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Resumo 

Sistemas orientados a objetos confiáveis devem incorporar atividades de tratamento de 
exceções de forma a comportarem-se adequadamente sob uma grande variedade de si­
tuações, inclusive na presença de erros. Nesse contexto, um mecanismo de tratamento de 
exceções é fundamental para detecção e recuperação de erros bem como para ativação das 
medidas necessárias para restaurar a atividade normal do sistema. O desenvolvimento 
de um mecanismo de tratamento de exceções é uma tarefa difícil especialmente quando a 
concorrência é uma das características dos sistemas de software. O principal objetivo des­
ta dissertação é o projeto e implementação de um mecanismo de tratamento de exceções 
para a construção de sistemas orientados a objetos confiáveis. Na construção do meca­
nismo proposto, nós utilizamos técnicas de estruturação de software, tais como reflexão 
computacional e padrões de projeto. Duas contribuições são consideradas principais. A 
primeira delas, caracterizada por aspectos técnicos e usos práticos, é o projeto e imple­
mentação de um mecanismo de exceções utilizando a linguagem de programação Java e 
uma arquitetura de software reflexiva chamada Guaraná. O mecanismo proposto espe­
cialmente oferece suporte a tratamento de exceções concorrentes. A outra contribuição, 
caracterizada por aspectos abstratos e abordagem inovadora, é a definição de uma ar­
quitetura de software reflexiva e um conjunto de padrões de projeto relacionados para a 
implementação de mecanismos de tratamento de exceções. 
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Abstract 

Dependanble object-oriented software should incorporate exception handling activities in 
order to behave suitably in a great number of situations in spite of errors. In this context, 
an exception handling mechanism is fundamental to detect errors, and to activate the 
suitable measures to restore the normal activity of the system. The development of an 
exception handling mechanism is not a trivial task. This task is specially difficult when 
the software using the exception mechanism is concurrent. The main aim of this work is to 
propose the design and implementation of an exception handling mechanism for developing 
dependable object-oriented software. In order to build the proposed mechanism we apply 
techniques of software structuring, such as computational refiection and design patterns. 
The ma.in contribution of this work is the design and implementation of an exception 
handling mechanism using the Java language and a refiective software architecture called 
Guaraná. The proposed mechanism specially supports concurrent exception handling. 
In addition, we define a refiective software architecture and a set of design pattems for 
implementing exception handling mechanisms. 
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Capítulo 1 

Introdução Geral 

O uso crescente de sistemas computacionais em quase todos os ramos da sociedade tem 
levado a necessidade de desenvolvimento de sistemas de software confiáveis. O paradigma 
de objetos é uma das formas promissoras para construção de software de qualidade e pode 
contribuir decisivamente para a prevenção e remoção de falhas durante as fases do ciclo 
de desenvolvimento de software. Entretanto, a presença de falhas residuais é inevitável 
mesmo em sistemas orientados a objetos devido a complexidade inerente aos sistemas de 
software atuais. Essas falhas podem ocasionar efeitos indesejáveis no sistema durante sua 
vida operacional. O desenvolvimento de sistemas orientados a objetos confiáveis não é 

uma tarefa trivial. Projetistas de sistemas confiáveis devem lidar com as situações ex­
cepcionais possíveis e incorporar ao sistema atividades de tolerância a falhas capazes de 
evitar um defeito catastrófico. As atividades de tolerância a falhas introduzidas usualmen­
te aumentam a complexidade do sistema de software. Nesse contexto, um mecanismo de 
tratamento de exceções é fundamental para detecção e recuperação de erros, causados por 
falhas residuais, e para a estruturação e ativação das medidas apropriadas de tolerância 
a falhas de forma a restaurar a atividade normal de um sistema de software confiável. 

Programadores utilizam mecanismos de tratamento de exceções (mecanismo de ex­
ceções) para a implementação das atividades de tratamento de exceções (erros) de um 
sistema de software. As atividades de tratamento de exceções implementam as medidas 
para tolerar as falhas que podem se manifestar durante a execução da atividade normal. O 
mecanismo de exceções é responsável pela interrupção do fluxo normal do sistema quando 
a ocorrência de uma exceção é detectada durante a sua execução, e a ativa.ção das medidas 
de tolerância a falhas adequadas. 

1 
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1.1 O Problema 

O desenvolvimento de mecanismos de exceções adequados para a construção de software 
orientado a objetos confiável implica em um grande desafio. Estes mecanismos devem 
prover suporte para uma separação explícita. entre as atividades normais e as atividades 
de tratamento de exceções de tal forma a manter sob controle a complexidade geral de 
sistemas confiáveis. Esses mecanismos também devem ser simples, restritivos e integrados 
com o paradigma de objetos. Mecanismos baseados em soluções complexas e com flexi­
bilidade desnecessária. proporcionam a. introdução de erros adicionais ocasionados pelo 
seu uso. Além disso, o desenvolvimento de um mecanismo de exceções sofre impactos 
adicionais quando a concorrência. é uma das características dos sistemas de software. 

Tratamento de exceções é muito mais difícil em sistemas concorrentes devido a. con­
corrência. cooperativa [38]. Em particular, para sistemas orientados a objetos, processos 
concorrentes podem cooperar através de comunicação inter-processos para a realização 
de alguma atividade do sistema. Eventualmente, um dos processos pode levantar uma 
exceção. Essa exceção não pode ser tratada isoladamente no processo que a levantou, 
uma vez que informação errônea pode ter sido espalhada através de comunicação inter­
processos. Além disso, devido a própria natureza de software concorrente, mais de uma 
exceção pode ser levantada mais ou menos ao mesmo tempo nos diferentes processos. O 
levantamento de múltiplas exceções concorrentemente pode ser o sintoma de uma falha 
mais séria [9]. Nesses casos, o mecanismo de exceções deve dar suporte à recuperação de 
erros de forma coordenada entre os processos envolvidos na cooperação. Todos processos 
participantes da atividade cooperativa devem ser informados da ocorrência de exceções e 
devem ser envolvidos no processo de recuperação de erros. 

1.2 Limitações das Soluções Existentes 

Mecanismos de exceções sã.o usualmente considerados como uma pa.rte essencial de qual­
quer linguagem de programação moderna e, tipicamente, modelos distintos de tratamento 
de exceções são adotados para o projeto desses mecanismos nas diferentes linguagens. En­
tretanto, um estudo comparativo de mecanismos existentes em linguagens orientadas a ob­
jetos mostrou que eles não satisfazem algumas características desejáveis [25) (Capítulo 2). 
Desenvolvedores desses mecanismos se preocupam geralmente em prover soluções ampla­
mente flexíveis sem a atenção devida para simplicidade e outros requisitos importantes. 
Os mecanismos existentes muitas vezes não possuem um projeto orientado a objetos e 
provêem suporte limitado para uma separação explícita entre as atividades normais e 
excepcionais de uma. aplicação. 

Uma das principais deficiências dos mecanismos de exceções disponíveis é a. inexistência 
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de suporte apropriado pa.ra tratamento de exceções concorrentes. Os mecanismos existen­
tes geralmente são dedicados pa.ra programas sequenciais. Somente a linguagem Arche [33) 
provê um esquema pa.ra tratamento de condições excepcionais em sistemas concorrentes. 
Entretanto, o modelo de concorrência implementado em Arche limita-se a ativar recu­
peração de erros entre objetos do mesmo tipo. Assim, as linguagens de programação 
orientadas a objetos atuais não provêem, de fonna satisfatória, mecanismos de trata­
mento de exceções adequados para o desenvolvimento de sistemas orientados a objetos 
confiáveis. 

Recentemente, alguns trabalhos (58, 60, 7 4) têm proposto mecanismos dedicados es­
pecialmente pa.ra tratamento de exceções concorrentes como extensões pa.ra determinadas 
linguagens de programação específicas. As abordagens propostas exigem alguma mo­
dificação da linguagem de programação e/ ou de seu compilador ou interpretador, ou a 
definição de uma interface de programação para tratamento de exceções concorrentes. En­
tretanto, estas abordagens usualmente apresentam soluções complicadas e implementam 
um modelo de tratamento de exceções não integrado com o modelo de objetos. Ademais, 
tais propostas são intrusivas do ponto de vista da aplicação uma vez que o código da 
aplicação é embutido com uma série de chamadas a serviços específicos do mecanismo de 
tratamento de exceções concorrentes. O código extra inserido dificulta a legibilidade, a 
reutilização e a manutenção dos componentes da aplicação. Consequentemente, as abor­
dagens existentes propõem mecanismos para tratamento de exceções concorrentes que 
são difíceis de usar, e usualmente conduzem ao desenvolvimento de sistemas orientados a 
objetos não confiáveis e que são difíceis de entender, manter e reutilizar. 

1.3 Objetivos 

Em resumo, os principais objetivos desta dissertação são: 

1. Proposta de projeto e implementação de um mecanismo orientado a objetos de 
tratamento de exceções pa.ra o domínio de sistemas orientados a objetos confiáveis. 

2. Utilização prática de técnicas avançadas de estruturação de software para a cons­
trução do mecanismo proposto, tais como reflexão computacional e padrões de pro­
jeto, e a análise das vantagens e limitações destas técnicas no desenvolvimento do 
mecanismo de exceções. 

1.4 A Solução Proposta 

Este trabalho apresenta o projeto e implementação de um mecanismo de exceções apro­
priado para a construção de software orientado a objetos confiável. O mecanismo incor-
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pora um modelo orientado a objetos de tratamento de exceções e permite uma separação 
explícita entre as atividades normais e excepcionais de um sistema. O modelo proposto 
especialmente proporciona suporte para tratamento de exceções concorrentes. Técnicas 
de estruturação de software são utilizadas para a construção de um mecanismo de exceções 
que seja de fá.cil uso e reutilização. 

A técnica de reflexão computacional é utilizada para implementação do modelo pro­
posto de tratamento de exceções. O uso dessa técnica permite a introdução do mecanismo 
de exceções para a linguagem de programação sem criar modificações para a própria lin­
guagem. Além disso, a utilização de reflexão computacional permite uma melhor divisão 
entre a funcionalidade da aplicação e os serviços específicos do mecanismo de exceções. 
Essa divisão alcançada permite a obtenção de um mecanismo de exceções não intrusivo 
e fácil de usar. O mecanismo proposto está implementado na linguagem Java e usa uma 
arquitetura de software reflexiva para esta linguagem chamada Guaraná [51]. 

Nós também definimos o projeto de uma arquitetura de software reflexiva para meca­
nismos de tratamento de exceções. A arquitetura é descrita por um conjunto de compo­
nentes com responsabilidades bem definidas e a interação entre esses componentes. Esta 
arquitetura oferece uma solução de projeto genérica que integra uniformemente trata­
mento de exceções para programas sequenciais e concorrentes. A arquitetura proposta é 
descrita de forma independente de linguagem de programação e pode ser reutilizada em 
diferentes aplicações. Um conjunto de quatro padrões de projeto documenta os aspectos 
estruturais e comportamentais dos componentes da arquitetura de software proposta. Pa­
drões de projeto constituem boas soluções de projeto para problemas recorrentes dentro 
de um contexto particular [7, 20). No contexto deste trabalho, os padrões propostos in­
corporam boas soluções conhecidas para os problemas comuns no domínio de mecanismos 
de exceções. 

1.5 Contribuições 

Este trabalho apresenta as seguintes contribuições: 

1. Um estudo comparativo dos diferentes modelos de tratamento de exceções imple­
mentados em diversas linguagens orientadas a objetos e proposta de uma taxonomia 
que permite avaliá-los. 

2. Proposta de um critério de projeto com os requisitos desejáveis para mecanismos de 
tratamento de exceções que serão utilizados na construção de sistemas orientados 
a objetos confiáveis. Um modelo ideal de tratamento de exceções é proposto tendo 
como base o critério de projeto definido. O modelo proposto especialmente dá 
suporte a tratamento de exceções concorrentes. 
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3. Projeto e implementação de um mecanismo de exceções para a. linguagem Java 
utilizando a arquitetura. de software reflexiva. do Guaraná. O mecanismo implementa 
o modelo proposto de tratamento de exceções que contempla o critério de projeto 
definido. 

4. Definição de uma arquitetura de software reflexiva para o projeto de mecanismos 
de exceções que serão utilizados na construção de sistemas orientados a objetos 
confiáveis. 

5. Proposta de um conjunto coeso de quatro padrões de projeto que documentam 
os aspectos de estrutura e comportamento dos componentes arquiteturais de um 
mecanismo de exceções, e incorporam boas soluções conhecidas para os problemas 
comuns no domínio desses mecanismos. 

1.6 Organização da Dissertação 

Esta dissertação é uma coleção de artigos científicos escritos em inglês que foram publi­
cados ou submetidos para publicação em simpósios e revistas internacionais. O restante 
desta dissertação está organizada da seguinte forma: 

Capítulo 2 contém o artigo ((A Comparative Study of Exception Handling Proposals 

for Dependable Object-Oriented Software" [25]. Este artigo apresenta a terminologia rela­
cionada a tratamento de exceções e tolerância a falhas utilizada neste trabalho, bem como 
discute as dificuldades relacionadas a tratamento de exceções concorrentes. Este artigo 
também revisa diferentes modelos de tratamento de exceções implementados em diversas 
linguagens orientadas a. objetos e propõe uma taxonomia. A taxonomia desenvolvida per­
mite classificar e comparar os modelos de tratamento de exceções estudados. Finalmente, 
este artigo apresenta um critério de projeto adequado para mecanismos de exceções bem 
como um modelo ideal de tratamento de exceções. 

Capítulo 3 contém o artigo "An Exception Handling Mechanism for Developing De­

pendable Object-Oriented Software Based on a Meta-Level Approach" [21]. Este artigo 
apresenta o projeto e implementação de um mecanismo de tratamento de exceções utili­
zando a arquitetura de software reflexiva do Guaraná [51]. O mecanismo implementa o 
modelo proposto de tratamento de exceções que contempla o critério de projeto definido 
no Capítulo 2. 

Capítulo 4 contém o artigo "An Exception Handling Software Architecture for De­

veloping Robust Software" [22]. Este artigo define uma arquitetura de software reflexiva 
para mecanismos de tratamento de exceções que serão utilizados na construção de siste-
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mas orientados a objetos confiáveis. Além disso, este artigo propõe os padrões de projeto 
que documentam a estrutura e o comportamento dos componentes arquiteturais de um 
mecanismo de t ratamento de exceções. 

Capítulo 5 resume as conclusões do nosso trabalho, apresentando as principais con­
tribuições e os possíveis trabalhos futuros. 



Capítulo 2 

Um Estudo Comparativo de 
Mecanismos de Exceções 

Mecanismos de tratamento de exceções são usualmente considerados como uma parte 
essencial de qualquer linguagem de programação orientada a objetos. No contexto de 
sistemas orientados a objetos confiáveis, mecanismos de exceções são usados para detecção 
e recuperaçã-O de erros, e para estruturar as atividades de tolerância a falhas incorporadas 
em um sistema. Modelos distintos de tratamento de exceções são adotados para o projeto 
desses mecanismos nas diferentes linguagens. Um mecanismo de exceções para software 
orientado a objetos confiável deve incorporar um modelo adequado de tratamento de 
exceçoes. 

Este capítulo contém o artigo "A Comparative Study of Exception Handling Proposals 

for Dependable Object-Oriented Software" (25], que foi submetido para a revista. "Journal 

of Systems and Software". Este artigo apresenta os conceitos relacionados a tratamento de 
exceções e tolerância a falhas utilizados neste trabalho, bem como discute as dificuldades 
relacionadas a tratamento de exceções concorrentes. Este artigo também revisa diferentes 

modelos de tratamento de exceções implementados em cliversas linguagens orientadas a 
objetos e propõe uma taxonomia. A taxonom.ia desenvolvida é utilizada para. classificação 
e comparação dos modelos de t ratamento de exceções estudados. Finalmente, este artigo 
apresenta um critério de projeto adequado para mecanismos de tratamento de exceções e 
um modelo ideal de tratamento de exceções. 

7 
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Dependable object-oriented systems ha.ve to cope with a number of exceptional situations 
a.nd incorporate fault tolerance activities in order to meet the system's robustness a.nd 
relia.bility requirements. With such systems growing in size a.nd complexity, employing 
error-handling techniques a.nd satisfying the requirements of software qualities such a.s 
maintaina.bility a.nd reusability are still deep concems to eng:ineers of dependa.ble object­
oriented systems. Exception ha.ndling mechanisms are the most importa.nt schemes for 
detecting a.nd recovering errors, a.nd structuring the fault tolera.nce activities incorporated 
in a system. However, the current lack of suitable exception ha.ndling mechanisms ca.n 
make an application non-relia.ble and difficult to understa.nd, ma.intain a.nd reuse in the 
presence of faults. 

Engineers of dependable object-oriented systems utilize exception mechanisms to de-
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velop exception handling activities for dealing with such erroneous situa.tions. In this 
systems, the code devoted to error detection a.nd handling is usually both numerous 
a.nd complex. As a consequence, up to two-thirds of a. progra.m ca.n be for error han­
dling [11, 26). In this context, the design of an exception mechanism should be simple 
and ea.sy to use, and provide explicit separation between the normal and exceptional code. 
ldeally, dependa.ble object-oriented systems using the exception mecha.nism should be easy 
to understa.nd, maintain and reuse. A number of exception mecha.nisms have been deve­
loped to object-oriented progra.mming langua.ges. Realistic examples of object-oriented 
la.nguages include Java (30], Modula-3 (50] and Eiffel [44]. 

Tbe purpose of our paper is to investigate tbe applicability of the existing exception 
mechanisms of object-oriented programming languages for developing dependable object­
oriented software with effective quality a.ttributes. The major contributions of this a.rticle 
are: (i) the definition of a set of adequa.te design solutions while developing an exception 
mecha.nism suitable for dependable object-oriented software, (ü) the presentation of a 
comprehensive survey of existing exception mecbanisms implemented in object-oriented 
languages, (üi) comparison and evalua.tion of the investiga.ted mecbanisms as well as the 
identification of the prima.ry limitations in applying them in practice :to develop depen­
dable object-oriented systems, and (iv) the identification of current trends related to 
exception bandling and dependable object-oriented software. A taxonomy is used to dis­
cuss nine functional aspects of an exception mechanism and to distinguish one mechanism 
from another - especially support for concurrent exception bandling is examined in detail. 

The remainder of this article is organized as follows. Section 2 gives a. brief descrip­
tion of exception handling within a framework for facilitating software fault tolerance. 
This section also introduces exception mecha.nisms as well as difficulties related to con­
current exception handling. Section 3 describes our proposed ta.xonomy for classifying 
different design approaches to exception mechanisms. Section 4 presents a general crite­
ria to design an effective exception mechanism for developing dependa.ble object-oriented 
systems. Section 5 discusses in more detail exception models im.plemented in various 
object-oriented lan.guages. Section 6 a.ssesses the relative advantages, disadvantages and 
general limitations of these models based on our established design criteria. Section 7 
discusses difficulties and directions for future work. Finally, Section 8 presents some 
concluding remarks. 
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2.2 Exception Handling and Fault Tolerance 

2.2.1 Terminology 

Following the terminology adopted by Lee and Anderson [38], a system consists of a 
set of components that interact under the control of a design. A fault in a component 
may cause an error in the internai state of the system which eventually leads to the 
failure of the system. Dependable software systems require supplementary techniques 
in arder to tolerate the manifestations of faults in its components and, consequently, to 
avoid failures of the system. In general, these techniques are based on the provision of 
redundancy which increases the size of the systems and introduces additional complexity 
to them. Dependable software and its components should therefore be well-structured 
in arder to master such an additional complexity. Each system component should be 
able to return well-defined responses, and incorporate a clear separation between normal 
and fault tolerance activities. In this sense, exceptions and exception handling provide a 
suitable framework for structuring the fault tolerance activities incorporated in a system. 

Software components receive service requests and produce responses. H a component 
cannot satisfy a service request, it returns an exception. So the responses from a compo­
nent can be separated into two distinct categories, namely normal and exceptional respon­

ses. Exceptions can be classified into three different categories: (i) interface exceptions 

which are signaled in response to a request which did not conform to tbe component's in­

terface; (ü) failure exceptions which are signaled if a component determines that for some 
reason it cannot provide its specified service; (iü) internai exceptions which are exceptions 
raised by the component in order to invoke its own internai fault tolerance activity. The 
activity of a component can be divided in two parts: normal activity and abnormal (or 
exceptionaQ activity (Figure 2.1). The normal activity implements the component's nor­
mal services while the exceptional activity provides measures for tolerating the faults that 
cause exceptions. Thus, the normal activity of the system is clearly distinguished from 
its exceptional activity. At each levei of the system, an idealized fault-tolerant compo­

nent handles the exceptions raised during its normal activity and exceptions signaled by 
lower-level components. Whenever an exception is raised in a (serverfcallee) component 
that cannot handle it, the exception is signaled to the (clientfcaller) higher-level compo­
nent that dynamically invoked the server component. After the exception is handled, the 
system may return to its normal activity. 

Developers of dependable systems usuaJly refer to faults as exceptions because they are 
expected to manifest rarely during the component's normal activity. Exception handling 
mechanisms ( or merely exception mechanisms) have been developed for programming lan­
guages a.nd allow software developers to define exceptions and to structure the exceptional 
activity of software components by means of handlers. The handlers of a program consti-
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tutes its exceptional activity pa.rt. The exception mechanism is responsible for cha.nging 
the normal control flow of a program to the exceptional control flow when an exception is 
raised during its execution. Exception mechanisms are either built as an inherent part of 
the language witb its own syntax, oras a feature added on the language tbrougb library 
calls [17]. 

In the context of programming languages, exceptions are usually classified into two 
types [29, 37]: (i) user-defined, and (ii) predefined. User-defined exceptions are defined 
a.nd detected at the application levei. Prede:fined exceptions are declared implicitly and 

are associated with conclitions that are detected by the language's run-time support, the 
underlying hardware or operating system. The kinds of exceptional events supported by 
a particular exception mechanism differ from one language to a.nother and depend on 
general decisions taken by the langua.ge designers. 

An exception can be ra.ised at run-time (an exception occurrence) during the normal 
execution of a.n operation (method). A signaling statement is the statement being execu­
ted when an exception occurrence is detected. The code block containing the signaling 
statement is referred to as tbe exception signaler (Figure 2.2). When an exception occur­
rence is detected, the exception mechanism is responsible for sea.rching and invoking an 
exception handler ( or simply handler) to deal with the raised exception. Tbe handler is the 
part of a.pplication's code that provides tbe measures for handling the ra.ised exception. 
Some extra.-information about an exception occurrence, such as its name, description, lo-
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cation, and severity (37], is usually required by the correspond.ing handler, and it is useful 
for handling an exception occurrence. Extra-information is passed either explicitly by the 
signaler, or implicitly by the exception handling mechanism. 

Handlers are attached to a particular region of the normal code which is tenned 
protected region or handling context. Figure 2.2 illustrates three protected regions. Each 
protected region can have a set of attached handlers. If an exception is raised in an 
protected region, the normal control flow is deviated to the exceptional control flow. 
Then the exception mechanism first tries to find a local handler attached to the protected 
region (the signaler). If it does not find a local handler for that exception, it searches 
the handlers provided by tbe enclosing protected region. If it again does not find an 
appropriate handler, the exception is signaled to the operation caller and this sequence 
of steps is again repeated. After a suitable handler is found, invoked and executed by 
the mechanism, it returns the computation to the normal control flow. In Figure 2.2, 
an exception el is raised during the execution of m2. The exception mechanism signals 
el to the caller, the metbod ml, since a local bandler was not defined at the context of 
the signaler (arrow 6). The exception mechanism then .finds and invokes the appropriate 
bandler at the context of the caller ( arrow 7), and returns the system to the normal 
control flow (arrow 8). 
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2.2.2 Exception Handling in Concurrent 00 Systems 

In an object-oriented software system, tbere may be a number of processes {tbreads) 
running concurrently. Tbere are different ways of dealing with concurrency in object­
oriented systems. In tbis work, we define a clear distinction between objects and threads: 

threads are agents of computation that execute metbods on objects (wbicb are tbe subjects 
of computa.tion). Exception handling is an important mechanism for a.cbieving fault 
tolerance in sequential object-oriented software. Exception bandling, and consequently 
the provision of fault tolera.nce, are much more difficult in concurrent object-oriented 
systems tban in sequential ones. Exception mechanisms used in sequentia.l programs 
ca.nnot be a.pplied to concurrent software without appropriate adjustments due to new 
difficulties introduced by concurrent exception handling. 

