependable object-oriented software. Traditional methods of object-oriented software
deal with exceptions at late design and implementation phases. Better results might
be achieved if exceptions and exception handling activities might be incorporated in a
consistent and disciplined way during all phases of development of a dependable object-
oriented software. Instead of assuming that exception handling should be restricted to
the later phases of software development, the work of de Lemos and Romanovsky [14]
describes a systematic and effective approach in how to deal with exception handling
at all phases of the software lifecycle. The approach provides a stepwise method for
defining exceptions and their respective handlers, thus eliminating the ad hoc way in
which exception handling is sometimes considered during the later phases of the software
lifecycle.

It should there be as little extra work as possible for programmers of dependable
object-oriented systems using a exception mechanism. A mechanism that provides a set
of standard templates or a CASE tool to speed the implementation is often considered
easier to use [37]. In addition, a number of tools could be used during all phases of the
software lifecycle. Only a few researchers has dealt with this question. Xept [68] is a tool
that can be used to add to object code the ability to detect, mask, recover and propagate
exceptions from library functions. According the authors, its use helps to alleviate or
avoid a large class of errors resulting from function misuses.

2.8 Concluding Remarks

Nowadays exception mechanisms are important features of object-oriented programming
languages. In the context of dependable object-oriented software, exception mechanisms
are used to structure the fault tolerance activities incorporated to a system. The software
quality attributes of modern software systems require suitable design solutions for an
exception mechanism that will be used to develop dependable object-oriented software.
This paper initially presents an introduction and overview of the notions of exception
handling and fault tolerance. A taxonomy for classifying the different design solutions
in existing exception mechanisms has been developed. The proposed taxonomy addres-
ses nine main aspects of interest, including exception representation, exception interface,
handler attachment, handler binding, exception propagation, continuation of the control

2.8. Concluding Remarks 49

flow, cleanup actions, reliability checks, and concurrent exception handling. The excep-
tion handling models of twelve exception mechanisms for object-oriented languages have
been reviewed and evaluated with respect to the developed taxonomy. We also have de-
fined a set of demanding quality requirements which should be satisfied while developing
a proper exception mechanism for dependable object-oriented software. The defined re-
quirements form the criteria which we have used to determine the design solutions for an
ideal exception handling model. Finally, we have suggested directions for future research.

Language features and their corresponding mechanisms for exception handling conti-
nue to evolve in both experimental and commercial object-oriented languages. Our eva-
luation has concluded that none of the exception mechanism has addressed an appropriate
design criteria. From this study, we have found that most of the existing mechanisms still
adopt a number of classical design solutions for the implementation of exception handling
models. In addition, several design decisions for such mechanisms are based on too flexible
and complex solutions which may lead to the construction of dependable object-oriented
software which is not well structured. Thus, an ideal object-oriented exception mecha-
nism has not yet come out. This is partially because the designers of a new language does
not pay enough attention to the language part that supports exception handling; in most
cases, they usually attempt to add exception handling facilities to an existing language
rather than to keep exception handling in mind at the very beginning of the process of
language design.

However, it is worthwhile to highlight the design of the exception mechanism of Guide
which, according to our evaluation, has reached the highest punctuation in our ranking.
In addition, the exception mechanism of Eiffel is interesting since it is complemented with
a broad range of techniques as discussed in the Section 2.5. We can claim that both
mechanisms have a design more suitable to produce dependable object-oriented software
with effective quality attributes, although no support for concurrent exception handling
is offered for these mechanisms. In fact, the main drawback of the current exception han-
dling techniques is the gap concerning explicit support for concurrent exception handling.
Arche is the only language which has contributed a lot in this area, although it has some

limitations.

2.9. Resumo do Capitulo 2 50

2.9 Resumo do Capitulo 2

Este capitulo apresentou um artigo que aborda um estudo comparativo de mecanismos
de excegbes existentes em linguagens de programagao orientadas a objetos. O artigo ini-
cialmente apresenta uma revisao dos conceitos importantes relacionados a tratamento de
excegoes e tolerancia a falhas. Uma taxonomia é proposta para classificacao e comparacao
dos diferentes modelos de tratamento de excegGes estudados. Os modelos de doze meca-
nismos de excegoes sao revisados e comparados com base na taxonomia desenvolvida. O
artigo também apresenta um critério de projeto adequado para mecanismos de excegdes
utilizados no dominio de aplicagoes orientadas a objetos confidveis. Um modelo ideal de
tratamento de excegdes é desenvolvido, utilizando o critério de projeto definido.

O estudo realizado neste capitulo conclui que os mecanismos de excegdes estudados
nao incorporam um modelo de tratamento de excegbes adequado para construgao de
software orientado a objetos confidvel. Virias decis6es de projeto destes mecanismos sao
baseadas em solugGes complexas e demasiadamente flexiveis. O uso destes mecanismos
pode conduzir a construgao de software nao confiidvel e que sao dificeis de entender, manter
e reutilizar. A principal desvantagem dos mecanismos investigados é a falta de suporte
apropriado para tratamento de excegdes concorrentes.

O préximo capitulo apresenta um mecanismo de excegbes que adota um modelo de
tratamento de excegbes adequado para o contexto de aplicagdes orientadas a objetos
confidveis. Além disso, o modelo especialmente prové suporte para tratamento de excegoes
concorrentes.

Capitulo 3

Projeto e Implementacao de um
Mecanismo de Excecoes para
Software OO Confiavel

O desenvolvimento de mecanismos de excegbes adequados para a construgao de software
orientado a objetos confidvel ndo é uma tarefa trivial. O modelo de tratamento de ex-
cegoes deve prover suporte para uma separagao explicita entre as atividades normais e as
atividades incorporadas para tratamento de excegoes de tal forma a manter sob controle
a complexidade geral do sistema. O modelo deve ser integrado com o modelo de objetos
e oferecer suporte para tratamento de excegbes concorrentes. Um mecanismo de excegoes
adequado deve ser restritivo e simples de usar de tal forma que erros adicionais nao sejam
introduzidos pelo seu uso.

Este capitulo contém o artigo “An Ezception Handling Mechanism for Developing
Dependable Object-Oriented Software Based on a Meta-Level Approach” [21]. Este artigo
foi publicado em “Proceedings of the 10th IEEE International Symposium on Software
Reliability Engineering - ISSRE’99”, realizado em Boca Raton, Florida, Estados Unidos
em novembro de 1999. O artigo apresenta o projeto e implementacdo de um mecanismo
de tratamento de excegdes para construcao de software orientado a objetos confidvel. O
mecanismo implementa um modelo de tratamento de excegoes adequado para o dominio
de sistemas orientados a objetos confiaveis, contemplando o critério de projeto definido
no Capitulo 2. A técnica de reflexao computacional é utilizada para implementacao do
mecanismo proposto.

51

3.1. Introduction 52

An Exception Handling Mechanism for

Developing Dependable Object-Oriented Software
Based on a Meta-Level Approach

Alessandro F. Garcia Delano M. Beder Cecilia M. F. Rubira

Institute of Computing
University of Campinas (UNICAMP)
Campinas, SP — Brazil
{afgarcia, delano, cmrubira}@dcc.unicamp.br

3.1 Introduction

With software systems growing in size and complexity, the quality and cost of develop-
ment and maintainence are still deep concerns for software developers. Object-oriented
component-based engineering is a promising approach for reducing software development
cost while increasing productivity, reusability, quality and dependability of software sys-
tems and their components. However, the development of dependable object-oriented
software requires suitable exception detection and handling mechanisms to satisfy the
system’s dependability requirements.

The current lack of effective error-handling techniques for developing dependable
object-oriented software produces software components which are usually difficult to un-
derstand, to change and to maintain in the presence of faults. Ideally such components
should incorporate their abnormal behavior (i.e., their exceptional activity) in a struc-
tured and transparent manner so the abnormal code would not be amalgamated to the
normal code. In this context, we propose the design and implementation of an object-
oriented exception handling mechanism based on a meta-level approach. This approach
is based on a computational reflection mechanism which encourages modular descriptions
of software systems by introducing a new dimension of modularity — the separation of the
base-level computation from the meta-level computation.

The goal of our work is twofold: (i) to define an exception handling model which
supports a clear and transparent separation of the normal activity of a component from
its exceptional activity, and (ii) to provide a meta-level architecture which implements an
exception handling mechanism. Our exception handling model consists of the following
characteristics: (i) exceptions are represented as data objects [36, 35]; (ii) exception
handlers are represented as ordinary methods; (iii) creation of exceptional class hierarchies

3.2. Exception Handling and Fault Tolerance 53

which implement exception handlers, that are orthogonal to the application’s normal class
hierarchies; (iv) the attachment of handlers can occur at different levels: (1) methods, (2)
individual objects or groups of objects, (3) classes, and (4) exceptions; and (v) support for
concurrency and coordinated error recovery. Our mechanism does not require any special
language support and was implemented within the Java programming language without
any changes to the language itself by means of a meta-object protocol called Guarana [51].

The remainder of this text is organized as follows. Section 3.2 defines the terminology
adopted in this work related to exception handling and fault tolerance. Section 3.3 dis-
cusses some important design issues related to exception handling mechanisms in object-
oriented languages and concurrent systems. Section 3.4 presents the concepts of computa-
tional reflection and meta-level architectures. Section 3.5 presents our exception handling
model. Section 3.6 describes an example of use of the proposed mechanism. Section 3.7
describes our meta-level architecture for exception handling. Section 3.8 gives a brief
comparison with related work. Finally, Section 3.9 summarizes the conclusions of this
work and suggests directions for future work.

3.2 Exception Handling and Fault Tolerance

Following the terminology adopted by Lee and Anderson [38], a system consists of a set of
components that interact under the control of a design. A fault in a component may cause
an error in the internal state of the system which eventually leads to the failure of the
system. Two techniques are available for eliminating the errors from the system’s state:
(i) forward error recovery and (ii) backward error recovery. The first technique attempts to
return the system to an error-free state by applying corrections to the damaged state. The
second technique attempts to restore a previous state which is presumed to be free from
errors. Although traditionally exceptions and exception handling constitute a common
mechanism applied to the provision of forward error recovery, they may provide support
to combine forward and backward error recovery schemes [9]. Therefore, the notions of
exceptions and exception handling can be used to establish a framework for achieving
fault tolerance.

Software components receive service requests and produce responses when that ser-
vice has been completed. If a component cannot satisfy a service request, it returns an
exception. So the responses from a component can be separated into two distinct catego-
ries, namely normal and ezceptional responses. To create a clear framework, the activity
of a component can be divided in two parts: normal activity and abnormal (or ezcep-
tional) activity (Figure 3.1). The normal activity implements the component’s normal
services while the exceptional activity provides measures for tolerating faults that cause
such exceptions. Thus, the normal activity of the system is clearly distinguished from its

3.2. Exception Handling and Fault Tolerance 54

Service Normal Interface Failure
exceptions

requests responses s i

Return to
J [ﬂormal operation

Abnormal Activity
(fault tolerance by
e

Normal Activity

Internal

Service Normal excaptions Interface Failure
requests responses exceptions exceptions

Figura 3.1: Idealized Fault-Tolerant Component.

exceptional activity.

Exceptions can be classified into three different categories: (i) interface ezceptions
which are signaled in response to a request which did not conform to the component’s
interface; (ii) failure ezceptions which are signaled if a component determines that for some
reason it can not provide its specified service; (iii) internal ezceptions which are exceptions
raised by the component in order to invoke its own internal exceptional activity. Note that
an exception is raised within the component, but signaled between components. Whenever
an exception is raised in a component that does not have a handler for it, the exception is
signaled to the component (caller) that dynamically invoked the first one. If no handler
is defined for an exception within the caller, the exception is propagated to higher-level
components. At each level of the system, a component, called an idealized fault-tolerant
component [38], will either deal with exceptional responses raised by components at a
lower level or else propagate the exception to a higher level of the system.

Programmers usually refer to faults as exceptions because they are expected to occur
rarely during the component’s normal activity. Ezception handling mechanismns (or merely
ezception mechanisms) are often provided in programming languages and allow software
developers to define exceptional conditions and to structure the exceptional activity of
software components. When an exception is raised by a component, this mechanism is
responsible for changing the normal control flow of the computation within a component
to the exceptional control flow. Therefore, raising an exception results in the interruption
of the component’s normal activity, followed by the search for an ezception handler (or
simply handler) to deal with the raised exception. The set of handlers of a component
constitutes its exceptional activity part. For any exception mechanism, handling contexrts
associate exceptions and handlers. Handling contexts are defined as regions in which the
same exceptions are treated in the same way. Each context should have a set of associated

3.3. The Design of Exception Mechanisms 55

handlers, one of which is called when the corresponding exception is raised.

3.3 The Design of Exception Mechanisms

There are some important issues that should be considered during the design of an ex-
ception mechanism. In this Section we discuss each of these issues in turn.

Exception Representation. Exceptions can be represented as (i) names, (ii) data
objects, or (iii) full objects. Representing exceptions as names is a classical approach
adopted by several object-oriented programming languages, such as Eiffel [44]. In the
second category, exceptions are classes and an instance of an exception class is created
every time that an exception is raised. The main task of raising an exception is to pass
an exception object as a parameter to the corresponding handler. C++ [35] and Java [30]
adopt this approach. In the third category, exceptions are also organized hierarchically as
classes and the task of raising an exception is to create an instance of the related exception
class and then call it with a raise() operation. In this case, the exception is a standard
object that receives messages. The exception handling system implemented in Lore [15]
applies this design solution. '

Handler Attachment. Handlers can be attached to: (i) a statement or a block, (ii) a
method, (iii) an object, (iv) a class, or (v) an ezception. Statement (or block) handlers are
attached to a statement (or a block of instructions), allowing context-dependent responses
to an exception. Method handlers are associated with methods; when an exception is
raised within the method’s code, the method handler bound to this exception is executed.
Object handlers are associated with object variables in their declaration; that is, each
instance has its own set of handlers. Class handlers are attached to classes, allowing the
software developers to define a common exceptional behavior for a class in exceptional
situations. When handlers are associated with exceptions themselves, they are always
invoked if a more specific handler cannot be found. They are the most general handlers
and must be valid in any case, independent of any execution context and object state.

Exception Propagation. The exception propagation to higher-level components can
be performed in two ways: (i) automatic, or (ii) ezplicit. In the first case, if no handler
is found for the exception within the caller, the exception is propagated automatically
to higher-level components until a handler can be found; that is, an exception can be
handled by components other than its immediate caller. In the second case, the handling
of signaled exceptions is limited to the immediate caller.

3.3. The Design of Exception Mechanisms 56

Continuation of the Control Flow. When the handler terminates normally, the
related exception is said to be handled. Then the system can return to its normal activity;
however, there is an issue concerning whether the internal activity of the component that
raised the exception can be resumed or not. There are essentially two possible solutions,
which correspond to different styles of continuation of the control flow: (i) termination,
and (ii) resumption. In the termination model, execution continues from the point at
which the exception was handled. Conceptually, this means that the component activity
which raised the exception cannot be resumed. In the resumption model, the execution
has the capability to resume the internal activity of the component after the point at
which the exception was raised.

Support for Coordinated Recovery. Very few object-oriented languages support
concurrent exception handling, e.g. the activation of several handlers in different concur-
rent objects when an exception has been raised by one of them. For instance, the Arche
language [32, 33] allows user-defined resolution of multiple exception amongst a group of
objects that belong to different implementations of a given type; however, this approach
is not generally applicable to the coordinated recovery of multiple interacting objects of
different types.

