
Tratamento de Exceções em Sistemas
Concorrentes Orientados a Objetos

Alessandro Fabricio Garcia

Dissertação de Mestrado

UNICAMP

BIBLIOTECA CENTRAl.

SEÇ.~O ClRCULANTF

Tratamento de Exceções em Sistemas Concorrentes

Orientados a Objetos

Este exemplar corresponde à redação final da
Dissertação devidamente corrigida e defendida
por Alessandro Fabricio Garcia e aprovada pela
Banca Examinadora.

Campinas, 14 de abril de 2000.

'til~ r<'pJ ~~ ~
Cecilia Mary~cher Rubira (Orientadora)

UNlCAMP

BIBLIOTECA CENTRAl.
~ EÇÃO Cl.RCULANTF

Dissertação apresentada ao Instituto de Com­
putação, UNICAMP, como requisito parcial para
a obtenção do título de Mestre em Ciência da
Computação.

Instituto de Computação
Universidade Estadual de Campinas

Tratamento de Exceções em Sistemas Concorrentes

Orientados a Objetos

Alessandro Fabricio Garcia 1

Março de 2000

Banca Examinadora:

• Cecília Mary Fischer Rubira (Orientadora)

• Prof. Paulo Henrique Monteiro Borba

Centro de Informática (C In-UFPE)

• Profa. Eliane Martins
Instituto de Computação (IC-UNICAMP)

• Prof. Luiz Eduardo Buzato (Suplente)
Instituto de Computação (IC-UNICAMP)

1Supported by CNPq, grant 131945/98-0

CM-00144223-4

FICHA CATALOGRÁFICA ELABORADA PELA
BffiLIOTECA DO IMECC DA UNICAMP

Garcia, Alessandro Fabricio

G 165t Tratamento de exceções em sistemas con correntes orientados a

objetos I Alessandro Fabricio Garcia- Campinas, (S.P. :s.o.], 2000.

Orientador : Cecília Mary Fischer Rubira

Dissertação (mestrado) - Universidade Estadual de Campinas,

Instituto de Computação.

I. Tolerância a fàlhas. 2. Linguagem de programação

(Computadores). 3. Engenharia de software. I. Rubira, Cecília Mary

Fischer. li. Universidade Estadual de Campinas. Instituto de

Computação. lll. Titulo.

TERMO DE APROVAÇÃO

Tese defendida e aprovada em 14 de abril de 2000, pela Banca

Examinadora composta pelos Professores Doutores:

Prof. Dr. Paulo Henrique Monteiro Borba

UFPE

Profa. Dra. Eliane Martins

IC-UNICAMP

Profa. Ora. Cecilia ary Ftscher Rubtra

IC-UNICAMP

"Aos meus pais Antonio e Cida

e a minha irmã Andresa pelo amor e incentivo

prestados incondicionalmente ao longo de toda

minha vida."

v

Agradecimentos

Este trabalho é fruto de muit o esforço e dedicação dispensados nesses dois anos de mes­
trado. A felicidade é imensurável quando percebo quantas alegrias foram vivenciadas e
quantos desafios foram superados nesses anos. Certamente, é a Deus que manifesto minha
eterna gratidão e dedico todas essas alegrias e vitórias.

ilimitados agradecimentos vão para as três pessoas que julgo serem as responsáveis
primeiras por tudo que alcancei até aqui: meus preciosos pais Antonio e Cida e minha
irmã Andresa. O apoio constante da minha família foi essencial para encontrar forças e
continuar a lutar pelos meus objetivos.

Repleto de alegria pela fidelidade prestada, venho agradecer com toda sinceridade, aos
meus amigos, aqueles verdadeiros, que me apoiaram incansavelmente nos momentos de
alegria e de dificuldade. Não referencio todos os nomes aqui, pois a lista seria enorme e
também para não pecar pelo esquecimento. Caros amigos, por tudo que realizamos e por
tudo que ainda realizaremos juntos: muito obrigado!

Agradeço a minha orientadora Cecília Rubira pelos inúmeros ensinamentos que me
transmitiu durante o nosso convívio, os quais foram fundamentais para a realização deste
trabalho. Agradeço também aos demais professores e funcionários do Instituto de Com­
putação.

Finalmente, agradeço ao CNPq pelo apoio financeiro.

vi

Resumo

Sistemas orientados a objetos confiáveis devem incorporar atividades de tratamento de
exceções de forma a comportarem-se adequadamente sob uma grande variedade de si­
tuações, inclusive na presença de erros. Nesse contexto, um mecanismo de tratamento de
exceções é fundamental para detecção e recuperação de erros bem como para ativação das
medidas necessárias para restaurar a atividade normal do sistema. O desenvolvimento
de um mecanismo de tratamento de exceções é uma tarefa difícil especialmente quando a
concorrência é uma das características dos sistemas de software. O principal objetivo des­
ta dissertação é o projeto e implementação de um mecanismo de tratamento de exceções
para a construção de sistemas orientados a objetos confiáveis. Na construção do meca­
nismo proposto, nós utilizamos técnicas de estruturação de software, tais como reflexão
computacional e padrões de projeto. Duas contribuições são consideradas principais. A
primeira delas, caracterizada por aspectos técnicos e usos práticos, é o projeto e imple­
mentação de um mecanismo de exceções utilizando a linguagem de programação Java e
uma arquitetura de software reflexiva chamada Guaraná. O mecanismo proposto espe­
cialmente oferece suporte a tratamento de exceções concorrentes. A outra contribuição,
caracterizada por aspectos abstratos e abordagem inovadora, é a definição de uma ar­
quitetura de software reflexiva e um conjunto de padrões de projeto relacionados para a
implementação de mecanismos de tratamento de exceções.

vü

Abstract

Dependanble object-oriented software should incorporate exception handling activities in
order to behave suitably in a great number of situations in spite of errors. In this context,
an exception handling mechanism is fundamental to detect errors, and to activate the
suitable measures to restore the normal activity of the system. The development of an
exception handling mechanism is not a trivial task. This task is specially difficult when
the software using the exception mechanism is concurrent. The main aim of this work is to
propose the design and implementation of an exception handling mechanism for developing
dependable object-oriented software. In order to build the proposed mechanism we apply
techniques of software structuring, such as computational refiection and design patterns.
The ma.in contribution of this work is the design and implementation of an exception
handling mechanism using the Java language and a refiective software architecture called
Guaraná. The proposed mechanism specially supports concurrent exception handling.
In addition, we define a refiective software architecture and a set of design pattems for
implementing exception handling mechanisms.

viii

Conteúdo

Agradecimentos

Resumo

Abstract

1 Introdução Geral
1.1 O Problema.
1.2 Limitações das Soluções Existentes
1.3 Objetivos
1.4 A Solução Proposta.
1.5 Contribuições
1.6 Organização da Dissertação

2 Um Estudo Comparativo de Mecanismos de Exceções
2.1 Introduction
2.2 Exception Handling and Fault Tolerance

2.2.1 Ternainolog:r
2.2.2 Exception Handling in Concurrent 00 Systems

2.3 A Taxonomy for 00 Exception Mechanisms .
2.4 Exception Handling in Various 00 Languages

2.4.1 Exception Handling in Ada95
2.4.2 Exception Handling in Lore
2.4.3 Exception Handling in Smalltalk-80 .
2.4.4 Exception Ha.ndling in Eiffel ...
2.4.5 Exception Ha.ndling in Modula-3
2.4.6 Exception Handling in C++ . . .
2.4.7 Exception Handling in Java .. .
2.4.8 Exception Ha.ndling in Objed Pascal/ Delphl .
2.4.9 Exception Ha.ndling in Guide

1X

vi

vii

viii

1

2

2

3
3
4
5

7

8
10
10
13
14
20
21
22
23
24

24
25
26
27
27

2.4.10 Exception Handling in Extended Ada .
2.4.11 Exception Handling in Beta
2.4.12 Exception Handling in Arche
2.4.13 Exception Handling in Other Languages

2.5 Evaluation and Discu.ssion
2.6 General Design Criteria

2.6.1 Quality Requirements of an Exception Mechanism .
2.6.2 An Ideal Exception Handling Model.

2. 7 Ongoing Research
2.8 Concluding Rema.rks . .
2.9 Resumo do Capítulo 2 .

3 Projeto e Implementação de um Mecanismo de Exceções para Software

28
29
29
30
31
37
38

41
46

48
50

00 Confiável 51
3.1 Introduction 52
3.2 Exception Handling and Fault Tolerance
3.3 The Design of Exception Mechanisms . .

3.3.1 Exception Handling and the Object Model
3.3.2 Exception Handling in Concurrent 00 Systems

3.4 Refiection and Meta-Levei Architectures
3.5 An 00 Exception Handling Model

3.5.1 Exception Representation
3.5.2 Handler Attachment
3.5.3 Exception Propagation . . .
3.5.4 Continuation of the Control Flow
3.5.5 Support for Coordinated Recovery

3.6 Twin-Engine Aircraft Control System .
3. 7 lmplementation

3. 7.1 The Meta-Levei Architecture
3.7.2 The Meta-Levei Architecture and Concurrency.
3.7.3 Implementation Issues

3.8 Related Work
3.9 Concluding Remarks and Future Work
3.10 Resumo do Capítulo 3

4 Uma Arquitetura de Software Baseada em Padrões para Mecanismos de

53
55

56

57
58
59

60
60
62

62
63
64
68
68
69
70

71

71
73

Exceções 74
4.1 Introduction 75
4.2 Exception Handling . 77

X

4.2.1 Exception Hanclling in Sequential Systems 77
4.2.2 Exception Handling in Concurrent Systems 78
4.2.3 Integration of Sequential and Concurrent Exception Ha.ndling 81

4.3 Design Reuse and Software Structuring Techniques 81
4.3.1 Software Architecture a.nd Patterns 81
4.3.2 Meta-Levei Architectures and Computational Reflection

4.4 The Software Architecture for Exception Ha.ndling .
4.4.1 The Basic Architecture
4.4.2 Interfaces of the Components . .
4.4.3 The Architecture Refinement ..

4.5 Design Pattems for Exception Handling
4.5.1 The Exception Pattem
4.5.2 The Handler Pattem
4.5.3 The Exception Handling Strategy Pattem .
4.5.4 The Concurrent Exception Handling Action Pattern

4.6 Implementation Issues
4. 7 Related Work
4.8 Conclusions and Ongoing Work
4.9 Resumo do Capítulo 4

5 Conclusão Geral

Bibliografia

xi

82
83
83
86
88
89
89
92
95
98

. 103

. 104
105

. 106

107

110

Lista de Figuras

2.1 ldealized Fault-Tolerant Component
2.2 The Operation of an Exception Mechanism . . .
2.3 A Method's Signature with Exception Interface
2.4 Summary of the Features of the Exception Mechanisms
2.5 Quality Requirements of Exception Mechanisms
2.6 Design Decisions x Quality Requirements .

3.1 Idealized Fault-Tolerant Component. . . .
3.2 A Meta-Levei Architecture
3.3 Normal and Exceptional Class Hierarchies
3.4 An Exception Class Hierarchy
3.5 Objects and their Exceptional Classes .
3.6 Exception Propagation
3. 7 The Definition of a Group
3.8 The Definition of the Exceptions for a Group .
3.9 The Cooperating Activity of the Group Stability .
3.10 The Exception Tree of the Group Stability
3.11 Object Modei for the Twin-Engine Aircraft Cont rol System.
3.12 The Proposed Meta-Levei Architecture
3.13 The Meta-Levei Architecture for Concurrency.

4.1 Banking Service Example.
4.2 Integration of Exception Handling . .
4.3 A Meta-Leve} Software Architecture.
4.4 The Software Architecture for Exception Handling.
4.5 The Detailed Interfaces.
4.6 A Scenario of the Proposed Software Architecture ..
4. 7 The Architecture Re.finement.
4.8 Class Diagram for the Exception Pattem.
4.9 lnteraction Diagram for the Exception Pattern . .

xii

11

12
15
32
38
42

54
58

59
60
61
64
65
65
66
67
67
69
70

79

81
83
84
86
87
89
90
91

4.10 Class Diagram for the Handler Pattern. 93
4.11 Interaction Diagram for the Handler Pattern. 94
4.12 Class Diagram of the Exception Handling Strategy Pattern. 96
4.13 Interaction Diagram for the Exception Handling Strategy Pattern. 97
4.14 Cla.ss Diagram of the Concurrent Exception Handling Action Pattern. 99
4.15 Intera.ction Diagram for the Concurrent Exception Handling Action Pattern.102

xiii

Capítulo 1

Introdução Geral

O uso crescente de sistemas computacionais em quase todos os ramos da sociedade tem
levado a necessidade de desenvolvimento de sistemas de software confiáveis. O paradigma
de objetos é uma das formas promissoras para construção de software de qualidade e pode
contribuir decisivamente para a prevenção e remoção de falhas durante as fases do ciclo
de desenvolvimento de software. Entretanto, a presença de falhas residuais é inevitável
mesmo em sistemas orientados a objetos devido a complexidade inerente aos sistemas de
software atuais. Essas falhas podem ocasionar efeitos indesejáveis no sistema durante sua
vida operacional. O desenvolvimento de sistemas orientados a objetos confiáveis não é

uma tarefa trivial. Projetistas de sistemas confiáveis devem lidar com as situações ex­
cepcionais possíveis e incorporar ao sistema atividades de tolerância a falhas capazes de
evitar um defeito catastrófico. As atividades de tolerância a falhas introduzidas usualmen­
te aumentam a complexidade do sistema de software. Nesse contexto, um mecanismo de
tratamento de exceções é fundamental para detecção e recuperação de erros, causados por
falhas residuais, e para a estruturação e ativação das medidas apropriadas de tolerância
a falhas de forma a restaurar a atividade normal de um sistema de software confiável.

Programadores utilizam mecanismos de tratamento de exceções (mecanismo de ex­
ceções) para a implementação das atividades de tratamento de exceções (erros) de um
sistema de software. As atividades de tratamento de exceções implementam as medidas
para tolerar as falhas que podem se manifestar durante a execução da atividade normal. O
mecanismo de exceções é responsável pela interrupção do fluxo normal do sistema quando
a ocorrência de uma exceção é detectada durante a sua execução, e a ativa.ção das medidas
de tolerância a falhas adequadas.

1

1.1. O Problema 2

1.1 O Problema

O desenvolvimento de mecanismos de exceções adequados para a construção de software
orientado a objetos confiável implica em um grande desafio. Estes mecanismos devem
prover suporte para uma separação explícita. entre as atividades normais e as atividades
de tratamento de exceções de tal forma a manter sob controle a complexidade geral de
sistemas confiáveis. Esses mecanismos também devem ser simples, restritivos e integrados
com o paradigma de objetos. Mecanismos baseados em soluções complexas e com flexi­
bilidade desnecessária. proporcionam a. introdução de erros adicionais ocasionados pelo
seu uso. Além disso, o desenvolvimento de um mecanismo de exceções sofre impactos
adicionais quando a concorrência. é uma das características dos sistemas de software.

Tratamento de exceções é muito mais difícil em sistemas concorrentes devido a. con­
corrência. cooperativa [38]. Em particular, para sistemas orientados a objetos, processos
concorrentes podem cooperar através de comunicação inter-processos para a realização
de alguma atividade do sistema. Eventualmente, um dos processos pode levantar uma
exceção. Essa exceção não pode ser tratada isoladamente no processo que a levantou,
uma vez que informação errônea pode ter sido espalhada através de comunicação inter­
processos. Além disso, devido a própria natureza de software concorrente, mais de uma
exceção pode ser levantada mais ou menos ao mesmo tempo nos diferentes processos. O
levantamento de múltiplas exceções concorrentemente pode ser o sintoma de uma falha
mais séria [9]. Nesses casos, o mecanismo de exceções deve dar suporte à recuperação de
erros de forma coordenada entre os processos envolvidos na cooperação. Todos processos
participantes da atividade cooperativa devem ser informados da ocorrência de exceções e
devem ser envolvidos no processo de recuperação de erros.

1.2 Limitações das Soluções Existentes

Mecanismos de exceções sã.o usualmente considerados como uma pa.rte essencial de qual­
quer linguagem de programação moderna e, tipicamente, modelos distintos de tratamento
de exceções são adotados para o projeto desses mecanismos nas diferentes linguagens. En­
tretanto, um estudo comparativo de mecanismos existentes em linguagens orientadas a ob­
jetos mostrou que eles não satisfazem algumas características desejáveis [25) (Capítulo 2).
Desenvolvedores desses mecanismos se preocupam geralmente em prover soluções ampla­
mente flexíveis sem a atenção devida para simplicidade e outros requisitos importantes.
Os mecanismos existentes muitas vezes não possuem um projeto orientado a objetos e
provêem suporte limitado para uma separação explícita entre as atividades normais e
excepcionais de uma. aplicação.

Uma das principais deficiências dos mecanismos de exceções disponíveis é a. inexistência

1.3. Objetivos 3

de suporte apropriado pa.ra tratamento de exceções concorrentes. Os mecanismos existen­
tes geralmente são dedicados pa.ra programas sequenciais. Somente a linguagem Arche [33)
provê um esquema pa.ra tratamento de condições excepcionais em sistemas concorrentes.
Entretanto, o modelo de concorrência implementado em Arche limita-se a ativar recu­
peração de erros entre objetos do mesmo tipo. Assim, as linguagens de programação
orientadas a objetos atuais não provêem, de fonna satisfatória, mecanismos de trata­
mento de exceções adequados para o desenvolvimento de sistemas orientados a objetos
confiáveis.

Recentemente, alguns trabalhos (58, 60, 7 4) têm proposto mecanismos dedicados es­
pecialmente pa.ra tratamento de exceções concorrentes como extensões pa.ra determinadas
linguagens de programação específicas. As abordagens propostas exigem alguma mo­
dificação da linguagem de programação e/ ou de seu compilador ou interpretador, ou a
definição de uma interface de programação para tratamento de exceções concorrentes. En­
tretanto, estas abordagens usualmente apresentam soluções complicadas e implementam
um modelo de tratamento de exceções não integrado com o modelo de objetos. Ademais,
tais propostas são intrusivas do ponto de vista da aplicação uma vez que o código da
aplicação é embutido com uma série de chamadas a serviços específicos do mecanismo de
tratamento de exceções concorrentes. O código extra inserido dificulta a legibilidade, a
reutilização e a manutenção dos componentes da aplicação. Consequentemente, as abor­
dagens existentes propõem mecanismos para tratamento de exceções concorrentes que
são difíceis de usar, e usualmente conduzem ao desenvolvimento de sistemas orientados a
objetos não confiáveis e que são difíceis de entender, manter e reutilizar.

1.3 Objetivos

Em resumo, os principais objetivos desta dissertação são:

1. Proposta de projeto e implementação de um mecanismo orientado a objetos de
tratamento de exceções pa.ra o domínio de sistemas orientados a objetos confiáveis.

2. Utilização prática de técnicas avançadas de estruturação de software para a cons­
trução do mecanismo proposto, tais como reflexão computacional e padrões de pro­
jeto, e a análise das vantagens e limitações destas técnicas no desenvolvimento do
mecanismo de exceções.

1.4 A Solução Proposta

Este trabalho apresenta o projeto e implementação de um mecanismo de exceções apro­
priado para a construção de software orientado a objetos confiável. O mecanismo incor-

1.5. Contribuições 4

pora um modelo orientado a objetos de tratamento de exceções e permite uma separação
explícita entre as atividades normais e excepcionais de um sistema. O modelo proposto
especialmente proporciona suporte para tratamento de exceções concorrentes. Técnicas
de estruturação de software são utilizadas para a construção de um mecanismo de exceções
que seja de fá.cil uso e reutilização.

A técnica de reflexão computacional é utilizada para implementação do modelo pro­
posto de tratamento de exceções. O uso dessa técnica permite a introdução do mecanismo
de exceções para a linguagem de programação sem criar modificações para a própria lin­
guagem. Além disso, a utilização de reflexão computacional permite uma melhor divisão
entre a funcionalidade da aplicação e os serviços específicos do mecanismo de exceções.
Essa divisão alcançada permite a obtenção de um mecanismo de exceções não intrusivo
e fácil de usar. O mecanismo proposto está implementado na linguagem Java e usa uma
arquitetura de software reflexiva para esta linguagem chamada Guaraná [51].

Nós também definimos o projeto de uma arquitetura de software reflexiva para meca­
nismos de tratamento de exceções. A arquitetura é descrita por um conjunto de compo­
nentes com responsabilidades bem definidas e a interação entre esses componentes. Esta
arquitetura oferece uma solução de projeto genérica que integra uniformemente trata­
mento de exceções para programas sequenciais e concorrentes. A arquitetura proposta é
descrita de forma independente de linguagem de programação e pode ser reutilizada em
diferentes aplicações. Um conjunto de quatro padrões de projeto documenta os aspectos
estruturais e comportamentais dos componentes da arquitetura de software proposta. Pa­
drões de projeto constituem boas soluções de projeto para problemas recorrentes dentro
de um contexto particular [7, 20). No contexto deste trabalho, os padrões propostos in­
corporam boas soluções conhecidas para os problemas comuns no domínio de mecanismos
de exceções.

1.5 Contribuições

Este trabalho apresenta as seguintes contribuições:

1. Um estudo comparativo dos diferentes modelos de tratamento de exceções imple­
mentados em diversas linguagens orientadas a objetos e proposta de uma taxonomia
que permite avaliá-los.

2. Proposta de um critério de projeto com os requisitos desejáveis para mecanismos de
tratamento de exceções que serão utilizados na construção de sistemas orientados
a objetos confiáveis. Um modelo ideal de tratamento de exceções é proposto tendo
como base o critério de projeto definido. O modelo proposto especialmente dá
suporte a tratamento de exceções concorrentes.

1.6. Organização da Dissertação 5

3. Projeto e implementação de um mecanismo de exceções para a. linguagem Java
utilizando a arquitetura. de software reflexiva. do Guaraná. O mecanismo implementa
o modelo proposto de tratamento de exceções que contempla o critério de projeto
definido.

4. Definição de uma arquitetura de software reflexiva para o projeto de mecanismos
de exceções que serão utilizados na construção de sistemas orientados a objetos
confiáveis.

5. Proposta de um conjunto coeso de quatro padrões de projeto que documentam
os aspectos de estrutura e comportamento dos componentes arquiteturais de um
mecanismo de exceções, e incorporam boas soluções conhecidas para os problemas
comuns no domínio desses mecanismos.

1.6 Organização da Dissertação

Esta dissertação é uma coleção de artigos científicos escritos em inglês que foram publi­
cados ou submetidos para publicação em simpósios e revistas internacionais. O restante
desta dissertação está organizada da seguinte forma:

Capítulo 2 contém o artigo ((A Comparative Study of Exception Handling Proposals

for Dependable Object-Oriented Software" [25]. Este artigo apresenta a terminologia rela­
cionada a tratamento de exceções e tolerância a falhas utilizada neste trabalho, bem como
discute as dificuldades relacionadas a tratamento de exceções concorrentes. Este artigo
também revisa diferentes modelos de tratamento de exceções implementados em diversas
linguagens orientadas a. objetos e propõe uma taxonomia. A taxonomia desenvolvida per­
mite classificar e comparar os modelos de tratamento de exceções estudados. Finalmente,
este artigo apresenta um critério de projeto adequado para mecanismos de exceções bem
como um modelo ideal de tratamento de exceções.

Capítulo 3 contém o artigo "An Exception Handling Mechanism for Developing De­

pendable Object-Oriented Software Based on a Meta-Level Approach" [21]. Este artigo
apresenta o projeto e implementação de um mecanismo de tratamento de exceções utili­
zando a arquitetura de software reflexiva do Guaraná [51]. O mecanismo implementa o
modelo proposto de tratamento de exceções que contempla o critério de projeto definido
no Capítulo 2.

Capítulo 4 contém o artigo "An Exception Handling Software Architecture for De­

veloping Robust Software" [22]. Este artigo define uma arquitetura de software reflexiva
para mecanismos de tratamento de exceções que serão utilizados na construção de siste-

1.6. Organização da Dissertação 6

mas orientados a objetos confiáveis. Além disso, este artigo propõe os padrões de projeto
que documentam a estrutura e o comportamento dos componentes arquiteturais de um
mecanismo de t ratamento de exceções.

Capítulo 5 resume as conclusões do nosso trabalho, apresentando as principais con­
tribuições e os possíveis trabalhos futuros.

Capítulo 2

Um Estudo Comparativo de
Mecanismos de Exceções

Mecanismos de tratamento de exceções são usualmente considerados como uma parte
essencial de qualquer linguagem de programação orientada a objetos. No contexto de
sistemas orientados a objetos confiáveis, mecanismos de exceções são usados para detecção
e recuperaçã-O de erros, e para estruturar as atividades de tolerância a falhas incorporadas
em um sistema. Modelos distintos de tratamento de exceções são adotados para o projeto
desses mecanismos nas diferentes linguagens. Um mecanismo de exceções para software
orientado a objetos confiável deve incorporar um modelo adequado de tratamento de
exceçoes.

Este capítulo contém o artigo "A Comparative Study of Exception Handling Proposals

for Dependable Object-Oriented Software" (25], que foi submetido para a revista. "Journal

of Systems and Software". Este artigo apresenta os conceitos relacionados a tratamento de
exceções e tolerância a falhas utilizados neste trabalho, bem como discute as dificuldades
relacionadas a tratamento de exceções concorrentes. Este artigo também revisa diferentes

modelos de tratamento de exceções implementados em cliversas linguagens orientadas a
objetos e propõe uma taxonomia. A taxonom.ia desenvolvida é utilizada para. classificação
e comparação dos modelos de t ratamento de exceções estudados. Finalmente, este artigo
apresenta um critério de projeto adequado para mecanismos de tratamento de exceções e
um modelo ideal de tratamento de exceções.

7

2.1. Introduction

A Comparative Study of Exception Handling Proposals for
Dependable Object-Oriented Software

Alessandro F. Garcia Cecília M. F. Rubira

Institute of Computing

University of Campinas (UNICAMP)

Campinas- Brazil

{ afgarcia, cmrubira }@dcc. unicamp. br

Alexander Romanovsky
Department of Computing Science

University of Newcastle upon Tyne

Newcastle upon Tyne- United Kingdom

{ alexander .romanovsky }@newcastle.ac. uk

Jie Xu
Department of Computer Science

University of Durham

Durham- United Kingdom
{ Jie.Xu }@durham.ac. uk

2.1 Introduction

8

Dependable object-oriented systems ha.ve to cope with a number of exceptional situations
a.nd incorporate fault tolerance activities in order to meet the system's robustness a.nd
relia.bility requirements. With such systems growing in size a.nd complexity, employing
error-handling techniques a.nd satisfying the requirements of software qualities such a.s
maintaina.bility a.nd reusability are still deep concems to eng:ineers of dependa.ble object­
oriented systems. Exception ha.ndling mechanisms are the most importa.nt schemes for
detecting a.nd recovering errors, a.nd structuring the fault tolera.nce activities incorporated
in a system. However, the current lack of suitable exception ha.ndling mechanisms ca.n
make an application non-relia.ble and difficult to understa.nd, ma.intain a.nd reuse in the
presence of faults.

Engineers of dependable object-oriented systems utilize exception mechanisms to de-

2.1. Introduction 9

velop exception handling activities for dealing with such erroneous situa.tions. In this
systems, the code devoted to error detection a.nd handling is usually both numerous
a.nd complex. As a consequence, up to two-thirds of a. progra.m ca.n be for error han­
dling [11, 26). In this context, the design of an exception mechanism should be simple
and ea.sy to use, and provide explicit separation between the normal and exceptional code.
ldeally, dependa.ble object-oriented systems using the exception mecha.nism should be easy
to understa.nd, maintain and reuse. A number of exception mecha.nisms have been deve­
loped to object-oriented progra.mming langua.ges. Realistic examples of object-oriented
la.nguages include Java (30], Modula-3 (50] and Eiffel [44].

Tbe purpose of our paper is to investigate tbe applicability of the existing exception
mechanisms of object-oriented programming languages for developing dependable object­
oriented software with effective quality a.ttributes. The major contributions of this a.rticle
are: (i) the definition of a set of adequa.te design solutions while developing an exception
mecha.nism suitable for dependable object-oriented software, (ü) the presentation of a
comprehensive survey of existing exception mecbanisms implemented in object-oriented
languages, (üi) comparison and evalua.tion of the investiga.ted mecbanisms as well as the
identification of the prima.ry limitations in applying them in practice :to develop depen­
dable object-oriented systems, and (iv) the identification of current trends related to
exception bandling and dependable object-oriented software. A taxonomy is used to dis­
cuss nine functional aspects of an exception mechanism and to distinguish one mechanism
from another - especially support for concurrent exception bandling is examined in detail.

The remainder of this article is organized as follows. Section 2 gives a. brief descrip­
tion of exception handling within a framework for facilitating software fault tolerance.
This section also introduces exception mecha.nisms as well as difficulties related to con­
current exception handling. Section 3 describes our proposed ta.xonomy for classifying
different design approaches to exception mechanisms. Section 4 presents a general crite­
ria to design an effective exception mechanism for developing dependa.ble object-oriented
systems. Section 5 discusses in more detail exception models im.plemented in various
object-oriented lan.guages. Section 6 a.ssesses the relative advantages, disadvantages and
general limitations of these models based on our established design criteria. Section 7
discusses difficulties and directions for future work. Finally, Section 8 presents some
concluding remarks.

2.2. Exception Handling and Fault Tolerance 10

2.2 Exception Handling and Fault Tolerance

2.2.1 Terminology

Following the terminology adopted by Lee and Anderson [38], a system consists of a
set of components that interact under the control of a design. A fault in a component
may cause an error in the internai state of the system which eventually leads to the
failure of the system. Dependable software systems require supplementary techniques
in arder to tolerate the manifestations of faults in its components and, consequently, to
avoid failures of the system. In general, these techniques are based on the provision of
redundancy which increases the size of the systems and introduces additional complexity
to them. Dependable software and its components should therefore be well-structured
in arder to master such an additional complexity. Each system component should be
able to return well-defined responses, and incorporate a clear separation between normal
and fault tolerance activities. In this sense, exceptions and exception handling provide a
suitable framework for structuring the fault tolerance activities incorporated in a system.