From the sta.ndpoint of fa.ult tolerance, the implementa.tion of a.n exception mecha.­
nism for concurrent object-oriented systems is an interesting challenge dueto cooperative 
concurrency [9, 38]. Different threa.ds o f a system can be cooperating for executing some 
system's ta.sk. Tbrea.ds are sa.id to be cooperating when they are designed collectively and 
ha.ve sbared a.ccess to common objects tba.t are used directly for communica.tion between 
the threads [38]. Erroneous information ma.y sprea.d directly or indirectly through inter­
tbread communication. As a consequence, tbe handling of a.n exception should involve ali 

concurrent threads participating in a cooperation. Sometimes it ma.y involve the entire 
system due to complex interactions between its cooperating threads. The cooperating 
threads of a concurrent system must be controlled very carefully in arder to avoid that 
erroneous information spreads unexpectedly through the whole system [9]. 

The a.pproach to using exception handling in such systems extends the well-known ato­
mie action paradigm [9]. Atomic a.ctions are the most comprehensive wa.y of structuring 
the behavior of concurrent systems. These a.ctions are units of inter-thread coopera.tion 
and their execution is indivisible and invisible from the outside. The a.ctivity of a group 
of threads pa.rticipating in a cooperation constitutes a.n a.tomic action if there are no 
interactions between that group a.nd the rest of the system for the duration of the activi­
ty [38]. Complex interactions between the participating threa.ds of an atomic action can 
be coordinated witbin that action, including necessary activities for concurrent exception 
ha.ndling [9]. When one of the coopera.ting threa.ds ha.s raised a.n exception, error reco­
very should proceed in a coordinated wa.y by triggering different handlers for the same 
exception witbin all the threads [9, 69]. 

An a.tomic action is formed by a group of cooperat ing tbreads, the action participants. 

The participa.nts cooperate witbin the scope of the a.ction. A set of exceptions is a.ssocia.ted 
with each a.ction. Eacb participa.nt in the action ba.s a set of handlers for ( a.ll or part of) 
these exceptions. The entries of participa.nts in the action may be a.synchronous but they 
have to leave the action synchronously to guarantee that no informa.tion is smuggled to or 
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from the action. When an exception has been raised in any of the participants inside a.n 
action, all action participa.nts have to participate in the error recovery. Different hand.lers 
for the sa.me exception ha.ve to be called in all of the participa.nts [9]. These ha.nd.lers 
coopera.te to recover the action. The participa.nts ca.n lea.ve the action on three occasions. 
First of all, this happens if there have been no exceptions ra.ised. Second.ly, if an exception 
had been ra.ised, a.nd the called hand.lers have recovered the a.ction. Thirdly, they can 
signal a failure exception to the conta.ining action if a.n exception has been raised and it 
has been found that there are no appropriate ha.ndlers or that recovery is not possible. 

Furthermore, due to na.ture of concurrent systems, it is possible tha.t various exceptions 
may be raised concurrently by cooperating threads. In this way, a mechanism for exception 

resolution is a.n essential part of concurrent exception handling. The paper (9] describes a 
model for exception resolution called exception tree which includes an exception hierarchy. 
This model allows to find the exception that representa all exceptions raised concurrently. 
This tree includes alJ exceptions associated with the action and imposes a partial order on 
them in such a way that a higher-level exception has a handler capable of handling any 
lower-level exception. If several exceptions are raised concurrently, the resolved exception 
is the root of the smallest subtree containing all of the exceptions. 

A demand for concurrent exception handling in object-oriented systems is recognized 
by many researchers because it would make the erro r handling simpler, uniform and less 
error prone. Di.fferent works have identified the need for concurrent exception handling 
in a number of practical examples a.nd systems in different application areas such as 
bank:ing [22, 70], office automation (70], sales control systems [69], software development 
environments (70L and production cell control systems [62, 74, 55]. 

2.3 A Taxonomy for 00 Exception Mechanisms 

There is a number of design issues for building exception mechanisms that will be used 
for constructing dependable object-oriented software. However, the chosen solution for 
designing each of them varies from mechanism to mechanism. This section presents a 
taxonomy which identifies the several common design issues of exception mechanisms, and 
classifies the different design solutions. The taxonomy was developed based on the set of 
analyzed exception mechanisms (Section 2.4), and on some reviewed previous studies (37, 
17]. 

We classify the design issues of an exception handling scheme into nine aspects of 
interest: (i) exception representation, (ü) exception interface, (iii) handler attachment, 
(iv) handler binding, (v) exception propagation, (vi) continuation ofthe control flow, (vii) 

clea.nup actions, ( viü) reliability checks, a.nd (ix) concurrent exception ha.ndling. In the 
following we discuss each aspect in turn. 
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Exception Representation. Exceptions that can be raised during a system's execu­
tion must be represented intemally within this system. Exceptions can be represented 
as: (i) symbols, (ü) data objects, or (iii) full objects. The representation of exceptions 
as symbols is a classical approach in which exceptions are strings or numbers. Raising 
an exception sets the corresponding string variable ( or integer variable) and returns the 
control to the caller that is in charge of testing the variable. 

In the second and third solutions, exceptions are organized hierarchically as classes; 
when an exception is raised, an instance of an exception class ( an exceptíon object) is 
created and passed as a parameter to the corresponding handler. Therefore, exceptions 
are first-class objects. However, such solutions differ in how exceptions are raised. In the 
second solution, exceptions are raised by calling a keyword of the language. In the third 
solution, exceptions are raised by invoking a method raise on the exception object. In 

this last case, the exception is a standard object that receives messages since the behavior 
specific to exception raising is defined as a method on an exception class [36). In addition, 
specific behaviors to continuation of the contrai flow (see below) can also be defined as 
methods on exception classes. Note that in the second solution the aim of exception 
objects is just to hold data, despite the possible definition of methods on them. 

Exception Interface. A method may either terminate normally or exceptionally by 
signaling an exception. Exception interface is the part in a method's signature that expli­
citly declares the list of exceptions that might be signa.led by the method [37] (Figure 2.3). 

There are di:fferent design solutions for exception interface in different exception me­
chanism proposals. In some exception mechanisms, exception interfaces are obliged - an 
attempt to propaga.te to the invoker an exception that is not in the exception list causes 
either a compiling errar or the raising of a predefined exception a.t run-time. In other me­
chanisms, exception interfaces either are optíonal or unsupported. There is also a hybrid 

approach - some exceptions must be listed in exception interfaces while others may not 
be listed. 

Handler Attachment. Protected region is a domain that specifi.es the region of com­
putation during which, if an exception occurrence is detected, a handler attached to this 
region will be activated. Handlers can be attached to different protected regions, such as: 
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(i) a statement, (ii) a block, (iii) a method, (iv) a.n object, (v) a class, or (vi) a.n excep­

tion. Statement (o r block) handlers are attached to a statement ( or a statement block), 
allowing context-dependent responses to an exception. The block is usually defined by 
means of keywords of the la.nguagej the protected region starts with a specific keyword 
a.nd ends with a.nother keyword of the la.nguage. Method handlers are associated with a 
method; when an exception is ra.ised in one of the statements of the method, the method 
handler attached to this exception is executed. Exception mechanisms that allow to at­
tach handlers to blocks, consequently also support method ha.ndlers since a block may be 
defined as a method. Object handlers are valid for particular instances of a class; that is, 
each instance has its own set of ha.ndlers. Object ha.ndlers are usually attached to object 
variables in their declarations. Class handlers are attached to classes, allowing the soft­
ware developers to define a common exceptional behavior for a class of objects. Handlers 
attached to exceptions themselves are always invoked if no more specific handlers can be 
found. They are the most general handlers, and must be va.lid in any part of the program, 
independent of execution context and object state. For insta.nce, such a handler could 
print an error message or make a general correction action. 

Handler Binding. When an exception is raised at run-time, a ha.ndler should be in­
voked to deal with the exception occurrence. There are three different design solutions 
for binding handlers to exception occurrences: (i) the static approach, (ii) the dynamic 

approach, and (iii) the semi-dynamic approach. In the static approach, a handler is sta­
tically attached to a protected region, and this handler is used for all occurrences of the 
corresponding exception during the execution of that protected region. The handler bin­
ding is independent of the control flow of the program, and hence there is no run-time 
search to bind handlers to exception occurrences. 

In the dynamic approach, the binding depends upon the control flow of tbe program. 
As a consequence, this approach determines at run-time which handler should be used 
for a given exception occurrence. The handler cannot be determined at compile-time. 
Generally, exception handlers are defined dynamically in the executable st atements of 
programs by executing a statement making a handler available for a particular exception. 
In PL/ I, the binding is performed dynamically by means ofthe statement ON. A statement 
ON specifies a handler binding to a specific exception, and it stays in effect until either a 
new statement ON for that exception is executed or the block in which it occurs is ex:ited. 

Tbe semi-dynamic binding is a hybrid model tha.t combines the two prevjous a.pproa­
ches. Local handlers can be bound statically to the signaler. If a bandler is not attached to 
the raised exception in tbe context of the signaler, a dynamic approach is employed to find 
a suitable handler. Firstly, handlers attached to enclosing protected regions are searched 
dynamically. If none is found, the exception mechanism then signals the exception to the 
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caller. The call chain of method invocations and protected regions is therefore traversed 
backwards until a statement or another protected region is found in which a handler for 
that exception is attached. The example in the Figure 2.2 illustrates the sem.i-dynamic 
approach. The exception mechanism does not find a local handler attached statically 
to the signaler, the method m2. The exception mechanism then proceeds the search by 
ta.king the invocation history into account. A handler is tben found at the context of ml. 

Exception Propagation. If no local handler is defined for an exception which has 
been raised, the exception can be propagated to the caller of the method raising the 
exception. In fact, the caller often knows what effect t he operation had to achieve and 
how best to respond to exceptions [13, 64). If no handler is found for the exception within 
the caller, the exception can be propagated to higher-level components other than its 
immediate caller. There are two design solutions for exception propagation: (i) explicit 

propagation, and (ii) automatic (or implicit) propagation. In the first case, the handling 
of signaled exceptions is lim.ited to the immediate caller; however, the raised exception or 
a new exception can be signaled explicitly within a handler ( attached to the caller) to a 
higher-level component. For this reason, the exception mechanisms that adopt such an 
approacb are called single-level [40]. If a signaled exception is not handled at the caller's 
context, either a predefined general exception is further propagated automatically, or the 
program is terminated. 

In the second case, if no handler is found for the exception within tbe caller, the 
exception is propagated automatically to higher-level components until a handler can be 
found; that is, an exception can be handled by components other than its immediate 
caller. As a consequence, the exception mechanisms that incorporate this design solution 
are termed multi-level [40). 

Exception propagation is closely related to the issue of handler binding. Exception 
mechanisms that implement static binding cannot allow ex.ception propagation since the 
binding is done at compile time and the chain of invokers is ignored. Semi-dynamic 
and dynamic bindings are performed at run-time and, therefore, can allow exception 

propagation. 

Continuation o f the Control Flow. After an exception is raised and the correspon­
ding handler is executed, the system should continue its normal execution. There is an 
issue conceming the semantics which determines the continuation of the control fiow, i.e., 
where normal execution proceeds. There are at least two possible design solutions, whi­
ch correspond to different styles of continuation of the control flow: (i) the resumption 

model, and (ii) the termination model. In the resumption model, the execution has the 
capability to resume the internai activity of the signaler after the point at which the ex-
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ception was raised. In the termination model, the activity of the component which raised 
the exception cannot be resumed; conceptually, this means that its activity is terminated. 

There are some variations of the termination model. Such variations can be classified 
into at least three different ways with their respective semantics: (i) retum- terminate 
the signaler and direct control flow to the statement following the protected region where 
the exception was handled; (ii) strict termination- t erminate the program and return 
control to the operating environment; and (üi) retry the signaler- term.inate the signaler 
and retry it to attempt to complete the required service in the normal manner. 

Figure 2.2 pictures an example of termination with return semantics. The execution 
of m2 (the signaler) is terminated, the handler is executed, and the normal control fl.ow is 
directed to the statement following the protected region where the exception is handled. 
Then, execution continues at the method main since the method ml is the protected 
region where the exception is handled. If the specified model of continuation of control 
flow was resumption, the handler would be executed and normal execution would resume 
the internai activity of the signaler after the point at which the exception was raised. This 
return point is indicated as * in Figure 2.2. 

Cleanup Actions. Components of a program should be kept in a consistent state, 
regardless of whether the code completes normally or is interrupted by an exception. In 

this sense, it is required to do some cleanup action to keep the program in a consistent state 
before the termination of the component. Cleanup code may either restore the component 
to a possible state, undo some undesirable effect, or release allocated resources. Cleanup 
actions can be supported by particular designs of exception mechanisms in tbree different 
ways: (i) use of explicit propagation, (ii) specific construct, and (iii) automatic cleanup. In 

the first approach, the explicit propagation is used for performing some cleanup actions 
before termination of the component. When an exception occurrence is detected, if it 
cannot be handled by the signaler and has to be propagated, then the cleanup action 
should be specified within the corresponding handler before the statement that propagates 
the exception. 

The second method provides a construct which is executed whenever the protected 
program unit exits. The cleanup code is attached to the protected program unit and this 
code is executed whether an exception is raised or not. If no exceptions are raised in the 
protected region, the attached cleanup code is executed after the protected region. Howe­
ver, if an exception is raised in the protected region, control is transferred immediately 
to the statements devoted to clean up. 

The third solution is based on the premise that the exception mechanism k.nows what 
should be cleaned up before termination of the component. The exception mechanism 
itself perlorms automatically the necessary cleanup actions and the application developer 
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does not need to worry about. 

Reliability Checks. Reliability checks test for possible errors introduced by the use of 
an exception mechanism. A number of issues can be checked by the exception mechanism 
itself, sucb as (73]: (i) checking that each exception is signaled with the correct set of 
actual parameters; (ii) checking that each handler for an exception is defined with the 
correct set of formal parameters; (iii) checking that only those exceptions that are defined 
by a signaler are signaled by it, in effect forcing the explicit propagation; and (iv) checking 
that ali exceptions that can be raised in a given scope are handled in that scope. We 
classify the design approaches regarding reliability checks into two design solutions: (i) 
static checks, and (ii) dynamic checks. Static checks are performed by the compiler while 
dynamic checks are performed by the run-time system. Static checking depends on the use 
of exception interface, static binding and representation of exceptions as objects. When 
exceptions are not declared in the externai interface of their signalers or are not typed, 
there is very little that can be checked at compile time. Some exception mechanisms 
do not provide any support for static checks, while other ones perform both static and 
dynamic checks. 

Concurrent Exception Handling. When concurrent programming is supported by 
the underlying programming language, one or more exceptions can be raised concurrently 
during a cooperative activity {Section 2.2.2). In this way, exception mechanisms should 
provide some support for concurrent exception handling. The design approaches to con­
current exception handling can be classified into at least three possible design solutions, 
which correspond to different support levels: (i) unsupported, (ii) limited, a.nd (iii) com­

plete. In the first approach, no support for concurrent exception handling is provided. 
Exception mechanisms that implement the second approach only provide basic support 

for concurrent exception handling. A special exception (signal) is used to notify the 
threads involved in a cooperation when an exception is raised in one of the cooperating 
threads. In this way, exceptions can be handled by more than one thread in a coordinated 
ma.nner. Effective facilities which allow using atomic actions with exception handling are 
not provided. In addition, the exception resolution process is also left to application 
programmers. 

The third approach provides complete support for concurrent exception handling. 
Explicit facilities are provided to use atomic actions with concurrent exception handling. 
Software designers can concentrate on definition of cooperative activities, exceptions and 
handlers, which are application-dependent issues. The exception mechanism provides: (i) 
synchronization of the action participants, (ii) support for exception resolution, and (iii) 
invocation of the different handlers attached to the action participants. 
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2.4 Exception Handling in Various 00 Languages 

In the 1970s, exception mechanisms were developed specifically for procedural program­
ming languages. PL/ I [41) pioneered the concept of providing application programmers 
with linguistic constructs for exception handling. However, such constructs resulted in 
an exception mechanism that was complex and difficult to use. The CLU's exception 
mechanism [40] overcame some difficulties detected in the PL/Ps exception mechanism 
and introduced an exceptíon handling model more suítable for implementing dependable 
software. In the 1980s, the object-oriented languages brought to developers a new way of 
thinking about a.nd designing their systems as well as some new techniques to make them 
more modular and reusable. Exception handling mechanisms have been integrated into 
main stream object-oriented languages such as Java. (30], Modula-3 (50] and Eiffel [44]. 
We can now review various exception mechanisms dedicated to object-oriented languages. 
We use the taxonomy described in Section 2.3 to help compare and evaluate their main 
strengths and weaknesses. Figure 2.4 in Section 2.5 summarizes the design choices of each 
exception mechanism presented in this Section. 

CLU (40] was the first language to offer an exception mechanism more suitable for im­
plementing fault-tolerant software. In fact , its primary purpose isto support construction 
of software modules which are able to respond reasonably to wide variety of circumstan­
ces. In addition, the CLU's exception mechanism is based on a simple model of exception 
handling that is to lead to well-structured programs. As a consequence, it is considered 
to be a baseline of our study. 

The Exception Handling Model of CLU. In the CLU's exception handling model, 
exceptions are represented as symbols. However, a set of typed parameters can be used to 
pass information about the exception from the sígnaler to the bandler. CLU's exception 
mechanism is said to be single levei since the exception raised by a procedure is normally 
handled by its immediate caller. However, the immed.iate caller may resignal the exception 
explicitly to its invoker. A CLU procedure definition must include exception interface. 
Handlers are attached to any statement in a CL U procedure by clauses except having the 
following syntactic form: 

statement except when El: ... when E2: ... 

The handlers are often collected at the end of the procedure whenever possible because 
the placement of handlers in individual statement can reduce the code readability. Howe-
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ver, there is the possibility of interleaving exception handler a.nd normal code on a per 
statement basis. lf a statement calls a procedure that signals a.n exception, but that 
statement has no attached ha.ndler for that exception, then the exception is propagated 
automatically to progressively larger static scopes within the procedure. If a ha.ndler is 
found in the procedure, it is executed. Otherwise, the predefined default exception fai­
lure is raised a.nd control returns to the ca.ller. This exception is the only one implicitly 
propagated. CLU procedures that ra.ise an exception are normally terminated. After 
the handler execution, control simply directs to the statement following the statement to 
which the ha.ndler is attached, that is, the termination model has a return semantics. The 
model does not provide any specific construct to define cleanup actions; and also does not 
support concurrent exception hanclling. 

2.4.1 Exception Handling in Ada95 

Ada95 (66] is a fully object-oriented language which has the upward compatibility with 
Ada. The exception mechanism of Ada95 is basically the same as it was in Ada; it was 
not revised as it could have been to become more object-oriented. For instance, Ada 
exceptions are originally symbols and are not declared in the externai interface of the 
procedures (methods). However, some new features make using exceptions much simpler: 
(i) an exception can be raised with a message which can be analyzed during ha.nclling; (ii) 
the value of the variable of the new type ExceptionOccurrence represents each occurrence 
of the exception - there is a function converting the variable of this type into a string; 

(iii) another function, of the type string, returns the name of the raised exception. 
Ha.ndlers can be attached to blocks, procedures or packages. Handlers are placed 

together in an clause exception, which must be placed at the end of the protected region, 
as below: 

begin 
protected region 

exception when El => . . . handler 
when E2 => ... -- handler 
when others => ... -- all-encompassing handler -- ... 

end; 

Ada allows the definition of all-encompassing default handlers by mea.ns of the construct 
when others. This bandler catcbes just those exceptions tbat tbe programmer has not 
provided specific handlers for. 
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Ada95's exception handling model supports semi-dynamic binding and automatic pro­
pagation of all unhandled exceptions. Therefore, Ada95's exception mechanism is multi­
levei as opposed to the single-level mechanism of CLU. It adopts the termination model 
with retum semantics. An exception can also be propagated explicitly by a component 
reraising the exception within the ha.ndler. Therefore, explicit propagation can be used 
to perform any final cleanup actions before signaling the exception. All-encompassing 
default handlers ca.n be also used to do it. However, no explicit support is provided for 
clea.nup actions. As exceptions are not typed andare not declared in the externa.! interface 
of their signalers, there is very little that can be checked at compile time. 

Ada95 allows to atta.ch ha.ndlers to ta.sks ( threads). Handlers may be called in seve­
ra! concurrent tasks when an exception has been raised in one of them. However, this 
la.nguage has a limited form of concurrent-specific exception propagation: an exception is 

propagated to both the caller and callee tasks if it is raised during the Ada rendezvous. 
Then the exception mechanism is not applicable directly for systems that contain complex 
cooperative concurrency. 

2.4.2 Exception Handling in Lore 

An object-oriented exception mechanism has been designed by Dony [15, 16] and it has 
been implemented in Lore, an object-oriented language dedicated to knowledge represen­
tation. An important characteristic of thls mechanism is the object-oriented representa­
tion of exceptions: exceptions are full objects. The exception interface may be part of a 
method's signature by means of the clause signals. 

The exception mechanism ensures explicit separation between normal and exceptio­
na.l code since handlers are ordinary methods of a specific class named protected-handler. 
Handlers can be attached to statements, classes and exception classes. Handlers attached 
to classes are called default handlers. When an exception is raised, the handler search 
proceeds as follows: (i) first handlers that are attached to statements that dynamically 
include the signaling one are searched, and the search stops as soon as a bandler, whose 
parameter type is a supertype of tbe signaled exception, is found; (ü) u none is found, the 
system tries to find default handlers attached to tbe class or upper classes of the signaling 
active objectj (üi) jf none is found, the system looks for default handlers attached to the 
signaled exception itself; (i v) if none is found, the exception is then propagated automatí­
ca.lly to tbe operation caller, and the sequence of steps is again repeated. Exceptions can 
also be propagated explicitly. 

Thls exception mechanism is more fiexible tha.n CL U's one. Two policies for continua­
tion of control fiow are provided: resumption and termination (witb retum semantics). 
The behavior of tbese policies are defined as metbods on an exception class from which 
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ali exception classes inberit. The methods that define such policies are invoked witbin 
handlers. When handlers do not explicitly choose one of these options, the predefined 
exception Except ionNotHandled is signaled. This approach is interesting because it tries 
to integrate exceptions into the standard invocation mechanism. The Lore's exception 
mechanism has explicit support for specifying cleanup actions. It provides the construct 
when-exit allowing to attach cleanup actions to expressions. No support is provided for 
concurrent prograrnming and concurrent exception handling. 

2.4.3 Exception Handling in Smalltalk-80 

Being one of the earliest widely available object-oriented languages, Smalltalk [28] attrac­
ted much attention during the 1980s. In Smalitalk-80, a.n exception is a selector but not 
a first-class object. A selector specifies the operation name. Thus a exception selector 
ca.nnot own a.ny characteristics, cannot be inspected, modified or upgraded (16). In or­
der to signal run-time exceptions, the Smalltalk evaluator sends, to the current object, a 
message corresponding to the current exception. Therefore handlers are methods pointed . 
out by exception selectors, and they only can be attached to classes. Thus, exceptions 
raised by methods defined on a class are ha.ndled within that class. Exceptions ca.nnot 
be propagated to operation caliers. For this reason, exception interface is not part of a 
method's signature. 

Smalltalk-80 has no static type check:ing. As long as method has no syntax errors 
and no undeclared variables it will compile, and if there are any type errors they will 
occur at run-time. As a consequence, in the Smalltalk environment, most run-time errors 
(exceptions) occurs when a message for which no method exists a.rrives at a.n object. In 
this case, the run-time system sends a special message doesNotUnderstand: to the recei­
ver, with the message selector and arguments o f the original message as arguments. The 
search for the selector doesNotUnderstand: thus follows the same path as the search for 
the first selector. In this way, a user is given the opportunity to define methods does­
NotUnderstand: in the visited classes, in order to customize exception ha.ndling or catcb 
errors. If the programmer does not do this, an error is signaled anyway by the standard 
metbod doesNotUnderstand: on the class Object (ali application classes are derived from 
Object); it causes a notifier to appear on tbe screen giving some information about the 
error, and providing the ability to invoke the debugger. Unlike CLU, Smalltalk supports 
both resumption a.nd termination. Two varia.nts of the termination model are supported: 
retum and retry. Tbe programmer may specify cleanup actions within an block ensure 
wbich is always executed after the protected block, no matter if an exception occurred or 
not. Tbe mechanism does not support concurrent programming and concurrent exception 
handling. 
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2.4.4 Exception Handling in Eiffel 

The exception mechanism of the sequential language Eiffel (44, 45, 67) is integrated with 
the notion of design by contract. Classes and methods establish contracts with their clients 
by specifying assertions: pre and post-conditions, and invariants. Exceptions are de:fined 
as the violation of assertions during the execution of the associated method, and they are 
raised implicitly. However, exceptions may also be de:fined by the user. Eiffel exceptions 
are typed entities which have an integer value and a string tag. However, exception 
interface is unsupported. Handlers can be attached to a method ora class. Thus, on the 
one hand the exception mechanism provides no support for attaching handlers to units 
at lower leveis, such as a block of statements, but on the other hand it ensures explicit 
separation between normal and handler code. 