3.3.1 Exception Handling and the Object Model

Even though many object-oriented languages provide exception-handling facilities, only
a few of them provide an exception mechanism that is really integrated with the object
model. Classical design issues of exception mechanisms should be re-visited in the light
of object- orientation so that exception handling itself could benefit from object-oriented
features. For instance, we advocate that the object-oriented design of an exception me-
chanism should support exception representation as data or full objects. The majority of
the object-oriented languages have adopted the exception representation as names. Al-
though it is the classical approach, it does not provide a close integration between the
object-oriented language and the exception mechanism.

It is also an important issue how to relate exception raising to interface checking [46].
In object-oriented programming, each operation (or method) in a type (or class) descrip-
tion is defined by a signature, which specifies the name of the method and the types of
its parameters. Method’s signatures should also include the exceptional responses that
an object may return. For example, Java [30] allows the declaration of the exceptions
a method may signal in its signature with a clause throws. Nevertheless, when the type
specification includes this declaration, new problems arise as to inheritance and subtyping
rules. In the subtyping/conformance relationship, a derived class is designed by including

3.3. The Design of Exception Mechanisms 57

the specification of the base class as a subset of its specification. Note that the modifica-
tion of a method’s signature is not allowed when redefining a method. This implies that
the redefinition of operations by derived classes should inherit all exceptions specified by
the base class.

Furthermore, for usability and program writeability, it is necessary to allow considera-
ble flexibility in the placement of handlers. Thus, an object-oriented exception handling
approach should provide different levels of handler attachment. When an exception is
related to a method, a handler for this exception may be locally associated with the me-
thod. Alternatively, handlers can be associated with a class and can be applied to all
methods of that class. It is also possible to attach handlers to objects themselves.

3.3.2 Exception Handling in Concurrent OO Systems

In an object-oriented software system, there may be a number of processes (threads)
running concurrently. There are different ways of dealing with concurrency in object-
oriented systems. In this work, we define a clear distinction between objects and threads:
threads are agents of computation that execute operations on objects (which are the
subjects of computation). In this sense, concurrent threads can be classified into three
categories [38]: (i) independent, (ii) competing, or (iii) cooperating. Threads are said to be
independent if the sets of objects accessed by them are disjoint; when:those sets are not
disjoint, then the threads are said to be competing. Threads are said to be cooperating
when they are designed collectively and have shared access to common objects that are
used directly for communication between the threads.

From the standpoint of fault tolerance, the case of independent threads is trivial; the
provision of error recovery to a number of independent threads is identical to the pro-
vision of error recovery to a single sequential thread. In the case of competing threads,
the provision of recovery is similar to the first case, but the set of objects accessed by
the threads should be restored to an error-free state as well. In practice, such objects
often have their own error recovery scheme. The implementation of an exception me-
chanism for concurrent systems is an interesting challenge in the presence of cooperative
concurrency: the handling of an exception may involve multiple concurrent components
when they are cooperating in the execution of a task. Erroneous information may have
been spread directly or indirectly through inter-thread communication. When one of the
concurrent threads raises an exception, error recovery should proceed in a coordinated
way by triggering appropriate handlers for the same exception within all the threads [69].

Furthermore, due to the nature of concurrent systems, it is possible that various
exceptions may be raised concurrently by threads of the system. A structured ezception
represents the concurrent occurrence of two or more simple ezceptions. Exceptions raised

3.4. Reflection and Meta-Level Architectures 58

mo

Meta-Level L

— <<reify>> |

MOP
Base Level : §<<reﬂect>>

. E

service -
X i (o]
result

Figura 3.2: A Meta-Level Architecture

concurrently may be the symptom of a different and more serious fault [69]. In this
way, an exception resolution procedure is needed to select a suitable handler for the
exceptions raised concurrently; in this case, such a generic handler should also be called
in all the threads. The work of Campbell and Randell [9] describes a resolution model
called ezception tree that includes an exception hierarchy imposing a partial order on
exceptions of the system. The exceptions that are not listed within the exception tree are
categorized as a universal ezception. The universal exception is the root of the exception
tree. Such a model is used in order to find the exception that represents all the exceptions
raised concurrently. So, the exception mechanism must activate the handler attached to
this more generic exception in every one of the concurrent threads.

3.4 Reflection and Meta-Level Architectures

Computational reflection [43, 51| is defined as the ability of observing and manipulating
the computational behavior of a system through a process called reification. This techni-
que allows a system to maintain information about itself (meta-information) and use this
information to change its behavior. It defines a meta-level architecture which is composed
of at least two dimensions: (i) a base level, and (ii) a meta-level. A meta-object protocol
(MOP) establishes an interface among the base-level and the meta-level components. The
MOP provides a high-level interface to the programming language implementation in or-
der to reveal the program information normally hidden by the compiler and/or run-time
environment. As a consequence, programmers can develop language extensions and adapt
component behavior and even make changes to the systems.

Actions that extend the behavior of base-level objects are implemented in the meta-
level. Reflection can be used to intercept and modify the effects of operations of the
object model. For the purpose of illustration, suppose that for each base-level object o

3.5. An OO Exception Handling Model 59

: Exceptional Exceptional
SupClient SunChent Server Se;;ver
ml() E5Handler() m3() throws E1, E3Handler()
E2,E4,E5,E6

FaN 4N\

Client B
m1() ElHandler()
m2() E6Handler()

Figura 3.3: Normal and Exceptional Class Hierarchies

there exists a corresponding meta-object mo that represents the behavioral and structural
aspects of o. Asillustrated in Figure 3.2, if an object x sends a message service to an object
o, the meta-object mo intercepts the message service, reifies the base-level computation
and takes over the execution; later mo returns (reflects) the response to x. From the point
of view of object x, computational reflection is transparent: x sends a message requesting
a service to o, and receives the response with no knowledge that the message has been
intercepted and redirected to the meta-level.

3.5 An OO Exception Handling Model

The exception handling model that we have defined was primarily designed to facilitate
the development of dependable and reusable software components. In this section we
present the main characteristics of our exception handling model and discuss the design
choices for each one of the major design issues described in Section 3.3.

As discussed in Section 3.2, a system may be composed of a set of idealized fault-
tolerant components. In this work, we assume that software designers structure their
applications by creating a set of normal classes which implement the normal activities
of the software components, and ezceptional classes which implement the abnormal ac-
tivities (Figure 3.3). Therefore, exceptional classes implement the abnormal activity of
the application and they are associated to the corresponding normal classes. In Figu-
re 3.3, the methods of the exceptional class ExceptionalSupClient are the handlers for the
exceptions that should be treated within methods of the class SupClient. Designers may
compose an exceptional class hierarchy that is orthogonal to the normal class hierarchy
of the application. The exceptional classes ExceptionalSupClient and ExceptionalClient are
organized hierarchically so that the resultant hierarchy is orthogonal to the normal class

3.5. An OO Exception Handling Model 60

Exception

£

I [
El E2 Group

43 Z% Exception

| | | N
E3 E4 E5 E6

Figura 3.4: An Exception Class Hierarchy

hierarchy (SupClient and Client). Exceptional class hierarchies allow exceptional subclas-
ses to inherit handlers from their superclasses and, consequently, they allow exceptional
code reuse.

3.5.1 Exception Representation

In our model, exceptions are represented as data objects. Different types of exceptions
are organized hierarchically as classes. The class Exception is the root of this hierarchy.
Figure 3.4 shows this exception class hierarchy which represents the exceptions that may
be raised during the execution of the application’s methods (E1, E2, E3, E4, E5 and
E6). The class GroupException extends the class Exception and allows the definition of
exceptions that may be raised by cooperating threads needing coordinated recovery (Sec-
tion 3.5.5). Exceptional responses that may be signaled by a method must be described
in its method’s signature by means of a throws clause. Figure 3.3 shows that method
m3() may signal the exceptions E1, E2, E4, E5 or E6. Let us remark here that due to the
base subtyping relation, a handler defined for an exception E is eligible for any exception,
which is a subtype of E. Permitting several exceptions to be named in the same handler
avoids code replication when the exceptions can be handled in the same way.

3.5.2 Handler Attachment

We provide support for multi-level attachment of handlers. Handlers may be associated
with: (i) an exception, (ii) a class, (iii) an object, or (iv) a method. Firstly, handlers
may be associated to exceptions themselves (default handlers). Default handlers are

3.5. An OO Exception Handling Model

61

Client -

Exceptional _ Exceptional
m1() clientl client2
m2() E6Handler() E6Handler()

—p— m2E6Handler()
clientl client2 client3

Figura 3.5: Objects and their Exceptional Classes

executed in the absence of a more specific handler in the application. Handlers may be also
associated to a class. In this case, an exceptional class should be created. In Figure 3.3,
the ExceptionalSupClient’s methods are class handlers for the exceptions that should be
treated within SupClient’s methods. In the same way, ExceptionalServer’s methods are class
handlers for the exceptions that should be handled within Server’s methods. Nevertheless,
the class handlers for the exceptions that should be treated within Client’s methods can be
ExceptionalClient’s methods or methods that are inherited from superclasses of the class
ExceptionalClient. Therefore, the handler for the exception E5 (ESHandler()) is inherited
from the ExceptionalSupClient.

In addition, object handlers may also be defined. To implement handlers associated
to individual objects, a new exceptional class must be created. This new class contains
methods that implement the object handlers for the exceptions that should be treated in
any method of the object. For instance, object clientl, instance of the class Client, may
be associated to handlers that are distinct from the handlers that are associated to the
object client2, that is also an instance of class Client (Figure 3.5). The Exceptional_clientl’s
methods are object handlers for exceptions that should be treated within object clientl.

Furthermore, it is possible that a single exceptional class be associated to object
groups. For example, object handlers associated to client3, instance of the class Client,
could be the same handlers associated to client2, i.e., these objects may be associated
to a single exceptional class (Exceptional client2). Thus, client2 and client3 have identical
abnormal behavior, while clientl has a different one; although they are instances of the
same class. Practical studies [13] have shown that the use of object handlers can produ-
ce better structured programs, facilitating their understanding, maintenance and reuse.
Finally, handlers may be associated to methods. For example, handler m2E6Handler() of
exceptional class Exceptional_clientl is activated when the exception E6 should be treated
in operation m2().

The search of handlers for raised exceptions is defined as follows: (i) if there exists an

3.5. An OO Exception Handling Model 62

exceptional class attached to the object, the mechanism tries to find method or object
handlers associated to the method raising the exception; (ii) if none is found, the system
tries to find handlers in exceptional classes or superclasses attached to the normal class of
the object; (iii) if none of these is found, the exception is then signaled to the caller object
and steps (i) e (ii) are repeated; (iv) still, if none is found, the system looks for default
handlers attached to the signaled exception itself. Consequently, when m1() invokes m3(),
the internal exception E3 may be raised. If so does, the exception mechanism activates the
local class handler E3Handler(). The method m3() may signal exceptions E1, E2, E4, E5 or
E6. Suppose m3() signals E1 to m1(); then class handler E1Handler() of ExceptionalClient
is invoked. In case m3() signals E4, class handler E1Handler() is also invoked since E4
is subtype of E1 (Figure 3.4). If m3() signals E5, class handler E5Handler(), inherited
from ExceptionalSupClient, is invoked. In case m3() signals E6 to ml(), object handler
E6Handler() of Exceptional_clientl (Figure 3.5) is invoked in spite of the presence of the
class handler. Suppose m3() is invoked by m2() of object clientl, if m3() signals E6; then
method handler m2E6Handler() of Exceptional clientl is invoked.

3.5.3 Exception Propagation

Our exception handling model defines explicit propagation of exceptions. The benefits
of this approach are discussed in [12, 73]. The handling of signaled exceptions is limited
to the immediate caller. If a signaled exception is not handled in the caller, then the
predefined exception failure is further propagated. However, the exception still may be
resignaled explicitly within a handler to a higher-level component. Despite gains in pro-
gramming simplicity, the use of exceptions propagated automatically remains fault-prone
because they are the least well documented and tested parts of an interface [13]. The CLU
designers [40] argue persuasively that this limitation supports the goals of good program
structuring with only a minor loss in its writeability.

3.5.4 Continuation of the Control Flow

We choose the termination model which consists of terminating the execution of the
unit that raises the exception and then transferring control to the exception handler.
The semantic of the termination model is simpler and more suitable for construction of
dependable systems [10]. Mechanisms that support resumption are very powerful and
flexible, but they turn out to be difficult to use by application programmers. In fact,
they can promote the unsafe programming practice of removing the symptom of an error
without removing the cause.

3.5. An OO Exception Handling Model 63

3.5.5 Support for Coordinated Recovery

Since the cooperating activities are application-dependent, support should be provided
to application programmers in order to structure their cooperating tasks. In this work
we apply a group framework as a means of allowing designers to improve the structuring
of their concurrent object-oriented systems, and supporting coordinated recovery. In this
sense, coordinated recovery only needs to be activated within the participant threads of a
group. This obviously restricts system design but makes it possible to regard each group
as a recovery region and attach fault tolerance activities to each group participant. We
enable the definition of subgroups which contribute to control the system complexity and
allow better organization of both normal and abnormal activities of the enclosing group.

Figure 3.6 shows threads, represented as lines, and activities of the groups, delimited
by rectangles. Group B, composed by threads T2, T3 and T4, is a subgroup of group A
which has the same composition as B, added of T1. After the occurrence of an exception
in one of these threads (T3), other participants of the same group (T2 and T4) should
be informed in order to start forward error recovery. If any suitable handler has not
been defined at least in one of the group participants, an abort ezception is raised, the
group activity must be undone (backward error recovery), and such an exception must
be signaled to the enclosing group (group A). If backward error recovery is not executed
with success within the group, then a failure ezception is signaled to the enclosing group.

Each group has participants which are activated by external activities, e.g. threads,
and which cooperate within the group scope. Participants execute object methods that
should have been designed to work cooperatively by means of shared objects. Participants
may enter asynchronously in the group activity, but should exit in a synchronized way.
Each group participant has a set of attached exception handlers that are designed to
recover the group cooperatively from eventual errors. An exception tree (Section 3.3.2)
is associated to each group in order to resolve the exceptions raised concurrently.

Implementation of Cooperating Thread Groups. To implement cooperating th-
read groups, we provide two classes that can be used to define groups that need coor-
dinated recovery. To implement a group, the first step is to define a class that extends
the class Group. The class Group contains the methods which deal with the creation and
termination of each participant. Secondly, the programmer should define the participants
that compose the group by extending the class Participant. Figure 3.8 shows the definition
of a group (Groupl) with two types of participants (Participantl and Participant2). Each
class that derives from the class Participant should be instantiated (participantl and par-
ticipant2) before the group activity is started. In order to build an instance of this class,
the object and the method that each participant executes should be passed as parameters.
Such methods should have been designed to work cooperatively. A new class that extends

3.6. Twin-Engine Aircraft Control System 64

Lll-ll-ll_(l-ll-ll_l!-ll-ll—cl-l!-'!d- 1

Group A

e
T1 — -

: Group B !

S it il s Y i
T2 ——t E —

E ' Afom isignal |

b e : i
T3 — : s —N : .