Software components receive service requests and produce responses. H a component
cannot satisfy a service request, it returns an exception. So the responses from a compo­
nent can be separated into two distinct categories, namely normal and exceptional respon­

ses. Exceptions can be classified into three different categories: (i) interface exceptions

which are signaled in response to a request which did not conform to tbe component's in­

terface; (ü) failure exceptions which are signaled if a component determines that for some
reason it cannot provide its specified service; (iü) internai exceptions which are exceptions
raised by the component in order to invoke its own internai fault tolerance activity. The
activity of a component can be divided in two parts: normal activity and abnormal (or
exceptionaQ activity (Figure 2.1). The normal activity implements the component's nor­
mal services while the exceptional activity provides measures for tolerating the faults that
cause exceptions. Thus, the normal activity of the system is clearly distinguished from
its exceptional activity. At each levei of the system, an idealized fault-tolerant compo­

nent handles the exceptions raised during its normal activity and exceptions signaled by
lower-level components. Whenever an exception is raised in a (serverfcallee) component
that cannot handle it, the exception is signaled to the (clientfcaller) higher-level compo­
nent that dynamically invoked the server component. After the exception is handled, the
system may return to its normal activity.

Developers of dependable systems usuaJly refer to faults as exceptions because they are
expected to manifest rarely during the component's normal activity. Exception handling
mechanisms (or merely exception mechanisms) have been developed for programming lan­
guages a.nd allow software developers to define exceptions and to structure the exceptional
activity of software components by means of handlers. The handlers of a program consti-

2.2. Exception Hanclling and Fault Tolerance

Clientl Caller Higher-Level Components

Intel ~ac:e

Ser llice No

~I
excep ~o ns Fail rons req ests resp Retumto excq (\mutl operation

Server I Callee
Clientl Caller

Normal Activity Abnormal Activity
(f.lult to~by
exception h;mdting)

~
!ice No ~

__)
Inter Fail

:ic Intemal ace
ests resp nses exceptions e.xcep ~ons excq ons

Server I Callee Lower-Level Components

Figura 2.1: ldealized Fault-Tolera.nt Component

11

tutes its exceptional activity pa.rt. The exception mechanism is responsible for cha.nging
the normal control flow of a program to the exceptional control flow when an exception is
raised during its execution. Exception mechanisms are either built as an inherent part of
the language witb its own syntax, oras a feature added on the language tbrougb library
calls [17].

In the context of programming languages, exceptions are usually classified into two
types [29, 37]: (i) user-defined, and (ii) predefined. User-defined exceptions are defined
a.nd detected at the application levei. Prede:fined exceptions are declared implicitly and

are associated with conclitions that are detected by the language's run-time support, the
underlying hardware or operating system. The kinds of exceptional events supported by
a particular exception mechanism differ from one language to a.nother and depend on
general decisions taken by the langua.ge designers.

An exception can be ra.ised at run-time (an exception occurrence) during the normal
execution of a.n operation (method). A signaling statement is the statement being execu­
ted when an exception occurrence is detected. The code block containing the signaling
statement is referred to as tbe exception signaler (Figure 2.2). When an exception occur­
rence is detected, the exception mechanism is responsible for sea.rching and invoking an
exception handler (or simply handler) to deal with the raised exception. Tbe handler is the
part of a.pplication's code that provides tbe measures for handling the ra.ised exception.
Some extra.-information about an exception occurrence, such as its name, description, lo-

2.2. Exception Handling and Fault Tolerance

LEGEND
0 Nanml Actlviry

D E.>=põonal Ac:tiviry

protected
r~ion

I

I

Handler(ES)

- Normal Conlr'OI Aow HandJcr(B6)
- Exoc:pconal Con!J'QI flow

CUENT

protected
r~ion

I

HandlenE7)

12

5

'
protected

reg!on

Handler(E.2)

f-----i~
Handler(E3) --local

handlers

Handlct(E4) /
Figura 2.2: The Operation of an Exception Mechanism

cation, and severity (37], is usually required by the correspond.ing handler, and it is useful
for handling an exception occurrence. Extra-information is passed either explicitly by the
signaler, or implicitly by the exception handling mechanism.

Handlers are attached to a particular region of the normal code which is tenned
protected region or handling context. Figure 2.2 illustrates three protected regions. Each
protected region can have a set of attached handlers. If an exception is raised in an
protected region, the normal control flow is deviated to the exceptional control flow.
Then the exception mechanism first tries to find a local handler attached to the protected
region (the signaler). If it does not find a local handler for that exception, it searches
the handlers provided by tbe enclosing protected region. If it again does not find an
appropriate handler, the exception is signaled to the operation caller and this sequence
of steps is again repeated. After a suitable handler is found, invoked and executed by
the mechanism, it returns the computation to the normal control flow. In Figure 2.2,
an exception el is raised during the execution of m2. The exception mechanism signals
el to the caller, the metbod ml, since a local bandler was not defined at the context of
the signaler (arrow 6). The exception mechanism then .finds and invokes the appropriate
bandler at the context of the caller (arrow 7), and returns the system to the normal
control flow (arrow 8).

2.2. Exception Handling and Fault Tolerance 13

2.2.2 Exception Handling in Concurrent 00 Systems

In an object-oriented software system, tbere may be a number of processes {tbreads)
running concurrently. Tbere are different ways of dealing with concurrency in object­
oriented systems. In tbis work, we define a clear distinction between objects and threads:

threads are agents of computation that execute metbods on objects (wbicb are tbe subjects
of computa.tion). Exception handling is an important mechanism for a.cbieving fault
tolerance in sequential object-oriented software. Exception bandling, and consequently
the provision of fault tolera.nce, are much more difficult in concurrent object-oriented
systems tban in sequential ones. Exception mechanisms used in sequentia.l programs
ca.nnot be a.pplied to concurrent software without appropriate adjustments due to new
difficulties introduced by concurrent exception handling.

From the sta.ndpoint of fa.ult tolerance, the implementa.tion of a.n exception mecha.­
nism for concurrent object-oriented systems is an interesting challenge dueto cooperative
concurrency [9, 38]. Different threa.ds o f a system can be cooperating for executing some
system's ta.sk. Tbrea.ds are sa.id to be cooperating when they are designed collectively and
ha.ve sbared a.ccess to common objects tba.t are used directly for communica.tion between
the threads [38]. Erroneous information ma.y sprea.d directly or indirectly through inter­
tbread communication. As a consequence, tbe handling of a.n exception should involve ali

concurrent threads participating in a cooperation. Sometimes it ma.y involve the entire
system due to complex interactions between its cooperating threads. The cooperating
threads of a concurrent system must be controlled very carefully in arder to avoid that
erroneous information spreads unexpectedly through the whole system [9].

The a.pproach to using exception handling in such systems extends the well-known ato­
mie action paradigm [9]. Atomic a.ctions are the most comprehensive wa.y of structuring
the behavior of concurrent systems. These a.ctions are units of inter-thread coopera.tion
and their execution is indivisible and invisible from the outside. The a.ctivity of a group
of threads pa.rticipating in a cooperation constitutes a.n a.tomic action if there are no
interactions between that group a.nd the rest of the system for the duration of the activi­
ty [38]. Complex interactions between the participating threa.ds of an atomic action can
be coordinated witbin that action, including necessary activities for concurrent exception
ha.ndling [9]. When one of the coopera.ting threa.ds ha.s raised a.n exception, error reco­
very should proceed in a coordinated wa.y by triggering different handlers for the same
exception witbin all the threads [9, 69].

An a.tomic action is formed by a group of cooperat ing tbreads, the action participants.

The participa.nts cooperate witbin the scope of the a.ction. A set of exceptions is a.ssocia.ted
with each a.ction. Eacb participa.nt in the action ba.s a set of handlers for (a.ll or part of)
these exceptions. The entries of participa.nts in the action may be a.synchronous but they
have to leave the action synchronously to guarantee that no informa.tion is smuggled to or

2.3. A Taxonomy for 00 Exception Mechanisms 14

from the action. When an exception has been raised in any of the participants inside a.n
action, all action participa.nts have to participate in the error recovery. Different hand.lers
for the sa.me exception ha.ve to be called in all of the participa.nts [9]. These ha.nd.lers
coopera.te to recover the action. The participa.nts ca.n lea.ve the action on three occasions.
First of all, this happens if there have been no exceptions ra.ised. Second.ly, if an exception
had been ra.ised, a.nd the called hand.lers have recovered the a.ction. Thirdly, they can
signal a failure exception to the conta.ining action if a.n exception has been raised and it
has been found that there are no appropriate ha.ndlers or that recovery is not possible.

Furthermore, due to na.ture of concurrent systems, it is possible tha.t various exceptions
may be raised concurrently by cooperating threads. In this way, a mechanism for exception

resolution is a.n essential part of concurrent exception handling. The paper (9] describes a
model for exception resolution called exception tree which includes an exception hierarchy.
This model allows to find the exception that representa all exceptions raised concurrently.
This tree includes alJ exceptions associated with the action and imposes a partial order on
them in such a way that a higher-level exception has a handler capable of handling any
lower-level exception. If several exceptions are raised concurrently, the resolved exception
is the root of the smallest subtree containing all of the exceptions.

A demand for concurrent exception handling in object-oriented systems is recognized
by many researchers because it would make the erro r handling simpler, uniform and less
error prone. Di.fferent works have identified the need for concurrent exception handling
in a number of practical examples a.nd systems in different application areas such as
bank:ing [22, 70], office automation (70], sales control systems [69], software development
environments (70L and production cell control systems [62, 74, 55].

2.3 A Taxonomy for 00 Exception Mechanisms

There is a number of design issues for building exception mechanisms that will be used
for constructing dependable object-oriented software. However, the chosen solution for
designing each of them varies from mechanism to mechanism. This section presents a
taxonomy which identifies the several common design issues of exception mechanisms, and
classifies the different design solutions. The taxonomy was developed based on the set of
analyzed exception mechanisms (Section 2.4), and on some reviewed previous studies (37,
17].

We classify the design issues of an exception handling scheme into nine aspects of
interest: (i) exception representation, (ü) exception interface, (iii) handler attachment,
(iv) handler binding, (v) exception propagation, (vi) continuation ofthe control flow, (vii)

clea.nup actions, (viü) reliability checks, a.nd (ix) concurrent exception ha.ndling. In the
following we discuss each aspect in turn.

2.3. A Taxonomy for 00 Exception Mechanisms 15

nonnal response

<
Method A (parameters) returns (return_type)

methodname

)
Exception Interface

(exceptional responses)

>
signals (exception_list};

Figura 2.3: A Method's Signature with Exception Interface

Exception Representation. Exceptions that can be raised during a system's execu­
tion must be represented intemally within this system. Exceptions can be represented
as: (i) symbols, (ü) data objects, or (iii) full objects. The representation of exceptions
as symbols is a classical approach in which exceptions are strings or numbers. Raising
an exception sets the corresponding string variable (or integer variable) and returns the
control to the caller that is in charge of testing the variable.

In the second and third solutions, exceptions are organized hierarchically as classes;
when an exception is raised, an instance of an exception class (an exceptíon object) is
created and passed as a parameter to the corresponding handler. Therefore, exceptions
are first-class objects. However, such solutions differ in how exceptions are raised. In the
second solution, exceptions are raised by calling a keyword of the language. In the third
solution, exceptions are raised by invoking a method raise on the exception object. In

this last case, the exception is a standard object that receives messages since the behavior
specific to exception raising is defined as a method on an exception class [36). In addition,
specific behaviors to continuation of the contrai flow (see below) can also be defined as
methods on exception classes. Note that in the second solution the aim of exception
objects is just to hold data, despite the possible definition of methods on them.

Exception Interface. A method may either terminate normally or exceptionally by
signaling an exception. Exception interface is the part in a method's signature that expli­
citly declares the list of exceptions that might be signa.led by the method [37] (Figure 2.3).

There are di:fferent design solutions for exception interface in different exception me­
chanism proposals. In some exception mechanisms, exception interfaces are obliged - an
attempt to propaga.te to the invoker an exception that is not in the exception list causes
either a compiling errar or the raising of a predefined exception a.t run-time. In other me­
chanisms, exception interfaces either are optíonal or unsupported. There is also a hybrid

approach - some exceptions must be listed in exception interfaces while others may not
be listed.

Handler Attachment. Protected region is a domain that specifi.es the region of com­
putation during which, if an exception occurrence is detected, a handler attached to this
region will be activated. Handlers can be attached to different protected regions, such as:

2.3. A Taxonomy for 00 Exception Mechanisms 16

(i) a statement, (ii) a block, (iii) a method, (iv) a.n object, (v) a class, or (vi) a.n excep­

tion. Statement (o r block) handlers are attached to a statement (or a statement block),
allowing context-dependent responses to an exception. The block is usually defined by
means of keywords of the la.nguagej the protected region starts with a specific keyword
a.nd ends with a.nother keyword of the la.nguage. Method handlers are associated with a
method; when an exception is ra.ised in one of the statements of the method, the method
handler attached to this exception is executed. Exception mechanisms that allow to at­
tach handlers to blocks, consequently also support method ha.ndlers since a block may be
defined as a method. Object handlers are valid for particular instances of a class; that is,
each instance has its own set of ha.ndlers. Object ha.ndlers are usually attached to object
variables in their declarations. Class handlers are attached to classes, allowing the soft­
ware developers to define a common exceptional behavior for a class of objects. Handlers
attached to exceptions themselves are always invoked if no more specific handlers can be
found. They are the most general handlers, and must be va.lid in any part of the program,
independent of execution context and object state. For insta.nce, such a handler could
print an error message or make a general correction action.

Handler Binding. When an exception is raised at run-time, a ha.ndler should be in­
voked to deal with the exception occurrence. There are three different design solutions
for binding handlers to exception occurrences: (i) the static approach, (ii) the dynamic

approach, and (iii) the semi-dynamic approach. In the static approach, a handler is sta­
tically attached to a protected region, and this handler is used for all occurrences of the
corresponding exception during the execution of that protected region. The handler bin­
ding is independent of the control flow of the program, and hence there is no run-time
search to bind handlers to exception occurrences.

In the dynamic approach, the binding depends upon the control flow of tbe program.
As a consequence, this approach determines at run-time which handler should be used
for a given exception occurrence. The handler cannot be determined at compile-time.
Generally, exception handlers are defined dynamically in the executable st atements of
programs by executing a statement making a handler available for a particular exception.
In PL/ I, the binding is performed dynamically by means ofthe statement ON. A statement
ON specifies a handler binding to a specific exception, and it stays in effect until either a
new statement ON for that exception is executed or the block in which it occurs is ex:ited.

Tbe semi-dynamic binding is a hybrid model tha.t combines the two prevjous a.pproa­
ches. Local handlers can be bound statically to the signaler. If a bandler is not attached to
the raised exception in tbe context of the signaler, a dynamic approach is employed to find
a suitable handler. Firstly, handlers attached to enclosing protected regions are searched
dynamically. If none is found, the exception mechanism then signals the exception to the

2.3. A Taxonomy for 00 Exception Mechanisms 17

caller. The call chain of method invocations and protected regions is therefore traversed
backwards until a statement or another protected region is found in which a handler for
that exception is attached. The example in the Figure 2.2 illustrates the sem.i-dynamic
approach. The exception mechanism does not find a local handler attached statically
to the signaler, the method m2. The exception mechanism then proceeds the search by
ta.king the invocation history into account. A handler is tben found at the context of ml.

Exception Propagation. If no local handler is defined for an exception which has
been raised, the exception can be propagated to the caller of the method raising the
exception. In fact, the caller often knows what effect t he operation had to achieve and
how best to respond to exceptions [13, 64). If no handler is found for the exception within
the caller, the exception can be propagated to higher-level components other than its
immediate caller. There are two design solutions for exception propagation: (i) explicit

propagation, and (ii) automatic (or implicit) propagation. In the first case, the handling
of signaled exceptions is lim.ited to the immediate caller; however, the raised exception or
a new exception can be signaled explicitly within a handler (attached to the caller) to a
higher-level component. For this reason, the exception mechanisms that adopt such an
approacb are called single-level [40]. If a signaled exception is not handled at the caller's
context, either a predefined general exception is further propagated automatically, or the
program is terminated.

In the second case, if no handler is found for the exception within tbe caller, the
exception is propagated automatically to higher-level components until a handler can be
found; that is, an exception can be handled by components other than its immediate
caller. As a consequence, the exception mechanisms that incorporate this design solution
are termed multi-level [40).

Exception propagation is closely related to the issue of handler binding. Exception
mechanisms that implement static binding cannot allow ex.ception propagation since the
binding is done at compile time and the chain of invokers is ignored. Semi-dynamic
and dynamic bindings are performed at run-time and, therefore, can allow exception

propagation.

Continuation o f the Control Flow. After an exception is raised and the correspon­
ding handler is executed, the system should continue its normal execution. There is an
issue conceming the semantics which determines the continuation of the control fiow, i.e.,
where normal execution proceeds. There are at least two possible design solutions, whi­
ch correspond to different styles of continuation of the control flow: (i) the resumption

model, and (ii) the termination model. In the resumption model, the execution has the
capability to resume the internai activity of the signaler after the point at which the ex-

2.3. A Taxonomy for 00 Exception Mechanisms 18

ception was raised. In the termination model, the activity of the component which raised
the exception cannot be resumed; conceptually, this means that its activity is terminated.

There are some variations of the termination model. Such variations can be classified
into at least three different ways with their respective semantics: (i) retum- terminate
the signaler and direct control flow to the statement following the protected region where
the exception was handled; (ii) strict termination- t erminate the program and return
control to the operating environment; and (üi) retry the signaler- term.inate the signaler
and retry it to attempt to complete the required service in the normal manner.

Figure 2.2 pictures an example of termination with return semantics. The execution
of m2 (the signaler) is terminated, the handler is executed, and the normal control fl.ow is
directed to the statement following the protected region where the exception is handled.
Then, execution continues at the method main since the method ml is the protected
region where the exception is handled. If the specified model of continuation of control
flow was resumption, the handler would be executed and normal execution would resume
the internai activity of the signaler after the point at which the exception was raised. This
return point is indicated as * in Figure 2.2.

Cleanup Actions. Components of a program should be kept in a consistent state,
regardless of whether the code completes normally or is interrupted by an exception. In

this sense, it is required to do some cleanup action to keep the program in a consistent state
before the termination of the component. Cleanup code may either restore the component
to a possible state, undo some undesirable effect, or release allocated resources. Cleanup
actions can be supported by particular designs of exception mechanisms in tbree different
ways: (i) use of explicit propagation, (ii) specific construct, and (iii) automatic cleanup. In

the first approach, the explicit propagation is used for performing some cleanup actions
before termination of the component. When an exception occurrence is detected, if it
cannot be handled by the signaler and has to be propagated, then the cleanup action
should be specified within the corresponding handler before the statement that propagates
the exception.

The second method provides a construct which is executed whenever the protected
program unit exits. The cleanup code is attached to the protected program unit and this
code is executed whether an exception is raised or not. If no exceptions are raised in the
protected region, the attached cleanup code is executed after the protected region. Howe­
ver, if an exception is raised in the protected region, control is transferred immediately
to the statements devoted to clean up.

The third solution is based on the premise that the exception mechanism k.nows what
should be cleaned up before termination of the component. The exception mechanism
itself perlorms automatically the necessary cleanup actions and the application developer

2.3. A Taxonomy for 00 Exception Mechanisms 19

does not need to worry about.

Reliability Checks. Reliability checks test for possible errors introduced by the use of
an exception mechanism. A number of issues can be checked by the exception mechanism
itself, sucb as (73]: (i) checking that each exception is signaled with the correct set of
actual parameters; (ii) checking that each handler for an exception is defined with the
correct set of formal parameters; (iii) checking that only those exceptions that are defined
by a signaler are signaled by it, in effect forcing the explicit propagation; and (iv) checking
that ali exceptions that can be raised in a given scope are handled in that scope. We
classify the design approaches regarding reliability checks into two design solutions: (i)
static checks, and (ii) dynamic checks. Static checks are performed by the compiler while
dynamic checks are performed by the run-time system. Static checking depends on the use
of exception interface, static binding and representation of exceptions as objects. When
exceptions are not declared in the externai interface of their signalers or are not typed,
there is very little that can be checked at compile time. Some exception mechanisms
do not provide any support for static checks, while other ones perform both static and
dynamic checks.

Concurrent Exception Handling. When concurrent programming is supported by
the underlying programming language, one or more exceptions can be raised concurrently
during a cooperative activity {Section 2.2.2). In this way, exception mechanisms should
provide some support for concurrent exception handling. The design approaches to con­
current exception handling can be classified into at least three possible design solutions,
which correspond to different support levels: (i) unsupported, (ii) limited, a.nd (iii) com­

plete. In the first approach, no support for concurrent exception handling is provided.
Exception mechanisms that implement the second approach only provide basic support

for concurrent exception handling. A special exception (signal) is used to notify the
threads involved in a cooperation when an exception is raised in one of the cooperating
threads. In this way, exceptions can be handled by more than one thread in a coordinated
ma.nner. Effective facilities which allow using atomic actions with exception handling are
not provided. In addition, the exception resolution process is also left to application
programmers.

The third approach provides complete support for concurrent exception handling.
Explicit facilities are provided to use atomic actions with concurrent exception handling.
Software designers can concentrate on definition of cooperative activities, exceptions and
handlers, which are application-dependent issues. The exception mechanism provides: (i)
synchronization of the action participants, (ii) support for exception resolution, and (iii)
invocation of the different handlers attached to the action participants.

2.4. Exception Handling in Various 00 Languages 20

2.4 Exception Handling in Various 00 Languages

In the 1970s, exception mechanisms were developed specifically for procedural program­
ming languages. PL/ I [41) pioneered the concept of providing application programmers
with linguistic constructs for exception handling. However, such constructs resulted in
an exception mechanism that was complex and difficult to use. The CLU's exception
mechanism [40] overcame some difficulties detected in the PL/Ps exception mechanism
and introduced an exceptíon handling model more suítable for implementing dependable
software. In the 1980s, the object-oriented languages brought to developers a new way of
thinking about a.nd designing their systems as well as some new techniques to make them
more modular and reusable. Exception handling mechanisms have been integrated into
main stream object-oriented languages such as Java. (30], Modula-3 (50] and Eiffel [44].
We can now review various exception mechanisms dedicated to object-oriented languages.
We use the taxonomy described in Section 2.3 to help compare and evaluate their main
strengths and weaknesses. Figure 2.4 in Section 2.5 summarizes the design choices of each
exception mechanism presented in this Section.

CLU (40] was the first language to offer an exception mechanism more suitable for im­
plementing fault-tolerant software. In fact , its primary purpose isto support construction
of software modules which are able to respond reasonably to wide variety of circumstan­
ces. In addition, the CLU's exception mechanism is based on a simple model of exception
handling that is to lead to well-structured programs. As a consequence, it is considered
to be a baseline of our study.

The Exception Handling Model of CLU. In the CLU's exception handling model,
exceptions are represented as symbols. However, a set of typed parameters can be used to
pass information about the exception from the sígnaler to the bandler. CLU's exception
mechanism is said to be single levei since the exception raised by a procedure is normally
handled by its immediate caller. However, the immed.iate caller may resignal the exception
explicitly to its invoker. A CLU procedure definition must include exception interface.
Handlers are attached to any statement in a CL U procedure by clauses except having the
following syntactic form:

statement except when El: ... when E2: ...

The handlers are often collected at the end of the procedure whenever possible because
the placement of handlers in individual statement can reduce the code readability. Howe-

2.4. Exception Handling in Various 00 Languages 21

ver, there is the possibility of interleaving exception handler a.nd normal code on a per
statement basis. lf a statement calls a procedure that signals a.n exception, but that
statement has no attached ha.ndler for that exception, then the exception is propagated
automatically to progressively larger static scopes within the procedure. If a ha.ndler is
found in the procedure, it is executed. Otherwise, the predefined default exception fai­
lure is raised a.nd control returns to the ca.ller. This exception is the only one implicitly
propagated. CLU procedures that ra.ise an exception are normally terminated. After
the handler execution, control simply directs to the statement following the statement to
which the ha.ndler is attached, that is, the termination model has a return semantics. The
model does not provide any specific construct to define cleanup actions; and also does not
support concurrent exception hanclling.

2.4.1 Exception Handling in Ada95

Ada95 (66] is a fully object-oriented language which has the upward compatibility with
Ada. The exception mechanism of Ada95 is basically the same as it was in Ada; it was
not revised as it could have been to become more object-oriented. For instance, Ada
exceptions are originally symbols and are not declared in the externai interface of the
procedures (methods). However, some new features make using exceptions much simpler:
(i) an exception can be raised with a message which can be analyzed during ha.nclling; (ii)
the value of the variable of the new type ExceptionOccurrence represents each occurrence
of the exception - there is a function converting the variable of this type into a string;

(iii) another function, of the type string, returns the name of the raised exception.
Ha.ndlers can be attached to blocks, procedures or packages. Handlers are placed

together in an clause exception, which must be placed at the end of the protected region,
as below:

begin
protected region

exception when El => . . . handler
when E2 => ... -- handler
when others => ... -- all-encompassing handler -- ...

end;

Ada allows the definition of all-encompassing default handlers by mea.ns of the construct
when others. This bandler catcbes just those exceptions tbat tbe programmer has not
provided specific handlers for.

2.4. Exception Handling in Various 00 Languages 22

Ada95's exception handling model supports semi-dynamic binding and automatic pro­
pagation of all unhandled exceptions. Therefore, Ada95's exception mechanism is multi­
levei as opposed to the single-level mechanism of CLU. It adopts the termination model
with retum semantics. An exception can also be propagated explicitly by a component
reraising the exception within the ha.ndler. Therefore, explicit propagation can be used
to perform any final cleanup actions before signaling the exception. All-encompassing
default handlers ca.n be also used to do it. However, no explicit support is provided for
clea.nup actions. As exceptions are not typed andare not declared in the externa.! interface
of their signalers, there is very little that can be checked at compile time.

Ada95 allows to atta.ch ha.ndlers to ta.sks (threads). Handlers may be called in seve­
ra! concurrent tasks when an exception has been raised in one of them. However, this
la.nguage has a limited form of concurrent-specific exception propagation: an exception is

propagated to both the caller and callee tasks if it is raised during the Ada rendezvous.
Then the exception mechanism is not applicable directly for systems that contain complex
cooperative concurrency.

2.4.2 Exception Handling in Lore

An object-oriented exception mechanism has been designed by Dony [15, 16] and it has
been implemented in Lore, an object-oriented language dedicated to knowledge represen­
tation. An important characteristic of thls mechanism is the object-oriented representa­
tion of exceptions: exceptions are full objects. The exception interface may be part of a
method's signature by means of the clause signals.

The exception mechanism ensures explicit separation between normal and exceptio­
na.l code since handlers are ordinary methods of a specific class named protected-handler.
Handlers can be attached to statements, classes and exception classes. Handlers attached
to classes are called default handlers. When an exception is raised, the handler search
proceeds as follows: (i) first handlers that are attached to statements that dynamically
include the signaling one are searched, and the search stops as soon as a bandler, whose
parameter type is a supertype of tbe signaled exception, is found; (ü) u none is found, the
system tries to find default handlers attached to tbe class or upper classes of the signaling
active objectj (üi) jf none is found, the system looks for default handlers attached to the
signaled exception itself; (i v) if none is found, the exception is then propagated automatí­
ca.lly to tbe operation caller, and the sequence of steps is again repeated. Exceptions can
also be propagated explicitly.

Thls exception mechanism is more fiexible tha.n CL U's one. Two policies for continua­
tion of control fiow are provided: resumption and termination (witb retum semantics).
The behavior of tbese policies are defined as metbods on an exception class from which

2.4. Exception Randling in Various 00 Languages 23

ali exception classes inberit. The methods that define such policies are invoked witbin
handlers. When handlers do not explicitly choose one of these options, the predefined
exception Except ionNotHandled is signaled. This approach is interesting because it tries
to integrate exceptions into the standard invocation mechanism. The Lore's exception
mechanism has explicit support for specifying cleanup actions. It provides the construct
when-exit allowing to attach cleanup actions to expressions. No support is provided for
concurrent prograrnming and concurrent exception handling.

2.4.3 Exception Handling in Smalltalk-80

Being one of the earliest widely available object-oriented languages, Smalltalk [28] attrac­
ted much attention during the 1980s. In Smalitalk-80, a.n exception is a selector but not
a first-class object. A selector specifies the operation name. Thus a exception selector
ca.nnot own a.ny characteristics, cannot be inspected, modified or upgraded (16). In or­
der to signal run-time exceptions, the Smalltalk evaluator sends, to the current object, a
message corresponding to the current exception. Therefore handlers are methods pointed .
out by exception selectors, and they only can be attached to classes. Thus, exceptions
raised by methods defined on a class are ha.ndled within that class. Exceptions ca.nnot
be propagated to operation caliers. For this reason, exception interface is not part of a
method's signature.

Smalltalk-80 has no static type check:ing. As long as method has no syntax errors
and no undeclared variables it will compile, and if there are any type errors they will
occur at run-time. As a consequence, in the Smalltalk environment, most run-time errors
(exceptions) occurs when a message for which no method exists a.rrives at a.n object. In
this case, the run-time system sends a special message doesNotUnderstand: to the recei­
ver, with the message selector and arguments o f the original message as arguments. The
search for the selector doesNotUnderstand: thus follows the same path as the search for
the first selector. In this way, a user is given the opportunity to define methods does­
NotUnderstand: in the visited classes, in order to customize exception ha.ndling or catcb
errors. If the programmer does not do this, an error is signaled anyway by the standard
metbod doesNotUnderstand: on the class Object (ali application classes are derived from
Object); it causes a notifier to appear on tbe screen giving some information about the
error, and providing the ability to invoke the debugger. Unlike CLU, Smalltalk supports
both resumption a.nd termination. Two varia.nts of the termination model are supported:
retum and retry. Tbe programmer may specify cleanup actions within an block ensure
wbich is always executed after the protected block, no matter if an exception occurred or
not. Tbe mechanism does not support concurrent programming and concurrent exception
handling.