When an exception occurs during the execution of a method, its execution is stopped 
and the respective handler is executed. Within a handler, the exception can be deter­
mined by comparing a predefined variable called exception with an exception name. The 
variables which are visible to the protected region have the same visibility in the handler. 
If no handler is defined, the method is said to fail and the exception is propagated ímplici­
tly to the caller (the so-called organized panic). Therefore, Eiffel design adopts automatic 
propaga.tion as default behavior. However, exceptions can be propagated explicitly. Han­
dlers can report failure to the caller by reraising the exception. Explicit propa.ga.tion can 
be used for performing some cleanup actions before reraising the exception. 

The exception mechanism of Eiffel supports retry, a variation of the termination model. 
Handlers try to restore the class invariant by retrying the method if the pre-condition still 
holds. In this way, a routine may succeed or fail, there is no intermediate ground. So the 
raising of an exception means the failure of a software component which has been unable 
to terminate in a normal manner. No support is provided for concurrent programming 
and concurrent exception handling. 

2.4.5 Exception Handling in Modula-3 

Modula-3's exception mechanism [50) is based on a semantic model similar to Ada95. 
Exceptions are represented as symbols. However, exceptions optionally can have parame­
ters. The exception interface may be part of a. method's signature by means of the clause 
set. As a consequence, this feature facilitates static checks for raising unlisted exceptions 
within the code and dynamic checks for exception occurrences that were not explicitly 
raised. Handlers can be attached to a statement or a block. Like Ada95, handlers are 
attached to a block o f instructions by means of the construct try... e.xcept, as in: 
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try .. . -- protected region 
except ... -- handlers -- ... 
else . . . -- all-encompassing handler 

Handler binding is semi-dynamic. If, during the execution of a block try ( the protected 
region) , an exception occurrence is detected, execution ceases, and control passes to the 
corresponding handler. If no handler is found, and the part else is present, the contrai 
flow is deviated to this pa.rt. The pa.rt else implements an all-encompassing handler, i.e. 
a single default handler attached to the protected region to handle any exceptions that 
the programmer have not provided specific handlers for. It is similar to the construct 
when others of Ada95. If the part else also is not present, a handler is sought in the 
statically enclosing protected region (a construct try.. . except may be nested in a block 
try). If no handler is found there, the exception is automatically propagated, and the 
search continues in the context of the calling procedure. H no handler can be found, the 
Modula-3 run-time system will halt the program with a suitable errar message. Thus, 
automatic propagation is adopted as default behavior. However, exceptions also may be 

propagated explicitly. 
When a handler is found and it has finished its execution, contrai passes to the sta­

tement following the protected region where the except ion was handled. That is, the 
termination model is adopted with the retum semantics (as CL U). Modula-3 provides 
program..mers with the construct try.. . finally to define cleanup actions. No support is 
provided for concurrent exception handling. 

2.4.6 Exception Handling in C++ 
In C++ (35], exceptions are data objects and exception interface may be optionally in­
cluded as part of a method's signature. In other words, although exception interface is 

supported, it is not obliged. Like Ada95 and Modula-3, C++ also introduces an exception 
mecha.nism that is sensitive to contexts. The bandling context is termed a block try, and 
handlers may be attached to a statement or a block. Handlers are declared at the end of 
a block try using the keyword catch. The exception is handled by invoking an appropriate 
handler selected from a list of handlers found immediately after the block try, as in: 

try { . . . -- protected region 
} catch (El) { handler -- ... } 

catch (E2) { handler -- ... } 

catch ( ... ) { all-encompassing handler -- ... } 
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A handler catches an exception object by specifying its type. The handler declares its 
parameter as being of a given class, but may catch exception objects of any subclass. C++ 
also allows the de:finition of all-encompassing default handlers by means of the construct 
catch ( .. . ). As in Ada 95 and Modula-3, this handler catches those exceptions that the 
programmer have not provided specific handlers for. 

Unlike CL U, the exception mechanism of C++ implements semi-dynamic binding and 
supports both automatic and explicit propagation of exceptions. Bowever, the default 
behavior is automatic propagation. Regarding continuation o f the control fiow, only the 
termination model with retum semantics is implemented. If a clause catch terminates 
without raising another exception, execution continues normally at the first statement 
after the block try to which the executed handler is attached. The model does not provide 
any specific support for cleanup actions. As exceptions are typed entities, static checks 
can be performed by the compiler. However, as the use o f exception interface is not 
forced, dynamic checks are performed by the run-time system. No support is provided 
for concurrent exception handling. 

2.4. 7 Exception Handling in Java 

Java is considered to be a language from the C++ family and adopts various similar 
design solutions. For instance, Java supports representation of exceptions as data objects, 
semi-dynamic binding, and the termination model with return semantics. In addition, 
Java [30, 52] provides software developers with a block try to define protected regions. 
However, its exception handling is much safer and clearer than that of its ancestor. As 
for the main aspects of exception handling, Java has more powerful features than C++, 
because it allows better static checking and provides specific support for programming 
cleanup actions. 

Java adopts a hybrid solution for exception interface. Ali exceptions must be th­

rowable, that is, exceptions must inherit (directly or indirectly) from the class Throwable. 
Classes Throwable can be categorized into two groups: (i) classes that inherit from the 
class Errar or that inherit from the class RuntimeException are unchecked, and (ii) other 
classes that inherit from the class Exception are checked. The first group are exceptions 
from which ordinary programs are not expected to recover (for example, loading and lin­

ka.ge errors, virtual machine errors), or exceptions that occur within the Java run-time 
system (for example, arithmetic, pointer, indexing exceptions). The compiler does not 
require that programmers check a.nd specify the unchecked exceptions as part of a me­
thod's signature. But Java requires that the program either catch or specify ali checked 
exceptions that can be thrown directly or indirectly within the scope of the method. 

As opposed to C++, Java provides programmers with the construct try ... finally to 
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define cleanup actions. The block finally is always executed at the end of the block try, 
whether an exception is raised or not, unless the block try raises an exception that is not 
caught by its handlers, in which case the exception is propagated. 

Although Java describes clear semantics of exception handling in concurrent Java pro­
grams, it does not offer complete support for concurrent exception handling. The Java's 
exception mechanism is integrated with the Java thread.fsynchronization model, so that 
locks are released as statements synchronized and invocations of methods synchronized 
complete abruptly. An asynchronous exception ( signal) can be raised in a concurrent 
program by invok:ing the method stop on the class Thread. 

2.4.8 Exception Handling in Object Pascal/Delphi 

Object Pascal (4, 5] is the underlying programming language of Delphi, a tool for rapid 
application development. Exceptions in Object Pascal are data objects, and exception in­
terface is unsupported. Like Modula-3 and Java, handlers can be attached to a statement 
or a block. A protected region starts with the keyword try and ends with the keyword 
end. As Modula-3 and Ada95, Object Pascal also allows the definition of all-encompassing 
default handlers. After exception is handled, execution continues a.t the end of the cur­
rent block where the exception was ha.ndled. Therefore, Object Pascal implements the 
termination model with return semantics. 

Unlike CLU, exceptions are propagated automatically and handlers may be a.ssocia.ted 
semi-dynamically. lf a block does not handle a particular exception, execution leaves that 
block a.nd returns to the block that contains the block ( or to the co de that called tbe 
block), with the exception still raised. This process repeats with increasingly broad scope 
until either execution reaches the outermost scope of the application or a block at some 
levei ha.ndles the exception. However, a handler may reraise explicitly the same exception 
by calling the keyword raise witbout the exception object argument. Like Modula-3 
and Java, clea.nup actions may be specified by using the construct try. .. finally. The 
application always executes any statements in the block finally, even if a.n exception occurs 
in the protected block. As semi-dynamic binding is adopted and exception interface is 

unsupported, there is very little that ca.n be checked statically. Moreover, no support is 
provided for concurrent programming and concurrent exception handling. 

2.4.9 Exception Ha.ndling in Guide 

Guide's exception mecha.nism [1, 36] is similar to CLU's one. The nature of a Guide 
exception is symbol. However, complementary information ca.n be passed to handlers 
while raising exceptions. Guide implicitly provides the handler with the names of the 
class and the method that signaled the exception. In Guide, exceptions potentially raised 
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must be included in the interface. In other words, the use of exception interface is obliged, 
and it is not optionallike in C++ and Modula-3. Handlers may be attached to method 
invocations (statements), methods and classes. 

If a statement ra.ises an exception, the method containing the signaling statement 
signals the exception to its caller. Local handlers are not possible. Guide's exception me­
chanism adopts the termination model with return semantics. The normal continuation 
after the execution of a handler is from the point just after the raising method invocation. 
The binding is semi-dynamic, and ali exceptions propagated from a method to its invoker 
should be either explicitly propagated or resignaled. Exceptions are not propagated au­
tomatically in Guide. When an exception is not handled by the caller, a special exception 
termed UncaughLException is propagated. The retry policy also is provided through the 
keyword retry that only a handler can use. 

Guide's approach addresses the issue of consistency of objects. The block restare allows 
a block with cleanup actions to be defined. The block is executed just after the raising 
of the exception and prior to the execution of the handler. Recursively, if the handler 
propagates an exception, then the block restare of the caller object is executed before the 
search for a new handler. As Guide uses static binding and the use of exception interface 
is obliged, most checks are performed statically. Although Guide provides constructs for 
concurrent programming, its exception mechanism does not support concurrent exception 
handling. 

2.4.10 Exception Handling in Extended Ada 

Cui's approach, called data-oriented exception handling [13], is a design that associates 
handlers with objects in their declarations. This concept has been implemented with an 
Ada preprocessar and empirical studies [13] have shown that íts use can produce programs 
that are smaller and better structured when compareci to the programs produced using 
Ada's traditional exception handling. In Ada's exception ha.ndling mechanism, although 
handlers appear after the main algorithm, introducing blocks in the middle of a statement 
list to associate different handlers with different objects inserts exception handling cede 
in the middle of the main algorithm preventing a clear separation between them. The 
data-oriented exception handling removes exception handling code from algorithmic cede 
helping code writeability and readability. 

Exceptions are declared witb type declarations in generic package specifications (ex­
ception interface). Handlers are attached statically to object va.riables in declarations. 
Each object declared has its own set of (exception, handler) binding pairs specified in its 
declaration. Three language features are defined to implement this design: #exception, 
#when, and #raise. Exceptions are decla.red by attaching a clause #exception to the type 
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exported from the specification part of a package. Handlers are associated with data 
object's declaration by attaching a clause #when to the declaration that specifies handler 
procedures for the exceptions defined on the object's type. Exceptions are signaled by 
statements # raise that t ransmit parameters, indicating the object with failure. Default 
handlers for exceptions can be specified in a type declaration and inherited by variables 
declared with that type. Like CLU, only the termination model is supported. 

2.4.11 Exception Handling in B et a 

Beta [42] is an object-oriented language that generalizes some of the concepts introduced 
by Simula67. Beta has no special constructs for exception handling. Instead a langua­
ge construct, using existing syntax, is adopted. Beta's abstraction mechanism is called 
pattern which replaces classes, procedures, functions, types and exceptions. Instances of 
patterns are called objects and can be used as variables, data structures, procedures, func­
tions, and so on. Inheritance is implemented using the supperpattern mechanism. This 
includes explicit control of overriding using the construct inner. Exceptions are represen­
ted as virtual patterns, a variant of the pattem describing the construction of classes or 
individual oh jects. 

Signaling an exception amounts to directly calling the handler by its name. Handler 
can be attached to classes, objects, methods and statements. The mecha.nism is based 
on the static binding approach, i.e., there is no run-time search to find handlers. The 
default continuation of contrai flow is strict termination of the program. Beta also allows 
resumption. 

Propagation of an exception to the caller is not supported. For this reason, the concept 
of searching dynamically for a handler does not exist in Beta. The construct inner and 
virtual patterns of Beta together provide a way for an invoker of an operation to affect 
the handling of an exception inside the object. The code extension (called binding) given 
by the invoker at the time of an invocation is executed by substituting in the operation's 
code at the place where inner is declared. The mecha.nism inner also allows a subclass to 
extend or augment the exception handling of the parent class. This use of inner can often 
require a careful understanding of the pattem's code [46). 

2.4.12 Exception Handling in A rche 

Arche (32, 33] is a concurrent object-oriented language which makes a clear distinction 
between type (description of an interface) and class (an implementation of a type). Ex­
ceptions are data objects and exception interface is supported. The clause signals may be 
used in any operation signature to state the exceptions that the operation may signal. 
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Handlers can be attached to blocks and are declared by means of a construct similar 
to Modula-3. Like CLU, Arche adopts the termination model with explicit propagation 
of exceptions. A handler may propagate the handled exception by using the command 
signal. Thus, the search for a handler is implemented according to the explicit propagation 
of exceptions. If the search fails the predefined exception fai lu re is signaled. The handler 
binding is semi-dynamic. However the absence of handlers can be detected at compile 
time dueto explicit propagation, allowing an error report to the programmer. 

Of the reviewed object-oriented languages in this study, Arche provides the best sebe­
me for concurrent exception ha.ndling. Cooperating threads can be enclosed within a 
scheme of object groups. Object groups are declared as a sequence through the use of 
the type constructor seq of. Methods of an object group are executed concurrently and 
synchronized within group scope and are called mu.lti-operations. In Arche, the notion of 
multi-operations is therefore the base structuring mechanism for fault tolerance. Multi­
operations can be regarded as atomic actions (Section 2.2.2). 

A multi-operation may issue a coordinated call, a natural extension of the method-call 
mechanism. Ali the group components then join together to call a multi-operation a.nd 
are ali synchronized. When the call is terminated, results- if any- are made available to 
ali callers' components before their parallel activities are resumed. In a multi-operation 
execution, many components may concurrently signal different exceptions. Then Arche 
provides a resolution function, which is declared within a class. A resolution function takes 
a sequence of exceptions as input parameter and returns an exception called concerted 

exception. The resolution function is then implicitly invoked when the execution of a 
multi-operation results in the signal of an exception by at least one of the multi-operation 
components. 

2.4.13 Exception Handling in Other Languages 

Trellis/ Owl [18] is a.n important landmark in the history of object-oriented language 
design. When an operation is invoked and it is unable to complete, the interface of the 
operation has a list of exceptions that the operation can signal. The error message not 
found (a familiar run-time error when programrning in an untyped language like Smalltalk) 
could not occur in the strict compile-time type checking of Trellis/Owl. Exceptions are 
created with the keyword signal, and handlers are defined with the clause except on, similar 
to CLU's exception handling. 

Actl (39) is an object-oriented language designed on the basis ofthe actor model. Each 
actor delegates the message to which it cannot respond, to another actor called its proxy. 
The proxy ta.kes charge of the task it has been delegated a.nd the delegating actor is ready 
to process another message. The proxy knows the delegating actor in case it should need 
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a.dditional informa.tion. Delegation, li.ke class inheritance, is a means of sharing behavior 
(i.e. operations). However, delegation is more :B.exible than inheritance: an actor may 
dynamically choose new proxies, whereas the inheritance graph is statically defined at 
compile time. A specific actor called Object is the universal proxy and the root of the 
"delegation tree". In this context, error handling is distributed: the continuation of a 
message may be one of the actors which handle exceptions, by activating an interactive 
debugger. Users can thus define new actors processing exceptions in a way suited to their 
requirements. 

2.5 Evaluation and Discussion 

Although it is difficult to claim which model and mechanism implemented for a single 
language is better than the others, the relative advantages and disadvantages of ea.ch 
mechanism will be identified and addressed below. Figure 2.4 provides a summary of 
the main aspects of the exception mechanisms presented in Section 2.4. The figure high­
lights the di.fferent approaches for each design issue identified according our taxonomy 
(Section 2.3). 

Exception Representation. With respect to exception representation, we can observe 
that 6 mechanisms have represented exceptions as symbols. The others have represented 
exceptions as objects: 4 mechanisms have represented exceptions as data objects, and only 
2 have chosen to represent exceptions as full objects. We can conclude that several designs 
still intermingle object-oriented solutions with conventional solutions since halfthe studied 
exception mechanisms have represented exceptions as symbols. From the perspective of 
language uniformity, notions related to exception handling should be defined according to 
the object-oriented programming paradigm [32, 33). In fact, object paradigm was bom 
during a time when procedural programming was abundantly dominant. As a result, 

some mechanisms of languages, called hybrid languages, combine procedural solutions of 
progra.mming with object-oriented ones. 

The handlers of a dependable system need useful information to da.mage assessment 
and consequent error handling. Handlers may not be in tbe same context where the 
design fault which caused the exception raising. Extra-information should be passed to 
the corresponding handler so that it can perform correct and effective errar handling. 
When an exception is a mere symbol, it cannot pass parameters back to its handler. This 
forces the programmer to communicate via global variables, which in tu.m decreases the 
modularity of the system. Extra-information passing can be performed naturally when 
exceptions are represented as objects. The representation of exceptions as objects allows 
the inclusion of context-related information that can b e passed implicitly by the exception 
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mechanism at run-time as well as explicitly by the signaler declaring the information in 
the state of the exception object. 

Exception Interface. As regards the exception interface, 5 exception mechanisms have 
supported it, 4 mechanisms have not forced its use, 2 mecha.nisms have forced its use, and 
only 1 mechanism has adopted the bybrid solution. Java is the only design that adopts 
the hybrid solution. Designers of exception mechanisms have opted for a :flexible solution 
regarding exception interface; programmers usually are not required to specify predefined 
and user-defined exceptions that a method may signal. However, tbe inclusion of excep­
tion interface in the metbod's signature leads to better readability (8). This feature allows 
a programmer to state the intent of a method in a precise way, by specifying both its ex­
pected normal and exceptional behaviors (27). Knowing which exceptions a called method 
may signal, the client code may guard easily against exceptional behaviors by providing 
appropriate handlers [27). This is in line with the idealized-fault-tolerant-component mo­
dei, i.e., components with well-defined interfaces which involves constraining the patterns 
of normal and exceptional interactions among the components. 

Handler Attachment. With respect to handler attachment, 9 mechanisms have inclu­
ded statement handlers, 6 mechanisms bave included block handlers, only 2 mechanisms 
(Extended Ada and Beta) have included handlers at tbe level of objects, 7 mechanisms 
have included class handlers, and only 2 mechanisms (Lore and Beta) have included ex­
ception handlers. For the purpose of improving the writeability and structuring of the 
dependable systems, it is desirable to allow multi-levei attachment of handlers, i.e., the 
attachment of handlers to several levels of protected regions such as exceptions, classes, 
objects, methods and so on. However, only the exception mechanism of Beta supports 
multi-level attachment of handlers. 

It has been a tendency to provide programmers with high :flexibility for de.fining the 
size of protected regions. In other words, several exception mechanisms have allowed 
software developers to attach handlers to blocks, and they can define tbe extent of a 
protected region by means of keywords. However, the use of block handlers violates 
explicit separation of concerns, since the exceptional code is intermingled with normal 
code, albeit moved to the end of statement blocks. Another disadvantage of defining 
protected regions as blocks of statements is that nested blocks are usually added for 
the sole purpose of attaclring an exception handler [37). As a result, it leads to the 
development of dependable software which is difficult to read, maintain and test. In 

ad.dition, block handlers are not absolutely necessary. Statement handlers enable the 
cause of the exception to be located more precisely, and can be used without violating 
the separation of concems. The exception handling model of Guide is a typical example 
of design that adopts only statement handlers and achieves explicit separation between 
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the normal and exceptional activities. 
Some languages offer another feature related to the handler attachment: the all- en­

compassing default handler. With this feature, programmers may provide a single handler 
attached to a protected region to handle any exceptions that have not been provided spe­
cific ha.ndlers for. In order to use this feature in Modula-3 (Section 2.4.5), progra.mmers 
add a pa.rt else to the part except of the exception-handling b1ock. However, the use 
of the all-encompassing default handlers may be error prone. The pa.rt else handles all 
exceptions, including those the software developer know nothing about. In general, the 
exceptional adivity of a dependable system should handle only exceptions its program­
mers actually know how to ha.ndle. In other cases, it is better to execute cleanup code 
a.nd leave the handling to code that has more information about the exception and knows 
how to handle it. Severa! exception mechanisms, such as Delphi, Ada95 and C++, also 
adopt this error-prone feature in order to provide a high degree of flexibility for handler 
attachment. 

Handler Binding. Related to handler binding, 3 mechanisms have implemented the 
static approach, none has implemented the dynamic approach, and 9 mecbanisms have 
implemented the semi-dynamic approach. Static binding leads to better readability since 
it is easier to verify which ha.ndler would be activated for a given exception occurrence. 
With dynamic and semi-dynamic binding, it is more difficult since exceptions are propa­
gated dynamically and the binding depend effectively upon the control ftow at run-time. 
However, exception propagation is not allowed and there is no run-time search to find 
handlers in the static approach (Section 2.3). It has been said that not to propagate ex­
ceptiona.l results of a conceptuallevel equal to that of the operation breaks reusability [8). 
The callers of an operation generally have better solutions for handling than statically 
bound handlers (local handlers) that are unaware o f the computation history. 

The dynamic and semi-dynamic approacbes take the invocation history into account 
while finding for a handler as opposed to the static approach. In fact, the ha.ndler binding 
in the dynamic and semi-dyna.mic approaches depend effectively upon the control flow at 
run-time. From the perspective of dependable software, it sbould be possible to change the 
currently installed handler at run-time without shutting down or rebooting the system. 
Most dependable object-oriented systems a.re essentially criticai and cannot be shut down 
and rebooted. Therefore, some way of dynamic binding should be supported. 

Exception Propagation. With rega.rd to the exception propagation, 6 mechanisms 
have supported automatic propagation and 9 mecbanisms have implemented the explicit 
propagation. The exception mecbanisms of Smallta.lk, Extended Ada and Beta adopt 
static binding and therefore have not supported any kind of propagation. Although most 
mecbanisms allow explicit propagation of exceptions, automatic propagation is usually 
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adopted as default behavior. In fact, Ada95, Eiffel, Modula-3, C++, Java and Delphi ha­
ve implemented both semi-dynamic binding and automatic propagation. Thus flexibility 
also has influenced this design issue in the different except ion handling proposals. Howe­
ver, automatic propagation may allow an exception occurrence be inadvertently bound 
to a.n inappropriate handler. In addition, automatic propagation o f unhandled excep­
tions through different leveis of abstraction may compromise information hiding because 
the exception object can reveal information about the original signaler to other than its 
immediate caller. lt decreases modularity since it can thereby increase coupling [73]. Ex­
plicit propagation addresses this problem since the handling of an exception occurrence 
is limited to the immediate caller in this approach. Explicit propagation of exceptions is 
only forced in 4 mecha.nisms: Lore, Guide, Extended Ada and Arche. 

Continuation of the Contr ol Flow. Related to continuation of control flow, all me­
chanisms have adopted the termination model. Very few languages, such as Mesa [47] and 
PL/ I (41] (which are not addressed here) , implement exclusively the resumption model 
which has been considered to be too complex (38, 33]. Beta, Smalltalk and Lore provide 
both the termination and resumption models. Mecha.nisms that support resumption are 
very powerful a.nd flexible, but it turns out to be diflicult to use by application program­
mers. From the viewpoint of fault tolerance, a.n exception mechanism should be simple 
and reliable. A mechanism implementing resumption has to support a more complex 
pattern of interaction: the system invokes a component which in turn can invoke the sys­
tem by signaling a.n exception [38]. Unnecessary complexity may introduce error-prone 
features in the design of an exception mechanism and complicate the programmer's task 
while developing its dependable system. In fact, as far as fault tolera.nce is concerned the 
termination model is considered to be most adequate due to its clearer sema.ntics (40). 
A formal treatment of the termination model within the framework for software fault 
tolerance is given by Cristian [12]. 

Cleanup Actions. With respect to the cleanup actions, 1 mechanism (Extended Ada) 
has not provided a.ny support for cleanup actions, 4 mechanisms have only allowed to spe­
cify cleanup actions by means of explicit propagation, 7 mechanisms have provided specific 
constructs, and nane of the exception mechanisms h as provided automatic facilities. Thus 
most exception mechanisms provide a specific construct which is executed whenever the 
protected region unit exits. Ideally the exception mechanism should be responsible for 
performing cleanup actions automatically. It could make programmer job more simple 
and less error prone, and would allow to achieve a nwnber of quality requirements, such 
as readability, maintainability, and simplicity. However, the feasibility o f this approach is 
doubtful since implementing automatic cleanup may be too difficult , and investigation of 
alternate methods is required (37]. 
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Reliability Checks. As regards the reliability checks, 10 mecbanisms have supported 
dynamic c.hecks, and 9 mechanisms have supported static checks. Most mechanisms per­
forro static checks, followed by some level of dynamic checking. Some mechanisms have 
implemented either exclusively dynamic checks, or only static checks. In Smalltalk, for 
instance, checks are all performed dynamically. It is a untyped language, if there are any 
type errors tbey will occur at run-time. Therefore Smalltal.k cannot be considered an 
adequate language for construction of dependable object-oriented software, altbougb tbe 
design of its exception mechanism is object-oriented. Smalltalk is more suitable for other 
areas of system development. In fact, different languages simply bave different goals, and 
are tailored to meet the needs of different communities. Unlike Smalltalk, C++, Java, 
and many other languages, Eiffel takes the view that error handling and fault tolerance 
semantics sbould be tbe central pa.rt of the language. The aim of its design cri teria is allow 
the development of robust applications. According to the Eiífel's discipline, an exception 
a.rises only if a routine fails beca use of some erro r (27]. Eiffel contains a broad range of te­
chniques such as pre-conditions, pos-conditions and assertions, which are complementary 
to the exception mechanism (Section 2.4.4). With the use of these additional techn.iques, 
in most cases there is no need for naming exceptions or for providing a raise statement. 
Ali that matters is whether a failure that would violate the object's contract occurred in 
a method. 