L gl 3 i
4= i .

i

PO e S A S G R e s s ol

Figura 3.6: Exception Propagation

the class Group must also be instantiated (groupl) before the group activity commences.
In building an instance of this class, the following parameters should be passed: (i) the
set of group participants, (ii) the set of simple and structured exceptions which should be
handled cooperatively by group participants, and (iii) the set of exceptions which should
be signaled by the group to the enclosing group. The participants still may register them-
selves dynamically in a group through the method RegisterParticipant (Participant) of the
class Group. This class still provides the method StartParticipant (Participant) which allows
a participant to enter dynamically in a group activity.

Implementation of Simple and Structured Exceptions. The class GroupException
should be used to define the exceptions that may be raised in cooperating thread groups
and that need coordinated recovery. We adopt the Composite design pattern [20] (Figu-
re 3.8) to define simple and structured exceptions. This pattern allows application desig-
ners to treat simple exceptions and its compositions (structured exceptions) uniformly.
Simple exceptions are defined by extending class GroupException (E1 and E2). Structured
exceptions are instances of class StructuredException (e12). The simple exceptions (E1 and
E2) that compose a structured exception (el2) should be passed as parameters to create
such a structured exception. Hence, each structured exception has a list of its constituent
exceptions.

3.6 Twin-Engine Aircraft Control System

This Section highlights the benefits of the proposed exception mechanism for the design
of reusable and dependable object-oriented software. We present a twin-engine aircraft

3.6. Twin-Engine Aircraft Control System

Participant Group
I s
Participantl Participant2 Groupl
) [})

Figura 3.7: The Definition of a Group

Group
Exception
[|
Structured
El E2 Exception
»
e12

Figura 3.8: The Definition of the Exceptions for a Group

3.6. Twin-Engine Aircraft Control System 66

stability
. SN

left
engine

state

right
engine

i
L]

lu-hu—u—n—u—l-q .

o o o e 1 - - -

Figura 3.9: The Cooperating Activity of the Group Stability

control system that is based on the example described in [9]. Consider a twin-engine
aircraft control software that contains two components responsible for managing two
engines: a left engine and a right engine. Such components can be defined as participant
threads of a group; they cooperate to maintain the aircraft stability.

Figure 3.9 shows the participants left_engine and right_engine of group stability. They
cooperate through a shared object called state. Such an object is used by the participants
to exchange information which is utilized, for instance, on the control adjustment. The
exception tree for this group is shown in Figure 3.10. If the left (or right) engine fails,
the left_engine (or right_engine) signals the exception LeftException (or RightException)
and handlers are activated in both participants. The handlers should adjust the controls
appropriately to compensate for the loss of the left (right) engine in order to conduct
the aircraft to the nearest airport. If both the right and left engine fail, the exceptions
RightException and LeftException are raised concurrently by, respectively, left_engine and
right_engine. The exception resolution procedure is accomplished by the exception mecha-
nism that searches the handlers for the structured exception emergency_exception attached
to the participants. Immediately, the handlers are activated for this more serious excep-
tion. Such handlers should execute the emergency landing procedure. Besides, other
exceptions could occur that would endanger the emergency landing procedure (for ins-
tance, fire). All such exceptions, if not listed individually within the exception tree, are
categorized as the universal exception.

Figure 3.11 shows a set of classes and their corresponding instances for the group
Stability. The class Engine extends the class Participant and represents the group parti-
cipants. The class Stability that derives from the class Group represents the group. In
order to start the group activity, two instances of the class Engine and one of the class
Stability must be created. Participants execute object methods for performing the group
activity. In this example, the participants left_engine and right_engine execute the methods
of objects left_control and right_control when performing the cooperative group activity.

3.6. Twin-Engine Aircraft Control System 67

universal
exception

Figura 3.10: The Exception Tree of the Group Stability

Left Ri A Grou Ew.ceptim)al_leﬁ_mE'E__
Control Ca;‘:lnl State Participant Group Excepli?m LeftExceptionHandler()
RightExceptionHandler()
¥ ! ' Z{S % é é EmergencyExceptionHandler()
left_control | | right controf | state Engmne Stabilty | | Exeeption | | Exception | | Exceptional right engine
LeftExceptionHandler()
T ' | ' RightExceptionHandler()
; ‘ ! = | |Emergency
) :) . Exception
left_engine | | right engine| | stability T

Figura 3.11: Object Model for the Twin-Engine Aircraft Control System

The purpose of object state, instance of class State, is communication between the coope-
rating participants. Simple exceptions LeftException and RightException and structured
exception emergency_exception are also defined. Exceptional classes Exceptional_left_engine
and Exceptional_right_engine contain the methods which are the handlers responsible for
the coordinated recovery in participants left_engine and right_engine.

Object handlers should be defined for the group participants. Note that classes Ex-
ceptional_left_engine and Exceptional_right_engine implement the handlers for all exceptions
that can be raised by the participants. The structured exception can be defined by crea-
ting the following instance:

emergency_exception = new StructuredException (left_exception,
right_exception);

3.7. Implementation 68

The set of initializations necessary for starting the group activity can be as follows:

(1) Object[] Participants = {left_engine, right_engine};

(2) Object[] IntermalExceptions = {left_exception, right_exception};

(3) DObject[] ExternalExceptions = {emergency_exception};

(4) Stability stability = new Stability (Participants, InternmalExceptions,
ExternalExceptions) ;

Line 1 creates the array with group participants. Line 2 creates the array with excep-
tions that may be raised and must be treated cooperatively by the group. Line 3 creates
the array with exceptions that must be signaled by the group to the enclosmg group. Line
4 creates the object that represents the group Stability.

3.7 Implementation 5

3.7.1 The Meta-Level Architecture 3.

In this section, we present a meta-level software architecture for implementing our ex-
ception mechanism. The architecture consists of a base level and a meta-level. The
base-level objects are the objects of the application, while the meta-objects implement
the specific responsibilities of the exception mechanism. When a base-level object signals
an exception, it is intercepted by the MOP and its corresponding meta-object searches
for an adequate handler in a way that is transparent to the application at the base level.
Applications are composed of normal classes that implement the normal functionality and
exceptional classes with handlers for the corresponding normal classes.

Figure 3.12 illustrates the meta-level architecture for implementing the exception me-
chanism. The base level is composed of: (i) the exception class hierarchy (Figure 3.4);
(ii) normal class hierarchies (Figure 3.3); (iil) exceptional classes with handlers that are
associated to normal classes (Figure 3.3) and (iv) exceptional classes with handlers that
are associated to objects (Figure 3.5).

The meta-level is composed of: (i) composers, and (ii) meta-searchers. The composers
are special meta-objects associated to the application’s objects or classes. They delega-
te information from the base-level to meta-objects responsible for several management
actions, such as exception handling, persistency and atomicity. The meta-searchers are
meta-objects responsible for managing exception handling. Furthermore, they receive
information reified by the composers. Based on these operations and their results, the
meta-searchers execute the following activities: (i) search for a suitable handler associated

3.7. Implementation 69

<<Delegate>> Meta

6—__ Gagrgher [

:Composer : :
<<Reflect>> <<Reflect>>
Meta-Level <<Reify>‘:l> <<Reflect>> '
MOP =
Base Level v
A ExceptionalA|
m1() s E1Handler()
m2() P E2Handler()
by Tk :
'\\- J '
a Exceptional_al
a E2Handler()

Figura 3.12: The Proposed Meta-Level Architecture.

to the raised exception; (ii) invocation of the handler; (iii) return to the normal operation
of the application. !

3.7.2 The Meta-Level Architecture and Concurrency

Figure 3.13 shows the components of the meta-level architecture that implements coo-
perating thread groups. The meta-level is composed of the following components: (i)
composers, (ii) meta-searchers, (iii) meta-groups, and (iv) EPS (Event Processor Servi-
ce) [49]. Each instance of Participant (Section 3.5.5) is associated to a composer and a
metaseacher; each instance of Group (Section 3.5.5) is associated to a composer and a
meta-group. The composers and meta-searchers were previously described. Meta-groups
are meta-objects responsible for managing the coordinated recovery of exceptions raised
by cooperating thread groups. Meta-groups hold the following meta-information: (i) the
set of group participants, (ii) the set of simple and structured exceptions which should be
handled cooperatively by group participants, and (iii) the set of exceptions which should
be signaled by the group to the enclosing group.

The meta-group sends the simple and structured exceptions to EPS that must compose
the group’s exception tree. EPS is a monitor for distributed and composite events which
is able to process generic events. In this work, EPS is an application utilized for monito-
ring exceptions that may be raised concurrently in cooperating thread groups. EPS and
meta-group accomplish the exception resolution procedure. When an exception occurs,
EPS informs the meta-group, which in turn informs the participants and coordinates the
invocations of the handlers in order to start the coordinated recovery. Therefore handlers

3.7. Implementation 70

EPS
T | |
i | <<Delegate>> :Meta
<<Delegate>> :Meta <<Delegate>> S;Meta é)— Group
| . :Composer
:Composer | :Composer | -
I B : B 5 . :
<<Reily>> . ' <<Reily>>- - -
s : s : <<Reily>s
Meta-Level : <<Reflect=> <<Reflect=> E*:’-(Reﬂecp?-*
Base Level :: ; % 5 £
i ; N : oupl
participantl| : participant2| - groups
v 1
Exceptional Exceptional
Participantl Participant2

Figura 3.13: The Meta-Level Architecture for Concurrency.

are activated in a way that is transparent to the application.

3.7.3 Implementation Issues

Our mechanism does not require any special language support, and it was implemented
within the Java programming language. Moreover, EPS has allowed the construction of
the composition scheme of exception trees based on the aggregated tree concept [49],
which has ensured gains in performance.

Our mechanism was implemented without any changes to the language itself by means
of a meta-object protocol called Guarand [51]. Guarana is a flexible meta-object protocol
for Java that allows creating meta-level objects. Guarana provides an efficient broad-
cast service for communication between meta-objects. Moreover, it provides support for
composition of meta-objects responsible for different management functions by means
of composers. These Guarana capacities and the way our exception mechanism was de-

3.8. Related Work 71

signed allow the meta-objects of our exception handling system to be easily integrated
with meta-objects responsible for other administrative (non- functional) services, such as
persistency and atomic actions.

3.8 Related Work

The work of Hof et al. [31] describes an exception mechanism based on meta-programming
and computational reflection. Their implementation was carried out in a specific system
but it could be implemented to most other systems that support meta-programming.
However, such a mechanism does not support coordinated recovery in concurrent threads
and its design is not object-oriented.
The Arche language [32, 33] allows user-defined resolution of multiple exception amongst

a group of objects that belong to different implementations of a given type; however, this
approach is not generally applicable to the coordinated recovery of multiple interacting
objects of different types. In our exception handling model, coordinated recovery can be
applied to a group of interacting objects of different types.

3.9 Concluding Remarks and Future Work

The current lack of effective error-handling techniques for constructing dependable object-
oriented software motivated us to develop the design and implementation of an object-
oriented exception mechanism. Our exception handling model supports a clear and trans-
parent separation between the normal and exceptional activities of software components.
This separation allows the production of software components which are easy to unders-
tand, to change and to maintain in the presence of faults. Exceptional classes allow the
uniform and non-intrusive implementation of error-handling code for every kind of compo-
nent (concurrent or not). The exceptional class hierarchy allows the reuse of exceptional
code. Moreover, the design of our mechanism is integrated with object paradigm and
provides support for coordinated recovery.

Our mechanism does not require any special language support, and it was implemented
within the Java programming language without any changes to the language itself. The
implementation of a meta-level architecture allowed the separation of activities related
to management of exception handling from the exceptional and normal activities of the
application.

The Coordinated Atomic Action concept (CAAction) [69] was introduced as a unified
approach for structuring complex concurrent activities and for supporting error recovery
between multiple interacting objects in a distributed object-oriented system. We plan to

3.9. Concluding Remarks and Future Work 72

integrate the proposed exception mechanism within a CAaction framework.

Nowadays the off-the-shelf approach to object-oriented software development, achieved
by selecting and configuring reusable components, has resulted in a significant decrease
of development costs. In this work, we have designed a mechanism that supports the
construction of reusable and dependable software components. Still, an open issue is how
to allow that exception-handling code to be added to reusable components (for instance,
COTS) without any interference in the original code of these components. This additional
exception- handling code should handle the new exceptions that can arise when these
components are reused in different applications.

3.10. Resumo do Capitulo 3 73

3.10 Resumo do Capitulo 3

Este capitulo apresentou um artigo que aborda o projeto e implementagao de um meca-
nismo de excegdes para construgao de software orientado a objetos confidvel. O modelo de
tratamento de excegOes permite uma separagao explicita entre as atividades normais e ex-
cepcionais de aplicagdao, fundamental para manter a complexidade de sistemas confidveis
sob controle. Essa separagdo contribui efetivamente para a producdo de componentes
de software que sao faceis de entender, reutilizar e manter. O modelo de tratamento de
excegoes é orientado a objetos e prové suporte para tratamento de excegdes concorrentes.

O mecanismo de excegoes foi implementado para a linguagem Java sem modificagoes
para a mesma através da utilizagdo da arquitetura de software reflexiva do Guarana [51].
A utilizagdo de reflexao computacional permitiu uma divisao clara entre as funcionalidades
da aplicagao e os servigos do mecanismo de excegoes proposto, resultando na construgao
de um mecanismo de excegoes simples e facil de usar.

O préximo capitulo apresenta uma arquitetura de software reflexiva para o proje-
to de mecanismos de excecoes e o conjunto de padroes de projeto que documentam os
componentes da arquitetura proposta.

Capitulo 4

Uma Arquitetura de Software
Baseada em Padroes para
Mecanismos de Excecoes

A arquitetura de software de um sistema compreende os componentes computacionais e
as interagoes entre estes componentes, definindo também a relacdo entre os requisitos e
os elementos de software [65]. Padroes de projeto constituem boas solugbes de projeto
para problemas recorrentes dentro de um contexto particular 7, 20]. Padroes de projeto
identificam solugdes existentes e bem provadas, e a documentagao destes padroes facilita
o entendimento destas solugoes.

Este capitulo contém o artigo “An Ezception Handling Software Architecture for De-
veloping Robust Software” [22], que foi submetido para “5th IEEE International Sympo-
sium on High Assurance Systems Engineering”, a ser realizado de 15 a 17 de novembro
de 2000, em Albuquerque, New Mexico, México. Uma versdo resumida [24] deste artigo
foi aceita para o “2nd Workshop on Ezception Handling in Object-Oriented Systems -
ECOOP’2000” a ser realizado em 12 de junho de 2000, em Cannes, Franca. Este artigo
define uma arquitetura de software reflexiva para mecanismos de tratamento de excecoes
que serao utilizados na construgao de sistemas orientados a objetos confidaveis. Além dis-
so, este artigo propoe padroes de projeto que sao aplicados para documentar a estrutura
e o comportamento dos componentes arquiteturais de um mecanismo de tratamento de
excegoes.