2.4. Exception Handling in Various 00 Languages 24

2.4.4 Exception Handling in Eiffel

The exception mechanism of the sequential language Eiffel (44, 45, 67) is integrated with
the notion of design by contract. Classes and methods establish contracts with their clients
by specifying assertions: pre and post-conditions, and invariants. Exceptions are de:fined
as the violation of assertions during the execution of the associated method, and they are
raised implicitly. However, exceptions may also be de:fined by the user. Eiffel exceptions
are typed entities which have an integer value and a string tag. However, exception
interface is unsupported. Handlers can be attached to a method ora class. Thus, on the
one hand the exception mechanism provides no support for attaching handlers to units
at lower leveis, such as a block of statements, but on the other hand it ensures explicit
separation between normal and handler code.

When an exception occurs during the execution of a method, its execution is stopped
and the respective handler is executed. Within a handler, the exception can be deter­
mined by comparing a predefined variable called exception with an exception name. The
variables which are visible to the protected region have the same visibility in the handler.
If no handler is defined, the method is said to fail and the exception is propagated ímplici­
tly to the caller (the so-called organized panic). Therefore, Eiffel design adopts automatic
propaga.tion as default behavior. However, exceptions can be propagated explicitly. Han­
dlers can report failure to the caller by reraising the exception. Explicit propa.ga.tion can
be used for performing some cleanup actions before reraising the exception.

The exception mechanism of Eiffel supports retry, a variation of the termination model.
Handlers try to restore the class invariant by retrying the method if the pre-condition still
holds. In this way, a routine may succeed or fail, there is no intermediate ground. So the
raising of an exception means the failure of a software component which has been unable
to terminate in a normal manner. No support is provided for concurrent programming
and concurrent exception handling.

2.4.5 Exception Handling in Modula-3

Modula-3's exception mechanism [50) is based on a semantic model similar to Ada95.
Exceptions are represented as symbols. However, exceptions optionally can have parame­
ters. The exception interface may be part of a. method's signature by means of the clause
set. As a consequence, this feature facilitates static checks for raising unlisted exceptions
within the code and dynamic checks for exception occurrences that were not explicitly
raised. Handlers can be attached to a statement or a block. Like Ada95, handlers are
attached to a block o f instructions by means of the construct try... e.xcept, as in:

2.4. Exception Handling in Various 00 Languages 25

try .. . -- protected region
except ... -- handlers -- ...
else . . . -- all-encompassing handler

Handler binding is semi-dynamic. If, during the execution of a block try (the protected
region) , an exception occurrence is detected, execution ceases, and control passes to the
corresponding handler. If no handler is found, and the part else is present, the contrai
flow is deviated to this pa.rt. The pa.rt else implements an all-encompassing handler, i.e.
a single default handler attached to the protected region to handle any exceptions that
the programmer have not provided specific handlers for. It is similar to the construct
when others of Ada95. If the part else also is not present, a handler is sought in the
statically enclosing protected region (a construct try.. . except may be nested in a block
try). If no handler is found there, the exception is automatically propagated, and the
search continues in the context of the calling procedure. H no handler can be found, the
Modula-3 run-time system will halt the program with a suitable errar message. Thus,
automatic propagation is adopted as default behavior. However, exceptions also may be

propagated explicitly.
When a handler is found and it has finished its execution, contrai passes to the sta­

tement following the protected region where the except ion was handled. That is, the
termination model is adopted with the retum semantics (as CL U). Modula-3 provides
program..mers with the construct try.. . finally to define cleanup actions. No support is
provided for concurrent exception handling.

2.4.6 Exception Handling in C++
In C++ (35], exceptions are data objects and exception interface may be optionally in­
cluded as part of a method's signature. In other words, although exception interface is

supported, it is not obliged. Like Ada95 and Modula-3, C++ also introduces an exception
mecha.nism that is sensitive to contexts. The bandling context is termed a block try, and
handlers may be attached to a statement or a block. Handlers are declared at the end of
a block try using the keyword catch. The exception is handled by invoking an appropriate
handler selected from a list of handlers found immediately after the block try, as in:

try { . . . -- protected region
} catch (El) { handler -- ... }

catch (E2) { handler -- ... }

catch (...) { all-encompassing handler -- ... }

2.4. Exception Handling in Various 00 Languages 26

A handler catches an exception object by specifying its type. The handler declares its
parameter as being of a given class, but may catch exception objects of any subclass. C++
also allows the de:finition of all-encompassing default handlers by means of the construct
catch (.. .). As in Ada 95 and Modula-3, this handler catches those exceptions that the
programmer have not provided specific handlers for.

Unlike CL U, the exception mechanism of C++ implements semi-dynamic binding and
supports both automatic and explicit propagation of exceptions. Bowever, the default
behavior is automatic propagation. Regarding continuation o f the control fiow, only the
termination model with retum semantics is implemented. If a clause catch terminates
without raising another exception, execution continues normally at the first statement
after the block try to which the executed handler is attached. The model does not provide
any specific support for cleanup actions. As exceptions are typed entities, static checks
can be performed by the compiler. However, as the use o f exception interface is not
forced, dynamic checks are performed by the run-time system. No support is provided
for concurrent exception handling.

2.4. 7 Exception Handling in Java

Java is considered to be a language from the C++ family and adopts various similar
design solutions. For instance, Java supports representation of exceptions as data objects,
semi-dynamic binding, and the termination model with return semantics. In addition,
Java [30, 52] provides software developers with a block try to define protected regions.
However, its exception handling is much safer and clearer than that of its ancestor. As
for the main aspects of exception handling, Java has more powerful features than C++,
because it allows better static checking and provides specific support for programming
cleanup actions.

Java adopts a hybrid solution for exception interface. Ali exceptions must be th­

rowable, that is, exceptions must inherit (directly or indirectly) from the class Throwable.
Classes Throwable can be categorized into two groups: (i) classes that inherit from the
class Errar or that inherit from the class RuntimeException are unchecked, and (ii) other
classes that inherit from the class Exception are checked. The first group are exceptions
from which ordinary programs are not expected to recover (for example, loading and lin­

ka.ge errors, virtual machine errors), or exceptions that occur within the Java run-time
system (for example, arithmetic, pointer, indexing exceptions). The compiler does not
require that programmers check a.nd specify the unchecked exceptions as part of a me­
thod's signature. But Java requires that the program either catch or specify ali checked
exceptions that can be thrown directly or indirectly within the scope of the method.

As opposed to C++, Java provides programmers with the construct try ... finally to

2.4. Exception Handlin.g in Various 00 Languages 27

define cleanup actions. The block finally is always executed at the end of the block try,
whether an exception is raised or not, unless the block try raises an exception that is not
caught by its handlers, in which case the exception is propagated.

Although Java describes clear semantics of exception handling in concurrent Java pro­
grams, it does not offer complete support for concurrent exception handling. The Java's
exception mechanism is integrated with the Java thread.fsynchronization model, so that
locks are released as statements synchronized and invocations of methods synchronized
complete abruptly. An asynchronous exception (signal) can be raised in a concurrent
program by invok:ing the method stop on the class Thread.

2.4.8 Exception Handling in Object Pascal/Delphi

Object Pascal (4, 5] is the underlying programming language of Delphi, a tool for rapid
application development. Exceptions in Object Pascal are data objects, and exception in­
terface is unsupported. Like Modula-3 and Java, handlers can be attached to a statement
or a block. A protected region starts with the keyword try and ends with the keyword
end. As Modula-3 and Ada95, Object Pascal also allows the definition of all-encompassing
default handlers. After exception is handled, execution continues a.t the end of the cur­
rent block where the exception was ha.ndled. Therefore, Object Pascal implements the
termination model with return semantics.

Unlike CLU, exceptions are propagated automatically and handlers may be a.ssocia.ted
semi-dynamically. lf a block does not handle a particular exception, execution leaves that
block a.nd returns to the block that contains the block (or to the co de that called tbe
block), with the exception still raised. This process repeats with increasingly broad scope
until either execution reaches the outermost scope of the application or a block at some
levei ha.ndles the exception. However, a handler may reraise explicitly the same exception
by calling the keyword raise witbout the exception object argument. Like Modula-3
and Java, clea.nup actions may be specified by using the construct try. .. finally. The
application always executes any statements in the block finally, even if a.n exception occurs
in the protected block. As semi-dynamic binding is adopted and exception interface is

unsupported, there is very little that ca.n be checked statically. Moreover, no support is
provided for concurrent programming and concurrent exception handling.

2.4.9 Exception Ha.ndling in Guide

Guide's exception mecha.nism [1, 36] is similar to CLU's one. The nature of a Guide
exception is symbol. However, complementary information ca.n be passed to handlers
while raising exceptions. Guide implicitly provides the handler with the names of the
class and the method that signaled the exception. In Guide, exceptions potentially raised

2.4. Exception Handling in Various 00 Languages 28

must be included in the interface. In other words, the use of exception interface is obliged,
and it is not optionallike in C++ and Modula-3. Handlers may be attached to method
invocations (statements), methods and classes.

If a statement ra.ises an exception, the method containing the signaling statement
signals the exception to its caller. Local handlers are not possible. Guide's exception me­
chanism adopts the termination model with return semantics. The normal continuation
after the execution of a handler is from the point just after the raising method invocation.
The binding is semi-dynamic, and ali exceptions propagated from a method to its invoker
should be either explicitly propagated or resignaled. Exceptions are not propagated au­
tomatically in Guide. When an exception is not handled by the caller, a special exception
termed UncaughLException is propagated. The retry policy also is provided through the
keyword retry that only a handler can use.

Guide's approach addresses the issue of consistency of objects. The block restare allows
a block with cleanup actions to be defined. The block is executed just after the raising
of the exception and prior to the execution of the handler. Recursively, if the handler
propagates an exception, then the block restare of the caller object is executed before the
search for a new handler. As Guide uses static binding and the use of exception interface
is obliged, most checks are performed statically. Although Guide provides constructs for
concurrent programming, its exception mechanism does not support concurrent exception
handling.

2.4.10 Exception Handling in Extended Ada

Cui's approach, called data-oriented exception handling [13], is a design that associates
handlers with objects in their declarations. This concept has been implemented with an
Ada preprocessar and empirical studies [13] have shown that íts use can produce programs
that are smaller and better structured when compareci to the programs produced using
Ada's traditional exception handling. In Ada's exception ha.ndling mechanism, although
handlers appear after the main algorithm, introducing blocks in the middle of a statement
list to associate different handlers with different objects inserts exception handling cede
in the middle of the main algorithm preventing a clear separation between them. The
data-oriented exception handling removes exception handling code from algorithmic cede
helping code writeability and readability.

Exceptions are declared witb type declarations in generic package specifications (ex­
ception interface). Handlers are attached statically to object va.riables in declarations.
Each object declared has its own set of (exception, handler) binding pairs specified in its
declaration. Three language features are defined to implement this design: #exception,
#when, and #raise. Exceptions are decla.red by attaching a clause #exception to the type

2.4. Exception Handling in Various 00 Languages 29

exported from the specification part of a package. Handlers are associated with data
object's declaration by attaching a clause #when to the declaration that specifies handler
procedures for the exceptions defined on the object's type. Exceptions are signaled by
statements # raise that t ransmit parameters, indicating the object with failure. Default
handlers for exceptions can be specified in a type declaration and inherited by variables
declared with that type. Like CLU, only the termination model is supported.

2.4.11 Exception Handling in B et a

Beta [42] is an object-oriented language that generalizes some of the concepts introduced
by Simula67. Beta has no special constructs for exception handling. Instead a langua­
ge construct, using existing syntax, is adopted. Beta's abstraction mechanism is called
pattern which replaces classes, procedures, functions, types and exceptions. Instances of
patterns are called objects and can be used as variables, data structures, procedures, func­
tions, and so on. Inheritance is implemented using the supperpattern mechanism. This
includes explicit control of overriding using the construct inner. Exceptions are represen­
ted as virtual patterns, a variant of the pattem describing the construction of classes or
individual oh jects.

Signaling an exception amounts to directly calling the handler by its name. Handler
can be attached to classes, objects, methods and statements. The mecha.nism is based
on the static binding approach, i.e., there is no run-time search to find handlers. The
default continuation of contrai flow is strict termination of the program. Beta also allows
resumption.

Propagation of an exception to the caller is not supported. For this reason, the concept
of searching dynamically for a handler does not exist in Beta. The construct inner and
virtual patterns of Beta together provide a way for an invoker of an operation to affect
the handling of an exception inside the object. The code extension (called binding) given
by the invoker at the time of an invocation is executed by substituting in the operation's
code at the place where inner is declared. The mecha.nism inner also allows a subclass to
extend or augment the exception handling of the parent class. This use of inner can often
require a careful understanding of the pattem's code [46).

2.4.12 Exception Handling in A rche

Arche (32, 33] is a concurrent object-oriented language which makes a clear distinction
between type (description of an interface) and class (an implementation of a type). Ex­
ceptions are data objects and exception interface is supported. The clause signals may be
used in any operation signature to state the exceptions that the operation may signal.

2.4. Exception Handling in Various 00 Languages 30

Handlers can be attached to blocks and are declared by means of a construct similar
to Modula-3. Like CLU, Arche adopts the termination model with explicit propagation
of exceptions. A handler may propagate the handled exception by using the command
signal. Thus, the search for a handler is implemented according to the explicit propagation
of exceptions. If the search fails the predefined exception fai lu re is signaled. The handler
binding is semi-dynamic. However the absence of handlers can be detected at compile
time dueto explicit propagation, allowing an error report to the programmer.

Of the reviewed object-oriented languages in this study, Arche provides the best sebe­
me for concurrent exception ha.ndling. Cooperating threads can be enclosed within a
scheme of object groups. Object groups are declared as a sequence through the use of
the type constructor seq of. Methods of an object group are executed concurrently and
synchronized within group scope and are called mu.lti-operations. In Arche, the notion of
multi-operations is therefore the base structuring mechanism for fault tolerance. Multi­
operations can be regarded as atomic actions (Section 2.2.2).

A multi-operation may issue a coordinated call, a natural extension of the method-call
mechanism. Ali the group components then join together to call a multi-operation a.nd
are ali synchronized. When the call is terminated, results- if any- are made available to
ali callers' components before their parallel activities are resumed. In a multi-operation
execution, many components may concurrently signal different exceptions. Then Arche
provides a resolution function, which is declared within a class. A resolution function takes
a sequence of exceptions as input parameter and returns an exception called concerted

exception. The resolution function is then implicitly invoked when the execution of a
multi-operation results in the signal of an exception by at least one of the multi-operation
components.

2.4.13 Exception Handling in Other Languages

Trellis/ Owl [18] is a.n important landmark in the history of object-oriented language
design. When an operation is invoked and it is unable to complete, the interface of the
operation has a list of exceptions that the operation can signal. The error message not
found (a familiar run-time error when programrning in an untyped language like Smalltalk)
could not occur in the strict compile-time type checking of Trellis/Owl. Exceptions are
created with the keyword signal, and handlers are defined with the clause except on, similar
to CLU's exception handling.

Actl (39) is an object-oriented language designed on the basis ofthe actor model. Each
actor delegates the message to which it cannot respond, to another actor called its proxy.
The proxy ta.kes charge of the task it has been delegated a.nd the delegating actor is ready
to process another message. The proxy knows the delegating actor in case it should need

2.5. Evaluation and Discussion 31

a.dditional informa.tion. Delegation, li.ke class inheritance, is a means of sharing behavior
(i.e. operations). However, delegation is more :B.exible than inheritance: an actor may
dynamically choose new proxies, whereas the inheritance graph is statically defined at
compile time. A specific actor called Object is the universal proxy and the root of the
"delegation tree". In this context, error handling is distributed: the continuation of a
message may be one of the actors which handle exceptions, by activating an interactive
debugger. Users can thus define new actors processing exceptions in a way suited to their
requirements.

2.5 Evaluation and Discussion

Although it is difficult to claim which model and mechanism implemented for a single
language is better than the others, the relative advantages and disadvantages of ea.ch
mechanism will be identified and addressed below. Figure 2.4 provides a summary of
the main aspects of the exception mechanisms presented in Section 2.4. The figure high­
lights the di.fferent approaches for each design issue identified according our taxonomy
(Section 2.3).

Exception Representation. With respect to exception representation, we can observe
that 6 mechanisms have represented exceptions as symbols. The others have represented
exceptions as objects: 4 mechanisms have represented exceptions as data objects, and only
2 have chosen to represent exceptions as full objects. We can conclude that several designs
still intermingle object-oriented solutions with conventional solutions since halfthe studied
exception mechanisms have represented exceptions as symbols. From the perspective of
language uniformity, notions related to exception handling should be defined according to
the object-oriented programming paradigm [32, 33). In fact, object paradigm was bom
during a time when procedural programming was abundantly dominant. As a result,

some mechanisms of languages, called hybrid languages, combine procedural solutions of
progra.mming with object-oriented ones.

The handlers of a dependable system need useful information to da.mage assessment
and consequent error handling. Handlers may not be in tbe same context where the
design fault which caused the exception raising. Extra-information should be passed to
the corresponding handler so that it can perform correct and effective errar handling.
When an exception is a mere symbol, it cannot pass parameters back to its handler. This
forces the programmer to communicate via global variables, which in tu.m decreases the
modularity of the system. Extra-information passing can be performed naturally when
exceptions are represented as objects. The representation of exceptions as objects allows
the inclusion of context-related information that can b e passed implicitly by the exception

2.5. Evaluation and Discussion

~
.Jt!

<:6 "' Lrl ~ :c
"O

m ãi ~
"3 Cl) <(Cl)

Cll Cll "8 ... ID Q. "O
~

Cll L;

"O o E ... > Cii ·:; êií e
ijj ~

ID
<(...J C/) () .., o " w al <

Exception
Represent..tion

Symbols .I ./ ./ .I .I ./

Exception
Interface

Handler
Attachment

Handler
Binding

Exception
Propag~tion

Continuation of
the Control Flow

Oeanup
Actions

Reliability
Checks

Concurrent
Exception
Handling

Data Objects .I ./ ./ ./
Full Objects ./

Unsupported ./ ././ ./ ./
Optlonal ./ ././ .I
Obliged ./.I
Hybrid ./

Statement ././ ./././././ ././
Block ./ ././././ ./

Melhod ./ .1.1././.1./ .1.1
Object .I./
Class ./.I .I./ .I .I./

Exceptíon .I
Static ./ ././

Dynamic

Semi-Dynamic .1.1 .1./.1.1.1./ ./
Automatic ./ ././.!././

E.xplicit .1.1 .1./.1.1.1.1 .I
Resumption .1.1 .I
Termination .1.1./.1.1.1.1.1.1.1.1.1

Unsupported

Use of Explicit Propagation

Specific Construct .I./ .I ./.1.1 ./
Autom.atic Cleanup

Oynamic Checks ./.1.1.1.1.1.1.1./ ./
Static Checks .1.1.1.1.1.1.1.1./
Unsupported .1.1.1.1.1 ././././

llmited ./ ./

Complete ./

Figura 2.4: Summary of the Features of the Exception Mechanisms

32

2.5. Evaluation aod Discussion 33

mechanism at run-time as well as explicitly by the signaler declaring the information in
the state of the exception object.

Exception Interface. As regards the exception interface, 5 exception mechanisms have
supported it, 4 mechanisms have not forced its use, 2 mecha.nisms have forced its use, and
only 1 mechanism has adopted the bybrid solution. Java is the only design that adopts
the hybrid solution. Designers of exception mechanisms have opted for a :flexible solution
regarding exception interface; programmers usually are not required to specify predefined
and user-defined exceptions that a method may signal. However, tbe inclusion of excep­
tion interface in the metbod's signature leads to better readability (8). This feature allows
a programmer to state the intent of a method in a precise way, by specifying both its ex­
pected normal and exceptional behaviors (27). Knowing which exceptions a called method
may signal, the client code may guard easily against exceptional behaviors by providing
appropriate handlers [27). This is in line with the idealized-fault-tolerant-component mo­
dei, i.e., components with well-defined interfaces which involves constraining the patterns
of normal and exceptional interactions among the components.

Handler Attachment. With respect to handler attachment, 9 mechanisms have inclu­
ded statement handlers, 6 mechanisms bave included block handlers, only 2 mechanisms
(Extended Ada and Beta) have included handlers at tbe level of objects, 7 mechanisms
have included class handlers, and only 2 mechanisms (Lore and Beta) have included ex­
ception handlers. For the purpose of improving the writeability and structuring of the
dependable systems, it is desirable to allow multi-levei attachment of handlers, i.e., the
attachment of handlers to several levels of protected regions such as exceptions, classes,
objects, methods and so on. However, only the exception mechanism of Beta supports
multi-level attachment of handlers.

It has been a tendency to provide programmers with high :flexibility for de.fining the
size of protected regions. In other words, several exception mechanisms have allowed
software developers to attach handlers to blocks, and they can define tbe extent of a
protected region by means of keywords. However, the use of block handlers violates
explicit separation of concerns, since the exceptional code is intermingled with normal
code, albeit moved to the end of statement blocks. Another disadvantage of defining
protected regions as blocks of statements is that nested blocks are usually added for
the sole purpose of attaclring an exception handler [37). As a result, it leads to the
development of dependable software which is difficult to read, maintain and test. In

ad.dition, block handlers are not absolutely necessary. Statement handlers enable the
cause of the exception to be located more precisely, and can be used without violating
the separation of concems. The exception handling model of Guide is a typical example
of design that adopts only statement handlers and achieves explicit separation between

2.5. Evaluation and Discussion 34

the normal and exceptional activities.
Some languages offer another feature related to the handler attachment: the all- en­

compassing default handler. With this feature, programmers may provide a single handler
attached to a protected region to handle any exceptions that have not been provided spe­
cific ha.ndlers for. In order to use this feature in Modula-3 (Section 2.4.5), progra.mmers
add a pa.rt else to the part except of the exception-handling b1ock. However, the use
of the all-encompassing default handlers may be error prone. The pa.rt else handles all
exceptions, including those the software developer know nothing about. In general, the
exceptional adivity of a dependable system should handle only exceptions its program­
mers actually know how to ha.ndle. In other cases, it is better to execute cleanup code
a.nd leave the handling to code that has more information about the exception and knows
how to handle it. Severa! exception mechanisms, such as Delphi, Ada95 and C++, also
adopt this error-prone feature in order to provide a high degree of flexibility for handler
attachment.

Handler Binding. Related to handler binding, 3 mechanisms have implemented the
static approach, none has implemented the dynamic approach, and 9 mecbanisms have
implemented the semi-dynamic approach. Static binding leads to better readability since
it is easier to verify which ha.ndler would be activated for a given exception occurrence.
With dynamic and semi-dynamic binding, it is more difficult since exceptions are propa­
gated dynamically and the binding depend effectively upon the control ftow at run-time.
However, exception propagation is not allowed and there is no run-time search to find
handlers in the static approach (Section 2.3). It has been said that not to propagate ex­
ceptiona.l results of a conceptuallevel equal to that of the operation breaks reusability [8).
The callers of an operation generally have better solutions for handling than statically
bound handlers (local handlers) that are unaware o f the computation history.

The dynamic and semi-dynamic approacbes take the invocation history into account
while finding for a handler as opposed to the static approach. In fact, the ha.ndler binding
in the dynamic and semi-dyna.mic approaches depend effectively upon the control flow at
run-time. From the perspective of dependable software, it sbould be possible to change the
currently installed handler at run-time without shutting down or rebooting the system.
Most dependable object-oriented systems a.re essentially criticai and cannot be shut down
and rebooted. Therefore, some way of dynamic binding should be supported.

Exception Propagation. With rega.rd to the exception propagation, 6 mechanisms
have supported automatic propagation and 9 mecbanisms have implemented the explicit
propagation. The exception mecbanisms of Smallta.lk, Extended Ada and Beta adopt
static binding and therefore have not supported any kind of propagation. Although most
mecbanisms allow explicit propagation of exceptions, automatic propagation is usually

2.5. Evaluation and Discussion 35

adopted as default behavior. In fact, Ada95, Eiffel, Modula-3, C++, Java and Delphi ha­
ve implemented both semi-dynamic binding and automatic propagation. Thus flexibility
also has influenced this design issue in the different except ion handling proposals. Howe­
ver, automatic propagation may allow an exception occurrence be inadvertently bound
to a.n inappropriate handler. In addition, automatic propagation o f unhandled excep­
tions through different leveis of abstraction may compromise information hiding because
the exception object can reveal information about the original signaler to other than its
immediate caller. lt decreases modularity since it can thereby increase coupling [73]. Ex­
plicit propagation addresses this problem since the handling of an exception occurrence
is limited to the immediate caller in this approach. Explicit propagation of exceptions is
only forced in 4 mecha.nisms: Lore, Guide, Extended Ada and Arche.

Continuation of the Contr ol Flow. Related to continuation of control flow, all me­
chanisms have adopted the termination model. Very few languages, such as Mesa [47] and
PL/ I (41] (which are not addressed here) , implement exclusively the resumption model
which has been considered to be too complex (38, 33]. Beta, Smalltalk and Lore provide
both the termination and resumption models. Mecha.nisms that support resumption are
very powerful a.nd flexible, but it turns out to be diflicult to use by application program­
mers. From the viewpoint of fault tolerance, a.n exception mechanism should be simple
and reliable. A mechanism implementing resumption has to support a more complex
pattern of interaction: the system invokes a component which in turn can invoke the sys­
tem by signaling a.n exception [38]. Unnecessary complexity may introduce error-prone
features in the design of an exception mechanism and complicate the programmer's task
while developing its dependable system. In fact, as far as fault tolera.nce is concerned the
termination model is considered to be most adequate due to its clearer sema.ntics (40).
A formal treatment of the termination model within the framework for software fault
tolerance is given by Cristian [12].

Cleanup Actions. With respect to the cleanup actions, 1 mechanism (Extended Ada)
has not provided a.ny support for cleanup actions, 4 mechanisms have only allowed to spe­
cify cleanup actions by means of explicit propagation, 7 mechanisms have provided specific
constructs, and nane of the exception mechanisms h as provided automatic facilities. Thus
most exception mechanisms provide a specific construct which is executed whenever the
protected region unit exits. Ideally the exception mechanism should be responsible for
performing cleanup actions automatically. It could make programmer job more simple
and less error prone, and would allow to achieve a nwnber of quality requirements, such
as readability, maintainability, and simplicity. However, the feasibility o f this approach is
doubtful since implementing automatic cleanup may be too difficult , and investigation of
alternate methods is required (37].

2.5. Evaluation and Discussion 36

Reliability Checks. As regards the reliability checks, 10 mecbanisms have supported
dynamic c.hecks, and 9 mechanisms have supported static checks. Most mechanisms per­
forro static checks, followed by some level of dynamic checking. Some mechanisms have
implemented either exclusively dynamic checks, or only static checks. In Smalltalk, for
instance, checks are all performed dynamically. It is a untyped language, if there are any
type errors tbey will occur at run-time. Therefore Smalltal.k cannot be considered an
adequate language for construction of dependable object-oriented software, altbougb tbe
design of its exception mechanism is object-oriented. Smalltalk is more suitable for other
areas of system development. In fact, different languages simply bave different goals, and
are tailored to meet the needs of different communities. Unlike Smalltalk, C++, Java,
and many other languages, Eiffel takes the view that error handling and fault tolerance
semantics sbould be tbe central pa.rt of the language. The aim of its design cri teria is allow
the development of robust applications. According to the Eiífel's discipline, an exception
a.rises only if a routine fails beca use of some erro r (27]. Eiffel contains a broad range of te­
chniques such as pre-conditions, pos-conditions and assertions, which are complementary
to the exception mechanism (Section 2.4.4). With the use of these additional techn.iques,
in most cases there is no need for naming exceptions or for providing a raise statement.
Ali that matters is whether a failure that would violate the object's contract occurred in
a method.

Concurrent Exception Handling. Related to the issue of concurrent exception han­
dling, only the Arche language has effectively provided complete support for it. Arche
supports a mechanism based on a concurrent exception-handling model whose features
enforce the construction of correct and robust programs. Arche's exception mechanism
allows user-defined resolution of multiple exception amongst a group of objects tbat be­
long to different implementations of a given type. However, this approach is not generally
applicable to the coordinated recovery of multiple interacting objects of different types.
Moreover, the exception resolution mechanism implemented in Arche is not based on the
concept of exception tree (Section 2.2.2). Issa.rny et al. (32, 33] argues that exception
trees are not indicated for parametrised exception, so Arche have introduced the concept
of resolution function to determine which handler should be activated in case various
exceptions are raised in a cooperating group of objects. However, to program resolution
functions it seems not to be an easy task since application developers are responsible for
deciding how to implement resolution functions. As a consequence, concurrent program­
ming and concurrent exception handling in Arcbe is not simple and can become rather
difficult to use.

To summa.rize our discussions, the following issues conclude this Section:

• Several design decisions are based on too flexíble and complex solutions. In spite of

2.6. General Design Criteria 37

the prime aim of exception mechanisms in working as a simple and reliable scheme

for developing robust programs, a number of their design decisions still are based
on severa.l flexible and complex solutions. The use of fiexible and complex features
may lead to the construction of dependable object-oriented software which is error
prone. The use of all-encompassing default handlers is an example o f fiexible feature
with unnecessary expressive power which may cause the introduction of additiona.l
design faults.

• Lack of support for concurrent exception handling. The main drawback of the cur­
rent exception handling techniques is the lack of complete support to handle con­
current exceptions. Only Arche has effectively provided support for concurrent
exception handling. However, as stated a.bove, its exception mechanism has some
limitations. In this way, in actual concurrent object-oriented languages, exception
handling is still an evolving subject where no clear consensus exists and many open
problems remain.

• Studied exception mechanisms have not fully addressed the demanding quality requi­

rements. None of the investigated exception mechanisms have incorporated design
decisions which are fully suitable for developing dependable object-oriented software.
Designers of exception mechanisms do not pay enough attention to the demanding
quality requirements, such as readability, modularity, uniformity, maintainability
and reusability. In addition, the advantage of one mecbanism is often the disadvan­
tage of the other. For instance, the mecbanisms of Lore, Smallta.Ik and Extended
Ada adopt design solutions highly integrated with the object paradigm, but fail in
providing an exception mechanism more restrictive and ease to use. However, it
is worthwhile to highlight the design of the exception mechanism of Guide which,
according to our evaluation, has reached the highest punctuation in our ranking. In

addition, the exception mechanism of Eiffel is interesting since it is complemented

witb a broad range of techniques as discussed above. We can claim tbat both mecha­
nisms have a design more suitable to produce dependable object-oriented software
with demanding quality a.ttributes, although no support for concurrent exception
handling is offered for these mechanisms.