Concurrent Exception Handling. Related to the issue of concurrent exception han­
dling, only the Arche language has effectively provided complete support for it. Arche 
supports a mechanism based on a concurrent exception-handling model whose features 
enforce the construction of correct and robust programs. Arche's exception mechanism 
allows user-defined resolution of multiple exception amongst a group of objects tbat be­
long to different implementations of a given type. However, this approach is not generally 
applicable to the coordinated recovery of multiple interacting objects of different types. 
Moreover, the exception resolution mechanism implemented in Arche is not based on the 
concept of exception tree (Section 2.2.2). Issa.rny et al. (32, 33] argues that exception 
trees are not indicated for parametrised exception, so Arche have introduced the concept 
of resolution function to determine which handler should be activated in case various 
exceptions are raised in a cooperating group of objects. However, to program resolution 
functions it seems not to be an easy task since application developers are responsible for 
deciding how to implement resolution functions. As a consequence, concurrent program­
ming and concurrent exception handling in Arcbe is not simple and can become rather 
difficult to use. 

To summa.rize our discussions, the following issues conclude this Section: 

• Several design decisions are based on too flexíble and complex solutions. In spite of 
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the prime aim of exception mechanisms in working as a simple and reliable scheme 

for developing robust programs, a number of their design decisions still are based 
on severa.l flexible and complex solutions. The use of fiexible and complex features 
may lead to the construction of dependable object-oriented software which is error 
prone. The use of all-encompassing default handlers is an example o f fiexible feature 
with unnecessary expressive power which may cause the introduction of additiona.l 
design faults. 

• Lack of support for concurrent exception handling. The main drawback of the cur­
rent exception handling techniques is the lack of complete support to handle con­
current exceptions. Only Arche has effectively provided support for concurrent 
exception handling. However, as stated a.bove, its exception mechanism has some 
limitations. In this way, in actual concurrent object-oriented languages, exception 
handling is still an evolving subject where no clear consensus exists and many open 
problems remain. 

• Studied exception mechanisms have not fully addressed the demanding quality requi­

rements. None of the investigated exception mechanisms have incorporated design 
decisions which are fully suitable for developing dependable object-oriented software. 
Designers of exception mechanisms do not pay enough attention to the demanding 
quality requirements, such as readability, modularity, uniformity, maintainability 
and reusability. In addition, the advantage of one mecbanism is often the disadvan­
tage of the other. For instance, the mecbanisms of Lore, Smallta.Ik and Extended 
Ada adopt design solutions highly integrated with the object paradigm, but fail in 
providing an exception mechanism more restrictive and ease to use. However, it 
is worthwhile to highlight the design of the exception mechanism of Guide which, 
according to our evaluation, has reached the highest punctuation in our ranking. In 

addition, the exception mechanism of Eiffel is interesting since it is complemented 

witb a broad range of techniques as discussed above. We can claim tbat both mecha­
nisms have a design more suitable to produce dependable object-oriented software 
with demanding quality a.ttributes, although no support for concurrent exception 
handling is offered for these mechanisms. 

2.6 General Design Criteria 

The ta.xonomy (Section 2.3) identified the several design issues of an exception mecha­
nism, and classi.fied the different solutions to design them. The design decisions on these 
issues should be taken a.ccording to the demanding quality requirements. Figure 2.5 pic­
tures this scenario. Note that some quality requirements are stated by the dependa.ble 
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object-oriented applica.tions using the exception mechanism, while others are imposed 
on the exception mechanism itself. However, the designs of ex:isting exception ha.ndling 
mecha.nisms ha.ve not sa.tisfied these requirements (Section 2.5). 

This section outlines the criteria to design an effective exception mecha.nism for de­
veloping dependa.ble object-oriented systems. Based on the criteria, we define the design 
choices for an ideal exception handling model for this kind of systems. The criteria and 
the proposed exception handling model have been developed based on our extensive work 
in building dependable object-oriented systems (19, 60, 53, 54, 63, 71, 69] a.nd exception 
mechanisms for this kind of systems [23, 21, 57, 58, 61, 69]. 

2.6.1 Quality Requirements of an Exception Mechanism 

Ql. Readability. One ofthe main reasons to use a.n exception mecha.nism isto promote 
program rea.da.bility [6, 48]. The importance of reada.bility increases regarding dependa.­
ble object-oriented software since the number of possible exceptions a.nd the exceptiona.l 
activity to dea.l with such exceptions are both very large and complex. The exception me­
chanism should promote explicit separation between the exceptional and normal execution 
co de, following the overall structure of the component-fault-tolerant-idealized model (Sec­
tion 2.2.1). A mechanism with a clear sepa.ration will be easier to read and understand, 
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highlighting the main purpose and extent of the protected region and the abnormal code 
in the exception handler section. Otherwise, the code for the normal situations may then 
be difficult to read. 

Q2. Modularity. An exception mechanism should yield dependable object-oriented 
applications in which the effect of an abnormal condition occurring at run-time in a com­
ponent will remain confined to this component, or at least will propagate to a few neigh­
boring component only [44]. In this way, the exception mecha.nism should ensure each 
component of a dependable object-oriented application practices information hiding (73]. 

Q3. Maintainability. It is widely estimated that 70% of the cost of software is devoted 
to maintenance (44]. An effective exception mechanism should not neglect this aspect 
and promote ease of program ma.intenance. If dependable object-oriented software can 
not easily changed, additional errors will be introduced during the ma.intenance phase. 
As a result, the design of an exceptíon mechanism for dependable object-oriented systems 
should specially empbasize simplicity and program readability. 

Q4. Reusability. Designing for reusability means that the system has been structured 
so tbat its components can be chosen from previously built products. The exceptional 
activity of a software component should be reused as well as the normal activity. Alter­
natively, exceptions and handlers are defined independent of tbe component, thus reused 
independently. If reusability is not satisfied, it compromises the ability to incorporate 
new exception handlers into idealized fault-tolera.nt components. lt forces programmers 
to write exception-handling code even if the ma.in body of code is already available (37). 

Q5. Testabilit y. Software testability refers to the ease witb which software can be 
made to demonstrate its faults through (typically execution-based) testing. In general, a 
system's testability relates to severa! structural issues (2]: (i) its separation of concems, 
(ii) its leve] of documentation, and (iii) the degree to which the system uses informa­
tion hiding. Object-oriented software testing is still an evolving area. Furthermore, the 
addition of exceptions and exceptional behavior complicates significa.tively the testing 
activity. It should not be dlfficult to analytically verify that every possible error has a. 
known handler, and it should not be hard to test every exceptional scenario in a systematic 
manner. Depedanble object-oriented software should be well-tested in order to decrease 
the possibility of manifestation of residual faults at run-time. The design decisions of 
an exception mechanism should be taken without damaging the testability of dependable 
object-oriented software. 
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Q6. Writeability. Dependable object-oriented systems should embed error recovery 
activities at various leveis of the system. In this way, the complexity inherent to such 
systems could be controlled in a flexible and systematic approach, and redundancy could 
be similarly added at severallevels of an object-oriented system. However, care is needed 
in introducing expressive power. Unnecessary expressive power may introduce additional 
complexity for the exception mechanism (Section 2.5). 

Q7. Consistency. Components of a software system should be kept in a consistent 
state, regardless of whether the co de completes normally or is interrupted by an exception. 
The consistency of components of dependable object-oriented systems should always be 
maintained, because such systems usually continue to execute even in the presence of 
errors to prevent catastrophic failures. 

Q8. Reliability. The exception mechanism features should aid the development of 
reliable programs. Therefore, the exception mechanism should be designed to avoid error­
prone features and to maximize automatic detection of programming errors. In fact, the 
team. of designers of a dependable object-oriented software has yet to deal with many fault 
types. Additional faults should not be introduced by the use of the exception mechanism. 
The exception handling system should anticipate and prevent common progra.mmer errors. 

Q9. Simplicity. As with alllanguage features, the exception mechanism must be sim­
pie to understand and use. Meyer [44) advocates that a good exception mechanism should 
be simple and modest. Tberefore, tbe exception mechanism should not contain unnecessa­
ry complexity. It should have a consistent semantic structure that minimizes the number 
of underlying concepts. In otber words, the concepts introduced by an exception me­
chanism should be as small as possible and consistent with the needs of the dependable 
object-oriented applications. It should have few special cases and should be composed 
from features that are individually simple in their semantics. In a exception mechanism 
that programmers of dependable systems master totally, they feel confident and can con­
centrate on the complexity inherent to tbeir systems rather than on the intricacies of the 
exception mechanism. 

QlO. Uniformity. The exception mechanism should have uniform syntactic conven­
tions and should not provide several notations for the same concept. In addition, the 
design solutions of an exception mechanism for object-oriented systems should be uni­
formly adopted in the ligbt of object-orientation. Object-oriented solutions should not be 
intermingled with conventional solutions. Otherwise, it would affect negatively reusabili­
ty, modularity, testability of the dependable object-oriented software using the exception 
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mechanism. 

Qll. Traceability. Dependable object-oriented software needs useful information to 
damage assessment and consequent error recovery. The information should be passed 
by the exception mechanism together with the notification of the exception, and it may 
include the name, description, location, severity of the exception, propagation chain and 
other useful data (Section 2.2.1). 

Q12. Performance. Performance is always a consideration. There are two major 
trends in the exception mechanism design: (i) the time for searching a suitable handler 
when an exception is raised - ideally, the complexity of the search algorithm should be 
0(1); (ü) run-time overheads caused by the exception mechanism under normal operation 
conditions - ideally, the mechanism should be designed so that run-time overheads are 
incurred only when handling an exception. However, in the case of dependable systems, 
in particular, where speed of error recovery is on prime importance, an application may be 
prepared to tolerate a little overhead on the normal error-free operation (6]. Performance 
frequently compromises the achievement of all other qualities. Some performance penalty 
should be tolerated for a greater quality of the exception mechanism. In this way, the 
other qualities should be priorized in designing an exception mechanism for dependable 
object-oriented software. Performance is really crucial in hard real-time systems which is 
not our study aim. We refer to [37] for deeper discussions regarding exception handling 
and real-time systems. 

2.6.2 An Ideal Exception Handling Model 

After analyzing the demanding quality requirements, we discuss each design decision and 
present an ideal exception handling model for dependable object-oriented software. We 
point out which quality requirements each design choice affects positively or negatively. 
Figure 2.6 summa.rizes these infiuences. Tradeoffs also are discussed since the quality 
requirements may confiict. 

D 1. Exceptions Represented as O b jects. Exceptions should be represented as ( full 
or data) objects. This design decision has a number of benefits. For instance, it leads 
to better traceability (Qll) and modularity (Q2) since extra-infonnation passing can be 
performed naturally when exception occurrences are objects (Section 2.5). Moreover, this 
representation is integrated uniformly (QIO) with the object paradigm and has a number 
of advantages when compared to the classica.l approach, such as [8, 15]: (i) exceptions 
organized into an inheritance hierarchy which makes the system easier to reuse (Q4), read 
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(Ql), test (Q5), maintain (Q3) and ex:tend; (ii) handler definition is powerful (Q6), since 
handlers do not only handle one kind of exception but ali exceptions that are subclasses 
of it - consequently, less handler bindings are needed, and the program is shorter which 
improves readability (Q2) and makes the mechanism more simple and easier to use (Q9); 
(iii) handlers that are independent of any execution context can be attached to exception 
classes, and handlers attached to classes can be inherited by sub classes ( Q6) ; and (i v) 
the use of the exception mechanism is more reliable (Q8), since representing exceptions 
as mere symbols may be error prone. 

D2. Obliged Exception Interface. According to the idealized-fault-tolerant-component 
model (Section 2.2), each system component should be able to return well-deflned res­
ponses. The normal and exceptional responses o f the components o f a dependable system 
should be rigorously specified. To understand which exceptional responses a method may 
return, one should not have to examine its implementat ion. In fact , the presence of excep­
tion interface leads to better readability (Ql ) (Section 2.1). This feature also promotes 
the construction of modular software systems (Q2) [8], which in turn improves maintai­
nability (Q3), reusability (Q4) and testability (Q5). Finally, exception interface affects 
the conformance rules checked by the compiler and makes the exception mechanism mo­
re reliable (Q8). Therefore, exception interface should be obliged. However, the hybrid 
approach a.lso could be adopted since it is diflicult to designers anticipate ali exceptions, 
many exception types are unpredictable by nature. 

D3. Multi-levei Attachment of Handlers. For the purpose of improving the wri­

teability (Q6) and structuring of dependable object-oriented software, it is desirable to 
allow the multi-levei attachment of handlers (Section 2.5). The programmer can assume 
the existence of different leveis of handler attachment. When an exception is related to an 
operation, a handler for this exception may be locally associated with the operation. Al­
ternatively, handlers can be associated with a class, which can be applied to ali operations 
of that class. It is also possible to attach handlers to objects and exceptions themselves. 
Such flex:ible attachment has many advantages: (i) it provides a clear separation of the 
object abnormal behavior from the normal one according to the concept of an idealized 
fault-tolerant component (Ql); (ii) protected regions can be factored out at the respective 
leveis of classes, objects and operations (Q6); (iii) software layering facilitates the design 
o f fault-tolerant systems; and (i v) the close integration between the language and the 
exception mechanism could be obtained through the uniform use of the object paradigm 
(Q9). However, block handlers should not be supported. The use of block handlers usual­
ly intermingles the exception handling code with the normal flow of an operation, which 
may result in less readable (Ql) and reusable (Q4) programs. Separation of concerns is 
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on prime importance for dependable object-oriented systems. The error handling code 
is detailed and complex and may then make code for the normal situations diffi.cult to 
read (Ql) and ma.intain (Q3). Explicit separation of concerns achieves a number of soft­
ware qualities: readability (Ql), modularity (Q2), maintainability (Q3), reusability (Q4), 
testability (Q5) and writeability (Q6). 

D4. Semi-Dynamic Binding. As stated previously in the Section 2.5, although the 
static approach leads to better readability (Ql), some way of dynamic binding should be 
supported for dependable systems. We believe semi-dynamic binding is sufficient. Semi­
dynamic binding associates different handlers with the exception in different contexts 
during a program's execution. In addition, the semi-dynamic binding method can be used 
to achieve the functionality similar to that of the dynamic method. A semi-dynamically 
bound handler can call different handlers based on run-time conditions. However, static 
binding cannot achieve this because the run-time condition may not be valid in some 
contexts. Although this design solution has negative infiuences on readability (Ql) and 
simplicity of the exception mechanism (Q9), the adoption of explicit propagation (D5) 
minimizes such negative impacts. Explicit propagation limits the handler binding to the 
local context related to the signaler and to the immediate caller. 

DS. Explicit Propagation of Exceptions. Explicit propagation should be the only 
way of propagating exceptions along the chain of invokers. According to the CLU's desig­
ners, the caller of a method x should know nothing about the exceptions signaled by the 
methods which are called during the execution of x. The handling of an exception occur­
rence should be limited to the immediate caller. Explicit propagation directly improves 
modularity (Q2) (Section 2.5), which in turn improves readability (Ql), maintainability 
(Q3), reusability (Q4), testability (Q5) and reliability (Q8). The exception mechanism 
should therefore not provide automatic propagation and should force the users to expli­
citly rename any propagated exception. When automatic propagation is disallowed, the 
set of handlers that can field a particular exception can be statically determined, thus al­
lowing additional compiler checks (Q8). However, this design choice obviously constrains 
writeability (Q6) and performance (Q12). 

D6. Termination. As discussed in Section 2.5, termination should be the only sup­
ported model for continuation of the control :flow. A mechanism implementing only ter­
mination is very simple to construct (and hence more reliable - Q8) since the signaling 
of an exception can be regarded as an abnormal return from the component [38). From 
the viewpoint of fault tolerance, the resumption model introduces unnecessary expressive 
power [40) as well as additional complexity for the exception mechanism (Q9) (40, 33]. 
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Practical experience with exception mechanisms providing resumption has shown that the 
resumption model is more error prone (27]. FU.rthennore, it can promote the unreliable 
programming practice (Q8) of removing the symptom of an error without removing the 
cause (27). 

D1. Explicit Support for Cleanup Actions. The use of an exception mechanism 
might lead to inconsistencies (Q7) when exceptions are raised [64]. Components of a 
dependable object-oriented application cannot be left in inconsístent states, since that the 
system should continue to operate even in the presence of errors to prevent catastrophic 
failures. Automatic facilities for cleanup actions can be infeasible (Section 2.5) and it 
would cause probably high overheads at run-time (Q12). In fa.ct, none of the exception 
mechanisms in realistic object-oriented languages have automatic cleanup. Therefore, the 
most suitable solution is provide programmers with specific support for cleanup actions; 
using explicit propagation to perform cleanup actions is more error prone (Q8), and 
more difficult to understand and use (Q9). Furthermore explicit support leads to better 
readability (Ql) and writeability (Q6) because it avoids replication of code devoted to 
cleanup. This problem is inevitable when using explicit propagation since cleanup actions 
are implemented within each handler attached to the protected region. 

DS. Static Reliability Checks. The exception mechanism shoúld be designed for 
creating highly reliable dependable software. It should provide extensive static checking, 
perhaps followed by some levei of dynamic checking. This design decision is devoted to 
guide programmers of dependable systems towards reliable programming habits ( Q8). 
Our decisions in adopting exception interface (D2) and explicit propagation as design 
principies facilitate static checlóng. For instance, the compiler may verify if an exception 
being raised at run-time will have a bound handler. 

D9. Complete Support for Concurrent Exception Handling. We consider that 
complete support for concurrent prograrnming as one basic aspect of an actual exception 
mechanism because we believe it is extremely important for realistic dependable ob ject­
oriented applications. In practice, the approach classi:fied as limited (Section 2.2.2) can 
lead to production of software components which are difficult to read (Ql), maintain (Q3), 
reuse ( Q4), and test ( Q5). In addition, the responsibility related to handler invocation and 
exception resolution is left to application programmers which in turn leads to unreliable 
programming of dependable object-oriented applications (Q8). From the viewpoint of 
fault tolerance, concurrent exception handling is complicated (Section 2.3) and should 
be integrated with atomic actions. The effort of developers of dependable object-oriented 
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systems should be minimized and they should concentrate on issues which are application­
dependent. 

2.7 Ongoing Research 

As we have concluded in the previous Section, existing exception mechanisms have not 
fully addressed an appropriate design criteria. The current lack of effective exception 
mechanisms for developing depedendable object-oriented software with the demanding 
quality attributes requires the building of new error-handling techniques. Ideally a new 
technique developed for a specific programming language should not introduce new lan­
guage constructs. In practice this would make the a.pproacb infeasible for existing lan­
gua.ges. We believe this is the time to map tbe fault tolerance a.pproaches tha.t are well 
researched but are not used in practice very often, onto pra.ctical, widely used existing 
langua.ges. I t seems to be one of tbe main flaws of the previous research specially related 
to fa.ult-tolerant software that ít is still rather theoretical and is applied to exotic systems 
and languages [59]. In addition, a new exception mechanism should be developed without 
conflict with other existing mechanisms. 

One way to extend the facilities o f programming languages is to use preprocessors whi­
ch will accept an extended synta.x as input and map them into the stànda.rd form of the 
language. Usually, such extensions however are not compa.tible; then :other preprocessors 
may not be combined with each other, which results in unsolvable dilemmas [44]. A ten­
dency for extending object-oriented programming languages isto use the computational 
refiection technique. This technique is based on tbe refiection mecbanism which introdu­
ces a new dimension of modularity - the separation of the base-levei computation from 
the meta-levei computation. This a.pproach allows to implement adclitíonal mechanisms 
for the underlying language without any changes to the language itself. 

The work ofHof et al. (31) describes an exception mecbanism ba.sed on meta-programming 
and computational refiection. Its implementation was carried out in a speci:fic system but 
it could be implemented to most otber systems that support meta-programming. Howe­
ver, such a mechanism does not support concurrent exception handling in cooperating 
participants and is not fully integrated with tbe object paradigm. The work of Garcia et 

al. [21) proposes a new error-handling technique for developing dependable object-oriented 
software also based on a re:fiective approach. The meta-levei implements the exception 
mechanism, and at the base levei resides the applica.tion. They bave implemented their 
exception mechanism within the Java programming language without any changes to the 
language itself by means of a meta-object protocol. The proposed object-oriented excep­
tion handling model is based on the idealized fault-tolerant component (Section 2.2.1) and 
establisbes a clear separation between exceptional and normal code. Mitchell et al. [48] 
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also propose an exception handling model which ensures complete separation between 
error handling and normal co de. However, their proposal applies the reflection techni­
que in a different way. Instead of utilizing reflective principies to achieve the separation 
between the application and the management mechanisms related to exception handling, 
this work explores reflection to separate the aplication's normal code (meta-levei) from 
the aplication's exceptional code (base levei). 

Object-oriented frameworks is also an emerging technology in the world of object­
orientation. A framework is a reusable and flexible software that can be ex:tended to 
produce customized applications. Framework's designers specify variations witbin its 
design by means of extension points, which are those aspects of an domain that have to be 
kept .flexible; developers of a specific application refine the framework design for the needs 
of their aplication by filling in those ex:tension points. Extension poínts describe where 
and how the framework is extended and customized. We argue that framework technology 
is a sounding idea for implementing an exception mechanism. An exception mechanism 
could be implemented as an object-oriented framework providing a set of extension points 
since di.fferent kinds of applications would require different functionalities of the exception 
mechanism. For instance, dependable systems require the termination policy for the 
exception mechanism, but the resumption policy may be useful for simulation systems. 
The extension points could implement the different design approacbes for each exception 
mechanism 's functionality according to our proposed taxonomy. These ex:tension points 
could be easily adapted according the context where tbe exception handling framework is 

being employed. 
According to [34] the use of design patterns is extremely useful both as a guide during 

the framework development and as a help in better understanding a framework design. A 
design pattem is a microa.rchitecture that applies to a cross-domain design problem [7]. 
Some of the most useful pattems describe the framework's extensíon poínts. In this way, 
a system of pattems for exception ha.ndling could be developed to assist the building of an 

exception handling framework and document its design. The Error Detection pattern [56] 
proposes a design solution to detect errors of an application at runtime. However, such 
a pattem only encompasses error detection; it does not define means for the de:finition of 
handlers to cope with such exceptions. The paper [24] proposes a set of design patterns 
for the exception handling domain. 

As we have exam.ined in this paper, the maio drawback of the current exception han­
dling techniques is the lack of complete support to ha.ndle concurrent exceptions. Somes 
works have been developed to integrate concurrent exception handling with the atomic 
action concept. The paper [58) describes a concurrent exception mechanism based on 
atomic action structures for the Ada95 language. The coordinated atomic action concept 
(CAAction) [69] was introduced as a unified approach for structuring complex concur-
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rent activities and supporting error handling between multiple interacting objects in a 
concurent object-oriented system. CAActions provide a suitable framework to develop 
dependable object-oriented systems. The paper (61] d.iscusses the introduction of concur­
rent exception handling and CAAction schemes into object-oriented systems. This paper 
also d.iscusses a d.istributed exception-resolution algorithm. 

As stated previously, error handling activities play a special role in the development 
of dependable object-oriented software. Traditional methods of object-oriented software 
deal with exceptions at late design and implementation phases. Better results might 
be achieved if exceptions and exception handling activities might be incorporated in a 
consistent and disciplined way during ali phases of development of a dependable object­
oriented software. Instead of assuming that exception handling should be restricted to 
the later phases of software development, the work of de Lemos and Romanovsky [14] 
describes a systematic and effective approa.ch in how to deal with exception bandling 
at ali phases of the software lifecycle. Tbe approach provides a stepwise method for 
defining exceptions and their respective handlers, thus eliminating the ad hoc way in 
which exception handling is sometimes considered during the later phases of the software 
lifecycle. 