74

ey
URICAm P
B IOTHCA CHM T

, TN

4.1. Introduction 75

An Exception Handling Software Architecture for
Developing Robust Software

Alessandro F. Garcia Delano M. Beder Cecilia M. F. Rubira

Institute of Computing
University of Campinas (UNICAMP)
Campinas, SP - Brazil
{afgarcia, delano, cmrubira}@dcc.unicamp.br

4.1 Introduction

Modern object-oriented software systems are getting more complex and have to cope with
an increasing number of error conditions to meet the system’s dependability requirements.
Dependable object-oriented software detects errors caused by residual faults and employs
fault tolerance measures to restore normal computation [38]. Exception and exception
handling provide a suitable scheme to detect and handle errors, and also incorporate
fault tolerance activities into software systems. The detection of an error will result in an
exception being raised, with an appropriate handler corresponding to the raised exception
being automatically invoked to implement the fault tolerance measures [38]. The presence
of ezception handling facilities can reduce software development efforts since they allow
software designers to: (i) represent errors as exceptions, (ii) define handlers to deal with
them, and (iii) use an adequate strategy for exception handling when the occurrence of
an exception is detected.

Moreover, object-oriented systems may be consisted of various execution threads (or
processes) executing methods concurrently on objects. Exceptions are more difficult to
handle and exception handling facilities to provide in concurrent object-oriented systems
than in sequential ones specially because of cooperative concurrency [9]. That is, several
concurrent threads usually cooperate to perform some system’s activity, giving rise to very
complex concurrent interactions. In this context, erroneous information may be spread
directly or indirectly through inter-thread communication during a cooperative activity. A
general approach for structuring cooperative activities and employing exception handling
in concurrent systems extends the well-known atomic action notion [9]. An atomic action
is formed by a group of participants which are executed by cooperating threads. The group
cooperate within the scope of an action and complex interactions are coordinated by the
action, including the management activities related to concurrent exception handling.

4.1. Introduction 76

Participants may join an action asynchronously but they have to leave it synchronously
to guarantee that no information is smuggled to or from the action. When an exception is
raised in any of the participants inside an action, all action participants should participate
in the error handling [9]. In general, different exception handlers for a same exception
have to be called in the participants. These handlers are executed concurrently in order
to handle the exception in a coordinated way. An additional difficulty is that several
exceptions can be raised concurrently by participants during a cooperative activity. In
this situation, a process of exception resolution is required to agree on the exception that
should be notified to all participants.

Exception handling facilities for sequential programs are usually incorporated in va-
rious modern object-oriented programming languages, such as C++ [35], Java [30] and
Eiffel [45]. However, very few languages give direct support to concurrent exception
handling (for instance, Arche [33]); but, in general, the solutions presented cope with
concurrent exception handling in a rather limited form. Recently some ‘ad hoc’ solutions
have been proposed to the provision of concurrent exception handling which extends pro-
gramming languages, such as Ada and Java [58, 72, 74]. However, we believe that these
recent proposals present complex solutions which are also very language-dependent and
error prone. Besides, these solutions can be very intrusive from the viewpoint of the
application since its normal code is usually amalgamated with explicit references and in-
vocations of procedures responsible for exception resolution and final synchronization of
the action participants. In addition, the task of software developers is also complicated
in the sense that they have to implement exception resolution functions for each coope-
rative activity of the system. Consequently, these solutions present exception handling
techniques which are difficult for software developers to use, and may produce software
products which are non-reliable and difficult to understand, maintain and reuse.

The present interest in software architectures and design reuse motivated us to develop
an exception handling software architecture for building robust software. The proposed
architecture provides a generic infrastructure which supports uniformly both concurrent
and sequential exception handling. Moreover, the exception handling architecture is in-
dependent of a specific programming language or exception handling mechanism, and its
use can minimize the complexity caused by handling abnormal behavior. Our architecture
provides during the first design stage the context in which more detailed design decisions
are made in later design stages related to exception handling. A software system’s quality
requirements (or attributes) are largely permitted or restrained by its architecture; so if
an appropriate architecture is chosen since the outset of the design phase, a proper use
of exception handling throughout the development life cycle of a system can be obtained.
The architecture is composed of four well-defined components: (i) the Ezception compo-
nent, (i) the Handler component, (iii) the Ezception Handling Strategy component, and

4.2. Exception Handling 77

(iv) the Concurrent Ezception Handling Action component. The structural and behavio-
ral aspects of the components are described by means of a set of design patterns. The
patterns follow the overall structure of the Reflection architectural pattern which allows a
clear and transparent separation of concerns between the application’s functionality and
the exception handling facilities, easing the task of building robust software.

The remainder of this text is organized as follows. Section 4.2 introduces a number
of concepts and difficulties related to exception handling, and also presents the general
abstraction for exception handling facilities. Section 4.3 presents object-oriented techni-
ques for design reuse and software structuring used for the development of the proposed
solution. Section 4.4 shows the proposed software architecture for exceptional condition
handling. Section 4.5 presents the set of design patterns for exception handling. Sec-
tion 4.6 discusses some implementation issues. Section 4.7 gives a brief comparison with
related work. Finally, Section 4.8 summarizes the conclusions of this work and suggests
directions for future work.

4.2 Exception Handling

4.2.1 Exception Handling in Sequential Systems

Developers of dependable systems usually refer to errors as exceptions because they are
expected to occur rarely during a system’s normal activity. These exceptions should be
specified internally into the system and an instance of an exception raised at run-time is
termed an ezception occurrence. Some extra-information about an exception occurrence,
such as its name, description, location, and severity [37], is usually required by an appli-
cation, and it is useful for handling an exception occurrence. Extra-information is passed
either explicitly by the application component that has raised the exception, or implicitly
by an exception handling service.

Dependable applications need to incorporate exception handling activities in order to
behave suitably in a great number of exceptional situations. Exception handling activities
are structured by a set of ezception handlers (or simply handlers). A handler is the
part of an application code that provides the measures for recovering the system from a
detected exception. A handler may be valid for one or more exceptions. Handlers are
attached to a particular region of normal code which is termed a protected region. Each
protected region may have a set of attached handlers, and one of them is invoked when
a corresponding exception is raised. Handlers can be attached to blocks of statements,
methods, objects, classes, or exception classes. Handlers attached to exception classes,
called default handlers, are the most general handlers, and must be valid in any part of
the program, independently of any execution context and object state. For the purpose

4.2. Exception Handling 78

of improving the writeability and structuring of the software systems, it is desirable to
allow some flexibility concerning the attachment of handlers. It is should be possible the
multi-level attachment of handlers, i.e., the attachment of handlers to several levels of
protected regions such as classes, objects, methods and so on.

An exception handling strategy should be followed after an exception occurrence is
detected. In general, the normal control flow of the computation is deviated to the ez-
ceptional control flow. The deviation of the control flow is followed by the search for a
suitable handler to deal with the exception occurrence. The handler search is performed
according to a search algorithm. When a handler is found, it is invoked and the compu-
tation is returned to its normal control flow. The returning point where the normal flow
continues also depends on the chosen model for the continuation, namely, the termination
model, or the resumption model. In the termination model, execution continues from the
point at which the exception was handled. Conceptually this means that the component
activity which raised the exception cannot be resumed. In the resumption model, the
execution has the capability to resume the internal activity of the component after the
point at which the exception was raised. The semantic of the termination model is simpler
and more suitable for construction of dependable software [10].

4.2.2 Exception Handling in Concurrent Systems

In this work, cooperative activities of a dependable concurrent object-oriented system
are structured as a set of atomic actions. We refer to these activities to as concurrent
cooperative actions (or simply actions). An action provides a mechanism for performing
concurrently a group of methods on a collection of objects. The interface of an action
includes its participants and methods (and their respective objects) that are manipulated
by the participants. In order to perform an action, a group of threads should execute each
participant in the action concurrently (one thread per participant). Threads participating
in an action cooperate within the scope of the action by executing methods on objects,
and exchange information only among ones that are participants of that action. Threads
cooperate and communicate each other by means of shared objects. The entries of partici-
pants in the action may be asynchronous but they have to leave the action synchronously
to guarantee that no information is smuggled to or from the action.

We introduce a banking service example based in [9] that illustrates the concepts of
concurrent exception handling. This example is also used throughout Section 4.5 to illus-
trate how our proposed approach can be employed. Figure 4.1(a) shows the structuring
of concurrent cooperative actions in the banking service example. Threads participating
in the action are represented by solid lines, inter-thread communication by dotted lines,
and actions by rectangles. Action participants are activated by threads which cooperate

4.2. Exception Handling 79

chron
Syn Jion ous\
' * structured
Action_ClearCheck : :
Excopton | (@) Statement e
wmlm]
*: T : BouncedCheck
Ch‘ck. Exception simple
e Cash e
InsufficientFunds
InsuffictentFunds WrongDate
@ Shared Object
(a) Cooperating Threads (b) Exception Tree

Figura 4.1: Banking Service Example.

within the action’s scope for performing the banking service. The participants of the
action Service are Client, Client’s Agency and Payer’s Agency. Consider a Client that pre-
sents a check (i.e., an object of the type Check) to his/her bank and receives a Receipt
that certifies the operation. To clear the check, the Client's Agency sends the Check to
Payer's Agency which has the payer’s account. Once Client’s Agency receives the Cash for
the check, it sends to Client a new Statement of his/her account. Actions can be nested
and exceptions may be propagated over nesting levels. In any moment, some action par-
ticipants can start nested actions. Figure 4.1(a) shows two nested actions for the action
Service. The participants Client and Client’s Agency perform the nested action BankMo-
ney, and the participants Client’'s Agency and Payer's Agency perform the nested action
ClearCheck.

Exception occurrences can be raised by participants during an action. Some of them
can be handled internally by a local handler attached to the participant that raised that
exception. We refer to these exceptions as local exceptions. Traditional exception han-
dling strategies address this kind of exception. If an exception occurrence is not handled
internally by a participant, then it should be handled cooperatively by all action par-
ticipants. This kind of exception is called a cooperating ezception, and, in this case, a
new concurrent exception handling strategy is required. When a cooperating exception
is raised in any of the participants inside an action, all action participants have to parti-
cipate in its handling. So, a set of cooperating exceptions is associated with each action.
Each participant has a set of handlers for (all or part of) these exceptions. Participants
are synchronized and probably different handlers for the same exception have to be in-
voked in all participants [9]. These handlers are executed concurrently, and cooperate to

4.2. Exception Handling 80

handle the cooperating exception in a coordinated way. Moreover, various cooperating
exceptions may be raised concurrently while participants are cooperating in the action.
So, a mechanism of ezception resolution is necessary in order to agree on the cooperating
exception to be notified to all participants of the action. The paper [9] describes a model
for exception resolution called ezception tree which includes an exception hierarchy. If
several cooperating exceptions are raised concurrently, the resolved exception is the root
of the smallest subtree containing all raised exceptions. Cooperating exceptions can be
of two different kinds in the exception tree: (i) simple exceptions, or (ii) structured ezcep-
tions. Simple exceptions are leafs of the tree and correspond to cooperating exceptions
being raised alone concurrently. Structured exceptions are non-leaf nodes and correspond
to two or more simple exceptions being raised concurrently. An exception tree should be
specified for each action of the application. In Figure 4.1(a), during the action ClearCheck,
two cooperating exceptions are raised concurrently, namely WrongDateException and In-
sufficientFundsException. Figure 4.1(b) presents the exception tree specified for the action
ClearCheck. The structured exception BouncedCheckException represents the concurrent
raising of the simple exceptions WrongDateException and InsufficientFundsException.

Participants of an action can leave it on three occasions. First of all, they can leave
the action if no exceptions were raised. Secondly, if cooperating exceptions have been
raised, but handlers have successfully handled them. Thirdly, they can leave the action
signaling a failure exception to the containing action if a cooperating exception has been
raised and no proper handlers were found or the handling of that exception is not possible.
There are at least two distinct approaches for concurrent exception handling: (i) the blo-
cking approach, and (ii) the pre-emptive approach. In blocking schemes, each participant
terminates by reaching the end of an action or fails by raising a cooperating exception.
Participants are informed of an exception occurrence only when they are completed (or
detect a cooperating exception); that is, when they are ready to accept information about
the state of other participants. In contrast, pre-emptive schemes do not wait but requi-
re some language feature to interrupt all participants when cooperating exceptions are
raised [59]. In blocking systems, exception handling and resolution are easier to provide
than in pre-emptive ones because each participant is ready for handling when handlers
are invoked. Moreover, there is no need to perform the abortion of nested actions becau-
se they have either been completed successfully or have had exceptions dealt by nested
action’s handlers.

4.3. Design Reuse and Software Structuring Techniques 81

Exception Handling
Facilities

: Sequential
i Exception Handling

Exception Handling
Strategy

Concurrent
Exception Handling
Strategy

;| Local Cooperating
i | Exceptions | | Exceptions Concaront

Exception Handling

Figura 4.2: Integration of Exception Handling

4.2.3 Integration of Sequential and Concurrent Exception Han-
dling

Figure 4.2 illustrates the integration of sequential and concurrent exception handling.
Sequential exception handling facilities include: (i) exceptions - the definition and raising
of local exceptions, and management of extra-information about exception occurrences,
(ii) handlers - the definition and invocation of handlers, and (iii) exception handling
strategy - the specification of an algorithm for handler search, and a model for continuation
of the control flow. As discussed earlier, concurrent exception handling requires some extra
support not required by sequential systems. So, an integrated approach to exception
handling should support both local and cooperating exceptions, and also a concurrent
exception handling strategy. Ideally the concurrent exception handling strategy should
be consistent with the exception handling strategy (of the sequential exception handling).
In this work, the strategy for concurrent exception handling extends the atomic action
paradigm described previously.

4.3 Design Reuse and Software Structuring Techni-
ques

4.3.1 Software Architecture and Patterns

A system’s software architecture abstractly describes the system’s gross organization in
terms of components and their interrelationships [65]. Components are physical and repla-
ceable parts of a architecture, and to each component are attached responsibilities. The

4.3. Design Reuse and Software Structuring Techniques 82

components must interact with each other in the described fashion, and each component
must fulfill its responsibilities to the other components as dictated by the architecture.
Each component conforms to and provides the realization of a set of interfaces [3]. The
interfaces make available services which are implemented by the component.

Software patterns are an important vehicle for constructing high-quality architectu-
res [2]. Patterns are useful mental building-blocks for dealing with limited and specific
design aspects when developing a software architecture. Patterns are discovered rather
than invented, and they exist in various ranges of scale. Architectural patterns, for ins-
tance, define the basic structure of an architecture and systems which implement that
architecture [7]. Design patterns are however more problem-oriented than architectural
patterns, and are applied in later design stages. Usually, the selection of a design pattern
is influenced by the architectural pattern that were previously chosen. A design pattern
expresses a very specific recurring design problem and presents a solution to it, all from
the viewpoint of the context in which the problem arises [7]. Moreover, a design pattern
must balance, or trade off, a set of opposing forces. Design patterns refine the general
components of an architecture, providing the detailed design solutions.

In this work, each component of the proposed architecture implements a design pattern
which describes the design of the corresponding component. The proposed architecture’s
components and their corresponding design patterns follow the overall structure of the
Reflection architectural pattern [7]. This pattern captures the benefits from computational
reflection and meta-level architectures which are described in the next section.