2.6 General Design Criteria

The ta.xonomy (Section 2.3) identified the several design issues of an exception mecha­
nism, and classi.fied the different solutions to design them. The design decisions on these
issues should be taken a.ccording to the demanding quality requirements. Figure 2.5 pic­
tures this scenario. Note that some quality requirements are stated by the dependa.ble

2.6. General Design Criteria.

Deslgn
Declsions

Dependabla 00
Appiicatlon

Writeábility

Testability

Figura 2.5: Quality Requirements of Exception Mechanisms

38

object-oriented applica.tions using the exception mechanism, while others are imposed
on the exception mechanism itself. However, the designs of ex:isting exception ha.ndling
mecha.nisms ha.ve not sa.tisfied these requirements (Section 2.5).

This section outlines the criteria to design an effective exception mecha.nism for de­
veloping dependa.ble object-oriented systems. Based on the criteria, we define the design
choices for an ideal exception handling model for this kind of systems. The criteria and
the proposed exception handling model have been developed based on our extensive work
in building dependable object-oriented systems (19, 60, 53, 54, 63, 71, 69] a.nd exception
mechanisms for this kind of systems [23, 21, 57, 58, 61, 69].

2.6.1 Quality Requirements of an Exception Mechanism

Ql. Readability. One ofthe main reasons to use a.n exception mecha.nism isto promote
program rea.da.bility [6, 48]. The importance of reada.bility increases regarding dependa.­
ble object-oriented software since the number of possible exceptions a.nd the exceptiona.l
activity to dea.l with such exceptions are both very large and complex. The exception me­
chanism should promote explicit separation between the exceptional and normal execution
co de, following the overall structure of the component-fault-tolerant-idealized model (Sec­
tion 2.2.1). A mechanism with a clear sepa.ration will be easier to read and understand,

2.6. General Design Critería. 39

highlighting the main purpose and extent of the protected region and the abnormal code
in the exception handler section. Otherwise, the code for the normal situations may then
be difficult to read.

Q2. Modularity. An exception mechanism should yield dependable object-oriented
applications in which the effect of an abnormal condition occurring at run-time in a com­
ponent will remain confined to this component, or at least will propagate to a few neigh­
boring component only [44]. In this way, the exception mecha.nism should ensure each
component of a dependable object-oriented application practices information hiding (73].

Q3. Maintainability. It is widely estimated that 70% of the cost of software is devoted
to maintenance (44]. An effective exception mechanism should not neglect this aspect
and promote ease of program ma.intenance. If dependable object-oriented software can
not easily changed, additional errors will be introduced during the ma.intenance phase.
As a result, the design of an exceptíon mechanism for dependable object-oriented systems
should specially empbasize simplicity and program readability.

Q4. Reusability. Designing for reusability means that the system has been structured
so tbat its components can be chosen from previously built products. The exceptional
activity of a software component should be reused as well as the normal activity. Alter­
natively, exceptions and handlers are defined independent of tbe component, thus reused
independently. If reusability is not satisfied, it compromises the ability to incorporate
new exception handlers into idealized fault-tolera.nt components. lt forces programmers
to write exception-handling code even if the ma.in body of code is already available (37).

Q5. Testabilit y. Software testability refers to the ease witb which software can be
made to demonstrate its faults through (typically execution-based) testing. In general, a
system's testability relates to severa! structural issues (2]: (i) its separation of concems,
(ii) its leve] of documentation, and (iii) the degree to which the system uses informa­
tion hiding. Object-oriented software testing is still an evolving area. Furthermore, the
addition of exceptions and exceptional behavior complicates significa.tively the testing
activity. It should not be dlfficult to analytically verify that every possible error has a.
known handler, and it should not be hard to test every exceptional scenario in a systematic
manner. Depedanble object-oriented software should be well-tested in order to decrease
the possibility of manifestation of residual faults at run-time. The design decisions of
an exception mechanism should be taken without damaging the testability of dependable
object-oriented software.

2.6. General Design Criteria 40

Q6. Writeability. Dependable object-oriented systems should embed error recovery
activities at various leveis of the system. In this way, the complexity inherent to such
systems could be controlled in a flexible and systematic approach, and redundancy could
be similarly added at severallevels of an object-oriented system. However, care is needed
in introducing expressive power. Unnecessary expressive power may introduce additional
complexity for the exception mechanism (Section 2.5).

Q7. Consistency. Components of a software system should be kept in a consistent
state, regardless of whether the co de completes normally or is interrupted by an exception.
The consistency of components of dependable object-oriented systems should always be
maintained, because such systems usually continue to execute even in the presence of
errors to prevent catastrophic failures.

Q8. Reliability. The exception mechanism features should aid the development of
reliable programs. Therefore, the exception mechanism should be designed to avoid error­
prone features and to maximize automatic detection of programming errors. In fact, the
team. of designers of a dependable object-oriented software has yet to deal with many fault
types. Additional faults should not be introduced by the use of the exception mechanism.
The exception handling system should anticipate and prevent common progra.mmer errors.

Q9. Simplicity. As with alllanguage features, the exception mechanism must be sim­
pie to understand and use. Meyer [44) advocates that a good exception mechanism should
be simple and modest. Tberefore, tbe exception mechanism should not contain unnecessa­
ry complexity. It should have a consistent semantic structure that minimizes the number
of underlying concepts. In otber words, the concepts introduced by an exception me­
chanism should be as small as possible and consistent with the needs of the dependable
object-oriented applications. It should have few special cases and should be composed
from features that are individually simple in their semantics. In a exception mechanism
that programmers of dependable systems master totally, they feel confident and can con­
centrate on the complexity inherent to tbeir systems rather than on the intricacies of the
exception mechanism.

QlO. Uniformity. The exception mechanism should have uniform syntactic conven­
tions and should not provide several notations for the same concept. In addition, the
design solutions of an exception mechanism for object-oriented systems should be uni­
formly adopted in the ligbt of object-orientation. Object-oriented solutions should not be
intermingled with conventional solutions. Otherwise, it would affect negatively reusabili­
ty, modularity, testability of the dependable object-oriented software using the exception

2.6. General Design Criteria 41

mechanism.

Qll. Traceability. Dependable object-oriented software needs useful information to
damage assessment and consequent error recovery. The information should be passed
by the exception mechanism together with the notification of the exception, and it may
include the name, description, location, severity of the exception, propagation chain and
other useful data (Section 2.2.1).

Q12. Performance. Performance is always a consideration. There are two major
trends in the exception mechanism design: (i) the time for searching a suitable handler
when an exception is raised - ideally, the complexity of the search algorithm should be
0(1); (ü) run-time overheads caused by the exception mechanism under normal operation
conditions - ideally, the mechanism should be designed so that run-time overheads are
incurred only when handling an exception. However, in the case of dependable systems,
in particular, where speed of error recovery is on prime importance, an application may be
prepared to tolerate a little overhead on the normal error-free operation (6]. Performance
frequently compromises the achievement of all other qualities. Some performance penalty
should be tolerated for a greater quality of the exception mechanism. In this way, the
other qualities should be priorized in designing an exception mechanism for dependable
object-oriented software. Performance is really crucial in hard real-time systems which is
not our study aim. We refer to [37] for deeper discussions regarding exception handling
and real-time systems.

2.6.2 An Ideal Exception Handling Model

After analyzing the demanding quality requirements, we discuss each design decision and
present an ideal exception handling model for dependable object-oriented software. We
point out which quality requirements each design choice affects positively or negatively.
Figure 2.6 summa.rizes these infiuences. Tradeoffs also are discussed since the quality
requirements may confiict.

D 1. Exceptions Represented as O b jects. Exceptions should be represented as (full
or data) objects. This design decision has a number of benefits. For instance, it leads
to better traceability (Qll) and modularity (Q2) since extra-infonnation passing can be
performed naturally when exception occurrences are objects (Section 2.5). Moreover, this
representation is integrated uniformly (QIO) with the object paradigm and has a number
of advantages when compared to the classica.l approach, such as [8, 15]: (i) exceptions
organized into an inheritance hierarchy which makes the system easier to reuse (Q4), read

2.6. General Design Criteria 42

Application Exception
Mechanism

Quality
~

Q)

Requirements >. >. (.)

~ ~ ~ ~
(.) ~

c
~ ~

c
~

nl

Design ::õ ~
c ::õ ~

Q) ~ ~ E E
(ü

~
(ij :§

nl nl ::õ g (!) .g 'O :J c: , (!) êjj
.~ a. (.)

Decisions nl 'O (ü :J (ij - c E c nl (!)
(!) o Q) Q)

~
o ã) ~ ~ 0.. a; ~ ~ a: 1- () a: ~ o ... N ..- 1:\i (\') ...; 8 u:i ,..: có O) o o o o o o o o o o o

Exception Full Objects/Data Objects + + + + + + + + + + -
Dl. Representation Symbols - - - - - - - - - - +

Unsupported/Optional - - - - - + - + - +
02.

Exception
Oblíged + + + + + - + - + -Interface
Hybrid + + + + + - + - + -

Handler StatemenVBiock - - - - - + -
03.

Attachment Method/ObjecUCiass/Exception + + + + + - + +
Statlc + + - + + + +

04.
Handler

Dynamic Binding - - + - - -

Semi-Dynamic - - + - -
Exception Automatic - - - - - + - + + 05.

Propagation Explicit + + + + + - + - -
Continuation of Resumption - - -

06.
the Control Flow Termination + + +

Unsupported - - -
Oeanup Use of Explicit Propagation - - - - - + 07. Actions Specific Construct + + + + +

Automatic Clenaup + + + + + + + + -
Unsupported -

08.
Reliability

Dynamic Checks + -Checks
Static Checks + +

Concurrent Unsupported - - - - - - -
09. Exception limited - - - - - - - - - -

Handling
Complete + + + + + + + + + +

Figura 2.6: Design Decisions x Quality Requirements

2.6. General Design Criteria 43

(Ql), test (Q5), maintain (Q3) and ex:tend; (ii) handler definition is powerful (Q6), since
handlers do not only handle one kind of exception but ali exceptions that are subclasses
of it - consequently, less handler bindings are needed, and the program is shorter which
improves readability (Q2) and makes the mechanism more simple and easier to use (Q9);
(iii) handlers that are independent of any execution context can be attached to exception
classes, and handlers attached to classes can be inherited by sub classes (Q6) ; and (i v)
the use of the exception mechanism is more reliable (Q8), since representing exceptions
as mere symbols may be error prone.

D2. Obliged Exception Interface. According to the idealized-fault-tolerant-component
model (Section 2.2), each system component should be able to return well-deflned res­
ponses. The normal and exceptional responses o f the components o f a dependable system
should be rigorously specified. To understand which exceptional responses a method may
return, one should not have to examine its implementat ion. In fact , the presence of excep­
tion interface leads to better readability (Ql) (Section 2.1). This feature also promotes
the construction of modular software systems (Q2) [8], which in turn improves maintai­
nability (Q3), reusability (Q4) and testability (Q5). Finally, exception interface affects
the conformance rules checked by the compiler and makes the exception mechanism mo­
re reliable (Q8). Therefore, exception interface should be obliged. However, the hybrid
approach a.lso could be adopted since it is diflicult to designers anticipate ali exceptions,
many exception types are unpredictable by nature.

D3. Multi-levei Attachment of Handlers. For the purpose of improving the wri­

teability (Q6) and structuring of dependable object-oriented software, it is desirable to
allow the multi-levei attachment of handlers (Section 2.5). The programmer can assume
the existence of different leveis of handler attachment. When an exception is related to an
operation, a handler for this exception may be locally associated with the operation. Al­
ternatively, handlers can be associated with a class, which can be applied to ali operations
of that class. It is also possible to attach handlers to objects and exceptions themselves.
Such flex:ible attachment has many advantages: (i) it provides a clear separation of the
object abnormal behavior from the normal one according to the concept of an idealized
fault-tolerant component (Ql); (ii) protected regions can be factored out at the respective
leveis of classes, objects and operations (Q6); (iii) software layering facilitates the design
o f fault-tolerant systems; and (i v) the close integration between the language and the
exception mechanism could be obtained through the uniform use of the object paradigm
(Q9). However, block handlers should not be supported. The use of block handlers usual­
ly intermingles the exception handling code with the normal flow of an operation, which
may result in less readable (Ql) and reusable (Q4) programs. Separation of concerns is

2.6. General Design Criteria. 44

on prime importance for dependable object-oriented systems. The error handling code
is detailed and complex and may then make code for the normal situations diffi.cult to
read (Ql) and ma.intain (Q3). Explicit separation of concerns achieves a number of soft­
ware qualities: readability (Ql), modularity (Q2), maintainability (Q3), reusability (Q4),
testability (Q5) and writeability (Q6).

D4. Semi-Dynamic Binding. As stated previously in the Section 2.5, although the
static approach leads to better readability (Ql), some way of dynamic binding should be
supported for dependable systems. We believe semi-dynamic binding is sufficient. Semi­
dynamic binding associates different handlers with the exception in different contexts
during a program's execution. In addition, the semi-dynamic binding method can be used
to achieve the functionality similar to that of the dynamic method. A semi-dynamically
bound handler can call different handlers based on run-time conditions. However, static
binding cannot achieve this because the run-time condition may not be valid in some
contexts. Although this design solution has negative infiuences on readability (Ql) and
simplicity of the exception mechanism (Q9), the adoption of explicit propagation (D5)
minimizes such negative impacts. Explicit propagation limits the handler binding to the
local context related to the signaler and to the immediate caller.

DS. Explicit Propagation of Exceptions. Explicit propagation should be the only
way of propagating exceptions along the chain of invokers. According to the CLU's desig­
ners, the caller of a method x should know nothing about the exceptions signaled by the
methods which are called during the execution of x. The handling of an exception occur­
rence should be limited to the immediate caller. Explicit propagation directly improves
modularity (Q2) (Section 2.5), which in turn improves readability (Ql), maintainability
(Q3), reusability (Q4), testability (Q5) and reliability (Q8). The exception mechanism
should therefore not provide automatic propagation and should force the users to expli­
citly rename any propagated exception. When automatic propagation is disallowed, the
set of handlers that can field a particular exception can be statically determined, thus al­
lowing additional compiler checks (Q8). However, this design choice obviously constrains
writeability (Q6) and performance (Q12).

D6. Termination. As discussed in Section 2.5, termination should be the only sup­
ported model for continuation of the control :flow. A mechanism implementing only ter­
mination is very simple to construct (and hence more reliable - Q8) since the signaling
of an exception can be regarded as an abnormal return from the component [38). From
the viewpoint of fault tolerance, the resumption model introduces unnecessary expressive
power [40) as well as additional complexity for the exception mechanism (Q9) (40, 33].

2.6. General Design Criteria 45

Practical experience with exception mechanisms providing resumption has shown that the
resumption model is more error prone (27]. FU.rthennore, it can promote the unreliable
programming practice (Q8) of removing the symptom of an error without removing the
cause (27).

D1. Explicit Support for Cleanup Actions. The use of an exception mechanism
might lead to inconsistencies (Q7) when exceptions are raised [64]. Components of a
dependable object-oriented application cannot be left in inconsístent states, since that the
system should continue to operate even in the presence of errors to prevent catastrophic
failures. Automatic facilities for cleanup actions can be infeasible (Section 2.5) and it
would cause probably high overheads at run-time (Q12). In fa.ct, none of the exception
mechanisms in realistic object-oriented languages have automatic cleanup. Therefore, the
most suitable solution is provide programmers with specific support for cleanup actions;
using explicit propagation to perform cleanup actions is more error prone (Q8), and
more difficult to understand and use (Q9). Furthermore explicit support leads to better
readability (Ql) and writeability (Q6) because it avoids replication of code devoted to
cleanup. This problem is inevitable when using explicit propagation since cleanup actions
are implemented within each handler attached to the protected region.

DS. Static Reliability Checks. The exception mechanism shoúld be designed for
creating highly reliable dependable software. It should provide extensive static checking,
perhaps followed by some levei of dynamic checking. This design decision is devoted to
guide programmers of dependable systems towards reliable programming habits (Q8).
Our decisions in adopting exception interface (D2) and explicit propagation as design
principies facilitate static checlóng. For instance, the compiler may verify if an exception
being raised at run-time will have a bound handler.

D9. Complete Support for Concurrent Exception Handling. We consider that
complete support for concurrent prograrnming as one basic aspect of an actual exception
mechanism because we believe it is extremely important for realistic dependable ob ject­
oriented applications. In practice, the approach classi:fied as limited (Section 2.2.2) can
lead to production of software components which are difficult to read (Ql), maintain (Q3),
reuse (Q4), and test (Q5). In addition, the responsibility related to handler invocation and
exception resolution is left to application programmers which in turn leads to unreliable
programming of dependable object-oriented applications (Q8). From the viewpoint of
fault tolerance, concurrent exception handling is complicated (Section 2.3) and should
be integrated with atomic actions. The effort of developers of dependable object-oriented

2. 7. Ongoing Research 46

systems should be minimized and they should concentrate on issues which are application­
dependent.

2.7 Ongoing Research

As we have concluded in the previous Section, existing exception mechanisms have not
fully addressed an appropriate design criteria. The current lack of effective exception
mechanisms for developing depedendable object-oriented software with the demanding
quality attributes requires the building of new error-handling techniques. Ideally a new
technique developed for a specific programming language should not introduce new lan­
guage constructs. In practice this would make the a.pproacb infeasible for existing lan­
gua.ges. We believe this is the time to map tbe fault tolerance a.pproaches tha.t are well
researched but are not used in practice very often, onto pra.ctical, widely used existing
langua.ges. I t seems to be one of tbe main flaws of the previous research specially related
to fa.ult-tolerant software that ít is still rather theoretical and is applied to exotic systems
and languages [59]. In addition, a new exception mechanism should be developed without
conflict with other existing mechanisms.

One way to extend the facilities o f programming languages is to use preprocessors whi­
ch will accept an extended synta.x as input and map them into the stànda.rd form of the
language. Usually, such extensions however are not compa.tible; then :other preprocessors
may not be combined with each other, which results in unsolvable dilemmas [44]. A ten­
dency for extending object-oriented programming languages isto use the computational
refiection technique. This technique is based on tbe refiection mecbanism which introdu­
ces a new dimension of modularity - the separation of the base-levei computation from
the meta-levei computation. This a.pproach allows to implement adclitíonal mechanisms
for the underlying language without any changes to the language itself.

The work ofHof et al. (31) describes an exception mecbanism ba.sed on meta-programming
and computational refiection. Its implementation was carried out in a speci:fic system but
it could be implemented to most otber systems that support meta-programming. Howe­
ver, such a mechanism does not support concurrent exception handling in cooperating
participants and is not fully integrated with tbe object paradigm. The work of Garcia et

al. [21) proposes a new error-handling technique for developing dependable object-oriented
software also based on a re:fiective approach. The meta-levei implements the exception
mechanism, and at the base levei resides the applica.tion. They bave implemented their
exception mechanism within the Java programming language without any changes to the
language itself by means of a meta-object protocol. The proposed object-oriented excep­
tion handling model is based on the idealized fault-tolerant component (Section 2.2.1) and
establisbes a clear separation between exceptional and normal code. Mitchell et al. [48]

2. 7. Ongoing Research 47

also propose an exception handling model which ensures complete separation between
error handling and normal co de. However, their proposal applies the reflection techni­
que in a different way. Instead of utilizing reflective principies to achieve the separation
between the application and the management mechanisms related to exception handling,
this work explores reflection to separate the aplication's normal code (meta-levei) from
the aplication's exceptional code (base levei).

Object-oriented frameworks is also an emerging technology in the world of object­
orientation. A framework is a reusable and flexible software that can be ex:tended to
produce customized applications. Framework's designers specify variations witbin its
design by means of extension points, which are those aspects of an domain that have to be
kept .flexible; developers of a specific application refine the framework design for the needs
of their aplication by filling in those ex:tension points. Extension poínts describe where
and how the framework is extended and customized. We argue that framework technology
is a sounding idea for implementing an exception mechanism. An exception mechanism
could be implemented as an object-oriented framework providing a set of extension points
since di.fferent kinds of applications would require different functionalities of the exception
mechanism. For instance, dependable systems require the termination policy for the
exception mechanism, but the resumption policy may be useful for simulation systems.
The extension points could implement the different design approacbes for each exception
mechanism 's functionality according to our proposed taxonomy. These ex:tension points
could be easily adapted according the context where tbe exception handling framework is

being employed.
According to [34] the use of design patterns is extremely useful both as a guide during

the framework development and as a help in better understanding a framework design. A
design pattem is a microa.rchitecture that applies to a cross-domain design problem [7].
Some of the most useful pattems describe the framework's extensíon poínts. In this way,
a system of pattems for exception ha.ndling could be developed to assist the building of an

exception handling framework and document its design. The Error Detection pattern [56]
proposes a design solution to detect errors of an application at runtime. However, such
a pattem only encompasses error detection; it does not define means for the de:finition of
handlers to cope with such exceptions. The paper [24] proposes a set of design patterns
for the exception handling domain.

As we have exam.ined in this paper, the maio drawback of the current exception han­
dling techniques is the lack of complete support to ha.ndle concurrent exceptions. Somes
works have been developed to integrate concurrent exception handling with the atomic
action concept. The paper [58) describes a concurrent exception mechanism based on
atomic action structures for the Ada95 language. The coordinated atomic action concept
(CAAction) [69] was introduced as a unified approach for structuring complex concur-

2.8. Conclud.ing Remarks 48

rent activities and supporting error handling between multiple interacting objects in a
concurent object-oriented system. CAActions provide a suitable framework to develop
dependable object-oriented systems. The paper (61] d.iscusses the introduction of concur­
rent exception handling and CAAction schemes into object-oriented systems. This paper
also d.iscusses a d.istributed exception-resolution algorithm.

As stated previously, error handling activities play a special role in the development
of dependable object-oriented software. Traditional methods of object-oriented software
deal with exceptions at late design and implementation phases. Better results might
be achieved if exceptions and exception handling activities might be incorporated in a
consistent and disciplined way during ali phases of development of a dependable object­
oriented software. Instead of assuming that exception handling should be restricted to
the later phases of software development, the work of de Lemos and Romanovsky [14]
describes a systematic and effective approa.ch in how to deal with exception bandling
at ali phases of the software lifecycle. Tbe approach provides a stepwise method for
defining exceptions and their respective handlers, thus eliminating the ad hoc way in
which exception handling is sometimes considered during the later phases of the software
lifecycle.

It should tbere be as little extra work as possible for programmers of dependable
object-oriented systems using a ex::ception mechanism. A mechanism that provides a set
of standard templates or a CASE tool to speed the implementation is often considered
easier to use [37]. In add.ition, a nu.mber of tools could be used during al1 phases of the
software lifecycle. Only a few researchers has dealt with this question. Xept (68] is a tool
that can be used to add to object code the ability to detect, mask, recover and propagate
exceptions from library functions. Accord.ing the authors, its use helps to alleviate or
avoid a large class of errors resulting from function misuses.

2.8 Concluding Remarks

Nowadays exception mecbanisms are important features of object-oriented programming
languages. In the context of dependable object-oriented software, exception mechanisms
are used to structure the fault tolerance activities incorporated to a system. The software
quality attributes of modem software systems require suitable design solutions for an
exception mechanism that wi1l be used to develop dependable object-oriented software.
This paper initially presents an introduction and overview of the notions of exception
handling and fault tolerance. A tax.onomy for classifying the d.ifferent design solutions
in existing exception mechanisms has been developed. The proposed taxonomy addre&­
ses nine main aspects of interest, including exception representation, exception interface,
handler attach.ment, handler binding, exception propagation, continuation of the control

2.8. Concluding Remarks
49

fiow, cleanup actions, reliability checks, and conCUITent exception handling. The excep­
tion handling models of twelve exception mechanisms for object-oriented languages have
been reviewed and evaluated with respect to the developed taxonomy. We also have de­
fined a set of demancling quality requirements which should be satisfied while developing
a proper exception mechanism for dependable object-oriented software. The defined re­
quirements form the criteria which we have used to determine the design solutions for an
ideal exception handling model. Finally, we have suggested directions for future research.

Language features and their corresponding mechanisms for exception handling conti­
nue to evolve in both experimental and commercial object-oriented Ianguages. Our eva­
luation h as concluded that none o f the exception mechanism has addressed an appropriate
design cri teria. From this study, we have found that most of the existing mechanisms still
adopt a number of classical design solutions for the implementation of exception handling
models. In addition, several design decisions for such mechanisms are based on too fiexible
and complex solutions which may lead to the construction of dependable object-oriented
software which is not well structured. Thus, an ideal object-oriented exception mecha­
nism has not yet come out. This is partially because the designers of a new language does
not pay enough attention to the language part that supports exception handling; in most
cases, they usually attempt to add exception handling facilities to an existing language
rather than to keep exception handling in mind at the very beginning of the process of
language design.

However, it is worthwhile to highlight the design of the exception mechanism of Guide
which, according to our evaluation, has reached the hlghest punctuation in our ranking.
In addition, the exception mechanism of Eiffel is interesting since it is complemented with
a broad range of techniques as discussed in the Section 2.5. We can claim that both
mechanisms have a design more suitable to produce dependable object-oriented software
with effective quality attributes, although no support for concurrent exception ha.ndling
is offered for these mechanisms. In fact, the main drawback of the CUITent exception han­
dling techniques is the gap concerning explidt support for concurrent exception handling.
Arche is the only language which has contributed a lot in this area, although it has some
limitations.

2.9. Resumo do Capítulo 2 50

2 .9 Resumo do Capítulo 2

Este capítulo apresentou um artigo que aborda um estudo comparativo de mecanismos
de exceções existentes em linguagens de programação orientadas a objetos. O artigo ini­

cialmente apresenta uma revisão dos conceitos importantes relacionados a tratamento de
exceções e tolerância a falhas. Uma taxonomia é proposta para classificação e comparação
dos diferentes modelos de tratamento de exceções estudados. Os modelos de doze meca­
nismos de exceções são revisados e comparados com base na taxonomia desenvolvida. O
artigo também apresenta um critério de projeto adequado para mecanismos de exceções
utilizados no domínio de aplicações orientadas a objetos confiáveis. Um modelo ideal de
tratamento de exceções é desenvolvido, utilizando o critério de projeto definido.

O estudo realizado neste capítulo conclui que os mecanismos de exceções estudados
não incorporam um modelo de tratamento de exceções adequado para construção de
software orientado a objetos confiável. V árias decisões de projeto destes mecanismos são
baseadas em soluções complexas e demasiadamente flexíveis. O uso destes mecanismos
pode conduzir a construção de software não confiável e que são difíceis de entender, manter
e reutilizar. A principal desvantagem dos mecanismos investigados é a falta de suporte
apropriado para tratamento de exceções concorrentes.

O próximo capítulo apresenta um mecanismo de exceções que adota um modelo de
tratamento de exceções adequado para o contexto de aplicações orientadas a objetos
confiáveis. Além disso, o modelo especialmente provê suporte para tratamento de exceções
concorrentes.

Capítulo 3

Projeto e Implementação de um
Mecanismo de Exceções para
Software 00 Confiável

O desenvolvimento de mecanismos de exceções adequados para a construção de software
orientado a objetos confiável não é uma tarefa trivial. O modelo de tratamento de ex­
ceções deve prover suporte para uma separação explícita entre as atividades normais e as
atividades incorporadas para tratamento de exceções de tal forma a manter sob controle
a complexidade geral do sistema. O modelo deve ser integrado com o modelo de objetos
e oferecer suporte para tratamento de exceções concorrentes. Um mecanismo de exceções
adequado deve ser restritivo e simples de usar de tal forma que erros adicionais não sejam
introduzidos pelo seu uso.

Este capítulo contém o artigo "An Exception Handling Mechanism for Developing

Dependable Object-Oriented Software Based on a Meta-Levei Approach" [21]. Este artigo
foi publicado em uProceedings o f the 1Oth IEEE International Symposium on Software

Reliability Engineering - ISSRE'99", realizado em Boca Raton, Florida, Estados Unidos
em novembro de 1999. O artigo apresenta o projeto e implementação de um mecanismo
de tratamento de exceções para construção de software orient ado a objetos confiável. O
mecanismo implementa um modelo de tratamento de exceções adequado para o domínio
de sistemas orientados a objetos confiáveis, contemplando o critério de projeto definido
no Capítulo 2. A técnica de reflexão computacional é utilizada para implementação do
mecanismo proposto.

51

3.1. Introduction

An Exception Handling Mechanism for

Developing Dependable Object-Oriented Software

Based on a Meta-Level Approach

52

Alessandro F. Garcia Delano M. Beder Cecilia M. F. Rubira

Institute of Computing

University of Campinas (UNICAMP)
Campinas, SP - Brazil

{afgarcia, delano, cmrubira}@dcc.unicamp.br

3.1 Introduction

With software systems growing in size and complexity, the quality and cost of develop­
ment and maintainence are still deep concerns for software developers. Object-oriented
component-based engineering is a promising approach for reducing software development
cost while increasing productivity, reusability, qua.lity and dependability of software sys­
tems and their components. However, the development of dependable object-oriented
software requires suitable exception detection and handling mechanisms to satisfy the
system 's dependability requirements.

Tbe current lack of effective error-handling techniques for developing dependable
object-oriented software produces software components which are usually difficult to un­
derstand, to change and to maintain in the presence of faults. ldeally such components
should incorporate their abnormal behavior (i.e., their exceptional activity) in a struc­
tured and transparent manner so the abnormal code would not be amalgamated to the

normal code. In this context, we propose the design and implementation of an object­
oriented exception handling mechanism based on a meta-levei approach. This approach
is based on a computational reflection mechanism which encourages modular descriptions
of software systems by introducing a new dimension of modularity - the separation of the
base-levei computation from the meta-levei computation.

The goal of our work is twofold: (i) to define an exception handling model which
supports a clear and transparent separation of the normal activity of a component from
its exceptional activity, and (ü) to provide a meta-levei architecture which im.plements an
exception handling mechanism. Our exception handling model consists of the following
characteristics: (i) exceptions are represented as data objects (36, 35); (ii) exception
handlers are represented as ordinary methods; (iü) creation of exceptional class hierarchies

3.2. Exception Handling and Fault Tolerance 53

which implement exception handlers, that are orthogonal to the application's normal class
hierarchies; (iv) the attachment of handlers can occur at different leveis: (1) methods, (2)
individual objects or groups of objects, (3) classes, and (4) exceptions; and (v) support for
concurrency and coordinated errar recovery. Our mechanism does not require any special
language support and was implemented within the Java programrning language without
any changes to the language itself by means of a meta-object protocol called Guaraná (51].