It should tbere be as little extra work as possible for programmers of dependable 
object-oriented systems using a ex::ception mechanism. A mechanism that provides a set 
of standard templates or a CASE tool to speed the implementation is often considered 
easier to use [37]. In add.ition, a nu.mber of tools could be used during al1 phases of the 
software lifecycle. Only a few researchers has dealt with this question. Xept (68] is a tool 
that can be used to add to object code the ability to detect, mask, recover and propagate 
exceptions from library functions. Accord.ing the authors, its use helps to alleviate or 
avoid a large class of errors resulting from function misuses. 

2.8 Concluding Remarks 

Nowadays exception mecbanisms are important features of object-oriented programming 
languages. In the context of dependable object-oriented software, exception mechanisms 
are used to structure the fault tolerance activities incorporated to a system. The software 
quality attributes of modem software systems require suitable design solutions for an 
exception mechanism that wi1l be used to develop dependable object-oriented software. 
This paper initially presents an introduction and overview of the notions of exception 
handling and fault tolerance. A tax.onomy for classifying the d.ifferent design solutions 
in existing exception mechanisms has been developed. The proposed taxonomy addre&­
ses nine main aspects of interest, including exception representation, exception interface, 
handler attach.ment, handler binding, exception propagation, continuation of the control 
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fiow, cleanup actions, reliability checks, and conCUITent exception handling. The excep­
tion handling models of twelve exception mechanisms for object-oriented languages have 
been reviewed and evaluated with respect to the developed taxonomy. We also have de­
fined a set of demancling quality requirements which should be satisfied while developing 
a proper exception mechanism for dependable object-oriented software. The defined re­
quirements form the criteria which we have used to determine the design solutions for an 
ideal exception handling model. Finally, we have suggested directions for future research. 

Language features and their corresponding mechanisms for exception handling conti­
nue to evolve in both experimental and commercial object-oriented Ianguages. Our eva­
luation h as concluded that none o f the exception mechanism has addressed an appropriate 
design cri teria. From this study, we have found that most of the existing mechanisms still 
adopt a number of classical design solutions for the implementation of exception handling 
models. In addition, several design decisions for such mechanisms are based on too fiexible 
and complex solutions which may lead to the construction of dependable object-oriented 
software which is not well structured. Thus, an ideal object-oriented exception mecha­
nism has not yet come out. This is partially because the designers of a new language does 
not pay enough attention to the language part that supports exception handling; in most 
cases, they usually attempt to add exception handling facilities to an existing language 
rather than to keep exception handling in mind at the very beginning of the process of 
language design. 

However, it is worthwhile to highlight the design of the exception mechanism of Guide 
which, according to our evaluation, has reached the hlghest punctuation in our ranking. 
In addition, the exception mechanism of Eiffel is interesting since it is complemented with 
a broad range of techniques as discussed in the Section 2.5. We can claim that both 
mechanisms have a design more suitable to produce dependable object-oriented software 
with effective quality attributes, although no support for concurrent exception ha.ndling 
is offered for these mechanisms. In fact, the main drawback of the CUITent exception han­
dling techniques is the gap concerning explidt support for concurrent exception handling. 
Arche is the only language which has contributed a lot in this area, although it has some 
limitations. 
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2 .9 Resumo do Capítulo 2 

Este capítulo apresentou um artigo que aborda um estudo comparativo de mecanismos 
de exceções existentes em linguagens de programação orientadas a objetos. O artigo ini­

cialmente apresenta uma revisão dos conceitos importantes relacionados a tratamento de 
exceções e tolerância a falhas. Uma taxonomia é proposta para classificação e comparação 
dos diferentes modelos de tratamento de exceções estudados. Os modelos de doze meca­
nismos de exceções são revisados e comparados com base na taxonomia desenvolvida. O 
artigo também apresenta um critério de projeto adequado para mecanismos de exceções 
utilizados no domínio de aplicações orientadas a objetos confiáveis. Um modelo ideal de 
tratamento de exceções é desenvolvido, utilizando o critério de projeto definido. 

O estudo realizado neste capítulo conclui que os mecanismos de exceções estudados 
não incorporam um modelo de tratamento de exceções adequado para construção de 
software orientado a objetos confiável. V árias decisões de projeto destes mecanismos são 
baseadas em soluções complexas e demasiadamente flexíveis. O uso destes mecanismos 
pode conduzir a construção de software não confiável e que são difíceis de entender, manter 
e reutilizar. A principal desvantagem dos mecanismos investigados é a falta de suporte 
apropriado para tratamento de exceções concorrentes. 

O próximo capítulo apresenta um mecanismo de exceções que adota um modelo de 
tratamento de exceções adequado para o contexto de aplicações orientadas a objetos 
confiáveis. Além disso, o modelo especialmente provê suporte para tratamento de exceções 
concorrentes. 



Capítulo 3 

Projeto e Implementação de um 
Mecanismo de Exceções para 
Software 00 Confiável 

O desenvolvimento de mecanismos de exceções adequados para a construção de software 
orientado a objetos confiável não é uma tarefa trivial. O modelo de tratamento de ex­
ceções deve prover suporte para uma separação explícita entre as atividades normais e as 
atividades incorporadas para tratamento de exceções de tal forma a manter sob controle 
a complexidade geral do sistema. O modelo deve ser integrado com o modelo de objetos 
e oferecer suporte para tratamento de exceções concorrentes. Um mecanismo de exceções 
adequado deve ser restritivo e simples de usar de tal forma que erros adicionais não sejam 
introduzidos pelo seu uso. 

Este capítulo contém o artigo "An Exception Handling Mechanism for Developing 

Dependable Object-Oriented Software Based on a Meta-Levei Approach" [21]. Este artigo 
foi publicado em uProceedings o f the 1Oth IEEE International Symposium on Software 

Reliability Engineering - ISSRE'99", realizado em Boca Raton, Florida, Estados Unidos 
em novembro de 1999. O artigo apresenta o projeto e implementação de um mecanismo 
de tratamento de exceções para construção de software orient ado a objetos confiável. O 
mecanismo implementa um modelo de tratamento de exceções adequado para o domínio 
de sistemas orientados a objetos confiáveis, contemplando o critério de projeto definido 
no Capítulo 2. A técnica de reflexão computacional é utilizada para implementação do 
mecanismo proposto. 
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3.1 Introduction 

With software systems growing in size and complexity, the quality and cost of develop­
ment and maintainence are still deep concerns for software developers. Object-oriented 
component-based engineering is a promising approach for reducing software development 
cost while increasing productivity, reusability, qua.lity and dependability of software sys­
tems and their components. However, the development of dependable object-oriented 
software requires suitable exception detection and handling mechanisms to satisfy the 
system 's dependability requirements. 

Tbe current lack of effective error-handling techniques for developing dependable 
object-oriented software produces software components which are usually difficult to un­
derstand, to change and to maintain in the presence of faults. ldeally such components 
should incorporate their abnormal behavior (i.e., their exceptional activity) in a struc­
tured and transparent manner so the abnormal code would not be amalgamated to the 

normal code. In this context, we propose the design and implementation of an object­
oriented exception handling mechanism based on a meta-levei approach. This approach 
is based on a computational reflection mechanism which encourages modular descriptions 
of software systems by introducing a new dimension of modularity - the separation of the 
base-levei computation from the meta-levei computation. 

The goal of our work is twofold: (i) to define an exception handling model which 
supports a clear and transparent separation of the normal activity of a component from 
its exceptional activity, and (ü) to provide a meta-levei architecture which im.plements an 
exception handling mechanism. Our exception handling model consists of the following 
characteristics: (i) exceptions are represented as data objects (36, 35); (ii) exception 
handlers are represented as ordinary methods; (iü) creation of exceptional class hierarchies 
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which implement exception handlers, that are orthogonal to the application's normal class 
hierarchies; (iv) the attachment of handlers can occur at different leveis: (1) methods, (2) 
individual objects or groups of objects, (3) classes, and (4) exceptions; and (v) support for 
concurrency and coordinated errar recovery. Our mechanism does not require any special 
language support and was implemented within the Java programrning language without 
any changes to the language itself by means of a meta-object protocol called Guaraná (51]. 

The remainder of this text is organized as follows. Sect ion 3.2 defines the terminology 
adopted in this work related to exception handling and fault tolerance. Section 3.3 dis­
cusses some important design issues related to exception handling mechanisms in object­
oriented languages and concurrent systems. Section 3.4 presents the concepts of computa­
tional refiection and meta-levei architectures. Section 3.5 presents our exception handling 
model. Section 3.6 describes an example of use of the proposed mechanism. Section 3.7 
describes our meta-levei architecture for exception handling. Section 3.8 gives a brief 
comparison with related work. Finally, Section 3.9 sum.marizes the conclusions of this 
work and suggests directions for future work. 

3.2 Exception Handling and Fault Tolerànce 

Following the terminology adopted by Lee and Anderson (38], a system consists of a set of 
components that interact under the control of a design. A fault in a. component may cause 
an errar in the internai state of the system which eventually leads to the failure of the 
system. Two techniques are available for eliminating the errors from the system's state: 
(i) forward error recovery and (ii) backward error recovery. The first technique attempts to 
return the system to an error-free state by applying corrections to the damaged state. The 
second technique attempts to restare a previous state which is presumed to be free from 
errors. Although traditionally exceptions and exception handling constitute a common 
mechanism applied to the provision of forwa.rd error recovery, they may provide support 
to combine forward and backward error recovery schemes (9]. Thereforet the notions of 
exceptions and exception handling can be used to establish a framework for achieving 
fault tolerance. 

Software components receive service requests and produce responses when that ser­
vice has been completed. If a component cannot satisfy a service requestt it retums an 
exception. So the responses from a component can be separated into two distinct catego­
ries, namely normal and exceptional responses. To create a clear framework, the activity 
of a component can be divided in two parts: normal activity and abnormal ( or excep­

tiona~ activity (Figure 3.1). The normal activity implements the component's normal 
services while the exceptional activity provides measures for tolerating faults that cause 
such exceptions. Thus, the normal activity of the system is clearly distinguished from its 
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Exceptions can be classified into three d.ifferent categories: (i) interface exceptions 

which are signaled in response to a request which d.id not conform to the component's 
interface; (ii) failure exceptionswhich are signaled if a component determines that for some 
reason it can not provide its specified service; (iii) interna[ exceptions which are exceptions 
raised by the component in order to invoke its own internai exceptional activity. Note that 
an exception is raised within the component, but signaled between components. Whenever 
an exception is raised in a component that does not have a handler for it, the exception is 
signaled to the component (caller) that dynamically invoked the first one. H no handler 
is defined for an exception within the caller, the exception is propagated to higher-level 
components. At each levei of the system, a component, called an idea.lized fault-tolerant 

component [38], will either deal with exceptional responses raised by components at a 
lower level or else propagate the exception to a higher levei of the system. 

Progra.m.mers usually refer to faults as exceptions because they are expected to occur 
rarely during the component's normal activity. Exception handling mechanisms (or merely 
exception mechanisms) are often provided in programming languages and allow software 
developers to define exceptional cond.itions and to structure the exceptional activity of 
software components. When an exception is raised by a component, this mechanism is 
responsible for changing the normal control ftow of the computation within a component 
to tbe exceptional control ftow. Therefore, raising an exception results in the interruption 
of the component's normal activity, followed by tbe search for an exception handler {or 
simply handler) to deal with the raised exception. The set of handlers of a component 
constitutes its exceptional activity part. For any exception mechanism, handling contexts 

associate exceptions and handlers. Handling contexts are defined as regions in which the 
same exceptions are treated in the same way. Each context should have a set of associated 
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handlers, one of which is called when the corresponding exception is raised. 

3.3 The Design of Exception Mechanisms 

There are some important issues that should be considered during the design of an ex­
ception mechanism. In this Section we discuss each of these issues in turn. 

Exception Representation. Exceptions can be represented as (i) names, (ü) data 

objects, or (iü) full objects. Representing exceptions as names is a classical approach 
adopted by severa! object-oriented programming languages, such as Eiffel (44). In the 
second category, exceptions are classes and an instance of an exception class is created 
every time that an exception is raised. The main task of raising an exception is to pass 
an exception object as a parameter to the corresponding handler. C++ (35] and Java [30) 
adopt this approach. In the third category, exceptions are also organized hierarchically as 
classes and the task of raising an exception is to create an instance of the related exception 
class and then call it with a ra ise() operation. In this case, the exception is a standard 
object that receives messages. The exception handling system implemented in Lore [15] 
applies this design solution. 

Handler Attachment. Handlers can be attached to: (i) a statement ora block, (ü) a 
method, (üi) an object, (iv) a class, or (v) an exception. Statement (or block) handlers are 
attached to a statement (ora block ofinstructions), allowing context-dependent responses 
to an exception. Method handlers are associated with methods; when an exception is 
raised within the method's code, the method handler bound to this exception is executed. 
Object handlers are associated with object variables in their declaration; that ís, each 
instance has its own set of handlers. Class handlers are attached to classes, allowing the 
software developers to define a common exceptional behavior for a class in exceptional 
situations. When handlers are associated with exceptions themselves, they are always 
invoked if a more specific handler cannot be found. They are the most general handlers 
and must be valid in any case, independent of any execution context and o b ject state. 

Exception Propagation. The exception propagation to higber-level components can 
be performed in two ways: (i) au.tomatic, or (ii) explicit. In the first case, if no handler 
is found for the exception within the caller, the exception is propagated automatically 
to higher-level components until a handler can be found; that is, an exception can be 
handled by components other than its immediate caller. In the second case, the handling 
of signaled exceptions is limited to the immediate caller. 
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Continuation o f the Control Flow. When the handler terminates normally, the 
related exception is said to be handled. Then the system can return to its normal activity; 
however, there is an issue concerning whether the internai activity of the component that 
raised the exception can be resumed or not. There a.re essentially two possible solutions, 
which correspond to different styles of continuation of the control flow: (i) termination, 

and (ii) resumption. In the termination model, execution continues from the point at 
which the exception was handled. Conceptually, this means that the component activity 
which raised the exception cannot be resumed. In the resumption model, the execution 
has the capability to resume the internai activity of the component after the point at 
which the exception was raised. 

Support for Coordinated Recovery. Very few object-oriented languages support 
concurrent exception handling, e.g. the activation of severa! handlers in different concur­
rent objects when an exception has been raised by one of them. For instance, the Arche 
language [32, 33] allows user-defined resolution of multiple exception amongst a group of 
objects that belong to different implementations of a given type; however, this approach 
is not generally applicable to the coordinated recovery of multiple interacting objects of 
different types. 

3.3.1 Exception Handling and the Object Model . 

Even though many object-oriented languages provide exception-handling facilities, only 
a few of them provide an exception mecha.nism that is really integrated with the object 
model. Classical design issues of exception mecha.nisms should be re-visited in the light 
of object- orientation so that exception handling itself could benefit from object-oriented 
features. For instance, we advocate that the object-oriented design of an exception me­
chanism should support exception representation as data or full objects. The majority of 
the object-oriented la.nguages have adopted the exception representation as names. Al­

though it is the classical approach, it does not provide a dose integration between the 
object-oriented language and the exception mechanism. 

lt is also an important issue how to relate exception raising to interface checking [46]. 
In object-oriented programm.ing, each operation (or method) in a type (or class) descrip­
tion is defined by a signature, which specifies the name of the method and the types of 
its parameters. Method's signatures should also include the exceptional responses that 
an object may return. For example, Java (30] allows the declaration of the exceptions 
a method may signal in its signature with a clause throws. Nevertheless, when the type 
specification includes this declaration, new problems arise as to inheritance and subtyping 
rules. In the subtyping/ conformance relationship, a derived class is designed by including 
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the specification of the base class as a subset o f its specification. No te that the modifica­
tion of a method's signature is not allowed wben redefining a method. This implies that 
the redefinition of operations by derived classes should inherit all exceptions specified by 
the base class. 

Furthermore, for usability and program writeability, it is necessary to allow considera­
ble flexibility in the placement of handlers. Thus, an object-oriented exception handling 
approach should provide different leveis of handler attachment. When an exception is 

related to a method, a handler for this exception may be locally associated with the me­
thod. Alternatively1 handlers can be associated with a class and can be applied to all 
methods of that class. It is also possible to attach handlers to objects themselves. 

3.3.2 Exception Handling in Concurrent 00 Systems 

In an object-oriented software system, there may be a number of processes (threads) 
running concurrently. There are different ways of dealing with concurrency in object­
oriented systems. In this work, we define a clear distinction between ·objects and threads: 

threads are agents of computation that execute operations on obje€ts (which are the 
subjects of computation). In this sense, concurrent threads can be classified into three 
categories [38]: (i) independent, (ii) competing, or (iii) cooperating. Threads are said to be 
independent if the sets of objects accessed by them are disjoint; when:those sets are not 
disjoint, then the threads are said to be competing. Threads are said to be cooperating 
when they are designed collectively and have shared access to common objects that are 
used directly for communication between the threads. 

From the standpoint of fault tolerance, the case of independent threads is trivial; the 
provision of errar recovery to a number of independent threads is identical to the pro­
vision of error recovery to a single sequential thread. In the case of competing threads, 
the provision of recovery is similar to the first case, but the set of objects accessed by 
the threads should be restored to a.n error-free state as well. In practice, such objects 
often have their ov.-.n error recovery scheme. The implementation of an exception me­
chanism for concurrent systems is an interesting challenge in the presence of cooperative 
concurrency: the handling of an exception may involve multiple concurrent components 
when they a.re cooperating in the execution of a task. Erroneous information may have 
been spread directly or indirectly through inter-thread communication. When one of the 
concurrent threads raises an exception, error recovery should proceed in a coordinated 
way by triggering appropriate handlers for the same exception within ali the threads (69]. 

Furthermore, due to the nature of concurrent systems, it is possible that various 
exceptions may be raised concurrently by threads of the system. A strv.ctured exception 

represents the concurrent occurrence of two or more simple exceptions. Exceptions raised 
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concurrently may be the symptom of a different and more serious fault [69]. In this 
way, an exception resolution procedure is needed to select a suitable handler for the 
exceptions raised concurrently; in this case, such a generic handler should also be called 
in ali the threads. The work of Campbell and Randell [9] describes a resolution model 
called exception tree that includes an exception hierarchy imposing a partial order on 
exceptions of the system. The exceptions that are not listed within the exception tree are 
categorized as a universal exception. The universal exception is the root of the exception 
tree. Such a model is used in order to find the exception that represents ali the exceptions 
raised concurrently. So, the exception mechanism must activate the handler attached to 
this more generic exception in every one of the concurrent threads. 

3.4 Reflection and Meta-Levei Architectures 

Computational refiection [43, 51] is defined as the ability of observing and manipulating 
the computational behavior of a system through a process called reification. This techni­
que allows a system to maintain information about itself ( meta-information) a.nd use this 
information to change its behavior. It defines a meta-level architecture which is composed 
of at least two dimensions: (i) a base level, and (ii) a meta-level. A meta-object protocol 

(MOP) establishes an interface among the base-level a.nd the meta-levei components. The 
MOP provides a high-level interface to the programming language implementation in or­
der to reveal the program information norma.lly hidden by the compiler and/ or run-time 
environment. As a consequence, programmers can develop language extensions and adapt 
component behavior and even make changes to the systems. 

Actions that extend the behavior of base-level objects are implemented in the meta­
levei. Refl.ection can be used to intercept and modify the effects of operations of the 
object model. For the purpose of illustration, suppose that for each base-levei object o 
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there exists a corresponcling meta-object mo that represents the behavioral and structural 
aspects of o. As illustrated in Figure 3.2, if an object x sends a message service to an object 
o, the meta-object mo intercepts the message service, reifies the base-levei computation 
and takes over the execution; later mo returns ( reftects) tbe response to x. From the point 
of view of object x, computational refiection is transparent: x sends a message requesting 
a service to o, and receives the response with no knowledge that the message has been 
intercepted and redirected to the meta-levei. 

3.5 An 00 Exception Handling Model 

The exception handling model that we have defined was pri:marily designed to facilitate 
the development of dependable and reusable software components. In this section we 
present the main characteristics of our exception ha.ndling model and discuss the design 
choices for each one of the major design íssues described in Section 3.3. 

As discussed in Section 3.2, a system may be composed of a set of idealized fault­
tolerant components. In this work, we assume that software designers structure their 
applications by creating a set of normal classes which implement the normal activities 
of the software components, and exceptional classes which implement tbe abnormal ac­
tivities (Figure 3.3). Therefore, exceptional classes implement the abnormal activity of 
tbe application and they are associated to the corresponding normal classes. In Figu­
re 3.3, the methods of the exceptional class ExceptionaiSupCiient are tbe handlers for the 
exceptions that should be treated within methods of the class SupCiient. Designers may 
compose an exceptional class hierarchy that is orthogonal to the no'!'171.al class hierarchy 

of the application. The exceptional classes Ex:ceptionaiSupClient a.nd Ex:ceptionaiClient are 
organized bierarchically so that the resultant hierarchy is orthogonal to the normal class 
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hiera.rchy (SupCiient and Client). Exceptional class hierarchies allow exceptíonal subclas­
ses to inherit handlers from their superclasses and, consequently, they allow exceptional 
code reuse. 

3.5.1 Exception Representation 

In our model, exceptions are represented as data objects. Different types of exceptions 
are organized hierarchically as classes. The class Exception is the root of this hierarchy. 
Figure 3.4 shows this exception class hierarchy which represents the exceptions that may 
be raised during the execution of the application's methods (El, E2, E3, E4, E5 and 
E6). The class GroupException extends the class Exception and allows the definition of 
exceptions that may be raised by cooperating threads need.ing coordinated recovery (Sec­
tion 3.5.5). Exceptiona1 responses that may be signa1ed by a method must be described 
in its method's signature by means of a throws clause. Figure 3.3 shows that method 
m3() may signal the exceptions El, E2, E4, E5 or E6. Let us remark here that dueto the 
base subtyping relation, a handler def:ined for an exceptíon Eis eligible for any exception, 
which is a subtype of E. Permitting severa! exceptions to be named in the same handler 
avoids code replication when the exceptions can be handled in the same way. 

3.5.2 Handler Attachment 

We provide support for multi-levei attachment of handlers. Handlers may be associated 
with: (i) an exception, (ii) a dass, (iii) an object, or (iv) a method. Firstly, handlers 
may be associated to exceptions themselves ( default bandlers). Default handlers are 
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executed in the absence of a more spedfic handler in the applicat ion. Handlers may be also 
associated to a class. In this case, an exceptional class should be created. In Figure 3.3, 
the ExceptionaiSupCiient's methods are class handlers for the exceptions 'that should be 
treated within SupCiient's methods. In the sa.me way, ExceptionaiServer's methods are class 
handlers for the exceptions that should be handled within Server's methods. Nevertheless, 
the class handlers for the exceptions that should be treated within Client's methods can be 
ExceptionaiCiient's methods or methods that are inherited from superclasses of the class 
ExceptionaiCiient. Therefore, the handler for the exception E5 (E5Handler()) is inherited 
from the ExceptionaiSupCiient. 

In addition, object handlers may also be defined. To implement handlers associated 
to individual objects, a new exceptional class must be created. This new class contains 
methods that implement the object handlers for the exceptions that should be treated in 
any method of the object. For instance, object clientl, instance of the class Client, may 
be associated to ha.ndlers that are distinct from the handlers that are associated to the 
object client2, that is also a.n insta.nce of class Client (Figure 3.5). The ExceptionaLclientl 's 
methods are object handlers for exceptions that should be treated within object clientl. 

Furthermore, it is possible that a single exceptional class be associated to object 
groups. For example, object handlers associated to client3, instance of the class Client, 
could be the sa.me handlers associated to client2, i.e. , these objects may be associated 
to a single exceptiona.l class (Exceptional..client2). Thus, client2 and client3 have identical 
abnormal behavior, while clientl has a di.fferent one; although they are instances of the 
same class. Practical studies [13] have shown that the use of object handlers can produ­
ce better structured programs, facilitating their understanding, maintenance and reuse. 
Finally, handlers may be associated to methods. For example, handler m2E6Handler() of 
exceptional class ExceptionaLclientl is activated when the exception E6 should be treated 
in operation m2(). 

The search of handlers for raised exceptions is defined as follows: (i) if there exists an 
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exceptional class attached to the object, the mechanism tries to find method or object 
handlers associated to the method raising the exception; (ii) if none is found , the system 
tries to find handlers in exceptional classes or superclasses attached to the normal class of 
the object; (iii) if none of these is found, the exception is then signaled to the caller object 
and steps (i) e (ü) are repeated; (iv) still, if none is found, the system looks for default 
handlers attached to the signaled exception itself. Consequently, when ml() invokes m3(), 
the internai exception E3 may be raised. H so does, the exception mechanism activates the 
local class handler E3Handler(). The method m3() may signal exceptions El, E2, E4, E5 or 
E6. Suppose m3() signals El to ml{); then class handler ElHandler() of ExceptionaiCiient 
is invoked. In case m3() signals E4, class handler ElHandler() is also invoked since E4 
is subtype of El (Figure 3.4). H m3() signals E5, class handler E5Handler(), inherited 
from ExceptionaiSupCiient, is invoked. In case m3() signals E6 to ml(), object handler 
E6Handler() of E.xceptionaLclientl (Figure 3.5) is invoked in spite of the presence of the 
class handler. Suppose m3{) is invoked by m2() of object clientl , if m3() signals E6; then 
method handler m2E6Handler() of ExceptionaLclientl is invoked. 