4.3.2 Meta-Level Architectures and Computational Reflection

Computational reflection is a technique that allows a system to maintain information
about itself (meta-information) and use this information to adapt its behavior [43]. This
information is obtained by means of a process called reification. Reification is the repre-
sentation of abstract language concepts such as classes and methods in form of objects.
In the object model, reflection establishes a meta-level architecture which achieves a se-
paration of concerns between applications and management mechanisms by extending
transparently the semantics of the underlying system. Meta-level architectures are com-
posed of at least two dimensions: (i) a base level (or application level), and (ii) a meta-level
(management level). The base-level encompasses the objects responsible for implementing
the functionality of the application. The meta-level encompasses the objects that deal
with the processing of meta-information and management activities of an application.
The meta-level objects (meta-objects) maintain structural and behavioral information of
application objects. A meta-object protocol (MOP) establishes an interface of commu-
nication between base-level and meta-level objects. MOP provides a high-level interface

4.4. The Software Architecture for Exception Handling 83

mo
[
Base Level , N E<<rcﬂcct>>
T4
m1()
X i (6}

result

Figura 4.3: A Meta-Level Software Architecture.

to the programming language implementation in order to reveal the program information
normally hidden by the compiler and/or run-time environment [43]. As a consequence,
programmers can develop language extensions without any change to the programming
language.

Computational reflection can be used to intercept, verify and modify transparently
the effects of operations of the object model. For the purpose of illustration, suppose
that for each base-level object o exists a corresponding meta-object mo that represents
the behavioral and structural aspects of o. As illustrated in Figure 4.3, if an object x
invokes a method m1 on an object o, MOP intercepts this invocation, reifies the base-level
computation and the meta-object mo takes over execution; later mo returns (reflects) the
result to x. From the point of view of the object x, computational reflection is transparent:
x sends a message requesting a method to o, and receives the result with no knowledge
that the message was intercepted and alternatively altered by the meta-object.

4.4 The Software Architecture for Exception Han-
dling

4.4.1 The Basic Architecture

This section presents a generic software architecture that integrates sequential and concur-
rent exception handling (Figure 4.4). Applications reuse our architecture to handle their
exceptional situations by using the exception handling facilities provided by the architec-
ture’s components. The architecture is composed of four components: (i) the Ezception
component, (ii) the Handler component, (iii) the Ezception Handling Strategy component,
and (iv) the Concurrent Ezception Handling Action component. Table 4.4.1 summarizes
the components and their responsibilities. The responsibilities are classified into two
kinds: (i) application-dependent responsibilities (ADR), and (ii) application-independent

4.4. The Software Architecture for Exception Handling 84

IRaising
1Get
Information
Exception
1Update
Information
linvocation get :
-i] ~._get and update
extra mform.aﬁon : % . -i.t&ormation
etandl u te ‘
e:%tra-intogﬁon Concurrent
Handl : Exception ﬁ
] Handling 1Cooperation
Action
= E
fovoke's: 5
handler s ’ .*" search
- e ! ." handler
% 4
Exception
Handling

Figura 4.4: The Software Architecture for Exception Handling

responsibilities (AIR).

Application-dependent responsibilities are directly related to the application’s func-
tionality and include, for instance, facilities for specification of exceptions and handlers,
raising of application exceptions, and specification of concurrent cooperative actions. The
achievement of these responsibilities is application-dependent. As a consequence, the ar-
chitecture’s components provide the application developers with appropriate support in
order to fulfill their application-dependent responsibilities. Developers of applications ei-
ther invoke services provided by the architecture’s component interfaces (Section 4.4.2), or
else refine the design of architecture’s components according to their needs (Section 4.4.3).
For instance, application’s components invoke the service provided by the Ezception com-
ponent in order to raise an application exception. Application designers tailor the Ez-
ception, Handler and Concurrent Ezception Handling Action components to specify res-
pectively exceptions, handlers and concurrent cooperative actions of their applications
(Section 4.4.3). Exceptions, handlers and concurrent cooperative actions are part of the
application’s functionality.

4.4. The Software Architecture for Exception Handling 85

| Component Responsibilities

1 | Exception Specification and raising of local and cooperating exceptions (ADR)
Management of extra-information (AIR)

2 | Handler Specification of handlers (ADR)

Invocation of handlers (AIR)
3 | Exception Handling Search of handlers (AIR)

Strategy Deviation of the control flow (AIR)
4 | Concurrent Exception | Specification of concurrent cooperative actions (ADR)
Handling Action Synchronization and exception resolution (AIR)

Table 4.4.1: Components and their Responsibilities.

Application-independent responsibilities include, for instance, facilities for extra-information
management, handler invocation, deviation of the control flow, handler search, participant
synchronization and exception resolution. These responsibilities are related to manage-
ment activities of exception handling. Components of our proposed architecture perform
their management activities in a way that is transparent to the application (Section 4.4.3).
As a result, the application developers concentrate their attention to the application’s
functionality and reuse the management activities for exception handling defined by the
architecture. The architecture’s components interact with each other as prescribed by the
architecture in order to fulfill their application-independent responsibilities.

Figure 4.4 pictures the components and their interrelationships. The FEzception com-
ponent works as an extra-information holder component. It keeps extra-information about
application exceptions which are used by the other components to achieve their respon-
sibilities. Then the other components interact with the Ezception component in order to
get and update extra-information about exception occurrences. The Ezception Handling
Strategy component implements the services related to the general strategy for excep-
tion handling. Its responsibilities are the deviation of the control flow and the search
for handlers. Therefore, this component plays a central role in the architecture and
interacts with all other components. It asks the Ezception component to provide extra-
information about an exception occurrence while searching for its corresponding handler.
After handler is found, it asks the Handler component to invoke the exception handler.
The Ezception Handling Strategy component also interacts with the Concurrent Ezception
Handling Action component. The later uses the services provided by the former in order
to carry out the strategy for concurrent exception handling. For example, if one or more
cooperating exceptions have been raised during a action, and the exception resolution has
been accomplished by the Concurrent Ezception Handling Action component, it asks the
Ezception Handling Strategy component to search the different handlers for the resolved
exception.

4.4. The Software Architecture for Exception Handling

86

[Rasing IGetinformation [UpdateInformation Tnvocation ISearch ICooperation
<<public interfaces> <<public interface>> | | <<public interfaces> <<private interface>> <<private interf; public interf:
raise{) getName() setName() invokeHandler() searchHandler() join()

getDescription() setDescription() getSharedObject()
getLocation() setLocation() griNestedAction()
getSimpleExceptions()
] " L))] 1
Exception Conwnant
Exception Handiler Handling E‘:”P‘!""
Sysay Action

Figura 4.5: The Detailed Interfaces.

4.4.2 Interfaces of the Components

The interfaces of the components provide the exception handling services provided by
the architecture’s components. The interfaces are accessed either by the architecture’s
components themselves, or by the application while using the exception handling services.
Figure 4.4 illustrates the architecture’s components and their interfaces. The interfaces
are classified in two sets: (i) the private interfaces, and (ii) the public interfaces. Private
interfaces define the services that are only accessed by the components of the architecture.
Public interfaces define the services that may be also accessed by the application reusing
the architecture. Figure 4.5 depicts all of the interfaces conformed by each architectural
component. :

The Ezception component implements three public interfaces: (i) the interface IRai-
sing, (ii) the interface IGetInformation, and (iii) the interface |Updatelnformation. The
interface IRaising allows the application to raise exceptions by invoking the method raise.
The interface 1Getinformation makes some services available for the application and other
architecture’s components to obtain extra-information about the exception occurrences.
Finally, the interface |Updatelnformation allows the application and the other components
to update extra-information about exceptions.

The Handler component implements the private interface llnvocation. This interfa-
ce allows the Ezception Handling Strategy component to invoke an exception handler
when this component has found an appropriate handler. The Ezception Handling Stra-
tegy component conforms to the private interface ISearcher that provides the Concurrent
Ezception Handling Action component with the service for handler search. The Concur-
rent Ezception Handling Action component implements the public interface |Cooperation
which provides the application with means of performing concurrent cooperative actions.

The components collaborate to realize the set of scenarios of the architecture. Figu-
re 4.6 illustrates a scenario by means of a sequence diagram. This scenario shows the
interactions between the application and the interfaces of the architecture’s components

4.4. The Software Architecture for Exception Handling 87

_ . Concurrent
) a Exception Handling Excepkg: Handling
Exception andler Strategy on
Component Component Compaonent Component
— | 1 | {1t i
Application :[Raising 1Getinformation Information IInvocation :ISearch :ICooperation
11: join() : : ‘. : :)
] ! ! ! ' ' 2: method() !
!3; getSharedObject() ; | :] ' R
i ‘ 4: setDescription() : 5 E i i sl]
a thread starts = 5: raise() ! | i i) | ispassed
its participation T : : : e implicily
in the action] ' L L . e T
T m:m hhe i i T geﬁmiplcﬁxcepum\s(ucepﬁun)
handler obtains explicitly ! ! | 8 searchHandier{resolvedException);
for hanﬁic:;um' | i i 9:invokeHandler(resolvedException] i
] [] I ¢ — e |
LT ; ! 10: handler(resolvedException) .
».1_11: getDescription() ¢ : i
"1 12 getLocation() : K

i "
1 13: getSharedObject() :) :) i
] 1]

Figura 4.6: A Scenario of the Proposed Software Architecture.

in order to handle a cooperating exception that was raised during a concurrent coopera-
tive action. A thread of the application invokes the method join in order to take part in
the the action and perform a specific action participant (1). The Concurrent Ezception
Handling Action component invokes the application’s method to be executed by the ap-
plication’s thread (2). While this method is being carried out by the participating thread,
it obtains the shared objects used for inter-thread communication (3), and passes explici-
tly extra-information concerning the exception occurrence (4). During its execution, the
application’s method raises a cooperating exception (5).

After exception is raised, the architecture’s components interact with each other to ac-
complish the management activities. Extra-information about that exception occurrence
is updated implicitly by the components (6). The action participants are synchronized and
exception resolution process is executed within the Concurrent Ezception Handling Ac-
tion component. During the resolution, this component communicates with the Ezception
component in order to obtain extra-information about the raised cooperating exceptions
(7). The Concurrent Ezception Handling Action component asks the Ezception Handling
Strategy component to search the handler for the resolved exception (8), and the later asks
the Handler component to invoke it (9). The Handler component invokes the handler de-
fined in the application (10). The handler obtains extra-information useful for handling
the resolved exception (11-12), and shared objects that are used in the cooperation with
the other handlers being executed concurrently (13).

4.4. The Software Architecture for Exception Handling 88

4.4.3 The Architecture Refinement

Separation of Concerns. As stated previously, software designers tailor the components
of the proposed architecture to add the functionality related to specific applications. Note
that each architectural component may include application’s functionality and manage-
ment activities for exception handling. In order to obtain a clear separation of concerns
between the application’s functionality and the exception handling services, the archi-
tecture and their components incorporate a meta-level architecture, following the overall
structure of the Reflection pattern (Section 4.3.1). Figure 4.7 presents the proposed meta-
level architecture which is composed of two dimensions: the base level, and the meta-level.
The architecture’s base level encompasses the application-dependent elements, such as
exceptions, handlers, normal activities, and concurrent cooperative actions. The archi-
tecture’s meta-level consists of meta-objects which perform the management activities for
exception handling.

Transparency. The Reflection pattern also captures the benefit of transparency obtained
by means of computational reflection. For the purposes of this work, object states, results
and invocations of methods of the application (base-level) are intercepted and reified by
the MOP, and potentially checked and altered by the meta-objects (meta-level) in order
to carry out the management activities for exception handling. For instance, results of
methods are checked transparently by the meta-objects to verify if such methods have
raised any exception. MOP intercepts at run-time the exceptional results and deviates
the normal control flow of the base-level application to the exceptional one at the meta-
level. When the management activities are finished, MOP returns the computation to
the application’s normal flow. Therefore, the meta-objects execute their management
activities transparently from the viewpoint of the base-level.

Refinement of the Components and Design Patterns. While application designers
reuse the architecture and refine its components to satisfy their needs, some problems arise
in this context, such as: (i) how do they specify the simple and cooperating exceptions?
and how do they do it uniformly?, (ii) how do they specify the handlers?, and (iii) how to
execute the synchronization of the action participants and other management activities in
a way that is transparent to the application?. In this work, design patterns are proposed
in order to refine the general components of the proposed architecture, providing the
detailed design solutions. The proposed design patterns present solutions for specific
design problems of the corresponding components, and are used to describe the design
and dynamics aspects of each architectural component.

4.5. Design Patterns for Exception Handling 89

. Concurrent
Exception Handling Exception Handling
Management Exception Handler Strategy Action
Activities Pattern Patiern Pattern Pattern Exceptional
Control Flow
W = [1 —
werefys> | wcreify»> | <grilys> | <creifys> | 1
T B e e e B R
|| <srefleco> | | <<relleco> || cerelleco> 1 <<rellecon
Base Level i I
‘ H Normal
Application ; Conatrol Flow
Exceptions Handlers

Figura 4.7: The Architecture Refinement.

4.5 Design Patterns for Exception Handling

4.5.1 The Ezception Pattern

Context. Software designers want to specify the local and cooperating exceptions of
their applications. These exceptions may be raised at run-time during the application’s
normal activity. Extra-information is required by the application in order to handle an
exception occurrence.

Problem. The software architecture should provide means by which the application
developers define and raise the local and cooperating exceptions. Moreover, a flexible and
reusable software architecture is required to make the exception specification easier and
to separate concerns between application exceptions and extra-information management.
Several forces are associated with this design problem:

e Local and cooperating exceptions should be defined uniformly.
o The effort of software designers to compose exception trees should be minimized.

e The exception occurrence itself should keep extra-information necessary for its han-
dling.

Solution. Use the Reflection architectural pattern in order to separate classes respon-
sible for managing extra-information (meta-level) from the ones used to specify applica-
tion exceptions (base level). Different types of exceptions are organized hierarchically as
classes which are termed ezception classes. Exception occurrences are base-level objects
created at run-time when an exception is raised, and are termed ezception objects. Ex-
ceptions are raised by calling the method raise on exception objects. Meta-objects are
associated transparently with exception objects for keeping extra-information about the

4.5. Design Patterns for Exception Handling 90

MetaException
t
Activities selLocanon()
Banking Service
— o} Apstlastion
G oo T e -
Base Level 4 Exception
Exception
Application 0 2
setLocation()
< i [|
— & ! \‘;’r‘m\gbmc InsufficientFunds| Smﬁ
= ception Exception Exception
setl fon() '
Application’ Applicaton’s -
l.ocll&up:ms — Simple Exceptions ") , BouncedCheck
(v e = 7 (e s @ 7 -[Simple Exceptions Exception
. dBxceys
ool || Lecal || Swple || Smpi || eRSimplcEsoion)
E } i 4 P Structured Exception
(a) General Structure (b) An Example

Figura 4.8: Class Diagram for the Ezception Pattern.

exception occurrences. Extra-information is reified as meta-information. A meta-object
keeps meta-information collected at run-time about the corresponding exception occurren-
ce. Meta-objects alter transparently the state of the exception objects in order to make
this information available for the application. As a result, the exception object keeps
extra-information necessary for its handling. The application accesses this information
by invoking methods on exception objects.

Structure. The Ezception Pattern consists of exception classes, and meta-objects. Meta-
objects of the type MetaException are associated with instances of base-level exception
classes, i.e., meta-objects are associated with exception objects. Application developers
are provided with three main exception classes — LocalException, CooperatingException and
StructuredException (Figure 4.8(a)). These classes derive from the root class Exception.
The class LocalException defines the local exceptions of applications; it is subclassed by
application designers in order to specify the local exceptions. Exception trees are easily
specified — an application developer only needs to create a class for each simple exception
by subclassing the class CooperatingException, and a new instance of the class Structure-
dException for each structured exception. An exception object of the type StructuredEx-
ception stores the simple and/or structured exceptions which compose it. The method
getSimpleExceptions returns the simple exceptions that compose a structured exception.