The remainder of this text is organized as follows. Sect ion 3.2 defines the terminology
adopted in this work related to exception handling and fault tolerance. Section 3.3 dis­
cusses some important design issues related to exception handling mechanisms in object­
oriented languages and concurrent systems. Section 3.4 presents the concepts of computa­
tional refiection and meta-levei architectures. Section 3.5 presents our exception handling
model. Section 3.6 describes an example of use of the proposed mechanism. Section 3.7
describes our meta-levei architecture for exception handling. Section 3.8 gives a brief
comparison with related work. Finally, Section 3.9 sum.marizes the conclusions of this
work and suggests directions for future work.

3.2 Exception Handling and Fault Tolerànce

Following the terminology adopted by Lee and Anderson (38], a system consists of a set of
components that interact under the control of a design. A fault in a. component may cause
an errar in the internai state of the system which eventually leads to the failure of the
system. Two techniques are available for eliminating the errors from the system's state:
(i) forward error recovery and (ii) backward error recovery. The first technique attempts to
return the system to an error-free state by applying corrections to the damaged state. The
second technique attempts to restare a previous state which is presumed to be free from
errors. Although traditionally exceptions and exception handling constitute a common
mechanism applied to the provision of forwa.rd error recovery, they may provide support
to combine forward and backward error recovery schemes (9]. Thereforet the notions of
exceptions and exception handling can be used to establish a framework for achieving
fault tolerance.

Software components receive service requests and produce responses when that ser­
vice has been completed. If a component cannot satisfy a service requestt it retums an
exception. So the responses from a component can be separated into two distinct catego­
ries, namely normal and exceptional responses. To create a clear framework, the activity
of a component can be divided in two parts: normal activity and abnormal (or excep­

tiona~ activity (Figure 3.1). The normal activity implements the component's normal
services while the exceptional activity provides measures for tolerating faults that cause
such exceptions. Thus, the normal activity of the system is clearly distinguished from its

3.2. Exception Handling and Fault Tolerance

Service Normal
requests responses

Interface
exceptions

t
Retum to [\ormal operation

Failure
exceptions

Normal Activity Abnormal Activity
(fault tolerance by
exception handl:ing)

__/
lntemal

Service Normal
exceptíons Interface Fai.lure

requests responses exceptions exceptions

Figura 3.1: ldealized Fault-Tolerant Component.

exceptional activity.

54

Exceptions can be classified into three d.ifferent categories: (i) interface exceptions

which are signaled in response to a request which d.id not conform to the component's
interface; (ii) failure exceptionswhich are signaled if a component determines that for some
reason it can not provide its specified service; (iii) interna[exceptions which are exceptions
raised by the component in order to invoke its own internai exceptional activity. Note that
an exception is raised within the component, but signaled between components. Whenever
an exception is raised in a component that does not have a handler for it, the exception is
signaled to the component (caller) that dynamically invoked the first one. H no handler
is defined for an exception within the caller, the exception is propagated to higher-level
components. At each levei of the system, a component, called an idea.lized fault-tolerant

component [38], will either deal with exceptional responses raised by components at a
lower level or else propagate the exception to a higher levei of the system.

Progra.m.mers usually refer to faults as exceptions because they are expected to occur
rarely during the component's normal activity. Exception handling mechanisms (or merely
exception mechanisms) are often provided in programming languages and allow software
developers to define exceptional cond.itions and to structure the exceptional activity of
software components. When an exception is raised by a component, this mechanism is
responsible for changing the normal control ftow of the computation within a component
to tbe exceptional control ftow. Therefore, raising an exception results in the interruption
of the component's normal activity, followed by tbe search for an exception handler {or
simply handler) to deal with the raised exception. The set of handlers of a component
constitutes its exceptional activity part. For any exception mechanism, handling contexts

associate exceptions and handlers. Handling contexts are defined as regions in which the
same exceptions are treated in the same way. Each context should have a set of associated

3.3. The Design of Exception Mechanisms 55

handlers, one of which is called when the corresponding exception is raised.

3.3 The Design of Exception Mechanisms

There are some important issues that should be considered during the design of an ex­
ception mechanism. In this Section we discuss each of these issues in turn.

Exception Representation. Exceptions can be represented as (i) names, (ü) data

objects, or (iü) full objects. Representing exceptions as names is a classical approach
adopted by severa! object-oriented programming languages, such as Eiffel (44). In the
second category, exceptions are classes and an instance of an exception class is created
every time that an exception is raised. The main task of raising an exception is to pass
an exception object as a parameter to the corresponding handler. C++ (35] and Java [30)
adopt this approach. In the third category, exceptions are also organized hierarchically as
classes and the task of raising an exception is to create an instance of the related exception
class and then call it with a ra ise() operation. In this case, the exception is a standard
object that receives messages. The exception handling system implemented in Lore [15]
applies this design solution.

Handler Attachment. Handlers can be attached to: (i) a statement ora block, (ü) a
method, (üi) an object, (iv) a class, or (v) an exception. Statement (or block) handlers are
attached to a statement (ora block ofinstructions), allowing context-dependent responses
to an exception. Method handlers are associated with methods; when an exception is
raised within the method's code, the method handler bound to this exception is executed.
Object handlers are associated with object variables in their declaration; that ís, each
instance has its own set of handlers. Class handlers are attached to classes, allowing the
software developers to define a common exceptional behavior for a class in exceptional
situations. When handlers are associated with exceptions themselves, they are always
invoked if a more specific handler cannot be found. They are the most general handlers
and must be valid in any case, independent of any execution context and o b ject state.

Exception Propagation. The exception propagation to higber-level components can
be performed in two ways: (i) au.tomatic, or (ii) explicit. In the first case, if no handler
is found for the exception within the caller, the exception is propagated automatically
to higher-level components until a handler can be found; that is, an exception can be
handled by components other than its immediate caller. In the second case, the handling
of signaled exceptions is limited to the immediate caller.

3.3. The Design of Exception Mechanisms 56

Continuation o f the Control Flow. When the handler terminates normally, the
related exception is said to be handled. Then the system can return to its normal activity;
however, there is an issue concerning whether the internai activity of the component that
raised the exception can be resumed or not. There a.re essentially two possible solutions,
which correspond to different styles of continuation of the control flow: (i) termination,

and (ii) resumption. In the termination model, execution continues from the point at
which the exception was handled. Conceptually, this means that the component activity
which raised the exception cannot be resumed. In the resumption model, the execution
has the capability to resume the internai activity of the component after the point at
which the exception was raised.

Support for Coordinated Recovery. Very few object-oriented languages support
concurrent exception handling, e.g. the activation of severa! handlers in different concur­
rent objects when an exception has been raised by one of them. For instance, the Arche
language [32, 33] allows user-defined resolution of multiple exception amongst a group of
objects that belong to different implementations of a given type; however, this approach
is not generally applicable to the coordinated recovery of multiple interacting objects of
different types.

3.3.1 Exception Handling and the Object Model .

Even though many object-oriented languages provide exception-handling facilities, only
a few of them provide an exception mecha.nism that is really integrated with the object
model. Classical design issues of exception mecha.nisms should be re-visited in the light
of object- orientation so that exception handling itself could benefit from object-oriented
features. For instance, we advocate that the object-oriented design of an exception me­
chanism should support exception representation as data or full objects. The majority of
the object-oriented la.nguages have adopted the exception representation as names. Al­

though it is the classical approach, it does not provide a dose integration between the
object-oriented language and the exception mechanism.

lt is also an important issue how to relate exception raising to interface checking [46].
In object-oriented programm.ing, each operation (or method) in a type (or class) descrip­
tion is defined by a signature, which specifies the name of the method and the types of
its parameters. Method's signatures should also include the exceptional responses that
an object may return. For example, Java (30] allows the declaration of the exceptions
a method may signal in its signature with a clause throws. Nevertheless, when the type
specification includes this declaration, new problems arise as to inheritance and subtyping
rules. In the subtyping/ conformance relationship, a derived class is designed by including

3.3. The Design o[Exception Mechanisms 57

the specification of the base class as a subset o f its specification. No te that the modifica­
tion of a method's signature is not allowed wben redefining a method. This implies that
the redefinition of operations by derived classes should inherit all exceptions specified by
the base class.

Furthermore, for usability and program writeability, it is necessary to allow considera­
ble flexibility in the placement of handlers. Thus, an object-oriented exception handling
approach should provide different leveis of handler attachment. When an exception is

related to a method, a handler for this exception may be locally associated with the me­
thod. Alternatively1 handlers can be associated with a class and can be applied to all
methods of that class. It is also possible to attach handlers to objects themselves.

3.3.2 Exception Handling in Concurrent 00 Systems

In an object-oriented software system, there may be a number of processes (threads)
running concurrently. There are different ways of dealing with concurrency in object­
oriented systems. In this work, we define a clear distinction between ·objects and threads:

threads are agents of computation that execute operations on obje€ts (which are the
subjects of computation). In this sense, concurrent threads can be classified into three
categories [38]: (i) independent, (ii) competing, or (iii) cooperating. Threads are said to be
independent if the sets of objects accessed by them are disjoint; when:those sets are not
disjoint, then the threads are said to be competing. Threads are said to be cooperating
when they are designed collectively and have shared access to common objects that are
used directly for communication between the threads.

From the standpoint of fault tolerance, the case of independent threads is trivial; the
provision of errar recovery to a number of independent threads is identical to the pro­
vision of error recovery to a single sequential thread. In the case of competing threads,
the provision of recovery is similar to the first case, but the set of objects accessed by
the threads should be restored to a.n error-free state as well. In practice, such objects
often have their ov.-.n error recovery scheme. The implementation of an exception me­
chanism for concurrent systems is an interesting challenge in the presence of cooperative
concurrency: the handling of an exception may involve multiple concurrent components
when they a.re cooperating in the execution of a task. Erroneous information may have
been spread directly or indirectly through inter-thread communication. When one of the
concurrent threads raises an exception, error recovery should proceed in a coordinated
way by triggering appropriate handlers for the same exception within ali the threads (69].

Furthermore, due to the nature of concurrent systems, it is possible that various
exceptions may be raised concurrently by threads of the system. A strv.ctured exception

represents the concurrent occurrence of two or more simple exceptions. Exceptions raised

3.4. Reflection and Meta-Leve] Arcbitectures 58

c;J
Meta-Levei · ·

<<reify>{ l
(MOfji --------------~-----------
Base Levei ~ ~ <<reflect>>

service -- o X ---
result

Figura 3.2: A Meta-Levei Architecture

concurrently may be the symptom of a different and more serious fault [69]. In this
way, an exception resolution procedure is needed to select a suitable handler for the
exceptions raised concurrently; in this case, such a generic handler should also be called
in ali the threads. The work of Campbell and Randell [9] describes a resolution model
called exception tree that includes an exception hierarchy imposing a partial order on
exceptions of the system. The exceptions that are not listed within the exception tree are
categorized as a universal exception. The universal exception is the root of the exception
tree. Such a model is used in order to find the exception that represents ali the exceptions
raised concurrently. So, the exception mechanism must activate the handler attached to
this more generic exception in every one of the concurrent threads.

3.4 Reflection and Meta-Levei Architectures

Computational refiection [43, 51] is defined as the ability of observing and manipulating
the computational behavior of a system through a process called reification. This techni­
que allows a system to maintain information about itself (meta-information) a.nd use this
information to change its behavior. It defines a meta-level architecture which is composed
of at least two dimensions: (i) a base level, and (ii) a meta-level. A meta-object protocol

(MOP) establishes an interface among the base-level a.nd the meta-levei components. The
MOP provides a high-level interface to the programming language implementation in or­
der to reveal the program information norma.lly hidden by the compiler and/ or run-time
environment. As a consequence, programmers can develop language extensions and adapt
component behavior and even make changes to the systems.

Actions that extend the behavior of base-level objects are implemented in the meta­
levei. Refl.ection can be used to intercept and modify the effects of operations of the
object model. For the purpose of illustration, suppose that for each base-levei object o

3.5. An 00 Exceptíon Handling Model

SupOient Exc~tional
Su lient

ml() ESHandler()

f f
Client

Exceptional
Oíent

mlO
m20

ElHandler()
E6Handler()

Server

m3() throws El,
E2,E4,ES,E6

Exceptional
Serve r

E3Handler()

Figura 3.3: Normal and Exceptional C1ass Hierarchies

59

there exists a corresponcling meta-object mo that represents the behavioral and structural
aspects of o. As illustrated in Figure 3.2, if an object x sends a message service to an object
o, the meta-object mo intercepts the message service, reifies the base-levei computation
and takes over the execution; later mo returns (reftects) tbe response to x. From the point
of view of object x, computational refiection is transparent: x sends a message requesting
a service to o, and receives the response with no knowledge that the message has been
intercepted and redirected to the meta-levei.

3.5 An 00 Exception Handling Model

The exception handling model that we have defined was pri:marily designed to facilitate
the development of dependable and reusable software components. In this section we
present the main characteristics of our exception ha.ndling model and discuss the design
choices for each one of the major design íssues described in Section 3.3.

As discussed in Section 3.2, a system may be composed of a set of idealized fault­
tolerant components. In this work, we assume that software designers structure their
applications by creating a set of normal classes which implement the normal activities
of the software components, and exceptional classes which implement tbe abnormal ac­
tivities (Figure 3.3). Therefore, exceptional classes implement the abnormal activity of
tbe application and they are associated to the corresponding normal classes. In Figu­
re 3.3, the methods of the exceptional class ExceptionaiSupCiient are tbe handlers for the
exceptions that should be treated within methods of the class SupCiient. Designers may
compose an exceptional class hierarchy that is orthogonal to the no'!'171.al class hierarchy

of the application. The exceptional classes Ex:ceptionaiSupClient a.nd Ex:ceptionaiClient are
organized bierarchically so that the resultant hierarchy is orthogonal to the normal class

3.5. An 00 Exception Handling Model 60

Excepti.on

~
l l

El E2 Group
Exception

~ - ~
I I I

E3 E4 ES E6

Figura 3.4: An Exception Class Hierarchy

hiera.rchy (SupCiient and Client). Exceptional class hierarchies allow exceptíonal subclas­
ses to inherit handlers from their superclasses and, consequently, they allow exceptional
code reuse.

3.5.1 Exception Representation

In our model, exceptions are represented as data objects. Different types of exceptions
are organized hierarchically as classes. The class Exception is the root of this hierarchy.
Figure 3.4 shows this exception class hierarchy which represents the exceptions that may
be raised during the execution of the application's methods (El, E2, E3, E4, E5 and
E6). The class GroupException extends the class Exception and allows the definition of
exceptions that may be raised by cooperating threads need.ing coordinated recovery (Sec­
tion 3.5.5). Exceptiona1 responses that may be signa1ed by a method must be described
in its method's signature by means of a throws clause. Figure 3.3 shows that method
m3() may signal the exceptions El, E2, E4, E5 or E6. Let us remark here that dueto the
base subtyping relation, a handler def:ined for an exceptíon Eis eligible for any exception,
which is a subtype of E. Permitting severa! exceptions to be named in the same handler
avoids code replication when the exceptions can be handled in the same way.

3.5.2 Handler Attachment

We provide support for multi-levei attachment of handlers. Handlers may be associated
with: (i) an exception, (ii) a dass, (iii) an object, or (iv) a method. Firstly, handlers
may be associated to exceptions themselves (default bandlers). Default handlers are

3.5. An 00 Exception Handling Model

Client

ml()
m2()

Exceptional_
clientl

E6Handler()
m2E6Handler()

Exceptional_
client2

E6Handler()

Figura 3.5: Objects and their Exceptional Classes

61

executed in the absence of a more spedfic handler in the applicat ion. Handlers may be also
associated to a class. In this case, an exceptional class should be created. In Figure 3.3,
the ExceptionaiSupCiient's methods are class handlers for the exceptions 'that should be
treated within SupCiient's methods. In the sa.me way, ExceptionaiServer's methods are class
handlers for the exceptions that should be handled within Server's methods. Nevertheless,
the class handlers for the exceptions that should be treated within Client's methods can be
ExceptionaiCiient's methods or methods that are inherited from superclasses of the class
ExceptionaiCiient. Therefore, the handler for the exception E5 (E5Handler()) is inherited
from the ExceptionaiSupCiient.

In addition, object handlers may also be defined. To implement handlers associated
to individual objects, a new exceptional class must be created. This new class contains
methods that implement the object handlers for the exceptions that should be treated in
any method of the object. For instance, object clientl, instance of the class Client, may
be associated to ha.ndlers that are distinct from the handlers that are associated to the
object client2, that is also a.n insta.nce of class Client (Figure 3.5). The ExceptionaLclientl 's
methods are object handlers for exceptions that should be treated within object clientl.

Furthermore, it is possible that a single exceptional class be associated to object
groups. For example, object handlers associated to client3, instance of the class Client,
could be the sa.me handlers associated to client2, i.e. , these objects may be associated
to a single exceptiona.l class (Exceptional..client2). Thus, client2 and client3 have identical
abnormal behavior, while clientl has a di.fferent one; although they are instances of the
same class. Practical studies [13] have shown that the use of object handlers can produ­
ce better structured programs, facilitating their understanding, maintenance and reuse.
Finally, handlers may be associated to methods. For example, handler m2E6Handler() of
exceptional class ExceptionaLclientl is activated when the exception E6 should be treated
in operation m2().

The search of handlers for raised exceptions is defined as follows: (i) if there exists an

3.5. An 00 Exception Handling Model 62

exceptional class attached to the object, the mechanism tries to find method or object
handlers associated to the method raising the exception; (ii) if none is found , the system
tries to find handlers in exceptional classes or superclasses attached to the normal class of
the object; (iii) if none of these is found, the exception is then signaled to the caller object
and steps (i) e (ü) are repeated; (iv) still, if none is found, the system looks for default
handlers attached to the signaled exception itself. Consequently, when ml() invokes m3(),
the internai exception E3 may be raised. H so does, the exception mechanism activates the
local class handler E3Handler(). The method m3() may signal exceptions El, E2, E4, E5 or
E6. Suppose m3() signals El to ml{); then class handler ElHandler() of ExceptionaiCiient
is invoked. In case m3() signals E4, class handler ElHandler() is also invoked since E4
is subtype of El (Figure 3.4). H m3() signals E5, class handler E5Handler(), inherited
from ExceptionaiSupCiient, is invoked. In case m3() signals E6 to ml(), object handler
E6Handler() of E.xceptionaLclientl (Figure 3.5) is invoked in spite of the presence of the
class handler. Suppose m3{) is invoked by m2() of object clientl , if m3() signals E6; then
method handler m2E6Handler() of ExceptionaLclientl is invoked.

3.5.3 Exception Propagation ·-

Our exception handling model defines explicit propagation of exceptions. The benefits
o f this approach are discussed in [12, 73). The handling o f signaled exceptions is limited
to the immediate caller. If a signaled exception is not handled in the caller, then the
predefined exception failure is further propagated. However, the exception still may be
resignaled explicitly within a handler to a higher-level component. Despite gains in pro­
gramming simplicity, the use of exceptions propagated automatically remains fault-prone
because they are the least well docum~ nted and tested parts of an interface [13). The CLU
designers [40) argue persuasively that this limitation supports the goals of good program
structuring with only a minor loss in its writeability.

3.5.4 Continuation of the Control Flow

We choose the termination model which consists of terminating the execution of the
unit that raises the exception and then transferring control to the exception handler.
The semantic of the termination model is simpler and more suitable for construction of
dependable systems [10]. Mechanisms that support resumption are very powerful and
flexible, but they turn out to be difficult to use by application progra.mmers. In fact ,
they can promote the unsafe programming practice of removing the symptom of an error
without removing the cause.

3.5. An 00 Exception Handling Model 63

3.5.5 Support for Coordinated Recovery

Since the cooperating activities are application-dependent, support should be provided
to application programmers in order to structure their cooperating tasks. In this work
we apply a group framework as a means of allowing designers to improve the structuring
of their concurrent object-oriented systems, and supporting coordinated recovery. In this
sense, coordinated recovery only needs to be activated within the participa.nt threads of a
group. This obviously restricts system design but makes it possible to regard each group

as a recovery region a.nd attach fault tolerance activit ies to each group participant. We
enable the definition of subgroups which contribute to control the system complexity and
allow better organization of both normal and abnormal activities of the enclosing group.

Figure 3.6 shows threads, represented as lines, and activities of the groups, delimited
by rectangles. Group B, composed by threads T2, T3 and T 4, is a subgroup of group A
which has the same composition as B, added of Tl. After the occurrence of an exception
in one of these threads (T3), other participa.nts of the same group (T2 and T4) should
be informed in order to start forward error recovery. H any suitable handler has not
been defined at least in one of the group participants, an abort exception is raised, the
group activity must be undone (backward error recovery), and sucb an exception must
be signaled to the enclosing group (group A). H backward erro r recovery is not executed
with success within the group, then a jailure exception is signaled to the enclosing group.

Each group has participants which are activated by externai activities, e.g. threads,
and which cooperate within the group scope. Participants execute object methods that
should bave been designed to work cooperatively by means of shared objects. Participants
may enter asynchronously in the group activity, but should exit in a synchronized way.
Each group participant has a set of attached exception handlers that are designed to
recover the group cooperatively from eventual errors. An exception tree (Section 3.3.2)
is associated to each group in order to resolve the exceptions raised concurrently.

Implementation of Cooperating Thread Groups. To implement cooperating th­
read groups, we provide two classes that can be used to define groups that need coor­
dinated recovery. To implement a group, the first step is to define a class that extends
the class Group. The class Group contains the methods which deal with the creation and
termination of each participant. Secondly, the programmer should define the participants
that com pose the group by extending the class Participant. Figure 3.8 shows the definition
of a group (Groupl) with two types of participants (Participantl and Participant2). Each
class that derives from the class Participant should be instantiated (participantl and par­
ticipant2) before the group activity is started. In order to build an instance of this class,
the object and the method that each participant executes should be passed as parameters.
Such methods should have been designed to work cooperatively. A new class that extends

3.6. Twin-Engine Aircraft Control System

GroupA
r··-··-··-··-··-··- ·· - ·· - ·· - ·· - ·· -··- ·· - ·· - ·· - ·· - ·· - ·· -··- ·· - :.

T1_, =r- ---------------------------- --------~
1
~

Group B
r-··-· · -· · - ·· - ·· -· ·-· ·- ·· -· · - ·· - · ·-··~

T2~~~--------------------~----------~---

T 3~~-------e ~Â• ~~-Uú __ o_nn ______ ~~~·-l--------~-·
~orm 1

T4~~;---------------------~------------~-- ·-··- ··-··-··-··- ··-··-··- ··-··- ·· ..
I :
·· - ··- ·· - ··- ··- ··- ··-··-··- ··- ·· -··- ··- ·· - ··- ··- ··- ··- ··- ·· - ·· "'

Figura 3.6: Exception Propagation

64

the class Group must also be instantiated (groupl) before the group activity com.mences.
In building an instance of this class, the following parameters should be passed: (i) the
set of group participants, (ii) the set of simple and structured exceptions which sbould be
handled cooperatively by group participants, and (iii) the set of exceptions which should
be signaled by the group to the enclosing group. The pa.rticipants still may register them­
selves dynamically in a group through the method RegisterParticipant (Participant) of the
class Group. This class still provides the method StartParticipant (Participant) which allows
a participant to enter dynamically in a group activity.

Implementation of Simple and Structured Exceptions. The class GroupException
should be used to define the exceptions that may be raised in cooperating thread groups
and tbat need coordinated recovery. We adopt the Composite design pattern [20] (Figu­
re 3.8) to define simple and structured exceptions. This pattern allows application desig­
ners to treat simple exceptions and its compositions (structured exceptions) uniformly.
Simple exceptions are defined by extending class GroupException (El and E2). Structured
exceptions are instances of class StructuredException (e12). The simple exceptions (El and
E2) that compose a structured exception (e12) should be passed as parameters to create
such a structured exception. Hence, each structured exception bas a list of its constituent
exceptions.

3.6 Twin-Engine Aircraft Control System

This Section highlights the benefits of the proposed exception mechanism for the design
of reusable an.d dependable object-oriented software. We present a twin-engine aircraft

3.6. Twin-Engine Aircraft Control System

Participant

Participantl

I

I

I parti~pantl l

Participant2

I

I

I parti~panU I

Group

Groupl

Figura 3. 7: The Definition of a Group

Group
Excepbon

~
I I

El E2

10
Structured
Exception

..
' ' ' I

~
Figura 3.8: The Definition of the Exceptions for a Group

65

3.6. Twin-Engine Aircraft Contrai System

left

engine

right

engine

stability
~ · ·-·· - · ·- ·· - · · - ·· - ·· - ·· - ·· - ·· -··- · ··

state

. . . -
"· · - · · - ··-· · -· · - ·· -· · - ·· - ·· - ·· - ·· - ·· ~

Figura 3.9: The Cooperating Activity of the Group Stability

66

control system that is based on the example described in [9]. Consider a twin-engine
aircraft control software that contains two components responsible for managing two
engines: a left engine and a right engine. Such components can be defined as participant
threads of a group; they cooperate to maintain the aircraft stability.

Figure 3.9 shows the participants left_engine and right_engine of group stability. They
cooperate through a shared object called state. Such an object is used by the participants
to exchange information which is utilized, for instance, on the control' adjustment. The
exception tree for this group is shown in Figure 3.10. If the left (or right) engine fails,
the lefLengine (or right_engine) signals the exception LeftException (or RightException)
and handlers are activated in both participants. The handlers should adjust the controls
appropriately to compensa te for the loss of the left (right) engine in order to conduct
the aircraft to the nearest airport. H both the right and left engine fail , the exceptions
RightException and LeftException are raised concurrently by, respectively, lefLengine and
right_engine. The exception resolution procedure is accomplished by the exception mecha­
nism that searches the handlers for the structured exception emergency _exception attached
to the participants. Immediately, the handlers are activated for this more serious excep­

tion. Such handlers should execute the emergency landing procedure. Besides, other
exceptions could occur that would endanger the emerge.ncy landing procedure (for ins­
tance, fire). Ali such exceptions, if not listed individually within the exception tree, are
categorized as the universal exception.

Figure 3.11 shows a set of classes and their corresponding instances for the group
Stability. The class Engine extends the cla.ss Participant and represents the group parti­
cipants. The cla.ss Stability that derives from the class Group represents the group. In

order to start the group activity, two instances of the class Engine and one of the class
Stability must be created. Participants execute object methods for perfornring the group
activity. In this example, the participants left_engine and right_engine execute the methods
of objects left_control and right_control when performing the cooperative group activity.