3.5.3 Exception Propagation ·-

Our exception handling model defines explicit propagation of exceptions. The benefits 
o f this approach are discussed in [12, 73). The handling o f signaled exceptions is limited 
to the immediate caller. If a signaled exception is not handled in the caller, then the 
predefined exception failure is further propagated. However, the exception still may be 
resignaled explicitly within a handler to a higher-level component. Despite gains in pro­
gramming simplicity, the use of exceptions propagated automatically remains fault-prone 
because they are the least well docum~ nted and tested parts of an interface [13). The CLU 
designers [40) argue persuasively that this limitation supports the goals of good program 
structuring with only a minor loss in its writeability. 

3.5.4 Continuation of the Control Flow 

We choose the termination model which consists of terminating the execution of the 
unit that raises the exception and then transferring control to the exception handler. 
The semantic of the termination model is simpler and more suitable for construction of 
dependable systems [10]. Mechanisms that support resumption are very powerful and 
flexible, but they turn out to be difficult to use by application progra.mmers. In fact , 
they can promote the unsafe programming practice of removing the symptom of an error 
without removing the cause. 
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3.5.5 Support for Coordinated Recovery 

Since the cooperating activities are application-dependent, support should be provided 
to application programmers in order to structure their cooperating tasks. In this work 
we apply a group framework as a means of allowing designers to improve the structuring 
of their concurrent object-oriented systems, and supporting coordinated recovery. In this 
sense, coordinated recovery only needs to be activated within the participa.nt threads of a 
group. This obviously restricts system design but makes it possible to regard each group 

as a recovery region a.nd attach fault tolerance activit ies to each group participant. We 
enable the definition of subgroups which contribute to control the system complexity and 
allow better organization of both normal and abnormal activities of the enclosing group. 

Figure 3.6 shows threads, represented as lines, and activities of the groups, delimited 
by rectangles. Group B, composed by threads T2, T3 and T 4, is a subgroup of group A 
which has the same composition as B, added of Tl. After the occurrence of an exception 
in one of these threads (T3), other participa.nts of the same group (T2 and T4) should 
be informed in order to start forward error recovery. H any suitable handler has not 
been defined at least in one of the group participants, an abort exception is raised, the 
group activity must be undone (backward error recovery), and sucb an exception must 
be signaled to the enclosing group (group A). H backward erro r recovery is not executed 
with success within the group, then a jailure exception is signaled to the enclosing group. 

Each group has participants which are activated by externai activities, e.g. threads, 
and which cooperate within the group scope. Participants execute object methods that 
should bave been designed to work cooperatively by means of shared objects. Participants 
may enter asynchronously in the group activity, but should exit in a synchronized way. 
Each group participant has a set of attached exception handlers that are designed to 
recover the group cooperatively from eventual errors. An exception tree (Section 3.3.2) 
is associated to each group in order to resolve the exceptions raised concurrently. 

Implementation of Cooperating Thread Groups. To implement cooperating th­
read groups, we provide two classes that can be used to define groups that need coor­
dinated recovery. To implement a group, the first step is to define a class that extends 
the class Group. The class Group contains the methods which deal with the creation and 
termination of each participant. Secondly, the programmer should define the participants 
that com pose the group by extending the class Participant. Figure 3.8 shows the definition 
of a group (Groupl) with two types of participants (Participantl and Participant2). Each 
class that derives from the class Participant should be instantiated (participantl and par­
ticipant2) before the group activity is started. In order to build an instance of this class, 
the object and the method that each participant executes should be passed as parameters. 
Such methods should have been designed to work cooperatively. A new class that extends 
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the class Group must also be instantiated (groupl) before the group activity com.mences. 
In building an instance of this class, the following parameters should be passed: (i) the 
set of group participants, (ii) the set of simple and structured exceptions which sbould be 
handled cooperatively by group participants, and (iii) the set of exceptions which should 
be signaled by the group to the enclosing group. The pa.rticipants still may register them­
selves dynamically in a group through the method RegisterParticipant (Participant) of the 
class Group. This class still provides the method StartParticipant (Participant) which allows 
a participant to enter dynamically in a group activity. 

Implementation of Simple and Structured Exceptions. The class GroupException 
should be used to define the exceptions that may be raised in cooperating thread groups 
and tbat need coordinated recovery. We adopt the Composite design pattern [20] (Figu­
re 3.8) to define simple and structured exceptions. This pattern allows application desig­
ners to treat simple exceptions and its compositions (structured exceptions) uniformly. 
Simple exceptions are defined by extending class GroupException (El and E2). Structured 
exceptions are instances of class StructuredException (e12). The simple exceptions (El and 
E2) that compose a structured exception (e12) should be passed as parameters to create 
such a structured exception. Hence, each structured exception bas a list of its constituent 
exceptions. 

3.6 Twin-Engine Aircraft Control System 

This Section highlights the benefits of the proposed exception mechanism for the design 
of reusable an.d dependable object-oriented software. We present a twin-engine aircraft 
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control system that is based on the example described in [9]. Consider a twin-engine 
aircraft control software that contains two components responsible for managing two 
engines: a left engine and a right engine. Such components can be defined as participant 
threads of a group; they cooperate to maintain the aircraft stability. 

Figure 3.9 shows the participants left_engine and right_engine of group stability. They 
cooperate through a shared object called state. Such an object is used by the participants 
to exchange information which is utilized, for instance, on the control' adjustment. The 
exception tree for this group is shown in Figure 3.10. If the left (or right) engine fails, 
the lefLengine (or right_engine) signals the exception LeftException (or RightException) 
and handlers are activated in both participants. The handlers should adjust the controls 
appropriately to compensa te for the loss of the left ( right) engine in order to conduct 
the aircraft to the nearest airport. H both the right and left engine fail , the exceptions 
RightException and LeftException are raised concurrently by, respectively, lefLengine and 
right_engine. The exception resolution procedure is accomplished by the exception mecha­
nism that searches the handlers for the structured exception emergency _exception attached 
to the participants. Immediately, the handlers are activated for this more serious excep­

tion. Such handlers should execute the emergency landing procedure. Besides, other 
exceptions could occur that would endanger the emerge.ncy landing procedure (for ins­
tance, fire). Ali such exceptions, if not listed individually within the exception tree, are 
categorized as the universal exception. 

Figure 3.11 shows a set of classes and their corresponding instances for the group 
Stability. The class Engine extends the cla.ss Participant and represents the group parti­
cipants. The cla.ss Stability that derives from the class Group represents the group. In 

order to start the group activity, two instances of the class Engine and one of the class 
Stability must be created. Participants execute object methods for perfornring the group 
activity. In this example, the participants left_engine and right_engine execute the methods 
of objects left_control and right_control when performing the cooperative group activity. 