4.5. Design Patterns for Exception Handling 91

Exception Handling

Handler Pattern Strategy Pattern
Insufficient
:Exceptional ‘Meta ‘Meta
Account <:> El’-‘tmgsm Exception QZD Scsvchir
the object EANS]
contains setLocation(withdray, Nisiiny (P aY CIo yerAgency)
the handler a, ;
getLocation() O
extra- AN
information
the exception about the location
object
<]:> Relationship Patterns
Base Level Meta-Level

Figura 4.9: Interaction Diagram for the Ezception Pattern.

Figure 4.8(b) shows an instance of the proposed pattern for defining an exception tree in
the banking service application (Section 4.2.2). This scheme for definition of exception
trees is similar to the structure of the Composite design pattern [20].

Dynamics. Figure 4.9 presents the interaction diagram that illustrates a scenario for the
banking service example (Section 4.2.2). A meta-object (of the type MetaSearcher), asso-
ciated with the application object that has raised the exception InsufficientFundsException,
reifies extra-information about the location where the exception was detected. The infor-
mation includes the method, the action and the action participant where the exception
was raised. This meta-object sends the extra-information to the meta-object associated
with the application’s exception object that represents that exception occurrence. The
meta-object updates extra-information about the exception occurrence by invoking trans-
parently the method setLocation on the application’s exception object. The invocation
and the update are transparent from the viewpoint of the application. Then the method
getLocation is invoked by the application handler in order to receive the extra-information
related to the location.

Known Uses. The representation of exceptions as classes is a design solution adopted
by several systems and programming languages, such as Java, C++ and Arche.

Consequences. The Ezception Pattern offers the following benefits:

e Uniformity. Both local and cooperating exceptions are uniformly defined as classes.
Moreover, the Ezception pattern adopts the Composite pattern to define exception
trees. As a result, it allows application designers to treat simple exceptions and its
compositions (structured exceptions) uniformly.

e Simple to Use. Exception trees are easily defined. The proposed base-level classes

4.5. Design Patterns for Exception Handling 92

allow application developers to define exception trees without writing an excep-
tion resolution procedure for each concurrent cooperative action of the application.
The exception resolution process is performed transparently by the meta-level (Sec-
tion 4.5.4).

o Reusability and Eztendibility. The representation of local and cooperating excep-
tions as classes promotes the reusability and extendibility of the exception classes.
In addition, the separation of concerns provided by the Ezception pattern also pro-
motes the reusability of the management services.

o Readability and Maintainability. Applications whose exceptions are represented as
objects are easier to understand and maintain than applications where exceptions
are simply symbols (numbers or strings) [25].

o FEasy incorporation of default handlers. Since exceptions are represented as classes,
default handlers can be defined as methods on exception classes. In case the appli-
cation developers have not defined more specific handlers, the handler method on
the exception class can be activated by the meta-level.

4.5.2 The Handler Pattern

Context. Software designers want to specify the handlers for the local and cooperating
exceptions that are expected to occur during the normal activity of their applications. A
handler is invoked when the corresponding exception is raised.

Problem. The infra-structure of the software architecture should be organized in order to
allow application developers to define the exception handlers in a way that separates them
from the application’s normal activity. In addition, this infra-structure should promote
the separation between the application components containing the exception handlers and
the architectural components responsible for invoking the eligible handler. The following
forces shape the solution:

e Exception handlers for local and cooperating exceptions should be defined in an
uniform manner.

e The software architecture should include multi-level attachment of handlers (Sec-
tion 4.2.1).

Solution. Use the Reflection architectural pattern in order to separate the class respon-
sible for invoking handlers (meta-level) from the classes used to specify the application
handlers (base level). The base-level defines the application classes that implement the

4.5. Design Patterns for Exception Handling 93

MetaHandler MetaHandler
Management invokeHandler() ement invokeHandler()
Activities l'la’A mgi ities
[L
Meta-Level <arify>>) | Meta-Level <<rify>>| |
------------------ il L e §
Base Level ' ccreflects Base Level i ‘: <<reflect>>
Ly - =¥
ExceptionalClass Banking Servi ExceptionalAccount
Application Application
handler1() wrongDate()
handler2() insufficientFunds()
bouncedCheck()
(a) General Structure (b) An Example

Figura 4.10: Class Diagram for the Handler Pattern.

handlers for local and cooperating exceptions. The meta-level consist of meta-objects
responsible for invoking the handlers.

Structure. The Handler Pattern consists of two kinds of elements: (i) exceptional clas-
ses, and (ii) meta-objects of the type MetaHandler (Figure 4.10(a)). The ezceptional
classes are located at the base-level and define the error handling activities of a specific
application. The methods of exceptional classes are the handlers for the local and coo-
perating exceptions raised during the execution of normal classes’ methods. The normal
classes are located at the base-level and implement the application’s normal activities
(see Section 4.5.3). Therefore, exceptional classes implement the handlers of the appli-
cation and they are attached to the corresponding normal classes. Meta-objects of the
type MetaHandler are associated with exceptional classes, and are responsible for invoking
transparently the exception handlers.

Exceptional classes can contain handlers attached to classes, objects and methods.
Each exceptional class may contain handlers for coping with the local and cooperating
exceptions; they are invoked when these exceptions are raised during the execution of
methods of the corresponding normal class. Figure 4.10(b) shows an instance of this
pattern for the banking service example. The methods of the ExceptionalAccount are the
handlers for the simple and structured exceptions that can be raised while the methods
of the corresponding normal class (the class NormalAccount — Section 4.5.3) are being
executed during a concurrent cooperative action.

Dynamics. Suppose the method withdraw is being executed concurrently during a con-
current cooperative action and raises the exception InsufficientFundsException; another

4.5. Design Patterns for Exception Handling 94

Exception Exception Handling
Pattern Strategy Pattern
:Insufficient Exceptlonal ‘Meta ‘Meta
Fund;on <:{> Account Handler l<kr‘_‘|’> Searcher
the handler [invokeHandl ion, HouncedCheck
obtains extra- . e“:f:;“lh Abounrted xception) e mcmg?ﬁﬁr_l_ prsseCmie
L. getLocation() o) object and
Jl E the handler nams
! successfull
: AN exception handling
invocation of
the handler
I <= Relationghip between Patterns
Base Level Meta-Level

Figura 4.11: Interaction Diagram for the Handler Pattern.

method is being executed concurrently during this concurrent cooperative action and also
raises an exception, the exception WrongDateException. The concurrent raising of these
simple exceptions means the occurrence of the structured exception BouncedCheckExcep-
tion, and the subsequent invocation of the handlers to deal with this structured exception.
Figure 4.11 illustrates the transparent invocation of the appropriate handler by the meta-
object associated with the exceptional class. During the execution of the handler, it gets
extra-information about the location where the exception InsufficientFundsException was
raised.

Known Uses. The work [31] also uses the computational reflection technique in order to
obtain meta-information about the application and invoke the suitable handler when an
exception is raised. Meta-level structures implement the exception handling mechanism
while at the base level resides the application. Finally, handlers also are implemented as
ordinary methods. The approach presented in [48] uses a variant of the Handler pattern.
This variant transfers the handler methods from the exceptional classes to the meta-
level. The meta-objects associated with the normal classes contain application’s methods
responsible for performing the exception handling. Instead of utilizing reflective principles
to complete the separation between application and management mechanisms, this variant
explores reflection to separate normal and exceptional code of the application.

Consequences. The Handler Pattern offers the following consequences:

e Uniformity. Handlers for both local and cooperating exceptions are defined uni-
formly as methods of exceptional classes.

o Readability and Maintainability. The pattern provides explicit separation betwe-
en normal and error-handling activities, which in turn promotes readability and

4.5. Design Patterns for Exception Handling 95

maintainability.

e Flezibility. The multi-level attachment of handlers allows developers to attach han-
dlers to the respective levels of classes, objects and methods.

e Reusability. The use of normal and exceptional classes allows application designers
to compose an ezceptional class hierarchy that is orthogonal to the normal class
hierarchy of the application. The exceptional classes are organized hierarchically so
that resultant hierarchy is orthogonal to the normal class hierarchy. Exceptional
class hierarchies allow exceptional subclasses inherit handlers from their superclasses
and, consequently, they allow exceptional code reuse. When reuse is not desired,
the handler method can be redefined at the subclasses.

e Minor loss in writeability. A protected region can not be defined as a statement.

e Lack of Static Checking. A possible disadvantage of this pattern is that may not
be easy to check statically if handlers have been defined for all specified exceptions.
However, alternative solutions may be applied (Section 4.6).

4.5.3 The Ezception Handling Strategy Pattern

Context. Exception occurrences can be detected during execution of a protected region
of the application’s normal activity. The normal control flow is deviated to the exceptional
one and an appropriate handler is searched.

Problem. The software architecture should be organized in a disciplined manner: the
components responsible for the deviation of the normal control flow and for the handler
search should perform their management activities in a non-intrusive way to the applica-
tion. The following force arises when dealing with such a problem:

e The chosen model for continuation of the control flow should be termination since
it is more suitable for developing dependable systems (Section 4.2.1).

Solution. Use the Reflection architectural pattern in order to separate classes responsible
for the management activities (meta-level) from the ones that implement the normal ac-
tivities of the application (base level). The base-level defines the application’s logic where
normal classes implement the normal activities. The meta-level consists of meta-objects
which search transparently for the exception handlers. Meta-objects are associated with
instances of the normal classes, and maintain meta-information concerning the protected
regions defined at the base-level. A protected region can be a method, an object, and a
class. MOP itself is responsible for intercepting method results and changing the normal

4.5. Design Patterns for Exception Handling 96

MetaSearcher
Management handieResult() MetaSearcher
Ac?i%’lﬂes searchHandler() NﬁdleReu:ll()
isItaCooperating Management AEEb i)
Exception() Activities ishaCooperaung
L
Meta-Level «:re].fp:-i E NstiLevel -:cm:fp:»? '
----------------- e T | —
Base Level | ! ecrefleco> Base Level <<refleco>
g L
NormalClass Banking Service N
10 Application |
method2() deposit()
withdraw()
(a) General Structure (b) An Example

Figura 4.12: Class Diagram of the Ezception Handling Sirategy Pattern.

control flow to the exceptional one when exceptions are detected by transferring control to
the meta-level. With the available meta-information, meta-objects find the handler that
should be executed when an exception occurrence is detected in a given protected region.
When the execution of the handlers is finished successfully, MOP returns the control flow
to the application’s normal computation according to the termination model.

Structure. The Ezception Handling Strategy Pattern introduces two types of elements:
(i) normal classes, and (ii) meta-objects of the type MetaSearcher (Figure 4.12(a)). The
normal classes are located at the base-level and define the normal activities of a specific
application. They are attached to the corresponding exceptional classes. Figure 4.12(b))
pictures an instance of this pattern for the banking service application. This figure shows
the normal class NormalAccount; it is attached to the exceptional class ExceptionalAccount
(Section 4.5.2). Meta-objects of the type MetaSearcher are associated with instances of
normal classes, and are responsible for the interruption of the normal control flow and
the handler search.

Dynamics. Figure 4.13 presents the interaction diagram for the banking service example.
The method withdraw is being performed concurrently during a concurrent cooperative ac-
tion. The exception InsufficientFundsException is returned as the result of withdraw since it
has raised this exception during its execution. MOP intercepts and reifies the result of wi-
thdraw, and notifies the meta-object about the exceptional result by means of the method
handleResult. The meta-object checks if the exception occurrence is a local or a coope-
ration exception. If it is a local exception, the meta-object searches immediately for the

4.5. Design Patterns for Exception Handling 97

Concurrent Exception

Handling Action Handler
Pattern Pattern
‘Meta <:> :Normal :Exceptional :Meta <:> :Meta
Participant Account Account Searcher Handler
3 L withdraw()
mm{ggﬁon o | _ handleReshlt(InsufficientFundsExceptipn)
normal flow In.suEﬂ';cme;rétUI;nnds : isltaCooperatingException()
delegate to [N Insufficient Funds I.usulE’.ﬁxctﬁ ‘.fn'md"’ the exception N
synchronization & | Exception a, object and the
exception resolution @] 1] hewdiar nasre
searchHandler(bouncedCheck 1
= i) ; invokeHandler(exception| bouncedCheck)
invocation of h-_ L bouncedCheck()
the {
handler J— ¥
= successfull
exception handling
<H> Relationship betwepn Patterns
- - - »= Intercepted Messa,
Base Level Meta-Level

Figura 4.13: Interaction Diagram for the Ezception Handling Strategy Pattern.

exception handler based on the available meta-information. Otherwise, the cooperating
exception is firstly delegated to the meta-object responsible for the participant synchroni-
zation and exception resolution. InsufficientFundsException is then delegated since it is a
cooperating exception. After exception resolution is accomplished, the meta-object is re-
quired to find a handler for the resolved exception, the exception BouncedCheckException.
The handler is found and the invocation of it is delegated to the appropriate meta-object
(Section 4.5.2). Since the exception handler is executed successfully, the control is pas-
sed to the meta-object responsible for the participant synchronization, which in turn will
deviate the exceptional control flow to the normal one.

Known Uses. The work [48] presents a variant of the Ezception Handling Strategy
pattern. In this variant, the exception itself is the reified entity instead of a method
result. This alternative design solution allows the exception itself to control the handling.
Consequently, it is possible to implement the resumption model since the control flow is
stopped exactly at the point of the exception raising. The work [31] uses the reflection
technique in order to obtain at compile-time information concerning protected regions
and the handlers that are attached to them.

4.5. Design Patterns for Exception Handling 98

Consequences. The Ezception Handling Strategy Pattern offers the following consequen-
ces:

e Transparency. The meta-level objects bind transparently the normal activity and
corresponding handlers without requiring from programmers the use of new keywords
to specify protected regions.

o Readability and Maintainability. The normal code is not amalgamated with the
exceptional code. As a consequence, both normal and exception code are easier to
read and maintain.

o Compatibility. The Ezception Handling Strategy pattern can be used together with
an exception handling strategy implemented in the underlying programming lan-
guage, and they can complement each other.

4.5.4 The Concurrent Ezception Handling Action Pattern

Context. Software designers want to specify concurrent cooperative actions. These
actions must be controlled at run-time and their participants have to leave the action
synchronously. During the execution of an action, a number of cooperating exceptions
can be raised. As a consequence, a service of exception resolution is necessary to agree
on the cooperating exception to be handled by all participants of the action.

Problem. The software architecture should provide means by which the software de-
velopers define the concurrent cooperative actions of their applications. Moreover, an
disciplined and flexible approach is required to separate concerns and minimize depen-
dencies between the concurrent cooperative actions of the application and the strategy
for concurrent exception handling (i.e. the management mechanisms for synchronization
and exception resolution). Several forces are associated with this design problem:

e The definition of concurrent cooperative actions should be done in a structured
manner to avoid an increase in the software’s complexity.

o The inter-thread communication should use shared objects (Section 4.2.2).

e The strategy for concurrent exception handling should be a consistent extension of
the general strategy for exception handling.

e The blocking approach should be used for concurrent exception handling since it
simpler and easier to implement (Section 4.2.2).