3.6. Twin-Engine Aircraft Gontrol System

Figura 3.10: The Exception Tree of the Group Stability

' ' '

~~~_conam li righLcon~jl ~~ I L-"7'""C~ 
, 

, 

I ... _.:.m. I I ri~.:~l l ...:..o/ I .___ __ _. '--- ---' 

Figura 3.11: Object Model for the Twin-Engine Aircraft Control System 

67 

The purpose of object state, instance of class State, is commu.nication between the coope­
rating participants. Simple exceptions LeftException and RightException and structured 
exception emergency_exception a.re a.lso defined. Except ional classes ExceptionaiJefLengine 
and ExceptionaiJight_engine contain the methods which are the handlers responsible for 
the coordinated recovery in participants left_engine and righLengine. 

Object handlers should be defined for the group participants. Note that classes Ex­

ceptionaiJeft_engine and ExceptionaiJight_engine implement the handlers for ali exceptions 
that can be ra.ised by the participants. The structured exception can be defined by crea­
ting the following instance: 

emergency_exception = new StructuredException (left_exception, 
r ight_exception); 



3. 7. Implementation 68 

The set of initializations necessary for starting the group a.ctivity can be as follows: 

(1) Object O Participants = {left_engine, right_engine}; 

(2) Object O InternalExceptions = {left_exception, right_exception}; 
(3) Object O ExternalExceptions = {emergency _exception}; 

(4) Stability stability = new Stability (Participants, InternalExceptions, 
ExternalExceptions); 

Line 1 creates the array with group participants. Line 2 creates the array with excep­
tions that may be raised and must be treated cooperatively by the group. Line 3 creates 
the array with exceptions that must be signaled by the group to the enclosing group. Line 
4 creates the object tha.t represents the group Stability. 

3. 7 lmplementation 

3.7.1 The Meta-Levei Architecture 

In this section, we present a meta-levei software architecture for implementing our ex­
ception mechanism. The architecture consists of a base levei and a meta-levei. The 
base-levei objects are the objects of the application, while the meta-objects implement 
the specific responsibilities of the exception mechanism. When a base-levei object signals 
an exception, it is intercepted by the MOP a.nd its corresponding meta-object searches 
for a.n adequate handler in a way that is transparent to the application at the base levei. 
Applications are composed of normal classes that implement the normal functionality and 
exceptional classes with handlers for the corresponding normal classes. 

Figure 3.12 illustrates the meta-levei architecture for implementing the exception me­
chanism. The base levei is composed of: (i) the exception class hierarchy (Figure 3.4); 
(ii) normal class hierarchies (Figure 3.3); (iii) exceptional classes with handlers that are 
associated to normal classes (Figure 3.3) and (iv) exceptional classes with handlers that 
are associated to objects (Figure 3.5). 

The meta-level is composed of: (i) composers, and (ü) meta-searchers. The composers 
are special meta-objects associated to the application's objects or classes. They delega­
te information from the base-levei to meta-objects responsible for several management 
a.ctions, such as exception handling, persístency and atomicity. The meta-searchers are 
meta-objects responsible for managing exception handling. Furthermore, they receive 
information reified by the composers. Based on these operations and their results, the 
meta-searchers execute the following activities: (i) search for a suitable handler associated 



3. 7. Implementation 

<<Delegate>> :Meta 

6 Searcher 

:ComEoser : 

<<Reflect>> <<Reflect>> 
& : Meta-Levei <<Reify>? ~<Re flect >> 

( MOP ) ~------------~----------~---------------

BaseLevel 
Exce tion 

ElHandlerO 
E2HandlerO 

' Exceptional a 
E2HandlerO 

Figura 3.12: The Proposed Meta-Levei Architecture. 

69 

to the raised exception; (ü) invocation of tbe bandler; (iü) return to the normal operation 
of the application. 

3.7.2 The Meta-Levei Architecture and Concurrency 

Figure 3.13 shows the components of the meta-levei architecture that implements coo­
perating thread groups. The meta-levei is composed of the following components: (i) 
composers, (ii) meta-searchers, (iii) meta-groups, and (iv) EPS (Event Processor Servi­
ce) (49]. Each instance of Participant (Section 3.5.5) is associated to a composer and a 
metaseacher; each instance of Group (Section 3.5.5) is associa.ted to a. composer and a 
meta-group. The composers a.nd meta-searchers were previously described. Meta-groups 
are meta-objects responsible for managing the coordinated recovery of exceptions raised 
by cooperating thread groups. Meta-groups hold tbe following meta-information: (i) tbe 
set of group participants, (ü) the set of simple and structured exceptions whicb should be 
bandled cooperatively by group participants, and (iii) the set of exceptions which sbould 
be signaled by the group to tbe enclosing group. 

The meta-group sends the simple and structured exceptions to EPS tbat must compose 
tbe group 's exception tree. EPS is a monitor for distributed and composite events whicb 
is able to process generic events. In tbis work, EPS is an application utilized for monito­
ring exceptions tbat may be raised concurrently in cooperating tbread groups. EPS and 
meta-group accomplish the exception resolution procedure. Wben an exception occurs, 
EPS informs tbe meta-group, which in tum informs the participa.nts and coordinates the 
invocations of the bandlers in order to start the coordina.ted recovery. Therefore handlers 



3. 7. Implementation 

EPS 

« Dclcgatc>> 

<<R.cify>>: : « RciJ.)'>> : 

Meta-Level : ~ <Reftect>~ : ~ <Reft~ > ? 

Base Level : : ... •y . 

I participant21 ~ 

<<Delegate» 

.. 

.. 

:Meta 
Group 

: ~< Reft e('P. > 

•• 
groupl 

Figura 3.13: The Meta-Levei Architecture for Concurrency. 

are activated in a way that is transparent to the application. 

3. 7.3 lmplementation lssues 

70 

Our mechanism does not require any special language support, a.nd it was implemented 
within the Java programming language. Moreover, EPS has allowed the construction of 
the composition scheme of exception trees based on the aggregated tree concept [49], 
which has ensured gains in performance. 

Our mecha.nism was implemented without any changes to the la.nguage itself by means 
of a meta-object protocol called Guaraná [51). Guaraná is a flexible meta-object protocol 
for Java that allows creating meta-levei objects. Guaraná provides an e:fficient broad­
cast service for communication between meta-objects. Moreover, it provides support for 
composition of meta-objects responsible for different management functions by means 
of composers. These Guaraná capacities and the way our exception mecha.nism was de-



3.8. Related Work 71 

signed allow the meta-objects of our exception hanclling system to be easily integrated 
with meta-objects responsible for other administrative (non- functional) services, such as 
persistency and atomic actions. 

3.8 Related Work 

The work ofHof et al. [31] describes an exception mechanism based on meta-programming 
and computationa.l refiection. Their implementation was carried out in a specific system 
but it could be implemented to most other systems that support meta-programming. 
However, such a mechanism does not support coordinated recovery in concurrent threads 
and its design is not object-oriented. 

The Arche language (32, 33] allows user-defined resolution of multiple exception amongst 
a group of objects that belong to different implementations of a given type; however, this 
approach is not generally applicable to the coordinated recovery of multiple interacting 
objects of different types. In our exception handling model, coordinated recovery can be 
applied to a group of interacting objects of different types. 

3.9 Concluding Remarks and FUture Work 

The current lack of effective error-handling techniques for constructing dependable object­
oriented software motivated us to develop the design and implementation of an object­
oriented exception mechanism. Our exception handling model supports a clear and trans­
parent separation between the normal and exceptiona.l activities of software components. 
This separation allows the production of software components which are easy to unders­
tand, to change and to maintain in the presence of faults. Exceptional classes allow the 
uniform and non-intrusive implementation of error-handling code for every kind of compo­
nent ( concurrent or not). The exceptiona.l class hierarchy allows the reuse of exceptional 
code. Moreover, the design of our mechanism is integrated with object paradigm and 
provides support for coordinated recovery. 

Our mechanism does not require any speciallanguage support, and it was implemented 
within the Java programming language without any cbanges to the language itself. The 
implementation of a meta-levei architecture allowed the separation of activities related 
to management of exception handling from the exceptiona.l and normal activities of the 
applica.tion. 

The Coordinated Atomic Action concept (CAAction) [69] was introduced as a unified 
approach for structuring complex concurrent activities and for supporting error recovery 
between multiple interacting objects in a distributed object-oriented system. We planto 



3.9. Concluding Remarks and Future Work 72 

integrate the proposed exception mechanism within a CAaction framework. 
Nowadays the off-the-shelf approach to object-oriented software development, achieved 

by selecting a.nd configuring reusable components, has resulted in a significant decrease 
of development costs. In this work, we ha.ve designed a. mechanism tha.t supports the 
construction of reusable a.nd dependable software components. Still, an open issue is how 
to allow that exception-handling code to be added to reusable components {for instance, 
COTS) without any interference in the original code of these components. This additional 
exception- handling code should handle the new exceptions that can arise when these 
components are reused in different applications. 



3.10. Resumo do Capítulo 3 73 

3.10 Resumo do Capítulo 3 

Este capítulo apresentou um artigo que aborda o projeto e implementação de um meca­
nismo de exceções para construção de software orientado a objetos confiável. O modelo de 
tratamento de exceções permite uma separação explícita entre as atividades normais e ex­
cepcionais de aplicação, fundamental para manter a complexidade de sistemas confiáveis 
sob controle. Essa separação contribui efetivamente para a produção de componentes 
de software que são fáceis de entender, reutilizar e manter. O modelo de tratamento de 
exceções é orientado a objetos e provê suporte para trat amento de exceções concorrentes. 

O mecanismo de exceções foi implementado para a linguagem Java sem modificações 
para a mesma através da utilização da arquitetura de software reflexiva do Guaraná [51]. 
A utilização de reflexão computacional permitiu uma divisão clara entre as funcionalidades 
da aplicação e os serviços do mecanismo de exceções proposto, resultando na construção 
de um mecanismo de exceções simples e fácil de usar. 

O próximo capítulo apresenta uma arquitetura de software reflexiva. para o proje­
to de mecanismos de exceções e o conjunto de padrões de projeto que documentam os 
componentes da arquitetura proposta. 



Capítulo 4 

Uma Arquitetura de Software 
Baseada em Padrões para 
Mecanismos de Exceções 

A arquitetura de software de um sistema compreende os componentes computacionais ·e 
as interações entre estes componentes, definindo também a relação entre os requisitos e 
os elementos de software (65]. Padrões de projeto constituem boas soluções de projeto 
para problemas recorrentes dentro de um contexto particular [7, 20]. Padrões de projeto 
identificam soluções existentes e bem provadas, e a documentação destes padrões facilita 
o entendimento destas soluções. 

Este capítulo contém o artigo "An Exception Handlíng Software Architecture for De­

veloping Robust Software" (22), que foi submetido para "5th IEEE International Sympo­

sium on High Assurance Systems Engineering", a ser realizado de 15 a 17 de novembro 
de 2000, em Albuquerque, New Mexico, México. Uma versão resumida (24] deste artigo 
foi aceita para o tt2nd Workshop on Exception Handling in Object-Oriented Systems -

ECOOP'2000" a ser realizado em 12 de junho de 2000, em Cannes, França. Este artigo 
define uma arquitetura de software reflexiva para mecanismos de tratamento de exceções 
que serão utilizados na construção de sistemas orientados a objetos confiáveis. Além dis­
so, este artigo propõe padrões de projeto que são aplicados para documentar a estrutura 
e o comportamento dos componentes arquiteturais de um mecanismo de tratamento de 
exceções. 

74 



4.1. Introduction 

An Exception Handling Software Architecture for 
Developing Ro bust Software 

75 

Alessa.ndro F. Garcia Delano M. Beder Cecília M. F. Rubira 

Institute of Computing 
University of Campinas (UNICAMP) 

Campinas, SP- Brazil 

{ afgarcia, delano, cmrubira}@dcc.unicamp.br 

4.1 lntroduction 

Modern object-oriented software systems are getting more complex and have to cope with 
an increasíng number of error conditions to meet the system's dependa.bility requirements. 
Dependable object-oriented software detects errors caused by residual faults and employs 
fault tolerance measures to restore normal computation (38]. Exception and exception 
handling provide a suitable scheme to detect and handle errors, and · also incorporate 
fa.ult tolerance activities into software systems. The detection of an error will result in an 
exception beíng ra.ised, with an a.ppropriate handler corresponding to the ra.ised exception 
being automa.tically invoked to implement the fault tolera.nce measures [38]. The presence 
of exception handling facilities ca.n reduce software development efforts since they allow 
software designers to: (i) represent errors as exceptions, (ii) define handlers to deal with 
them, and (iii) use an adequate stra.tegy for exception handling when the occurrence of 
a.n exception is detected. 

Moreover, object-oriented systems may be consisted of various execution threads (or 
processes) executing methods concurrently on objects. Exceptions are more difficult to 
handle and exception hanclling fa.cilities to provide in concurrent object-oriented systems 
than in sequentia.l ones specially because of cooperative concurrency [9]. That is, severa! 
concurrent threads usually cooperate to perform some system's activity, giving rise to very 

complex concurrent ínteractions. In this context, erroneous informa.tion ma.y be sprea.d 
directly or indirectly through inter-thread communica.tion during a cooperative a.ctivity. A 
general approach for structuring cooperative activities and employing exception handling 
in concurrent systems extends the well-known atomic a.ction notion [9]. An a.tomic action 
is formed by a group o f participants which are executed by coopera.ting threads. The group 
cooperate withín the scope of an action and complex ínteractions are coordinated by the 
a.ction, including the management activities related to concurrent exception hanclling. 



4.1. Introduction 76 

Participants may join an action asynchronously but they have to leave it synchronously 
to guara.ntee that no iníormation is smuggled to or from the action. When a.n exception is 
raised in any of the participants inside an action, ali action participants should participate 
in the errar handling [9]. In general, different exception handlers for a same exception 
have to be called in the participants. These handlers are executed concurrently in order 
to handle the exception in a coordinated way. An additional difficulty is that severa! 
exceptions can be raised concurrently by participants during a cooperative activity. In 
this situation, a process of exception resolution is required to agree on the exception that 
should be notified to ali participa.nts. 

Exception handling facilities for sequential programs are usually incorporated in va­
rious modem object-oriented programming languages, such as C++ [35) , Java [30] a.nd 
Eiffel [45]. However, very few la.nguages give direct support to concurrent exception 
handling (for instance, Arche [33]); but, in general, the solutions presented cape with 
concurrent exception handling in a rather limited form. Recently some 'ad hoc' solutions 
have been proposed to the provision of concurrent exception handling which extends pro­
gramrning la.nguages, such as Ada and Java (58, 72, 74]. However, we believe that these 
recent proposals present complex solutions which are also very language-dependent and 
error prone. Besides, these solutions can be very intrusive from the viewpoint of the 
application since its normal code is usually amalgamated with explicit references and in­
vocations of procedures responsible for exception resolut ion a.nd final synchronization of 
the action participants. In addition, the task of software developers is also complicated 
in the sense that they have to implement exception resolution functions for each coope­
rative activity of the system. Consequently, these solutions present exception handling 
techniques which are difficult for software developers to use, a.nd may produce software 
products which are non-reliable and difficult to understa.nd, maintain and reuse. 

The present interest in software architectures and design reuse motivated us to develop 
an exception handling software architecture for building robust software. The proposed 
architecture provides a generic infrastructure which supports uniformly both concurrent 
and sequentia.l exception handling. Moreover, the exception ha.ndling architecture is in­
dependent of a specific prograrnming la.nguage or exception handling mechanism, and its 
use can minimize the complexity caused by handling abnormal behavior. Our architecture 
provides during the first design stage the context in which more detailed design decisions 
are made in }ater design stages related to exception handling. A software system's quality 
requirements ( or attributes) are largely permitted or restrained by its architecture; so if 
an appropriate architecture is chosen since the outset of the design phase, a proper use 
of exception handling throughout the development life cycle of a system can be obtained. 
The architecture js composed of four well-defined components: (i) the Exception compo­
nent, (ii) the Handler component, (iii) the Exception Handling Strategy component, and 



4.2. Exception Handling 77 

(iv) the Concurrent Exception Handling Action component. The structural and behavio­
ral aspects of the components are described by mea.ns of a set of design pattems. The 
patterns follow the overall structure o f the Reftection architectural pattem which allows a 
clear and transparent separation of concems between the application's functionality and 
the exception handling facilities, easing the task of building robust software. 

The remainder of this tex:t is organized as follows. Section 4.2 introduces a number 
of concepts and difficulties related to exception handling, and also presents the general 
abstraction for exception ha.ndling facilities. Section 4.3 presents object-oriented techni­
ques for design reuse and software structuring used for the development of the proposed 
solution. Section 4.4 shows the proposed software architecture for exceptiona.l conditíon 
handling. Section 4.5 presents tbe set of design pa.ttems for exception handling. Sec­
tion 4.6 discusses some implementation issues. Section 4. 7 gives a brief comparison with 
related work. Finally, Section 4.8 summarizes the conclusions of this work and suggests 
directions for future work. 

4.2 Exception Handling 

4.2.1 Exception Handling in Sequential Systems 

Developers of dependable systems usually refer to errors as exceptions because they are 
expected to occur rarely during a system's normal activity. These exceptions should be 
specified intemally into the system a.nd an instance of an exception raised at run-time is 
termed a.n exception occurrence. Some ex:tra-information about an exception occurrence, 
such as its name, description, location, and severity (37] , is usua.lly required by an appli­
cation, a.nd it is useful for handling an exception occurrence. Extra-information is passed 
either explicitly by the application component that has raised the exception, or implicitly 
by an exception handling service. 

Dependable applications need to incorporate exception handling activities in order to 
behave suitably in a great number of exceptional situations. Exception handling activities 
are structured by a set of exception handlers (or simply handlers). A handler is the 
part of an application code that provides the measures for recovering the system from a 
detected exception. A handler may be valid for one or more exceptions. Handlers are 
attached to a particular region of normal code which is termed a protected region. Each 
protected region may have a set of attached bandlers, and one of them is invoked when 
a corresponding exception is raised. Handlers can be attached to blocks of statements, 

methods, objects, classes, or exception classes. Handlers attached to exception classes, 
called default handlers, are the most general handlers, and must be valid in any part of 
the program, independently of any execution contex:t and object state. For the purpose 



4.2. Exception Handling 78 

of improving the writeability and structuring of the software systems, it is desirable to 
allow some :fiexibility concerning the attachment of handlers. It is should be possible the 
multi-level attachment of handlers, i.e., the attacb.ment of handlers to severa! leveis of 
protected regions such as classes, objects, methods and so on. 

An exception handling strategy should be followed after an exception occurrence is 
detected. In general, the normal control flow of the computation is deviated to the ex­

ceptional control flow. The deviation of the control flow is followed by the search for a 
suitable handler to deal with the exception occurrence. The handler search is performed 
according to a search algorithm. When a handler is found, it is invoked and the compu­
tation is returned to its normal control :fiow. The returning point where the normal flow 
continues also depends on the chosen model for the continuation, namely, the termination 

model, or the resumption model. In the termination model, execution continues from the 
point at which the exception was handled. Conceptually this means that the component 
activity which raised the exception cannot be resumed. In the resumption model, the 
execution has the capability to resume the internai activity of the component after the 
point at which the exception was raised. The semantic of the termination model is simpler 
and more suitable for construction of dependable software [10). 

4 .2.2 Exception Handling in Concurrent Systems 

In this work, cooperative activities of a dependable concurrent object-oriented system 
are structured as a set of atomic actions. We refer to these activities to as concurrent 

coopera tive actions ( or simply actions) . An action provides a mechanism for performing 
concurrently a group of methods on a collection of objects. The interface of an action 
includes its participants and methods (and their respective objects) that are manipulated 
by the participants. In order to perform an action, a group of threads should execute each 
participant in the adion concurrently (one thread per participant). Threads participating 
in an action cooperate within the scope of the action by executing methods on objects, 
and exchange information only among ones that are participants of that action. Threads 
cooperate and communicate each other by means of shared objects. The entries of partici­
pants in the action may be asynchronous but they have to leave the action synchronously 
to guarantee that no information is smuggled to or from the action. 

We introduce a banking service example based in [9] that illustrates the concepts of 
concurrent exception handling. This example is also used throughout Section 4.5 to illus­
trate how our proposed approach can be employed. Figure 4.l(a) shows the structuring 
of concurrent cooperative actions in the banking service example. Threads participating 
in the action are represented by solid lines, inter-thread communication by dotted !ines, 
and actions by rectangles. Action participants are activated by threads which cooperate 



4.2. Exception Handling 

Pal1iápanl 

Thread1 Cllent 

- Participam 
Cllent's Ager>.cy 

11tread2 

Partlclpant 

nuead3 Payer's N!,erlcy 

• Shared Object 

Aàion BanJ;Money 

Check ~ 
• ' R«eept 

S}mchronous 
Exit "'-... 

Adlon ClearCheak ! 
Elapbon 

WrooÍDoJ:r: · ~ 
Checlt ' t 

~ ~ Cash 

EXI:epCion 
IDsu!6ocntFWids 

(a) Cooperating Threads 

tat ement 

Figura 4.1: Banking Service Example. 

79 

slnJctured 
/"' exception 

(b) Exception 'free 

within the action 's scope for performing the banking service. The pa.rticipants of the 
action Service are Client, Client's Agency and Payer's Agency. Consider a Client that pre­
sents a check (i.e., an object of the type Check) to his/ her bank and receives a Receipt 
that certifies the operation. To clear the cbeck, the Client's Agency sends the Check to 
Payer's Agency which has the payer's account . Once Client's Agency receives the Cash for 
the check, it sends to Cl ient a new Statement of his/ her account. Actions ca.n be nested 
and e.xceptions may be propagated over nesting levels. In any moment, some action par­
ticipants can start nested actions. Figure 4.l{a) shows two nested actions for the action 
Service. The participants Client and Client's Agency perform the nested action BankMo­
ney, and the participants Client's Agency and Payer's Agency perform the nested action 
ClearCheck. 

Exception occurrences can be rai.sed by participants during an action. Some of them 

can be handled intemally by a local handler atta.ched to the pa.rticipa.nt that raised that 
exception. We refer to these exceptions as local exceptions. Traditional exception han­
dling strategies address this kind of exception. If an e.xception occurrence is not handled 
intemally by a participant, then it should be handled cooperatively by a.ll action par­
ticipants. This kind of exception is called a cooperating exceptíon, and, in this case, a 
new concurrent exception handling strategy is required. When a cooperating exception 
is raised in any of the participants inside an action, a.ll action pa.rticipants have to parti­
cipate in its handling. So, a set of cooperating e.xceptjons is associated with each action. 
Each participant h as a set of handlers for ( all or part o f) these exceptions. Participants 
are synchronized and probably different handlers for the same exception have to be in­
voked in all participants [9). These handlers are executed concurrently, and cooperate to 



4.2. Exception Handling 80 

handle the cooperating exception in a coordinated way. Moreover, various cooperating 
exceptions may be raised concurrently while pa.rticipants are cooperating in the action. 
So, a mechanism of exception resolution is necessary in order to agree on the cooperating 
exception to be notified to all participants of the action. The paper [9] describes a model 
for exception resolution called exception tree which includes an exception hierarchy. If 

severa! cooperating exceptions are raised concurrently, the resolved exception is the root 
of the smallest subtree containing ali raised exceptions. Cooperating exceptions can be 
of two di.fferent kinds in the exception tree: (i) simple exceptions, or (ii) structured excep­

tions. Simple exceptions are Ieafs of the tree and correspond to cooperating exceptions 
being raised alone concurrently. Structured exceptions are non-leaf nodes and correspond 
to two or more simple exceptions being raised concurrently. An exception tree should be 
specified for each action ofthe application. In Figure 4.l (a), during the action ClearCheck, 
two cooperating exceptions are raised concurrently, namely WrongDateException and ln­
sufficientFundsException. Figure 4.1(b) presents the exception tree specifi.ed for the action 
ClearCheck. The structured exception BouncedCheckException represents the concurrent 
raising of the simple exceptions WrongDateException and lnsufficientFundsException. 

Participants of an action can leave it on three occasions. First of ali, they can leave 
the action if no exceptions were raised. Secondly, if cooperating exceptions have been 
raised, but handlers have successfully handled them. Thirdly, they can leave the action 
signaling a failure exception to the containing action if a cooperating exception has been 
raised and no pro per handlers were found o r the handling of that exception is not possible. 
There are at least two distinct approaches for concurrent exception handling: (i) the blo­

cking approach, and (ii) the pre-emptive approach. In blocking schemes, each participant 
terminates by reaching the end of an action or fails by raising a cooperating exception. 
Participants are informed of an exception occurrence only when they are completed (or 
detecta cooperating exception); that is, when they are ready to accept information about 
the state of other participants. In contrast, pre-emptive schemes do not wait but requi­
re some language feature to interrupt all participants when cooperating exceptions are 
raised [59]. In blocking systems, exception handling and resolution are easier to provide 
than in pre-emptive ones because each participant is ready for handling when handlers 
are invoked. Moreover, there is no need to perfonn the abortion of nested actions becau­
se they have either been completed successfully or have had exceptions dealt by nested 
action's handlers. 



4.3. Design Reuse and Software Structuring Techniques 81 

:------ ooo ooOOO-- O Oo-000000- 0 00oOOoOoO-o~ I 
l Exception Handling l 

,000 o o ___ O o 00000- o o o o o 0--o o o o o o o 00 0: Facilities :0 o o -----0 00 o O o o 000 o 
' Sequential ' ' Exception Ha n dl ~ 

/ ~ 
' 
' 
I 

' ' ' Exception Handling Exceptions Handlers 
Strategy 

/ : o o ~ ooOo oo OooOoOOOOOoOoO O oOO ooooooo oooo oooo ooOoo o oo o~ o oo oooo . .. .. .. ---

: ' I 
: Local ' Cooperating Concurrent 
I ' Concurrent Exception Handling . Exceptions ' Exceptions . 

Exception Handling ' ' Strategy ' ' 
' : ' ····---------------

Figura 4.2: Integration of Exception Handling 

4.2.3 Integration of Sequential and Concurrent Ex ception Han­
dling 

Figure 402 illustrates the integration of sequential and concurrent exception handlingo 

Sequential exception handling facilities include: (i) exceptions- the definition and raising 

of local exceptions, and management of extra-information about exception occurrences, 

(ü) handlers - the definition and invocation of handlers, and (iii) exception handling 

strategy- the specification of an algorithm for handler search, and a model for continuation 

of the control fiowo As discussed earlier, concurrent exception handling requires some extra 

support not required by sequential systemso So, an integrated approach to exception 

handling should support both local and cooperating exceptions, and also a concurrent 

exception handling strategy. Ideally the concurrent exception handling strategy should 

be consistent with the exception handling strategy (ofthe sequentiaJ exception handling). 

In this work, the strategy for concurrent exception hãndling extends the atomic action 

paradigm described previously. 

4.3 Design Reuse and Software Structuring Techni­
ques 

4.3.1 Software Architecture and Patterns 

A system's software architecture abstra.ctly describes the system 's gross organization in 

terms of components and their interrelationships [65). Components are physical and repla­

ceable parts of a architecture, and to each component are attached responsibilities. The 



4.3. Design Reuse and Software Structuring Techniques 82 

components must interact with each other in the described fashion, and each component 

must fulfill its responsibilities to the other components as dictated by the architecture. 
Each component conforms to and provides the realization of a set of interfaces [3]. The 
interfaces make available services which are implemented by the component. 

Software patterns are an important vehicle for constructing higb-quality architectu­
res [2]. Patterns are useful mental building-blocks for dealing witb limited and specific 
design aspects when developing a software architecture. Patterns are discovered rather 
than invented, and tbey exist in various ranges of scale. Architectural patterns, for ins­

tance, define tbe basic structure of an architecture and systems whicb implement that 

architecture [7]. Design patterns are however more problem-oriented than architectural 
patterns, and are applied in I ater design stages. U sually, tbe selection o f a design pattern 
is influenced by the architectural pattern that were previously cbosen. A design pattern 
expresses a very specific recurring design problem and presents a solution to it, ali from 
the viewpoint of the context in whicb the problem arises [7). Moreover, a design pattern 
must balance, or trade off, a set of opposing forces. Design patterns refine the general 
components of an architecture, providing the detailed design solutions. 

In this work, each component of the proposed architecture implements a design pattern 
which describes the design of the corresponding component. The proposed architecture's 
components and their corresponding design patterns follow the overall structure of the 
Reftection architectural pattem [7). This pattern captures the benefits from computational 
refiection and meta-levei architectures which are described in the next section. 

4.3.2 Meta-Levei Architectures and Computational Reflection 

Computational reflection is a technique that a.llows a system to maintain information 
about itself (meta-information) and use this information to adapt its behavior [43]. Tbis 
information is obtained by means of a process called reification. Reification is the repre­
sentation of abstract language concepts such as classes a.nd methods in form of objects. 
In the object model, reflection establishes a meta-level architecture which achieves a se­

paration of concerns between applications and management mechanisms by extending 
transparently the sema.ntics of the underlying system. Meta-levei architectures are com­
posed of at least two dimensions: (i) a base level ( or application levei), and (ii) a meta-level 

(management levei). The base-levei encampasses the objects responsible for implementing 
the functiona.lity of the application. The meta-levei encampasses the objects that deal 
with the processing of meta-information and management activities of an application. 
The meta-levei objects ( meta-objects) maintain structural and behavioral information of 

application objects. A meta-object protocol (MOP) establishes an interface of commu­
nication between base-levei and meta-levei objects. MOP provides a high-level interface 