3.6. Twin-Engine Aircraft Gontrol System 

Figura 3.10: The Exception Tree of the Group Stability 

' ' ' 

~~~_conam li righLcon~jl ~~ I L-"7'""C~ 
, 

, 

I ... _.:.m. I I ri~.:~l l ...:..o/ I .___ __ _. '--- ---' 

Figura 3.11: Object Model for the Twin-Engine Aircraft Control System 

67 

The purpose of object state, instance of class State, is commu.nication between the coope­
rating participants. Simple exceptions LeftException and RightException and structured 
exception emergency_exception a.re a.lso defined. Except ional classes ExceptionaiJefLengine 
and ExceptionaiJight_engine contain the methods which are the handlers responsible for 
the coordinated recovery in participants left_engine and righLengine. 

Object handlers should be defined for the group participants. Note that classes Ex­

ceptionaiJeft_engine and ExceptionaiJight_engine implement the handlers for ali exceptions 
that can be ra.ised by the participants. The structured exception can be defined by crea­
ting the following instance: 

emergency_exception = new StructuredException (left_exception, 
r ight_exception); 
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The set of initializations necessary for starting the group a.ctivity can be as follows: 

(1) Object O Participants = {left_engine, right_engine}; 

(2) Object O InternalExceptions = {left_exception, right_exception}; 
(3) Object O ExternalExceptions = {emergency _exception}; 

(4) Stability stability = new Stability (Participants, InternalExceptions, 
ExternalExceptions); 

Line 1 creates the array with group participants. Line 2 creates the array with excep­
tions that may be raised and must be treated cooperatively by the group. Line 3 creates 
the array with exceptions that must be signaled by the group to the enclosing group. Line 
4 creates the object tha.t represents the group Stability. 

3. 7 lmplementation 

3.7.1 The Meta-Levei Architecture 

In this section, we present a meta-levei software architecture for implementing our ex­
ception mechanism. The architecture consists of a base levei and a meta-levei. The 
base-levei objects are the objects of the application, while the meta-objects implement 
the specific responsibilities of the exception mechanism. When a base-levei object signals 
an exception, it is intercepted by the MOP a.nd its corresponding meta-object searches 
for a.n adequate handler in a way that is transparent to the application at the base levei. 
Applications are composed of normal classes that implement the normal functionality and 
exceptional classes with handlers for the corresponding normal classes. 

Figure 3.12 illustrates the meta-levei architecture for implementing the exception me­
chanism. The base levei is composed of: (i) the exception class hierarchy (Figure 3.4); 
(ii) normal class hierarchies (Figure 3.3); (iii) exceptional classes with handlers that are 
associated to normal classes (Figure 3.3) and (iv) exceptional classes with handlers that 
are associated to objects (Figure 3.5). 

The meta-level is composed of: (i) composers, and (ü) meta-searchers. The composers 
are special meta-objects associated to the application's objects or classes. They delega­
te information from the base-levei to meta-objects responsible for several management 
a.ctions, such as exception handling, persístency and atomicity. The meta-searchers are 
meta-objects responsible for managing exception handling. Furthermore, they receive 
information reified by the composers. Based on these operations and their results, the 
meta-searchers execute the following activities: (i) search for a suitable handler associated 
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to the raised exception; (ü) invocation of tbe bandler; (iü) return to the normal operation 
of the application. 

3.7.2 The Meta-Levei Architecture and Concurrency 

Figure 3.13 shows the components of the meta-levei architecture that implements coo­
perating thread groups. The meta-levei is composed of the following components: (i) 
composers, (ii) meta-searchers, (iii) meta-groups, and (iv) EPS (Event Processor Servi­
ce) (49]. Each instance of Participant (Section 3.5.5) is associated to a composer and a 
metaseacher; each instance of Group (Section 3.5.5) is associa.ted to a. composer and a 
meta-group. The composers a.nd meta-searchers were previously described. Meta-groups 
are meta-objects responsible for managing the coordinated recovery of exceptions raised 
by cooperating thread groups. Meta-groups hold tbe following meta-information: (i) tbe 
set of group participants, (ü) the set of simple and structured exceptions whicb should be 
bandled cooperatively by group participants, and (iii) the set of exceptions which sbould 
be signaled by the group to tbe enclosing group. 

The meta-group sends the simple and structured exceptions to EPS tbat must compose 
tbe group 's exception tree. EPS is a monitor for distributed and composite events whicb 
is able to process generic events. In tbis work, EPS is an application utilized for monito­
ring exceptions tbat may be raised concurrently in cooperating tbread groups. EPS and 
meta-group accomplish the exception resolution procedure. Wben an exception occurs, 
EPS informs tbe meta-group, which in tum informs the participa.nts and coordinates the 
invocations of the bandlers in order to start the coordina.ted recovery. Therefore handlers 
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Our mechanism does not require any special language support, a.nd it was implemented 
within the Java programming language. Moreover, EPS has allowed the construction of 
the composition scheme of exception trees based on the aggregated tree concept [49], 
which has ensured gains in performance. 

Our mecha.nism was implemented without any changes to the la.nguage itself by means 
of a meta-object protocol called Guaraná [51). Guaraná is a flexible meta-object protocol 
for Java that allows creating meta-levei objects. Guaraná provides an e:fficient broad­
cast service for communication between meta-objects. Moreover, it provides support for 
composition of meta-objects responsible for different management functions by means 
of composers. These Guaraná capacities and the way our exception mecha.nism was de-
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signed allow the meta-objects of our exception hanclling system to be easily integrated 
with meta-objects responsible for other administrative (non- functional) services, such as 
persistency and atomic actions. 

3.8 Related Work 

The work ofHof et al. [31] describes an exception mechanism based on meta-programming 
and computationa.l refiection. Their implementation was carried out in a specific system 
but it could be implemented to most other systems that support meta-programming. 
However, such a mechanism does not support coordinated recovery in concurrent threads 
and its design is not object-oriented. 

The Arche language (32, 33] allows user-defined resolution of multiple exception amongst 
a group of objects that belong to different implementations of a given type; however, this 
approach is not generally applicable to the coordinated recovery of multiple interacting 
objects of different types. In our exception handling model, coordinated recovery can be 
applied to a group of interacting objects of different types. 

3.9 Concluding Remarks and FUture Work 

The current lack of effective error-handling techniques for constructing dependable object­
oriented software motivated us to develop the design and implementation of an object­
oriented exception mechanism. Our exception handling model supports a clear and trans­
parent separation between the normal and exceptiona.l activities of software components. 
This separation allows the production of software components which are easy to unders­
tand, to change and to maintain in the presence of faults. Exceptional classes allow the 
uniform and non-intrusive implementation of error-handling code for every kind of compo­
nent ( concurrent or not). The exceptiona.l class hierarchy allows the reuse of exceptional 
code. Moreover, the design of our mechanism is integrated with object paradigm and 
provides support for coordinated recovery. 

Our mechanism does not require any speciallanguage support, and it was implemented 
within the Java programming language without any cbanges to the language itself. The 
implementation of a meta-levei architecture allowed the separation of activities related 
to management of exception handling from the exceptiona.l and normal activities of the 
applica.tion. 

The Coordinated Atomic Action concept (CAAction) [69] was introduced as a unified 
approach for structuring complex concurrent activities and for supporting error recovery 
between multiple interacting objects in a distributed object-oriented system. We planto 
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integrate the proposed exception mechanism within a CAaction framework. 
Nowadays the off-the-shelf approach to object-oriented software development, achieved 

by selecting a.nd configuring reusable components, has resulted in a significant decrease 
of development costs. In this work, we ha.ve designed a. mechanism tha.t supports the 
construction of reusable a.nd dependable software components. Still, an open issue is how 
to allow that exception-handling code to be added to reusable components {for instance, 
COTS) without any interference in the original code of these components. This additional 
exception- handling code should handle the new exceptions that can arise when these 
components are reused in different applications. 
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3.10 Resumo do Capítulo 3 

Este capítulo apresentou um artigo que aborda o projeto e implementação de um meca­
nismo de exceções para construção de software orientado a objetos confiável. O modelo de 
tratamento de exceções permite uma separação explícita entre as atividades normais e ex­
cepcionais de aplicação, fundamental para manter a complexidade de sistemas confiáveis 
sob controle. Essa separação contribui efetivamente para a produção de componentes 
de software que são fáceis de entender, reutilizar e manter. O modelo de tratamento de 
exceções é orientado a objetos e provê suporte para trat amento de exceções concorrentes. 

O mecanismo de exceções foi implementado para a linguagem Java sem modificações 
para a mesma através da utilização da arquitetura de software reflexiva do Guaraná [51]. 
A utilização de reflexão computacional permitiu uma divisão clara entre as funcionalidades 
da aplicação e os serviços do mecanismo de exceções proposto, resultando na construção 
de um mecanismo de exceções simples e fácil de usar. 

O próximo capítulo apresenta uma arquitetura de software reflexiva. para o proje­
to de mecanismos de exceções e o conjunto de padrões de projeto que documentam os 
componentes da arquitetura proposta. 



Capítulo 4 

Uma Arquitetura de Software 
Baseada em Padrões para 
Mecanismos de Exceções 

A arquitetura de software de um sistema compreende os componentes computacionais ·e 
as interações entre estes componentes, definindo também a relação entre os requisitos e 
os elementos de software (65]. Padrões de projeto constituem boas soluções de projeto 
para problemas recorrentes dentro de um contexto particular [7, 20]. Padrões de projeto 
identificam soluções existentes e bem provadas, e a documentação destes padrões facilita 
o entendimento destas soluções. 

Este capítulo contém o artigo "An Exception Handlíng Software Architecture for De­

veloping Robust Software" (22), que foi submetido para "5th IEEE International Sympo­

sium on High Assurance Systems Engineering", a ser realizado de 15 a 17 de novembro 
de 2000, em Albuquerque, New Mexico, México. Uma versão resumida (24] deste artigo 
foi aceita para o tt2nd Workshop on Exception Handling in Object-Oriented Systems -

ECOOP'2000" a ser realizado em 12 de junho de 2000, em Cannes, França. Este artigo 
define uma arquitetura de software reflexiva para mecanismos de tratamento de exceções 
que serão utilizados na construção de sistemas orientados a objetos confiáveis. Além dis­
so, este artigo propõe padrões de projeto que são aplicados para documentar a estrutura 
e o comportamento dos componentes arquiteturais de um mecanismo de tratamento de 
exceções. 
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4.1 lntroduction 

Modern object-oriented software systems are getting more complex and have to cope with 
an increasíng number of error conditions to meet the system's dependa.bility requirements. 
Dependable object-oriented software detects errors caused by residual faults and employs 
fault tolerance measures to restore normal computation (38]. Exception and exception 
handling provide a suitable scheme to detect and handle errors, and · also incorporate 
fa.ult tolerance activities into software systems. The detection of an error will result in an 
exception beíng ra.ised, with an a.ppropriate handler corresponding to the ra.ised exception 
being automa.tically invoked to implement the fault tolera.nce measures [38]. The presence 
of exception handling facilities ca.n reduce software development efforts since they allow 
software designers to: (i) represent errors as exceptions, (ii) define handlers to deal with 
them, and (iii) use an adequate stra.tegy for exception handling when the occurrence of 
a.n exception is detected. 

Moreover, object-oriented systems may be consisted of various execution threads (or 
processes) executing methods concurrently on objects. Exceptions are more difficult to 
handle and exception hanclling fa.cilities to provide in concurrent object-oriented systems 
than in sequentia.l ones specially because of cooperative concurrency [9]. That is, severa! 
concurrent threads usually cooperate to perform some system's activity, giving rise to very 

complex concurrent ínteractions. In this context, erroneous informa.tion ma.y be sprea.d 
directly or indirectly through inter-thread communica.tion during a cooperative a.ctivity. A 
general approach for structuring cooperative activities and employing exception handling 
in concurrent systems extends the well-known atomic a.ction notion [9]. An a.tomic action 
is formed by a group o f participants which are executed by coopera.ting threads. The group 
cooperate withín the scope of an action and complex ínteractions are coordinated by the 
a.ction, including the management activities related to concurrent exception hanclling. 
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Participants may join an action asynchronously but they have to leave it synchronously 
to guara.ntee that no iníormation is smuggled to or from the action. When a.n exception is 
raised in any of the participants inside an action, ali action participants should participate 
in the errar handling [9]. In general, different exception handlers for a same exception 
have to be called in the participants. These handlers are executed concurrently in order 
to handle the exception in a coordinated way. An additional difficulty is that severa! 
exceptions can be raised concurrently by participants during a cooperative activity. In 
this situation, a process of exception resolution is required to agree on the exception that 
should be notified to ali participa.nts. 

Exception handling facilities for sequential programs are usually incorporated in va­
rious modem object-oriented programming languages, such as C++ [35) , Java [30] a.nd 
Eiffel [45]. However, very few la.nguages give direct support to concurrent exception 
handling (for instance, Arche [33]); but, in general, the solutions presented cape with 
concurrent exception handling in a rather limited form. Recently some 'ad hoc' solutions 
have been proposed to the provision of concurrent exception handling which extends pro­
gramrning la.nguages, such as Ada and Java (58, 72, 74]. However, we believe that these 
recent proposals present complex solutions which are also very language-dependent and 
error prone. Besides, these solutions can be very intrusive from the viewpoint of the 
application since its normal code is usually amalgamated with explicit references and in­
vocations of procedures responsible for exception resolut ion a.nd final synchronization of 
the action participants. In addition, the task of software developers is also complicated 
in the sense that they have to implement exception resolution functions for each coope­
rative activity of the system. Consequently, these solutions present exception handling 
techniques which are difficult for software developers to use, a.nd may produce software 
products which are non-reliable and difficult to understa.nd, maintain and reuse. 

The present interest in software architectures and design reuse motivated us to develop 
an exception handling software architecture for building robust software. The proposed 
architecture provides a generic infrastructure which supports uniformly both concurrent 
and sequentia.l exception handling. Moreover, the exception ha.ndling architecture is in­
dependent of a specific prograrnming la.nguage or exception handling mechanism, and its 
use can minimize the complexity caused by handling abnormal behavior. Our architecture 
provides during the first design stage the context in which more detailed design decisions 
are made in }ater design stages related to exception handling. A software system's quality 
requirements ( or attributes) are largely permitted or restrained by its architecture; so if 
an appropriate architecture is chosen since the outset of the design phase, a proper use 
of exception handling throughout the development life cycle of a system can be obtained. 
The architecture js composed of four well-defined components: (i) the Exception compo­
nent, (ii) the Handler component, (iii) the Exception Handling Strategy component, and 
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(iv) the Concurrent Exception Handling Action component. The structural and behavio­
ral aspects of the components are described by mea.ns of a set of design pattems. The 
patterns follow the overall structure o f the Reftection architectural pattem which allows a 
clear and transparent separation of concems between the application's functionality and 
the exception handling facilities, easing the task of building robust software. 

The remainder of this tex:t is organized as follows. Section 4.2 introduces a number 
of concepts and difficulties related to exception handling, and also presents the general 
abstraction for exception ha.ndling facilities. Section 4.3 presents object-oriented techni­
ques for design reuse and software structuring used for the development of the proposed 
solution. Section 4.4 shows the proposed software architecture for exceptiona.l conditíon 
handling. Section 4.5 presents tbe set of design pa.ttems for exception handling. Sec­
tion 4.6 discusses some implementation issues. Section 4. 7 gives a brief comparison with 
related work. Finally, Section 4.8 summarizes the conclusions of this work and suggests 
directions for future work. 

4.2 Exception Handling 

4.2.1 Exception Handling in Sequential Systems 

Developers of dependable systems usually refer to errors as exceptions because they are 
expected to occur rarely during a system's normal activity. These exceptions should be 
specified intemally into the system a.nd an instance of an exception raised at run-time is 
termed a.n exception occurrence. Some ex:tra-information about an exception occurrence, 
such as its name, description, location, and severity (37] , is usua.lly required by an appli­
cation, a.nd it is useful for handling an exception occurrence. Extra-information is passed 
either explicitly by the application component that has raised the exception, or implicitly 
by an exception handling service. 

Dependable applications need to incorporate exception handling activities in order to 
behave suitably in a great number of exceptional situations. Exception handling activities 
are structured by a set of exception handlers (or simply handlers). A handler is the 
part of an application code that provides the measures for recovering the system from a 
detected exception. A handler may be valid for one or more exceptions. Handlers are 
attached to a particular region of normal code which is termed a protected region. Each 
protected region may have a set of attached bandlers, and one of them is invoked when 
a corresponding exception is raised. Handlers can be attached to blocks of statements, 

methods, objects, classes, or exception classes. Handlers attached to exception classes, 
called default handlers, are the most general handlers, and must be valid in any part of 
the program, independently of any execution contex:t and object state. For the purpose 
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of improving the writeability and structuring of the software systems, it is desirable to 
allow some :fiexibility concerning the attachment of handlers. It is should be possible the 
multi-level attachment of handlers, i.e., the attacb.ment of handlers to severa! leveis of 
protected regions such as classes, objects, methods and so on. 

An exception handling strategy should be followed after an exception occurrence is 
detected. In general, the normal control flow of the computation is deviated to the ex­

ceptional control flow. The deviation of the control flow is followed by the search for a 
suitable handler to deal with the exception occurrence. The handler search is performed 
according to a search algorithm. When a handler is found, it is invoked and the compu­
tation is returned to its normal control :fiow. The returning point where the normal flow 
continues also depends on the chosen model for the continuation, namely, the termination 

model, or the resumption model. In the termination model, execution continues from the 
point at which the exception was handled. Conceptually this means that the component 
activity which raised the exception cannot be resumed. In the resumption model, the 
execution has the capability to resume the internai activity of the component after the 
point at which the exception was raised. The semantic of the termination model is simpler 
and more suitable for construction of dependable software [10). 

4 .2.2 Exception Handling in Concurrent Systems 

In this work, cooperative activities of a dependable concurrent object-oriented system 
are structured as a set of atomic actions. We refer to these activities to as concurrent 

coopera tive actions ( or simply actions) . An action provides a mechanism for performing 
concurrently a group of methods on a collection of objects. The interface of an action 
includes its participants and methods (and their respective objects) that are manipulated 
by the participants. In order to perform an action, a group of threads should execute each 
participant in the adion concurrently (one thread per participant). Threads participating 
in an action cooperate within the scope of the action by executing methods on objects, 
and exchange information only among ones that are participants of that action. Threads 
cooperate and communicate each other by means of shared objects. The entries of partici­
pants in the action may be asynchronous but they have to leave the action synchronously 
to guarantee that no information is smuggled to or from the action. 

We introduce a banking service example based in [9] that illustrates the concepts of 
concurrent exception handling. This example is also used throughout Section 4.5 to illus­
trate how our proposed approach can be employed. Figure 4.l(a) shows the structuring 
of concurrent cooperative actions in the banking service example. Threads participating 
in the action are represented by solid lines, inter-thread communication by dotted !ines, 
and actions by rectangles. Action participants are activated by threads which cooperate 
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within the action 's scope for performing the banking service. The pa.rticipants of the 
action Service are Client, Client's Agency and Payer's Agency. Consider a Client that pre­
sents a check (i.e., an object of the type Check) to his/ her bank and receives a Receipt 
that certifies the operation. To clear the cbeck, the Client's Agency sends the Check to 
Payer's Agency which has the payer's account . Once Client's Agency receives the Cash for 
the check, it sends to Cl ient a new Statement of his/ her account. Actions ca.n be nested 
and e.xceptions may be propagated over nesting levels. In any moment, some action par­
ticipants can start nested actions. Figure 4.l{a) shows two nested actions for the action 
Service. The participants Client and Client's Agency perform the nested action BankMo­
ney, and the participants Client's Agency and Payer's Agency perform the nested action 
ClearCheck. 

Exception occurrences can be rai.sed by participants during an action. Some of them 

can be handled intemally by a local handler atta.ched to the pa.rticipa.nt that raised that 
exception. We refer to these exceptions as local exceptions. Traditional exception han­
dling strategies address this kind of exception. If an e.xception occurrence is not handled 
intemally by a participant, then it should be handled cooperatively by a.ll action par­
ticipants. This kind of exception is called a cooperating exceptíon, and, in this case, a 
new concurrent exception handling strategy is required. When a cooperating exception 
is raised in any of the participants inside an action, a.ll action pa.rticipants have to parti­
cipate in its handling. So, a set of cooperating e.xceptjons is associated with each action. 
Each participant h as a set of handlers for ( all or part o f) these exceptions. Participants 
are synchronized and probably different handlers for the same exception have to be in­
voked in all participants [9). These handlers are executed concurrently, and cooperate to 
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handle the cooperating exception in a coordinated way. Moreover, various cooperating 
exceptions may be raised concurrently while pa.rticipants are cooperating in the action. 
So, a mechanism of exception resolution is necessary in order to agree on the cooperating 
exception to be notified to all participants of the action. The paper [9] describes a model 
for exception resolution called exception tree which includes an exception hierarchy. If 

severa! cooperating exceptions are raised concurrently, the resolved exception is the root 
of the smallest subtree containing ali raised exceptions. Cooperating exceptions can be 
of two di.fferent kinds in the exception tree: (i) simple exceptions, or (ii) structured excep­

tions. Simple exceptions are Ieafs of the tree and correspond to cooperating exceptions 
being raised alone concurrently. Structured exceptions are non-leaf nodes and correspond 
to two or more simple exceptions being raised concurrently. An exception tree should be 
specified for each action ofthe application. In Figure 4.l (a), during the action ClearCheck, 
two cooperating exceptions are raised concurrently, namely WrongDateException and ln­
sufficientFundsException. Figure 4.1(b) presents the exception tree specifi.ed for the action 
ClearCheck. The structured exception BouncedCheckException represents the concurrent 
raising of the simple exceptions WrongDateException and lnsufficientFundsException. 

Participants of an action can leave it on three occasions. First of ali, they can leave 
the action if no exceptions were raised. Secondly, if cooperating exceptions have been 
raised, but handlers have successfully handled them. Thirdly, they can leave the action 
signaling a failure exception to the containing action if a cooperating exception has been 
raised and no pro per handlers were found o r the handling of that exception is not possible. 
There are at least two distinct approaches for concurrent exception handling: (i) the blo­

cking approach, and (ii) the pre-emptive approach. In blocking schemes, each participant 
terminates by reaching the end of an action or fails by raising a cooperating exception. 
Participants are informed of an exception occurrence only when they are completed (or 
detecta cooperating exception); that is, when they are ready to accept information about 
the state of other participants. In contrast, pre-emptive schemes do not wait but requi­
re some language feature to interrupt all participants when cooperating exceptions are 
raised [59]. In blocking systems, exception handling and resolution are easier to provide 
than in pre-emptive ones because each participant is ready for handling when handlers 
are invoked. Moreover, there is no need to perfonn the abortion of nested actions becau­
se they have either been completed successfully or have had exceptions dealt by nested 
action's handlers. 
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4.2.3 Integration of Sequential and Concurrent Ex ception Han­
dling 

Figure 402 illustrates the integration of sequential and concurrent exception handlingo 

Sequential exception handling facilities include: (i) exceptions- the definition and raising 

of local exceptions, and management of extra-information about exception occurrences, 

(ü) handlers - the definition and invocation of handlers, and (iii) exception handling 

strategy- the specification of an algorithm for handler search, and a model for continuation 

of the control fiowo As discussed earlier, concurrent exception handling requires some extra 

support not required by sequential systemso So, an integrated approach to exception 

handling should support both local and cooperating exceptions, and also a concurrent 

exception handling strategy. Ideally the concurrent exception handling strategy should 

be consistent with the exception handling strategy (ofthe sequentiaJ exception handling). 

In this work, the strategy for concurrent exception hãndling extends the atomic action 

paradigm described previously. 

4.3 Design Reuse and Software Structuring Techni­
ques 

4.3.1 Software Architecture and Patterns 

A system's software architecture abstra.ctly describes the system 's gross organization in 

terms of components and their interrelationships [65). Components are physical and repla­

ceable parts of a architecture, and to each component are attached responsibilities. The 
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components must interact with each other in the described fashion, and each component 

must fulfill its responsibilities to the other components as dictated by the architecture. 
Each component conforms to and provides the realization of a set of interfaces [3]. The 
interfaces make available services which are implemented by the component. 

Software patterns are an important vehicle for constructing higb-quality architectu­
res [2]. Patterns are useful mental building-blocks for dealing witb limited and specific 
design aspects when developing a software architecture. Patterns are discovered rather 
than invented, and tbey exist in various ranges of scale. Architectural patterns, for ins­

tance, define tbe basic structure of an architecture and systems whicb implement that 

architecture [7]. Design patterns are however more problem-oriented than architectural 
patterns, and are applied in I ater design stages. U sually, tbe selection o f a design pattern 
is influenced by the architectural pattern that were previously cbosen. A design pattern 
expresses a very specific recurring design problem and presents a solution to it, ali from 
the viewpoint of the context in whicb the problem arises [7). Moreover, a design pattern 
must balance, or trade off, a set of opposing forces. Design patterns refine the general 
components of an architecture, providing the detailed design solutions. 

In this work, each component of the proposed architecture implements a design pattern 
which describes the design of the corresponding component. The proposed architecture's 
components and their corresponding design patterns follow the overall structure of the 
Reftection architectural pattem [7). This pattern captures the benefits from computational 
refiection and meta-levei architectures which are described in the next section. 

4.3.2 Meta-Levei Architectures and Computational Reflection 

Computational reflection is a technique that a.llows a system to maintain information 
about itself (meta-information) and use this information to adapt its behavior [43]. Tbis 
information is obtained by means of a process called reification. Reification is the repre­
sentation of abstract language concepts such as classes a.nd methods in form of objects. 
In the object model, reflection establishes a meta-level architecture which achieves a se­

paration of concerns between applications and management mechanisms by extending 
transparently the sema.ntics of the underlying system. Meta-levei architectures are com­
posed of at least two dimensions: (i) a base level ( or application levei), and (ii) a meta-level 

(management levei). The base-levei encampasses the objects responsible for implementing 
the functiona.lity of the application. The meta-levei encampasses the objects that deal 
with the processing of meta-information and management activities of an application. 
The meta-levei objects ( meta-objects) maintain structural and behavioral information of 

application objects. A meta-object protocol (MOP) establishes an interface of commu­
nication between base-levei and meta-levei objects. MOP provides a high-level interface 
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to the prograrnming language implementa.tion in order to reveal the program informa.tion 
normally hidden by the compiler andj or run-time environment [43). As a consequence, 
programmers can develop language extensions without any change to the programming 
language. 

Computational refiection can be used to intercept, verify a.nd modify tra.nspa.rently 
the effects of operations of the object model. For the purpose of illustration, suppose 
that for each base-levei object o exists a corresponding meta-object mo that represents 
the behavioral and structural aspects of o. As illustrated in Figure ·4.3, if an object x 
invokes a method ml on an object o, MOP intercepts this invocation, reifies the base-levei 
computation and the meta-object mo takes over execution; later mo retums ( reftects) the 
result to x. From the point of view o f the object x, computational refiection is transparent: 
x sends a message requesting a method to o, and receives the result with no knowledge 
that the messa.ge was intercepted and alterna.tively altered by the meta-object. 

4.4 The Software Architecture for Exception Han­

dling 

4.4.1 The Basic Architecture 

This section presents a generic software architecture that integra.tes sequential and concur­
rent exception handling (Figure 4.4). Applications reuse our architecture to handle their 
exceptional situations by using the exception ha.ndling facilities provided by the architec­
ture's components. The architecture is composed of four components: (i) the Exception 

component, (ü) the Handler component, (iii) the Exception Handling Strategy component, 
a.nd (iv) the Concurrent Exception Handling Action component. Table 4.4.1 summarizes 
the components and their responsibilities. The responsibilities are classified into two 
kinds: (i) application-dependent responsibilities (ADR), and (ii) application-independent 
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Application-dependent responsibilities are directly related to the application's func­
tionality and include, for instance, facilities for specification of exceptions and handlers, 
raising of application exceptions, and specification of concurrent cooperative actions. The 
achievement of these responsibilities is application-dependent. As a consequence, the ar­
chitecture's components provide the application developers with appropriate support in 
order to fulfill their application-dependent responsibilities. Developers of applications ei­
ther invoke services provided by the architecture's component interfaces (Section 4.4.2), or 

else refine the design of architecture's components according to their needs (Section 4.4.3). 
For instance, application's components invoke the service provided by the Exception com­
ponent in order to raise an application exception. Application designers tailor the Ex­

ception, Handler and Concurrent Exception Handling Action components to specify res­
pectively exceptions, handlers and concurrent cooperative actions of their applications 
(Section 4.4.3) . Exceptions, bandlers and concurrent cooperative actions are part of the 
application 's functionality. 
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# Component Responsibilities 
1 Exception Speci.fication and raising of local and cooperating exceptions (ADR) 

Management of ex:tra--information {Affi) 
2 Handler Specification of handlers (AOR) 

Invocation of handlers (AIR) 
3 Exception Handling Search of handlers (AIR) 

Strategy Deviation of the control fiow (AIR) 
4 Concurrent Exception Specification of concurrent cooperative actions (ADR) 

Handling Action Synchronization and exception resolution (Affi) 

Table 4.4.1: Components and their Responsibilities. 

Application-independent responsibilities include, for instance, facilities for e.xtra-information 
management, handler invocation, deviation ofthe control flow, handler sea.rch, pa.rticipant 
synchroniza.tion and exception resolution. These responsibilities a.re related to manage-
ment activities of exception handling. Components of our proposed architecture perform 
their management activities in a way tbat is tra.nsparent to the applica.tion {Section 4.4.3). 
As a result, the a.pplication developers concentra. te their a.ttention to the a.pplica.tion 's 
functiona.lity and reuse the ma.nagement a.ctivities for exception bandling defined by the 
architecture. The a.rchitecture's components interact with ea.ch other as prescribed by the 
architecture in order to fulfill their application-independent responsibilities. 

Figure 4.4 pictures the components and their interrelationships. The Exception com­
ponent works as an extra-information holder component. It keeps extra-informa.tion about 
application exceptions which are used by the other components to achieve their respon­
sibilities. Then the other components interact with the Exception component in order to 
get and update extra-information about exception occurrences. The Exception Handling 

Strategy component implements the services related to tbe general strategy for excep­
tion ha.ndling. Its responsibilities are the deviation of the control flow and the search 
for ha.ndlers. Therefore, this component plays a central role in the a.rchitecture and 
interacts with all other components. It asks the Exception component to provide extra.­
informa.tion a.bout a.n exception occurrence while searching for its corresponding ha.ndler. 
After ha.ndler is found, it asks the Handler component to invoke the exception ha.ndler. 
The Exception Handling Strategy component also interacts with the Concurrent Exception 

Handling Action component. Tbe !ater uses the services provided by the former in order 
to carry out the strategy for concurrent exception ha.ndling. For example, if one or more 
cooperating exceptions ha.ve been raised during a a.ction, a.nd the exception resolution has 
been a.ccomplished by the Concurrent Exception Handling Action component, it asks the 
Exception Handling Strategy component to search the clifferent ha.ndlers for the resolved 
exception. 
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4.4.2 Interfaces of the Components 
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The interfaces of the components provide the exception handling services provided by 
the architecture's components. The interfaces are accessed either by the architecture's 
components themselves, or by the application while using the exception handling services. 
Figure 4.4 illustrates the architecture's components and their interfaces. The interfaces 
are classified in two sets: (i) the private interfaces, and (ü) the public interfaces. Private 
interfaces define the services that are only accessed by the components of the architecture. 
Public interfaces define the services that may be also accessed by the application reusing 
the architecture. Figure 4.5 depicts all of the interfaces conformed by ea.ch architectural 
component. 

The Exception component implements three public interfaces: (i) the interface IRai­
sing, (ü) the interface JGetlnformation, and (iü) the interface IUpdatelnformation. The 
interface IRaising allows the application to raise exceptions by invoking the method raise. 
The interface IGetlnformation makes some services available for the application and other 
architecture's components to obtain extra-information about the exception occurrences. 
Finally, the interface IUpdatelnformation allows the application and the other components 
to update extra-information about exceptions. 

The Handler component implements the private interface llnvocation. This interfa­
ce allows the Exception H andling Strategy component to invoke an exception handler 
when this component has found an appropriate handler. The Exception Handling Stra­

tegy component conforms to the private interface ISearcher that provides the Concurrent 

Exception Handling Action component with the service for handler search. The Concur­

rent Exception Handling Action component implements the public interface JCooperation 
which provides the application with means of performing concurrent cooperative actions. 

The components collaborate to realize the set of scenarios of the architecture. Figu­
re 4.6 illustrates a scenario by means of a sequence diagram. This scenario shows the 
interactions between the application and the interfaces of the architecture's components 
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in arder to handle a cooperating exception that was raised during a concurrent coopera­
tive action. A thread of the application invokes the metbod join in arder to take part in 
the the action and perform a specific action participant (1). The Concurrent Exception 

Handling Action component invokes the application's method to be executed by the ap­
plication's thread (2). While this method is being carried out by the participating thread, 
it obtains the shared objects used for inter-thread communication {3), and passes explici­
tly extra-information concerning the exception occurrence (4). During its execution, the 
application's method raises a cooperating exception {5). 

After exception is raised, the architecture's components interact with each other to ac­
complish the management activities. Extra-information about that exception occurrence 

is updated implicitly by the components (6) . The action participants are syncbronized and 
exception resolution process is executed within the Concurrent Exception Handling Ac­

tion component. During the resolution, this component communicates with the Exception 

component in arder to obtain extra-information about the raised cooperating exceptions 
(7). The Concurrent Exception Handling Action component asks the Exception Handling 

Strategycomponent to search the handler for the resolved exception (8), and the later asks 
the Handler component to invoke it (9). The Handler component invokes the handler de­