4.5. Design Patterns for Exception Handling

et | Acsion
acons
I E ; [I§
: Bank
Revies Money %k
MenActon MetaParucipant .
handicOperation() pp— Participant
synchronize() nandieRewil)
resol veExcrption() ¢
Mes Level ' . I L 1
Gn)-- 22 e
------- Sy s s s e] e S e A o . : Pa
Base Leve! | sl it LA Agency Agéncy
Action Paricipant
if.'.'."!."m objest Thread
:ﬂ joim0) I ,-'.T"‘-..
peiSharedObyectt) NormalClass < : e,
peiNenedObect) method 1()
o et method2() thread1 thread? thread3
(a) General Structure (b) An Example

Figura 4.14: Class Diagram of the Concurrent Ezception Handling Action Pattern.

4.5. Design Patterns for Exception Handling 100

Solution. Use the Reflection architectural pattern for segregating classes responsible
for the management mechanisms (meta-level) from the classes which must be derived
for defining the concurrent cooperative actions of the application (base-level). Based on
a meta-level architecture, the Concurrent Ezception Handling Action pattern separates
objects into well-defined levels. The base-level provides developers with classes for creating
the concurrent cooperative actions of their applications; the definition of nested actions is
also supported in order to control the system’s complexity and allow better organization of
both normal and error handling activities of the enclosing action. MOP itself intercepts
and reifies invocations of methods and their results. The meta-level implements the
management mechanisms based on reified invocations and results, and on the available
meta-information.

Structure. The Concurrent Ezception Handling Action Pattern introduces five types of
objects: (i) Action, (ii) Participant, (iii) Thread, (iv) MetaParticipant, and (v) MetaAction
(Figure 4.14(a)). The class Thread represents the threads which intend to participa-
te in a concurrent cooperative action. Developers create their threads, and extend the
classes Action and Participant by subclassing them to implement their'concurrent coope-
rative actions. Instances of these subclasses represent at run-time a specific action and
their participants respectively. Developers should redefine the method ‘ConfigureShare-
dObject while subclassing the class Action. The method ConfigSharedObject implements
the application-dependent activity which consists of creating shared objects used for pur-
pose of inter-participant communication (inter-thread communication). In order to access
these objects, each participant have to ask to its corresponding action references to these
objects by means of the method getSharedObject. If an action is composed of one or more
nested actions, developers should also redefine the method ConfigNestedActions in order to
create the objects that represent the nested actions. In order to access these objects, each
participant have to ask to its corresponding action references to these objects by invoking
the method getNestedAction. Each object of the type Participant holds references to: (i)
its action, and (ii) an object and its method that will be executed during the action by a
thread. Instances of the class Action have references to: (i) action participants, (ii) inter-
nal and failure exceptions, (iii) its parent (enclosing action), (iv) its nested actions, and
(v) shared objects. Internal exceptions are the exceptions that should be handled within
action by all action participants, while external exceptions are the exceptions that should
be signaled to the enclosing action. Figure 4.14(b) shows an instance of the proposed
pattern for defining the actions, the participants, and the threads for the banking service
application.

Instances of the class MetaParticipant are associated with instances of subclasses of
Participant. These meta-objects are responsible for: (i) execute the application’s method
which is held by its associated participant, (ii) inform to its corresponding MetaAction

4.5. Design Patterns for Exception Handling 101

about the end of this method execution, and (iii) ask the appropriate meta-object to invoke
the handler associated with a resolved exception. Instances of the class MetaAction are
associated with instances of subclasses of Action. These meta-objects are responsible for:
(i) perform the exception resolution, and (ii) synchronize the action participants.

Dynamics. Figure 4.15 presents the interaction diagram for the banking service example.
The diagram illustrates the application’s thread performing the participant PayerAgency
within the action ClearCheck. This thread intending to participate in the action, calls the
method join on the object ClearCheck corresponding to that action. The thread informs
to the action what participant (the participant PayerAgency) it intends to execute during
the concurrent cooperative action. MOP intercepts and reifies the invocation of join,
and notifies the meta-object MetaAction about this invocation by means of the method
handleOperation. This meta-object checks to see if is allowed to play that participant
in this action, and if so, the meta-object MetaParticipant executes the method withdraw
that is attached to that participant. While this method is being carried out by the
thread, it obtains the shared objects used for inter-thread communication. The exception
InsufficientFundsException is returned as the result of withdraw since it has raised this
exception during its execution (Section 4.5.2). MOP reifies the result of withdraw, and
notifies the meta-object MetaParticipant about the exceptional result by means of the
method handleResult. The action participants are synchronized and exception resolution
process is accomplished based on the available meta-information. For instance, the meta-
object MetaAction communicates with the meta-object responsible for maintain extra-
information about the raised cooperating exceptions (Section 4.5.1).: The meta-object
MetaParticipant receives the resolved exception and then asks the eligible meta-object to
search the handler for the resolved exception. Note that after the thread asks to start its
activity within the action, all management activities are performed by the meta-level in
a way that is transparent to the application.

Known Uses. The work [61] proposes a non-reflective and distributed variant of this
pattern. This works proposes an algorithm for concurrent exception handling in distri-
buted object systems. Exception resolution and the final synchronization is performed
in a distributed way, and the information concerning the action must be held by each
participant. Each participant must keep a copy of the algorithm and the management
is performed by means of message exchange. However, the class Action is not necessary.
Zorzo’s CAAction framework [74] also provides software developers with a number of clas-
ses to structure their concurrent applications. However, it uses a non-reflective variant of
the Concurrent Ezception Handling Action Pattern. Programmers extend two classes of
the framework in order to implement their concurrent cooperative actions. Both classes
are similar to the classes Action and Participant regarding their responsibilities.

4.5. Design Patterns for Exception Handling

Exception Handling

102

Strategy Pattern
:Normal :Meta ClearCheck: | | PayerAgency: :Meta :Meta
Account Searcher <r‘:> “Thread Action Participant Action Participant
|, join(PayerAgency)
ﬂnudnﬁ;;sh e = ion{join)
getSharedObject() -
1,] handleResult(InsufficientFun
Inmiﬁaemﬁ;lwds pectiocn the &l sinchronyze(icientFunds)
resclution synchroni &
idCheck Exception th
[< searchHandler(bounpedCheck) participants
’ successfull sinchronyze()
OK
g 3 L ...—{_' . d result r
B e s [T]
Base Level Meta-Level

Figura 4.15: Interaction Diagram for the Concurrent Ezception Handling Action Pattern.

4.6. Implementation Issues 103

Consequences. The Concurrent Ezception Handling Action Pattern offers the following
consequences:

e Uniformity. The strategy for concurrent exception handling is a consistent extension
of the general strategy for exception handling.

e Transparency and Simple to Use. Management mechanisms for exception handling
are performed transparently to the application. Programmers fix their attention
on definition of concurrent cooperative actions, which is an application-dependent
issue.

e Complezity Control. The pattern allows programmers to define nested actions.

e Readability, Reusability and Maintainability. The application code is not inter-
mingled with invocations of methods responsible for synchronization and exception
resolution. As a consequence, it improves readability, which in turn improves reu-
sability and maintainability.

e Minor loss in efficiency due to the blocking model. In pre-emptive schemes, there
is inherently no wasted time but the feature required, namely pre-emptive thread
interruption, is not readily available in many systems and programming languages.
However, mechanisms such as timeouts and run-time error checks can increase the
efficiency of blocking schemes and decrease the amount of time wasted by allowing
early detection of either the error or the abnormal behavior of the participant that
raised the exception and is waiting for the other participants.

4.6 Implementation Issues

We have implemented the proposed software architecture using the Java programming
language without any changes to the language itself by means of a meta-object proto-
col called Guarand [51]. Guarana is a flexible meta-object protocol for Java language
that allows creating meta-level objects. Guarana provides an efficient broadcast servi-
ce for communication between meta-objects. Moreover, it provides support to compose
meta-objects responsible for different management functions by means of composers. The
proposed software architecture has allowed that the meta-objects of our exception han-
dling system be integrated with meta-objects responsible for other quality attributes, such
as persistency and security.

The proposed software architecture can be implemented using any language as long as
the environment supports computational reflection. The proposed architecture also can be
implemented using languages where ever exists an exception handling mechanism without

4.7. Related Work 104

conflict with the existing one. A disadvantage of our approach is that may not be easy
to perform checks statically (Section 4.5.3). However there are some features which can
help programmers to avoid mistakes: post- and pre-processors, libraries, syntax-oriented
editors and macro-processing. In addition, the mechanism of computational reflection may
facilitate checks performed before program execution by obtaining information about the
application using the exception handling mechanism.

4.7 Related Work

Even though many object-oriented programming languages include exception handling
facilities, only the Arche language [33] provides actual support for concurrent excep-
tion handling. The exception handling mechanism of this language allows user-defined
resolution of multiple exceptions amongst a group of objects that belong to different im-
plementations of a given type; however, this approach is not generally. applicable to the
concurrent exception handling of multiple interacting objects of different types.

The paper [58] describes a scheme for concurrent exception handling based on atomic
action structures for the Ada95 language. In this approach, application programmers
have to implement a exception resolution function for each concurrent cooperative action.
Programmers are responsible for deciding how implement this resolution function. Appli-
cation code is also intermingled with invocations of head processes which are procedures
for synchronizing the participants while exiting from the action. In this way, application
objects are polluted with explicit references for head processes.

The coordinated atomic action concept [69] was introduced as a unified approach for
structuring complex concurrent activities and supporting error handling between multiple
interacting objects in a concurrent object-oriented system. Zorzo et al. [74] had developed
an object-oriented scheme for implementing coordinated atomic actions. In this scheme,
application programmers are provided with a number of classes to structure their appli-
cation. However, such solution proposes a very simple exception handling mechanism.
There is a single method intended to handle the cooperating exceptions raised during
the cooperative activity. The structure of such a handler is very complex since a single
handler must incorporate handling measures for all cooperating exceptions.

The work of Hof et al. [31] describes an approach for exception handling based on meta-
programming and computational reflection. Their implementation was carried out in a
specific system but it also could be implemented to most other systems that support meta-
programming. However, this approach does not support concurrent exception handling
and its exception handling model is not object-oriented.

4.8. Conclusions and Ongoing Work 105

4.8 Conclusions and Ongoing Work

In recent years exception handling mechanisms have become a important part of main-
stream object-oriented programming languages. However, designers of these mechanisms
have not paid enough attention to concurrent exception handling. Recently, a number
of different approaches have been proposed to the provision of concurrent exception han-
dling. However, these proposals are introduced in an ‘ad hoc’ way and are not integrated
uniformly with the exception handling strategy for sequential programs. These current
solutions make the task of application developers very difficult since they often are res-
ponsible for implementing various management activities. In fact, such solutions pollutes
application code with explicit references and invocations of procedures for exception re-
solution and thread synchronization. Consequently, the use of these mechanisms reduces
the demanding quality requirements arising with modern software systems, such as rea-
dability, maintainability and reusability.

This paper presents a generic software architecture to introduce exception handling
into dependable object-oriented software. The proposed architecture supports uniformly
concurrent and sequential exception handling, and may be implemented without create
any linguistic construction as a result for the underlying language. Our architecture pro-
vides during the first design stage the context in which more detailed design decisions are
made in later design stages related to exception handling. In this sense, this work also
presents a set of design patterns which are used to describe the structural and dynamic
aspects of the components of the proposed architecture. The design patterns incorpo-
rate well-proved solutions and their micro-architecture achieves a clear and transparent
separation of concerns between the application’s functionality and the exception handling
services. Specific applications reuse the exception handling facilities provided by the pro-
posed architecture’s components, and the developers concentrate their attention on the
application-dependent functionality.

Nowadays the component programming approach to object-oriented software develop-
ment, achieved by selecting and configuring reusable components, has resulted in signi-
ficant decrease of development cost. In this work, we have designed a mechanism that
supports the construction dependable object-oriented software from the scratch. Howe-
ver, an open issue is how to allow that exception-handling code be added on reusable
components (for instance, COTS) without any interference on the original code of these
components. This additional exception- handling code should handle the new exceptions
that can arise when these components are reused on different applications.

4.9. Resumo do Capitulo 4 106

4.9 Resumo do Capitulo 4

Este capitulo apresentou um artigo que aborda a proposta de uma arquitetura de software
genérica para mecanismos de excegoes. A arquitetura proposta define os componentes
arquiteturais de um mecanismo de excegOes e a interagao entre estes componentes. A ar-
quitetura especialmente define um componente para tratamento de excegbes concorrentes
que € integrado uniformemente com os outros componentes arquiteturais. A arquitetura
proposta € baseada em um mecanismo de reflexao computacional, sendo assim composta
de dois niveis distintos. A divisao em niveis permite obter uma divisdao clara entre as
funcionalidades da aplicagao e os servigos do mecanismo de excegoes proposto. Conse-
quentemente, a divisao obtida contribui efetivamente para a construgao de um mecanismo
simples e nao intrusivo.

Os padroes de projeto propostos constituem solugtes de projeto para problemas re-
correntes no contexto de mecanismos de excegoes. Estes padroes identificam solugoes
existentes e bem provadas, e concomitamente sao aplicados para documentar os compo-
nentes da arquitetura de software proposta. A proposta do conjunto de padroes contribui
ainda mais para a reutilizacao da arquitetura proposta no projeto de um mecanismo de
excegoes. :

O préximo capitulo resume as conclusées do nosso trabalho, apresentando as principais
contribuigdes e os possiveis trabalhos futuros.

Capitulo 5

Conclusao Geral

Esta dissertagao concentrou-se no projeto e implementacao de um mecanismo de tra-
tamento de excegbes para construgao de software orientado a objetos confidvel. Para
desenvolvimento do mecanismo proposto, utilizamos técnicas avangadas de estruturacao
de software, tais como reflexao computacional e padroes de projeto. Durante o desen-
volvimento deste trabalho, chegamos a varios resultados que formam as nossas principais
contribuigoes: it

L

Um estudo comparativo dos diferentes modelos de tratamento de excegdes imple-
mentados em diversas linguagens orientadas a objetos e proposta de uma taxonomia
que permite avalid-los.

Proposta de um critério de projeto com os requisitos desejaveis para mecanismos de
tratamento de excegOes que serao utilizados na construgao de sistemas orientados
a objetos confidveis. Um modelo ideal de tratamento de excegdes é proposto tendo
como base o critério de projeto definido. O modelo proposto especialmente di
suporte a tratamento de excecOes concorrentes.

Projeto e implementagao de um mecanismo de excegbes para a linguagem Java
utilizando a arquitetura de software reflexiva do Guarand. O mecanismo implementa
o modelo proposto de tratamento de excecdes que contempla o critério de projeto
definido.

Definicao de uma arquitetura reflexiva genérica para o projeto de mecanismos de
excegoes que serao utilizados na construgao de sistemas orientados a objetos con-
fidveis.

Proposta de um conjunto coeso de quatro padroes de projeto que documentam
os aspectos estruturais e comportamentais dos componentes arquiteturais de um

107

108

mecanismo de tratamento de excegdes, e incorporam boas solugées conhecidas para
os problemas comuns no dominio desses mecanismos.

Duas contribuigbes sao consideradas principais. A primeira delas, caracterizada por
aspectos técnicos e usos praticos, é o projeto e implementagao de um mecanismo de ex-
cecoes que especialmente oferece suporte a tratamento de excegoes concorrentes. A outra,
caracterizada por aspectos abstratos e abordagem inovadora, é a definicao de uma arqui-
tetura de software genérica e o conjunto padroes de projeto relacionados que permitem a
construgao de mecanismos de excegoes em diferentes linguagens de programagao.