4.4. Tbe Software Arcbitecture for Exception Hanclling 

c;,J 
Meta-Level <<reify>> : : 
( ~OP) ---- - -------------------~~---- ----- ------ --

8 Le 1 
: : < <reflect> > ase :ve 1 1 

m1{) 
X 

result 

-----

I 

I 

I 

Figura 4.3: A Meta-Levei Software Architecture. 

83 

to the prograrnming language implementa.tion in order to reveal the program informa.tion 
normally hidden by the compiler andj or run-time environment [43). As a consequence, 
programmers can develop language extensions without any change to the programming 
language. 

Computational refiection can be used to intercept, verify a.nd modify tra.nspa.rently 
the effects of operations of the object model. For the purpose of illustration, suppose 
that for each base-levei object o exists a corresponding meta-object mo that represents 
the behavioral and structural aspects of o. As illustrated in Figure ·4.3, if an object x 
invokes a method ml on an object o, MOP intercepts this invocation, reifies the base-levei 
computation and the meta-object mo takes over execution; later mo retums ( reftects) the 
result to x. From the point of view o f the object x, computational refiection is transparent: 
x sends a message requesting a method to o, and receives the result with no knowledge 
that the messa.ge was intercepted and alterna.tively altered by the meta-object. 

4.4 The Software Architecture for Exception Han­

dling 

4.4.1 The Basic Architecture 

This section presents a generic software architecture that integra.tes sequential and concur­
rent exception handling (Figure 4.4). Applications reuse our architecture to handle their 
exceptional situations by using the exception ha.ndling facilities provided by the architec­
ture's components. The architecture is composed of four components: (i) the Exception 

component, (ü) the Handler component, (iii) the Exception Handling Strategy component, 
a.nd (iv) the Concurrent Exception Handling Action component. Table 4.4.1 summarizes 
the components and their responsibilities. The responsibilities are classified into two 
kinds: (i) application-dependent responsibilities (ADR), and (ii) application-independent 



4.4. The Software Architecture for Exception Handling 

Unvocation get /' 
extra-iiüo~on 

Exception 

' ' ' 

lGet 
.lnformation 

IUpdate 
lnfoJIDation 

··., get and u~date 
• .. extra-inlonnation ____ ,., 

get ~d upda~e 
extra·in(onnation 

' 

Concurrent 
Exception 
Handling 

Action 

', 

invok~ '·, 
handler •• ••. 

' 

Exceptlon 
Handling 

Strategy 

, 

,,''search 
,'/ handler 

ICooperation 

Figura 4.4: The Software Architecture for Exception Handling 

responsibilities (AIR). 

84 

Application-dependent responsibilities are directly related to the application's func­
tionality and include, for instance, facilities for specification of exceptions and handlers, 
raising of application exceptions, and specification of concurrent cooperative actions. The 
achievement of these responsibilities is application-dependent. As a consequence, the ar­
chitecture's components provide the application developers with appropriate support in 
order to fulfill their application-dependent responsibilities. Developers of applications ei­
ther invoke services provided by the architecture's component interfaces (Section 4.4.2), or 

else refine the design of architecture's components according to their needs (Section 4.4.3). 
For instance, application's components invoke the service provided by the Exception com­
ponent in order to raise an application exception. Application designers tailor the Ex­

ception, Handler and Concurrent Exception Handling Action components to specify res­
pectively exceptions, handlers and concurrent cooperative actions of their applications 
(Section 4.4.3) . Exceptions, bandlers and concurrent cooperative actions are part of the 
application 's functionality. 



4.4. Tbe Software Architecture for Exception Handling 85 

# Component Responsibilities 
1 Exception Speci.fication and raising of local and cooperating exceptions (ADR) 

Management of ex:tra--information {Affi) 
2 Handler Specification of handlers (AOR) 

Invocation of handlers (AIR) 
3 Exception Handling Search of handlers (AIR) 

Strategy Deviation of the control fiow (AIR) 
4 Concurrent Exception Specification of concurrent cooperative actions (ADR) 

Handling Action Synchronization and exception resolution (Affi) 

Table 4.4.1: Components and their Responsibilities. 

Application-independent responsibilities include, for instance, facilities for e.xtra-information 
management, handler invocation, deviation ofthe control flow, handler sea.rch, pa.rticipant 
synchroniza.tion and exception resolution. These responsibilities a.re related to manage-
ment activities of exception handling. Components of our proposed architecture perform 
their management activities in a way tbat is tra.nsparent to the applica.tion {Section 4.4.3). 
As a result, the a.pplication developers concentra. te their a.ttention to the a.pplica.tion 's 
functiona.lity and reuse the ma.nagement a.ctivities for exception bandling defined by the 
architecture. The a.rchitecture's components interact with ea.ch other as prescribed by the 
architecture in order to fulfill their application-independent responsibilities. 

Figure 4.4 pictures the components and their interrelationships. The Exception com­
ponent works as an extra-information holder component. It keeps extra-informa.tion about 
application exceptions which are used by the other components to achieve their respon­
sibilities. Then the other components interact with the Exception component in order to 
get and update extra-information about exception occurrences. The Exception Handling 

Strategy component implements the services related to tbe general strategy for excep­
tion ha.ndling. Its responsibilities are the deviation of the control flow and the search 
for ha.ndlers. Therefore, this component plays a central role in the a.rchitecture and 
interacts with all other components. It asks the Exception component to provide extra.­
informa.tion a.bout a.n exception occurrence while searching for its corresponding ha.ndler. 
After ha.ndler is found, it asks the Handler component to invoke the exception ha.ndler. 
The Exception Handling Strategy component also interacts with the Concurrent Exception 

Handling Action component. Tbe !ater uses the services provided by the former in order 
to carry out the strategy for concurrent exception ha.ndling. For example, if one or more 
cooperating exceptions ha.ve been raised during a a.ction, a.nd the exception resolution has 
been a.ccomplished by the Concurrent Exception Handling Action component, it asks the 
Exception Handling Strategy component to search the clifferent ha.ndlers for the resolved 
exception. 



4.4. The Software Architecture for Exception Handling 

!Ralsina IGCilnfomwion IUpclalclllformauon 
<<pubbc tNCtface.>> <<public lntetface>> <<public interface>> 

rwcO gciNime() JCINamc() 

geiDcscnpdoa() ~ 
gelLocaóoo() l<lloo:anon() 

setSlmplcEJccplions() 

~ ~ 6 
' ' ' 
' ' ' ·---------- -------r-·-·-------·---- • 

Uavocmon ISean:ll ICooperation 
<<pnvau: interface> <<privau interface> <<pubUc interface>> 

an~ ~ jout() 
&•IShinadOb;caO 
~I() 

?S. 
I 
I 

' 

Concurre<lt 
EJcceplion 
Handing 
Actlon 

Figura 4.5: The Detailed Interfaces. 

4.4.2 Interfaces of the Components 

86 

The interfaces of the components provide the exception handling services provided by 
the architecture's components. The interfaces are accessed either by the architecture's 
components themselves, or by the application while using the exception handling services. 
Figure 4.4 illustrates the architecture's components and their interfaces. The interfaces 
are classified in two sets: (i) the private interfaces, and (ü) the public interfaces. Private 
interfaces define the services that are only accessed by the components of the architecture. 
Public interfaces define the services that may be also accessed by the application reusing 
the architecture. Figure 4.5 depicts all of the interfaces conformed by ea.ch architectural 
component. 

The Exception component implements three public interfaces: (i) the interface IRai­
sing, (ü) the interface JGetlnformation, and (iü) the interface IUpdatelnformation. The 
interface IRaising allows the application to raise exceptions by invoking the method raise. 
The interface IGetlnformation makes some services available for the application and other 
architecture's components to obtain extra-information about the exception occurrences. 
Finally, the interface IUpdatelnformation allows the application and the other components 
to update extra-information about exceptions. 

The Handler component implements the private interface llnvocation. This interfa­
ce allows the Exception H andling Strategy component to invoke an exception handler 
when this component has found an appropriate handler. The Exception Handling Stra­

tegy component conforms to the private interface ISearcher that provides the Concurrent 

Exception Handling Action component with the service for handler search. The Concur­

rent Exception Handling Action component implements the public interface JCooperation 
which provides the application with means of performing concurrent cooperative actions. 

The components collaborate to realize the set of scenarios of the architecture. Figu­
re 4.6 illustrates a scenario by means of a sequence diagram. This scenario shows the 
interactions between the application and the interfaces of the architecture's components 



4.4. The Software Arcbitecture for Exception Handling 87 

Exception 
Component 

Handler 
Component 

Concurrent 
~ption Handflng ExcepbOn Handling 

Strategy Acllon 
Component Component 

'----Ap_p,li
1
,ca_n_oo __ _,j ._I _ :IRais--.' _ms__,ll ~GetJnC:rm=JJ : ~11 lnfonnation 

i 

:Dnvocation I ._I _:!Seareh--r---' I :ICooperation 
I 

I 

I :1:jomO : 
' 2: method() : 
· -- --- --~----~---~-----~---~--~-~ 

.. / : 3: gelSharedObject() 
.·· 

: 8: searchHandl~rcsolvedExc:eption ); 

9: lnvolceHandle}(resolvedExccpuon1 
I 

~ . ~ : ·- -----~----~--~~-~-~~ ~~-l _vedEx_~ ~ · ~nl 
· _-.. : tl.cetDe~ptionO ' 

••·•1 12: getLocationO 

; 13: getShan:dObjeel() 

Figura 4.6: A Scenario of the Proposed Software Architecture. 

in arder to handle a cooperating exception that was raised during a concurrent coopera­
tive action. A thread of the application invokes the metbod join in arder to take part in 
the the action and perform a specific action participant (1). The Concurrent Exception 

Handling Action component invokes the application's method to be executed by the ap­
plication's thread (2). While this method is being carried out by the participating thread, 
it obtains the shared objects used for inter-thread communication {3), and passes explici­
tly extra-information concerning the exception occurrence (4). During its execution, the 
application's method raises a cooperating exception {5). 

After exception is raised, the architecture's components interact with each other to ac­
complish the management activities. Extra-information about that exception occurrence 

is updated implicitly by the components (6) . The action participants are syncbronized and 
exception resolution process is executed within the Concurrent Exception Handling Ac­

tion component. During the resolution, this component communicates with the Exception 

component in arder to obtain extra-information about the raised cooperating exceptions 
(7). The Concurrent Exception Handling Action component asks the Exception Handling 

Strategycomponent to search the handler for the resolved exception (8), and the later asks 
the Handler component to invoke it (9). The Handler component invokes the handler de­
fined in the application (10). The handler obtains e.xtra-information useful for handling 
the resolved exception {11-12), and shared objects that are used in the cooperation with 
the other handlers being executed concurrently {13). 



4.4. The Software Architecture for Exception Handling 88 

4.4.3 The Architecture Refinement 

Separation o f Concerns. As stated previously, software designers tailor the components 
of the proposed architecture to add the functionality related to specific applications. Note 
that each architectural component may include application's functionality and manage­
ment activities for exception handling. In arder to obtain a clear separation of concems 
between the application's functionality and the exception handling services, the archi­
tecture and their components incorporate a meta-levei architecture, following the overall 
structure of the Reflection pattem (Section 4.3.1). Figure 4. 7 presents the proposed meta­
levei architecture which is composed o f two dimensions: the base levei, and the meta-levei. 
The architecture's base levei encompasses the application-dependent elements, such as 
exceptions, handlers, normal activities, and concurrent cooperative actions. The archi­
tecture's meta-levei consists of meta-objects which perform the management activities for 
exception handling. 

Transparency. The Refiection pattern also captures the bene:fit of transparency obtained 
by means of computational refiection. For the purposes of this work, object states, results 
and invocations of methods of the application (base-levei) are intercepted and reified by 
the MOP, and potentially checked and a.ltered by the meta-objects (meta-levei) in order 
to carry out the management activities for exception handling. For instance, results of 
methods are checked transparently by the meta-objects to verify if such methods have 
raised any exception. MOP intercepts at run-time the exceptional results and deviates 
the normal control flow of the base-levei application to the exceptiona.l one at the meta­
levei. "When the management activities are finished, MOP returns the computation to 
the application's normal :flow. Therefore, the meta-objects execute their management 
activities transparently from the viewpoint of the base-levei. 

Refi.nement of the Components and Design Patterns. While application designers 
reuse the archltecture and refine its components to satisfy their needs, some problems arise 
in this context, such as: (i) how do they specify the simple a.nd cooperating exceptions? 
and how do they do it uniformly?, (ii) how do they specify the ha.ndlers?, and (üi) how to 
execute the synchronization of the action participants and other management activities in 

a way that is transparent to the application?. In this work, design patterns are proposed 
in order to refine the general components of the proposed architecture, providing the 
detailed design solutions. The proposed design patterns present solutions for speci:fic 
design problems of the corresponding components, a.nd are used to describe the design 
and dynamics aspects of each architectural component. 



4.5. Design Patterns for Exception Handling 

Exceptlon 
P8ltem 

Handler 
~ 

Exceptíon Hand6ng 
Slrategy 
Pen.m 

Concurrent 
Exception Handllng 

Ac:tion 
Pau.m ltzeeptiOIW 

9 9 9 ContJol "-

<<rci(Y>> : ! <<n:ity>> : : <Q'df'y» : ! 
---- - --~}- ---- - - -- -------~-~------- -- -- - ---- ~~---- --- -------- ------

: : <<reflecD:> : : «n:ll«c>> : : <<:rt.J.l«'oo> :: :: :: 

L® ~ -...!,.. :cnanv 

Figura 4. 7: The Architecture Refinement. 

4.5 Design Patterns for Exception Handling 

4.5.1 The Ezception Pattern 

89 

Context. Software designers want to specify the local and cooperating exceptions of 
their applications. These exceptions may be raised at run-time during the application's 
normal activity. Extra-information is required by the application in order to handle an 
exception occurrence. 

Problem. The software architecture should provide means by which the applica.tion 
developers define and ra.ise the local and cooperating exceptions. Moreover, a fiexible and 
reusable software a.rchitecture is required to make the exception specification easier and 
to separate concerns between a.pplica.tion exceptions and extra-information mana.gement. 
Severa.l forces are associated with this design problem: 

• Local and cooperating exceptions should be defined uniformly. 

• The effort of software designers to compose exception trees should be minimized. 

• The exception occurrence itself should keep extra-information necessary for its han­
dling. 

Solution. Use the Refiection architectural pattem in arder to separate classes respon­
sible for managing extra-information (meta-levei) from the ones used to specify applica­
tion exceptions {base levei). Different types of exceptions are organized hierarchically as 
classes which are termed exception classes. Exception occurrences are base-levei objects 
created at run-time when an exception is ra.ised, and are termed exception objects. Ex­
ceptions are raised by calling the method raise on exception objects. Meta-objects are 
associated transparently with exception objects for keeping extra-information about the 



4.5. Design Patterns for Exception Handling 

JlaDa&emeut ~ 

-~ 
M.da-L<vcl <<rCif)?>. : 

( MOP } --- - - - -- - -- - ------- ~! - - - ---- -------- -- - - - - - --- - - -- · 
a.c J..cyd : f <cre.6oco> 

Appllalt1011. 

(a) General Structure 

Banldng Service 
Appllc-.tion 

Cooperating 
Exoeption 

9 
I I 

WrongDate IDsufficientfunds 
Exoeptioo Exeep~~on 

Simple Exceptions 

I <> 
SD'IJCtUred 

Exoeption 

• I . 
I 

~ 
~ 

t 
Swctured Exception 

(b) An Example 

Figura 4.8: Class Dia.gram for the Exception Pa.ttem. 

90 

exception occurrences. Extra-informa.tion is reified as meta.-informa.tion. A meta.-object 
keeps meta-information collected at run-time about the corresponding exception occurren­
ce. Meta-objects alter transparently the state of the exception objects in order to make 
this information a.vailable for the applica.tion. As a result, the exception object keeps 
extra-information necessa.ry for its handling. The a.pplica.tion accesses this informa.tion 
by invoking methods on exception objects. 

Structure. The Exception Pattem consista of exception classes, and meta-objects. Meta.­
objects of the type MetaE.xception are associated with instances of base-levei exception 
classes, i.e., meta-objects are associa.ted with exception objects. Application developers 
are provided with three ma.in exception classes- Locai Exception, Cooperat ingException and 
StructuredE.xception (Figure 4.8(a.)). These classes derive from the root class Exception. 
The class LocaiException defines the local exceptions of applications; it is subclassed by 
a.pplication designers in order to specify the local exceptions. Exception trees are easily 
specified - an applica.tion developer only needs to create a class for each simple exception 
by subclassing the class CooperatingException, and a new instance of the dass Structure­
dException for each structured exception. An exception object of the type StructuredEx­
ception stores the simple andfor structured exceptions which compose it. The method 
getSimpleExceptions returns the simple exceptions that compose a structured exception. 



4.5. Design Patterns for Exception Hanclling 

th.e object tha 
conrams 

lhe ha.ndler 

lhe excepdon 
object 

Base Levei 

Exception Handling 
Strategy Pattem 

:Meta 
Exception 

eJlll'l· D. 
infonnaaon 

a.bout the locarloo 

<:=;> Relaàonship 

Meta-Levei 

:Meta 
Searcher 

Pattc:ms 

Figura 4.9: Interaction Diagram for the Exception Pattem. 

91 

Figure 4.8(b) shows an instance of the proposed pattem for defining an exception tree in 
the banking servke application (Sectíon 4.2.2). This scheme for definition of exception 
trees is similar to the structure of the Composite design pattem [20]. 

Dynamics. Figure 4.9 presents the interaction diagram that illustrates a scenario for the 
banking service example (Section 4.2.2). A meta-object (of the type MetaSearcher), asso­
ciated with the application object that has raised the exception lnsufficientFundsException, 
reifies extra-information about the location where the exception was detected. The infor­
mation includes the method, the action and the action participant where the exception 
was raised. This meta-object sends the extra-information to the meta-object associated 
with the application's exception object that representa that exception occurrence. Tbe 
meta-object updates extra-information about the exception occurrence by invoking trans­
parently the method setlocation on the application's exception object. The invocation 
and the update are transparent from the viewpoint of the application. Then the method 
getlocation is invoked by the application handler in order to receive the extra-information 
related to the location. 

Known Uses. The representation of exceptions as classes is a design solution adopted 
by severa! systems and programming languages, such as Java, C++ and Arche. 

Consequences. The Exception Pattem offers the following benefits: 

• Uniformity. Both local and cooperating exceptions are uniformly defined as classes. 
Moreover, the Exception pattem adopts the Composite pattem to define exception 
trees. As a result, it allows application designers to treat simple exceptions and its 
compositions (structured exceptions) uniformly. 

• Simple to Use. Exception trees are easily defined. Tbe proposed base-levei classes 



4.5. Design Patterns for Exception Handling 92 

allow application developers to define exception trees witbout writing an excep­
tion resolution procedure for each concurrent cooperative action of the application. 
The exception resolution process is perfonned transpaxently by the meta-levei (Sec­
tion 4.5.4). 

• Reusability and Extendibility. The representation of local and cooperating excep­
tions as classes promotes the reusability and extendibility of the exception classes. 
In addition, the separation of concems provided by the Exception pattem also pro­
motes the reusability of the management services. 

• Readability and Maintainability. Applications whose exceptions axe represented as 
objects are easier to understand a.nd maintain tha.n applications where exceptions 
are simply symbols (numbers or strings) [25). 

• Easy incorporation of default handlers. Since exceptions are represented as classes, 
default handlers can be defined as methods on exception classes. In case the appli­
cation developers have not defined more specific handlers, the handler method on 
the exception class can be activated by the meta-levei. 

4.5.2 The Handler Pattern 

Context. Software designers wa.nt to specify the handlers for the local and cooperating 
exceptions that are expected to occur during the normal activity of their applications. A 

handler is invoked when the corresponding exception is raised. 

Problem. The infra-structure of the software axchitecture should be organized in order to 
allow application developers to define the exception handlers in a way that separates them 
from the application 's normal activity. In addition, this infra-structure should pro mote 
the separation between the application components containing the exception handlers and 
the axchitectural components responsible for invoking the eligible handler. The following 
forces shape the solution: 

• Exception handlers for local and cooperating exceptions should be defined in an 
unifonn manner. 

• The software axchitecture should include multi-levei attachment of handlers (Sec­
tion 4.2.1). 

Solution. Use the Refiection architectural pattem in order to separate the class respon­
sible for invoking handlers (meta-levei) from the classes used to specify the application 
handlers (base levei). The base-levei defines the application classes that implement the 



4.5. Design Patterns for Exception Handling 

Management 
Activities 

MetaHandler 

invokeHandler() 

1- I 

Meta-Levei <<rcify>>: ; 

~ ------ --- --------- ~-~ --------- --
Base Levei : : <<reflcct>> 

I I 

I I 

AppUcation 

I ~ 

&ceptionaJClass 

bandlerlO 

bandler20 

(a) General Structure 

Management 
Activities 

MctaHandler 

invokeHandler() 

~ I 

Mcta-Levei <<reify>> : : 

~- ---- --------- -- --- ;-~ ------------------
Base Levei : : <<reflect» 

B•nking Serviee 
Application 

I I 
I I 

I ~ 

ExlxpliooaiAccowlt 

wrongDa!e() 
insufficientFWidsO 
botmcedCheck() 

(b) An Example 

Figura 4.10: Class Diagram for the Handler Pattern. 

93 

handlers for local and cooperating exceptions. The meta-levei consist of meta-objects 
responsible for invoking the handlers. 

Structure. The Handler Pattem consists of two kinds of elements: (i) exceptional clas­
ses, and (ii) meta-objects of the type MetaHandler (Figure 4.10(a)). The exceptional 

classes are located at the base-levei and define the error handling activities of a specific 
application. The methods of exceptional classes are the handlers for the local and coo­
perating exceptions raised during the execution of normal classes' methods. The normal 

classes are located at the base-levei and implement the application's normal activities 
(see Section 4.5.3). Therefore, exceptional classes implement the handlers of the appli­
cation and they are atta.ched to the corresponding normal classes. Meta-objects of the 
type MetaHandler are associated with exceptional classes, andare responsible for invoking 
transparently the exception handlers. 

Exceptional classes can contain handlers attached to classes, objects and methods. 
Each exceptional class may contain handlers for coping with the local and cooperating 
exceptions; they are invoked when these exceptions are raised during the execution of 
methods of the corresponding normal class. Figure 4.10(b) shows an instance of tbis 
pattern for the banking service example. Tbe methods of the ExceptionaiAccount are the 
handlers for the simple and structured exceptions that can be raised while the methods 
of the corresponding normal class (the class NormaiAccount - Section 4.5.3) are being 
executed during a concurrent cooperative action. 

Dynamics. Suppose the method withdraw is being executed concurrently during a con­
current cooperative action and raises tbe exception lnsufficientFundsException; another 



4.5. Design Patterns for Exception Handling 

the lwuiler 

Exception 
Pattem 

:Insuffictent 
Funds 

obtains exlra- .• 
infomwion 

Base Levei 

:Meta 
Handler 

Exception Handling 
Strategy Pattem 

:Meta 
Searcher 

suc:cessfull 
exception bandliog 

. .. 

<:=:> betwecn Pattems 

Meta-Level 

Figura 4.11: Interaction Diagram for the Handler Pattem. 

94 

method is being executed concurrently during this concurrent cooperative action and also 
raises an exception, the exception WrongDateException. Tbe concurrent raising of these 
simple exceptions means the occurrence of the structured exception BouncedCheckExcep­
tion, and the subsequent invocation of the handlers to deaJ with this structured exception. 
Figure 4.11 illustrates the transparent invocation of the appropriate ha.Ddler by the meta­
object associated with the exceptional class. During the execution of tbe handler, it gets 
extra-information about the location where the exception lnsufficientFundsException was 
raised. 

Known Uses. The work [31] also uses the computational reflection technique in arder to 
obtain meta-information about the application and invoke the su.itable handler when an 
exception is raised. Meta-level structures implement the exception handling mechanism 
while at the base level resides the application. Finally, handlers also are implemented as 
ordinary methods. The approach presented in [48] uses a variant of the Handler pattern. 
This variant transfers the handler methods from the exceptional classes to the meta­
levei. The meta-objects assodated with the normal classes contain application's methods 
responsible for performing the exception handling. Instead of utilizing reflective principies 
to complete the separation between application and management mechanisms, this variant 
explores reflection to separa te normal and exceptionaJ co de of the application. 

Consequences. The Handler Pattern offers the following consequences: 

• Uniformity. Handlers for both local and cooperating exceptions are defined uni­
formJy as methods of exceptional classes. 

• Readability and Maintainability. The pattern provides explicit separation betwe­
en normal and error-handling activities, which in turn promotes readability and 



4.5. Design Patterns for Exception Handling 95 

maintainability. 

• Flexibility. The multi-levei attachment of handlers allows developers to attach han­
dlers to the respective leveis of classes, objects a.nd methods. 

• Reusability. The use of normal and exceptional classes allows application designers 
to compose an exceptional class hierarchy that is orthogonal to the normal class 
hierarchy of the application. The exceptional classes are organized hierarchically so 
that resultant hierarchy is orthogonal to the normal class hierarchy. Exceptional 
class hierarchies allow exceptional subclasses inherit handlers from their superclasses 
and, consequently, they allow exceptional code reuse. When reuse is not desired, 
the handler method can be redefined at the subclasses. 

• Minor loss in writeability. A protected region can not be defined as a statement. 

• Lack of Static Checking. A possible disadvantage of this pattem is that may not 
be easy to check statically if handlers have been defined for ali specified exceptioris. 
However, altemative solutions may be applied (Section 4.6). 

4.5.3 The Ea;ception Handling Strategy Pattern 

Context. Exception occurrences can be detected during execution of a protected region 
of the application's normal activity. The normal controi fiow is deviated to the exceptional 
one and an appropriate handler is searched. 

Problem. The software architecture should be organized in a disciplined manner: the 
components responsible for the deviation of the normal control fiow and for the handler 
search should perform their management activities in a non-intrusive way to the applica­
tion. The following force arises when dealing with such a problem: 

• The chosen model for continuation of the controi fiow should be termination since 
it is more suitabie for developing dependable systems (Section 4.2.1). 

Solution. Use the Reftection architectural pattem in order to separate classes responsible 
for the management a.ctivities (meta-levei) from the ones that implement the normal ac­
tivities of the application (base level). The base-levei defines the application's logic where 
normal classes impiement the nonnal activities. The meta-level consists of meta-objects 
which search transparently for the exception handlers. Meta-objects are associated with 
instances of the normal classes, and maintain meta-information conceming the protected 
regions defined at the base-levei. A protected region can be a method, an object, and a 
class. MOP itself is responsible for intercepting method results and changing the normal 



4.5. Design Patterns for Exception Handling 

Meta.Scarcher 

Management b.andleResuliO 
Actlvities searchHandJer() 

&SltaCooperating 
ExceptionO 

~ I 

Meta-Levei <<teify>>: : 

~------------- - ---~-~-- - ------ --
Base Level : : «retlect>> 

Appllcatlon 

I I 
I I 

I ~ 

NormaJOass 

methodlO 
method20 

(a) General Structure 

Management 
Activities 

Meta-Levei 

MetaSearcber 

handleResul r() 
sean:hHandlrr() 
isltaCooperadn& 

Excepdon() 

~ I 

<<rcify>>: : 

~ -- -- --- -- ---------~-~------- - ----------
Base Level : : <~flect>> 

Banktng Semce 
Appllcation 

I I 
I I 

I V 
NormalAccou.nr 

bo.lance() 

deposirO 
witbdrawO 

{b) An Example 

Figura 4.12: Class Diagram of the Exception Handling Strategy Pattem. 

96 

control flow to tbe exceptional one when exceptions are detected by transferring control to 
the meta~level. With tbe available meta-information, meta-objects find the handler that 
should be executed when an exception occurrence is detected in a given protected region. 
Wben the execution of the handlers is finished successfully, MOP returns the control fiow 
to the application's normal computation according to the termination model. 

Structure. The Exception Handling Strategy Pattem introduces two types of elements: 
(i) normal classes, and (ii) meta-objects of the type MetaSearcher (Figure 4.12(a)). The 
normal classes are located at the base-levei and define tbe normal activities of a specific 
application. They are attacbed to the corresponding exceptional classes. Figure 4.12(b)) 
pictures an instance of this pattem for the banking service application. This figure shows 
the normal class NormaiAccount; it is attacbed to the exceptional class ExceptionaiAccount 
(Section 4.5.2). Meta-objects of the type MetaSearcher are associated with instances of 
normal classes, and are responsible for the interruption of the normal control flow and 
the handler search. 

Dynamics. Figure 4.13 presents the interaction diagram for the banking service example. 
The method withdraw is being performed concurrently during a concurrent cooperative ac­
tion. The exception lnsufficientFundsException is returned as the result of withdraw since it 
has raised this exception during its execution. M OP intercepts and reifies the result o f wi­
thdraw, and notifies the meta-object about the exceptional result by means of the method 
handleResult. The meta-object checks if the exception occurrence is a local or a coope­
ration exception. H it is a local exception, the meta-object searcbes immediately for the 



4.5. Design Patterns for Exception Handling 

ConcurrentException 
Handllng Action 

Pattern 

:Meta 
Partidpant 

:Normal 
Account 

IDICTUptiOD O 
lhe 

normal flow 

---- - ----.::=:==i.f.----t---
lnsuftici ent Funds 

E.xceptlon 

invoc11.don oi 
lhe: 

bandler 

Base Level 

:Meta 
Searcber 

Handler 
Pattem 

:Meta 
Handler 

succe,ssf ull 
exceplion handl.ing 

<:=:> Rclationship Pattems 
- -- - Intercepted 

Meta-Level 

Figura 4.13: Interaction Diagram for the Exception Handling Strategy Pattem. 

97 

exception handler based on the available meta-information. Otherwise, the cooperating 
exception is firstly delegated to the meta-object responsible for the participant synchroni­
zation and exception resolution. lnsufficientFundsException is then delegated since it is a 
cooperating exception. After exception resolution is accomplished, the meta-object is re­
quired to find a handler for the resolved exception, the exception BouncedCheckException. 
The handler is found and the invocation of it is delegated to the appropriate meta-object 
(Section 4.5.2). Since the exception handler is executed successfully, the control is pas­
sed to the meta-object responsible for the participant synchronization, which in tum will 
deviate the exceptional control fiow to the normal one. 

Known Uses. The work [48] presents a variant of the Exception Handling Strategy 

pattern. In this variant, the exception itself is the reified entity instead of a method 
result. This alternative design solution allows the exception itself to control the handling. 
Consequently, it is possible to implement the resumption model since the control fiow is 
stopped exactly at the point of the exception raising. The work [31) uses the refiection 
technique in order to obtain at compile-time information concerning protected regions 
and the handlers that are attached to them. 



4.5. Design Patterns for Exception Hanclling 98 