fined in the application (10). The handler obtains e.xtra-information useful for handling 
the resolved exception {11-12), and shared objects that are used in the cooperation with 
the other handlers being executed concurrently {13). 



4.4. The Software Architecture for Exception Handling 88 

4.4.3 The Architecture Refinement 

Separation o f Concerns. As stated previously, software designers tailor the components 
of the proposed architecture to add the functionality related to specific applications. Note 
that each architectural component may include application's functionality and manage­
ment activities for exception handling. In arder to obtain a clear separation of concems 
between the application's functionality and the exception handling services, the archi­
tecture and their components incorporate a meta-levei architecture, following the overall 
structure of the Reflection pattem (Section 4.3.1). Figure 4. 7 presents the proposed meta­
levei architecture which is composed o f two dimensions: the base levei, and the meta-levei. 
The architecture's base levei encompasses the application-dependent elements, such as 
exceptions, handlers, normal activities, and concurrent cooperative actions. The archi­
tecture's meta-levei consists of meta-objects which perform the management activities for 
exception handling. 

Transparency. The Refiection pattern also captures the bene:fit of transparency obtained 
by means of computational refiection. For the purposes of this work, object states, results 
and invocations of methods of the application (base-levei) are intercepted and reified by 
the MOP, and potentially checked and a.ltered by the meta-objects (meta-levei) in order 
to carry out the management activities for exception handling. For instance, results of 
methods are checked transparently by the meta-objects to verify if such methods have 
raised any exception. MOP intercepts at run-time the exceptional results and deviates 
the normal control flow of the base-levei application to the exceptiona.l one at the meta­
levei. "When the management activities are finished, MOP returns the computation to 
the application's normal :flow. Therefore, the meta-objects execute their management 
activities transparently from the viewpoint of the base-levei. 

Refi.nement of the Components and Design Patterns. While application designers 
reuse the archltecture and refine its components to satisfy their needs, some problems arise 
in this context, such as: (i) how do they specify the simple a.nd cooperating exceptions? 
and how do they do it uniformly?, (ii) how do they specify the ha.ndlers?, and (üi) how to 
execute the synchronization of the action participants and other management activities in 

a way that is transparent to the application?. In this work, design patterns are proposed 
in order to refine the general components of the proposed architecture, providing the 
detailed design solutions. The proposed design patterns present solutions for speci:fic 
design problems of the corresponding components, a.nd are used to describe the design 
and dynamics aspects of each architectural component. 
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4.5 Design Patterns for Exception Handling 

4.5.1 The Ezception Pattern 
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Context. Software designers want to specify the local and cooperating exceptions of 
their applications. These exceptions may be raised at run-time during the application's 
normal activity. Extra-information is required by the application in order to handle an 
exception occurrence. 

Problem. The software architecture should provide means by which the applica.tion 
developers define and ra.ise the local and cooperating exceptions. Moreover, a fiexible and 
reusable software a.rchitecture is required to make the exception specification easier and 
to separate concerns between a.pplica.tion exceptions and extra-information mana.gement. 
Severa.l forces are associated with this design problem: 

• Local and cooperating exceptions should be defined uniformly. 

• The effort of software designers to compose exception trees should be minimized. 

• The exception occurrence itself should keep extra-information necessary for its han­
dling. 

Solution. Use the Refiection architectural pattem in arder to separate classes respon­
sible for managing extra-information (meta-levei) from the ones used to specify applica­
tion exceptions {base levei). Different types of exceptions are organized hierarchically as 
classes which are termed exception classes. Exception occurrences are base-levei objects 
created at run-time when an exception is ra.ised, and are termed exception objects. Ex­
ceptions are raised by calling the method raise on exception objects. Meta-objects are 
associated transparently with exception objects for keeping extra-information about the 
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exception occurrences. Extra-informa.tion is reified as meta.-informa.tion. A meta.-object 
keeps meta-information collected at run-time about the corresponding exception occurren­
ce. Meta-objects alter transparently the state of the exception objects in order to make 
this information a.vailable for the applica.tion. As a result, the exception object keeps 
extra-information necessa.ry for its handling. The a.pplica.tion accesses this informa.tion 
by invoking methods on exception objects. 

Structure. The Exception Pattem consista of exception classes, and meta-objects. Meta.­
objects of the type MetaE.xception are associated with instances of base-levei exception 
classes, i.e., meta-objects are associa.ted with exception objects. Application developers 
are provided with three ma.in exception classes- Locai Exception, Cooperat ingException and 
StructuredE.xception (Figure 4.8(a.)). These classes derive from the root class Exception. 
The class LocaiException defines the local exceptions of applications; it is subclassed by 
a.pplication designers in order to specify the local exceptions. Exception trees are easily 
specified - an applica.tion developer only needs to create a class for each simple exception 
by subclassing the class CooperatingException, and a new instance of the dass Structure­
dException for each structured exception. An exception object of the type StructuredEx­
ception stores the simple andfor structured exceptions which compose it. The method 
getSimpleExceptions returns the simple exceptions that compose a structured exception. 
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Figure 4.8(b) shows an instance of the proposed pattem for defining an exception tree in 
the banking servke application (Sectíon 4.2.2). This scheme for definition of exception 
trees is similar to the structure of the Composite design pattem [20]. 

Dynamics. Figure 4.9 presents the interaction diagram that illustrates a scenario for the 
banking service example (Section 4.2.2). A meta-object (of the type MetaSearcher), asso­
ciated with the application object that has raised the exception lnsufficientFundsException, 
reifies extra-information about the location where the exception was detected. The infor­
mation includes the method, the action and the action participant where the exception 
was raised. This meta-object sends the extra-information to the meta-object associated 
with the application's exception object that representa that exception occurrence. Tbe 
meta-object updates extra-information about the exception occurrence by invoking trans­
parently the method setlocation on the application's exception object. The invocation 
and the update are transparent from the viewpoint of the application. Then the method 
getlocation is invoked by the application handler in order to receive the extra-information 
related to the location. 

Known Uses. The representation of exceptions as classes is a design solution adopted 
by severa! systems and programming languages, such as Java, C++ and Arche. 

Consequences. The Exception Pattem offers the following benefits: 

• Uniformity. Both local and cooperating exceptions are uniformly defined as classes. 
Moreover, the Exception pattem adopts the Composite pattem to define exception 
trees. As a result, it allows application designers to treat simple exceptions and its 
compositions (structured exceptions) uniformly. 

• Simple to Use. Exception trees are easily defined. Tbe proposed base-levei classes 
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allow application developers to define exception trees witbout writing an excep­
tion resolution procedure for each concurrent cooperative action of the application. 
The exception resolution process is perfonned transpaxently by the meta-levei (Sec­
tion 4.5.4). 

• Reusability and Extendibility. The representation of local and cooperating excep­
tions as classes promotes the reusability and extendibility of the exception classes. 
In addition, the separation of concems provided by the Exception pattem also pro­
motes the reusability of the management services. 

• Readability and Maintainability. Applications whose exceptions axe represented as 
objects are easier to understand a.nd maintain tha.n applications where exceptions 
are simply symbols (numbers or strings) [25). 

• Easy incorporation of default handlers. Since exceptions are represented as classes, 
default handlers can be defined as methods on exception classes. In case the appli­
cation developers have not defined more specific handlers, the handler method on 
the exception class can be activated by the meta-levei. 

4.5.2 The Handler Pattern 

Context. Software designers wa.nt to specify the handlers for the local and cooperating 
exceptions that are expected to occur during the normal activity of their applications. A 

handler is invoked when the corresponding exception is raised. 

Problem. The infra-structure of the software axchitecture should be organized in order to 
allow application developers to define the exception handlers in a way that separates them 
from the application 's normal activity. In addition, this infra-structure should pro mote 
the separation between the application components containing the exception handlers and 
the axchitectural components responsible for invoking the eligible handler. The following 
forces shape the solution: 

• Exception handlers for local and cooperating exceptions should be defined in an 
unifonn manner. 

• The software axchitecture should include multi-levei attachment of handlers (Sec­
tion 4.2.1). 

Solution. Use the Refiection architectural pattem in order to separate the class respon­
sible for invoking handlers (meta-levei) from the classes used to specify the application 
handlers (base levei). The base-levei defines the application classes that implement the 
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handlers for local and cooperating exceptions. The meta-levei consist of meta-objects 
responsible for invoking the handlers. 

Structure. The Handler Pattem consists of two kinds of elements: (i) exceptional clas­
ses, and (ii) meta-objects of the type MetaHandler (Figure 4.10(a)). The exceptional 

classes are located at the base-levei and define the error handling activities of a specific 
application. The methods of exceptional classes are the handlers for the local and coo­
perating exceptions raised during the execution of normal classes' methods. The normal 

classes are located at the base-levei and implement the application's normal activities 
(see Section 4.5.3). Therefore, exceptional classes implement the handlers of the appli­
cation and they are atta.ched to the corresponding normal classes. Meta-objects of the 
type MetaHandler are associated with exceptional classes, andare responsible for invoking 
transparently the exception handlers. 

Exceptional classes can contain handlers attached to classes, objects and methods. 
Each exceptional class may contain handlers for coping with the local and cooperating 
exceptions; they are invoked when these exceptions are raised during the execution of 
methods of the corresponding normal class. Figure 4.10(b) shows an instance of tbis 
pattern for the banking service example. Tbe methods of the ExceptionaiAccount are the 
handlers for the simple and structured exceptions that can be raised while the methods 
of the corresponding normal class (the class NormaiAccount - Section 4.5.3) are being 
executed during a concurrent cooperative action. 

Dynamics. Suppose the method withdraw is being executed concurrently during a con­
current cooperative action and raises tbe exception lnsufficientFundsException; another 
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method is being executed concurrently during this concurrent cooperative action and also 
raises an exception, the exception WrongDateException. Tbe concurrent raising of these 
simple exceptions means the occurrence of the structured exception BouncedCheckExcep­
tion, and the subsequent invocation of the handlers to deaJ with this structured exception. 
Figure 4.11 illustrates the transparent invocation of the appropriate ha.Ddler by the meta­
object associated with the exceptional class. During the execution of tbe handler, it gets 
extra-information about the location where the exception lnsufficientFundsException was 
raised. 

Known Uses. The work [31] also uses the computational reflection technique in arder to 
obtain meta-information about the application and invoke the su.itable handler when an 
exception is raised. Meta-level structures implement the exception handling mechanism 
while at the base level resides the application. Finally, handlers also are implemented as 
ordinary methods. The approach presented in [48] uses a variant of the Handler pattern. 
This variant transfers the handler methods from the exceptional classes to the meta­
levei. The meta-objects assodated with the normal classes contain application's methods 
responsible for performing the exception handling. Instead of utilizing reflective principies 
to complete the separation between application and management mechanisms, this variant 
explores reflection to separa te normal and exceptionaJ co de of the application. 

Consequences. The Handler Pattern offers the following consequences: 

• Uniformity. Handlers for both local and cooperating exceptions are defined uni­
formJy as methods of exceptional classes. 

• Readability and Maintainability. The pattern provides explicit separation betwe­
en normal and error-handling activities, which in turn promotes readability and 
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maintainability. 

• Flexibility. The multi-levei attachment of handlers allows developers to attach han­
dlers to the respective leveis of classes, objects a.nd methods. 

• Reusability. The use of normal and exceptional classes allows application designers 
to compose an exceptional class hierarchy that is orthogonal to the normal class 
hierarchy of the application. The exceptional classes are organized hierarchically so 
that resultant hierarchy is orthogonal to the normal class hierarchy. Exceptional 
class hierarchies allow exceptional subclasses inherit handlers from their superclasses 
and, consequently, they allow exceptional code reuse. When reuse is not desired, 
the handler method can be redefined at the subclasses. 

• Minor loss in writeability. A protected region can not be defined as a statement. 

• Lack of Static Checking. A possible disadvantage of this pattem is that may not 
be easy to check statically if handlers have been defined for ali specified exceptioris. 
However, altemative solutions may be applied (Section 4.6). 

4.5.3 The Ea;ception Handling Strategy Pattern 

Context. Exception occurrences can be detected during execution of a protected region 
of the application's normal activity. The normal controi fiow is deviated to the exceptional 
one and an appropriate handler is searched. 

Problem. The software architecture should be organized in a disciplined manner: the 
components responsible for the deviation of the normal control fiow and for the handler 
search should perform their management activities in a non-intrusive way to the applica­
tion. The following force arises when dealing with such a problem: 

• The chosen model for continuation of the controi fiow should be termination since 
it is more suitabie for developing dependable systems (Section 4.2.1). 

Solution. Use the Reftection architectural pattem in order to separate classes responsible 
for the management a.ctivities (meta-levei) from the ones that implement the normal ac­
tivities of the application (base level). The base-levei defines the application's logic where 
normal classes impiement the nonnal activities. The meta-level consists of meta-objects 
which search transparently for the exception handlers. Meta-objects are associated with 
instances of the normal classes, and maintain meta-information conceming the protected 
regions defined at the base-levei. A protected region can be a method, an object, and a 
class. MOP itself is responsible for intercepting method results and changing the normal 
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control flow to tbe exceptional one when exceptions are detected by transferring control to 
the meta~level. With tbe available meta-information, meta-objects find the handler that 
should be executed when an exception occurrence is detected in a given protected region. 
Wben the execution of the handlers is finished successfully, MOP returns the control fiow 
to the application's normal computation according to the termination model. 

Structure. The Exception Handling Strategy Pattem introduces two types of elements: 
(i) normal classes, and (ii) meta-objects of the type MetaSearcher (Figure 4.12(a)). The 
normal classes are located at the base-levei and define tbe normal activities of a specific 
application. They are attacbed to the corresponding exceptional classes. Figure 4.12(b)) 
pictures an instance of this pattem for the banking service application. This figure shows 
the normal class NormaiAccount; it is attacbed to the exceptional class ExceptionaiAccount 
(Section 4.5.2). Meta-objects of the type MetaSearcher are associated with instances of 
normal classes, and are responsible for the interruption of the normal control flow and 
the handler search. 

Dynamics. Figure 4.13 presents the interaction diagram for the banking service example. 
The method withdraw is being performed concurrently during a concurrent cooperative ac­
tion. The exception lnsufficientFundsException is returned as the result of withdraw since it 
has raised this exception during its execution. M OP intercepts and reifies the result o f wi­
thdraw, and notifies the meta-object about the exceptional result by means of the method 
handleResult. The meta-object checks if the exception occurrence is a local or a coope­
ration exception. H it is a local exception, the meta-object searcbes immediately for the 
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exception handler based on the available meta-information. Otherwise, the cooperating 
exception is firstly delegated to the meta-object responsible for the participant synchroni­
zation and exception resolution. lnsufficientFundsException is then delegated since it is a 
cooperating exception. After exception resolution is accomplished, the meta-object is re­
quired to find a handler for the resolved exception, the exception BouncedCheckException. 
The handler is found and the invocation of it is delegated to the appropriate meta-object 
(Section 4.5.2). Since the exception handler is executed successfully, the control is pas­
sed to the meta-object responsible for the participant synchronization, which in tum will 
deviate the exceptional control fiow to the normal one. 

Known Uses. The work [48] presents a variant of the Exception Handling Strategy 

pattern. In this variant, the exception itself is the reified entity instead of a method 
result. This alternative design solution allows the exception itself to control the handling. 
Consequently, it is possible to implement the resumption model since the control fiow is 
stopped exactly at the point of the exception raising. The work [31) uses the refiection 
technique in order to obtain at compile-time information concerning protected regions 
and the handlers that are attached to them. 
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Consequences. The Exception Handling Strategy Pattern offers the following consequen­
ces: 

• Transparency. The meta-levei objects bind transparently the normal activity and 
corresponding handlers without requiring ~om programmers the use of new keywords 
to specify protected regions. 

• Readability and Maintainability. The normal code is not amalgamated with the 
exceptional code. As a consequence, both normal and exception code are easier to 
read and maintain. 

• Compatibility. The Exception Handling Strategy pattern can be used together with 
an exception handling strategy implemented in the underlying programming lan­
guage, and they can complement each other. 

4.5.4 The Concurrent Ezception Handling Action Pattern 

Context. Software designers want to specify concurrent cooperative actions. These 
actions must be controlled at run-time and their participants have td leave the action 
synchronously. During the execution of an action, a number of cooperating exceptions 
ca.n be raised. As a consequence, a service of exception resolution is necessary to agree 
on the cooperating exception to be handled by all participa.nts of the action. 

Problem. The software architecture should provide means by which the software de­
velopers define the concurrent cooperative actions o f their applications. Moreover, an 
disciplined and fiexible approach is required to separate concerns and minimize depen­
dencies between the concurrent cooperative actions of the application and the strategy 
for concurrent exception handling (i.e. the management mechanisms for synchronization 
and exception resolution). Several forces are associated with this design problem: 

• The definition of concurrent cooperative actions should be done in a structured 
manner to avoid an increase in the software's complexity. 

• The inter-thread communication should use shared objects (Section 4.2.2). 

• The strategy for concurrent exception handling should be a consistent extension of 
the general strategy for exception handling. 

• The blocking approach should be used for concurrent exception handling since it 
simpler and easier to implement (Section 4.2.2). 
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Solution. Use the Reftection architectural pattern for segregating classes responsible 
for the management mechanisms (meta-levei) from the classes which must be derived 

for defining the concurrent cooperative actions of the application (base-levei). Based on 
a meta-levei architecture, the Concttrrent Exception Handlíng Action pattern separates 
objects into well-defined leveis. The base-levei provides developers with classes for creatíng 
the concurrent cooperative actions of their applications; the defi.nition of nested actions is 
also supported in order to control the system 's complexity and allow better organization of 
both normal and error handling activities of the enclosing action. MOP itself intercepts 
and reifies invocations of methods and their results. The meta-levei implements the 
management mechanisms based on reified invocations and results, and on the available 
meta-information. 

Structure. The Concurrent Exception Handling Action Pattern introduces five types of 
objects: (i) Action, (ii) Participant, (iii) Thread, (iv) MetaParticipant, a.nd (v) MetaAction 
(Figure 4.14(a)). The class Thread represents the threads which intend to participa­
te in a concurrent cooperative action. Developers create their threads, and extend the 
classes Action and Participant by subclassing them to implement theiroconcurrent coope­
rative actions. lnstances of these subclasses represent at run-time a . specific action and 
their pa.rticipants respectively. Developers should redefine the method ·ConfigureShare­
dObject while subclassing the class Action. The method ConfigSharedObject implements 
the application-dependent activity which consists of creating shared oojects used for pur­
pose of inter-participant communication (inter-thread communication). In order to access 
these objects, eacb participant have to ask to its corresponding action references to these 
objects by means of the method getSharedObject. If an action is composed of one or more 
nested actions, developers should also redefine the method ConfigNestedActions in order to 
create the objects that represent the nested actions. In order to access these objects, each 
participant have to ask to its correspond.ing action references to these objects by invoking 

the method getNestedAction. Each object of the type Participant holds references to: (i) 
its action, and (ü) an object and its method that will be executed during the action by a 
threa.d. Instances of the class Action have references to: (i) action participan.ts, (ii) inter­
nai and failure exceptions, (iii) its parent ( enclosing action), (iv) its nested actions, and 
(v) shared objects. Internai exceptions are the exceptions that should be handled within 
action by ali action participants, while externai exceptions are the exceptions that should 
be signaled to the enclosing action. Figure 4.14(b) shows an instance of the proposed 
pattern for de:fining the actions, the participants, an.d the threads for the ban.king service 
application. 

Instances of the class MetaParticipant are associated with instances of subclasses of 
Participant. These meta-objects are responsible for: (i) execute the application's method 
which is held by its associated participant, (ü) inform to its corresponding MetaAction 
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about the end ofthis method execution, and (ili) ask the appropriate meta-object to invoke 
the handler associated with a resolved exception. Instances of the class MetaAction are 
associated with instances of subcla.sses of Action. These meta-objects are responsible for: 
(i) perlorm the exception resolution, and (ü) synchronize the action participants. 

Dynamics. Figure 4.15 presents the interaction diagram for the ba.nking service example. 
The diagram illustrates the application's thread perlorming the participant PayerAgency 
within the action ClearCheck. This thread intending to participate in the action, calls the 
method join on the object ClearCheck corresponding to that action. The thread informs 
to the action what participant (the participant PayerAgency) it intends to execute during 
the concurrent cooperative action. MOP intercepts and reifies the invocation of join, 
and notifies the meta-object MetaAction about this invocation by means of the method 
handleOperation. This meta-object checks to see if is allowed to play that participant 
in tbis action, and if so, the meta-object MetaParticipant executes the method withdraw 
that is attached to that participa.nt. While this method is being Carried out by the 
thread, it obtains the shared objects used for inter-thread communication. The exception 
lnsufficientFundsException is returned as the result of withdraw since ··it has raised this 
exception during its execution (Section 4.5.2). MOP rei:fies the result of withdraw, and 
noti:fies the meta-object MetaParticipant about the exceptional result by means of the 
method handleResult. The action participants are synchronized and exception resolution 
process is accomplished ba.sed on the available meta-information. For .instance, the meta­
object MetaAction communicates with the meta-object responsible for maintain extra­
inform.ation about the ra.ised cooperating exceptions (Section 4.5.1). · The meta-object 
MetaParticipant receives the resolved exception and then asks the eligible meta-object to 
search the handler for the resolved exception. Note that after the thread a.sks to start its 
activity within the action, ali management activities are performed by the meta-levei in 
a way that is transparent to the application. 

Known Uses. The work [61) proposes a non-refiective and distributed variant of this 
pattern. Tbis works proposes an algorithm for concurrent exception handling in distri­
buted object systems. Exception resolution and the final synchronization is performed 
in a distributed way, and the inform.ation conceming the action must be held by each 
participant. Each participant must keep a copy of the algorithm and the management 
is performed by means of message exchange. However, the class Action is not necessary. 
Zorzo's CAAction framework [7 4) also provides software developers with a number of clas­
ses to structure their concurrent applications. However, it uses a non-refiective variant of 
the Concurrent Exception H andling Action Pattern. Programmers extend two classes of 
the framework in order to implement their concurrent cooperative actions. Both classes 
are similar to the classes Action and Participant regarding their responsibilities. 
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Consequences. The Concurrent Exception Handling Action Pattern offers the following 
consequences: 

• Uniformity. The strategy for concurrent exception bandling is a consistent extension 
of the general strategy for exception bandling. 

• Transparency and Simple to Use. Management mechanisms for exception handling 
are performed transparently to the application. Programmers fix their attention 
on definition of concurrent cooperative actions, wbicb is an application-dependent 
ISsue. 

• Complexity Control. The pattern allows programmers to define nested actions. 

• Readability, Reusability and Maintainability. The application code is not inter­
mingled with invocations of methods responsible for syncbronization and exception 
resolution. As a consequence, it improves readability, wbich in turn improves reu­
sability and maintainability. 

• Minor loss in efficiency due to the blocking model. In pre-emptive schemes; there 
is inherently no wasted time but the feature required, namely pre-emptive thread 
interruption, is not readily available in many systems and programming languages. 
However, mecbanisms such as timeouts and run-time error checks can increase the 
efficiency of blocking schemes and decrease the amount of time wasted by allowing 
early detection of either the error or the abnormal behavior of the participant that 
raised the ex.ception and is wa.iting for the other partícipants. 

4.6 Implementation Issues 

We ha.ve implemented tbe proposed software architecture using the Java programming 
langua.ge without any changes to tbe language itself by means of a meta.-object proto­
col called Guaraná [51]. Guaraná is a flexible meta-object protocol for Java language 
that allows creating meta-levei objects. Guaraná provides an effi.cient broadcast servi­
ce for communication between meta-objects. Moreover, it provides support to compose 
meta-objects responsible for different management functions by means of composers. The 
proposed software architecture has allowed that the meta-objects of our exception han­
dling system be integrated with meta-objects responsible for other quality a.ttributes, such 
as persistency and security. 

The proposed software architecture can be implemented using any language as long as 
the environment supports computational reflection. The proposed architecture also can be 
implemented using languages where ever exists an exception handling mechanism without 
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confiict with the existing one. A disadvantage of our approach is that may not be easy 
to perform checks statically (Section 4.5.3). However there are some features whlch can 
help programmers to avoid mista.kes: post- and pre-processors, libraries, syntax-oriented 
editors and macro-processing. In addition, the mechanism of computational reflection may 
facilitate checks performed before program execution by obtaining information about the 
application using the exception handling mechanism. 

4. 7 Related Work 

Even though many object-oriented prograroming languages include exception handling 
facilities, only the Arche language (33] provides actual support for concurrent excep­
tion handling. The exception handling mechanism of this language allows user-defined 
resolution of multiple exceptions amongst a group of objects that belong to different im­
plementations of a given type; however, this approach is not generally· applicable to the 
concurrent exception handling of multiple interacting objects of different types. 

The paper (58) describes a scheme for concurrent exception hanclling based on atomic 
action structures for the Ada95 language. In this approach, application programmers 
have to implement a exception resolution function for each concurrent cooperative action. 
Programmers are responsible for deciding how implement this resolutión function. Appli­
cation code is also intermingled with invocations of head processes which are procedures 
for synchronizing the participants while exiting from the action. In th:is way, application 
objects are polluted with explicit references for head processes. 

The coordinated atomic action concept [69] was introduced as a unified approach for 
structuring complex concurrent activities and supporting error hanclling between multiple 
interacting objects in a concurrent object-oriented system. Zorzo et al. [74] had developed 
an object-oriented scheme for implementing coordinated atomic actions. In this scheme, 
application programmers are provided with a number of classes to structure their appli­
cation. However, such solution proposes a very simple exception handling mechanism. 
There is a single method intended to handle the cooperating exceptions raised during 
the coopera.tive activity. The structure of such a hand.ler is very complex since a single 
hand.ler must incorporate handling measures for ali cooperating exceptions. 

The work of Hof et al. [31] describes an approach for exception handling based on meta­
programming and computational reflection. Their implementation was ca.rried out in a 
specific system but it also could be implemented to most other systems that support meta­
programrning. However, this approach does not support concurrent exception handling 
and its exception handling model is not object-oriented. 
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4.8 Conclusions and Ongoing Work 

In recent yea.rs exception handling mechanisms have become a important part of main­
stream object-oriented programming languages. However, designers of these mechanisms 
have not paid enough attention to concurrent exception handling. Recently, a number 
of clifferent approaches have been proposed to the provision of concurrent exception han­
dling. However, these proposals are introduced in an 'ad hoc' way andare not integrated 
uniformly with the exception handling stra.tegy for sequential programs. These current 
solutions make the task of application developers very difficult since they often are res­
ponsible for implementing va.rious management activities. In fact , such solutions pollutes 
application code with explicit references and invocations of procedures for exception re­
solution and thread synchronization. Consequently, the use of these mechanisms reduces 
the dema.nding quality requirements arising with modem software systems, such as rea­
dability, maintainability and reusability. 

This paper presents a generic software architecture to introduce exception handling 
into dependable object-oriented software. The proposed architecture supports uniformly 
concurrent and sequential exception handling, and may be implemented without create 
any linguistic construction as a result for the underlying la.nguage. Our architecture pro­
vides during the fi.rst design stage the context in which more detailed design decisions are 
made in later design stages related to exception handling. In this sense, this work also 
presents a set of design pattems which are used to describe the structural and dynamic 
aspects of the components of the proposed architecture. The design patterns incorpo­
rate well-proved solutions and their micro-architecture achieves a clea.r and transparent 
separation of concerns between the applica.tion 's functionality a.nd the exception ha.ndling 
services. Specific a.pplications reuse the exception handling facilities provided by the pro­
posed architecture's components, and the developers concentrate their attention on the 
application-dependent functionality. 

Nowadays the component programming approach to object-oriented software develop­
ment, achieved by selecting and configuring reusable components, has resulted in signi­
ficant decrease of development cost. In this work, we have designed a mechanism that 
supports the construction dependable object-oriented software from the scratch. Howe­
ver, an open issue is how to allow that exception-handling code be added on reusable 
components (for instance, COTS) without any interference on the original code of these 
components. This a.dditional exception- handling code should handle the new exceptions 
tha.t can a.rise when these components are reused on different applica.tions. 



4.9. Resumo do Capítulo 4 106 

4.9 Resumo do Capítulo 4 

Este capítulo apresentou um artigo que aborda a proposta de uma arquitetura de software 
genérica. para mecanismos de exceções. A arquitetura proposta define os componentes 
arquiteturais de um mecanismo de exceções e a interação entre estes componentes. A ar­
quitetura especialmente define um componente para tratamento de exceções concorrentes 
que é integrado uniformemente com os outros componentes arqu:iteturais. A arquitetura 
proposta é baseada em um mecanismo de reflexão computacional, sendo assim composta 
de dois níveis distintos. A divisão em níveis permite obter uma divisão clara. entre as 
funcionalidades da aplicação e os serviços do mecanismo de exceções proposto. Conse­
quentemente, a divisão obtida contribui efetivamente para a construção de um mecanismo 
simples e não intrusivo. 

Os padrões de projeto propostos constituem soluções de projeto para problemas re­
correntes no contexto de mecanismos de exceções. Estes padrões identificam soluções 
existentes e bem provadas, e concomitamente são aplicados para documentar os compo­
nentes da arquitetura de software proposta. A proposta do conjunto de padrões contribui 
ainda mais para a. reutilização da arquitetura proposta no projeto de :nm mecanismo de 
exceções. 

O próximo capítulo resume as conclusões do nosso trabalho, apresentando as principais 
contribuições e os possíveis trabalhos futuros. 



Capítulo 5 

Conclusão Geral 

Esta dissertação concentrou-se no projeto e implementação de um mecanismo de tra­

t~ento de exceções para const ruçã ~ de software orientado a objetos confiável. Para 
desenvolvimento do mecanismo propostoJ utilizamos técnicas avançadas· de estruturação 
de software, tais como reflexão computacional e padrões de projeto. Dura.nte o desen­
volvimento deste trabalho, chegamos a vários resultados que formam as nossas principais 
contribuições: 

1. Um estudo comparativo dos diferentes modelos de tratamento de exceções imple­
mentados em diversas linguagens orientadas a objetos e proposta de uma taxonomia 
que permite avaliá-los. 

2. Proposta de um critério de projeto com os requisitos desejáveis para mecanismos de 
tratamento de exceções que serão utilizados na construção de sistemas orientados 
a objetos confiáveis. Um modelo ideal de tratamento de exceções é proposto tendo 
como base o critério de projeto definido. O modelo proposto especialmente dá 

suporte a tratamento de exceções concorrentes. 

3. Projeto e implementação de um mecanismo de exceções para a linguagem Java 
utilizando a arquitetura de software reflexiva do Gua.ra.ná. O mecanismo implementa 
o modelo proposto de tratamento de exceções que contempla o critério de projeto 
definido. 

4. Definição de uma arquitetura reflexiva genérica para o projeto de mecanismos de 
exceções que serão utilizados na construção de sistemas orientados a objetos con­
fiáveis. 

5. Proposta de um conjunto coeso de quatro padrões de projeto que documentam 
os aspectos estruturais e comporta.mentais dos componentes a.rquiteturais de um 
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mecanismo de tratamento de exceções, e incorporam boas soluções conhecidas para 
os problemas comuns no domínio desses mecanismos. 

Duas contribuições são consideradas principais. A primeira delas, caracterizada por 
aspectos técnicos e usos práticos, é o projeto e implementação de um mecanismo de ex­
ceções que especialmente oferece suporte a tratamento de exceções concorrentes. A outra, 
caracterizada por aspectos abstratos e abordagem inovadora, é a definição de uma arqui­
tetura de software genérica e o conjunto padrões de projeto relacionados que permitem a 
construção de mecanismos de exceções em diferentes linguagens de programação. 

As aplicações das idéias apresentadas nesta dissertação são as seguintes: 

• Auxílio a desenvolvedores de aplicações orientadas a objetos confiáveis, através do 
critério e modelo propostos, na escolha de um mecanismo de exceções adequado 
para a construção das suas aplicações. 

• Auxilio a engenheiros de software e/ou projetistas de linguagens de programação no 
desenvolvimento de mecanismos de tratamento de exceções. 

• Adição pouco intrusiva de um mecanismo de exceção a aplicações confiáveis exis­
tentes, através da arquitetura de software e padrões de projeto propostos. 

As principais linhas de pesquisa que podem ser seguidas a partir do nosso trabalho 
são: 

• Tradicionalmente, desenvolvedores de sistemas orientados a objetos postergam a 
preocupação com tratamento de exceções para as fases posteriores de projeto e im­
plementação. Melhores resultados poderiam ser obtidos se as situações excepcionais 
fossem consideradas desde a fase de análise. Nesse contexto, faz-se necessário o de­
senvolvimento de uma abordagem para construção de software orientado a objetos, 
onde as atividades de tratamento de erros sejam incorporadas de forma disciplinada 
durante as fases de análise, projeto e implementação. 

• O esforço de projetistas de sistemas orientados a objetos confiáveis deveria ser mi­

nimizado enquanto utilizando um mecanismo de exceções. Ferramentas CASE con­
tribuem decisivamente na construção de sistemas complexos. Nesse sentido, a im­

plementação de ferramenta CASE para definição de exceções, dos comportamentos 
normais e excepcionais pode auxiliar projetistas de aplicações confiáveis durante o 
processo de desenvolvimento. 

• Diferentes tipos de aplicações requerem diferentes requisitos de um mecanismo de 
exceções. Um framework orientado a objetos (34] é um sistema de software que 
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incorpora uma arquitetura flexível e pode ser extendido para produzir aplicações com 
diferentes requisitos. A nossa arquitetura de software proposta pode ser utilizada e 
extendida para a implementação de um framework de tratamento de exceções. Os 
pontos flexíveis do framework poderiam ser configurados de acordo com os requisitos 
da aplicação utilizando o framework de tratamento de exceções. 
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