As aplicagoes das idéias apresentadas nesta dissertacao sao as seguintes:

e Auxilio a desenvolvedores de aplicacoes orientadas a objetos confidveis, através do
critério e modelo propostos, na escolha de um mecanismo de excegoes adequado
para a construcao das suas aplicagoes.

e Auxilio a engenheiros de software e/ou projetistas de linguagens de programagdo no
desenvolvimento de mecanismos de tratamento de excegoes.

e Adicao pouco intrusiva de um mecanismo de excegao a aplicacoes confidveis exis-
tentes, através da arquitetura de software e padroes de projeto propostos.

As principais linhas de pesquisa que podem ser seguidas a partir do nosso trabalho
sao:

e Tradicionalmente, desenvolvedores de sistemas orientados a objetos postergam a
preocupagao com tratamento de excegbes para as fases posteriores de projeto e im-
plementagao. Melhores resultados poderiam ser obtidos se as situagdes excepcionais
fossem consideradas desde a fase de andlise. Nesse contexto, faz-se necessario o de-
senvolvimento de uma abordagem para construgao de software orientado a objetos,
onde as atividades de tratamento de erros sejam incorporadas de forma disciplinada
durante as fases de andlise, projeto e implementacao.

e O esforgo de projetistas de sistemas orientados a objetos confidveis deveria ser mi-
nimizado enquanto utilizando um mecanismo de excegoes. Ferramentas CASE con-
tribuem decisivamente na construgao de sistemas complexos. Nesse sentido, a im-
plementagao de ferramenta CASE para definicao de excegoes, dos comportamentos
normais e excepcionais pode auxiliar projetistas de aplicagoes confidveis durante o
processo de desenvolvimento.

e Diferentes tipos de aplicagoes requerem diferentes requisitos de um mecanismo de
excegoes. Um framework orientado a objetos [34] é um sistema de software que

109

incorpora uma arquitetura flexivel e pode ser extendido para produzir aplicagdes com
diferentes requisitos. A nossa arquitetura de software proposta pode ser utilizada e
extendida para a implementagdo de um framework de tratamento de excegGes. Os
pontos flexiveis do framework poderiam ser configurados de acordo com os requisitos
da aplicagao utilizando o framework de tratamento de excegoes.

Bibliografia

(1] R. Balter, S. Lacourte, and M. Riveill. The Guide Language. The Computer Journal,
7(6):519-530, 1994.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, Massachusetts, USA, 1998.

[3] G. Booch. The Unified Modeling Language User Guide. Addison Wesley Publishing
Company, MA, 1998.

[4] Borland. Object Pascal Language Guide — Borland Delphi for Windows 95 & Win-
downs NT - Version 2.0, 1996.

[5] Borland. User’s Guide — Borland Delphi for Windows 95 & Windowns NT - Version
2.0, 1996.

[6] A. Burns and A. Wellings. Real-Time Systems and Their Programming Languages.
Addison-Wesley, 1996.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of
Patterns: Patterns-Oriented Software. John Wiley & Sons, 1996.

[8] J. Purchase C. Dony and R. Winder. Exception Handling in Object-Oriented Sys-
tems. In ECOOP’91, pages 17-30, 1991. Report on ECOOP’91 Workshop W4.

[9] R.H. Campbell and B. Randell. Error Recovery in Asynchronous Systems. IEEE
Transactions on Software Engineering, SE-12(8):811-826, August 1986.

[10] F. Cristian. Exception Handling and Software Fault Tolerance. IEEE Transactions
on Computers, C-31(6):531-540, June 1982.

(11] F. Cristian. Exception Handling. Technical Report RJ5724, IBM, 1987.

[12] F. Cristian. Exception handling. In T. Anderson, editor, Dependability of Resilient
Computers, pages 68-97. Blackwell Scientific Publications, 1989.

110

BIBLIOGRAFIA 111

[13] Q. Cui and J. Gannon. Data-Oriented Exception Handling. IEEE Transactions on
Software Engineering, 18(5):393—401, May 1992.

[14] R. de Lemos and A. Romanovsky. Exception Handling in a Cooperative Object-
Oriented Approach. In 2nd IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, France, May 1999.

[15] C. Dony. An Object-Oriented Exception Handling System for an Object-Oriented
Language. Lectures Notes in Computer Science, 322:146-161, August 1988.

[16] C. Dony. Exception Handling and Object-Oriented Programming: Towards a Syn-
thesys. Sigplan Notices, 25(10):322-330, October 1990.

[17] S. Drew and K. Gough. Exception Handling: Expecting the Unexpected. Computer
Languages, 32(8):69-87, 1994.

[18] C. Schaffert et al. An Introduction to Trellis-Owl. In OOPSLA ’86, pages 9-16, 1986.

[19] L. Ferreira and C. Rubira. The Design and Implementation of a Dependable and
Distributed Framework for Train Controlers. Submitted to “Software: Practice &
Experience”.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley Publishing Company, 1995.

[21] A. Garcia, D. Beder, and C. Rubira. An Exception Handling Mechanism for Deve-
loping Dependable Object-Oriented Software Based on a Meta-Level Approach. In
10th International Symposium on Software Reliability Engineering - ISSRE 99, pages
52-61. IEEE Press, November 1999.

[22] A. Garcia, D. Beder, and C. Rubira. An Exception Handling Software Architecture
for Developing Robust Software. Submitted to 5th IEEE International Symposium
on High Assurance Systems Engineering, March 2000.

[23] A. Garcia and C. Rubira. Um Mecanismo Orientado a Objetos para Tratamento
de Exceccoes em Software Concorrente Tolerante a Falhas. In VIII Symposium of
Fault-Tolerant Computing, pages 33—-47, Campinas, Brazil, July 1999.

[24] A. Garcia and C. Rubira. An Exception Handling Software Architecture for Develo-
ping Robust Software. In 2nd Workshop on Ezception Handling in Object-Oriented
Systems - ECOOP’2000, June 2000.

BIBLIOGRAFIA 112

[25] A. Garcia, C. Rubira, A. Romanovsky, and J. Xu. A Comparative Study of Exception
Handling Proposals for Dependable Object-Oriented Software. Submitted to Journal
of Systems and Software, March 2000.

[26] N.H. Gehani. Exceptional C or C with Exceptions. Software: Practice and Ezpe-
rience, 22(10):827-848, October 1992.

[27] C. Ghezzi and M. Jazayeri. Programming Languages Concepts. John Wiley & Sons,
3rd edition, 1997.

[28] A. Goldberg and D. Robson. Smalitalk-80, the Language and its Implementation.
Addison-Wesley, Massachussetts, 1983.

[29] J.B. Goodenough. Exception Handling: Issues and a Proposed Notation. Commu-
nications of the ACM, 18(12):683-696, December 1975.

[30] J. Gosling, B. Joy, and G. Steele. The Java Language Specification - Version 1.0.
Addison-Wesley, 1996. :

[31] M. Hof, H. Mossenbock, and P. Pirkelbauer. Zero-Overhead Exception Handling
Using Meta-Programming. Lectures Notes in Computer Science, 1338:423-431, 1997.

[32] V. Issarny. Programming Notations for Expressing Error Recovery in a Distributed
Object-Oriented Language. Technical Report 1822, IRISA/INRIA, Rennes, France,
1992.

[33] V. Issarny. An Exception-Handling Mechanism for Parallel-Object-Oriented Pro-
gramming: Toward Reusable, Robust Distributed Software. Journal of Object-
Oriented Programming, 6(6):29-40, October 1993.

[34] R.E. Johnson. Frameworks = Components + Patterns. Communications of the ACM
— Object-Oriented Application Frameworks, 40(10):39-42, October 1997.

[35] A. Koening and B. Stroustrup. Exception Handling for C++. Journal of Object-
Oriented Programming, 3(2):16-33, July/August 1990.

[36] S. Lacourte. Exceptions in Guide, an Object-Oriented Language for Distributed
Applications. Lectures Notes in Computer Science, 512:268-287, July 1991.

[37] J. Lang and D. Stewart. A Study of the Applicability of Existing Exception-Handling
Techniques to Component-Based Real-Time Software Technology. ACM Computing
Surveys, 20(2):274-301, March 1998.

BIBLIOGRAFIA 113

[38] P.A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-Verlag,
2nd edition, 1990.

[39] H. Lieberman. Concurrent Object-Oriented Programming in Actl, pages 9-36. MIT
Press, 1987.

[40] B.H. Liskov and A. Snyder. Exception Handling in CLU. IEEE Transaction on
Software Engineering, SE-5(6):546-558, November 1979.

[41] M.D. Maclaren. Exception Handling in PL/I. SIGPLAN Notices, 12(3):101-104,
March 1977.

[42] O.L. Madsen, B. Moller-Pedersen, and K. Nygaard. Object-Oriented Programming
in the BETA Programming Language, chapter 16. Addison-Wesley Publishing Com-
pany, 1995.

[43] P. Maes. Concepts and experiments in computacional reflection. ACM SIGPLAN
Notices, 22(12):147-155, December 1987.

[44] B. Meyer. Object-Oriented Software Construction. New York: Prentice-Hall, 1988.
[45] B. Meyer. FEiffel - The Language. Prentice Hall, 1992.

[46] R. Miller and A. Tripathi. Issues with Exception Handling in Object-Oriented Sys-
tems. In Lectures Notes in Computer Science - ECOOP’97, volume 1241, pages
85-103. Springer-Verlag, 1997.

[47] J. Mitchell, W. Maybury, and R. Sweet. Mesa Language Manual. Xerox Research
Centre, 1979.

[48] S. Mitchell, A. Burns, and A. Wellings. MOPping up Exceptions. In ECOOP’98
Workshop on Reflective Object-Oriented Programming and Systems, pages 365-366,
1998.

[49] D. Moreto. Monitoramento de Eventos Compostos em Sistemas Distribuidos. Mas-
ter’s thesis, IME - University of Sao Paulo, Brazil, September 1998. In Portuguese.

[50] G. Nelson. Systems Programming with Modula-3. Prentice Hall, 1991.

[51] A. Oliva and L. Buzato. Composition of Meta-Objects in Guarana. In Workshop on
Reflective Programming in C++ and Java, OOPSLA 98, pages 86-90, Vancouver,
BC, Canada, October 1998.

[52] D. Papurt. The Use of Exceptions. JOOP, pages 13-17,32, May 1998.

BIBLIOGRAFIA 114

(53] B. Randell, A. Romanovsky, R.J. Stroud, J. Xu, A.F. Zorzo, D. Schwier, and F. von
Henke. Coordinated Atomic Actions: Formal Model, Case Study and System Imple-
mentation. Technical Report 628, Department of Computing Science, University of
Newcastle upon Tyne, UK, 1998.

[54] B. Randell, J. Xu, and A. Zorzo. Software Fault Tolerance in Object-Oriented Sys-
tems Approaches. Technical Report 597, Department of Computing Science, Univer-
sity of Newcastle upon Tyne, UK, 1997.

[55] B. Randell and A. Zorzo. Exception Handling in Multiparty Interactions. In VIII
Symposium of Fault-Tolerant Computing, Campinas, Brazil, July 1999.

[56] K. Renzel. Error Detection. In EuroPLOP’97, 1997.

[57] A. Romanovsky. Practical Exception Handling and Resolution in Concurrent Pro-
grams. Technical Report 545, Department of Computing Science, University of
Newcastle upon Tyne, UK, 1996.

[58] A. Romanovsky. Practical Exception Handling and Resolution in' Concurrent Pro-
grams. Computer Languages, 23(7):43-58, 1997.

[59] A. Romanovsky. Extending Conventional Languages by Distributed/Concurrent Ex-
ception Resolution. Journal of Systems Architecture, pages 79-95, January 2000.

[60] A. Romanovsky, B. Randell, R.J. Stroud, J. Xu, and A. Zorzo. Implementing Syn-
chronous Coordinated Atomic Actions Based on Forward Error Recovery. Technical
Report 561, Department of Computing Science, University of Newcastle upon Tyne,
UK, 1997.

[61] A. Romanovsky, J. Xu, and B. Randell. Exception Handling and Resolution in Dis-
tributed Object-Oriented Systems. In Proc. the 16th Int. Conference on Distributed
Computing Systems, pages 545-553, Hong Kong, 1996.

[62] A.Romanovsky, J. Xu, and B. Randell. Exception Handling in Object-Oriented Real-
Time Distributed Systems. In International Symposium on Object-oriented Real-time
Distributed Computing, Kyoto, Japan, April 1998.

[63] C. Rubira. Structuring Fault-Tolerant Object-Oriented Systems Using Inheritance
and Delegation. PhD thesis, University of Computing Science, October 1994.

[64] J. Schwille. Use and Abuse of Exceptions — 12 Guidelines for Proper Exception
Handling. Lectures Notes in Computer Science — Ada-Europe’93, 688:142-152, 1993.

BIBLIOGRAFIA 115

[65] M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emerging Dis-
cipline. Prentice Hall, 1996.

[66] S.T. Taft and R.A. Duff. Ada 95 Reference Manual: Language and Standard Li-
braries, international standard iso/iec 8652:1995(e). In Lectures Notes in Computer
Science, volume 1246. Springer-Verlag, 1997.

[67] P. Thomas and R. Weedon. Object-Oriented Programming in Eiffel. Addison-Wesley,
1995.

[68] K. Vo, Y. Wang, P. Chung, and Y. Huang. Xept: A Software Instrumentation
Method for Exception Handling. In 8th International Symposium on Software Re-
liability Engineering - ISSRE’97, pages 60-69, Albuquerque, NM, USA, November
1997. IEEE Press.

[69] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu. Fault Tolerance
in Concurrent Object-Oriented Software through Coordinated Error Recovery. -In
FTCS-25: 25th International Symposium on Fault Tolerant Computing, pages 499—
509, Pasadena, California, 1995.

[70] J. Xu, B. Randell, A. Romanovsky, R. Stroud, A. Zorzo, A. Burns, S. Mitchell, and
A. Wellings. Cooperative and Competitive Concurrency in Fault-Tolerant Distribu-
ted Systems. In DeVa Ist Year Report, 1997.

[71] J. Xu, B. Randell, C. Rubira-Calsavara, and R.J. Stroud. Software Tolerance:
Towards an Object-Oriented Approach. Technical Report 498, University of Newcas-
tle upon Tyne, Novembro 1994.

[72] J. Xu, A. Romanovsky, and B. Randell. Exception Handling in Distributed Object
Systems: from Model to System Implementation, Technical Report 612, Department
of Computing Science, University of Newcastle upon Tyne, UK, 1997.

[73] S. Yemini and D.M. Berry. A Modular Verifiable Exception Handling Mechanism.
ACM Transactions on Programming Languages and Systems, 7(2):214-243, April
1985.

[74] A.F. Zorzo, A. Romanovsky, J. Xu, B. Randell, R.J. Stroud, and 1.S. Welch. Using
Coordinated Atomic Actions to Design Dependable Distributed Object Systems. In
Workshop of Dependable Distributed Object Systems - OOPSLA 97, pages 241-259,
Atlanta, October 1997.

UNICAMP
BIBLIOTECA CENTRAL
SECAO CIRCULANTF