Consequences. The Exception Handling Strategy Pattern offers the following consequen­
ces: 

• Transparency. The meta-levei objects bind transparently the normal activity and 
corresponding handlers without requiring ~om programmers the use of new keywords 
to specify protected regions. 

• Readability and Maintainability. The normal code is not amalgamated with the 
exceptional code. As a consequence, both normal and exception code are easier to 
read and maintain. 

• Compatibility. The Exception Handling Strategy pattern can be used together with 
an exception handling strategy implemented in the underlying programming lan­
guage, and they can complement each other. 

4.5.4 The Concurrent Ezception Handling Action Pattern 

Context. Software designers want to specify concurrent cooperative actions. These 
actions must be controlled at run-time and their participants have td leave the action 
synchronously. During the execution of an action, a number of cooperating exceptions 
ca.n be raised. As a consequence, a service of exception resolution is necessary to agree 
on the cooperating exception to be handled by all participa.nts of the action. 

Problem. The software architecture should provide means by which the software de­
velopers define the concurrent cooperative actions o f their applications. Moreover, an 
disciplined and fiexible approach is required to separate concerns and minimize depen­
dencies between the concurrent cooperative actions of the application and the strategy 
for concurrent exception handling (i.e. the management mechanisms for synchronization 
and exception resolution). Several forces are associated with this design problem: 

• The definition of concurrent cooperative actions should be done in a structured 
manner to avoid an increase in the software's complexity. 

• The inter-thread communication should use shared objects (Section 4.2.2). 

• The strategy for concurrent exception handling should be a consistent extension of 
the general strategy for exception handling. 

• The blocking approach should be used for concurrent exception handling since it 
simpler and easier to implement (Section 4.2.2). 



4.5. Design Pattems for Exception Handling 

' i ~ ' - ,11\lcopanl 

ê 
IMem•IE•orpUo& otuon -i n-d J (OI!~ 

~ 
IIICIIIod 

plnM 

~ 
I \) J-<> 

~ ~ 

~ -*caiO 
toYIS~ I axlhodlO 
co<IIIJNCSI.OdAcuOM(l 

(a) General Structure 

.. ~ . 
8~~ 

(b) An Example 

Figura 4.14: Class Diagram of the Concurrent Exception Handling Action Pattem. 

99 



4.5. Design Patterns for Exception Handlin,g 100 

Solution. Use the Reftection architectural pattern for segregating classes responsible 
for the management mechanisms (meta-levei) from the classes which must be derived 

for defining the concurrent cooperative actions of the application (base-levei). Based on 
a meta-levei architecture, the Concttrrent Exception Handlíng Action pattern separates 
objects into well-defined leveis. The base-levei provides developers with classes for creatíng 
the concurrent cooperative actions of their applications; the defi.nition of nested actions is 
also supported in order to control the system 's complexity and allow better organization of 
both normal and error handling activities of the enclosing action. MOP itself intercepts 
and reifies invocations of methods and their results. The meta-levei implements the 
management mechanisms based on reified invocations and results, and on the available 
meta-information. 

Structure. The Concurrent Exception Handling Action Pattern introduces five types of 
objects: (i) Action, (ii) Participant, (iii) Thread, (iv) MetaParticipant, a.nd (v) MetaAction 
(Figure 4.14(a)). The class Thread represents the threads which intend to participa­
te in a concurrent cooperative action. Developers create their threads, and extend the 
classes Action and Participant by subclassing them to implement theiroconcurrent coope­
rative actions. lnstances of these subclasses represent at run-time a . specific action and 
their pa.rticipants respectively. Developers should redefine the method ·ConfigureShare­
dObject while subclassing the class Action. The method ConfigSharedObject implements 
the application-dependent activity which consists of creating shared oojects used for pur­
pose of inter-participant communication (inter-thread communication). In order to access 
these objects, eacb participant have to ask to its corresponding action references to these 
objects by means of the method getSharedObject. If an action is composed of one or more 
nested actions, developers should also redefine the method ConfigNestedActions in order to 
create the objects that represent the nested actions. In order to access these objects, each 
participant have to ask to its correspond.ing action references to these objects by invoking 

the method getNestedAction. Each object of the type Participant holds references to: (i) 
its action, and (ü) an object and its method that will be executed during the action by a 
threa.d. Instances of the class Action have references to: (i) action participan.ts, (ii) inter­
nai and failure exceptions, (iii) its parent ( enclosing action), (iv) its nested actions, and 
(v) shared objects. Internai exceptions are the exceptions that should be handled within 
action by ali action participants, while externai exceptions are the exceptions that should 
be signaled to the enclosing action. Figure 4.14(b) shows an instance of the proposed 
pattern for de:fining the actions, the participants, an.d the threads for the ban.king service 
application. 

Instances of the class MetaParticipant are associated with instances of subclasses of 
Participant. These meta-objects are responsible for: (i) execute the application's method 
which is held by its associated participant, (ü) inform to its corresponding MetaAction 



4.5. Design Patterns for Exception Handling 101 

about the end ofthis method execution, and (ili) ask the appropriate meta-object to invoke 
the handler associated with a resolved exception. Instances of the class MetaAction are 
associated with instances of subcla.sses of Action. These meta-objects are responsible for: 
(i) perlorm the exception resolution, and (ü) synchronize the action participants. 

Dynamics. Figure 4.15 presents the interaction diagram for the ba.nking service example. 
The diagram illustrates the application's thread perlorming the participant PayerAgency 
within the action ClearCheck. This thread intending to participate in the action, calls the 
method join on the object ClearCheck corresponding to that action. The thread informs 
to the action what participant (the participant PayerAgency) it intends to execute during 
the concurrent cooperative action. MOP intercepts and reifies the invocation of join, 
and notifies the meta-object MetaAction about this invocation by means of the method 
handleOperation. This meta-object checks to see if is allowed to play that participant 
in tbis action, and if so, the meta-object MetaParticipant executes the method withdraw 
that is attached to that participa.nt. While this method is being Carried out by the 
thread, it obtains the shared objects used for inter-thread communication. The exception 
lnsufficientFundsException is returned as the result of withdraw since ··it has raised this 
exception during its execution (Section 4.5.2). MOP rei:fies the result of withdraw, and 
noti:fies the meta-object MetaParticipant about the exceptional result by means of the 
method handleResult. The action participants are synchronized and exception resolution 
process is accomplished ba.sed on the available meta-information. For .instance, the meta­
object MetaAction communicates with the meta-object responsible for maintain extra­
inform.ation about the ra.ised cooperating exceptions (Section 4.5.1). · The meta-object 
MetaParticipant receives the resolved exception and then asks the eligible meta-object to 
search the handler for the resolved exception. Note that after the thread a.sks to start its 
activity within the action, ali management activities are performed by the meta-levei in 
a way that is transparent to the application. 

Known Uses. The work [61) proposes a non-refiective and distributed variant of this 
pattern. Tbis works proposes an algorithm for concurrent exception handling in distri­
buted object systems. Exception resolution and the final synchronization is performed 
in a distributed way, and the inform.ation conceming the action must be held by each 
participant. Each participant must keep a copy of the algorithm and the management 
is performed by means of message exchange. However, the class Action is not necessary. 
Zorzo's CAAction framework [7 4) also provides software developers with a number of clas­
ses to structure their concurrent applications. However, it uses a non-refiective variant of 
the Concurrent Exception H andling Action Pattern. Programmers extend two classes of 
the framework in order to implement their concurrent cooperative actions. Both classes 
are similar to the classes Action and Participant regarding their responsibilities. 



4.5. Design Patterns for Exception Handling 

lnsuffic:ienlf'wuls 
úcqllion . 

result 

Base Levei 

102 

result 

Meta-Levei 

Figura 4.15: Interaction Diagram for the Concurrent Exception Handling Action Pattem. 



4.6. Implementation Issues 103 

Consequences. The Concurrent Exception Handling Action Pattern offers the following 
consequences: 

• Uniformity. The strategy for concurrent exception bandling is a consistent extension 
of the general strategy for exception bandling. 

• Transparency and Simple to Use. Management mechanisms for exception handling 
are performed transparently to the application. Programmers fix their attention 
on definition of concurrent cooperative actions, wbicb is an application-dependent 
ISsue. 

• Complexity Control. The pattern allows programmers to define nested actions. 

• Readability, Reusability and Maintainability. The application code is not inter­
mingled with invocations of methods responsible for syncbronization and exception 
resolution. As a consequence, it improves readability, wbich in turn improves reu­
sability and maintainability. 

• Minor loss in efficiency due to the blocking model. In pre-emptive schemes; there 
is inherently no wasted time but the feature required, namely pre-emptive thread 
interruption, is not readily available in many systems and programming languages. 
However, mecbanisms such as timeouts and run-time error checks can increase the 
efficiency of blocking schemes and decrease the amount of time wasted by allowing 
early detection of either the error or the abnormal behavior of the participant that 
raised the ex.ception and is wa.iting for the other partícipants. 

4.6 Implementation Issues 

We ha.ve implemented tbe proposed software architecture using the Java programming 
langua.ge without any changes to tbe language itself by means of a meta.-object proto­
col called Guaraná [51]. Guaraná is a flexible meta-object protocol for Java language 
that allows creating meta-levei objects. Guaraná provides an effi.cient broadcast servi­
ce for communication between meta-objects. Moreover, it provides support to compose 
meta-objects responsible for different management functions by means of composers. The 
proposed software architecture has allowed that the meta-objects of our exception han­
dling system be integrated with meta-objects responsible for other quality a.ttributes, such 
as persistency and security. 

The proposed software architecture can be implemented using any language as long as 
the environment supports computational reflection. The proposed architecture also can be 
implemented using languages where ever exists an exception handling mechanism without 



4.7. Related Work 104 

confiict with the existing one. A disadvantage of our approach is that may not be easy 
to perform checks statically (Section 4.5.3). However there are some features whlch can 
help programmers to avoid mista.kes: post- and pre-processors, libraries, syntax-oriented 
editors and macro-processing. In addition, the mechanism of computational reflection may 
facilitate checks performed before program execution by obtaining information about the 
application using the exception handling mechanism. 

4. 7 Related Work 

Even though many object-oriented prograroming languages include exception handling 
facilities, only the Arche language (33] provides actual support for concurrent excep­
tion handling. The exception handling mechanism of this language allows user-defined 
resolution of multiple exceptions amongst a group of objects that belong to different im­
plementations of a given type; however, this approach is not generally· applicable to the 
concurrent exception handling of multiple interacting objects of different types. 

The paper (58) describes a scheme for concurrent exception hanclling based on atomic 
action structures for the Ada95 language. In this approach, application programmers 
have to implement a exception resolution function for each concurrent cooperative action. 
Programmers are responsible for deciding how implement this resolutión function. Appli­
cation code is also intermingled with invocations of head processes which are procedures 
for synchronizing the participants while exiting from the action. In th:is way, application 
objects are polluted with explicit references for head processes. 

The coordinated atomic action concept [69] was introduced as a unified approach for 
structuring complex concurrent activities and supporting error hanclling between multiple 
interacting objects in a concurrent object-oriented system. Zorzo et al. [74] had developed 
an object-oriented scheme for implementing coordinated atomic actions. In this scheme, 
application programmers are provided with a number of classes to structure their appli­
cation. However, such solution proposes a very simple exception handling mechanism. 
There is a single method intended to handle the cooperating exceptions raised during 
the coopera.tive activity. The structure of such a hand.ler is very complex since a single 
hand.ler must incorporate handling measures for ali cooperating exceptions. 

The work of Hof et al. [31] describes an approach for exception handling based on meta­
programming and computational reflection. Their implementation was ca.rried out in a 
specific system but it also could be implemented to most other systems that support meta­
programrning. However, this approach does not support concurrent exception handling 
and its exception handling model is not object-oriented. 



4.8. Conclusions and Ongoing Work 105 

4.8 Conclusions and Ongoing Work 

In recent yea.rs exception handling mechanisms have become a important part of main­
stream object-oriented programming languages. However, designers of these mechanisms 
have not paid enough attention to concurrent exception handling. Recently, a number 
of clifferent approaches have been proposed to the provision of concurrent exception han­
dling. However, these proposals are introduced in an 'ad hoc' way andare not integrated 
uniformly with the exception handling stra.tegy for sequential programs. These current 
solutions make the task of application developers very difficult since they often are res­
ponsible for implementing va.rious management activities. In fact , such solutions pollutes 
application code with explicit references and invocations of procedures for exception re­
solution and thread synchronization. Consequently, the use of these mechanisms reduces 
the dema.nding quality requirements arising with modem software systems, such as rea­
dability, maintainability and reusability. 

This paper presents a generic software architecture to introduce exception handling 
into dependable object-oriented software. The proposed architecture supports uniformly 
concurrent and sequential exception handling, and may be implemented without create 
any linguistic construction as a result for the underlying la.nguage. Our architecture pro­
vides during the fi.rst design stage the context in which more detailed design decisions are 
made in later design stages related to exception handling. In this sense, this work also 
presents a set of design pattems which are used to describe the structural and dynamic 
aspects of the components of the proposed architecture. The design patterns incorpo­
rate well-proved solutions and their micro-architecture achieves a clea.r and transparent 
separation of concerns between the applica.tion 's functionality a.nd the exception ha.ndling 
services. Specific a.pplications reuse the exception handling facilities provided by the pro­
posed architecture's components, and the developers concentrate their attention on the 
application-dependent functionality. 

Nowadays the component programming approach to object-oriented software develop­
ment, achieved by selecting and configuring reusable components, has resulted in signi­
ficant decrease of development cost. In this work, we have designed a mechanism that 
supports the construction dependable object-oriented software from the scratch. Howe­
ver, an open issue is how to allow that exception-handling code be added on reusable 
components (for instance, COTS) without any interference on the original code of these 
components. This a.dditional exception- handling code should handle the new exceptions 
tha.t can a.rise when these components are reused on different applica.tions. 



4.9. Resumo do Capítulo 4 106 

4.9 Resumo do Capítulo 4 

Este capítulo apresentou um artigo que aborda a proposta de uma arquitetura de software 
genérica. para mecanismos de exceções. A arquitetura proposta define os componentes 
arquiteturais de um mecanismo de exceções e a interação entre estes componentes. A ar­
quitetura especialmente define um componente para tratamento de exceções concorrentes 
que é integrado uniformemente com os outros componentes arqu:iteturais. A arquitetura 
proposta é baseada em um mecanismo de reflexão computacional, sendo assim composta 
de dois níveis distintos. A divisão em níveis permite obter uma divisão clara. entre as 
funcionalidades da aplicação e os serviços do mecanismo de exceções proposto. Conse­
quentemente, a divisão obtida contribui efetivamente para a construção de um mecanismo 
simples e não intrusivo. 

Os padrões de projeto propostos constituem soluções de projeto para problemas re­
correntes no contexto de mecanismos de exceções. Estes padrões identificam soluções 
existentes e bem provadas, e concomitamente são aplicados para documentar os compo­
nentes da arquitetura de software proposta. A proposta do conjunto de padrões contribui 
ainda mais para a. reutilização da arquitetura proposta no projeto de :nm mecanismo de 
exceções. 

O próximo capítulo resume as conclusões do nosso trabalho, apresentando as principais 
contribuições e os possíveis trabalhos futuros. 



Capítulo 5 

Conclusão Geral 

Esta dissertação concentrou-se no projeto e implementação de um mecanismo de tra­

t~ento de exceções para const ruçã ~ de software orientado a objetos confiável. Para 
desenvolvimento do mecanismo propostoJ utilizamos técnicas avançadas· de estruturação 
de software, tais como reflexão computacional e padrões de projeto. Dura.nte o desen­
volvimento deste trabalho, chegamos a vários resultados que formam as nossas principais 
contribuições: 

1. Um estudo comparativo dos diferentes modelos de tratamento de exceções imple­
mentados em diversas linguagens orientadas a objetos e proposta de uma taxonomia 
que permite avaliá-los. 

2. Proposta de um critério de projeto com os requisitos desejáveis para mecanismos de 
tratamento de exceções que serão utilizados na construção de sistemas orientados 
a objetos confiáveis. Um modelo ideal de tratamento de exceções é proposto tendo 
como base o critério de projeto definido. O modelo proposto especialmente dá 

suporte a tratamento de exceções concorrentes. 

3. Projeto e implementação de um mecanismo de exceções para a linguagem Java 
utilizando a arquitetura de software reflexiva do Gua.ra.ná. O mecanismo implementa 
o modelo proposto de tratamento de exceções que contempla o critério de projeto 
definido. 

4. Definição de uma arquitetura reflexiva genérica para o projeto de mecanismos de 
exceções que serão utilizados na construção de sistemas orientados a objetos con­
fiáveis. 

5. Proposta de um conjunto coeso de quatro padrões de projeto que documentam 
os aspectos estruturais e comporta.mentais dos componentes a.rquiteturais de um 

107 



108 

mecanismo de tratamento de exceções, e incorporam boas soluções conhecidas para 
os problemas comuns no domínio desses mecanismos. 

Duas contribuições são consideradas principais. A primeira delas, caracterizada por 
aspectos técnicos e usos práticos, é o projeto e implementação de um mecanismo de ex­
ceções que especialmente oferece suporte a tratamento de exceções concorrentes. A outra, 
caracterizada por aspectos abstratos e abordagem inovadora, é a definição de uma arqui­
tetura de software genérica e o conjunto padrões de projeto relacionados que permitem a 
construção de mecanismos de exceções em diferentes linguagens de programação. 

As aplicações das idéias apresentadas nesta dissertação são as seguintes: 

• Auxílio a desenvolvedores de aplicações orientadas a objetos confiáveis, através do 
critério e modelo propostos, na escolha de um mecanismo de exceções adequado 
para a construção das suas aplicações. 

• Auxilio a engenheiros de software e/ou projetistas de linguagens de programação no 
desenvolvimento de mecanismos de tratamento de exceções. 

• Adição pouco intrusiva de um mecanismo de exceção a aplicações confiáveis exis­
tentes, através da arquitetura de software e padrões de projeto propostos. 

As principais linhas de pesquisa que podem ser seguidas a partir do nosso trabalho 
são: 

• Tradicionalmente, desenvolvedores de sistemas orientados a objetos postergam a 
preocupação com tratamento de exceções para as fases posteriores de projeto e im­
plementação. Melhores resultados poderiam ser obtidos se as situações excepcionais 
fossem consideradas desde a fase de análise. Nesse contexto, faz-se necessário o de­
senvolvimento de uma abordagem para construção de software orientado a objetos, 
onde as atividades de tratamento de erros sejam incorporadas de forma disciplinada 
durante as fases de análise, projeto e implementação. 

• O esforço de projetistas de sistemas orientados a objetos confiáveis deveria ser mi­

nimizado enquanto utilizando um mecanismo de exceções. Ferramentas CASE con­
tribuem decisivamente na construção de sistemas complexos. Nesse sentido, a im­

plementação de ferramenta CASE para definição de exceções, dos comportamentos 
normais e excepcionais pode auxiliar projetistas de aplicações confiáveis durante o 
processo de desenvolvimento. 

• Diferentes tipos de aplicações requerem diferentes requisitos de um mecanismo de 
exceções. Um framework orientado a objetos (34] é um sistema de software que 



109 

incorpora uma arquitetura flexível e pode ser extendido para produzir aplicações com 
diferentes requisitos. A nossa arquitetura de software proposta pode ser utilizada e 
extendida para a implementação de um framework de tratamento de exceções. Os 
pontos flexíveis do framework poderiam ser configurados de acordo com os requisitos 
da aplicação utilizando o framework de tratamento de exceções. 



Bibliografia 

[1] R. Balter, S. Lacourte, and M. Riveill. The Guide Language. The Computer Journal, 

7(6):519-530, 1994. 

[2] L. Bass) P. Clements) and R. Kazman. Software A rchitecture in Practice. Addison­
Wesley, Massachusetts, USA, 1998. 

[3] G. Booch. The Unified Modeling Language User Guide. Addison Wesley Publishing 
Company, MA, 1998. 

[4] Borland. Object Pascal Language Guide - Borland Delphi for Windows 95 & Win­

downs NT - Version 2. O) 1996. 

[5] Borland. User's Guide - Borland Delphi for Windows 95 & Windowns NT - Version 

2.0, 1996. 

[6] A. Burns and A. Wellings. Real-Time Systems and Their Programming Languages. 

Addison-Wesley, 1996. 

[7] F. Buschma.nn, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of 

Patterns: Patterns-Oriented Software. John Wiley & Sons, 1996. 

[8] J . Purchase C. Dony and R. Winder. Exception Handling in Object-Oriented Sys­
tems. In ECOOP'91, pages 17-30, 1991. Report on ECOOP'91 Workshop W4. 

[9] R.H. Campbell and B. Randell. Error Recovery in Asynchronous Systems. IEEE 

'Jransactions on Software Engineering, SE-12(8) :811-826, August 1986. 

[10] F . Cristian. Exception Handling and Software Fault Tolerance. IEEE 'Jransactions 

on Computers, C-31(6):531-540, June 1982. 

[11] F. Cristian. Exception Handling. TechnicaJ Report RJ5724, IDM, 1987. 

[12] F. Cristian. Exception ha.ndling. In T. Anderson, editor, Dependability of Resilient 

Computers, pages 68-97. Blackwell Scientific Publications, 1989. 

110 



BIBLIOGRAFIA 111 

[13] Q. Cui and J. Gannon. Da.ta.-Oriented Exception Ha.ndling. IEEE Transactions on 

Software Engineering, 18(5):393-401, Ma.y 1992. 

[14] R. de Lemos and A. Roma.novsky. Exception Handling in a. Coopera.tive Object­
Oriented Approa.ch. In 2nd IEEE International Symposium on Object-Oriented Real­

Time Distributed Computing, Fra.nce, May 1999. 

[15) C. Dony. An Object-Oriented Exception Ha.ndling System for a.n Object-Oriented 
La.ngua.ge. Lectures Notes in Computer Science, 322:146-161, August 1988. 

[16) C. Dony. Exception Ha.ndling a.nd Object-Oriented Programming: Towards a Syn­
thesys. Sigplan Notices, 25(10):322- 330, October 1990. 

(17) S. Drew a.nd K. Gough. Exception Ha.ndling: Expecting the Unexpected. Computer 

Languages, 32(8):69-87, 1994. 

(18) C. Schaffert et a.l. An Introduction to Trellis-Owl. In OOPSLA '86, pages 9- 16, 1986. 

(19] L. Ferreira. a.nd C. Rubira.. The Design a.nd Implementation of a Dependable a.nd 
Distributed Framework for Train Controlers. Subm.itted to "Software: Practice & 

Experience" . 

[20) E. Ga.mma, R. Helm, R. Johnson, a.nd J. Vlissides. Design Patterns - Elements of 

Reusable Object-Oriented Software. Addison Wesley Publishing Company, 1995. 

[21) A . Garcia, D. Beder, and C. Rubira. An Exception Handling Mechanism for Deve­
loping Dependable Object-Oriented Software Based on a. Meta.-Level Approach. In 
10th International Symposium on Software Reliabílity Engineering- ISSRE'99, pages 
52-61. IEEE Press, November 1999. 

[22] A. Garcia, D. Beder, and C. Rubira. An Exception Handling Software Archltecture 
for Developing Robust Software. Subm.itted to 5th IEEE International Symposium 
on High Assura.nce Systems Engineering, March 2000. 

[23] A. Garcia and C. Rubira. Um Mecanismo Orientado a Objetos para Tratamento 
de Exceccões em Software Concorrente Tolerante a Falhas. In VIII Symposium of 

Fault-Tolerant Computing, pages 33-47, Campinas, Brazil, July 1999. 

[24] A. Garcia and C. Rubira.. An Exception Handling Software Architecture for Develo­
ping Robust Software. In 2nd Workshop on Exception Handling in Object-Oriented 

Systems- ECOOP'2000, June 2000. 



BffiLIOGRAFIA 112 

{25] A. Garcia, C. Rubira, A. Romanovsky, and J. Xu. A Comparative Study ofException 
Handling Proposals for Dependable Object-Oriented Software. Submitted to Joumal 
of Systems and Software, March 2000. 

[26] N.H. Gehani. Exceptional C or C with Exceptions. Software: Practice and Expe­

rience, 22(10):827- 848, October 1992. 

[27) C. Ghezzi and M. Jazayeri. Progmmming Languages Concepts. John Wiley & Sons, 
3rd edítion, 1997. 

[28) A. Goldberg and D. Robson. Smalltalk-80, the Language and its Implementation. 

Addíson-Wesley, Massachussetts, 1983. 

[29] J.B. Goodenough. Exception Handling: Issues anda Proposed Notation. Commu­

nications of the ACM, 18(12):683-696, December 1975. 

(30) J. Gosling, B. Joy, and G. Steele. The Java Language Specification - Version 1.0. 

Addison-Wesley, 1996. 

[31] M. Hof, H. Mossenbock, and P. Pirkelbauer. Zero-Overhead Exception Handling 
Using Meta-Programming. Lectures Notes in Computer Science, 1338:423-431, 1997. 

[32) V. Issarny. Programming Notations for Expressing Error Recovery in a Distributed 
Object-Oriented Language. Technical Report 1822, IRISA/ INRIA, Rennes, France, 
1992. 

[33] V. Issarny. An Exception-Handling Mechanism for Parallel-Object-Oriented Pro­
grarnming: Toward Reusable, Robust Distributed Software. Journal of Object­

Oriented Programming, 6(6):29-40, October 1993. 

[34] R.E. Johnson. Frameworks = Components + Patterns. Communications ofthe ACM 

- Object-Oriented Application Frameworks, 40(10):39-42, October 1997. 

[35] A. Koening and B. Stroustrup. Exception Handling for C++. Journal of Object­

Oriented Progmmming, 3(2):16-33, July / August 1990. 

[36] S. Lacourte. Exceptions in Guide, an Object-Oriented Language for Distributed 
Applications. Lectures Notes in Computer Science, 512:268-287, July 1991. 

[37] J. Lang and D. Stewart. A Study of the Applicability of Existing Exception-Handling 
Techniques to Component-Based Real-Time Software Technology. ACM Computing 

Surveys, 20(2):274-301, March 1998. 



BIBLIOGRAFIA 113 

[38] P.A. Lee and T. Anderson. Fault Tolerance: Principies and Practice. Springer-Verlag, 
2nd edition, 1990. 

[39] H. Lieberman. Concurrent Object-Oriented Programming in Act1, pages 9-36. MIT 
Press, 1987. 

[40] B.H. Liskov and A. Snyder. Exception Handling in CLU. IEEE Pransaction on 

Software Engineering, SE-5(6):546-558, November 1979. 

[41) M.D. Maclaren. Exception Handling in PL/ 1. SIGPLAN Notices, 12(3):101-104, 
March 1977. 

(42] O.L. Madsen, B. Moller-Pedersen, and K. Nygaard. Object-Oriented Programming 

in the BETA Programming Language, chapter 16. Addison-Wesley Publishing Com­
pany, 1995. 

[43] P. Maes. Concepts and experiments in computacional reflection. ACM SIGPLAN 

Notices, 22(12):147-155, December 1987. 

(44] B. Meyer. Object-Oriented Software Construction. New York: Prentice-Hall, 1988. 

[45] B. Meyer. Eiffel- The Language. Prentice Hall, 1992. 

[46] R. Miller and A. Tripathi. Issues with Exception Handling in Object-Oriented Sys­
tems. In Lectures Notes in Computer Science - ECOOP'97, volume 1241, pages 
85-103. Springer-Verlag, 1997. 

[47] J. Mitchell, W . Maybury, and R. Sweet. Mesa Language ManuaL Xerox Research 
Centre, 1979. 

[48] S. Mitchell, A. Burns, and A. Wellings. MOPping up Exceptions. In ECOOP'98 

Workshop on Refiective Object-Oriented Progromming and Systems, pages 365-366, 
1998. 

[49] D. Moreto. Monitoramento de Eventos Compostos em Sistemas Distribuídos. Mas­
ter's thesis, IME - University of Sao Paulo, Brazil, September 1998. In Portuguese. 

[50] G. Nelson. Systems Programming with Modula-3. Prentice Hall, 1991. 

[51] A. Oliva. and L. Buzato. Composition of Meta-Objects in Guaraná. In Workshop on 

Reftective Programming in C++ and Java, OOPSLA '98, pages 86-90, Vancouver, 
BC, Canada, October 1998. 

[52] D. Papurt. The Use of Exceptions. JOOP, pages 13-17,32, May 1998. 



BIBLIOGRAFIA 114 

[53] B. Randell, A. Romanovsky, R.J. Stroud, J. Xu, A.F. Zorzo, D. Schwier, and F. von 
Henke. Coordina.ted Atomic Actions: Formal Model, Case Study and System Imple­
mentation. Technical Report 628, Departm.ent of Computing Science, University of 
Newcastle upon Tyne, UK, 1998. 

(54] B. Ra.ndell, J. Xu, and A. Zorzo. Software Fault Tolerance in Object-Oriented Sys­
tems Approaches. Technical Report 597, Department of Computing Science, Univer­
sity of Newcastle upon Tyne, UK, 1997. 

[55] B. Randell andA. Zorzo. Exception Handling in Multipa.rty Interactions. In VIII 

Symposium of Fault-Tolerant Computing, Campinas, Bra.zil, July 1999. 

[56] K. Renzel. Error Detection. In EuroPLOP'97, 1997. 

[57] A. Romanovsky. Practica.l Exception Ha.ndling and Resolutíon iri Concurrent Pro­
grams. Technical Report 545, Department of Computing Science, University of 
Newcastle upon Tyne, UK, 1996. 

[58] A. Romanovsky. Pra.ctical Exception Handling a.nd Resolution in· Concurrent Pro­
gra.ms. Computer Languages, 23(7):43-58, 1997. 

[59] A. Romanovsky. Extending Conventional La.ngua.ges by Distributed/ Concurrent Ex­
ception Resolution. Journal of Systems Architecture, pages 79- 95, Ja.nua.ry 2000. 

[60] A. Romanovsky, B. Randell., R.J. Stroud, J. Xu, andA. Zorzo. lmplementing Syn­
chronous Coordina.ted Atomic Actions Based on Forwa.rd Error Recovery. Technical 
Report 561, Depa.rtment of Computing Science, University of Newcastle upon Tyne, 
UK, 1997. 

[61] A. Romanovsky, J. Xu, a.nd B. Ra.ndell. Exception Ha.ndling a.nd Resolution in Dis­
tributed Object-Oriented Systems. In Proc. the 16th lnt. Conference on Disttibuted 

Computing Systems, pages 545-553, Hong Kong, 1996. 

[62] A. Roma.novsky, J. Xu, and B. Randell. Exception Handling in Object-Oriented Real­
Time Distributed Systems. In International Symposium on Object-oriented Real-time 

Distributed Computing, Kyoto, Japan, April 1998. 

[63] C. Rubira.. Structuring Fault-Tolerant Object-Oriented Systems Using Inheritance 

and Delegation. PhD thesis, University of Computing Scie.nce, October 1994. 

[64] J . Schwille. Use a.nd Abuse of Exceptions - 12 Guidelines for Proper Exception 
Handling. Lectures Notes in Computer Science - Ada-Europe'93, 688:142-152, 1993. 



BIBLIOGRAFIA 115 

(65] M. Sha.w a.nd D. Ga.rla.n. Software Architecture - Perspectives on an Emerging Dis­

cipline. Prentice Hall, 1996. 

(66] S.T. Ta.ft a.nd R.A. Duff. Ada. 95 Reference Manual: Langua.ge a.nd Standa.rd Li­
braries, intema.tional standa.rd isof iec 8652:1995(e) . In Lectures Notes in Computer 

Science, volume 1246. Springer-Ver1ag, 1997. 

[67) P. Thoma.s a.nd R. Weedon. Object-Oriented Programming in Eiffel. Addison-Wesley, 
1995. 

[68] K. Vo, Y. Wang, P. Chung, a.nd Y. Hua.ng. Xept: A Software lnstrumentation 
Method for Exception Handling. In 8th International Symposium on Software Re­

liability Engineering- ISSRE'97, pages 6D-69, Albuquerque, NM, USA, November 
1997. IEEE Press. 

[69] J . Xu, B. Randell, A. Roma.novsky, C. Rubira, R. Stroud, and Z. Wu. Fault Tolera.nce 
in Concurrent Object-Oriented Software through Coordinated Error Recovery. ·In 

FTCS-25: 25th International Symposium on Fault Tolerant Computing, pages 499-
509, Pasadena., California, 1995. 

[70] J . Xu, B. Randell, A. Roma.novsky, R. Stroud, A. Zorzo, A. Burns, S. Mitchell , and 
A. Wellings. Cooperative and Competi tive Concurrency in Fault-Tolera.nt Distribu­
ted Systems. In DeVa 1st Year Report, 1997. 

(71) J . Xu, B. Randell, C. Rubira-Calsavara, a.nd R.J . Stroud. Software Tolerance: 
Towa.rds an Object-Oriented Approach. Technical Report 498, University of Newcas­
tle upon Tyne, Novembro 1994. 

[72] J. Xu, A. Romanovsky, and B. Randell. Exception Handling in Distributed Object 
Systems: from Model to System lmplementation. Technical Report 612, Department 
of Computing Science, University of Newcastle upon Tyne, UK, 1997. 

(73] S. Yemini and D.M. Berry. A Modular Verifiable Exception Handling Mechanism. 
A CM Transactions on Programming Languages and Systems, 7(2):214-243, April 
1985. 

(74] A.F. Zorzo, A. Romanovsky, J . Xu, B. Randell, R.J. Stroud, a.nd I.S. Welch. Using 
Coordinated Atomic Actions to Design Dependa.ble Distributed Object Systems. In 
Workshop of Dependable Distributed Object Systems - OOPSLA '97, pages 241- 259, 
Atla.nta, October 1997. 

UNICAMP 

BIBLIOTECA CENTRAl. 

SEÇÃO ClRCULANTF 


